1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2015 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 /* Portions Copyright 2007 Jeremy Teo */ 28 /* Portions Copyright 2010 Robert Milkowski */ 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <vm/kpm.h> 51 #include <vm/seg_kpm.h> 52 #include <sys/mman.h> 53 #include <sys/pathname.h> 54 #include <sys/cmn_err.h> 55 #include <sys/errno.h> 56 #include <sys/unistd.h> 57 #include <sys/zfs_dir.h> 58 #include <sys/zfs_acl.h> 59 #include <sys/zfs_ioctl.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/dmu.h> 62 #include <sys/dmu_objset.h> 63 #include <sys/spa.h> 64 #include <sys/txg.h> 65 #include <sys/dbuf.h> 66 #include <sys/zap.h> 67 #include <sys/sa.h> 68 #include <sys/dirent.h> 69 #include <sys/policy.h> 70 #include <sys/sunddi.h> 71 #include <sys/filio.h> 72 #include <sys/sid.h> 73 #include "fs/fs_subr.h" 74 #include <sys/zfs_ctldir.h> 75 #include <sys/zfs_fuid.h> 76 #include <sys/zfs_sa.h> 77 #include <sys/dnlc.h> 78 #include <sys/zfs_rlock.h> 79 #include <sys/extdirent.h> 80 #include <sys/kidmap.h> 81 #include <sys/cred.h> 82 #include <sys/attr.h> 83 84 /* 85 * Programming rules. 86 * 87 * Each vnode op performs some logical unit of work. To do this, the ZPL must 88 * properly lock its in-core state, create a DMU transaction, do the work, 89 * record this work in the intent log (ZIL), commit the DMU transaction, 90 * and wait for the intent log to commit if it is a synchronous operation. 91 * Moreover, the vnode ops must work in both normal and log replay context. 92 * The ordering of events is important to avoid deadlocks and references 93 * to freed memory. The example below illustrates the following Big Rules: 94 * 95 * (1) A check must be made in each zfs thread for a mounted file system. 96 * This is done avoiding races using ZFS_ENTER(zfsvfs). 97 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 98 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 99 * can return EIO from the calling function. 100 * 101 * (2) VN_RELE() should always be the last thing except for zil_commit() 102 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 103 * First, if it's the last reference, the vnode/znode 104 * can be freed, so the zp may point to freed memory. Second, the last 105 * reference will call zfs_zinactive(), which may induce a lot of work -- 106 * pushing cached pages (which acquires range locks) and syncing out 107 * cached atime changes. Third, zfs_zinactive() may require a new tx, 108 * which could deadlock the system if you were already holding one. 109 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 110 * 111 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 112 * as they can span dmu_tx_assign() calls. 113 * 114 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to 115 * dmu_tx_assign(). This is critical because we don't want to block 116 * while holding locks. 117 * 118 * If no ZPL locks are held (aside from ZFS_ENTER()), use TXG_WAIT. This 119 * reduces lock contention and CPU usage when we must wait (note that if 120 * throughput is constrained by the storage, nearly every transaction 121 * must wait). 122 * 123 * Note, in particular, that if a lock is sometimes acquired before 124 * the tx assigns, and sometimes after (e.g. z_lock), then failing 125 * to use a non-blocking assign can deadlock the system. The scenario: 126 * 127 * Thread A has grabbed a lock before calling dmu_tx_assign(). 128 * Thread B is in an already-assigned tx, and blocks for this lock. 129 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 130 * forever, because the previous txg can't quiesce until B's tx commits. 131 * 132 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 133 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent 134 * calls to dmu_tx_assign(), pass TXG_WAITED rather than TXG_NOWAIT, 135 * to indicate that this operation has already called dmu_tx_wait(). 136 * This will ensure that we don't retry forever, waiting a short bit 137 * each time. 138 * 139 * (5) If the operation succeeded, generate the intent log entry for it 140 * before dropping locks. This ensures that the ordering of events 141 * in the intent log matches the order in which they actually occurred. 142 * During ZIL replay the zfs_log_* functions will update the sequence 143 * number to indicate the zil transaction has replayed. 144 * 145 * (6) At the end of each vnode op, the DMU tx must always commit, 146 * regardless of whether there were any errors. 147 * 148 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 149 * to ensure that synchronous semantics are provided when necessary. 150 * 151 * In general, this is how things should be ordered in each vnode op: 152 * 153 * ZFS_ENTER(zfsvfs); // exit if unmounted 154 * top: 155 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 156 * rw_enter(...); // grab any other locks you need 157 * tx = dmu_tx_create(...); // get DMU tx 158 * dmu_tx_hold_*(); // hold each object you might modify 159 * error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 160 * if (error) { 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * if (error == ERESTART) { 165 * waited = B_TRUE; 166 * dmu_tx_wait(tx); 167 * dmu_tx_abort(tx); 168 * goto top; 169 * } 170 * dmu_tx_abort(tx); // abort DMU tx 171 * ZFS_EXIT(zfsvfs); // finished in zfs 172 * return (error); // really out of space 173 * } 174 * error = do_real_work(); // do whatever this VOP does 175 * if (error == 0) 176 * zfs_log_*(...); // on success, make ZIL entry 177 * dmu_tx_commit(tx); // commit DMU tx -- error or not 178 * rw_exit(...); // drop locks 179 * zfs_dirent_unlock(dl); // unlock directory entry 180 * VN_RELE(...); // release held vnodes 181 * zil_commit(zilog, foid); // synchronous when necessary 182 * ZFS_EXIT(zfsvfs); // finished in zfs 183 * return (error); // done, report error 184 */ 185 186 /* ARGSUSED */ 187 static int 188 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 189 { 190 znode_t *zp = VTOZ(*vpp); 191 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 192 193 ZFS_ENTER(zfsvfs); 194 ZFS_VERIFY_ZP(zp); 195 196 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 197 ((flag & FAPPEND) == 0)) { 198 ZFS_EXIT(zfsvfs); 199 return (SET_ERROR(EPERM)); 200 } 201 202 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 203 ZTOV(zp)->v_type == VREG && 204 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 205 if (fs_vscan(*vpp, cr, 0) != 0) { 206 ZFS_EXIT(zfsvfs); 207 return (SET_ERROR(EACCES)); 208 } 209 } 210 211 /* Keep a count of the synchronous opens in the znode */ 212 if (flag & (FSYNC | FDSYNC)) 213 atomic_inc_32(&zp->z_sync_cnt); 214 215 ZFS_EXIT(zfsvfs); 216 return (0); 217 } 218 219 /* ARGSUSED */ 220 static int 221 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 222 caller_context_t *ct) 223 { 224 znode_t *zp = VTOZ(vp); 225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 226 227 /* 228 * Clean up any locks held by this process on the vp. 229 */ 230 cleanlocks(vp, ddi_get_pid(), 0); 231 cleanshares(vp, ddi_get_pid()); 232 233 ZFS_ENTER(zfsvfs); 234 ZFS_VERIFY_ZP(zp); 235 236 /* Decrement the synchronous opens in the znode */ 237 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 238 atomic_dec_32(&zp->z_sync_cnt); 239 240 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 241 ZTOV(zp)->v_type == VREG && 242 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 243 VERIFY(fs_vscan(vp, cr, 1) == 0); 244 245 ZFS_EXIT(zfsvfs); 246 return (0); 247 } 248 249 /* 250 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 251 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 252 */ 253 static int 254 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 255 { 256 znode_t *zp = VTOZ(vp); 257 uint64_t noff = (uint64_t)*off; /* new offset */ 258 uint64_t file_sz; 259 int error; 260 boolean_t hole; 261 262 file_sz = zp->z_size; 263 if (noff >= file_sz) { 264 return (SET_ERROR(ENXIO)); 265 } 266 267 if (cmd == _FIO_SEEK_HOLE) 268 hole = B_TRUE; 269 else 270 hole = B_FALSE; 271 272 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 273 274 if (error == ESRCH) 275 return (SET_ERROR(ENXIO)); 276 277 /* 278 * We could find a hole that begins after the logical end-of-file, 279 * because dmu_offset_next() only works on whole blocks. If the 280 * EOF falls mid-block, then indicate that the "virtual hole" 281 * at the end of the file begins at the logical EOF, rather than 282 * at the end of the last block. 283 */ 284 if (noff > file_sz) { 285 ASSERT(hole); 286 noff = file_sz; 287 } 288 289 if (noff < *off) 290 return (error); 291 *off = noff; 292 return (error); 293 } 294 295 /* ARGSUSED */ 296 static int 297 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 298 int *rvalp, caller_context_t *ct) 299 { 300 offset_t off; 301 offset_t ndata; 302 dmu_object_info_t doi; 303 int error; 304 zfsvfs_t *zfsvfs; 305 znode_t *zp; 306 307 switch (com) { 308 case _FIOFFS: 309 { 310 return (zfs_sync(vp->v_vfsp, 0, cred)); 311 312 /* 313 * The following two ioctls are used by bfu. Faking out, 314 * necessary to avoid bfu errors. 315 */ 316 } 317 case _FIOGDIO: 318 case _FIOSDIO: 319 { 320 return (0); 321 } 322 323 case _FIO_SEEK_DATA: 324 case _FIO_SEEK_HOLE: 325 { 326 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 327 return (SET_ERROR(EFAULT)); 328 329 zp = VTOZ(vp); 330 zfsvfs = zp->z_zfsvfs; 331 ZFS_ENTER(zfsvfs); 332 ZFS_VERIFY_ZP(zp); 333 334 /* offset parameter is in/out */ 335 error = zfs_holey(vp, com, &off); 336 ZFS_EXIT(zfsvfs); 337 if (error) 338 return (error); 339 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 340 return (SET_ERROR(EFAULT)); 341 return (0); 342 } 343 case _FIO_COUNT_FILLED: 344 { 345 /* 346 * _FIO_COUNT_FILLED adds a new ioctl command which 347 * exposes the number of filled blocks in a 348 * ZFS object. 349 */ 350 zp = VTOZ(vp); 351 zfsvfs = zp->z_zfsvfs; 352 ZFS_ENTER(zfsvfs); 353 ZFS_VERIFY_ZP(zp); 354 355 /* 356 * Wait for all dirty blocks for this object 357 * to get synced out to disk, and the DMU info 358 * updated. 359 */ 360 error = dmu_object_wait_synced(zfsvfs->z_os, zp->z_id); 361 if (error) { 362 ZFS_EXIT(zfsvfs); 363 return (error); 364 } 365 366 /* 367 * Retrieve fill count from DMU object. 368 */ 369 error = dmu_object_info(zfsvfs->z_os, zp->z_id, &doi); 370 if (error) { 371 ZFS_EXIT(zfsvfs); 372 return (error); 373 } 374 375 ndata = doi.doi_fill_count; 376 377 ZFS_EXIT(zfsvfs); 378 if (ddi_copyout(&ndata, (void *)data, sizeof (ndata), flag)) 379 return (SET_ERROR(EFAULT)); 380 return (0); 381 } 382 } 383 return (SET_ERROR(ENOTTY)); 384 } 385 386 /* 387 * Utility functions to map and unmap a single physical page. These 388 * are used to manage the mappable copies of ZFS file data, and therefore 389 * do not update ref/mod bits. 390 */ 391 caddr_t 392 zfs_map_page(page_t *pp, enum seg_rw rw) 393 { 394 if (kpm_enable) 395 return (hat_kpm_mapin(pp, 0)); 396 ASSERT(rw == S_READ || rw == S_WRITE); 397 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 398 (caddr_t)-1)); 399 } 400 401 void 402 zfs_unmap_page(page_t *pp, caddr_t addr) 403 { 404 if (kpm_enable) { 405 hat_kpm_mapout(pp, 0, addr); 406 } else { 407 ppmapout(addr); 408 } 409 } 410 411 /* 412 * When a file is memory mapped, we must keep the IO data synchronized 413 * between the DMU cache and the memory mapped pages. What this means: 414 * 415 * On Write: If we find a memory mapped page, we write to *both* 416 * the page and the dmu buffer. 417 */ 418 static void 419 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 420 { 421 int64_t off; 422 423 off = start & PAGEOFFSET; 424 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 425 page_t *pp; 426 uint64_t nbytes = MIN(PAGESIZE - off, len); 427 428 if (pp = page_lookup(vp, start, SE_SHARED)) { 429 caddr_t va; 430 431 va = zfs_map_page(pp, S_WRITE); 432 (void) dmu_read(os, oid, start+off, nbytes, va+off, 433 DMU_READ_PREFETCH); 434 zfs_unmap_page(pp, va); 435 page_unlock(pp); 436 } 437 len -= nbytes; 438 off = 0; 439 } 440 } 441 442 /* 443 * When a file is memory mapped, we must keep the IO data synchronized 444 * between the DMU cache and the memory mapped pages. What this means: 445 * 446 * On Read: We "read" preferentially from memory mapped pages, 447 * else we default from the dmu buffer. 448 * 449 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 450 * the file is memory mapped. 451 */ 452 static int 453 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 454 { 455 znode_t *zp = VTOZ(vp); 456 int64_t start, off; 457 int len = nbytes; 458 int error = 0; 459 460 start = uio->uio_loffset; 461 off = start & PAGEOFFSET; 462 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 463 page_t *pp; 464 uint64_t bytes = MIN(PAGESIZE - off, len); 465 466 if (pp = page_lookup(vp, start, SE_SHARED)) { 467 caddr_t va; 468 469 va = zfs_map_page(pp, S_READ); 470 error = uiomove(va + off, bytes, UIO_READ, uio); 471 zfs_unmap_page(pp, va); 472 page_unlock(pp); 473 } else { 474 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 475 uio, bytes); 476 } 477 len -= bytes; 478 off = 0; 479 if (error) 480 break; 481 } 482 return (error); 483 } 484 485 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 486 487 /* 488 * Read bytes from specified file into supplied buffer. 489 * 490 * IN: vp - vnode of file to be read from. 491 * uio - structure supplying read location, range info, 492 * and return buffer. 493 * ioflag - SYNC flags; used to provide FRSYNC semantics. 494 * cr - credentials of caller. 495 * ct - caller context 496 * 497 * OUT: uio - updated offset and range, buffer filled. 498 * 499 * RETURN: 0 on success, error code on failure. 500 * 501 * Side Effects: 502 * vp - atime updated if byte count > 0 503 */ 504 /* ARGSUSED */ 505 static int 506 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 507 { 508 znode_t *zp = VTOZ(vp); 509 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 510 ssize_t n, nbytes; 511 int error = 0; 512 rl_t *rl; 513 xuio_t *xuio = NULL; 514 515 ZFS_ENTER(zfsvfs); 516 ZFS_VERIFY_ZP(zp); 517 518 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 519 ZFS_EXIT(zfsvfs); 520 return (SET_ERROR(EACCES)); 521 } 522 523 /* 524 * Validate file offset 525 */ 526 if (uio->uio_loffset < (offset_t)0) { 527 ZFS_EXIT(zfsvfs); 528 return (SET_ERROR(EINVAL)); 529 } 530 531 /* 532 * Fasttrack empty reads 533 */ 534 if (uio->uio_resid == 0) { 535 ZFS_EXIT(zfsvfs); 536 return (0); 537 } 538 539 /* 540 * Check for mandatory locks 541 */ 542 if (MANDMODE(zp->z_mode)) { 543 if (error = chklock(vp, FREAD, 544 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 545 ZFS_EXIT(zfsvfs); 546 return (error); 547 } 548 } 549 550 /* 551 * If we're in FRSYNC mode, sync out this znode before reading it. 552 */ 553 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 554 zil_commit(zfsvfs->z_log, zp->z_id); 555 556 /* 557 * Lock the range against changes. 558 */ 559 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 560 561 /* 562 * If we are reading past end-of-file we can skip 563 * to the end; but we might still need to set atime. 564 */ 565 if (uio->uio_loffset >= zp->z_size) { 566 error = 0; 567 goto out; 568 } 569 570 ASSERT(uio->uio_loffset < zp->z_size); 571 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 572 573 if ((uio->uio_extflg == UIO_XUIO) && 574 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 575 int nblk; 576 int blksz = zp->z_blksz; 577 uint64_t offset = uio->uio_loffset; 578 579 xuio = (xuio_t *)uio; 580 if ((ISP2(blksz))) { 581 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 582 blksz)) / blksz; 583 } else { 584 ASSERT(offset + n <= blksz); 585 nblk = 1; 586 } 587 (void) dmu_xuio_init(xuio, nblk); 588 589 if (vn_has_cached_data(vp)) { 590 /* 591 * For simplicity, we always allocate a full buffer 592 * even if we only expect to read a portion of a block. 593 */ 594 while (--nblk >= 0) { 595 (void) dmu_xuio_add(xuio, 596 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 597 blksz), 0, blksz); 598 } 599 } 600 } 601 602 while (n > 0) { 603 nbytes = MIN(n, zfs_read_chunk_size - 604 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 605 606 if (vn_has_cached_data(vp)) { 607 error = mappedread(vp, nbytes, uio); 608 } else { 609 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl), 610 uio, nbytes); 611 } 612 if (error) { 613 /* convert checksum errors into IO errors */ 614 if (error == ECKSUM) 615 error = SET_ERROR(EIO); 616 break; 617 } 618 619 n -= nbytes; 620 } 621 out: 622 zfs_range_unlock(rl); 623 624 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 625 ZFS_EXIT(zfsvfs); 626 return (error); 627 } 628 629 /* 630 * Write the bytes to a file. 631 * 632 * IN: vp - vnode of file to be written to. 633 * uio - structure supplying write location, range info, 634 * and data buffer. 635 * ioflag - FAPPEND, FSYNC, and/or FDSYNC. FAPPEND is 636 * set if in append mode. 637 * cr - credentials of caller. 638 * ct - caller context (NFS/CIFS fem monitor only) 639 * 640 * OUT: uio - updated offset and range. 641 * 642 * RETURN: 0 on success, error code on failure. 643 * 644 * Timestamps: 645 * vp - ctime|mtime updated if byte count > 0 646 */ 647 648 /* ARGSUSED */ 649 static int 650 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 651 { 652 znode_t *zp = VTOZ(vp); 653 rlim64_t limit = uio->uio_llimit; 654 ssize_t start_resid = uio->uio_resid; 655 ssize_t tx_bytes; 656 uint64_t end_size; 657 dmu_tx_t *tx; 658 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 659 zilog_t *zilog; 660 offset_t woff; 661 ssize_t n, nbytes; 662 rl_t *rl; 663 int max_blksz = zfsvfs->z_max_blksz; 664 int error = 0; 665 arc_buf_t *abuf; 666 iovec_t *aiov = NULL; 667 xuio_t *xuio = NULL; 668 int i_iov = 0; 669 int iovcnt = uio->uio_iovcnt; 670 iovec_t *iovp = uio->uio_iov; 671 int write_eof; 672 int count = 0; 673 sa_bulk_attr_t bulk[4]; 674 uint64_t mtime[2], ctime[2]; 675 676 /* 677 * Fasttrack empty write 678 */ 679 n = start_resid; 680 if (n == 0) 681 return (0); 682 683 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 684 limit = MAXOFFSET_T; 685 686 ZFS_ENTER(zfsvfs); 687 ZFS_VERIFY_ZP(zp); 688 689 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 690 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 691 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 692 &zp->z_size, 8); 693 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 694 &zp->z_pflags, 8); 695 696 /* 697 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 698 * callers might not be able to detect properly that we are read-only, 699 * so check it explicitly here. 700 */ 701 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 702 ZFS_EXIT(zfsvfs); 703 return (SET_ERROR(EROFS)); 704 } 705 706 /* 707 * If immutable or not appending then return EPERM 708 */ 709 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 710 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 711 (uio->uio_loffset < zp->z_size))) { 712 ZFS_EXIT(zfsvfs); 713 return (SET_ERROR(EPERM)); 714 } 715 716 zilog = zfsvfs->z_log; 717 718 /* 719 * Validate file offset 720 */ 721 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 722 if (woff < 0) { 723 ZFS_EXIT(zfsvfs); 724 return (SET_ERROR(EINVAL)); 725 } 726 727 /* 728 * Check for mandatory locks before calling zfs_range_lock() 729 * in order to prevent a deadlock with locks set via fcntl(). 730 */ 731 if (MANDMODE((mode_t)zp->z_mode) && 732 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 733 ZFS_EXIT(zfsvfs); 734 return (error); 735 } 736 737 /* 738 * Pre-fault the pages to ensure slow (eg NFS) pages 739 * don't hold up txg. 740 * Skip this if uio contains loaned arc_buf. 741 */ 742 if ((uio->uio_extflg == UIO_XUIO) && 743 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 744 xuio = (xuio_t *)uio; 745 else 746 uio_prefaultpages(MIN(n, max_blksz), uio); 747 748 /* 749 * If in append mode, set the io offset pointer to eof. 750 */ 751 if (ioflag & FAPPEND) { 752 /* 753 * Obtain an appending range lock to guarantee file append 754 * semantics. We reset the write offset once we have the lock. 755 */ 756 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 757 woff = rl->r_off; 758 if (rl->r_len == UINT64_MAX) { 759 /* 760 * We overlocked the file because this write will cause 761 * the file block size to increase. 762 * Note that zp_size cannot change with this lock held. 763 */ 764 woff = zp->z_size; 765 } 766 uio->uio_loffset = woff; 767 } else { 768 /* 769 * Note that if the file block size will change as a result of 770 * this write, then this range lock will lock the entire file 771 * so that we can re-write the block safely. 772 */ 773 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 774 } 775 776 if (woff >= limit) { 777 zfs_range_unlock(rl); 778 ZFS_EXIT(zfsvfs); 779 return (SET_ERROR(EFBIG)); 780 } 781 782 if ((woff + n) > limit || woff > (limit - n)) 783 n = limit - woff; 784 785 /* Will this write extend the file length? */ 786 write_eof = (woff + n > zp->z_size); 787 788 end_size = MAX(zp->z_size, woff + n); 789 790 /* 791 * Write the file in reasonable size chunks. Each chunk is written 792 * in a separate transaction; this keeps the intent log records small 793 * and allows us to do more fine-grained space accounting. 794 */ 795 while (n > 0) { 796 abuf = NULL; 797 woff = uio->uio_loffset; 798 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 799 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 800 if (abuf != NULL) 801 dmu_return_arcbuf(abuf); 802 error = SET_ERROR(EDQUOT); 803 break; 804 } 805 806 if (xuio && abuf == NULL) { 807 ASSERT(i_iov < iovcnt); 808 aiov = &iovp[i_iov]; 809 abuf = dmu_xuio_arcbuf(xuio, i_iov); 810 dmu_xuio_clear(xuio, i_iov); 811 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 812 iovec_t *, aiov, arc_buf_t *, abuf); 813 ASSERT((aiov->iov_base == abuf->b_data) || 814 ((char *)aiov->iov_base - (char *)abuf->b_data + 815 aiov->iov_len == arc_buf_size(abuf))); 816 i_iov++; 817 } else if (abuf == NULL && n >= max_blksz && 818 woff >= zp->z_size && 819 P2PHASE(woff, max_blksz) == 0 && 820 zp->z_blksz == max_blksz) { 821 /* 822 * This write covers a full block. "Borrow" a buffer 823 * from the dmu so that we can fill it before we enter 824 * a transaction. This avoids the possibility of 825 * holding up the transaction if the data copy hangs 826 * up on a pagefault (e.g., from an NFS server mapping). 827 */ 828 size_t cbytes; 829 830 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 831 max_blksz); 832 ASSERT(abuf != NULL); 833 ASSERT(arc_buf_size(abuf) == max_blksz); 834 if (error = uiocopy(abuf->b_data, max_blksz, 835 UIO_WRITE, uio, &cbytes)) { 836 dmu_return_arcbuf(abuf); 837 break; 838 } 839 ASSERT(cbytes == max_blksz); 840 } 841 842 /* 843 * Start a transaction. 844 */ 845 tx = dmu_tx_create(zfsvfs->z_os); 846 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 847 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 848 zfs_sa_upgrade_txholds(tx, zp); 849 error = dmu_tx_assign(tx, TXG_WAIT); 850 if (error) { 851 dmu_tx_abort(tx); 852 if (abuf != NULL) 853 dmu_return_arcbuf(abuf); 854 break; 855 } 856 857 /* 858 * If zfs_range_lock() over-locked we grow the blocksize 859 * and then reduce the lock range. This will only happen 860 * on the first iteration since zfs_range_reduce() will 861 * shrink down r_len to the appropriate size. 862 */ 863 if (rl->r_len == UINT64_MAX) { 864 uint64_t new_blksz; 865 866 if (zp->z_blksz > max_blksz) { 867 /* 868 * File's blocksize is already larger than the 869 * "recordsize" property. Only let it grow to 870 * the next power of 2. 871 */ 872 ASSERT(!ISP2(zp->z_blksz)); 873 new_blksz = MIN(end_size, 874 1 << highbit64(zp->z_blksz)); 875 } else { 876 new_blksz = MIN(end_size, max_blksz); 877 } 878 zfs_grow_blocksize(zp, new_blksz, tx); 879 zfs_range_reduce(rl, woff, n); 880 } 881 882 /* 883 * XXX - should we really limit each write to z_max_blksz? 884 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 885 */ 886 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 887 888 if (abuf == NULL) { 889 tx_bytes = uio->uio_resid; 890 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 891 uio, nbytes, tx); 892 tx_bytes -= uio->uio_resid; 893 } else { 894 tx_bytes = nbytes; 895 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 896 /* 897 * If this is not a full block write, but we are 898 * extending the file past EOF and this data starts 899 * block-aligned, use assign_arcbuf(). Otherwise, 900 * write via dmu_write(). 901 */ 902 if (tx_bytes < max_blksz && (!write_eof || 903 aiov->iov_base != abuf->b_data)) { 904 ASSERT(xuio); 905 dmu_write(zfsvfs->z_os, zp->z_id, woff, 906 aiov->iov_len, aiov->iov_base, tx); 907 dmu_return_arcbuf(abuf); 908 xuio_stat_wbuf_copied(); 909 } else { 910 ASSERT(xuio || tx_bytes == max_blksz); 911 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 912 woff, abuf, tx); 913 } 914 ASSERT(tx_bytes <= uio->uio_resid); 915 uioskip(uio, tx_bytes); 916 } 917 if (tx_bytes && vn_has_cached_data(vp)) { 918 update_pages(vp, woff, 919 tx_bytes, zfsvfs->z_os, zp->z_id); 920 } 921 922 /* 923 * If we made no progress, we're done. If we made even 924 * partial progress, update the znode and ZIL accordingly. 925 */ 926 if (tx_bytes == 0) { 927 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 928 (void *)&zp->z_size, sizeof (uint64_t), tx); 929 dmu_tx_commit(tx); 930 ASSERT(error != 0); 931 break; 932 } 933 934 /* 935 * Clear Set-UID/Set-GID bits on successful write if not 936 * privileged and at least one of the excute bits is set. 937 * 938 * It would be nice to to this after all writes have 939 * been done, but that would still expose the ISUID/ISGID 940 * to another app after the partial write is committed. 941 * 942 * Note: we don't call zfs_fuid_map_id() here because 943 * user 0 is not an ephemeral uid. 944 */ 945 mutex_enter(&zp->z_acl_lock); 946 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 947 (S_IXUSR >> 6))) != 0 && 948 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 949 secpolicy_vnode_setid_retain(cr, 950 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 951 uint64_t newmode; 952 zp->z_mode &= ~(S_ISUID | S_ISGID); 953 newmode = zp->z_mode; 954 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 955 (void *)&newmode, sizeof (uint64_t), tx); 956 } 957 mutex_exit(&zp->z_acl_lock); 958 959 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 960 B_TRUE); 961 962 /* 963 * Update the file size (zp_size) if it has changed; 964 * account for possible concurrent updates. 965 */ 966 while ((end_size = zp->z_size) < uio->uio_loffset) { 967 (void) atomic_cas_64(&zp->z_size, end_size, 968 uio->uio_loffset); 969 ASSERT(error == 0); 970 } 971 /* 972 * If we are replaying and eof is non zero then force 973 * the file size to the specified eof. Note, there's no 974 * concurrency during replay. 975 */ 976 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 977 zp->z_size = zfsvfs->z_replay_eof; 978 979 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 980 981 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 982 dmu_tx_commit(tx); 983 984 if (error != 0) 985 break; 986 ASSERT(tx_bytes == nbytes); 987 n -= nbytes; 988 989 if (!xuio && n > 0) 990 uio_prefaultpages(MIN(n, max_blksz), uio); 991 } 992 993 zfs_range_unlock(rl); 994 995 /* 996 * If we're in replay mode, or we made no progress, return error. 997 * Otherwise, it's at least a partial write, so it's successful. 998 */ 999 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 1000 ZFS_EXIT(zfsvfs); 1001 return (error); 1002 } 1003 1004 if (ioflag & (FSYNC | FDSYNC) || 1005 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1006 zil_commit(zilog, zp->z_id); 1007 1008 ZFS_EXIT(zfsvfs); 1009 return (0); 1010 } 1011 1012 void 1013 zfs_get_done(zgd_t *zgd, int error) 1014 { 1015 znode_t *zp = zgd->zgd_private; 1016 objset_t *os = zp->z_zfsvfs->z_os; 1017 1018 if (zgd->zgd_db) 1019 dmu_buf_rele(zgd->zgd_db, zgd); 1020 1021 zfs_range_unlock(zgd->zgd_rl); 1022 1023 /* 1024 * Release the vnode asynchronously as we currently have the 1025 * txg stopped from syncing. 1026 */ 1027 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1028 1029 if (error == 0 && zgd->zgd_bp) 1030 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 1031 1032 kmem_free(zgd, sizeof (zgd_t)); 1033 } 1034 1035 #ifdef DEBUG 1036 static int zil_fault_io = 0; 1037 #endif 1038 1039 /* 1040 * Get data to generate a TX_WRITE intent log record. 1041 */ 1042 int 1043 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 1044 { 1045 zfsvfs_t *zfsvfs = arg; 1046 objset_t *os = zfsvfs->z_os; 1047 znode_t *zp; 1048 uint64_t object = lr->lr_foid; 1049 uint64_t offset = lr->lr_offset; 1050 uint64_t size = lr->lr_length; 1051 blkptr_t *bp = &lr->lr_blkptr; 1052 dmu_buf_t *db; 1053 zgd_t *zgd; 1054 int error = 0; 1055 1056 ASSERT(zio != NULL); 1057 ASSERT(size != 0); 1058 1059 /* 1060 * Nothing to do if the file has been removed 1061 */ 1062 if (zfs_zget(zfsvfs, object, &zp) != 0) 1063 return (SET_ERROR(ENOENT)); 1064 if (zp->z_unlinked) { 1065 /* 1066 * Release the vnode asynchronously as we currently have the 1067 * txg stopped from syncing. 1068 */ 1069 VN_RELE_ASYNC(ZTOV(zp), 1070 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 1071 return (SET_ERROR(ENOENT)); 1072 } 1073 1074 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 1075 zgd->zgd_zilog = zfsvfs->z_log; 1076 zgd->zgd_private = zp; 1077 1078 /* 1079 * Write records come in two flavors: immediate and indirect. 1080 * For small writes it's cheaper to store the data with the 1081 * log record (immediate); for large writes it's cheaper to 1082 * sync the data and get a pointer to it (indirect) so that 1083 * we don't have to write the data twice. 1084 */ 1085 if (buf != NULL) { /* immediate write */ 1086 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1087 /* test for truncation needs to be done while range locked */ 1088 if (offset >= zp->z_size) { 1089 error = SET_ERROR(ENOENT); 1090 } else { 1091 error = dmu_read(os, object, offset, size, buf, 1092 DMU_READ_NO_PREFETCH); 1093 } 1094 ASSERT(error == 0 || error == ENOENT); 1095 } else { /* indirect write */ 1096 /* 1097 * Have to lock the whole block to ensure when it's 1098 * written out and it's checksum is being calculated 1099 * that no one can change the data. We need to re-check 1100 * blocksize after we get the lock in case it's changed! 1101 */ 1102 for (;;) { 1103 uint64_t blkoff; 1104 size = zp->z_blksz; 1105 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1106 offset -= blkoff; 1107 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1108 RL_READER); 1109 if (zp->z_blksz == size) 1110 break; 1111 offset += blkoff; 1112 zfs_range_unlock(zgd->zgd_rl); 1113 } 1114 /* test for truncation needs to be done while range locked */ 1115 if (lr->lr_offset >= zp->z_size) 1116 error = SET_ERROR(ENOENT); 1117 #ifdef DEBUG 1118 if (zil_fault_io) { 1119 error = SET_ERROR(EIO); 1120 zil_fault_io = 0; 1121 } 1122 #endif 1123 if (error == 0) 1124 error = dmu_buf_hold(os, object, offset, zgd, &db, 1125 DMU_READ_NO_PREFETCH); 1126 1127 if (error == 0) { 1128 blkptr_t *obp = dmu_buf_get_blkptr(db); 1129 if (obp) { 1130 ASSERT(BP_IS_HOLE(bp)); 1131 *bp = *obp; 1132 } 1133 1134 zgd->zgd_db = db; 1135 zgd->zgd_bp = bp; 1136 1137 ASSERT(db->db_offset == offset); 1138 ASSERT(db->db_size == size); 1139 1140 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1141 zfs_get_done, zgd); 1142 ASSERT(error || lr->lr_length <= zp->z_blksz); 1143 1144 /* 1145 * On success, we need to wait for the write I/O 1146 * initiated by dmu_sync() to complete before we can 1147 * release this dbuf. We will finish everything up 1148 * in the zfs_get_done() callback. 1149 */ 1150 if (error == 0) 1151 return (0); 1152 1153 if (error == EALREADY) { 1154 lr->lr_common.lrc_txtype = TX_WRITE2; 1155 error = 0; 1156 } 1157 } 1158 } 1159 1160 zfs_get_done(zgd, error); 1161 1162 return (error); 1163 } 1164 1165 /*ARGSUSED*/ 1166 static int 1167 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1168 caller_context_t *ct) 1169 { 1170 znode_t *zp = VTOZ(vp); 1171 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1172 int error; 1173 1174 ZFS_ENTER(zfsvfs); 1175 ZFS_VERIFY_ZP(zp); 1176 1177 if (flag & V_ACE_MASK) 1178 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1179 else 1180 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1181 1182 ZFS_EXIT(zfsvfs); 1183 return (error); 1184 } 1185 1186 /* 1187 * If vnode is for a device return a specfs vnode instead. 1188 */ 1189 static int 1190 specvp_check(vnode_t **vpp, cred_t *cr) 1191 { 1192 int error = 0; 1193 1194 if (IS_DEVVP(*vpp)) { 1195 struct vnode *svp; 1196 1197 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1198 VN_RELE(*vpp); 1199 if (svp == NULL) 1200 error = SET_ERROR(ENOSYS); 1201 *vpp = svp; 1202 } 1203 return (error); 1204 } 1205 1206 1207 /* 1208 * Lookup an entry in a directory, or an extended attribute directory. 1209 * If it exists, return a held vnode reference for it. 1210 * 1211 * IN: dvp - vnode of directory to search. 1212 * nm - name of entry to lookup. 1213 * pnp - full pathname to lookup [UNUSED]. 1214 * flags - LOOKUP_XATTR set if looking for an attribute. 1215 * rdir - root directory vnode [UNUSED]. 1216 * cr - credentials of caller. 1217 * ct - caller context 1218 * direntflags - directory lookup flags 1219 * realpnp - returned pathname. 1220 * 1221 * OUT: vpp - vnode of located entry, NULL if not found. 1222 * 1223 * RETURN: 0 on success, error code on failure. 1224 * 1225 * Timestamps: 1226 * NA 1227 */ 1228 /* ARGSUSED */ 1229 static int 1230 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1231 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1232 int *direntflags, pathname_t *realpnp) 1233 { 1234 znode_t *zdp = VTOZ(dvp); 1235 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1236 int error = 0; 1237 1238 /* fast path */ 1239 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1240 1241 if (dvp->v_type != VDIR) { 1242 return (SET_ERROR(ENOTDIR)); 1243 } else if (zdp->z_sa_hdl == NULL) { 1244 return (SET_ERROR(EIO)); 1245 } 1246 1247 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1248 error = zfs_fastaccesschk_execute(zdp, cr); 1249 if (!error) { 1250 *vpp = dvp; 1251 VN_HOLD(*vpp); 1252 return (0); 1253 } 1254 return (error); 1255 } else { 1256 vnode_t *tvp = dnlc_lookup(dvp, nm); 1257 1258 if (tvp) { 1259 error = zfs_fastaccesschk_execute(zdp, cr); 1260 if (error) { 1261 VN_RELE(tvp); 1262 return (error); 1263 } 1264 if (tvp == DNLC_NO_VNODE) { 1265 VN_RELE(tvp); 1266 return (SET_ERROR(ENOENT)); 1267 } else { 1268 *vpp = tvp; 1269 return (specvp_check(vpp, cr)); 1270 } 1271 } 1272 } 1273 } 1274 1275 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1276 1277 ZFS_ENTER(zfsvfs); 1278 ZFS_VERIFY_ZP(zdp); 1279 1280 *vpp = NULL; 1281 1282 if (flags & LOOKUP_XATTR) { 1283 /* 1284 * If the xattr property is off, refuse the lookup request. 1285 */ 1286 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1287 ZFS_EXIT(zfsvfs); 1288 return (SET_ERROR(EINVAL)); 1289 } 1290 1291 /* 1292 * We don't allow recursive attributes.. 1293 * Maybe someday we will. 1294 */ 1295 if (zdp->z_pflags & ZFS_XATTR) { 1296 ZFS_EXIT(zfsvfs); 1297 return (SET_ERROR(EINVAL)); 1298 } 1299 1300 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1301 ZFS_EXIT(zfsvfs); 1302 return (error); 1303 } 1304 1305 /* 1306 * Do we have permission to get into attribute directory? 1307 */ 1308 1309 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1310 B_FALSE, cr)) { 1311 VN_RELE(*vpp); 1312 *vpp = NULL; 1313 } 1314 1315 ZFS_EXIT(zfsvfs); 1316 return (error); 1317 } 1318 1319 if (dvp->v_type != VDIR) { 1320 ZFS_EXIT(zfsvfs); 1321 return (SET_ERROR(ENOTDIR)); 1322 } 1323 1324 /* 1325 * Check accessibility of directory. 1326 */ 1327 1328 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1329 ZFS_EXIT(zfsvfs); 1330 return (error); 1331 } 1332 1333 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1334 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1335 ZFS_EXIT(zfsvfs); 1336 return (SET_ERROR(EILSEQ)); 1337 } 1338 1339 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1340 if (error == 0) 1341 error = specvp_check(vpp, cr); 1342 1343 ZFS_EXIT(zfsvfs); 1344 return (error); 1345 } 1346 1347 /* 1348 * Attempt to create a new entry in a directory. If the entry 1349 * already exists, truncate the file if permissible, else return 1350 * an error. Return the vp of the created or trunc'd file. 1351 * 1352 * IN: dvp - vnode of directory to put new file entry in. 1353 * name - name of new file entry. 1354 * vap - attributes of new file. 1355 * excl - flag indicating exclusive or non-exclusive mode. 1356 * mode - mode to open file with. 1357 * cr - credentials of caller. 1358 * flag - large file flag [UNUSED]. 1359 * ct - caller context 1360 * vsecp - ACL to be set 1361 * 1362 * OUT: vpp - vnode of created or trunc'd entry. 1363 * 1364 * RETURN: 0 on success, error code on failure. 1365 * 1366 * Timestamps: 1367 * dvp - ctime|mtime updated if new entry created 1368 * vp - ctime|mtime always, atime if new 1369 */ 1370 1371 /* ARGSUSED */ 1372 static int 1373 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1374 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1375 vsecattr_t *vsecp) 1376 { 1377 znode_t *zp, *dzp = VTOZ(dvp); 1378 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1379 zilog_t *zilog; 1380 objset_t *os; 1381 zfs_dirlock_t *dl; 1382 dmu_tx_t *tx; 1383 int error; 1384 ksid_t *ksid; 1385 uid_t uid; 1386 gid_t gid = crgetgid(cr); 1387 zfs_acl_ids_t acl_ids; 1388 boolean_t fuid_dirtied; 1389 boolean_t have_acl = B_FALSE; 1390 boolean_t waited = B_FALSE; 1391 1392 /* 1393 * If we have an ephemeral id, ACL, or XVATTR then 1394 * make sure file system is at proper version 1395 */ 1396 1397 ksid = crgetsid(cr, KSID_OWNER); 1398 if (ksid) 1399 uid = ksid_getid(ksid); 1400 else 1401 uid = crgetuid(cr); 1402 1403 if (zfsvfs->z_use_fuids == B_FALSE && 1404 (vsecp || (vap->va_mask & AT_XVATTR) || 1405 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1406 return (SET_ERROR(EINVAL)); 1407 1408 ZFS_ENTER(zfsvfs); 1409 ZFS_VERIFY_ZP(dzp); 1410 os = zfsvfs->z_os; 1411 zilog = zfsvfs->z_log; 1412 1413 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1414 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1415 ZFS_EXIT(zfsvfs); 1416 return (SET_ERROR(EILSEQ)); 1417 } 1418 1419 if (vap->va_mask & AT_XVATTR) { 1420 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1421 crgetuid(cr), cr, vap->va_type)) != 0) { 1422 ZFS_EXIT(zfsvfs); 1423 return (error); 1424 } 1425 } 1426 top: 1427 *vpp = NULL; 1428 1429 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1430 vap->va_mode &= ~VSVTX; 1431 1432 if (*name == '\0') { 1433 /* 1434 * Null component name refers to the directory itself. 1435 */ 1436 VN_HOLD(dvp); 1437 zp = dzp; 1438 dl = NULL; 1439 error = 0; 1440 } else { 1441 /* possible VN_HOLD(zp) */ 1442 int zflg = 0; 1443 1444 if (flag & FIGNORECASE) 1445 zflg |= ZCILOOK; 1446 1447 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1448 NULL, NULL); 1449 if (error) { 1450 if (have_acl) 1451 zfs_acl_ids_free(&acl_ids); 1452 if (strcmp(name, "..") == 0) 1453 error = SET_ERROR(EISDIR); 1454 ZFS_EXIT(zfsvfs); 1455 return (error); 1456 } 1457 } 1458 1459 if (zp == NULL) { 1460 uint64_t txtype; 1461 1462 /* 1463 * Create a new file object and update the directory 1464 * to reference it. 1465 */ 1466 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1467 if (have_acl) 1468 zfs_acl_ids_free(&acl_ids); 1469 goto out; 1470 } 1471 1472 /* 1473 * We only support the creation of regular files in 1474 * extended attribute directories. 1475 */ 1476 1477 if ((dzp->z_pflags & ZFS_XATTR) && 1478 (vap->va_type != VREG)) { 1479 if (have_acl) 1480 zfs_acl_ids_free(&acl_ids); 1481 error = SET_ERROR(EINVAL); 1482 goto out; 1483 } 1484 1485 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1486 cr, vsecp, &acl_ids)) != 0) 1487 goto out; 1488 have_acl = B_TRUE; 1489 1490 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1491 zfs_acl_ids_free(&acl_ids); 1492 error = SET_ERROR(EDQUOT); 1493 goto out; 1494 } 1495 1496 tx = dmu_tx_create(os); 1497 1498 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1499 ZFS_SA_BASE_ATTR_SIZE); 1500 1501 fuid_dirtied = zfsvfs->z_fuid_dirty; 1502 if (fuid_dirtied) 1503 zfs_fuid_txhold(zfsvfs, tx); 1504 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1505 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1506 if (!zfsvfs->z_use_sa && 1507 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1508 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1509 0, acl_ids.z_aclp->z_acl_bytes); 1510 } 1511 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1512 if (error) { 1513 zfs_dirent_unlock(dl); 1514 if (error == ERESTART) { 1515 waited = B_TRUE; 1516 dmu_tx_wait(tx); 1517 dmu_tx_abort(tx); 1518 goto top; 1519 } 1520 zfs_acl_ids_free(&acl_ids); 1521 dmu_tx_abort(tx); 1522 ZFS_EXIT(zfsvfs); 1523 return (error); 1524 } 1525 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1526 1527 if (fuid_dirtied) 1528 zfs_fuid_sync(zfsvfs, tx); 1529 1530 (void) zfs_link_create(dl, zp, tx, ZNEW); 1531 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1532 if (flag & FIGNORECASE) 1533 txtype |= TX_CI; 1534 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1535 vsecp, acl_ids.z_fuidp, vap); 1536 zfs_acl_ids_free(&acl_ids); 1537 dmu_tx_commit(tx); 1538 } else { 1539 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1540 1541 if (have_acl) 1542 zfs_acl_ids_free(&acl_ids); 1543 have_acl = B_FALSE; 1544 1545 /* 1546 * A directory entry already exists for this name. 1547 */ 1548 /* 1549 * Can't truncate an existing file if in exclusive mode. 1550 */ 1551 if (excl == EXCL) { 1552 error = SET_ERROR(EEXIST); 1553 goto out; 1554 } 1555 /* 1556 * Can't open a directory for writing. 1557 */ 1558 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1559 error = SET_ERROR(EISDIR); 1560 goto out; 1561 } 1562 /* 1563 * Verify requested access to file. 1564 */ 1565 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1566 goto out; 1567 } 1568 1569 mutex_enter(&dzp->z_lock); 1570 dzp->z_seq++; 1571 mutex_exit(&dzp->z_lock); 1572 1573 /* 1574 * Truncate regular files if requested. 1575 */ 1576 if ((ZTOV(zp)->v_type == VREG) && 1577 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1578 /* we can't hold any locks when calling zfs_freesp() */ 1579 zfs_dirent_unlock(dl); 1580 dl = NULL; 1581 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1582 if (error == 0) { 1583 vnevent_create(ZTOV(zp), ct); 1584 } 1585 } 1586 } 1587 out: 1588 1589 if (dl) 1590 zfs_dirent_unlock(dl); 1591 1592 if (error) { 1593 if (zp) 1594 VN_RELE(ZTOV(zp)); 1595 } else { 1596 *vpp = ZTOV(zp); 1597 error = specvp_check(vpp, cr); 1598 } 1599 1600 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1601 zil_commit(zilog, 0); 1602 1603 ZFS_EXIT(zfsvfs); 1604 return (error); 1605 } 1606 1607 /* 1608 * Remove an entry from a directory. 1609 * 1610 * IN: dvp - vnode of directory to remove entry from. 1611 * name - name of entry to remove. 1612 * cr - credentials of caller. 1613 * ct - caller context 1614 * flags - case flags 1615 * 1616 * RETURN: 0 on success, error code on failure. 1617 * 1618 * Timestamps: 1619 * dvp - ctime|mtime 1620 * vp - ctime (if nlink > 0) 1621 */ 1622 1623 uint64_t null_xattr = 0; 1624 1625 /*ARGSUSED*/ 1626 static int 1627 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1628 int flags) 1629 { 1630 znode_t *zp, *dzp = VTOZ(dvp); 1631 znode_t *xzp; 1632 vnode_t *vp; 1633 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1634 zilog_t *zilog; 1635 uint64_t acl_obj, xattr_obj; 1636 uint64_t xattr_obj_unlinked = 0; 1637 uint64_t obj = 0; 1638 zfs_dirlock_t *dl; 1639 dmu_tx_t *tx; 1640 boolean_t may_delete_now, delete_now = FALSE; 1641 boolean_t unlinked, toobig = FALSE; 1642 uint64_t txtype; 1643 pathname_t *realnmp = NULL; 1644 pathname_t realnm; 1645 int error; 1646 int zflg = ZEXISTS; 1647 boolean_t waited = B_FALSE; 1648 1649 ZFS_ENTER(zfsvfs); 1650 ZFS_VERIFY_ZP(dzp); 1651 zilog = zfsvfs->z_log; 1652 1653 if (flags & FIGNORECASE) { 1654 zflg |= ZCILOOK; 1655 pn_alloc(&realnm); 1656 realnmp = &realnm; 1657 } 1658 1659 top: 1660 xattr_obj = 0; 1661 xzp = NULL; 1662 /* 1663 * Attempt to lock directory; fail if entry doesn't exist. 1664 */ 1665 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1666 NULL, realnmp)) { 1667 if (realnmp) 1668 pn_free(realnmp); 1669 ZFS_EXIT(zfsvfs); 1670 return (error); 1671 } 1672 1673 vp = ZTOV(zp); 1674 1675 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1676 goto out; 1677 } 1678 1679 /* 1680 * Need to use rmdir for removing directories. 1681 */ 1682 if (vp->v_type == VDIR) { 1683 error = SET_ERROR(EPERM); 1684 goto out; 1685 } 1686 1687 vnevent_remove(vp, dvp, name, ct); 1688 1689 if (realnmp) 1690 dnlc_remove(dvp, realnmp->pn_buf); 1691 else 1692 dnlc_remove(dvp, name); 1693 1694 mutex_enter(&vp->v_lock); 1695 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1696 mutex_exit(&vp->v_lock); 1697 1698 /* 1699 * We may delete the znode now, or we may put it in the unlinked set; 1700 * it depends on whether we're the last link, and on whether there are 1701 * other holds on the vnode. So we dmu_tx_hold() the right things to 1702 * allow for either case. 1703 */ 1704 obj = zp->z_id; 1705 tx = dmu_tx_create(zfsvfs->z_os); 1706 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1707 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1708 zfs_sa_upgrade_txholds(tx, zp); 1709 zfs_sa_upgrade_txholds(tx, dzp); 1710 if (may_delete_now) { 1711 toobig = 1712 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1713 /* if the file is too big, only hold_free a token amount */ 1714 dmu_tx_hold_free(tx, zp->z_id, 0, 1715 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1716 } 1717 1718 /* are there any extended attributes? */ 1719 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1720 &xattr_obj, sizeof (xattr_obj)); 1721 if (error == 0 && xattr_obj) { 1722 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1723 ASSERT0(error); 1724 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1725 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1726 } 1727 1728 mutex_enter(&zp->z_lock); 1729 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1730 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1731 mutex_exit(&zp->z_lock); 1732 1733 /* charge as an update -- would be nice not to charge at all */ 1734 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1735 1736 /* 1737 * Mark this transaction as typically resulting in a net free of 1738 * space, unless object removal will be delayed indefinitely 1739 * (due to active holds on the vnode due to the file being open). 1740 */ 1741 if (may_delete_now) 1742 dmu_tx_mark_netfree(tx); 1743 1744 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1745 if (error) { 1746 zfs_dirent_unlock(dl); 1747 VN_RELE(vp); 1748 if (xzp) 1749 VN_RELE(ZTOV(xzp)); 1750 if (error == ERESTART) { 1751 waited = B_TRUE; 1752 dmu_tx_wait(tx); 1753 dmu_tx_abort(tx); 1754 goto top; 1755 } 1756 if (realnmp) 1757 pn_free(realnmp); 1758 dmu_tx_abort(tx); 1759 ZFS_EXIT(zfsvfs); 1760 return (error); 1761 } 1762 1763 /* 1764 * Remove the directory entry. 1765 */ 1766 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1767 1768 if (error) { 1769 dmu_tx_commit(tx); 1770 goto out; 1771 } 1772 1773 if (unlinked) { 1774 /* 1775 * Hold z_lock so that we can make sure that the ACL obj 1776 * hasn't changed. Could have been deleted due to 1777 * zfs_sa_upgrade(). 1778 */ 1779 mutex_enter(&zp->z_lock); 1780 mutex_enter(&vp->v_lock); 1781 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1782 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1783 delete_now = may_delete_now && !toobig && 1784 vp->v_count == 1 && !vn_has_cached_data(vp) && 1785 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1786 acl_obj; 1787 mutex_exit(&vp->v_lock); 1788 } 1789 1790 if (delete_now) { 1791 if (xattr_obj_unlinked) { 1792 ASSERT3U(xzp->z_links, ==, 2); 1793 mutex_enter(&xzp->z_lock); 1794 xzp->z_unlinked = 1; 1795 xzp->z_links = 0; 1796 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1797 &xzp->z_links, sizeof (xzp->z_links), tx); 1798 ASSERT3U(error, ==, 0); 1799 mutex_exit(&xzp->z_lock); 1800 zfs_unlinked_add(xzp, tx); 1801 1802 if (zp->z_is_sa) 1803 error = sa_remove(zp->z_sa_hdl, 1804 SA_ZPL_XATTR(zfsvfs), tx); 1805 else 1806 error = sa_update(zp->z_sa_hdl, 1807 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1808 sizeof (uint64_t), tx); 1809 ASSERT0(error); 1810 } 1811 mutex_enter(&vp->v_lock); 1812 vp->v_count--; 1813 ASSERT0(vp->v_count); 1814 mutex_exit(&vp->v_lock); 1815 mutex_exit(&zp->z_lock); 1816 zfs_znode_delete(zp, tx); 1817 } else if (unlinked) { 1818 mutex_exit(&zp->z_lock); 1819 zfs_unlinked_add(zp, tx); 1820 } 1821 1822 txtype = TX_REMOVE; 1823 if (flags & FIGNORECASE) 1824 txtype |= TX_CI; 1825 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1826 1827 dmu_tx_commit(tx); 1828 out: 1829 if (realnmp) 1830 pn_free(realnmp); 1831 1832 zfs_dirent_unlock(dl); 1833 1834 if (!delete_now) 1835 VN_RELE(vp); 1836 if (xzp) 1837 VN_RELE(ZTOV(xzp)); 1838 1839 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1840 zil_commit(zilog, 0); 1841 1842 ZFS_EXIT(zfsvfs); 1843 return (error); 1844 } 1845 1846 /* 1847 * Create a new directory and insert it into dvp using the name 1848 * provided. Return a pointer to the inserted directory. 1849 * 1850 * IN: dvp - vnode of directory to add subdir to. 1851 * dirname - name of new directory. 1852 * vap - attributes of new directory. 1853 * cr - credentials of caller. 1854 * ct - caller context 1855 * flags - case flags 1856 * vsecp - ACL to be set 1857 * 1858 * OUT: vpp - vnode of created directory. 1859 * 1860 * RETURN: 0 on success, error code on failure. 1861 * 1862 * Timestamps: 1863 * dvp - ctime|mtime updated 1864 * vp - ctime|mtime|atime updated 1865 */ 1866 /*ARGSUSED*/ 1867 static int 1868 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1869 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1870 { 1871 znode_t *zp, *dzp = VTOZ(dvp); 1872 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1873 zilog_t *zilog; 1874 zfs_dirlock_t *dl; 1875 uint64_t txtype; 1876 dmu_tx_t *tx; 1877 int error; 1878 int zf = ZNEW; 1879 ksid_t *ksid; 1880 uid_t uid; 1881 gid_t gid = crgetgid(cr); 1882 zfs_acl_ids_t acl_ids; 1883 boolean_t fuid_dirtied; 1884 boolean_t waited = B_FALSE; 1885 1886 ASSERT(vap->va_type == VDIR); 1887 1888 /* 1889 * If we have an ephemeral id, ACL, or XVATTR then 1890 * make sure file system is at proper version 1891 */ 1892 1893 ksid = crgetsid(cr, KSID_OWNER); 1894 if (ksid) 1895 uid = ksid_getid(ksid); 1896 else 1897 uid = crgetuid(cr); 1898 if (zfsvfs->z_use_fuids == B_FALSE && 1899 (vsecp || (vap->va_mask & AT_XVATTR) || 1900 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1901 return (SET_ERROR(EINVAL)); 1902 1903 ZFS_ENTER(zfsvfs); 1904 ZFS_VERIFY_ZP(dzp); 1905 zilog = zfsvfs->z_log; 1906 1907 if (dzp->z_pflags & ZFS_XATTR) { 1908 ZFS_EXIT(zfsvfs); 1909 return (SET_ERROR(EINVAL)); 1910 } 1911 1912 if (zfsvfs->z_utf8 && u8_validate(dirname, 1913 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1914 ZFS_EXIT(zfsvfs); 1915 return (SET_ERROR(EILSEQ)); 1916 } 1917 if (flags & FIGNORECASE) 1918 zf |= ZCILOOK; 1919 1920 if (vap->va_mask & AT_XVATTR) { 1921 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1922 crgetuid(cr), cr, vap->va_type)) != 0) { 1923 ZFS_EXIT(zfsvfs); 1924 return (error); 1925 } 1926 } 1927 1928 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1929 vsecp, &acl_ids)) != 0) { 1930 ZFS_EXIT(zfsvfs); 1931 return (error); 1932 } 1933 /* 1934 * First make sure the new directory doesn't exist. 1935 * 1936 * Existence is checked first to make sure we don't return 1937 * EACCES instead of EEXIST which can cause some applications 1938 * to fail. 1939 */ 1940 top: 1941 *vpp = NULL; 1942 1943 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1944 NULL, NULL)) { 1945 zfs_acl_ids_free(&acl_ids); 1946 ZFS_EXIT(zfsvfs); 1947 return (error); 1948 } 1949 1950 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1951 zfs_acl_ids_free(&acl_ids); 1952 zfs_dirent_unlock(dl); 1953 ZFS_EXIT(zfsvfs); 1954 return (error); 1955 } 1956 1957 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1958 zfs_acl_ids_free(&acl_ids); 1959 zfs_dirent_unlock(dl); 1960 ZFS_EXIT(zfsvfs); 1961 return (SET_ERROR(EDQUOT)); 1962 } 1963 1964 /* 1965 * Add a new entry to the directory. 1966 */ 1967 tx = dmu_tx_create(zfsvfs->z_os); 1968 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1969 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1970 fuid_dirtied = zfsvfs->z_fuid_dirty; 1971 if (fuid_dirtied) 1972 zfs_fuid_txhold(zfsvfs, tx); 1973 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1974 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1975 acl_ids.z_aclp->z_acl_bytes); 1976 } 1977 1978 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1979 ZFS_SA_BASE_ATTR_SIZE); 1980 1981 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 1982 if (error) { 1983 zfs_dirent_unlock(dl); 1984 if (error == ERESTART) { 1985 waited = B_TRUE; 1986 dmu_tx_wait(tx); 1987 dmu_tx_abort(tx); 1988 goto top; 1989 } 1990 zfs_acl_ids_free(&acl_ids); 1991 dmu_tx_abort(tx); 1992 ZFS_EXIT(zfsvfs); 1993 return (error); 1994 } 1995 1996 /* 1997 * Create new node. 1998 */ 1999 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 2000 2001 if (fuid_dirtied) 2002 zfs_fuid_sync(zfsvfs, tx); 2003 2004 /* 2005 * Now put new name in parent dir. 2006 */ 2007 (void) zfs_link_create(dl, zp, tx, ZNEW); 2008 2009 *vpp = ZTOV(zp); 2010 2011 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 2012 if (flags & FIGNORECASE) 2013 txtype |= TX_CI; 2014 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 2015 acl_ids.z_fuidp, vap); 2016 2017 zfs_acl_ids_free(&acl_ids); 2018 2019 dmu_tx_commit(tx); 2020 2021 zfs_dirent_unlock(dl); 2022 2023 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2024 zil_commit(zilog, 0); 2025 2026 ZFS_EXIT(zfsvfs); 2027 return (0); 2028 } 2029 2030 /* 2031 * Remove a directory subdir entry. If the current working 2032 * directory is the same as the subdir to be removed, the 2033 * remove will fail. 2034 * 2035 * IN: dvp - vnode of directory to remove from. 2036 * name - name of directory to be removed. 2037 * cwd - vnode of current working directory. 2038 * cr - credentials of caller. 2039 * ct - caller context 2040 * flags - case flags 2041 * 2042 * RETURN: 0 on success, error code on failure. 2043 * 2044 * Timestamps: 2045 * dvp - ctime|mtime updated 2046 */ 2047 /*ARGSUSED*/ 2048 static int 2049 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 2050 caller_context_t *ct, int flags) 2051 { 2052 znode_t *dzp = VTOZ(dvp); 2053 znode_t *zp; 2054 vnode_t *vp; 2055 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 2056 zilog_t *zilog; 2057 zfs_dirlock_t *dl; 2058 dmu_tx_t *tx; 2059 int error; 2060 int zflg = ZEXISTS; 2061 boolean_t waited = B_FALSE; 2062 2063 ZFS_ENTER(zfsvfs); 2064 ZFS_VERIFY_ZP(dzp); 2065 zilog = zfsvfs->z_log; 2066 2067 if (flags & FIGNORECASE) 2068 zflg |= ZCILOOK; 2069 top: 2070 zp = NULL; 2071 2072 /* 2073 * Attempt to lock directory; fail if entry doesn't exist. 2074 */ 2075 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 2076 NULL, NULL)) { 2077 ZFS_EXIT(zfsvfs); 2078 return (error); 2079 } 2080 2081 vp = ZTOV(zp); 2082 2083 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 2084 goto out; 2085 } 2086 2087 if (vp->v_type != VDIR) { 2088 error = SET_ERROR(ENOTDIR); 2089 goto out; 2090 } 2091 2092 if (vp == cwd) { 2093 error = SET_ERROR(EINVAL); 2094 goto out; 2095 } 2096 2097 vnevent_rmdir(vp, dvp, name, ct); 2098 2099 /* 2100 * Grab a lock on the directory to make sure that noone is 2101 * trying to add (or lookup) entries while we are removing it. 2102 */ 2103 rw_enter(&zp->z_name_lock, RW_WRITER); 2104 2105 /* 2106 * Grab a lock on the parent pointer to make sure we play well 2107 * with the treewalk and directory rename code. 2108 */ 2109 rw_enter(&zp->z_parent_lock, RW_WRITER); 2110 2111 tx = dmu_tx_create(zfsvfs->z_os); 2112 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2113 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2114 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2115 zfs_sa_upgrade_txholds(tx, zp); 2116 zfs_sa_upgrade_txholds(tx, dzp); 2117 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 2118 if (error) { 2119 rw_exit(&zp->z_parent_lock); 2120 rw_exit(&zp->z_name_lock); 2121 zfs_dirent_unlock(dl); 2122 VN_RELE(vp); 2123 if (error == ERESTART) { 2124 waited = B_TRUE; 2125 dmu_tx_wait(tx); 2126 dmu_tx_abort(tx); 2127 goto top; 2128 } 2129 dmu_tx_abort(tx); 2130 ZFS_EXIT(zfsvfs); 2131 return (error); 2132 } 2133 2134 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2135 2136 if (error == 0) { 2137 uint64_t txtype = TX_RMDIR; 2138 if (flags & FIGNORECASE) 2139 txtype |= TX_CI; 2140 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2141 } 2142 2143 dmu_tx_commit(tx); 2144 2145 rw_exit(&zp->z_parent_lock); 2146 rw_exit(&zp->z_name_lock); 2147 out: 2148 zfs_dirent_unlock(dl); 2149 2150 VN_RELE(vp); 2151 2152 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2153 zil_commit(zilog, 0); 2154 2155 ZFS_EXIT(zfsvfs); 2156 return (error); 2157 } 2158 2159 /* 2160 * Read as many directory entries as will fit into the provided 2161 * buffer from the given directory cursor position (specified in 2162 * the uio structure). 2163 * 2164 * IN: vp - vnode of directory to read. 2165 * uio - structure supplying read location, range info, 2166 * and return buffer. 2167 * cr - credentials of caller. 2168 * ct - caller context 2169 * flags - case flags 2170 * 2171 * OUT: uio - updated offset and range, buffer filled. 2172 * eofp - set to true if end-of-file detected. 2173 * 2174 * RETURN: 0 on success, error code on failure. 2175 * 2176 * Timestamps: 2177 * vp - atime updated 2178 * 2179 * Note that the low 4 bits of the cookie returned by zap is always zero. 2180 * This allows us to use the low range for "special" directory entries: 2181 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2182 * we use the offset 2 for the '.zfs' directory. 2183 */ 2184 /* ARGSUSED */ 2185 static int 2186 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2187 caller_context_t *ct, int flags) 2188 { 2189 znode_t *zp = VTOZ(vp); 2190 iovec_t *iovp; 2191 edirent_t *eodp; 2192 dirent64_t *odp; 2193 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2194 objset_t *os; 2195 caddr_t outbuf; 2196 size_t bufsize; 2197 zap_cursor_t zc; 2198 zap_attribute_t zap; 2199 uint_t bytes_wanted; 2200 uint64_t offset; /* must be unsigned; checks for < 1 */ 2201 uint64_t parent; 2202 int local_eof; 2203 int outcount; 2204 int error; 2205 uint8_t prefetch; 2206 boolean_t check_sysattrs; 2207 2208 ZFS_ENTER(zfsvfs); 2209 ZFS_VERIFY_ZP(zp); 2210 2211 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2212 &parent, sizeof (parent))) != 0) { 2213 ZFS_EXIT(zfsvfs); 2214 return (error); 2215 } 2216 2217 /* 2218 * If we are not given an eof variable, 2219 * use a local one. 2220 */ 2221 if (eofp == NULL) 2222 eofp = &local_eof; 2223 2224 /* 2225 * Check for valid iov_len. 2226 */ 2227 if (uio->uio_iov->iov_len <= 0) { 2228 ZFS_EXIT(zfsvfs); 2229 return (SET_ERROR(EINVAL)); 2230 } 2231 2232 /* 2233 * Quit if directory has been removed (posix) 2234 */ 2235 if ((*eofp = zp->z_unlinked) != 0) { 2236 ZFS_EXIT(zfsvfs); 2237 return (0); 2238 } 2239 2240 error = 0; 2241 os = zfsvfs->z_os; 2242 offset = uio->uio_loffset; 2243 prefetch = zp->z_zn_prefetch; 2244 2245 /* 2246 * Initialize the iterator cursor. 2247 */ 2248 if (offset <= 3) { 2249 /* 2250 * Start iteration from the beginning of the directory. 2251 */ 2252 zap_cursor_init(&zc, os, zp->z_id); 2253 } else { 2254 /* 2255 * The offset is a serialized cursor. 2256 */ 2257 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2258 } 2259 2260 /* 2261 * Get space to change directory entries into fs independent format. 2262 */ 2263 iovp = uio->uio_iov; 2264 bytes_wanted = iovp->iov_len; 2265 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2266 bufsize = bytes_wanted; 2267 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2268 odp = (struct dirent64 *)outbuf; 2269 } else { 2270 bufsize = bytes_wanted; 2271 outbuf = NULL; 2272 odp = (struct dirent64 *)iovp->iov_base; 2273 } 2274 eodp = (struct edirent *)odp; 2275 2276 /* 2277 * If this VFS supports the system attribute view interface; and 2278 * we're looking at an extended attribute directory; and we care 2279 * about normalization conflicts on this vfs; then we must check 2280 * for normalization conflicts with the sysattr name space. 2281 */ 2282 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2283 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2284 (flags & V_RDDIR_ENTFLAGS); 2285 2286 /* 2287 * Transform to file-system independent format 2288 */ 2289 outcount = 0; 2290 while (outcount < bytes_wanted) { 2291 ino64_t objnum; 2292 ushort_t reclen; 2293 off64_t *next = NULL; 2294 2295 /* 2296 * Special case `.', `..', and `.zfs'. 2297 */ 2298 if (offset == 0) { 2299 (void) strcpy(zap.za_name, "."); 2300 zap.za_normalization_conflict = 0; 2301 objnum = zp->z_id; 2302 } else if (offset == 1) { 2303 (void) strcpy(zap.za_name, ".."); 2304 zap.za_normalization_conflict = 0; 2305 objnum = parent; 2306 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2307 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2308 zap.za_normalization_conflict = 0; 2309 objnum = ZFSCTL_INO_ROOT; 2310 } else { 2311 /* 2312 * Grab next entry. 2313 */ 2314 if (error = zap_cursor_retrieve(&zc, &zap)) { 2315 if ((*eofp = (error == ENOENT)) != 0) 2316 break; 2317 else 2318 goto update; 2319 } 2320 2321 if (zap.za_integer_length != 8 || 2322 zap.za_num_integers != 1) { 2323 cmn_err(CE_WARN, "zap_readdir: bad directory " 2324 "entry, obj = %lld, offset = %lld\n", 2325 (u_longlong_t)zp->z_id, 2326 (u_longlong_t)offset); 2327 error = SET_ERROR(ENXIO); 2328 goto update; 2329 } 2330 2331 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2332 /* 2333 * MacOS X can extract the object type here such as: 2334 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2335 */ 2336 2337 if (check_sysattrs && !zap.za_normalization_conflict) { 2338 zap.za_normalization_conflict = 2339 xattr_sysattr_casechk(zap.za_name); 2340 } 2341 } 2342 2343 if (flags & V_RDDIR_ACCFILTER) { 2344 /* 2345 * If we have no access at all, don't include 2346 * this entry in the returned information 2347 */ 2348 znode_t *ezp; 2349 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2350 goto skip_entry; 2351 if (!zfs_has_access(ezp, cr)) { 2352 VN_RELE(ZTOV(ezp)); 2353 goto skip_entry; 2354 } 2355 VN_RELE(ZTOV(ezp)); 2356 } 2357 2358 if (flags & V_RDDIR_ENTFLAGS) 2359 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2360 else 2361 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2362 2363 /* 2364 * Will this entry fit in the buffer? 2365 */ 2366 if (outcount + reclen > bufsize) { 2367 /* 2368 * Did we manage to fit anything in the buffer? 2369 */ 2370 if (!outcount) { 2371 error = SET_ERROR(EINVAL); 2372 goto update; 2373 } 2374 break; 2375 } 2376 if (flags & V_RDDIR_ENTFLAGS) { 2377 /* 2378 * Add extended flag entry: 2379 */ 2380 eodp->ed_ino = objnum; 2381 eodp->ed_reclen = reclen; 2382 /* NOTE: ed_off is the offset for the *next* entry */ 2383 next = &(eodp->ed_off); 2384 eodp->ed_eflags = zap.za_normalization_conflict ? 2385 ED_CASE_CONFLICT : 0; 2386 (void) strncpy(eodp->ed_name, zap.za_name, 2387 EDIRENT_NAMELEN(reclen)); 2388 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2389 } else { 2390 /* 2391 * Add normal entry: 2392 */ 2393 odp->d_ino = objnum; 2394 odp->d_reclen = reclen; 2395 /* NOTE: d_off is the offset for the *next* entry */ 2396 next = &(odp->d_off); 2397 (void) strncpy(odp->d_name, zap.za_name, 2398 DIRENT64_NAMELEN(reclen)); 2399 odp = (dirent64_t *)((intptr_t)odp + reclen); 2400 } 2401 outcount += reclen; 2402 2403 ASSERT(outcount <= bufsize); 2404 2405 /* Prefetch znode */ 2406 if (prefetch) 2407 dmu_prefetch(os, objnum, 0, 0, 0, 2408 ZIO_PRIORITY_SYNC_READ); 2409 2410 skip_entry: 2411 /* 2412 * Move to the next entry, fill in the previous offset. 2413 */ 2414 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2415 zap_cursor_advance(&zc); 2416 offset = zap_cursor_serialize(&zc); 2417 } else { 2418 offset += 1; 2419 } 2420 if (next) 2421 *next = offset; 2422 } 2423 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2424 2425 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2426 iovp->iov_base += outcount; 2427 iovp->iov_len -= outcount; 2428 uio->uio_resid -= outcount; 2429 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2430 /* 2431 * Reset the pointer. 2432 */ 2433 offset = uio->uio_loffset; 2434 } 2435 2436 update: 2437 zap_cursor_fini(&zc); 2438 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2439 kmem_free(outbuf, bufsize); 2440 2441 if (error == ENOENT) 2442 error = 0; 2443 2444 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2445 2446 uio->uio_loffset = offset; 2447 ZFS_EXIT(zfsvfs); 2448 return (error); 2449 } 2450 2451 ulong_t zfs_fsync_sync_cnt = 4; 2452 2453 static int 2454 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2455 { 2456 znode_t *zp = VTOZ(vp); 2457 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2458 2459 /* 2460 * Regardless of whether this is required for standards conformance, 2461 * this is the logical behavior when fsync() is called on a file with 2462 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2463 * going to be pushed out as part of the zil_commit(). 2464 */ 2465 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2466 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2467 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2468 2469 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2470 2471 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2472 ZFS_ENTER(zfsvfs); 2473 ZFS_VERIFY_ZP(zp); 2474 zil_commit(zfsvfs->z_log, zp->z_id); 2475 ZFS_EXIT(zfsvfs); 2476 } 2477 return (0); 2478 } 2479 2480 2481 /* 2482 * Get the requested file attributes and place them in the provided 2483 * vattr structure. 2484 * 2485 * IN: vp - vnode of file. 2486 * vap - va_mask identifies requested attributes. 2487 * If AT_XVATTR set, then optional attrs are requested 2488 * flags - ATTR_NOACLCHECK (CIFS server context) 2489 * cr - credentials of caller. 2490 * ct - caller context 2491 * 2492 * OUT: vap - attribute values. 2493 * 2494 * RETURN: 0 (always succeeds). 2495 */ 2496 /* ARGSUSED */ 2497 static int 2498 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2499 caller_context_t *ct) 2500 { 2501 znode_t *zp = VTOZ(vp); 2502 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2503 int error = 0; 2504 uint64_t links; 2505 uint64_t mtime[2], ctime[2]; 2506 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2507 xoptattr_t *xoap = NULL; 2508 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2509 sa_bulk_attr_t bulk[2]; 2510 int count = 0; 2511 2512 ZFS_ENTER(zfsvfs); 2513 ZFS_VERIFY_ZP(zp); 2514 2515 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2516 2517 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2518 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2519 2520 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2521 ZFS_EXIT(zfsvfs); 2522 return (error); 2523 } 2524 2525 /* 2526 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2527 * Also, if we are the owner don't bother, since owner should 2528 * always be allowed to read basic attributes of file. 2529 */ 2530 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && 2531 (vap->va_uid != crgetuid(cr))) { 2532 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2533 skipaclchk, cr)) { 2534 ZFS_EXIT(zfsvfs); 2535 return (error); 2536 } 2537 } 2538 2539 /* 2540 * Return all attributes. It's cheaper to provide the answer 2541 * than to determine whether we were asked the question. 2542 */ 2543 2544 mutex_enter(&zp->z_lock); 2545 vap->va_type = vp->v_type; 2546 vap->va_mode = zp->z_mode & MODEMASK; 2547 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2548 vap->va_nodeid = zp->z_id; 2549 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2550 links = zp->z_links + 1; 2551 else 2552 links = zp->z_links; 2553 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2554 vap->va_size = zp->z_size; 2555 vap->va_rdev = vp->v_rdev; 2556 vap->va_seq = zp->z_seq; 2557 2558 /* 2559 * Add in any requested optional attributes and the create time. 2560 * Also set the corresponding bits in the returned attribute bitmap. 2561 */ 2562 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2563 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2564 xoap->xoa_archive = 2565 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2566 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2567 } 2568 2569 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2570 xoap->xoa_readonly = 2571 ((zp->z_pflags & ZFS_READONLY) != 0); 2572 XVA_SET_RTN(xvap, XAT_READONLY); 2573 } 2574 2575 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2576 xoap->xoa_system = 2577 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2578 XVA_SET_RTN(xvap, XAT_SYSTEM); 2579 } 2580 2581 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2582 xoap->xoa_hidden = 2583 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2584 XVA_SET_RTN(xvap, XAT_HIDDEN); 2585 } 2586 2587 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2588 xoap->xoa_nounlink = 2589 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2590 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2591 } 2592 2593 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2594 xoap->xoa_immutable = 2595 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2596 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2597 } 2598 2599 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2600 xoap->xoa_appendonly = 2601 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2602 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2603 } 2604 2605 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2606 xoap->xoa_nodump = 2607 ((zp->z_pflags & ZFS_NODUMP) != 0); 2608 XVA_SET_RTN(xvap, XAT_NODUMP); 2609 } 2610 2611 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2612 xoap->xoa_opaque = 2613 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2614 XVA_SET_RTN(xvap, XAT_OPAQUE); 2615 } 2616 2617 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2618 xoap->xoa_av_quarantined = 2619 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2620 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2621 } 2622 2623 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2624 xoap->xoa_av_modified = 2625 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2626 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2627 } 2628 2629 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2630 vp->v_type == VREG) { 2631 zfs_sa_get_scanstamp(zp, xvap); 2632 } 2633 2634 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2635 uint64_t times[2]; 2636 2637 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2638 times, sizeof (times)); 2639 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2640 XVA_SET_RTN(xvap, XAT_CREATETIME); 2641 } 2642 2643 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2644 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2645 XVA_SET_RTN(xvap, XAT_REPARSE); 2646 } 2647 if (XVA_ISSET_REQ(xvap, XAT_GEN)) { 2648 xoap->xoa_generation = zp->z_gen; 2649 XVA_SET_RTN(xvap, XAT_GEN); 2650 } 2651 2652 if (XVA_ISSET_REQ(xvap, XAT_OFFLINE)) { 2653 xoap->xoa_offline = 2654 ((zp->z_pflags & ZFS_OFFLINE) != 0); 2655 XVA_SET_RTN(xvap, XAT_OFFLINE); 2656 } 2657 2658 if (XVA_ISSET_REQ(xvap, XAT_SPARSE)) { 2659 xoap->xoa_sparse = 2660 ((zp->z_pflags & ZFS_SPARSE) != 0); 2661 XVA_SET_RTN(xvap, XAT_SPARSE); 2662 } 2663 } 2664 2665 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2666 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2667 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2668 2669 mutex_exit(&zp->z_lock); 2670 2671 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2672 2673 if (zp->z_blksz == 0) { 2674 /* 2675 * Block size hasn't been set; suggest maximal I/O transfers. 2676 */ 2677 vap->va_blksize = zfsvfs->z_max_blksz; 2678 } 2679 2680 ZFS_EXIT(zfsvfs); 2681 return (0); 2682 } 2683 2684 /* 2685 * Set the file attributes to the values contained in the 2686 * vattr structure. 2687 * 2688 * IN: vp - vnode of file to be modified. 2689 * vap - new attribute values. 2690 * If AT_XVATTR set, then optional attrs are being set 2691 * flags - ATTR_UTIME set if non-default time values provided. 2692 * - ATTR_NOACLCHECK (CIFS context only). 2693 * cr - credentials of caller. 2694 * ct - caller context 2695 * 2696 * RETURN: 0 on success, error code on failure. 2697 * 2698 * Timestamps: 2699 * vp - ctime updated, mtime updated if size changed. 2700 */ 2701 /* ARGSUSED */ 2702 static int 2703 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2704 caller_context_t *ct) 2705 { 2706 znode_t *zp = VTOZ(vp); 2707 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2708 zilog_t *zilog; 2709 dmu_tx_t *tx; 2710 vattr_t oldva; 2711 xvattr_t tmpxvattr; 2712 uint_t mask = vap->va_mask; 2713 uint_t saved_mask = 0; 2714 int trim_mask = 0; 2715 uint64_t new_mode; 2716 uint64_t new_uid, new_gid; 2717 uint64_t xattr_obj; 2718 uint64_t mtime[2], ctime[2]; 2719 znode_t *attrzp; 2720 int need_policy = FALSE; 2721 int err, err2; 2722 zfs_fuid_info_t *fuidp = NULL; 2723 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2724 xoptattr_t *xoap; 2725 zfs_acl_t *aclp; 2726 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2727 boolean_t fuid_dirtied = B_FALSE; 2728 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2729 int count = 0, xattr_count = 0; 2730 2731 if (mask == 0) 2732 return (0); 2733 2734 if (mask & AT_NOSET) 2735 return (SET_ERROR(EINVAL)); 2736 2737 ZFS_ENTER(zfsvfs); 2738 ZFS_VERIFY_ZP(zp); 2739 2740 zilog = zfsvfs->z_log; 2741 2742 /* 2743 * Make sure that if we have ephemeral uid/gid or xvattr specified 2744 * that file system is at proper version level 2745 */ 2746 2747 if (zfsvfs->z_use_fuids == B_FALSE && 2748 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2749 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2750 (mask & AT_XVATTR))) { 2751 ZFS_EXIT(zfsvfs); 2752 return (SET_ERROR(EINVAL)); 2753 } 2754 2755 if (mask & AT_SIZE && vp->v_type == VDIR) { 2756 ZFS_EXIT(zfsvfs); 2757 return (SET_ERROR(EISDIR)); 2758 } 2759 2760 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2761 ZFS_EXIT(zfsvfs); 2762 return (SET_ERROR(EINVAL)); 2763 } 2764 2765 /* 2766 * If this is an xvattr_t, then get a pointer to the structure of 2767 * optional attributes. If this is NULL, then we have a vattr_t. 2768 */ 2769 xoap = xva_getxoptattr(xvap); 2770 2771 xva_init(&tmpxvattr); 2772 2773 /* 2774 * Immutable files can only alter immutable bit and atime 2775 */ 2776 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2777 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2778 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2779 ZFS_EXIT(zfsvfs); 2780 return (SET_ERROR(EPERM)); 2781 } 2782 2783 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2784 ZFS_EXIT(zfsvfs); 2785 return (SET_ERROR(EPERM)); 2786 } 2787 2788 /* 2789 * Verify timestamps doesn't overflow 32 bits. 2790 * ZFS can handle large timestamps, but 32bit syscalls can't 2791 * handle times greater than 2039. This check should be removed 2792 * once large timestamps are fully supported. 2793 */ 2794 if (mask & (AT_ATIME | AT_MTIME)) { 2795 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2796 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2797 ZFS_EXIT(zfsvfs); 2798 return (SET_ERROR(EOVERFLOW)); 2799 } 2800 } 2801 2802 top: 2803 attrzp = NULL; 2804 aclp = NULL; 2805 2806 /* Can this be moved to before the top label? */ 2807 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2808 ZFS_EXIT(zfsvfs); 2809 return (SET_ERROR(EROFS)); 2810 } 2811 2812 /* 2813 * First validate permissions 2814 */ 2815 2816 if (mask & AT_SIZE) { 2817 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2818 if (err) { 2819 ZFS_EXIT(zfsvfs); 2820 return (err); 2821 } 2822 /* 2823 * XXX - Note, we are not providing any open 2824 * mode flags here (like FNDELAY), so we may 2825 * block if there are locks present... this 2826 * should be addressed in openat(). 2827 */ 2828 /* XXX - would it be OK to generate a log record here? */ 2829 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2830 if (err) { 2831 ZFS_EXIT(zfsvfs); 2832 return (err); 2833 } 2834 2835 if (vap->va_size == 0) 2836 vnevent_truncate(ZTOV(zp), ct); 2837 } 2838 2839 if (mask & (AT_ATIME|AT_MTIME) || 2840 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2841 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2842 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2843 XVA_ISSET_REQ(xvap, XAT_OFFLINE) || 2844 XVA_ISSET_REQ(xvap, XAT_SPARSE) || 2845 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2846 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2847 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2848 skipaclchk, cr); 2849 } 2850 2851 if (mask & (AT_UID|AT_GID)) { 2852 int idmask = (mask & (AT_UID|AT_GID)); 2853 int take_owner; 2854 int take_group; 2855 2856 /* 2857 * NOTE: even if a new mode is being set, 2858 * we may clear S_ISUID/S_ISGID bits. 2859 */ 2860 2861 if (!(mask & AT_MODE)) 2862 vap->va_mode = zp->z_mode; 2863 2864 /* 2865 * Take ownership or chgrp to group we are a member of 2866 */ 2867 2868 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2869 take_group = (mask & AT_GID) && 2870 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2871 2872 /* 2873 * If both AT_UID and AT_GID are set then take_owner and 2874 * take_group must both be set in order to allow taking 2875 * ownership. 2876 * 2877 * Otherwise, send the check through secpolicy_vnode_setattr() 2878 * 2879 */ 2880 2881 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2882 ((idmask == AT_UID) && take_owner) || 2883 ((idmask == AT_GID) && take_group)) { 2884 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2885 skipaclchk, cr) == 0) { 2886 /* 2887 * Remove setuid/setgid for non-privileged users 2888 */ 2889 secpolicy_setid_clear(vap, cr); 2890 trim_mask = (mask & (AT_UID|AT_GID)); 2891 } else { 2892 need_policy = TRUE; 2893 } 2894 } else { 2895 need_policy = TRUE; 2896 } 2897 } 2898 2899 mutex_enter(&zp->z_lock); 2900 oldva.va_mode = zp->z_mode; 2901 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2902 if (mask & AT_XVATTR) { 2903 /* 2904 * Update xvattr mask to include only those attributes 2905 * that are actually changing. 2906 * 2907 * the bits will be restored prior to actually setting 2908 * the attributes so the caller thinks they were set. 2909 */ 2910 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2911 if (xoap->xoa_appendonly != 2912 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2913 need_policy = TRUE; 2914 } else { 2915 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2916 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2917 } 2918 } 2919 2920 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2921 if (xoap->xoa_nounlink != 2922 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2923 need_policy = TRUE; 2924 } else { 2925 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2926 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2927 } 2928 } 2929 2930 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2931 if (xoap->xoa_immutable != 2932 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2933 need_policy = TRUE; 2934 } else { 2935 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2936 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2937 } 2938 } 2939 2940 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2941 if (xoap->xoa_nodump != 2942 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2943 need_policy = TRUE; 2944 } else { 2945 XVA_CLR_REQ(xvap, XAT_NODUMP); 2946 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2947 } 2948 } 2949 2950 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2951 if (xoap->xoa_av_modified != 2952 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2953 need_policy = TRUE; 2954 } else { 2955 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2956 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2957 } 2958 } 2959 2960 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2961 if ((vp->v_type != VREG && 2962 xoap->xoa_av_quarantined) || 2963 xoap->xoa_av_quarantined != 2964 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2965 need_policy = TRUE; 2966 } else { 2967 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2968 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2969 } 2970 } 2971 2972 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2973 mutex_exit(&zp->z_lock); 2974 ZFS_EXIT(zfsvfs); 2975 return (SET_ERROR(EPERM)); 2976 } 2977 2978 if (need_policy == FALSE && 2979 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2980 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2981 need_policy = TRUE; 2982 } 2983 } 2984 2985 mutex_exit(&zp->z_lock); 2986 2987 if (mask & AT_MODE) { 2988 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2989 err = secpolicy_setid_setsticky_clear(vp, vap, 2990 &oldva, cr); 2991 if (err) { 2992 ZFS_EXIT(zfsvfs); 2993 return (err); 2994 } 2995 trim_mask |= AT_MODE; 2996 } else { 2997 need_policy = TRUE; 2998 } 2999 } 3000 3001 if (need_policy) { 3002 /* 3003 * If trim_mask is set then take ownership 3004 * has been granted or write_acl is present and user 3005 * has the ability to modify mode. In that case remove 3006 * UID|GID and or MODE from mask so that 3007 * secpolicy_vnode_setattr() doesn't revoke it. 3008 */ 3009 3010 if (trim_mask) { 3011 saved_mask = vap->va_mask; 3012 vap->va_mask &= ~trim_mask; 3013 } 3014 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 3015 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 3016 if (err) { 3017 ZFS_EXIT(zfsvfs); 3018 return (err); 3019 } 3020 3021 if (trim_mask) 3022 vap->va_mask |= saved_mask; 3023 } 3024 3025 /* 3026 * secpolicy_vnode_setattr, or take ownership may have 3027 * changed va_mask 3028 */ 3029 mask = vap->va_mask; 3030 3031 if ((mask & (AT_UID | AT_GID))) { 3032 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 3033 &xattr_obj, sizeof (xattr_obj)); 3034 3035 if (err == 0 && xattr_obj) { 3036 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 3037 if (err) 3038 goto out2; 3039 } 3040 if (mask & AT_UID) { 3041 new_uid = zfs_fuid_create(zfsvfs, 3042 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 3043 if (new_uid != zp->z_uid && 3044 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 3045 if (attrzp) 3046 VN_RELE(ZTOV(attrzp)); 3047 err = SET_ERROR(EDQUOT); 3048 goto out2; 3049 } 3050 } 3051 3052 if (mask & AT_GID) { 3053 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 3054 cr, ZFS_GROUP, &fuidp); 3055 if (new_gid != zp->z_gid && 3056 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 3057 if (attrzp) 3058 VN_RELE(ZTOV(attrzp)); 3059 err = SET_ERROR(EDQUOT); 3060 goto out2; 3061 } 3062 } 3063 } 3064 tx = dmu_tx_create(zfsvfs->z_os); 3065 3066 if (mask & AT_MODE) { 3067 uint64_t pmode = zp->z_mode; 3068 uint64_t acl_obj; 3069 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 3070 3071 if (zp->z_zfsvfs->z_acl_mode == ZFS_ACL_RESTRICTED && 3072 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) { 3073 err = SET_ERROR(EPERM); 3074 goto out; 3075 } 3076 3077 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 3078 goto out; 3079 3080 mutex_enter(&zp->z_lock); 3081 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 3082 /* 3083 * Are we upgrading ACL from old V0 format 3084 * to V1 format? 3085 */ 3086 if (zfsvfs->z_version >= ZPL_VERSION_FUID && 3087 zfs_znode_acl_version(zp) == 3088 ZFS_ACL_VERSION_INITIAL) { 3089 dmu_tx_hold_free(tx, acl_obj, 0, 3090 DMU_OBJECT_END); 3091 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3092 0, aclp->z_acl_bytes); 3093 } else { 3094 dmu_tx_hold_write(tx, acl_obj, 0, 3095 aclp->z_acl_bytes); 3096 } 3097 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3098 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 3099 0, aclp->z_acl_bytes); 3100 } 3101 mutex_exit(&zp->z_lock); 3102 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3103 } else { 3104 if ((mask & AT_XVATTR) && 3105 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3106 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 3107 else 3108 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 3109 } 3110 3111 if (attrzp) { 3112 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 3113 } 3114 3115 fuid_dirtied = zfsvfs->z_fuid_dirty; 3116 if (fuid_dirtied) 3117 zfs_fuid_txhold(zfsvfs, tx); 3118 3119 zfs_sa_upgrade_txholds(tx, zp); 3120 3121 err = dmu_tx_assign(tx, TXG_WAIT); 3122 if (err) 3123 goto out; 3124 3125 count = 0; 3126 /* 3127 * Set each attribute requested. 3128 * We group settings according to the locks they need to acquire. 3129 * 3130 * Note: you cannot set ctime directly, although it will be 3131 * updated as a side-effect of calling this function. 3132 */ 3133 3134 3135 if (mask & (AT_UID|AT_GID|AT_MODE)) 3136 mutex_enter(&zp->z_acl_lock); 3137 mutex_enter(&zp->z_lock); 3138 3139 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3140 &zp->z_pflags, sizeof (zp->z_pflags)); 3141 3142 if (attrzp) { 3143 if (mask & (AT_UID|AT_GID|AT_MODE)) 3144 mutex_enter(&attrzp->z_acl_lock); 3145 mutex_enter(&attrzp->z_lock); 3146 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3147 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3148 sizeof (attrzp->z_pflags)); 3149 } 3150 3151 if (mask & (AT_UID|AT_GID)) { 3152 3153 if (mask & AT_UID) { 3154 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3155 &new_uid, sizeof (new_uid)); 3156 zp->z_uid = new_uid; 3157 if (attrzp) { 3158 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3159 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3160 sizeof (new_uid)); 3161 attrzp->z_uid = new_uid; 3162 } 3163 } 3164 3165 if (mask & AT_GID) { 3166 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3167 NULL, &new_gid, sizeof (new_gid)); 3168 zp->z_gid = new_gid; 3169 if (attrzp) { 3170 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3171 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3172 sizeof (new_gid)); 3173 attrzp->z_gid = new_gid; 3174 } 3175 } 3176 if (!(mask & AT_MODE)) { 3177 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3178 NULL, &new_mode, sizeof (new_mode)); 3179 new_mode = zp->z_mode; 3180 } 3181 err = zfs_acl_chown_setattr(zp); 3182 ASSERT(err == 0); 3183 if (attrzp) { 3184 err = zfs_acl_chown_setattr(attrzp); 3185 ASSERT(err == 0); 3186 } 3187 } 3188 3189 if (mask & AT_MODE) { 3190 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3191 &new_mode, sizeof (new_mode)); 3192 zp->z_mode = new_mode; 3193 ASSERT3U((uintptr_t)aclp, !=, NULL); 3194 err = zfs_aclset_common(zp, aclp, cr, tx); 3195 ASSERT0(err); 3196 if (zp->z_acl_cached) 3197 zfs_acl_free(zp->z_acl_cached); 3198 zp->z_acl_cached = aclp; 3199 aclp = NULL; 3200 } 3201 3202 3203 if (mask & AT_ATIME) { 3204 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3205 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3206 &zp->z_atime, sizeof (zp->z_atime)); 3207 } 3208 3209 if (mask & AT_MTIME) { 3210 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3211 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3212 mtime, sizeof (mtime)); 3213 } 3214 3215 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3216 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3217 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3218 NULL, mtime, sizeof (mtime)); 3219 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3220 &ctime, sizeof (ctime)); 3221 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3222 B_TRUE); 3223 } else if (mask != 0) { 3224 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3225 &ctime, sizeof (ctime)); 3226 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3227 B_TRUE); 3228 if (attrzp) { 3229 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3230 SA_ZPL_CTIME(zfsvfs), NULL, 3231 &ctime, sizeof (ctime)); 3232 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3233 mtime, ctime, B_TRUE); 3234 } 3235 } 3236 /* 3237 * Do this after setting timestamps to prevent timestamp 3238 * update from toggling bit 3239 */ 3240 3241 if (xoap && (mask & AT_XVATTR)) { 3242 3243 /* 3244 * restore trimmed off masks 3245 * so that return masks can be set for caller. 3246 */ 3247 3248 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3249 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3250 } 3251 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3252 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3253 } 3254 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3255 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3256 } 3257 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3258 XVA_SET_REQ(xvap, XAT_NODUMP); 3259 } 3260 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3261 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3262 } 3263 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3264 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3265 } 3266 3267 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3268 ASSERT(vp->v_type == VREG); 3269 3270 zfs_xvattr_set(zp, xvap, tx); 3271 } 3272 3273 if (fuid_dirtied) 3274 zfs_fuid_sync(zfsvfs, tx); 3275 3276 if (mask != 0) 3277 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3278 3279 mutex_exit(&zp->z_lock); 3280 if (mask & (AT_UID|AT_GID|AT_MODE)) 3281 mutex_exit(&zp->z_acl_lock); 3282 3283 if (attrzp) { 3284 if (mask & (AT_UID|AT_GID|AT_MODE)) 3285 mutex_exit(&attrzp->z_acl_lock); 3286 mutex_exit(&attrzp->z_lock); 3287 } 3288 out: 3289 if (err == 0 && attrzp) { 3290 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3291 xattr_count, tx); 3292 ASSERT(err2 == 0); 3293 } 3294 3295 if (attrzp) 3296 VN_RELE(ZTOV(attrzp)); 3297 3298 if (aclp) 3299 zfs_acl_free(aclp); 3300 3301 if (fuidp) { 3302 zfs_fuid_info_free(fuidp); 3303 fuidp = NULL; 3304 } 3305 3306 if (err) { 3307 dmu_tx_abort(tx); 3308 if (err == ERESTART) 3309 goto top; 3310 } else { 3311 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3312 dmu_tx_commit(tx); 3313 } 3314 3315 out2: 3316 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3317 zil_commit(zilog, 0); 3318 3319 ZFS_EXIT(zfsvfs); 3320 return (err); 3321 } 3322 3323 typedef struct zfs_zlock { 3324 krwlock_t *zl_rwlock; /* lock we acquired */ 3325 znode_t *zl_znode; /* znode we held */ 3326 struct zfs_zlock *zl_next; /* next in list */ 3327 } zfs_zlock_t; 3328 3329 /* 3330 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3331 */ 3332 static void 3333 zfs_rename_unlock(zfs_zlock_t **zlpp) 3334 { 3335 zfs_zlock_t *zl; 3336 3337 while ((zl = *zlpp) != NULL) { 3338 if (zl->zl_znode != NULL) 3339 VN_RELE(ZTOV(zl->zl_znode)); 3340 rw_exit(zl->zl_rwlock); 3341 *zlpp = zl->zl_next; 3342 kmem_free(zl, sizeof (*zl)); 3343 } 3344 } 3345 3346 /* 3347 * Search back through the directory tree, using the ".." entries. 3348 * Lock each directory in the chain to prevent concurrent renames. 3349 * Fail any attempt to move a directory into one of its own descendants. 3350 * XXX - z_parent_lock can overlap with map or grow locks 3351 */ 3352 static int 3353 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3354 { 3355 zfs_zlock_t *zl; 3356 znode_t *zp = tdzp; 3357 uint64_t rootid = zp->z_zfsvfs->z_root; 3358 uint64_t oidp = zp->z_id; 3359 krwlock_t *rwlp = &szp->z_parent_lock; 3360 krw_t rw = RW_WRITER; 3361 3362 /* 3363 * First pass write-locks szp and compares to zp->z_id. 3364 * Later passes read-lock zp and compare to zp->z_parent. 3365 */ 3366 do { 3367 if (!rw_tryenter(rwlp, rw)) { 3368 /* 3369 * Another thread is renaming in this path. 3370 * Note that if we are a WRITER, we don't have any 3371 * parent_locks held yet. 3372 */ 3373 if (rw == RW_READER && zp->z_id > szp->z_id) { 3374 /* 3375 * Drop our locks and restart 3376 */ 3377 zfs_rename_unlock(&zl); 3378 *zlpp = NULL; 3379 zp = tdzp; 3380 oidp = zp->z_id; 3381 rwlp = &szp->z_parent_lock; 3382 rw = RW_WRITER; 3383 continue; 3384 } else { 3385 /* 3386 * Wait for other thread to drop its locks 3387 */ 3388 rw_enter(rwlp, rw); 3389 } 3390 } 3391 3392 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3393 zl->zl_rwlock = rwlp; 3394 zl->zl_znode = NULL; 3395 zl->zl_next = *zlpp; 3396 *zlpp = zl; 3397 3398 if (oidp == szp->z_id) /* We're a descendant of szp */ 3399 return (SET_ERROR(EINVAL)); 3400 3401 if (oidp == rootid) /* We've hit the top */ 3402 return (0); 3403 3404 if (rw == RW_READER) { /* i.e. not the first pass */ 3405 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3406 if (error) 3407 return (error); 3408 zl->zl_znode = zp; 3409 } 3410 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3411 &oidp, sizeof (oidp)); 3412 rwlp = &zp->z_parent_lock; 3413 rw = RW_READER; 3414 3415 } while (zp->z_id != sdzp->z_id); 3416 3417 return (0); 3418 } 3419 3420 /* 3421 * Move an entry from the provided source directory to the target 3422 * directory. Change the entry name as indicated. 3423 * 3424 * IN: sdvp - Source directory containing the "old entry". 3425 * snm - Old entry name. 3426 * tdvp - Target directory to contain the "new entry". 3427 * tnm - New entry name. 3428 * cr - credentials of caller. 3429 * ct - caller context 3430 * flags - case flags 3431 * 3432 * RETURN: 0 on success, error code on failure. 3433 * 3434 * Timestamps: 3435 * sdvp,tdvp - ctime|mtime updated 3436 */ 3437 /*ARGSUSED*/ 3438 static int 3439 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3440 caller_context_t *ct, int flags) 3441 { 3442 znode_t *tdzp, *szp, *tzp; 3443 znode_t *sdzp = VTOZ(sdvp); 3444 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3445 zilog_t *zilog; 3446 vnode_t *realvp; 3447 zfs_dirlock_t *sdl, *tdl; 3448 dmu_tx_t *tx; 3449 zfs_zlock_t *zl; 3450 int cmp, serr, terr; 3451 int error = 0; 3452 int zflg = 0; 3453 boolean_t waited = B_FALSE; 3454 3455 ZFS_ENTER(zfsvfs); 3456 ZFS_VERIFY_ZP(sdzp); 3457 zilog = zfsvfs->z_log; 3458 3459 /* 3460 * Make sure we have the real vp for the target directory. 3461 */ 3462 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3463 tdvp = realvp; 3464 3465 tdzp = VTOZ(tdvp); 3466 ZFS_VERIFY_ZP(tdzp); 3467 3468 /* 3469 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 3470 * ctldir appear to have the same v_vfsp. 3471 */ 3472 if (tdzp->z_zfsvfs != zfsvfs || zfsctl_is_node(tdvp)) { 3473 ZFS_EXIT(zfsvfs); 3474 return (SET_ERROR(EXDEV)); 3475 } 3476 3477 if (zfsvfs->z_utf8 && u8_validate(tnm, 3478 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3479 ZFS_EXIT(zfsvfs); 3480 return (SET_ERROR(EILSEQ)); 3481 } 3482 3483 if (flags & FIGNORECASE) 3484 zflg |= ZCILOOK; 3485 3486 top: 3487 szp = NULL; 3488 tzp = NULL; 3489 zl = NULL; 3490 3491 /* 3492 * This is to prevent the creation of links into attribute space 3493 * by renaming a linked file into/outof an attribute directory. 3494 * See the comment in zfs_link() for why this is considered bad. 3495 */ 3496 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3497 ZFS_EXIT(zfsvfs); 3498 return (SET_ERROR(EINVAL)); 3499 } 3500 3501 /* 3502 * Lock source and target directory entries. To prevent deadlock, 3503 * a lock ordering must be defined. We lock the directory with 3504 * the smallest object id first, or if it's a tie, the one with 3505 * the lexically first name. 3506 */ 3507 if (sdzp->z_id < tdzp->z_id) { 3508 cmp = -1; 3509 } else if (sdzp->z_id > tdzp->z_id) { 3510 cmp = 1; 3511 } else { 3512 /* 3513 * First compare the two name arguments without 3514 * considering any case folding. 3515 */ 3516 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3517 3518 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3519 ASSERT(error == 0 || !zfsvfs->z_utf8); 3520 if (cmp == 0) { 3521 /* 3522 * POSIX: "If the old argument and the new argument 3523 * both refer to links to the same existing file, 3524 * the rename() function shall return successfully 3525 * and perform no other action." 3526 */ 3527 ZFS_EXIT(zfsvfs); 3528 return (0); 3529 } 3530 /* 3531 * If the file system is case-folding, then we may 3532 * have some more checking to do. A case-folding file 3533 * system is either supporting mixed case sensitivity 3534 * access or is completely case-insensitive. Note 3535 * that the file system is always case preserving. 3536 * 3537 * In mixed sensitivity mode case sensitive behavior 3538 * is the default. FIGNORECASE must be used to 3539 * explicitly request case insensitive behavior. 3540 * 3541 * If the source and target names provided differ only 3542 * by case (e.g., a request to rename 'tim' to 'Tim'), 3543 * we will treat this as a special case in the 3544 * case-insensitive mode: as long as the source name 3545 * is an exact match, we will allow this to proceed as 3546 * a name-change request. 3547 */ 3548 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3549 (zfsvfs->z_case == ZFS_CASE_MIXED && 3550 flags & FIGNORECASE)) && 3551 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3552 &error) == 0) { 3553 /* 3554 * case preserving rename request, require exact 3555 * name matches 3556 */ 3557 zflg |= ZCIEXACT; 3558 zflg &= ~ZCILOOK; 3559 } 3560 } 3561 3562 /* 3563 * If the source and destination directories are the same, we should 3564 * grab the z_name_lock of that directory only once. 3565 */ 3566 if (sdzp == tdzp) { 3567 zflg |= ZHAVELOCK; 3568 rw_enter(&sdzp->z_name_lock, RW_READER); 3569 } 3570 3571 if (cmp < 0) { 3572 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3573 ZEXISTS | zflg, NULL, NULL); 3574 terr = zfs_dirent_lock(&tdl, 3575 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3576 } else { 3577 terr = zfs_dirent_lock(&tdl, 3578 tdzp, tnm, &tzp, zflg, NULL, NULL); 3579 serr = zfs_dirent_lock(&sdl, 3580 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3581 NULL, NULL); 3582 } 3583 3584 if (serr) { 3585 /* 3586 * Source entry invalid or not there. 3587 */ 3588 if (!terr) { 3589 zfs_dirent_unlock(tdl); 3590 if (tzp) 3591 VN_RELE(ZTOV(tzp)); 3592 } 3593 3594 if (sdzp == tdzp) 3595 rw_exit(&sdzp->z_name_lock); 3596 3597 if (strcmp(snm, "..") == 0) 3598 serr = SET_ERROR(EINVAL); 3599 ZFS_EXIT(zfsvfs); 3600 return (serr); 3601 } 3602 if (terr) { 3603 zfs_dirent_unlock(sdl); 3604 VN_RELE(ZTOV(szp)); 3605 3606 if (sdzp == tdzp) 3607 rw_exit(&sdzp->z_name_lock); 3608 3609 if (strcmp(tnm, "..") == 0) 3610 terr = SET_ERROR(EINVAL); 3611 ZFS_EXIT(zfsvfs); 3612 return (terr); 3613 } 3614 3615 /* 3616 * Must have write access at the source to remove the old entry 3617 * and write access at the target to create the new entry. 3618 * Note that if target and source are the same, this can be 3619 * done in a single check. 3620 */ 3621 3622 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3623 goto out; 3624 3625 if (ZTOV(szp)->v_type == VDIR) { 3626 /* 3627 * Check to make sure rename is valid. 3628 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3629 */ 3630 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3631 goto out; 3632 } 3633 3634 /* 3635 * Does target exist? 3636 */ 3637 if (tzp) { 3638 /* 3639 * Source and target must be the same type. 3640 */ 3641 if (ZTOV(szp)->v_type == VDIR) { 3642 if (ZTOV(tzp)->v_type != VDIR) { 3643 error = SET_ERROR(ENOTDIR); 3644 goto out; 3645 } 3646 } else { 3647 if (ZTOV(tzp)->v_type == VDIR) { 3648 error = SET_ERROR(EISDIR); 3649 goto out; 3650 } 3651 } 3652 /* 3653 * POSIX dictates that when the source and target 3654 * entries refer to the same file object, rename 3655 * must do nothing and exit without error. 3656 */ 3657 if (szp->z_id == tzp->z_id) { 3658 error = 0; 3659 goto out; 3660 } 3661 } 3662 3663 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3664 if (tzp) 3665 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3666 3667 /* 3668 * notify the target directory if it is not the same 3669 * as source directory. 3670 */ 3671 if (tdvp != sdvp) { 3672 vnevent_rename_dest_dir(tdvp, ct); 3673 } 3674 3675 tx = dmu_tx_create(zfsvfs->z_os); 3676 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3677 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3678 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3679 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3680 if (sdzp != tdzp) { 3681 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3682 zfs_sa_upgrade_txholds(tx, tdzp); 3683 } 3684 if (tzp) { 3685 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3686 zfs_sa_upgrade_txholds(tx, tzp); 3687 } 3688 3689 zfs_sa_upgrade_txholds(tx, szp); 3690 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3691 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3692 if (error) { 3693 if (zl != NULL) 3694 zfs_rename_unlock(&zl); 3695 zfs_dirent_unlock(sdl); 3696 zfs_dirent_unlock(tdl); 3697 3698 if (sdzp == tdzp) 3699 rw_exit(&sdzp->z_name_lock); 3700 3701 VN_RELE(ZTOV(szp)); 3702 if (tzp) 3703 VN_RELE(ZTOV(tzp)); 3704 if (error == ERESTART) { 3705 waited = B_TRUE; 3706 dmu_tx_wait(tx); 3707 dmu_tx_abort(tx); 3708 goto top; 3709 } 3710 dmu_tx_abort(tx); 3711 ZFS_EXIT(zfsvfs); 3712 return (error); 3713 } 3714 3715 if (tzp) /* Attempt to remove the existing target */ 3716 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3717 3718 if (error == 0) { 3719 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3720 if (error == 0) { 3721 szp->z_pflags |= ZFS_AV_MODIFIED; 3722 3723 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3724 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3725 ASSERT0(error); 3726 3727 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3728 if (error == 0) { 3729 zfs_log_rename(zilog, tx, TX_RENAME | 3730 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3731 sdl->dl_name, tdzp, tdl->dl_name, szp); 3732 3733 /* 3734 * Update path information for the target vnode 3735 */ 3736 vn_renamepath(tdvp, ZTOV(szp), tnm, 3737 strlen(tnm)); 3738 } else { 3739 /* 3740 * At this point, we have successfully created 3741 * the target name, but have failed to remove 3742 * the source name. Since the create was done 3743 * with the ZRENAMING flag, there are 3744 * complications; for one, the link count is 3745 * wrong. The easiest way to deal with this 3746 * is to remove the newly created target, and 3747 * return the original error. This must 3748 * succeed; fortunately, it is very unlikely to 3749 * fail, since we just created it. 3750 */ 3751 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3752 ZRENAMING, NULL), ==, 0); 3753 } 3754 } 3755 } 3756 3757 dmu_tx_commit(tx); 3758 out: 3759 if (zl != NULL) 3760 zfs_rename_unlock(&zl); 3761 3762 zfs_dirent_unlock(sdl); 3763 zfs_dirent_unlock(tdl); 3764 3765 if (sdzp == tdzp) 3766 rw_exit(&sdzp->z_name_lock); 3767 3768 3769 VN_RELE(ZTOV(szp)); 3770 if (tzp) 3771 VN_RELE(ZTOV(tzp)); 3772 3773 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3774 zil_commit(zilog, 0); 3775 3776 ZFS_EXIT(zfsvfs); 3777 return (error); 3778 } 3779 3780 /* 3781 * Insert the indicated symbolic reference entry into the directory. 3782 * 3783 * IN: dvp - Directory to contain new symbolic link. 3784 * link - Name for new symlink entry. 3785 * vap - Attributes of new entry. 3786 * cr - credentials of caller. 3787 * ct - caller context 3788 * flags - case flags 3789 * 3790 * RETURN: 0 on success, error code on failure. 3791 * 3792 * Timestamps: 3793 * dvp - ctime|mtime updated 3794 */ 3795 /*ARGSUSED*/ 3796 static int 3797 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3798 caller_context_t *ct, int flags) 3799 { 3800 znode_t *zp, *dzp = VTOZ(dvp); 3801 zfs_dirlock_t *dl; 3802 dmu_tx_t *tx; 3803 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3804 zilog_t *zilog; 3805 uint64_t len = strlen(link); 3806 int error; 3807 int zflg = ZNEW; 3808 zfs_acl_ids_t acl_ids; 3809 boolean_t fuid_dirtied; 3810 uint64_t txtype = TX_SYMLINK; 3811 boolean_t waited = B_FALSE; 3812 3813 ASSERT(vap->va_type == VLNK); 3814 3815 ZFS_ENTER(zfsvfs); 3816 ZFS_VERIFY_ZP(dzp); 3817 zilog = zfsvfs->z_log; 3818 3819 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3820 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3821 ZFS_EXIT(zfsvfs); 3822 return (SET_ERROR(EILSEQ)); 3823 } 3824 if (flags & FIGNORECASE) 3825 zflg |= ZCILOOK; 3826 3827 if (len > MAXPATHLEN) { 3828 ZFS_EXIT(zfsvfs); 3829 return (SET_ERROR(ENAMETOOLONG)); 3830 } 3831 3832 if ((error = zfs_acl_ids_create(dzp, 0, 3833 vap, cr, NULL, &acl_ids)) != 0) { 3834 ZFS_EXIT(zfsvfs); 3835 return (error); 3836 } 3837 top: 3838 /* 3839 * Attempt to lock directory; fail if entry already exists. 3840 */ 3841 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3842 if (error) { 3843 zfs_acl_ids_free(&acl_ids); 3844 ZFS_EXIT(zfsvfs); 3845 return (error); 3846 } 3847 3848 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3849 zfs_acl_ids_free(&acl_ids); 3850 zfs_dirent_unlock(dl); 3851 ZFS_EXIT(zfsvfs); 3852 return (error); 3853 } 3854 3855 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3856 zfs_acl_ids_free(&acl_ids); 3857 zfs_dirent_unlock(dl); 3858 ZFS_EXIT(zfsvfs); 3859 return (SET_ERROR(EDQUOT)); 3860 } 3861 tx = dmu_tx_create(zfsvfs->z_os); 3862 fuid_dirtied = zfsvfs->z_fuid_dirty; 3863 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3864 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3865 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3866 ZFS_SA_BASE_ATTR_SIZE + len); 3867 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3868 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3869 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3870 acl_ids.z_aclp->z_acl_bytes); 3871 } 3872 if (fuid_dirtied) 3873 zfs_fuid_txhold(zfsvfs, tx); 3874 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 3875 if (error) { 3876 zfs_dirent_unlock(dl); 3877 if (error == ERESTART) { 3878 waited = B_TRUE; 3879 dmu_tx_wait(tx); 3880 dmu_tx_abort(tx); 3881 goto top; 3882 } 3883 zfs_acl_ids_free(&acl_ids); 3884 dmu_tx_abort(tx); 3885 ZFS_EXIT(zfsvfs); 3886 return (error); 3887 } 3888 3889 /* 3890 * Create a new object for the symlink. 3891 * for version 4 ZPL datsets the symlink will be an SA attribute 3892 */ 3893 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3894 3895 if (fuid_dirtied) 3896 zfs_fuid_sync(zfsvfs, tx); 3897 3898 mutex_enter(&zp->z_lock); 3899 if (zp->z_is_sa) 3900 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3901 link, len, tx); 3902 else 3903 zfs_sa_symlink(zp, link, len, tx); 3904 mutex_exit(&zp->z_lock); 3905 3906 zp->z_size = len; 3907 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3908 &zp->z_size, sizeof (zp->z_size), tx); 3909 /* 3910 * Insert the new object into the directory. 3911 */ 3912 (void) zfs_link_create(dl, zp, tx, ZNEW); 3913 3914 if (flags & FIGNORECASE) 3915 txtype |= TX_CI; 3916 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3917 3918 zfs_acl_ids_free(&acl_ids); 3919 3920 dmu_tx_commit(tx); 3921 3922 zfs_dirent_unlock(dl); 3923 3924 VN_RELE(ZTOV(zp)); 3925 3926 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3927 zil_commit(zilog, 0); 3928 3929 ZFS_EXIT(zfsvfs); 3930 return (error); 3931 } 3932 3933 /* 3934 * Return, in the buffer contained in the provided uio structure, 3935 * the symbolic path referred to by vp. 3936 * 3937 * IN: vp - vnode of symbolic link. 3938 * uio - structure to contain the link path. 3939 * cr - credentials of caller. 3940 * ct - caller context 3941 * 3942 * OUT: uio - structure containing the link path. 3943 * 3944 * RETURN: 0 on success, error code on failure. 3945 * 3946 * Timestamps: 3947 * vp - atime updated 3948 */ 3949 /* ARGSUSED */ 3950 static int 3951 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3952 { 3953 znode_t *zp = VTOZ(vp); 3954 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3955 int error; 3956 3957 ZFS_ENTER(zfsvfs); 3958 ZFS_VERIFY_ZP(zp); 3959 3960 mutex_enter(&zp->z_lock); 3961 if (zp->z_is_sa) 3962 error = sa_lookup_uio(zp->z_sa_hdl, 3963 SA_ZPL_SYMLINK(zfsvfs), uio); 3964 else 3965 error = zfs_sa_readlink(zp, uio); 3966 mutex_exit(&zp->z_lock); 3967 3968 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3969 3970 ZFS_EXIT(zfsvfs); 3971 return (error); 3972 } 3973 3974 /* 3975 * Insert a new entry into directory tdvp referencing svp. 3976 * 3977 * IN: tdvp - Directory to contain new entry. 3978 * svp - vnode of new entry. 3979 * name - name of new entry. 3980 * cr - credentials of caller. 3981 * ct - caller context 3982 * 3983 * RETURN: 0 on success, error code on failure. 3984 * 3985 * Timestamps: 3986 * tdvp - ctime|mtime updated 3987 * svp - ctime updated 3988 */ 3989 /* ARGSUSED */ 3990 static int 3991 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3992 caller_context_t *ct, int flags) 3993 { 3994 znode_t *dzp = VTOZ(tdvp); 3995 znode_t *tzp, *szp; 3996 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3997 zilog_t *zilog; 3998 zfs_dirlock_t *dl; 3999 dmu_tx_t *tx; 4000 vnode_t *realvp; 4001 int error; 4002 int zf = ZNEW; 4003 uint64_t parent; 4004 uid_t owner; 4005 boolean_t waited = B_FALSE; 4006 4007 ASSERT(tdvp->v_type == VDIR); 4008 4009 ZFS_ENTER(zfsvfs); 4010 ZFS_VERIFY_ZP(dzp); 4011 zilog = zfsvfs->z_log; 4012 4013 if (VOP_REALVP(svp, &realvp, ct) == 0) 4014 svp = realvp; 4015 4016 /* 4017 * POSIX dictates that we return EPERM here. 4018 * Better choices include ENOTSUP or EISDIR. 4019 */ 4020 if (svp->v_type == VDIR) { 4021 ZFS_EXIT(zfsvfs); 4022 return (SET_ERROR(EPERM)); 4023 } 4024 4025 szp = VTOZ(svp); 4026 ZFS_VERIFY_ZP(szp); 4027 4028 /* 4029 * We check z_zfsvfs rather than v_vfsp here, because snapshots and the 4030 * ctldir appear to have the same v_vfsp. 4031 */ 4032 if (szp->z_zfsvfs != zfsvfs || zfsctl_is_node(svp)) { 4033 ZFS_EXIT(zfsvfs); 4034 return (SET_ERROR(EXDEV)); 4035 } 4036 4037 /* Prevent links to .zfs/shares files */ 4038 4039 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 4040 &parent, sizeof (uint64_t))) != 0) { 4041 ZFS_EXIT(zfsvfs); 4042 return (error); 4043 } 4044 if (parent == zfsvfs->z_shares_dir) { 4045 ZFS_EXIT(zfsvfs); 4046 return (SET_ERROR(EPERM)); 4047 } 4048 4049 if (zfsvfs->z_utf8 && u8_validate(name, 4050 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 4051 ZFS_EXIT(zfsvfs); 4052 return (SET_ERROR(EILSEQ)); 4053 } 4054 if (flags & FIGNORECASE) 4055 zf |= ZCILOOK; 4056 4057 /* 4058 * We do not support links between attributes and non-attributes 4059 * because of the potential security risk of creating links 4060 * into "normal" file space in order to circumvent restrictions 4061 * imposed in attribute space. 4062 */ 4063 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 4064 ZFS_EXIT(zfsvfs); 4065 return (SET_ERROR(EINVAL)); 4066 } 4067 4068 4069 owner = zfs_fuid_map_id(zfsvfs, szp->z_uid, cr, ZFS_OWNER); 4070 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) { 4071 ZFS_EXIT(zfsvfs); 4072 return (SET_ERROR(EPERM)); 4073 } 4074 4075 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 4076 ZFS_EXIT(zfsvfs); 4077 return (error); 4078 } 4079 4080 top: 4081 /* 4082 * Attempt to lock directory; fail if entry already exists. 4083 */ 4084 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 4085 if (error) { 4086 ZFS_EXIT(zfsvfs); 4087 return (error); 4088 } 4089 4090 tx = dmu_tx_create(zfsvfs->z_os); 4091 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 4092 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 4093 zfs_sa_upgrade_txholds(tx, szp); 4094 zfs_sa_upgrade_txholds(tx, dzp); 4095 error = dmu_tx_assign(tx, waited ? TXG_WAITED : TXG_NOWAIT); 4096 if (error) { 4097 zfs_dirent_unlock(dl); 4098 if (error == ERESTART) { 4099 waited = B_TRUE; 4100 dmu_tx_wait(tx); 4101 dmu_tx_abort(tx); 4102 goto top; 4103 } 4104 dmu_tx_abort(tx); 4105 ZFS_EXIT(zfsvfs); 4106 return (error); 4107 } 4108 4109 error = zfs_link_create(dl, szp, tx, 0); 4110 4111 if (error == 0) { 4112 uint64_t txtype = TX_LINK; 4113 if (flags & FIGNORECASE) 4114 txtype |= TX_CI; 4115 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 4116 } 4117 4118 dmu_tx_commit(tx); 4119 4120 zfs_dirent_unlock(dl); 4121 4122 if (error == 0) { 4123 vnevent_link(svp, ct); 4124 } 4125 4126 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4127 zil_commit(zilog, 0); 4128 4129 ZFS_EXIT(zfsvfs); 4130 return (error); 4131 } 4132 4133 /* 4134 * zfs_null_putapage() is used when the file system has been force 4135 * unmounted. It just drops the pages. 4136 */ 4137 /* ARGSUSED */ 4138 static int 4139 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4140 size_t *lenp, int flags, cred_t *cr) 4141 { 4142 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 4143 return (0); 4144 } 4145 4146 /* 4147 * Push a page out to disk, klustering if possible. 4148 * 4149 * IN: vp - file to push page to. 4150 * pp - page to push. 4151 * flags - additional flags. 4152 * cr - credentials of caller. 4153 * 4154 * OUT: offp - start of range pushed. 4155 * lenp - len of range pushed. 4156 * 4157 * RETURN: 0 on success, error code on failure. 4158 * 4159 * NOTE: callers must have locked the page to be pushed. On 4160 * exit, the page (and all other pages in the kluster) must be 4161 * unlocked. 4162 */ 4163 /* ARGSUSED */ 4164 static int 4165 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4166 size_t *lenp, int flags, cred_t *cr) 4167 { 4168 znode_t *zp = VTOZ(vp); 4169 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4170 dmu_tx_t *tx; 4171 u_offset_t off, koff; 4172 size_t len, klen; 4173 int err; 4174 4175 off = pp->p_offset; 4176 len = PAGESIZE; 4177 /* 4178 * If our blocksize is bigger than the page size, try to kluster 4179 * multiple pages so that we write a full block (thus avoiding 4180 * a read-modify-write). 4181 */ 4182 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4183 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4184 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4185 ASSERT(koff <= zp->z_size); 4186 if (koff + klen > zp->z_size) 4187 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4188 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4189 } 4190 ASSERT3U(btop(len), ==, btopr(len)); 4191 4192 /* 4193 * Can't push pages past end-of-file. 4194 */ 4195 if (off >= zp->z_size) { 4196 /* ignore all pages */ 4197 err = 0; 4198 goto out; 4199 } else if (off + len > zp->z_size) { 4200 int npages = btopr(zp->z_size - off); 4201 page_t *trunc; 4202 4203 page_list_break(&pp, &trunc, npages); 4204 /* ignore pages past end of file */ 4205 if (trunc) 4206 pvn_write_done(trunc, flags); 4207 len = zp->z_size - off; 4208 } 4209 4210 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4211 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4212 err = SET_ERROR(EDQUOT); 4213 goto out; 4214 } 4215 tx = dmu_tx_create(zfsvfs->z_os); 4216 dmu_tx_hold_write(tx, zp->z_id, off, len); 4217 4218 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4219 zfs_sa_upgrade_txholds(tx, zp); 4220 err = dmu_tx_assign(tx, TXG_WAIT); 4221 if (err != 0) { 4222 dmu_tx_abort(tx); 4223 goto out; 4224 } 4225 4226 if (zp->z_blksz <= PAGESIZE) { 4227 caddr_t va = zfs_map_page(pp, S_READ); 4228 ASSERT3U(len, <=, PAGESIZE); 4229 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4230 zfs_unmap_page(pp, va); 4231 } else { 4232 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4233 } 4234 4235 if (err == 0) { 4236 uint64_t mtime[2], ctime[2]; 4237 sa_bulk_attr_t bulk[3]; 4238 int count = 0; 4239 4240 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4241 &mtime, 16); 4242 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4243 &ctime, 16); 4244 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4245 &zp->z_pflags, 8); 4246 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4247 B_TRUE); 4248 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4249 } 4250 dmu_tx_commit(tx); 4251 4252 out: 4253 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4254 if (offp) 4255 *offp = off; 4256 if (lenp) 4257 *lenp = len; 4258 4259 return (err); 4260 } 4261 4262 /* 4263 * Copy the portion of the file indicated from pages into the file. 4264 * The pages are stored in a page list attached to the files vnode. 4265 * 4266 * IN: vp - vnode of file to push page data to. 4267 * off - position in file to put data. 4268 * len - amount of data to write. 4269 * flags - flags to control the operation. 4270 * cr - credentials of caller. 4271 * ct - caller context. 4272 * 4273 * RETURN: 0 on success, error code on failure. 4274 * 4275 * Timestamps: 4276 * vp - ctime|mtime updated 4277 */ 4278 /*ARGSUSED*/ 4279 static int 4280 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4281 caller_context_t *ct) 4282 { 4283 znode_t *zp = VTOZ(vp); 4284 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4285 page_t *pp; 4286 size_t io_len; 4287 u_offset_t io_off; 4288 uint_t blksz; 4289 rl_t *rl; 4290 int error = 0; 4291 4292 ZFS_ENTER(zfsvfs); 4293 ZFS_VERIFY_ZP(zp); 4294 4295 /* 4296 * There's nothing to do if no data is cached. 4297 */ 4298 if (!vn_has_cached_data(vp)) { 4299 ZFS_EXIT(zfsvfs); 4300 return (0); 4301 } 4302 4303 /* 4304 * Align this request to the file block size in case we kluster. 4305 * XXX - this can result in pretty aggresive locking, which can 4306 * impact simultanious read/write access. One option might be 4307 * to break up long requests (len == 0) into block-by-block 4308 * operations to get narrower locking. 4309 */ 4310 blksz = zp->z_blksz; 4311 if (ISP2(blksz)) 4312 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4313 else 4314 io_off = 0; 4315 if (len > 0 && ISP2(blksz)) 4316 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4317 else 4318 io_len = 0; 4319 4320 if (io_len == 0) { 4321 /* 4322 * Search the entire vp list for pages >= io_off. 4323 */ 4324 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4325 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4326 goto out; 4327 } 4328 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4329 4330 if (off > zp->z_size) { 4331 /* past end of file */ 4332 zfs_range_unlock(rl); 4333 ZFS_EXIT(zfsvfs); 4334 return (0); 4335 } 4336 4337 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4338 4339 for (off = io_off; io_off < off + len; io_off += io_len) { 4340 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4341 pp = page_lookup(vp, io_off, 4342 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4343 } else { 4344 pp = page_lookup_nowait(vp, io_off, 4345 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4346 } 4347 4348 if (pp != NULL && pvn_getdirty(pp, flags)) { 4349 int err; 4350 4351 /* 4352 * Found a dirty page to push 4353 */ 4354 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4355 if (err) 4356 error = err; 4357 } else { 4358 io_len = PAGESIZE; 4359 } 4360 } 4361 out: 4362 zfs_range_unlock(rl); 4363 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4364 zil_commit(zfsvfs->z_log, zp->z_id); 4365 ZFS_EXIT(zfsvfs); 4366 return (error); 4367 } 4368 4369 /*ARGSUSED*/ 4370 void 4371 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4372 { 4373 znode_t *zp = VTOZ(vp); 4374 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4375 int error; 4376 4377 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4378 if (zp->z_sa_hdl == NULL) { 4379 /* 4380 * The fs has been unmounted, or we did a 4381 * suspend/resume and this file no longer exists. 4382 */ 4383 if (vn_has_cached_data(vp)) { 4384 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4385 B_INVAL, cr); 4386 } 4387 4388 mutex_enter(&zp->z_lock); 4389 mutex_enter(&vp->v_lock); 4390 ASSERT(vp->v_count == 1); 4391 vp->v_count = 0; 4392 mutex_exit(&vp->v_lock); 4393 mutex_exit(&zp->z_lock); 4394 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4395 zfs_znode_free(zp); 4396 return; 4397 } 4398 4399 /* 4400 * Attempt to push any data in the page cache. If this fails 4401 * we will get kicked out later in zfs_zinactive(). 4402 */ 4403 if (vn_has_cached_data(vp)) { 4404 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4405 cr); 4406 } 4407 4408 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4409 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4410 4411 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4412 zfs_sa_upgrade_txholds(tx, zp); 4413 error = dmu_tx_assign(tx, TXG_WAIT); 4414 if (error) { 4415 dmu_tx_abort(tx); 4416 } else { 4417 mutex_enter(&zp->z_lock); 4418 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4419 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4420 zp->z_atime_dirty = 0; 4421 mutex_exit(&zp->z_lock); 4422 dmu_tx_commit(tx); 4423 } 4424 } 4425 4426 zfs_zinactive(zp); 4427 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4428 } 4429 4430 /* 4431 * Bounds-check the seek operation. 4432 * 4433 * IN: vp - vnode seeking within 4434 * ooff - old file offset 4435 * noffp - pointer to new file offset 4436 * ct - caller context 4437 * 4438 * RETURN: 0 on success, EINVAL if new offset invalid. 4439 */ 4440 /* ARGSUSED */ 4441 static int 4442 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4443 caller_context_t *ct) 4444 { 4445 if (vp->v_type == VDIR) 4446 return (0); 4447 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4448 } 4449 4450 /* 4451 * Pre-filter the generic locking function to trap attempts to place 4452 * a mandatory lock on a memory mapped file. 4453 */ 4454 static int 4455 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4456 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4457 { 4458 znode_t *zp = VTOZ(vp); 4459 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4460 4461 ZFS_ENTER(zfsvfs); 4462 ZFS_VERIFY_ZP(zp); 4463 4464 /* 4465 * We are following the UFS semantics with respect to mapcnt 4466 * here: If we see that the file is mapped already, then we will 4467 * return an error, but we don't worry about races between this 4468 * function and zfs_map(). 4469 */ 4470 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4471 ZFS_EXIT(zfsvfs); 4472 return (SET_ERROR(EAGAIN)); 4473 } 4474 ZFS_EXIT(zfsvfs); 4475 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4476 } 4477 4478 /* 4479 * If we can't find a page in the cache, we will create a new page 4480 * and fill it with file data. For efficiency, we may try to fill 4481 * multiple pages at once (klustering) to fill up the supplied page 4482 * list. Note that the pages to be filled are held with an exclusive 4483 * lock to prevent access by other threads while they are being filled. 4484 */ 4485 static int 4486 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4487 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4488 { 4489 znode_t *zp = VTOZ(vp); 4490 page_t *pp, *cur_pp; 4491 objset_t *os = zp->z_zfsvfs->z_os; 4492 u_offset_t io_off, total; 4493 size_t io_len; 4494 int err; 4495 4496 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4497 /* 4498 * We only have a single page, don't bother klustering 4499 */ 4500 io_off = off; 4501 io_len = PAGESIZE; 4502 pp = page_create_va(vp, io_off, io_len, 4503 PG_EXCL | PG_WAIT, seg, addr); 4504 } else { 4505 /* 4506 * Try to find enough pages to fill the page list 4507 */ 4508 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4509 &io_len, off, plsz, 0); 4510 } 4511 if (pp == NULL) { 4512 /* 4513 * The page already exists, nothing to do here. 4514 */ 4515 *pl = NULL; 4516 return (0); 4517 } 4518 4519 /* 4520 * Fill the pages in the kluster. 4521 */ 4522 cur_pp = pp; 4523 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4524 caddr_t va; 4525 4526 ASSERT3U(io_off, ==, cur_pp->p_offset); 4527 va = zfs_map_page(cur_pp, S_WRITE); 4528 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4529 DMU_READ_PREFETCH); 4530 zfs_unmap_page(cur_pp, va); 4531 if (err) { 4532 /* On error, toss the entire kluster */ 4533 pvn_read_done(pp, B_ERROR); 4534 /* convert checksum errors into IO errors */ 4535 if (err == ECKSUM) 4536 err = SET_ERROR(EIO); 4537 return (err); 4538 } 4539 cur_pp = cur_pp->p_next; 4540 } 4541 4542 /* 4543 * Fill in the page list array from the kluster starting 4544 * from the desired offset `off'. 4545 * NOTE: the page list will always be null terminated. 4546 */ 4547 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4548 ASSERT(pl == NULL || (*pl)->p_offset == off); 4549 4550 return (0); 4551 } 4552 4553 /* 4554 * Return pointers to the pages for the file region [off, off + len] 4555 * in the pl array. If plsz is greater than len, this function may 4556 * also return page pointers from after the specified region 4557 * (i.e. the region [off, off + plsz]). These additional pages are 4558 * only returned if they are already in the cache, or were created as 4559 * part of a klustered read. 4560 * 4561 * IN: vp - vnode of file to get data from. 4562 * off - position in file to get data from. 4563 * len - amount of data to retrieve. 4564 * plsz - length of provided page list. 4565 * seg - segment to obtain pages for. 4566 * addr - virtual address of fault. 4567 * rw - mode of created pages. 4568 * cr - credentials of caller. 4569 * ct - caller context. 4570 * 4571 * OUT: protp - protection mode of created pages. 4572 * pl - list of pages created. 4573 * 4574 * RETURN: 0 on success, error code on failure. 4575 * 4576 * Timestamps: 4577 * vp - atime updated 4578 */ 4579 /* ARGSUSED */ 4580 static int 4581 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4582 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4583 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4584 { 4585 znode_t *zp = VTOZ(vp); 4586 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4587 page_t **pl0 = pl; 4588 int err = 0; 4589 4590 /* we do our own caching, faultahead is unnecessary */ 4591 if (pl == NULL) 4592 return (0); 4593 else if (len > plsz) 4594 len = plsz; 4595 else 4596 len = P2ROUNDUP(len, PAGESIZE); 4597 ASSERT(plsz >= len); 4598 4599 ZFS_ENTER(zfsvfs); 4600 ZFS_VERIFY_ZP(zp); 4601 4602 if (protp) 4603 *protp = PROT_ALL; 4604 4605 /* 4606 * Loop through the requested range [off, off + len) looking 4607 * for pages. If we don't find a page, we will need to create 4608 * a new page and fill it with data from the file. 4609 */ 4610 while (len > 0) { 4611 if (*pl = page_lookup(vp, off, SE_SHARED)) 4612 *(pl+1) = NULL; 4613 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4614 goto out; 4615 while (*pl) { 4616 ASSERT3U((*pl)->p_offset, ==, off); 4617 off += PAGESIZE; 4618 addr += PAGESIZE; 4619 if (len > 0) { 4620 ASSERT3U(len, >=, PAGESIZE); 4621 len -= PAGESIZE; 4622 } 4623 ASSERT3U(plsz, >=, PAGESIZE); 4624 plsz -= PAGESIZE; 4625 pl++; 4626 } 4627 } 4628 4629 /* 4630 * Fill out the page array with any pages already in the cache. 4631 */ 4632 while (plsz > 0 && 4633 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4634 off += PAGESIZE; 4635 plsz -= PAGESIZE; 4636 } 4637 out: 4638 if (err) { 4639 /* 4640 * Release any pages we have previously locked. 4641 */ 4642 while (pl > pl0) 4643 page_unlock(*--pl); 4644 } else { 4645 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4646 } 4647 4648 *pl = NULL; 4649 4650 ZFS_EXIT(zfsvfs); 4651 return (err); 4652 } 4653 4654 /* 4655 * Request a memory map for a section of a file. This code interacts 4656 * with common code and the VM system as follows: 4657 * 4658 * - common code calls mmap(), which ends up in smmap_common() 4659 * - this calls VOP_MAP(), which takes you into (say) zfs 4660 * - zfs_map() calls as_map(), passing segvn_create() as the callback 4661 * - segvn_create() creates the new segment and calls VOP_ADDMAP() 4662 * - zfs_addmap() updates z_mapcnt 4663 */ 4664 /*ARGSUSED*/ 4665 static int 4666 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4667 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4668 caller_context_t *ct) 4669 { 4670 znode_t *zp = VTOZ(vp); 4671 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4672 segvn_crargs_t vn_a; 4673 int error; 4674 4675 ZFS_ENTER(zfsvfs); 4676 ZFS_VERIFY_ZP(zp); 4677 4678 if ((prot & PROT_WRITE) && (zp->z_pflags & 4679 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4680 ZFS_EXIT(zfsvfs); 4681 return (SET_ERROR(EPERM)); 4682 } 4683 4684 if ((prot & (PROT_READ | PROT_EXEC)) && 4685 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4686 ZFS_EXIT(zfsvfs); 4687 return (SET_ERROR(EACCES)); 4688 } 4689 4690 if (vp->v_flag & VNOMAP) { 4691 ZFS_EXIT(zfsvfs); 4692 return (SET_ERROR(ENOSYS)); 4693 } 4694 4695 if (off < 0 || len > MAXOFFSET_T - off) { 4696 ZFS_EXIT(zfsvfs); 4697 return (SET_ERROR(ENXIO)); 4698 } 4699 4700 if (vp->v_type != VREG) { 4701 ZFS_EXIT(zfsvfs); 4702 return (SET_ERROR(ENODEV)); 4703 } 4704 4705 /* 4706 * If file is locked, disallow mapping. 4707 */ 4708 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4709 ZFS_EXIT(zfsvfs); 4710 return (SET_ERROR(EAGAIN)); 4711 } 4712 4713 as_rangelock(as); 4714 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4715 if (error != 0) { 4716 as_rangeunlock(as); 4717 ZFS_EXIT(zfsvfs); 4718 return (error); 4719 } 4720 4721 vn_a.vp = vp; 4722 vn_a.offset = (u_offset_t)off; 4723 vn_a.type = flags & MAP_TYPE; 4724 vn_a.prot = prot; 4725 vn_a.maxprot = maxprot; 4726 vn_a.cred = cr; 4727 vn_a.amp = NULL; 4728 vn_a.flags = flags & ~MAP_TYPE; 4729 vn_a.szc = 0; 4730 vn_a.lgrp_mem_policy_flags = 0; 4731 4732 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4733 4734 as_rangeunlock(as); 4735 ZFS_EXIT(zfsvfs); 4736 return (error); 4737 } 4738 4739 /* ARGSUSED */ 4740 static int 4741 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4742 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4743 caller_context_t *ct) 4744 { 4745 uint64_t pages = btopr(len); 4746 4747 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4748 return (0); 4749 } 4750 4751 /* 4752 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4753 * more accurate mtime for the associated file. Since we don't have a way of 4754 * detecting when the data was actually modified, we have to resort to 4755 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4756 * last page is pushed. The problem occurs when the msync() call is omitted, 4757 * which by far the most common case: 4758 * 4759 * open() 4760 * mmap() 4761 * <modify memory> 4762 * munmap() 4763 * close() 4764 * <time lapse> 4765 * putpage() via fsflush 4766 * 4767 * If we wait until fsflush to come along, we can have a modification time that 4768 * is some arbitrary point in the future. In order to prevent this in the 4769 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4770 * torn down. 4771 */ 4772 /* ARGSUSED */ 4773 static int 4774 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4775 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4776 caller_context_t *ct) 4777 { 4778 uint64_t pages = btopr(len); 4779 4780 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4781 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4782 4783 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4784 vn_has_cached_data(vp)) 4785 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4786 4787 return (0); 4788 } 4789 4790 /* 4791 * Free or allocate space in a file. Currently, this function only 4792 * supports the `F_FREESP' command. However, this command is somewhat 4793 * misnamed, as its functionality includes the ability to allocate as 4794 * well as free space. 4795 * 4796 * IN: vp - vnode of file to free data in. 4797 * cmd - action to take (only F_FREESP supported). 4798 * bfp - section of file to free/alloc. 4799 * flag - current file open mode flags. 4800 * offset - current file offset. 4801 * cr - credentials of caller [UNUSED]. 4802 * ct - caller context. 4803 * 4804 * RETURN: 0 on success, error code on failure. 4805 * 4806 * Timestamps: 4807 * vp - ctime|mtime updated 4808 */ 4809 /* ARGSUSED */ 4810 static int 4811 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4812 offset_t offset, cred_t *cr, caller_context_t *ct) 4813 { 4814 znode_t *zp = VTOZ(vp); 4815 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4816 uint64_t off, len; 4817 int error; 4818 4819 ZFS_ENTER(zfsvfs); 4820 ZFS_VERIFY_ZP(zp); 4821 4822 if (cmd != F_FREESP) { 4823 ZFS_EXIT(zfsvfs); 4824 return (SET_ERROR(EINVAL)); 4825 } 4826 4827 /* 4828 * In a case vp->v_vfsp != zp->z_zfsvfs->z_vfs (e.g. snapshots) our 4829 * callers might not be able to detect properly that we are read-only, 4830 * so check it explicitly here. 4831 */ 4832 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 4833 ZFS_EXIT(zfsvfs); 4834 return (SET_ERROR(EROFS)); 4835 } 4836 4837 if (error = convoff(vp, bfp, 0, offset)) { 4838 ZFS_EXIT(zfsvfs); 4839 return (error); 4840 } 4841 4842 if (bfp->l_len < 0) { 4843 ZFS_EXIT(zfsvfs); 4844 return (SET_ERROR(EINVAL)); 4845 } 4846 4847 off = bfp->l_start; 4848 len = bfp->l_len; /* 0 means from off to end of file */ 4849 4850 error = zfs_freesp(zp, off, len, flag, TRUE); 4851 4852 if (error == 0 && off == 0 && len == 0) 4853 vnevent_truncate(ZTOV(zp), ct); 4854 4855 ZFS_EXIT(zfsvfs); 4856 return (error); 4857 } 4858 4859 /*ARGSUSED*/ 4860 static int 4861 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4862 { 4863 znode_t *zp = VTOZ(vp); 4864 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4865 uint32_t gen; 4866 uint64_t gen64; 4867 uint64_t object = zp->z_id; 4868 zfid_short_t *zfid; 4869 int size, i, error; 4870 4871 ZFS_ENTER(zfsvfs); 4872 ZFS_VERIFY_ZP(zp); 4873 4874 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4875 &gen64, sizeof (uint64_t))) != 0) { 4876 ZFS_EXIT(zfsvfs); 4877 return (error); 4878 } 4879 4880 gen = (uint32_t)gen64; 4881 4882 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4883 if (fidp->fid_len < size) { 4884 fidp->fid_len = size; 4885 ZFS_EXIT(zfsvfs); 4886 return (SET_ERROR(ENOSPC)); 4887 } 4888 4889 zfid = (zfid_short_t *)fidp; 4890 4891 zfid->zf_len = size; 4892 4893 for (i = 0; i < sizeof (zfid->zf_object); i++) 4894 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4895 4896 /* Must have a non-zero generation number to distinguish from .zfs */ 4897 if (gen == 0) 4898 gen = 1; 4899 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4900 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4901 4902 if (size == LONG_FID_LEN) { 4903 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4904 zfid_long_t *zlfid; 4905 4906 zlfid = (zfid_long_t *)fidp; 4907 4908 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4909 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4910 4911 /* XXX - this should be the generation number for the objset */ 4912 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4913 zlfid->zf_setgen[i] = 0; 4914 } 4915 4916 ZFS_EXIT(zfsvfs); 4917 return (0); 4918 } 4919 4920 static int 4921 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4922 caller_context_t *ct) 4923 { 4924 znode_t *zp, *xzp; 4925 zfsvfs_t *zfsvfs; 4926 zfs_dirlock_t *dl; 4927 int error; 4928 4929 switch (cmd) { 4930 case _PC_LINK_MAX: 4931 *valp = ULONG_MAX; 4932 return (0); 4933 4934 case _PC_FILESIZEBITS: 4935 *valp = 64; 4936 return (0); 4937 4938 case _PC_XATTR_EXISTS: 4939 zp = VTOZ(vp); 4940 zfsvfs = zp->z_zfsvfs; 4941 ZFS_ENTER(zfsvfs); 4942 ZFS_VERIFY_ZP(zp); 4943 *valp = 0; 4944 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4945 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4946 if (error == 0) { 4947 zfs_dirent_unlock(dl); 4948 if (!zfs_dirempty(xzp)) 4949 *valp = 1; 4950 VN_RELE(ZTOV(xzp)); 4951 } else if (error == ENOENT) { 4952 /* 4953 * If there aren't extended attributes, it's the 4954 * same as having zero of them. 4955 */ 4956 error = 0; 4957 } 4958 ZFS_EXIT(zfsvfs); 4959 return (error); 4960 4961 case _PC_SATTR_ENABLED: 4962 case _PC_SATTR_EXISTS: 4963 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4964 (vp->v_type == VREG || vp->v_type == VDIR); 4965 return (0); 4966 4967 case _PC_ACCESS_FILTERING: 4968 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4969 vp->v_type == VDIR; 4970 return (0); 4971 4972 case _PC_ACL_ENABLED: 4973 *valp = _ACL_ACE_ENABLED; 4974 return (0); 4975 4976 case _PC_MIN_HOLE_SIZE: 4977 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4978 return (0); 4979 4980 case _PC_TIMESTAMP_RESOLUTION: 4981 /* nanosecond timestamp resolution */ 4982 *valp = 1L; 4983 return (0); 4984 4985 default: 4986 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4987 } 4988 } 4989 4990 /*ARGSUSED*/ 4991 static int 4992 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4993 caller_context_t *ct) 4994 { 4995 znode_t *zp = VTOZ(vp); 4996 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4997 int error; 4998 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4999 5000 ZFS_ENTER(zfsvfs); 5001 ZFS_VERIFY_ZP(zp); 5002 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 5003 ZFS_EXIT(zfsvfs); 5004 5005 return (error); 5006 } 5007 5008 /*ARGSUSED*/ 5009 static int 5010 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 5011 caller_context_t *ct) 5012 { 5013 znode_t *zp = VTOZ(vp); 5014 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5015 int error; 5016 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 5017 zilog_t *zilog = zfsvfs->z_log; 5018 5019 ZFS_ENTER(zfsvfs); 5020 ZFS_VERIFY_ZP(zp); 5021 5022 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 5023 5024 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 5025 zil_commit(zilog, 0); 5026 5027 ZFS_EXIT(zfsvfs); 5028 return (error); 5029 } 5030 5031 /* 5032 * The smallest read we may consider to loan out an arcbuf. 5033 * This must be a power of 2. 5034 */ 5035 int zcr_blksz_min = (1 << 10); /* 1K */ 5036 /* 5037 * If set to less than the file block size, allow loaning out of an 5038 * arcbuf for a partial block read. This must be a power of 2. 5039 */ 5040 int zcr_blksz_max = (1 << 17); /* 128K */ 5041 5042 /*ARGSUSED*/ 5043 static int 5044 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 5045 caller_context_t *ct) 5046 { 5047 znode_t *zp = VTOZ(vp); 5048 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 5049 int max_blksz = zfsvfs->z_max_blksz; 5050 uio_t *uio = &xuio->xu_uio; 5051 ssize_t size = uio->uio_resid; 5052 offset_t offset = uio->uio_loffset; 5053 int blksz; 5054 int fullblk, i; 5055 arc_buf_t *abuf; 5056 ssize_t maxsize; 5057 int preamble, postamble; 5058 5059 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 5060 return (SET_ERROR(EINVAL)); 5061 5062 ZFS_ENTER(zfsvfs); 5063 ZFS_VERIFY_ZP(zp); 5064 switch (ioflag) { 5065 case UIO_WRITE: 5066 /* 5067 * Loan out an arc_buf for write if write size is bigger than 5068 * max_blksz, and the file's block size is also max_blksz. 5069 */ 5070 blksz = max_blksz; 5071 if (size < blksz || zp->z_blksz != blksz) { 5072 ZFS_EXIT(zfsvfs); 5073 return (SET_ERROR(EINVAL)); 5074 } 5075 /* 5076 * Caller requests buffers for write before knowing where the 5077 * write offset might be (e.g. NFS TCP write). 5078 */ 5079 if (offset == -1) { 5080 preamble = 0; 5081 } else { 5082 preamble = P2PHASE(offset, blksz); 5083 if (preamble) { 5084 preamble = blksz - preamble; 5085 size -= preamble; 5086 } 5087 } 5088 5089 postamble = P2PHASE(size, blksz); 5090 size -= postamble; 5091 5092 fullblk = size / blksz; 5093 (void) dmu_xuio_init(xuio, 5094 (preamble != 0) + fullblk + (postamble != 0)); 5095 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 5096 int, postamble, int, 5097 (preamble != 0) + fullblk + (postamble != 0)); 5098 5099 /* 5100 * Have to fix iov base/len for partial buffers. They 5101 * currently represent full arc_buf's. 5102 */ 5103 if (preamble) { 5104 /* data begins in the middle of the arc_buf */ 5105 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5106 blksz); 5107 ASSERT(abuf); 5108 (void) dmu_xuio_add(xuio, abuf, 5109 blksz - preamble, preamble); 5110 } 5111 5112 for (i = 0; i < fullblk; i++) { 5113 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5114 blksz); 5115 ASSERT(abuf); 5116 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 5117 } 5118 5119 if (postamble) { 5120 /* data ends in the middle of the arc_buf */ 5121 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 5122 blksz); 5123 ASSERT(abuf); 5124 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 5125 } 5126 break; 5127 case UIO_READ: 5128 /* 5129 * Loan out an arc_buf for read if the read size is larger than 5130 * the current file block size. Block alignment is not 5131 * considered. Partial arc_buf will be loaned out for read. 5132 */ 5133 blksz = zp->z_blksz; 5134 if (blksz < zcr_blksz_min) 5135 blksz = zcr_blksz_min; 5136 if (blksz > zcr_blksz_max) 5137 blksz = zcr_blksz_max; 5138 /* avoid potential complexity of dealing with it */ 5139 if (blksz > max_blksz) { 5140 ZFS_EXIT(zfsvfs); 5141 return (SET_ERROR(EINVAL)); 5142 } 5143 5144 maxsize = zp->z_size - uio->uio_loffset; 5145 if (size > maxsize) 5146 size = maxsize; 5147 5148 if (size < blksz || vn_has_cached_data(vp)) { 5149 ZFS_EXIT(zfsvfs); 5150 return (SET_ERROR(EINVAL)); 5151 } 5152 break; 5153 default: 5154 ZFS_EXIT(zfsvfs); 5155 return (SET_ERROR(EINVAL)); 5156 } 5157 5158 uio->uio_extflg = UIO_XUIO; 5159 XUIO_XUZC_RW(xuio) = ioflag; 5160 ZFS_EXIT(zfsvfs); 5161 return (0); 5162 } 5163 5164 /*ARGSUSED*/ 5165 static int 5166 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5167 { 5168 int i; 5169 arc_buf_t *abuf; 5170 int ioflag = XUIO_XUZC_RW(xuio); 5171 5172 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5173 5174 i = dmu_xuio_cnt(xuio); 5175 while (i-- > 0) { 5176 abuf = dmu_xuio_arcbuf(xuio, i); 5177 /* 5178 * if abuf == NULL, it must be a write buffer 5179 * that has been returned in zfs_write(). 5180 */ 5181 if (abuf) 5182 dmu_return_arcbuf(abuf); 5183 ASSERT(abuf || ioflag == UIO_WRITE); 5184 } 5185 5186 dmu_xuio_fini(xuio); 5187 return (0); 5188 } 5189 5190 /* 5191 * Predeclare these here so that the compiler assumes that 5192 * this is an "old style" function declaration that does 5193 * not include arguments => we won't get type mismatch errors 5194 * in the initializations that follow. 5195 */ 5196 static int zfs_inval(); 5197 static int zfs_isdir(); 5198 5199 static int 5200 zfs_inval() 5201 { 5202 return (SET_ERROR(EINVAL)); 5203 } 5204 5205 static int 5206 zfs_isdir() 5207 { 5208 return (SET_ERROR(EISDIR)); 5209 } 5210 /* 5211 * Directory vnode operations template 5212 */ 5213 vnodeops_t *zfs_dvnodeops; 5214 const fs_operation_def_t zfs_dvnodeops_template[] = { 5215 VOPNAME_OPEN, { .vop_open = zfs_open }, 5216 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5217 VOPNAME_READ, { .error = zfs_isdir }, 5218 VOPNAME_WRITE, { .error = zfs_isdir }, 5219 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5220 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5221 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5222 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5223 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5224 VOPNAME_CREATE, { .vop_create = zfs_create }, 5225 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5226 VOPNAME_LINK, { .vop_link = zfs_link }, 5227 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5228 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5229 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5230 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5231 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5232 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5233 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5234 VOPNAME_FID, { .vop_fid = zfs_fid }, 5235 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5236 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5237 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5238 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5239 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5240 NULL, NULL 5241 }; 5242 5243 /* 5244 * Regular file vnode operations template 5245 */ 5246 vnodeops_t *zfs_fvnodeops; 5247 const fs_operation_def_t zfs_fvnodeops_template[] = { 5248 VOPNAME_OPEN, { .vop_open = zfs_open }, 5249 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5250 VOPNAME_READ, { .vop_read = zfs_read }, 5251 VOPNAME_WRITE, { .vop_write = zfs_write }, 5252 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5253 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5254 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5255 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5256 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5257 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5258 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5259 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5260 VOPNAME_FID, { .vop_fid = zfs_fid }, 5261 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5262 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5263 VOPNAME_SPACE, { .vop_space = zfs_space }, 5264 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5265 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5266 VOPNAME_MAP, { .vop_map = zfs_map }, 5267 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5268 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5269 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5270 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5271 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5272 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5273 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5274 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5275 NULL, NULL 5276 }; 5277 5278 /* 5279 * Symbolic link vnode operations template 5280 */ 5281 vnodeops_t *zfs_symvnodeops; 5282 const fs_operation_def_t zfs_symvnodeops_template[] = { 5283 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5284 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5285 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5286 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5287 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5288 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5289 VOPNAME_FID, { .vop_fid = zfs_fid }, 5290 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5291 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5292 NULL, NULL 5293 }; 5294 5295 /* 5296 * special share hidden files vnode operations template 5297 */ 5298 vnodeops_t *zfs_sharevnodeops; 5299 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5300 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5301 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5302 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5303 VOPNAME_FID, { .vop_fid = zfs_fid }, 5304 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5305 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5306 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5307 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5308 NULL, NULL 5309 }; 5310 5311 /* 5312 * Extended attribute directory vnode operations template 5313 * 5314 * This template is identical to the directory vnodes 5315 * operation template except for restricted operations: 5316 * VOP_MKDIR() 5317 * VOP_SYMLINK() 5318 * 5319 * Note that there are other restrictions embedded in: 5320 * zfs_create() - restrict type to VREG 5321 * zfs_link() - no links into/out of attribute space 5322 * zfs_rename() - no moves into/out of attribute space 5323 */ 5324 vnodeops_t *zfs_xdvnodeops; 5325 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5326 VOPNAME_OPEN, { .vop_open = zfs_open }, 5327 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5328 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5329 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5330 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5331 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5332 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5333 VOPNAME_CREATE, { .vop_create = zfs_create }, 5334 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5335 VOPNAME_LINK, { .vop_link = zfs_link }, 5336 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5337 VOPNAME_MKDIR, { .error = zfs_inval }, 5338 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5339 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5340 VOPNAME_SYMLINK, { .error = zfs_inval }, 5341 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5342 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5343 VOPNAME_FID, { .vop_fid = zfs_fid }, 5344 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5345 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5346 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5347 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5348 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5349 NULL, NULL 5350 }; 5351 5352 /* 5353 * Error vnode operations template 5354 */ 5355 vnodeops_t *zfs_evnodeops; 5356 const fs_operation_def_t zfs_evnodeops_template[] = { 5357 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5358 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5359 NULL, NULL 5360 };