1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /* Portions Copyright 2007 Jeremy Teo */
28 /* Portions Copyright 2010 Robert Milkowski */
29
30 #include <sys/types.h>
31 #include <sys/param.h>
32 #include <sys/time.h>
33 #include <sys/systm.h>
34 #include <sys/sysmacros.h>
35 #include <sys/resource.h>
36 #include <sys/vfs.h>
37 #include <sys/vfs_opreg.h>
38 #include <sys/vnode.h>
39 #include <sys/file.h>
40 #include <sys/stat.h>
41 #include <sys/kmem.h>
42 #include <sys/taskq.h>
43 #include <sys/uio.h>
44 #include <sys/vmsystm.h>
45 #include <sys/atomic.h>
46 #include <sys/vm.h>
47 #include <vm/seg_vn.h>
48 #include <vm/pvn.h>
49 #include <vm/as.h>
50 #include <vm/kpm.h>
51 #include <vm/seg_kpm.h>
52 #include <sys/mman.h>
53 #include <sys/pathname.h>
54 #include <sys/cmn_err.h>
55 #include <sys/errno.h>
56 #include <sys/unistd.h>
57 #include <sys/zfs_dir.h>
58 #include <sys/zfs_acl.h>
59 #include <sys/zfs_ioctl.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/dmu.h>
62 #include <sys/dmu_objset.h>
63 #include <sys/spa.h>
64 #include <sys/txg.h>
65 #include <sys/dbuf.h>
66 #include <sys/zap.h>
67 #include <sys/sa.h>
68 #include <sys/dirent.h>
69 #include <sys/policy.h>
70 #include <sys/sunddi.h>
71 #include <sys/filio.h>
72 #include <sys/sid.h>
73 #include "fs/fs_subr.h"
74 #include <sys/zfs_ctldir.h>
75 #include <sys/zfs_fuid.h>
76 #include <sys/zfs_sa.h>
77 #include <sys/dnlc.h>
78 #include <sys/zfs_rlock.h>
79 #include <sys/extdirent.h>
80 #include <sys/kidmap.h>
81 #include <sys/cred.h>
82 #include <sys/attr.h>
83
84 /*
85 * Programming rules.
86 *
87 * Each vnode op performs some logical unit of work. To do this, the ZPL must
88 * properly lock its in-core state, create a DMU transaction, do the work,
89 * record this work in the intent log (ZIL), commit the DMU transaction,
90 * and wait for the intent log to commit if it is a synchronous operation.
91 * Moreover, the vnode ops must work in both normal and log replay context.
92 * The ordering of events is important to avoid deadlocks and references
93 * to freed memory. The example below illustrates the following Big Rules:
94 *
95 * (1) A check must be made in each zfs thread for a mounted file system.
96 * This is done avoiding races using ZFS_ENTER(zfsvfs).
97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes
98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros
99 * can return EIO from the calling function.
100 *
101 * (2) VN_RELE() should always be the last thing except for zil_commit()
102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons:
103 * First, if it's the last reference, the vnode/znode
104 * can be freed, so the zp may point to freed memory. Second, the last
105 * reference will call zfs_zinactive(), which may induce a lot of work --
106 * pushing cached pages (which acquires range locks) and syncing out
107 * cached atime changes. Third, zfs_zinactive() may require a new tx,
108 * which could deadlock the system if you were already holding one.
109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
110 *
111 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
112 * as they can span dmu_tx_assign() calls.
113 *
114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
115 * dmu_tx_assign(). This is critical because we don't want to block
116 * while holding locks.
117 *
118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This
119 * reduces lock contention and CPU usage when we must wait (note that if
120 * throughput is constrained by the storage, nearly every transaction
121 * must wait).
122 *
123 * Note, in particular, that if a lock is sometimes acquired before
124 * the tx assigns, and sometimes after (e.g. z_lock), then failing
125 * to use a non-blocking assign can deadlock the system. The scenario:
126 *
127 * Thread A has grabbed a lock before calling dmu_tx_assign().
128 * Thread B is in an already-assigned tx, and blocks for this lock.
129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
130 * forever, because the previous txg can't quiesce until B's tx commits.
131 *
132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT,
135 * to indicate that this operation has already called dmu_tx_wait().
136 * This will ensure that we don't retry forever, waiting a short bit
137 * each time.
138 *
139 * (5) If the operation succeeded, generate the intent log entry for it
140 * before dropping locks. This ensures that the ordering of events
141 * in the intent log matches the order in which they actually occurred.
142 * During ZIL replay the zfs_log_* functions will update the sequence
143 * number to indicate the zil transaction has replayed.
144 *
145 * (6) At the end of each vnode op, the DMU tx must always commit,
146 * regardless of whether there were any errors.
147 *
148 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
149 * to ensure that synchronous semantics are provided when necessary.
150 *
151 * In general, this is how things should be ordered in each vnode op:
152 *
153 * ZFS_ENTER(zfsvfs); // exit if unmounted
154 * top:
155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD())
156 * rw_enter(...); // grab any other locks you need
157 * tx = dmu_tx_create(...); // get DMU tx
158 * dmu_tx_hold_*(); // hold each object you might modify
159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
160 * if (error) {
161 * rw_exit(...); // drop locks
162 * zfs_dirent_unlock(dl); // unlock directory entry
163 * VN_RELE(...); // release held vnodes
164 * if (error == ERESTART) {
165 * waited = B_TRUE;
166 * dmu_tx_wait(tx);
167 * dmu_tx_abort(tx);
168 * goto top;
169 * }
170 * dmu_tx_abort(tx); // abort DMU tx
171 * ZFS_EXIT(zfsvfs); // finished in zfs
172 * return (error); // really out of space
173 * }
174 * error = do_real_work(); // do whatever this VOP does
175 * if (error == 0)
176 * zfs_log_*(...); // on success, make ZIL entry
177 * dmu_tx_commit(tx); // commit DMU tx -- error or not
178 * rw_exit(...); // drop locks
179 * zfs_dirent_unlock(dl); // unlock directory entry
180 * VN_RELE(...); // release held vnodes
181 * zil_commit(zilog, foid); // synchronous when necessary
182 * ZFS_EXIT(zfsvfs); // finished in zfs
183 * return (error); // done, report error
184 */
185
186 /* ARGSUSED */
187 static int
188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
189 {
190 znode_t *zp = VTOZ(*vpp);
191 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
192
193 ZFS_ENTER(zfsvfs);
194 ZFS_VERIFY_ZP(zp);
195
196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
197 ((flag & FAPPEND) == 0)) {
198 ZFS_EXIT(zfsvfs);
199 return (SET_ERROR(EPERM));
200 }
201
202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
203 ZTOV(zp)->v_type == VREG &&
204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
205 if (fs_vscan(*vpp, cr, 0) != 0) {
206 ZFS_EXIT(zfsvfs);
207 return (SET_ERROR(EACCES));
208 }
209 }
210
211 /* Keep a count of the synchronous opens in the znode */
212 if (flag & (FSYNC | FDSYNC))
213 atomic_inc_32(&zp->z_sync_cnt);
214
215 ZFS_EXIT(zfsvfs);
216 return (0);
217 }
218
219 /* ARGSUSED */
220 static int
221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
222 caller_context_t *ct)
223 {
224 znode_t *zp = VTOZ(vp);
225 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
226
227 /*
228 * Clean up any locks held by this process on the vp.
229 */
230 cleanlocks(vp, ddi_get_pid(), 0);
231 cleanshares(vp, ddi_get_pid());
232
233 ZFS_ENTER(zfsvfs);
234 ZFS_VERIFY_ZP(zp);
235
236 /* Decrement the synchronous opens in the znode */
237 if ((flag & (FSYNC | FDSYNC)) && (count == 1))
238 atomic_dec_32(&zp->z_sync_cnt);
239
240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
241 ZTOV(zp)->v_type == VREG &&
242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
243 VERIFY(fs_vscan(vp, cr, 1) == 0);
244
245 ZFS_EXIT(zfsvfs);
246 return (0);
247 }
248
249 /*
250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
252 */
253 static int
254 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
255 {
256 znode_t *zp = VTOZ(vp);
257 uint64_t noff = (uint64_t)*off; /* new offset */
258 uint64_t file_sz;
259 int error;
260 boolean_t hole;
261
262 file_sz = zp->z_size;
263 if (noff >= file_sz) {
264 return (SET_ERROR(ENXIO));
265 }
266
267 if (cmd == _FIO_SEEK_HOLE)
268 hole = B_TRUE;
269 else
270 hole = B_FALSE;
271
272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
273
274 if (error == ESRCH)
275 return (SET_ERROR(ENXIO));
276
277 /*
278 * We could find a hole that begins after the logical end-of-file,
279 * because dmu_offset_next() only works on whole blocks. If the
280 * EOF falls mid-block, then indicate that the "virtual hole"
281 * at the end of the file begins at the logical EOF, rather than
282 * at the end of the last block.
283 */
284 if (noff > file_sz) {
285 ASSERT(hole);
286 noff = file_sz;
287 }
288
289 if (noff < *off)
290 return (error);
291 *off = noff;
292 return (error);
293 }
294
295 /* ARGSUSED */
296 static int
297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
298 int *rvalp, caller_context_t *ct)
299 {
300 offset_t off;
301 offset_t ndata;
302 dmu_object_info_t doi;
303 int error;
304 zfsvfs_t *zfsvfs;
305 znode_t *zp;
306
307 switch (com) {
308 case _FIOFFS:
309 {
310 return (zfs_sync(vp->v_vfsp, 0, cred));
311
312 /*
313 * The following two ioctls are used by bfu. Faking out,
314 * necessary to avoid bfu errors.
315 */
316 }
317 case _FIOGDIO:
318 case _FIOSDIO:
319 {
320 return (0);
321 }
322
323 case _FIO_SEEK_DATA:
324 case _FIO_SEEK_HOLE:
325 {
326 if (ddi_copyin((void *)data, &off, sizeof (off), flag))
327 return (SET_ERROR(EFAULT));
328
329 zp = VTOZ(vp);
330 zfsvfs = zp->z_zfsvfs;
331 ZFS_ENTER(zfsvfs);
332 ZFS_VERIFY_ZP(zp);
333
334 /* offset parameter is in/out */
335 error = zfs_holey(vp, com, &off);
336 ZFS_EXIT(zfsvfs);
337 if (error)
338 return (error);
339 if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
340 return (SET_ERROR(EFAULT));
341 return (0);
342 }
343 case _FIO_COUNT_FILLED:
344 {
345 /*
346 * _FIO_COUNT_FILLED adds a new ioctl command which
347 * exposes the number of filled blocks in a
348 * ZFS object.
349 */
350 zp = VTOZ(vp);
351 zfsvfs = zp->z_zfsvfs;
352 ZFS_ENTER(zfsvfs);
353 ZFS_VERIFY_ZP(zp);
354
355 /*
356 * Wait for all dirty blocks for this object
357 * to get synced out to disk, and the DMU info
358 * updated.
359 */
360 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id);
361 if (error) {
362 ZFS_EXIT(zfsvfs);
363 return (error);
364 }
365
366 /*
367 * Retrieve fill count from DMU object.
368 */
369 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi);
370 if (error) {
371 ZFS_EXIT(zfsvfs);
372 return (error);
373 }
374
375 ndata = doi.doi_fill_count;
376
377 ZFS_EXIT(zfsvfs);
378 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag))
379 return (SET_ERROR(EFAULT));
380 return (0);
381 }
382 }
383 return (SET_ERROR(ENOTTY));
384 }
385
386 /*
387 * Utility functions to map and unmap a single physical page. These
388 * are used to manage the mappable copies of ZFS file data, and therefore
389 * do not update ref/mod bits.
390 */
391 caddr_t
392 zfs_map_page(page_t *pp, enum seg_rw rw)
393 {
394 if (kpm_enable)
395 return (hat_kpm_mapin(pp, 0));
396 ASSERT(rw == S_READ || rw == S_WRITE);
397 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
398 (caddr_t)-1));
399 }
400
401 void
402 zfs_unmap_page(page_t *pp, caddr_t addr)
403 {
404 if (kpm_enable) {
405 hat_kpm_mapout(pp, 0, addr);
406 } else {
407 ppmapout(addr);
408 }
409 }
410
411 /*
412 * When a file is memory mapped, we must keep the IO data synchronized
413 * between the DMU cache and the memory mapped pages. What this means:
414 *
415 * On Write: If we find a memory mapped page, we write to *both*
416 * the page and the dmu buffer.
417 */
418 static void
419 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
420 {
421 int64_t off;
422
423 off = start & PAGEOFFSET;
424 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
425 page_t *pp;
426 uint64_t nbytes = MIN(PAGESIZE - off, len);
427
428 if (pp = page_lookup(vp, start, SE_SHARED)) {
429 caddr_t va;
430
431 va = zfs_map_page(pp, S_WRITE);
432 (void) dmu_read(os, oid, start+off, nbytes, va+off,
433 DMU_READ_PREFETCH);
434 zfs_unmap_page(pp, va);
435 page_unlock(pp);
436 }
437 len -= nbytes;
438 off = 0;
439 }
440 }
441
442 /*
443 * When a file is memory mapped, we must keep the IO data synchronized
444 * between the DMU cache and the memory mapped pages. What this means:
445 *
446 * On Read: We "read" preferentially from memory mapped pages,
447 * else we default from the dmu buffer.
448 *
449 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
450 * the file is memory mapped.
451 */
452 static int
453 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
454 {
455 znode_t *zp = VTOZ(vp);
456 int64_t start, off;
457 int len = nbytes;
458 int error = 0;
459
460 start = uio->uio_loffset;
461 off = start & PAGEOFFSET;
462 for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
463 page_t *pp;
464 uint64_t bytes = MIN(PAGESIZE - off, len);
465
466 if (pp = page_lookup(vp, start, SE_SHARED)) {
467 caddr_t va;
468
469 va = zfs_map_page(pp, S_READ);
470 error = uiomove(va + off, bytes, UIO_READ, uio);
471 zfs_unmap_page(pp, va);
472 page_unlock(pp);
473 } else {
474 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
475 uio, bytes);
476 }
477 len -= bytes;
478 off = 0;
479 if (error)
480 break;
481 }
482 return (error);
483 }
484
485 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
486
487 /*
488 * Read bytes from specified file into supplied buffer.
489 *
490 * IN: vp - vnode of file to be read from.
491 * uio - structure supplying read location, range info,
492 * and return buffer.
493 * ioflag - SYNC flags; used to provide FRSYNC semantics.
494 * cr - credentials of caller.
495 * ct - caller context
496 *
497 * OUT: uio - updated offset and range, buffer filled.
498 *
499 * RETURN: 0 on success, error code on failure.
500 *
501 * Side Effects:
502 * vp - atime updated if byte count > 0
503 */
504 /* ARGSUSED */
505 static int
506 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
507 {
508 znode_t *zp = VTOZ(vp);
509 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
510 ssize_t n, nbytes;
511 int error = 0;
512 rl_t *rl;
513 xuio_t *xuio = NULL;
514
515 ZFS_ENTER(zfsvfs);
516 ZFS_VERIFY_ZP(zp);
517
518 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
519 ZFS_EXIT(zfsvfs);
520 return (SET_ERROR(EACCES));
521 }
522
523 /*
524 * Validate file offset
525 */
526 if (uio->uio_loffset < (offset_t)0) {
527 ZFS_EXIT(zfsvfs);
528 return (SET_ERROR(EINVAL));
529 }
530
531 /*
532 * Fasttrack empty reads
533 */
534 if (uio->uio_resid == 0) {
535 ZFS_EXIT(zfsvfs);
536 return (0);
537 }
538
539 /*
540 * Check for mandatory locks
541 */
542 if (MANDMODE(zp->z_mode)) {
543 if (error = chklock(vp, FREAD,
544 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
545 ZFS_EXIT(zfsvfs);
546 return (error);
547 }
548 }
549
550 /*
551 * If we're in FRSYNC mode, sync out this znode before reading it.
552 */
553 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
554 zil_commit(zfsvfs->z_log, zp->z_id);
555
556 /*
557 * Lock the range against changes.
558 */
559 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
560
561 /*
562 * If we are reading past end-of-file we can skip
563 * to the end; but we might still need to set atime.
564 */
565 if (uio->uio_loffset >= zp->z_size) {
566 error = 0;
567 goto out;
568 }
569
570 ASSERT(uio->uio_loffset < zp->z_size);
571 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
572
573 if ((uio->uio_extflg == UIO_XUIO) &&
574 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
575 int nblk;
576 int blksz = zp->z_blksz;
577 uint64_t offset = uio->uio_loffset;
578
579 xuio = (xuio_t *)uio;
580 if ((ISP2(blksz))) {
581 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
582 blksz)) / blksz;
583 } else {
584 ASSERT(offset + n <= blksz);
585 nblk = 1;
586 }
587 (void) dmu_xuio_init(xuio, nblk);
588
589 if (vn_has_cached_data(vp)) {
590 /*
591 * For simplicity, we always allocate a full buffer
592 * even if we only expect to read a portion of a block.
593 */
594 while (--nblk >= 0) {
595 (void) dmu_xuio_add(xuio,
596 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
597 blksz), 0, blksz);
598 }
599 }
600 }
601
602 while (n > 0) {
603 nbytes = MIN(n, zfs_read_chunk_size -
604 P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
605
606 if (vn_has_cached_data(vp)) {
607 error = mappedread(vp, nbytes, uio);
608 } else {
609 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
610 uio, nbytes);
611 }
612 if (error) {
613 /* convert checksum errors into IO errors */
614 if (error == ECKSUM)
615 error = SET_ERROR(EIO);
616 break;
617 }
618
619 n -= nbytes;
620 }
621 out:
622 zfs_range_unlock(rl);
623
624 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
625 ZFS_EXIT(zfsvfs);
626 return (error);
627 }
628
629 /*
630 * Write the bytes to a file.
631 *
632 * IN: vp - vnode of file to be written to.
633 * uio - structure supplying write location, range info,
634 * and data buffer.
635 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is
636 * set if in append mode.
637 * cr - credentials of caller.
638 * ct - caller context (NFS/CIFS fem monitor only)
639 *
640 * OUT: uio - updated offset and range.
641 *
642 * RETURN: 0 on success, error code on failure.
643 *
644 * Timestamps:
645 * vp - ctime|mtime updated if byte count > 0
646 */
647
648 /* ARGSUSED */
649 static int
650 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
651 {
652 znode_t *zp = VTOZ(vp);
653 rlim64_t limit = uio->uio_llimit;
654 ssize_t start_resid = uio->uio_resid;
655 ssize_t tx_bytes;
656 uint64_t end_size;
657 dmu_tx_t *tx;
658 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
659 zilog_t *zilog;
660 offset_t woff;
661 ssize_t n, nbytes;
662 rl_t *rl;
663 int max_blksz = zfsvfs->z_max_blksz;
664 int error = 0;
665 arc_buf_t *abuf;
666 iovec_t *aiov = NULL;
667 xuio_t *xuio = NULL;
668 int i_iov = 0;
669 int iovcnt = uio->uio_iovcnt;
670 iovec_t *iovp = uio->uio_iov;
671 int write_eof;
672 int count = 0;
673 sa_bulk_attr_t bulk[4];
674 uint64_t mtime[2], ctime[2];
675
676 /*
677 * Fasttrack empty write
678 */
679 n = start_resid;
680 if (n == 0)
681 return (0);
682
683 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
684 limit = MAXOFFSET_T;
685
686 ZFS_ENTER(zfsvfs);
687 ZFS_VERIFY_ZP(zp);
688
689 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
690 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
691 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
692 &zp->z_size, 8);
693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
694 &zp->z_pflags, 8);
695
696 /*
697 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
698 * callers might not be able to detect properly that we are read-only,
699 * so check it explicitly here.
700 */
701 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
702 ZFS_EXIT(zfsvfs);
703 return (SET_ERROR(EROFS));
704 }
705
706 /*
707 * If immutable or not appending then return EPERM
708 */
709 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
710 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
711 (uio->uio_loffset < zp->z_size))) {
712 ZFS_EXIT(zfsvfs);
713 return (SET_ERROR(EPERM));
714 }
715
716 zilog = zfsvfs->z_log;
717
718 /*
719 * Validate file offset
720 */
721 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
722 if (woff < 0) {
723 ZFS_EXIT(zfsvfs);
724 return (SET_ERROR(EINVAL));
725 }
726
727 /*
728 * Check for mandatory locks before calling zfs_range_lock()
729 * in order to prevent a deadlock with locks set via fcntl().
730 */
731 if (MANDMODE((mode_t)zp->z_mode) &&
732 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
733 ZFS_EXIT(zfsvfs);
734 return (error);
735 }
736
737 /*
738 * Pre-fault the pages to ensure slow (eg NFS) pages
739 * don't hold up txg.
740 * Skip this if uio contains loaned arc_buf.
741 */
742 if ((uio->uio_extflg == UIO_XUIO) &&
743 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
744 xuio = (xuio_t *)uio;
745 else
746 uio_prefaultpages(MIN(n, max_blksz), uio);
747
748 /*
749 * If in append mode, set the io offset pointer to eof.
750 */
751 if (ioflag & FAPPEND) {
752 /*
753 * Obtain an appending range lock to guarantee file append
754 * semantics. We reset the write offset once we have the lock.
755 */
756 rl = zfs_range_lock(zp, 0, n, RL_APPEND);
757 woff = rl->r_off;
758 if (rl->r_len == UINT64_MAX) {
759 /*
760 * We overlocked the file because this write will cause
761 * the file block size to increase.
762 * Note that zp_size cannot change with this lock held.
763 */
764 woff = zp->z_size;
765 }
766 uio->uio_loffset = woff;
767 } else {
768 /*
769 * Note that if the file block size will change as a result of
770 * this write, then this range lock will lock the entire file
771 * so that we can re-write the block safely.
772 */
773 rl = zfs_range_lock(zp, woff, n, RL_WRITER);
774 }
775
776 if (woff >= limit) {
777 zfs_range_unlock(rl);
778 ZFS_EXIT(zfsvfs);
779 return (SET_ERROR(EFBIG));
780 }
781
782 if ((woff + n) > limit || woff > (limit - n))
783 n = limit - woff;
784
785 /* Will this write extend the file length? */
786 write_eof = (woff + n > zp->z_size);
787
788 end_size = MAX(zp->z_size, woff + n);
789
790 /*
791 * Write the file in reasonable size chunks. Each chunk is written
792 * in a separate transaction; this keeps the intent log records small
793 * and allows us to do more fine-grained space accounting.
794 */
795 while (n > 0) {
796 abuf = NULL;
797 woff = uio->uio_loffset;
798 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
799 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
800 if (abuf != NULL)
801 dmu_return_arcbuf(abuf);
802 error = SET_ERROR(EDQUOT);
803 break;
804 }
805
806 if (xuio && abuf == NULL) {
807 ASSERT(i_iov < iovcnt);
808 aiov = &iovp[i_iov];
809 abuf = dmu_xuio_arcbuf(xuio, i_iov);
810 dmu_xuio_clear(xuio, i_iov);
811 DTRACE_PROBE3(zfs_cp_write, int, i_iov,
812 iovec_t *, aiov, arc_buf_t *, abuf);
813 ASSERT((aiov->iov_base == abuf->b_data) ||
814 ((char *)aiov->iov_base - (char *)abuf->b_data +
815 aiov->iov_len == arc_buf_size(abuf)));
816 i_iov++;
817 } else if (abuf == NULL && n >= max_blksz &&
818 woff >= zp->z_size &&
819 P2PHASE(woff, max_blksz) == 0 &&
820 zp->z_blksz == max_blksz) {
821 /*
822 * This write covers a full block. "Borrow" a buffer
823 * from the dmu so that we can fill it before we enter
824 * a transaction. This avoids the possibility of
825 * holding up the transaction if the data copy hangs
826 * up on a pagefault (e.g., from an NFS server mapping).
827 */
828 size_t cbytes;
829
830 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
831 max_blksz);
832 ASSERT(abuf != NULL);
833 ASSERT(arc_buf_size(abuf) == max_blksz);
834 if (error = uiocopy(abuf->b_data, max_blksz,
835 UIO_WRITE, uio, &cbytes)) {
836 dmu_return_arcbuf(abuf);
837 break;
838 }
839 ASSERT(cbytes == max_blksz);
840 }
841
842 /*
843 * Start a transaction.
844 */
845 tx = dmu_tx_create(zfsvfs->z_os);
846 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
847 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
848 zfs_sa_upgrade_txholds(tx, zp);
849 error = dmu_tx_assign(tx, TXG_WAIT);
850 if (error) {
851 dmu_tx_abort(tx);
852 if (abuf != NULL)
853 dmu_return_arcbuf(abuf);
854 break;
855 }
856
857 /*
858 * If zfs_range_lock() over-locked we grow the blocksize
859 * and then reduce the lock range. This will only happen
860 * on the first iteration since zfs_range_reduce() will
861 * shrink down r_len to the appropriate size.
862 */
863 if (rl->r_len == UINT64_MAX) {
864 uint64_t new_blksz;
865
866 if (zp->z_blksz > max_blksz) {
867 /*
868 * File's blocksize is already larger than the
869 * "recordsize" property. Only let it grow to
870 * the next power of 2.
871 */
872 ASSERT(!ISP2(zp->z_blksz));
873 new_blksz = MIN(end_size,
874 1 << highbit64(zp->z_blksz));
875 } else {
876 new_blksz = MIN(end_size, max_blksz);
877 }
878 zfs_grow_blocksize(zp, new_blksz, tx);
879 zfs_range_reduce(rl, woff, n);
880 }
881
882 /*
883 * XXX - should we really limit each write to z_max_blksz?
884 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
885 */
886 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
887
888 if (abuf == NULL) {
889 tx_bytes = uio->uio_resid;
890 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
891 uio, nbytes, tx);
892 tx_bytes -= uio->uio_resid;
893 } else {
894 tx_bytes = nbytes;
895 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
896 /*
897 * If this is not a full block write, but we are
898 * extending the file past EOF and this data starts
899 * block-aligned, use assign_arcbuf(). Otherwise,
900 * write via dmu_write().
901 */
902 if (tx_bytes < max_blksz && (!write_eof ||
903 aiov->iov_base != abuf->b_data)) {
904 ASSERT(xuio);
905 dmu_write(zfsvfs->z_os, zp->z_id, woff,
906 aiov->iov_len, aiov->iov_base, tx);
907 dmu_return_arcbuf(abuf);
908 xuio_stat_wbuf_copied();
909 } else {
910 ASSERT(xuio || tx_bytes == max_blksz);
911 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
912 woff, abuf, tx);
913 }
914 ASSERT(tx_bytes <= uio->uio_resid);
915 uioskip(uio, tx_bytes);
916 }
917 if (tx_bytes && vn_has_cached_data(vp)) {
918 update_pages(vp, woff,
919 tx_bytes, zfsvfs->z_os, zp->z_id);
920 }
921
922 /*
923 * If we made no progress, we're done. If we made even
924 * partial progress, update the znode and ZIL accordingly.
925 */
926 if (tx_bytes == 0) {
927 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
928 (void *)&zp->z_size, sizeof (uint64_t), tx);
929 dmu_tx_commit(tx);
930 ASSERT(error != 0);
931 break;
932 }
933
934 /*
935 * Clear Set-UID/Set-GID bits on successful write if not
936 * privileged and at least one of the excute bits is set.
937 *
938 * It would be nice to to this after all writes have
939 * been done, but that would still expose the ISUID/ISGID
940 * to another app after the partial write is committed.
941 *
942 * Note: we don't call zfs_fuid_map_id() here because
943 * user 0 is not an ephemeral uid.
944 */
945 mutex_enter(&zp->z_acl_lock);
946 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
947 (S_IXUSR >> 6))) != 0 &&
948 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
949 secpolicy_vnode_setid_retain(cr,
950 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
951 uint64_t newmode;
952 zp->z_mode &= ~(S_ISUID | S_ISGID);
953 newmode = zp->z_mode;
954 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
955 (void *)&newmode, sizeof (uint64_t), tx);
956 }
957 mutex_exit(&zp->z_acl_lock);
958
959 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
960 B_TRUE);
961
962 /*
963 * Update the file size (zp_size) if it has changed;
964 * account for possible concurrent updates.
965 */
966 while ((end_size = zp->z_size) < uio->uio_loffset) {
967 (void) atomic_cas_64(&zp->z_size, end_size,
968 uio->uio_loffset);
969 ASSERT(error == 0);
970 }
971 /*
972 * If we are replaying and eof is non zero then force
973 * the file size to the specified eof. Note, there's no
974 * concurrency during replay.
975 */
976 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
977 zp->z_size = zfsvfs->z_replay_eof;
978
979 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
980
981 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
982 dmu_tx_commit(tx);
983
984 if (error != 0)
985 break;
986 ASSERT(tx_bytes == nbytes);
987 n -= nbytes;
988
989 if (!xuio && n > 0)
990 uio_prefaultpages(MIN(n, max_blksz), uio);
991 }
992
993 zfs_range_unlock(rl);
994
995 /*
996 * If we're in replay mode, or we made no progress, return error.
997 * Otherwise, it's at least a partial write, so it's successful.
998 */
999 if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
1000 ZFS_EXIT(zfsvfs);
1001 return (error);
1002 }
1003
1004 if (ioflag & (FSYNC | FDSYNC) ||
1005 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1006 zil_commit(zilog, zp->z_id);
1007
1008 ZFS_EXIT(zfsvfs);
1009 return (0);
1010 }
1011
1012 void
1013 zfs_get_done(zgd_t *zgd, int error)
1014 {
1015 znode_t *zp = zgd->zgd_private;
1016 objset_t *os = zp->z_zfsvfs->z_os;
1017
1018 if (zgd->zgd_db)
1019 dmu_buf_rele(zgd->zgd_db, zgd);
1020
1021 zfs_range_unlock(zgd->zgd_rl);
1022
1023 /*
1024 * Release the vnode asynchronously as we currently have the
1025 * txg stopped from syncing.
1026 */
1027 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1028
1029 if (error == 0 && zgd->zgd_bp)
1030 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
1031
1032 kmem_free(zgd, sizeof (zgd_t));
1033 }
1034
1035 #ifdef DEBUG
1036 static int zil_fault_io = 0;
1037 #endif
1038
1039 /*
1040 * Get data to generate a TX_WRITE intent log record.
1041 */
1042 int
1043 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
1044 {
1045 zfsvfs_t *zfsvfs = arg;
1046 objset_t *os = zfsvfs->z_os;
1047 znode_t *zp;
1048 uint64_t object = lr->lr_foid;
1049 uint64_t offset = lr->lr_offset;
1050 uint64_t size = lr->lr_length;
1051 blkptr_t *bp = &lr->lr_blkptr;
1052 dmu_buf_t *db;
1053 zgd_t *zgd;
1054 int error = 0;
1055
1056 ASSERT(zio != NULL);
1057 ASSERT(size != 0);
1058
1059 /*
1060 * Nothing to do if the file has been removed
1061 */
1062 if (zfs_zget(zfsvfs, object, &zp) != 0)
1063 return (SET_ERROR(ENOENT));
1064 if (zp->z_unlinked) {
1065 /*
1066 * Release the vnode asynchronously as we currently have the
1067 * txg stopped from syncing.
1068 */
1069 VN_RELE_ASYNC(ZTOV(zp),
1070 dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
1071 return (SET_ERROR(ENOENT));
1072 }
1073
1074 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
1075 zgd->zgd_zilog = zfsvfs->z_log;
1076 zgd->zgd_private = zp;
1077
1078 /*
1079 * Write records come in two flavors: immediate and indirect.
1080 * For small writes it's cheaper to store the data with the
1081 * log record (immediate); for large writes it's cheaper to
1082 * sync the data and get a pointer to it (indirect) so that
1083 * we don't have to write the data twice.
1084 */
1085 if (buf != NULL) { /* immediate write */
1086 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1087 /* test for truncation needs to be done while range locked */
1088 if (offset >= zp->z_size) {
1089 error = SET_ERROR(ENOENT);
1090 } else {
1091 error = dmu_read(os, object, offset, size, buf,
1092 DMU_READ_NO_PREFETCH);
1093 }
1094 ASSERT(error == 0 || error == ENOENT);
1095 } else { /* indirect write */
1096 /*
1097 * Have to lock the whole block to ensure when it's
1098 * written out and it's checksum is being calculated
1099 * that no one can change the data. We need to re-check
1100 * blocksize after we get the lock in case it's changed!
1101 */
1102 for (;;) {
1103 uint64_t blkoff;
1104 size = zp->z_blksz;
1105 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1106 offset -= blkoff;
1107 zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1108 RL_READER);
1109 if (zp->z_blksz == size)
1110 break;
1111 offset += blkoff;
1112 zfs_range_unlock(zgd->zgd_rl);
1113 }
1114 /* test for truncation needs to be done while range locked */
1115 if (lr->lr_offset >= zp->z_size)
1116 error = SET_ERROR(ENOENT);
1117 #ifdef DEBUG
1118 if (zil_fault_io) {
1119 error = SET_ERROR(EIO);
1120 zil_fault_io = 0;
1121 }
1122 #endif
1123 if (error == 0)
1124 error = dmu_buf_hold(os, object, offset, zgd, &db,
1125 DMU_READ_NO_PREFETCH);
1126
1127 if (error == 0) {
1128 blkptr_t *obp = dmu_buf_get_blkptr(db);
1129 if (obp) {
1130 ASSERT(BP_IS_HOLE(bp));
1131 *bp = *obp;
1132 }
1133
1134 zgd->zgd_db = db;
1135 zgd->zgd_bp = bp;
1136
1137 ASSERT(db->db_offset == offset);
1138 ASSERT(db->db_size == size);
1139
1140 error = dmu_sync(zio, lr->lr_common.lrc_txg,
1141 zfs_get_done, zgd);
1142 ASSERT(error || lr->lr_length <= zp->z_blksz);
1143
1144 /*
1145 * On success, we need to wait for the write I/O
1146 * initiated by dmu_sync() to complete before we can
1147 * release this dbuf. We will finish everything up
1148 * in the zfs_get_done() callback.
1149 */
1150 if (error == 0)
1151 return (0);
1152
1153 if (error == EALREADY) {
1154 lr->lr_common.lrc_txtype = TX_WRITE2;
1155 error = 0;
1156 }
1157 }
1158 }
1159
1160 zfs_get_done(zgd, error);
1161
1162 return (error);
1163 }
1164
1165 /*ARGSUSED*/
1166 static int
1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1168 caller_context_t *ct)
1169 {
1170 znode_t *zp = VTOZ(vp);
1171 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1172 int error;
1173
1174 ZFS_ENTER(zfsvfs);
1175 ZFS_VERIFY_ZP(zp);
1176
1177 if (flag & V_ACE_MASK)
1178 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1179 else
1180 error = zfs_zaccess_rwx(zp, mode, flag, cr);
1181
1182 ZFS_EXIT(zfsvfs);
1183 return (error);
1184 }
1185
1186 /*
1187 * If vnode is for a device return a specfs vnode instead.
1188 */
1189 static int
1190 specvp_check(vnode_t **vpp, cred_t *cr)
1191 {
1192 int error = 0;
1193
1194 if (IS_DEVVP(*vpp)) {
1195 struct vnode *svp;
1196
1197 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1198 VN_RELE(*vpp);
1199 if (svp == NULL)
1200 error = SET_ERROR(ENOSYS);
1201 *vpp = svp;
1202 }
1203 return (error);
1204 }
1205
1206
1207 /*
1208 * Lookup an entry in a directory, or an extended attribute directory.
1209 * If it exists, return a held vnode reference for it.
1210 *
1211 * IN: dvp - vnode of directory to search.
1212 * nm - name of entry to lookup.
1213 * pnp - full pathname to lookup [UNUSED].
1214 * flags - LOOKUP_XATTR set if looking for an attribute.
1215 * rdir - root directory vnode [UNUSED].
1216 * cr - credentials of caller.
1217 * ct - caller context
1218 * direntflags - directory lookup flags
1219 * realpnp - returned pathname.
1220 *
1221 * OUT: vpp - vnode of located entry, NULL if not found.
1222 *
1223 * RETURN: 0 on success, error code on failure.
1224 *
1225 * Timestamps:
1226 * NA
1227 */
1228 /* ARGSUSED */
1229 static int
1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1231 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
1232 int *direntflags, pathname_t *realpnp)
1233 {
1234 znode_t *zdp = VTOZ(dvp);
1235 zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1236 int error = 0;
1237
1238 /* fast path */
1239 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1240
1241 if (dvp->v_type != VDIR) {
1242 return (SET_ERROR(ENOTDIR));
1243 } else if (zdp->z_sa_hdl == NULL) {
1244 return (SET_ERROR(EIO));
1245 }
1246
1247 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1248 error = zfs_fastaccesschk_execute(zdp, cr);
1249 if (!error) {
1250 *vpp = dvp;
1251 VN_HOLD(*vpp);
1252 return (0);
1253 }
1254 return (error);
1255 } else {
1256 vnode_t *tvp = dnlc_lookup(dvp, nm);
1257
1258 if (tvp) {
1259 error = zfs_fastaccesschk_execute(zdp, cr);
1260 if (error) {
1261 VN_RELE(tvp);
1262 return (error);
1263 }
1264 if (tvp == DNLC_NO_VNODE) {
1265 VN_RELE(tvp);
1266 return (SET_ERROR(ENOENT));
1267 } else {
1268 *vpp = tvp;
1269 return (specvp_check(vpp, cr));
1270 }
1271 }
1272 }
1273 }
1274
1275 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1276
1277 ZFS_ENTER(zfsvfs);
1278 ZFS_VERIFY_ZP(zdp);
1279
1280 *vpp = NULL;
1281
1282 if (flags & LOOKUP_XATTR) {
1283 /*
1284 * If the xattr property is off, refuse the lookup request.
1285 */
1286 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1287 ZFS_EXIT(zfsvfs);
1288 return (SET_ERROR(EINVAL));
1289 }
1290
1291 /*
1292 * We don't allow recursive attributes..
1293 * Maybe someday we will.
1294 */
1295 if (zdp->z_pflags & ZFS_XATTR) {
1296 ZFS_EXIT(zfsvfs);
1297 return (SET_ERROR(EINVAL));
1298 }
1299
1300 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1301 ZFS_EXIT(zfsvfs);
1302 return (error);
1303 }
1304
1305 /*
1306 * Do we have permission to get into attribute directory?
1307 */
1308
1309 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1310 B_FALSE, cr)) {
1311 VN_RELE(*vpp);
1312 *vpp = NULL;
1313 }
1314
1315 ZFS_EXIT(zfsvfs);
1316 return (error);
1317 }
1318
1319 if (dvp->v_type != VDIR) {
1320 ZFS_EXIT(zfsvfs);
1321 return (SET_ERROR(ENOTDIR));
1322 }
1323
1324 /*
1325 * Check accessibility of directory.
1326 */
1327
1328 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1329 ZFS_EXIT(zfsvfs);
1330 return (error);
1331 }
1332
1333 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1334 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1335 ZFS_EXIT(zfsvfs);
1336 return (SET_ERROR(EILSEQ));
1337 }
1338
1339 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1340 if (error == 0)
1341 error = specvp_check(vpp, cr);
1342
1343 ZFS_EXIT(zfsvfs);
1344 return (error);
1345 }
1346
1347 /*
1348 * Attempt to create a new entry in a directory. If the entry
1349 * already exists, truncate the file if permissible, else return
1350 * an error. Return the vp of the created or trunc'd file.
1351 *
1352 * IN: dvp - vnode of directory to put new file entry in.
1353 * name - name of new file entry.
1354 * vap - attributes of new file.
1355 * excl - flag indicating exclusive or non-exclusive mode.
1356 * mode - mode to open file with.
1357 * cr - credentials of caller.
1358 * flag - large file flag [UNUSED].
1359 * ct - caller context
1360 * vsecp - ACL to be set
1361 *
1362 * OUT: vpp - vnode of created or trunc'd entry.
1363 *
1364 * RETURN: 0 on success, error code on failure.
1365 *
1366 * Timestamps:
1367 * dvp - ctime|mtime updated if new entry created
1368 * vp - ctime|mtime always, atime if new
1369 */
1370
1371 /* ARGSUSED */
1372 static int
1373 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1374 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1375 vsecattr_t *vsecp)
1376 {
1377 znode_t *zp, *dzp = VTOZ(dvp);
1378 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1379 zilog_t *zilog;
1380 objset_t *os;
1381 zfs_dirlock_t *dl;
1382 dmu_tx_t *tx;
1383 int error;
1384 ksid_t *ksid;
1385 uid_t uid;
1386 gid_t gid = crgetgid(cr);
1387 zfs_acl_ids_t acl_ids;
1388 boolean_t fuid_dirtied;
1389 boolean_t have_acl = B_FALSE;
1390 boolean_t waited = B_FALSE;
1391
1392 /*
1393 * If we have an ephemeral id, ACL, or XVATTR then
1394 * make sure file system is at proper version
1395 */
1396
1397 ksid = crgetsid(cr, KSID_OWNER);
1398 if (ksid)
1399 uid = ksid_getid(ksid);
1400 else
1401 uid = crgetuid(cr);
1402
1403 if (zfsvfs->z_use_fuids == B_FALSE &&
1404 (vsecp || (vap->va_mask & AT_XVATTR) ||
1405 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1406 return (SET_ERROR(EINVAL));
1407
1408 ZFS_ENTER(zfsvfs);
1409 ZFS_VERIFY_ZP(dzp);
1410 os = zfsvfs->z_os;
1411 zilog = zfsvfs->z_log;
1412
1413 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1414 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1415 ZFS_EXIT(zfsvfs);
1416 return (SET_ERROR(EILSEQ));
1417 }
1418
1419 if (vap->va_mask & AT_XVATTR) {
1420 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1421 crgetuid(cr), cr, vap->va_type)) != 0) {
1422 ZFS_EXIT(zfsvfs);
1423 return (error);
1424 }
1425 }
1426 top:
1427 *vpp = NULL;
1428
1429 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1430 vap->va_mode &= ~VSVTX;
1431
1432 if (*name == '\0') {
1433 /*
1434 * Null component name refers to the directory itself.
1435 */
1436 VN_HOLD(dvp);
1437 zp = dzp;
1438 dl = NULL;
1439 error = 0;
1440 } else {
1441 /* possible VN_HOLD(zp) */
1442 int zflg = 0;
1443
1444 if (flag & FIGNORECASE)
1445 zflg |= ZCILOOK;
1446
1447 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1448 NULL, NULL);
1449 if (error) {
1450 if (have_acl)
1451 zfs_acl_ids_free(&acl_ids);
1452 if (strcmp(name, "..") == 0)
1453 error = SET_ERROR(EISDIR);
1454 ZFS_EXIT(zfsvfs);
1455 return (error);
1456 }
1457 }
1458
1459 if (zp == NULL) {
1460 uint64_t txtype;
1461
1462 /*
1463 * Create a new file object and update the directory
1464 * to reference it.
1465 */
1466 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1467 if (have_acl)
1468 zfs_acl_ids_free(&acl_ids);
1469 goto out;
1470 }
1471
1472 /*
1473 * We only support the creation of regular files in
1474 * extended attribute directories.
1475 */
1476
1477 if ((dzp->z_pflags & ZFS_XATTR) &&
1478 (vap->va_type != VREG)) {
1479 if (have_acl)
1480 zfs_acl_ids_free(&acl_ids);
1481 error = SET_ERROR(EINVAL);
1482 goto out;
1483 }
1484
1485 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1486 cr, vsecp, &acl_ids)) != 0)
1487 goto out;
1488 have_acl = B_TRUE;
1489
1490 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1491 zfs_acl_ids_free(&acl_ids);
1492 error = SET_ERROR(EDQUOT);
1493 goto out;
1494 }
1495
1496 tx = dmu_tx_create(os);
1497
1498 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1499 ZFS_SA_BASE_ATTR_SIZE);
1500
1501 fuid_dirtied = zfsvfs->z_fuid_dirty;
1502 if (fuid_dirtied)
1503 zfs_fuid_txhold(zfsvfs, tx);
1504 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1505 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1506 if (!zfsvfs->z_use_sa &&
1507 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1508 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1509 0, acl_ids.z_aclp->z_acl_bytes);
1510 }
1511 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1512 if (error) {
1513 zfs_dirent_unlock(dl);
1514 if (error == ERESTART) {
1515 waited = B_TRUE;
1516 dmu_tx_wait(tx);
1517 dmu_tx_abort(tx);
1518 goto top;
1519 }
1520 zfs_acl_ids_free(&acl_ids);
1521 dmu_tx_abort(tx);
1522 ZFS_EXIT(zfsvfs);
1523 return (error);
1524 }
1525 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1526
1527 if (fuid_dirtied)
1528 zfs_fuid_sync(zfsvfs, tx);
1529
1530 (void) zfs_link_create(dl, zp, tx, ZNEW);
1531 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1532 if (flag & FIGNORECASE)
1533 txtype |= TX_CI;
1534 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1535 vsecp, acl_ids.z_fuidp, vap);
1536 zfs_acl_ids_free(&acl_ids);
1537 dmu_tx_commit(tx);
1538 } else {
1539 int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1540
1541 if (have_acl)
1542 zfs_acl_ids_free(&acl_ids);
1543 have_acl = B_FALSE;
1544
1545 /*
1546 * A directory entry already exists for this name.
1547 */
1548 /*
1549 * Can't truncate an existing file if in exclusive mode.
1550 */
1551 if (excl == EXCL) {
1552 error = SET_ERROR(EEXIST);
1553 goto out;
1554 }
1555 /*
1556 * Can't open a directory for writing.
1557 */
1558 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1559 error = SET_ERROR(EISDIR);
1560 goto out;
1561 }
1562 /*
1563 * Verify requested access to file.
1564 */
1565 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1566 goto out;
1567 }
1568
1569 mutex_enter(&dzp->z_lock);
1570 dzp->z_seq++;
1571 mutex_exit(&dzp->z_lock);
1572
1573 /*
1574 * Truncate regular files if requested.
1575 */
1576 if ((ZTOV(zp)->v_type == VREG) &&
1577 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1578 /* we can't hold any locks when calling zfs_freesp() */
1579 zfs_dirent_unlock(dl);
1580 dl = NULL;
1581 error = zfs_freesp(zp, 0, 0, mode, TRUE);
1582 if (error == 0) {
1583 vnevent_create(ZTOV(zp), ct);
1584 }
1585 }
1586 }
1587 out:
1588
1589 if (dl)
1590 zfs_dirent_unlock(dl);
1591
1592 if (error) {
1593 if (zp)
1594 VN_RELE(ZTOV(zp));
1595 } else {
1596 *vpp = ZTOV(zp);
1597 error = specvp_check(vpp, cr);
1598 }
1599
1600 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1601 zil_commit(zilog, 0);
1602
1603 ZFS_EXIT(zfsvfs);
1604 return (error);
1605 }
1606
1607 /*
1608 * Remove an entry from a directory.
1609 *
1610 * IN: dvp - vnode of directory to remove entry from.
1611 * name - name of entry to remove.
1612 * cr - credentials of caller.
1613 * ct - caller context
1614 * flags - case flags
1615 *
1616 * RETURN: 0 on success, error code on failure.
1617 *
1618 * Timestamps:
1619 * dvp - ctime|mtime
1620 * vp - ctime (if nlink > 0)
1621 */
1622
1623 uint64_t null_xattr = 0;
1624
1625 /*ARGSUSED*/
1626 static int
1627 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1628 int flags)
1629 {
1630 znode_t *zp, *dzp = VTOZ(dvp);
1631 znode_t *xzp;
1632 vnode_t *vp;
1633 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1634 zilog_t *zilog;
1635 uint64_t acl_obj, xattr_obj;
1636 uint64_t xattr_obj_unlinked = 0;
1637 uint64_t obj = 0;
1638 zfs_dirlock_t *dl;
1639 dmu_tx_t *tx;
1640 boolean_t may_delete_now, delete_now = FALSE;
1641 boolean_t unlinked, toobig = FALSE;
1642 uint64_t txtype;
1643 pathname_t *realnmp = NULL;
1644 pathname_t realnm;
1645 int error;
1646 int zflg = ZEXISTS;
1647 boolean_t waited = B_FALSE;
1648
1649 ZFS_ENTER(zfsvfs);
1650 ZFS_VERIFY_ZP(dzp);
1651 zilog = zfsvfs->z_log;
1652
1653 if (flags & FIGNORECASE) {
1654 zflg |= ZCILOOK;
1655 pn_alloc(&realnm);
1656 realnmp = &realnm;
1657 }
1658
1659 top:
1660 xattr_obj = 0;
1661 xzp = NULL;
1662 /*
1663 * Attempt to lock directory; fail if entry doesn't exist.
1664 */
1665 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1666 NULL, realnmp)) {
1667 if (realnmp)
1668 pn_free(realnmp);
1669 ZFS_EXIT(zfsvfs);
1670 return (error);
1671 }
1672
1673 vp = ZTOV(zp);
1674
1675 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1676 goto out;
1677 }
1678
1679 /*
1680 * Need to use rmdir for removing directories.
1681 */
1682 if (vp->v_type == VDIR) {
1683 error = SET_ERROR(EPERM);
1684 goto out;
1685 }
1686
1687 vnevent_remove(vp, dvp, name, ct);
1688
1689 if (realnmp)
1690 dnlc_remove(dvp, realnmp->pn_buf);
1691 else
1692 dnlc_remove(dvp, name);
1693
1694 mutex_enter(&vp->v_lock);
1695 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1696 mutex_exit(&vp->v_lock);
1697
1698 /*
1699 * We may delete the znode now, or we may put it in the unlinked set;
1700 * it depends on whether we're the last link, and on whether there are
1701 * other holds on the vnode. So we dmu_tx_hold() the right things to
1702 * allow for either case.
1703 */
1704 obj = zp->z_id;
1705 tx = dmu_tx_create(zfsvfs->z_os);
1706 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1707 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1708 zfs_sa_upgrade_txholds(tx, zp);
1709 zfs_sa_upgrade_txholds(tx, dzp);
1710 if (may_delete_now) {
1711 toobig =
1712 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1713 /* if the file is too big, only hold_free a token amount */
1714 dmu_tx_hold_free(tx, zp->z_id, 0,
1715 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1716 }
1717
1718 /* are there any extended attributes? */
1719 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1720 &xattr_obj, sizeof (xattr_obj));
1721 if (error == 0 && xattr_obj) {
1722 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1723 ASSERT0(error);
1724 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1725 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1726 }
1727
1728 mutex_enter(&zp->z_lock);
1729 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1730 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1731 mutex_exit(&zp->z_lock);
1732
1733 /* charge as an update -- would be nice not to charge at all */
1734 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1735
1736 /*
1737 * Mark this transaction as typically resulting in a net free of
1738 * space, unless object removal will be delayed indefinitely
1739 * (due to active holds on the vnode due to the file being open).
1740 */
1741 if (may_delete_now)
1742 dmu_tx_mark_netfree(tx);
1743
1744 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1745 if (error) {
1746 zfs_dirent_unlock(dl);
1747 VN_RELE(vp);
1748 if (xzp)
1749 VN_RELE(ZTOV(xzp));
1750 if (error == ERESTART) {
1751 waited = B_TRUE;
1752 dmu_tx_wait(tx);
1753 dmu_tx_abort(tx);
1754 goto top;
1755 }
1756 if (realnmp)
1757 pn_free(realnmp);
1758 dmu_tx_abort(tx);
1759 ZFS_EXIT(zfsvfs);
1760 return (error);
1761 }
1762
1763 /*
1764 * Remove the directory entry.
1765 */
1766 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1767
1768 if (error) {
1769 dmu_tx_commit(tx);
1770 goto out;
1771 }
1772
1773 if (unlinked) {
1774 /*
1775 * Hold z_lock so that we can make sure that the ACL obj
1776 * hasn't changed. Could have been deleted due to
1777 * zfs_sa_upgrade().
1778 */
1779 mutex_enter(&zp->z_lock);
1780 mutex_enter(&vp->v_lock);
1781 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1782 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1783 delete_now = may_delete_now && !toobig &&
1784 vp->v_count == 1 && !vn_has_cached_data(vp) &&
1785 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1786 acl_obj;
1787 mutex_exit(&vp->v_lock);
1788 }
1789
1790 if (delete_now) {
1791 if (xattr_obj_unlinked) {
1792 ASSERT3U(xzp->z_links, ==, 2);
1793 mutex_enter(&xzp->z_lock);
1794 xzp->z_unlinked = 1;
1795 xzp->z_links = 0;
1796 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1797 &xzp->z_links, sizeof (xzp->z_links), tx);
1798 ASSERT3U(error, ==, 0);
1799 mutex_exit(&xzp->z_lock);
1800 zfs_unlinked_add(xzp, tx);
1801
1802 if (zp->z_is_sa)
1803 error = sa_remove(zp->z_sa_hdl,
1804 SA_ZPL_XATTR(zfsvfs), tx);
1805 else
1806 error = sa_update(zp->z_sa_hdl,
1807 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1808 sizeof (uint64_t), tx);
1809 ASSERT0(error);
1810 }
1811 mutex_enter(&vp->v_lock);
1812 vp->v_count--;
1813 ASSERT0(vp->v_count);
1814 mutex_exit(&vp->v_lock);
1815 mutex_exit(&zp->z_lock);
1816 zfs_znode_delete(zp, tx);
1817 } else if (unlinked) {
1818 mutex_exit(&zp->z_lock);
1819 zfs_unlinked_add(zp, tx);
1820 }
1821
1822 txtype = TX_REMOVE;
1823 if (flags & FIGNORECASE)
1824 txtype |= TX_CI;
1825 zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1826
1827 dmu_tx_commit(tx);
1828 out:
1829 if (realnmp)
1830 pn_free(realnmp);
1831
1832 zfs_dirent_unlock(dl);
1833
1834 if (!delete_now)
1835 VN_RELE(vp);
1836 if (xzp)
1837 VN_RELE(ZTOV(xzp));
1838
1839 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1840 zil_commit(zilog, 0);
1841
1842 ZFS_EXIT(zfsvfs);
1843 return (error);
1844 }
1845
1846 /*
1847 * Create a new directory and insert it into dvp using the name
1848 * provided. Return a pointer to the inserted directory.
1849 *
1850 * IN: dvp - vnode of directory to add subdir to.
1851 * dirname - name of new directory.
1852 * vap - attributes of new directory.
1853 * cr - credentials of caller.
1854 * ct - caller context
1855 * flags - case flags
1856 * vsecp - ACL to be set
1857 *
1858 * OUT: vpp - vnode of created directory.
1859 *
1860 * RETURN: 0 on success, error code on failure.
1861 *
1862 * Timestamps:
1863 * dvp - ctime|mtime updated
1864 * vp - ctime|mtime|atime updated
1865 */
1866 /*ARGSUSED*/
1867 static int
1868 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1869 caller_context_t *ct, int flags, vsecattr_t *vsecp)
1870 {
1871 znode_t *zp, *dzp = VTOZ(dvp);
1872 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
1873 zilog_t *zilog;
1874 zfs_dirlock_t *dl;
1875 uint64_t txtype;
1876 dmu_tx_t *tx;
1877 int error;
1878 int zf = ZNEW;
1879 ksid_t *ksid;
1880 uid_t uid;
1881 gid_t gid = crgetgid(cr);
1882 zfs_acl_ids_t acl_ids;
1883 boolean_t fuid_dirtied;
1884 boolean_t waited = B_FALSE;
1885
1886 ASSERT(vap->va_type == VDIR);
1887
1888 /*
1889 * If we have an ephemeral id, ACL, or XVATTR then
1890 * make sure file system is at proper version
1891 */
1892
1893 ksid = crgetsid(cr, KSID_OWNER);
1894 if (ksid)
1895 uid = ksid_getid(ksid);
1896 else
1897 uid = crgetuid(cr);
1898 if (zfsvfs->z_use_fuids == B_FALSE &&
1899 (vsecp || (vap->va_mask & AT_XVATTR) ||
1900 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1901 return (SET_ERROR(EINVAL));
1902
1903 ZFS_ENTER(zfsvfs);
1904 ZFS_VERIFY_ZP(dzp);
1905 zilog = zfsvfs->z_log;
1906
1907 if (dzp->z_pflags & ZFS_XATTR) {
1908 ZFS_EXIT(zfsvfs);
1909 return (SET_ERROR(EINVAL));
1910 }
1911
1912 if (zfsvfs->z_utf8 && u8_validate(dirname,
1913 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1914 ZFS_EXIT(zfsvfs);
1915 return (SET_ERROR(EILSEQ));
1916 }
1917 if (flags & FIGNORECASE)
1918 zf |= ZCILOOK;
1919
1920 if (vap->va_mask & AT_XVATTR) {
1921 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1922 crgetuid(cr), cr, vap->va_type)) != 0) {
1923 ZFS_EXIT(zfsvfs);
1924 return (error);
1925 }
1926 }
1927
1928 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1929 vsecp, &acl_ids)) != 0) {
1930 ZFS_EXIT(zfsvfs);
1931 return (error);
1932 }
1933 /*
1934 * First make sure the new directory doesn't exist.
1935 *
1936 * Existence is checked first to make sure we don't return
1937 * EACCES instead of EEXIST which can cause some applications
1938 * to fail.
1939 */
1940 top:
1941 *vpp = NULL;
1942
1943 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1944 NULL, NULL)) {
1945 zfs_acl_ids_free(&acl_ids);
1946 ZFS_EXIT(zfsvfs);
1947 return (error);
1948 }
1949
1950 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1951 zfs_acl_ids_free(&acl_ids);
1952 zfs_dirent_unlock(dl);
1953 ZFS_EXIT(zfsvfs);
1954 return (error);
1955 }
1956
1957 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1958 zfs_acl_ids_free(&acl_ids);
1959 zfs_dirent_unlock(dl);
1960 ZFS_EXIT(zfsvfs);
1961 return (SET_ERROR(EDQUOT));
1962 }
1963
1964 /*
1965 * Add a new entry to the directory.
1966 */
1967 tx = dmu_tx_create(zfsvfs->z_os);
1968 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1969 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1970 fuid_dirtied = zfsvfs->z_fuid_dirty;
1971 if (fuid_dirtied)
1972 zfs_fuid_txhold(zfsvfs, tx);
1973 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1974 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1975 acl_ids.z_aclp->z_acl_bytes);
1976 }
1977
1978 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1979 ZFS_SA_BASE_ATTR_SIZE);
1980
1981 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
1982 if (error) {
1983 zfs_dirent_unlock(dl);
1984 if (error == ERESTART) {
1985 waited = B_TRUE;
1986 dmu_tx_wait(tx);
1987 dmu_tx_abort(tx);
1988 goto top;
1989 }
1990 zfs_acl_ids_free(&acl_ids);
1991 dmu_tx_abort(tx);
1992 ZFS_EXIT(zfsvfs);
1993 return (error);
1994 }
1995
1996 /*
1997 * Create new node.
1998 */
1999 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
2000
2001 if (fuid_dirtied)
2002 zfs_fuid_sync(zfsvfs, tx);
2003
2004 /*
2005 * Now put new name in parent dir.
2006 */
2007 (void) zfs_link_create(dl, zp, tx, ZNEW);
2008
2009 *vpp = ZTOV(zp);
2010
2011 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
2012 if (flags & FIGNORECASE)
2013 txtype |= TX_CI;
2014 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
2015 acl_ids.z_fuidp, vap);
2016
2017 zfs_acl_ids_free(&acl_ids);
2018
2019 dmu_tx_commit(tx);
2020
2021 zfs_dirent_unlock(dl);
2022
2023 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2024 zil_commit(zilog, 0);
2025
2026 ZFS_EXIT(zfsvfs);
2027 return (0);
2028 }
2029
2030 /*
2031 * Remove a directory subdir entry. If the current working
2032 * directory is the same as the subdir to be removed, the
2033 * remove will fail.
2034 *
2035 * IN: dvp - vnode of directory to remove from.
2036 * name - name of directory to be removed.
2037 * cwd - vnode of current working directory.
2038 * cr - credentials of caller.
2039 * ct - caller context
2040 * flags - case flags
2041 *
2042 * RETURN: 0 on success, error code on failure.
2043 *
2044 * Timestamps:
2045 * dvp - ctime|mtime updated
2046 */
2047 /*ARGSUSED*/
2048 static int
2049 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
2050 caller_context_t *ct, int flags)
2051 {
2052 znode_t *dzp = VTOZ(dvp);
2053 znode_t *zp;
2054 vnode_t *vp;
2055 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
2056 zilog_t *zilog;
2057 zfs_dirlock_t *dl;
2058 dmu_tx_t *tx;
2059 int error;
2060 int zflg = ZEXISTS;
2061 boolean_t waited = B_FALSE;
2062
2063 ZFS_ENTER(zfsvfs);
2064 ZFS_VERIFY_ZP(dzp);
2065 zilog = zfsvfs->z_log;
2066
2067 if (flags & FIGNORECASE)
2068 zflg |= ZCILOOK;
2069 top:
2070 zp = NULL;
2071
2072 /*
2073 * Attempt to lock directory; fail if entry doesn't exist.
2074 */
2075 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
2076 NULL, NULL)) {
2077 ZFS_EXIT(zfsvfs);
2078 return (error);
2079 }
2080
2081 vp = ZTOV(zp);
2082
2083 if (error = zfs_zaccess_delete(dzp, zp, cr)) {
2084 goto out;
2085 }
2086
2087 if (vp->v_type != VDIR) {
2088 error = SET_ERROR(ENOTDIR);
2089 goto out;
2090 }
2091
2092 if (vp == cwd) {
2093 error = SET_ERROR(EINVAL);
2094 goto out;
2095 }
2096
2097 vnevent_rmdir(vp, dvp, name, ct);
2098
2099 /*
2100 * Grab a lock on the directory to make sure that noone is
2101 * trying to add (or lookup) entries while we are removing it.
2102 */
2103 rw_enter(&zp->z_name_lock, RW_WRITER);
2104
2105 /*
2106 * Grab a lock on the parent pointer to make sure we play well
2107 * with the treewalk and directory rename code.
2108 */
2109 rw_enter(&zp->z_parent_lock, RW_WRITER);
2110
2111 tx = dmu_tx_create(zfsvfs->z_os);
2112 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2113 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2114 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2115 zfs_sa_upgrade_txholds(tx, zp);
2116 zfs_sa_upgrade_txholds(tx, dzp);
2117 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
2118 if (error) {
2119 rw_exit(&zp->z_parent_lock);
2120 rw_exit(&zp->z_name_lock);
2121 zfs_dirent_unlock(dl);
2122 VN_RELE(vp);
2123 if (error == ERESTART) {
2124 waited = B_TRUE;
2125 dmu_tx_wait(tx);
2126 dmu_tx_abort(tx);
2127 goto top;
2128 }
2129 dmu_tx_abort(tx);
2130 ZFS_EXIT(zfsvfs);
2131 return (error);
2132 }
2133
2134 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2135
2136 if (error == 0) {
2137 uint64_t txtype = TX_RMDIR;
2138 if (flags & FIGNORECASE)
2139 txtype |= TX_CI;
2140 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2141 }
2142
2143 dmu_tx_commit(tx);
2144
2145 rw_exit(&zp->z_parent_lock);
2146 rw_exit(&zp->z_name_lock);
2147 out:
2148 zfs_dirent_unlock(dl);
2149
2150 VN_RELE(vp);
2151
2152 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2153 zil_commit(zilog, 0);
2154
2155 ZFS_EXIT(zfsvfs);
2156 return (error);
2157 }
2158
2159 /*
2160 * Read as many directory entries as will fit into the provided
2161 * buffer from the given directory cursor position (specified in
2162 * the uio structure).
2163 *
2164 * IN: vp - vnode of directory to read.
2165 * uio - structure supplying read location, range info,
2166 * and return buffer.
2167 * cr - credentials of caller.
2168 * ct - caller context
2169 * flags - case flags
2170 *
2171 * OUT: uio - updated offset and range, buffer filled.
2172 * eofp - set to true if end-of-file detected.
2173 *
2174 * RETURN: 0 on success, error code on failure.
2175 *
2176 * Timestamps:
2177 * vp - atime updated
2178 *
2179 * Note that the low 4 bits of the cookie returned by zap is always zero.
2180 * This allows us to use the low range for "special" directory entries:
2181 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
2182 * we use the offset 2 for the '.zfs' directory.
2183 */
2184 /* ARGSUSED */
2185 static int
2186 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2187 caller_context_t *ct, int flags)
2188 {
2189 znode_t *zp = VTOZ(vp);
2190 iovec_t *iovp;
2191 edirent_t *eodp;
2192 dirent64_t *odp;
2193 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2194 objset_t *os;
2195 caddr_t outbuf;
2196 size_t bufsize;
2197 zap_cursor_t zc;
2198 zap_attribute_t zap;
2199 uint_t bytes_wanted;
2200 uint64_t offset; /* must be unsigned; checks for < 1 */
2201 uint64_t parent;
2202 int local_eof;
2203 int outcount;
2204 int error;
2205 uint8_t prefetch;
2206 boolean_t check_sysattrs;
2207
2208 ZFS_ENTER(zfsvfs);
2209 ZFS_VERIFY_ZP(zp);
2210
2211 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2212 &parent, sizeof (parent))) != 0) {
2213 ZFS_EXIT(zfsvfs);
2214 return (error);
2215 }
2216
2217 /*
2218 * If we are not given an eof variable,
2219 * use a local one.
2220 */
2221 if (eofp == NULL)
2222 eofp = &local_eof;
2223
2224 /*
2225 * Check for valid iov_len.
2226 */
2227 if (uio->uio_iov->iov_len <= 0) {
2228 ZFS_EXIT(zfsvfs);
2229 return (SET_ERROR(EINVAL));
2230 }
2231
2232 /*
2233 * Quit if directory has been removed (posix)
2234 */
2235 if ((*eofp = zp->z_unlinked) != 0) {
2236 ZFS_EXIT(zfsvfs);
2237 return (0);
2238 }
2239
2240 error = 0;
2241 os = zfsvfs->z_os;
2242 offset = uio->uio_loffset;
2243 prefetch = zp->z_zn_prefetch;
2244
2245 /*
2246 * Initialize the iterator cursor.
2247 */
2248 if (offset <= 3) {
2249 /*
2250 * Start iteration from the beginning of the directory.
2251 */
2252 zap_cursor_init(&zc, os, zp->z_id);
2253 } else {
2254 /*
2255 * The offset is a serialized cursor.
2256 */
2257 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2258 }
2259
2260 /*
2261 * Get space to change directory entries into fs independent format.
2262 */
2263 iovp = uio->uio_iov;
2264 bytes_wanted = iovp->iov_len;
2265 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2266 bufsize = bytes_wanted;
2267 outbuf = kmem_alloc(bufsize, KM_SLEEP);
2268 odp = (struct dirent64 *)outbuf;
2269 } else {
2270 bufsize = bytes_wanted;
2271 outbuf = NULL;
2272 odp = (struct dirent64 *)iovp->iov_base;
2273 }
2274 eodp = (struct edirent *)odp;
2275
2276 /*
2277 * If this VFS supports the system attribute view interface; and
2278 * we're looking at an extended attribute directory; and we care
2279 * about normalization conflicts on this vfs; then we must check
2280 * for normalization conflicts with the sysattr name space.
2281 */
2282 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2283 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2284 (flags & V_RDDIR_ENTFLAGS);
2285
2286 /*
2287 * Transform to file-system independent format
2288 */
2289 outcount = 0;
2290 while (outcount < bytes_wanted) {
2291 ino64_t objnum;
2292 ushort_t reclen;
2293 off64_t *next = NULL;
2294
2295 /*
2296 * Special case `.', `..', and `.zfs'.
2297 */
2298 if (offset == 0) {
2299 (void) strcpy(zap.za_name, ".");
2300 zap.za_normalization_conflict = 0;
2301 objnum = zp->z_id;
2302 } else if (offset == 1) {
2303 (void) strcpy(zap.za_name, "..");
2304 zap.za_normalization_conflict = 0;
2305 objnum = parent;
2306 } else if (offset == 2 && zfs_show_ctldir(zp)) {
2307 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2308 zap.za_normalization_conflict = 0;
2309 objnum = ZFSCTL_INO_ROOT;
2310 } else {
2311 /*
2312 * Grab next entry.
2313 */
2314 if (error = zap_cursor_retrieve(&zc, &zap)) {
2315 if ((*eofp = (error == ENOENT)) != 0)
2316 break;
2317 else
2318 goto update;
2319 }
2320
2321 if (zap.za_integer_length != 8 ||
2322 zap.za_num_integers != 1) {
2323 cmn_err(CE_WARN, "zap_readdir: bad directory "
2324 "entry, obj = %lld, offset = %lld\n",
2325 (u_longlong_t)zp->z_id,
2326 (u_longlong_t)offset);
2327 error = SET_ERROR(ENXIO);
2328 goto update;
2329 }
2330
2331 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2332 /*
2333 * MacOS X can extract the object type here such as:
2334 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2335 */
2336
2337 if (check_sysattrs && !zap.za_normalization_conflict) {
2338 zap.za_normalization_conflict =
2339 xattr_sysattr_casechk(zap.za_name);
2340 }
2341 }
2342
2343 if (flags & V_RDDIR_ACCFILTER) {
2344 /*
2345 * If we have no access at all, don't include
2346 * this entry in the returned information
2347 */
2348 znode_t *ezp;
2349 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2350 goto skip_entry;
2351 if (!zfs_has_access(ezp, cr)) {
2352 VN_RELE(ZTOV(ezp));
2353 goto skip_entry;
2354 }
2355 VN_RELE(ZTOV(ezp));
2356 }
2357
2358 if (flags & V_RDDIR_ENTFLAGS)
2359 reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2360 else
2361 reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2362
2363 /*
2364 * Will this entry fit in the buffer?
2365 */
2366 if (outcount + reclen > bufsize) {
2367 /*
2368 * Did we manage to fit anything in the buffer?
2369 */
2370 if (!outcount) {
2371 error = SET_ERROR(EINVAL);
2372 goto update;
2373 }
2374 break;
2375 }
2376 if (flags & V_RDDIR_ENTFLAGS) {
2377 /*
2378 * Add extended flag entry:
2379 */
2380 eodp->ed_ino = objnum;
2381 eodp->ed_reclen = reclen;
2382 /* NOTE: ed_off is the offset for the *next* entry */
2383 next = &(eodp->ed_off);
2384 eodp->ed_eflags = zap.za_normalization_conflict ?
2385 ED_CASE_CONFLICT : 0;
2386 (void) strncpy(eodp->ed_name, zap.za_name,
2387 EDIRENT_NAMELEN(reclen));
2388 eodp = (edirent_t *)((intptr_t)eodp + reclen);
2389 } else {
2390 /*
2391 * Add normal entry:
2392 */
2393 odp->d_ino = objnum;
2394 odp->d_reclen = reclen;
2395 /* NOTE: d_off is the offset for the *next* entry */
2396 next = &(odp->d_off);
2397 (void) strncpy(odp->d_name, zap.za_name,
2398 DIRENT64_NAMELEN(reclen));
2399 odp = (dirent64_t *)((intptr_t)odp + reclen);
2400 }
2401 outcount += reclen;
2402
2403 ASSERT(outcount <= bufsize);
2404
2405 /* Prefetch znode */
2406 if (prefetch)
2407 dmu_prefetch(os, objnum, 0, 0, 0,
2408 ZIO_PRIORITY_SYNC_READ);
2409
2410 skip_entry:
2411 /*
2412 * Move to the next entry, fill in the previous offset.
2413 */
2414 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2415 zap_cursor_advance(&zc);
2416 offset = zap_cursor_serialize(&zc);
2417 } else {
2418 offset += 1;
2419 }
2420 if (next)
2421 *next = offset;
2422 }
2423 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2424
2425 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2426 iovp->iov_base += outcount;
2427 iovp->iov_len -= outcount;
2428 uio->uio_resid -= outcount;
2429 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2430 /*
2431 * Reset the pointer.
2432 */
2433 offset = uio->uio_loffset;
2434 }
2435
2436 update:
2437 zap_cursor_fini(&zc);
2438 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2439 kmem_free(outbuf, bufsize);
2440
2441 if (error == ENOENT)
2442 error = 0;
2443
2444 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2445
2446 uio->uio_loffset = offset;
2447 ZFS_EXIT(zfsvfs);
2448 return (error);
2449 }
2450
2451 ulong_t zfs_fsync_sync_cnt = 4;
2452
2453 static int
2454 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2455 {
2456 znode_t *zp = VTOZ(vp);
2457 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2458
2459 /*
2460 * Regardless of whether this is required for standards conformance,
2461 * this is the logical behavior when fsync() is called on a file with
2462 * dirty pages. We use B_ASYNC since the ZIL transactions are already
2463 * going to be pushed out as part of the zil_commit().
2464 */
2465 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2466 (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2467 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2468
2469 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2470
2471 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2472 ZFS_ENTER(zfsvfs);
2473 ZFS_VERIFY_ZP(zp);
2474 zil_commit(zfsvfs->z_log, zp->z_id);
2475 ZFS_EXIT(zfsvfs);
2476 }
2477 return (0);
2478 }
2479
2480
2481 /*
2482 * Get the requested file attributes and place them in the provided
2483 * vattr structure.
2484 *
2485 * IN: vp - vnode of file.
2486 * vap - va_mask identifies requested attributes.
2487 * If AT_XVATTR set, then optional attrs are requested
2488 * flags - ATTR_NOACLCHECK (CIFS server context)
2489 * cr - credentials of caller.
2490 * ct - caller context
2491 *
2492 * OUT: vap - attribute values.
2493 *
2494 * RETURN: 0 (always succeeds).
2495 */
2496 /* ARGSUSED */
2497 static int
2498 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2499 caller_context_t *ct)
2500 {
2501 znode_t *zp = VTOZ(vp);
2502 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2503 int error = 0;
2504 uint64_t links;
2505 uint64_t mtime[2], ctime[2];
2506 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2507 xoptattr_t *xoap = NULL;
2508 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2509 sa_bulk_attr_t bulk[2];
2510 int count = 0;
2511
2512 ZFS_ENTER(zfsvfs);
2513 ZFS_VERIFY_ZP(zp);
2514
2515 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid);
2516
2517 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2518 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2519
2520 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2521 ZFS_EXIT(zfsvfs);
2522 return (error);
2523 }
2524
2525 /*
2526 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2527 * Also, if we are the owner don't bother, since owner should
2528 * always be allowed to read basic attributes of file.
2529 */
2530 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) &&
2531 (vap->va_uid != crgetuid(cr))) {
2532 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2533 skipaclchk, cr)) {
2534 ZFS_EXIT(zfsvfs);
2535 return (error);
2536 }
2537 }
2538
2539 /*
2540 * Return all attributes. It's cheaper to provide the answer
2541 * than to determine whether we were asked the question.
2542 */
2543
2544 mutex_enter(&zp->z_lock);
2545 vap->va_type = vp->v_type;
2546 vap->va_mode = zp->z_mode & MODEMASK;
2547 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2548 vap->va_nodeid = zp->z_id;
2549 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2550 links = zp->z_links + 1;
2551 else
2552 links = zp->z_links;
2553 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */
2554 vap->va_size = zp->z_size;
2555 vap->va_rdev = vp->v_rdev;
2556 vap->va_seq = zp->z_seq;
2557
2558 /*
2559 * Add in any requested optional attributes and the create time.
2560 * Also set the corresponding bits in the returned attribute bitmap.
2561 */
2562 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2563 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2564 xoap->xoa_archive =
2565 ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2566 XVA_SET_RTN(xvap, XAT_ARCHIVE);
2567 }
2568
2569 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2570 xoap->xoa_readonly =
2571 ((zp->z_pflags & ZFS_READONLY) != 0);
2572 XVA_SET_RTN(xvap, XAT_READONLY);
2573 }
2574
2575 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2576 xoap->xoa_system =
2577 ((zp->z_pflags & ZFS_SYSTEM) != 0);
2578 XVA_SET_RTN(xvap, XAT_SYSTEM);
2579 }
2580
2581 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2582 xoap->xoa_hidden =
2583 ((zp->z_pflags & ZFS_HIDDEN) != 0);
2584 XVA_SET_RTN(xvap, XAT_HIDDEN);
2585 }
2586
2587 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2588 xoap->xoa_nounlink =
2589 ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2590 XVA_SET_RTN(xvap, XAT_NOUNLINK);
2591 }
2592
2593 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2594 xoap->xoa_immutable =
2595 ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2596 XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2597 }
2598
2599 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2600 xoap->xoa_appendonly =
2601 ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2602 XVA_SET_RTN(xvap, XAT_APPENDONLY);
2603 }
2604
2605 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2606 xoap->xoa_nodump =
2607 ((zp->z_pflags & ZFS_NODUMP) != 0);
2608 XVA_SET_RTN(xvap, XAT_NODUMP);
2609 }
2610
2611 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2612 xoap->xoa_opaque =
2613 ((zp->z_pflags & ZFS_OPAQUE) != 0);
2614 XVA_SET_RTN(xvap, XAT_OPAQUE);
2615 }
2616
2617 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2618 xoap->xoa_av_quarantined =
2619 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2620 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2621 }
2622
2623 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2624 xoap->xoa_av_modified =
2625 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2626 XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2627 }
2628
2629 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2630 vp->v_type == VREG) {
2631 zfs_sa_get_scanstamp(zp, xvap);
2632 }
2633
2634 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2635 uint64_t times[2];
2636
2637 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2638 times, sizeof (times));
2639 ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2640 XVA_SET_RTN(xvap, XAT_CREATETIME);
2641 }
2642
2643 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2644 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2645 XVA_SET_RTN(xvap, XAT_REPARSE);
2646 }
2647 if (XVA_ISSET_REQ(xvap, XAT_GEN)) {
2648 xoap->xoa_generation = zp->z_gen;
2649 XVA_SET_RTN(xvap, XAT_GEN);
2650 }
2651
2652 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) {
2653 xoap->xoa_offline =
2654 ((zp->z_pflags & ZFS_OFFLINE) != 0);
2655 XVA_SET_RTN(xvap, XAT_OFFLINE);
2656 }
2657
2658 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) {
2659 xoap->xoa_sparse =
2660 ((zp->z_pflags & ZFS_SPARSE) != 0);
2661 XVA_SET_RTN(xvap, XAT_SPARSE);
2662 }
2663 }
2664
2665 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2666 ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2667 ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2668
2669 mutex_exit(&zp->z_lock);
2670
2671 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2672
2673 if (zp->z_blksz == 0) {
2674 /*
2675 * Block size hasn't been set; suggest maximal I/O transfers.
2676 */
2677 vap->va_blksize = zfsvfs->z_max_blksz;
2678 }
2679
2680 ZFS_EXIT(zfsvfs);
2681 return (0);
2682 }
2683
2684 /*
2685 * Set the file attributes to the values contained in the
2686 * vattr structure.
2687 *
2688 * IN: vp - vnode of file to be modified.
2689 * vap - new attribute values.
2690 * If AT_XVATTR set, then optional attrs are being set
2691 * flags - ATTR_UTIME set if non-default time values provided.
2692 * - ATTR_NOACLCHECK (CIFS context only).
2693 * cr - credentials of caller.
2694 * ct - caller context
2695 *
2696 * RETURN: 0 on success, error code on failure.
2697 *
2698 * Timestamps:
2699 * vp - ctime updated, mtime updated if size changed.
2700 */
2701 /* ARGSUSED */
2702 static int
2703 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2704 caller_context_t *ct)
2705 {
2706 znode_t *zp = VTOZ(vp);
2707 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2708 zilog_t *zilog;
2709 dmu_tx_t *tx;
2710 vattr_t oldva;
2711 xvattr_t tmpxvattr;
2712 uint_t mask = vap->va_mask;
2713 uint_t saved_mask = 0;
2714 int trim_mask = 0;
2715 uint64_t new_mode;
2716 uint64_t new_uid, new_gid;
2717 uint64_t xattr_obj;
2718 uint64_t mtime[2], ctime[2];
2719 znode_t *attrzp;
2720 int need_policy = FALSE;
2721 int err, err2;
2722 zfs_fuid_info_t *fuidp = NULL;
2723 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
2724 xoptattr_t *xoap;
2725 zfs_acl_t *aclp;
2726 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2727 boolean_t fuid_dirtied = B_FALSE;
2728 sa_bulk_attr_t bulk[7], xattr_bulk[7];
2729 int count = 0, xattr_count = 0;
2730
2731 if (mask == 0)
2732 return (0);
2733
2734 if (mask & AT_NOSET)
2735 return (SET_ERROR(EINVAL));
2736
2737 ZFS_ENTER(zfsvfs);
2738 ZFS_VERIFY_ZP(zp);
2739
2740 zilog = zfsvfs->z_log;
2741
2742 /*
2743 * Make sure that if we have ephemeral uid/gid or xvattr specified
2744 * that file system is at proper version level
2745 */
2746
2747 if (zfsvfs->z_use_fuids == B_FALSE &&
2748 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2749 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2750 (mask & AT_XVATTR))) {
2751 ZFS_EXIT(zfsvfs);
2752 return (SET_ERROR(EINVAL));
2753 }
2754
2755 if (mask & AT_SIZE && vp->v_type == VDIR) {
2756 ZFS_EXIT(zfsvfs);
2757 return (SET_ERROR(EISDIR));
2758 }
2759
2760 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2761 ZFS_EXIT(zfsvfs);
2762 return (SET_ERROR(EINVAL));
2763 }
2764
2765 /*
2766 * If this is an xvattr_t, then get a pointer to the structure of
2767 * optional attributes. If this is NULL, then we have a vattr_t.
2768 */
2769 xoap = xva_getxoptattr(xvap);
2770
2771 xva_init(&tmpxvattr);
2772
2773 /*
2774 * Immutable files can only alter immutable bit and atime
2775 */
2776 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2777 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2778 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2779 ZFS_EXIT(zfsvfs);
2780 return (SET_ERROR(EPERM));
2781 }
2782
2783 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2784 ZFS_EXIT(zfsvfs);
2785 return (SET_ERROR(EPERM));
2786 }
2787
2788 /*
2789 * Verify timestamps doesn't overflow 32 bits.
2790 * ZFS can handle large timestamps, but 32bit syscalls can't
2791 * handle times greater than 2039. This check should be removed
2792 * once large timestamps are fully supported.
2793 */
2794 if (mask & (AT_ATIME | AT_MTIME)) {
2795 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2796 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2797 ZFS_EXIT(zfsvfs);
2798 return (SET_ERROR(EOVERFLOW));
2799 }
2800 }
2801
2802 top:
2803 attrzp = NULL;
2804 aclp = NULL;
2805
2806 /* Can this be moved to before the top label? */
2807 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2808 ZFS_EXIT(zfsvfs);
2809 return (SET_ERROR(EROFS));
2810 }
2811
2812 /*
2813 * First validate permissions
2814 */
2815
2816 if (mask & AT_SIZE) {
2817 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2818 if (err) {
2819 ZFS_EXIT(zfsvfs);
2820 return (err);
2821 }
2822 /*
2823 * XXX - Note, we are not providing any open
2824 * mode flags here (like FNDELAY), so we may
2825 * block if there are locks present... this
2826 * should be addressed in openat().
2827 */
2828 /* XXX - would it be OK to generate a log record here? */
2829 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2830 if (err) {
2831 ZFS_EXIT(zfsvfs);
2832 return (err);
2833 }
2834
2835 if (vap->va_size == 0)
2836 vnevent_truncate(ZTOV(zp), ct);
2837 }
2838
2839 if (mask & (AT_ATIME|AT_MTIME) ||
2840 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2841 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2842 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2843 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
2844 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
2845 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2846 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2847 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2848 skipaclchk, cr);
2849 }
2850
2851 if (mask & (AT_UID|AT_GID)) {
2852 int idmask = (mask & (AT_UID|AT_GID));
2853 int take_owner;
2854 int take_group;
2855
2856 /*
2857 * NOTE: even if a new mode is being set,
2858 * we may clear S_ISUID/S_ISGID bits.
2859 */
2860
2861 if (!(mask & AT_MODE))
2862 vap->va_mode = zp->z_mode;
2863
2864 /*
2865 * Take ownership or chgrp to group we are a member of
2866 */
2867
2868 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2869 take_group = (mask & AT_GID) &&
2870 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2871
2872 /*
2873 * If both AT_UID and AT_GID are set then take_owner and
2874 * take_group must both be set in order to allow taking
2875 * ownership.
2876 *
2877 * Otherwise, send the check through secpolicy_vnode_setattr()
2878 *
2879 */
2880
2881 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2882 ((idmask == AT_UID) && take_owner) ||
2883 ((idmask == AT_GID) && take_group)) {
2884 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2885 skipaclchk, cr) == 0) {
2886 /*
2887 * Remove setuid/setgid for non-privileged users
2888 */
2889 secpolicy_setid_clear(vap, cr);
2890 trim_mask = (mask & (AT_UID|AT_GID));
2891 } else {
2892 need_policy = TRUE;
2893 }
2894 } else {
2895 need_policy = TRUE;
2896 }
2897 }
2898
2899 mutex_enter(&zp->z_lock);
2900 oldva.va_mode = zp->z_mode;
2901 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2902 if (mask & AT_XVATTR) {
2903 /*
2904 * Update xvattr mask to include only those attributes
2905 * that are actually changing.
2906 *
2907 * the bits will be restored prior to actually setting
2908 * the attributes so the caller thinks they were set.
2909 */
2910 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2911 if (xoap->xoa_appendonly !=
2912 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2913 need_policy = TRUE;
2914 } else {
2915 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2916 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2917 }
2918 }
2919
2920 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2921 if (xoap->xoa_nounlink !=
2922 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2923 need_policy = TRUE;
2924 } else {
2925 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2926 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2927 }
2928 }
2929
2930 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2931 if (xoap->xoa_immutable !=
2932 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2933 need_policy = TRUE;
2934 } else {
2935 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2936 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2937 }
2938 }
2939
2940 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2941 if (xoap->xoa_nodump !=
2942 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2943 need_policy = TRUE;
2944 } else {
2945 XVA_CLR_REQ(xvap, XAT_NODUMP);
2946 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2947 }
2948 }
2949
2950 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2951 if (xoap->xoa_av_modified !=
2952 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2953 need_policy = TRUE;
2954 } else {
2955 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2956 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2957 }
2958 }
2959
2960 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2961 if ((vp->v_type != VREG &&
2962 xoap->xoa_av_quarantined) ||
2963 xoap->xoa_av_quarantined !=
2964 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2965 need_policy = TRUE;
2966 } else {
2967 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2968 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2969 }
2970 }
2971
2972 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2973 mutex_exit(&zp->z_lock);
2974 ZFS_EXIT(zfsvfs);
2975 return (SET_ERROR(EPERM));
2976 }
2977
2978 if (need_policy == FALSE &&
2979 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2980 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2981 need_policy = TRUE;
2982 }
2983 }
2984
2985 mutex_exit(&zp->z_lock);
2986
2987 if (mask & AT_MODE) {
2988 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2989 err = secpolicy_setid_setsticky_clear(vp, vap,
2990 &oldva, cr);
2991 if (err) {
2992 ZFS_EXIT(zfsvfs);
2993 return (err);
2994 }
2995 trim_mask |= AT_MODE;
2996 } else {
2997 need_policy = TRUE;
2998 }
2999 }
3000
3001 if (need_policy) {
3002 /*
3003 * If trim_mask is set then take ownership
3004 * has been granted or write_acl is present and user
3005 * has the ability to modify mode. In that case remove
3006 * UID|GID and or MODE from mask so that
3007 * secpolicy_vnode_setattr() doesn't revoke it.
3008 */
3009
3010 if (trim_mask) {
3011 saved_mask = vap->va_mask;
3012 vap->va_mask &= ~trim_mask;
3013 }
3014 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
3015 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
3016 if (err) {
3017 ZFS_EXIT(zfsvfs);
3018 return (err);
3019 }
3020
3021 if (trim_mask)
3022 vap->va_mask |= saved_mask;
3023 }
3024
3025 /*
3026 * secpolicy_vnode_setattr, or take ownership may have
3027 * changed va_mask
3028 */
3029 mask = vap->va_mask;
3030
3031 if ((mask & (AT_UID | AT_GID))) {
3032 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
3033 &xattr_obj, sizeof (xattr_obj));
3034
3035 if (err == 0 && xattr_obj) {
3036 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
3037 if (err)
3038 goto out2;
3039 }
3040 if (mask & AT_UID) {
3041 new_uid = zfs_fuid_create(zfsvfs,
3042 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
3043 if (new_uid != zp->z_uid &&
3044 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
3045 if (attrzp)
3046 VN_RELE(ZTOV(attrzp));
3047 err = SET_ERROR(EDQUOT);
3048 goto out2;
3049 }
3050 }
3051
3052 if (mask & AT_GID) {
3053 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
3054 cr, ZFS_GROUP, &fuidp);
3055 if (new_gid != zp->z_gid &&
3056 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
3057 if (attrzp)
3058 VN_RELE(ZTOV(attrzp));
3059 err = SET_ERROR(EDQUOT);
3060 goto out2;
3061 }
3062 }
3063 }
3064 tx = dmu_tx_create(zfsvfs->z_os);
3065
3066 if (mask & AT_MODE) {
3067 uint64_t pmode = zp->z_mode;
3068 uint64_t acl_obj;
3069 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
3070
3071 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED &&
3072 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
3073 err = SET_ERROR(EPERM);
3074 goto out;
3075 }
3076
3077 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
3078 goto out;
3079
3080 mutex_enter(&zp->z_lock);
3081 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
3082 /*
3083 * Are we upgrading ACL from old V0 format
3084 * to V1 format?
3085 */
3086 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
3087 zfs_znode_acl_version(zp) ==
3088 ZFS_ACL_VERSION_INITIAL) {
3089 dmu_tx_hold_free(tx, acl_obj, 0,
3090 DMU_OBJECT_END);
3091 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3092 0, aclp->z_acl_bytes);
3093 } else {
3094 dmu_tx_hold_write(tx, acl_obj, 0,
3095 aclp->z_acl_bytes);
3096 }
3097 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3098 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
3099 0, aclp->z_acl_bytes);
3100 }
3101 mutex_exit(&zp->z_lock);
3102 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3103 } else {
3104 if ((mask & AT_XVATTR) &&
3105 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3106 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
3107 else
3108 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3109 }
3110
3111 if (attrzp) {
3112 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
3113 }
3114
3115 fuid_dirtied = zfsvfs->z_fuid_dirty;
3116 if (fuid_dirtied)
3117 zfs_fuid_txhold(zfsvfs, tx);
3118
3119 zfs_sa_upgrade_txholds(tx, zp);
3120
3121 err = dmu_tx_assign(tx, TXG_WAIT);
3122 if (err)
3123 goto out;
3124
3125 count = 0;
3126 /*
3127 * Set each attribute requested.
3128 * We group settings according to the locks they need to acquire.
3129 *
3130 * Note: you cannot set ctime directly, although it will be
3131 * updated as a side-effect of calling this function.
3132 */
3133
3134
3135 if (mask & (AT_UID|AT_GID|AT_MODE))
3136 mutex_enter(&zp->z_acl_lock);
3137 mutex_enter(&zp->z_lock);
3138
3139 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3140 &zp->z_pflags, sizeof (zp->z_pflags));
3141
3142 if (attrzp) {
3143 if (mask & (AT_UID|AT_GID|AT_MODE))
3144 mutex_enter(&attrzp->z_acl_lock);
3145 mutex_enter(&attrzp->z_lock);
3146 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3147 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3148 sizeof (attrzp->z_pflags));
3149 }
3150
3151 if (mask & (AT_UID|AT_GID)) {
3152
3153 if (mask & AT_UID) {
3154 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3155 &new_uid, sizeof (new_uid));
3156 zp->z_uid = new_uid;
3157 if (attrzp) {
3158 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3159 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3160 sizeof (new_uid));
3161 attrzp->z_uid = new_uid;
3162 }
3163 }
3164
3165 if (mask & AT_GID) {
3166 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3167 NULL, &new_gid, sizeof (new_gid));
3168 zp->z_gid = new_gid;
3169 if (attrzp) {
3170 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3171 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3172 sizeof (new_gid));
3173 attrzp->z_gid = new_gid;
3174 }
3175 }
3176 if (!(mask & AT_MODE)) {
3177 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3178 NULL, &new_mode, sizeof (new_mode));
3179 new_mode = zp->z_mode;
3180 }
3181 err = zfs_acl_chown_setattr(zp);
3182 ASSERT(err == 0);
3183 if (attrzp) {
3184 err = zfs_acl_chown_setattr(attrzp);
3185 ASSERT(err == 0);
3186 }
3187 }
3188
3189 if (mask & AT_MODE) {
3190 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3191 &new_mode, sizeof (new_mode));
3192 zp->z_mode = new_mode;
3193 ASSERT3U((uintptr_t)aclp, !=, NULL);
3194 err = zfs_aclset_common(zp, aclp, cr, tx);
3195 ASSERT0(err);
3196 if (zp->z_acl_cached)
3197 zfs_acl_free(zp->z_acl_cached);
3198 zp->z_acl_cached = aclp;
3199 aclp = NULL;
3200 }
3201
3202
3203 if (mask & AT_ATIME) {
3204 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3205 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3206 &zp->z_atime, sizeof (zp->z_atime));
3207 }
3208
3209 if (mask & AT_MTIME) {
3210 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3211 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3212 mtime, sizeof (mtime));
3213 }
3214
3215 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3216 if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3217 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3218 NULL, mtime, sizeof (mtime));
3219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3220 &ctime, sizeof (ctime));
3221 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3222 B_TRUE);
3223 } else if (mask != 0) {
3224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3225 &ctime, sizeof (ctime));
3226 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3227 B_TRUE);
3228 if (attrzp) {
3229 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3230 SA_ZPL_CTIME(zfsvfs), NULL,
3231 &ctime, sizeof (ctime));
3232 zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3233 mtime, ctime, B_TRUE);
3234 }
3235 }
3236 /*
3237 * Do this after setting timestamps to prevent timestamp
3238 * update from toggling bit
3239 */
3240
3241 if (xoap && (mask & AT_XVATTR)) {
3242
3243 /*
3244 * restore trimmed off masks
3245 * so that return masks can be set for caller.
3246 */
3247
3248 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3249 XVA_SET_REQ(xvap, XAT_APPENDONLY);
3250 }
3251 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3252 XVA_SET_REQ(xvap, XAT_NOUNLINK);
3253 }
3254 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3255 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3256 }
3257 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3258 XVA_SET_REQ(xvap, XAT_NODUMP);
3259 }
3260 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3261 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3262 }
3263 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3264 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3265 }
3266
3267 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3268 ASSERT(vp->v_type == VREG);
3269
3270 zfs_xvattr_set(zp, xvap, tx);
3271 }
3272
3273 if (fuid_dirtied)
3274 zfs_fuid_sync(zfsvfs, tx);
3275
3276 if (mask != 0)
3277 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3278
3279 mutex_exit(&zp->z_lock);
3280 if (mask & (AT_UID|AT_GID|AT_MODE))
3281 mutex_exit(&zp->z_acl_lock);
3282
3283 if (attrzp) {
3284 if (mask & (AT_UID|AT_GID|AT_MODE))
3285 mutex_exit(&attrzp->z_acl_lock);
3286 mutex_exit(&attrzp->z_lock);
3287 }
3288 out:
3289 if (err == 0 && attrzp) {
3290 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3291 xattr_count, tx);
3292 ASSERT(err2 == 0);
3293 }
3294
3295 if (attrzp)
3296 VN_RELE(ZTOV(attrzp));
3297
3298 if (aclp)
3299 zfs_acl_free(aclp);
3300
3301 if (fuidp) {
3302 zfs_fuid_info_free(fuidp);
3303 fuidp = NULL;
3304 }
3305
3306 if (err) {
3307 dmu_tx_abort(tx);
3308 if (err == ERESTART)
3309 goto top;
3310 } else {
3311 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3312 dmu_tx_commit(tx);
3313 }
3314
3315 out2:
3316 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3317 zil_commit(zilog, 0);
3318
3319 ZFS_EXIT(zfsvfs);
3320 return (err);
3321 }
3322
3323 typedef struct zfs_zlock {
3324 krwlock_t *zl_rwlock; /* lock we acquired */
3325 znode_t *zl_znode; /* znode we held */
3326 struct zfs_zlock *zl_next; /* next in list */
3327 } zfs_zlock_t;
3328
3329 /*
3330 * Drop locks and release vnodes that were held by zfs_rename_lock().
3331 */
3332 static void
3333 zfs_rename_unlock(zfs_zlock_t **zlpp)
3334 {
3335 zfs_zlock_t *zl;
3336
3337 while ((zl = *zlpp) != NULL) {
3338 if (zl->zl_znode != NULL)
3339 VN_RELE(ZTOV(zl->zl_znode));
3340 rw_exit(zl->zl_rwlock);
3341 *zlpp = zl->zl_next;
3342 kmem_free(zl, sizeof (*zl));
3343 }
3344 }
3345
3346 /*
3347 * Search back through the directory tree, using the ".." entries.
3348 * Lock each directory in the chain to prevent concurrent renames.
3349 * Fail any attempt to move a directory into one of its own descendants.
3350 * XXX - z_parent_lock can overlap with map or grow locks
3351 */
3352 static int
3353 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3354 {
3355 zfs_zlock_t *zl;
3356 znode_t *zp = tdzp;
3357 uint64_t rootid = zp->z_zfsvfs->z_root;
3358 uint64_t oidp = zp->z_id;
3359 krwlock_t *rwlp = &szp->z_parent_lock;
3360 krw_t rw = RW_WRITER;
3361
3362 /*
3363 * First pass write-locks szp and compares to zp->z_id.
3364 * Later passes read-lock zp and compare to zp->z_parent.
3365 */
3366 do {
3367 if (!rw_tryenter(rwlp, rw)) {
3368 /*
3369 * Another thread is renaming in this path.
3370 * Note that if we are a WRITER, we don't have any
3371 * parent_locks held yet.
3372 */
3373 if (rw == RW_READER && zp->z_id > szp->z_id) {
3374 /*
3375 * Drop our locks and restart
3376 */
3377 zfs_rename_unlock(&zl);
3378 *zlpp = NULL;
3379 zp = tdzp;
3380 oidp = zp->z_id;
3381 rwlp = &szp->z_parent_lock;
3382 rw = RW_WRITER;
3383 continue;
3384 } else {
3385 /*
3386 * Wait for other thread to drop its locks
3387 */
3388 rw_enter(rwlp, rw);
3389 }
3390 }
3391
3392 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3393 zl->zl_rwlock = rwlp;
3394 zl->zl_znode = NULL;
3395 zl->zl_next = *zlpp;
3396 *zlpp = zl;
3397
3398 if (oidp == szp->z_id) /* We're a descendant of szp */
3399 return (SET_ERROR(EINVAL));
3400
3401 if (oidp == rootid) /* We've hit the top */
3402 return (0);
3403
3404 if (rw == RW_READER) { /* i.e. not the first pass */
3405 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3406 if (error)
3407 return (error);
3408 zl->zl_znode = zp;
3409 }
3410 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3411 &oidp, sizeof (oidp));
3412 rwlp = &zp->z_parent_lock;
3413 rw = RW_READER;
3414
3415 } while (zp->z_id != sdzp->z_id);
3416
3417 return (0);
3418 }
3419
3420 /*
3421 * Move an entry from the provided source directory to the target
3422 * directory. Change the entry name as indicated.
3423 *
3424 * IN: sdvp - Source directory containing the "old entry".
3425 * snm - Old entry name.
3426 * tdvp - Target directory to contain the "new entry".
3427 * tnm - New entry name.
3428 * cr - credentials of caller.
3429 * ct - caller context
3430 * flags - case flags
3431 *
3432 * RETURN: 0 on success, error code on failure.
3433 *
3434 * Timestamps:
3435 * sdvp,tdvp - ctime|mtime updated
3436 */
3437 /*ARGSUSED*/
3438 static int
3439 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3440 caller_context_t *ct, int flags)
3441 {
3442 znode_t *tdzp, *szp, *tzp;
3443 znode_t *sdzp = VTOZ(sdvp);
3444 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs;
3445 zilog_t *zilog;
3446 vnode_t *realvp;
3447 zfs_dirlock_t *sdl, *tdl;
3448 dmu_tx_t *tx;
3449 zfs_zlock_t *zl;
3450 int cmp, serr, terr;
3451 int error = 0;
3452 int zflg = 0;
3453 boolean_t waited = B_FALSE;
3454
3455 ZFS_ENTER(zfsvfs);
3456 ZFS_VERIFY_ZP(sdzp);
3457 zilog = zfsvfs->z_log;
3458
3459 /*
3460 * Make sure we have the real vp for the target directory.
3461 */
3462 if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3463 tdvp = realvp;
3464
3465 tdzp = VTOZ(tdvp);
3466 ZFS_VERIFY_ZP(tdzp);
3467
3468 /*
3469 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
3470 * ctldir appear to have the same v_vfsp.
3471 */
3472 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) {
3473 ZFS_EXIT(zfsvfs);
3474 return (SET_ERROR(EXDEV));
3475 }
3476
3477 if (zfsvfs->z_utf8 && u8_validate(tnm,
3478 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3479 ZFS_EXIT(zfsvfs);
3480 return (SET_ERROR(EILSEQ));
3481 }
3482
3483 if (flags & FIGNORECASE)
3484 zflg |= ZCILOOK;
3485
3486 top:
3487 szp = NULL;
3488 tzp = NULL;
3489 zl = NULL;
3490
3491 /*
3492 * This is to prevent the creation of links into attribute space
3493 * by renaming a linked file into/outof an attribute directory.
3494 * See the comment in zfs_link() for why this is considered bad.
3495 */
3496 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3497 ZFS_EXIT(zfsvfs);
3498 return (SET_ERROR(EINVAL));
3499 }
3500
3501 /*
3502 * Lock source and target directory entries. To prevent deadlock,
3503 * a lock ordering must be defined. We lock the directory with
3504 * the smallest object id first, or if it's a tie, the one with
3505 * the lexically first name.
3506 */
3507 if (sdzp->z_id < tdzp->z_id) {
3508 cmp = -1;
3509 } else if (sdzp->z_id > tdzp->z_id) {
3510 cmp = 1;
3511 } else {
3512 /*
3513 * First compare the two name arguments without
3514 * considering any case folding.
3515 */
3516 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3517
3518 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3519 ASSERT(error == 0 || !zfsvfs->z_utf8);
3520 if (cmp == 0) {
3521 /*
3522 * POSIX: "If the old argument and the new argument
3523 * both refer to links to the same existing file,
3524 * the rename() function shall return successfully
3525 * and perform no other action."
3526 */
3527 ZFS_EXIT(zfsvfs);
3528 return (0);
3529 }
3530 /*
3531 * If the file system is case-folding, then we may
3532 * have some more checking to do. A case-folding file
3533 * system is either supporting mixed case sensitivity
3534 * access or is completely case-insensitive. Note
3535 * that the file system is always case preserving.
3536 *
3537 * In mixed sensitivity mode case sensitive behavior
3538 * is the default. FIGNORECASE must be used to
3539 * explicitly request case insensitive behavior.
3540 *
3541 * If the source and target names provided differ only
3542 * by case (e.g., a request to rename 'tim' to 'Tim'),
3543 * we will treat this as a special case in the
3544 * case-insensitive mode: as long as the source name
3545 * is an exact match, we will allow this to proceed as
3546 * a name-change request.
3547 */
3548 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3549 (zfsvfs->z_case == ZFS_CASE_MIXED &&
3550 flags & FIGNORECASE)) &&
3551 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3552 &error) == 0) {
3553 /*
3554 * case preserving rename request, require exact
3555 * name matches
3556 */
3557 zflg |= ZCIEXACT;
3558 zflg &= ~ZCILOOK;
3559 }
3560 }
3561
3562 /*
3563 * If the source and destination directories are the same, we should
3564 * grab the z_name_lock of that directory only once.
3565 */
3566 if (sdzp == tdzp) {
3567 zflg |= ZHAVELOCK;
3568 rw_enter(&sdzp->z_name_lock, RW_READER);
3569 }
3570
3571 if (cmp < 0) {
3572 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3573 ZEXISTS | zflg, NULL, NULL);
3574 terr = zfs_dirent_lock(&tdl,
3575 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3576 } else {
3577 terr = zfs_dirent_lock(&tdl,
3578 tdzp, tnm, &tzp, zflg, NULL, NULL);
3579 serr = zfs_dirent_lock(&sdl,
3580 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3581 NULL, NULL);
3582 }
3583
3584 if (serr) {
3585 /*
3586 * Source entry invalid or not there.
3587 */
3588 if (!terr) {
3589 zfs_dirent_unlock(tdl);
3590 if (tzp)
3591 VN_RELE(ZTOV(tzp));
3592 }
3593
3594 if (sdzp == tdzp)
3595 rw_exit(&sdzp->z_name_lock);
3596
3597 if (strcmp(snm, "..") == 0)
3598 serr = SET_ERROR(EINVAL);
3599 ZFS_EXIT(zfsvfs);
3600 return (serr);
3601 }
3602 if (terr) {
3603 zfs_dirent_unlock(sdl);
3604 VN_RELE(ZTOV(szp));
3605
3606 if (sdzp == tdzp)
3607 rw_exit(&sdzp->z_name_lock);
3608
3609 if (strcmp(tnm, "..") == 0)
3610 terr = SET_ERROR(EINVAL);
3611 ZFS_EXIT(zfsvfs);
3612 return (terr);
3613 }
3614
3615 /*
3616 * Must have write access at the source to remove the old entry
3617 * and write access at the target to create the new entry.
3618 * Note that if target and source are the same, this can be
3619 * done in a single check.
3620 */
3621
3622 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3623 goto out;
3624
3625 if (ZTOV(szp)->v_type == VDIR) {
3626 /*
3627 * Check to make sure rename is valid.
3628 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3629 */
3630 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3631 goto out;
3632 }
3633
3634 /*
3635 * Does target exist?
3636 */
3637 if (tzp) {
3638 /*
3639 * Source and target must be the same type.
3640 */
3641 if (ZTOV(szp)->v_type == VDIR) {
3642 if (ZTOV(tzp)->v_type != VDIR) {
3643 error = SET_ERROR(ENOTDIR);
3644 goto out;
3645 }
3646 } else {
3647 if (ZTOV(tzp)->v_type == VDIR) {
3648 error = SET_ERROR(EISDIR);
3649 goto out;
3650 }
3651 }
3652 /*
3653 * POSIX dictates that when the source and target
3654 * entries refer to the same file object, rename
3655 * must do nothing and exit without error.
3656 */
3657 if (szp->z_id == tzp->z_id) {
3658 error = 0;
3659 goto out;
3660 }
3661 }
3662
3663 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3664 if (tzp)
3665 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3666
3667 /*
3668 * notify the target directory if it is not the same
3669 * as source directory.
3670 */
3671 if (tdvp != sdvp) {
3672 vnevent_rename_dest_dir(tdvp, ct);
3673 }
3674
3675 tx = dmu_tx_create(zfsvfs->z_os);
3676 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3677 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3678 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3679 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3680 if (sdzp != tdzp) {
3681 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3682 zfs_sa_upgrade_txholds(tx, tdzp);
3683 }
3684 if (tzp) {
3685 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3686 zfs_sa_upgrade_txholds(tx, tzp);
3687 }
3688
3689 zfs_sa_upgrade_txholds(tx, szp);
3690 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3691 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3692 if (error) {
3693 if (zl != NULL)
3694 zfs_rename_unlock(&zl);
3695 zfs_dirent_unlock(sdl);
3696 zfs_dirent_unlock(tdl);
3697
3698 if (sdzp == tdzp)
3699 rw_exit(&sdzp->z_name_lock);
3700
3701 VN_RELE(ZTOV(szp));
3702 if (tzp)
3703 VN_RELE(ZTOV(tzp));
3704 if (error == ERESTART) {
3705 waited = B_TRUE;
3706 dmu_tx_wait(tx);
3707 dmu_tx_abort(tx);
3708 goto top;
3709 }
3710 dmu_tx_abort(tx);
3711 ZFS_EXIT(zfsvfs);
3712 return (error);
3713 }
3714
3715 if (tzp) /* Attempt to remove the existing target */
3716 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3717
3718 if (error == 0) {
3719 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3720 if (error == 0) {
3721 szp->z_pflags |= ZFS_AV_MODIFIED;
3722
3723 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3724 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3725 ASSERT0(error);
3726
3727 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3728 if (error == 0) {
3729 zfs_log_rename(zilog, tx, TX_RENAME |
3730 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3731 sdl->dl_name, tdzp, tdl->dl_name, szp);
3732
3733 /*
3734 * Update path information for the target vnode
3735 */
3736 vn_renamepath(tdvp, ZTOV(szp), tnm,
3737 strlen(tnm));
3738 } else {
3739 /*
3740 * At this point, we have successfully created
3741 * the target name, but have failed to remove
3742 * the source name. Since the create was done
3743 * with the ZRENAMING flag, there are
3744 * complications; for one, the link count is
3745 * wrong. The easiest way to deal with this
3746 * is to remove the newly created target, and
3747 * return the original error. This must
3748 * succeed; fortunately, it is very unlikely to
3749 * fail, since we just created it.
3750 */
3751 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3752 ZRENAMING, NULL), ==, 0);
3753 }
3754 }
3755 }
3756
3757 dmu_tx_commit(tx);
3758 out:
3759 if (zl != NULL)
3760 zfs_rename_unlock(&zl);
3761
3762 zfs_dirent_unlock(sdl);
3763 zfs_dirent_unlock(tdl);
3764
3765 if (sdzp == tdzp)
3766 rw_exit(&sdzp->z_name_lock);
3767
3768
3769 VN_RELE(ZTOV(szp));
3770 if (tzp)
3771 VN_RELE(ZTOV(tzp));
3772
3773 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3774 zil_commit(zilog, 0);
3775
3776 ZFS_EXIT(zfsvfs);
3777 return (error);
3778 }
3779
3780 /*
3781 * Insert the indicated symbolic reference entry into the directory.
3782 *
3783 * IN: dvp - Directory to contain new symbolic link.
3784 * link - Name for new symlink entry.
3785 * vap - Attributes of new entry.
3786 * cr - credentials of caller.
3787 * ct - caller context
3788 * flags - case flags
3789 *
3790 * RETURN: 0 on success, error code on failure.
3791 *
3792 * Timestamps:
3793 * dvp - ctime|mtime updated
3794 */
3795 /*ARGSUSED*/
3796 static int
3797 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3798 caller_context_t *ct, int flags)
3799 {
3800 znode_t *zp, *dzp = VTOZ(dvp);
3801 zfs_dirlock_t *dl;
3802 dmu_tx_t *tx;
3803 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3804 zilog_t *zilog;
3805 uint64_t len = strlen(link);
3806 int error;
3807 int zflg = ZNEW;
3808 zfs_acl_ids_t acl_ids;
3809 boolean_t fuid_dirtied;
3810 uint64_t txtype = TX_SYMLINK;
3811 boolean_t waited = B_FALSE;
3812
3813 ASSERT(vap->va_type == VLNK);
3814
3815 ZFS_ENTER(zfsvfs);
3816 ZFS_VERIFY_ZP(dzp);
3817 zilog = zfsvfs->z_log;
3818
3819 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3820 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3821 ZFS_EXIT(zfsvfs);
3822 return (SET_ERROR(EILSEQ));
3823 }
3824 if (flags & FIGNORECASE)
3825 zflg |= ZCILOOK;
3826
3827 if (len > MAXPATHLEN) {
3828 ZFS_EXIT(zfsvfs);
3829 return (SET_ERROR(ENAMETOOLONG));
3830 }
3831
3832 if ((error = zfs_acl_ids_create(dzp, 0,
3833 vap, cr, NULL, &acl_ids)) != 0) {
3834 ZFS_EXIT(zfsvfs);
3835 return (error);
3836 }
3837 top:
3838 /*
3839 * Attempt to lock directory; fail if entry already exists.
3840 */
3841 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3842 if (error) {
3843 zfs_acl_ids_free(&acl_ids);
3844 ZFS_EXIT(zfsvfs);
3845 return (error);
3846 }
3847
3848 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3849 zfs_acl_ids_free(&acl_ids);
3850 zfs_dirent_unlock(dl);
3851 ZFS_EXIT(zfsvfs);
3852 return (error);
3853 }
3854
3855 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3856 zfs_acl_ids_free(&acl_ids);
3857 zfs_dirent_unlock(dl);
3858 ZFS_EXIT(zfsvfs);
3859 return (SET_ERROR(EDQUOT));
3860 }
3861 tx = dmu_tx_create(zfsvfs->z_os);
3862 fuid_dirtied = zfsvfs->z_fuid_dirty;
3863 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3864 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3865 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3866 ZFS_SA_BASE_ATTR_SIZE + len);
3867 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3868 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3869 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3870 acl_ids.z_aclp->z_acl_bytes);
3871 }
3872 if (fuid_dirtied)
3873 zfs_fuid_txhold(zfsvfs, tx);
3874 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
3875 if (error) {
3876 zfs_dirent_unlock(dl);
3877 if (error == ERESTART) {
3878 waited = B_TRUE;
3879 dmu_tx_wait(tx);
3880 dmu_tx_abort(tx);
3881 goto top;
3882 }
3883 zfs_acl_ids_free(&acl_ids);
3884 dmu_tx_abort(tx);
3885 ZFS_EXIT(zfsvfs);
3886 return (error);
3887 }
3888
3889 /*
3890 * Create a new object for the symlink.
3891 * for version 4 ZPL datsets the symlink will be an SA attribute
3892 */
3893 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3894
3895 if (fuid_dirtied)
3896 zfs_fuid_sync(zfsvfs, tx);
3897
3898 mutex_enter(&zp->z_lock);
3899 if (zp->z_is_sa)
3900 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3901 link, len, tx);
3902 else
3903 zfs_sa_symlink(zp, link, len, tx);
3904 mutex_exit(&zp->z_lock);
3905
3906 zp->z_size = len;
3907 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3908 &zp->z_size, sizeof (zp->z_size), tx);
3909 /*
3910 * Insert the new object into the directory.
3911 */
3912 (void) zfs_link_create(dl, zp, tx, ZNEW);
3913
3914 if (flags & FIGNORECASE)
3915 txtype |= TX_CI;
3916 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3917
3918 zfs_acl_ids_free(&acl_ids);
3919
3920 dmu_tx_commit(tx);
3921
3922 zfs_dirent_unlock(dl);
3923
3924 VN_RELE(ZTOV(zp));
3925
3926 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3927 zil_commit(zilog, 0);
3928
3929 ZFS_EXIT(zfsvfs);
3930 return (error);
3931 }
3932
3933 /*
3934 * Return, in the buffer contained in the provided uio structure,
3935 * the symbolic path referred to by vp.
3936 *
3937 * IN: vp - vnode of symbolic link.
3938 * uio - structure to contain the link path.
3939 * cr - credentials of caller.
3940 * ct - caller context
3941 *
3942 * OUT: uio - structure containing the link path.
3943 *
3944 * RETURN: 0 on success, error code on failure.
3945 *
3946 * Timestamps:
3947 * vp - atime updated
3948 */
3949 /* ARGSUSED */
3950 static int
3951 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3952 {
3953 znode_t *zp = VTOZ(vp);
3954 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
3955 int error;
3956
3957 ZFS_ENTER(zfsvfs);
3958 ZFS_VERIFY_ZP(zp);
3959
3960 mutex_enter(&zp->z_lock);
3961 if (zp->z_is_sa)
3962 error = sa_lookup_uio(zp->z_sa_hdl,
3963 SA_ZPL_SYMLINK(zfsvfs), uio);
3964 else
3965 error = zfs_sa_readlink(zp, uio);
3966 mutex_exit(&zp->z_lock);
3967
3968 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3969
3970 ZFS_EXIT(zfsvfs);
3971 return (error);
3972 }
3973
3974 /*
3975 * Insert a new entry into directory tdvp referencing svp.
3976 *
3977 * IN: tdvp - Directory to contain new entry.
3978 * svp - vnode of new entry.
3979 * name - name of new entry.
3980 * cr - credentials of caller.
3981 * ct - caller context
3982 *
3983 * RETURN: 0 on success, error code on failure.
3984 *
3985 * Timestamps:
3986 * tdvp - ctime|mtime updated
3987 * svp - ctime updated
3988 */
3989 /* ARGSUSED */
3990 static int
3991 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3992 caller_context_t *ct, int flags)
3993 {
3994 znode_t *dzp = VTOZ(tdvp);
3995 znode_t *tzp, *szp;
3996 zfsvfs_t *zfsvfs = dzp->z_zfsvfs;
3997 zilog_t *zilog;
3998 zfs_dirlock_t *dl;
3999 dmu_tx_t *tx;
4000 vnode_t *realvp;
4001 int error;
4002 int zf = ZNEW;
4003 uint64_t parent;
4004 uid_t owner;
4005 boolean_t waited = B_FALSE;
4006
4007 ASSERT(tdvp->v_type == VDIR);
4008
4009 ZFS_ENTER(zfsvfs);
4010 ZFS_VERIFY_ZP(dzp);
4011 zilog = zfsvfs->z_log;
4012
4013 if (VOP_REALVP(svp, &realvp, ct) == 0)
4014 svp = realvp;
4015
4016 /*
4017 * POSIX dictates that we return EPERM here.
4018 * Better choices include ENOTSUP or EISDIR.
4019 */
4020 if (svp->v_type == VDIR) {
4021 ZFS_EXIT(zfsvfs);
4022 return (SET_ERROR(EPERM));
4023 }
4024
4025 szp = VTOZ(svp);
4026 ZFS_VERIFY_ZP(szp);
4027
4028 /*
4029 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the
4030 * ctldir appear to have the same v_vfsp.
4031 */
4032 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) {
4033 ZFS_EXIT(zfsvfs);
4034 return (SET_ERROR(EXDEV));
4035 }
4036
4037 /* Prevent links to .zfs/shares files */
4038
4039 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
4040 &parent, sizeof (uint64_t))) != 0) {
4041 ZFS_EXIT(zfsvfs);
4042 return (error);
4043 }
4044 if (parent == zfsvfs->z_shares_dir) {
4045 ZFS_EXIT(zfsvfs);
4046 return (SET_ERROR(EPERM));
4047 }
4048
4049 if (zfsvfs->z_utf8 && u8_validate(name,
4050 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
4051 ZFS_EXIT(zfsvfs);
4052 return (SET_ERROR(EILSEQ));
4053 }
4054 if (flags & FIGNORECASE)
4055 zf |= ZCILOOK;
4056
4057 /*
4058 * We do not support links between attributes and non-attributes
4059 * because of the potential security risk of creating links
4060 * into "normal" file space in order to circumvent restrictions
4061 * imposed in attribute space.
4062 */
4063 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
4064 ZFS_EXIT(zfsvfs);
4065 return (SET_ERROR(EINVAL));
4066 }
4067
4068
4069 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER);
4070 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
4071 ZFS_EXIT(zfsvfs);
4072 return (SET_ERROR(EPERM));
4073 }
4074
4075 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
4076 ZFS_EXIT(zfsvfs);
4077 return (error);
4078 }
4079
4080 top:
4081 /*
4082 * Attempt to lock directory; fail if entry already exists.
4083 */
4084 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
4085 if (error) {
4086 ZFS_EXIT(zfsvfs);
4087 return (error);
4088 }
4089
4090 tx = dmu_tx_create(zfsvfs->z_os);
4091 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
4092 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
4093 zfs_sa_upgrade_txholds(tx, szp);
4094 zfs_sa_upgrade_txholds(tx, dzp);
4095 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT);
4096 if (error) {
4097 zfs_dirent_unlock(dl);
4098 if (error == ERESTART) {
4099 waited = B_TRUE;
4100 dmu_tx_wait(tx);
4101 dmu_tx_abort(tx);
4102 goto top;
4103 }
4104 dmu_tx_abort(tx);
4105 ZFS_EXIT(zfsvfs);
4106 return (error);
4107 }
4108
4109 error = zfs_link_create(dl, szp, tx, 0);
4110
4111 if (error == 0) {
4112 uint64_t txtype = TX_LINK;
4113 if (flags & FIGNORECASE)
4114 txtype |= TX_CI;
4115 zfs_log_link(zilog, tx, txtype, dzp, szp, name);
4116 }
4117
4118 dmu_tx_commit(tx);
4119
4120 zfs_dirent_unlock(dl);
4121
4122 if (error == 0) {
4123 vnevent_link(svp, ct);
4124 }
4125
4126 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4127 zil_commit(zilog, 0);
4128
4129 ZFS_EXIT(zfsvfs);
4130 return (error);
4131 }
4132
4133 /*
4134 * zfs_null_putapage() is used when the file system has been force
4135 * unmounted. It just drops the pages.
4136 */
4137 /* ARGSUSED */
4138 static int
4139 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4140 size_t *lenp, int flags, cred_t *cr)
4141 {
4142 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
4143 return (0);
4144 }
4145
4146 /*
4147 * Push a page out to disk, klustering if possible.
4148 *
4149 * IN: vp - file to push page to.
4150 * pp - page to push.
4151 * flags - additional flags.
4152 * cr - credentials of caller.
4153 *
4154 * OUT: offp - start of range pushed.
4155 * lenp - len of range pushed.
4156 *
4157 * RETURN: 0 on success, error code on failure.
4158 *
4159 * NOTE: callers must have locked the page to be pushed. On
4160 * exit, the page (and all other pages in the kluster) must be
4161 * unlocked.
4162 */
4163 /* ARGSUSED */
4164 static int
4165 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4166 size_t *lenp, int flags, cred_t *cr)
4167 {
4168 znode_t *zp = VTOZ(vp);
4169 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4170 dmu_tx_t *tx;
4171 u_offset_t off, koff;
4172 size_t len, klen;
4173 int err;
4174
4175 off = pp->p_offset;
4176 len = PAGESIZE;
4177 /*
4178 * If our blocksize is bigger than the page size, try to kluster
4179 * multiple pages so that we write a full block (thus avoiding
4180 * a read-modify-write).
4181 */
4182 if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4183 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4184 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4185 ASSERT(koff <= zp->z_size);
4186 if (koff + klen > zp->z_size)
4187 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4188 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4189 }
4190 ASSERT3U(btop(len), ==, btopr(len));
4191
4192 /*
4193 * Can't push pages past end-of-file.
4194 */
4195 if (off >= zp->z_size) {
4196 /* ignore all pages */
4197 err = 0;
4198 goto out;
4199 } else if (off + len > zp->z_size) {
4200 int npages = btopr(zp->z_size - off);
4201 page_t *trunc;
4202
4203 page_list_break(&pp, &trunc, npages);
4204 /* ignore pages past end of file */
4205 if (trunc)
4206 pvn_write_done(trunc, flags);
4207 len = zp->z_size - off;
4208 }
4209
4210 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4211 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4212 err = SET_ERROR(EDQUOT);
4213 goto out;
4214 }
4215 tx = dmu_tx_create(zfsvfs->z_os);
4216 dmu_tx_hold_write(tx, zp->z_id, off, len);
4217
4218 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4219 zfs_sa_upgrade_txholds(tx, zp);
4220 err = dmu_tx_assign(tx, TXG_WAIT);
4221 if (err != 0) {
4222 dmu_tx_abort(tx);
4223 goto out;
4224 }
4225
4226 if (zp->z_blksz <= PAGESIZE) {
4227 caddr_t va = zfs_map_page(pp, S_READ);
4228 ASSERT3U(len, <=, PAGESIZE);
4229 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4230 zfs_unmap_page(pp, va);
4231 } else {
4232 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4233 }
4234
4235 if (err == 0) {
4236 uint64_t mtime[2], ctime[2];
4237 sa_bulk_attr_t bulk[3];
4238 int count = 0;
4239
4240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4241 &mtime, 16);
4242 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4243 &ctime, 16);
4244 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4245 &zp->z_pflags, 8);
4246 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4247 B_TRUE);
4248 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4249 }
4250 dmu_tx_commit(tx);
4251
4252 out:
4253 pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4254 if (offp)
4255 *offp = off;
4256 if (lenp)
4257 *lenp = len;
4258
4259 return (err);
4260 }
4261
4262 /*
4263 * Copy the portion of the file indicated from pages into the file.
4264 * The pages are stored in a page list attached to the files vnode.
4265 *
4266 * IN: vp - vnode of file to push page data to.
4267 * off - position in file to put data.
4268 * len - amount of data to write.
4269 * flags - flags to control the operation.
4270 * cr - credentials of caller.
4271 * ct - caller context.
4272 *
4273 * RETURN: 0 on success, error code on failure.
4274 *
4275 * Timestamps:
4276 * vp - ctime|mtime updated
4277 */
4278 /*ARGSUSED*/
4279 static int
4280 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4281 caller_context_t *ct)
4282 {
4283 znode_t *zp = VTOZ(vp);
4284 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4285 page_t *pp;
4286 size_t io_len;
4287 u_offset_t io_off;
4288 uint_t blksz;
4289 rl_t *rl;
4290 int error = 0;
4291
4292 ZFS_ENTER(zfsvfs);
4293 ZFS_VERIFY_ZP(zp);
4294
4295 /*
4296 * There's nothing to do if no data is cached.
4297 */
4298 if (!vn_has_cached_data(vp)) {
4299 ZFS_EXIT(zfsvfs);
4300 return (0);
4301 }
4302
4303 /*
4304 * Align this request to the file block size in case we kluster.
4305 * XXX - this can result in pretty aggresive locking, which can
4306 * impact simultanious read/write access. One option might be
4307 * to break up long requests (len == 0) into block-by-block
4308 * operations to get narrower locking.
4309 */
4310 blksz = zp->z_blksz;
4311 if (ISP2(blksz))
4312 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4313 else
4314 io_off = 0;
4315 if (len > 0 && ISP2(blksz))
4316 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4317 else
4318 io_len = 0;
4319
4320 if (io_len == 0) {
4321 /*
4322 * Search the entire vp list for pages >= io_off.
4323 */
4324 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4325 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4326 goto out;
4327 }
4328 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4329
4330 if (off > zp->z_size) {
4331 /* past end of file */
4332 zfs_range_unlock(rl);
4333 ZFS_EXIT(zfsvfs);
4334 return (0);
4335 }
4336
4337 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4338
4339 for (off = io_off; io_off < off + len; io_off += io_len) {
4340 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4341 pp = page_lookup(vp, io_off,
4342 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4343 } else {
4344 pp = page_lookup_nowait(vp, io_off,
4345 (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4346 }
4347
4348 if (pp != NULL && pvn_getdirty(pp, flags)) {
4349 int err;
4350
4351 /*
4352 * Found a dirty page to push
4353 */
4354 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4355 if (err)
4356 error = err;
4357 } else {
4358 io_len = PAGESIZE;
4359 }
4360 }
4361 out:
4362 zfs_range_unlock(rl);
4363 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4364 zil_commit(zfsvfs->z_log, zp->z_id);
4365 ZFS_EXIT(zfsvfs);
4366 return (error);
4367 }
4368
4369 /*ARGSUSED*/
4370 void
4371 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4372 {
4373 znode_t *zp = VTOZ(vp);
4374 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4375 int error;
4376
4377 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4378 if (zp->z_sa_hdl == NULL) {
4379 /*
4380 * The fs has been unmounted, or we did a
4381 * suspend/resume and this file no longer exists.
4382 */
4383 if (vn_has_cached_data(vp)) {
4384 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4385 B_INVAL, cr);
4386 }
4387
4388 mutex_enter(&zp->z_lock);
4389 mutex_enter(&vp->v_lock);
4390 ASSERT(vp->v_count == 1);
4391 vp->v_count = 0;
4392 mutex_exit(&vp->v_lock);
4393 mutex_exit(&zp->z_lock);
4394 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4395 zfs_znode_free(zp);
4396 return;
4397 }
4398
4399 /*
4400 * Attempt to push any data in the page cache. If this fails
4401 * we will get kicked out later in zfs_zinactive().
4402 */
4403 if (vn_has_cached_data(vp)) {
4404 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4405 cr);
4406 }
4407
4408 if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4409 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4410
4411 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4412 zfs_sa_upgrade_txholds(tx, zp);
4413 error = dmu_tx_assign(tx, TXG_WAIT);
4414 if (error) {
4415 dmu_tx_abort(tx);
4416 } else {
4417 mutex_enter(&zp->z_lock);
4418 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4419 (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4420 zp->z_atime_dirty = 0;
4421 mutex_exit(&zp->z_lock);
4422 dmu_tx_commit(tx);
4423 }
4424 }
4425
4426 zfs_zinactive(zp);
4427 rw_exit(&zfsvfs->z_teardown_inactive_lock);
4428 }
4429
4430 /*
4431 * Bounds-check the seek operation.
4432 *
4433 * IN: vp - vnode seeking within
4434 * ooff - old file offset
4435 * noffp - pointer to new file offset
4436 * ct - caller context
4437 *
4438 * RETURN: 0 on success, EINVAL if new offset invalid.
4439 */
4440 /* ARGSUSED */
4441 static int
4442 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4443 caller_context_t *ct)
4444 {
4445 if (vp->v_type == VDIR)
4446 return (0);
4447 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4448 }
4449
4450 /*
4451 * Pre-filter the generic locking function to trap attempts to place
4452 * a mandatory lock on a memory mapped file.
4453 */
4454 static int
4455 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4456 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4457 {
4458 znode_t *zp = VTOZ(vp);
4459 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4460
4461 ZFS_ENTER(zfsvfs);
4462 ZFS_VERIFY_ZP(zp);
4463
4464 /*
4465 * We are following the UFS semantics with respect to mapcnt
4466 * here: If we see that the file is mapped already, then we will
4467 * return an error, but we don't worry about races between this
4468 * function and zfs_map().
4469 */
4470 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4471 ZFS_EXIT(zfsvfs);
4472 return (SET_ERROR(EAGAIN));
4473 }
4474 ZFS_EXIT(zfsvfs);
4475 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4476 }
4477
4478 /*
4479 * If we can't find a page in the cache, we will create a new page
4480 * and fill it with file data. For efficiency, we may try to fill
4481 * multiple pages at once (klustering) to fill up the supplied page
4482 * list. Note that the pages to be filled are held with an exclusive
4483 * lock to prevent access by other threads while they are being filled.
4484 */
4485 static int
4486 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4487 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4488 {
4489 znode_t *zp = VTOZ(vp);
4490 page_t *pp, *cur_pp;
4491 objset_t *os = zp->z_zfsvfs->z_os;
4492 u_offset_t io_off, total;
4493 size_t io_len;
4494 int err;
4495
4496 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4497 /*
4498 * We only have a single page, don't bother klustering
4499 */
4500 io_off = off;
4501 io_len = PAGESIZE;
4502 pp = page_create_va(vp, io_off, io_len,
4503 PG_EXCL | PG_WAIT, seg, addr);
4504 } else {
4505 /*
4506 * Try to find enough pages to fill the page list
4507 */
4508 pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4509 &io_len, off, plsz, 0);
4510 }
4511 if (pp == NULL) {
4512 /*
4513 * The page already exists, nothing to do here.
4514 */
4515 *pl = NULL;
4516 return (0);
4517 }
4518
4519 /*
4520 * Fill the pages in the kluster.
4521 */
4522 cur_pp = pp;
4523 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4524 caddr_t va;
4525
4526 ASSERT3U(io_off, ==, cur_pp->p_offset);
4527 va = zfs_map_page(cur_pp, S_WRITE);
4528 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4529 DMU_READ_PREFETCH);
4530 zfs_unmap_page(cur_pp, va);
4531 if (err) {
4532 /* On error, toss the entire kluster */
4533 pvn_read_done(pp, B_ERROR);
4534 /* convert checksum errors into IO errors */
4535 if (err == ECKSUM)
4536 err = SET_ERROR(EIO);
4537 return (err);
4538 }
4539 cur_pp = cur_pp->p_next;
4540 }
4541
4542 /*
4543 * Fill in the page list array from the kluster starting
4544 * from the desired offset `off'.
4545 * NOTE: the page list will always be null terminated.
4546 */
4547 pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4548 ASSERT(pl == NULL || (*pl)->p_offset == off);
4549
4550 return (0);
4551 }
4552
4553 /*
4554 * Return pointers to the pages for the file region [off, off + len]
4555 * in the pl array. If plsz is greater than len, this function may
4556 * also return page pointers from after the specified region
4557 * (i.e. the region [off, off + plsz]). These additional pages are
4558 * only returned if they are already in the cache, or were created as
4559 * part of a klustered read.
4560 *
4561 * IN: vp - vnode of file to get data from.
4562 * off - position in file to get data from.
4563 * len - amount of data to retrieve.
4564 * plsz - length of provided page list.
4565 * seg - segment to obtain pages for.
4566 * addr - virtual address of fault.
4567 * rw - mode of created pages.
4568 * cr - credentials of caller.
4569 * ct - caller context.
4570 *
4571 * OUT: protp - protection mode of created pages.
4572 * pl - list of pages created.
4573 *
4574 * RETURN: 0 on success, error code on failure.
4575 *
4576 * Timestamps:
4577 * vp - atime updated
4578 */
4579 /* ARGSUSED */
4580 static int
4581 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4582 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4583 enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4584 {
4585 znode_t *zp = VTOZ(vp);
4586 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4587 page_t **pl0 = pl;
4588 int err = 0;
4589
4590 /* we do our own caching, faultahead is unnecessary */
4591 if (pl == NULL)
4592 return (0);
4593 else if (len > plsz)
4594 len = plsz;
4595 else
4596 len = P2ROUNDUP(len, PAGESIZE);
4597 ASSERT(plsz >= len);
4598
4599 ZFS_ENTER(zfsvfs);
4600 ZFS_VERIFY_ZP(zp);
4601
4602 if (protp)
4603 *protp = PROT_ALL;
4604
4605 /*
4606 * Loop through the requested range [off, off + len) looking
4607 * for pages. If we don't find a page, we will need to create
4608 * a new page and fill it with data from the file.
4609 */
4610 while (len > 0) {
4611 if (*pl = page_lookup(vp, off, SE_SHARED))
4612 *(pl+1) = NULL;
4613 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4614 goto out;
4615 while (*pl) {
4616 ASSERT3U((*pl)->p_offset, ==, off);
4617 off += PAGESIZE;
4618 addr += PAGESIZE;
4619 if (len > 0) {
4620 ASSERT3U(len, >=, PAGESIZE);
4621 len -= PAGESIZE;
4622 }
4623 ASSERT3U(plsz, >=, PAGESIZE);
4624 plsz -= PAGESIZE;
4625 pl++;
4626 }
4627 }
4628
4629 /*
4630 * Fill out the page array with any pages already in the cache.
4631 */
4632 while (plsz > 0 &&
4633 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4634 off += PAGESIZE;
4635 plsz -= PAGESIZE;
4636 }
4637 out:
4638 if (err) {
4639 /*
4640 * Release any pages we have previously locked.
4641 */
4642 while (pl > pl0)
4643 page_unlock(*--pl);
4644 } else {
4645 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4646 }
4647
4648 *pl = NULL;
4649
4650 ZFS_EXIT(zfsvfs);
4651 return (err);
4652 }
4653
4654 /*
4655 * Request a memory map for a section of a file. This code interacts
4656 * with common code and the VM system as follows:
4657 *
4658 * - common code calls mmap(), which ends up in smmap_common()
4659 * - this calls VOP_MAP(), which takes you into (say) zfs
4660 * - zfs_map() calls as_map(), passing segvn_create() as the callback
4661 * - segvn_create() creates the new segment and calls VOP_ADDMAP()
4662 * - zfs_addmap() updates z_mapcnt
4663 */
4664 /*ARGSUSED*/
4665 static int
4666 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4667 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4668 caller_context_t *ct)
4669 {
4670 znode_t *zp = VTOZ(vp);
4671 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4672 segvn_crargs_t vn_a;
4673 int error;
4674
4675 ZFS_ENTER(zfsvfs);
4676 ZFS_VERIFY_ZP(zp);
4677
4678 if ((prot & PROT_WRITE) && (zp->z_pflags &
4679 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4680 ZFS_EXIT(zfsvfs);
4681 return (SET_ERROR(EPERM));
4682 }
4683
4684 if ((prot & (PROT_READ | PROT_EXEC)) &&
4685 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4686 ZFS_EXIT(zfsvfs);
4687 return (SET_ERROR(EACCES));
4688 }
4689
4690 if (vp->v_flag & VNOMAP) {
4691 ZFS_EXIT(zfsvfs);
4692 return (SET_ERROR(ENOSYS));
4693 }
4694
4695 if (off < 0 || len > MAXOFFSET_T - off) {
4696 ZFS_EXIT(zfsvfs);
4697 return (SET_ERROR(ENXIO));
4698 }
4699
4700 if (vp->v_type != VREG) {
4701 ZFS_EXIT(zfsvfs);
4702 return (SET_ERROR(ENODEV));
4703 }
4704
4705 /*
4706 * If file is locked, disallow mapping.
4707 */
4708 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4709 ZFS_EXIT(zfsvfs);
4710 return (SET_ERROR(EAGAIN));
4711 }
4712
4713 as_rangelock(as);
4714 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4715 if (error != 0) {
4716 as_rangeunlock(as);
4717 ZFS_EXIT(zfsvfs);
4718 return (error);
4719 }
4720
4721 vn_a.vp = vp;
4722 vn_a.offset = (u_offset_t)off;
4723 vn_a.type = flags & MAP_TYPE;
4724 vn_a.prot = prot;
4725 vn_a.maxprot = maxprot;
4726 vn_a.cred = cr;
4727 vn_a.amp = NULL;
4728 vn_a.flags = flags & ~MAP_TYPE;
4729 vn_a.szc = 0;
4730 vn_a.lgrp_mem_policy_flags = 0;
4731
4732 error = as_map(as, *addrp, len, segvn_create, &vn_a);
4733
4734 as_rangeunlock(as);
4735 ZFS_EXIT(zfsvfs);
4736 return (error);
4737 }
4738
4739 /* ARGSUSED */
4740 static int
4741 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4742 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4743 caller_context_t *ct)
4744 {
4745 uint64_t pages = btopr(len);
4746
4747 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4748 return (0);
4749 }
4750
4751 /*
4752 * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4753 * more accurate mtime for the associated file. Since we don't have a way of
4754 * detecting when the data was actually modified, we have to resort to
4755 * heuristics. If an explicit msync() is done, then we mark the mtime when the
4756 * last page is pushed. The problem occurs when the msync() call is omitted,
4757 * which by far the most common case:
4758 *
4759 * open()
4760 * mmap()
4761 * <modify memory>
4762 * munmap()
4763 * close()
4764 * <time lapse>
4765 * putpage() via fsflush
4766 *
4767 * If we wait until fsflush to come along, we can have a modification time that
4768 * is some arbitrary point in the future. In order to prevent this in the
4769 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4770 * torn down.
4771 */
4772 /* ARGSUSED */
4773 static int
4774 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4775 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4776 caller_context_t *ct)
4777 {
4778 uint64_t pages = btopr(len);
4779
4780 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4781 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4782
4783 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4784 vn_has_cached_data(vp))
4785 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4786
4787 return (0);
4788 }
4789
4790 /*
4791 * Free or allocate space in a file. Currently, this function only
4792 * supports the `F_FREESP' command. However, this command is somewhat
4793 * misnamed, as its functionality includes the ability to allocate as
4794 * well as free space.
4795 *
4796 * IN: vp - vnode of file to free data in.
4797 * cmd - action to take (only F_FREESP supported).
4798 * bfp - section of file to free/alloc.
4799 * flag - current file open mode flags.
4800 * offset - current file offset.
4801 * cr - credentials of caller [UNUSED].
4802 * ct - caller context.
4803 *
4804 * RETURN: 0 on success, error code on failure.
4805 *
4806 * Timestamps:
4807 * vp - ctime|mtime updated
4808 */
4809 /* ARGSUSED */
4810 static int
4811 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4812 offset_t offset, cred_t *cr, caller_context_t *ct)
4813 {
4814 znode_t *zp = VTOZ(vp);
4815 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4816 uint64_t off, len;
4817 int error;
4818
4819 ZFS_ENTER(zfsvfs);
4820 ZFS_VERIFY_ZP(zp);
4821
4822 if (cmd != F_FREESP) {
4823 ZFS_EXIT(zfsvfs);
4824 return (SET_ERROR(EINVAL));
4825 }
4826
4827 /*
4828 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our
4829 * callers might not be able to detect properly that we are read-only,
4830 * so check it explicitly here.
4831 */
4832 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
4833 ZFS_EXIT(zfsvfs);
4834 return (SET_ERROR(EROFS));
4835 }
4836
4837 if (error = convoff(vp, bfp, 0, offset)) {
4838 ZFS_EXIT(zfsvfs);
4839 return (error);
4840 }
4841
4842 if (bfp->l_len < 0) {
4843 ZFS_EXIT(zfsvfs);
4844 return (SET_ERROR(EINVAL));
4845 }
4846
4847 off = bfp->l_start;
4848 len = bfp->l_len; /* 0 means from off to end of file */
4849
4850 error = zfs_freesp(zp, off, len, flag, TRUE);
4851
4852 if (error == 0 && off == 0 && len == 0)
4853 vnevent_truncate(ZTOV(zp), ct);
4854
4855 ZFS_EXIT(zfsvfs);
4856 return (error);
4857 }
4858
4859 /*ARGSUSED*/
4860 static int
4861 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4862 {
4863 znode_t *zp = VTOZ(vp);
4864 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4865 uint32_t gen;
4866 uint64_t gen64;
4867 uint64_t object = zp->z_id;
4868 zfid_short_t *zfid;
4869 int size, i, error;
4870
4871 ZFS_ENTER(zfsvfs);
4872 ZFS_VERIFY_ZP(zp);
4873
4874 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4875 &gen64, sizeof (uint64_t))) != 0) {
4876 ZFS_EXIT(zfsvfs);
4877 return (error);
4878 }
4879
4880 gen = (uint32_t)gen64;
4881
4882 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4883 if (fidp->fid_len < size) {
4884 fidp->fid_len = size;
4885 ZFS_EXIT(zfsvfs);
4886 return (SET_ERROR(ENOSPC));
4887 }
4888
4889 zfid = (zfid_short_t *)fidp;
4890
4891 zfid->zf_len = size;
4892
4893 for (i = 0; i < sizeof (zfid->zf_object); i++)
4894 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4895
4896 /* Must have a non-zero generation number to distinguish from .zfs */
4897 if (gen == 0)
4898 gen = 1;
4899 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4900 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4901
4902 if (size == LONG_FID_LEN) {
4903 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
4904 zfid_long_t *zlfid;
4905
4906 zlfid = (zfid_long_t *)fidp;
4907
4908 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4909 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4910
4911 /* XXX - this should be the generation number for the objset */
4912 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4913 zlfid->zf_setgen[i] = 0;
4914 }
4915
4916 ZFS_EXIT(zfsvfs);
4917 return (0);
4918 }
4919
4920 static int
4921 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4922 caller_context_t *ct)
4923 {
4924 znode_t *zp, *xzp;
4925 zfsvfs_t *zfsvfs;
4926 zfs_dirlock_t *dl;
4927 int error;
4928
4929 switch (cmd) {
4930 case _PC_LINK_MAX:
4931 *valp = ULONG_MAX;
4932 return (0);
4933
4934 case _PC_FILESIZEBITS:
4935 *valp = 64;
4936 return (0);
4937
4938 case _PC_XATTR_EXISTS:
4939 zp = VTOZ(vp);
4940 zfsvfs = zp->z_zfsvfs;
4941 ZFS_ENTER(zfsvfs);
4942 ZFS_VERIFY_ZP(zp);
4943 *valp = 0;
4944 error = zfs_dirent_lock(&dl, zp, "", &xzp,
4945 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4946 if (error == 0) {
4947 zfs_dirent_unlock(dl);
4948 if (!zfs_dirempty(xzp))
4949 *valp = 1;
4950 VN_RELE(ZTOV(xzp));
4951 } else if (error == ENOENT) {
4952 /*
4953 * If there aren't extended attributes, it's the
4954 * same as having zero of them.
4955 */
4956 error = 0;
4957 }
4958 ZFS_EXIT(zfsvfs);
4959 return (error);
4960
4961 case _PC_SATTR_ENABLED:
4962 case _PC_SATTR_EXISTS:
4963 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4964 (vp->v_type == VREG || vp->v_type == VDIR);
4965 return (0);
4966
4967 case _PC_ACCESS_FILTERING:
4968 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4969 vp->v_type == VDIR;
4970 return (0);
4971
4972 case _PC_ACL_ENABLED:
4973 *valp = _ACL_ACE_ENABLED;
4974 return (0);
4975
4976 case _PC_MIN_HOLE_SIZE:
4977 *valp = (ulong_t)SPA_MINBLOCKSIZE;
4978 return (0);
4979
4980 case _PC_TIMESTAMP_RESOLUTION:
4981 /* nanosecond timestamp resolution */
4982 *valp = 1L;
4983 return (0);
4984
4985 default:
4986 return (fs_pathconf(vp, cmd, valp, cr, ct));
4987 }
4988 }
4989
4990 /*ARGSUSED*/
4991 static int
4992 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4993 caller_context_t *ct)
4994 {
4995 znode_t *zp = VTOZ(vp);
4996 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4997 int error;
4998 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4999
5000 ZFS_ENTER(zfsvfs);
5001 ZFS_VERIFY_ZP(zp);
5002 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
5003 ZFS_EXIT(zfsvfs);
5004
5005 return (error);
5006 }
5007
5008 /*ARGSUSED*/
5009 static int
5010 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
5011 caller_context_t *ct)
5012 {
5013 znode_t *zp = VTOZ(vp);
5014 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5015 int error;
5016 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
5017 zilog_t *zilog = zfsvfs->z_log;
5018
5019 ZFS_ENTER(zfsvfs);
5020 ZFS_VERIFY_ZP(zp);
5021
5022 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
5023
5024 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
5025 zil_commit(zilog, 0);
5026
5027 ZFS_EXIT(zfsvfs);
5028 return (error);
5029 }
5030
5031 /*
5032 * The smallest read we may consider to loan out an arcbuf.
5033 * This must be a power of 2.
5034 */
5035 int zcr_blksz_min = (1 << 10); /* 1K */
5036 /*
5037 * If set to less than the file block size, allow loaning out of an
5038 * arcbuf for a partial block read. This must be a power of 2.
5039 */
5040 int zcr_blksz_max = (1 << 17); /* 128K */
5041
5042 /*ARGSUSED*/
5043 static int
5044 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
5045 caller_context_t *ct)
5046 {
5047 znode_t *zp = VTOZ(vp);
5048 zfsvfs_t *zfsvfs = zp->z_zfsvfs;
5049 int max_blksz = zfsvfs->z_max_blksz;
5050 uio_t *uio = &xuio->xu_uio;
5051 ssize_t size = uio->uio_resid;
5052 offset_t offset = uio->uio_loffset;
5053 int blksz;
5054 int fullblk, i;
5055 arc_buf_t *abuf;
5056 ssize_t maxsize;
5057 int preamble, postamble;
5058
5059 if (xuio->xu_type != UIOTYPE_ZEROCOPY)
5060 return (SET_ERROR(EINVAL));
5061
5062 ZFS_ENTER(zfsvfs);
5063 ZFS_VERIFY_ZP(zp);
5064 switch (ioflag) {
5065 case UIO_WRITE:
5066 /*
5067 * Loan out an arc_buf for write if write size is bigger than
5068 * max_blksz, and the file's block size is also max_blksz.
5069 */
5070 blksz = max_blksz;
5071 if (size < blksz || zp->z_blksz != blksz) {
5072 ZFS_EXIT(zfsvfs);
5073 return (SET_ERROR(EINVAL));
5074 }
5075 /*
5076 * Caller requests buffers for write before knowing where the
5077 * write offset might be (e.g. NFS TCP write).
5078 */
5079 if (offset == -1) {
5080 preamble = 0;
5081 } else {
5082 preamble = P2PHASE(offset, blksz);
5083 if (preamble) {
5084 preamble = blksz - preamble;
5085 size -= preamble;
5086 }
5087 }
5088
5089 postamble = P2PHASE(size, blksz);
5090 size -= postamble;
5091
5092 fullblk = size / blksz;
5093 (void) dmu_xuio_init(xuio,
5094 (preamble != 0) + fullblk + (postamble != 0));
5095 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
5096 int, postamble, int,
5097 (preamble != 0) + fullblk + (postamble != 0));
5098
5099 /*
5100 * Have to fix iov base/len for partial buffers. They
5101 * currently represent full arc_buf's.
5102 */
5103 if (preamble) {
5104 /* data begins in the middle of the arc_buf */
5105 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5106 blksz);
5107 ASSERT(abuf);
5108 (void) dmu_xuio_add(xuio, abuf,
5109 blksz - preamble, preamble);
5110 }
5111
5112 for (i = 0; i < fullblk; i++) {
5113 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5114 blksz);
5115 ASSERT(abuf);
5116 (void) dmu_xuio_add(xuio, abuf, 0, blksz);
5117 }
5118
5119 if (postamble) {
5120 /* data ends in the middle of the arc_buf */
5121 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
5122 blksz);
5123 ASSERT(abuf);
5124 (void) dmu_xuio_add(xuio, abuf, 0, postamble);
5125 }
5126 break;
5127 case UIO_READ:
5128 /*
5129 * Loan out an arc_buf for read if the read size is larger than
5130 * the current file block size. Block alignment is not
5131 * considered. Partial arc_buf will be loaned out for read.
5132 */
5133 blksz = zp->z_blksz;
5134 if (blksz < zcr_blksz_min)
5135 blksz = zcr_blksz_min;
5136 if (blksz > zcr_blksz_max)
5137 blksz = zcr_blksz_max;
5138 /* avoid potential complexity of dealing with it */
5139 if (blksz > max_blksz) {
5140 ZFS_EXIT(zfsvfs);
5141 return (SET_ERROR(EINVAL));
5142 }
5143
5144 maxsize = zp->z_size - uio->uio_loffset;
5145 if (size > maxsize)
5146 size = maxsize;
5147
5148 if (size < blksz || vn_has_cached_data(vp)) {
5149 ZFS_EXIT(zfsvfs);
5150 return (SET_ERROR(EINVAL));
5151 }
5152 break;
5153 default:
5154 ZFS_EXIT(zfsvfs);
5155 return (SET_ERROR(EINVAL));
5156 }
5157
5158 uio->uio_extflg = UIO_XUIO;
5159 XUIO_XUZC_RW(xuio) = ioflag;
5160 ZFS_EXIT(zfsvfs);
5161 return (0);
5162 }
5163
5164 /*ARGSUSED*/
5165 static int
5166 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5167 {
5168 int i;
5169 arc_buf_t *abuf;
5170 int ioflag = XUIO_XUZC_RW(xuio);
5171
5172 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5173
5174 i = dmu_xuio_cnt(xuio);
5175 while (i-- > 0) {
5176 abuf = dmu_xuio_arcbuf(xuio, i);
5177 /*
5178 * if abuf == NULL, it must be a write buffer
5179 * that has been returned in zfs_write().
5180 */
5181 if (abuf)
5182 dmu_return_arcbuf(abuf);
5183 ASSERT(abuf || ioflag == UIO_WRITE);
5184 }
5185
5186 dmu_xuio_fini(xuio);
5187 return (0);
5188 }
5189
5190 /*
5191 * Predeclare these here so that the compiler assumes that
5192 * this is an "old style" function declaration that does
5193 * not include arguments => we won't get type mismatch errors
5194 * in the initializations that follow.
5195 */
5196 static int zfs_inval();
5197 static int zfs_isdir();
5198
5199 static int
5200 zfs_inval()
5201 {
5202 return (SET_ERROR(EINVAL));
5203 }
5204
5205 static int
5206 zfs_isdir()
5207 {
5208 return (SET_ERROR(EISDIR));
5209 }
5210 /*
5211 * Directory vnode operations template
5212 */
5213 vnodeops_t *zfs_dvnodeops;
5214 const fs_operation_def_t zfs_dvnodeops_template[] = {
5215 VOPNAME_OPEN, { .vop_open = zfs_open },
5216 VOPNAME_CLOSE, { .vop_close = zfs_close },
5217 VOPNAME_READ, { .error = zfs_isdir },
5218 VOPNAME_WRITE, { .error = zfs_isdir },
5219 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5220 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5221 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5222 VOPNAME_ACCESS, { .vop_access = zfs_access },
5223 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5224 VOPNAME_CREATE, { .vop_create = zfs_create },
5225 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5226 VOPNAME_LINK, { .vop_link = zfs_link },
5227 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5228 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir },
5229 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5230 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5231 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink },
5232 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5233 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5234 VOPNAME_FID, { .vop_fid = zfs_fid },
5235 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5236 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5237 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5238 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5239 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5240 NULL, NULL
5241 };
5242
5243 /*
5244 * Regular file vnode operations template
5245 */
5246 vnodeops_t *zfs_fvnodeops;
5247 const fs_operation_def_t zfs_fvnodeops_template[] = {
5248 VOPNAME_OPEN, { .vop_open = zfs_open },
5249 VOPNAME_CLOSE, { .vop_close = zfs_close },
5250 VOPNAME_READ, { .vop_read = zfs_read },
5251 VOPNAME_WRITE, { .vop_write = zfs_write },
5252 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5253 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5254 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5255 VOPNAME_ACCESS, { .vop_access = zfs_access },
5256 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5257 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5258 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5259 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5260 VOPNAME_FID, { .vop_fid = zfs_fid },
5261 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5262 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock },
5263 VOPNAME_SPACE, { .vop_space = zfs_space },
5264 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage },
5265 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage },
5266 VOPNAME_MAP, { .vop_map = zfs_map },
5267 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap },
5268 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap },
5269 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5270 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5271 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5272 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5273 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf },
5274 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf },
5275 NULL, NULL
5276 };
5277
5278 /*
5279 * Symbolic link vnode operations template
5280 */
5281 vnodeops_t *zfs_symvnodeops;
5282 const fs_operation_def_t zfs_symvnodeops_template[] = {
5283 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5284 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5285 VOPNAME_ACCESS, { .vop_access = zfs_access },
5286 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5287 VOPNAME_READLINK, { .vop_readlink = zfs_readlink },
5288 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5289 VOPNAME_FID, { .vop_fid = zfs_fid },
5290 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5291 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5292 NULL, NULL
5293 };
5294
5295 /*
5296 * special share hidden files vnode operations template
5297 */
5298 vnodeops_t *zfs_sharevnodeops;
5299 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5300 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5301 VOPNAME_ACCESS, { .vop_access = zfs_access },
5302 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5303 VOPNAME_FID, { .vop_fid = zfs_fid },
5304 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5305 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5306 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5307 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5308 NULL, NULL
5309 };
5310
5311 /*
5312 * Extended attribute directory vnode operations template
5313 *
5314 * This template is identical to the directory vnodes
5315 * operation template except for restricted operations:
5316 * VOP_MKDIR()
5317 * VOP_SYMLINK()
5318 *
5319 * Note that there are other restrictions embedded in:
5320 * zfs_create() - restrict type to VREG
5321 * zfs_link() - no links into/out of attribute space
5322 * zfs_rename() - no moves into/out of attribute space
5323 */
5324 vnodeops_t *zfs_xdvnodeops;
5325 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5326 VOPNAME_OPEN, { .vop_open = zfs_open },
5327 VOPNAME_CLOSE, { .vop_close = zfs_close },
5328 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl },
5329 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr },
5330 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr },
5331 VOPNAME_ACCESS, { .vop_access = zfs_access },
5332 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup },
5333 VOPNAME_CREATE, { .vop_create = zfs_create },
5334 VOPNAME_REMOVE, { .vop_remove = zfs_remove },
5335 VOPNAME_LINK, { .vop_link = zfs_link },
5336 VOPNAME_RENAME, { .vop_rename = zfs_rename },
5337 VOPNAME_MKDIR, { .error = zfs_inval },
5338 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir },
5339 VOPNAME_READDIR, { .vop_readdir = zfs_readdir },
5340 VOPNAME_SYMLINK, { .error = zfs_inval },
5341 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync },
5342 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5343 VOPNAME_FID, { .vop_fid = zfs_fid },
5344 VOPNAME_SEEK, { .vop_seek = zfs_seek },
5345 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5346 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr },
5347 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr },
5348 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support },
5349 NULL, NULL
5350 };
5351
5352 /*
5353 * Error vnode operations template
5354 */
5355 vnodeops_t *zfs_evnodeops;
5356 const fs_operation_def_t zfs_evnodeops_template[] = {
5357 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive },
5358 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf },
5359 NULL, NULL
5360 };