
new/usr/src/man/man1/ar.1 1

**
 12797 Tue Sep 10 18:35:17 2013
new/usr/src/man/man1/ar.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright 1989 AT&T
3 .\" Portions Copyright (c) 1992, X/Open Company Limited All Rights Reserved
4 .\" Copyright (c) 2009, Sun Microsystems, Inc. All Rights Reserved
5 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
6 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
7 .\" are reprinted and reproduced in electronic form in the Sun OS Reference Manu
8 .\" and Electronics Engineers, Inc and The Open Group. In the event of any discr
9 .\" This notice shall appear on any product containing this material.

10 .\" The contents of this file are subject to the terms of the Common Development
11 .\" See the License for the specific language governing permissions and limitat
12 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
13 .TH AR 1 "Sep 10, 2013"
13 .TH AR 1 "Aug 24, 2009"
14 .SH NAME
15 ar \- maintain portable archive or library
16 .SH SYNOPSIS
17 .LP
18 .nf
19 \fB/usr/bin/ar\fR \fB-d\fR [\fB-Vv\fR] \fIarchive\fR \fIfile\fR...
20 .fi

22 .LP
23 .nf
24 \fB/usr/bin/ar\fR \fB-m\fR [\fB-abiVv\fR] [\fIposname\fR] \fIarchive\fR \fIfile\
25 .fi

27 .LP
28 .nf
29 \fB/usr/bin/ar\fR \fB-p\fR [\fB-sVv\fR] \fIarchive\fR [\fIfile\fR]...
30 .fi

32 .LP
33 .nf
34 \fB/usr/bin/ar\fR \fB-q\fR [\fB-cVv\fR] \fIarchive\fR \fIfile\fR...
35 .fi

37 .LP
38 .nf
39 \fB/usr/bin/ar\fR \fB-r\fR [\fB-abciuVv\fR] [\fIposname\fR] \fIarchive\fR \fIfil
40 .fi

42 .LP
43 .nf
44 \fB/usr/bin/ar\fR \fB-t\fR [\fB-sVv\fR] \fIarchive\fR [\fIfile\fR]...
45 .fi

47 .LP
48 .nf
49 \fB/usr/bin/ar\fR \fB-x\fR [\fB-CsTVv\fR] \fIarchive\fR [\fIfile\fR]...
50 .fi

52 .LP
53 .nf
54 \fB/usr/xpg4/bin/ar\fR \fB-d\fR [\fB-Vv\fR] \fIarchive\fR \fIfile\fR...
55 .fi

57 .LP
58 .nf
59 \fB/usr/xpg4/bin/ar\fR \fB-m\fR [\fB-abiVv\fR] [\fIposname\fR] \fIarchive\fR \fI
60 .fi

new/usr/src/man/man1/ar.1 2

62 .LP
63 .nf
64 \fB/usr/xpg4/bin/ar\fR \fB-p\fR [\fB-sVv\fR] \fIarchive\fR [\fIfile\fR]...
65 .fi

67 .LP
68 .nf
69 \fB/usr/xpg4/bin/ar\fR \fB-q\fR [\fB-cVv\fR] \fIarchive\fR \fIfile\fR...
70 .fi

72 .LP
73 .nf
74 \fB/usr/xpg4/bin/ar\fR \fB-r\fR [\fB-abciuVv\fR] [\fIposname\fR] \fIarchive\fR \
75 .fi

77 .LP
78 .nf
79 \fB/usr/xpg4/bin/ar\fR \fB-t\fR [\fB-sVv\fR] \fIarchive\fR [\fIfile\fR]...
80 .fi

82 .LP
83 .nf
84 \fB/usr/xpg4/bin/ar\fR \fB-x\fR [\fB-CsTVv\fR] \fIarchive\fR [\fIfile\fR]...
85 .fi

87 .SH DESCRIPTION
88 .sp
89 .LP
90 The \fBar\fR utility maintains groups of files combined into a single archive
91 file. Its main use is to create and update library files. However, it can be
92 used for any similar purpose. The magic string and the file headers used by
93 \fBar\fR consist of printable \fBASCII\fR characters. If an archive is composed
94 of printable files, the entire archive is printable.
95 .sp
96 .LP
97 When \fBar\fR creates an archive, it creates headers in a format that is
98 portable across all machines. The portable archive format and structure are
99 described in detail in \fBar.h\fR(3HEAD). The archive symbol table described
100 there is used by the link editor \fBld\fR(1) to effect multiple passes over
101 libraries of object files in an efficient manner. An archive symbol table is
102 only created and maintained by \fBar\fR when there is at least one object file
103 in the archive. The archive symbol table is in a specially named file that is
104 always the first file in the archive. This file is never mentioned or
105 accessible to the user. Whenever the \fBar\fR command is used to create or
106 update the contents of such an archive, the symbol table is rebuilt. The
107 \fB-s\fR option described below forces the symbol table to be rebuilt.
108 .SH OPTIONS
109 .sp
110 .LP
111 The following options are supported:
112 .sp
113 .ne 2
114 .na
115 \fB\fB-a\fR\fR
116 .ad
117 .RS 6n
118 Positions new \fIfile\fRs in \fIarchive\fR after the file named by the
119 \fIposname\fR operand.
120 .RE

122 .sp
123 .ne 2
124 .na
125 \fB\fB-b\fR\fR
126 .ad

new/usr/src/man/man1/ar.1 3

127 .RS 6n
128 Positions new \fIfile\fRs in \fIarchive\fR before the file named by the
129 \fIposname\fR operand.
130 .RE

132 .sp
133 .ne 2
134 .na
135 \fB\fB-c\fR\fR
136 .ad
137 .RS 6n
138 Suppresses the diagnostic message that is written to standard error by default
139 when \fIarchive\fR is created.
140 .RE

142 .sp
143 .ne 2
144 .na
145 \fB\fB-C\fR\fR
146 .ad
147 .RS 6n
148 Prevents extracted files from replacing like-named files in the file system.
149 This option is useful when \fB-T\fR is also used to prevent truncated file
150 names from replacing files with the same prefix.
151 .RE

153 .sp
154 .ne 2
155 .na
156 \fB\fB-d\fR\fR
157 .ad
158 .RS 6n
159 Deletes one or more \fIfile\fRs from \fIarchive\fR.
160 .RE

162 .sp
163 .ne 2
164 .na
165 \fB\fB-i\fR\fR
166 .ad
167 .RS 6n
168 Positions new \fIfile\fRs in \fIarchive\fR before the file named by the
169 \fIposname\fR operand. This option is quivalent to \fB-b\fR.
170 .RE

172 .sp
173 .ne 2
174 .na
175 \fB\fB-m\fR\fR
176 .ad
177 .RS 6n
178 Moves \fIfile\fRs. If \fB-a\fR, \fB-b\fR, or \fB-i\fR with the \fIposname\fR
179 operand are specified, the \fB-m\fR option moves \fIfile\fRs to the new
180 position. Otherwise, \fB-m\fR moves \fIfile\fRs to the end of \fIarchive\fR.
181 .RE

183 .sp
184 .ne 2
185 .na
186 \fB\fB-p\fR\fR
187 .ad
188 .RS 6n
189 Prints the contents of \fIfile\fRs in \fIarchive\fR to standard output. If no
190 \fIfile\fRs are specified, the contents of all files in \fIarchive\fR are
191 written in the order of the archive.
192 .RE

new/usr/src/man/man1/ar.1 4

194 .sp
195 .ne 2
196 .na
197 \fB\fB-q\fR\fR
198 .ad
199 .RS 6n
200 Quickly appends \fIfile\fRs to the end of \fIarchive\fR. Positioning options
201 \fB-a\fR, \fB-b\fR, and \fB-i\fR are invalid. The command does not check
202 whether the added \fIfile\fRs are already in \fIarchive\fR. This option is
203 useful to avoid quadratic behavior when creating a large archive
204 piece-by-piece.
205 .RE

207 .sp
208 .ne 2
209 .na
210 \fB\fB-r\fR\fR
211 .ad
212 .RS 6n
213 Replaces or adds \fIfile\fRs in \fIarchive\fR. If \fIarchive\fR does not exist,
214 a new archive file is created and a diagnostic message is written to standard
215 error, unless the \fB-c\fR option is specified. If no \fIfile\fRs are specified
216 and the \fIarchive\fR exists, the results are undefined. Files that replace
217 existing files do not change the order of the archive. If the \fB-u\fR option
218 is used with the \fB-r\fR option, only those files with dates of modification
219 later than the archive files are replaced. If the \fB-a\fR, \fB-b\fR, or
220 \fB-i\fR option is used, the \fIposname\fR argument must be present and
221 specifies that new files are to be placed after (\fB-a\fR) or before (\fB-b\fR
222 or \fB-i\fR) \fIposname\fR. Otherwise, the new files are placed at the end.
223 .RE

225 .sp
226 .ne 2
227 .na
228 \fB\fB-s\fR\fR
229 .ad
230 .RS 6n
231 Forces the regeneration of the archive symbol table even if \fBar\fR is not
232 invoked with an option that will modify the archive contents. This command is
233 useful to restore the archive symbol table after the \fBstrip\fR(1) command has
234 been used on the archive.
235 .RE

237 .sp
238 .ne 2
239 .na
240 \fB\fB-t\fR\fR
241 .ad
242 .RS 6n
243 Prints a table of contents of \fIarchive\fR. The files specified by the
244 \fIfile\fR operands are included in the written list. If no \fIfile\fR operands
245 are specified, all files in \fIarchive\fR are included in the order of the
246 archive.
247 .RE

249 .sp
250 .ne 2
251 .na
252 \fB\fB-T\fR\fR
253 .ad
254 .RS 6n
255 Allows file name truncation of extracted files whose archive names are longer
256 than the file system can support. By default, extracting a file with a name
257 that is too long is an error. In that case, a diagnostic message is written and
258 the file is not extracted.

new/usr/src/man/man1/ar.1 5

259 .RE

261 .sp
262 .ne 2
263 .na
264 \fB\fB-u\fR\fR
265 .ad
266 .RS 6n
267 Updates older files. When used with the \fB-r\fR option, files within
268 \fIarchive\fR are replaced only if the corresponding \fIfile\fR has a
269 modification time that is at least as new as the modification time of the file
270 within \fIarchive\fR.
271 .RE

273 .sp
274 .ne 2
275 .na
276 \fB\fB-v\fR\fR
277 .ad
278 .RS 6n
279 Gives verbose output. When used with options \fB-d\fR, \fB-r\fR, or \fB-x\fR,
280 the \fB-v\fR option writes a detailed file-by-file description of the archive
281 creation and the constituent \fIfile\fRs, and maintenance activity. When used
282 with \fB-p\fR, \fB-v\fR writes the name of the file to the standard output
283 before writing the file itself to the standard output. When used with \fB-t\fR,
284 \fB-v\fR includes a long listing of information about the files within the
285 archive. When used with \fB-x\fR, \fB-v\fR prints the filename preceding each
286 extraction. When writing to an archive, \fB-v\fR writes a message to the
287 standard error.
288 .RE

290 .sp
291 .ne 2
292 .na
293 \fB\fB-V\fR\fR
294 .ad
295 .RS 6n
296 Prints its version number on standard error.
297 .RE

299 .SS "\fB/usr/xpg4/bin/ar\fR"
300 .sp
301 .LP
302 The following options are supported for \fB/usr/xpg4/bin/ar\fR:
303 .sp
304 .ne 2
305 .na
306 \fB\fB-v\fR\fR
307 .ad
308 .RS 6n
309 Same as the \fB/usr/bin/ar\fR version, except when writing to an archive, no
310 message is written to the standard error.
311 .RE

313 .sp
314 .ne 2
315 .na
316 \fB\fB-x\fR\fR
317 .ad
318 .RS 6n
319 Extracts the files named by the \fIfile\fR operands from \fIarchive\fR. The
320 contents of \fIarchive\fR are not changed. If no \fIfile\fR operands are given,
321 all files in \fIarchive\fR are extracted. If the file name of a file extracted
322 from \fIarchive\fR is longer than that supported in the directory to which it
323 is being extracted, the results are undefined. The modification time of each
324 \fIfile\fR extracted is set to the time \fIfile\fR is extracted from

new/usr/src/man/man1/ar.1 6

325 \fIarchive\fR.
326 .RE

328 .SH OPERANDS
329 .sp
330 .LP
331 The following operands are supported:
332 .sp
333 .ne 2
334 .na
335 \fB\fIarchive\fR\fR
336 .ad
337 .RS 11n
338 A path name of the archive file.
339 .RE

341 .sp
342 .ne 2
343 .na
344 \fB\fIfile\fR\fR
345 .ad
346 .RS 11n
347 A path name. Only the last component is used when comparing against the names
348 of files in the archive. If two or more \fIfile\fR operands have the same last
349 path name component (see \fBbasename\fR(1)), the results are unspecified. The
350 implementation’s archive format will not truncate valid file names of files
351 added to or replaced in the archive.
352 .RE

354 .sp
355 .ne 2
356 .na
357 \fB\fIposname\fR\fR
358 .ad
359 .RS 11n
360 The name of a file in the archive file, used for relative positioning. See
361 options \fB-m\fR and \fB-r\fR.
362 .RE

364 .SH ENVIRONMENT VARIABLES
365 .sp
366 .LP
367 See \fBenviron\fR(5) for descriptions of the following environment variables
368 that affect the execution of \fBar\fR: \fBLANG\fR, \fBLC_ALL\fR,
369 \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, \fBLC_TIME\fR, and \fBNLSPATH\fR.
370 .sp
371 .ne 2
372 .na
373 \fB\fBTMPDIR\fR\fR
374 .ad
375 .RS 10n
376 Determine the pathname that overrides the default directory for temporary
377 files, if any.
378 .RE

380 .sp
381 .ne 2
382 .na
383 \fB\fBTZ\fR\fR
384 .ad
385 .RS 10n
386 Determine the timezone used to calculate date and time strings written by
387 \fBar\fR \fB-tv\fR. If \fBTZ\fR is unset or null, an unspecified default
388 timezone is used.
389 .RE

new/usr/src/man/man1/ar.1 7

391 .SH EXIT STATUS
392 .sp
393 .LP
394 The following exit values are returned:
395 .sp
396 .ne 2
397 .na
398 \fB\fB0\fR\fR
399 .ad
400 .RS 6n
401 Successful completion.
402 .RE

404 .sp
405 .ne 2
406 .na
407 \fB\fB>0\fR\fR
408 .ad
409 .RS 6n
410 An error occurred.
411 .RE

413 .SH ATTRIBUTES
414 .sp
415 .LP
416 See \fBattributes\fR(5) for descriptions of the following attributes:
417 .SS "\fB/usr/bin/ar\fR"
418 .sp

420 .sp
421 .TS
422 box;
423 c | c
424 l | l .
425 ATTRIBUTE TYPE ATTRIBUTE VALUE
426 _
427 Interface Stability Committed
428 .TE

430 .SS "\fB/usr/xpg4/bin/ar\fR"
431 .sp

433 .sp
434 .TS
435 box;
436 c | c
437 l | l .
438 ATTRIBUTE TYPE ATTRIBUTE VALUE
439 _
440 Interface Stability Committed
441 _
442 Standard See \fBstandards\fR(5).
443 .TE

445 .SH SEE ALSO
446 .sp
447 .LP
448 \fBbasename\fR(1), \fBcpio\fR(1), \fBld\fR(1), \fBlorder\fR(1), \fBstrip\fR(1),
449 \fBtar\fR(1), \fBar.h\fR(3HEAD), \fBa.out\fR(4), \fBattributes\fR(5),
450 \fBenviron\fR(5), \fBstandards\fR(5)
451 .SH NOTES
452 .sp
453 .LP
454 If the same file is mentioned twice in an argument list, it may be put in the
455 archive twice.
456 .sp

new/usr/src/man/man1/ar.1 8

457 .LP
458 By convention, archives are suffixed with "\fB\&.a\fR".
459 .sp
460 .LP
461 When inserting \fBELF\fR objects into an archive file, \fBar\fR might add
462 "\fB\en\fR" characters to pad these objects to an 8-byte boundary. Such padding
462 "\fB\n\fR" characters to pad these objects to an 8-byte boundary. Such padding
463 improves the efficiency with which \fBld\fR(1) can access the archive. Only
464 \fBELF\fR object files are padded in this way. Other archive members are not
465 altered. When an object with such padding is extracted from an archive, the
466 padding is not included in the resulting output.

new/usr/src/man/man1/elfwrap.1 1

**
 5555 Tue Sep 10 18:35:18 2013
new/usr/src/man/man1/elfwrap.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2008 by Sun Microsystems, Inc. All rights reserved.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH ELFWRAP 1 "Sep 10, 2013"
6 .TH ELFWRAP 1 "Mar 17, 2008"
7 .SH NAME
8 elfwrap \- wrap data in an \fBELF\fR file
9 .SH SYNOPSIS

10 .LP
11 .nf
12 \fBelfwrap\fR [\fB-64\fR] [\fB-o\fR \fIrelobj-file\fR] [\fB-z\fR target=\fBsparc
13 \fIdata-file\fR...
14 .fi

16 .SH DESCRIPTION
17 .sp
18 .LP
19 The \fBelfwrap\fR utility creates an \fBELF\fR relocatable object file from one
20 or more data files. The relocatable object encapsulates each data file within
21 an individual section, together with symbols that can be used to reference the
22 section. The relocatable object is appropriate for inclusion with a subsequent
23 link-edit. Users can reference the encapsulated data using the associated
24 symbols.
25 .sp
26 .LP
27 By default, a 32-bit \fBELF\fR relocatable object is created that is
28 appropriate for the machine on which \fBelfwrap\fR is executed. The \fB-64\fR
29 option can be used to create a 64-bit \fBELF\fR relocatable object. The \fB-z
30 target\fR option can be used to create a relocatable object for a specific
31 machine type.
32 .LP
33 Note -
34 .sp
35 .RS 2
36 Any data encapsulated with \fBelfwrap\fR must be in a format appropriate for
37 the destination target.
38 .RE
39 .sp
40 .LP
41 By default, the relocatable object \fBa.wrap.o\fR is created. The \fB-o\fR
42 option can be used to specify an alternative relocatable object name.
43 .sp
44 .LP
45 The \fBbasename\fR(1) of each data file is used to create various pieces of
46 \fBELF\fR information. For example, if the input data file is
47 \fBISV/isv-data\fR, the following \fBELF\fR information is created within the
48 relocatable object.
49 .sp
50 .ne 2
51 .na
52 \fBAn \fBELF\fR section named \fB\&.isv-data\fR\fR
53 .ad
54 .sp .6
55 .RS 4n
56 This section contains the entire contents of the input data file.
57 .RE

59 .sp
60 .ne 2

new/usr/src/man/man1/elfwrap.1 2

61 .na
62 \fBAn \fBELF\fR symbol named \fBisv-data_start\fR\fR
63 .ad
64 .sp .6
65 .RS 4n
66 This symbol reflects the starting address of the \fB\&.isv-data\fR section.
67 .RE

69 .sp
70 .ne 2
71 .na
72 \fBAn \fBELF\fR symbol named \fBisv-data_end\fR\fR
73 .ad
74 .sp .6
75 .RS 4n
76 This symbol reflects the address of the first location after the
77 \fB\&.isv-data\fR section.
78 .RE

80 .SH OPTIONS
81 .sp
82 .LP
83 The following options are supported:
84 .sp
85 .ne 2
86 .na
87 \fB\fB-64\fR\fR
88 .ad
89 .sp .6
90 .RS 4n
91 Create a 64-bit \fBELF\fR relocatable object.
92 .RE

94 .sp
95 .ne 2
96 .na
97 \fB\fB-o\fR \fIrelobj-file\fR\fR
98 .ad
99 .sp .6
100 .RS 4n
101 Produce a relocatable object that is named \fIrelobj-file\fR.
102 .RE

104 .sp
105 .ne 2
106 .na
107 \fB\fB-z\fR target=\fBsparc\fR | \fBx86\fR\fR
108 .ad
109 .sp .6
110 .RS 4n
111 Specifies the machine type for the output relocatable object. Supported targets
112 are \fBsparc\fR and \fBx86\fR. The 32-bit machine type for the specified target
113 is used unless the \fB-64\fR option is also present, in which case the
114 corresponding 64-bit machine type is used. By default, the relocatable object
115 that is generated is 32-bit for the machine one which \fBelfwrap\fR is
116 executed.
117 .RE

119 .SH EXAMPLES
120 .sp
121 .LP
122 The following example encapsulates the system \fBpasswd\fR file and the system
123 \fBgroup\fR file within a relocatable object \fBpassgroup.o\fR.
124 .sp
125 .in +2
126 .nf

new/usr/src/man/man1/elfwrap.1 3

127 example% \fBelfwrap -o passgroup.o /etc/passwd /etc/group\fR
128 example% \fBelfdump -s passgroup.o | egrep "passwd|group"\fR
129 [2] 0x00000000 0x00000000 SECT LOCL D 0 .passwd
130 [3] 0x00000000 0x00000000 SECT LOCL D 0 .group
131 [7] 0x00000000 0x000002f0 OBJT GLOB D 0 .passwd passwd_start
132 [8] 0x000002f0 0x00000000 OBJT GLOB D 0 .passwd passwd_end
133 [9] 0x00000000 0x00000121 OBJT GLOB D 0 .group group_start
134 [10] 0x00000121 0x00000000 OBJT GLOB D 0 .group group_end
135 example% \fBstrings -N.passwd passgroup.o | head -1\fR
136 root:x:0:0:Super-User:/:/sbin/sh
137 example% \fBstrings -N.group passgroup.o | head -1\fR
138 root::0:
139 .fi
140 .in -2
141 .sp

143 .sp
144 .LP
145 This relocatable object can be referenced from the following user code.
146 .sp
147 .in +2
148 .nf
149 example% \fBcat main.c\fR
150 #include <stdio.h>

152 extern char passwd_start, passwd_end;

154 void main()
155 {
156 char *pstart = &passwd_start, *pend = &passwd_end;
157 char *str, *lstr;

159 for (lstr = str = pstart; str < pend; str++) {
160 if ((*str == ’\en’) && (str != (pend - 1))) {
160 if ((*str == ’\n’) && (str != (pend - 1))) {
161 (void) printf("%.*s", (++str - lstr), lstr);
162 lstr = str;
163 }
164 }
165 }

______unchanged_portion_omitted_

new/usr/src/man/man1/file.1 1

**
 8891 Tue Sep 10 18:35:18 2013
new/usr/src/man/man1/file.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright 1989 AT&T Copyright (c) 1992, X/Open Company Limited All Rights Re
3 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
4 .\" http://www.opengroup.org/bookstore/.
5 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
6 .\" This notice shall appear on any product containing this material.
7 .\" The contents of this file are subject to the terms of the Common Development
8 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
9 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
10 .TH FILE 1 "Sep 10, 2013"
10 .TH FILE 1 "May 15, 2006"
11 .SH NAME
12 file \- determine file type
13 .SH SYNOPSIS
14 .LP
15 .nf
16 \fB/usr/bin/file\fR [\fB-dh\fR] [\fB-m\fR \fImfile\fR] [\fB-M\fR \fIMfile\fR] [\
17 .fi

19 .LP
20 .nf
21 \fB/usr/bin/file\fR [\fB-dh\fR] [\fB-m\fR \fImfile\fR] [\fB-M\fR \fIMfile\fR] \f
22 .fi

24 .LP
25 .nf
26 \fB/usr/bin/file\fR \fB-i\fR [\fB-h\fR] [\fB-f\fR \fIffile\fR] \fIfile\fR...
27 .fi

29 .LP
30 .nf
31 \fB/usr/bin/file\fR \fB-i\fR [\fB-h\fR] \fB-f\fR \fIffile\fR
32 .fi

34 .LP
35 .nf
36 \fB/usr/bin/file\fR \fB-c\fR [\fB-d\fR] [\fB-m\fR \fImfile\fR] [\fB-M\fR \fIMfil
37 .fi

39 .LP
40 .nf
41 \fB/usr/xpg4/bin/file\fR [\fB-dh\fR] [\fB-m\fR \fImfile\fR] [\fB-M\fR \fIMfile\f
42 .fi

44 .LP
45 .nf
46 \fB/usr/xpg4/bin/file\fR [\fB-dh\fR] [\fB-m\fR \fImfile\fR] [\fB-M\fR \fIMfile\f
47 .fi

49 .LP
50 .nf
51 \fB/usr/xpg4/bin/file\fR \fB-i\fR [\fB-h\fR] [\fB-f\fR \fIffile\fR] \fIfile\fR..
52 .fi

54 .LP
55 .nf
56 \fB/usr/xpg4/bin/file\fR \fB-i\fR [\fB-h\fR] \fB-f\fR \fIffile\fR
57 .fi

59 .LP
60 .nf

new/usr/src/man/man1/file.1 2

61 \fB/usr/xpg4/bin/file\fR \fB-c\fR [\fB-d\fR] [\fB-m\fR \fImfile\fR] [\fB-M\fR \f
62 .fi

64 .SH DESCRIPTION
65 .sp
66 .LP
67 The \fBfile\fR utility performs a series of tests on each file supplied by
68 \fIfile\fR and, optionally, on each file listed in \fIffile\fR in an attempt to
69 classify it. If the file is not a regular file, its file type is identified.
70 The file types directory, \fBFIFO\fR, block special, and character special are
71 identified as such. If the file is a regular file and the file is zero-length,
72 it is identified as an empty file.
73 .sp
74 .LP
75 If \fIfile\fR appears to be a text file, \fBfile\fR examines the first 512
76 bytes and tries to determine its programming language. If \fIfile\fR is a
77 symbolic link, by default the link is followed and \fBfile\fR tests the file to
78 which the symbolic link refers.
79 .sp
80 .LP
81 If \fIfile\fR is a relocatable object, executable, or shared object, \fBfile\fR
82 prints out information about the file’s execution requirements. This
83 information includes the machine class, byte-ordering, static/dynamic linkage,
84 and any software or hardware capability requirements. If \fIfile\fR is a
85 runtime linking configuration file, \fBfile\fR prints information about the
86 target platform, including the machine class and byte-ordering.
87 .sp
88 .LP
89 By default, \fBfile\fR will try to use the localized magic file
90 \fB/usr/lib/locale/\fIlocale\fR/LC_MESSAGES/magic\fR, if it exists, to identify
91 files that have a magic number. For example, in the Japanese locale, \fBfile\fR
92 will try to use \fB/usr/lib/locale/ja/LC_MESSAGES/magic\fR. If a localized
93 magic file does not exist, \fBfile\fR will utilize \fB/etc/magic\fR. A magic
94 number is a numeric or string constant that indicates the file type. See
95 \fBmagic\fR(4) for an explanation of the format of \fB/etc/magic\fR.
96 .sp
97 .LP
98 If \fIfile\fR does not exist, cannot be read, or its file status could not be
99 determined, it is not considered an error that affects the exit status. The
100 output will indicate that the file was processed, but that its type could not
101 be determined.
102 .SH OPTIONS
103 .sp
104 .LP
105 The following options are supported:
106 .sp
107 .ne 2
108 .na
109 \fB\fB-c\fR\fR
110 .ad
111 .RS 12n
112 Checks the magic file for format errors. For reasons of efficiency, this
113 validation is normally not carried out.
114 .RE

116 .sp
117 .ne 2
118 .na
119 \fB\fB-d\fR\fR
120 .ad
121 .RS 12n
122 Applies any position-sensitive and context-sensitive default system tests to
123 the file.
124 .RE

126 .sp

new/usr/src/man/man1/file.1 3

127 .ne 2
128 .na
129 \fB\fB-f\fR \fIffile\fR\fR
130 .ad
131 .RS 12n
132 \fIffile\fR contains a list of the files to be examined.
133 .RE

135 .sp
136 .ne 2
137 .na
138 \fB\fB-h\fR\fR
139 .ad
140 .RS 12n
141 When a symbolic link is encountered, this option identifies the file as a
142 symbolic link. If \fB-h\fR is not specified and \fIfile\fR is a symbolic link
143 that refers to a non-existent file, the \fBfile\fR utility identifies the file
144 as a symbolic link, as if \fB-h\fR had been specified.
145 .RE

147 .sp
148 .ne 2
149 .na
150 \fB\fB-i\fR\fR
151 .ad
152 .RS 12n
153 If a file is a regular file, this option does not attempt to classify the type
154 of file further, but identifies the file as a "regular file".
155 .RE

157 .sp
158 .ne 2
159 .na
160 \fB\fB-m\fR \fImfile\fR\fR
161 .ad
162 .RS 12n
163 .sp
164 .ne 2
165 .na
166 \fB\fB/usr/bin/file\fR\fR
167 .ad
168 .RS 22n
169 Uses \fImfile\fR as an alternate magic file, instead of \fB/etc/magic\fR.
170 .RE

172 .sp
173 .ne 2
174 .na
175 \fB\fB/usr/xpg4/bin/file\fR\fR
176 .ad
177 .RS 22n
178 Specifies the name of a file containing position-sensitive tests that are
179 applied to a file in order to classify it (see \fBmagic\fR(4)). If the \fB-m\fR
180 option is specified without specifying the \fB-d\fR option or the \fB-M\fR
181 option, position-sensitive default system tests are applied after the
182 position-sensitive tests specified by the \fB-m\fR option.
183 .RE

185 .RE

187 .sp
188 .ne 2
189 .na
190 \fB\fB-M\fR \fIMfile\fR\fR
191 .ad
192 .RS 12n

new/usr/src/man/man1/file.1 4

193 Specifies the name of a file containing position-sensitive tests that are
194 applied to a file in order to classify it (see \fBmagic\fR(4)). No
195 position-sensitive default system tests nor context-sensitive default system
196 tests are applied unless the \fB-d\fR option is also specified.
197 .RE

199 .sp
200 .LP
201 If the \fB-M\fR option is specified with the \fB-d\fR option, the \fB-m\fR
202 option, or both, or if the \fB-m\fR option is specified with the \fB-d\fR
203 option, the concatenation of the position-sensitive tests specified by these
204 options is applied in the order specified by the appearance of these options.
205 .SH OPERANDS
206 .sp
207 .LP
208 The following operands are supported:
209 .sp
210 .ne 2
211 .na
212 \fB\fIfile\fR\fR
213 .ad
214 .RS 8n
215 A path name of a file to be tested.
216 .RE

218 .SH USAGE
219 .sp
220 .LP
221 See \fBlargefile\fR(5) for the description of the behavior of \fBfile\fR when
222 encountering files greater than or equal to 2 Gbyte (2^31 bytes).
223 .SH EXAMPLES
224 .LP
225 \fBExample 1 \fRDetermining if an Argument is a Binary Executable Files
226 .sp
227 .LP
228 The following example determine if an argument is a binary executable file:

230 .sp
231 .in +2
232 .nf
233 file "$1" | grep \(miFq executable &&
234 printf "%s is executable.\en" "$1"
234 printf "%s is executable.\n" "$1"
235 .fi
236 .in -2
237 .sp

239 .SH ENVIRONMENT VARIABLES
240 .sp
241 .LP
242 See \fBenviron\fR(5) for descriptions of the following environment variables
243 that affect the execution of \fBfile\fR: \fBLANG\fR, \fBLC_ALL\fR,
244 \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
245 .SH EXIT STATUS
246 .sp
247 .LP
248 The following exit values are returned:
249 .sp
250 .ne 2
251 .na
252 \fB\fB0\fR\fR
253 .ad
254 .RS 6n
255 Successful completion.
256 .RE

new/usr/src/man/man1/file.1 5

258 .sp
259 .ne 2
260 .na
261 \fB\fB>0\fR\fR
262 .ad
263 .RS 6n
264 An error occurred.
265 .RE

267 .SH FILES
268 .sp
269 .ne 2
270 .na
271 \fB\fB/etc/magic\fR\fR
272 .ad
273 .RS 14n
274 \fBfile\fR’s magic number file
275 .RE

277 .SH ATTRIBUTES
278 .sp
279 .LP
280 See \fBattributes\fR(5) for descriptions of the following attributes:
281 .sp

283 .sp
284 .TS
285 box;
286 c | c
287 l | l .
288 ATTRIBUTE TYPE ATTRIBUTE VALUE
289 _
290 CSI Enabled
291 _
292 Interface Stability Standard
293 .TE

295 .SH SEE ALSO
296 .sp
297 .LP
298 \fBcrle\fR(1), \fBelfdump\fR(1), \fBls\fR(1), \fBmagic\fR(4),
299 \fBattributes\fR(5), \fBenviron\fR(5), \fBlargefile\fR(5), \fBstandards\fR(5)

new/usr/src/man/man1/ksh93.1 1

**
 179686 Tue Sep 10 18:35:18 2013
new/usr/src/man/man1/ksh93.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 1982-2007 AT&T Knowledge Ventures
3 .\" To view license terms, see http://www.opensource.org/licenses/cpl1.0.txt
4 .\" Portions Copyright (c) 2009, Sun Microsystems, Inc.
5 .TH KSH93 1 "Sep 10, 2013"
5 .TH KSH93 1 "Aug 11, 2009"
6 .SH NAME
7 ksh93, rksh93 \- Korn Shell, a standard and restricted command and programming
8 language
9 .SH SYNOPSIS

10 .LP
11 .nf
12 \fBksh93\fR [\fB\(+-abcefhikmnoprstuvxBCD\fR] [\fB-R\fR \fIfile\fR] [\fB\(+-o\f
13 [-] [\fIarg\fR ...]
14 .fi

16 .LP
17 .nf
18 \fBrksh93\fR [\fB\(+-abcefhikmnoprstuvxBCD\fR] [\fB-R\fR \fIfile\fR] [\fB\(+-o\f
19 [-] [\fIarg\fR ...]
20 .fi

22 .SH DESCRIPTION
23 .sp
24 .LP
25 \fBksh93\fR is a command and programming language that executes commands read
26 from a terminal or a file. \fBrksh93\fR is a restricted version of the command
27 interpreter \fBksh93\fR. \fBrksh93\fR is used to set up login names and
28 execution environments whose capabilities are more controlled than those of the
29 standard shell.
30 .sp
31 .LP
32 See \fBInvocation\fR for the meaning of arguments to the shell.
33 .SS "Definitions"
34 .sp
35 .LP
36 A \fImetacharacter\fR is defined as one of the following characters:
37 .sp
38 .in +2
39 .nf
40 ; & () | < > NEWLINE SPACE TAB
41 .fi
42 .in -2
43 .sp

45 .sp
46 .LP
47 A \fIblank\fR is a \fBTAB\fR or a \fBSPACE\fR.
48 .sp
49 .LP
50 An \fIidentifier\fR is a sequence of letters, digits, or underscores starting
51 with a letter or underscore. Identifiers are used as components of \fIvariable
52 names\fR.
53 .sp
54 .LP
55 A \fIvname\fR is a sequence of one or more identifiers separated by a period
56 (\fB\&.\fR) and optionally preceded by a period (\fB\&.\fR). \fIvnames\fR are
57 used as function and variable names.
58 .sp
59 .LP
60 A \fIword\fR is a sequence of \fIcharacters\fR from the character set defined

new/usr/src/man/man1/ksh93.1 2

61 by the current locale, excluding non-quoted \fImetacharacters\fR.
62 .sp
63 .LP
64 A \fIcommand\fR is a sequence of characters in the syntax of the shell
65 language. The shell reads each command and carries out the desired action
66 either directly or by invoking separate utilities. A built-in command is a
67 command that is carried out by the shell itself without creating a separate
68 process. Some commands are built-in purely for convenience and are not
69 documented in this manual page. Built-ins that cause side effects in the shell
70 environment and built-ins that are found before performing a path search (see
71 \fBExecution\fR) are documented in this manual page. For historical reasons,
72 some of these built-ins behave differently than other built-ins and are called
73 special built-ins.
74 .SS "Commands"
75 .sp
76 .LP
77 A \fIsimple-command\fR is a list of variable assignments (see \fBVariable
78 Assignments\fR) or a sequence of \fIblank\fR-separated words which can be
79 preceded by a list of variable assignments. See the \fBEnvironment\fR section
80 of this manual page.
81 .sp
82 .LP
83 The first word specifies the name of the command to be executed. Except as
84 specified in this section, the remaining words are passed as arguments to the
85 invoked command. The command name is passed as argument 0. See \fBexec\fR(2).
86 The \fIvalue\fR of a simple-command is its exit status. If it terminates
87 normally, its value is \fB0\fR-\fB255\fR. If it terminates abnormally, its
88 value is \fB256+\fR\fIsignum\fR. The name of the signal corresponding to the
89 exit status can be obtained by way of the \fB-l\fR option of the kill built-in
90 utility.
91 .sp
92 .LP
93 A \fIpipeline\fR is a sequence of one or more commands separated by \fB|\fR.
94 The standard output of each command but the last is connected by a
95 \fBpipe\fR(2) to the standard input of the next command. Each command, except
96 possibly the last, is run as a separate process. The shell waits for the last
97 command to terminate. The exit status of a pipeline is the exit status of the
98 last command unless the \fBpipefail\fR option is enabled. Each pipeline can be
99 preceded by the reserved word\fB!\fR. This causes the exit status of the
100 pipeline to become \fB0\fR if the exit status of the last command is
101 \fBnon-zero\fR, and \fB1\fR if the exit status of the last command is \fB0\fR.
102 .sp
103 .LP
104 A \fIlist\fR is a sequence of one or more pipelines separated by \fB;, &, |&,
105 &&, or |\fR, and optionally terminated by \fB;, &,\fR or \fB|&\fR. Of these
106 five symbols, \fB;, &\fR, and \fB|&\fR have equal precedence, which is lower
107 than that of \fB&&\fR and \fB||\fR. The symbols \fB&&\fR and \fB||\fR also have
108 equal precedence.
109 .sp
110 .LP
111 A semicolon (\fB;\fR) causes sequential execution of the preceding pipeline. An
112 ampersand (\fB&\fR) causes asynchronous execution of the preceding pipeline,
113 that is, the shell does \fInot\fR wait for that pipeline to finish. The symbol
114 \fB|&\fR causes asynchronous execution of the preceding pipeline with a two-way
115 pipe established to the parent shell. The standard input and output of the
116 spawned pipeline can be written to and read from by the parent shell by
117 applying the redirection operators \fB<&\fR and \fB>&\fR with \fBarg p\fR to
118 commands and by using \fB-p\fR option of the built-in commands \fBread\fR and
119 \fBprint\fR. The symbol \fB&&\fR (\fB||\fR) causes the \fIlist\fR following it
120 to be executed only if the preceding pipeline returns a zero (\fBnon-zero\fR)
121 value. One or more NEWLINEs can appear in a \fIlist\fR instead of a semicolon,
122 to delimit a command. The first \fIitem\fR of the first \fIpipeline\fR of a
123 \fIlist\fR that is a simple command not beginning with a redirection, and not
124 occurring within a \fBwhile\fR, \fBuntil\fR, or \fBif\fR \fIlist\fR , can be
125 preceded by a semicolon. This semicolon is ignored unless the \fBshowme\fR
126 option is enabled as described with the \fBset\fR built-in.

new/usr/src/man/man1/ksh93.1 3

127 .sp
128 .LP
129 A \fIcommand\fR is either a simple-command or one of commands in the following
130 list. Unless otherwise stated, the value returned by a command is that of the
131 last simple-command executed in the command.
132 .sp
133 .ne 2
134 .na
135 \fB\fBfor\fR \fIvname\fR \fB[in\fR \fIword\fR \fB\&...] ;do\fR \fIlist\fR
136 \fB;done\fR\fR
137 .ad
138 .sp .6
139 .RS 4n
140 Each time a \fBfor\fR command is executed, \fIvname\fR is set to the next
141 \fIword\fR taken from the \fBin\fR \fIword\fR list. If \fBin\fR \fIword ...\fR
142 is omitted, the \fBfor\fR command executes the \fBdo\fR \fIlist\fR once for
143 each positional parameter that is set starting from 1. Execution ends when
144 there are no more words in the list. See \fBParameter Expansion\fR.
145 .RE

147 .sp
148 .ne 2
149 .na
150 \fB\fB(([\fR\fIexpr1\fR\fB] ; [\fR\fIexpr2\fR] ; [\fIexpr3\fR\fB])) ;do\fR
151 \fIlist\fR \fB;done\fR\fR
152 .ad
153 .sp .6
154 .RS 4n
155 The arithmetic expression \fIexpr1\fR is evaluated first. The arithmetic
156 expression \fIexpr2\fR is repeatedly evaluated until it evaluates to \fBzero\fR
157 and when \fBnon-zero\fR, \fIlist\fR is executed and the arithmetic expression
158 \fIexpr3\fR evaluated. If any expression is omitted, then it behaves as if it
159 evaluated to \fB1\fR. See \fBArithmetic Evaluation\fR.
160 .RE

162 .sp
163 .ne 2
164 .na
165 \fB\fBselect\fR \fIvname\fR [in \fIword\fR \fB\&...] ;do\fR \fIlist\fR
166 \fB;done\fR\fR
167 .ad
168 .sp .6
169 .RS 4n
170 A \fBselect\fR command prints on standard error (file descriptor 2) the set of
171 \fIwords\fR, each preceded by a number. If \fBin\fR \fIword...\fR is omitted,
172 the positional parameters starting from \fB1\fR are used instead. See
173 \fBParameter Expansion\fR. The \fBPS3\fR prompt is printed and a line is read
174 from the standard input. If this line consists of the number of one of the
175 listed \fIword\fRs, then the value of the variable \fIvname\fR is set to the
176 \fIword\fR corresponding to this number. If this line is empty, the selection
177 list is printed again. Otherwise the value of the variable \fIvname\fR is set
178 to \fBnull\fR. The contents of the line read from standard input is saved in
179 the variable \fBREPLY\fR. The \fIlist\fR is executed for each selection until a
180 break or \fBEOF\fR is encountered. If the \fBREPLY\fR variable is set to
181 \fBnull\fR by the execution of \fIlist\fR, the selection list is printed before
182 displaying the \fBPS3\fR prompt for the next selection.
183 .RE

185 .sp
186 .ne 2
187 .na
188 \fB\fBcase\fR \fIword\fR \fBin [[(]\fR \fIpattern\fR \fB[|\fR \fIpattern\fR
189 \fB] ...)\fR \fIlist\fR \fB;;] ... esac\fR\fR
190 .ad
191 .sp .6
192 .RS 4n

new/usr/src/man/man1/ksh93.1 4

193 A \fBcase\fR command executes the \fIlist\fR associated with the first
194 \fIpattern\fR that matches \fIword\fR. The form of the patterns is the same as
195 that used for file name generation. See \fBFile Name Generation\fR.
196 .sp
197 The \fB;;\fR operator causes execution of \fBcase\fR to terminate. If \fB;&\fR
198 is used in place of \fB;;\fR the next subsequent list, if any, is executed.
199 .RE

201 .sp
202 .ne 2
203 .na
204 \fB\fBif\fR \fIlist\fR \fB;then\fR \fIlist\fR \fB[;elif\fR \fIlist\fR
205 \fB;then\fR \fIlist\fR] \fB\&... [;else\fR \fIlist\fR \fB]\fR \fB;fi\fR\fR
206 .ad
207 .sp .6
208 .RS 4n
209 The \fIlist\fR following \fBif\fR is executed and, if it returns a \fBzero\fR
210 exit status, the \fIlist\fR following the first \fBthen\fR is executed.
211 Otherwise, the \fIlist\fR following \fBelif\fR is executed, and, if its value
212 is \fBzero\fR, the \fIlist\fR following the next \fBthen\fR is executed.
213 Failing each successive \fBelif\fR \fIlist\fR, the \fBelse\fR \fIlist\fR is
214 executed. If the \fBif\fR \fIlist\fR has \fBnon-zero\fR exit status and there
215 is no \fBelse\fR \fIlist\fR, then the \fBif\fR command returns a \fBzero\fR
216 exit status.
217 .RE

219 .sp
220 .ne 2
221 .na
222 \fB\fBwhile\fR \fIlist\fR \fB;do\fR \fIlist\fR \fB;done\fR\fR
223 .ad
224 .br
225 .na
226 \fBuntil \fIlist\fR \fB;do\fR \fIlist\fR \fB;done\fR\fR
227 .ad
228 .sp .6
229 .RS 4n
230 A \fBwhile\fR command repeatedly executes the while \fIlist\fR and, if the exit
231 status of the last command in the list is zero, executes the \fBdo\fR
232 \fIlist\fR, otherwise the loop terminates. If no commands in the \fBdo\fR
233 \fIlist\fR are executed, then the \fBwhile\fR command returns a \fBzero\fR exit
234 status, \fBuntil\fR can be used in place of \fBwhile\fR to negate the loop
235 termination test.
236 .RE

238 .sp
239 .ne 2
240 .na
241 \fB\fB((\fR\fIexpression\fR\fB))\fR\fR
242 .ad
243 .sp .6
244 .RS 4n
245 The \fIexpression\fR is evaluated using the rules for arithmetic evaluation
246 described in this manual page. If the value of the arithmetic expression is
247 \fBnon-zero\fR, the exit status is \fB0\fR. Otherwise the exit status is
248 \fB1\fR.
249 .RE

251 .sp
252 .ne 2
253 .na
254 \fB\fB(\fR\fIlist\fR\fB;)\fR\fR
255 .ad
256 .sp .6
257 .RS 4n
258 Execute list in a separate environment. If two adjacent open parentheses are

new/usr/src/man/man1/ksh93.1 5

259 needed for nesting, a SPACE must be inserted to avoid evaluation as an
260 arithmetic command as described in this section.
261 .sp
262 \fIlist\fR is simply executed. Unlike the metacharacters, \fB(\fR and \fB)\fR,
263 \fB{\fR and \fB}\fR are \fIreserved words\fR and must occur at the beginning of
264 a line or after a \fB;\fR to be recognized.
265 .RE

267 .sp
268 .ne 2
269 .na
270 \fB\fB[[\fR \fIexpression\fR \fB]]\fR\fR
271 .ad
272 .sp .6
273 .RS 4n
274 Evaluates \fIexpression\fR and returns a \fBzero\fR exit status when
275 \fIexpression\fR is true. See \fBConditional Expressions\fR for a description
276 of \fIexpression\fR.
277 .RE

279 .sp
280 .ne 2
281 .na
282 \fB\fBfunction\fR \fIvarname\fR \fB{\fR \fIlist\fR \fB;}\fR\fR
283 .ad
284 .br
285 .na
286 \fB\fIvarname\fR \fB() {\fR \fIlist\fR \fB;}\fR\fR
287 .ad
288 .sp .6
289 .RS 4n
290 Define a function which is referenced by \fIvarname\fR. A function whose
291 \fIvarname\fR contains a \fB\&.\fR is called a discipline function and the
292 portion of the \fIvarname\fR preceding the last \fB\&.\fR must refer to an
293 existing variable.
294 .sp
295 The body of the function is the \fIlist\fR of commands between \fB{\fR and
296 \fB}\fR. A function defined with the function \fIvarname\fR syntax can also be
297 used as an argument to the \fB\&.\fR special built-in command to get the
298 equivalent behavior as if the \fIvarname\fR\fB()\fR syntax were used to define
299 it. See \fBFunctions\fR.
300 .RE

302 .sp
303 .ne 2
304 .na
305 \fB\fBtime [\fR \fIpipeline\fR \fB]\fR\fR
306 .ad
307 .sp .6
308 .RS 4n
309 If \fIpipeline\fR is omitted, the user and system time for the current shell
310 and completed child processes is printed on standard error. Otherwise,
311 \fIpipeline\fR is executed and the elapsed time as well as the user and system
312 time are printed on standard error. The \fBTIMEFORMAT\fR variable can be set to
313 a format string that specifies how the timing information should be displayed.
314 See \fBShell Variables\fR for a description of the \fBTIMEFORMAT\fR variable.
315 .RE

317 .sp
318 .LP
319 The following reserved words are recognized as reserved only when they are the
320 first word of a command and are not quoted:
321 .br
322 .in +2
323 \fBcase\fR
324 .in -2

new/usr/src/man/man1/ksh93.1 6

325 .br
326 .in +2
327 \fBdo\fR
328 .in -2
329 .br
330 .in +2
331 \fBdone\fR
332 .in -2
333 .br
334 .in +2
335 \fBelse\fR
336 .in -2
337 .br
338 .in +2
339 \fBelif\fR
340 .in -2
341 .br
342 .in +2
343 \fBesac\fR
344 .in -2
345 .br
346 .in +2
347 \fBfor\fR
348 .in -2
349 .br
350 .in +2
351 \fBfi\fR
352 .in -2
353 .br
354 .in +2
355 \fBfunction\fR
356 .in -2
357 .br
358 .in +2
359 \fBif\fR
360 .in -2
361 .br
362 .in +2
363 \fBselect\fR
364 .in -2
365 .br
366 .in +2
367 \fBthen\fR
368 .in -2
369 .br
370 .in +2
371 \fBtime\fR
372 .in -2
373 .br
374 .in +2
375 \fBuntil\fR
376 .in -2
377 .br
378 .in +2
379 \fBwhile\fR
380 .in -2
381 .br
382 .in +2
383 \fB{ }\fR
384 .in -2
385 .br
386 .in +2
387 \fB[[]]\fR
388 .in -2
389 .br
390 .in +2

new/usr/src/man/man1/ksh93.1 7

391 \fB!\fR
392 .in -2
393 .SS "Variable Assignments"
394 .sp
395 .LP
396 One or more variable assignments can start a simple command or can be arguments
397 to the \fBtypeset\fR, \fBexport\fR, or \fBreadonly\fR special built-in
398 commands. The syntax for an \fIassignment\fR is of the form:
399 .sp
400 .ne 2
401 .na
402 \fB\fIvarname\fR\fB=\fR\fIword\fR\fR
403 .ad
404 .br
405 .na
406 \fB\fIvarname\fR\fB[\fR\fIword\fR\fB]=\fR\fIword\fR\fR
407 .ad
408 .sp .6
409 .RS 4n
410 No space is permitted between \fIvarname\fR and the \fB=\fR or between \fB=\fR
411 and \fIword\fR.
412 .RE

414 .sp
415 .ne 2
416 .na
417 \fB\fIvarname\fR\fB=(\fR\fIassignlist\fR\fB)\fR\fR
418 .ad
419 .sp .6
420 .RS 4n
421 No space is permitted between \fIvarname\fR and the \fB=\fR. An
422 \fIassignlist\fR can be one of the following:
423 .sp
424 .ne 2
425 .na
426 \fB\fIword ...\fR\fR
427 .ad
428 .sp .6
429 .RS 4n
430 Indexed array assignment.
431 .RE

433 .sp
434 .ne 2
435 .na
436 \fB\fB[\fR\fIword\fR\fB]=\fR\fIword ...\fR\fR
437 .ad
438 .sp .6
439 .RS 4n
440 Associative array assignment. If prefixed by \fBtypeset\fR \fB-a\fR, creates an
441 indexed array instead.
442 .RE

444 .sp
445 .ne 2
446 .na
447 \fB\fIassignment ...\fR\fR
448 .ad
449 .sp .6
450 .RS 4n
451 Compound variable assignment. This creates a compound variable \fIvarname\fR
452 with sub-variables of the form \fIvarname.name\fR, where \fIname\fR is the name
453 portion of assignment. The value of \fIvarname\fR contains all the assignment
454 elements. Additional assignments made to sub-variables of \fIvarname\fR are
455 also displayed as part of the value of \fIvarname\fR. If no \fIassignment\fRs
456 are specified, \fIvarname\fR is a compound variable allowing subsequence child

new/usr/src/man/man1/ksh93.1 8

457 elements to be defined.
458 .RE

460 .sp
461 .ne 2
462 .na
463 \fB\fBtypeset [\fR\fIoptions\fR] \fIassignment\fR \fB\&...\fR\fR
464 .ad
465 .sp .6
466 .RS 4n
467 Nested variable assignment. Multiple assignments can be specified by separating
468 each of them with a \fB;\fR. The previous value is unset before the assignment.
469 .RE

471 In addition, a \fB+=\fR can be used in place of the \fB=\fR to signify adding
472 to or appending to the previous value. When \fB+=\fR is applied to an
473 arithmetic type, \fIword\fR is evaluated as an arithmetic expression and added
474 to the current value. When applied to a string variable, the value defined by
475 \fIword\fR is appended to the value. For compound assignments, the previous
476 value is not unset and the new values are appended to the current ones provided
477 that the types are compatible.
478 .RE

480 .SS "Comments"
481 .sp
482 .LP
483 A word beginning with \fB#\fR causes that word and all the following characters
484 up to a NEWLINE to be commented, or ignored.
485 .SS "Aliasing"
486 .sp
487 .LP
488 The first word of each command is replaced by the text of an alias if an alias
489 for this word has been defined. An alias name consists of any number of
490 characters excluding metacharacters, quoting characters, file expansion
491 characters, parameter expansion characters, command substitution characters,
492 and \fB=\fR. The replacement string can contain any valid shell script
493 including the metacharacters listed in the \fBCommands\fR section. The first
494 word of each command in the replaced text, other than any that are in the
495 process of being replaced, are tested for aliases. If the last character of the
496 alias value is a BLANK then the word following the alias is also checked for
497 alias substitution.
498 .sp
499 .LP
500 Aliases can be used to redefine built-in commands but cannot be used to
501 redefine the reserved words listed in the \fBCommands\fR section. Aliases can
502 be created and listed with the alias command and can be removed with the
503 \fBunalias\fR command.
504 .sp
505 .LP
506 Aliasing is performed when scripts are read, not while they are executed. For
507 an alias to take effect, the \fBalias\fR definition command has to be executed
508 before the command which references the alias is read. The following aliases
509 are compiled into the shell but can be unset or redefined:
510 .sp
511 .in +2
512 .nf
513 autoload=’typeset -fu’
514 command=’command ’
515 fc=hist
516 float=’typeset -lE’
517 functions=’typeset -f’
518 hash=’alias -t --’
519 history=’hist -l’
520 integer=’typeset -li’
521 nameref=’typeset -n’
522 nohup=’nohup ’

new/usr/src/man/man1/ksh93.1 9

523 r=’hist -s’
524 redirect=’command exec’
525 source=’command .’
526 stop=’kill -s STOP’
527 suspend=’kill -s STOP $$’
528 times=’{ { time;} 2>&1;}’
529 type=’whence -v’
530 .fi
531 .in -2
532 .sp

534 .SS "Tilde Substitution"
535 .sp
536 .LP
537 After alias substitution is performed, each word is checked to see if it begins
538 with an unquoted tilde (\fB~\fR). For tilde substitution, \fIword\fR also
539 refers to the \fIword\fR portion of parameter expansion. See \fBParameter
540 Expansion\fR.
541 .sp
542 .LP
543 If it does, the word up to a \fB/\fR is checked to see if it matches a user
544 name in the password database. If a match is found, the \fB~\fR and the matched
545 login name are replaced by the login directory of the matched user. If no match
546 is found, the original text is left unchanged. A \fB~\fR by itself, or in front
547 of a \fB/\fR, is replaced by \fB$HOME\fR. A \fB~\fR followed by a \fB+\fR or
548 \fB-\fR is replaced by the value of \fB$PWD\fR and \fB$OLDPWD\fR respectively.
549 .sp
550 .LP
551 In addition, when expanding a \fIvariable assignment\fR, tilde substitution is
552 attempted when the value of the assignment begins with a \fB~\fR, and when a
553 \fB~\fR appears after a colon (\fB:\fR). The \fB:\fR also terminates a \fB~\fR
554 login name.
555 .SS "Command Substitution"
556 .sp
557 .LP
558 The standard output from a command enclosed in parentheses preceded by a dollar
559 sign (\fB$\fR) or a pair of grave accents (\fB‘‘\fR) can be used as part or all
560 of a word. Trailing NEWLINEs are removed. In the second (obsolete) form, the
561 string between the quotes is processed for special quoting characters before
562 the command is executed. See \fBQuoting\fR.
563 .sp
564 .LP
565 The command substitution \fB$(cat file)\fR can be replaced by the equivalent
566 but faster \fB$(<file)\fR. The command substitution \fB$(\fR\fIn\fR\fB<#)\fR
567 expands to the current byte offset for file descriptor \fIn\fR.
568 .SS "Arithmetic Substitution"
569 .sp
570 .LP
571 An arithmetic expression enclosed in double parentheses preceded by a dollar
572 sign (\fB$((\fR\fIarithmetic_expression\fR\fB))\fR) is replaced by the value
573 of the arithmetic expression within the double parentheses.
574 .SS "Process Substitution"
575 .sp
576 .LP
577 Process substitution is only available on versions of the UNIX operating system
578 that support the \fB/dev/fd\fR directory for naming open files.
579 .sp
580 .LP
581 Each command argument of the form \fB<(\fR\fIlist\fR\fB)\fR or
582 \fB>(\fR\fIlist\fR\fB)\fR runs process \fIlist\fR asynchronously connected to
583 some file in \fB/dev/fd\fR. The name of this file becomes the argument to the
584 command. If the form with \fB>\fR is selected then writing on this file
585 provides input for \fIlist\fR. If \fB<\fR is used, then the file passed as an
586 argument contains the output of the \fIlist\fR process.
587 .sp
588 .LP

new/usr/src/man/man1/ksh93.1 10

589 For example,
590 .sp
591 .in +2
592 .nf
593 paste <(cut -f1 \fIfile1\fR) <(cut -f3 \fIfile2\fR) | tee \e
594 >(\fIprocess1\fR) >(\fIprocess2\fR)
595 .fi
596 .in -2
597 .sp

599 .sp
600 .LP
601 \fBcut\fRs fields 1 and 3 from the files \fIfile1\fR and \fIfile2\fR
602 respectively, \fBpaste\fRs the results together, and sends it to the processes
603 \fIprocess1\fR and \fIprocess2\fR. It also displays the results to the standard
604 output. The file, which is passed as an argument to the command, is a UNIX
605 \fBpipe\fR(2). Programs that expect to \fBlseek\fR(2) on the file do not work.
606 .SS "Parameter Expansion"
607 .sp
608 .LP
609 A parameter is a variable, one or more digits, or any of the characters
610 \fB*\fR, \fB@\fR, \fB#\fR, \fB?\fR, \fB-\fR, \fB$\fR, and \fB!\fR. A variable
611 is denoted by a \fIvname\fR. To create a variable whose \fIvname\fR contains a
612 \fB\&.\fR, a variable whose \fBvname\fR consists of everything before the
613 last . must already exist. A variable has a value and zero or more attributes.
614 Variables can be assigned values and attributes by using the \fBtypeset\fR
615 special built-in command. The attributes supported by the shell are described
616 later with the \fBtypeset\fR special built-in command. Exported variables pass
617 values and attributes to the environment.
618 .sp
619 .LP
620 The shell supports both indexed and associative arrays. An element of an array
621 variable is referenced by a subscript. A subscript for an indexed array is
622 denoted by an arithmetic expression, (see \fBArithmetic Evaluation\fR), between
623 a \fB[\fR and a \fB]\fR. Use \fBset -A\fR \fIvname value ...\fR to assign
624 values to an indexed array. The value of all subscripts must be in the range of
625 \fB0\fR through \fB1,048,575\fR. Indexed arrays do not need to be declared. Any
626 reference to a variable with a valid subscript is legal and an array is created
627 if necessary.
628 .sp
629 .LP
630 An associative array is created with the \fB-A\fR option to \fBtypeset\fR. A
631 subscript for an associative array is denoted by a string enclosed between
632 \fB[\fR and \fB]\fR.
633 .sp
634 .LP
635 Referencing any array without a subscript is equivalent to referencing the
636 array with subscript \fB0\fR.
637 .sp
638 .LP
639 The value of a variable can be assigned by:
640 .sp
641 .in +2
642 .nf
643 \fIvname\fR=\fIvalue\fR [\fIvname\fR=\fIvalue\fR] ...
644 .fi
645 .in -2
646 .sp

648 .sp
649 .LP
650 or
651 .sp
652 .in +2
653 .nf
654 \fIvname\fR[\fIsubscript\fR]=\fIvalue\fR [\fIvname\fR[\fIsubscript\fR]=\fIvalue\

new/usr/src/man/man1/ksh93.1 11

655 .fi
656 .in -2
657 .sp

659 .sp
660 .LP
661 No space is allowed before or after the \fB=\fR. A \fInameref\fR is a variable
662 that is a reference to another variable. A \fInameref\fR is created with the
663 \fB-n\fR attribute of \fBtypeset\fR. The value of the variable at the time of
664 the \fBtypeset\fR command becomes the variable that is referenced whenever the
665 \fInameref\fR variable is used. The name of a \fInameref\fR cannot contain a
666 dot (\fI\&.\fR). When a variable or function name contains a \fB\&.,\fR and the
667 portion of the name up to the first \fB\&.\fR matches the name of a
668 \fInameref\fR, the variable referred to is obtained by replacing the
669 \fInameref\fR portion with the name of the variable referenced by the
670 \fInameref\fR. If a \fInameref\fR is used as the index of a \fBfor\fR loop, a
671 name reference is established for each item in the list. A \fInameref\fR
672 provides a convenient way to refer to the variable inside a function whose name
673 is passed as an argument to a function. For example, if the name of a variable
674 is passed as the first argument to a function, the command
675 .sp
676 .in +2
677 .nf
678 typeset -n var=$1
679 .fi
680 .in -2
681 .sp

683 .sp
684 .LP
685 inside the function causes references and assignments to \fIvar\fR to be
686 references and assignments to the variable whose name has been passed to the
687 function. If either of the floating point attributes, \fB-E\fR, or \fB-F\fR, or
688 the integer attribute, \fB-i\fR, is set for \fIvname\fR, then the \fIvalue\fR
689 is subject to arithmetic evaluation as described in this manual page.
690 Positional parameters, parameters denoted by a number, can be assigned values
691 with the \fBset\fR special built-in command. Parameter \fB$0\fR is set from
692 argument zero when the shell is invoked. The character \fB$\fR is used to
693 introduce substitutable parameters.
694 .sp
695 .ne 2
696 .na
697 \fB\fB${\fR\fIparameter\fR\fB}\fR\fR
698 .ad
699 .sp .6
700 .RS 4n
701 The shell reads all the characters from \fB${\fR to the matching \fB}\fR as
702 part of the same word even if it contains braces or metacharacters. The value,
703 if any, of the parameter is substituted. The braces are required when
704 \fIparameter\fR is followed by a letter, digit, or underscore that is not to be
705 interpreted as part of its name, when the variable name contains a \fB\&.\fR,
706 or when a variable is subscripted. If \fIparameter\fR is one or more digits
707 then it is a positional parameter. A positional parameter of more than one
708 digit must be enclosed in braces. If \fIparameter\fR is \fB*\fR or \fB@\fR,
709 then all the positional parameters, starting with \fB$1\fR, are substituted and
710 separated by a field separator character. If an array \fIvname\fR with
711 subscript \fB*\fR or \fB@\fR is used, then the value for each of the elements
712 is substituted, separated by the first character of the value of \fBIFS\fR.
713 .RE

715 .sp
716 .ne 2
717 .na
718 \fB\fB${#\fR\fIparameter\fR\fB}\fR\fR
719 .ad
720 .sp .6

new/usr/src/man/man1/ksh93.1 12

721 .RS 4n
722 If \fIparameter\fR is \fB*\fR or \fB@\fR, the number of positional parameters
723 is substituted. Otherwise, the length of the value of the \fIparameter\fR is
724 substituted.
725 .RE

727 .sp
728 .ne 2
729 .na
730 \fB\fB${#\fR\fIvname\fR\fB[*]}\fR\fR
731 .ad
732 .br
733 .na
734 \fB\fB${#\fR\fIvname\fR\fB[@]}\fR\fR
735 .ad
736 .sp .6
737 .RS 4n
738 The number of elements in the array \fIvname\fR is substituted.
739 .RE

741 .sp
742 .ne 2
743 .na
744 \fB\fB${!\fR\fIvname\fR\fB}\fR\fR
745 .ad
746 .sp .6
747 .RS 4n
748 Expands to the name of the variable referred to by \fIvname\fR. This is
749 \fIvname\fR except when \fIvname\fR is a name reference.
750 .RE

752 .sp
753 .ne 2
754 .na
755 \fB\fB${!\fR\fIvname\fR\fB[\fR\fIsubscript\fR\fB]}\fR\fR
756 .ad
757 .sp .6
758 .RS 4n
759 Expands to name of the subscript unless \fIsubscript\fR is \fB*\fR or \fB@\fR.
760 When \fIsubscript\fR is \fB*\fR, the list of array subscripts for \fIvname\fR
761 is generated. For a variable that is not an array, the value is \fB0\fR if the
762 variable is set. Otherwise it is \fBnull\fR. When \fIsubscript\fR is \fB@\fR,
763 it is the same as \fB$ {\fR\fIvname\fR\fB[\fR\fI*\fR\fB]}\fR, except that when
764 used in double quotes, each array subscript yields a separate argument.
765 .RE

767 .sp
768 .ne 2
769 .na
770 \fB\fB${!\fR\fIprefix\fR\fB*}\fR\fR
771 .ad
772 .sp .6
773 .RS 4n
774 Expands to the names of the variables whose names begin with \fIprefix\fR.
775 .RE

777 .sp
778 .ne 2
779 .na
780 \fB\fB${\fR\fIparameter\fR\fB:-\fR\fIword\fR\fB}\fR\fR
781 .ad
782 .sp .6
783 .RS 4n
784 If \fIparameter\fR is set and is non-null then substitute its value. Otherwise
785 substitute \fIword\fR.
786 .sp

new/usr/src/man/man1/ksh93.1 13

787 \fIword\fR is not evaluated unless it is to be used as the substituted string.
788 .sp
789 In the following example, \fBpwd\fR is executed only if \fBd\fR is not set or
790 is NULL:
791 .sp
792 .in +2
793 .nf
794 print ${d:-$(pwd)}
795 .fi
796 .in -2
797 .sp

799 If the colon (\fB:\fR) is omitted from the expression, the shell only checks
800 whether \fIparameter\fR is set or not.
801 .RE

803 .sp
804 .ne 2
805 .na
806 \fB\fB${\fR\fIparameter\fR\fB:=\fR\fIword\fR\fB}\fR\fR
807 .ad
808 .sp .6
809 .RS 4n
810 If \fIparameter\fR is not set or is \fBnull\fR, set it to \fIword\fR. The value
811 of the parameter is then substituted. Positional parameters cannot be assigned
812 to in this way.
813 .sp
814 \fIword\fR is not evaluated unless it is to be used as the substituted string.
815 .sp
816 In the following example, \fBpwd\fR is executed only if \fBd\fR is not set or
817 is NULL:
818 .sp
819 .in +2
820 .nf
821 print ${d:-$(pwd)}
822 .fi
823 .in -2
824 .sp

826 If the colon (\fB:\fR) is omitted from the expression, the shell only checks
827 whether \fIparameter\fR is set or not.
828 .RE

830 .sp
831 .ne 2
832 .na
833 \fB\fB${\fR\fIparameter\fR\fB:?\fR\fIword\fR\fB}\fR\fR
834 .ad
835 .sp .6
836 .RS 4n
837 If \fIparameter\fR is set and is non-null, substitute its value. Otherwise,
838 print \fIword\fR and exit from the shell , if the shell is not interactive. If
839 \fIword\fR is omitted then a standard message is printed.
840 .sp
841 \fIword\fR is not evaluated unless it is to be used as the substituted string.
842 .sp
843 In the following example, \fBpwd\fR is executed only if \fBd\fR is not set or
844 is NULL:
845 .sp
846 .in +2
847 .nf
848 print ${d:-$(pwd)}
849 .fi
850 .in -2
851 .sp

new/usr/src/man/man1/ksh93.1 14

853 If the colon (\fB:\fR) is omitted from the expression, the shell only checks
854 whether \fIparameter\fR is set or not.
855 .RE

857 .sp
858 .ne 2
859 .na
860 \fB\fB${\fR\fIparameter\fR\fB:+\fR\fIword\fR\fB}\fR\fR
861 .ad
862 .sp .6
863 .RS 4n
864 If \fIparameter\fR is set and is non-null, substitute \fIword\fR. Otherwise
865 substitute nothing.
866 .sp
867 \fIword\fR is not evaluated unless it is to be used as the substituted string.
868 .sp
869 In the following example, \fBpwd\fR is executed only if \fBd\fR is not set or
870 is NULL:
871 .sp
872 .in +2
873 .nf
874 print ${d:-$(pwd)}
875 .fi
876 .in -2
877 .sp

879 If the colon (\fB:\fR) is omitted from the expression, the shell only checks
880 whether \fIparameter\fR is set or not.
881 .RE

883 .sp
884 .ne 2
885 .na
886 \fB\fB${\fR\fIparameter\fR\fB:\fR\fIoffset\fR:\fIlength\fR}\fR
887 .ad
888 .br
889 .na
890 \fB\fB${\fR\fIparameter\fR\fB:\fR\fIoffset\fR\fB}\fR\fR
891 .ad
892 .sp .6
893 .RS 4n
894 Expands to the portion of the value of \fIparameter\fR starting at the
895 character (counting from \fB0\fR) determined by expanding offset as an
896 arithmetic expression and consisting of the number of characters determined by
897 the arithmetic expression defined by \fIlength\fR.
898 .sp
899 In the second form, the remainder of the value is used. A negative offset
900 counts backwards from the end of \fIparameter\fR.
901 .sp
902 One or more BLANKs is required in front of a minus sign to prevent the shell
903 from interpreting the operator as \fB:-\fR. If parameter is \fB*\fR or \fB@\fR,
904 or is an array name indexed by \fB*\fR or \fB@\fR, then \fIoffset\fR and
905 \fIlength\fR refer to the array index and number of elements respectively. A
906 negative \fIoffset\fR is taken relative to one greater than the highest
907 subscript for indexed arrays. The order for associative arrays is unspecified.
908 .RE

910 .sp
911 .ne 2
912 .na
913 \fB\fB${\fR\fIparameter\fR\fB#\fR\fIpattern\fR\fB}\fR\fR
914 .ad
915 .br
916 .na
917 \fB\fB${\fR\fIparameter\fR\fB##\fR\fIpattern\fR\fB}\fR\fR
918 .ad

new/usr/src/man/man1/ksh93.1 15

919 .sp .6
920 .RS 4n
921 If the shell \fIpattern\fR matches the beginning of the value of
922 \fIparameter\fR, then the value of this expansion is the value of the
923 \fIparameter\fR with the matched portion deleted. Otherwise the value of this
924 \fIparameter\fR is substituted. In the first form the smallest matching
925 \fIpattern\fR is deleted and in the second form the largest matching
926 \fIpattern\fR is deleted. When \fIparameter\fR is \fB@\fR, \fB*\fR, or an array
927 variable with subscript \fB@\fR or \fB*\fR, the substring operation is applied
928 to each element in turn.
929 .RE

931 .sp
932 .ne 2
933 .na
934 \fB\fB${\fR\fIparameter\fR\fB%\fR\fIpattern\fR\fB}\fR\fR
935 .ad
936 .br
937 .na
938 \fB\fB${\fR\fIparameter\fR\fB%%\fR\fIpattern\fR\fB}\fR\fR
939 .ad
940 .sp .6
941 .RS 4n
942 If the shell \fIpattern\fR matches the end of the value of \fIparameter\fR,
943 then the value of this expansion is the value of the parameter with the matched
944 part deleted. Otherwise substitute the value of \fIparameter\fR. In the first
945 form the smallest matching pattern is deleted, and in the second form the
946 largest matching pattern is deleted. When parameter is \fB@\fR, \fB*\fR, or an
947 array variable with subscript \fB@\fR or \fB*\fR, the substring operation is
948 applied to each element in turn.
949 .RE

951 .sp
952 .ne 2
953 .na
954 \fB\fB${\fR\fIparameter\fR\fB/\fR\fIpattern\fR\fB/\fR\fIstring\fR\fB}\fR\fR
955 .ad
956 .br
957 .na
958 \fB\fB${\fR\fIparameter\fR\fB//\fR\fIpattern\fR\fB/\fR\fIstring\fR\fB}\fR\fR
959 .ad
960 .br
961 .na
962 \fB\fB${\fR\fIparameter\fR\fB/#\fR\fIpattern\fR\fB/\fR\fIstring\fR\fB}\fR\fR
963 .ad
964 .br
965 .na
966 \fB\fB${\fR\fIparameter\fR\fB/%\fR\fIpattern\fR\fB/\fR\fIstring\fR\fB}\fR\fR
967 .ad
968 .sp .6
969 .RS 4n
970 Expands \fIparameter\fR and replaces the longest match of \fIpattern\fR with
971 the specified \fIstring\fR. Each occurrence of \fB\e\fR\fIn\fR in \fIstring\fR
972 is replaced by the portion of \fIparameter\fR that matches the \fIn\fR\fBth\fR
973 sub-pattern.
974 .sp
975 When \fIstring\fR is null, the \fIpattern\fR is deleted and the \fB/\fR in
976 front of string can be omitted. When \fIparameter\fR is \fB@\fR, \fB*\fR, or an
977 array variable with subscript \fB@\fR or \fB*\fR, the substitution operation is
978 applied to each element in turn. In this case, the \fIstring\fR portion of
979 \fIword\fR is re-evaluated for each element.
980 .sp
981 In the first form, only the first occurrence of \fIpattern\fR is replaced.
982 .sp
983 In the second form, each match for \fIpattern\fR is replaced by the specified
984 \fIstring\fR.

new/usr/src/man/man1/ksh93.1 16

985 .sp
986 The third form restricts the pattern match to the beginning of the
987 \fIstring\fR.
988 .sp
989 The fourth form restricts the pattern match to the end of the \fIstring\fR.
990 .RE

992 .sp
993 .LP
994 The following parameters are automatically set by the shell:
995 .sp
996 .ne 2
997 .na
998 \fB\fB#\fR\fR
999 .ad

1000 .RS 19n
1001 The number of positional parameters in decimal.
1002 .RE

1004 .sp
1005 .ne 2
1006 .na
1007 \fB\fB-\fR\fR
1008 .ad
1009 .RS 19n
1010 Options supplied to the shell on invocation or by the \fBset\fR command.
1011 .RE

1013 .sp
1014 .ne 2
1015 .na
1016 \fB\fB?\fR\fR
1017 .ad
1018 .RS 19n
1019 The decimal value returned by the last executed command.
1020 .RE

1022 .sp
1023 .ne 2
1024 .na
1025 \fB\fB$\fR\fR
1026 .ad
1027 .RS 19n
1028 The process number of this shell.
1029 .RE

1031 .sp
1032 .ne 2
1033 .na
1034 \fB\fB_\fR\fR
1035 .ad
1036 .RS 19n
1037 Initially, the value of \fB_\fR is the absolute pathname of the shell or script
1038 being executed as passed in the environment. It is subsequently assigned the
1039 last argument of the previous command.
1040 .sp
1041 This parameter is not set for commands which are asynchronous. This parameter
1042 is also used to hold the name of the matching \fBMAIL\fR file when checking for
1043 mail.
1044 .RE

1046 .sp
1047 .ne 2
1048 .na
1049 \fB\fB!\fR\fR
1050 .ad

new/usr/src/man/man1/ksh93.1 17

1051 .RS 19n
1052 The process number of the last background command invoked or the most recent
1053 job put in the background with the \fBbg\fR built-in command.
1054 .RE

1056 .sp
1057 .ne 2
1058 .na
1059 \fB\fB\&.sh.command\fR\fR
1060 .ad
1061 .RS 19n
1062 When processing a \fBDEBUG\fR trap, this variable contains the current command
1063 line that is about to run.
1064 .RE

1066 .sp
1067 .ne 2
1068 .na
1069 \fB\fB\&.sh.edchar\fR\fR
1070 .ad
1071 .RS 19n
1072 This variable contains the value of the keyboard character (or sequence of
1073 characters if the first character is an ESC, \fBASCII 033\fR) that has been
1074 entered when processing a \fBKEYBD\fR trap. If the value is changed as part of
1075 the trap action, then the new value replaces the key (or key sequence) that
1076 caused the trap. See the \fBKey Bindings\fR section of this manual page.
1077 .RE

1079 .sp
1080 .ne 2
1081 .na
1082 \fB\fB\&.sh.edcol\fR\fR
1083 .ad
1084 .RS 19n
1085 The character position of the cursor at the time of the most recent \fBKEYBD\fR
1086 trap.
1087 .RE

1089 .sp
1090 .ne 2
1091 .na
1092 \fB\fB\&.sh.edmode\fR\fR
1093 .ad
1094 .RS 19n
1095 The value is set to ESC when processing a \fBKEYBD\fR trap while in \fBvi\fR
1096 insert mode. Otherwise, \fB\&.sh.edmode\fR is null when processing a
1097 \fBKEYBD\fR trap. See the \fBvi Editing Mode\fR section of this manual page.
1098 .RE

1100 .sp
1101 .ne 2
1102 .na
1103 \fB\fB\&.sh.edtext\fR\fR
1104 .ad
1105 .RS 19n
1106 The characters in the input buffer at the time of the most recent \fBKEYBD\fR
1107 trap. The value is null when not processing a \fBKEYBD\fR trap.
1108 .RE

1110 .sp
1111 .ne 2
1112 .na
1113 \fB\fB\&.sh.file\fR\fR
1114 .ad
1115 .RS 19n
1116 The pathname of the file than contains the current command.

new/usr/src/man/man1/ksh93.1 18

1117 .RE

1119 .sp
1120 .ne 2
1121 .na
1122 \fB\fB\&.sh.fun\fR\fR
1123 .ad
1124 .RS 19n
1125 The name of the current function that is being executed.
1126 .RE

1128 .sp
1129 .ne 2
1130 .na
1131 \fB\fB\&.sh.match\fR\fR
1132 .ad
1133 .RS 19n
1134 An indexed array which stores the most recent match and sub-pattern matches
1135 after conditional pattern matches that match and after variables expansions
1136 using the operators \fB#\fR, \fB%\fR, or \fB/\fR. The \fB0\fRth element stores
1137 the complete match and the \fIi\fRth element stores the \fIi\fRth sub-match.
1138 The \fB\&.sh.match\fR variable is unset when the variable that has expanded is
1139 assigned a new value.
1140 .RE

1142 .sp
1143 .ne 2
1144 .na
1145 \fB\fB\&.sh.name\fR\fR
1146 .ad
1147 .RS 19n
1148 Set to the name of the variable at the time that a discipline function is
1149 invoked.
1150 .RE

1152 .sp
1153 .ne 2
1154 .na
1155 \fB\fB\&.sh.subscript\fR\fR
1156 .ad
1157 .RS 19n
1158 Set to the name subscript of the variable at the time that a discipline
1159 function is invoked.
1160 .RE

1162 .sp
1163 .ne 2
1164 .na
1165 \fB\fB\&.sh.subshell\fR\fR
1166 .ad
1167 .RS 19n
1168 The current depth for sub-shells and command substitution.
1169 .RE

1171 .sp
1172 .ne 2
1173 .na
1174 \fB\fB\&.sh.value\fR\fR
1175 .ad
1176 .RS 19n
1177 Set to the value of the variable at the time that the set or append discipline
1178 function is invoked.
1179 .RE

1181 .sp
1182 .ne 2

new/usr/src/man/man1/ksh93.1 19

1183 .na
1184 \fB\fB\&.sh.version\fR\fR
1185 .ad
1186 .RS 19n
1187 Set to a value that identifies the version of this shell.
1188 .RE

1190 .sp
1191 .ne 2
1192 .na
1193 \fB\fBLINENO\fR\fR
1194 .ad
1195 .RS 19n
1196 The current line number within the script or function being executed.
1197 .RE

1199 .sp
1200 .ne 2
1201 .na
1202 \fB\fBOLDPWD\fR\fR
1203 .ad
1204 .RS 19n
1205 The previous working directory set by the \fBcd\fR command.
1206 .RE

1208 .sp
1209 .ne 2
1210 .na
1211 \fB\fBOPTARG\fR\fR
1212 .ad
1213 .RS 19n
1214 The value of the last option argument processed by the \fBgetopts\fR built-in
1215 command.
1216 .RE

1218 .sp
1219 .ne 2
1220 .na
1221 \fB\fBOPTIND\fR\fR
1222 .ad
1223 .RS 19n
1224 The index of the last option argument processed by the \fBgetopts\fR built-in
1225 command.
1226 .RE

1228 .sp
1229 .ne 2
1230 .na
1231 \fB\fBPPID\fR\fR
1232 .ad
1233 .RS 19n
1234 The process number of the parent of the shell.
1235 .RE

1237 .sp
1238 .ne 2
1239 .na
1240 \fB\fBPWD\fR\fR
1241 .ad
1242 .RS 19n
1243 The present working directory set by the \fBcd\fR command.
1244 .RE

1246 .sp
1247 .ne 2
1248 .na

new/usr/src/man/man1/ksh93.1 20

1249 \fB\fBRANDOM\fR\fR
1250 .ad
1251 .RS 19n
1252 Each time this variable is referenced, a random integer, uniformly distributed
1253 between \fB0\fR and \fB32767\fR, is generated. The sequence of random numbers
1254 can be initialized by assigning a numeric value to \fBRANDOM\fR.
1255 .RE

1257 .sp
1258 .ne 2
1259 .na
1260 \fB\fBREPLY\fR\fR
1261 .ad
1262 .RS 19n
1263 This variable is set by the \fBselect\fR statement and by the \fBread\fR
1264 built-in command when no arguments are supplied.
1265 .RE

1267 .sp
1268 .ne 2
1269 .na
1270 \fB\fBSECONDS\fR\fR
1271 .ad
1272 .RS 19n
1273 Each time this variable is referenced, the number of seconds since shell
1274 invocation is returned. If this variable is assigned a value, then the value
1275 returned upon reference is the value that was assigned plus the number of
1276 seconds since the assignment.
1277 .RE

1279 .sp
1280 .LP
1281 The following variables are used by the shell:
1282 .sp
1283 .ne 2
1284 .na
1285 \fB\fBCDPATH\fR\fR
1286 .ad
1287 .RS 14n
1288 Defines the search path for the \fBcd\fR command.
1289 .RE

1291 .sp
1292 .ne 2
1293 .na
1294 \fB\fBCOLUMNS\fR\fR
1295 .ad
1296 .RS 14n
1297 Defines the width of the edit window for the shell edit modes and for printing
1298 select lists.
1299 .RE

1301 .sp
1302 .ne 2
1303 .na
1304 \fB\fBEDITOR\fR\fR
1305 .ad
1306 .RS 14n
1307 If the \fBVISUAL\fR variable is not set, the value of this variable is checked
1308 for the patterns as described with \fBVISUAL\fR and the corresponding editing
1309 option is turned on.
1310 .sp
1311 See the \fBset\fR command in the \fBSpecial Command\fR section of this manual
1312 page.
1313 .RE

new/usr/src/man/man1/ksh93.1 21

1315 .sp
1316 .ne 2
1317 .na
1318 \fB\fBENV\fR\fR
1319 .ad
1320 .RS 14n
1321 Performs parameter expansion, command substitution, and arithmetic substitution
1322 on the value to generate the pathname of the script that is executed when the
1323 shell is invoked. This file is typically used for alias and function
1324 definitions. The default value is \fB$HOME/.kshrc\fR.
1325 .sp
1326 See the \fBInvocation\fR section of this manual page.
1327 .sp
1328 \fBENV\fR is not set by the shell.
1329 .RE

1331 .sp
1332 .ne 2
1333 .na
1334 \fB\fBFCEDIT\fR\fR
1335 .ad
1336 .RS 14n
1337 Obsolete name for the default editor name for the \fBhist\fR command.
1338 \fBFCEDIT\fR is not used when \fBHISTEDIT\fR is set.
1339 .sp
1340 The shell specifies a default value to \fBFCEDIT\fR.
1341 .RE

1343 .sp
1344 .ne 2
1345 .na
1346 \fB\fBFIGNORE\fR\fR
1347 .ad
1348 .RS 14n
1349 A pattern that defines the set of file names that is ignored when performing
1350 file name matching.
1351 .RE

1353 .sp
1354 .ne 2
1355 .na
1356 \fB\fBFPATH\fR\fR
1357 .ad
1358 .RS 14n
1359 The search path for function definitions. The directories in this path are
1360 searched for a file with the same name as the function or command when a
1361 function with the \fB-u\fR attribute is referenced and when a command is not
1362 found. If an executable file with the name of that command is found, then it is
1363 read and executed in the current environment. Unlike \fBPATH\fR, the current
1364 directory must be represented explicitly by dot (\fB\&.\fR) rather than by
1365 adjacent colon (\fB:\fR) characters or a beginning or ending colon (\fB:\fR).
1366 .RE

1368 .sp
1369 .ne 2
1370 .na
1371 \fB\fBHISTCMD\fR\fR
1372 .ad
1373 .RS 14n
1374 The number of the current command in the history file.
1375 .RE

1377 .sp
1378 .ne 2
1379 .na
1380 \fB\fBHISTEDIT\fR\fR

new/usr/src/man/man1/ksh93.1 22

1381 .ad
1382 .RS 14n
1383 The name for the default editor name for the \fBhist\fR command.
1384 .RE

1386 .sp
1387 .ne 2
1388 .na
1389 \fB\fBHISTFILE\fR\fR
1390 .ad
1391 .RS 14n
1392 If this variable is set when the shell is invoked, the value is the pathname of
1393 the file that is used to store the command history. See the \fBCommand
1394 Re-entry\fR section of this manual page.
1395 .RE

1397 .sp
1398 .ne 2
1399 .na
1400 \fB\fBHISTSIZE\fR\fR
1401 .ad
1402 .RS 14n
1403 If this variable is set when the shell is invoked, then the number of
1404 previously entered commands that are accessible by this shell is greater than
1405 or equal to this number. The default is \fB512\fR.
1406 .RE

1408 .sp
1409 .ne 2
1410 .na
1411 \fB\fBHOME\fR\fR
1412 .ad
1413 .RS 14n
1414 The default argument (home directory) for the \fBcd\fR command.
1415 .sp
1416 \fBHOME\fR is not set by the shell. \fBHOME\fR is set by \fBlogin\fR(1).
1417 .RE

1419 .sp
1420 .ne 2
1421 .na
1422 \fB\fBIFS\fR\fR
1423 .ad
1424 .RS 14n
1425 Internal field separators, normally SPACE, TAB, and NEWLINE that are used to
1426 separate the results of command substitution or parameter expansion and to
1427 separate fields with the built-in command read. The first character of the
1428 \fBIFS\fR variable is used to separate arguments for the \fB"$*"\fR
1429 substitution. See the \fBQuoting\fR section of this manual page.
1430 .sp
1431 Each single occurrence of an \fBIFS\fR character in the string to be split,
1432 that is not in the \fBissspace\fR character class, and any adjacent characters
1433 in \fBIFS\fR that are in the \fBissspace\fR character class, delimit a field.
1434 One or more characters in IFS that belong to the \fBissspace\fR character
1435 class, delimit a field. In addition, if the same \fBissspace\fR character
1436 appears consecutively inside \fBIFS\fR, this character is treated as if it were
1437 not in the \fBissspace\fR class, so that if \fBIFS\fR consists of two tab
1438 characters, then two adjacent tab characters delimit a null field.
1439 .sp
1440 The shell specifies a default value to \fBIFS\fR.
1441 .RE

1443 .sp
1444 .ne 2
1445 .na
1446 \fB\fBLANG\fR\fR

new/usr/src/man/man1/ksh93.1 23

1447 .ad
1448 .RS 14n
1449 This variable determines the locale category for any category not specifically
1450 selected with a variable starting with \fBLC_\fR or \fBLANG\fR.
1451 .RE

1453 .sp
1454 .ne 2
1455 .na
1456 \fB\fBLC_ALL\fR\fR
1457 .ad
1458 .RS 14n
1459 This variable overrides the value of the \fBLANG\fR variable and any other
1460 \fBLC_\fR variable.
1461 .RE

1463 .sp
1464 .ne 2
1465 .na
1466 \fB\fBLC_COLLATE\fR\fR
1467 .ad
1468 .RS 14n
1469 This variable determines the locale category for character collation
1470 information.
1471 .RE

1473 .sp
1474 .ne 2
1475 .na
1476 \fB\fBLC_CTYPE\fR\fR
1477 .ad
1478 .RS 14n
1479 This variable determines the locale category for character handling functions.
1480 It determines the character classes for pattern matching. See the \fBFile Name
1481 Generation\fR section of this manual page.
1482 .RE

1484 .sp
1485 .ne 2
1486 .na
1487 \fB\fBLC_NUMERIC\fR\fR
1488 .ad
1489 .RS 14n
1490 This variable determines the locale category for the decimal point character.
1491 .RE

1493 .sp
1494 .ne 2
1495 .na
1496 \fB\fBLINES\fR\fR
1497 .ad
1498 .RS 14n
1499 If this variable is set, the value is used to determine the column length for
1500 printing select lists. Select lists prints vertically until about two-thirds of
1501 \fBLINES\fR lines are filled.
1502 .RE

1504 .sp
1505 .ne 2
1506 .na
1507 \fB\fBMAIL\fR\fR
1508 .ad
1509 .RS 14n
1510 If this variable is set to the name of a mail file \fBand\fR the \fBMAILPATH\fR
1511 variable is not set, then the shell informs the user of arrival of mail in the
1512 specified file.

new/usr/src/man/man1/ksh93.1 24

1513 .sp
1514 \fBMAIL\fR is not set by the shell. On some systems, \fBMAIL\fR is set by
1515 \fBlogin\fR(1).
1516 .RE

1518 .sp
1519 .ne 2
1520 .na
1521 \fB\fBMAILCHECK\fR\fR
1522 .ad
1523 .RS 14n
1524 Specifies how often in seconds the shell checks for changes in the modification
1525 time of any of the files specified by the \fBMAILPATH\fR or \fBMAIL\fR
1526 variables. The default value is \fB600\fR seconds. When the time has elapsed
1527 the shell checks before issuing the next prompt.
1528 .sp
1529 The shell specifies a default value to \fBMAILCHECK\fR.
1530 .RE

1532 .sp
1533 .ne 2
1534 .na
1535 \fB\fBMAILPATH\fR\fR
1536 .ad
1537 .RS 14n
1538 A colon (\fB:\fR) separated list of file names. If this variable is set, then
1539 the shell informs the user of any modifications to the specified files that
1540 have occurred within the last \fBMAILCHECK\fR seconds. Each file name can be
1541 followed by a \fB?\fR and a message that is printed. The message undergoes
1542 parameter expansion, command substitution, and arithmetic substitution with the
1543 variable \fB$_\fR defined as the name of the file that has changed. The default
1544 message is \fByou have mail in $_\fR.
1545 .RE

1547 .sp
1548 .ne 2
1549 .na
1550 \fB\fBPATH\fR\fR
1551 .ad
1552 .RS 14n
1553 The search path for commands. Except in \fB\&.profile\fR, users cannot change
1554 \fBPATH\fR if executing under \fBrksh93\fR. See the \fBExecution\fR section of
1555 this manual page.
1556 .sp
1557 The shell specifies a default value to \fBPATH\fR.
1558 .RE

1560 .sp
1561 .ne 2
1562 .na
1563 \fB\fBPS1\fR\fR
1564 .ad
1565 .RS 14n
1566 The value of this variable is expanded for parameter expansion, command
1567 substitution, and arithmetic substitution to define the primary prompt string
1568 which by default is \fB$\fR. The character \fB!\fR in the primary prompt string
1569 is replaced by the command number. Two successive occurrences of \fB!\fR
1570 produces a single \fB!\fR when the prompt string is printed. See the \fBCommand
1571 Re-entry\fR section of this manual page.
1572 .sp
1573 The shell specifies a default value to \fBPS1\fR.
1574 .RE

1576 .sp
1577 .ne 2
1578 .na

new/usr/src/man/man1/ksh93.1 25

1579 \fB\fBPS2\fR\fR
1580 .ad
1581 .RS 14n
1582 Secondary prompt string, by default, \fB>\fR.
1583 .sp
1584 The shell specifies a default value to \fBPS2\fR.
1585 .RE

1587 .sp
1588 .ne 2
1589 .na
1590 \fB\fBPS3\fR\fR
1591 .ad
1592 .RS 14n
1593 Selection prompt string used within a select loop, by default \fB#?\fR.
1594 .sp
1595 The shell specifies a default value to \fBPS3\fR.
1596 .RE

1598 .sp
1599 .ne 2
1600 .na
1601 \fB\fBPS4\fR\fR
1602 .ad
1603 .RS 14n
1604 The value of this variable is expanded for parameter evaluation, command
1605 substitution, and arithmetic substitution and precedes each line of an
1606 execution trace. By default, \fBPS4\fR is \fB+\fR. When \fBPS4\fR is unset, the
1607 execution trace prompt is also \fB+\fR .
1608 .sp
1609 The shell specifies a default value to \fBPS4\fR.
1610 .RE

1612 .sp
1613 .ne 2
1614 .na
1615 \fB\fBSHELL\fR\fR
1616 .ad
1617 .RS 14n
1618 The pathname of the shell is kept in the environment. At invocation, if the
1619 basename of this variable is \fBrsh\fR, \fBrksh\fR, \fBrksh93\fR, or
1620 \fBkrsh\fR, the shell becomes restricted.
1621 .sp
1622 \fBSHELL\fR is not set by the shell. On some systems, \fBSHELL\fR is set by
1623 \fBlogin\fR(1).
1624 .RE

1626 .sp
1627 .ne 2
1628 .na
1629 \fB\fBTIMEFORMAT\fR\fR
1630 .ad
1631 .RS 14n
1632 The value of this parameter is used as a format string specifying how the
1633 timing information for pipelines prefixed with the \fBtime\fR reserved word
1634 should be displayed. The \fB%\fR character introduces a format sequence that is
1635 expanded to a time value or other information.
1636 .sp
1637 The format sequences and their meanings are as follows.
1638 .sp
1639 .ne 2
1640 .na
1641 \fB\fB%%\fR\fR
1642 .ad
1643 .sp .6
1644 .RS 4n

new/usr/src/man/man1/ksh93.1 26

1645 A literal \fB%\fR.
1646 .RE

1648 .sp
1649 .ne 2
1650 .na
1651 \fB\fB%[\fIp\fR][l]R\fR\fR
1652 .ad
1653 .sp .6
1654 .RS 4n
1655 The elapsed time in seconds.
1656 .RE

1658 .sp
1659 .ne 2
1660 .na
1661 \fB\fB%[\fIp\fR][l]U\fR\fR
1662 .ad
1663 .sp .6
1664 .RS 4n
1665 The number of CPU seconds spent in user mode.
1666 .RE

1668 .sp
1669 .ne 2
1670 .na
1671 \fB\fB%[\fIp\fR][l]S\fR\fR
1672 .ad
1673 .sp .6
1674 .RS 4n
1675 The number of CPU seconds spent in system mode.
1676 .RE

1678 .sp
1679 .ne 2
1680 .na
1681 \fB\fB%P\fR\fR
1682 .ad
1683 .sp .6
1684 .RS 4n
1685 The CPU percentage, computed as \fB(U + S) / R\fR.
1686 .RE

1688 The braces denote optional portions. The optional \fIp\fR is a digit specifying
1689 the \fIprecision\fR, the number of fractional digits after a decimal point. A
1690 value of \fB0\fR causes no decimal point or fraction to be output. At most
1691 three places after the decimal point can be displayed. Values of \fIp\fR
1692 greater than \fB3\fR are treated as \fB3\fR. If \fIp\fR is not specified, the
1693 value \fB3\fR is used.
1694 .sp
1695 The optional \fBl\fR specifies a longer format, including hours if greater than
1696 zero, minutes, and seconds of the form \fIHHhMMmSS.FFs\fR. The value of \fIp\fR
1697 determines whether or not the fraction is included.
1698 .sp
1699 All other characters are output without change and a trailing NEWLINE is added.
1700 If unset, the default value, \fB$’\enreal\t%2lR\nuser\t%2lU\nsys%2lS’\fR, is
1700 If unset, the default value, \fB$’\nreal\t%2lR\nuser\t%2lU\nsys%2lS’\fR, is
1701 used. If the value is null, no timing information is displayed.
1702 .RE

1704 .sp
1705 .ne 2
1706 .na
1707 \fB\fBTMOUT\fR\fR
1708 .ad
1709 .RS 14n

new/usr/src/man/man1/ksh93.1 27

1710 If set to a value greater than zero, \fBTMOUT\fR is the default time-out value
1711 for the \fBread\fR built-in command. The \fBselect\fR compound command
1712 terminates after \fBTMOUT\fR seconds when input is from a terminal. Otherwise,
1713 the shell terminates if a line is not entered within the prescribed number of
1714 seconds while reading from a terminal. The shell can be compiled with a maximum
1715 bound for this value which cannot be exceeded.
1716 .sp
1717 The shell specifies a default value to \fBTMOUT\fR.
1718 .RE

1720 .sp
1721 .ne 2
1722 .na
1723 \fB\fBVISUAL\fR\fR
1724 .ad
1725 .RS 14n
1726 If the value of this variable matches the pattern \fB*[Vv][Ii]*\fR, then the
1727 \fBvi\fR option is turned on. See \fBSpecial Commands\fR. If the value matches
1728 the pattern \fB*gmacs*\fR , the \fBgmacs\fR option is turned on. If the value
1729 matches the pattern \fB*macs*\fR, then the \fBemacs\fR option is turned on. The
1730 value of \fBVISUAL\fR overrides the value of \fBEDITOR\fR.
1731 .RE

1733 .SS "Field Splitting"
1734 .sp
1735 .LP
1736 After parameter expansion and command substitution, the results of
1737 substitutions are scanned for the field separator characters (those found in
1738 \fBIFS\fR) and split into distinct fields where such characters are found.
1739 Explicit null fields (\fB""\fR or \fB\&’’\fR) are retained. Implicit null
1740 fields, those resulting from parameters that have no values or command
1741 substitutions with no output, are removed.
1742 .sp
1743 .LP
1744 If the \fBbraceexpand\fR (\fB-B\fR) option is set, each of the fields resulting
1745 from \fBIFS\fR are checked to see if they contain one or more of the brace
1746 patterns. Valid brace patterns: \fB{*\fR,\fB*}\fR,
1747 \fB{\fR\fIl1\fR\fB\&..\fR\fIl2\fR\fB}\fR ,
1748 \fB{\fR\fIn1\fR\fB\&..\fR\fIn2\fR\fB}\fR,
1749 \fB{\fR\fIn1\fR\fB\&..\fR\fIn2\fR\fB%\fR\fIfmt\fR\fB}
1750 {\fR\fIn1\fR\fB\&..\fR\fIn2\fR \fB\&..\fR\fIn3\fR\fB}\fR, or
1751 \fB{\fR\fIn1\fR\fB\&..\fR\fIn2\fR \fB\&..\fR\fIn3\fR\fB%\fR\fIfmt\fR\fB}\fR ,
1752 where \fB*\fR represents any character, \fIl1\fR,\fIl2\fR are letters and
1753 \fIn1\fR,\fIn2\fR,\fIn3\fR are signed numbers and \fIfmt\fR is a format
1754 specified as used by \fBprintf\fR. In each case, fields are created by
1755 prepending the characters before the \fB{\fR and appending the characters after
1756 the } to each of the strings generated by the characters between the \fB{\fR
1757 and \fB}\fR. The resulting fields are checked to see if they have any brace
1758 patterns.
1759 .sp
1760 .LP
1761 In the first form, a field is created for each string between \fB{\fR and
1762 \fB,,\fR between \fB,\fR and \fB,,\fR and between , and \fB}\fR. The string
1763 represented by \fB*\fR can contain embedded matching { and } without quoting.
1764 Otherwise, each \fB{\fR and \fB}\fR with \fB*\fR must be quoted.
1765 .sp
1766 .LP
1767 In the second form, \fIl1\fR and \fIl2\fR must both be either upper case or
1768 both be lower case characters in the C locale. In this case a field is created
1769 for each character from \fIl1\fR through \fIl2\fR.
1770 .sp
1771 .LP
1772 In the remaining forms, a field is created for each number starting at
1773 \fIn1\fR. This continues until it reaches \fIn2\fR and increments \fIn1\fR by
1774 \fIn3\fR. The cases where \fIn3\fR is not specified behave as if \fIn3\fR were
1775 1 if \fIn1\fR\fB<=\fR\fIn2\fR, and \fB-1\fR otherwise. In forms which specify

new/usr/src/man/man1/ksh93.1 28

1776 \fB%\fR\fIfmt\fR, any format flags, widths and precisions can be specified and
1777 \fIfmt\fR can end in any of the specifiers \fBcdiouxX\fR. For example,
1778 \fB{a,z}{1..5..3%02d}{b..c}x\fR expands to the 8 fields, \fBa01bx, a01cx,
1779 a04bx, a04cx, z01bx, z01cx, z04bx,\fR and \fBz4cx\fR.
1780 .SS "File Name Generation"
1781 .sp
1782 .LP
1783 Following splitting, each field is scanned for the characters \fB*\fR, \fB?\fR,
1784 \fB(\fR, and \fB[\fR, unless the \fB-f\fR option has been set. If one of these
1785 characters appears, then the word is regarded as a pattern.
1786 .sp
1787 .LP
1788 Each file name component that contains any pattern character is replaced with a
1789 lexicographically sorted set of names that matches the pattern from that
1790 directory. If no file name is found that matches the pattern, then that
1791 component of the file name is left unchanged unless the pattern is prefixed
1792 with \fB~(N)\fR in which case it is removed. If \fBFIGNORE\fR is set, then each
1793 file name component that matches the pattern defined by the value of
1794 \fBFIGNORE\fR is ignored when generating the matching file names. The names
1795 \fB\&.\fR and \fB\&..\fR are also ignored. If \fBFIGNORE\fR is not set, the
1796 character \fB\&.\fR at the start of each file name component is ignored unless
1797 the first character of the pattern corresponding to this component is the
1798 character \fB\&.\fR itself. For other uses of pattern matching the \fB/\fR and
1799 \fB\&.\fR are not specially treated.
1800 .sp
1801 .ne 2
1802 .na
1803 \fB\fB*\fR\fR
1804 .ad
1805 .RS 11n
1806 Match any string, including the null string. When used for file name expansion,
1807 if the \fBglobstar\fR option is on, two adjacent \fB*\fRs by themselves match
1808 all files and zero or more directories and subdirectories. If the two adjacent
1809 \fB*\fRs are followed by a \fB/\fR, only directories and subdirectories match.
1810 .RE

1812 .sp
1813 .ne 2
1814 .na
1815 \fB\fB?\fR\fR
1816 .ad
1817 .RS 11n
1818 Matches any single character.
1819 .RE

1821 .sp
1822 .ne 2
1823 .na
1824 \fB[\fB\&...\fR]\fR
1825 .ad
1826 .RS 11n
1827 Match any one of the enclosed characters. A pair of characters separated by
1828 \fB-\fR matches any character lexically between the pair, inclusive. If the
1829 first character following the opening \fB[\fR is a \fB!\fR, any character not
1830 enclosed is matched. A \fB-\fR can be included in the character set by putting
1831 it as the first or last character. Within \fB[\fR and \fB]\fR, character
1832 classes can be specified with the syntax \fB[:\fR\fIclass\fR\fB:]\fR where
1833 \fIclass\fR is one of the following classes defined in the \fBANSI-C\fR
1834 standard:
1835 .sp
1836 .in +2
1837 .nf
1838 \fIalnum alpha blank cntrl digit graph
1839 lower print punct space upper
1840 word xdigit\fR
1841 .fi

new/usr/src/man/man1/ksh93.1 29

1842 .in -2
1843 .sp

1845 \fIword\fR is equivalent to \fIalnum\fR plus the character \fB_\fR. Within
1846 \fB[\fR and \fB]\fR, an equivalence class can be specified with the syntax
1847 \fB[=\fR\fIc\fR\fB=]\fR which matches all characters with the same primary
1848 collation weight (as defined by the current locale) as the character \fIc\fR.
1849 Within \fB[\fR and \fB]\fR, [\fI\&.symbol.\fR] matches the collating symbol
1850 \fIsymbol\fR.
1851 .RE

1853 .sp
1854 .LP
1855 A \fIpattern-list\fR is a list of one or more patterns separated from each
1856 other with an \fB&\fR or \fB|\fR. An \fB&\fR signifies that all patterns must
1857 be matched whereas \fB|\fR requires that only one pattern be matched. Composite
1858 patterns can be formed with one or more of the following sub-patterns:
1859 .sp
1860 .ne 2
1861 .na
1862 \fB\fB?(\fR\fIpattern-list\fR\fB)\fR\fR
1863 .ad
1864 .RS 22n
1865 Optionally matches any one of the specified patterns.
1866 .RE

1868 .sp
1869 .ne 2
1870 .na
1871 \fB\fB*(\fR\fIpattern-list\fR\fB)\fR\fR
1872 .ad
1873 .RS 22n
1874 Matches zero or more occurrences of the specified patterns.
1875 .RE

1877 .sp
1878 .ne 2
1879 .na
1880 \fB\fB+(\fR\fIpattern-list\fR\fB)\fR\fR
1881 .ad
1882 .RS 22n
1883 Matches one or more occurrences of the specified patterns.
1884 .RE

1886 .sp
1887 .ne 2
1888 .na
1889 \fB\fB{\fR\fIn\fR\fB(\fR\fIpattern-list\fR\fB)\fR\fR
1890 .ad
1891 .RS 22n
1892 Matches \fIn\fR occurrences of the specified patterns.
1893 .RE

1895 .sp
1896 .ne 2
1897 .na
1898 \fB\fB{\fR\fIm\fR\fB,\fR\fIn\fR\fB(\fR\fIpattern-list\fR\fB)\fR\fR
1899 .ad
1900 .RS 22n
1901 Matches from \fIm\fR to \fIn\fR occurrences of the specified patterns. If
1902 \fIm\fR is omitted, \fB0\fR is used. If \fIn\fR is omitted at least \fIm\fR
1903 occurrences are matched.
1904 .RE

1906 .sp
1907 .ne 2

new/usr/src/man/man1/ksh93.1 30

1908 .na
1909 \fB\fB@(\fR\fIpattern-list\fR\fB)\fR\fR
1910 .ad
1911 .RS 22n
1912 Matches exactly one of the specified patterns.
1913 .RE

1915 .sp
1916 .ne 2
1917 .na
1918 \fB\fB!(\fR\fIpattern-list\fR\fB)\fR\fR
1919 .ad
1920 .RS 22n
1921 Matches anything except one of the specified patterns.
1922 .RE

1924 .sp
1925 .LP
1926 By default, each pattern, or sub-pattern matches the longest string possible
1927 consistent with generating the longest overall match. If more than one match is
1928 possible, the one starting closest to the beginning of the string is chosen.
1929 However, for each of the compound patterns a \fB-\fR can be inserted in front
1930 of the \fB(\fR to cause the shortest match to the specified \fIpattern-list\fR
1931 to be used.
1932 .sp
1933 .LP
1934 When \fIpattern-list\fR is contained within parentheses, the backslash
1935 character \fB\e\fR is treated specially even when inside a character class. All
1936 \fBANSI-C\fR character escapes are recognized and match the specified
1937 character. In addition the following escape sequences are recognized:
1938 .sp
1939 .ne 2
1940 .na
1941 \fB\fB\ed\fR\fR
1942 .ad
1943 .RS 7n
1944 Matches any character in the digit class.
1945 .RE

1947 .sp
1948 .ne 2
1949 .na
1950 \fB\fB\eD\fR\fR
1951 .ad
1952 .RS 7n
1953 Matches any character not in the digit class.
1954 .RE

1956 .sp
1957 .ne 2
1958 .na
1959 \fB\fB\es\fR\fR
1960 .ad
1961 .RS 7n
1962 Matches any character in the space class.
1963 .RE

1965 .sp
1966 .ne 2
1967 .na
1968 \fB\fB\eS\fR\fR
1969 .ad
1970 .RS 7n
1971 Matches any character not in the space class.
1972 .RE

new/usr/src/man/man1/ksh93.1 31

1974 .sp
1975 .ne 2
1976 .na
1977 \fB\fB\ew\fR\fR
1978 .ad
1979 .RS 7n
1980 Matches any character in the word class.
1981 .RE

1983 .sp
1984 .ne 2
1985 .na
1986 \fB\fB\eW\fR\fR
1987 .ad
1988 .RS 7n
1989 Matches any character not in the word class.
1990 .RE

1992 .sp
1993 .LP
1994 A pattern of the form \fB%(\fR\fIpattern-pairs\fR\fB)\fR is a sub-pattern that
1995 can be used to match nested character expressions. Each \fIpattern-pair\fR is a
1996 two character sequence which cannot contain \fB&\fR or \fB|\fR. The first
1997 \fIpattern-pair\fR specifies the starting and ending characters for the match.
1998 Each subsequent \fIpattern-pair\fR represents the beginning and ending
1999 characters of a nested group that is skipped over when counting starting and
2000 ending character matches. The behavior is unspecified when the first character
2001 of a \fIpattern-pair\fR is alphanumeric except for the following:
2002 .sp
2003 .ne 2
2004 .na
2005 \fB\fBD\fR\fR
2006 .ad
2007 .RS 5n
2008 Causes the ending character to terminate the search for this pattern without
2009 finding a match.
2010 .RE

2012 .sp
2013 .ne 2
2014 .na
2015 \fB\fBE\fR\fR
2016 .ad
2017 .RS 5n
2018 Causes the ending character to be interpreted as an escape character.
2019 .RE

2021 .sp
2022 .ne 2
2023 .na
2024 \fB\fBL\fR\fR
2025 .ad
2026 .RS 5n
2027 Causes the ending character to be interpreted as a quote character causing all
2028 characters to be ignored when looking for a match.
2029 .RE

2031 .sp
2032 .ne 2
2033 .na
2034 \fB\fBQ\fR\fR
2035 .ad
2036 .RS 5n
2037 Causes the ending character to be interpreted as a quote character causing all
2038 characters other than any escape character to be ignored when looking for a
2039 match.

new/usr/src/man/man1/ksh93.1 32

2040 .RE

2042 .sp
2043 .LP
2044 \fB%({}Q"E\e)\fR, matches characters starting at \fB{\fR until the matching
2045 \fB}\fR is found not counting any \fB{\fR or \fB}\fR that is inside a double
2046 quoted string or preceded by the escape character \fB\e\fR\&. Without the
2047 \fB{}\fR this pattern matches any C language string.
2048 .sp
2049 .LP
2050 Each sub-pattern in a composite pattern is numbered, starting at \fB1\fR, by
2051 the location of the \fB(\fR within the pattern. The sequence \fB\e\fR\fIn\fR,
2052 where \fIn\fR is a single digit and \fB\e\fR\fIn\fR comes after the \fIn\fRth.
2053 sub-pattern, matches the same string as the sub-pattern itself.
2054 .sp
2055 .LP
2056 A pattern can contain sub-patterns of the form
2057 \fB~(\fR\fIoptions\fR\fB:\fR\fIpattern-list\fR\fB)\fR, where either
2058 \fIoptions\fR or \fB:\fR\fIpattern-list\fR can be omitted. Unlike the other
2059 compound patterns, these sub-patterns are not counted in the numbered
2060 sub-patterns. If \fIoptions\fR is present, it can consist of one or more of the
2061 following:
2062 .sp
2063 .ne 2
2064 .na
2065 \fB\fB+\fR\fR
2066 .ad
2067 .RS 5n
2068 Enable the following options. This is the default.
2069 .RE

2071 .sp
2072 .ne 2
2073 .na
2074 \fB\fB-\fR\fR
2075 .ad
2076 .RS 5n
2077 Disable the following options.
2078 .RE

2080 .sp
2081 .ne 2
2082 .na
2083 \fB\fBE\fR\fR
2084 .ad
2085 .RS 5n
2086 The remainder of the pattern uses extended regular expression syntax like the
2087 \fBegrep\fR(1) command.
2088 .RE

2090 .sp
2091 .ne 2
2092 .na
2093 \fB\fBF\fR\fR
2094 .ad
2095 .RS 5n
2096 The remainder of the pattern uses \fBfgrep\fR(1) expression syntax.
2097 .RE

2099 .sp
2100 .ne 2
2101 .na
2102 \fB\fBg\fR\fR
2103 .ad
2104 .RS 5n
2105 File the longest match (greedy).

new/usr/src/man/man1/ksh93.1 33

2106 .sp
2107 This is the default.
2108 .RE

2110 .sp
2111 .ne 2
2112 .na
2113 \fB\fBG\fR\fR
2114 .ad
2115 .RS 5n
2116 The remainder of the pattern uses basic regular expression syntax like the
2117 \fBgrep\fR(1) command.
2118 .RE

2120 .sp
2121 .ne 2
2122 .na
2123 \fB\fBi\fR\fR
2124 .ad
2125 .RS 5n
2126 Treat the match as case insensitive.
2127 .RE

2129 .sp
2130 .ne 2
2131 .na
2132 \fB\fBK\fR\fR
2133 .ad
2134 .RS 5n
2135 The remainder of the pattern uses shell pattern syntax.
2136 .sp
2137 This is the default.
2138 .RE

2140 .sp
2141 .ne 2
2142 .na
2143 \fB\fBl\fR\fR
2144 .ad
2145 .RS 5n
2146 Left anchor the pattern.
2147 .sp
2148 This is the default for \fBK\fR style patterns.
2149 .RE

2151 .sp
2152 .ne 2
2153 .na
2154 \fB\fBN\fR\fR
2155 .ad
2156 .RS 5n
2157 This is ignored. However, when it is the first letter and is used with file
2158 name generation, and no matches occur, the file pattern expands to the empty
2159 string.
2160 .RE

2162 .sp
2163 .ne 2
2164 .na
2165 \fB\fBr\fR\fR
2166 .ad
2167 .RS 5n
2168 Right anchor the pattern.
2169 .sp
2170 This is the default for \fBK\fR style patterns.
2171 .RE

new/usr/src/man/man1/ksh93.1 34

2173 .sp
2174 .LP
2175 If both \fIoptions\fR and \fB:\fR\fIpattern-list\fR are specified, then the
2176 options apply only to \fIpattern-list\fR. Otherwise, these options remain in
2177 effect until they are disabled by a subsequent \fB~(...)\fR or at the end of
2178 the sub-pattern containing \fB~(...)\fR.
2179 .SS "Quoting"
2180 .sp
2181 .LP
2182 Each of the metacharacters listed in the \fBDefinitions\fR has a special
2183 meaning to the shell.
2184 .sp
2185 .ne 2
2186 .na
2187 \fB\fBg\fR\fR
2188 .ad
2189 .RS 5n
2190 File the longest match (greedy). This is the default.
2191 .RE

2193 .sp
2194 .ne 2
2195 .na
2196 \fB\fBi\fR\fR
2197 .ad
2198 .RS 5n
2199 Treat the match as case insensitive.
2200 .RE

2202 .sp
2203 .LP
2204 If both \fIoptions\fR and \fB:\fR\fIpattern-list\fR are specified, then the
2205 options apply only to \fIpattern-list\fR. Otherwise, the options remain in
2206 effect until they are disabled by a subsequent \fB~(...)\fR or at the end of
2207 the sub-pattern containing \fB~(...)\fR.
2208 .sp
2209 .LP
2210 Each of the metacharacters listed in the \fBDefinitions\fR section of this
2211 manual page has a special meaning to the shell and causes termination of a word
2212 unless quoted. A character can be quoted, that is, made to stand for itself, by
2213 preceding it with a backslash (\fB\e\fR). The pair \fB\e\fRNEWLINE is removed.
2214 All characters enclosed between a pair of single quote marks (\fB\&’’\fR) that
2215 is not preceded by a \fB$\fR are quoted. A single quote cannot appear within
2216 the single quotes. A single quoted string preceded by an unquoted \fB$\fR is
2217 processed as an \fBANSI-C\fR string except for the following:
2218 .sp
2219 .ne 2
2220 .na
2221 \fB\fB\e0\fR\fR
2222 .ad
2223 .RS 19n
2224 Causes the remainder of the string to be ignored.
2225 .RE

2227 .sp
2228 .ne 2
2229 .na
2230 \fB\fB\ec\fR\fIx\fR\fR
2231 .ad
2232 .RS 19n
2233 Expands to the character CTRL-x.
2234 .RE

2236 .sp
2237 .ne 2

new/usr/src/man/man1/ksh93.1 35

2238 .na
2239 \fB\fB\eC\fR[\fB\&.\fR\fIname\fR\fB\&.\fR]\fR
2240 .ad
2241 .RS 19n
2242 Expands to the collating element \fIname\fR.
2243 .RE

2245 .sp
2246 .ne 2
2247 .na
2248 \fB\fB\ee\fR\fR
2249 .ad
2250 .RS 19n
2251 Equivalent to the escape character (\fBASCII\fR 033),
2252 .RE

2254 .sp
2255 .ne 2
2256 .na
2257 \fB\fB\eE\fR\fR
2258 .ad
2259 .RS 19n
2260 Equivalent to the escape character (\fBASCII\fR 033),
2261 .RE

2263 .sp
2264 .LP
2265 Inside double quote marks (\fB""\fR), parameter and command substitution occur
2266 and \fB\e\fR quotes the characters \fB\e\fR, \fB‘\fR, \fB"\fR, and \fB$\fR. A
2267 \fB$\fR in front of a double quoted string is ignored in the \fBC\fR or
2268 \fBPOSIX\fR locale, and might cause the string to be replaced by a locale
2269 specific string otherwise. The meaning of \fB$*\fR and \fB$@\fR is identical
2270 when not quoted or when used as a variable assignment value or as a file name.
2271 However, when used as a command argument, \fB"$*"\fR is equivalent to
2272 \fB"$1\fId\fR$2\fId\fR..."\fR, where \fId\fR is the first character of the IFS
2273 variable, whereas \fB"$@"\fR is equivalent to \fB"$1" "$2"\fR Inside grave
2274 quote marks (\fB‘‘\fR), \fB\\fR quotes the characters \fB\e\fR, \fB‘\fR, and
2275 \fB$\fR. If the grave quotes occur within double quotes, then \fB\e\fR also
2276 quotes the character \fB"\fR.
2277 .sp
2278 .LP
2279 The special meaning of reserved words or aliases can be removed by quoting any
2280 character of the reserved word. The recognition of function names or built-in
2281 command names cannot be altered by quoting them.
2282 .SS "Arithmetic Evaluation"
2283 .sp
2284 .LP
2285 The shell performs arithmetic evaluation for arithmetic substitution, to
2286 evaluate an arithmetic command, to evaluate an indexed array subscript, and to
2287 evaluate arguments to the built-in commands \fBshift\fR and \fBlet\fR.
2288 Arithmetic evaluation is also performed on argument operands of the built-in
2289 command printf that correspond to numeric format specifiers in the format
2290 operand. See \fBprintf\fR(1). Evaluations are performed using double precision
2291 floating point arithmetic or long double precision floating point for systems
2292 that provide this data type. Floating point constants follow the \fBANSI-C\fR
2293 programming language floating point conventions. Integer constants follow the
2294 \fBANSI-C\fR programming language integer constant conventions although only
2295 single byte character constants are recognized and character casts are not
2296 recognized. Constants can be of the form \fB[\fR\fIbase#\fR\fB]\fR\fIn\fR where
2297 \fIbase\fR is a decimal number between two and sixty-four representing the
2298 arithmetic base and \fIn\fR is a number in that base. The digits greater than
2299 \fB9\fR are represented by the lower case letters, the upper case letters,
2300 \fB@\fR, and \fB_\fR respectively. For bases less than or equal to \fB36\fR,
2301 upper and lower case characters can be used interchangeably.
2302 .sp
2303 .LP

new/usr/src/man/man1/ksh93.1 36

2304 An arithmetic expression uses the same syntax, precedence, and associativity of
2305 expression as the C language. All the C language operators that apply to
2306 floating point quantities can be used. In addition, the operator \fB**\fR can
2307 be used for exponentiation. It has higher precedence than multiplication and is
2308 left associative. When the value of an arithmetic variable or subexpression can
2309 be represented as a long integer, all C language integer arithmetic operations
2310 can be performed. Variables can be referenced by name within an arithmetic
2311 expression without using the parameter expansion syntax. When a variable is
2312 referenced, its value is evaluated as an arithmetic expression.
2313 .sp
2314 .LP
2315 Any of the following math library functions that are in the C math library can
2316 be used within an arithmetic expression:
2317 .sp
2318 .in +2
2319 .nf
2320 abs acos acosh asin asinh atan atan2 atanh cbrt
2321 copysign cos cosh erf erfc exp exp2 expm1 fabs
2322 fdim finite floor fma fmax fmod hypot ilogb
2323 int isinf isnan lgamma log log2 logb
2324 nearbyint nextafter nexttoward pow remainder
2325 rint round sin sinh sqrt tan tanh tgamma trunc
2326 .fi
2327 .in -2
2328 .sp

2330 .sp
2331 .LP
2332 An internal representation of a \fIvariable\fR as a double precision floating
2333 point can be specified with the \fB-E [\fR\fIn\fR\fB]\fR or \fB-F
2334 [\fR\fIn\fR\fB]\fR option of the \fBtypeset\fR special built-in command. The
2335 \fB-E\fR option causes the expansion of the value to be represented using
2336 scientific notation when it is expanded. The optional option argument \fIn\fR
2337 defines the number of significant figures. The \fB-F\fR option causes the
2338 expansion to be represented as a floating decimal number when it is expanded.
2339 The optional option argument \fIn\fR defines the number of places after the
2340 decimal point in this case.
2341 .sp
2342 .LP
2343 An internal integer representation of a \fIvariable\fR can be specified with
2344 the \fB-i\fR \fB[\fR\fIn\fR\fB]\fR option of the \fBtypeset\fR special built-in
2345 command. The optional option argument \fIn\fR specifies an arithmetic base to
2346 be used when expanding the variable. If you do not specify an arithmetic base,
2347 base 10 is used.
2348 .sp
2349 .LP
2350 Arithmetic evaluation is performed on the value of each assignment to a
2351 variable with the \fB-E\fR, \fB-F\fR, or \fB-i\fR option. Assigning a floating
2352 point number to a variable whose type is an integer causes the fractional part
2353 to be truncated.
2354 .SS "Prompting"
2355 .sp
2356 .LP
2357 When used interactively, the shell prompts with the value of \fBPS1\fR after
2358 expanding it for parameter expansion, command substitution, and arithmetic
2359 substitution, before reading a command. In addition, each single \fB!\fR in the
2360 prompt is replaced by the command number. A \fB!!\fR is required to place
2361 \fB!\fR in the prompt. If at any time a NEWLINE is typed and further input is
2362 needed to complete a command, then the secondary prompt, that is, the value of
2363 \fBPS2\fR, is issued.
2364 .SS "Conditional Expressions"
2365 .sp
2366 .LP
2367 A \fBconditional expression\fR is used with the \fB[[\fR compound command to
2368 test attributes of files and to compare strings. Field splitting and file name
2369 generation are not performed on the words between \fB[[\fR and \fB]]\fR.

new/usr/src/man/man1/ksh93.1 37

2370 .sp
2371 .LP
2372 Each expression can be constructed from one or more of the following unary or
2373 binary expressions:
2374 .sp
2375 .ne 2
2376 .na
2377 \fB\fB-a\fR \fIfile\fR\fR
2378 .ad
2379 .RS 21n
2380 True, if \fIfile\fR exists.
2381 .sp
2382 This option is the same as \fB-e\fR. This option is obsolete.
2383 .RE

2385 .sp
2386 .ne 2
2387 .na
2388 \fB\fB-b\fR \fIfile\fR\fR
2389 .ad
2390 .RS 21n
2391 True, if \fIfile\fR exists and is a block special file.
2392 .RE

2394 .sp
2395 .ne 2
2396 .na
2397 \fB\fB-c\fR \fIfile\fR\fR
2398 .ad
2399 .RS 21n
2400 True, if \fIfile\fR exists and is a character special file.
2401 .RE

2403 .sp
2404 .ne 2
2405 .na
2406 \fB\fB-d\fR \fIfile\fR\fR
2407 .ad
2408 .RS 21n
2409 True, if \fIfile\fR exists and is a directory.
2410 .RE

2412 .sp
2413 .ne 2
2414 .na
2415 \fB\fB-e\fR \fIfile\fR\fR
2416 .ad
2417 .RS 21n
2418 True, if \fIfile\fR exists.
2419 .RE

2421 .sp
2422 .ne 2
2423 .na
2424 \fB\fB-f\fR \fIfile\fR\fR
2425 .ad
2426 .RS 21n
2427 True, if \fIfile\fR exists and is an ordinary file.
2428 .RE

2430 .sp
2431 .ne 2
2432 .na
2433 \fB\fB-g\fR \fIfile\fR\fR
2434 .ad
2435 .RS 21n

new/usr/src/man/man1/ksh93.1 38

2436 True, if \fIfile\fR exists and it has its \fBsetgid\fR bit set.
2437 .RE

2439 .sp
2440 .ne 2
2441 .na
2442 \fB\fB-G\fR \fIfile\fR\fR
2443 .ad
2444 .RS 21n
2445 True, if \fIfile\fR exists and its group matches the effective group id of this
2446 process.
2447 .RE

2449 .sp
2450 .ne 2
2451 .na
2452 \fB\fB-h\fR \fIfile\fR\fR
2453 .ad
2454 .RS 21n
2455 True, if \fIfile\fR exists and is a symbolic link.
2456 .RE

2458 .sp
2459 .ne 2
2460 .na
2461 \fB\fB-k\fR \fIfile\fR\fR
2462 .ad
2463 .RS 21n
2464 True, if \fIfile\fR exists and it has its sticky bit set.
2465 .RE

2467 .sp
2468 .ne 2
2469 .na
2470 \fB\fB-L\fR \fIfile\fR\fR
2471 .ad
2472 .RS 21n
2473 True, if \fIfile\fR exists and is a symbolic link.
2474 .RE

2476 .sp
2477 .ne 2
2478 .na
2479 \fB\fB-n\fR \fIstring\fR\fR
2480 .ad
2481 .RS 21n
2482 True, if length of \fIstring\fR is \fBnon-zero\fR.
2483 .RE

2485 .sp
2486 .ne 2
2487 .na
2488 \fB\fB-N\fR \fIfile\fR\fR
2489 .ad
2490 .RS 21n
2491 True, if \fIfile\fR exists and the modification time is greater than the last
2492 access time.
2493 .RE

2495 .sp
2496 .ne 2
2497 .na
2498 \fB\fB-o\fR \fIoption\fR\fR
2499 .ad
2500 .RS 21n
2501 True, if option named \fIoption\fR is on.

new/usr/src/man/man1/ksh93.1 39

2502 .RE

2504 .sp
2505 .ne 2
2506 .na
2507 \fB\fB-o\fR \fI?option\fR\fR
2508 .ad
2509 .RS 21n
2510 True, if option named \fIoption\fR is a valid option name.
2511 .RE

2513 .sp
2514 .ne 2
2515 .na
2516 \fB\fB-O\fR \fIfile\fR\fR
2517 .ad
2518 .RS 21n
2519 True, if \fIfile\fR exists and is owned by the effective user id of this
2520 process.
2521 .RE

2523 .sp
2524 .ne 2
2525 .na
2526 \fB\fB-p\fR \fIfile\fR\fR
2527 .ad
2528 .RS 21n
2529 True, if \fIfile\fR exists and is a \fBFIFO\fR special file or a pipe.
2530 .RE

2532 .sp
2533 .ne 2
2534 .na
2535 \fB\fB-r\fR \fIfile\fR\fR
2536 .ad
2537 .RS 21n
2538 True, if \fIfile\fR exists and is readable by current process.
2539 .RE

2541 .sp
2542 .ne 2
2543 .na
2544 \fB\fB-s\fR \fIfile\fR\fR
2545 .ad
2546 .RS 21n
2547 True, if \fIfile\fR exists and has size greater than zero.
2548 .RE

2550 .sp
2551 .ne 2
2552 .na
2553 \fB\fB-S\fR \fIfile\fR\fR
2554 .ad
2555 .RS 21n
2556 True, if \fIfile\fR exists and is a socket.
2557 .RE

2559 .sp
2560 .ne 2
2561 .na
2562 \fB\fB-t\fR \fIfildes\fR\fR
2563 .ad
2564 .RS 21n
2565 True, if file descriptor number \fIfildes\fR is open and associated with a
2566 terminal device.
2567 .RE

new/usr/src/man/man1/ksh93.1 40

2569 .sp
2570 .ne 2
2571 .na
2572 \fB\fB-u\fR \fIfile\fR\fR
2573 .ad
2574 .RS 21n
2575 True, if \fIfile\fR exists and it has its \fBsetuid\fR bit set.
2576 .RE

2578 .sp
2579 .ne 2
2580 .na
2581 \fB\fB-w\fR \fIfile\fR\fR
2582 .ad
2583 .RS 21n
2584 True, if \fIfile\fR exists and is writable by current process.
2585 .RE

2587 .sp
2588 .ne 2
2589 .na
2590 \fB\fB-x\fR \fIfile\fR\fR
2591 .ad
2592 .RS 21n
2593 True, if \fIfile\fR exists and is executable by current process. If \fIfile\fR
2594 exists and is a directory, then true if the current process has permission to
2595 search in the directory.
2596 .RE

2598 .sp
2599 .ne 2
2600 .na
2601 \fB\fB-z\fR \fIstring\fR\fR
2602 .ad
2603 .RS 21n
2604 True, if length of \fIstring\fR is zero.
2605 .RE

2607 .sp
2608 .ne 2
2609 .na
2610 \fB\fIfile1\fR \fB-ef\fR \fIfile2\fR\fR
2611 .ad
2612 .RS 21n
2613 True, if \fIfile1\fR and \fIfile2\fR exist and refer to the same file.
2614 .RE

2616 .sp
2617 .ne 2
2618 .na
2619 \fB\fIfile1\fR \fB-nt\fR \fIfile2\fR\fR
2620 .ad
2621 .RS 21n
2622 True, if \fIfile1\fR exists and \fIfile2\fR does not, or \fIfile1\fR is newer
2623 than \fIfile2\fR.
2624 .RE

2626 .sp
2627 .ne 2
2628 .na
2629 \fB\fIfile1\fR \fB-ot\fR \fIfile2\fR\fR
2630 .ad
2631 .RS 21n
2632 True, if \fIfile2\fR exists and \fIfile1\fR does not, or \fIfile1\fR is older
2633 than \fIfile2\fR.

new/usr/src/man/man1/ksh93.1 41

2634 .RE

2636 .sp
2637 .ne 2
2638 .na
2639 \fB\fIstring\fR\fR
2640 .ad
2641 .RS 21n
2642 True, if \fIstring\fR is not null.
2643 .RE

2645 .sp
2646 .ne 2
2647 .na
2648 \fB\fIstring\fR \fB==\fR \fIpattern\fR\fR
2649 .ad
2650 .RS 21n
2651 True, if \fIstring\fR matches \fIpattern\fR. Any part of \fIpattern\fR can be
2652 quoted to cause it to be matched as a string. With a successful match to
2653 \fIpattern\fR, the \fB\&.sh.match\fR array variable contains the match and
2654 sub-pattern matches.
2655 .RE

2657 .sp
2658 .ne 2
2659 .na
2660 \fB\fIstring\fR \fB=\fR \fIpattern\fR\fR
2661 .ad
2662 .RS 21n
2663 Same as \fB==\fR, but is obsolete.
2664 .RE

2666 .sp
2667 .ne 2
2668 .na
2669 \fB\fIstring\fR \fB!=\fR \fIpattern\fR\fR
2670 .ad
2671 .RS 21n
2672 True, if \fIstring\fR does not match \fIpattern\fR. When the \fIstring\fR
2673 matches the \fIpattern\fR the \fB\&.sh.match\fR array variable contains the
2674 match and sub-pattern matches.
2675 .RE

2677 .sp
2678 .ne 2
2679 .na
2680 \fB\fIstring\fR \fB=~\fR \fIere\fR\fR
2681 .ad
2682 .RS 21n
2683 True if \fIstring\fR matches the pattern \fB~(E)\fR\fIere\fR where \fIere\fR is
2684 an extended regular expression.
2685 .RE

2687 .sp
2688 .ne 2
2689 .na
2690 \fB\fIstring1\fR \fB<\fR \fIstring2\fR\fR
2691 .ad
2692 .RS 21n
2693 True, if \fIstring1\fR comes before \fIstring2\fR based on \fBASCII\fR value of
2694 their characters.
2695 .RE

2697 .sp
2698 .ne 2
2699 .na

new/usr/src/man/man1/ksh93.1 42

2700 \fB\fIstring1\fR \fB>\fR \fIstring2\fR\fR
2701 .ad
2702 .RS 21n
2703 True, if \fIstring1\fR comes after \fIstring2\fR based on \fBASCII\fR value of
2704 their characters.
2705 .RE

2707 .sp
2708 .LP
2709 In each of the following expressions, if \fIfile\fR is of the form
2710 \fB/dev/fd/\fR\fIn\fR, where \fIn\fR is an integer, the test is applied to the
2711 open file whose descriptor number is \fIn\fR. The following obsolete arithmetic
2712 comparisons are supported:
2713 .sp
2714 .ne 2
2715 .na
2716 \fB\fIexp1\fR \fB-eq\fR \fIexp2\fR\fR
2717 .ad
2718 .RS 17n
2719 True, if \fIexp1\fR is equal to \fIexp2\fR.
2720 .RE

2722 .sp
2723 .ne 2
2724 .na
2725 \fB\fIexp1\fR \fB-ge\fR \fIexp2\fR\fR
2726 .ad
2727 .RS 17n
2728 True, if \fIexp1\fR is greater than or equal to \fIexp2\fR.
2729 .RE

2731 .sp
2732 .ne 2
2733 .na
2734 \fB\fIexp1\fR \fB-gt\fR \fIexp2\fR\fR
2735 .ad
2736 .RS 17n
2737 True, if \fIexp1\fR is greater than \fIexp2\fR.
2738 .RE

2740 .sp
2741 .ne 2
2742 .na
2743 \fB\fIexp1\fR \fB-le\fR \fIexp2\fR\fR
2744 .ad
2745 .RS 17n
2746 True, if \fIexp1\fR is less than or equal to \fIexp2\fR.
2747 .RE

2749 .sp
2750 .ne 2
2751 .na
2752 \fB\fIexp1\fR \fB-lt\fR \fIexp2\fR\fR
2753 .ad
2754 .RS 17n
2755 True, if \fIexp1\fR is less than \fIexp2\fR.
2756 .RE

2758 .sp
2759 .ne 2
2760 .na
2761 \fB\fIexp1\fR \fB-ne\fR \fIexp2\fR\fR
2762 .ad
2763 .RS 17n
2764 True, if \fIexp1\fR is not equal to \fIexp2\fR.
2765 .RE

new/usr/src/man/man1/ksh93.1 43

2767 .sp
2768 .LP
2769 A compound expression can be constructed from these primitives by using any of
2770 the following, listed in decreasing order of precedence:
2771 .sp
2772 .ne 2
2773 .na
2774 \fB\fB(\fR\fIexpression\fR\fB)\fR\fR
2775 .ad
2776 .RS 30n
2777 True, if \fIexpression\fR is true. Used to group expressions.
2778 .RE

2780 .sp
2781 .ne 2
2782 .na
2783 \fB\fB!\fR \fIexpression\fR\fR
2784 .ad
2785 .RS 30n
2786 True, if \fIexpression\fR is false.
2787 .RE

2789 .sp
2790 .ne 2
2791 .na
2792 \fB\fIexpression1\fR \fB&&\fR \fIexpression2\fR\fR
2793 .ad
2794 .RS 30n
2795 True, if \fIexpression1\fR and \fIexpression2\fR are both true.
2796 .RE

2798 .sp
2799 .ne 2
2800 .na
2801 \fB\fIexpression1\fR \fB||\fR \fIexpression2\fR\fR
2802 .ad
2803 .RS 30n
2804 True, if either \fIexpression1\fR or \fIexpression2\fR is true.
2805 .RE

2807 .SS "Input and Output"
2808 .sp
2809 .LP
2810 Before a command is executed, its input and output can be redirected using a
2811 special notation interpreted by the shell. The following can appear anywhere in
2812 a simple command or can precede or follow a command and are \fBnot\fR passed on
2813 to the invoked command. Command substitution, parameter expansion, and
2814 arithmetic substitution occur before \fIword\fR or \fIdigit\fR is used except
2815 as noted in this section. File name generation occurs only if the shell is
2816 interactive and the pattern matches a single file. Field splitting is not
2817 performed.
2818 .sp
2819 .LP
2820 In each of the following redirections, if \fIfile\fR is of the form
2821 \fB/dev/sctp/\fR\fIhost\fR\fB/\fR\fIport\fR,
2822 \fB/dev/tcp/\fR\fIhost\fR\fB/\fR\fIport\fR, or
2823 \fB/dev/udp/\fR\fIhost\fR\fB/\fR\fIport\fR, where \fIhost\fR is a hostname or
2824 host address, and \fIport\fR is a service specified by name or an integer port
2825 number, then the redirection attempts to make a \fBtcp\fR, \fBsctp\fR or
2826 \fBudp\fR connection to the corresponding socket.
2827 .sp
2828 .LP
2829 No intervening space is allowed between the characters of redirection
2830 operators.
2831 .sp

new/usr/src/man/man1/ksh93.1 44

2832 .ne 2
2833 .na
2834 \fB\fB<\fR\fIword\fR\fR
2835 .ad
2836 .RS 14n
2837 Use file \fIword\fR as standard input (file descriptor 0).
2838 .RE

2840 .sp
2841 .ne 2
2842 .na
2843 \fB\fB>\fR\fIword\fR\fR
2844 .ad
2845 .RS 14n
2846 Use file \fIword\fR as standard output (file descriptor 1). If the file does
2847 not exist then it is created. If the file exists, and the \fBnoclobber\fR
2848 option is on, this causes an error. Otherwise, it is truncated to zero length.
2849 .RE

2851 .sp
2852 .ne 2
2853 .na
2854 \fB\fB>|\fR\fIword\fR\fR
2855 .ad
2856 .RS 14n
2857 Same as \fB>\fR, except that it overrides the \fBnoclobber\fR option.
2858 .RE

2860 .sp
2861 .ne 2
2862 .na
2863 \fB\fB>>\fR\fIword\fR\fR
2864 .ad
2865 .RS 14n
2866 Use file \fIword\fR as standard output. If the file exists, then output is
2867 appended to it (by first seeking to the end-of-file). Otherwise, the file is
2868 created.
2869 .RE

2871 .sp
2872 .ne 2
2873 .na
2874 \fB\fB<>\fR\fIword\fR\fR
2875 .ad
2876 .RS 14n
2877 Open file \fIword\fR for reading and writing as standard input.
2878 .RE

2880 .sp
2881 .ne 2
2882 .na
2883 \fB\fB<<\fR\fB[-]\fR\fIword\fR\fR
2884 .ad
2885 .RS 14n
2886 The shell input is read up to a line that is the same as \fIword\fR after any
2887 quoting has been removed, or to an end-of-file. No parameter substitution,
2888 command substitution, arithmetic substitution or file name generation is
2889 performed on \fIword\fR. The resulting document, called a \fBhere-document\fR,
2890 becomes the standard input. If any character of \fIword\fR is quoted, then no
2891 interpretation is placed upon the characters of the document. Otherwise,
2892 parameter expansion, command substitution, and arithmetic substitution occur,
2893 \fB\e\fRNEWLINE is ignored, and \fB\e\fR must be used to quote the characters
2894 \fB\e\fR, \fB$\fR, \fB‘\fR\&. If \fB-\fR is appended to \fB<<\fR, then all
2895 leading tabs are stripped from \fIword\fR and from the document. If \fB#\fR is
2896 appended to \fB<<\fR, then leading SPACEs and TABs are stripped off the first
2897 line of the document and up to an equivalent indentation is stripped from the

new/usr/src/man/man1/ksh93.1 45

2898 remaining lines and from \fIword\fR. A tab stop is assumed to occur at every 8
2899 columns for the purposes of determining the indentation.
2900 .RE

2902 .sp
2903 .ne 2
2904 .na
2905 \fB\fB<<<\fR\fIword\fR\fR
2906 .ad
2907 .RS 14n
2908 A short form of here document in which \fIword\fR becomes the contents of the
2909 here-document after any parameter expansion, command substitution, and
2910 arithmetic substitution occur.
2911 .RE

2913 .sp
2914 .ne 2
2915 .na
2916 \fB\fB<&\fR\fIdigit\fR\fR
2917 .ad
2918 .RS 14n
2919 The standard input is duplicated from file descriptor \fIdigit\fR, and
2920 similarly for the standard output using \fB>&\fR\fIdigit\fR. See \fBdup\fR(2).
2921 .RE

2923 .sp
2924 .ne 2
2925 .na
2926 \fB\fB<&\fR\fIdigit\fR\fB-\fR\fR
2927 .ad
2928 .RS 14n
2929 The file descriptor specified by \fIdigit\fR is moved to standard input.
2930 Similarly for the standard output using \fB>&\fR\fIdigit\fR\fB-\fR.
2931 .RE

2933 .sp
2934 .ne 2
2935 .na
2936 \fB\fB<&-\fR\fR
2937 .ad
2938 .RS 14n
2939 The standard input is closed. Similarly for the standard output using
2940 \fB>&-\fR.
2941 .RE

2943 .sp
2944 .ne 2
2945 .na
2946 \fB\fB<&p\fR\fR
2947 .ad
2948 .RS 14n
2949 The input from the co-process is moved to standard input.
2950 .RE

2952 .sp
2953 .ne 2
2954 .na
2955 \fB\fB>&p\fR\fR
2956 .ad
2957 .RS 14n
2958 The output to the co-process is moved to standard output.
2959 .RE

2961 .sp
2962 .ne 2
2963 .na

new/usr/src/man/man1/ksh93.1 46

2964 \fB\fB<#((\fR\fIexpr\fR\fB))\fR\fR
2965 .ad
2966 .RS 14n
2967 Evaluate arithmetic expression \fIexpr\fR and position file descriptor 0 to the
2968 resulting value bytes from the start of the file. The variables \fBCUR\fR and
2969 \fBEOF\fR evaluate to the current offset and end-of-file offset respectively
2970 when evaluating \fIexpr\fR.
2971 .RE

2973 .sp
2974 .ne 2
2975 .na
2976 \fB\fB>#((\fR\fIexpr\fR\fB))\fR\fR
2977 .ad
2978 .RS 14n
2979 The same as \fB<#\fR except applies to file descriptor 1.
2980 .RE

2982 .sp
2983 .ne 2
2984 .na
2985 \fB\fB<#\fR\fIpattern\fR\fR
2986 .ad
2987 .RS 14n
2988 Seek forward to the beginning of the next line containing pattern.
2989 .RE

2991 .sp
2992 .ne 2
2993 .na
2994 \fB\fB<##\fR\fIpattern\fR\fR
2995 .ad
2996 .RS 14n
2997 The same as \fB<#\fR, except that the portion of the file that is skipped is
2998 copied to standard output.
2999 .RE

3001 .sp
3002 .LP
3003 If one of the redirection operators is preceded by a digit, with no intervening
3004 space, then the file descriptor number referred to is that specified by the
3005 digit (instead of the default 0 or 1). If one of the redirection operators
3006 other than \fB>&-\fR and the \fB>#\fR and \fB<#\fR forms, is preceded by
3007 \fB{\fR\fIvarname\fR\fB}\fR with no intervening space, then a file descriptor
3008 number \fB> 10\fR is selected by the shell and stored in the variable
3009 \fIvarname\fR. If \fB>&-\fR or the any of the \fB>#\fR and \fB<#\fR forms is
3010 preceded by \fB{\fR\fIvarname\fR\fB}\fR the value of \fIvarname\fR defines the
3011 file descriptor to close or position. For example:
3012 .sp
3013 .in +2
3014 .nf
3015 \&... 2>&1
3016 .fi
3017 .in -2
3018 .sp

3020 .sp
3021 .LP
3022 means file descriptor 2 is to be opened for writing as a duplicate of file
3023 descriptor 1 and
3024 .sp
3025 .in +2
3026 .nf
3027 exec [\fIn\fR]<\fIfile\fR
3028 .fi
3029 .in -2

new/usr/src/man/man1/ksh93.1 47

3030 .sp

3032 .sp
3033 .LP
3034 means open \fIfile\fR for reading and store the file descriptor number in
3035 variable \fIn\fR. The order in which redirections are specified is significant.
3036 The shell evaluates each redirection in terms of the (\fIfile_descriptor\fR,
3037 \fIfile\fR) association at the time of evaluation. For example:
3038 .sp
3039 .in +2
3040 .nf
3041 \&... 1>\fIfname\fR 2>&1
3042 .fi
3043 .in -2
3044 .sp

3046 .sp
3047 .LP
3048 first associates file descriptor 1 with file \fIfname\fR. It then associates
3049 file descriptor 2 with the file associated with file descriptor 1, that is,
3050 \fIfname\fR. If the order of redirections were reversed, file descriptor 2
3051 would be associated with the terminal (assuming file descriptor 1 had been) and
3052 then file descriptor 1 would be associated with file \fIfname\fR. If a command
3053 is followed by \fB&\fR and job control is not active, the default standard
3054 input for the command is the empty file \fB/dev/null\fR. Otherwise, the
3055 environment for the execution of a command contains the file descriptors of the
3056 invoking shell as modified by input and output specifications.
3057 .SS "Environment"
3058 .sp
3059 .LP
3060 The \fIenvironment\fR is a list of name-value pairs that is passed to an
3061 executed program in the same way as a normal argument list. See
3062 \fBenviron\fR(5).
3063 .sp
3064 .LP
3065 The names must be \fIidentifiers\fR and the values are character strings. The
3066 shell interacts with the environment in several ways. On invocation, the shell
3067 scans the environment and creates a variable for each name found, giving it the
3068 corresponding value and attributes and marking it \fBexport\fR. Executed
3069 commands inherit the environment. If the user modifies the values of these
3070 variables or creates new ones, using the \fBexport\fR or \fBtypeset\fR \fB-x\fR
3071 commands, they become part of the environment. The environment seen by any
3072 executed command is thus composed of any name-value pairs originally inherited
3073 by the shell, whose values can be modified by the current shell, plus any
3074 additions which must be noted in \fBexport\fR or \fBtypeset\fR \fB-x\fR
3075 commands. The environment for any simple-command or function can be augmented
3076 by prefixing it with one or more variable assignments. A variable assignment
3077 argument is a word of the form \fIidentifier\fR\fB=\fR\fIvalue\fR. Thus:
3078 .sp
3079 .in +2
3080 .nf
3081 TERM=450 cmd args
3082 .fi
3083 .in -2
3084 .sp

3086 .sp
3087 .LP
3088 and
3089 .sp
3090 .in +2
3091 .nf
3092 (export TERM; TERM=450; cmd args)
3093 .fi
3094 .in -2
3095 .sp

new/usr/src/man/man1/ksh93.1 48

3097 .sp
3098 .LP
3099 are equivalent (as far as the execution of \fIcmd\fR is concerned except for
3100 special built-in commands listed in the \fBBuilt-Ins\fR section, those that are
3101 preceded with a dagger. If the obsolete \fB-k\fR option is set, all variable
3102 assignment arguments are placed in the environment, even if they occur after
3103 the command name.
3104 .sp
3105 .LP
3106 The following example first prints \fBa=b c\fR and then \fBc\fR:
3107 .sp
3108 .in +2
3109 .nf
3110 echo a=b c
3111 set -k
3112 echo a=b c
3113 .fi
3114 .in -2
3115 .sp

3117 .sp
3118 .LP
3119 This feature is intended for use with scripts written for early versions of the
3120 shell and its use in new scripts is strongly discouraged.
3121 .SS "Functions"
3122 .sp
3123 .LP
3124 For historical reasons, there are two ways to define functions, the
3125 \fBname()\fR syntax and the \fBfunction\fR \fBname\fR syntax. These are
3126 described in the \fBCommands\fR section of this manual page.
3127 .sp
3128 .LP
3129 Shell functions are read in and stored internally. Alias names are resolved
3130 when the function is read. Functions are executed like commands with the
3131 arguments passed as positional parameters. See the \fBExecution\fR section of
3132 this manual page for details.
3133 .sp
3134 .LP
3135 Functions defined by the \fBfunction\fR \fBname\fR syntax and called by name
3136 execute in the same process as the caller and share all files and present
3137 working directory with the caller. Traps caught by the caller are reset to
3138 their default action inside the function. A trap condition that is not caught
3139 or ignored by the function causes the function to terminate and the condition
3140 to be passed on to the caller. A trap on \fBEXIT\fR set inside a function is
3141 executed in the environment of the caller after the function completes.
3142 Ordinarily, variables are shared between the calling program and the function.
3143 However, the \fBtypeset\fR special built-in command used within a function
3144 defines local variables whose scope includes the current function. They can be
3145 passed to functions that they call in the variable assignment list that
3146 precedes the call or as arguments passed as name references. Errors within
3147 functions return control to the caller.
3148 .sp
3149 .LP
3150 Functions defined with the \fBname()\fR syntax and functions defined with the
3151 \fBfunction\fR \fBname\fR syntax that are invoked with the \fB\&.\fR special
3152 built-in are executed in the caller’s environment and share all variables and
3153 traps with the caller. Errors within these function executions cause the script
3154 that contains them to abort.
3155 .sp
3156 .LP
3157 The special built-in command \fBreturn\fR is used to return from function
3158 calls.
3159 .sp
3160 .LP
3161 Function names can be listed with the \fB-f\fR or \fB+f\fR option of the

new/usr/src/man/man1/ksh93.1 49

3162 \fBtypeset\fR special built-in command. The text of functions, when available,
3163 is also listed with \fB-f\fR. Functions can be undefined with the \fB-f\fR
3164 option of the \fBunset\fR special built-in command.
3165 .sp
3166 .LP
3167 Ordinarily, functions are unset when the shell executes a shell script.
3168 Functions that need to be defined across separate invocations of the shell
3169 should be placed in a directory and the \fBFPATH\fR variable should contain the
3170 name of this directory. They can also be specified in the \fBENV\fR file.
3171 .SS "Discipline Functions"
3172 .sp
3173 .LP
3174 Each variable can have zero or more discipline functions associated with it.
3175 The shell initially understands the discipline names \fBget\fR, \fBset\fR,
3176 \fBappend\fR, and \fBunset\fR but on most systems others can be added at run
3177 time via the C programming interface extension provided by the \fBbuiltin\fR
3178 built-in utility. If the \fBget\fR discipline is defined for a variable, it is
3179 invoked whenever the specified variable is referenced. If the variable
3180 \fB\&.sh.value\fR is assigned a value inside the discipline function, the
3181 referenced variable is evaluated to this value instead. If the \fBset\fR
3182 discipline is defined for a variable, it is invoked whenever the specified
3183 variable is assigned a value. If the \fBappend\fR discipline is defined for a
3184 variable, it is invoked whenever a value is appended to the specified variable.
3185 The variable \fB\&.sh.value\fR is specified the value of the variable before
3186 invoking the discipline, and the variable is assigned the value of
3187 \fB\&.sh.value\fR after the discipline completes. If .\fBsh.value\fR is
3188 \fBunset\fR inside the discipline, then that value is unchanged. If the
3189 \fBunset\fR discipline is defined for a variable, it is invoked whenever the
3190 specified variable is unset. The variable is not unset unless it is unset
3191 explicitly from within this discipline function.
3192 .sp
3193 .LP
3194 The variable \fB\&.sh.name\fR contains the name of the variable for which the
3195 discipline function is called, \fB\&.sh.subscript\fR is the subscript of the
3196 variable, and \fB\&.sh.value\fR contains the value being assigned inside the
3197 \fBset\fR discipline function. For the \fBset\fR discipline, changing
3198 \fB\&.sh.value\fR changes the value that gets assigned.
3199 .SS "Jobs"
3200 .sp
3201 .LP
3202 If the monitor option of the \fBset\fR command is turned on, an interactive
3203 shell associates a job with each pipeline. It keeps a table of current jobs,
3204 printed by the \fBjobs\fR command, and assigns them small integer numbers. When
3205 a job is started asynchronously with \fB&\fR, the shell prints a line which
3206 looks like:
3207 .sp
3208 .in +2
3209 .nf
3210 [1] 1234
3211 .fi
3212 .in -2
3213 .sp

3215 .sp
3216 .LP
3217 indicating that the job which was started asynchronously was job number 1 and
3218 had one (top-level) process, whose process id was \fB1234\fR.
3219 .sp
3220 .LP
3221 If you are running a job and wish to stop it, CTRL-z sends a \fBSTOP\fR signal
3222 to the current job. The shell normally displays a message that the job has been
3223 stopped, and displays another prompt. You can then manipulate the state of this
3224 job, putting it in the background with the \fBbg\fR command, or run some other
3225 commands and then eventually bring the job back into the foreground with the
3226 foreground command \fBfg\fR. A CTRL-z takes effect immediately and is like an
3227 interrupt in that pending output and unread input are discarded when it is

new/usr/src/man/man1/ksh93.1 50

3228 typed.
3229 .sp
3230 .LP
3231 A job being run in the background stops if it tries to read from the terminal.
3232 Background jobs are normally allowed to produce output, but this can be
3233 disabled by giving the command \fBsttytostop\fR. If you set this \fBtty\fR
3234 option, then background jobs stop when they try to produce output like they do
3235 when they try to read input.
3236 .sp
3237 .LP
3238 There are several ways to refer to jobs in the shell. A job can be referred to
3239 by the process id of any process of the job or by one of the following:
3240 .sp
3241 .ne 2
3242 .na
3243 \fB\fB%\fR\fInumber\fR\fR
3244 .ad
3245 .RS 12n
3246 The job with the specified number.
3247 .RE

3249 .sp
3250 .ne 2
3251 .na
3252 \fB\fB%\fR\fIstring\fR\fR
3253 .ad
3254 .RS 12n
3255 Any job whose command line begins with \fIstring\fR.
3256 .RE

3258 .sp
3259 .ne 2
3260 .na
3261 \fB\fB%?\fR\fIstring\fR\fR
3262 .ad
3263 .RS 12n
3264 Any job whose command line contains \fIstring\fR.
3265 .RE

3267 .sp
3268 .ne 2
3269 .na
3270 \fB\fB%%\fR\fR
3271 .ad
3272 .RS 12n
3273 Current job.
3274 .RE

3276 .sp
3277 .ne 2
3278 .na
3279 \fB\fB%+\fR\fR
3280 .ad
3281 .RS 12n
3282 Equivalent to \fB%%\fR.
3283 .RE

3285 .sp
3286 .ne 2
3287 .na
3288 \fB\fB%-\fR\fR
3289 .ad
3290 .RS 12n
3291 Previous job.
3292 .RE

new/usr/src/man/man1/ksh93.1 51

3294 .sp
3295 .LP
3296 The shell learns immediately whenever a process changes state. It normally
3297 informs you whenever a job becomes blocked so that no further progress is
3298 possible, but only just before it prints a prompt. This is done so that it does
3299 not otherwise disturb your work. The notify option of the \fBset\fR command
3300 causes the shell to print these job change messages as soon as they occur.
3301 .sp
3302 .LP
3303 When the \fBmonitor\fR option is on, each background job that completes
3304 triggers any trap set for \fBCHLD\fR.
3305 .sp
3306 .LP
3307 When you try to leave the shell while jobs are running or stopped, you are
3308 warned that \fBYou have stopped(running) jobs.\fR You can use the \fBjobs\fR
3309 command to see what they are. If you immediately try to exit again, the shell
3310 does not warn you a second time, and the stopped jobs are terminated. When a
3311 login shell receives a \fBHUP\fR signal, it sends a \fBHUP\fR signal to each
3312 job that has not been disowned with the \fBdisown\fR built-in command.
3313 .SS "Signals"
3314 .sp
3315 .LP
3316 The \fBINT\fR and \fBQUIT\fR signals for an invoked command are ignored if the
3317 command is followed by \fB&\fR and the \fBmonitor\fR option is not active.
3318 Otherwise, signals have the values inherited by the shell from its parent. See
3319 the \fBtrap\fR built-in command.
3320 .SS "Execution"
3321 .sp
3322 .LP
3323 Each time a command is read, the substitutions are carried out. If the command
3324 name matches one of the ones in the \fBSpecial Built-in Commands\fR section of
3325 this manual page, it is executed within the current shell process. Next, the
3326 command name is checked to see if it matches a user defined function. If it
3327 does, the positional parameters are saved and then reset to the arguments of
3328 the function call. A function is also executed in the current shell process.
3329 When the function completes or issues a return, the positional parameter list
3330 is restored. For functions defined with the \fBfunction\fR \fBname\fR syntax,
3331 any trap set on \fBEXIT\fR within the function is executed. The exit value of a
3332 function is the value of the last command executed. If a command name is not a
3333 special built-in command or a user defined function, but it is one of the
3334 built-in commands, it is executed in the current shell process.
3335 .sp
3336 .LP
3337 The shell variable \fBPATH\fR defines the search path for the directory
3338 containing the command. Alternative directory names are separated by a colon
3339 (\fB:\fR). The default path is \fB/bin:/usr/bin:\fR, specifying \fB/bin\fR,
3340 \fB/usr/bin\fR, and the current directory in that order. The current directory
3341 can be specified by two or more adjacent colons, or by a colon at the beginning
3342 or end of the path list. If the command name contains a slash (\fB/\fR), the
3343 search path is not used. Otherwise, each directory in the path is searched for
3344 an executable file of the specified name that is not a directory. If found, and
3345 if the shell determines that there is a built-in version of a command
3346 corresponding to a specified pathname, this built-in is invoked in the current
3347 process. If found, and this directory is also contained in the value of the
3348 \fBFPATH\fR variable, then this file is loaded into the current shell
3349 environment as if it were the argument to the . command except that only preset
3350 aliases are expanded, and a function of the specified name is executed as
3351 described in this manual page. If not found, and the file \fB\&.paths\fR is
3352 found, and this file contains a line of the form \fBFPATH=\fR\fIpath\fR where
3353 \fIpath\fR is an existing directory, and this directory contains a file of the
3354 specified name, then this file is loaded into the current shell environment as
3355 if it were the argument to the \fB\&. special\fR built-in command and a
3356 function of the specified name is executed. Otherwise, if found, a process is
3357 created and an attempt is made to execute the command using \fBexec\fR(2).
3358 .sp
3359 .LP

new/usr/src/man/man1/ksh93.1 52

3360 When an executable is found, the directory where it is found in is searched for
3361 a file named \fB\&.paths\fR. If this file is found and it contains a line of
3362 the form \fBBUILTIN_LIB=\fR\fIvalue\fR, the library named by \fIvalue\fR is
3363 searched for as if it were an option argument to \fBbuiltin -f\fR, and if it
3364 contains a built-in of the specified name this is executed instead of a command
3365 by this name. Otherwise, if this file is found and it contains a line of the
3366 form \fIname\fR\fB=\fR\fIvalue\fR in the first or second line, then the
3367 environment variable \fIname\fR is modified by prepending the directory
3368 specified by \fIvalue\fR to the directory list. If \fIvalue\fR is not an
3369 absolute directory, then it specifies a directory relative to the directory
3370 that the executable was found. If the environment variable \fIname\fR does not
3371 already exist it is added to the environment list for the specified command.
3372 .sp
3373 .LP
3374 If the file has execute permission but is not an \fBa.out\fR file, it is
3375 assumed to be a file containing shell commands. A separate shell is spawned to
3376 read it. All non-exported variables are removed in this case. If the shell
3377 command file doesn’t have read permission, and/or if the \fBsetuid\fR and
3378 \fBsetgid\fR bits are set on the file, then the shell executes an agent whose
3379 job it is to set up the permissions and execute the shell with the shell
3380 command file passed down as an open file. A parenthesized command is executed
3381 in a sub-shell without removing non-exported variables.
3382 .SS "Command Re-entry"
3383 .sp
3384 .LP
3385 The text of the last \fBHISTSIZE\fR (default 512) commands entered from a
3386 terminal device is saved in a history file. The file \fB$HOME/.sh_history\fR is
3387 used if the \fBHISTFILE\fR variable is not set or if the file it names is not
3388 writable. A shell can access the commands of all interactive shells which use
3389 the same named \fBHISTFILE\fR. The built-in command \fBhist\fR is used to list
3390 or edit a portion of this file. The portion of the file to be edited or listed
3391 can be selected by number or by giving the first character or characters of the
3392 command. A single command or range of commands can be specified. If you do not
3393 specify an editor program as an argument to \fBhist\fR then the value of the
3394 variable \fBHISTEDIT\fR is used. If \fBHISTEDIT\fR is unset, the obsolete
3395 variable \fBFCEDIT\fR is used. If \fBFCEDIT\fR is not defined, then
3396 \fB/bin/ed\fR is used. The edited commands are printed and executed again upon
3397 leaving the editor unless you quit without writing. The \fB-s\fR option (and in
3398 obsolete versions, the editor name \fB-\fR) is used to skip the editing phase
3399 and to re-execute the command. In this case a substitution parameter of the
3400 form \fIold\fR\fB=\fR\fInew\fRcan be used to modify the command before
3401 execution. For example, with the preset alias \fBr\fR, which is aliased to
3402 \fB\&’hist -s’\fR, typing \fB‘r bad=good c’\fR re-executes the most recent
3403 command which starts with the letter \fBc\fR, replacing the first occurrence of
3404 the string bad with the string good.
3405 .SS "Inline Editing Options"
3406 .sp
3407 .LP
3408 Normally, each command line entered from a terminal device is simply typed
3409 followed by a NEWLINE (RETURN or LINE FEED). If either the \fBemacs\fR,
3410 \fBgmacs\fR, or \fBvi\fR option is active, the user can edit the command line.
3411 To be in either of these edit modes set the corresponding option. An editing
3412 option is automatically selected each time the \fBVISUAL\fR or \fBEDITOR\fR
3413 variable is assigned a value ending in either of these option names.
3414 .sp
3415 .LP
3416 The editing features require that the user’s terminal accept RETURN as carriage
3417 return without line feed and that a SPACE must overwrite the current character
3418 on the screen.
3419 .sp
3420 .LP
3421 Unless the \fBmultiline\fR option is on, the editing modes implement a concept
3422 where the user is looking through a window at the current line. The window
3423 width is the value of \fBCOLUMNS\fR if it is defined, otherwise \fB80\fR. If
3424 the window width is too small to display the prompt and leave at least 8
3425 columns to enter input, the prompt is truncated from the left. If the line is

new/usr/src/man/man1/ksh93.1 53

3426 longer than the window width minus two, a mark is displayed at the end of the
3427 window to notify the user. As the cursor moves and reaches the window
3428 boundaries the window is centered about the cursor. The mark is a \fB>\fR
3429 (\fB<, *\fR) if the line extends on the right , left, or both sides of the
3430 window.
3431 .sp
3432 .LP
3433 The search commands in each edit mode provide access to the history file. Only
3434 strings are matched, not patterns, although a leading \fB^\fR in the string
3435 restricts the match to begin at the first character in the line.
3436 .sp
3437 .LP
3438 Each of the edit modes has an operation to list the files or commands that
3439 match a partially entered word. When applied to the first word on the line, or
3440 the first word after a \fB;\fR, \fB|\fR, \fB&\fR, or \fB(\fR, and the word does
3441 not begin with \fB~\fR or contain a \fB/\fR, the list of aliases, functions,
3442 and executable commands defined by the \fBPATH\fR variable that could match the
3443 partial word is displayed. Otherwise, the list of files that match the
3444 specified word is displayed. If the partially entered word does not contain any
3445 file expansion characters, a \fB*\fR is appended before generating these lists.
3446 After displaying the generated list, the input line is redrawn. These
3447 operations are called command name listing and file name listing, respectively.
3448 There are additional operations, referred to as command name completion and
3449 file name completion, which compute the list of matching commands or files, but
3450 instead of printing the list, replace the current word with a complete or
3451 partial match. For file name completion, if the match is unique, a \fB/\fR is
3452 appended if the file is a directory and a space is appended if the file is not
3453 a directory. Otherwise, the longest common prefix for all the matching files
3454 replaces the word. For command name completion, only the portion of the file
3455 names after the last \fB/\fR are used to find the longest command prefix. If
3456 only a single name matches this prefix, then the word is replaced with the
3457 command name followed by a space. When using a \fBTAB\fR for completion that
3458 does not yield a unique match, a subsequent TAB provides a numbered list of
3459 matching alternatives. A specific selection can be made by entering the
3460 selection number followed by a TAB.
3461 .SS "Key Bindings"
3462 .sp
3463 .LP
3464 The \fBKEYBD\fR trap can be used to intercept keys as they are typed and change
3465 the characters that are actually seen by the shell. This trap is executed after
3466 each character (or sequence of characters when the first character is ESC) is
3467 entered while reading from a terminal.
3468 .sp
3469 .LP
3470 The variable \fB\&.sh.edchar\fR contains the character or character sequence
3471 which generated the trap. Changing the value of \fB\&.sh.edchar\fR in the trap
3472 action causes the shell to behave as if the new value were entered from the
3473 keyboard rather than the original value. The variable \fB\&.sh.edcol\fR is set
3474 to the input column number of the cursor at the time of the input. The variable
3475 \fB\&.sh.edmode\fR is set to \fBESC\fR when in \fBvi\fR insert mode and is null
3476 otherwise. By prepending \fB${.sh.editmode}\fR to a value assigned to
3477 \fB\&.sh.edchar\fR it causes the shell to change to control mode if it is not
3478 already in this mode.
3479 .sp
3480 .LP
3481 This trap is not invoked for characters entered as arguments to editing
3482 directives, or while reading input for a character search.
3483 .SS "\fBemacs\fR Editing Mode"
3484 .sp
3485 .LP
3486 This mode is entered by enabling either the \fBemacs\fR or \fBgmacs\fR option.
3487 The only difference between these two modes is the way they handle \fB^T\fR. To
3488 edit, the user moves the cursor to the point needing correction and then
3489 inserts or deletes characters or words as needed. All the editing commands are
3490 control characters or escape sequences. The notation for control characters is
3491 caret (\fB^\fR) followed by the character.

new/usr/src/man/man1/ksh93.1 54

3492 .sp
3493 .LP
3494 For example, \fB^F\fR is the notation for CTRL/F. This is entered by depressing
3495 \fBf\fR while holding down the CTRL (control) key. The SHIFT key is not
3496 depressed. (The notation \fB^?\fR indicates the DEL (delete) key.)
3497 .sp
3498 .LP
3499 The notation for escape sequences is \fBM-\fR followed by a character. For
3500 example, \fBM-f\fR (pronounced \fBMeta f\fR) is entered by depressing ESC
3501 (\fBASCII 033\fR) followed by \fBf\fR. \fBM-F\fR is the notation for ESC
3502 followed by \fBF\fR.
3503 .sp
3504 .LP
3505 All edit commands operate from any place on the line, not just at the
3506 beginning. The RETURN or the LINE FEED key is not entered after edit commands
3507 except when noted.
3508 .sp
3509 .ne 2
3510 .na
3511 \fB\fB^F\fR\fR
3512 .ad
3513 .RS 13n
3514 Move the cursor forward (right) one character.
3515 .RE

3517 .sp
3518 .ne 2
3519 .na
3520 \fB\fBM-[C\fR\fR
3521 .ad
3522 .RS 13n
3523 Move the cursor forward (right) one character.
3524 .RE

3526 .sp
3527 .ne 2
3528 .na
3529 \fB\fBM-f\fR\fR
3530 .ad
3531 .RS 13n
3532 Move the cursor forward one word. The \fBemacs\fR editor’s idea of a word is a
3533 string of characters consisting of only letters, digits and underscores.
3534 .RE

3536 .sp
3537 .ne 2
3538 .na
3539 \fB\fB^B\fR\fR
3540 .ad
3541 .RS 13n
3542 Move the cursor backward (left) one character.
3543 .RE

3545 .sp
3546 .ne 2
3547 .na
3548 \fB\fBM-[D\fR\fR
3549 .ad
3550 .RS 13n
3551 Move the cursor backward (left) one character.
3552 .RE

3554 .sp
3555 .ne 2
3556 .na
3557 \fB\fBM-b\fR\fR

new/usr/src/man/man1/ksh93.1 55

3558 .ad
3559 .RS 13n
3560 Move the cursor backward one word.
3561 .RE

3563 .sp
3564 .ne 2
3565 .na
3566 \fB\fB^A\fR\fR
3567 .ad
3568 .RS 13n
3569 Move the cursor to the beginning of the line.
3570 .RE

3572 .sp
3573 .ne 2
3574 .na
3575 \fB\fBM-[H\fR\fR
3576 .ad
3577 .RS 13n
3578 Move the cursor to the beginning of the line.
3579 .RE

3581 .sp
3582 .ne 2
3583 .na
3584 \fB\fB^E\fR\fR
3585 .ad
3586 .RS 13n
3587 Move the cursor to the end of the line.
3588 .RE

3590 .sp
3591 .ne 2
3592 .na
3593 \fB\fBM-[Y\fR\fR
3594 .ad
3595 .RS 13n
3596 Move the cursor to the end of line.
3597 .RE

3599 .sp
3600 .ne 2
3601 .na
3602 \fB\fB^]\fR\fIchar\fR\fR
3603 .ad
3604 .RS 13n
3605 Move the cursor forward to the character \fIchar\fR on the current line.
3606 .RE

3608 .sp
3609 .ne 2
3610 .na
3611 \fB\fBM-^]\fR\fIchar\fR\fR
3612 .ad
3613 .RS 13n
3614 Move the cursor backwards to the character \fIchar\fR on the current line.
3615 .RE

3617 .sp
3618 .ne 2
3619 .na
3620 \fB\fB^X^X\fR\fR
3621 .ad
3622 .RS 13n
3623 Interchange the cursor and the mark.

new/usr/src/man/man1/ksh93.1 56

3624 .RE

3626 .sp
3627 .ne 2
3628 .na
3629 \fB\fIerase\fR\fR
3630 .ad
3631 .RS 13n
3632 Delete the previous character. The user-defined erase character is defined by
3633 the \fBstty\fR(1) command, and is usually \fB^H\fR or \fB#\fR.
3634 .RE

3636 .sp
3637 .ne 2
3638 .na
3639 \fB\fIlnext\fR\fR
3640 .ad
3641 .RS 13n
3642 Removes the next character’s editing features. The user-defined literal next
3643 character is defined by the \fBstty\fR(1) command, or is \fB^V\fR if not
3644 defined.
3645 .RE

3647 .sp
3648 .ne 2
3649 .na
3650 \fB\fB^D\fR\fR
3651 .ad
3652 .RS 13n
3653 Delete the current character.
3654 .RE

3656 .sp
3657 .ne 2
3658 .na
3659 \fB\fBM-d\fR\fR
3660 .ad
3661 .RS 13n
3662 Delete the current word.
3663 .RE

3665 .sp
3666 .ne 2
3667 .na
3668 \fB\fBM-^H\fR\fR
3669 .ad
3670 .RS 13n
3671 MetaBACKSPACE. Delete the previous word.
3672 .RE

3674 .sp
3675 .ne 2
3676 .na
3677 \fB\fBM-h\fR\fR
3678 .ad
3679 .RS 13n
3680 Delete the previous word.
3681 .RE

3683 .sp
3684 .ne 2
3685 .na
3686 \fB\fBM-^?\fR\fR
3687 .ad
3688 .RS 13n
3689 MetaDEL. Delete the previous word. If your interrupt character is \fB^?\fR

new/usr/src/man/man1/ksh93.1 57

3690 (DEL, the default), this command does not work.
3691 .RE

3693 .sp
3694 .ne 2
3695 .na
3696 \fB\fB^T\fR\fR
3697 .ad
3698 .RS 13n
3699 Transpose the current character with the previous character, and advance the
3700 cursor in \fBemacs\fR mode. Transpose two previous characters in \fBgmacs\fR
3701 mode.
3702 .RE

3704 .sp
3705 .ne 2
3706 .na
3707 \fB\fB^C\fR\fR
3708 .ad
3709 .RS 13n
3710 Capitalize the current character.
3711 .RE

3713 .sp
3714 .ne 2
3715 .na
3716 \fB\fBM-c\fR\fR
3717 .ad
3718 .RS 13n
3719 Capitalize the current word.
3720 .RE

3722 .sp
3723 .ne 2
3724 .na
3725 \fB\fBM-l\fR\fR
3726 .ad
3727 .RS 13n
3728 Change the current word to lower case.
3729 .RE

3731 .sp
3732 .ne 2
3733 .na
3734 \fB\fB^K\fR\fR
3735 .ad
3736 .RS 13n
3737 Delete from the cursor to the end of the line. If preceded by a numerical
3738 parameter whose value is less than the current cursor position, delete from
3739 specified position up to the cursor. If preceded by a numerical parameter whose
3740 value is greater than the current cursor position, then delete from cursor up
3741 to specified cursor position.
3742 .RE

3744 .sp
3745 .ne 2
3746 .na
3747 \fB\fB^W\fR\fR
3748 .ad
3749 .RS 13n
3750 Kill from the cursor to the mark.
3751 .RE

3753 .sp
3754 .ne 2
3755 .na

new/usr/src/man/man1/ksh93.1 58

3756 \fB\fBM-p\fR\fR
3757 .ad
3758 .RS 13n
3759 Push the region from the cursor to the mark on the stack.
3760 .RE

3762 .sp
3763 .ne 2
3764 .na
3765 \fB\fIkill\fR\fR
3766 .ad
3767 .RS 13n
3768 Kill the entire current line. The user-defined kill character is defined by the
3769 \fBstty\fR(1) command, usually a \fB^G\fR or \fB@\fR. If two kill characters
3770 are entered in succession, all kill characters from then on cause a line feed.
3771 This is useful when using paper terminals.
3772 .RE

3774 .sp
3775 .ne 2
3776 .na
3777 \fB\fB^Y\fR\fR
3778 .ad
3779 .RS 13n
3780 Restore the last item removed from line. Yank the item back to the line.
3781 .RE

3783 .sp
3784 .ne 2
3785 .na
3786 \fB\fB^L\fR\fR
3787 .ad
3788 .RS 13n
3789 Line feed and print the current line.
3790 .RE

3792 .sp
3793 .ne 2
3794 .na
3795 \fB\fBM-^L\fR\fR
3796 .ad
3797 .RS 13n
3798 Clear the screen.
3799 .RE

3801 .sp
3802 .ne 2
3803 .na
3804 \fB\fB^@\fR\fR
3805 .ad
3806 .RS 13n
3807 Null character. Set mark.
3808 .RE

3810 .sp
3811 .ne 2
3812 .na
3813 \fB\fBM-\fR\fIspace\fR\fR
3814 .ad
3815 .RS 13n
3816 MetaSPACE. Set the mark.
3817 .RE

3819 .sp
3820 .ne 2
3821 .na

new/usr/src/man/man1/ksh93.1 59

3822 \fB\fB^J\fR\fR
3823 .ad
3824 .RS 13n
3825 New line. Execute the current line.
3826 .RE

3828 .sp
3829 .ne 2
3830 .na
3831 \fB\fB^M\fR\fR
3832 .ad
3833 .RS 13n
3834 Return. Execute the current line.
3835 .RE

3837 .sp
3838 .ne 2
3839 .na
3840 \fB\fBEOF\fR\fR
3841 .ad
3842 .RS 13n
3843 End-of-file character, normally \fB^D\fR, is processed as an \fBend-of-file\fR
3844 only if the current line is null.
3845 .RE

3847 .sp
3848 .ne 2
3849 .na
3850 \fB\fB^P\fR\fR
3851 .ad
3852 .RS 13n
3853 Fetch the previous command. Each time \fB^P\fR is entered the previous command
3854 back in time is accessed. Moves back one line when it is not on the first line
3855 of a multi-line command.
3856 .RE

3858 .sp
3859 .ne 2
3860 .na
3861 \fB\fBM-[A\fR\fR
3862 .ad
3863 .RS 13n
3864 Equivalent to \fB^P\fR.
3865 .RE

3867 .sp
3868 .ne 2
3869 .na
3870 \fB\fBM-<\fR\fR
3871 .ad
3872 .RS 13n
3873 Fetch the least recent (oldest) history line.
3874 .RE

3876 .sp
3877 .ne 2
3878 .na
3879 \fB\fBM->\fR\fR
3880 .ad
3881 .RS 13n
3882 Fetch the most recent (youngest) history line.
3883 .RE

3885 .sp
3886 .ne 2
3887 .na

new/usr/src/man/man1/ksh93.1 60

3888 \fB\fB^N\fR\fR
3889 .ad
3890 .RS 13n
3891 Fetch the next command line. Each time \fB^N\fR is entered the next command
3892 line forward in time is accessed.
3893 .RE

3895 .sp
3896 .ne 2
3897 .na
3898 \fB\fBM-[B\fR\fR
3899 .ad
3900 .RS 13n
3901 Equivalent to \fB^N\fR.
3902 .RE

3904 .sp
3905 .ne 2
3906 .na
3907 \fB\fB^R\fR\fIstring\fR\fR
3908 .ad
3909 .RS 13n
3910 Reverse search history for a previous command line containing \fIstring\fR. If
3911 a parameter of zero is specified, the search is forward. \fIstring\fR is
3912 terminated by a RETURN or NEWLINE. If string is preceded by a \fB^\fR, the
3913 matched line must begin with \fIstring\fR. If \fIstring\fR is omitted, then the
3914 next command line containing the most recent \fIstring\fR is accessed. In this
3915 case a parameter of zero reverses the direction of the search.
3916 .RE

3918 .sp
3919 .ne 2
3920 .na
3921 \fB\fB^O\fR\fR
3922 .ad
3923 .RS 13n
3924 Operate. Execute the current line and fetch the next line relative to current
3925 line from the history file.
3926 .RE

3928 .sp
3929 .ne 2
3930 .na
3931 \fB\fBM-\fR\fIdigits\fR\fR
3932 .ad
3933 .RS 13n
3934 Escape. Define numeric parameter. The digits are taken as a parameter to the
3935 next command. The commands that accept a parameter are: \fB^F\fR, \fB^B\fR,
3936 \fBERASE\fR, \fB^C\fR, \fB^D\fR, \fB^K\fR, \fB^R\fR, \fB^P\fR, \fB^N\fR,
3937 \fB^]\fR, \fBM-.\fR, \fBM-\fR, \fBM-^]\fR, \fBM-_\fR, \fBM-=\fR, \fBM-b\fR,
3938 \fBM-c\fR, \fBM-d\fR, \fBM-f\fR, \fBM-h\fR, \fBM-l\fR, and \fBM-^H\fR.
3939 .RE

3941 .sp
3942 .ne 2
3943 .na
3944 \fB\fBM-\fR\fIletter\fR\fR
3945 .ad
3946 .RS 13n
3947 Soft-key. Search the alias list for an alias by the name \fIletter\fR. If an
3948 alias of \fIletter\fR is defined, insert its value on the input queue.
3949 \fIletter\fR must not be one of the metafunctions in this section.
3950 .RE

3952 .sp
3953 .ne 2

new/usr/src/man/man1/ksh93.1 61

3954 .na
3955 \fB\fBM-[\fR\fIletter\fR\fR
3956 .ad
3957 .RS 13n
3958 Soft key. Search the alias list for an alias by the name \fIletter\fR. If an
3959 alias of this name is defined, insert its value on the input queue. This can be
3960 used to program function keys on many terminals.
3961 .RE

3963 .sp
3964 .ne 2
3965 .na
3966 \fB\fBM-.\fR\fR
3967 .ad
3968 .RS 13n
3969 The last word of the previous command is inserted on the line. If preceded by a
3970 numeric parameter, the value of this parameter determines which word to insert
3971 rather than the last word.
3972 .RE

3974 .sp
3975 .ne 2
3976 .na
3977 \fB\fBM-_\fR\fR
3978 .ad
3979 .RS 13n
3980 Same as \fBM-.\fR.
3981 .RE

3983 .sp
3984 .ne 2
3985 .na
3986 \fB\fBM-*\fR\fR
3987 .ad
3988 .RS 13n
3989 Attempt filename generation on the current word. As asterisk is appended if the
3990 word does not match any file or contain any special pattern characters.
3991 .RE

3993 .sp
3994 .ne 2
3995 .na
3996 \fB\fBM-\fRESC\fR
3997 .ad
3998 .RS 13n
3999 Command or file name completion as described in this manual page.
4000 .RE

4002 .sp
4003 .ne 2
4004 .na
4005 \fB\fB^I\fRTAB\fR
4006 .ad
4007 .RS 13n
4008 Attempts command or file name completion as described in this manual page. If a
4009 partial completion occurs, repeating this behaves as if \fBM-=\fR were entered.
4010 If no match is found or entered after SPACE, a TAB is inserted.
4011 .RE

4013 .sp
4014 .ne 2
4015 .na
4016 \fB\fBM-=\fR\fR
4017 .ad
4018 .RS 13n
4019 If not preceded by a numeric parameter, generates the list of matching commands

new/usr/src/man/man1/ksh93.1 62

4020 or file names as described in this manual page. Otherwise, the word under the
4021 cursor is replaced by the item corresponding to the value of the numeric
4022 parameter from the most recently generated command or file list. If the cursor
4023 is not on a word, the word is inserted instead.
4024 .RE

4026 .sp
4027 .ne 2
4028 .na
4029 \fB\fB^U\fR\fR
4030 .ad
4031 .RS 13n
4032 Multiply parameter of next command by \fB4\fR.
4033 .RE

4035 .sp
4036 .ne 2
4037 .na
4038 \fB\fB\e\fR\fR
4039 .ad
4040 .RS 13n
4041 Escape the next character. Editing characters, the user’s erase, kill and
4042 interrupt (normally \fB^?\fR) characters can be entered in a command line or in
4043 a search string if preceded by a \fB\e\fR\&. The \fB\e\fR removes the next
4044 character’s editing features, if any.
4045 .RE

4047 .sp
4048 .ne 2
4049 .na
4050 \fB\fBM-^V\fR\fR
4051 .ad
4052 .RS 13n
4053 Display the version of the shell.
4054 .RE

4056 .sp
4057 .ne 2
4058 .na
4059 \fB\fBM-#\fR\fR
4060 .ad
4061 .RS 13n
4062 If the line does not begin with a \fB#\fR, a \fB#\fR is inserted at the
4063 beginning of the line and after each NEWLINE, and the line is entered. This
4064 causes a comment to be inserted in the history file. If the line begins with a
4065 \fB#\fR, the \fB#\fR is deleted and one \fB#\fR after each NEWLINE is also
4066 deleted.
4067 .RE

4069 .SS "\fBvi\fR Editing Mode"
4070 .sp
4071 .LP
4072 There are two typing modes. Initially, when you enter a command you are in the
4073 input mode. To edit, the user enters control mode by typing ESC (033) and moves
4074 the cursor to the point needing correction and then inserts or deletes
4075 characters or words as needed. Most control commands accept an optional repeat
4076 \fIcount\fR prior to the command.
4077 .sp
4078 .LP
4079 When in vi mode on most systems, canonical processing is initially enabled and
4080 the command is echoed again if the speed is 1200 baud or greater and it
4081 contains any control characters or less than one second has elapsed since the
4082 prompt was printed. The ESC character terminates canonical processing for the
4083 remainder of the command and the user can then modify the command line. This
4084 scheme has the advantages of canonical processing with the type-ahead echoing
4085 of raw mode.

new/usr/src/man/man1/ksh93.1 63

4086 .sp
4087 .LP
4088 If the option \fBviraw\fR is also set, the terminal is always have canonical
4089 processing disabled. This mode is implicit for systems that do not support two
4090 alternate end of line delimiters, and might be helpful for certain terminals.
4091 .SS "Input Edit Commands"
4092 .sp
4093 .LP
4094 By default the editor is in input mode.
4095 .sp
4096 .LP
4097 The following input edit commands are supported:
4098 .sp
4099 .ne 2
4100 .na
4101 \fBERASE\fR
4102 .ad
4103 .RS 10n
4104 User defined erase character as defined by the \fBstty\fR command, usually
4105 \fB^H\fR or \fB#\fR. Delete previous character.
4106 .RE

4108 .sp
4109 .ne 2
4110 .na
4111 \fB\fB^W\fR\fR
4112 .ad
4113 .RS 10n
4114 Delete the previous blank separated word. On some systems the \fBviraw\fR
4115 option might be required for this to work.
4116 .RE

4118 .sp
4119 .ne 2
4120 .na
4121 \fBEOF\fR
4122 .ad
4123 .RS 10n
4124 As the first character of the line causes the shell to terminate unless the
4125 \fBignoreeof\fR option is set. Otherwise this character is ignored.
4126 .RE

4128 .sp
4129 .ne 2
4130 .na
4131 \fB\fIlnext\fR\fR
4132 .ad
4133 .RS 10n
4134 User defined literal next character as defined by the \fBstty\fR(1) or \fB^V\fR
4135 if not defined. Removes the next character’s editing features, if any. On some
4136 systems the \fBviraw\fR option might be required for this to work.
4137 .RE

4139 .sp
4140 .ne 2
4141 .na
4142 \fB\fB\e\fR\fR
4143 .ad
4144 .RS 10n
4145 Escape the next ERASE or KILL character.
4146 .RE

4148 .sp
4149 .ne 2
4150 .na
4151 \fB\fB^I\fR TAB\fR

new/usr/src/man/man1/ksh93.1 64

4152 .ad
4153 .RS 10n
4154 Attempts command or file name completion as described in this manual page and
4155 returns to input mode. If a partial completion occurs, repeating this behaves
4156 as if \fB=\fR were entered from control mode. If no match is found or entered
4157 after SPACE, a TAB is inserted.
4158 .RE

4160 .SS "Motion Edit Commands"
4161 .sp
4162 .LP
4163 The motion edit commands move the cursor.
4164 .sp
4165 .LP
4166 The following motion edit commands are supported:
4167 .sp
4168 .ne 2
4169 .na
4170 \fB\fB[\fR\fIcount\fR\fB]l\fR\fR
4171 .ad
4172 .RS 13n
4173 Move the cursor forward (right) one character.
4174 .RE

4176 .sp
4177 .ne 2
4178 .na
4179 \fB\fB[\fR\fIcount\fR\fB][C\fR\fR
4180 .ad
4181 .RS 13n
4182 Move the cursor forward (right) one character.
4183 .RE

4185 .sp
4186 .ne 2
4187 .na
4188 \fB\fB[\fR\fIcount\fR\fB]w\fR\fR
4189 .ad
4190 .RS 13n
4191 Move the cursor forward one alphanumeric word.
4192 .RE

4194 .sp
4195 .ne 2
4196 .na
4197 \fB\fB[\fR\fIcount\fR\fB]W\fR\fR
4198 .ad
4199 .RS 13n
4200 Move the cursor to the beginning of the next word that follows a blank.
4201 .RE

4203 .sp
4204 .ne 2
4205 .na
4206 \fB\fB[\fR\fIcount\fR\fB]e\fR\fR
4207 .ad
4208 .RS 13n
4209 Move the cursor to the end of the word.
4210 .RE

4212 .sp
4213 .ne 2
4214 .na
4215 \fB\fB[\fR\fIcount\fR\fB]E\fR\fR
4216 .ad
4217 .RS 13n

new/usr/src/man/man1/ksh93.1 65

4218 Move the cursor to the end of the current blank delimited word.
4219 .RE

4221 .sp
4222 .ne 2
4223 .na
4224 \fB\fB[\fR\fIcount\fR\fB]h\fR\fR
4225 .ad
4226 .RS 13n
4227 Move the cursor backward (left) one character.
4228 .RE

4230 .sp
4231 .ne 2
4232 .na
4233 \fB\fB[\fR\fIcount\fR\fB][D\fR\fR
4234 .ad
4235 .RS 13n
4236 Move the cursor backward (left) one character.
4237 .RE

4239 .sp
4240 .ne 2
4241 .na
4242 \fB\fB[\fR\fIcount\fR\fB]b\fR\fR
4243 .ad
4244 .RS 13n
4245 Move the cursor backward one word.
4246 .RE

4248 .sp
4249 .ne 2
4250 .na
4251 \fB\fB[\fR\fIcount\fR\fB]B\fR\fR
4252 .ad
4253 .RS 13n
4254 Move the cursor to the preceding blank separated word.
4255 .RE

4257 .sp
4258 .ne 2
4259 .na
4260 \fB\fB[\fR\fIcount\fR\fB]|\fR\fR
4261 .ad
4262 .RS 13n
4263 Move the cursor to column \fIcount\fR.
4264 .RE

4266 .sp
4267 .ne 2
4268 .na
4269 \fB\fB[\fR\fIcount\fR\fB]f\fR\fIc\fR\fR
4270 .ad
4271 .RS 13n
4272 Find the next character \fIc\fR in the current line.
4273 .RE

4275 .sp
4276 .ne 2
4277 .na
4278 \fB\fB[\fR\fIcount\fR\fB]F\fR\fIc\fR\fR
4279 .ad
4280 .RS 13n
4281 Find the previous character \fIc\fR in the current line.
4282 .RE

new/usr/src/man/man1/ksh93.1 66

4284 .sp
4285 .ne 2
4286 .na
4287 \fB\fB[\fR\fIcount\fR\fB]t\fR\fIC\fR\fR
4288 .ad
4289 .RS 13n
4290 Equivalent to \fBf\fR followed by \fBh\fR.
4291 .RE

4293 .sp
4294 .ne 2
4295 .na
4296 \fB\fB[\fR\fIcount\fR\fB]T\fR\fIc\fR\fR
4297 .ad
4298 .RS 13n
4299 Equivalent to \fBF\fR followed by \fBl\fR.
4300 .RE

4302 .sp
4303 .ne 2
4304 .na
4305 \fB\fB[\fR\fIcount\fR\fB];\fR\fR
4306 .ad
4307 .RS 13n
4308 Repeat \fIcount\fR times the last single character find command: \fBf\fR,
4309 \fBF\fR, \fBt,\fR or \fBT\fR.
4310 .RE

4312 .sp
4313 .ne 2
4314 .na
4315 \fB\fB[\fR\fIcount\fR\fB],\fR\fR
4316 .ad
4317 .RS 13n
4318 Reverse the last single character find command \fIcount\fR times.
4319 .RE

4321 .sp
4322 .ne 2
4323 .na
4324 \fB\fB0\fR\fR
4325 .ad
4326 .RS 13n
4327 Move the cursor to the start of line.
4328 .RE

4330 .sp
4331 .ne 2
4332 .na
4333 \fB\fB^\fR\fR
4334 .ad
4335 .RS 13n
4336 Move the cursor to start of line.
4337 .RE

4339 .sp
4340 .ne 2
4341 .na
4342 \fB\fB[H\fR\fR
4343 .ad
4344 .RS 13n
4345 Move the cursor to the first non-blank character in the line.
4346 .RE

4348 .sp
4349 .ne 2

new/usr/src/man/man1/ksh93.1 67

4350 .na
4351 \fB\fB$\fR\fR
4352 .ad
4353 .RS 13n
4354 Move the cursor to the end of the line.
4355 .RE

4357 .sp
4358 .ne 2
4359 .na
4360 \fB\fB[Y\fR\fR
4361 .ad
4362 .RS 13n
4363 Move the cursor to the end of the line.
4364 .RE

4366 .sp
4367 .ne 2
4368 .na
4369 \fB\fB%\fR\fR
4370 .ad
4371 .RS 13n
4372 Moves to balancing \fB(\fR, \fB)\fR, \fB{\fR, \fB}\fR, \fB[\fR, or \fB]\fR. If
4373 cursor is not on one of the characters described in this section, the remainder
4374 of the line is searched for the first occurrence of one of the characters
4375 first.
4376 .RE

4378 .SS "Search Edit Commands"
4379 .sp
4380 .LP
4381 The search edit commands access your command history.
4382 .sp
4383 .LP
4384 The following search edit commands are supported:
4385 .sp
4386 .ne 2
4387 .na
4388 \fB\fB[\fR\fIcount\fR\fB]k\fR\fR
4389 .ad
4390 .RS 13n
4391 Fetch the previous command. Each time \fBk\fR is entered, the previous command
4392 back in time is accessed.
4393 .RE

4395 .sp
4396 .ne 2
4397 .na
4398 \fB\fB[\fR\fIcount\fR\fB]-\fR\fR
4399 .ad
4400 .RS 13n
4401 Fetch the previous command. Each time \fBk\fR is entered, the previous command
4402 back in time is accessed.
4403 .sp
4404 Equivalent to \fBk\fR.
4405 .RE

4407 .sp
4408 .ne 2
4409 .na
4410 \fB\fB[\fR\fIcount\fR\fB][A\fR\fR
4411 .ad
4412 .RS 13n
4413 Fetch the previous command. Each time \fBk\fR is entered, the previous command
4414 back in time is accessed.
4415 .sp

new/usr/src/man/man1/ksh93.1 68

4416 Equivalent to \fBk\fR.
4417 .RE

4419 .sp
4420 .ne 2
4421 .na
4422 \fB\fB[\fR\fIcount\fR\fB]j\fR\fR
4423 .ad
4424 .RS 13n
4425 Fetch the next command. Each time \fBj\fR is entered, the next command forward
4426 in time is accessed.
4427 .RE

4429 .sp
4430 .ne 2
4431 .na
4432 \fB\fB[\fR\fIcount\fR\fB]+\fR\fR
4433 .ad
4434 .RS 13n
4435 Fetch the next command. Each time \fBj\fR is entered, the next command forward
4436 in time is accessed.
4437 .sp
4438 Equivalent to \fBj\fR.
4439 .RE

4441 .sp
4442 .ne 2
4443 .na
4444 \fB\fB[\fR\fIcount\fR\fB][B\fR\fR
4445 .ad
4446 .RS 13n
4447 Fetch the next command. Each time \fBj\fR is entered, the next command forward
4448 in time is accessed.
4449 .sp
4450 Equivalent to \fBj\fR.
4451 .RE

4453 .sp
4454 .ne 2
4455 .na
4456 \fB\fB[\fR\fIcount\fR\fB]G\fR\fR
4457 .ad
4458 .RS 13n
4459 Fetch command number \fIcount\fR. The default is the least recent history
4460 command.
4461 .RE

4463 .sp
4464 .ne 2
4465 .na
4466 \fB\fB/\fR\fIstring\fR\fR
4467 .ad
4468 .RS 13n
4469 Search backward through history for a previous command containing \fIstring\fR.
4470 \fIstring\fR is terminated by a RETURN or NEWLINE. If string is preceded by a
4471 \fB^\fR, the matched line must begin with \fIstring\fR. If \fIstring\fR is
4472 null, the previous string is used.
4473 .RE

4475 .sp
4476 .ne 2
4477 .na
4478 \fB\fB?\fR\fIstring\fR\fR
4479 .ad
4480 .RS 13n
4481 Search forward through history for a previous command containing \fIstring\fR.

new/usr/src/man/man1/ksh93.1 69

4482 \fIstring\fR is terminated by a RETURN or NEWLINE. If string is preceded by a
4483 \fB^\fR, the matched line must begin with \fIstring\fR. If \fIstring\fR is
4484 null, the previous string is used.
4485 .sp
4486 Same as \fI/\fR except that search is in the forward direction.
4487 .RE

4489 .sp
4490 .ne 2
4491 .na
4492 \fB\fBn\fR\fR
4493 .ad
4494 .RS 13n
4495 Search in the backwards direction for the next match of the last pattern to
4496 \fI/\fR or \fI?\fR commands.
4497 .RE

4499 .sp
4500 .ne 2
4501 .na
4502 \fB\fBN\fR\fR
4503 .ad
4504 .RS 13n
4505 Search in the forward direction for next match of the last pattern to \fI/\fR
4506 or \fI?\fR.
4507 .RE

4509 .SS "Text Modification Edit Commands"
4510 .sp
4511 .LP
4512 The following commands modify the line:
4513 .sp
4514 .ne 2
4515 .na
4516 \fB\fBa\fR\fR
4517 .ad
4518 .RS 19n
4519 Enter input mode and enter text after the current character.
4520 .RE

4522 .sp
4523 .ne 2
4524 .na
4525 \fB\fBA\fR\fR
4526 .ad
4527 .RS 19n
4528 Append text to the end of the line. Equivalent to \fB$a\fR.
4529 .RE

4531 .sp
4532 .ne 2
4533 .na
4534 \fB\fB[\fR\fIcount\fR\fB]c\fR\fImotion\fR\fR
4535 .ad
4536 .br
4537 .na
4538 \fB\fBc[\fR\fIcount\fR\fB]\fR\fImotion\fR\fR
4539 .ad
4540 .RS 19n
4541 Delete current character through the character that \fImotion\fR would move the
4542 cursor to and enter input mode. If \fImotion\fR is \fBc\fR, the entire line is
4543 deleted and input mode entered.
4544 .RE

4546 .sp
4547 .ne 2

new/usr/src/man/man1/ksh93.1 70

4548 .na
4549 \fB\fBC\fR\fR
4550 .ad
4551 .RS 19n
4552 Delete the current character through the end of line and enter input mode.
4553 Equivalent to \fBc$\fR.
4554 .RE

4556 .sp
4557 .ne 2
4558 .na
4559 \fB\fBS\fR\fR
4560 .ad
4561 .RS 19n
4562 Equivalent to \fBcc\fR.
4563 .RE

4565 .sp
4566 .ne 2
4567 .na
4568 \fB\fB[\fR\fIcount\fR\fB]s\fR\fR
4569 .ad
4570 .RS 19n
4571 Replace characters under the cursor in input mode.
4572 .RE

4574 .sp
4575 .ne 2
4576 .na
4577 \fB\fBD[\fR\fIcount\fR\fB]d\fR\fImotion\fR\fR
4578 .ad
4579 .RS 19n
4580 Delete the current character through the end of line. Equivalent to d$.
4581 .RE

4583 .sp
4584 .ne 2
4585 .na
4586 \fB\fBd[\fR\fIcount\fR\fB]\fR\fImotion\fR\fR
4587 .ad
4588 .RS 19n
4589 Delete current character through the character that \fImotion\fR would move to.
4590 If \fImotion\fR is d , the entire line is deleted.
4591 .RE

4593 .sp
4594 .ne 2
4595 .na
4596 \fB\fBi\fR\fR
4597 .ad
4598 .RS 19n
4599 Enter input mode and insert text before the current character.
4600 .RE

4602 .sp
4603 .ne 2
4604 .na
4605 \fB\fBI\fR\fR
4606 .ad
4607 .RS 19n
4608 Insert text before the beginning of the line. Equivalent to \fB0i\fR.
4609 .RE

4611 .sp
4612 .ne 2
4613 .na

new/usr/src/man/man1/ksh93.1 71

4614 \fB\fB[\fR\fIcount\fR\fB]P\fR\fR
4615 .ad
4616 .RS 19n
4617 Place the previous text modification before the cursor.
4618 .RE

4620 .sp
4621 .ne 2
4622 .na
4623 \fB\fB[\fR\fIcount\fR\fB]p\fR\fR
4624 .ad
4625 .RS 19n
4626 Place the previous text modification after the cursor.
4627 .RE

4629 .sp
4630 .ne 2
4631 .na
4632 \fB\fBR\fR\fR
4633 .ad
4634 .RS 19n
4635 Enter input mode and replace characters on the screen with characters you type
4636 overlay fashion.
4637 .RE

4639 .sp
4640 .ne 2
4641 .na
4642 \fB\fB[\fR\fIcount\fR\fB]r\fR\fIc\fR\fR
4643 .ad
4644 .RS 19n
4645 Replace the \fIcount\fR characters starting at the current cursor position with
4646 \fIc\fR, and advance the cursor.
4647 .RE

4649 .sp
4650 .ne 2
4651 .na
4652 \fB\fB[\fR\fIcount\fR\fB]x\fR\fR
4653 .ad
4654 .RS 19n
4655 Delete current character.
4656 .RE

4658 .sp
4659 .ne 2
4660 .na
4661 \fB\fB[\fIcount\fR]X\fR\fR
4662 .ad
4663 .RS 19n
4664 Delete preceding character.
4665 .RE

4667 .sp
4668 .ne 2
4669 .na
4670 \fB\fB[\fIcount\fR].\fR\fR
4671 .ad
4672 .RS 19n
4673 Repeat the previous text modification command.
4674 .RE

4676 .sp
4677 .ne 2
4678 .na
4679 \fB\fB[\fIcount\fR]~\fR\fR

new/usr/src/man/man1/ksh93.1 72

4680 .ad
4681 .RS 19n
4682 Invert the case of the \fIcount\fR characters starting at the current cursor
4683 position and advance the cursor.
4684 .RE

4686 .sp
4687 .ne 2
4688 .na
4689 \fB\fB[\fIcount\fR]_\fR\fR
4690 .ad
4691 .RS 19n
4692 Causes the \fIcount\fR word of the previous command to be appended and input
4693 mode entered. The last word is used if \fIcount\fR is omitted.
4694 .RE

4696 .sp
4697 .ne 2
4698 .na
4699 \fB\fB*\fR\fR
4700 .ad
4701 .RS 19n
4702 Causes an \fB*\fR to be appended to the current word and file name generation
4703 attempted. If no match is found, it rings the bell. Otherwise, the word is
4704 replaced by the matching pattern and input mode is entered.
4705 .RE

4707 .sp
4708 .ne 2
4709 .na
4710 \fB\fB\e\fR\fR
4711 .ad
4712 .RS 19n
4713 Command or file name completion as described in this manual page.
4714 .RE

4716 .SS "Other Edit Commands"
4717 .sp
4718 .LP
4719 The following miscellaneous edit commands are supported:
4720 .sp
4721 .ne 2
4722 .na
4723 \fB\fB[\fR\fIcount\fR\fB]y\fR\fImotion\fR\fR
4724 .ad
4725 .br
4726 .na
4727 \fB\fBy[\fR\fIcount\fR\fB]\fR\fImotion\fR\fR
4728 .ad
4729 .RS 18n
4730 Yank the current character through the character to which \fImotion\fR would
4731 move the cursor. Put the yanked characters in the delete buffer. The text and
4732 cursor position are unchanged.
4733 .RE

4735 .sp
4736 .ne 2
4737 .na
4738 \fB\fByy\fR\fR
4739 .ad
4740 .RS 18n
4741 Yank the current line.
4742 .RE

4744 .sp
4745 .ne 2

new/usr/src/man/man1/ksh93.1 73

4746 .na
4747 \fB\fBY\fR\fR
4748 .ad
4749 .RS 18n
4750 Yank the current line from the current cursor location to the end of the line.
4751 Equivalent to \fBy$\fR.
4752 .RE

4754 .sp
4755 .ne 2
4756 .na
4757 \fB\fBu\fR\fR
4758 .ad
4759 .RS 18n
4760 Undo the last text modifying command.
4761 .RE

4763 .sp
4764 .ne 2
4765 .na
4766 \fB\fBU\fR\fR
4767 .ad
4768 .RS 18n
4769 Undo all the text modifying commands performed on current line.
4770 .RE

4772 .sp
4773 .ne 2
4774 .na
4775 \fB\fB[\fR\fIcount\fR\fB]V\fR\fR
4776 .ad
4777 .RS 18n
4778 Return the command :
4779 .sp
4780 .in +2
4781 .nf
4782 hist -e ${VISUAL:-${EDITOR:-vi}} \fIcount\fR
4783 .fi
4784 .in -2
4785 .sp

4787 in the input buffer. If \fIcount\fR is omitted, the current line is used.
4788 .RE

4790 .sp
4791 .ne 2
4792 .na
4793 \fB\fB^L\fR\fR
4794 .ad
4795 .RS 18n
4796 Line feed and print the current line. This command only works in control mode.
4797 .RE

4799 .sp
4800 .ne 2
4801 .na
4802 \fB\fB^J\fR\fR
4803 .ad
4804 .RS 18n
4805 New line. Execute the current line, regardless of mode.
4806 .RE

4808 .sp
4809 .ne 2
4810 .na
4811 \fB\fB^M\fR\fR

new/usr/src/man/man1/ksh93.1 74

4812 .ad
4813 .RS 18n
4814 Return. Execute the current line, regardless of mode.
4815 .RE

4817 .sp
4818 .ne 2
4819 .na
4820 \fB\fB#\fR\fR
4821 .ad
4822 .RS 18n
4823 If the first character of the command is a \fB#\fR , delete this \fB#\fR and
4824 each \fB#\fR that follows a NEWLINE.
4825 .sp
4826 Otherwise, send the line after inserting a \fB#\fR in front of each line in the
4827 command.
4828 .sp
4829 This is command is useful for causing the current line to be inserted in the
4830 history as a comment and un-commenting previously commented commands in the
4831 history file.
4832 .RE

4834 .sp
4835 .ne 2
4836 .na
4837 \fB\fB[\fR\fIcount\fR\fB]=\fR\fR
4838 .ad
4839 .RS 18n
4840 If \fIcount\fR is not specified, generate the list of matching commands or file
4841 names as described in this manual page.
4842 .sp
4843 Otherwise, replace the word at the current cursor location with the \fIcount\fR
4844 item from the most recently generated command or file list. If the cursor is
4845 not on a word, it is inserted after the current cursor location.
4846 .RE

4848 .sp
4849 .ne 2
4850 .na
4851 \fB\fB@\fR\fIletter\fR\fR
4852 .ad
4853 .RS 18n
4854 Search your alias list for an alias by the name \fIletter\fR. If an alias of
4855 this name is defined, insert its value on the input queue for processing.
4856 .RE

4858 .sp
4859 .ne 2
4860 .na
4861 \fB\fB^V\fR\fR
4862 .ad
4863 .RS 18n
4864 Display version of the shell.
4865 .RE

4867 .SS "Built-in Commands"
4868 .sp
4869 .LP
4870 The following simple-commands are executed in the shell process. Input and
4871 output redirection is permitted. Unless otherwise indicated, the output is
4872 written on file descriptor \fB1\fR and the exit status, when there is no syntax
4873 error, is \fB0\fR. Except for \fB:\fR, \fBtrue\fR, \fBfalse\fR, \fBecho\fR,
4874 \fBnewgrp\fR, and \fBlogin\fR, all built-in commands accept \fB--\fR to
4875 indicate the end of options. They also interpret the option \fB--man\fR as a
4876 request to display the manual page onto standard error and \fB-?\fR as a help
4877 request which prints a usage message on standard error.

new/usr/src/man/man1/ksh93.1 75

4878 .sp
4879 .LP
4880 Commands that are preceded by one or two \fB++\fR symbols are special built-in
4881 commands and are treated specially in the following ways:
4882 .RS +4
4883 .TP
4884 1.
4885 Variable assignment lists preceding the command remain in effect when the
4886 command completes.
4887 .RE
4888 .RS +4
4889 .TP
4890 2.
4891 I/O redirections are processed after variable assignments.
4892 .RE
4893 .RS +4
4894 .TP
4895 3.
4896 Errors cause a script that contains them to abort.
4897 .RE
4898 .RS +4
4899 .TP
4900 4.
4901 They are not valid function names.
4902 .RE
4903 .RS +4
4904 .TP
4905 5.
4906 Words following a command preceded by \fB++\fR that are in the format of a
4907 variable assignment are expanded with the same rules as a variable assignment.
4908 This means that tilde substitution is performed after the \fB=\fR sign and
4909 field splitting and file name generation are not performed.
4910 .RE
4911 .sp
4912 .ne 2
4913 .na
4914 \fB\fB+ : [\fR\fIarg ...\fR\fB]\fR\fR
4915 .ad
4916 .sp .6
4917 .RS 4n
4918 The command only expands parameters.
4919 .RE

4921 .sp
4922 .ne 2
4923 .na
4924 \fB\fB+ .\fR \fIname\fR \fB[\fR\fIarg ...\fR\fB]\fR\fR
4925 .ad
4926 .sp .6
4927 .RS 4n
4928 If \fIname\fR is a function defined with the \fBfunction\fR \fBname\fR reserved
4929 word syntax, the function is executed in the current environment (as if it had
4930 been defined with the \fIname()\fR syntax.) Otherwise if \fIname\fR refers to a
4931 file, the file is read in its entirety and the commands are executed in the
4932 current shell environment. The search path specified by PATH is used to find
4933 the directory containing the file. If any arguments \fIarg\fR are specified,
4934 they become the positional parameters while processing the . command and the
4935 original positional parameters are restored upon completion. Otherwise the
4936 positional parameters are unchanged. The exit status is the exit status of the
4937 last command executed.
4938 .RE

4940 .sp
4941 .ne 2
4942 .na
4943 \fB\fB++ alias [\fR\fB-ptx\fR\fB] [\fR\fIname\fR\fB[

new/usr/src/man/man1/ksh93.1 76

4944 =\fR\fIvalue\fR\fB]] ...\fR\fR
4945 .ad
4946 .sp .6
4947 .RS 4n
4948 \fBalias\fR with no arguments prints the list of aliases in the form
4949 \fIname\fR\fB=\fR\fIvalue\fR on standard output. The \fB-p\fR option causes the
4950 word alias to be inserted before each one. When one or more arguments are
4951 specified, an \fIalias\fR is defined for each \fIname\fR whose \fIvalue\fR is
4952 specified. A trailing space in \fIvalue\fR causes the next word to be checked
4953 for alias substitution. The obsolete \fB-t\fR option is used to set and list
4954 tracked aliases. The value of a tracked alias is the full pathname
4955 corresponding to the specified \fIname\fR. The value becomes undefined when the
4956 value of \fBPATH\fR is reset but the alias remains tracked. Without the
4957 \fB-t\fR option, for each \fIname\fR in the argument list for which no
4958 \fIvalue\fR is specified, the name and value of the alias is printed. The
4959 obsolete -x option has no effect. The exit status is \fBnon-zero\fR if a
4960 \fIname\fR is specified, but no value, and no alias has been defined for the
4961 \fIname\fR.
4962 .RE

4964 .sp
4965 .ne 2
4966 .na
4967 \fB\fBbg [\fR \fIjob\fR\fB\&...]\fR\fR
4968 .ad
4969 .sp .6
4970 .RS 4n
4971 This command is only on systems that support job control. Puts each specified
4972 \fIjob\fR into the background. The current job is put in the background if
4973 \fIjob\fR is not specified. See the \fBJobs\fR section of this manual page for
4974 a description of the format of \fIjob\fR.
4975 .RE

4977 .sp
4978 .ne 2
4979 .na
4980 \fB\fB+ break [\fR\fIn\fR\fB]\fR\fR
4981 .ad
4982 .sp .6
4983 .RS 4n
4984 Exit from the enclosing \fBfor\fR, \fBwhile\fR, \fBuntil\fR, or \fBselect\fR
4985 loop, if any. If \fIn\fR is specified, then break \fIn\fR levels.
4986 .RE

4988 .sp
4989 .ne 2
4990 .na
4991 \fB\fBbuiltin [\fR\fB-ds\fR \fB] [\fR\fB-f\fR \fIfile\fR\fB]
4992 [\fR\fIname ...\fR\fB]\fR\fR
4993 .ad
4994 .sp .6
4995 .RS 4n
4996 If \fIname\fR is not specified, and no \fB-f\fR option is specified, the
4997 built-ins are printed on standard output. The \fB-s\fR option prints only the
4998 special built-ins. Otherwise, each \fIname\fR represents the pathname whose
4999 basename is the name of the built-in. The entry point function name is
5000 determined by prepending \fIb\fR to the built-in name. The ISO C/C++ prototype
5001 is \fBb\fR\fImycommand(int argc, char *argv[], void *context)\fR for the
5002 built-in command \fImycommand\fR where \fIargv\fR is an array of \fIargc\fR
5003 elements and \fIcontext\fR is an optional pointer to a \fBShell_t\fR structure
5004 as described in \fB<ast/shell.h>\fR Special built-ins cannot be bound to a
5005 pathname or deleted. The \fB-d\fR option deletes each of the specified
5006 built-ins. On systems that support dynamic loading, the \fB-f\fR option names a
5007 shared library containing the code for built-ins. The shared library prefix
5008 and/or suffix, which depend on the system, can be omitted. Once a library is
5009 loaded, its symbols become available for subsequent invocations of

new/usr/src/man/man1/ksh93.1 77

5010 \fBbuiltin\fR. Multiple libraries can be specified with separate invocations of
5011 the \fBbuiltin\fR command. Libraries are searched in the reverse order in which
5012 they are specified. When a library is loaded, it looks for a function in the
5013 library whose name is \fBlib_init()\fR and invokes this function with an
5014 argument of \fB0\fR.
5015 .RE

5017 .sp
5018 .ne 2
5019 .na
5020 \fB\fBcd\fR \fB[\fR\fB-LP\fR\fB] [\fR\fIarg\fR\fB]\fR\fR
5021 .ad
5022 .br
5023 .na
5024 \fB\fBcd\fR \fB[\fR\fB-LP\fR\fB]\fR \fIold\fR \fInew\fR\fR
5025 .ad
5026 .sp .6
5027 .RS 4n
5028 This command has two forms.
5029 .sp
5030 In the first form it changes the current directory to \fIarg\fR. If \fIarg\fR
5031 is a \fB-\fR, the directory is changed to the previous directory. The shell
5032 variable \fBHOME\fR is the default \fIarg\fR. The variable \fBPWD\fR is set to
5033 the current directory. The shell variable \fBCDPATH\fR defines the search path
5034 for the directory containing \fIarg\fR. Alternative directory names are
5035 separated by a colon (\fB:\fR). The default path is \fBNULL\fR (specifying the
5036 current directory). The current directory is specified by a null path name,
5037 which can appear immediately after the equal sign or between the colon
5038 delimiters anywhere else in the path list. If \fIarg\fR begins with a \fB/\fR,
5039 the search path is not used. Otherwise, each directory in the path is searched
5040 for \fIarg\fR.
5041 .sp
5042 The second form of \fBcd\fR substitutes the string \fInew\fR for the string
5043 \fIold\fR in the current directory name, \fBPWD\fR, and tries to change to this
5044 new directory. By default, symbolic link names are treated literally when
5045 finding the directory name. This is equivalent to the \fB-L\fR option. The
5046 \fB-P\fR option causes symbolic links to be resolved when determining the
5047 directory. The last instance of \fB-L\fR or \fB-P\fR on the command line
5048 determines which method is used. The \fBcd\fR command cannot be executed by
5049 \fBrksh93\fR.
5050 .RE

5052 .sp
5053 .ne 2
5054 .na
5055 \fB\fBcommand\fR \fB[\fR\fB-pvVx\fR\fB]\fR \fIname\fR
5056 \fB[\fR\fIarg ...\fR\fB]\fR\fR
5057 .ad
5058 .sp .6
5059 .RS 4n
5060 Without the \fB-v\fR or \fB-V\fR options, executes \fIname\fR with the
5061 arguments specified by \fIarg\fR.
5062 .sp
5063 The \fB-p\fR option causes a default path to be searched rather than the one
5064 defined by the value of \fBPATH\fR. Functions are not searched when finding
5065 \fIname\fR. In addition, if \fIname\fR refers to a special built-in, none of
5066 the special properties associated with the leading daggers are honored. For
5067 example, the predefined alias \fBredirect=’command exec’\fR prevents a script
5068 from terminating when an invalid redirection is specified.
5069 .sp
5070 With the \fB-x\fR option, if command execution would result in a failure
5071 because there are too many arguments, \fBerrno E2BIG\fR, the shell invokes
5072 command \fIname\fR multiple times with a subset of the arguments on each
5073 invocation. Arguments that occur prior to the first word that expands to
5074 multiple arguments and after the last word that expands to multiple arguments
5075 are passed on each invocation. The exit status is the maximum invocation exit

new/usr/src/man/man1/ksh93.1 78

5076 status.
5077 .sp
5078 With the \fB-v\fR option, \fBcommand\fR is equivalent to the built-in
5079 \fBwhence\fR command described in this section. The \fB-V\fR option causes
5080 \fBcommand\fR to act like \fBwhence -v\fR.
5081 .RE

5083 .sp
5084 .ne 2
5085 .na
5086 \fB\fB+continue\fR \fB[\fR\fIn\fR\fB]\fR\fR
5087 .ad
5088 .sp .6
5089 .RS 4n
5090 Resumes the next iteration of the enclosing \fBfor\fR, \fBwhile\fR,
5091 \fBuntil\fR, or \fBselect\fR loop. If \fIn\fR is specified, then resume at the
5092 \fIn\fRth enclosing loop.
5093 .RE

5095 .sp
5096 .ne 2
5097 .na
5098 \fB\fBdisown\fR \fB[\fR\fIjob...\fR\fB]\fR\fR
5099 .ad
5100 .sp .6
5101 .RS 4n
5102 Causes the shell not to send a \fBHUP\fR signal to each specified \fIjob\fR, or
5103 all active jobs if \fIjob\fR is omitted, when a login shell terminates.
5104 .RE

5106 .sp
5107 .ne 2
5108 .na
5109 \fB\fBecho\fR \fB[\fR\fIarg ...\fR\fB]\fR\fR
5110 .ad
5111 .sp .6
5112 .RS 4n
5113 When the first \fIarg\fR does not begin with a \fB-\fR, and none of the
5114 arguments contain a backslash (\fB\e\fR), prints each of its arguments
5115 separated by a SPACE and terminated by a NEWLINE. Otherwise, the behavior of
5116 \fBecho\fR is system dependent and \fBprint\fR or \fBprintf\fR described in
5117 this section should be used. See \fBecho\fR(1) for usage and description.
5118 .RE

5120 .sp
5121 .ne 2
5122 .na
5123 \fB\fB+eval\fR \fB[\fR\fIarg ...\fR\fB]\fR\fR
5124 .ad
5125 .sp .6
5126 .RS 4n
5127 The arguments are read as input to the shell and the resulting commands are
5128 executed.
5129 .RE

5131 .sp
5132 .ne 2
5133 .na
5134 \fB\fB+exec\fR [\fB-c\fR] [\fB-a\fR \fIname ...\fR]
5135 \fB[\fR\fIarg ...\fR\fB]\fR\fR
5136 .ad
5137 .sp .6
5138 .RS 4n
5139 If \fIarg\fR is specified, the command specified by the arguments is executed
5140 in place of this shell without creating a new process. The \fB-c\fR option
5141 causes the environment to be cleared before applying variable assignments

new/usr/src/man/man1/ksh93.1 79

5142 associated with the exec invocation. The \fB-a\fR option causes \fIname\fR
5143 rather than the first \fIarg\fR, to become \fBargv[0]\fR for the new process.
5144 Input and output arguments can appear and affect the current process. If
5145 \fIarg\fR is not specified, the effect of this command is to modify file
5146 descriptors as prescribed by the input/output redirection list. In this case,
5147 any file descriptor numbers greater than \fB2\fR that are opened with this
5148 mechanism are closed when invoking another program.
5149 .RE

5151 .sp
5152 .ne 2
5153 .na
5154 \fB\fB+exit\fR \fB[\fR\fIn\fR\fB]\fR\fR
5155 .ad
5156 .sp .6
5157 .RS 4n
5158 Causes the shell to exit with the exit status specified by \fIn\fR. The value
5159 is the least significant 8 bits of the specified status. If \fIn\fR is omitted,
5160 then the exit status is that of the last command executed. An end-of-file also
5161 causes the shell to exit except for a shell which has the \fBignoreeof\fR
5162 option turned on. See \fBset\fR.
5163 .RE

5165 .sp
5166 .ne 2
5167 .na
5168 \fB\fB++export\fR \fB[\fR\fB-p\fR\fB]\fR
5169 \fB[\fR\fIname\fR\fB[=\fR\fIvalue\fR\fB]] ...\fR\fR
5170 .ad
5171 .sp .6
5172 .RS 4n
5173 If \fIname\fR is not specified, the names and values of each variable with the
5174 export attribute are printed with the values quoted in a manner that allows
5175 them to be re-entered. The \fB-p\fR option causes the word export to be
5176 inserted before each one. Otherwise, the specified \fIname\fRs are marked for
5177 automatic export to the environment of subsequently-executed commands.
5178 .RE

5180 .sp
5181 .ne 2
5182 .na
5183 \fB\fBfalse\fR\fR
5184 .ad
5185 .sp .6
5186 .RS 4n
5187 Does nothing, and exits \fB1\fR. Used with \fBuntil\fR for infinite loops.
5188 .RE

5190 .sp
5191 .ne 2
5192 .na
5193 \fB\fBfg\fR \fB[\fR\fIjob ...\fR\fB]\fR\fR
5194 .ad
5195 .sp .6
5196 .RS 4n
5197 This command is only on systems that support job control. Each \fIjob\fR
5198 specified is brought to the foreground and waited for in the specified order.
5199 Otherwise, the current job is brought into the foreground. See \fBJobs\fR for a
5200 description of the format of \fIjob\fR.
5201 .RE

5203 .sp
5204 .ne 2
5205 .na
5206 \fB\fBgetconf\fR \fB[\fR\fIname\fR \fB[\fR\fIpathname\fR\fB]]\fR\fR
5207 .ad

new/usr/src/man/man1/ksh93.1 80

5208 .sp .6
5209 .RS 4n
5210 Prints the current value of the configuration parameter specified by
5211 \fIname\fR. The configuration parameters are defined by the IEEE POSIX 1003.1
5212 and IEEE POSIX 1003.2 standards. See \fBpathconf\fR(2) and \fBsysconf\fR(3C).
5213 .sp
5214 The \fIpathname\fR argument is required for parameters whose value depends on
5215 the location in the file system. If no arguments are specified, \fBgetconf\fR
5216 prints the names and values of the current configuration parameters. The
5217 pathname \fB/\fR is used for each of the parameters that requires
5218 \fIpathname\fR.
5219 .RE

5221 .sp
5222 .ne 2
5223 .na
5224 \fB\fBgetopts\fR \fB[\fR \fB-a\fR \fIname\fR\fB]\fR \fIoptstring\fR \fIvname\fR
5225 \fB[\fR\fIarg ...\fR\fB]\fR\fR
5226 .ad
5227 .sp .6
5228 .RS 4n
5229 Checks \fIarg\fR for legal options. If \fIarg\fR is omitted, the positional
5230 parameters are used. An option argument begins with a \fB+\fR or a \fB-\fR. An
5231 option that does not begin with \fB+\fR or \fB-\fR or the argument \fB--\fR
5232 ends the options. Options beginning with \fB+\fR are only recognized when
5233 \fIoptstring\fR begins with a \fB+\fR. \fIoptstring\fR contains the letters
5234 that \fBgetopts\fR recognizes. If a letter is followed by a \fB:\fR, that
5235 option is expected to have an argument. The options can be separated from the
5236 argument by blanks. The option \fB-?\fRcauses \fBgetopts\fR to generate a usage
5237 message on standard error. The \fB-a\fR option can be used to specify the name
5238 to use for the usage message, which defaults to $0. \fBgetopts\fR places the
5239 next option letter it finds inside variable \fIvname\fR each time it is
5240 invoked. The option letter is prepended with a \fB+\fR when \fIarg\fR begins
5241 with a \fB+\fR. The index of the next \fIarg\fR is stored in \fBOPTIND\fR. The
5242 option argument, if any, gets stored in \fBOPTARG\fR. A leading : in
5243 \fIoptstring\fR causes \fBgetopts\fR to store the letter of an invalid option
5244 in \fBOPTARG\fR, and to set \fIvname\fR to \fB?\fR for an unknown option and
5245 to: when a required option argument is missing. Otherwise, \fBgetopts\fR prints
5246 an error message. The exit status is \fBnon-zero\fR when there are no more
5247 options. There is no way to specify any of the options \fB:\fR, \fB+\fR,
5248 \fB-\fR, \fB?\fR, \fB[\fR, and \fB]\fR. The option \fB#\fR can only be
5249 specified as the first option.
5250 .RE

5252 .sp
5253 .ne 2
5254 .na
5255 \fB\fBhist\fR \fB[\fR \fB-e\fR \fIename\fR\fB]\fR\fB[\fR\fB-nlr\fR\fB]\fR
5256 \fB[\fR \fIfirst\fR\fB[\fR\fIlast\fR \fB]]\fR\fR
5257 .ad
5258 .br
5259 .na
5260 \fB\fR
5261 .ad
5262 .br
5263 .na
5264 \fB\fBhist\fR \fB-s\fR \fB[\fR \fIold\fR\fB=\fR\fInew\fR \fB] [\fR
5265 \fIcommand\fR\fB]\fR\fR
5266 .ad
5267 .sp .6
5268 .RS 4n
5269 In the first form, a range of commands from \fIfirst\fR to \fIlast\fR is
5270 selected from the last \fBHISTSIZE\fR commands that were typed at the terminal.
5271 The arguments \fIfirst\fR and \fIlast\fR can be specified as a number or as a
5272 string. A string is used to locate the most recent command starting with the
5273 specified string. A negative number is used as an offset to the current command

new/usr/src/man/man1/ksh93.1 81

5274 number. If the -l option is selected, the commands are listed on standard
5275 output. Otherwise, the editor program \fIename\fR is invoked on a file
5276 containing these keyboard commands. If \fIename\fR is not supplied, then the
5277 value of the variable \fBHISTEDIT\fR is used. If \fBHISTEDIT\fR is not set,
5278 then \fBFCEDIT\fR (default \fB/bin/ed\fR) is used as the editor. When editing
5279 is complete, the edited command(s) is executed if the changes have been saved.
5280 If \fIlast\fR is not specified, then it is set to \fIfirst\fR. If \fIfirst\fR
5281 is not specified, the default is the previous command for editing and \fB-16\fR
5282 for listing. The option \fB-r\fR reverses the order of the commands and the
5283 option \fB-n\fR suppresses command numbers when listing. In the second form,
5284 \fIcommand\fR is interpreted as \fIfirst\fR described in this section and
5285 defaults to the last command executed. The resulting command is executed after
5286 the optional substitution \fIold\fR\fB=\fR\fInew\fR is performed.
5287 .RE

5289 .sp
5290 .ne 2
5291 .na
5292 \fB\fBjobs\fR \fB-lnp\fR \fB[\fR\fIjob ...\fR\fB]\fR\fR
5293 .ad
5294 .sp .6
5295 .RS 4n
5296 Lists information about each specified job, or all active jobs if \fIjob\fR is
5297 omitted. The \fB-l\fR option lists process ids in addition to the normal
5298 information. The \fB-n\fR option only displays jobs that have stopped or exited
5299 since last notified. The \fB-p\fR option causes only the process group to be
5300 listed. See \fBJobs\fR for a description of the format of \fIjob\fR.
5301 .RE

5303 .sp
5304 .ne 2
5305 .na
5306 \fB\fBkill\fR \fB[\fR\fB-s\fR \fIsigname\fR\fB]\fR \fIjob ...\fR\fR
5307 .ad
5308 .br
5309 .na
5310 \fB\fBkill\fR \fB[\fR\fB-n\fR \fIsignum\fR\fB]\fR \fIjob ...\fR\fR
5311 .ad
5312 .br
5313 .na
5314 \fB\fBkill\fR \fB-l\fR \fB[\fR\fIsig ...\fR\fB]\fR\fR
5315 .ad
5316 .sp .6
5317 .RS 4n
5318 Sends either the \fBTERM\fR (terminate) signal or the specified signal to the
5319 specified jobs or processes. Signals are either specified by number with the
5320 \fB-n\fR option or by name with the \fB-s\fR option (as specified in
5321 \fB<signal.h\fR>, stripped of the prefix ‘\fBSIG\fR with the exception that
5322 \fBSIGCLD\fR is named \fBCHLD\fR). For backward compatibility, the \fBn\fR and
5323 \fBs\fR can be omitted and the number or name placed immediately after the
5324 \fB-\fR. If the signal being sent is \fBTERM\fR (terminate) or \fBHUP\fR (hang
5325 up), then the job or process is sent a \fBCONT\fR (continue) signal if it is
5326 stopped. The argument \fIjob\fR can be the process id of a process that is not
5327 a member of one of the active jobs. See \fBJobs\fR for a description of the
5328 format of \fIjob\fR. In the third form, \fBkill -l\fR, if \fIsig\fR is not
5329 specified, the signal names are listed. Otherwise, for each \fIsig\fR that is a
5330 name, the corresponding signal number is listed. For each \fIsig\fR that is a
5331 number, the signal name corresponding to the least significant 8 bits of
5332 \fIsig\fR is listed.
5333 .RE

5335 .sp
5336 .ne 2
5337 .na
5338 \fB\fBlet\fR \fB[\fR\fIarg ...\fR\fB]\fR\fR
5339 .ad

new/usr/src/man/man1/ksh93.1 82

5340 .sp .6
5341 .RS 4n
5342 Each \fIarg\fR is a separate arithmetic expression to be evaluated. See the
5343 \fBArithmetic Evaluation\fR section of this manual page for a description of
5344 arithmetic expression evaluation. The exit status is \fB0\fR if the value of
5345 the last expression is \fBnon-zero\fR, and \fB1\fR otherwise.
5346 .RE

5348 .sp
5349 .ne 2
5350 .na
5351 \fB\fB+newgrp\fR \fB[\fR\fIarg ...\fR\fB]\fR\fR
5352 .ad
5353 .sp .6
5354 .RS 4n
5355 Equivalent to \fBexec\fR \fB/bin/newgrp\fR \fIarg ...\fR
5356 .RE

5358 .sp
5359 .ne 2
5360 .na
5361 \fB\fBprint\fR [\fB-Renprs\fR] \fB[\fR \fB-u\fR \fIunit\fR\fB] [\fR \fB-f\fR
5362 \fIformat\fR \fB] [\fR \fIarg ...\fR\fB]\fR\fR
5363 .ad
5364 .sp .6
5365 .RS 4n
5366 With no options or with option \fB-\fR or \fB--\fR, each \fIarg\fR is printed
5367 on standard output. The \fB-f\fR option causes the arguments to be printed as
5368 described by \fBprintf\fR. In this case, any \fBe\fR, \fBn\fR, \fBr\fR, or
5369 \fBR\fR options are ignored. Otherwise, unless the \fB-R\fR or \fB-r,\fR are
5370 specified, the following escape conventions are applied:
5371 .sp
5372 .ne 2
5373 .na
5374 \fB\fB\ea\fR\fR
5375 .ad
5376 .RS 8n
5377 Alert character (\fBASCII\fR 07)
5378 .RE

5380 .sp
5381 .ne 2
5382 .na
5383 \fB\fB\eb\fR\fR
5384 .ad
5385 .RS 8n
5386 Backspace character (\fBASCII\fR 010)
5387 .RE

5389 .sp
5390 .ne 2
5391 .na
5392 \fB\fB\ec\fR\fR
5393 .ad
5394 .RS 8n
5395 Causes print to end without processing more arguments and not adding a NEWLINE
5396 .RE

5398 .sp
5399 .ne 2
5400 .na
5401 \fB\fB\ef\fR\fR
5402 .ad
5403 .RS 8n
5404 Form-feed character (\fBASCII\fR 014)
5405 .RE

new/usr/src/man/man1/ksh93.1 83

5407 .sp
5408 .ne 2
5409 .na
5410 \fB\fB\en\fR\fR
5411 .ad
5412 .RS 8n
5413 NEWLINE character (\fBASCII\fR 012)
5414 .RE

5416 .sp
5417 .ne 2
5418 .na
5419 \fB\fB\er\fR\fR
5420 .ad
5421 .RS 8n
5422 RETURN character (\fBASCII\fR 015)
5423 .RE

5425 .sp
5426 .ne 2
5427 .na
5428 \fB\fB\et\fR\fR
5429 .ad
5430 .RS 8n
5431 TAB character (\fBASCII\fR 011)
5432 .RE

5434 .sp
5435 .ne 2
5436 .na
5437 \fB\fB\ev\fR\fR
5438 .ad
5439 .RS 8n
5440 Vertical TAB character (\fBASCII\fR 013)
5441 .RE

5443 .sp
5444 .ne 2
5445 .na
5446 \fB\fB\eE\fR\fR
5447 .ad
5448 .RS 8n
5449 Escape character (\fBASCII\fR 033)
5450 .RE

5452 .sp
5453 .ne 2
5454 .na
5455 \fB\fB\e\e\fR\fR
5456 .ad
5457 .RS 8n
5458 Backslash character \fB\e\fR
5459 .RE

5461 .sp
5462 .ne 2
5463 .na
5464 \fB\fB\e0\fR\fIx\fR\fR
5465 .ad
5466 .RS 8n
5467 Character defined by the 1, 2, or 3-digit octal string specified by \fIx\fR
5468 .RE

5470 The \fB-R\fR option prints all subsequent arguments and options other than
5471 \fB-n\fR. The \fB-e\fR causes the escape conventions to be applied This is the

new/usr/src/man/man1/ksh93.1 84

5472 default behavior. It reverses the effect of an earlier \fB-r\fR. The \fB-p\fR
5473 option causes the arguments to be written onto the pipe of the process spawned
5474 with \fB|&\fR instead of standard output. The \fB-s\fR option causes the
5475 arguments to be written onto the history file instead of standard output. The
5476 \fB-u\fR option can be used to specify a one digit file descriptor unit number
5477 \fIunit\fR on which the output is placed. The default is \fB1\fR. If the option
5478 \fB-n\fR is used, no NEWLINE is added to the output.
5479 .RE

5481 .sp
5482 .ne 2
5483 .na
5484 \fB\fBprintf\fR \fIformat\fR\fB[\fR\fIarg ...\fR\fB]\fR\fR
5485 .ad
5486 .sp .6
5487 .RS 4n
5488 The arguments \fIarg\fR are printed on standard output in accordance with the
5489 \fBANSI-C\fR formatting rules associated with the format string \fIformat\fR.
5490 If the number of arguments exceeds the number of format specifications, the
5491 format string is reused to format remaining arguments. The following extensions
5492 can also be used: A \fB%b\fR format can be used instead of \fB%s\fR to cause
5493 escape sequences in the corresponding \fIarg\fR to be expanded as described in
5494 \fBprint\fR. A \fB%B\fR option causes each of the arguments to be treated as
5495 variable names and the binary value of the variables is printed. This is most
5496 useful for variables with an attribute of b. A \fB%H\fR format can be used
5497 instead of \fB%s\fR to cause characters in \fIarg\fR that are special in
5498 \fBHTML\fR and \fBXML\fR to be output as their entity name. A \fB%P\fR format
5499 can be used instead of \fB%s\fR to cause \fIarg\fR to be interpreted as an
5500 extended regular expression and be printed as a shell pattern. A \fB%R\fR
5501 format can be used instead of \fB%s\fR to cause \fIarg\fR to be interpreted as
5502 a shell pattern and to be printed as an extended regular expression. A \fB%q\fR
5503 format can be used instead of \fB%\fRs to cause the resulting string to be
5504 quoted in a manner than can be input again to the shell. A
5505 \fB%(\fR\fIdate-format\fR\fB)T\fR format can be use to treat an argument as a
5506 date/time string and to format the date/time according to the \fIdate-format\fR
5507 as defined for the \fBdate\fR(1) command. A \fB%Z\fR format outputs a byte
5508 whose value is 0. The precision field of the %d format can be followed by a .
5509 and the output base. In this case, the \fB#\fR flag character causes
5510 \fBbase\fR\fI#\fR to be prepended. The \fB#\fR flag when used with the \fBd\fR
5511 specifier without an output base, causes the output to be displayed in
5512 thousands units with one of the suffixes \fBk\fR \fBM\fR \fBG\fR \fBT\fR
5513 \fBP\fR \fBE\fR to indicate the unit. The \fB#\fR flag when used with the i
5514 specifier causes the output to be displayed in \fB1024\fR with one of the
5515 suffixes \fBKi\fR \fBMi\fR \fBGi\fR \fBTi\fR \fBPi\fR \fBEi\fR to indicate the
5516 unit. The \fB=\fR flag has been added to center the output within the specified
5517 field width.
5518 .RE

5520 .sp
5521 .ne 2
5522 .na
5523 \fB\fBpwd\fR [\fB-LP\fR]\fR
5524 .ad
5525 .sp .6
5526 .RS 4n
5527 Outputs the value of the current working directory. The \fB-L\fR option is the
5528 default. It prints the logical name of the current directory. If the \fB-P\fR
5529 option is specified, all symbolic links are resolved from the name. The last
5530 instance of \fB-L\fR or \fB-P\fR on the command line determines which method is
5531 used.
5532 .RE

5534 .sp
5535 .ne 2
5536 .na
5537 \fB\fBread\fR \fB[\fR\fB-Aprs\fR\fB] [\fR\fB-d\fR \fIdelim\fR\fB] [\fR \fB-n\fR

new/usr/src/man/man1/ksh93.1 85

5538 \fIn\fR\fB] [[\fR \fB-N\fR \fIn\fR\fB] [[\fR\fB-t\fR \fItimeout\fR\fB]
5539 [\fR\fB-u\fR \fIunit\fR\fB] [\fR\fIvname\fR\fB?\fR\fIprompt\fR\fB] [\fR
5540 \fIvname ...\fR \fB]\fR\fR
5541 .ad
5542 .sp .6
5543 .RS 4n
5544 The shell input mechanism. One line is read and is broken up into fields using
5545 the characters in IFS as separators. The escape character, \fB\e\fR, is used to
5546 remove any special meaning for the next character and for line continuation.
5547 The \fB-d\fR option causes the read to continue to the first character of
5548 \fIdelim\fR rather than \fBNEWLINE\fR. The \fB-n\fR option causes at most
5549 \fIn\fR bytes to read rather a full line but returns when reading from a slow
5550 device as soon as any characters have been read. The \fB-N\fR option causes
5551 exactly \fIn\fR to be read unless an end-of-file has been encountered or the
5552 read times out because of the \fB-t\fR option. In raw mode, \fB-r\fR, the
5553 \fB\e\fR character is not treated specially. The first field is assigned to the
5554 first \fIvname\fR, the second field to the second \fIvname\fR, etc., with
5555 leftover fields assigned to the last \fIvname\fR. When \fIvname\fR has the
5556 binary attribute and \fB-n\fR or \fB-N\fR is specified, the bytes that are read
5557 are stored directly into the variable. If the -v is specified, then the value
5558 of the first \fIvname\fR is used as a default value when reading from a
5559 terminal device. The \fB-A\fR option causes the variable \fIvname\fR to be
5560 unset and each field that is read to be stored in successive elements of the
5561 indexed array \fIvname\fR. The \fB-p\fR option causes the input line to be
5562 taken from the input pipe of a process spawned by the shell using \fB|&\fR. If
5563 the \fB-s\fR option is present, the input is saved as a command in the history
5564 file. The option \fB-u\fR can be used to specify a one digit file descriptor
5565 unit \fIunit\fR to read from. The file descriptor can be opened with the
5566 \fBexec\fR special built-in command. The default value of unit \fIn\fR is
5567 \fB0\fR. The option \fB-t\fR is used to specify a time out in seconds when
5568 reading from a terminal or pipe. If \fIvname\fR is omitted, then REPLY is used
5569 as the default \fIvname\fR. An end-of-file with the \fB-p\fR option causes
5570 cleanup for this process so that another can be spawned. If the first argument
5571 contains a \fB?\fR, the remainder of this word is used as a prompt on standard
5572 error when the shell is interactive. The exit status is \fB0\fR unless an
5573 end-of-file is encountered or read has timed out.
5574 .RE

5576 .sp
5577 .ne 2
5578 .na
5579 \fB\fB++readonly\fR \fB[\fR\fB-p\fR\fB] [\fR
5580 \fIvname\fR\fB[=\fR\fIvalue\fR\fB]] ...\fR\fR
5581 .ad
5582 .sp .6
5583 .RS 4n
5584 If \fIvname\fR is not specified, the names and values of each variable with the
5585 read-only attribute is printed with the values quoted in a manner that allows
5586 them to be input again. The \fB-p\fR option causes the word \fBreadonly\fR to
5587 be inserted before each one. Otherwise, the specified \fIvname\fRs are marked
5588 \fBreadonly\fR and these names cannot be changed by subsequent assignment.
5589 .RE

5591 .sp
5592 .ne 2
5593 .na
5594 \fB\fB+return\fR \fB[\fR\fIn\fR\fB]\fR\fR
5595 .ad
5596 .sp .6
5597 .RS 4n
5598 Causes a shell function or script to return to the invoking script with the
5599 exit status specified by \fIn\fR. The value is the least significant 8 bits of
5600 the specified status. If \fBn\fR is omitted, then the return status is that of
5601 the last command executed. If return is invoked while not in a function or a
5602 script, then it behaves the same as exit.
5603 .RE

new/usr/src/man/man1/ksh93.1 86

5605 .sp
5606 .ne 2
5607 .na
5608 \fB\fB+set [\(+-BCGabefhkmnoprstuvx] [\(+-o [\fR \fIoption\fR \fB]] ... [
5609 \(+-A\fR \fIvname\fR\fB]\fR \fB[\fR\fIarg...\fR\fB]\fR\fR
5610 .ad
5611 .sp .6
5612 .RS 4n
5613 The \fBset\fR command supports the following options:
5614 .sp
5615 .ne 2
5616 .na
5617 \fB\fB-a\fR\fR
5618 .ad
5619 .sp .6
5620 .RS 4n
5621 All subsequent variables that are defined are automatically exported.
5622 .RE

5624 .sp
5625 .ne 2
5626 .na
5627 \fB\fB-A\fR\fR
5628 .ad
5629 .sp .6
5630 .RS 4n
5631 Array assignment. Unset the variable \fIvname\fR and assign values sequentially
5632 from the \fIarg\fR list. If \fB+A\fR is used, the variable \fIvname\fR is not
5633 unset first.
5634 .RE

5636 .sp
5637 .ne 2
5638 .na
5639 \fB\fB-b\fR\fR
5640 .ad
5641 .sp .6
5642 .RS 4n
5643 Prints job completion messages as soon as a background job changes state rather
5644 than waiting for the next prompt.
5645 .RE

5647 .sp
5648 .ne 2
5649 .na
5650 \fB\fB-B\fR\fR
5651 .ad
5652 .sp .6
5653 .RS 4n
5654 Enable brace pattern field generation. This is the default behavior.
5655 .RE

5657 .sp
5658 .ne 2
5659 .na
5660 \fB\fB-C\fR\fR
5661 .ad
5662 .sp .6
5663 .RS 4n
5664 Prevents redirection (\fB>\fR) from truncating existing files. Files that are
5665 created are opened with the \fBO_EXCL\fR mode. Requires \fB>|\fR to truncate a
5666 file when turned on.
5667 .RE

5669 .sp

new/usr/src/man/man1/ksh93.1 87

5670 .ne 2
5671 .na
5672 \fB\fB-e\fR\fR
5673 .ad
5674 .sp .6
5675 .RS 4n
5676 If a command has a \fBnon-zero\fR exit status, execute the \fBERR\fR trap, if
5677 set, and exit. This mode is disabled while reading profiles.
5678 .RE

5680 .sp
5681 .ne 2
5682 .na
5683 \fB\fB-f\fR\fR
5684 .ad
5685 .sp .6
5686 .RS 4n
5687 Disables file name generation.
5688 .RE

5690 .sp
5691 .ne 2
5692 .na
5693 \fB\fB-G\fR\fR
5694 .ad
5695 .sp .6
5696 .RS 4n
5697 Causes the pattern \fB**\fR by itself to match files and zero or more
5698 directories and subdirectories when used for file name generation. If followed
5699 by a \fB/\fR only directories and subdirectories are matched.
5700 .RE

5702 .sp
5703 .ne 2
5704 .na
5705 \fB\fB-h\fR\fR
5706 .ad
5707 .sp .6
5708 .RS 4n
5709 Each command becomes a tracked alias when first encountered.
5710 .RE

5712 .sp
5713 .ne 2
5714 .na
5715 \fB\fB-k\fR\fR
5716 .ad
5717 .sp .6
5718 .RS 4n
5719 Obsolete. All variable assignment arguments are placed in the environment for a
5720 command, not just those that precede the command name.
5721 .RE

5723 .sp
5724 .ne 2
5725 .na
5726 \fB\fB-m\fR\fR
5727 .ad
5728 .sp .6
5729 .RS 4n
5730 Background jobs run in a separate process group and a line prints upon
5731 completion. The exit status of background jobs is reported in a completion
5732 message. On systems with job control, this option is turned on automatically
5733 for interactive shells.
5734 .RE

new/usr/src/man/man1/ksh93.1 88

5736 .sp
5737 .ne 2
5738 .na
5739 \fB\fB-n\fR\fR
5740 .ad
5741 .sp .6
5742 .RS 4n
5743 Read commands and check them for syntax errors, but do not execute them.
5744 Ignored for interactive shells.
5745 .RE

5747 .sp
5748 .ne 2
5749 .na
5750 \fB\fB-o\fR\fR
5751 .ad
5752 .sp .6
5753 .RS 4n
5754 If no option name is supplied, the list of options and their current settings
5755 are written to standard output. When invoked with a \fB+\fR, the options are
5756 written in a format that can be input again to the shell to restore the
5757 settings. This option can be repeated to enable or disable multiple options.
5758 .sp
5759 The following argument can be one of the following option names:
5760 .sp
5761 .ne 2
5762 .na
5763 \fB\fBallexport\fR\fR
5764 .ad
5765 .sp .6
5766 .RS 4n
5767 Same as \fB-a\fR.
5768 .RE

5770 .sp
5771 .ne 2
5772 .na
5773 \fB\fBbgnice\fR\fR
5774 .ad
5775 .sp .6
5776 .RS 4n
5777 All background jobs are run at a lower priority. This is the default mode.
5778 .RE

5780 .sp
5781 .ne 2
5782 .na
5783 \fB\fBbraceexpand\fR\fR
5784 .ad
5785 .sp .6
5786 .RS 4n
5787 Same as \fB-\fRB.
5788 .RE

5790 .sp
5791 .ne 2
5792 .na
5793 \fB\fBemacs\fR\fR
5794 .ad
5795 .sp .6
5796 .RS 4n
5797 Puts you in an \fBemacs\fR style inline editor for command entry.
5798 .RE

5800 .sp
5801 .ne 2

new/usr/src/man/man1/ksh93.1 89

5802 .na
5803 \fB\fBerrexit\fR\fR
5804 .ad
5805 .sp .6
5806 .RS 4n
5807 Same as \fB-e\fR.
5808 .RE

5810 .sp
5811 .ne 2
5812 .na
5813 \fB\fBglobstar\fR\fR
5814 .ad
5815 .sp .6
5816 .RS 4n
5817 Same as \fB-G\fR.
5818 .RE

5820 .sp
5821 .ne 2
5822 .na
5823 \fB\fBgmacs\fR\fR
5824 .ad
5825 .sp .6
5826 .RS 4n
5827 Puts you in a \fBgmacs\fR style inline editor for command entry.
5828 .RE

5830 .sp
5831 .ne 2
5832 .na
5833 \fB\fBignoreeof\fR\fR
5834 .ad
5835 .sp .6
5836 .RS 4n
5837 The shell does not exit on end-of-file. The command \fBexit\fR must be used.
5838 .RE

5840 .sp
5841 .ne 2
5842 .na
5843 \fB\fBkeyword\fR\fR
5844 .ad
5845 .sp .6
5846 .RS 4n
5847 Same as \fB-k\fR.
5848 .RE

5850 .sp
5851 .ne 2
5852 .na
5853 \fB\fBmarkdirs\fR\fR
5854 .ad
5855 .sp .6
5856 .RS 4n
5857 All directory names resulting from file name generation have a trailing /
5858 appended.
5859 .RE

5861 .sp
5862 .ne 2
5863 .na
5864 \fB\fBmonitor\fR\fR
5865 .ad
5866 .sp .6
5867 .RS 4n

new/usr/src/man/man1/ksh93.1 90

5868 Same as \fB-m\fR.
5869 .RE

5871 .sp
5872 .ne 2
5873 .na
5874 \fB\fBmultiline\fR\fR
5875 .ad
5876 .sp .6
5877 .RS 4n
5878 The built-in editors use multiple lines on the screen for lines that are longer
5879 than the width of the screen. This might not work for all terminals.
5880 .RE

5882 .sp
5883 .ne 2
5884 .na
5885 \fB\fBnoclobber\fR\fR
5886 .ad
5887 .sp .6
5888 .RS 4n
5889 Same as \fB-C\fR.
5890 .RE

5892 .sp
5893 .ne 2
5894 .na
5895 \fB\fBnoexec\fR\fR
5896 .ad
5897 .sp .6
5898 .RS 4n
5899 Same as \fB-n\fR.
5900 .RE

5902 .sp
5903 .ne 2
5904 .na
5905 \fB\fBnoglob\fR\fR
5906 .ad
5907 .sp .6
5908 .RS 4n
5909 Same as \fB-f\fR.
5910 .RE

5912 .sp
5913 .ne 2
5914 .na
5915 \fB\fBnolog\fR\fR
5916 .ad
5917 .sp .6
5918 .RS 4n
5919 Do not save function definitions in the history file.
5920 .RE

5922 .sp
5923 .ne 2
5924 .na
5925 \fB\fBnotify\fR\fR
5926 .ad
5927 .sp .6
5928 .RS 4n
5929 Same as \fB-b\fR.
5930 .RE

5932 .sp
5933 .ne 2

new/usr/src/man/man1/ksh93.1 91

5934 .na
5935 \fB\fBnounset\fR\fR
5936 .ad
5937 .sp .6
5938 .RS 4n
5939 Same as \fB-u\fR.
5940 .RE

5942 .sp
5943 .ne 2
5944 .na
5945 \fB\fBpipefail\fR\fR
5946 .ad
5947 .sp .6
5948 .RS 4n
5949 A pipeline does not complete until all components of the pipeline have
5950 completed, and the return value is the value of the last \fBnon-zero\fR command
5951 to fail or zero if no command has failed.
5952 .RE

5954 .sp
5955 .ne 2
5956 .na
5957 \fB\fBprivileged\fR\fR
5958 .ad
5959 .sp .6
5960 .RS 4n
5961 Same as \fB-p\fR.
5962 .RE

5964 .sp
5965 .ne 2
5966 .na
5967 \fB\fBshowme\fR\fR
5968 .ad
5969 .sp .6
5970 .RS 4n
5971 When enabled, simple commands or pipelines preceded by a a semicolon (\fB;\fR)
5972 is displayed as if the \fBxtrace\fR option were enabled but is not executed.
5973 Otherwise, the leading \fB;\fR is ignored.
5974 .RE

5976 .sp
5977 .ne 2
5978 .na
5979 \fB\fBtrackall\fR\fR
5980 .ad
5981 .sp .6
5982 .RS 4n
5983 Same as \fB-h\fR.
5984 .RE

5986 .sp
5987 .ne 2
5988 .na
5989 \fB\fBverbose\fR\fR
5990 .ad
5991 .sp .6
5992 .RS 4n
5993 Same as \fB-v\fR.
5994 .RE

5996 .sp
5997 .ne 2
5998 .na
5999 \fB\fBvi\fR\fR

new/usr/src/man/man1/ksh93.1 92

6000 .ad
6001 .sp .6
6002 .RS 4n
6003 Puts you in insert mode of a \fBvi\fR style inline editor until you hit the
6004 escape character 033. This puts you in control mode. A return sends the line.
6005 .RE

6007 .sp
6008 .ne 2
6009 .na
6010 \fB\fBviraw\fR\fR
6011 .ad
6012 .sp .6
6013 .RS 4n
6014 Each character is processed as it is typed in \fBvi\fR mode.
6015 .RE

6017 .sp
6018 .ne 2
6019 .na
6020 \fB\fBxtrace\fR\fR
6021 .ad
6022 .sp .6
6023 .RS 4n
6024 Same as \fB-x\fR.
6025 .sp
6026 If no option name is supplied, the current options settings are printed.
6027 .RE

6029 .RE

6031 .sp
6032 .ne 2
6033 .na
6034 \fB\fB-p\fR\fR
6035 .ad
6036 .sp .6
6037 .RS 4n
6038 Disables processing of the \fB$HOME/.profile\fR file and uses the file
6039 \fB/etc/suid_profile\fR instead of the \fBENV\fR file. This mode is on whenever
6040 the effective \fBuid\fR (\fBgid\fR) is not equal to the real \fBuid\fR
6041 (\fBgid\fR). Turning this off causes the effective \fBuid\fR and \fBgid\fR to
6042 be set to the real \fBuid\fR and \fBgid\fR.
6043 .RE

6045 .sp
6046 .ne 2
6047 .na
6048 \fB\fB-r\fR\fR
6049 .ad
6050 .sp .6
6051 .RS 4n
6052 Enables the restricted shell. This option cannot be unset once set.
6053 .RE

6055 .sp
6056 .ne 2
6057 .na
6058 \fB\fB-s\fR\fR
6059 .ad
6060 .sp .6
6061 .RS 4n
6062 Sort the positional parameters lexicographically.
6063 .RE

6065 .sp

new/usr/src/man/man1/ksh93.1 93

6066 .ne 2
6067 .na
6068 \fB\fB-t\fR\fR
6069 .ad
6070 .sp .6
6071 .RS 4n
6072 Obsolete. Exit after reading and executing one command.
6073 .RE

6075 .sp
6076 .ne 2
6077 .na
6078 \fB\fB-u\fR\fR
6079 .ad
6080 .sp .6
6081 .RS 4n
6082 Treat \fBunset\fR parameters as an error when substituting.
6083 .RE

6085 .sp
6086 .ne 2
6087 .na
6088 \fB\fB-v\fR\fR
6089 .ad
6090 .sp .6
6091 .RS 4n
6092 Print shell input lines as they are read.
6093 .RE

6095 .sp
6096 .ne 2
6097 .na
6098 \fB\fB-x\fR\fR
6099 .ad
6100 .sp .6
6101 .RS 4n
6102 Print commands and their arguments as they are executed.
6103 .RE

6105 .sp
6106 .ne 2
6107 .na
6108 \fB\fB--\fR\fR
6109 .ad
6110 .sp .6
6111 .RS 4n
6112 Do not change any of the options. This is useful in setting \fB$1\fR to a value
6113 beginning with \fB-\fR. If no arguments follow this option then the positional
6114 parameters are unset.
6115 .RE

6117 As an obsolete feature, if the first \fIarg\fR is - then the \fB-x\fR and
6118 \fB-v\fR options are turned off and the next \fIarg\fR is treated as the first
6119 argument. Using \fB+\fR rather than \fB-\fR causes these options to be turned
6120 off. These options can also be used upon invocation of the shell. The current
6121 set of options can be found in \fB$-\fR. Unless \fB-A\fR is specified, the
6122 remaining arguments are positional parameters and are assigned, in order, to
6123 \fB$1 $2 \&....\fR If no arguments are specified, then the names and values of
6124 all variables are printed on the standard output.
6125 .RE

6127 .sp
6128 .ne 2
6129 .na
6130 \fB\fB+shift\fR \fB[\fR\fIn\fR\fB]\fR\fR
6131 .ad

new/usr/src/man/man1/ksh93.1 94

6132 .sp .6
6133 .RS 4n
6134 The positional parameters from \fB$\fR\fIn\fR\fB+1 ...\fR are renamed
6135 \fB$1 ...\fR, the default \fIn\fR is \fB1\fR. The parameter \fIn\fR can be any
6136 arithmetic expression that evaluates to a non-negative number less than or
6137 equal to \fB$#\fR.
6138 .RE

6140 .sp
6141 .ne 2
6142 .na
6143 \fB\fBsleep\fR \fIseconds\fR\fR
6144 .ad
6145 .sp .6
6146 .RS 4n
6147 Suspends execution for the number of decimal seconds or fractions of a second
6148 specified by \fIseconds\fR.
6149 .RE

6151 .sp
6152 .ne 2
6153 .na
6154 \fB\fB+trap\fR \fB-p\fR \fB[\fR\fIaction\fR\fB]\fR
6155 \fB[\fR\fIsig\fR\fB] ...\fR\fR
6156 .ad
6157 .sp .6
6158 .RS 4n
6159 The \fB-p\fR option causes the trap action associated with each trap as
6160 specified by the arguments to be printed with appropriate quoting. Otherwise,
6161 \fIaction\fR is processed as if it were an argument to \fBeval\fR when the
6162 shell receives signal(s) \fIsig\fR. Each \fIsig\fR can be specified as a number
6163 or as the name of the signal. Trap commands are executed in order of signal
6164 number. Any attempt to set a trap on a signal that was ignored on entry to the
6165 current shell is ineffective. If \fIaction\fR is omitted and the first
6166 \fIsig\fR is a number, or if \fIaction\fR is \fB-\fR, then the trap(s) for each
6167 \fIsig\fR are reset to their original values. If \fIaction\fR is the null
6168 string then this signal is ignored by the shell and by the commands it invokes.
6169 If \fIsig\fR is \fBERR\fR then \fIaction\fR is executed whenever a command has
6170 a \fBnon-zero\fR exit status. If \fIsig\fR is \fBDEBUG\fR then \fIaction\fR is
6171 executed before each command. The variable \fB\&.sh.command\fR contains the
6172 contents of the current command line when \fIaction\fR is running. If \fIsig\fR
6173 is \fB0\fR or \fBEXIT\fR and the trap statement is executed inside the body of
6174 a function defined with the \fBfunction\fR \fIname\fR syntax, then the command
6175 \fIaction\fR is executed after the function completes. If \fIsig\fR is \fB0\fR
6176 or \fBEXIT\fR for a trap set outside any function then the command \fIaction\fR
6177 is executed on exit from the shell. If \fIsig\fR is \fBKEYBD\fR, then
6178 \fIaction\fR is executed whenever a key is read while in \fBemacs\fR,
6179 \fBgmacs\fR, or \fBvi\fR mode. The \fBtrap\fR command with no arguments prints
6180 a list of commands associated with each signal number.
6181 .RE

6183 .sp
6184 .ne 2
6185 .na
6186 \fB\fBtrue\fR\fR
6187 .ad
6188 .sp .6
6189 .RS 4n
6190 Does nothing, and exits \fB0\fR. Used with while for infinite loops.
6191 .RE

6193 .sp
6194 .ne 2
6195 .na
6196 \fB\fB++typeset [\(+-AHflabnprtux] [\(+-EFLRZi[\fR\fIn\fR\fB]] [\fR
6197 \fIvname\fR\fB[=\fR\fIvalue\fR \fB]]\fR\fR

new/usr/src/man/man1/ksh93.1 95

6198 .ad
6199 .sp .6
6200 .RS 4n
6201 Sets attributes and values for shell variables and functions. When invoked
6202 inside a function defined with the \fBfunction\fR \fIname\fR syntax, a new
6203 instance of the variable \fIvname\fR is created, and the variable’s value and
6204 type are restored when the function completes.
6205 .sp
6206 Using \fB+\fR rather than \fB-\fR causes these options to be turned off. If no
6207 \fIvname\fR arguments are specified, a list of \fIvname\fRs (and optionally the
6208 \fIvalue\fRs) of the variables is printed. Using \fB+\fR rather than \fB-\fR
6209 keeps the values from being printed.) The \fB-p\fR option causes \fBtypeset\fR
6210 followed by the option letters to be printed before each name rather than the
6211 names of the options. If any option other than \fB-p\fR is specified, only
6212 those variables which have all of the specified options are printed. Otherwise,
6213 the \fIvname\fRs and \fIattributes\fR of all variables that have attributes are
6214 printed.
6215 .sp
6216 The following list of attributes can be specified:
6217 .sp
6218 .ne 2
6219 .na
6220 \fB\fB-a\fR\fR
6221 .ad
6222 .RS 6n
6223 Declares \fIvname\fR to be an indexed array. This is optional unless except for
6224 compound variable assignments.
6225 .RE

6227 .sp
6228 .ne 2
6229 .na
6230 \fB\fB-A\fR\fR
6231 .ad
6232 .RS 6n
6233 Declares \fIvname\fR to be an associative array. Sub-scripts are strings rather
6234 than arithmetic expressions.
6235 .RE

6237 .sp
6238 .ne 2
6239 .na
6240 \fB\fB-b\fR\fR
6241 .ad
6242 .RS 6n
6243 The variable can hold any number of bytes of data. The data can be text or
6244 binary. The value is represented by the \fBbase64\fR encoding of the data. If
6245 \fB-Z\fR is also specified, the size in bytes of the data in the buffer is
6246 determined by the size associated with the \fB-Z\fR. If the \fBbase64\fR string
6247 assigned results in more data, it is truncated. Otherwise, it is filled with
6248 bytes whose value is zero. The \fBprintf\fR format \fB%B\fR can be used to
6249 output the actual data in this buffer instead of the \fBbase64\fR encoding of
6250 the data.
6251 .RE

6253 .sp
6254 .ne 2
6255 .na
6256 \fB\fB-E\fR\fR
6257 .ad
6258 .RS 6n
6259 Declares \fIvname\fR to be a double precision floating point number. If \fIn\fR
6260 is \fBnon-zero\fR, it defines the number of significant figures that are used
6261 when expanding \fIvname\fR. Otherwise, ten significant figures is used.
6262 .RE

new/usr/src/man/man1/ksh93.1 96

6264 .sp
6265 .ne 2
6266 .na
6267 \fB\fB-f\fR\fR
6268 .ad
6269 .RS 6n
6270 The names refer to function names rather than variable names. No assignments
6271 can be made and the only other valid options are \fB-t\fR, \fB-u\fR, and
6272 \fB-x.\fR The \fB-t\fR option turns on execution tracing for this function. The
6273 \fB-u\fR option causes this function to be marked undefined. The \fBFPATH\fR
6274 variable is searched to find the function definition when the function is
6275 referenced. If no options other than \fB-f\fR is specified, then the function
6276 definition is displayed on standard output. If \fB+f\fR is specified, then a
6277 line containing the function name followed by a shell comment containing the
6278 line number and path name of the file where this function was defined, if any,
6279 is displayed.
6280 .sp
6281 The \fB-i\fR attribute cannot be specified with \fB-f\fR.
6282 .RE

6284 .sp
6285 .ne 2
6286 .na
6287 \fB\fB-F\fR\fR
6288 .ad
6289 .RS 6n
6290 Declares \fIvname\fR to be a double precision floating point number. If \fIn\fR
6291 is \fBnon-zero\fR, it defines the number of places after the decimal point that
6292 are used when expanding \fIvname\fR. Otherwise ten places after the decimal
6293 point is used.
6294 .RE

6296 .sp
6297 .ne 2
6298 .na
6299 \fB\fB-H\fR\fR
6300 .ad
6301 .RS 6n
6302 This option provides UNIX to hostname file mapping on non-UNIX machines.
6303 .RE

6305 .sp
6306 .ne 2
6307 .na
6308 \fB\fB-i\fR\fR
6309 .ad
6310 .RS 6n
6311 Declares \fIvname\fR to be represented internally as integer. The right hand
6312 side of an assignment is evaluated as an arithmetic expression when assigning
6313 to an integer. If \fIn\fR is \fBnon-zero\fR, it defines the output arithmetic
6314 base, otherwise the output base is ten.
6315 .sp
6316 The \fB-i\fR attribute cannot be specified along with \fB-R\fR, \fB-L\fR,
6317 \fB-Z\fR, or \fB-f\fR.
6318 .RE

6320 .sp
6321 .ne 2
6322 .na
6323 \fB\fB-l\fR\fR
6324 .ad
6325 .RS 6n
6326 All uppercase characters are converted to lowercase. The uppercase option,
6327 \fB-u\fR, is turned off.
6328 .RE

new/usr/src/man/man1/ksh93.1 97

6330 .sp
6331 .ne 2
6332 .na
6333 \fB\fB-L\fR\fR
6334 .ad
6335 .RS 6n
6336 Left justify and remove leading blanks from \fIvalue\fR. If \fIn\fR is
6337 \fBnon-zero\fR, it defines the width of the field, otherwise it is determined
6338 by the width of the value of first assignment. When the variable is assigned
6339 to, it is filled on the right with blanks or truncated, if necessary, to fit
6340 into the field. The \fB-R\fR option is turned off.
6341 .sp
6342 The \fB-i\fR attribute cannot be specified with \fB-L\fR.
6343 .RE

6345 .sp
6346 .ne 2
6347 .na
6348 \fB\fB-n\fR\fR
6349 .ad
6350 .RS 6n
6351 Declares \fIvname\fR to be a reference to the variable whose name is defined by
6352 the value of variable \fIvname\fR. This is usually used to reference a variable
6353 inside a function whose name has been passed as an argument.
6354 .RE

6356 .sp
6357 .ne 2
6358 .na
6359 \fB\fB-R\fR\fR
6360 .ad
6361 .RS 6n
6362 Right justify and fill with leading blanks. If \fIn\fR is \fBnon-zero\fR, it
6363 defines the width of the field, otherwise it is determined by the width of the
6364 value of first assignment. The field is left filled with blanks or truncated
6365 from the end if the variable is reassigned. The \fB-L\fR option is turned off.
6366 .sp
6367 The \fB-i\fR attribute cannot be specified with \fB-R\fR.
6368 .RE

6370 .sp
6371 .ne 2
6372 .na
6373 \fB\fB-r\fR\fR
6374 .ad
6375 .RS 6n
6376 The specified \fIvname\fRs are marked read-only and these names cannot be
6377 changed by subsequent assignment.
6378 .RE

6380 .sp
6381 .ne 2
6382 .na
6383 \fB\fB-t\fR\fR
6384 .ad
6385 .RS 6n
6386 Tags the variables. Tags are user definable and have no special meaning to the
6387 shell.
6388 .RE

6390 .sp
6391 .ne 2
6392 .na
6393 \fB\fB-u\fR\fR
6394 .ad
6395 .RS 6n

new/usr/src/man/man1/ksh93.1 98

6396 All lowercase characters are converted to uppercase. The lowercase option,
6397 \fB-l\fR, is turned off.
6398 .RE

6400 .sp
6401 .ne 2
6402 .na
6403 \fB\fB-x\fR\fR
6404 .ad
6405 .RS 6n
6406 The specified \fIvname\fRs are marked for automatic export to the environment
6407 of subsequently-executed commands. Variables whose names contain a . cannot be
6408 exported.
6409 .RE

6411 .sp
6412 .ne 2
6413 .na
6414 \fB\fB-Z\fR\fR
6415 .ad
6416 .RS 6n
6417 Right justify and fill with leading zeros if the first non-blank character is a
6418 digit and the \fB-L\fR option has not been set. Remove leading zeros if the
6419 \fB-L\fR option is also set. If \fIn\fR is \fBnon-zero\fR, it defines the width
6420 of the field, otherwise it is determined by the width of the value of first
6421 assignment.
6422 .sp
6423 The \fB-i\fR attribute cannot be specified with \fB-Z\fR.
6424 .RE

6426 .RE

6428 .sp
6429 .ne 2
6430 .na
6431 \fB\fBulimit [\fR\fB-HSacdfmnpstv\fR\fB] [\fR \fIlimit\fR\fB]\fR\fR
6432 .ad
6433 .sp .6
6434 .RS 4n
6435 Set or display a resource limit. Many systems do not support one or more of
6436 these limits. The limit for a specified resource is set when \fIlimit\fR is
6437 specified. The value of \fIlimit\fR can be a number in the unit specified with
6438 each resource, or the value unlimited. When more than one resource is
6439 specified, then the limit name and unit is printed before the value.
6440 .sp
6441 If no option is specified, \fB-f\fR is assumed.
6442 .sp
6443 The following are the available resource limits:
6444 .sp
6445 .ne 2
6446 .na
6447 \fB\fB-a\fR\fR
6448 .ad
6449 .RS 6n
6450 Lists all of the current resource limits.
6451 .RE

6453 .sp
6454 .ne 2
6455 .na
6456 \fB\fB-c\fR\fR
6457 .ad
6458 .RS 6n
6459 The number of 512-byte blocks on the size of core dumps.
6460 .RE

new/usr/src/man/man1/ksh93.1 99

6462 .sp
6463 .ne 2
6464 .na
6465 \fB\fB-d\fR\fR
6466 .ad
6467 .RS 6n
6468 The number of Kbytes on the size of the data area.
6469 .RE

6471 .sp
6472 .ne 2
6473 .na
6474 \fB\fB-f\fR\fR
6475 .ad
6476 .RS 6n
6477 The number of 512-byte blocks on files that can be written by the current
6478 process or by child processes (files of any size can be read).
6479 .RE

6481 .sp
6482 .ne 2
6483 .na
6484 \fB\fB-H\fR\fR
6485 .ad
6486 .RS 6n
6487 Specifies a hard limit for the specified resource.
6488 .sp
6489 A hard limit cannot be increased once it is set.
6490 .sp
6491 If neither the \fB-H\fR nor \fB-S\fR option is specified, the limit applies to
6492 both. The current resource limit is printed when \fIlimit\fR is omitted. In
6493 this case, the soft limit is printed unless \fB-H\fR is specified.
6494 .RE

6496 .sp
6497 .ne 2
6498 .na
6499 \fB\fB-m\fR\fR
6500 .ad
6501 .RS 6n
6502 The number of Kbytes on the size of physical memory.
6503 .RE

6505 .sp
6506 .ne 2
6507 .na
6508 \fB\fB-n\fR\fR
6509 .ad
6510 .RS 6n
6511 The number of file descriptors plus 1.
6512 .RE

6514 .sp
6515 .ne 2
6516 .na
6517 \fB\fB-p\fR\fR
6518 .ad
6519 .RS 6n
6520 The number of 512-byte blocks for pipe buffering.
6521 .RE

6523 .sp
6524 .ne 2
6525 .na
6526 \fB\fB-s\fR\fR
6527 .ad

new/usr/src/man/man1/ksh93.1 100

6528 .RS 6n
6529 The number of Kbytes on the size of the stack area.
6530 .RE

6532 .sp
6533 .ne 2
6534 .na
6535 \fB\fB-S\fR\fR
6536 .ad
6537 .RS 6n
6538 Specifies a soft limit for the specified resource.
6539 .sp
6540 A soft limit can be increased up to the value of the hard limit.
6541 .sp
6542 If neither the \fB-H\fR nor \fB-S\fR option is specified, the limit applies to
6543 both. The current resource limit is printed when \fIlimit\fR is omitted. In
6544 this case, the soft limit is printed unless \fB-H\fR is specified.
6545 .RE

6547 .sp
6548 .ne 2
6549 .na
6550 \fB\fB-t\fR\fR
6551 .ad
6552 .RS 6n
6553 The number of CPU seconds to be used by each process.
6554 .RE

6556 .sp
6557 .ne 2
6558 .na
6559 \fB\fB-v\fR\fR
6560 .ad
6561 .RS 6n
6562 The number of Kbytes for virtual memory.
6563 .RE

6565 .RE

6567 .sp
6568 .ne 2
6569 .na
6570 \fB\fBumask\fR \fB[\fR\fB-S\fR\fB]\fR\fB[\fR\fImask\fR\fB]\fR\fR
6571 .ad
6572 .sp .6
6573 .RS 4n
6574 The user file-creation mask is set to \fImask\fR. \fImask\fR can either be an
6575 octal number or a symbolic value as described in \fBchmod\fR(1).
6576 .sp
6577 If a symbolic value is specified, the new \fBumask\fR value is the complement
6578 of the result of applying \fImask\fR to the complement of the previous
6579 \fBumask\fR value. If \fImask\fR is omitted, the current value of the mask is
6580 printed. The \fB-S\fR option causes the mode to be printed as a symbolic value.
6581 Otherwise, the mask is printed in octal.
6582 .sp
6583 See \fBumask\fR(2)
6584 .RE

6586 .sp
6587 .ne 2
6588 .na
6589 \fB\fB+unalias\fR \fB[\fR\fB-a\fR\fB]\fR \fIname\fR\fR
6590 .ad
6591 .sp .6
6592 .RS 4n
6593 The aliases specified by the list of \fIname\fRs are removed from the alias

new/usr/src/man/man1/ksh93.1 101

6594 list. The \fB-a\fR option causes all the aliases to be unset.
6595 .RE

6597 .sp
6598 .ne 2
6599 .na
6600 \fB\fB+unset\fR \fB[\fR\fB-fnv\fR\fB]\fR \fIvname\fR\fR
6601 .ad
6602 .sp .6
6603 .RS 4n
6604 The variables specified by the list of \fIvname\fRs are unassigned, i.e., their
6605 values and attributes are erased. Read-only variables cannot be unset. If the
6606 \fB-f\fR option is set, then the names refer to function names. If the \fB-v\fR
6607 option is set, then the names refer to variable names. The \fB-f\fR option
6608 overrides \fB-v\fR. If \fB-n\fR is set and \fIname\fR is a name reference, then
6609 \fIname\fR is unset rather than the variable that it references. The default is
6610 equivalent to \fB-v\fR. Unsetting \fBLINENO\fR, \fBMAILCHECK\fR, \fBOPTARG\fR,
6611 \fBOPTIND\fR, \fBRANDOM\fR, \fBSECONDS\fR, \fBTMOUT\fR, and \fB_\fR removes
6612 their special meaning even if they are subsequently assigned to.
6613 .RE

6615 .sp
6616 .ne 2
6617 .na
6618 \fB\fBwait\fR \fB[\fR\fIjob\fR\fB]\fR\fR
6619 .ad
6620 .sp .6
6621 .RS 4n
6622 Wait for the specified job and report its termination status. If \fIjob\fR is
6623 not specified, then all currently active child processes are waited for. The
6624 exit status from this command is that of the last process waited for if
6625 \fIjob\fR is specified; otherwise it is zero. See \fBJobs\fR for a description
6626 of the format of \fIjob\fR.
6627 .RE

6629 .sp
6630 .ne 2
6631 .na
6632 \fB\fBwhence\fR \fB[\fR\fB-afpv\fR\fB]\fR \fIname ...\fR\fR
6633 .ad
6634 .sp .6
6635 .RS 4n
6636 For each \fIname\fR, indicate how it would be interpreted if used as a command
6637 name. The \fB-v\fR option produces a more verbose report. The \fB-f\fR option
6638 skips the search for functions. The \fB-p\fR option does a path search for
6639 \fIname\fR even if name is an alias, a function, or a reserved word. The
6640 \fB-a\fR option is similar to the -v option but causes all interpretations of
6641 the specified name to be reported.
6642 .RE

6644 .SS "Invocation"
6645 .sp
6646 .LP
6647 If the shell is invoked by \fBexec\fR(2), and the first character of argument
6648 zero (\fB$0\fR) is \fB-\fR, then the shell is assumed to be a login shell and
6649 commands are read from \fB/etc/profile\fR and then from either .\fBprofile\fR
6650 in the current directory or \fB$HOME/.profile\fR, if either file exists. Next,
6651 for interactive shells, commands are read first from \fB/etc/ksh.kshrc\fR, and
6652 then from the file named by performing parameter expansion, command
6653 substitution, and arithmetic substitution on the value of the environment
6654 variable \fBENV\fR if the file exists. If the \fB-s\fR option is not present
6655 and \fIarg\fR and a file by the name of \fIarg\fR exists, then it reads and
6656 executes this script. Otherwise, if the first \fIarg\fR does not contain a
6657 \fB/\fR, a path search is performed on the first \fIarg\fR to determine the
6658 name of the script to execute. The script \fIarg\fR must have execute
6659 permission and any \fBsetuid\fR and \fBsetgid\fR settings are ignored. If the

new/usr/src/man/man1/ksh93.1 102

6660 script is not found on the path, \fIarg\fR is processed as if it named a
6661 built-in command or function.
6662 .sp
6663 .LP
6664 Commands are then read as described, and the following options are interpreted
6665 by the shell when it is invoked:
6666 .sp
6667 .ne 2
6668 .na
6669 \fB\fB-c\fR\fR
6670 .ad
6671 .RS 15n
6672 If the \fB-c\fR option is present, then commands are read from the first
6673 \fIarg\fR. Any remaining arguments become positional parameters starting at
6674 \fB0\fR.
6675 .RE

6677 .sp
6678 .ne 2
6679 .na
6680 \fB\fB-D\fR\fR
6681 .ad
6682 .RS 15n
6683 A list of all double quoted strings that are preceded by a \fB$\fR is printed
6684 on standard output and the shell exits. This set of strings is subject to
6685 language translation when the locale is not C or POSIX. No commands are
6686 executed.
6687 .RE

6689 .sp
6690 .ne 2
6691 .na
6692 \fB\fB-i\fR\fR
6693 .ad
6694 .RS 15n
6695 If the \fB-i\fR option is present or if the shell input and output are attached
6696 to a terminal (as told by \fBtcgetattr\fR(3C), this shell is interactive. In
6697 this case \fBTERM\fR is ignored (so that \fBkill 0\fR does not kill an
6698 interactive shell) and \fBINTR\fR is caught and ignored (so that wait is
6699 interruptible). In all cases, \fBQUIT\fR is ignored by the shell.
6700 .RE

6702 .sp
6703 .ne 2
6704 .na
6705 \fB\fB-R\fR \fIfilename\fR\fR
6706 .ad
6707 .RS 15n
6708 The \fB-R\fR \fIfilename\fR option is used to generate a cross reference
6709 database that can be used by a separate utility to find definitions and
6710 references for variables and commands.
6711 .RE

6713 .sp
6714 .ne 2
6715 .na
6716 \fB\fB-r\fR\fR
6717 .ad
6718 .RS 15n
6719 If the \fB-r\fR option is present, the shell is a restricted shell.
6720 .RE

6722 .sp
6723 .ne 2
6724 .na
6725 \fB\fB-s\fR\fR

new/usr/src/man/man1/ksh93.1 103

6726 .ad
6727 .RS 15n
6728 If the \fB-s\fR option is present or if no arguments remain, then commands are
6729 read from the standard input. Shell output, except for the output of the
6730 \fBSpecial Commands\fR listed, is written to file descriptor 2.
6731 .RE

6733 .sp
6734 .LP
6735 The remaining options and arguments are described under the \fBset\fR command.
6736 An optional \fB-\fR as the first argument is ignored.
6737 .SS "\fBrksh93\fR Only"
6738 .sp
6739 .LP
6740 \fBrksh93\fR is used to set up login names and execution environments whose
6741 capabilities are more controlled than those of the standard shell.
6742 .sp
6743 .LP
6744 The actions of \fBrksh93\fR are identical to those of \fBksh93\fR, except that
6745 the following are disallowed:
6746 .RS +4
6747 .TP
6748 .ie t \(bu
6749 .el o
6750 Unsetting the restricted option
6751 .RE
6752 .RS +4
6753 .TP
6754 .ie t \(bu
6755 .el o
6756 Changing directory. See \fBcd\fR(1).
6757 .RE
6758 .RS +4
6759 .TP
6760 .ie t \(bu
6761 .el o
6762 Setting or unsetting the value or attributes of \fBSHELL\fR, \fBENV\fR,
6763 \fBFPATH\fR, or \fBPATH\fR
6764 .RE
6765 .RS +4
6766 .TP
6767 .ie t \(bu
6768 .el o
6769 Specifying path or command names containing \fB/\fR,
6770 .RE
6771 .RS +4
6772 .TP
6773 .ie t \(bu
6774 .el o
6775 Redirecting output (\fB>\fR, \fB>\fR\fB|\fR, \fB<>\fR, and \fB>>\fR).
6776 .RE
6777 .RS +4
6778 .TP
6779 .ie t \(bu
6780 .el o
6781 Adding or deleting built-in commands.
6782 .RE
6783 .RS +4
6784 .TP
6785 .ie t \(bu
6786 .el o
6787 Using \fBcommand\fR \fB-p\fR to invoke a command.
6788 .RE
6789 .sp
6790 .LP
6791 These restrictions are enforced after .\fBprofile\fR and the \fBENV\fR files

new/usr/src/man/man1/ksh93.1 104

6792 are interpreted.
6793 .sp
6794 .LP
6795 When a command to be executed is found to be a shell procedure, \fBrksh93\fR
6796 invokes \fBksh93\fR to execute it. Thus, it is possible to provide to the
6797 end-user shell procedures that have access to the full power of the standard
6798 shell, while imposing a limited menu of commands. This scheme assumes that the
6799 end-user does not have write and execute permissions in the same directory. The
6800 net effect of these rules is that the writer of the .\fBprofile\fR has complete
6801 control over user actions, by performing guaranteed setup actions and leaving
6802 the user in an appropriate directory (probably not the login directory). The
6803 system administrator often sets up a directory of commands, for example,
6804 \fB/usr/rbin\fR, that can be safely invoked by \fBrksh\fR.
6805 .SH USAGE
6806 .sp
6807 .LP
6808 See \fBlargefile\fR(5) for the description of the behavior of \fBksh93\fR and
6809 \fBrksh93\fR when encountering files greater than or equal to 2 Gbyte (2^31
6810 bytes).
6811 .SH EXIT STATUS
6812 .sp
6813 .LP
6814 The following exit values are returned:
6815 .sp
6816 .ne 2
6817 .na
6818 \fB\fBnon-zero\fR\fR
6819 .ad
6820 .sp .6
6821 .RS 4n
6822 Returns \fBnon-zero\fR when errors, such as syntax errors, are detected by the
6823 shell.
6824 .sp
6825 If the shell is being used non-interactively, then execution of the shell file
6826 is abandoned unless the error occurs inside a sub-shell in which case the
6827 sub-shell is abandoned.
6828 .RE

6830 .sp
6831 .ne 2
6832 .na
6833 \fB\fIexit status of last command executed\fR\fR
6834 .ad
6835 .sp .6
6836 .RS 4n
6837 Returns the exit status of the last command executed.
6838 .sp
6839 Run time errors detected by the shell are reported by printing the command or
6840 function name and the error condition. If the line number that the error
6841 occurred on is greater than one, then the line number is also printed in square
6842 brackets (\fB[]\fR) after the command or function name.
6843 .sp
6844 See the \fBksh93 exit\fR command for additional details.
6845 .RE

6847 .SH FILES
6848 .sp
6849 .ne 2
6850 .na
6851 \fB\fB/etc/profile\fR\fR
6852 .ad
6853 .sp .6
6854 .RS 4n
6855 The system initialization file, executed for login shells.
6856 .RE

new/usr/src/man/man1/ksh93.1 105

6858 .sp
6859 .ne 2
6860 .na
6861 \fB\fB/etc/ksh.kshrc\fR\fR
6862 .ad
6863 .sp .6
6864 .RS 4n
6865 The system wide startup file, executed for interactive shells.
6866 .RE

6868 .sp
6869 .ne 2
6870 .na
6871 \fB\fB$HOME/.profile\fR\fR
6872 .ad
6873 .sp .6
6874 .RS 4n
6875 The personal initialization file, executed for login shells after
6876 \fB/etc/profile\fR.
6877 .RE

6879 .sp
6880 .ne 2
6881 .na
6882 \fB\fB$HOME/.kshrc\fR\fR
6883 .ad
6884 .sp .6
6885 .RS 4n
6886 Default personal initialization file, executed after \fB/etc/ksh.kshrc\fR, for
6887 interactive shells when \fBENV\fR is not set.
6888 .RE

6890 .sp
6891 .ne 2
6892 .na
6893 \fB\fB/etc/suid-profile\fR\fR
6894 .ad
6895 .sp .6
6896 .RS 4n
6897 Alternative initialization file, executed instead of the personal
6898 initialization file when the real and effective user or group id do not match.
6899 .RE

6901 .sp
6902 .ne 2
6903 .na
6904 \fB\fB/dev/null\fR\fR
6905 .ad
6906 .sp .6
6907 .RS 4n
6908 NULL device.
6909 .RE

6911 .SH AUTHORS
6912 .sp
6913 .LP
6914 David Korn, \fBdgk@research.att.com\fR
6915 .SH ATTRIBUTES
6916 .sp
6917 .LP
6918 See \fBattributes\fR(5) for descriptions of the following attributes:
6919 .sp

6921 .sp
6922 .TS
6923 box;

new/usr/src/man/man1/ksh93.1 106

6924 c | c
6925 l | l .
6926 ATTRIBUTE TYPE ATTRIBUTE VALUE
6927 _
6928 Interface Stability See below.
6929 .TE

6931 .sp
6932 .LP
6933 The scripting interface is Uncommitted. The environment variables,
6934 \fB\&.paths\fR feature, and editing modes are Volatile.
6935 .SH SEE ALSO
6936 .sp
6937 .LP
6938 \fBcat\fR(1), \fBcd\fR(1), \fBchmod\fR(1), \fBcut\fR(1), \fBdate\fR(1),
6939 \fBegrep\fR(1), \fBecho\fR(1), \fBegrep\fR(1), \fBenv\fR(1), \fBfgrep\fR(1),
6940 \fBgrep\fR(1), \fBlogin\fR(1), \fBnewgrp\fR(1), \fBpaste\fR(1),
6941 \fBprintf\fR(1), \fBstty\fR(1), \fBtest\fR(1), \fBumask\fR(1), \fBvi\fR(1),
6942 \fBdup\fR(2), \fBexec\fR(2), \fBfork\fR(2), \fBioctl\fR(2), \fBlseek\fR(2),
6943 \fBpathconf\fR(2), \fBpipe\fR(2), \fBsysconf\fR(3C), \fBulimit\fR(2),
6944 \fBumask\fR(2), \fBrand\fR(3C)\fBtcgetattr\fR(3C), \fBwait\fR(3C),
6945 \fBa.out\fR(4), \fBprofile\fR(4), \fBattributes\fR(5), \fBenviron\fR(5),
6946 \fBlargefile\fR(5), \fBstandards\fR(5)
6947 .sp
6948 .LP
6949 Bolsky, Morris I. and Korn, David G., \fIThe New KornShell Command and
6950 Programming Language\fR, Prentice Hall, 1995.
6951 .sp
6952 .LP
6953 \fIPOSIX-Part 2: Shell and Utilities, IEEE Std 1003.2-1992, ISO/IEC 9945-2\fR,
6954 IEEE, 1993.
6955 .SH NOTES
6956 .sp
6957 .LP
6958 \fBksh93\fR scripts should choose shell function names outside the namespace
6959 used by reserved keywords of the ISO C99, C++ and JAVA languages to avoid
6960 collisions with future enhancements to \fBksh93\fR.
6961 .sp
6962 .LP
6963 If a command is executed, and then a command with the same name is installed in
6964 a directory in the search path before the directory where the original command
6965 was found, the shell continues to \fBexec\fR the original command. Use the
6966 \fB-t\fR option of the alias command to correct this situation.
6967 .sp
6968 .LP
6969 Some very old shell scripts contain a caret (\fB^\fR) as a synonym for the pipe
6970 character (\fB|\fR).
6971 .sp
6972 .LP
6973 Using the \fBhist\fR built-in command within a compound command causes the
6974 whole command to disappear from the history file.
6975 .sp
6976 .LP
6977 The built-in command \fB\&.\fR \fIfile\fR reads the whole file before any
6978 commands are executed. \fBalias\fR and \fBunalias\fR commands in the file do
6979 not apply to any commands defined in the file.
6980 .sp
6981 .LP
6982 Traps are not processed while a job is waiting for a foreground process. Thus,
6983 a trap on \fBCHLD\fR is not executed until the foreground job terminates.
6984 .sp
6985 .LP
6986 It is a good idea to leave a space after the comma operator in arithmetic
6987 expressions to prevent the comma from being interpreted as the decimal point
6988 character in certain locales.
6989 .sp

new/usr/src/man/man1/ksh93.1 107

6990 .LP
6991 There might be some restrictions on creating a \fB\&.paths\fR file which is
6992 portable across other operating systems.
6993 .sp
6994 .LP
6995 If the system supports the 64-bit instruction set, \fB/bin/ksh93\fR executes
6996 the 64-bit version of \fBksh93\fR.

new/usr/src/man/man1/ld.1 1

**
 59046 Tue Sep 10 18:35:18 2013
new/usr/src/man/man1/ld.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright 1989 AT&T
3 .\" Copyright (c) 2009, Sun Microsystems, Inc. All Rights Reserved
4 .\" Copyright (c) 2012, Joyent, Inc. All Rights Reserved
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" See the License for the specific language governing permissions and limitat
7 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
8 .TH LD 1 "Sep 10, 2013"
8 .TH LD 1 "Oct 24, 2012"
9 .SH NAME

10 ld \- link-editor for object files
11 .SH SYNOPSIS
12 .LP
13 .nf
14 \fBld\fR [\fB-32\fR | \fB-64\fR] [\fB-a\fR | \fB-r\fR] [\fB-b\fR] [\fB-B\fRdirec
15 [\fB-B\fR dynamic | static] [\fB-B\fR eliminate] [\fB-B\fR group] [\fB-B\fR loca
16 [\fB-B\fR reduce] [\fB-B\fR symbolic] [\fB-c\fR \fIname\fR] [\fB-C\fR] [\fB-d\fR
17 [\fB-D\fR \fItoken\fR,...] [\fB-e\fR \fIepsym\fR] [\fB-f\fR \fIname\fR | \fB-F\f
18 [\fB-i\fR] [\fB-I\fR \fIname\fR] [\fB-l\fR \fIx\fR] [\fB-L\fR \fIpath\fR] [\fB-m
19 [\fB-N\fR \fIstring\fR] [\fB-o\fR \fIoutfile\fR] [\fB-p\fR \fIauditlib\fR] [\fB-
20 [\fB-Q\fR y | n] [\fB-R\fR \fIpath\fR] [\fB-s\fR] [\fB-S\fR \fIsupportlib\fR] [\
21 [\fB-u\fR \fIsymname\fR] [\fB-V\fR] [\fB-Y P\fR\fI,dirlist\fR] [\fB-z\fR absexec
22 [\fB-z\fR allextract | defaultextract | weakextract] [\fB-z\fR altexec64]
23 [\fB-z\fR assert-deflib] [\fB-z\fR assert-deflib=\fIlibname\fR]
24 [\fB-z\fR combreloc | nocombreloc] [\fB-z\fR defs | nodefs]
25 [\fB-z\fR direct | nodirect] [\fB-z\fR endfiltee]
26 [\fB-z\fR fatal-warnings | nofatal-warnings] [\fB-z\fR finiarray=\fIfunction\fR
27 [\fB-z\fR globalaudit] [\fB-z\fR groupperm | nogroupperm]
28 [\fB-z\fR guidance[=\fIid1\fR,\fIid2\fR...] [\fB-z\fR help]
29 [\fB-z\fR ignore | record] [\fB-z\fR initarray=\fIfunction\fR] [\fB-z\fR initfir
30 [\fB-z\fR interpose] [\fB-z\fR lazyload | nolazyload]
31 [\fB-z\fR ld32=\fIarg1\fR,\fIarg2\fR,...] [\fB-z\fR ld64=\fIarg1\fR,\fIarg2\fR,.
32 [\fB-z\fR loadfltr] [\fB-z\fR muldefs] [\fB-z\fR nocompstrtab] [\fB-z\fR nodefau
33 [\fB-z\fR nodelete] [\fB-z\fR nodlopen] [\fB-z\fR nodump] [\fB-z\fR noldynsym]
34 [\fB-z\fR nopartial] [\fB-z\fR noversion] [\fB-z\fR now] [\fB-z\fR origin]
35 [\fB-z\fR preinitarray=\fIfunction\fR] [\fB-z\fR redlocsym] [\fB-z\fR relaxreloc
36 [\fB-z\fR rescan-now] [\fB-z\fR recan] [\fB-z\fR rescan-start \fI\&...\fR \fB-z\
37 [\fB-z\fR target=sparc|x86] [\fB-z\fR text | textwarn | textoff]
38 [\fB-z\fR verbose] [\fB-z\fR wrap=\fIsymbol\fR] \fIfilename\fR...
39 .fi

41 .SH DESCRIPTION
42 .sp
43 .LP
44 The link-editor, \fBld\fR, combines relocatable object files by resolving
45 symbol references to symbol definitions, together with performing relocations.
46 \fBld\fR operates in two modes, static or dynamic, as governed by the \fB-d\fR
47 option. In all cases, the output of \fBld\fR is left in the file \fBa.out\fR by
48 default. See NOTES.
49 .sp
50 .LP
51 In dynamic mode, \fB-dy\fR, the default, relocatable object files that are
52 provided as arguments are combined to produce an executable object file. This
53 file is linked at execution with any shared object files that are provided as
54 arguments. If the \fB-G\fR option is specified, relocatable object files are
55 combined to produce a shared object. Without the \fB-G\fR option, a dynamic
56 executable is created.
57 .sp
58 .LP
59 In static mode, \fB-dn\fR, relocatable object files that are provided as
60 arguments are combined to produce a static executable file. If the \fB-r\fR

new/usr/src/man/man1/ld.1 2

61 option is specified, relocatable object files are combined to produce one
62 relocatable object file. See \fBStatic Executables\fR.
63 .sp
64 .LP
65 Dynamic linking is the most common model for combining relocatable objects, and
66 the eventual creation of processes within Solaris. This environment tightly
67 couples the work of the link-editor and the runtime linker, \fBld.so.1\fR(1).
68 Both of these utilities, together with their related technologies and
69 utilities, are extensively documented in the \fILinker and Libraries Guide\fR.
70 .sp
71 .LP
72 If any argument is a library, \fBld\fR by default searches the library exactly
73 once at the point the library is encountered on the argument list. The library
74 can be either a shared object or relocatable archive. See \fBar.h\fR(3HEAD)).
75 .sp
76 .LP
77 A shared object consists of an indivisible, whole unit that has been generated
78 by a previous link-edit of one or more input files. When the link-editor
79 processes a shared object, the entire contents of the shared object become a
80 logical part of the resulting output file image. The shared object is not
81 physically copied during the link-edit as its actual inclusion is deferred
82 until process execution. This logical inclusion means that all symbol entries
83 defined in the shared object are made available to the link-editing process.
84 See Chapter 4, \fIShared Objects,\fR in \fILinker and Libraries Guide\fR
85 .sp
86 .LP
87 For an archive library, \fBld\fR loads only those routines that define an
88 unresolved external reference. \fBld\fR searches the symbol table of the
89 archive library sequentially to resolve external references that can be
90 satisfied by library members. This search is repeated until no external
91 references can be resolved by the archive. Thus, the order of members in the
92 library is functionally unimportant, unless multiple library members exist that
93 define the same external symbol. Archive libraries that have interdependencies
94 can require multiple command line definitions, or the use of one of the
95 \fB-z\fR \fBrescan\fR options. See \fIArchive Processing\fR in \fILinker and
96 Libraries Guide\fR.
97 .sp
98 .LP
99 \fBld\fR is a cross link-editor, able to link 32-bit objects or 64-bit objects,
100 for Sparc or x86 targets. \fBld\fR uses the \fBELF\fR class and machine type of
101 the first relocatable object on the command line to govern the mode in which to
102 operate. The mixing of 32-bit objects and 64-bit objects is not permitted.
103 Similarly, only objects of a single machine type are allowed. See the
104 \fB-32\fR, \fB-64\fR and \fB-z target\fR options, and the \fBLD_NOEXEC_64\fR
105 environment variable.
106 .SS "Static Executables"
107 .sp
108 .LP
109 The creation of static executables has been discouraged for many releases. In
110 fact, 64-bit system archive libraries have never been provided. Because a
111 static executable is built against system archive libraries, the executable
112 contains system implementation details. This self-containment has a number of
113 drawbacks.
114 .RS +4
115 .TP
116 .ie t \(bu
117 .el o
118 The executable is immune to the benefits of system patches delivered as shared
119 objects. The executable therefore, must be rebuilt to take advantage of many
120 system improvements.
121 .RE
122 .RS +4
123 .TP
124 .ie t \(bu
125 .el o
126 The ability of the executable to run on future releases can be compromised.

new/usr/src/man/man1/ld.1 3

127 .RE
128 .RS +4
129 .TP
130 .ie t \(bu
131 .el o
132 The duplication of system implementation details negatively affects system
133 performance.
134 .RE
135 .sp
136 .LP
137 With Solaris 10, 32-bit system archive libraries are no longer provided.
138 Without these libraries, specifically \fBlibc.a\fR, the creation of static
139 executables is no longer achievable without specialized system knowledge.
140 However, the capability of \fBld\fR to process static linking options, and the
141 processing of archive libraries, remains unchanged.
142 .SH OPTIONS
143 .sp
144 .LP
145 The following options are supported.
146 .sp
147 .ne 2
148 .na
149 \fB\fB-32\fR | \fB-64\fR\fR
150 .ad
151 .sp .6
152 .RS 4n
153 Creates a 32-bit, or 64-bit object.
154 .sp
155 By default, the class of the object being generated is determined from the
156 first \fBELF\fR object processed from the command line. If no objects are
157 specified, the class is determined by the first object encountered within the
158 first archive processed from the command line. If there are no objects or
159 archives, the link-editor creates a 32-bit object.
160 .sp
161 The \fB-64\fR option is required to create a 64-bit object solely from a
162 mapfile.
163 .sp
164 This \fB-32\fR or \fB-64\fR options can also be used in the rare case of
165 linking entirely from an archive that contains a mixture of 32 and 64-bit
166 objects. If the first object in the archive is not the class of the object that
167 is required to be created, then the \fB-32\fR or \fB-64\fR option can be used
168 to direct the link-editor. See \fIThe 32-bit link-editor and 64-bit
169 link-editor\fR in \fILinker and Libraries Guide\fR.
170 .RE

172 .sp
173 .ne 2
174 .na
175 \fB\fB-a\fR\fR
176 .ad
177 .sp .6
178 .RS 4n
179 In static mode only, produces an executable object file. Undefined references
180 are not permitted. This option is the default behavior for static mode. The
181 \fB-a\fR option can not be used with the \fB-r\fR option. See \fBStatic
182 Executables\fR under DESCRIPTION.
183 .RE

185 .sp
186 .ne 2
187 .na
188 \fB\fB-b\fR\fR
189 .ad
190 .sp .6
191 .RS 4n
192 In dynamic mode only, provides no special processing for dynamic executable

new/usr/src/man/man1/ld.1 4

193 relocations that reference symbols in shared objects. Without the \fB-b\fR
194 option, the link-editor applies techniques within a dynamic executable so that
195 the text segment can remain read-only. One technique is the creation of special
196 position-independent relocations for references to functions that are defined
197 in shared objects. Another technique arranges for data objects that are defined
198 in shared objects to be copied into the memory image of an executable at
199 runtime.
200 .sp
201 The \fB-b\fR option is intended for specialized dynamic objects and is not
202 recommended for general use. Its use suppresses all specialized processing
203 required to ensure an object’s shareability, and can even prevent the
204 relocation of 64-bit executables.
205 .RE

207 .sp
208 .ne 2
209 .na
210 \fB\fB-B\fR \fBdirect\fR | \fBnodirect\fR\fR
211 .ad
212 .sp .6
213 .RS 4n
214 These options govern direct binding. \fB-B\fR \fBdirect\fR establishes direct
215 binding information by recording the relationship between each symbol reference
216 together with the dependency that provides the definition. In addition, direct
217 binding information is established between each symbol reference and an
218 associated definition within the object being created. The runtime linker uses
219 this information to search directly for a symbol in the associated object
220 rather than to carry out a default symbol search.
221 .sp
222 Direct binding information can only be established to dependencies specified
223 with the link-edit. Thus, you should use the \fB-z\fR \fBdefs\fR option.
224 Objects that wish to interpose on symbols in a direct binding environment
225 should identify themselves as interposers with the \fB-z\fR \fBinterpose\fR
226 option. The use of \fB-B\fR \fBdirect\fR enables \fB-z\fR \fBlazyload\fR for
227 all dependencies.
228 .sp
229 The \fB-B\fR \fBnodirect\fR option prevents any direct binding to the
230 interfaces offered by the object being created. The object being created can
231 continue to directly bind to external interfaces by specifying the \fB-z\fR
232 \fBdirect\fR option. See Appendix D, \fIDirect Bindings,\fR in \fILinker and
233 Libraries Guide\fR.
234 .RE

236 .sp
237 .ne 2
238 .na
239 \fB\fB-B\fR \fBdynamic\fR | \fBstatic\fR\fR
240 .ad
241 .sp .6
242 .RS 4n
243 Options governing library inclusion. \fB-B\fR \fBdynamic\fR is valid in dynamic
244 mode only. These options can be specified any number of times on the command
245 line as toggles: if the \fB-B\fR \fBstatic\fR option is given, no shared
246 objects are accepted until \fB-B\fR \fBdynamic\fR is seen. See the \fB-l\fR
247 option.
248 .RE

250 .sp
251 .ne 2
252 .na
253 \fB\fB-B\fR \fBeliminate\fR\fR
254 .ad
255 .sp .6
256 .RS 4n
257 Causes any global symbols, not assigned to a version definition, to be
258 eliminated from the symbol table. Version definitions can be supplied by means

new/usr/src/man/man1/ld.1 5

259 of a \fBmapfile\fR to indicate the global symbols that should remain visible in
260 the generated object. This option achieves the same symbol elimination as the
261 \fIauto-elimination\fR directive that is available as part of a \fBmapfile\fR
262 version definition. This option can be useful when combining versioned and
263 non-versioned relocatable objects. See also the \fB-B\fR \fBlocal\fR option and
264 the \fB-B\fR \fBreduce\fR option. See \fIDefining Additional Symbols with a
265 mapfile\fR in \fILinker and Libraries Guide\fR.
266 .RE

268 .sp
269 .ne 2
270 .na
271 \fB\fB-B\fR \fBgroup\fR\fR
272 .ad
273 .sp .6
274 .RS 4n
275 Establishes a shared object and its dependencies as a group. Objects within the
276 group are bound to other members of the group at runtime. This mode is similar
277 to adding the object to the process by using \fBdlopen\fR(3C) with the
278 \fBRTLD_GROUP\fR mode. An object that has an explicit dependency on a object
279 identified as a group, becomes a member of the group.
280 .sp
281 As the group must be self contained, use of the \fB-B\fR \fBgroup\fR option
282 also asserts the \fB-z\fR \fBdefs\fR option.
283 .RE

285 .sp
286 .ne 2
287 .na
288 \fB\fB-B\fR \fBlocal\fR\fR
289 .ad
290 .sp .6
291 .RS 4n
292 Causes any global symbols, not assigned to a version definition, to be reduced
293 to local. Version definitions can be supplied by means of a \fBmapfile\fR to
294 indicate the global symbols that should remain visible in the generated object.
295 This option achieves the same symbol reduction as the \fIauto-reduction\fR
296 directive that is available as part of a \fBmapfile\fR version definition. This
297 option can be useful when combining versioned and non-versioned relocatable
298 objects. See also the \fB-B\fR \fBeliminate\fR option and the \fB-B\fR
299 \fBreduce\fR option. See \fIDefining Additional Symbols with a mapfile\fR in
300 \fILinker and Libraries Guide\fR.
301 .RE

303 .sp
304 .ne 2
305 .na
306 \fB\fB-B\fR \fBreduce\fR\fR
307 .ad
308 .sp .6
309 .RS 4n
310 When generating a relocatable object, causes the reduction of symbolic
311 information defined by any version definitions. Version definitions can be
312 supplied by means of a \fBmapfile\fR to indicate the global symbols that should
313 remain visible in the generated object. By default, when a relocatable object
314 is generated, version definitions are only recorded in the output image. The
315 actual reduction of symbolic information is carried out when the object is used
316 in the construction of a dynamic executable or shared object. The \fB-B\fR
317 \fBreduce\fR option is applied automatically when a dynamic executable or
318 shared object is created.
319 .RE

321 .sp
322 .ne 2
323 .na
324 \fB\fB-B\fR \fBsymbolic\fR\fR

new/usr/src/man/man1/ld.1 6

325 .ad
326 .sp .6
327 .RS 4n
328 In dynamic mode only. When building a shared object, binds references to global
329 symbols to their definitions, if available, within the object. Normally,
330 references to global symbols within shared objects are not bound until runtime,
331 even if definitions are available. This model allows definitions of the same
332 symbol in an executable or other shared object to override the object’s own
333 definition. \fBld\fR issues warnings for undefined symbols unless \fB-z\fR
334 \fBdefs\fR overrides.
335 .sp
336 The \fB-B\fR \fBsymbolic\fR option is intended for specialized dynamic objects
337 and is not recommended for general use. To reduce the runtime relocation
338 processing that is required an object, the creation of a version definition is
339 recommended.
340 .RE

342 .sp
343 .ne 2
344 .na
345 \fB\fB-c\fR \fIname\fR\fR
346 .ad
347 .sp .6
348 .RS 4n
349 Records the configuration file \fIname\fR for use at runtime. Configuration
350 files can be employed to alter default search paths, provide a directory cache,
351 together with providing alternative object dependencies. See \fBcrle\fR(1).
352 .RE

354 .sp
355 .ne 2
356 .na
357 \fB\fB-C\fR\fR
358 .ad
359 .sp .6
360 .RS 4n
361 Demangles C++ symbol names displayed in diagnostic messages.
362 .RE

364 .sp
365 .ne 2
366 .na
367 \fB\fB-d\fR \fBy\fR | \fBn\fR\fR
368 .ad
369 .sp .6
370 .RS 4n
371 When \fB-d\fR \fBy\fR, the default, is specified, \fBld\fR uses dynamic
372 linking. When \fB-d\fR \fBn\fR is specified, \fBld\fR uses static linking. See
373 \fBStatic Executables\fR under DESCRIPTION, and \fB-B\fR
374 \fBdynamic\fR|\fBstatic\fR.
375 .RE

377 .sp
378 .ne 2
379 .na
380 \fB\fB-D\fR \fItoken\fR,...\fR
381 .ad
382 .sp .6
383 .RS 4n
384 Prints debugging information as specified by each \fItoken\fR, to the standard
385 error. The special token \fBhelp\fR indicates the full list of tokens
386 available. See \fIDebugging Aids\fR in \fILinker and Libraries Guide\fR.
387 .RE

389 .sp
390 .ne 2

new/usr/src/man/man1/ld.1 7

391 .na
392 \fB\fB-e\fR \fIepsym\fR\fR
393 .ad
394 .br
395 .na
396 \fB\fB--entry\fR \fIepsym\fR\fR
397 .ad
398 .sp .6
399 .RS 4n
400 Sets the entry point address for the output file to be the symbol \fIepsym\fR.
401 .RE

403 .sp
404 .ne 2
405 .na
406 \fB\fB-f\fR \fIname\fR\fR
407 .ad
408 .br
409 .na
410 \fB\fB--auxiliary\fR \fIname\fR\fR
411 .ad
412 .sp .6
413 .RS 4n
414 Useful only when building a shared object. Specifies that the symbol table of
415 the shared object is used as an auxiliary filter on the symbol table of the
416 shared object specified by \fIname\fR. Multiple instances of this option are
417 allowed. This option can not be combined with the \fB-F\fR option. See
418 \fIGenerating Auxiliary Filters\fR in \fILinker and Libraries Guide\fR.
419 .RE

421 .sp
422 .ne 2
423 .na
424 \fB\fB-F\fR \fIname\fR\fR
425 .ad
426 .br
427 .na
428 \fB\fB--filter\fR \fIname\fR\fR
429 .ad
430 .sp .6
431 .RS 4n
432 Useful only when building a shared object. Specifies that the symbol table of
433 the shared object is used as a filter on the symbol table of the shared object
434 specified by \fIname\fR. Multiple instances of this option are allowed. This
435 option can not be combined with the \fB-f\fR option. See \fIGenerating Standard
436 Filters\fR in \fILinker and Libraries Guide\fR.
437 .RE

439 .sp
440 .ne 2
441 .na
442 \fB\fB-G\fR\fR
443 .ad
444 .br
445 .na
446 \fB\fB-shared\fR\fR
447 .ad
448 .sp .6
449 .RS 4n
450 In dynamic mode only, produces a shared object. Undefined symbols are allowed.
451 See Chapter 4, \fIShared Objects,\fR in \fILinker and Libraries Guide\fR.
452 .RE

454 .sp
455 .ne 2
456 .na

new/usr/src/man/man1/ld.1 8

457 \fB\fB-h\fR \fIname\fR\fR
458 .ad
459 .br
460 .na
461 \fB\fB--soname\fR \fIname\fR\fR
462 .ad
463 .sp .6
464 .RS 4n
465 In dynamic mode only, when building a shared object, records \fIname\fR in the
466 object’s dynamic section. \fIname\fR is recorded in any dynamic objects that
467 are linked with this object rather than the object’s file system name.
468 Accordingly, \fIname\fR is used by the runtime linker as the name of the shared
469 object to search for at runtime. See \fIRecording a Shared Object Name\fR in
470 \fILinker and Libraries Guide\fR.
471 .RE

473 .sp
474 .ne 2
475 .na
476 \fB\fB-i\fR\fR
477 .ad
478 .sp .6
479 .RS 4n
480 Ignores \fBLD_LIBRARY_PATH\fR. This option is useful when an
481 \fBLD_LIBRARY_PATH\fR setting is in effect to influence the runtime library
482 search, which would interfere with the link-editing being performed.
483 .RE

485 .sp
486 .ne 2
487 .na
488 \fB\fB-I\fR \fIname\fR\fR
489 .ad
490 .br
491 .na
492 \fB\fB--dynamic-linker\fR \fIname\fR\fR
493 .ad
494 .sp .6
495 .RS 4n
496 When building an executable, uses \fIname\fR as the path name of the
497 interpreter to be written into the program header. The default in static mode
498 is no interpreter. In dynamic mode, the default is the name of the runtime
499 linker, \fBld.so.1\fR(1). Either case can be overridden by \fB-I\fR \fIname\fR.
500 \fBexec\fR(2) loads this interpreter when the \fBa.out\fR is loaded, and passes
501 control to the interpreter rather than to the \fBa.out\fR directly.
502 .RE

504 .sp
505 .ne 2
506 .na
507 \fB\fB-l\fR \fIx\fR\fR
508 .ad
509 .br
510 .na
511 \fB\fB--library\fR \fIx\fR\fR
512 .ad
513 .sp .6
514 .RS 4n
515 Searches a library \fBlib\fR\fIx\fR\fB\&.so\fR or \fBlib\fR\fIx\fR\fB\&.a\fR,
516 the conventional names for shared object and archive libraries, respectively.
517 In dynamic mode, unless the \fB-B\fR \fBstatic\fR option is in effect, \fBld\fR
518 searches each directory specified in the library search path for a
519 \fBlib\fR\fIx\fR\fB\&.so\fR or \fBlib\fR\fIx\fR\fB\&.a\fR file. The directory
520 search stops at the first directory containing either. \fBld\fR chooses the
521 file ending in \fB\&.so\fR if \fB-l\fR\fIx\fR expands to two files with names
522 of the form \fBlib\fR\fIx\fR\fB\&.so\fR and \fBlib\fR\fIx\fR\fB\&.a\fR. If no

new/usr/src/man/man1/ld.1 9

523 \fBlib\fR\fIx\fR\fB\&.so\fR is found, then \fBld\fR accepts
524 \fBlib\fR\fIx\fR\fB\&.a\fR. In static mode, or when the \fB-B\fR \fBstatic\fR
525 option is in effect, \fBld\fR selects only the file ending in \fB\&.a\fR.
526 \fBld\fR searches a library when the library is encountered, so the placement
527 of \fB-l\fR is significant. See \fILinking With Additional Libraries\fR in
528 \fILinker and Libraries Guide\fR.
529 .RE

531 .sp
532 .ne 2
533 .na
534 \fB\fB-L\fR \fIpath\fR\fR
535 .ad
536 .br
537 .na
538 \fB\fB--library-path\fR \fIpath\fR\fR
539 .ad
540 .sp .6
541 .RS 4n
542 Adds \fIpath\fR to the library search directories. \fBld\fR searches for
543 libraries first in any directories specified by the \fB-L\fR options and then
544 in the standard directories. This option is useful only if the option precedes
545 the \fB-l\fR options to which the \fB-L\fR option applies. See \fIDirectories
546 Searched by the Link-Editor\fR in \fILinker and Libraries Guide\fR.
547 .sp
548 The environment variable \fBLD_LIBRARY_PATH\fR can be used to supplement the
549 library search path, however the \fB-L\fR option is recommended, as the
550 environment variable is also interpreted by the runtime environment. See
551 \fBLD_LIBRARY_PATH\fR under ENVIRONMENT VARIABLES.
552 .RE

554 .sp
555 .ne 2
556 .na
557 \fB\fB-m\fR\fR
558 .ad
559 .sp .6
560 .RS 4n
561 Produces a memory map or listing of the input/output sections, together with
562 any non-fatal multiply-defined symbols, on the standard output.
563 .RE

565 .sp
566 .ne 2
567 .na
568 \fB\fB-M\fR \fImapfile\fR\fR
569 .ad
570 .sp .6
571 .RS 4n
572 Reads \fImapfile\fR as a text file of directives to \fBld\fR. This option can
573 be specified multiple times. If \fImapfile\fR is a directory, then all regular
574 files, as defined by \fBstat\fR(2), within the directory are processed. See
575 Chapter 9, \fIMapfile Option,\fR in \fILinker and Libraries Guide\fR. Example
576 mapfiles are provided in \fB/usr/lib/ld\fR. See FILES.
577 .RE

579 .sp
580 .ne 2
581 .na
582 \fB\fB-N\fR \fIstring\fR\fR
583 .ad
584 .sp .6
585 .RS 4n
586 This option causes a \fBDT_NEEDED\fR entry to be added to the \fB\&.dynamic\fR
587 section of the object being built. The value of the \fBDT_NEEDED\fR string is
588 the \fIstring\fR that is specified on the command line. This option is position

new/usr/src/man/man1/ld.1 10

589 dependent, and the \fBDT_NEEDED\fR \fB\&.dynamic\fR entry is relative to the
590 other dynamic dependencies discovered on the link-edit line. This option is
591 useful for specifying dependencies within device driver relocatable objects
592 when combined with the \fB-dy\fR and \fB-r\fR options.
593 .RE

595 .sp
596 .ne 2
597 .na
598 \fB\fB-o\fR \fIoutfile\fR\fR
599 .ad
600 .br
601 .na
602 \fB\fB--output\fR \fIoutfile\fR\fR
603 .ad
604 .sp .6
605 .RS 4n
606 Produces an output object file that is named \fIoutfile\fR. The name of the
607 default object file is \fBa.out\fR.
608 .RE

610 .sp
611 .ne 2
612 .na
613 \fB\fB-p\fR \fIauditlib\fR\fR
614 .ad
615 .sp .6
616 .RS 4n
617 Identifies an audit library, \fIauditlib\fR. This audit library is used to
618 audit the object being created at runtime. A shared object identified as
619 requiring auditing with the \fB-p\fR option, has this requirement inherited by
620 any object that specifies the shared object as a dependency. See the \fB-P\fR
621 option. See \fIRuntime Linker Auditing Interface\fR in \fILinker and Libraries
622 Guide\fR.
623 .RE

625 .sp
626 .ne 2
627 .na
628 \fB\fB-P\fR \fIauditlib\fR\fR
629 .ad
630 .sp .6
631 .RS 4n
632 Identifies an audit library, \fIauditlib\fR. This audit library is used to
633 audit the dependencies of the object being created at runtime. Dependency
634 auditing can also be inherited from dependencies that are identified as
635 requiring auditing. See the \fB-p\fR option, and the \fB-z\fR \fBglobalaudit\fR
636 option. See \fIRuntime Linker Auditing Interface\fR in \fILinker and Libraries
637 Guide\fR.
638 .RE

640 .sp
641 .ne 2
642 .na
643 \fB\fB-Q\fR \fBy\fR | \fBn\fR\fR
644 .ad
645 .sp .6
646 .RS 4n
647 Under \fB-Q\fR \fBy\fR, an \fBident\fR string is added to the \fB\&.comment\fR
648 section of the output file. This string identifies the version of the \fBld\fR
649 used to create the file. This results in multiple \fBld\fR \fBidents\fR when
650 there have been multiple linking steps, such as when using \fBld\fR \fB-r\fR.
651 This identification is identical with the default action of the \fBcc\fR
652 command. \fB-Q\fR \fBn\fR suppresses version identification. \fB\&.comment\fR
653 sections can be manipulated by the \fBmcs\fR(1) utility.
654 .RE

new/usr/src/man/man1/ld.1 11

656 .sp
657 .ne 2
658 .na
659 \fB\fB-r\fR\fR
660 .ad
661 .br
662 .na
663 \fB\fB--relocatable\fR\fR
664 .ad
665 .sp .6
666 .RS 4n
667 Combines relocatable object files to produce one relocatable object file.
668 \fBld\fR does not complain about unresolved references. This option cannot be
669 used with the \fB-a\fR option.
670 .RE

672 .sp
673 .ne 2
674 .na
675 \fB\fB-R\fR \fIpath\fR\fR
676 .ad
677 .br
678 .na
679 \fB\fB-rpath\fR \fIpath\fR\fR
680 .ad
681 .sp .6
682 .RS 4n
683 A colon-separated list of directories used to specify library search
684 directories to the runtime linker. If present and not NULL, the path is
685 recorded in the output object file and passed to the runtime linker. Multiple
686 instances of this option are concatenated together with each \fIpath\fR
687 separated by a colon. See \fIDirectories Searched by the Runtime Linker\fR in
688 \fILinker and Libraries Guide\fR.
689 .sp
690 The use of a runpath within an associated object is preferable to setting
691 global search paths such as through the \fBLD_LIBRARY_PATH\fR environment
692 variable. Only the runpaths that are necessary to find the objects dependencies
693 should be recorded. \fBldd\fR(1) can also be used to discover unused runpaths
694 in dynamic objects, when used with the \fB-U\fR option.
695 .sp
696 Various tokens can also be supplied with a runpath that provide a flexible
697 means of identifying system capabilities or an objects location. See Appendix
698 C, \fIEstablishing Dependencies with Dynamic String Tokens,\fR in \fILinker and
699 Libraries Guide\fR. The \fB$ORIGIN\fR token is especially useful in allowing
700 dynamic objects to be relocated to different locations in the file system.
701 .RE

703 .sp
704 .ne 2
705 .na
706 \fB\fB-s\fR\fR
707 .ad
708 .br
709 .na
710 \fB\fB--strip-all\fR\fR
711 .ad
712 .sp .6
713 .RS 4n
714 Strips symbolic information from the output file. Any debugging information,
715 that is, \fB\&.line\fR, \fB\&.debug*\fR, and \fB\&.stab*\fR sections, and their
716 associated relocation entries are removed. Except for relocatable files, a
717 symbol table \fBSHT_SYMTAB\fR and its associated string table section are not
718 created in the output object file. The elimination of a \fBSHT_SYMTAB\fR symbol
719 table can reduce the \fB\&.stab*\fR debugging information that is generated
720 using the compiler drivers \fB-g\fR option. See the \fB-z\fR \fBredlocsym\fR

new/usr/src/man/man1/ld.1 12

721 and \fB-z\fR \fBnoldynsym\fR options.
722 .RE

724 .sp
725 .ne 2
726 .na
727 \fB\fB-S\fR \fIsupportlib\fR\fR
728 .ad
729 .sp .6
730 .RS 4n
731 The shared object \fIsupportlib\fR is loaded with \fBld\fR and given
732 information regarding the linking process. Shared objects that are defined by
733 using the \fB-S\fR option can also be supplied using the \fBSGS_SUPPORT\fR
734 environment variable. See \fILink-Editor Support Interface\fR in \fILinker and
735 Libraries Guide\fR.
736 .RE

738 .sp
739 .ne 2
740 .na
741 \fB\fB-t\fR\fR
742 .ad
743 .sp .6
744 .RS 4n
745 Turns off the warning for multiply-defined symbols that have different sizes or
746 different alignments.
747 .RE

749 .sp
750 .ne 2
751 .na
752 \fB\fB-u\fR \fIsymname\fR\fR
753 .ad
754 .br
755 .na
756 \fB\fB--undefined\fR \fIsymname\fR\fR
757 .ad
758 .sp .6
759 .RS 4n
760 Enters \fIsymname\fR as an undefined symbol in the symbol table. This option is
761 useful for loading entirely from an archive library. In this instance, an
762 unresolved reference is needed to force the loading of the first routine. The
763 placement of this option on the command line is significant. This option must
764 be placed before the library that defines the symbol. See \fIDefining
765 Additional Symbols with the u option\fR in \fILinker and Libraries Guide\fR.
766 .RE

768 .sp
769 .ne 2
770 .na
771 \fB\fB-V\fR\fR
772 .ad
773 .br
774 .na
775 \fB\fB--version\fR\fR
776 .ad
777 .sp .6
778 .RS 4n
779 Outputs a message giving information about the version of \fBld\fR being used.
780 .RE

782 .sp
783 .ne 2
784 .na
785 \fB\fB-Y\fR \fBP,\fR\fIdirlist\fR\fR
786 .ad

new/usr/src/man/man1/ld.1 13

787 .sp .6
788 .RS 4n
789 Changes the default directories used for finding libraries. \fIdirlist\fR is a
790 colon-separated path list.
791 .RE

793 .sp
794 .ne 2
795 .na
796 \fB\fB-z\fR \fBabsexec\fR\fR
797 .ad
798 .sp .6
799 .RS 4n
800 Useful only when building a dynamic executable. Specifies that references to
801 external absolute symbols should be resolved immediately instead of being left
802 for resolution at runtime. In very specialized circumstances, this option
803 removes text relocations that can result in excessive swap space demands by an
804 executable.
805 .RE

807 .sp
808 .ne 2
809 .na
810 \fB\fB-z\fR \fBallextract\fR | \fBdefaultextract\fR | \fBweakextract\fR\fR
811 .ad
812 .br
813 .na
814 \fB\fB--whole-archive\fR | \fB--no-whole-archive\fR\fR
815 .ad
816 .sp .6
817 .RS 4n
818 Alters the extraction criteria of objects from any archives that follow. By
819 default, archive members are extracted to satisfy undefined references and to
820 promote tentative definitions with data definitions. Weak symbol references do
821 not trigger extraction. Under the \fB-z\fR \fBallextract\fR or
822 \fB--whole-archive\fR options, all archive members are extracted from the
823 archive. Under \fB-z\fR \fBweakextract\fR, weak references trigger archive
824 extraction. The \fB-z\fR \fBdefaultextract\fR or \fB--no-whole-archive\fR
825 options provide a means of returning to the default following use of the former
826 extract options. See \fIArchive Processing\fR in \fILinker and Libraries
827 Guide\fR.
828 .RE

830 .sp
831 .ne 2
832 .na
833 \fB\fB-z\fR \fBaltexec64\fR\fR
834 .ad
835 .sp .6
836 .RS 4n
837 Execute the 64-bit \fBld\fR. The creation of very large 32-bit objects can
838 exhaust the virtual memory that is available to the 32-bit \fBld\fR. The
839 \fB-z\fR \fBaltexec64\fR option can be used to force the use of the associated
840 64-bit \fBld\fR. The 64-bit \fBld\fR provides a larger virtual address space
841 for building 32-bit objects. See \fIThe 32-bit link-editor and 64-bit
842 link-editor\fR in \fILinker and Libraries Guide\fR.
843 .RE

845 .sp
846 .ne 2
847 .na
848 \fB\fB-z\fR \fBcombreloc\fR | \fBnocombreloc\fR\fR
849 .ad
850 .sp .6
851 .RS 4n
852 By default, \fBld\fR combines multiple relocation sections when building

new/usr/src/man/man1/ld.1 14

853 executables or shared objects. This section combination differs from
854 relocatable objects, in which relocation sections are maintained in a
855 one-to-one relationship with the sections to which the relocations must be
856 applied. The \fB-z\fR \fBnocombreloc\fR option disables this merging of
857 relocation sections, and preserves the one-to-one relationship found in the
858 original relocatable objects.
859 .sp
860 \fBld\fR sorts the entries of data relocation sections by their symbol
861 reference. This sorting reduces runtime symbol lookup. When multiple relocation
862 sections are combined, this sorting produces the least possible relocation
863 overhead when objects are loaded into memory, and speeds the runtime loading of
864 dynamic objects.
865 .sp
866 Historically, the individual relocation sections were carried over to any
867 executable or shared object, and the \fB-z\fR \fBcombreloc\fR option was
868 required to enable the relocation section merging previously described.
869 Relocation section merging is now the default. The \fB-z\fR \fBcombreloc\fR
870 option is still accepted for the benefit of old build environments, but the
871 option is unnecessary, and has no effect.
872 .RE

874 .sp
875 .ne 2
876 .na
877 \fB\fB-z\fR \fBassert-deflib\fR\fR
878 .ad
879 .br
880 .na
881 \fB\fB-z\fR \fBassert-deflib=\fR\fIlibname\fR\fR
882 .ad
883 .sp .6
884 .RS 4n
885 Enables warnings that check the location of where libraries passed in with
886 \fB-l\fR are found. If the link-editor finds a library on its default search
887 path it will emit a warning. This warning can be made fatal in conjunction with
888 the option \fB-z fatal-warnings\fR. Passing \fIlibname\fR white lists a library
889 from this check. The library must be the full name of the library, e.g.
890 \fIlibc.so\fR. To white list multiple libraries, the \fB-z
891 assert-deflib=\fR\fIlibname\fR option can be repeated multiple times. This
892 option is useful when trying to build self-contained objects where a referenced
893 library might exist in the default system library path and in alternate paths
894 specified by \fB-L\fR, but you only want the alternate paths to be used.
895 .RE

897 .sp
898 .ne 2
899 .na
900 \fB\fB-z\fR \fBdefs\fR | \fBnodefs\fR\fR
901 .ad
902 .br
903 .na
904 \fB\fB--no-undefined\fR\fR
905 .ad
906 .sp .6
907 .RS 4n
908 The \fB-z\fR \fBdefs\fR option and the \fB--no-undefined\fR option force a
909 fatal error if any undefined symbols remain at the end of the link. This mode
910 is the default when an executable is built. For historic reasons, this mode is
911 \fBnot\fR the default when building a shared object. Use of the \fB-z\fR
912 \fBdefs\fR option is recommended, as this mode assures the object being built
913 is self-contained. A self-contained object has all symbolic references resolved
914 internally, or to the object’s immediate dependencies.
915 .sp
916 The \fB-z\fR \fBnodefs\fR option allows undefined symbols. For historic
917 reasons, this mode is the default when a shared object is built. When used with
918 executables, the behavior of references to such undefined symbols is

new/usr/src/man/man1/ld.1 15

919 unspecified. Use of the \fB-z\fR \fBnodefs\fR option is not recommended.
920 .RE

922 .sp
923 .ne 2
924 .na
925 \fB\fB-z\fR \fBdirect\fR | \fBnodirect\fR\fR
926 .ad
927 .sp .6
928 .RS 4n
929 Enables or disables direct binding to any dependencies that follow on the
930 command line. These options allow finer control over direct binding than the
931 global counterpart \fB-B\fR \fBdirect\fR. The \fB-z\fR \fBdirect\fR option also
932 differs from the \fB-B\fR \fBdirect\fR option in the following areas. Direct
933 binding information is not established between a symbol reference and an
934 associated definition within the object being created. Lazy loading is not
935 enabled.
936 .RE

938 .sp
939 .ne 2
940 .na
941 \fB\fB-z\fR \fBendfiltee\fR\fR
942 .ad
943 .sp .6
944 .RS 4n
945 Marks a filtee so that when processed by a filter, the filtee terminates any
946 further filtee searches by the filter. See \fIReducing Filtee Searches\fR in
947 \fILinker and Libraries Guide\fR.
948 .RE

950 .sp
951 .ne 2
952 .na
953 \fB\fB-z\fR \fBfatal-warnings\fR | \fBnofatal-warnings\fR\fR
954 .ad
955 .br
956 .na
957 \fB\fB--fatal-warnings\fR | \fB--no-fatal-warnings\fR
958 .ad
959 .sp .6
960 .RS 4n
961 Controls the behavior of warnings emitted from the link-editor. Setting \fB-z
962 fatal-warnings\fR promotes warnings emitted by the link-editor to fatal errors
963 that will cause the link-editor to fail before linking. \fB-z
964 nofatal-warnings\fR instead demotes these warnings such that they will not cause
965 the link-editor to exit prematurely.
966 .RE

969 .sp
970 .ne 2
971 .na
972 \fB\fB-z\fR \fBfiniarray=\fR\fIfunction\fR\fR
973 .ad
974 .sp .6
975 .RS 4n
976 Appends an entry to the \fB\&.finiarray\fR section of the object being built.
977 If no \fB\&.finiarray\fR section is present, a section is created. The new
978 entry is initialized to point to \fIfunction\fR. See \fIInitialization and
979 Termination Sections\fR in \fILinker and Libraries Guide\fR.
980 .RE

982 .sp
983 .ne 2
984 .na

new/usr/src/man/man1/ld.1 16

985 \fB\fB-z\fR \fBglobalaudit\fR\fR
986 .ad
987 .sp .6
988 .RS 4n
989 This option supplements an audit library definition that has been recorded with
990 the \fB-P\fR option. This option is only meaningful when building a dynamic
991 executable. Audit libraries that are defined within an object with the \fB-P\fR
992 option typically allow for the auditing of the immediate dependencies of the
993 object. The \fB-z\fR \fBglobalaudit\fR promotes the auditor to a global
994 auditor, thus allowing the auditing of all dependencies. See \fIInvoking the
995 Auditing Interface\fR in \fILinker and Libraries Guide\fR.
996 .sp
997 An auditor established with the \fB-P\fR option and the \fB-z\fR
998 \fBglobalaudit\fR option, is equivalent to the auditor being established with
999 the \fBLD_AUDIT\fR environment variable. See \fBld.so.1\fR(1).

1000 .RE

1002 .sp
1003 .ne 2
1004 .na
1005 \fB\fB-z\fR \fBgroupperm\fR | \fBnogroupperm\fR\fR
1006 .ad
1007 .sp .6
1008 .RS 4n
1009 Assigns, or deassigns each dependency that follows to a unique group. The
1010 assignment of a dependency to a group has the same effect as if the dependency
1011 had been built using the \fB-B\fR \fBgroup\fR option.
1012 .RE

1014 .sp
1015 .ne 2
1016 .na
1017 \fB-z\fR \fBguidance\fR[=\fIid1\fR,\fIid2\fR...]
1018 .ad
1019 .sp .6
1020 .RS 4n
1021 Give messages suggesting link-editor features that could improve the resulting
1022 dynamic object.
1023 .LP
1024 Specific classes of suggestion can be silenced by specifying an optional comma s
1025 list of guidance identifiers.
1026 .LP
1027 The current classes of suggestion provided are:

1029 .sp
1030 .ne 2
1031 .na
1032 Enable use of direct binding
1033 .ad
1034 .sp .6
1035 .RS 4n
1036 Suggests that \fB-z direct\fR or \fB-B direct\fR be present prior to any
1037 specified dependency. This allows predictable symbol binding at runtime.

1039 Can be disabled with \fB-z guidance=nodirect\fR
1040 .RE

1042 .sp
1043 .ne 2
1044 .na
1045 Enable lazy dependency loading
1046 .ad
1047 .sp .6
1048 .RS 4n
1049 Suggests that \fB-z lazyload\fR be present prior to any specified dependency.
1050 This allows the dynamic object to be loaded more quickly.

new/usr/src/man/man1/ld.1 17

1052 Can be disabled with \fB-z guidance=nolazyload\fR.
1053 .RE

1055 .sp
1056 .ne 2
1057 .na
1058 Shared objects should define all their dependencies.
1059 .ad
1060 .sp .6
1061 .RS 4n
1062 Suggests that \fB-z defs\fR be specified on the link-editor command line.
1063 Shared objects that explicitly state all their dependencies behave more
1064 predictably when used.

1066 Can be be disabled with \fB-z guidance=nodefs\fR
1067 .RE

1069 .sp
1070 .ne 2
1071 .na
1072 Version 2 mapfile syntax
1073 .ad
1074 .sp .6
1075 .RS 4n
1076 Suggests that any specified mapfiles use the more readable version 2 syntax.

1078 Can be disabled with \fB-z guidance=nomapfile\fR.
1079 .RE

1081 .sp
1082 .ne 2
1083 .na
1084 Read-only text segment
1085 .ad
1086 .sp .6
1087 .RS 4n
1088 Should any runtime relocations within the text segment exist, suggests that
1089 the object be compiled with position independent code (PIC). Keeping large
1090 allocatable sections read-only allows them to be shared between processes
1091 using a given shared object.

1093 Can be disabled with \fB-z guidance=notext\fR
1094 .RE

1096 .sp
1097 .ne 2
1098 .na
1099 No unused dependencies
1100 .ad
1101 .sp .6
1102 .RS 4n
1103 Suggests that any dependency not referenced by the resulting dynamic object be
1104 removed from the link-editor command line.

1106 Can be disabled with \fB-z guidance=nounused\fR.
1107 .RE
1108 .RE

1110 .sp
1111 .ne 2
1112 .na
1113 \fB\fB-z\fR \fBhelp\fR\fR
1114 .ad
1115 .br
1116 .na

new/usr/src/man/man1/ld.1 18

1117 \fB\fB--help\fR\fR
1118 .ad
1119 .sp .6
1120 .RS 4n
1121 Print a summary of the command line options on the standard output and exit.
1122 .RE

1124 .sp
1125 .ne 2
1126 .na
1127 \fB\fB-z\fR \fBignore\fR | \fBrecord\fR\fR
1128 .ad
1129 .sp .6
1130 .RS 4n
1131 Ignores, or records, dynamic dependencies that are not referenced as part of
1132 the link-edit. Ignores, or records, unreferenced \fBELF\fR sections from the
1133 relocatable objects that are read as part of the link-edit. By default,
1134 \fB-z\fR \fBrecord\fR is in effect.
1135 .sp
1136 If an \fBELF\fR section is ignored, the section is eliminated from the output
1137 file being generated. A section is ignored when three conditions are true. The
1138 eliminated section must contribute to an allocatable segment. The eliminated
1139 section must provide no global symbols. No other section from any object that
1140 contributes to the link-edit, must reference an eliminated section.
1141 .RE

1143 .sp
1144 .ne 2
1145 .na
1146 \fB\fB-z\fR \fBinitarray=\fR\fIfunction\fR\fR
1147 .ad
1148 .sp .6
1149 .RS 4n
1150 Appends an entry to the \fB\&.initarray\fR section of the object being built.
1151 If no \fB\&.initarray\fR section is present, a section is created. The new
1152 entry is initialized to point to \fIfunction\fR. See \fIInitialization and
1153 Termination Sections\fR in \fILinker and Libraries Guide\fR.
1154 .RE

1156 .sp
1157 .ne 2
1158 .na
1159 \fB\fB-z\fR \fBinitfirst\fR\fR
1160 .ad
1161 .sp .6
1162 .RS 4n
1163 Marks the object so that its runtime initialization occurs before the runtime
1164 initialization of any other objects brought into the process at the same time.
1165 In addition, the object runtime finalization occurs after the runtime
1166 finalization of any other objects removed from the process at the same time.
1167 This option is only meaningful when building a shared object.
1168 .RE

1170 .sp
1171 .ne 2
1172 .na
1173 \fB\fB-z\fR \fBinterpose\fR\fR
1174 .ad
1175 .sp .6
1176 .RS 4n
1177 Marks the object as an interposer. At runtime, an object is identified as an
1178 explicit interposer if the object has been tagged using the \fB-z interpose\fR
1179 option. An explicit interposer is also established when an object is loaded
1180 using the \fBLD_PRELOAD\fR environment variable. Implicit interposition can
1181 occur because of the load order of objects, however, this implicit
1182 interposition is unknown to the runtime linker. Explicit interposition can

new/usr/src/man/man1/ld.1 19

1183 ensure that interposition takes place regardless of the order in which objects
1184 are loaded. Explicit interposition also ensures that the runtime linker
1185 searches for symbols in any explicit interposers when direct bindings are in
1186 effect.
1187 .RE

1189 .sp
1190 .ne 2
1191 .na
1192 \fB\fB-z\fR \fBlazyload\fR | \fBnolazyload\fR\fR
1193 .ad
1194 .sp .6
1195 .RS 4n
1196 Enables or disables the marking of dynamic dependencies to be lazily loaded.
1197 Dynamic dependencies which are marked \fBlazyload\fR are not loaded at initial
1198 process start-up. These dependencies are delayed until the first binding to the
1199 object is made. \fBNote:\fR Lazy loading requires the correct declaration of
1200 dependencies, together with associated runpaths for each dynamic object used
1201 within a process. See \fILazy Loading of Dynamic Dependencies\fR in \fILinker
1202 and Libraries Guide\fR.
1203 .RE

1205 .sp
1206 .ne 2
1207 .na
1208 \fB\fB-z\fR \fBld32\fR=\fIarg1\fR,\fIarg2\fR,...\fR
1209 .ad
1210 .br
1211 .na
1212 \fB\fB-z\fR \fBld64\fR=\fIarg1\fR,\fIarg2\fR,...\fR
1213 .ad
1214 .sp .6
1215 .RS 4n
1216 The class of the link-editor is affected by the class of the output file being
1217 created and by the capabilities of the underlying operating system. The
1218 \fB-z\fR \fBld\fR[\fB32\fR|\fB64\fR] options provide a means of defining any
1219 link-editor argument. The defined argument is only interpreted, respectively,
1220 by the 32-bit class or 64-bit class of the link-editor.
1221 .sp
1222 For example, support libraries are class specific, so the correct class of
1223 support library can be ensured using:
1224 .sp
1225 .in +2
1226 .nf
1227 \fBld ... -z ld32=-Saudit32.so.1 -z ld64=-Saudit64.so.1 ...\fR
1228 .fi
1229 .in -2
1230 .sp

1232 The class of link-editor that is invoked is determined from the \fBELF\fR class
1233 of the first relocatable file that is seen on the command line. This
1234 determination is carried out \fBprior\fR to any \fB-z\fR
1235 \fBld\fR[\fB32\fR|\fB64\fR] processing.
1236 .RE

1238 .sp
1239 .ne 2
1240 .na
1241 \fB\fB-z\fR \fBloadfltr\fR\fR
1242 .ad
1243 .sp .6
1244 .RS 4n
1245 Marks a filter to indicate that filtees must be processed immediately at
1246 runtime. Normally, filter processing is delayed until a symbol reference is
1247 bound to the filter. The runtime processing of an object that contains this
1248 flag mimics that which occurs if the \fBLD_LOADFLTR\fR environment variable is

new/usr/src/man/man1/ld.1 20

1249 in effect. See the \fBld.so.1\fR(1).
1250 .RE

1252 .sp
1253 .ne 2
1254 .na
1255 \fB\fB-z\fR \fBmuldefs\fR\fR
1256 .ad
1257 .br
1258 .na
1259 \fB\fB--allow-multiple-definition\fR\fR
1260 .ad
1261 .sp .6
1262 .RS 4n
1263 Allows multiple symbol definitions. By default, multiple symbol definitions
1264 that occur between relocatable objects result in a fatal error condition. This
1265 option, suppresses the error condition, allowing the first symbol definition to
1266 be taken.
1267 .RE

1269 .sp
1270 .ne 2
1271 .na
1272 \fB\fB-z\fR \fBnocompstrtab\fR\fR
1273 .ad
1274 .sp .6
1275 .RS 4n
1276 Disables the compression of \fBELF\fR string tables. By default, string
1277 compression is applied to \fBSHT_STRTAB\fR sections, and to \fBSHT_PROGBITS\fR
1278 sections that have their \fBSHF_MERGE\fR and \fBSHF_STRINGS\fR section flags
1279 set.
1280 .RE

1282 .sp
1283 .ne 2
1284 .na
1285 \fB\fB-z\fR \fBnodefaultlib\fR\fR
1286 .ad
1287 .sp .6
1288 .RS 4n
1289 Marks the object so that the runtime default library search path, used after
1290 any \fBLD_LIBRARY_PATH\fR or runpaths, is ignored. This option implies that all
1291 dependencies of the object can be satisfied from its runpath.
1292 .RE

1294 .sp
1295 .ne 2
1296 .na
1297 \fB\fB-z\fR \fBnodelete\fR\fR
1298 .ad
1299 .sp .6
1300 .RS 4n
1301 Marks the object as non-deletable at runtime. This mode is similar to adding
1302 the object to the process by using \fBdlopen\fR(3C) with the
1303 \fBRTLD_NODELETE\fR mode.
1304 .RE

1306 .sp
1307 .ne 2
1308 .na
1309 \fB\fB-z\fR \fBnodlopen\fR\fR
1310 .ad
1311 .sp .6
1312 .RS 4n
1313 Marks the object as not available to \fBdlopen\fR(3C), either as the object
1314 specified by the \fBdlopen()\fR, or as any form of dependency required by the

new/usr/src/man/man1/ld.1 21

1315 object specified by the \fBdlopen()\fR. This option is only meaningful when
1316 building a shared object.
1317 .RE

1319 .sp
1320 .ne 2
1321 .na
1322 \fB\fB-z\fR \fBnodump\fR\fR
1323 .ad
1324 .sp .6
1325 .RS 4n
1326 Marks the object as not available to \fBdldump\fR(3C).
1327 .RE

1329 .sp
1330 .ne 2
1331 .na
1332 \fB\fB-z\fR \fBnoldynsym\fR\fR
1333 .ad
1334 .sp .6
1335 .RS 4n
1336 Prevents the inclusion of a \fB\&.SUNW_ldynsym\fR section in dynamic
1337 executables or sharable libraries. The \fB\&.SUNW_ldynsym\fR section augments
1338 the \fB\&.dynsym\fR section by providing symbols for local functions. Local
1339 function symbols allow debuggers to display local function names in stack
1340 traces from stripped programs. Similarly, \fBdladdr\fR(3C) is able to supply
1341 more accurate results.
1342 .sp
1343 The \fB-z\fR \fBnoldynsym\fR option also prevents the inclusion of the two
1344 symbol sort sections that are related to the \fB\&.SUNW_ldynsym\fR section. The
1345 \fB\&.SUNW_dynsymsort\fR section provides sorted access to regular function and
1346 variable symbols. The \fB\&.SUNW_dyntlssort\fR section provides sorted access
1347 to thread local storage (\fBTLS\fR) variable symbols.
1348 .sp
1349 The \fB\&.SUNW_ldynsym\fR, \fB\&.SUNW_dynsymsort\fR, and
1350 \fB\&.SUNW_dyntlssort\fR sections, which becomes part of the allocable text
1351 segment of the resulting file, cannot be removed by \fBstrip\fR(1). Therefore,
1352 the \fB-z\fR \fBnoldynsym\fR option is the only way to prevent their inclusion.
1353 See the \fB-s\fR and \fB-z\fR \fBredlocsym\fR options.
1354 .RE

1356 .sp
1357 .ne 2
1358 .na
1359 \fB\fB-z\fR \fBnopartial\fR\fR
1360 .ad
1361 .sp .6
1362 .RS 4n
1363 Partially initialized symbols, that are defined within relocatable object
1364 files, are expanded in the output file being generated.
1365 .RE

1367 .sp
1368 .ne 2
1369 .na
1370 \fB\fB-z\fR \fBnoversion\fR\fR
1371 .ad
1372 .sp .6
1373 .RS 4n
1374 Does not record any versioning sections. Any version sections or associated
1375 \fB\&.dynamic\fR section entries are not generated in the output image.
1376 .RE

1378 .sp
1379 .ne 2
1380 .na

new/usr/src/man/man1/ld.1 22

1381 \fB\fB-z\fR \fBnow\fR\fR
1382 .ad
1383 .sp .6
1384 .RS 4n
1385 Marks the object as requiring non-lazy runtime binding. This mode is similar to
1386 adding the object to the process by using \fBdlopen\fR(3C) with the
1387 \fBRTLD_NOW\fR mode. This mode is also similar to having the \fBLD_BIND_NOW\fR
1388 environment variable in effect. See \fBld.so.1\fR(1).
1389 .RE

1391 .sp
1392 .ne 2
1393 .na
1394 \fB\fB-z\fR \fBorigin\fR\fR
1395 .ad
1396 .sp .6
1397 .RS 4n
1398 Marks the object as requiring immediate \fB$ORIGIN\fR processing at runtime.
1399 This option is only maintained for historic compatibility, as the runtime
1400 analysis of objects to provide for \fB$ORIGIN\fR processing is now default.
1401 .RE

1403 .sp
1404 .ne 2
1405 .na
1406 \fB\fB-z\fR \fBpreinitarray=\fR\fIfunction\fR\fR
1407 .ad
1408 .sp .6
1409 .RS 4n
1410 Appends an entry to the \fB\&.preinitarray\fR section of the object being
1411 built. If no \fB\&.preinitarray\fR section is present, a section is created.
1412 The new entry is initialized to point to \fIfunction\fR. See \fIInitialization
1413 and Termination Sections\fR in \fILinker and Libraries Guide\fR.
1414 .RE

1416 .sp
1417 .ne 2
1418 .na
1419 \fB\fB-z\fR \fBredlocsym\fR\fR
1420 .ad
1421 .sp .6
1422 .RS 4n
1423 Eliminates all local symbols except for the \fISECT\fR symbols from the symbol
1424 table \fBSHT_SYMTAB\fR. All relocations that refer to local symbols are updated
1425 to refer to the corresponding \fISECT\fR symbol. This option allows specialized
1426 objects to greatly reduce their symbol table sizes. Eliminated local symbols
1427 can reduce the \fB\&.stab*\fR debugging information that is generated using the
1428 compiler drivers \fB-g\fR option. See the \fB-s\fR and \fB-z\fR \fBnoldynsym\fR
1429 options.
1430 .RE

1432 .sp
1433 .ne 2
1434 .na
1435 \fB\fB-z\fR \fBrelaxreloc\fR\fR
1436 .ad
1437 .sp .6
1438 .RS 4n
1439 \fBld\fR normally issues a fatal error upon encountering a relocation using a
1440 symbol that references an eliminated COMDAT section. If \fB-z\fR
1441 \fBrelaxreloc\fR is enabled, \fBld\fR instead redirects such relocations to the
1442 equivalent symbol in the COMDAT section that was kept. \fB-z\fR
1443 \fBrelaxreloc\fR is a specialized option, mainly of interest to compiler
1444 authors, and is not intended for general use.
1445 .RE

new/usr/src/man/man1/ld.1 23

1447 .sp
1448 .ne 2
1449 .na
1450 \fB\fB-z\fR \fBrescan-now\fR\fR
1451 .ad
1452 .br
1453 .na
1454 \fB\fB-z\fR \fBrescan\fR\fR
1455 .ad
1456 .sp .6
1457 .RS 4n
1458 These options rescan the archive files that are provided to the link-edit. By
1459 default, archives are processed once as the archives appear on the command
1460 line. Archives are traditionally specified at the end of the command line so
1461 that their symbol definitions resolve any preceding references. However,
1462 specifying archives multiple times to satisfy their own interdependencies can
1463 be necessary.
1464 .sp
1465 \fB-z\fR \fBrescan-now\fR is a positional option, and is processed by the
1466 link-editor immediately when encountered on the command line. All archives seen
1467 on the command line up to that point are immediately reprocessed in an attempt
1468 to locate additional archive members that resolve symbol references. This
1469 archive rescanning is repeated until a pass over the archives occurs in which
1470 no new members are extracted.
1471 .sp
1472 \fB-z\fR \fBrescan\fR is a position independent option. The link-editor defers
1473 the rescan operation until after it has processed the entire command line, and
1474 then initiates a final rescan operation over all archives seen on the command
1475 line. The \fB-z\fR \fBrescan\fR operation can interact incorrectly
1476 with objects that contain initialization (.init) or finalization (.fini)
1477 sections, preventing the code in those sections from running. For this reason,
1478 \fB-z\fR \fBrescan\fR is deprecated, and use of \fB-z\fR \fBrescan-now\fR is
1479 advised.
1480 .RE

1482 .sp
1483 .ne 2
1484 .na
1485 \fB\fB-z\fR \fBrescan-start\fR ... \fB-z\fR \fBrescan-end\fR\fR
1486 .ad
1487 .br
1488 .na
1489 \fB\fB--start-group\fR ... \fB--end-group\fR\fR
1490 .ad
1491 .br
1492 .na
1493 \fB\fB-(\fR ... \fB-)\fR\fR
1494 .ad
1495 .sp .6
1496 .RS 4n
1497 Defines an archive rescan group. This is a positional construct, and is
1498 processed by the link-editor immediately upon encountering the closing
1499 delimiter option. Archives found within the group delimiter options are
1500 reprocessed as a group in an attempt to locate additional archive members that
1501 resolve symbol references. This archive rescanning is repeated until a pass
1502 over the archives On the occurs in which no new members are extracted.
1503 Archive rescan groups cannot be nested.
1504 .RE

1506 .sp
1507 .ne 2
1508 .na
1509 \fB\fB-z\fR \fBtarget=sparc|x86\fR \fI\fR\fR
1510 .ad
1511 .sp .6
1512 .RS 4n

new/usr/src/man/man1/ld.1 24

1513 Specifies the machine type for the output object. Supported targets are Sparc
1514 and x86. The 32-bit machine type for the specified target is used unless the
1515 \fB-64\fR option is also present, in which case the corresponding 64-bit
1516 machine type is used. By default, the machine type of the object being
1517 generated is determined from the first \fBELF\fR object processed from the
1518 command line. If no objects are specified, the machine type is determined by
1519 the first object encountered within the first archive processed from the
1520 command line. If there are no objects or archives, the link-editor assumes the
1521 native machine. This option is useful when creating an object directly with
1522 \fBld\fR whose input is solely from a \fBmapfile\fR. See the \fB-M\fR option.
1523 It can also be useful in the rare case of linking entirely from an archive that
1524 contains objects of different machine types for which the first object is not
1525 of the desired machine type. See \fIThe 32-bit link-editor and 64-bit
1526 link-editor\fR in \fILinker and Libraries Guide\fR.
1527 .RE

1529 .sp
1530 .ne 2
1531 .na
1532 \fB\fB-z\fR \fBtext\fR\fR
1533 .ad
1534 .sp .6
1535 .RS 4n
1536 In dynamic mode only, forces a fatal error if any relocations against
1537 non-writable, allocatable sections remain. For historic reasons, this mode is
1538 not the default when building an executable or shared object. However, its use
1539 is recommended to ensure that the text segment of the dynamic object being
1540 built is shareable between multiple running processes. A shared text segment
1541 incurs the least relocation overhead when loaded into memory. See
1542 \fIPosition-Independent Code\fR in \fILinker and Libraries Guide\fR.
1543 .RE

1545 .sp
1546 .ne 2
1547 .na
1548 \fB\fB-z\fR \fBtextoff\fR\fR
1549 .ad
1550 .sp .6
1551 .RS 4n
1552 In dynamic mode only, allows relocations against all allocatable sections,
1553 including non-writable ones. This mode is the default when building a shared
1554 object.
1555 .RE

1557 .sp
1558 .ne 2
1559 .na
1560 \fB\fB-z\fR \fBtextwarn\fR\fR
1561 .ad
1562 .sp .6
1563 .RS 4n
1564 In dynamic mode only, lists a warning if any relocations against non-writable,
1565 allocatable sections remain. This mode is the default when building an
1566 executable.
1567 .RE

1569 .sp
1570 .ne 2
1571 .na
1572 \fB\fB-z\fR \fBverbose\fR\fR
1573 .ad
1574 .sp .6
1575 .RS 4n
1576 This option provides additional warning diagnostics during a link-edit.
1577 Presently, this option conveys suspicious use of displacement relocations. This
1578 option also conveys the restricted use of static \fBTLS\fR relocations when

new/usr/src/man/man1/ld.1 25

1579 building shared objects. In future, this option might be enhanced to provide
1580 additional diagnostics that are deemed too noisy to be generated by default.
1581 .RE

1583 .sp
1584 .ne 2
1585 .na
1586 \fB\fB-z\fR\fBwrap=\fR\fIsymbol\fR\fR
1587 .ad
1588 .br
1589 .na
1590 \fB\fB-wrap=\fR \fIsymbol\fR\fR
1591 .ad
1592 .br
1593 .na
1594 \fB\fB--wrap=\fR \fIsymbol\fR\fR
1595 .ad
1596 .sp .6
1597 .RS 4n
1598 Rename undefined references to \fIsymbol\fR in order to allow wrapper code to
1599 be linked into the output object without having to modify source code. When
1600 \fB-z wrap\fR is specified, all undefined references to \fIsymbol\fR are
1601 modified to reference \fB__wrap_\fR\fIsymbol\fR, and all references to
1602 \fB__real_\fR\fIsymbol\fR are modified to reference \fIsymbol\fR. The user is
1603 expected to provide an object containing the \fB__wrap_\fR\fIsymbol\fR
1604 function. This wrapper function can call \fB__real_\fR\fIsymbol\fR in order to
1605 reference the actual function being wrapped.
1606 .sp
1607 The following is an example of a wrapper for the \fBmalloc\fR(3C) function:
1608 .sp
1609 .in +2
1610 .nf
1611 void *
1612 __wrap_malloc(size_t c)
1613 {
1614 (void) printf("malloc called with %zu\en", c);
1614 (void) printf("malloc called with %zu\n", c);
1615 return (__real_malloc(c));
1616 }
______unchanged_portion_omitted_

new/usr/src/man/man1/nm.1 1

**
 14878 Tue Sep 10 18:35:19 2013
new/usr/src/man/man1/nm.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright 1989 AT&T
3 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved
4 .\" Portions Copyright (c) 1992, X/Open Company Limited All Rights Reserved
5 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
6 .\" http://www.opengroup.org/bookstore/.
7 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
8 .\" This notice shall appear on any product containing this material.
9 .\" The contents of this file are subject to the terms of the Common Development

10 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
11 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
12 .TH NM 1 "Sep 10, 2013"
12 .TH NM 1 "Oct 10, 2007"
13 .SH NAME
14 nm \- print name list of an object file
15 .SH SYNOPSIS
16 .LP
17 .nf
18 \fB/usr/bin/nm\fR [\fB-ACDhlnPprRsTuVv\fR] [\fB-efox\fR] [\fB-g\fR | \fB-u\fR]
19 [\fB-t\fR \fIformat\fR] \fIfile\fR...
20 .fi

22 .LP
23 .nf
24 \fB/usr/xpg4/bin/nm\fR [\fB-ACDhlnPprRsTuVv\fR] [\fB-efox\fR] [\fB-g\fR | \fB-u\
25 [\fB-t\fR \fIformat\fR] \fIfile\fR...
26 .fi

28 .SH DESCRIPTION
29 .sp
30 .LP
31 The \fBnm\fR utility displays the symbol table of each \fBELF\fR object file
32 that is specified by \fIfile\fR.
33 .sp
34 .LP
35 If no symbolic information is available for a valid input file, the \fBnm\fR
36 utility reports that fact, but not consider it an error condition.
37 .SH OPTIONS
38 .sp
39 .LP
40 The output of \fBnm\fR can be controlled using the following options:
41 .sp
42 .ne 2
43 .na
44 \fB\fB-A\fR\fR
45 .ad
46 .RS 13n
47 Writes the full path name or library name of an object on each line.
48 .RE

50 .sp
51 .ne 2
52 .na
53 \fB\fB-C\fR\fR
54 .ad
55 .RS 13n
56 Demangles C++ symbol names before printing them out.
57 .RE

59 .sp
60 .ne 2

new/usr/src/man/man1/nm.1 2

61 .na
62 \fB\fB-D\fR\fR
63 .ad
64 .RS 13n
65 Displays the \fBSHT_DYNSYM\fR symbol information. This is the symbol table used
66 by \fBld.so.1\fR and is present even in stripped dynamic executables. If
67 \fB-D\fR is not specified, the default behavior is to display the
68 \fBSHT_SYMTAB\fR symbol information.
69 .RE

71 .sp
72 .ne 2
73 .na
74 \fB\fB-e\fR\fR
75 .ad
76 .RS 13n
77 See NOTES below.
78 .RE

80 .sp
81 .ne 2
82 .na
83 \fB\fB-f\fR\fR
84 .ad
85 .RS 13n
86 See NOTES below.
87 .RE

89 .sp
90 .ne 2
91 .na
92 \fB\fB-g\fR\fR
93 .ad
94 .RS 13n
95 Writes only external (global) symbol information.
96 .RE

98 .sp
99 .ne 2
100 .na
101 \fB\fB-h\fR\fR
102 .ad
103 .RS 13n
104 Does not display the output heading data.
105 .RE

107 .sp
108 .ne 2
109 .na
110 \fB\fB-L\fR\fR
111 .ad
112 .RS 13n
113 Displays the \fBSHT_SUNW_LDYNSYM\fR symbol information. This symbol table
114 contains local function symbols. \fBSHT_SUNW_LDYNSM\fR symbol tables are
115 present even in stripped dynamic executables. These symbols augment the global
116 symbols that are found in \fBSHT_DYNSYM\fR symbol table. If \fB-L\fR is not
117 specified, the default behavior is to display the \fBSHT_SYMTAB\fR symbol
118 information.
119 .RE

121 .sp
122 .ne 2
123 .na
124 \fB\fB-l\fR\fR
125 .ad
126 .RS 13n

new/usr/src/man/man1/nm.1 3

127 Distinguishes between \fBWEAK\fR and \fBGLOBAL\fR symbols by appending a * to
128 the key letter for \fBWEAK\fR symbols.
129 .RE

131 .sp
132 .ne 2
133 .na
134 \fB\fB-n\fR\fR
135 .ad
136 .RS 13n
137 Sorts external symbols by name before they are printed.
138 .RE

140 .sp
141 .ne 2
142 .na
143 \fB\fB-o\fR\fR
144 .ad
145 .RS 13n
146 Prints the value and size of a symbol in octal instead of decimal (equivalent
147 to \fB-t\fR \fBo\fR).
148 .RE

150 .sp
151 .ne 2
152 .na
153 \fB\fB-p\fR\fR
154 .ad
155 .RS 13n
156 Produces easy to parse, terse output. Each symbol name is preceded by its value
157 (blanks if undefined) and one of the letters:
158 .sp
159 .ne 2
160 .na
161 \fB\fBA\fR\fR
162 .ad
163 .RS 5n
164 Absolute symbol.
165 .RE

167 .sp
168 .ne 2
169 .na
170 \fB\fBB\fR\fR
171 .ad
172 .RS 5n
173 bss (uninitialized data space) symbol.
174 .RE

176 .sp
177 .ne 2
178 .na
179 \fB\fBC\fR\fR
180 .ad
181 .RS 5n
182 COMMON symbol.
183 .RE

185 .sp
186 .ne 2
187 .na
188 \fB\fBD\fR\fR
189 .ad
190 .RS 5n
191 Data object symbol.
192 .RE

new/usr/src/man/man1/nm.1 4

194 .sp
195 .ne 2
196 .na
197 \fB\fBF\fR\fR
198 .ad
199 .RS 5n
200 File symbol.
201 .RE

203 .sp
204 .ne 2
205 .na
206 \fB\fBN\fR\fR
207 .ad
208 .RS 5n
209 Symbol has no type.
210 .RE

212 .sp
213 .ne 2
214 .na
215 \fB\fBL\fR\fR
216 .ad
217 .RS 5n
218 Thread-Local storage symbol.
219 .RE

221 .sp
222 .ne 2
223 .na
224 \fB\fBS\fR\fR
225 .ad
226 .RS 5n
227 Section symbol.
228 .RE

230 .sp
231 .ne 2
232 .na
233 \fB\fBT\fR\fR
234 .ad
235 .RS 5n
236 Text symbol.
237 .RE

239 .sp
240 .ne 2
241 .na
242 \fB\fBU\fR\fR
243 .ad
244 .RS 5n
245 Undefined.
246 .RE

248 If the symbol’s binding attribute is:
249 .sp
250 .ne 2
251 .na
252 \fB\fBLOCAL\fR\fR
253 .ad
254 .RS 10n
255 The key letter is lower case.
256 .RE

258 .sp

new/usr/src/man/man1/nm.1 5

259 .ne 2
260 .na
261 \fB\fBWEAK\fR\fR
262 .ad
263 .RS 10n
264 The key letter is upper case. If the \fB-l\fR modifier is specified, the upper
265 case key letter is followed by a \fB*\fR
266 .RE

268 .sp
269 .ne 2
270 .na
271 \fB\fBGLOBAL\fR\fR
272 .ad
273 .RS 10n
274 The key letter is upper case.
275 .RE

277 .RE

279 .sp
280 .ne 2
281 .na
282 \fB\fB-P\fR\fR
283 .ad
284 .RS 13n
285 Writes information in a portable output format, as specified in \fBStandard
286 Output\fR.
287 .RE

289 .sp
290 .ne 2
291 .na
292 \fB\fB-r\fR\fR
293 .ad
294 .RS 13n
295 Prepends the name of the object file or archive to each output line.
296 .RE

298 .sp
299 .ne 2
300 .na
301 \fB\fB-R\fR\fR
302 .ad
303 .RS 13n
304 Prints the archive name (if present), followed by the object file and symbol
305 name. If the \fB-r\fR option is also specified, this option is ignored.
306 .RE

308 .sp
309 .ne 2
310 .na
311 \fB\fB-s\fR\fR
312 .ad
313 .RS 13n
314 Prints section name instead of section index.
315 .RE

317 .sp
318 .ne 2
319 .na
320 \fB\fB-t\fR \fIformat\fR\fR
321 .ad
322 .RS 13n
323 Writes each numeric value in the specified format. The format is dependent on
324 the single character used as the \fIformat\fR option-argument:

new/usr/src/man/man1/nm.1 6

325 .sp
326 .ne 2
327 .na
328 \fB\fBd\fR\fR
329 .ad
330 .RS 5n
331 The offset is written in decimal (default).
332 .RE

334 .sp
335 .ne 2
336 .na
337 \fB\fBo\fR\fR
338 .ad
339 .RS 5n
340 The offset is written in octal.
341 .RE

343 .sp
344 .ne 2
345 .na
346 \fB\fBx\fR\fR
347 .ad
348 .RS 5n
349 The offset is written in hexadecimal.
350 .RE

352 .RE

354 .sp
355 .ne 2
356 .na
357 \fB\fB-T\fR\fR
358 .ad
359 .RS 13n
360 See \fBNOTES\fR.
361 .RE

363 .SS "/usr/bin/nm"
364 .sp
365 .ne 2
366 .na
367 \fB\fB-u\fR\fR
368 .ad
369 .RS 6n
370 Prints undefined symbols only.
371 .RE

373 .SS "/usr/xpg4/bin/nm"
374 .sp
375 .ne 2
376 .na
377 \fB\fB-u\fR\fR
378 .ad
379 .RS 6n
380 Prints long listing for each undefined symbol. See \fBOUTPUT\fR below.
381 .RE

383 .sp
384 .ne 2
385 .na
386 \fB\fB-v\fR\fR
387 .ad
388 .RS 6n
389 Sorts external symbols by value before they are printed.
390 .RE

new/usr/src/man/man1/nm.1 7

392 .sp
393 .ne 2
394 .na
395 \fB\fB-V\fR\fR
396 .ad
397 .RS 6n
398 Prints the version of the \fBnm\fR command executing on the standard error
399 output.
400 .RE

402 .sp
403 .ne 2
404 .na
405 \fB\fB-x\fR\fR
406 .ad
407 .RS 6n
408 Prints the value and size of a symbol in hexadecimal instead of decimal
409 (equivalent to \fB-t\fR \fBx\fR).
410 .RE

412 .sp
413 .LP
414 Options can be used in any order, either singly or in combination, and can
415 appear anywhere in the command line. When conflicting options are specified
416 (such as \fB-v\fR and \fB-n\fR, or \fB-o\fR and \fB-x\fR) the first is taken
417 and the second ignored with a warning message to the user. (See \fB-R\fR for
418 exception.)
419 .SH OPERANDS
420 .sp
421 .LP
422 The following operand is supported:
423 .sp
424 .ne 2
425 .na
426 \fB\fIfile\fR\fR
427 .ad
428 .RS 8n
429 A path name of an object file, executable file or object-file library.
430 .RE

432 .SH OUTPUT
433 .sp
434 .LP
435 This section describes the \fBnm\fR utility’s output options.
436 .SS "Standard Output"
437 .sp
438 .LP
439 For each symbol, the following information is printed:
440 .sp
441 .ne 2
442 .na
443 \fB\fBIndex\fR\fR
444 .ad
445 .RS 15n
446 The index of the symbol. (The index appears in brackets.)
447 .RE

449 .sp
450 .ne 2
451 .na
452 \fB\fBValue\fR\fR
453 .ad
454 .RS 15n
455 The value of the symbol is one of the following:
456 .RS +4

new/usr/src/man/man1/nm.1 8

457 .TP
458 .ie t \(bu
459 .el o
460 A section offset for defined symbols in a relocatable file.
461 .RE
462 .RS +4
463 .TP
464 .ie t \(bu
465 .el o
466 Alignment constraints for symbols whose section index is \fBSHN_COMMON\fR.
467 .RE
468 .RS +4
469 .TP
470 .ie t \(bu
471 .el o
472 A virtual address in executable and dynamic library files.
473 .RE
474 .RE

476 .sp
477 .ne 2
478 .na
479 \fB\fBSize\fR\fR
480 .ad
481 .RS 15n
482 The size in bytes of the associated object.
483 .RE

485 .sp
486 .ne 2
487 .na
488 \fB\fBType\fR\fR
489 .ad
490 .RS 15n
491 A symbol is of one of the following types:
492 .sp
493 .ne 2
494 .na
495 \fB\fBNOTYPE\fR\fR
496 .ad
497 .RS 11n
498 No type was specified.
499 .RE

501 .sp
502 .ne 2
503 .na
504 \fB\fBOBJECT\fR\fR
505 .ad
506 .RS 11n
507 A data object such as an array or variable.
508 .RE

510 .sp
511 .ne 2
512 .na
513 \fB\fBFUNC\fR\fR
514 .ad
515 .RS 11n
516 A function or other executable code.
517 .RE

519 .sp
520 .ne 2
521 .na
522 \fB\fBREGI\fR\fR

new/usr/src/man/man1/nm.1 9

523 .ad
524 .RS 11n
525 A register symbol (\fBSPARC\fR only).
526 .RE

528 .sp
529 .ne 2
530 .na
531 \fB\fBSECTION\fR\fR
532 .ad
533 .RS 11n
534 A section symbol.
535 .RE

537 .sp
538 .ne 2
539 .na
540 \fB\fBFILE\fR\fR
541 .ad
542 .RS 11n
543 Name of the source file.
544 .RE

546 .sp
547 .ne 2
548 .na
549 \fB\fBCOMMON\fR\fR
550 .ad
551 .RS 11n
552 An uninitialized common block.
553 .RE

555 .sp
556 .ne 2
557 .na
558 \fB\fBTLS\fR\fR
559 .ad
560 .RS 11n
561 A variable associated with Thread-Local storage.
562 .RE

564 .RE

566 .sp
567 .ne 2
568 .na
569 \fB\fBBind\fR\fR
570 .ad
571 .RS 15n
572 The symbol’s binding attributes.
573 .sp
574 .ne 2
575 .na
576 \fB\fBLOCAL symbols\fR\fR
577 .ad
578 .RS 18n
579 Have a scope limited to the object file containing their definition.
580 .RE

582 .sp
583 .ne 2
584 .na
585 \fB\fBGLOBAL symbols\fR\fR
586 .ad
587 .RS 18n
588 Are visible to all object files being combined.

new/usr/src/man/man1/nm.1 10

589 .RE

591 .sp
592 .ne 2
593 .na
594 \fB\fBWEAK symbols\fR\fR
595 .ad
596 .RS 18n
597 Are essentially global symbols with a lower precedence than \fBGLOBAL\fR.
598 .RE

600 .RE

602 .sp
603 .ne 2
604 .na
605 \fB\fBOther\fR\fR
606 .ad
607 .RS 15n
608 A symbol’s visibility.
609 .sp
610 The lower bits of the \fBst_other\fR member of the \fBElf32_Sym\fR structure,
611 and the \fBElf64_Sym\fR structure, defined in \fB<sys/elf.h>\fR, are currently
612 used and can be one of:
613 .sp
614 .in +2
615 .nf
616 #define STV_DEFAULT 0
617 #define STV_INTERNAL 1
618 #define STV_HIDDEN 2
619 #define STV_PROTECTED 3
620 #define STV_EXPORTED 4
621 #define STV_SINGLETON 5
622 #define STV_ELIMINATE 6
623 .fi
624 .in -2
625 .sp

627 .RE

629 .sp
630 .ne 2
631 .na
632 \fB\fBShndx\fR\fR
633 .ad
634 .RS 15n
635 Except for three special values, this is the section header table index in
636 relation to which the symbol is defined. The following special values exist:
637 .sp
638 .ne 2
639 .na
640 \fB\fBABS\fR\fR
641 .ad
642 .RS 10n
643 Indicates the symbol’s value does not change through relocation.
644 .RE

646 .sp
647 .ne 2
648 .na
649 \fB\fBCOMMON\fR\fR
650 .ad
651 .RS 10n
652 Indicates an unallocated block and the value provides alignment constraints.
653 .RE

new/usr/src/man/man1/nm.1 11

655 .sp
656 .ne 2
657 .na
658 \fB\fBUNDEF\fR\fR
659 .ad
660 .RS 10n
661 Indicates an undefined symbol.
662 .RE

664 .RE

666 .sp
667 .ne 2
668 .na
669 \fB\fBName\fR\fR
670 .ad
671 .RS 15n
672 The name of the symbol.
673 .RE

675 .sp
676 .ne 2
677 .na
678 \fB\fBObject Name\fR\fR
679 .ad
680 .RS 15n
681 The name of the object or library if \fB-A\fR is specified.
682 .RE

684 .sp
685 .LP
686 If the \fB-P\fR option is specified, the previous information is displayed
687 using the following portable format. The three versions differ depending on
688 whether \fB-t\fR \fBd\fR, \fB-t\fR \fBo\fR, or \fB-t\fR \fBx\fR was specified,
689 respectively:
690 .sp
691 .in +2
692 .nf
693 \fB"%s%s %s %d %d\n",\fR \fIlibrary/object name\fR, \fIname\fR\fB, type,\fR \fIv
694 \fBsize "%s%s %s %o %o\en",\fR \fIlibrary/object name\fR, \fIname\fR, \e
695 \fBtype,\fR \fIvalue\fR \fB, size "%s%s %s %x %x\en",\fR \fIlibrary/object
694 \fBsize "%s%s %s %o %o\n",\fR \fIlibrary/object name\fR, \fIname\fR, \e
695 \fBtype,\fR \fIvalue\fR \fB, size "%s%s %s %x %x\n",\fR \fIlibrary/object n
696 \fBtype,\fR \fIvalue\fR\fB, size\fR
697 .fi
698 .in -2
699 .sp

701 .sp
702 .LP
703 where \fIlibrary/object name\fR is formatted as follows:
704 .RS +4
705 .TP
706 .ie t \(bu
707 .el o
708 If \fB-A\fR is not specified, \fIlibrary/object name\fR is an empty string.
709 .RE
710 .RS +4
711 .TP
712 .ie t \(bu
713 .el o
714 If \fB-A\fR is specified and the corresponding \fIfile\fR operand does not name
715 a library:
716 .sp
717 .in +2
718 .nf

new/usr/src/man/man1/nm.1 12

719 \fB"%s: ", \fIfile\fR\fR
720 .fi
721 .in -2
722 .sp

724 .RE
725 .RS +4
726 .TP
727 .ie t \(bu
728 .el o
729 If \fB-A\fR is specified and the corresponding \fIfile\fR operand names a
730 library. In this case, \fIobject file\fR names the object file in the library
731 containing the symbol being described:
732 .sp
733 .in +2
734 .nf
735 \fB"%s[%s]: ", \fIfile\fR, \fIobject file\fR\fR
736 .fi
737 .in -2
738 .sp

740 .RE
741 .sp
742 .LP
743 If \fB-A\fR is not specified, then if more than one \fIfile\fR operand is
744 specified or if only one \fIfile\fR operand is specified and it names a
745 library, \fBnm\fR writes a line identifying the object containing the following
746 symbols before the lines containing those symbols, in the form:
747 .RS +4
748 .TP
749 .ie t \(bu
750 .el o
751 If the corresponding \fIfile\fR operand does not name a library:
752 .sp
753 .in +2
754 .nf
755 \fB"%s:\en", \fIfile\fR\fR
755 \fB"%s:\n", \fIfile\fR\fR
756 .fi
757 .in -2
758 .sp

760 .RE
761 .RS +4
762 .TP
763 .ie t \(bu
764 .el o
765 If the corresponding \fIfile\fR operand names a library; in this case,
766 \fIobject file\fR is the name of the file in the library containing the
767 following symbols:
768 .sp
769 .in +2
770 .nf
771 \fB"%s[%s]:\en", \fIfile\fR, \fIobject file\fR\fR
771 \fB"%s[%s]:\n", \fIfile\fR, \fIobject file\fR\fR
772 .fi
773 .in -2
774 .sp

776 .RE
777 .sp
778 .LP
779 If \fB-P\fR is specified, but \fB-t\fR is not, the format is as if \fB-t\fR
780 \fBx\fR had been specified.
781 .SH ENVIRONMENT VARIABLES
782 .sp

new/usr/src/man/man1/nm.1 13

783 .LP
784 See \fBenviron\fR(5) for descriptions of the following environment variables
785 that affect the execution of \fBnm\fR: \fBLANG\fR, \fBLC_ALL\fR,
786 \fBLC_COLLATE\fR, \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
787 .SH EXIT STATUS
788 .sp
789 .LP
790 The following exit values are returned:
791 .sp
792 .ne 2
793 .na
794 \fB\fB0\fR\fR
795 .ad
796 .RS 6n
797 Successful completion.
798 .RE

800 .sp
801 .ne 2
802 .na
803 \fB\fB>0\fR\fR
804 .ad
805 .RS 6n
806 An error occurred.
807 .RE

809 .SH ATTRIBUTES
810 .sp
811 .LP
812 See \fBattributes\fR(5) for descriptions of the following attributes:
813 .SH /USR/XPG4/BIN/NM
814 .sp

816 .sp
817 .TS
818 box;
819 c | c
820 l | l .
821 ATTRIBUTE TYPE ATTRIBUTE VALUE
822 _
823 Interface Stability Committed
824 .TE

826 .SH SEE ALSO
827 .sp
828 .LP
829 \fBar\fR(1), \fBas\fR(1), \fBdump\fR(1), \fBld\fR(1), \fBld.so.1\fR(1),
830 \fBar.h\fR(3HEAD), \fBa.out\fR(4), \fBattributes\fR(5), \fBenviron\fR(5),
831 \fBstandards\fR(5)
832 .SH NOTES
833 .sp
834 .LP
835 The following options are obsolete because of changes to the object file format
836 and might be deleted in a future release.
837 .sp
838 .ne 2
839 .na
840 \fB\fB-e\fR\fR
841 .ad
842 .RS 6n
843 Prints only external and static symbols. The symbol table now contains only
844 static and external symbols. Automatic symbols no longer appear in the symbol
845 table. They do appear in the debugging information produced by \fBcc\fR
846 \fB-g\fR, which can be examined using \fBdump\fR(1).
847 .RE

new/usr/src/man/man1/nm.1 14

849 .sp
850 .ne 2
851 .na
852 \fB\fB-f\fR\fR
853 .ad
854 .RS 6n
855 Produces full output. Redundant symbols (such as \fB\&.text\fR, \fB\&.data\fR,
856 and so forth), which existed previously, do not exist and producing full output
857 is identical to the default output.
858 .RE

860 .sp
861 .ne 2
862 .na
863 \fB\fB-T\fR\fR
864 .ad
865 .RS 6n
866 By default, \fBnm\fR prints the entire name of the symbols listed. Since symbol
867 names have been moved to the last column, the problem of overflow is removed
868 and it is no longer necessary to truncate the symbol name.
869 .RE

new/usr/src/man/man1/printf.1 1

**
 21233 Tue Sep 10 18:35:19 2013
new/usr/src/man/man1/printf.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2009, Sun Microsystems, Inc. All Rights Reserved
3 .\" Copyright 1992, X/Open Company Limited All Rights Reserved
4 .\" Portions Copyright (c) 1982-2007 AT&T Knowledge Ventures
5 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
6 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
7 .\" are reprinted and reproduced in electronic form in the Sun OS Reference Manu
8 .\" and Electronics Engineers, Inc and The Open Group. In the event of any discr
9 .\" This notice shall appear on any product containing this material.

10 .\" The contents of this file are subject to the terms of the Common Development
11 .\" See the License for the specific language governing permissions and limitat
12 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
13 .TH PRINTF 1 "Aug 11, 2009"
14 .SH NAME
15 printf \- write formatted output
16 .SH SYNOPSIS
17 .SS "/usr/bin/printf"
18 .LP
19 .nf
20 \fBprintf\fR \fIformat\fR [\fIargument\fR]...
21 .fi

23 .SS "ksh93"
24 .LP
25 .nf
26 \fBprintf\fR \fIformat\fR [\fIstring\fR...]
27 .fi

29 .SH DESCRIPTION
30 .SS "/usr/bin/printf"
31 .sp
32 .LP
33 The \fBprintf\fR utility writes each string operand to standard output using
34 \fIformat\fR to control the output format.
35 .SH OPERANDS
36 .SS "/usr/bin/printf"
37 .sp
38 .LP
39 The following operands are supported by \fB/usr/bin/printf\fR:
40 .sp
41 .ne 2
42 .na
43 \fB\fIformat\fR\fR
44 .ad
45 .RS 12n
46 A string describing the format to use to write the remaining operands. The
47 \fIformat\fR operand is used as the \fIformat\fR string described on the
48 \fBformats\fR(5) manual page, with the following exceptions:
49 .RS +4
50 .TP
51 .ie t \(bu
52 .el o
53 A \fBSPACE\fR character in the format string, in any context other than a flag
54 of a conversion specification, is treated as an ordinary character that is
55 copied to the output.
56 .RE
57 .RS +4
58 .TP
59 .ie t \(bu
60 .el o
61 A character in the format string is treated as a character, not as a

new/usr/src/man/man1/printf.1 2

62 \fBSPACE\fR character.
63 .RE
64 .RS +4
65 .TP
66 .ie t \(bu
67 .el o
68 In addition to the escape sequences described on the \fBformats\fR(5) manual
69 page (\fB\e\e\fR, \fB\ea\fR, \fB\eb\fR, \fB\ef\fR, \fB\en\fR, \fB\er\fR,
70 \fB\et\fR, \fB\ev\fR), \fB\e\fR\fIddd\fR, where \fIddd\fR is a one-, two- or
71 three-digit octal number, is written as a byte with the numeric value specified
72 by the octal number.
73 .RE
74 .RS +4
75 .TP
76 .ie t \(bu
77 .el o
78 The program does not precede or follow output from the \fBd\fR or \fBu\fR
79 conversion specifications with blank characters not specified by the
80 \fIformat\fR operand.
81 .RE
82 .RS +4
83 .TP
84 .ie t \(bu
85 .el o
86 The program does not precede output from the \fBo\fR conversion specification
87 with zeros not specified by the \fIformat\fR operand.
88 .RE
89 .RS +4
90 .TP
91 .ie t \(bu
92 .el o
93 An additional conversion character, \fBb\fR, is supported as follows. The
94 argument is taken to be a string that can contain backslash-escape sequences.
95 The following backslash-escape sequences are supported:
96 .RS +4
97 .TP
98 .ie t \(bu
99 .el o
100 the escape sequences listed on the \fBformats\fR(5) manual page (\fB\e\e\fR,
101 \fB\ea\fR, \fB\eb\fR, \fB\ef\fR, \fB\en\fR, \fB\er\fR, \fB\et\fR, \fB\ev\fR),
102 which are converted to the characters they represent
103 .RE
104 .RS +4
105 .TP
106 .ie t \(bu
107 .el o
108 \fB\e0\fR\fIddd\fR, where \fIddd\fR is a zero-, one-, two- or three-digit octal
109 number that is converted to a byte with the numeric value specified by the
110 octal number
111 .RE
112 .RS +4
113 .TP
114 .ie t \(bu
115 .el o
116 \fB\ec\fR, which is written and causes \fBprintf\fR to ignore any remaining
117 characters in the string operand containing it, any remaining string operands
118 and any additional characters in the \fIformat\fR operand.
119 .RE
120 .RE
121 The interpretation of a backslash followed by any other sequence of characters
122 is unspecified.
123 .sp
124 Bytes from the converted string are written until the end of the string or the
125 number of bytes indicated by the precision specification is reached. If the
126 precision is omitted, it is taken to be infinite, so all bytes up to the end of
127 the converted string are written. For each specification that consumes an

new/usr/src/man/man1/printf.1 3

128 argument, the next argument operand is evaluated and converted to the
129 appropriate type for the conversion as specified below. The \fIformat\fR
130 operand is reused as often as necessary to satisfy the argument operands. Any
131 extra \fBc\fR or \fBs\fR conversion specifications are evaluated as if a null
132 string argument were supplied; other extra conversion specifications are
133 evaluated as if a zero argument were supplied. If the \fIformat\fR operand
134 contains no conversion specifications and \fIargument\fR operands are present,
135 the results are unspecified. If a character sequence in the \fIformat\fR
136 operand begins with a \fB%\fR character, but does not form a valid conversion
137 specification, the behavior is unspecified.
138 .RE

140 .sp
141 .ne 2
142 .na
143 \fB\fIargument\fR\fR
144 .ad
145 .RS 12n
146 The strings to be written to standard output, under the control of
147 \fBformat\fR. The \fIargument\fR operands are treated as strings if the
148 corresponding conversion character is \fBb\fR, \fBc\fR or \fBs\fR. Otherwise,
149 it is evaluated as a C constant, as described by the ISO C standard, with the
150 following extensions:
151 .RS +4
152 .TP
153 .ie t \(bu
154 .el o
155 A leading plus or minus sign is allowed.
156 .RE
157 .RS +4
158 .TP
159 .ie t \(bu
160 .el o
161 If the leading character is a single- or double-quote, the value is the numeric
162 value in the underlying codeset of the character following the single- or
163 double-quote.
164 .RE
165 If an argument operand cannot be completely converted into an internal value
166 appropriate to the corresponding conversion specification, a diagnostic message
167 is written to standard error and the utility does not exit with a zero exit
168 status, but continues processing any remaining operands and writes the value
169 accumulated at the time the error was detected to standard output.
170 .RE

172 .SS "ksh93"
173 .sp
174 .LP
175 The \fIformat\fR operands support the full range of ANSI C/C99/XPG6 formatting
176 specifiers as well as additional specifiers:
177 .sp
178 .ne 2
179 .na
180 \fB\fB%b\fR\fR
181 .ad
182 .RS 6n
183 Each character in the string operand is processed specially, as follows:
184 .sp
185 .ne 2
186 .na
187 \fB\fB\ea\fR\fR
188 .ad
189 .RS 8n
190 Alert character.
191 .RE

193 .sp

new/usr/src/man/man1/printf.1 4

194 .ne 2
195 .na
196 \fB\fB\eb\fR\fR
197 .ad
198 .RS 8n
199 Backspace character.
200 .RE

202 .sp
203 .ne 2
204 .na
205 \fB\fB\ec\fR\fR
206 .ad
207 .RS 8n
208 Terminate output without appending NEWLINE. The remaining string operands are
209 ignored.
210 .RE

212 .sp
213 .ne 2
214 .na
215 \fB\fB\eE\fR\fR
216 .ad
217 .RS 8n
218 Escape character (\fBASCII\fR octal \fB033\fR).
219 .RE

221 .sp
222 .ne 2
223 .na
224 \fB\fB\ef\fR\fR
225 .ad
226 .RS 8n
227 FORM FEED character.
228 .RE

230 .sp
231 .ne 2
232 .na
233 \fB\fB\en\fR\fR
234 .ad
235 .RS 8n
236 NEWLINE character.
237 .RE

239 .sp
240 .ne 2
241 .na
242 \fB\fB\et\fR\fR
243 .ad
244 .RS 8n
245 TAB character.
246 .RE

248 .sp
249 .ne 2
250 .na
251 \fB\fB\ev\fR\fR
252 .ad
253 .RS 8n
254 Vertical tab character.
255 .RE

257 .sp
258 .ne 2
259 .na

new/usr/src/man/man1/printf.1 5

260 \fB\fB\e\e\fR\fR
261 .ad
262 .RS 8n
263 Backslash character.
264 .RE

266 .sp
267 .ne 2
268 .na
269 \fB\fB\e0\fR\fIx\fR\fR
270 .ad
271 .RS 8n
272 The 8-bit character whose \fBASCII\fR code is the \fB1\fR-, \fB2\fR-, or
273 \fB3\fR-digit octal number \fIx\fR.
274 .RE

276 .RE

278 .sp
279 .ne 2
280 .na
281 \fB\fB%B\fR\fR
282 .ad
283 .RS 6n
284 Treat the argument as a variable name and output the value without converting
285 it to a string. This is most useful for variables of type \fB-b\fR.
286 .RE

288 .sp
289 .ne 2
290 .na
291 \fB\fB%H\fR\fR
292 .ad
293 .RS 6n
294 Output string with characters \fB<\fR, \fB&\fR, \fB>\fR, \fB"\fR, and
295 non-printable characters, properly escaped for use in HTML and XML documents.
296 .RE

298 .sp
299 .ne 2
300 .na
301 \fB\fB%P\fR\fR
302 .ad
303 .RS 6n
304 Treat \fIstring\fR as an extended regular expression and convert it to a shell
305 pattern.
306 .RE

308 .sp
309 .ne 2
310 .na
311 \fB\fB%q\fR\fR
312 .ad
313 .RS 6n
314 Output \fIstring\fR quoted in a manner that it can be read in by the shell to
315 get back the same string. However, empty strings resulting from missing string
316 operands are not quoted.
317 .RE

319 .sp
320 .ne 2
321 .na
322 \fB\fB%R\fR\fR
323 .ad
324 .RS 6n
325 Treat \fIstring\fR as an shell pattern expression and convert it to an extended

new/usr/src/man/man1/printf.1 6

326 regular expression.
327 .RE

329 .sp
330 .ne 2
331 .na
332 \fB\fB%T\fR\fR
333 .ad
334 .RS 6n
335 Treat \fIstring\fR as a date/time string and format it. The \fBT\fR can be
336 preceded by (\fIdformat\fR), where \fIdformat\fR is a date format as defined by
337 the \fBdate\fR(1) command.
338 .RE

340 .sp
341 .ne 2
342 .na
343 \fB\fB%Z\fR\fR
344 .ad
345 .RS 6n
346 Output a byte whose value is \fB0\fR.
347 .RE

349 .sp
350 .LP
351 When performing conversions of \fIstring\fR to satisfy a numeric format
352 specifier, if the first character of \fIstring\fR is \fB"or’\fR, the value is
353 the numeric value in the underlying code set of the character following the
354 \fB"or’\fR. Otherwise, \fIstring\fR is treated like a shell arithmetic
355 expression and evaluated.
356 .sp
357 .LP
358 If a \fIstring\fR operand cannot be completely converted into a value
359 appropriate for that format specifier, an error occurs, but remaining
360 \fIstring\fR operands continue to be processed.
361 .sp
362 .LP
363 In addition to the format specifier extensions, the following extensions of
364 ANSI C/C99/XPG6 are permitted in format specifiers:
365 .RS +4
366 .TP
367 .ie t \(bu
368 .el o
369 The escape sequences \fB\eE\fR and \fB\ee\fR expand to the escape character
370 which is octal 033 in ASCII.
371 .RE
372 .RS +4
373 .TP
374 .ie t \(bu
375 .el o
376 The escape sequence \fB\ecx\fR expands to CTRL-x.
377 .RE
378 .RS +4
379 .TP
380 .ie t \(bu
381 .el o
382 The escape sequence \fB\eC[.\fR\fIname\fR\fB\&.]\fR expands to the collating
383 element \fIname\fR.
384 .RE
385 .RS +4
386 .TP
387 .ie t \(bu
388 .el o
389 The escape sequence \fB\ex{hex}\fRexpands to the character corresponding to the
390 hexadecimal value \fBhex\fR.
391 .RE

new/usr/src/man/man1/printf.1 7

392 .RS +4
393 .TP
394 .ie t \(bu
395 .el o
396 The format modifier flag = can be used to center a field to a specified width.
397 When the output is a terminal, the character width is used rather than the
398 number of bytes.
399 .RE
400 .RS +4
401 .TP
402 .ie t \(bu
403 .el o
404 Each of the integral format specifiers can have a third modifier after width
405 and precision that specifies the base of the conversion from 2 to 64. In this
406 case, the \fB#\fR modifier causes \fIbase\fR\fB#\fR to be prepended to the
407 value.
408 .RE
409 .RS +4
410 .TP
411 .ie t \(bu
412 .el o
413 The \fB#\fR modifier can be used with the \fBd\fR specifier when no base is
414 specified to cause the output to be written in units of 1000 with a suffix of
415 one of \fBk M G T P E\fR.
416 .RE
417 .RS +4
418 .TP
419 .ie t \(bu
420 .el o
421 The \fB#\fR modifier can be used with the \fBi\fR specifier to cause the output
422 to be written in units of \fB1024\fR with a suffix of one of \fBKi Mi Gi Ti Pi
423 Ei\fR.
424 .RE
425 .sp
426 .LP
427 If there are more \fIstring\fR operands than format specifiers, the format
428 string is reprocessed from the beginning. If there are fewer \fIstring\fR
429 operands than format specifiers, then \fIstring\fR specifiers are treated as if
430 empty strings were supplied, numeric conversions are treated as if \fB0\fR was
431 supplied, and time conversions are treated as if \fBnow\fR was supplied.
432 .sp
433 .LP
434 \fB/usr/bin/printf\fR is equivalent to \fBksh93\fR’s \fBprintf\fR built-in and
435 \fBprint -f\fR, which allows additional options to be specified.
436 .SH USAGE
437 .SS "/usr/bin/printf"
438 .sp
439 .LP
440 The \fBprintf\fR utility, like the \fBprintf\fR(3C) function on which it is
441 based, makes no special provision for dealing with multi-byte characters when
442 using the \fB%c\fR conversion specification. Applications should be extremely
443 cautious using either of these features when there are multi-byte characters in
444 the character set.
445 .sp
446 .LP
447 Field widths and precisions cannot be specified as \fB*\fR.
448 .sp
449 .LP
450 The \fB%b\fR conversion specification is not part of the ISO C standard; it has
451 been added here as a portable way to process backslash escapes expanded in
452 string operands as provided by the \fBecho\fR utility. See also the USAGE
453 section of the \fBecho\fR(1) manual page for ways to use \fBprintf\fR as a
454 replacement for all of the traditional versions of the \fBecho\fR utility.
455 .sp
456 .LP
457 If an argument cannot be parsed correctly for the corresponding conversion

new/usr/src/man/man1/printf.1 8

458 specification, the \fBprintf\fR utility reports an error. Thus, overflow and
459 extraneous characters at the end of an argument being used for a numeric
460 conversion are to be reported as errors.
461 .sp
462 .LP
463 It is not considered an error if an argument operand is not completely used for
464 a \fBc\fR or \fBs\fR conversion or if a string operand’s first or second
465 character is used to get the numeric value of a character.
466 .SH EXAMPLES
467 .SS "/usr/bin/printf"
468 .LP
469 \fBExample 1 \fRPrinting a Series of Prompts
470 .sp
471 .LP
472 The following example alerts the user, then prints and reads a series of
473 prompts:

475 .sp
476 .in +2
477 .nf
478 example% \fBprintf "\eaPlease fill in the following: \enName: "
479 read name
480 printf "Phone number: "
481 read phone\fR
482 .fi
483 .in -2
484 .sp

486 .LP
487 \fBExample 2 \fRPrinting a Table of Calculations
488 .sp
489 .LP
490 The following example prints a table of calculations. It reads out a list of
491 right and wrong answers from a file, calculates the percentage correctly, and
492 prints them out. The numbers are right-justified and separated by a single tab
493 character. The percentage is written to one decimal place of accuracy:

495 .sp
496 .in +2
497 .nf
498 example% \fBwhile read right wrong ; do
499 percent=$(echo "scale=1;($right*100)/($right+$wrong)" | bc)
500 printf "%2d right\et%2d wrong\et(%s%%)\en" \e
501 $right $wrong $percent
502 done < database_file\fR
503 .fi
504 .in -2
505 .sp

507 .LP
508 \fBExample 3 \fRPrinting number strings
509 .sp
510 .LP
511 The command:

513 .sp
514 .in +2
515 .nf
516 example% \fBprintf "%5d%4d\en" 1 21 321 4321 54321\fR
517 .fi
518 .in -2
519 .sp

521 .sp
522 .LP
523 produces:

new/usr/src/man/man1/printf.1 9

525 .sp
526 .in +2
527 .nf
528 1 21
529 3214321
530 54321 0
531 .fi
532 .in -2
533 .sp

535 .sp
536 .LP
537 The \fIformat\fR operand is used three times to print all of the given strings
538 and that a \fB0\fR was supplied by \fBprintf\fR to satisfy the last \fB%4d\fR
539 conversion specification.

541 .LP
542 \fBExample 4 \fRTabulating Conversion Errors
543 .sp
544 .LP
545 The following example tabulates conversion errors.

547 .sp
548 .LP
549 The \fBprintf\fR utility tells the user when conversion errors are detected
550 while producing numeric output. These results would be expected on an
551 implementation with 32-bit twos-complement integers when \fB%d\fR is specified
552 as the \fIformat\fR operand:

554 .sp

556 .sp
557 .TS
558 box;
559 c c c
560 l l l .
561 Arguments Standard Diagnostic
562 5a 5 printf: 5a not completely converted
563 9999999999 2147483647 printf: 9999999999: Results too large
564 -9999999999 -2147483648 printf: -9999999999: Results too large
565 ABC 0 printf: ABC expected numeric value
566 .TE

568 .sp
569 .LP
570 The value shown on standard output is what would be expected as the return
571 value from the function \fBstrtol\fR(3C). A similar correspondence exists
572 between \fB%u\fR and \fBstrtoul\fR(3C), and \fB%e\fR, \fB%f\fR and \fB%g\fR and
573 \fBstrtod\fR(3C).

575 .LP
576 \fBExample 5 \fRPrinting Output for a Specific Locale
577 .sp
578 .LP
579 The following example prints output for a specific locale. In a locale using
580 the ISO/IEC 646:1991 standard as the underlying codeset, the command:

582 .sp
583 .in +2
584 .nf
585 example% \fBprintf "%d\en" 3 +3 -3 \e’3 \e"+3 "’-3"\fR
586 .fi
587 .in -2
588 .sp

new/usr/src/man/man1/printf.1 10

590 .sp
591 .LP
592 produces:

594 .sp

596 .sp
597 .TS
598 box;
599 l l
600 l l .
601 \fB3\fR Numeric value of constant 3
602 \fB3\fR Numeric value of constant 3
603 \fB\(mi3\fR Numeric value of constant \(mi3
604 \fB51\fR T{
605 Numeric value of the character ‘3’ in the ISO/IEC 646:1991 standard codeset
606 T}
607 \fB43\fR T{
608 Numeric value of the character ‘+’ in the ISO/IEC 646:1991 standard codeset
609 T}
610 \fB45\fR T{
611 Numeric value of the character ‘\(mi’ in the SO/IEC 646:1991 standard codeset
612 T}
613 .TE

615 .sp
616 .LP
617 In a locale with multi-byte characters, the value of a character is intended to
618 be the value of the equivalent of the \fBwchar_t\fR representation of the
619 character.

621 .sp
622 .LP
623 If an argument operand cannot be completely converted into an internal value
624 appropriate to the corresponding conversion specification, a diagnostic message
625 is written to standard error and the utility does exit with a zero exit status,
626 but continues processing any remaining operands and writes the value
627 accumulated at the time the error was detected to standard output.

629 .LP
630 \fBExample 6 \fRAlternative floating point representation 1
631 .sp
632 .LP
633 The \fBprintf\fR utility supports an alternative floating point representation
634 (see \fBprintf\fR(3C) entry for the "\fB%a\fR"/"\fB%A\fR"), which allows the
635 output of floating-point values in a format that avoids the usual base16 to
636 base10 rounding errors.

638 .sp
639 .in +2
640 .nf
641 example% printf "%a\en" 2 3.1 NaN
641 example% printf "%a\n" 2 3.1 NaN
642 .fi
643 .in -2
644 .sp

646 .sp
647 .LP
648 produces:

650 .sp
651 .in +2
652 .nf
653 0x1.0000000000000000000000000000p+01
654 0x1.8ccccccccccccccccccccccccccdp+01

new/usr/src/man/man1/printf.1 11

655 nan
656 .fi
657 .in -2
658 .sp

660 .LP
661 \fBExample 7 \fRAlternative floating point representation 2
662 .sp
663 .LP
664 The following example shows two different representations of the same
665 floating-point value.

667 .sp
668 .in +2
669 .nf
670 example% x=2 ; printf "%f == %a\en" x x
670 example% x=2 ; printf "%f == %a\n" x x
671 .fi
672 .in -2
673 .sp

675 .sp
676 .LP
677 produces:

679 .sp
680 .in +2
681 .nf
682 2.000000 == 0x1.0000000000000000000000000000p+01
683 .fi
684 .in -2
685 .sp

687 .LP
688 \fBExample 8 \fROutput of unicode values
689 .sp
690 .LP
691 The following command will print the EURO unicode symbol (code-point 0x20ac).

693 .sp
694 .in +2
695 .nf
696 example% LC_ALL=en_US.UTF-8 printf "\u[20ac]\en"
696 example% LC_ALL=en_US.UTF-8 printf "\u[20ac]\n"
697 .fi
698 .in -2
699 .sp

701 .sp
702 .LP
703 produces:

705 .sp
706 .in +2
707 .nf
708 <euro>
709 .fi
710 .in -2
711 .sp

713 .sp
714 .LP
715 where "<euro>" represents the EURO currency symbol character.

717 .LP
718 \fBExample 9 \fRConvert unicode character to unicode code-point value

new/usr/src/man/man1/printf.1 12

719 .sp
720 .LP
721 The following command will print the hexadecimal value of a given character.

723 .sp
724 .in +2
725 .nf
726 example% export LC_ALL=en_US.UTF-8
727 example% printf "%x\en" "’<euro>"
727 example% printf "%x\n" "’<euro>"
728 .fi
729 .in -2
730 .sp

732 .sp
733 .LP
734 where "<euro>" represents the EURO currency symbol character (code-point
735 0x20ac).

737 .sp
738 .LP
739 produces:

741 .sp
742 .in +2
743 .nf
744 20ac
745 .fi
746 .in -2
747 .sp

749 .LP
750 \fBExample 10 \fRPrint the numeric value of an ASCII character
751 .sp
752 .in +2
753 .nf
754 example% printf "%d\en" "’A"
754 example% printf "%d\n" "’A"
755 .fi
756 .in -2
757 .sp

759 .sp
760 .LP
761 produces:

763 .sp
764 .in +2
765 .nf
766 65
767 .fi
768 .in -2
769 .sp

771 .LP
772 \fBExample 11 \fRPrint the language-independent date and time format
773 .sp
774 .LP
775 To print the language-independent date and time format, the following statement
776 could be used:

778 .sp
779 .in +2
780 .nf
781 example% printf "format" weekday month day hour min
782 .fi

new/usr/src/man/man1/printf.1 13

783 .in -2
784 .sp

786 .sp
787 .LP
788 For example,

790 .sp
791 .in +2
792 .nf
793 $ printf format "Sunday" "July" 3 10 2
794 .fi
795 .in -2
796 .sp

798 .sp
799 .LP
800 For American usage, format could be the string:

802 .sp
803 .in +2
804 .nf
805 "%s, %s %d, %d:%.2d\en"
805 "%s, %s %d, %d:%.2d\n"
806 .fi
807 .in -2
808 .sp

810 .sp
811 .LP
812 producing the message:

814 .sp
815 .in +2
816 .nf
817 Sunday, July 3, 10:02
818 .fi
819 .in -2
820 .sp

822 .sp
823 .LP
824 Whereas for EU usage, format could be the string:

826 .sp
827 .in +2
828 .nf
829 "%1$s, %3$d. %2$s, %4$d:%5$.2d\en"
829 "%1$s, %3$d. %2$s, %4$d:%5$.2d\n"
830 .fi
831 .in -2
832 .sp

834 .sp
835 .LP
836 Note that the ’$’ characters must be properly escaped, such as

838 .sp
839 .in +2
840 .nf
841 "%1\$s, %3\$d. %2\$s, %4\$d:%5\$.2d\en" in this case
841 "%1\$s, %3\$d. %2\$s, %4\$d:%5\$.2d\n" in this case
842 .fi
843 .in -2
844 .sp

new/usr/src/man/man1/printf.1 14

846 .sp
847 .LP
848 producing the message:

850 .sp
851 .in +2
852 .nf
853 Sunday, 3. July, 10:02
854 .fi
855 .in -2
856 .sp

858 .SH ENVIRONMENT VARIABLES
859 .sp
860 .LP
861 See \fBenviron\fR(5) for descriptions of the following environment variables
862 that affect the execution of \fBprintf\fR: \fBLANG\fR, \fBLC_ALL\fR,
863 \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, \fBLC_NUMERIC\fR, and \fBNLSPATH\fR.
864 .SH EXIT STATUS
865 .sp
866 .LP
867 The following exit values are returned:
868 .sp
869 .ne 2
870 .na
871 \fB\fB0\fR\fR
872 .ad
873 .RS 6n
874 Successful completion.
875 .RE

877 .sp
878 .ne 2
879 .na
880 \fB\fB>0\fR\fR
881 .ad
882 .RS 6n
883 An error occurred.
884 .RE

886 .SH ATTRIBUTES
887 .sp
888 .LP
889 See \fBattributes\fR(5) for descriptions of the following attributes:
890 .SS "/usr/bin/printf"
891 .sp

893 .sp
894 .TS
895 box;
896 c | c
897 l | l .
898 ATTRIBUTE TYPE ATTRIBUTE VALUE
899 _
900 CSI Enabled
901 _
902 Interface Stability Committed
903 _
904 Standard See \fBstandards\fR(5).
905 .TE

907 .SS "ksh93"
908 .sp

910 .sp
911 .TS

new/usr/src/man/man1/printf.1 15

912 box;
913 c | c
914 l | l .
915 ATTRIBUTE TYPE ATTRIBUTE VALUE
916 _
917 Interface Stability Uncommitted
918 .TE

920 .SH SEE ALSO
921 .sp
922 .LP
923 \fBawk\fR(1), \fBbc\fR(1), \fBdate\fR(1), \fBecho\fR(1), \fBksh93\fR(1),
924 \fBprintf\fR(3C), \fBstrtod\fR(3C), \fBstrtol\fR(3C), \fBstrtoul\fR(3C),
925 \fBattributes\fR(5), \fBenviron\fR(5), \fBformats\fR(5), \fBstandards\fR(5)
926 .SH NOTES
927 .sp
928 .LP
929 Using format specifiers (characters following ’%’) which are not listed in the
930 \fBprintf\fR(3C) or this manual page will result in undefined behavior.
931 .sp
932 .LP
933 Using escape sequences (the character following a backslash (’\e’)) which are
933 Using escape sequences (the character following a backslash (’\’)) which are
934 not listed in the \fBprintf\fR(3C) or this manual page will result in undefined
935 behavior.
936 .sp
937 .LP
938 Floating-point values follow C99, XPG6 and IEEE 754 standard behavior and can
939 handle values the same way as the platform’s |\fBlong double\fR| datatype.
940 .sp
941 .LP
942 Floating-point values handle the sign separately which allows signs for values
943 like NaN (for example, -nan), Infinite (for example, -inf) and zero (for
944 example, -0.0).

new/usr/src/man/man1/sleep.1 1

**
 5851 Tue Sep 10 18:35:19 2013
new/usr/src/man/man1/sleep.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved Portions
3 .\" Copyright 1989 AT&T
4 .\" Portions Copyright (c) 1982-2007 AT&T Knowledge Ventures
5 .\" Portions Copyright (c) 1992, X/Open Company Limited All Rights Reserved
6 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
7 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
8 .\" are reprinted and reproduced in electronic form in the Sun OS Reference Manu
9 .\" and Electronics Engineers, Inc and The Open Group. In the event of any discr

10 .\" This notice shall appear on any product containing this material.
11 .\" The contents of this file are subject to the terms of the Common Development
12 .\" See the License for the specific language governing permissions and limitat
13 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
14 .TH SLEEP 1 "Sep 10, 2013"
14 .TH SLEEP 1 "Nov 20, 2007"
15 .SH NAME
16 sleep \- suspend execution for an interval
17 .SH SYNOPSIS
18 .SS "/usr/bin/sleep"
19 .LP
20 .nf
21 \fB/usr/bin/sleep\fR \fIseconds\fR
22 .fi

24 .SS "ksh93"
25 .LP
26 .nf
27 \fBsleep\fR \fIseconds\fR
28 .fi

30 .SH DESCRIPTION
31 .sp
32 .LP
33 \fBsleep\fR suspends execution for at least the time in seconds specified by
34 \fIseconds\fR or until a \fBSIGALRM\fR signal is received. The \fIseconds\fR
35 operand can be specified as a floating point number but the actual granularity
36 normally depends on the underlying system.
37 .SH OPERANDS
38 .SS "/usr/bin/sleep"
39 .sp
40 .LP
41 The following operands are supported for \fB/usr/bin/sleep\fR and \fBksh93\fR’s
42 \fBsleep\fR built-in command:
43 .sp
44 .ne 2
45 .na
46 \fB\fIseconds\fR\fR
47 .ad
48 .RS 11n
49 A non-negative floating-point number specifying the number of seconds for which
50 to suspend execution. The floating-point number may be specified in all formats
51 required by C99/XPG6, including constants such as "Inf" or "infinite".
52 .RE

54 .SS "ksh93"
55 .sp
56 .LP
57 The following operands are supported:
58 .sp
59 .ne 2
60 .na

new/usr/src/man/man1/sleep.1 2

61 \fB\fItime\fR\fR
62 .ad
63 .RS 8n
64 Specify \fItime\fR in seconds as a floating point number. The actual
65 granularity depends on the underlying system, normally around 1 millisecond.
66 .RE

68 .SH EXAMPLES
69 .LP
70 \fBExample 1 \fRSuspending Command Execution
71 .sp
72 .LP
73 The following example executes a command after a certain amount of time:

75 .sp
76 .in +2
77 .nf
78 example% \fB(sleep 105; \fIcommand\fR)&\fR
79 .fi
80 .in -2
81 .sp

83 .LP
84 \fBExample 2 \fRExecuting a Command Every So Often
85 .sp
86 .LP
87 The following example executes a command every so often:

89 .sp
90 .in +2
91 .nf
92 example% \fBwhile true
93 do
94 \fIcommand\fR
95 sleep 37
96 done\fR
97 .fi
98 .in -2
99 .sp

101 .LP
102 \fBExample 3 \fRSuspend command execution forever (or until a \fBSIGALRM\fR
103 signal is received)
104 .sp
105 .in +2
106 .nf
107 example% sleep Inf
108 .fi
109 .in -2
110 .sp

112 .LP
113 \fBExample 4 \fRSuspending command execution for 0.5 seconds
114 .sp
115 .LP
116 Suspending command execution for 0.5 seconds using an alternative
117 floating-point representation for the value "0.5"

119 .sp
120 .in +2
121 .nf
122 example% printf "%a\en" 0.5
122 example% printf "%a\n" 0.5
123 0x1.0000000000000000000000000000p-01
124 .fi
125 .in -2

new/usr/src/man/man1/sleep.1 3

126 .sp

128 .sp
129 .in +2
130 .nf
131 example% sleep 0x1.0000000000000000000000000000p-01
132 .fi
133 .in -2
134 .sp

136 .SH ENVIRONMENT VARIABLES
137 .sp
138 .LP
139 See \fBenviron\fR(5) for descriptions of the following environment variables
140 that affect the execution of \fBsleep\fR: \fBLANG\fR, \fBLC_ALL\fR,
141 \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
142 .SH EXIT STATUS
143 .sp
144 .LP
145 The following exit values are returned:
146 .sp
147 .ne 2
148 .na
149 \fB\fB0\fR\fR
150 .ad
151 .RS 6n
152 The execution was successfully suspended for at least \fItime\fR seconds, or a
153 \fBSIGALRM\fR signal was received (see NOTES).
154 .RE

156 .sp
157 .ne 2
158 .na
159 \fB\fB>0\fR\fR
160 .ad
161 .RS 6n
162 An error has occurred.
163 .RE

165 .SH ATTRIBUTES
166 .sp
167 .LP
168 See \fBattributes\fR(5) for descriptions of the following attributes:
169 .SS "/usr/bin/sleep"
170 .sp

172 .sp
173 .TS
174 box;
175 c | c
176 l | l .
177 ATTRIBUTE TYPE ATTRIBUTE VALUE
178 _
179 Interface Stability Committed
180 _
181 Standard See \fBstandards\fR(5).
182 .TE

184 .SS "ksh93"
185 .sp

187 .sp
188 .TS
189 box;
190 c | c
191 l | l .

new/usr/src/man/man1/sleep.1 4

192 ATTRIBUTE TYPE ATTRIBUTE VALUE
193 _
194 Interface Stability Uncommitted
195 .TE

197 .SH SEE ALSO
198 .sp
199 .LP
200 \fBksh93\fR(1), \fBwait\fR(1), \fBalarm\fR(2), \fBsleep\fR(3C),
201 \fBwait\fR(3UCB), \fBattributes\fR(5), \fBenviron\fR(5), \fBstandards\fR(5)
202 .SH NOTES
203 .sp
204 .LP
205 If the \fBsleep\fR utility receives a \fBSIGALRM\fR signal, one of the
206 following actions is taken:
207 .RS +4
208 .TP
209 .ie t \(bu
210 .el o
211 Terminate normally with a zero exit status.
212 .RE
213 .RS +4
214 .TP
215 .ie t \(bu
216 .el o
217 Effectively ignore the signal.
218 .RE
219 .sp
220 .LP
221 The \fBsleep\fR utility takes the standard action for all other signals.
222 .sp
223 .LP
224 The behavior for input values such as "NaN" (not-a-number) or negative values
225 is undefined.

new/usr/src/man/man1/sum.1 1

**
 14058 Tue Sep 10 18:35:19 2013
new/usr/src/man/man1/sum.1
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 1992, X/Open Company Limited All Rights Reserved
3 .\" Copyright 1989 AT&T
4 .\" Portions Copyright (c) 2009, Sun Microsystems, Inc. All Rights Reserved.
5 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
6 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
7 .\" are reprinted and reproduced in electronic form in the Sun OS Reference Manu
8 .\" and Electronics Engineers, Inc and The Open Group. In the event of any discr
9 .\" This notice shall appear on any product containing this material.

10 .\" The contents of this file are subject to the terms of the Common Development
11 .\" See the License for the specific language governing permissions and limitat
12 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
13 .TH SUM 1 "Aug 11, 2009"
14 .SH NAME
15 sum \- print checksum and block count for a file
16 .SH SYNOPSIS
17 .LP
18 .nf
19 \fB/usr/bin/sum\fR [-abBchHlLpPrRstTw] [-x method] [\fIfile\fR...]
20 .fi

22 .SS "ksh93"
23 .LP
24 .nf
25 sum [-abBchHlLpPrRstTw] [-x method] [\fIfile\fR...]
26 .fi

28 .SH DESCRIPTION
29 .sp
30 .LP
31 The \fBsum\fR utility and ksh93 built-in command list the checksum, and for
32 most methods the block count, for each file argument. The standard input is
33 read if there are no file arguments.
34 .sp
35 .LP
36 The \fBgetconf\fR(1) \fBUNIVERSE\fR determines the default sum method: att for
37 the att universe, bsd otherwise. The default for the other commands is the
38 command name itself. The att method is a true sum, all others are order
39 dependent.
40 .sp
41 .LP
42 Method names consist of a leading identifier and 0 or more options separated by
43 -.
44 .sp
45 .LP
46 \fBgetconf\fR \fBPATH_RESOLVE\fR determines how symbolic links are handled.
47 This can be explicitly overridden by the \fB--logical\fR, \fB--metaphysical\fR,
48 and \fB--physical\fR options below. \fBPATH_RESOLVE\fR can be one of:
49 .sp
50 .ne 2
51 .na
52 \fB\fB--logical\fR\fR
53 .ad
54 .RS 18n
55 Follow all symbolic links.
56 .RE

58 .sp
59 .ne 2
60 .na
61 \fB\fB--metaphysical\fR\fR

new/usr/src/man/man1/sum.1 2

62 .ad
63 .RS 18n
64 Follow command argument symbolic links, otherwise do not follow.
65 .RE

67 .sp
68 .ne 2
69 .na
70 \fB\fB--physical\fR\fR
71 .ad
72 .RS 18n
73 Do not follow symbolic links.
74 .RE

76 .SH OPTIONS
77 .sp
78 .LP
79 The following options are supported for \fB/usr/bin/sum\fR:
80 .sp
81 .ne 2
82 .na
83 \fB\fB-a\fR\fR
84 .ad
85 .br
86 .na
87 \fB\fB--all\fR\fR
88 .ad
89 .sp .6
90 .RS 4n
91 List the checksum for all files. Use with \fB--total\fR to list both individual
92 and total checksums and block counts.
93 .RE

95 .sp
96 .ne 2
97 .na
98 \fB\fB-b\fR\fR
99 .ad
100 .br
101 .na
102 \fB\fB--binary\fR\fR
103 .ad
104 .sp .6
105 .RS 4n
106 Read files in binary mode. This is the default.
107 .RE

109 .sp
110 .ne 2
111 .na
112 \fB\fB-B\fR\fR
113 .ad
114 .br
115 .na
116 \fB\fB--scale=scale\fR\fR
117 .ad
118 .sp .6
119 .RS 4n
120 Block count scale (bytes per block) override for methods that include size in
121 the output. The default is method-specific.
122 .RE

124 .sp
125 .ne 2
126 .na
127 \fB\fB-c\fR\fR

new/usr/src/man/man1/sum.1 3

128 .ad
129 .br
130 .na
131 \fB\fB--check\fR\fR
132 .ad
133 .sp .6
134 .RS 4n
135 Each file is interpreted as the output from a previous sum. If \fB--header\fR
136 or \fB--permissions\fR was specified in the previous sum then the checksum
137 method is automatically determined, otherwise \fB--method\fR must be specified.
138 The listed checksum is compared with the current value and a warning is issued
139 for each file that does not match. If file was generated by
140 \fB--permissions\fR, then the file mode, user and group are also checked. Empty
141 lines, lines starting with #<space>, or the line # are ignored. Lines
142 containing no blanks are interpreted as [no]name[=\fIvalue\fR] options:
143 .sp
144 .ne 2
145 .na
146 \fB\fBmethod=name\fR\fR
147 .ad
148 .sp .6
149 .RS 4n
150 Checksum method to apply to subsequent lines.
151 .RE

153 .sp
154 .ne 2
155 .na
156 \fB\fBpermissions\fR\fR
157 .ad
158 .sp .6
159 .RS 4n
160 Subsequent lines were generated with \fB--permissions\fR.
161 .RE

163 .RE

165 .sp
166 .ne 2
167 .na
168 \fB\fB-h\fR\fR
169 .ad
170 .br
171 .na
172 \fB\fB--header\fR\fR
173 .ad
174 .sp .6
175 .RS 4n
176 Print the checksum method as the first output line. Used with \fB--check\fR and
177 \fB--permissions\fR.
178 .RE

180 .sp
181 .ne 2
182 .na
183 \fB\fB-l\fR\fR
184 .ad
185 .br
186 .na
187 \fB\fB--list\fR\fR
188 .ad
189 .sp .6
190 .RS 4n
191 Each file is interpreted as a list of files, one per line, that is checksummed.
192 .RE

new/usr/src/man/man1/sum.1 4

194 .sp
195 .ne 2
196 .na
197 \fB\fB-p\fR\fR
198 .ad
199 .br
200 .na
201 \fB\fB--permissions\fR\fR
202 .ad
203 .sp .6
204 .RS 4n
205 If \fB--check\fR is not specified then list the file mode, user and group
206 between the checksum and path. User and group matching the caller are output as
207 -. If \fB--check\fR is specified then the mode, user and group for each path in
208 file are updated if necessary to match those in file. A warning is printed on
209 the standard error for each changed file.
210 .RE

212 .sp
213 .ne 2
214 .na
215 \fB\fB-R\fR\fR
216 .ad
217 .br
218 .na
219 \fB\fB--recursive\fR\fR
220 .ad
221 .sp .6
222 .RS 4n
223 Recursively checksum the contents of directories.
224 .RE

226 .sp
227 .ne 2
228 .na
229 \fB\fB-t\fR\fR
230 .ad
231 .br
232 .na
233 \fB\fB--total\fR\fR
234 .ad
235 .sp .6
236 .RS 4n
237 List only the total checksum and block count of all files. \fB--all\fR
238 \fB--total\fR lists each checksum and the total. The total checksum and block
239 count may be different from the checksum and block count of the catenation of
240 all files due to partial blocks that may occur when the files are treated
241 separately.
242 .RE

244 .sp
245 .ne 2
246 .na
247 \fB\fB-T\fR\fR
248 .ad
249 .br
250 .na
251 \fB\fB--text\fR\fR
252 .ad
253 .sp .6
254 .RS 4n
255 Read files in text mode (for example, treat \er\en as \en).
255 Read files in text mode (for example, treat \r\n as \n).
256 .RE

258 .sp

new/usr/src/man/man1/sum.1 5

259 .ne 2
260 .na
261 \fB\fB-w\fR\fR
262 .ad
263 .br
264 .na
265 \fB\fB--warn\fR\fR
266 .ad
267 .sp .6
268 .RS 4n
269 Warn about invalid \fB--check\fR lines. On by default; \fB-w\fR means
270 \fB--nowarn\fR.
271 .RE

273 .sp
274 .ne 2
275 .na
276 \fB\fB-x\fR\fR
277 .ad
278 .br
279 .na
280 \fB\fB--method|algorithm=method\fR\fR
281 .ad
282 .sp .6
283 .RS 4n
284 Specifies the checksum method to apply. Parenthesized method options are
285 readonly implementation details.
286 .sp
287 .ne 2
288 .na
289 \fB\fBatt\fR|\fBsys5\fR|\fBs5\fR|\fBdefault\fR\fR
290 .ad
291 .sp .6
292 .RS 4n
293 The system 5 release 4 checksum. This is the default for sum when \fBgetconf\fR
294 \fBUNIVERSE\fR is \fBatt\fR. This is the only true sum; all of the other
295 methods are order dependent.
296 .RE

298 .sp
299 .ne 2
300 .na
301 \fB\fBast4\fR|\fB32x4\fR|\fBtw\fR\fR
302 .ad
303 .sp .6
304 .RS 4n
305 The \fBast\fR 128 bit \fBPRNG\fR hash generated by catenating 4 separate 32 bit
306 \fBPNRG\fR hashes. The block count is not printed.
307 .RE

309 .sp
310 .ne 2
311 .na
312 \fB\fBbsd\fR|\fBucb\fR\fR
313 .ad
314 .sp .6
315 .RS 4n
316 The BSD checksum.
317 .RE

319 .sp
320 .ne 2
321 .na
322 \fB\fBcrc\fR\fR
323 .ad
324 .sp .6

new/usr/src/man/man1/sum.1 6

325 .RS 4n
326 32 bit CRC (cyclic redundancy check).
327 .sp
328 .ne 2
329 .na
330 \fB\fBpolynomial\fR=\fImask\fR\fR
331 .ad
332 .sp .6
333 .RS 4n
334 The 32 bit \fBcrc\fR polynomial bitmask with implicit bit 32. The default value
335 is 0xedb88320.
336 .RE

338 .sp
339 .ne 2
340 .na
341 \fB\fBdone\fR[=\fInumber\fR]\fR
342 .ad
343 .sp .6
344 .RS 4n
345 XOR the final \fBcrc\fR value with number. 0xffffffff is used if number is
346 omitted. The option value may be omitted. The default value is 0.
347 .RE

349 .sp
350 .ne 2
351 .na
352 \fB\fBinit\fR[=\fInumber\fR]\fR
353 .ad
354 .sp .6
355 .RS 4n
356 The initial \fBcrc\fR value. 0xffffffff is used if number is omitted. The
357 option value may be omitted. The default value is 0.
358 .RE

360 .sp
361 .ne 2
362 .na
363 \fB\fBrotate\fR\fR
364 .ad
365 .sp .6
366 .RS 4n
367 XOR each input character with the high order \fBcrc\fR byte (instead of the low
368 order).
369 .RE

371 .sp
372 .ne 2
373 .na
374 \fB\fBsize\fR[=\fInumber\fR]\fR
375 .ad
376 .sp .6
377 .RS 4n
378 Include the total number of bytes in the crc. number, if specified, is first
379 XOR’d into the size. The option value may be omitted. The default value is 0.
380 .RE

382 .RE

384 .sp
385 .ne 2
386 .na
387 \fB\fBprng\fR\fR
388 .ad
389 .sp .6
390 .RS 4n

new/usr/src/man/man1/sum.1 7

391 32 bit \fBPRNG\fR (pseudo random number generator) hash.
392 .sp
393 .ne 2
394 .na
395 \fB\fBmpy\fR=\fInumber\fR\fR
396 .ad
397 .RS 17n
398 The 32 bit \fBPRNG\fR multiplier. The default value is 0x01000193.
399 .RE

401 .sp
402 .ne 2
403 .na
404 \fB\fBadd\fR=\fInumber\fR\fR
405 .ad
406 .RS 17n
407 The 32 bit \fBPRNG\fR addend. The default value is 0.
408 .RE

410 .sp
411 .ne 2
412 .na
413 \fB\fBinit\fR[=\fInumber\fR]\fR
414 .ad
415 .RS 17n
416 The \fBPRNG\fR initial value. 0xffffffff is used if number is omitted. The
417 option value may be omitted. The default value is 0x811c9dc5.
418 .RE

420 .RE

422 .sp
423 .ne 2
424 .na
425 \fB\fBmd4\fR|\fBMD4\fR\fR
426 .ad
427 .sp .6
428 .RS 4n
429 \fBRFC1320\fR \fBMD4\fR message digest. Cryptographically weak. The block count
430 is not printed. (version) \fBmd4\fR (\fBsolaris\fR \fB-lmd\fR) 2005-07-26
431 .RE

433 .sp
434 .ne 2
435 .na
436 \fB\fBmd5\fR|\fBMD5\fR\fR
437 .ad
438 .sp .6
439 .RS 4n
440 \fBRFC1321\fR \fBMD5\fR message digest. Cryptographically weak. The block count
441 is not printed. (version) \fBmd5\fR (\fBsolaris\fR \fB-lmd\fR) 2005-07-26
442 .RE

444 .sp
445 .ne 2
446 .na
447 \fB\fBsha1\fR|\fBSHA1\fR|\fBsha-1\fR|\fBSHA-1\fR\fR
448 .ad
449 .sp .6
450 .RS 4n
451 \fBRFC3174\fR / \fBFIPS 180-1\fR \fBSHA-1\fR secure hash algorithm 1.
452 Cryptographically weak. The block count is not printed. (version) \fBsha1\fR
453 (\fBsolaris\fR \fB-lmd\fR) 2005-07-26
454 .RE

456 .sp

new/usr/src/man/man1/sum.1 8

457 .ne 2
458 .na
459 \fB\fBsha256\fR|\fBsha-256\fR|\fBSHA256\fR|\fBSHA-256\fR\fR
460 .ad
461 .sp .6
462 .RS 4n
463 \fBFIPS 180-2\fR \fBSHA256\fR secure hash algorithm. The block count is not
464 printed. (version) \fBsha256\fR (\fBsolaris\fR \fB-lmd\fR) 2005-07-26
465 .RE

467 .sp
468 .ne 2
469 .na
470 \fB\fBsha384\fR|\fBsha-384\fR|\fBSHA384\fR|\fBSHA-384\fR\fR
471 .ad
472 .sp .6
473 .RS 4n
474 \fBFIPS 180-2\fR \fBSHA384\fR secure hash algorithm. The block count is not
475 printed. (version) \fBsha384\fR (\fBsolaris\fR \fB-lmd\fR) 2005-07-26
476 .RE

478 .sp
479 .ne 2
480 .na
481 \fB\fBsha512\fR|\fBsha-512\fR|\fBSHA512\fR|\fBSHA-512\fR\fR
482 .ad
483 .sp .6
484 .RS 4n
485 \fBFIPS 180-2\fR \fBSHA512\fR secure hash algorithm. The block count is not
486 printed. (version) \fBsha512\fR (\fBsolaris\fR \fB-lmd\fR) 2005-07-26
487 .RE

489 .sp
490 .ne 2
491 .na
492 \fB\fBposix\fR|\fBcksum\fR|\fBstd\fR|\fBstandard\fR\fR
493 .ad
494 .sp .6
495 .RS 4n
496 The \fBposix 1003.2-1992\fR 32 bit \fBcrc\fR checksum. This is the default
497 \fBcksum\fR(1) method. Shorthand for \fBcrc-0x04c11db7-rotate-done-size\fR.
498 .RE

500 .sp
501 .ne 2
502 .na
503 \fB\fBzip\fR\fR
504 .ad
505 .sp .6
506 .RS 4n
507 The \fBzip\fR(1) \fBcrc\fR. Shorthand for \fBcrc-0xedb88320-init-done\fR.
508 .RE

510 .sp
511 .ne 2
512 .na
513 \fB\fBfddi\fR\fR
514 .ad
515 .sp .6
516 .RS 4n
517 The \fBFDDI\fR \fBcrc\fR. Shorthand for
518 \fBcrc-0xedb88320-size\fR=\fB0xcc55cc55\fR.
519 .RE

521 .sp
522 .ne 2

new/usr/src/man/man1/sum.1 9

523 .na
524 \fB\fBfnv\fR|\fBfnv1\fR\fR
525 .ad
526 .sp .6
527 .RS 4n
528 The \fBFowler-Noll-Vo\fR 32 bit \fBPRNG\fR hash with non-zero initializer
529 (\fBFNV-1\fR). Shorthand for \fBprng-0x01000193-init\fR=\fB0x811c9dc5\fR.
530 .RE

532 .sp
533 .ne 2
534 .na
535 \fB\fBast\fR|\fBstrsum\fR\fR
536 .ad
537 .sp .6
538 .RS 4n
539 The \fBast\fR \fBstrsum\fR \fBPRNG\fR hash. Shorthand for
540 \fBprng-0x63c63cd9-add\fR=\fB0x9c39c33d\fR.
541 .RE

543 .RE

545 .sp
546 .ne 2
547 .na
548 \fB\fB-L\fR\fR
549 .ad
550 .br
551 .na
552 \fB\fB--logical\fR|\fBfollow\fR\fR
553 .ad
554 .sp .6
555 .RS 4n
556 Follow symbolic links when traversing directories. The default is determined by
557 \fBgetconf\fR \fBPATH_RESOLVE\fR.
558 .RE

560 .sp
561 .ne 2
562 .na
563 \fB\fB-H\fR\fR
564 .ad
565 .br
566 .na
567 \fB\fB--metaphysical\fR\fR
568 .ad
569 .sp .6
570 .RS 4n
571 Follow command argument symbolic links, otherwise do not follow symbolic links
572 when traversing directories. The default is determined by \fBgetconf\fR
573 \fBPATH_RESOLVE\fR.
574 .RE

576 .sp
577 .ne 2
578 .na
579 \fB\fB-P\fR\fR
580 .ad
581 .br
582 .na
583 \fB\fB--physical\fR\fR
584 .ad
585 .sp .6
586 .RS 4n
587 Do not follow symbolic links when traversing directories. The default is
588 determined by \fBgetconf\fR \fBPATH_RESOLVE\fR.

new/usr/src/man/man1/sum.1 10

589 .RE

591 .sp
592 .ne 2
593 .na
594 \fB\fB-r\fR\fR
595 .ad
596 .br
597 .na
598 \fB\fB--bsd\fR\fR
599 .ad
600 .sp .6
601 .RS 4n
602 Equivalent to \fB--method=bsd\fR \fB--scale=512\fR for compatibility with other
603 sum implementations.
604 .RE

606 .sp
607 .ne 2
608 .na
609 \fB\fB-s\fR\fR
610 .ad
611 .br
612 .na
613 \fB\fB--sysv\fR\fR
614 .ad
615 .sp .6
616 .RS 4n
617 Equivalent to \fB--method=sys5\fR for compatibility with other sum
618 implementations.
619 .RE

621 .sp
622 .ne 2
623 .na
624 \fB\fB-S\fR\fR
625 .ad
626 .br
627 .na
628 \fB\fB--silent\fR|\fBstatus\fR\fR
629 .ad
630 .sp .6
631 .RS 4n
632 No output for \fB--check\fR; 0 exit status means all sums matched, non-0 means
633 at least one sum failed to match. Ignored for \fB--permissions\fR.
634 .RE

636 .SH OPERANDS
637 .sp
638 .LP
639 The following operands are supported:
640 .sp
641 .ne 2
642 .na
643 \fB\fIfile\fR\fR
644 .ad
645 .RS 8n
646 A path name of a file. If no files are named, the standard input is used.
647 .RE

649 .SH USAGE
650 .sp
651 .LP
652 See \fBlargefile\fR(5) for the description of the behavior of \fBsum\fR when
653 encountering files greater than or equal to 2 Gbyte (2^31 bytes).
654 .SH ENVIRONMENT VARIABLES

new/usr/src/man/man1/sum.1 11

655 .sp
656 .LP
657 See \fBenviron\fR(5) for descriptions of the following environment variables
658 that affect the execution of \fBsum\fR: \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and
659 \fBNLSPATH\fR.
660 .SH EXIT STATUS
661 .sp
662 .LP
663 The following exit values are returned.
664 .sp
665 .ne 2
666 .na
667 \fB\fB0\fR\fR
668 .ad
669 .RS 6n
670 Successful completion.
671 .RE

673 .sp
674 .ne 2
675 .na
676 \fB\fB>0\fR\fR
677 .ad
678 .RS 6n
679 An error occurred.
680 .RE

682 .SH ATTRIBUTES
683 .sp
684 .LP
685 See \fBattributes\fR(5) for descriptions of the following attributes:
686 .sp

688 .sp
689 .TS
690 box;
691 c | c
692 l | l .
693 ATTRIBUTE TYPE ATTRIBUTE VALUE
694 _
695 CSI Enabled
696 .TE

698 .SH SEE ALSO
699 .sp
700 .LP
701 \fBcksum\fR(1), \fBgetconf\fR(1), \fBksh93\fR(1), \fBsum\fR(1B), \fBwc\fR(1),
702 \fBzip\fR(1) , \fBlibmd\fR(3LIB), \fBattributes\fR(5), \fBenviron\fR(5),
703 \fBlargefile\fR(5)
704 .SH DIAGNOSTICS
705 .sp
706 .LP
707 \fBRead error\fR is indistinguishable from end of file on most devices. Check
708 the block count.
709 .SH NOTES
710 .sp
711 .LP
712 Portable applications should use \fBcksum\fR(1). The default algorithm for this
713 command is defined in the POSIX standard and is identical across platforms.
714 .sp
715 .LP
716 \fBsum\fR and \fBusr/ucb/sum\fR (see \fBsum\fR(1B)) return different checksums.

new/usr/src/man/man1c/uuencode.1c 1

**
 11721 Tue Sep 10 18:35:19 2013
new/usr/src/man/man1c/uuencode.1c
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright 1989 AT&T Copyright (c) 1980 Regents of the University of Califo
3 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
4 .\" http://www.opengroup.org/bookstore/.
5 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
6 .\" This notice shall appear on any product containing this material.
7 .TH UUENCODE 1C "Sep 10, 2013"
7 .TH UUENCODE 1C "Aug 6, 2003"
8 .SH NAME
9 uuencode, uudecode \- encode a binary file, or decode its encoded

10 representation
11 .SH SYNOPSIS
12 .LP
13 .nf
14 \fBuuencode\fR [\fIsource-file\fR] \fIdecode_pathname\fR
15 .fi

17 .LP
18 .nf
19 \fBuuencode\fR [\fB-m\fR] [\fIsource-file\fR] \fIdecode_pathname\fR
20 .fi

22 .LP
23 .nf
24 \fBuudecode\fR [\fB-p\fR] [\fIencoded-file\fR]
25 .fi

27 .LP
28 .nf
29 \fBuudecode\fR [\fB-o\fR \fIoutfile\fR] [\fIencoded-file\fR]
30 .fi

32 .SH DESCRIPTION
33 .sp
34 .LP
35 These commands encode and decode files as follows:
36 .SS "uuencode"
37 .sp
38 .LP
39 The \fBuuencode\fR utility converts a binary file into an encoded
40 representation that can be sent using \fBmail\fR(1). It encodes the contents of
41 \fIsource-file\fR, or the standard input if no \fIsource-file\fR argument is
42 given. The \fIdecode_pathname\fR argument is required. The
43 \fIdecode_pathname\fR is included in the encoded file’s header as the name of
44 the file into which \fBuudecode\fR is to place the binary (decoded) data.
45 \fBuuencode\fR also includes the permission modes of \fIsource-file\fR (except
46 \fBsetuid\fR, \fBsetgid\fR, and sticky-bits), so that \fIdecode_pathname\fR is
47 recreated with those same permission modes.
48 .SS "uudecode"
49 .sp
50 .LP
51 The \fBuudecode\fR utility reads an \fIencoded-file\fR, strips off any leading
52 and trailing lines added by mailer programs, and recreates the original binary
53 data with the filename and the mode specified in the header.
54 .sp
55 .LP
56 The encoded file is an ordinary portable character set text file; it can be
57 edited by any text editor. It is best only to change the mode or
58 \fIdecode_pathname\fR in the header to avoid corrupting the decoded binary.
59 .SH OPTIONS
60 .sp

new/usr/src/man/man1c/uuencode.1c 2

61 .LP
62 The following options are supported:
63 .SS "uuencode"
64 .sp
65 .ne 2
66 .na
67 \fB\fB-m\fR\fR
68 .ad
69 .RS 6n
70 Encodes \fIsource-file\fR using Base64 encoding and sends it to standard
71 output.
72 .RE

74 .SS "uudecode"
75 .sp
76 .ne 2
77 .na
78 \fB\fB-o\fR \fIoutfile\fR\fR
79 .ad
80 .RS 14n
81 Specifies a file pathname that should be used instead of any pathname contained
82 in the input data. Specifying an \fIoutfile\fR option-argument of
83 \fB/dev/stdout\fR indicates standard output.This allows \fBuudecode\fR to be
84 used in a pipeline.
85 .RE

87 .sp
88 .ne 2
89 .na
90 \fB\fB-p\fR\fR
91 .ad
92 .RS 14n
93 Decodes \fIencoded-file\fR and sends it to standard output. This allows
94 \fBuudecode\fR to be used in a pipeline.
95 .RE

97 .SH OPERANDS
98 .sp
99 .LP
100 The following operands are supported by \fBuuencode\fR and \fBuudecode\fR:
101 .SS "uuencode"
102 .sp
103 .ne 2
104 .na
105 \fB\fIdecode_pathname\fR\fR
106 .ad
107 .RS 19n
108 The pathname of the file into which the \fBuudecode\fR utility will place the
109 decoded file. If there are characters in \fIdecode_pathname\fR that are not in
110 the portable filename character set, the results are unspecified.
111 .RE

113 .sp
114 .ne 2
115 .na
116 \fB\fIsource-file\fR\fR
117 .ad
118 .RS 19n
119 A pathname of the file to be encoded.
120 .RE

122 .SS "uudecode"
123 .sp
124 .ne 2
125 .na
126 \fB\fIencoded-file\fR\fR

new/usr/src/man/man1c/uuencode.1c 3

127 .ad
128 .RS 16n
129 The pathname of a file containing the output of \fBuuencode\fR.
130 .RE

132 .SH USAGE
133 .sp
134 .LP
135 See \fBlargefile\fR(5) for the description of the behavior of \fBuuencode\fR
136 and \fBuudecode\fR when encountering files greater than or equal to 2 Gbyte (
137 2^31 bytes).
138 .SH ENVIRONMENT VARIABLES
139 .sp
140 .LP
141 See \fBenviron\fR(5) for descriptions of the following environment variables
142 that affect the execution of \fBuuencode\fR and \fBuudecode\fR: \fBLANG\fR,
143 \fBLC_ALL\fR, \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
144 .SH OUTPUT
145 .sp
146 .LP
147 stdout
148 .SS "uuencode Base64 Algorithm"
149 .sp
150 .LP
151 The standard output is a text file, encoded in the character set of the current
152 locale, that begins with the line:
153 .sp
154 .in +2
155 .nf
156 begin-base64 %s %s\en, \fImode\fR, \fIdecode_pathname\fR
156 begin-base64 %s %s\n, \fImode\fR, \fIdecode_pathname\fR
157 .fi
158 .in -2
159 .sp

161 .sp
162 .LP
163 and ends with the line:
164 .sp
165 .in +2
166 .nf
167 ====
168 .fi
169 .in -2
170 .sp

172 .sp
173 .LP
174 In both cases, the lines have no preceding or trailing blank characters.
175 .sp
176 .LP
177 The encoding process represents 24-bit groups of input bits as output strings
178 of four encoded characters. Proceeding from left to right, a 24-bit input
179 group is formed by concatenating three 8-bit input groups. Each 24-bit input
180 group is then treated as four concatenated 6-bit groups, each of which is
181 translated into a single digit in the Base64 alphabet. When encoding a bit
182 stream by means of the Base64 encoding, the bit stream is presumed to be
183 ordered with the most-significant bit first. That is, the first bit in the
184 stream is the high-order bit in the first byte, and the eighth bit is the
185 low-order bit in the first byte, and so on. Each 6-bit group is used as an
186 index into an array of 64 printable characters, as shown in the following
187 table.
188 .sp
189 .in +2
190 .nf
191 Value Encoding Value Encoding Value Encoding Value Encoding

new/usr/src/man/man1c/uuencode.1c 4

192 0 A 17 R 34 i 51 z
193 1 B 18 S 35 j 52 0
194 2 C 19 T 36 k 53 1
195 3 D 20 U 37 l 54 2
196 4 E 21 V 38 m 55 3
197 5 F 22 W 39 n 56 4
198 6 G 23 X 40 o 57 5
199 7 H 24 Y 41 p 58 6
200 8 I 25 Z 42 q 59 7
201 9 J 26 a 43 r 60 8
202 10 K 27 b 44 s 61 9
203 11 L 28 c 45 t 62 +
204 12 M 29 d 46 u 63 /
205 13 N 30 e 47 v
206 14 O 31 f 48 w (pad) =
207 15 P 32 g 49 x
208 16 Q 33 h 50 y
209 .fi
210 .in -2
211 .sp

213 .sp
214 .LP
215 The character referenced by the index is placed in the output string.
216 .sp
217 .LP
218 The output stream (encoded bytes) is represented in lines of no more than 76
219 characters each. All line breaks or other characters not found in the table are
220 ignored by decoding software (see \fBuudecode\fR).
221 .sp
222 .LP
223 Special processing is performed if fewer than 24 bits are available at the end
224 of a message or encapsulated part of a message. A full encoding quantum is
225 always completed at the end of a message. When fewer than 24 input bits are
226 available in an input group, zero bits are added on the right to form an
227 integral number of 6-bit groups. Output character positions that are not
228 required to represent actual input data are set to the equals (\fB=\fR)
229 character. Since all Base64 input is an integral number of octets, only the
230 following cases can arise:
231 .RS +4
232 .TP
233 1.
234 The final quantum of encoding input is an integral multiple of 24 bits.
235 Here, the final unit of encoded output is an integral multiple of four
236 characters with no ’\fB=\fR ’ padding.
237 .RE
238 .RS +4
239 .TP
240 2.
241 The final quantum of encoding input is exactly 16 bits. Here, the final unit
242 of encoded output is three characters followed by one ’\fB=\fR’ padding
243 character.
244 .RE
245 .RS +4
246 .TP
247 3.
248 The final quantum of encoding input is exactly 8 bits. Here, the final unit
249 of encoded output is two characters followed by two ’\fB=\fR’ padding
250 characters.
251 .RE
252 .sp
253 .LP
254 A terminating "\fB====\fR" evaluates to nothing and denotes the end of the
255 encoded data.
256 .SS "uuencode Historical Algorithm"
257 .sp

new/usr/src/man/man1c/uuencode.1c 5

258 .LP
259 The standard output is a text file (encoded in the character set of the current
260 locale) that begins with the line:
261 .sp
262 .in +2
263 .nf
264 begin %s %s\en, \fImode\fR, \fIdecode_pathname\fR
265 .fi
266 .in -2
267 .sp

269 .sp
270 .LP
271 and ends with the line:
272 .sp
273 .in +2
274 .nf
275 end\en
276 .fi
277 .in -2
278 .sp

280 .sp
281 .LP
282 In both cases, the lines have no preceding or trailing blank characters.
283 .sp
284 .LP
285 The algorithm that is used for lines between \fBbegin\fR and \fBend\fR takes
286 three octets as input and writes four characters of output by splitting the
287 input at six-bit intervals into four octets, containing data in the lower six
288 bits only. These octets are converted to characters by adding a value of
289 \fB0x20\fR to each octet, so that each octet is in the range
290 \fB0x20\(mi0x5f\fR, and each octet is assumed to represent a printable
291 character. Each octect is then translated into the corresponding character
292 codes for the codeset in use in the current locale. For example, the octet
293 \fB0x41\fR, representing ’\fBA\fR’, would be translated to ’\fBA\fR’ in the
294 current codeset, such as \fB0xc1\fR if the codeset were \fBEBCDIC\fR.
295 .sp
296 .LP
297 Where the bits of two octets are combined, the least significant bits of the
298 first octet are shifted left and combined with the most significant bits of the
299 second octet shifted right. Thus, the three octets \fBA\fR, \fBB\fR, \fBC\fR
300 are converted into the four octets:
301 .sp
302 .in +2
303 .nf
304 0x20 + ((A >> 2) & 0x3F)
305 0x20 + (((A << 4) ((B >> 4) & 0xF)) & 0x3F)
306 0x20 + (((B << 2) ((C >> 6) & 0x3)) & 0x3F)
307 0x20 + ((C) & 0x3F)
308 .fi
309 .in -2
310 .sp

312 .sp
313 .LP
314 These octets are then translated into the local character set.
315 .sp
316 .LP
317 Each encoded line contains a length character, equal to the number of
318 characters to be decoded plus \fB0x20\fR translated to the local character set
319 as described above, followed by the encoded characters. The maximum number of
320 octets to be encoded on each line is 45.
321 .SH EXIT STATUS
322 .sp
323 .LP

new/usr/src/man/man1c/uuencode.1c 6

324 The following exit values are returned:
325 .sp
326 .ne 2
327 .na
328 \fB\fB0\fR\fR
329 .ad
330 .RS 6n
331 Successful completion.
332 .RE

334 .sp
335 .ne 2
336 .na
337 \fB\fB>0\fR\fR
338 .ad
339 .RS 6n
340 An error occurred.
341 .RE

343 .SH ATTRIBUTES
344 .sp
345 .LP
346 See \fBattributes\fR(5) for descriptions of the following attributes:
347 .sp

349 .sp
350 .TS
351 box;
352 c | c
353 l | l .
354 ATTRIBUTE TYPE ATTRIBUTE VALUE
355 _
356 Interface Stability Standard
357 .TE

359 .SH SEE ALSO
360 .sp
361 .LP
362 \fBmail\fR(1), \fBmailx\fR(1), \fBuucp\fR(1C), \fBuux\fR(1C),
363 \fBattributes\fR(5), \fBenviron\fR(5), \fBlargefile\fR(5), \fBstandards\fR(5)
364 .SH NOTES
365 .sp
366 .LP
367 The size of the encoded file is expanded by 35% (3 bytes become 4, plus control
368 information), causing it to take longer to transmit than the equivalent binary.
369 .sp
370 .LP
371 The user on the remote system who is invoking \fBuudecode\fR (typically
372 \fBuucp\fR) must have write permission on the file specified in the
373 \fIdecode_pathname\fR.
374 .sp
375 .LP
376 If you invoke \fBuuencode\fR and then execute \fBuudecode\fR on a file in the
377 same directory, you will overwrite the original file.

new/usr/src/man/man1m/fdisk.1m 1

**
 19042 Tue Sep 10 18:35:19 2013
new/usr/src/man/man1m/fdisk.1m
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2008, Sun Microsystems, Inc. All Rights Reserved
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" See the License for the specific language governing permissions and limitat
5 .\" the fields enclosed by brackets "[]" replaced with your own identifying info
6 .TH FDISK 1M "Sep 10, 2013"
6 .TH FDISK 1M "Jul 2, 2009"
7 .SH NAME
8 fdisk \- create or modify fixed disk partition table
9 .SH SYNOPSIS

10 .LP
11 .nf
12 \fBfdisk\fR [\fB-o\fR \fIoffset\fR] [\fB-s\fR \fIsize\fR] [\fB-P\fR \fIfill_patt
13 [\fB-w\fR | \fB-r\fR | \fB-d\fR | \fB-n\fR | \fB-I\fR | \fB-B\fR | \fB-t\fR
14 [-\fB-F\fR \fIfdisk_file\fR] [[\fB-v\fR] \fB-W\fR {\fIfdisk_file\fR | \(mi
15 [\fB-h\fR] [\fB-b\fR \fImasterboot\fR]
16 [\fB-A\fR \fIid\fR : \fIact\fR : \fIbhead\fR : \fIbsect\fR : \fIbcyl\fR : \
17 \fIecyl\fR : \fIrsect\fR : \fInumsect\fR]
18 [\fB-D\fR \fIid\fR : \fIact\fR : \fIbhead:\fR \fIbsect\fR : \fIbcyl\fR : \f
19 \fIecyl\fR : \fIrsect\fR : \fInumsect\fR] \fIrdevice\fR
20 .fi

22 .SH DESCRIPTION
23 .sp
24 .LP
25 This command is used to do the following:
26 .RS +4
27 .TP
28 .ie t \(bu
29 .el o
30 Create and modify an \fBfdisk\fR partition table on x86 systems
31 .RE
32 .RS +4
33 .TP
34 .ie t \(bu
35 .el o
36 Create and modify an \fBfdisk\fR partition table on removable media on SPARC or
37 x86 systems
38 .RE
39 .RS +4
40 .TP
41 .ie t \(bu
42 .el o
43 Install the master boot record that is put in the first sector of the fixed
44 disk on x86 systems only
45 .RE
46 .sp
47 .LP
48 This table is used by the first-stage bootstrap (or firmware) to identify parts
49 of the disk reserved for different operating systems, and to identify the
50 partition containing the second-stage bootstrap (the \fIactive\fR Solaris
51 partition). The \fIrdevice\fR argument must be used to specify the raw device
52 associated with the fixed disk, for example, \fB/dev/rdsk/c0t0d0p0\fR.
53 .sp
54 .LP
55 The program can operate in three different modes. The first is interactive
56 mode. In interactive mode, the program displays the partition table as it
57 exists on the disk, and then presents a menu allowing the user to modify the
58 table. The menu, questions, warnings, and error messages are intended to be
59 self-explanatory.
60 .sp

new/usr/src/man/man1m/fdisk.1m 2

61 .LP
62 In interactive mode, if there is no partition table on the disk, the user is
63 given the options of creating a default partitioning or specifying the initial
64 table values. The default partitioning allocates the entire disk for the
65 Solaris system and makes the Solaris system partition active. In either case,
66 when the initial table is created, \fBfdisk\fR also writes out the first-stage
67 bootstrap (x86 only) code along with the partition table. In this mode, (x86
68 only) when creating an entry for a non-EFI partition on a disk that is larger
69 than 2 TB (terabytes), \fBfdisk\fR warns that the maximum size of the partition
70 is 2 TB. Under these conditions percentages displayed by \fBfdisk\fR are based
71 on 2 TB.
72 .sp
73 .LP
74 The second mode of operation is used for automated entry addition, entry
75 deletion, or replacement of the entire \fBfdisk\fR table. This mode can add or
76 delete an entry described on the command line. In this mode the entire
77 \fBfdisk\fR table can be read in from a file replacing the original table.
78 \fBfdisk\fR can also be used to create this file. There is a command line
79 option that will cause \fBfdisk\fR to replace any \fBfdisk\fR table with the
80 default of the whole disk for the Solaris system.
81 .sp
82 .LP
83 The third mode of operation is used for disk diagnostics. In this mode, a
84 section of the disk can be filled with a user-specified pattern and mode
85 sections of the disk can also be read or written.
86 .LP
87 Note -
88 .sp
89 .RS 2
90 The third mode of operation is not currently supported for extended partitions
91 .RE
92 .sp
93 .LP
94 When \fBfdisk\fR creates a partition, the space is allocated in the \fBfdisk\fR
95 partition table, but the allocated disk space is not initialized.
96 \fBnewfs\fR(1M) is required to create and write file system metadata to the new
97 partition, and \fBformat\fR(1M) is required to write the VTOC or EFI/GPT
98 metadata.
99 .SS "Menu Options"
100 .sp
101 .LP
102 The menu options for interactive mode given by the \fBfdisk\fR program are:
103 .sp
104 .ne 2
105 .na
106 \fB\fBCreate a partition\fR\fR
107 .ad
108 .sp .6
109 .RS 4n
110 This option allows the user to create a new partition. The maximum number of
111 partitions is 4. The program will ask for the type of the partition (SOLARIS,
112 MS-DOS, UNIX, or other). It will then ask for the size of the partition as a
113 percentage of the disk. The user may also enter the letter \fBc\fR at this
114 point, in which case the program will ask for the starting cylinder number and
115 size of the partition in cylinders. If a \fBc\fR is not entered, the program
116 will determine the starting cylinder number where the partition will fit. In
117 either case, if the partition would overlap an existing partition or will not
118 fit, a message is displayed and the program returns to the original menu.
119 .RE

121 .sp
122 .ne 2
123 .na
124 \fB\fBChange Active (Boot from) partition\fR\fR
125 .ad
126 .sp .6

new/usr/src/man/man1m/fdisk.1m 3

127 .RS 4n
128 This option allows the user to specify the partition where the first-stage
129 bootstrap will look for the second-stage bootstrap, otherwise known as the
130 \fIactive\fR partition.
131 .RE

133 .sp
134 .ne 2
135 .na
136 \fB\fBDelete a partition\fR\fR
137 .ad
138 .sp .6
139 .RS 4n
140 This option allows the user to delete a previously created partition. Note that
141 this will destroy all data in that partition.
142 .RE

144 .sp
145 .ne 2
146 .na
147 \fB\fBChange between Solaris and Solaris2 Partition IDs\fR\fR
148 .ad
149 .sp .6
150 .RS 4n
151 This option allows the user to switch between the current \fBfdisk\fR operating
152 system partition identifier and the previous one. This does not affect any data
153 in the disk partition and is provided for compatibility with older software.
154 .RE

156 .sp
157 .ne 2
158 .na
159 \fB\fBEdit/View extended partitions\fR\fR
160 .ad
161 .sp .6
162 .RS 4n
163 This option provides the extended partition menu to the user. Use the extended
164 partition menu to add and delete logical drives, change the sysid of the
165 logical drives, and display logical drive information. To commit the changes
166 made in the extended partition, you must return to the main menu using the
167 extended partition submenu option \fBr\fR. There is also an option to display
168 the list of options that the extended partition submenu supports. Given below
169 is the list:
170 .sp
171 .ne 2
172 .na
173 \fB\fBa\fR\fR
174 .ad
175 .RS 5n
176 Add a logical drive.
177 .sp
178 Use this submenu option to add a logical drive. There are three pieces of
179 information that are required: The beginning cylinder, the size (in cylinders
180 or in human readable form - KB, MB, or GB), and the partition ID. While
181 specifying the partition ID, there is an option (\fBI\fR) that you can use to
182 list the supported partitions.
183 .RE

185 .sp
186 .ne 2
187 .na
188 \fB\fBd\fR\fR
189 .ad
190 .RS 5n
191 Delete a logical drive.
192 .sp

new/usr/src/man/man1m/fdisk.1m 4

193 Use this submenu option to delete a logical drive. The only input required is
194 the number of the logical drive that is to be deleted.
195 .RE

197 .sp
198 .ne 2
199 .na
200 \fB\fBh\fR\fR
201 .ad
202 .RS 5n
203 Display the help menu.
204 .sp
205 This submenu option displays the supported operations in the extended partition
206 submenu.
207 .RE

209 .sp
210 .ne 2
211 .na
212 \fB\fBi\fR\fR
213 .ad
214 .RS 5n
215 Change the id of the logical drive.
216 .sp
217 Use this submenu option to change the system ID of the existing logical drives.
218 A list of supported system IDs is displayed when you use the \fBI\fR option
219 when in this submenu.
220 .RE

222 .sp
223 .ne 2
224 .na
225 \fB\fBp\fR\fR
226 .ad
227 .RS 5n
228 Display the logical drive layout.
229 .sp
230 Displays the logical drive information to stdout. This output reflects any
231 changes made during the current run of the \fBfdisk\fR program. The changes are
232 not committed to the disk until return to the main menu (using the submenu
233 \fBr\fR) and choose the option to commit the changes to the disk.
234 .RE

236 .sp
237 .ne 2
238 .na
239 \fB\fBr\fR\fR
240 .ad
241 .RS 5n
242 Return to the main \fBfdisk\fR menu.
243 .sp
244 Exit the extended partition submenu and return to the main menu.
245 .RE

247 .RE

249 .sp
250 .LP
251 Use the following options to include your modifications to the partition table
252 at this time or to cancel the session without modifying the table:
253 .sp
254 .ne 2
255 .na
256 \fB\fBExit\fR\fR
257 .ad
258 .RS 10n

new/usr/src/man/man1m/fdisk.1m 5

259 This option writes the new version of the table created during this session
260 with \fBfdisk\fR out to the fixed disk, and exits the program.
261 .RE

263 .sp
264 .ne 2
265 .na
266 \fB\fBCancel\fR\fR
267 .ad
268 .RS 10n
269 This option exits without modifying the partition table.
270 .RE

272 .SH OPTIONS
273 .sp
274 .LP
275 The following options apply to \fBfdisk\fR:
276 .sp
277 .ne 2
278 .na
279 \fB\fB-A\fR \fIid:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect\fR\fR
280 .ad
281 .sp .6
282 .RS 4n
283 Add a partition as described by the argument (see the \fB-F\fR option below for
284 the format). Use of this option will zero out the \fBVTOC\fR on the Solaris
285 partition if the \fBfdisk\fR table changes.
286 .RE

288 .sp
289 .ne 2
290 .na
291 \fB\fB-b\fR \fImaster_boot\fR\fR
292 .ad
293 .sp .6
294 .RS 4n
295 Specify the file \fImaster_boot\fR as the master boot program. The default
296 master boot program is \fB/usr/lib/fs/ufs/mboot\fR.
297 .RE

299 .sp
300 .ne 2
301 .na
302 \fB\fB-B\fR\fR
303 .ad
304 .sp .6
305 .RS 4n
306 Default to one Solaris partition that uses the whole disk. On an x86 machine,
307 if the disk is larger than 2 TB (terabytes), the default size of the Solaris
308 partition will be limited to 2 TB.
309 .RE

311 .sp
312 .ne 2
313 .na
314 \fB\fB-d\fR\fR
315 .ad
316 .sp .6
317 .RS 4n
318 Turn on verbose \fIdebug\fR mode. This will cause \fBfdisk\fR to print its
319 state on stderr as it is used. The output from this option should not be used
320 with \fB-F\fR.
321 .RE

323 .sp
324 .ne 2

new/usr/src/man/man1m/fdisk.1m 6

325 .na
326 \fB\fB-D\fR \fIid:act:bhead:bsect:bcyl:ehead:esect:ecyl:rsect:numsect\fR\fR
327 .ad
328 .sp .6
329 .RS 4n
330 Delete a partition as described by the argument (see the \fB-F\fR option below
331 for the format). Note that the argument must be an exact match or the entry
332 will not be deleted! Use of this option will zero out the \fBVTOC\fR on the
333 Solaris partition if the \fBfdisk\fR table changes.
334 .RE

336 .sp
337 .ne 2
338 .na
339 \fB\fB-E\fR\fR
340 .ad
341 .sp .6
342 .RS 4n
343 Create an \fBEFI\fR partition that uses the entire disk.
344 .RE

346 .sp
347 .ne 2
348 .na
349 \fB\fB-F\fR \fIfdisk_file\fR\fR
350 .ad
351 .sp .6
352 .RS 4n
353 Use fdisk file \fIfdisk_file\fR to initialize table. Use of this option will
354 zero out the \fBVTOC\fR on the Solaris partition if the \fBfdisk\fR table
355 changes.
356 .sp
357 The \fIfdisk_file\fR contains four specification lines for the primary
358 partitions followed by specification lines for the logical drives. You must
359 have four lines for the primary partitions if there is at least one logical
360 drive. In this case, if the number of primary partitions to be configured is
361 less than four, the remaining lines should be filled with zeros.
362 .sp
363 Each line is composed of entries that are position-dependent, are separated by
364 whitespace or colons, and have the following format:
365 .sp
366 \fIid act bhead bsect bcyl ehead esect ecyl rsect numsect\fR
367 .sp
368 \&...where the entries have the following values:
369 .sp
370 .ne 2
371 .na
372 \fB\fIid\fR\fR
373 .ad
374 .RS 11n
375 This is the type of partition and the correct numeric values may be found in
376 \fBfdisk.h\fR.
377 .RE

379 .sp
380 .ne 2
381 .na
382 \fB\fIact\fR\fR
383 .ad
384 .RS 11n
385 This is the active partition flag; \fB0\fR means not active and \fB128\fR means
386 active. For logical drives, this flag will always be set to 0 even if specified
387 as 128 by the user.
388 .RE

390 .sp

new/usr/src/man/man1m/fdisk.1m 7

391 .ne 2
392 .na
393 \fB\fIbhead\fR\fR
394 .ad
395 .RS 11n
396 This is the head where the partition starts. If this is set to \fB0\fR,
397 \fBfdisk\fR will correctly fill this in from other information.
398 .RE

400 .sp
401 .ne 2
402 .na
403 \fB\fIbsect\fR\fR
404 .ad
405 .RS 11n
406 This is the sector where the partition starts. If this is set to \fB0\fR,
407 \fBfdisk\fR will correctly fill this in from other information.
408 .RE

410 .sp
411 .ne 2
412 .na
413 \fB\fIbcyl\fR\fR
414 .ad
415 .RS 11n
416 This is the cylinder where the partition starts. If this is set to \fB0\fR,
417 \fBfdisk\fR will correctly fill this in from other information.
418 .RE

420 .sp
421 .ne 2
422 .na
423 \fB\fIehead\fR\fR
424 .ad
425 .RS 11n
426 This is the head where the partition ends. If this is set to \fB0\fR,
427 \fBfdisk\fR will correctly fill this in from other information.
428 .RE

430 .sp
431 .ne 2
432 .na
433 \fB\fIesect\fR\fR
434 .ad
435 .RS 11n
436 This is the sector where the partition ends. If this is set to \fB0\fR,
437 \fBfdisk\fR will correctly fill this in from other information.
438 .RE

440 .sp
441 .ne 2
442 .na
443 \fB\fIecyl\fR\fR
444 .ad
445 .RS 11n
446 This is the cylinder where the partition ends. If this is set to \fB0\fR,
447 \fBfdisk\fR will correctly fill this in from other information.
448 .RE

450 .sp
451 .ne 2
452 .na
453 \fB\fIrsect\fR\fR
454 .ad
455 .RS 11n
456 The relative sector from the beginning of the disk where the partition starts.

new/usr/src/man/man1m/fdisk.1m 8

457 This must be specified and can be used by \fBfdisk\fR to fill in other fields.
458 For logical drives, you must make sure that there are at least 63 free sectors
459 before the \fIrsect\fR specified for a logical drive.
460 .RE

462 .sp
463 .ne 2
464 .na
465 \fB\fInumsect\fR\fR
466 .ad
467 .RS 11n
468 The size in sectors of this disk partition. This must be specified and can be
469 used by \fBfdisk\fR to fill in other fields.
470 .RE

472 .RE

474 .sp
475 .ne 2
476 .na
477 \fB\fB-g\fR\fR
478 .ad
479 .sp .6
480 .RS 4n
481 Get the label geometry for disk and display on stdout (see the \fB-S\fR option
482 for the format).
483 .RE

485 .sp
486 .ne 2
487 .na
488 \fB\fB-G\fR\fR
489 .ad
490 .sp .6
491 .RS 4n
492 Get the physical geometry for disk and display on stdout (see the \fB-S\fR
493 option for the format).
494 .RE

496 .sp
497 .ne 2
498 .na
499 \fB\fB-h\fR\fR
500 .ad
501 .sp .6
502 .RS 4n
503 Issue verbose message; message will list all options and supply an explanation
504 for each.
505 .RE

507 .sp
508 .ne 2
509 .na
510 \fB\fB-I\fR\fR
511 .ad
512 .sp .6
513 .RS 4n
514 Forgo device checks. This is used to generate a file image of what would go on
515 a disk without using the device. Note that you must use \fB-S\fR with this
516 option (see above).
517 .RE

519 .sp
520 .ne 2
521 .na
522 \fB\fB-n\fR\fR

new/usr/src/man/man1m/fdisk.1m 9

523 .ad
524 .sp .6
525 .RS 4n
526 Don’t update \fBfdisk\fR table unless explicitly specified by another option.
527 If no other options are used, \fB-n\fR will only write the master boot record
528 to the disk. In addition, note that \fBfdisk\fR will not come up in interactive
529 mode if the \fB-n\fR option is specified.
530 .RE

532 .sp
533 .ne 2
534 .na
535 \fB\fB-o\fR \fIoffset\fR\fR
536 .ad
537 .sp .6
538 .RS 4n
539 Block offset from start of disk. This option is used for \fB-P\fR, \fB-r\fR,
540 and \fB-w\fR. Zero is assumed when this option is not used.
541 .RE

543 .sp
544 .ne 2
545 .na
546 \fB\fB-P\fR \fIfill_patt\fR\fR
547 .ad
548 .sp .6
549 .RS 4n
550 Fill disk with pattern \fIfill_patt\fR. \fIfill_patt\fR can be decimal or hex
551 and is used as number for constant long word pattern. If \fIfill_patt\fR is
552 \fB#\fR, then pattern is block # for each block. Pattern is put in each block
553 as long words and fills each block (see \fB-o\fR and \fB-s\fR).
554 .RE

556 .sp
557 .ne 2
558 .na
559 \fB\fB-r\fR\fR
560 .ad
561 .sp .6
562 .RS 4n
563 Read from disk and write to stdout. See \fB-o\fR and \fB-s\fR, which specify
564 the starting point and size of the operation.
565 .RE

567 .sp
568 .ne 2
569 .na
570 \fB\fB-R\fR\fR
571 .ad
572 .sp .6
573 .RS 4n
574 Treat disk as read-only. This is for testing purposes.
575 .RE

577 .sp
578 .ne 2
579 .na
580 \fB\fB-s\fR \fIsize\fR\fR
581 .ad
582 .sp .6
583 .RS 4n
584 Number of blocks to perform operation on (see \fB-o\fR).
585 .RE

587 .sp
588 .ne 2

new/usr/src/man/man1m/fdisk.1m 10

589 .na
590 \fB\fB-S\fR \fIgeom_file\fR\fR
591 .ad
592 .sp .6
593 .RS 4n
594 Set the label geometry to the content of the \fIgeom_file\fR. The
595 \fIgeom_file\fR contains one specification line. Each line is delimited by a
596 new-line character (\fB\en\fR). If the first character of a line is an asterisk
596 new-line character (\fB\n\fR). If the first character of a line is an asterisk
597 (*), the line is treated as a comment. Each line is composed of entries that
598 are position-dependent, are separated by white space, and have the following
599 format:
600 .sp
601 .in +2
602 .nf
603 \fIpcyl ncyl acyl bcyl nheads nsectors sectsiz\fR
604 .fi
605 .in -2
606 .sp

608 where the entries have the following values:
609 .sp
610 .ne 2
611 .na
612 \fB\fIpcyl\fR\fR
613 .ad
614 .RS 12n
615 This is the number of physical cylinders for the drive.
616 .RE

618 .sp
619 .ne 2
620 .na
621 \fB\fIncyl\fR\fR
622 .ad
623 .RS 12n
624 This is the number of usable cylinders for the drive.
625 .RE

627 .sp
628 .ne 2
629 .na
630 \fB\fIacyl\fR\fR
631 .ad
632 .RS 12n
633 This is the number of alt cylinders for the drive.
634 .RE

636 .sp
637 .ne 2
638 .na
639 \fB\fIbcyl\fR\fR
640 .ad
641 .RS 12n
642 This is the number of offset cylinders for the drive (should be zero).
643 .RE

645 .sp
646 .ne 2
647 .na
648 \fB\fInheads\fR\fR
649 .ad
650 .RS 12n
651 The number of heads for this drive.
652 .RE

new/usr/src/man/man1m/fdisk.1m 11

654 .sp
655 .ne 2
656 .na
657 \fB\fInsectors\fR\fR
658 .ad
659 .RS 12n
660 The number of sectors per track.
661 .RE

663 .sp
664 .ne 2
665 .na
666 \fB\fIsectsiz\fR\fR
667 .ad
668 .RS 12n
669 The size in bytes of a sector.
670 .RE

672 .RE

674 .sp
675 .ne 2
676 .na
677 \fB\fB-t\fR\fR
678 .ad
679 .sp .6
680 .RS 4n
681 Adjust incorrect slice table entries so that they will not cross partition
682 table boundaries.
683 .RE

685 .sp
686 .ne 2
687 .na
688 \fB\fB-T\fR\fR
689 .ad
690 .sp .6
691 .RS 4n
692 Remove incorrect slice table entries that span partition table boundaries.
693 .RE

695 .sp
696 .ne 2
697 .na
698 \fB\fB-v\fR\fR
699 .ad
700 .sp .6
701 .RS 4n
702 Output the HBA (virtual) geometry dimensions. This option must be used in
703 conjunction with the \fB-W\fR flag. This option will work for platforms which
704 support virtual geometry. (x86 only)
705 .RE

707 .sp
708 .ne 2
709 .na
710 \fB\fB-w\fR\fR
711 .ad
712 .sp .6
713 .RS 4n
714 Write to disk and read from stdin. See \fB-o\fR and \fB-s\fR, which specify the
715 starting point and size of the operation.
716 .RE

718 .sp
719 .ne 2

new/usr/src/man/man1m/fdisk.1m 12

720 .na
721 \fB\fB-W\fR \fB\(mi\fR\fR
722 .ad
723 .sp .6
724 .RS 4n
725 Output the disk table to \fBstdout\fR.
726 .RE

728 .sp
729 .ne 2
730 .na
731 \fB\fB-W\fR \fIfdisk_file\fR\fR
732 .ad
733 .sp .6
734 .RS 4n
735 Create an \fBfdisk\fR file \fIfdisk_file\fR from disk table. This can be used
736 with the \fB-F\fR option below.
737 .RE

739 .SH FILES
740 .sp
741 .ne 2
742 .na
743 \fB\fB/dev/rdsk/c0t0d0p0\fR\fR
744 .ad
745 .RS 25n
746 Raw device associated with the fixed disk.
747 .RE

749 .sp
750 .ne 2
751 .na
752 \fB\fB/usr/lib/fs/ufs/mboot\fR\fR
753 .ad
754 .RS 25n
755 Default master boot program.
756 .RE

758 .SH ATTRIBUTES
759 .sp
760 .LP
761 See \fBattributes\fR(5) for descriptions of the following attributes:
762 .sp

764 .sp
765 .TS
766 box;
767 c | c
768 l | l .
769 ATTRIBUTE TYPE ATTRIBUTE VALUE
770 _
771 Architecture x86 and SPARC
772 .TE

774 .SH SEE ALSO
775 .sp
776 .LP
777 \fBuname\fR(1), \fBfmthard\fR(1M), \fBformat\fR(1M), \fBnewfs\fR(1M),
778 \fBprtvtoc\fR(1M), \fBattributes\fR(5)
779 .SH DIAGNOSTICS
780 .sp
781 .LP
782 Most messages will be self-explanatory. The following may appear immediately
783 after starting the program:
784 .sp
785 .ne 2

new/usr/src/man/man1m/fdisk.1m 13

786 .na
787 \fB\fBFdisk\fR: \fBcannot open\fR <\fBdevice\fR>\fR
788 .ad
789 .sp .6
790 .RS 4n
791 This indicates that the device name argument is not valid.
792 .RE

794 .sp
795 .ne 2
796 .na
797 \fB\fBFdisk\fR: \fBunable to get device parameters for device\fR
798 <\fBdevice\fR>\fR
799 .ad
800 .sp .6
801 .RS 4n
802 This indicates a problem with the configuration of the fixed disk, or an error
803 in the fixed disk driver.
804 .RE

806 .sp
807 .ne 2
808 .na
809 \fB\fBFdisk\fR: \fBerror reading partition table\fR\fR
810 .ad
811 .sp .6
812 .RS 4n
813 This indicates that some error occurred when trying initially to read the fixed
814 disk. This could be a problem with the fixed disk controller or driver, or with
815 the configuration of the fixed disk.
816 .RE

818 .sp
819 .ne 2
820 .na
821 \fB\fBFdisk\fR: \fBerror writing boot record\fR\fR
822 .ad
823 .sp .6
824 .RS 4n
825 This indicates that some error occurred when trying to write the new partition
826 table out to the fixed disk. This could be a problem with the fixed disk
827 controller, the disk itself, the driver, or the configuration of the fixed
828 disk.
829 .RE

new/usr/src/man/man1m/id.1m 1

**
 9251 Tue Sep 10 18:35:20 2013
new/usr/src/man/man1m/id.1m
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 1992, X/Open Company Limited All Rights Reserved Portions C
3 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
4 .\" http://www.opengroup.org/bookstore/.
5 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
6 .\" This notice shall appear on any product containing this material.
7 .\" The contents of this file are subject to the terms of the Common Development
8 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
9 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
10 .TH ID 1M "Sep 10, 2013"
10 .TH ID 1M "Nov 28, 2006"
11 .SH NAME
12 id \- return user identity
13 .SH SYNOPSIS
14 .LP
15 .nf
16 \fB/usr/bin/id\fR [\fB-p\fR] [\fIuser\fR]
17 .fi

19 .LP
20 .nf
21 \fB/usr/bin/id\fR \fB-a\fR [\fB-p\fR] [\fIuser\fR]
22 .fi

24 .LP
25 .nf
26 \fB/usr/bin/id\fR \fB-G\fR [\fB-n\fR] [\fIuser\fR]
27 .fi

29 .LP
30 .nf
31 \fB/usr/bin/id\fR \fB-g\fR [\fB-nr\fR] [\fIuser\fR]
32 .fi

34 .LP
35 .nf
36 \fB/usr/bin/id\fR \fB-u\fR [\fB-nr\fR] [\fIuser\fR]
37 .fi

39 .LP
40 .nf
41 \fB/usr/xpg4/bin/id\fR [\fB-p\fR] [\fIuser\fR]
42 .fi

44 .LP
45 .nf
46 \fB/usr/xpg4/bin/id\fR \fB-a\fR [\fB-p\fR] [\fIuser\fR]
47 .fi

49 .LP
50 .nf
51 \fB/usr/xpg4/bin/id\fR \fB-G\fR [\fB-n\fR] [\fIuser\fR]
52 .fi

54 .LP
55 .nf
56 \fB/usr/xpg4/bin/id\fR \fB-g\fR [\fB-nr\fR] [\fIuser\fR]
57 .fi

59 .LP
60 .nf

new/usr/src/man/man1m/id.1m 2

61 \fB/usr/xpg4/bin/id\fR \fB-u\fR [\fB-nr\fR] [\fIuser\fR]
62 .fi

64 .SH DESCRIPTION
65 .sp
66 .LP
67 If no \fIuser\fR operand is provided, the \fBid\fR utility writes the user and
68 group \fBID\fRs and the corresponding user and group names of the invoking
69 process to standard output. If the effective and real \fBID\fRs do not match,
70 both are written. If multiple groups are supported by the underlying system,
71 \fB/usr/xpg4/bin/id\fR also writes the supplementary group affiliations of the
72 invoking process.
73 .sp
74 .LP
75 If a \fIuser\fR operand is provided and the process has the appropriate
76 privileges, the user and group \fBID\fRs of the selected user are written. In
77 this case, effective \fBID\fRs are assumed to be identical to real \fBID\fRs.
78 If the selected user has more than one allowable group membership listed in the
79 group database, \fB/usr/xpg4/bin/id\fR writes them in the same manner as the
80 supplementary groups described in the preceding paragraph.
81 .SS "Formats"
82 .sp
83 .LP
84 The following formats are used when the \fBLC_MESSAGES\fR locale category
85 specifies the "C" locale. In other locales, the strings \fBuid\fR, \fBgid\fR,
86 \fBeuid\fR, \fBegid\fR, and \fBgroups\fR may be replaced with more appropriate
87 strings corresponding to the locale.
88 .sp
89 .in +2
90 .nf
91 "uid=%u(%s) gid=%u(%s)\en" <\fIreal user ID\fR>, <\fIuser-name\fR>,
92 <\fIreal group ID\fR>, <\fIgroup-name\fR>
93 .fi
94 .in -2
95 .sp

97 .sp
98 .LP
99 If the effective and real user \fBID\fRs do not match, the following are
100 inserted immediately before the \fB\en\fR character in the previous format:
101 .sp
102 .in +2
103 .nf
104 " euid=%u(%s)"
105 .fi
106 .in -2
107 .sp

109 .sp
110 .LP
111 with the following arguments added at the end of the argument list:
112 .sp
113 .in +2
114 .nf
115 <\fIeffective user ID\fR>, <\fIeffective user-name\fR>
116 .fi
117 .in -2
118 .sp

120 .sp
121 .LP
122 If the effective and real group \fBID\fRs do not match, the following is
123 inserted directly before the \fB\en\fR character in the format string (and
124 after any addition resulting from the effective and real user \fBID\fRs not
125 matching):
126 .sp

new/usr/src/man/man1m/id.1m 3

127 .in +2
128 .nf
129 " egid=%u(%s)"
130 .fi
131 .in -2
132 .sp

134 .sp
135 .LP
136 with the following arguments added at the end of the argument list:
137 .sp
138 .in +2
139 .nf
140 <\fIeffectivegroup-ID\fR>, <\fIeffectivegroupname\fR>
141 .fi
142 .in -2
143 .sp

145 .sp
146 .LP
147 If the process has supplementary group affiliations or the selected user is
148 allowed to belong to multiple groups, the first is added directly before the
149 \fBNEWLINE\fR character in the format string:
150 .sp
151 .in +2
152 .nf
153 " groups=%u(%s)"
154 .fi
155 .in -2
156 .sp

158 .sp
159 .LP
160 with the following arguments added at the end of the argument list:
161 .sp
162 .in +2
163 .nf
164 <\fIsupplementary group ID\fR>, <\fIsupplementary group name\fR>
165 .fi
166 .in -2
167 .sp

169 .sp
170 .LP
171 and the necessary number of the following added after that for any remaining
172 supplementary group \fBID\fRs:
173 .sp
174 .in +2
175 .nf
176 ",%u(%s)"
177 .fi
178 .in -2
179 .sp

181 .sp
182 .LP
183 and the necessary number of the following arguments added at the end of the
184 argument list:
185 .sp
186 .in +2
187 .nf
188 <\fIsupplementary group ID\fR>, <\fIsupplementary group name\fR>
189 .fi
190 .in -2
191 .sp

new/usr/src/man/man1m/id.1m 4

193 .sp
194 .LP
195 If any of the user \fBID\fR, group \fBID\fR, effective user \fBID\fR, effective
196 group \fBID\fR or supplementary/multiple group \fBID\fRs cannot be mapped by
197 the system into printable user or group names, the corresponding (\fB%s\fR) and
198 name argument is omitted from the corresponding format string.
199 .sp
200 .LP
201 When any of the options are specified, the output format is as described under
202 OPTIONS.
203 .SH OPTIONS
204 .sp
205 .LP
206 The following options are supported by both \fB/usr/bin/id\fR and
207 \fB/usr/xpg4/bin/id\fR. The \fB-p\fR and \fB-a\fR options are invalid if
208 specified with any of the \fB-G\fR, \fB-g\fR, or \fB-u\fR options.
209 .sp
210 .ne 2
211 .na
212 \fB\fB-p\fR\fR
213 .ad
214 .RS 6n
215 Reports additionally the current project membership of the invoking process.
216 The project is reported using the format:
217 .sp
218 .in +2
219 .nf
220 "projid=%u(%s)"
221 .fi
222 .in -2
223 .sp

225 which is inserted prior to the \fB\en\fR character of the default format
225 which is inserted prior to the \fB\n\fR character of the default format
226 described in the \fBFormats\fR section. The arguments
227 .sp
228 .in +2
229 .nf
230 <\fIproject ID\fR>,<\fIproject name\fR>
231 .fi
232 .in -2
233 .sp

235 are appended to the end of the argument list. If the project \fBID\fR cannot
236 be mapped by the system into a printable project name, the corresponding
237 \fB(%s)\fR and name argument is omitted from the corresponding format string.
238 .RE

240 .sp
241 .ne 2
242 .na
243 \fB\fB-a\fR\fR
244 .ad
245 .RS 6n
246 Reports user name, user \fBID\fR and all the groups to which the user belongs.
247 .RE

249 .sp
250 .ne 2
251 .na
252 \fB\fB-G\fR\fR
253 .ad
254 .RS 6n
255 Outputs all different group \fBID\fRs (effective, real and supplementary) only,
256 using the format \fB"%u\en"\fR. If there is more than one distinct group
257 affiliation, output each such affiliation, using the format \fB" %u"\fR, before

new/usr/src/man/man1m/id.1m 5

258 the \fBNEWLINE\fR character is output.
259 .RE

261 .sp
262 .ne 2
263 .na
264 \fB\fB-g\fR\fR
265 .ad
266 .RS 6n
267 Outputs only the effective group \fBID\fR, using the format \fB"%u\en"\fR.
268 .RE

270 .sp
271 .ne 2
272 .na
273 \fB\fB-n\fR\fR
274 .ad
275 .RS 6n
276 Outputs the name in the format \fB"%s"\fR instead of the numeric \fBID\fR using
277 the format \fB"%u"\fR.
278 .RE

280 .sp
281 .ne 2
282 .na
283 \fB\fB-r\fR\fR
284 .ad
285 .RS 6n
286 Outputs the real \fBID\fR instead of the effective \fBID\fR.
287 .RE

289 .sp
290 .ne 2
291 .na
292 \fB\fB-u\fR\fR
293 .ad
294 .RS 6n
295 Outputs only the effective user \fBID\fR, using the format \fB"%u\en"\fR.
296 .RE

298 .SH OPERANDS
299 .sp
300 .LP
301 The following operand is supported:
302 .sp
303 .ne 2
304 .na
305 \fB\fIuser\fR\fR
306 .ad
307 .RS 8n
308 The user (login) name for which information is to be written.
309 .RE

311 .SH ENVIRONMENT VARIABLES
312 .sp
313 .LP
314 See \fBenviron\fR(5) for descriptions of the following environment variables
315 that affect the execution of \fBid\fR: \fBLANG\fR, \fBLC_ALL\fR,
316 \fBLC_CTYPE\fR, \fBLC_MESSAGES\fR, and \fBNLSPATH\fR.
317 .SH EXIT STATUS
318 .sp
319 .LP
320 The following exit values are returned:
321 .sp
322 .ne 2
323 .na

new/usr/src/man/man1m/id.1m 6

324 \fB\fB0\fR\fR
325 .ad
326 .RS 6n
327 Successful completion.
328 .RE

330 .sp
331 .ne 2
332 .na
333 \fB\fB>0\fR\fR
334 .ad
335 .RS 6n
336 An error occurred.
337 .RE

339 .SH ATTRIBUTES
340 .sp
341 .LP
342 See \fBattributes\fR(5) for descriptions of the following attributes:
343 .SS "/usr/bin/id"
344 .sp

346 .sp
347 .TS
348 box;
349 c | c
350 l | l .
351 ATTRIBUTE TYPE ATTRIBUTE VALUE
352 _
353 Interface Stability Stable
354 .TE

356 .SS "/usr/xpg4/bin/id"
357 .sp

359 .sp
360 .TS
361 box;
362 c | c
363 l | l .
364 ATTRIBUTE TYPE ATTRIBUTE VALUE
365 _
366 Interface Stability Standard
367 .TE

369 .SH SEE ALSO
370 .sp
371 .LP
372 \fBfold\fR(1), \fBlogname\fR(1), \fBwho\fR(1), \fBgetgid\fR(2),
373 \fBgetgroups\fR(2), \fBgetprojid\fR(2), \fBgetuid\fR(2), \fBattributes\fR(5),
374 \fBenviron\fR(5), \fBstandards\fR(5)
375 .SH NOTES
376 .sp
377 .LP
378 Output produced by the \fB-G\fR option and by the default case could
379 potentially produce very long lines on systems that support large numbers of
380 supplementary groups.

new/usr/src/man/man3cpc/cpc_bind_event.3cpc 1

**
 15223 Tue Sep 10 18:35:20 2013
new/usr/src/man/man3cpc/cpc_bind_event.3cpc
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH CPC_BIND_EVENT 3CPC "Sep 10, 2013"
6 .TH CPC_BIND_EVENT 3CPC "Mar 02, 2007"
7 .SH NAME
8 cpc_bind_event, cpc_take_sample, cpc_rele \- use CPU performance counters on
9 lwps

10 .SH SYNOPSIS
11 .LP
12 .nf
13 cc [\fIflag\fR...] \fIfile\fR... \(milcpc [\fIlibrary\fR...]
14 #include <libcpc.h>

16 \fBint\fR \fBcpc_bind_event\fR(\fBcpc_event_t *\fR\fIevent\fR, \fBint\fR \fIflag
17 .fi

19 .LP
20 .nf
21 \fBint\fR \fBcpc_take_sample\fR(\fBcpc_event_t *\fR\fIevent\fR);
22 .fi

24 .LP
25 .nf
26 \fBint\fR \fBcpc_rele\fR(\fBvoid\fR);
27 .fi

29 .SH DESCRIPTION
30 .sp
31 .LP
32 Once the events to be sampled have been selected using, for example,
33 \fBcpc_strtoevent\fR(3CPC), the event selections can be bound to the calling
34 \fBLWP\fR using \fBcpc_bind_event()\fR. If \fBcpc_bind_event()\fR returns
35 successfully, the system has associated performance counter context with the
36 calling \fBLWP\fR. The context allows the system to virtualize the hardware
37 counters to that specific \fBLWP\fR, and the counters are enabled.
38 .sp
39 .LP
40 Two flags are defined that can be passed into the routine to allow the behavior
41 of the interface to be modified, as described below.
42 .sp
43 .LP
44 Counter values can be sampled at any time by calling \fBcpc_take_sample()\fR,
45 and dereferencing the fields of the \fBce_pic\fR\fB[]\fR array returned. The
46 \fBce_hrt\fR field contains the timestamp at which the kernel last sampled the
47 counters.
48 .sp
49 .LP
50 To immediately remove the performance counter context on an \fBLWP\fR, the
51 \fBcpc_rele()\fR interface should be used. Otherwise, the context will be
52 destroyed after the \fBLWP\fR or process exits.
53 .sp
54 .LP
55 The caller should take steps to ensure that the counters are sampled often
56 enough to avoid the 32-bit counters wrapping. The events most prone to wrap are
57 those that count processor clock cycles. If such an event is of interest,
58 sampling should occur frequently so that less than 4 billion clock cycles can
59 occur between samples. Practically speaking, this is only likely to be a
60 problem for otherwise idle systems, or when processes are bound to processors,

new/usr/src/man/man3cpc/cpc_bind_event.3cpc 2

61 since normal context switching behavior will otherwise hide this problem.
62 .SH RETURN VALUES
63 .sp
64 .LP
65 Upon successful completion, \fBcpc_bind_event()\fR and \fBcpc_take_sample()\fR
66 return \fB0\fR. Otherwise, these functions return \fB\(mi1\fR, and set
67 \fBerrno\fR to indicate the error.
68 .SH ERRORS
69 .sp
70 .LP
71 The \fBcpc_bind_event()\fR and \fBcpc_take_sample()\fR functions will fail if:
72 .sp
73 .ne 2
74 .na
75 \fB\fBEACCES\fR\fR
76 .ad
77 .RS 11n
78 For \fBcpc_bind_event()\fR, access to the requested hypervisor event was
79 denied.
80 .RE

82 .sp
83 .ne 2
84 .na
85 \fB\fBEAGAIN\fR\fR
86 .ad
87 .RS 11n
88 Another process may be sampling system-wide CPU statistics. For
89 \fBcpc_bind_event()\fR, this implies that no new contexts can be created. For
90 \fBcpc_take_sample()\fR, this implies that the performance counter context has
91 been invalidated and must be released with \fBcpc_rele()\fR. Robust programs
92 should be coded to expect this behavior and recover from it by releasing the
93 now invalid context by calling \fBcpc_rele()\fR sleeping for a while, then
94 attempting to bind and sample the event once more.
95 .RE

97 .sp
98 .ne 2
99 .na
100 \fB\fBEINVAL\fR\fR
101 .ad
102 .RS 11n
103 The \fBcpc_take_sample()\fR function has been invoked before the context is
104 bound.
105 .RE

107 .sp
108 .ne 2
109 .na
110 \fB\fBENOTSUP\fR\fR
111 .ad
112 .RS 11n
113 The caller has attempted an operation that is illegal or not supported on the
114 current platform, such as attempting to specify signal delivery on counter
115 overflow on a CPU that doesn’t generate an interrupt on counter overflow.
116 .RE

118 .SH USAGE
119 .sp
120 .LP
121 Prior to calling \fBcpc_bind_event()\fR, applications should call
122 \fBcpc_access\fR(3CPC) to determine if the counters are accessible on the
123 system.
124 .SH EXAMPLES
125 .LP
126 \fBExample 1 \fRUse hardware performance counters to measure events in a

new/usr/src/man/man3cpc/cpc_bind_event.3cpc 3

127 process.
128 .sp
129 .LP
130 The example below shows how a standalone program can be instrumented with the
131 \fBlibcpc\fR routines to use hardware performance counters to measure events in
132 a process. The program performs 20 iterations of a computation, measuring the
133 counter values for each iteration. By default, the example makes the counters
134 measure external cache references and external cache hits; these options are
135 only appropriate for UltraSPARC processors. By setting the \fBPERFEVENTS\fR
136 environment variable to other strings (a list of which can be gleaned from the
137 \fB-h\fR flag of the \fBcpustat\fR or \fBcputrack\fR utilities), other events
138 can be counted. The \fBerror()\fR routine below is assumed to be a
139 user-provided routine analogous to the familiar \fBprintf\fR(3C) routine from
140 the C library but which also performs an \fBexit\fR(2) after printing the
141 message.

143 .sp
144 .in +2
145 .nf
146 \fB#include <inttypes.h>
147 #include <stdlib.h>
148 #include <stdio.h>
149 #include <unistd.h>
150 #include <libcpc.h>
151 int
152 main(int argc, char *argv[])
153 {
154 int cpuver, iter;
155 char *setting = NULL;
156 cpc_event_t event;

158 if (cpc_version(CPC_VER_CURRENT) != CPC_VER_CURRENT)
159 error("application:library cpc version mismatch!");

161 if ((cpuver = cpc_getcpuver()) == -1)
162 error("no performance counter hardware!");

164 if ((setting = getenv("PERFEVENTS")) == NULL)
165 setting = "pic0=EC_ref,pic1=EC_hit";

167 if (cpc_strtoevent(cpuver, setting, &event) != 0)
168 error("can’t measure ’%s’ on this processor", setting);
169 setting = cpc_eventtostr(&event);

171 if (cpc_access() == -1)
172 error("can’t access perf counters: %s", strerror(errno));

174 if (cpc_bind_event(&event, 0) == -1)
175 error("can’t bind lwp%d: %s", _lwp_self(), strerror(errno));

177 for (iter = 1; iter <= 20; iter++) {
178 cpc_event_t before, after;

180 if (cpc_take_sample(&before) == -1)
181 break;

183 /* ==> Computation to be measured goes here <== */

185 if (cpc_take_sample(&after) == -1)
186 break;
187 (void) printf("%3d: %" PRId64 " %" PRId64 "\en", iter,
187 (void) printf("%3d: %" PRId64 " %" PRId64 "\n", iter,
188 after.ce_pic[0] - before.ce_pic[0],
189 after.ce_pic[1] - before.ce_pic[1]);
190 }

______unchanged_portion_omitted_

new/usr/src/man/man3cpc/cpc_bind_event.3cpc 4

232 (void) printf("lwp%d - si_addr %p ucontext: %%pc %p %%sp %p\en",
232 (void) printf("lwp%d - si_addr %p ucontext: %%pc %p %%sp %p\n",
233 _lwp_self(), (void *)sip->si_addr,
234 (void *)uap->uc_mcontext.gregs[PC],
235 (void *)uap->uc_mcontext.gregs[USP]);

237 if (cpc_take_sample(&sample) == -1)
238 error("can’t sample: %s", strerror(errno));

240 (void) printf("0x%" PRIx64 " 0x%" PRIx64 "\en",
240 (void) printf("0x%" PRIx64 " 0x%" PRIx64 "\n",
241 sample.ce_pic[0], sample.ce_pic[1]);
242 (void) fflush(stdout);

244 sample.ce_pic[0] = PRESET0;
245 sample.ce_pic[1] = PRESET1;
246 if (cpc_bind_event(&sample, CPC_BIND_EMT_OVF) == -1)
247 error("cannot bind lwp%d: %s", _lwp_self(), strerror(errno));
248 }

______unchanged_portion_omitted_

new/usr/src/man/man3nsl/gethostbyname.3nsl 1

**
 16398 Tue Sep 10 18:35:20 2013
new/usr/src/man/man3nsl/gethostbyname.3nsl
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (C) 2008, Sun Microsystems, Inc. All Rights Reserved.
3 .\" Copyright 1989 AT&T.
4 .\" Portions Copyright (c) 1992, X/Open Company Limited. All Rights Reserved
5 .\" Sun Microsystems, Inc. gratefully acknowledges The Open Group for permission
6 .\" http://www.opengroup.org/bookstore/.
7 .\" The Institute of Electrical and Electronics Engineers and The Open Group, ha
8 .\" This notice shall appear on any product containing this material.
9 .\" The contents of this file are subject to the terms of the Common Development

10 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
11 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
12 .TH GETHOSTBYNAME 3NSL "Sep 10, 2013"
12 .TH GETHOSTBYNAME 3NSL "Aug 24, 2007"
13 .SH NAME
14 gethostbyname, gethostbyname_r, gethostbyaddr, gethostbyaddr_r, gethostent,
15 gethostent_r, sethostent, endhostent \- get network host entry
16 .SH SYNOPSIS
17 .LP
18 .nf
19 \fBcc\fR [\fIflag\fR...] \fIfile\fR... \fB-lnsl\fR [\fIlibrary\fR...]
20 #include <netdb.h>

22 \fBstruct hostent *\fR\fBgethostbyname\fR(\fBconst char *\fR\fIname\fR);
23 .fi

25 .LP
26 .nf
27 \fBstruct hostent *\fR\fBgethostbyname_r\fR(\fBconst char *\fR\fIname\fR,
28 \fBstruct hostent *\fR\fIresult\fR, \fBchar *\fR\fIbuffer\fR, \fBint\fR \fI
29 \fBint *\fR\fIh_errnop\fR);
30 .fi

32 .LP
33 .nf
34 \fBstruct hostent *\fR\fBgethostbyaddr\fR(\fBconst char *\fR\fIaddr\fR, \fBint\f
35 \fBint\fR \fItype\fR);
36 .fi

38 .LP
39 .nf
40 \fBstruct hostent *\fR\fBgethostbyaddr_r\fR(\fBconst char *\fR\fIaddr\fR, \fBint
41 \fBint\fR \fItype\fR, \fBstruct hostent *\fR\fIresult\fR, \fBchar *\fR\fIbu
42 \fBint\fR \fIbuflen\fR, \fBint *\fR\fIh_errnop\fR);
43 .fi

45 .LP
46 .nf
47 \fBstruct hostent *\fR\fBgethostent\fR(\fBvoid\fR);
48 .fi

50 .LP
51 .nf
52 \fBstruct hostent *\fR\fBgethostent_r\fR(\fBstruct hostent *\fR\fIresult\fR,
53 \fBchar *\fR\fIbuffer\fR, \fBint\fR \fIbuflen\fR, \fBint *\fR\fIh_errnop\fR
54 .fi

56 .LP
57 .nf
58 \fBint\fR \fBsethostent\fR(\fBint\fR \fIstayopen\fR);
59 .fi

new/usr/src/man/man3nsl/gethostbyname.3nsl 2

61 .LP
62 .nf
63 \fBint\fR \fBendhostent\fR(\fBvoid\fR);
64 .fi

66 .SH DESCRIPTION
67 .sp
68 .LP
69 These functions are used to obtain entries describing hosts. An entry can come
70 from any of the sources for \fBhosts\fR specified in the
71 \fB/etc/nsswitch.conf\fR file. See \fBnsswitch.conf\fR(4). These functions have
72 been superseded by \fBgetipnodebyname\fR(3SOCKET),
73 \fBgetipnodebyaddr\fR(3SOCKET), and \fBgetaddrinfo\fR(3SOCKET), which provide
74 greater portability to applications when multithreading is performed or
75 technologies such as IPv6 are used. For example, the functions described in the
76 following cannot be used with applications targeted to work with IPv6.
77 .sp
78 .LP
79 The \fBgethostbyname()\fR function searches for information for a host with the
80 hostname specified by the character-string parameter \fIname\fR.
81 .sp
82 .LP
83 The \fBgethostbyaddr()\fR function searches for information for a host with a
84 given host address. The parameter \fBtype\fR specifies the family of the
85 address. This should be one of the address families defined in
86 \fB<sys/socket.h>\fR\&. See the \fBNOTES\fR section for more information. Also
87 see the \fBEXAMPLES\fR section for information on how to convert an Internet
88 \fBIP\fR address notation that is separated by periods (.) into an \fIaddr\fR
89 parameter. The parameter \fIlen\fR specifies the length of the buffer indicated
90 by \fIaddr\fR.
91 .sp
92 .LP
93 All addresses are returned in network order. In order to interpret the
94 addresses, \fBbyteorder\fR(3SOCKET) must be used for byte order conversion.
95 .sp
96 .LP
97 The \fBsethostent()\fR, \fBgethostent()\fR, and \fBendhostent()\fR functions
98 are used to enumerate host entries from the database.
99 .sp
100 .LP
101 The \fBsethostent()\fR function sets or resets the enumeration to the beginning
102 of the set of host entries. This function should be called before the first
103 call to \fBgethostent()\fR. Calls to \fBgethostbyname()\fR and
104 \fBgethostbyaddr()\fR leave the enumeration position in an indeterminate state.
105 If the \fIstayopen\fR flag is non-zero, the system can keep allocated resources
106 such as open file descriptors until a subsequent call to \fBendhostent()\fR.
107 .sp
108 .LP
109 Successive calls to the \fBgethostent()\fR function return either successive
110 entries or \fINULL,\fR indicating the end of the enumeration.
111 .sp
112 .LP
113 The \fBendhostent()\fR function can be called to indicate that the caller
114 expects to do no further host entry retrieval operations; the system can then
115 deallocate resources it was using. It is still allowed, but possibly less
116 efficient, for the process to call more host retrieval functions after calling
117 \fBendhostent()\fR.
118 .SS "Reentrant Interfaces"
119 .sp
120 .LP
121 The \fBgethostbyname()\fR, \fBgethostbyaddr()\fR, and \fBgethostent()\fR
122 functions use static storage that is reused in each call, making these
123 functions unsafe for use in multithreaded applications.
124 .sp
125 .LP
126 The \fBgethostbyname_r()\fR, \fBgethostbyaddr_r()\fR, and \fBgethostent_r()\fR

new/usr/src/man/man3nsl/gethostbyname.3nsl 3

127 functions provide reentrant interfaces for these operations.
128 .sp
129 .LP
130 Each reentrant interface performs the same operation as its non-reentrant
131 counterpart, named by removing the \fB_r\fR suffix. The reentrant interfaces,
132 however, use buffers supplied by the caller to store returned results and the
133 interfaces are safe for use in both single-threaded and multithreaded
134 applications.
135 .sp
136 .LP
137 Each reentrant interface takes the same parameters as its non-reentrant
138 counterpart, as well as the following additional parameters. The parameter
139 \fIresult\fR must be a pointer to a \fBstruct hostent\fR structure allocated by
140 the caller. On successful completion, the function returns the host entry in
141 this structure. The parameter \fIbuffer\fR must be a pointer to a buffer
142 supplied by the caller. This buffer is used as storage space for the host data.
143 All of the pointers within the returned \fBstruct hostent\fR \fIresult\fR point
144 to data stored within this buffer. See the \fBRETURN VALUES\fR section for more
145 information. The buffer must be large enough to hold all of the data associated
146 with the host entry. The parameter \fIbuflen\fR should give the size in bytes
147 of the buffer indicated by \fIbuffer\fR. The parameter \fIh_errnop\fR should be
148 a pointer to an integer. An integer error status value is stored there on
149 certain error conditions. See the \fBERRORS\fR section for more information.
150 .sp
151 .LP
152 For enumeration in multithreaded applications, the position within the
153 enumeration is a process-wide property shared by all threads. The
154 \fBsethostent()\fR function can be used in a multithreaded application but
155 resets the enumeration position for all threads. If multiple threads interleave
156 calls to \fBgethostent_r()\fR, the threads will enumerate disjoint subsets of
157 the host database.
158 .sp
159 .LP
160 Like their non-reentrant counterparts, \fBgethostbyname_r()\fR and
161 \fBgethostbyaddr_r()\fR leave the enumeration position in an indeterminate
162 state.
163 .SH RETURN VALUES
164 .sp
165 .LP
166 Host entries are represented by the \fBstruct hostent\fR structure defined in
167 \fB<netdb.h>\fR:
168 .sp
169 .in +2
170 .nf
171 struct hostent {
172 char *h_name; /* canonical name of host */
173 char **h_aliases; /* alias list */
174 int h_addrtype; /* host address type */
175 int h_length; /* length of address */
176 char **h_addr_list; /* list of addresses */
177 };
178 .fi
179 .in -2

181 .sp
182 .LP
183 See the \fBEXAMPLES\fR section for information about how to retrieve a ‘‘.’’
184 separated Internet \fBIP\fR address string from the \fIh_addr_list\fR field of
185 \fBstruct hostent\fR.
186 .sp
187 .LP
188 The \fBgethostbyname()\fR, \fBgethostbyname_r()\fR, \fBgethostbyaddr()\fR, and
189 \fBgethostbyaddr_r()\fR functions each return a pointer to a \fBstruct
190 hostent\fR if they successfully locate the requested entry; otherwise they
191 return \fINULL\fR.
192 .sp

new/usr/src/man/man3nsl/gethostbyname.3nsl 4

193 .LP
194 The \fBgethostent()\fR and \fBgethostent_r()\fR functions each return a pointer
195 to a \fBstruct hostent\fR if they successfully enumerate an entry; otherwise
196 they return \fINULL\fR, indicating the end of the enumeration.
197 .sp
198 .LP
199 The \fBgethostbyname()\fR, \fBgethostbyaddr()\fR, and \fBgethostent()\fR
200 functions use static storage, so returned data must be copied before a
201 subsequent call to any of these functions if the data is to be saved.
202 .sp
203 .LP
204 When the pointer returned by the reentrant functions \fBgethostbyname_r()\fR,
205 \fBgethostbyaddr_r()\fR, and \fBgethostent_r()\fR is not \fINULL\fR, it is
206 always equal to the \fIresult\fR pointer that was supplied by the caller.
207 .sp
208 .LP
209 The \fBsethostent()\fR and \fBendhostent()\fR functions return \fB0\fR on
210 success.
211 .SH ERRORS
212 .sp
213 .LP
214 The reentrant functions \fBgethostbyname_r()\fR, \fBgethostbyaddr_r()\fR, and
215 \fBgethostent_r()\fR will return \fINULL\fR and set \fIerrno\fR to \fBERANGE\fR
216 if the length of the buffer supplied by caller is not large enough to store the
217 result. See \fBIntro\fR(2) for the proper usage and interpretation of
218 \fBerrno\fR in multithreaded applications.
219 .sp
220 .LP
221 The reentrant functions \fBgethostbyname_r()\fR and \fBgethostbyaddr_r()\fR set
222 the integer pointed to by \fIh_errnop\fR to one of these values in case of
223 error.
224 .sp
225 .LP
226 On failures, the non-reentrant functions \fBgethostbyname()\fR and
227 \fBgethostbyaddr()\fR set a global integer \fIh_errno\fR to indicate one of
228 these error codes (defined in \fB<netdb.h>\fR): \fBHOST_NOT_FOUND\fR,
229 \fBTRY_AGAIN\fR, \fBNO_RECOVERY\fR, \fBNO_DATA\fR, and \fBNO_ADDRESS\fR.
230 .sp
231 .LP
232 If a resolver is provided with a malformed address, or if any other error
233 occurs before \fBgethostbyname()\fR is resolved, then \fBgethostbyname()\fR
234 returns an internal error with a value of \(mi1.
235 .sp
236 .LP
237 The \fBgethostbyname()\fR function will set \fIh_errno\fR to
238 \fBNETDB_INTERNAL\fR when it returns a \fINULL\fR value.
239 .SH EXAMPLES
240 .LP
241 \fBExample 1 \fRUsing \fBgethostbyaddr()\fR
242 .sp
243 .LP
244 Here is a sample program that gets the canonical name, aliases, and ‘‘.’’
245 separated Internet \fBIP\fR addresses for a given ‘‘.’’ separated \fBIP\fR
246 address:

248 .sp
249 .in +2
250 .nf
251 #include <stdio.h>
252 #include <stdlib.h
253 #include <string.h>
254 #include <sys/types.h>
255 #include <sys/socket.h>
256 #include <netinet/in.h>
257 #include <arpa/inet.h>
258 #include <netdb.h>

new/usr/src/man/man3nsl/gethostbyname.3nsl 5

259 int main(int argc, const char **argv)
260 {
261 in_addr_t addr;
262 struct hostent *hp;
263 char **p;
264 if (argc != 2) {
265 (void) printf("usage: %s IP-address\en", argv[0]);
266 exit (1);
267 }
268 if ((int)(addr = inet_addr(argv[1])) == -1) {
269 (void) printf("IP-address must be of the form a.b.c.d\en");
270 exit (2);
271 }
272 hp = gethostbyaddr((char *)&addr, 4, AF_INET);
273 if (hp == NULL) {
274 (void) printf("host information for %s not found\en", argv[1]);
275 exit (3);
276 }
277 for (p = hp->h_addr_list; *p != 0; p++) {
278 struct in_addr in;
279 char **q;
280 (void) memcpy(&in.s_addr, *p, sizeof (in.s_addr));
281 (void) printf("%s\t%s", inet_ntoa(in), hp\(mi>h_name);
282 for (q = hp->h_aliases; *q != 0; q++)
283 (void) printf(" %s", *q);
284 (void) putchar(’\en’);
284 (void) putchar(’\n’);
285 }
286 exit (0);
287 }

______unchanged_portion_omitted_

new/usr/src/man/man3papi/papiJobSubmit.3papi 1

**
 19326 Tue Sep 10 18:35:20 2013
new/usr/src/man/man3papi/papiJobSubmit.3papi
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH PAPIJOBSUBMIT 3PAPI "Sep 10, 2013"
6 .TH PAPIJOBSUBMIT 3PAPI "Jan 17, 2007"
7 .SH NAME
8 papiJobSubmit, papiJobSubmitByReference, papiJobValidate, papiJobStreamOpen,
9 papiJobStreamWrite, papiJobStreamClose, papiJobQuery, papiJobModify,

10 papiJobMove, papiJobCancel, papiJobHold, papiJobRelease, papiJobRestart,
11 papiJobPromote, papiJobGetAttributeList, papiJobGetPrinterName, papiJobGetId,
12 papiJobGetJobTicket, papiJobFree, papiJobListFree \- job object manipulation
13 .SH SYNOPSIS
14 .LP
15 .nf
16 cc [\fIflag\fR\&.\|.\|.] \fIfile\fR\&.\|.\|. \fB-lpapi\fR [\fIlibrary\fR\&.\|
17 #include <papi.h>

19 \fBpapi_status_t\fR \fBpapiJobSubmit\fR(\fBpapi_service_t\fR \fIhandle\fR,
20 \fBchar *\fR\fIprinter\fR, \fBpapi_attribute_t **\fR\fIjob_attributes\fR,
21 \fBpapi_job_ticket_t *\fR\fIjob_ticket\fR, \fBchar **\fR\fIfiles\fR,
22 \fBpapi_job_t *\fR\fIjob\fR);
23 .fi

25 .LP
26 .nf
27 \fBpapi_status_t\fR \fBpapiJobSubmitByReference\fR(\fBpapi_service_t\fR \fIhandl
28 \fBchar *\fR\fIprinter\fR, \fBpapi_attribute_t **\fR\fIjob_attributes\fR,
29 \fBpapi_job_ticket_t *\fR\fIjob_ticket\fR, \fBchar **\fR\fIfiles\fR,
30 \fBpapi_job_t *\fR\fIjob\fR);
31 .fi

33 .LP
34 .nf
35 \fBpapi_status_t\fR \fBpapiJobValidate\fR(\fBpapi_service_t\fR \fIhandle\fR,
36 \fBchar *\fR\fIprinter\fR, \fBpapi_attribute_t **\fR\fIjob_attributes\fR,
37 \fBpapi_job_ticket_t *\fR\fIjob_ticket\fR, \fBchar **\fR\fIfiles\fR,
38 \fBpapi_job_t *\fR\fIjob\fR);
39 .fi

41 .LP
42 .nf
43 \fBpapi_status_t\fR \fBpapiJobStreamOpen\fR(\fBpapi_service_t\fR \fIhandle\fR,
44 \fBchar *\fR\fIprinter\fR, \fBpapi_attribute_t **\fR\fIjob_attributes\fR,
45 \fBpapi_job_ticket_t *\fR\fIjob_ticket\fR, \fBpapi_stream_t *\fR\fIstream\f
46 .fi

48 .LP
49 .nf
50 \fBpapi_status_t\fR \fBpapiJobStreamWrite\fR(\fBpapi_service_t\fR \fIhandle\fR,
51 \fBpapi_stream_t\fR \fIstream\fR, \fBvoid *\fR\fIbuffer\fR, \fBsize_t\fR \f
52 .fi

54 .LP
55 .nf
56 \fBpapi_status_t\fR \fBpapiJobStreamClose\fR(\fBpapi_service_t\fR \fIhandle\fR,
57 \fBpapi_stream_t\fR \fIstream\fR, \fBpapi_job_t *\fR\fIjob\fR);
58 .fi

60 .LP

new/usr/src/man/man3papi/papiJobSubmit.3papi 2

61 .nf
62 \fBpapi_status_t\fR \fBpapiJobQuery\fR(\fBpapi_service_t\fR \fIhandle\fR,
63 \fBchar *\fR\fIprinter\fR, \fBint32_t\fR \fIjob_id\fR, \fBchar **\fR\fIrequ
64 \fBpapi_job_t *\fR\fIjob\fR);
65 .fi

67 .LP
68 .nf
69 \fBpapi_status_t\fR \fBpapiJobModify\fR(\fBpapi_service_t\fR \fIhandle\fR,
70 \fBchar *\fR\fIprinter\fR, \fBint32_t\fR \fIjob_id\fR,
71 \fBpapi_attribute_t **\fR\fIattributes\fR, \fBpapi_job_t *\fR\fIjob\fR);
72 .fi

74 .LP
75 .nf
76 \fBpapi_status_t\fR \fBpapiJobMove\fR(\fBpapi_service_t\fR \fIhandle\fR,
77 \fBchar *\fR\fIprinter\fR, \fBint32_t\fR \fIjob_id\fR, \fBchar *\fR\fIdesti
78 .fi

80 .LP
81 .nf
82 \fBpapi_status_t\fR \fBpapiJobCancel\fR(\fBpapi_service_t\fR \fIhandle\fR,
83 \fBchar *\fR\fIprinter\fR, \fBint32_t\fR \fIjob_id\fR);
84 .fi

86 .LP
87 .nf
88 \fBpapi_status_t\fR \fBpapiJobHold\fR(\fBpapi_service_t\fR \fIhandle\fR,
89 \fBchar *\fR\fIprinter\fR, \fBint32_t\fR \fIjob_id\fR);
90 .fi

92 .LP
93 .nf
94 \fBpapi_status_t\fR \fBpapiJobRelease\fR(\fBpapi_service_t\fR \fIhandle\fR,
95 \fBchar *\fR\fIprinter\fR, \fBint32_t\fR \fIjob_id\fR);
96 .fi

98 .LP
99 .nf
100 \fBpapi_status_t\fR \fBpapiJobRestart\fR(\fBpapi_service_t\fR \fIhandle\fR,
101 \fBchar *\fR\fIprinter\fR, \fBint32_t\fR \fIjob_id\fR);
102 .fi

104 .LP
105 .nf
106 \fBpapi_status_t\fR \fBpapiJobPromote\fR(\fBpapi_service_t\fR \fIhandle\fR,
107 \fBchar *\fR\fIprinter\fR, \fBint32_t\fR \fIjob_id\fR);
108 .fi

110 .LP
111 .nf
112 \fBpapi_attribute_t **\fR\fBpapiJobGetAttributeList\fR(\fBpapi_job_t\fR \fIjob\f
113 .fi

115 .LP
116 .nf
117 \fBchar *\fR\fBpapiJobGetPrinterName\fR(\fBpapi_job_t\fR \fIjob\fR);
118 .fi

120 .LP
121 .nf
122 \fBint32_t\fR \fBpapiJobGetId\fR(\fBpapi_job_t\fR \fIjob\fR);
123 .fi

125 .LP
126 .nf

new/usr/src/man/man3papi/papiJobSubmit.3papi 3

127 \fBpapi_job_ticket_t *\fR\fBpapiJobGetJobTicket\fR(\fBpapi_job_t\fR \fIjob\fR);
128 .fi

130 .LP
131 .nf
132 \fBvoid\fR \fBpapiJobFree\fR(\fBpapi_job_t\fR \fIjob\fR);
133 .fi

135 .LP
136 .nf
137 \fBvoid\fR \fBpapiJobListFree\fR(\fBpapi_job_t *\fR\fIjobs\fR);
138 .fi

140 .SH PARAMETERS
141 .sp
142 .ne 2
143 .na
144 \fB\fIattributes\fR\fR
145 .ad
146 .RS 19n
147 a set of attributes to be applied to a printer object
148 .RE

150 .sp
151 .ne 2
152 .na
153 \fB\fIbuffer\fR\fR
154 .ad
155 .RS 19n
156 a buffer of data to be written to the job stream
157 .RE

159 .sp
160 .ne 2
161 .na
162 \fB\fIbufflen\fR\fR
163 .ad
164 .RS 19n
165 the size of the supplied buffer
166 .RE

168 .sp
169 .ne 2
170 .na
171 \fB\fIdestination\fR\fR
172 .ad
173 .RS 19n
174 the name of the printer where a print job should be relocated, which must
175 reside within the same print services as the job is currently queued
176 .RE

178 .sp
179 .ne 2
180 .na
181 \fB\fIfiles\fR\fR
182 .ad
183 .RS 19n
184 files to use during job submission
185 .RE

187 .sp
188 .ne 2
189 .na
190 \fB\fIhandle\fR\fR
191 .ad
192 .RS 19n

new/usr/src/man/man3papi/papiJobSubmit.3papi 4

193 a pointer to a handle to be used for all PAPI operations that is created by
194 calling \fBpapiServiceCreate()\fR
195 .RE

197 .sp
198 .ne 2
199 .na
200 \fB\fIjob\fR\fR
201 .ad
202 .RS 19n
203 a pointer to a printer object (initialized to NULL) to be filled in by
204 \fBpapiJobQuery()\fR, \fBpapiJobSubmit()\fR, \fBpapiJobSubmitByReference()\fR,
205 \fBpapiJobValidate()\fR, \fBpapiJobStreamClose()\fR, and \fBpapiJobModify()\fR
206 .RE

208 .sp
209 .ne 2
210 .na
211 \fB\fIjob_attributes\fR\fR
212 .ad
213 .RS 19n
214 attributes to apply during job creation or modification
215 .RE

217 .sp
218 .ne 2
219 .na
220 \fB\fIjob_id\fR\fR
221 .ad
222 .RS 19n
223 ID number of the job reported on or manipulated
224 .RE

226 .sp
227 .ne 2
228 .na
229 \fB\fIjob_ticket\fR\fR
230 .ad
231 .RS 19n
232 unused
233 .RE

235 .sp
236 .ne 2
237 .na
238 \fB\fIjobs\fR\fR
239 .ad
240 .RS 19n
241 a list of job objects returned by \fBpapiPrinterListJobs()\fR or
242 \fBpapiPrinterPurgeJobs()\fR
243 .RE

245 .sp
246 .ne 2
247 .na
248 \fB\fIprinter\fR\fR
249 .ad
250 .RS 19n
251 name of the printer where the job is or should reside
252 .RE

254 .sp
255 .ne 2
256 .na
257 \fB\fIrequested_attrs\fR\fR
258 .ad

new/usr/src/man/man3papi/papiJobSubmit.3papi 5

259 .RS 19n
260 a null-terminated array of pointers to attribute names requested during job
261 enumeration (\fBpapiPrinterListJobs()\fR) or job query (\fBpapiJobQuery()\fR)
262 .RE

264 .sp
265 .ne 2
266 .na
267 \fB\fIstream\fR\fR
268 .ad
269 .RS 19n
270 a communication endpoint for sending print job data
271 .RE

273 .SH DESCRIPTION
274 .sp
275 .LP
276 The \fBpapiJobSubmit()\fR function creates a print job containing the passed in
277 files with the supplied attributes. When the function returns, the data in the
278 passed files will have been copied by the print service. A job object is
279 returned that reflects the state of the job.
280 .sp
281 .LP
282 The \fBpapiJobSubmitByReference()\fR function creates a print job containing
283 the passed in files with the supplied attributes. When the function returns,
284 the data in the passed files might have been copied by the print service. A job
285 object is returned that reflects the state of the job.
286 .sp
287 .LP
288 The \fBpapiJobStreamOpen()\fR, \fBpapiJobStreamWrite()\fR,
289 \fBpapiJobStreamClose()\fR functions create a print job by opening a stream,
290 writing to the stream, and closing it.
291 .sp
292 .LP
293 The \fBpapiJobValidate()\fR function validates that the supplied attributes and
294 files will result in a valid print job.
295 .sp
296 .LP
297 The \fBpapiJobQuery()\fR function retrieves job information from the print
298 service.
299 .sp
300 .LP
301 The \fBpapiJobModify()\fR function modifies a queued job according to the
302 attribute list passed into the call. A job object is returned that reflects
303 the state of the job after the modification has been applied.
304 .sp
305 .LP
306 The \fBpapiJobMove()\fR function moves a job from its current queue to the
307 named destination within the same print service.
308 .sp
309 .LP
310 The \fBpapiJobCancel()\fR function removes a job from the queue.
311 .sp
312 .LP
313 The \fBpapiJobHold()\fR and \fBpapiJobRelease()\fR functions set the job state
314 to "held" or "idle" to indicate whether the job is eligible for processing.
315 .sp
316 .LP
317 The \fBpapiJobRestart()\fR function restarts processing of a currently queued
318 print job.
319 .sp
320 .LP
321 The \fBpapiJobGetAttributeList()\fR function returns a list of attributes
322 describing the job. This list can be searched and/or enumerated using
323 \fBpapiAttributeList*()\fR calls. See \fBpapiAttributeListAddValue\fR(3PAPI).
324 .sp

new/usr/src/man/man3papi/papiJobSubmit.3papi 6

325 .LP
326 The \fBpapiJobGetPrinterName()\fR function returns the name of the queue where
327 the job is currently queued.
328 .sp
329 .LP
330 The \fBpapiJobGetId()\fR function returns a job identifier number from the job
331 object passed in.
332 .sp
333 .LP
334 The \fBpapiJobPromote()\fR function moves a job to the head of the print queue.
335 .sp
336 .LP
337 The \fBpapiJobGetJobTicket()\fR function retrieves a pointer to a job ticket
338 associated with the job object.
339 .sp
340 .LP
341 The \fBpapiJobFree()\fR and \fBpapiJobListFree()\fR functions deallocate memory
342 allocated for the return of printer object(s) from functions that return
343 printer objects.
344 .SH RETURN VALUES
345 .sp
346 .LP
347 Upon successful completion, all \fBpapiJob*()\fR functions that return a value
348 return \fBPAPI_OK\fR. Otherwise, they return an appropriate \fBpapi_status_t\fR
349 indicating the type of failure.
350 .sp
351 .LP
352 Upon successful completion, \fBpapiJobGetAttributeList()\fR returns a pointer
353 to the requested data. Otherwise, it returns \fINULL\fR.
354 .SH EXAMPLES
355 .LP
356 \fBExample 1 \fREnumerate all jobs in a queue
357 .sp
358 .in +2
359 .nf
360 /*
361 * program to enumerate queued jobs using PAPI interfaces.
362 */
363 #include <stdio.h>
364 #include <stdlib.h>
365 #include <unistd.h>
366 #include <libintl.h>
367 #include <pwd.h>
368 #include <papi.h>

370 static int
371 authCB(papi_service_t svc, void *app_data)
372 {
373 char prompt[BUFSIZ];
374 char *user, *svc_name, *passphrase;

376 /* get the name of the service we are contacting */
377 if ((svc_name = papiServiceGetServiceName(svc)) == NULL)
378 return (-1);

380 /* find out who we are supposed to be */
381 if ((user = papiServiceGetUserName(svc)) == NULL) {
382 struct passwd *pw;

384 if ((pw = getpwuid(getuid())) != NULL)
385 user = pw->pw_name;
386 else
387 user = "nobody";
388 }

390 /* build the prompt string */

new/usr/src/man/man3papi/papiJobSubmit.3papi 7

391 snprintf(prompt, sizeof (prompt),
392 gettext("passphrase for %s to access %s: "), user,
393 svc_name);

395 /* ask for the passphrase */
396 if ((passphrase = getpassphrase(prompt)) != NULL)
397 papiServiceSetPassword(svc, passphrase);

399 return (0);
400 }

402 /*ARGSUSED*/
403 int
404 main(int ac, char *av[])
405 {
406 papi_status_t status;
407 papi_service_t svc = NULL;
408 papi_job_t *jobs = NULL;
409 char *svc_name = NULL;
410 char *pname = "unknown";
411 int c;

413 while ((c = getopt(ac, av, "s:p:")) != EOF)
414 switch (c) {
415 case ’s’:
416 svc_name = optarg;
417 break;
418 case ’p’:
419 pname = optarg;
420 break;
421 }

423 status = papiServiceCreate(&svc, svc_name, NULL, NULL, authCB,
424 PAPI_ENCRYPT_NEVER, NULL);

426 if (status != PAPI_OK) {
427 printf("papiServiceCreate(%s): %s\en", svc_name ? svc_name :
427 printf("papiServiceCreate(%s): %s\n", svc_name ? svc_name :
428 "NULL", papiStatusString(status));
429 papiServiceDestroy(svc);
430 exit(1);
431 }

433 status = papiPrinterListJobs(svc, pname, NULL, 0, 0, &jobs);
434 if (status != PAPI_OK) {
435 printf("papiPrinterListJobs(%s): %s\en", pname,
435 printf("papiPrinterListJobs(%s): %s\n", pname,
436 papiStatusString(status));
437 papiServiceDestroy(svc);
438 exit(1);
439 }

441 if (jobs != NULL) {
442 int i;

444 for (i = 0; jobs[i] != NULL; i++) {
445 papi_attribute_t **list = papiJobGetAttributeList(jobs[i]);

447 if (list != NULL) {
448 char *name = "unknown";
449 int32_t id = 0;
450 char *buffer = NULL;
451 size_t size = 0;

453 (void) papiAttributeListGetString(list, NULL,
454 "printer-name", &name);

new/usr/src/man/man3papi/papiJobSubmit.3papi 8

455 (void) papiAttributeListGetInteger(list, NULL,
456 "job-id", &id);
457 while (papiAttributeListToString(list, "\n\t", buffer,
458 size) != PAPI_OK)
459 buffer = realloc(buffer, size += BUFSIZ);

461 printf("%s-%d:\en\t%s\en", name, id, buffer);
461 printf("%s-%d:\n\t%s\n", name, id, buffer);
462 free(buffer);
463 }
464 }
465 papiJobListFree(jobs);
466 }

468 papiServiceDestroy(svc);

470 exit(0);
471 }

______unchanged_portion_omitted_

522 /*ARGSUSED*/
523 int
524 main(int ac, char *av[])
525 {
526 papi_status_t status;
527 papi_service_t svc = NULL;
528 papi_job_t job = NULL;
529 char *svc_name = NULL;
530 char *pname = "unknown";
531 int id = 0;
532 int c;

534 while ((c = getopt(ac, av, "s:p:j:")) != EOF)
535 switch (c) {
536 case ’s’:
537 svc_name = optarg;
538 break;
539 case ’p’:
540 pname = optarg;
541 break;
542 case ’j’:
543 id = atoi(optarg);
544 break;
545 }

547 status = papiServiceCreate(&svc, svc_name, NULL, NULL, authCB,
548 PAPI_ENCRYPT_NEVER, NULL);

550 if (status != PAPI_OK) {
551 printf("papiServiceCreate(%s): %s\en", svc_name ? svc_name :
551 printf("papiServiceCreate(%s): %s\n", svc_name ? svc_name :
552 "NULL", papiStatusString(status));
553 papiServiceDestroy(svc);
554 exit(1);
555 }

557 status = papiJobQuery(svc, pname, id, NULL, &job);
558 if ((status == PAPI_OK) && (job != NULL)) {
559 papi_attribute_t **list = papiJobGetAttributeList(job);

561 if (list != NULL) {
562 char *name = "unknown";
563 int32_t id = 0;
564 char *buffer = NULL;
565 size_t size = 0;

new/usr/src/man/man3papi/papiJobSubmit.3papi 9

567 (void) papiAttributeListGetString(list, NULL,
568 "printer-name", &name);
569 (void) papiAttributeListGetInteger(list, NULL,
570 "job-id", &id);
571 while (papiAttributeListToString(list, "\en\et", buffer, size)
571 while (papiAttributeListToString(list, "\n\t", buffer, size)
572 != PAPI_OK)
573 buffer = realloc(buffer, size += BUFSIZ);

575 printf("%s-%d:\en\et%s\n", name, id, buffer);
575 printf("%s-%d:\n\t%s\n", name, id, buffer);
576 free(buffer);
577 }
578 } else
579 printf("papiJobQuery(%s-%d): %s\en", pname, id,
579 printf("papiJobQuery(%s-%d): %s\n", pname, id,
580 papiStatusString(status));

582 papiJobFree(job);
583 papiServiceDestroy(svc);

585 exit(0);
586 }

______unchanged_portion_omitted_

637 /*ARGSUSED*/
638 int
639 main(int ac, char *av[])
640 {
641 papi_status_t status;
642 papi_service_t svc = NULL;
643 papi_stream_t stream = NULL;
644 papi_job_t job = NULL;
645 papi_attribute_t **attrs = NULL;
646 char *svc_name = NULL;
647 char *pname = "unknown";
648 int id = 0;
649 int c;
650 int rc;
651 char buf[BUFSIZ];

653 while ((c = getopt(ac, av, "s:p:")) != EOF)
654 switch (c) {
655 case ’s’:
656 svc_name = optarg;
657 break;
658 case ’p’:
659 pname = optarg;
660 break;
661 }

663 status = papiServiceCreate(&svc, svc_name, NULL, NULL, authCB,
664 PAPI_ENCRYPT_NEVER, NULL);

666 if (status != PAPI_OK) {
667 printf("papiServiceCreate(%s): %s\en", svc_name ? svc_name :
667 printf("papiServiceCreate(%s): %s\n", svc_name ? svc_name :
668 "NULL", papiStatusString(status));
669 papiServiceDestroy(svc);
670 exit(1);
671 }

673 papiAttributeListAddInteger(&attrs, PAPI_ATTR_EXCL, "copies", 1);
674 papiAttributeListAddString(&attrs, PAPI_ATTR_EXCL,
675 "document-format", "application/octet-stream");
676 papiAttributeListAddString(&attrs, PAPI_ATTR_EXCL,

new/usr/src/man/man3papi/papiJobSubmit.3papi 10

677 "job-title", "Standard Input");

679 status = papiJobStreamOpen(svc, pname, attrs, NULL, &stream);
680 while ((status == PAPI_OK) && ((rc = read(0, buf,
681 sizeof (buf))) > 0))
682 status = papiJobStreamWrite(svc, stream, buf, rc);

684 if (status == PAPI_OK)
685 status = papiJobStreamClose(svc, stream, &job);

688 if ((status == PAPI_OK) && (job != NULL)) {
689 papi_attribute_t **list = papiJobGetAttributeList(job);

691 if (list != NULL) {
692 char *name = "unknown";
693 int32_t id = 0;
694 char *buffer = NULL;
695 size_t size = 0;

697 (void) papiAttributeListGetString(list, NULL,
698 "printer-name", &name);
699 (void) papiAttributeListGetInteger(list, NULL,
700 "job-id", &id);
701 while (papiAttributeListToString(list, "\n\t", buffer, size)
702 != PAPI_OK)
703 buffer = realloc(buffer, size += BUFSIZ);

705 printf("%s-%d:\en\t%s\en", name, id, buffer);
705 printf("%s-%d:\n\t%s\n", name, id, buffer);
706 free(buffer);
707 }
708 } else
709 printf("papiJobStream*(%s-%d): %s\en", pname, id,
709 printf("papiJobStream*(%s-%d): %s\n", pname, id,
710 papiStatusString(status));

712 papiJobFree(job);
713 papiServiceDestroy(svc);

715 exit(0);
716 }

______unchanged_portion_omitted_

new/usr/src/man/man3papi/papiPrintersList.3papi 1

**
 13904 Tue Sep 10 18:35:20 2013
new/usr/src/man/man3papi/papiPrintersList.3papi
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH PAPIPRINTERSLIST 3PAPI "Sep 10, 2013"
6 .TH PAPIPRINTERSLIST 3PAPI "Jan 17, 2007"
7 .SH NAME
8 papiPrintersList, papiPrinterQuery, papiPrinterAdd, papiPrinterModify,
9 papiPrinterRemove, papiPrinterDisable, papiPrinterEnable, papiPrinterPause,

10 papiPrinterResume, papiPrinterPurgeJobs, papiPrinterListJobs,
11 papiPrinterGetAttributeList, papiPrinterFree, papiPrinterListFree \- print
12 object manipulation
13 .SH SYNOPSIS
14 .LP
15 .nf
16 cc [\fIflag\fR\&.\|.\|.] \fIfile\fR\&.\|.\|. \fB-lpapi\fR [\fIlibrary\fR\&.\|
17 #include <papi.h>

19 \fBpapi_status_t\fR \fBpapiPrintersList\fR(\fBpapi_service_t\fR \fIhandle\fR,
20 \fBchar **\fR\fIrequested_attrs\fR, \fBpapi_filter_t *\fR\fIfilter\fR,
21 \fBpapi_printer_t **\fR\fIprinters\fR);
22 .fi

24 .LP
25 .nf
26 \fBpapi_status_t\fR \fBpapiPrinterQuery\fR(\fBpapi_service_t\fR \fIhandle\fR, \f
27 \fBchar **\fR\fIrequested_attrs\fR, \fBpapi_attribute_t **\fR\fIjob_attribu
28 \fBpapi_printer_t *\fR\fIprinter\fR);
29 .fi

31 .LP
32 .nf
33 \fBpapi_status_t\fR \fBpapiPrinterAdd\fR(\fBpapi_service_t\fR \fIhandle\fR, \fBc
34 \fBpapi_attribute_t **\fR\fIattributes\fR, \fBpapi_printer_t *\fR\fIprinter
35 .fi

37 .LP
38 .nf
39 \fBpapi_status_t\fR \fBpapiPrinterModify\fR(\fBpapi_service_t\fR \fIhandle\fR, \
40 \fBpapi_attribute_t **\fR\fIattributes\fR, \fBpapi_printer_t *\fR\fIprinter
41 .fi

43 .LP
44 .nf
45 \fBpapi_status_t\fR \fBpapiPrinterRemove\fR(\fBpapi_service_t\fR \fIhandle\fR, \
46 .fi

48 .LP
49 .nf
50 \fBpapi_status_t\fR \fBpapiPrinterDisable\fR(\fBpapi_service_t\fR \fIhandle\fR,
51 \fBchar *\fR\fImessage\fR);
52 .fi

54 .LP
55 .nf
56 \fBpapi_status_t\fR \fBpapiPrinterEnable\fR(\fBpapi_service_t\fR \fIhandle\fR, \
57 .fi

59 .LP
60 .nf

new/usr/src/man/man3papi/papiPrintersList.3papi 2

61 \fBpapi_status_t\fR \fBpapiPrinterPause\fR(\fBpapi_service_t\fR \fIhandle\fR, \f
62 \fBchar *\fR\fImessage\fR);
63 .fi

65 .LP
66 .nf
67 \fBpapi_status_t\fR \fBpapiPrinterResume\fR(\fBpapi_service_t\fR \fIhandle\fR, \
68 .fi

70 .LP
71 .nf
72 \fBpapi_status_t\fR \fBpapiPrinterPurgeJobs\fR(\fBpapi_service_t\fR \fIhandle\fR
73 \fBpapi_job_t **\fR\fIjobs\fR);
74 .fi

76 .LP
77 .nf
78 \fBpapi_status_t\fR \fBpapiPrinterListJobs\fR(\fBpapi_service_t\fR \fIhandle\fR,
79 \fBchar **\fR\fIrequested_attrs\fR, \fBint\fR \fItype_mask\fR, \fBint\fR \f
80 \fBpapi_job_t **\fR\fIjobs\fR);
81 .fi

83 .LP
84 .nf
85 \fBpapi_attribute_t **\fR\fBpapiPrinterGetAttributeList\fR(\fBpapi_printer_t\fR
86 .fi

88 .LP
89 .nf
90 \fBvoid\fR \fBpapiPrinterFree\fR(\fBpapi_printer_t\fR \fIprinter\fR);
91 .fi

93 .LP
94 .nf
95 \fBvoid\fR \fBpapiPrinterListFree\fR(\fBpapi_printer_t *\fR\fIprinters\fR);
96 .fi

98 .SH PARAMETERS
99 .sp
100 .ne 2
101 .na
102 \fB\fIattributes\fR\fR
103 .ad
104 .RS 19n
105 a set of attributes to be applied to a printer object
106 .RE

108 .sp
109 .ne 2
110 .na
111 \fB\fIfilter\fR\fR
112 .ad
113 .RS 19n
114 a filter to be applied during printer enumeration
115 .RE

117 .sp
118 .ne 2
119 .na
120 \fB\fIhandle\fR\fR
121 .ad
122 .RS 19n
123 a pointer to a handle to be used for all PAPI operations, created by calling
124 \fBpapiServiceCreate()\fR
125 .RE

new/usr/src/man/man3papi/papiPrintersList.3papi 3

127 .sp
128 .ne 2
129 .na
130 \fB\fIjob_attributes\fR\fR
131 .ad
132 .RS 19n
133 unused
134 .RE

136 .sp
137 .ne 2
138 .na
139 \fB\fIjobs\fR\fR
140 .ad
141 .RS 19n
142 a pointer to a list to return job objects (initialized to \fINULL\fR)
143 enumerated by \fBpapiPrinterGetJobs()\fR
144 .RE

146 .sp
147 .ne 2
148 .na
149 \fB\fImax_num_jobs\fR\fR
150 .ad
151 .RS 19n
152 the maximum number of jobs to return from a \fBpapiPrinterGetJobs()\fR request
153 .RE

155 .sp
156 .ne 2
157 .na
158 \fB\fImessage\fR\fR
159 .ad
160 .RS 19n
161 a message to be associated with a printer while disabled or paused
162 .RE

164 .sp
165 .ne 2
166 .na
167 \fB\fIname\fR\fR
168 .ad
169 .RS 19n
170 the name of the printer object being operated on
171 .RE

173 .sp
174 .ne 2
175 .na
176 \fB\fIprinter\fR\fR
177 .ad
178 .RS 19n
179 a pointer to a printer object (initialized to \fINULL\fR) to be filled in by
180 \fBpapiPrinterQuery()\fR, \fBpapiPrinterAdd()\fR, and \fBpapiPrinterModify()\fR
181 .RE

183 .sp
184 .ne 2
185 .na
186 \fB\fIprinters\fR\fR
187 .ad
188 .RS 19n
189 a pointer to a list to return printer objects (initialized to \fINULL\fR)
190 enumerated by \fBpapiPrintersList()\fR
191 .RE

new/usr/src/man/man3papi/papiPrintersList.3papi 4

193 .sp
194 .ne 2
195 .na
196 \fB\fIrequested_attrs\fR\fR
197 .ad
198 .RS 19n
199 a null-terminated array of pointers to attribute names requested during printer
200 enumeration (\fBpapiPrintersList()\fR), printer query
201 (\fBpapiPrinterQuery()\fR), or job enumeration (\fBpapiPrinterListJobs()\fR)
202 .RE

204 .sp
205 .ne 2
206 .na
207 \fB\fItype_mask\fR\fR
208 .ad
209 .RS 19n
210 a bit field indicating which type of jobs to return \fBPAPI_LIST_JOBS_OTHERS\fR
211 include jobs submitted by others. The default is to report only on your own
212 jobs
213 .sp
214 .ne 2
215 .na
216 \fB\fBPAPI_LIST_JOBS_COMPLETED\fR\fR
217 .ad
218 .sp .6
219 .RS 4n
220 include completed jobs
221 .RE

223 .sp
224 .ne 2
225 .na
226 \fB\fBPAPI_LIST_JOBS_NOT_COMPLETED\fR\fR
227 .ad
228 .sp .6
229 .RS 4n
230 include jobs not complete
231 .RE

233 .sp
234 .ne 2
235 .na
236 \fB\fBPAPI_LIST_JOBS_ALL\fR\fR
237 .ad
238 .sp .6
239 .RS 4n
240 report on all jobs
241 .RE

243 .RE

245 .SH DESCRIPTION
246 .sp
247 .LP
248 The \fBpapiPrintersList()\fR function retrieves the requested attributes from
249 the print service(s) for all available printers. Because the Solaris
250 implementation is name service-enabled, applications should retrieve only the
251 \fBprinter-name\fR and \fBprinter-uri-supported\fR attributes using this
252 function, thereby reducing the overhead involved in generating a printer list.
253 Further integration of printer state and capabilities can be performed with
254 \fBpapiPrinterQuery()\fR.
255 .sp
256 .LP
257 The \fBpapiPrinterAdd()\fR, \fBpapiPrinterModify()\fR, and
258 \fBpapiPrinterRemove()\fR functions allow for creation, modification, and

new/usr/src/man/man3papi/papiPrintersList.3papi 5

259 removal of print queues. Print queues are added or modified according to the
260 attribute list passed into the call. A printer object is returned that reflects
261 the configuration of the printer after the addition or modification has been
262 applied. At this time, they provide only minimal functionality and only for
263 the LP print service.
264 .sp
265 .LP
266 The \fBpapiPrinterDisable()\fR and \fBpapiPrinterEnable()\fR functions allow
267 applications to turn off and on queueing (accepting print requests) for a print
268 queue. The \fBpapiPrinterEnable()\fR and \fBpapiPrinterDisable()\fR functions
269 allow applications to turn on and off print job processing for a print queue.
270 .sp
271 .LP
272 The \fBpapiPrinterPause()\fR function stops queueing of print jobs on the named
273 print queue.
274 .sp
275 .LP
276 The \fBpapiPrinterResume()\fR function resumes queueing of print jobs on the
277 named print queue.
278 .sp
279 .LP
280 The \fBpapiPrinterPurgeJobs()\fR function allows applications to delete all
281 print jobs that it has privilege to remove. A list of cancelled jobs is
282 returned in the jobs argument.
283 .sp
284 .LP
285 The \fBpapiPrinterListJobs()\fR function enumerates print jobs on a particular
286 queue. \fBpapiPrinterGetAttributeList()\fR retrieves an attribute list from a
287 printer object.
288 .sp
289 .LP
290 The \fBpapiPrinterGetAttributeList()\fR function retrieves an attribute list
291 from a printer object returned from \fBpapiPrinterQuery()\fR,
292 \fBpapiPrintersList()\fR, \fBpapiPrinterModify()\fR, and
293 \fBpapiPrinterAdd()\fR. This attribute list can be searched for various
294 information about the printer object.
295 .sp
296 .LP
297 The \fBpapiPrinterFree()\fR and \fBpapiPrinterListFree()\fR functions
298 deallocate memory allocated for the return of printer object(s) from functions
299 that return printer objects.
300 .SH RETURN VALUES
301 .sp
302 .LP
303 Upon successful completion, all functions that return a value return
304 \fBPAPI_OK\fR. Otherwise, they return an appropriate \fBpapi_status_t()\fR
305 indicating the type of failure.
306 .sp
307 .LP
308 Upon successful completion, \fBpapiPrinterGetAttributeList()\fR returns a
309 pointer to the requested data. Otherwise, it returns \fINULL\fR.
310 .SH EXAMPLES
311 .LP
312 \fBExample 1 \fREnumerate all available printers.
313 .sp
314 .in +2
315 .nf
316 #include <stdio.h>
317 #include <stdlib.h>
318 #include <unistd.h>
319 #include <libintl.h>
320 #include <pwd.h>
321 #include <papi.h>

323 static int
324 authCB(papi_service_t svc, void *app_data)

new/usr/src/man/man3papi/papiPrintersList.3papi 6

325 {
326 char prompt[BUFSIZ];
327 char *user, *svc_name, *passphrase;

329 /* get the name of the service we are contacting */
330 if ((svc_name = papiServiceGetServiceName(svc)) == NULL)
331 return (-1);

333 /* find out who we are supposed to be */
334 if ((user = papiServiceGetUserName(svc)) == NULL) {
335 struct passwd *pw;

337 if ((pw = getpwuid(getuid())) != NULL)
338 user = pw->pw_name;
339 else
340 user = "nobody";
341 }

343 /* build the prompt string */
344 snprintf(prompt, sizeof (prompt),
345 gettext("passphrase for %s to access %s: "), user,
346 svc_name);

348 /* ask for the passphrase */
349 if ((passphrase = getpassphrase(prompt)) != NULL)
350 papiServiceSetPassword(svc, passphrase);

352 return (0);
353 }

355 /*ARGSUSED*/
356 int
357 main(int ac, char *av[])
358 {
359 papi_status_t status;
360 papi_service_t svc = NULL;
361 papi_printer_t *printers = NULL;
362 char *attrs[] = { "printer-name", "printer-uri-supported", NULL };
363 char *svc_name = NULL;
364 int c;

366 while ((c = getopt(ac, av, "s:")) != EOF)
367 switch (c) {
368 case ’s’:
369 svc_name = optarg;
370 break;
371 }

373 status = papiServiceCreate(&svc, svc_name, NULL, NULL, authCB,
374 PAPI_ENCRYPT_NEVER, NULL);

376 if (status != PAPI_OK) {
377 printf("papiServiceCreate(%s): %s\en", svc_name ? svc_name :
378 "NULL", papiStatusString(status));
379 papiServiceDestroy(svc);
380 exit(1);
381 }

383 status = papiPrintersList(svc, attrs, NULL, &printers);
384 if (status != PAPI_OK) {
385 printf("papiPrintersList(%s): %s\en", svc_name ? svc_name :
386 "NULL", papiStatusString(status));
387 papiServiceDestroy(svc);
388 exit(1);
389 }

new/usr/src/man/man3papi/papiPrintersList.3papi 7

391 if (printers != NULL) {
392 int i;

394 for (i = 0; printers[i] != NULL; i++) {
395 papi_attribute_t **list =
396 papiPrinterGetAttributeList(printers[i]);

398 if (list != NULL) {
399 char *name = "unknown";
400 char *uri = "unknown";

402 (void) papiAttributeListGetString(list, NULL,
403 "printer-name", &name);

405 (void) papiAttributeListGetString(list, NULL,
406 "printer-uri-supported", &uri);
407 printf("%s is %s\en", name, uri);
407 printf("%s is %s\n", name, uri);
408 }
409 }
410 papiPrinterListFree(printers);
411 }

413 papiServiceDestroy(svc);

415 exit(0);
416 }

______unchanged_portion_omitted_

new/usr/src/man/man3socket/getipnodebyname.3socket 1

**
 14726 Tue Sep 10 18:35:20 2013
new/usr/src/man/man3socket/getipnodebyname.3socket
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH GETIPNODEBYNAME 3SOCKET "Sep 10, 2013"
6 .TH GETIPNODEBYNAME 3SOCKET "Aug 22, 2007"
7 .SH NAME
8 getipnodebyname, getipnodebyaddr, freehostent \- get IP node entry
9 .SH SYNOPSIS

10 .LP
11 .nf
12 \fBcc\fR [\fIflag\fR...] \fIfile\fR... \fB-lsocket\fR \fB -lnsl \fR [\fIlibra
13 #include <sys/socket.h>
14 #include <netdb.h>

16 \fBstruct hostent *\fR\fBgetipnodebyname\fR(\fBconst char *\fR\fIname\fR, \fBint
17 \fBint\fR \fIflags\fR, \fBint *\fR\fIerror_num\fR);
18 .fi

20 .LP
21 .nf
22 \fBstruct hostent *\fR\fBgetipnodebyaddr\fR(\fBconst void *\fR\fIsrc\fR, \fBsize
23 \fBint\fR \fIaf\fR, \fBint *\fR\fIerror_num\fR);
24 .fi

26 .LP
27 .nf
28 \fBvoid\fR \fBfreehostent\fR(\fBstruct hostent *\fR\fIptr\fR);
29 .fi

31 .SH PARAMETERS
32 .sp
33 .ne 2
34 .na
35 \fB\fIaf\fR\fR
36 .ad
37 .RS 13n
38 Address family
39 .RE

41 .sp
42 .ne 2
43 .na
44 \fB\fIflags\fR\fR
45 .ad
46 .RS 13n
47 Various flags
48 .RE

50 .sp
51 .ne 2
52 .na
53 \fB\fIname\fR\fR
54 .ad
55 .RS 13n
56 Name of host
57 .RE

59 .sp
60 .ne 2

new/usr/src/man/man3socket/getipnodebyname.3socket 2

61 .na
62 \fB\fIerror_num\fR\fR
63 .ad
64 .RS 13n
65 Error storage
66 .RE

68 .sp
69 .ne 2
70 .na
71 \fB\fIsrc\fR\fR
72 .ad
73 .RS 13n
74 Address for lookup
75 .RE

77 .sp
78 .ne 2
79 .na
80 \fB\fIlen\fR\fR
81 .ad
82 .RS 13n
83 Length of address
84 .RE

86 .sp
87 .ne 2
88 .na
89 \fB\fIptr\fR\fR
90 .ad
91 .RS 13n
92 Pointer to \fBhostent\fR structure
93 .RE

95 .SH DESCRIPTION
96 .sp
97 .LP
98 The \fBgetipnodebyname()\fR function searches the \fBipnodes\fR database from
99 the beginning. The function finds the first \fBh_name\fR member that matches
100 the hostname specified by \fIname\fR. The function takes an \fIaf\fR argument
101 that specifies the address family. The address family can be \fBAF_INET\fR for
102 IPv4 addresses or \fBAF_INET6\fR for IPv6 addresses. The \fIflags\fR argument
103 determines what results are returned based on the value of \fIflags\fR. If the
104 \fIflags\fR argument is set to \fB0\fR (zero), the default operation of the
105 function is specified as follows:
106 .RS +4
107 .TP
108 .ie t \(bu
109 .el o
110 If the \fIaf\fR argument is \fBAF_INET\fR, a query is made for an IPv4 address.
111 If successful, IPv4 addresses are returned and the \fBh_length\fR member of the
112 \fBhostent\fR structure is 4. Otherwise, the function returns a \fINULL\fR
113 pointer.
114 .RE
115 .RS +4
116 .TP
117 .ie t \(bu
118 .el o
119 If the \fIaf\fR argument is \fBAF_INET6\fR, a query is made for an IPv6
120 address. If successful, IPv6 addresses are returned and the \fBh_length\fR
121 member of the \fBhostent\fR structure is 16. Otherwise, the function returns a
122 \fINULL\fR pointer.
123 .RE
124 .sp
125 .LP
126 The \fIflags\fR argument changes the default actions of the function. Set the

new/usr/src/man/man3socket/getipnodebyname.3socket 3

127 \fIflags\fR argument with a logical \fBOR\fR operation on any of combination of
128 the following values:
129 .RS +4
130 .TP
131 .ie t \(bu
132 .el o
133 \fBAI_V4MAPPED\fR
134 .RE
135 .RS +4
136 .TP
137 .ie t \(bu
138 .el o
139 \fBAI_ALL\fR
140 .RE
141 .RS +4
142 .TP
143 .ie t \(bu
144 .el o
145 \fBAI_ADDRCONFIG\fR
146 .RE
147 .sp
148 .LP
149 The special flags value, \fBAI_DEFAULT\fR, should handle most applications.
150 Porting simple applications to use IPv6 replaces the call
151 .sp
152 .in +2
153 .nf
154 hptr = gethostbyname(name);
155 .fi
156 .in -2

158 .sp
159 .LP
160 with
161 .sp
162 .in +2
163 .nf
164 hptr = getipnodebyname(name, AF_INET6, AI_DEFAULT, &error_num);
165 .fi
166 .in -2

168 .sp
169 .LP
170 The \fIflags\fR value \fB0\fR (zero) implies a strict interpretation of the
171 \fIaf\fR argument:
172 .RS +4
173 .TP
174 .ie t \(bu
175 .el o
176 If \fIflags\fR is \fB0\fR and \fIaf\fR is \fBAF_INET\fR, the caller wants only
177 IPv4 addresses. A query is made for \fBA\fR records. If successful, IPv4
178 addresses are returned and the \fBh_length\fR member of the \fBhostent\fR
179 structure is 4. Otherwise, the function returns a \fINULL\fR pointer.
180 .RE
181 .RS +4
182 .TP
183 .ie t \(bu
184 .el o
185 If \fIflags\fR is \fB0\fR and \fIaf\fR is \fBAF_INET6\fR, the caller wants only
186 IPv6 addresses. A query is made for \fBAAAA\fR records. If successful, IPv6
187 addresses are returned and the \fBh_length\fR member of the \fBhostent\fR
188 structure is 16. Otherwise, the function returns a \fINULL\fR pointer.
189 .RE
190 .sp
191 .LP
192 Logically \fBOR\fR other constants into the \fIflags\fR argument to modify the

new/usr/src/man/man3socket/getipnodebyname.3socket 4

193 behavior of the \fBgetipnodebyname()\fR function.
194 .RS +4
195 .TP
196 .ie t \(bu
197 .el o
198 If the \fBAI_V4MAPPED\fR flag is specified with \fIaf\fR set to \fBAF_INET6\fR,
199 the caller can accept IPv4-mapped IPv6 addresses. If no \fBAAAA\fR records are
200 found, a query is made for \fBA\fR records. Any \fBA\fR records found are
201 returned as IPv4-mapped IPv6 addresses and the \fBh_length\fR is 16. The
202 \fBAI_V4MAPPED\fR flag is ignored unless \fIaf\fR equals \fBAF_INET6\fR.
203 .RE
204 .RS +4
205 .TP
206 .ie t \(bu
207 .el o
208 The \fBAI_ALL\fR flag is used in conjunction with the \fBAI_V4MAPPED\fR flag,
209 exclusively with the IPv6 address family. When \fBAI_ALL\fR is logically
210 \fBOR\fRed with \fBAI_V4MAPPED\fR flag, the caller wants all addresses: IPv6
211 and IPv4-mapped IPv6 addresses. A query is first made for \fBAAAA\fR records
212 and, if successful, IPv6 addresses are returned. Another query is then made for
213 \fBA\fR records. Any \fBA\fR records found are returned as IPv4-mapped IPv6
214 addresses and the \fBh_length\fR is 16. Only when both queries fail does the
215 function return a \fINULL\fR pointer. The \fBAI_ALL\fR flag is ignored unless
216 \fIaf\fR is set to \fBAF_INET6\fR.
217 .RE
218 .RS +4
219 .TP
220 .ie t \(bu
221 .el o
222 The \fBAI_ADDRCONFIG\fR flag specifies that a query for \fBAAAA\fR records
223 should occur only when the node is configured with at least one IPv6 source
224 address. A query for \fBA\fR records should occur only when the node is
225 configured with at least one IPv4 source address. For example, if a node is
226 configured with no IPv6 source addresses, \fIaf\fR equals \fBAF_INET6\fR, and
227 the node name queried has both \fBAAAA\fR and \fBA\fR records, then:
228 .RS +4
229 .TP
230 .ie t \(bu
231 .el o
232 A \fINULL\fR pointer is returned when only the \fBAI_ADDRCONFIG\fR value is
233 specified.
234 .RE
235 .RS +4
236 .TP
237 .ie t \(bu
238 .el o
239 The \fBA\fR records are returned as IPv4-mapped IPv6 addresses when the
240 \fBAI_ADDRCONFIG\fR and \fBAI_V4MAPPED\fR values are specified.
241 .RE
242 .RE
243 .sp
244 .LP
245 The special flags value, \fBAI_DEFAULT\fR, is defined as
246 .sp
247 .in +2
248 .nf
249 #define AI_DEFAULT (AI_V4MAPPED | AI_ADDRCONFIG)
250 .fi
251 .in -2

253 .sp
254 .LP
255 The \fBgetipnodebyname()\fR function allows the \fIname\fR argument to be a
256 node name or a literal address string: a dotted-decimal IPv4 address or an IPv6
257 hex address. Applications do not have to call \fBinet_pton\fR(3SOCKET) to
258 handle literal address strings.

new/usr/src/man/man3socket/getipnodebyname.3socket 5

259 .sp
260 .LP
261 Four scenarios arise based on the type of literal address string and the value
262 of the \fIaf\fR argument. The two simple cases occur when \fIname\fR is a
263 dotted-decimal IPv4 address and \fIaf\fR equals \fBAF_INET\fR and when
264 \fIname\fR is an IPv6 hex address and \fIaf\fR equals \fBAF_INET6\fR. The
265 members of the returned \fBhostent\fR structure are:
266 .sp
267 .ne 2
268 .na
269 \fB\fBh_name\fR\fR
270 .ad
271 .RS 15n
272 Pointer to a copy of the name argument
273 .RE

275 .sp
276 .ne 2
277 .na
278 \fB\fBh_aliases\fR\fR
279 .ad
280 .RS 15n
281 \fINULL\fR pointer.
282 .RE

284 .sp
285 .ne 2
286 .na
287 \fB\fBh_addrtype\fR\fR
288 .ad
289 .RS 15n
290 Copy of the \fIaf\fR argument.
291 .RE

293 .sp
294 .ne 2
295 .na
296 \fB\fBh_length\fR\fR
297 .ad
298 .RS 15n
299 4 for \fBAF_INET\fR or 16 for \fBAF_INET6\fR.
300 .RE

302 .sp
303 .ne 2
304 .na
305 \fB\fBh_addr_list\fR\fR
306 .ad
307 .RS 15n
308 Array of pointers to 4-byte or 16-byte binary addresses. The array is
309 terminated by a \fINULL\fR pointer.
310 .RE

312 .SH RETURN VALUES
313 .sp
314 .LP
315 Upon successful completion, \fBgetipnodebyname()\fR and \fBgetipnodebyaddr()\fR
316 return a \fBhostent\fR structure. Otherwise they return \fINULL\fR.
317 .sp
318 .LP
319 The \fBhostent\fR structure does not change from the existing definition when
320 used with \fBgethostbyname\fR(3NSL). For example, host entries are represented
321 by the \fBstruct hostent\fR structure defined in <\fBnetdb.h\fR>:
322 .sp
323 .in +2
324 .nf

new/usr/src/man/man3socket/getipnodebyname.3socket 6

325 struct hostent {
326 char *h_name; /* canonical name of host */
327 char **h_aliases; /* alias list */
328 int h_addrtype; /* host address type */
329 int h_length; /* length of address */
330 char **h_addr_list; /* list of addresses */
331 };
332 .fi
333 .in -2

335 .sp
336 .LP
337 An error occurs when \fIname\fR is an IPv6 hex address and \fIaf\fR equals
338 \fBAF_INET\fR. The return value of the function is a \fINULL\fR pointer and
339 \fBerror_num\fR equals \fBHOST_NOT_FOUND\fR.
340 .sp
341 .LP
342 The \fBgetipnodebyaddr()\fR function has the same arguments as the existing
343 \fBgethostbyaddr\fR(3NSL) function, but adds an error number. As with
344 \fBgetipnodebyname()\fR, \fBgetipnodebyaddr()\fR is thread-safe. The
345 \fBerror_num\fR value is returned to the caller with the appropriate error code
346 to support thread-safe error code returns. The following error conditions can
347 be returned for \fBerror_num\fR:
348 .sp
349 .ne 2
350 .na
351 \fB\fBHOST_NOT_FOUND\fR\fR
352 .ad
353 .RS 18n
354 Host is unknown.
355 .RE

357 .sp
358 .ne 2
359 .na
360 \fB\fBNO_DATA\fR\fR
361 .ad
362 .RS 18n
363 No address is available for the \fIname\fR specified in the server request.
364 This error is not a soft error. Another type of \fIname\fR server request might
365 be successful.
366 .RE

368 .sp
369 .ne 2
370 .na
371 \fB\fBNO_RECOVERY\fR\fR
372 .ad
373 .RS 18n
374 An unexpected server failure occurred, which is a non-recoverable error.
375 .RE

377 .sp
378 .ne 2
379 .na
380 \fB\fBTRY_AGAIN\fR\fR
381 .ad
382 .RS 18n
383 This error is a soft error that indicates that the local server did not receive
384 a response from an authoritative server. A retry at some later time might be
385 successful.
386 .RE

388 .sp
389 .LP
390 One possible source of confusion is the handling of IPv4-mapped IPv6 addresses

new/usr/src/man/man3socket/getipnodebyname.3socket 7

391 and IPv4-compatible IPv6 addresses, but the following logic should apply:
392 .RS +4
393 .TP
394 1.
395 If \fIaf\fR is \fBAF_INET6\fR, and if \fIlen\fR equals 16, and if the IPv6
396 address is an IPv4-mapped IPv6 address or an IPv4-compatible IPv6 address, then
397 skip over the first 12 bytes of the IPv6 address, set \fIaf\fR to
398 \fBAF_INET\fR, and set \fIlen\fR to 4.
399 .RE
400 .RS +4
401 .TP
402 2.
403 If \fIaf\fR is \fBAF_INET\fR, lookup the \fIname\fR for the given IPv4
404 address.
405 .RE
406 .RS +4
407 .TP
408 3.
409 If \fIaf\fR is \fBAF_INET6\fR, lookup the \fIname\fR for the given IPv6
410 address.
411 .RE
412 .RS +4
413 .TP
414 4.
415 If the function is returning success, then the single address that is
416 returned in the \fBhostent\fR structure is a copy of the first argument to the
417 function with the same address family that was passed as an argument to this
418 function.
419 .RE
420 .sp
421 .LP
422 All four steps listed are performed in order.
423 .sp
424 .LP
425 This structure, and the information pointed to by this structure, are
426 dynamically allocated by \fBgetipnodebyname()\fR and \fBgetipnodebyaddr()\fR.
427 The \fBfreehostent()\fR function frees this memory.
428 .SH EXAMPLES
429 .LP
430 \fBExample 1 \fRGetting the Canonical Name, Aliases, and Internet IP Addresses
431 for a Given Hostname
432 .sp
433 .LP
434 The following is a sample program that retrieves the canonical name, aliases,
435 and all Internet IP addresses, both version 6 and version 4, for a given
436 hostname.

438 .sp
439 .in +2
440 .nf
441 #include <stdio.h>
442 #include <string.h>
443 #include <sys/types.h>
444 #include <sys/socket.h>
445 #include <netinet/in.h>
446 #include <arpa/inet.h>
447 #include <netdb.h>

449 main(int argc, const char **argv)
450 {
451 char abuf[INET6_ADDRSTRLEN];
452 int error_num;
453 struct hostent *hp;
454 char **p;

456 if (argc != 2) {

new/usr/src/man/man3socket/getipnodebyname.3socket 8

457 (void) printf("usage: %s hostname\en", argv[0]);
457 (void) printf("usage: %s hostname\n", argv[0]);
458 exit (1);
459 }

461 /* argv[1] can be a pointer to a hostname or literal IP address */
462 hp = getipnodebyname(argv[1], AF_INET6, AI_ALL | AI_ADDRCONFIG |
463 AI_V4MAPPED, &error_num);
464 if (hp == NULL) {
465 if (error_num == TRY_AGAIN) {
466 printf("%s: unknown host or invalid literal address "
467 "(try again later)\en", argv[1]);
467 "(try again later)\n", argv[1]);
468 } else {
469 printf("%s: unknown host or invalid literal address\en",
469 printf("%s: unknown host or invalid literal address\n",
470 argv[1]);
471 }
472 exit (1);
473 }
474 for (p = hp->h_addr_list; *p != 0; p++) {
475 struct in6_addr in6;
476 char **q;

478 bcopy(*p, (caddr_t)&in6, hp->h_length);
479 (void) printf("%s\t%s", inet_ntop(AF_INET6, (void *)&in6,
480 abuf, sizeof(abuf)), hp->h_name);
481 for (q = hp->h_aliases; *q != 0; q++)
482 (void) printf(" %s", *q);
483 (void) putchar(’\en’);
483 (void) putchar(’\n’);
484 }
485 freehostent(hp);
486 exit (0);
487 }
488 .fi
489 .in -2

491 .SH ATTRIBUTES
492 .sp
493 .LP
494 See \fBattributes\fR(5) for descriptions of the following attributes:
495 .sp

497 .sp
498 .TS
499 box;
500 c | c
501 l | l .
502 ATTRIBUTE TYPE ATTRIBUTE VALUE
503 _
504 Interface Stability Committed
505 _
506 MT-Level Safe
507 .TE

509 .SH SEE ALSO
510 .sp
511 .LP
512 \fBgetaddrinfo\fR(3SOCKET), \fBgethostbyname\fR(3NSL), \fBhtonl\fR(3SOCKET),
513 \fBinet\fR(3SOCKET), \fBnetdb.h\fR(3HEAD), \fBhosts\fR(4),
514 \fBnsswitch.conf\fR(4), \fBattributes\fR(5)
515 .SH NOTES
516 .sp
517 .LP
518 No enumeration functions are provided for IPv6. Existing enumeration functions

new/usr/src/man/man3socket/getipnodebyname.3socket 9

519 such as \fBsethostent\fR(3NSL) do not work in combination with the
520 \fBgetipnodebyname()\fR and \fBgetipnodebyaddr()\fR functions.
521 .sp
522 .LP
523 All the functions that return a \fBstruct hostent\fR must always return the
524 canonical in the \fBh_name\fR field. This name, by definition, is the
525 well-known and official hostname shared between all aliases and all addresses.
526 The underlying source that satisfies the request determines the mapping of the
527 input name or address into the set of names and addresses in \fBhostent\fR.
528 Different sources might make such as determination in different ways. If more
529 than one alias and more than one address in \fBhostent\fR exist, no pairing is
530 implied between the alias and address.
531 .sp
532 .LP
533 The current implementations of these functions return or accept only addresses
534 for the Internet address family (type \fBAF_INET\fR) or the Internet address
535 family Version 6 (type \fBAF_INET6\fR).
536 .sp
537 .LP
538 IPv4-mapped addresses are not recommended. The \fBgetaddrinfo\fR(3SOCKET)
539 function is preferred over \fBgetipnodebyaddr()\fR because it allows
540 applications to lookup IPv4 and IPv6 addresses without relying on IPv4-mapped
541 addresses.
542 .sp
543 .LP
544 The form for an address of type \fBAF_INET\fR is a \fBstruct in_addr\fR defined
545 in <\fBnetinet/in.h\fR>. The form for an address of type \fBAF_INET6\fR is a
546 \fBstruct in6_addr\fR, also defined in <\fBnetinet/in.h\fR>. The functions
547 described in \fBinet_ntop\fR(3SOCKET) and \fBinet_pton\fR(3SOCKET) that are
548 illustrated in the EXAMPLES section are helpful in constructing and
549 manipulating addresses in either of these forms.

new/usr/src/man/man3tecla/gl_get_line.3tecla 1

**
 85863 Tue Sep 10 18:35:21 2013
new/usr/src/man/man3tecla/gl_get_line.3tecla
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd.
3 .\" All Rights Reserved.
4 .\" Permission is hereby granted, free of charge, to any person obtaining a copy
5 .\" "Software"), to deal in the Software without restriction, including
6 .\" without limitation the rights to use, copy, modify, merge, publish,
7 .\" distribute, and/or sell copies of the Software, and to permit persons
8 .\" to whom the Software is furnished to do so, provided that the above
9 .\" copyright notice(s) and this permission notice appear in all copies of

10 .\" the Software and that both the above copyright notice(s) and this
11 .\" permission notice appear in supporting documentation.
12 .\"
13 .\" THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
14 .\" OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
15 .\" MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
16 .\" OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
17 .\" HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
18 .\" INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
19 .\" FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
20 .\" NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
21 .\" WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
22 .\"
23 .\" Except as contained in this notice, the name of a copyright holder
24 .\" shall not be used in advertising or otherwise to promote the sale, use
25 .\" or other dealings in this Software without prior written authorization
26 .\" of the copyright holder.
27 .\" Portions Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved.
28 .TH GL_GET_LINE 3TECLA "Sep 10, 2013"
28 .TH GL_GET_LINE 3TECLA "Nov 28, 2007"
29 .SH NAME
30 gl_get_line, new_GetLine, del_GetLine, gl_customize_completion,
31 gl_change_terminal, gl_configure_getline, gl_load_history, gl_save_history,
32 gl_group_history, gl_show_history, gl_watch_fd, gl_inactivity_timeout,
33 gl_terminal_size, gl_set_term_size, gl_resize_history, gl_limit_history,
34 gl_clear_history, gl_toggle_history, gl_lookup_history, gl_state_of_history,
35 gl_range_of_history, gl_size_of_history, gl_echo_mode, gl_replace_prompt,
36 gl_prompt_style, gl_ignore_signal, gl_trap_signal, gl_last_signal,
37 gl_completion_action, gl_register_action, gl_display_text, gl_return_status,
38 gl_error_message, gl_catch_blocked, gl_list_signals, gl_bind_keyseq,
39 gl_erase_terminal, gl_automatic_history, gl_append_history, gl_query_char,
40 gl_read_char \- allow the user to compose an input line
41 .SH SYNOPSIS
42 .LP
43 .nf
44 cc [\fIflag\fR\&.\|.\|.] \fIfile\fR\&.\|.\|. \fB-ltecla\fR [\fIlibrary\fR\&.\
45 #include <stdio.h>
46 #include <libtecla.h>

48 \fBGetLine *\fR\fBnew_GetLine\fR(\fBsize_t\fR \fIlinelen\fR, \fBsize_t\fR \fIhis
49 .fi

51 .LP
52 .nf
53 \fBGetLine *\fR\fBdel_GetLine\fR(\fBGetLine *\fR\fIgl\fR);
54 .fi

56 .LP
57 .nf
58 \fBchar *\fR\fBgl_get_line\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fIprom
59 \fBconst char *\fR\fIstart_line\fR, \fBint\fR \fIstart_pos\fR);
60 .fi

new/usr/src/man/man3tecla/gl_get_line.3tecla 2

62 .LP
63 .nf
64 \fBint\fR \fBgl_query_char\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fIprom
65 .fi

67 .LP
68 .nf
69 \fBint\fR \fBgl_read_char\fR(\fBGetLine *\fR\fIgl\fR);
70 .fi

72 .LP
73 .nf
74 \fBint\fR \fBgl_customize_completion\fR(\fBGetLine *\fR\fIgl\fR, \fBvoid *\fR\fI
75 \fBCplMatchFn *\fR\fImatch_fn\fR);
76 .fi

78 .LP
79 .nf
80 \fBint\fR \fBgl_change_terminal\fR(\fBGetLine *\fR\fIgl\fR, \fBFILE *\fR\fIinput
81 \fBFILE *\fR\fIoutput_fp\fR, \fBconst char *\fR\fIterm\fR);
82 .fi

84 .LP
85 .nf
86 \fBint\fR \fBgl_configure_getline\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR
87 \fBconst char *\fR\fIapp_file\fR,\ \fBconst char *\fR\fIuser_file\fR);
88 .fi

90 .LP
91 .nf
92 \fBint\fR \fBgl_bind_keyseq\fR(\fBGetLine *\fR\fIgl\fR, \fBGlKeyOrigin\fR \fIori
93 \fBconst char *\fR\fIkeyseq\fR, \fBconst char *\fR\fIaction\fR);
94 .fi

96 .LP
97 .nf
98 \fBint\fR \fBgl_save_history\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fIfi
99 \fBconst char *\fR\fIcomment\fR, \fBint\fR \fImax_lines\fR);
100 .fi

102 .LP
103 .nf
104 \fBint\fR \fBgl_load_history\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fIfi
105 \fBconst char *\fR\fIcomment\fR);
106 .fi

108 .LP
109 .nf
110 \fBint\fR \fBgl_watch_fd\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIfd\fR, \fBGlFd
111 \fBGlFdEventFn *\fR\fIcallback\fR, \fBvoid *\fR\fIdata\fR);
112 .fi

114 .LP
115 .nf
116 \fBint\fR \fBgl_inactivity_timeout\fR(\fBGetLine *\fR\fIgl\fR, \fBGlTimeoutFn *\
117 \fBvoid *\fR\fIdata\fR, \fBunsigned long\fR \fIsec\fR, \fBunsigned long\fR
118 .fi

120 .LP
121 .nf
122 \fBint\fR \fBgl_group_history\fR(\fBGetLine *\fR\fIgl\fR, \fBunsigned\fR \fIstre
123 .fi

125 .LP
126 .nf

new/usr/src/man/man3tecla/gl_get_line.3tecla 3

127 \fBint\fR \fBgl_show_history\fR(\fBGetLine *\fR\fIgl\fR, \fBFILE *\fR\fIfp\fR, \
128 \fBint\fR \fIall_groups\fR, \fBint\fR \fImax_lines\fR);
129 .fi

131 .LP
132 .nf
133 \fBint\fR \fBgl_resize_history\fR(\fBGetLine *\fR\fIgl\fR, \fBsize_t\fR \fIbufsi
134 .fi

136 .LP
137 .nf
138 \fBvoid\fR \fBgl_limit_history\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fImax_line
139 .fi

141 .LP
142 .nf
143 \fBvoid\fR \fBgl_clear_history\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIall_grou
144 .fi

146 .LP
147 .nf
148 \fBvoid\fR \fBgl_toggle_history\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIenable\
149 .fi

151 .LP
152 .nf
153 \fBGlTerminalSize\fR \fBgl_terminal_size\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \
154 \fBint\fR \fIdef_nline\fR);
155 .fi

157 .LP
158 .nf
159 \fBint\fR \fBgl_set_term_size\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIncolumn\f
160 .fi

162 .LP
163 .nf
164 \fBint\fR \fBgl_lookup_history\fR(\fBGetLine *\fR\fIgl\fR, \fBunsigned long\fR \
165 \fBGlHistoryLine *\fR\fIhline\fR);
166 .fi

168 .LP
169 .nf
170 \fBvoid\fR \fBgl_state_of_history\fR(\fBGetLine *\fR\fIgl\fR, \fBGlHistoryState
171 .fi

173 .LP
174 .nf
175 \fBvoid\fR \fBgl_range_of_history\fR(\fBGetLine *\fR\fIgl\fR, \fBGlHistoryRange
176 .fi

178 .LP
179 .nf
180 \fBvoid\fR \fBgl_size_of_history\fR(\fBGetLine *\fR\fIgl\fR, \fBGlHistorySize *\
181 .fi

183 .LP
184 .nf
185 \fBvoid\fR \fBgl_echo_mode\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIenable\fR);
186 .fi

188 .LP
189 .nf
190 \fBvoid\fR \fBgl_replace_prompt\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\f
191 .fi

new/usr/src/man/man3tecla/gl_get_line.3tecla 4

193 .LP
194 .nf
195 \fBvoid\fR \fBgl_prompt_style\fR(\fBGetLine *\fR\fIgl\fR, \fBGlPromptStyle\fR \f
196 .fi

198 .LP
199 .nf
200 \fBint\fR \fBgl_ignore_signal\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIsigno\fR)
201 .fi

203 .LP
204 .nf
205 \fBint\fR \fBgl_trap_signal\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIsigno\fR, \
206 \fBGlAfterSignal\fR \fIafter\fR, \fBint\fR \fIerrno_value\fR);
207 .fi

209 .LP
210 .nf
211 \fBint\fR \fBgl_last_signal\fR(\fBGetLine *\fR\fIgl\fR);
212 .fi

214 .LP
215 .nf
216 \fBint\fR \fBgl_completion_action\fR(\fBGetLine *\fR\fIgl\fR, \fBvoid *\fR\fIdat
217 \fBCplMatchFn *\fR\fImatch_fn\fR, \fBint\fR \fIlist_only\fR, \fBconst char
218 \fBconst char *\fR\fIkeyseq\fR);
219 .fi

221 .LP
222 .nf
223 \fBint\fR \fBgl_register_action\fR(\fBGetLine *\fR\fIgl\fR, \fBvoid *\fR\fIdata\
224 \fBconst char *\fR\fIname\fR, \fBconst char *\fR\fIkeyseq\fR);
225 .fi

227 .LP
228 .nf
229 \fBint\fR \fBgl_display_text\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIindentatio
230 \fBconst char *\fR\fIprefix\fR, \fBconst char *\fR\fIsuffix\fR, \fBint\fR \
231 \fBint\fR \fIdef_width\fR, \fBint\fR \fIstart\fR, \fBconst char *\fR\fIstri
232 .fi

234 .LP
235 .nf
236 \fBGlReturnStatus\fR \fBgl_return_status\fR(\fBGetLine *\fR\fIgl\fR);
237 .fi

239 .LP
240 .nf
241 \fBconst char *\fR\fBgl_error_message\fR(\fBGetLine *\fR\fIgl\fR, \fBchar *\fR\f
242 .fi

244 .LP
245 .nf
246 \fBvoid\fR \fBgl_catch_blocked\fR(\fBGetLine *\fR\fIgl\fR);
247 .fi

249 .LP
250 .nf
251 \fBint\fR \fBgl_list_signals\fR(\fBGetLine *\fR\fIgl\fR, \fBsigset_t *\fR\fIset\
252 .fi

254 .LP
255 .nf
256 \fBint\fR \fBgl_append_history\fR(\fBGetLine *\fR\fIgl\fR, \fBconst char *\fR\fI
257 .fi

new/usr/src/man/man3tecla/gl_get_line.3tecla 5

259 .LP
260 .nf
261 \fBint\fR \fBgl_automatic_history\fR(\fBGetLine *\fR\fIgl\fR, \fBint\fR \fIenabl
262 .fi

264 .LP
265 .nf
266 \fBint\fR \fBgl_erase_terminal\fR(\fBGetLine *\fR\fIgl\fR);
267 .fi

269 .SH DESCRIPTION
270 .sp
271 .LP
272 The \fBgl_get_line()\fR function is part of the \fBlibtecla\fR(3LIB) library.
273 If the user is typing at a terminal, each call prompts them for an line of
274 input, then provides interactive editing facilities, similar to those of the
275 UNIX \fBtcsh\fR shell. In addition to simple command-line editing, it supports
276 recall of previously entered command lines, TAB completion of file names, and
277 in-line wild-card expansion of filenames. Documentation of both the user-level
278 command-line editing features and all user configuration options can be found
279 on the \fBtecla\fR(5) manual page.
280 .SS "An Example"
281 .sp
282 .LP
283 The following shows a complete example of how to use the \fBgl_get_line()\fR
284 function to get input from the user:
285 .sp
286 .in +2
287 .nf
288 #include <stdio.h>
289 #include <locale.h>
290 #include <libtecla.h>

292 int main(int argc, char *argv[])
293 {
294 char *line; /* The line that the user typed */
295 GetLine *gl; /* The gl_get_line() resource object */

297 setlocale(LC_CTYPE, ""); /* Adopt the user’s choice */
298 /* of character set. */

300 gl = new_GetLine(1024, 2048);
301 if(!gl)
302 return 1;
303 while((line=gl_get_line(gl, "$ ", NULL, -1)) != NULL &&
304 strcmp(line, "exit\en") != 0)
305 printf("You typed: %s\en", line);

307 gl = del_GetLine(gl);
308 return 0;
309 }
310 .fi
311 .in -2

313 .sp
314 .LP
315 In the example, first the resources needed by the \fBgl_get_line()\fR function
316 are created by calling \fBnew_GetLine()\fR. This allocates the memory used in
317 subsequent calls to the \fBgl_get_line()\fR function, including the history
318 buffer for recording previously entered lines. Then one or more lines are read
319 from the user, until either an error occurs, or the user types exit. Then
320 finally the resources that were allocated by \fBnew_GetLine()\fR, are returned
321 to the system by calling \fBdel_GetLine()\fR. Note the use of the \fINULL\fR
322 return value of \fBdel_GetLine()\fR to make \fIgl\fR \fINULL\fR. This is a
323 safety precaution. If the program subsequently attempts to pass \fIgl\fR to
324 \fBgl_get_line()\fR, said function will complain, and return an error, instead

new/usr/src/man/man3tecla/gl_get_line.3tecla 6

325 of attempting to use the deleted resource object.
326 .SS "The Functions Used In The Example"
327 .sp
328 .LP
329 The \fBnew_GetLine()\fR function creates the resources used by the
330 \fBgl_get_line()\fR function and returns an opaque pointer to the object that
331 contains them. The maximum length of an input line is specified by the
332 \fIlinelen\fR argument, and the number of bytes to allocate for storing history
333 lines is set by the \fIhistlen\fR argument. History lines are stored
334 back-to-back in a single buffer of this size. Note that this means that the
335 number of history lines that can be stored at any given time, depends on the
336 lengths of the individual lines. If you want to place an upper limit on the
337 number of lines that can be stored, see the description of the
338 \fBgl_limit_history()\fR function. If you do not want history at all, specify
339 \fIhistlen\fR as zero, and no history buffer will be allocated.
340 .sp
341 .LP
342 On error, a message is printed to \fBstderr\fR and \fINULL\fR is returned.
343 .sp
344 .LP
345 The \fBdel_GetLine()\fR function deletes the resources that were returned by a
346 previous call to \fBnew_GetLine()\fR. It always returns \fINULL\fR (for
347 example, a deleted object). It does nothing if the \fIgl\fR argument is
348 \fINULL\fR.
349 .sp
350 .LP
351 The \fBgl_get_line()\fR function can be called any number of times to read
352 input from the user. The gl argument must have been previously returned by a
353 call to \fBnew_GetLine()\fR. The \fIprompt\fR argument should be a normal
354 null-terminated string, specifying the prompt to present the user with. By
355 default prompts are displayed literally, but if enabled with the
356 \fBgl_prompt_style()\fR function, prompts can contain directives to do
357 underlining, switch to and from bold fonts, or turn highlighting on and off.
358 .sp
359 .LP
360 If you want to specify the initial contents of the line for the user to edit,
361 pass the desired string with the \fIstart_line\fR argument. You can then
362 specify which character of this line the cursor is initially positioned over by
363 using the \fIstart_pos\fR argument. This should be -1 if you want the cursor to
364 follow the last character of the start line. If you do not want to preload the
365 line in this manner, send \fIstart_line\fR as \fINULL\fR, and set
366 \fIstart_pos\fR to -1.
367 .sp
368 .LP
369 The \fBgl_get_line()\fR function returns a pointer to the line entered by the
370 user, or \fINULL\fR on error or at the end of the input. The returned pointer
371 is part of the specified \fIgl\fR resource object, and thus should not be freed
372 by the caller, or assumed to be unchanging from one call to the next. When
373 reading from a user at a terminal, there will always be a newline character at
374 the end of the returned line. When standard input is being taken from a pipe or
375 a file, there will similarly be a newline unless the input line was too long to
376 store in the internal buffer. In the latter case you should call
377 \fBgl_get_line()\fR again to read the rest of the line. Note that this behavior
378 makes \fBgl_get_line()\fR similar to \fBfgets\fR(3C). When \fBstdin\fR is not
379 connected to a terminal, \fBgl_get_line()\fR simply calls \fBfgets()\fR.
380 .SS "The Return Status Of \fBgl_get_line()\fR"
381 .sp
382 .LP
383 The \fBgl_get_line()\fR function has two possible return values: a pointer to
384 the completed input line, or \fINULL\fR. Additional information about what
385 caused \fBgl_get_line()\fR to return is available both by inspecting
386 \fBerrno\fR and by calling the \fBgl_return_status()\fR function.
387 .sp
388 .LP
389 The following are the possible enumerated values returned by
390 \fBgl_return_status()\fR:

new/usr/src/man/man3tecla/gl_get_line.3tecla 7

391 .sp
392 .ne 2
393 .na
394 \fB\fBGLR_NEWLINE\fR\fR
395 .ad
396 .RS 15n
397 The last call to \fBgl_get_line()\fR successfully returned a completed input
398 line.
399 .RE

401 .sp
402 .ne 2
403 .na
404 \fB\fBGLR_BLOCKED\fR\fR
405 .ad
406 .RS 15n
407 The \fBgl_get_line()\fR function was in non-blocking server mode, and returned
408 early to avoid blocking the process while waiting for terminal I/O. The
409 \fBgl_pending_io()\fR function can be used to see what type of I/O
410 \fBgl_get_line()\fR was waiting for. See the \fBgl_io_mode\fR(3TECLA).
411 .RE

413 .sp
414 .ne 2
415 .na
416 \fB\fBGLR_SIGNAL\fR\fR
417 .ad
418 .RS 15n
419 A signal was caught by \fBgl_get_line()\fR that had an after-signal disposition
420 of \fBGLS_ABORT\fR. See \fBgl_trap_signal()\fR.
421 .RE

423 .sp
424 .ne 2
425 .na
426 \fB\fBGLR_TIMEOUT\fR\fR
427 .ad
428 .RS 15n
429 The inactivity timer expired while \fBgl_get_line()\fR was waiting for input,
430 and the timeout callback function returned \fBGLTO_ABORT\fR. See
431 \fBgl_inactivity_timeout()\fR for information about timeouts.
432 .RE

434 .sp
435 .ne 2
436 .na
437 \fB\fBGLR_FDABORT\fR\fR
438 .ad
439 .RS 15n
440 An application I/O callback returned \fBGLFD_ABORT\fR. Ssee
441 \fBgl_watch_fd()\fR.
442 .RE

444 .sp
445 .ne 2
446 .na
447 \fB\fBGLR_EOF\fR\fR
448 .ad
449 .RS 15n
450 End of file reached. This can happen when input is coming from a file or a
451 pipe, instead of the terminal. It also occurs if the user invokes the
452 list-or-eof or del-char-or-list-or-eof actions at the start of a new line.
453 .RE

455 .sp
456 .ne 2

new/usr/src/man/man3tecla/gl_get_line.3tecla 8

457 .na
458 \fB\fBGLR_ERROR\fR\fR
459 .ad
460 .RS 15n
461 An unexpected error caused \fBgl_get_line()\fR to abort (consult \fBerrno\fR
462 and/or \fBgl_error_message()\fR for details.
463 .RE

465 .sp
466 .LP
467 When \fBgl_return_status()\fR returns \fBGLR_ERROR\fR and the value of
468 \fBerrno\fR is not sufficient to explain what happened, you can use the
469 \fBgl_error_message()\fR function to request a description of the last error
470 that occurred.
471 .sp
472 .LP
473 The return value of \fBgl_error_message()\fR is a pointer to the message that
474 occurred. If the \fIbuff\fR argument is \fINULL\fR, this will be a pointer to a
475 buffer within \fIgl\fR whose value will probably change on the next call to any
476 function associated with \fBgl_get_line()\fR. Otherwise, if a non-null
477 \fIbuff\fR argument is provided, the error message, including a ’\e0’
478 terminator, will be written within the first \fIn\fR elements of this buffer,
479 and the return value will be a pointer to the first element of this buffer. If
480 the message will not fit in the provided buffer, it will be truncated to fit.
481 .SS "Optional Prompt Formatting"
482 .sp
483 .LP
484 Whereas by default the prompt string that you specify is displayed literally
485 without any special interpretation of the characters within it, the
486 \fBgl_prompt_style()\fR function can be used to enable optional formatting
487 directives within the prompt.
488 .sp
489 .LP
490 The \fIstyle\fR argument, which specifies the formatting style, can take any of
491 the following values:
492 .sp
493 .ne 2
494 .na
495 \fB\fBGL_FORMAT_PROMPT\fR\fR
496 .ad
497 .RS 21n
498 In this style, the formatting directives described below, when included in
499 prompt strings, are interpreted as follows:
500 .sp
501 .ne 2
502 .na
503 \fB\fB%B\fR\fR
504 .ad
505 .RS 6n
506 Display subsequent characters with a bold font.
507 .RE

509 .sp
510 .ne 2
511 .na
512 \fB\fB%b\fR\fR
513 .ad
514 .RS 6n
515 Stop displaying characters with the bold font.
516 .RE

518 .sp
519 .ne 2
520 .na
521 \fB\fB%F\fR\fR
522 .ad

new/usr/src/man/man3tecla/gl_get_line.3tecla 9

523 .RS 6n
524 Make subsequent characters flash.
525 .RE

527 .sp
528 .ne 2
529 .na
530 \fB\fB%f\fR\fR
531 .ad
532 .RS 6n
533 Turn off flashing characters.
534 .RE

536 .sp
537 .ne 2
538 .na
539 \fB\fB%U\fR\fR
540 .ad
541 .RS 6n
542 Underline subsequent characters.
543 .RE

545 .sp
546 .ne 2
547 .na
548 \fB\fB%u\fR\fR
549 .ad
550 .RS 6n
551 Stop underlining characters.
552 .RE

554 .sp
555 .ne 2
556 .na
557 \fB\fB%P\fR\fR
558 .ad
559 .RS 6n
560 Switch to a pale (half brightness) font.
561 .RE

563 .sp
564 .ne 2
565 .na
566 \fB\fB%p\fR\fR
567 .ad
568 .RS 6n
569 Stop using the pale font.
570 .RE

572 .sp
573 .ne 2
574 .na
575 \fB\fB%S\fR\fR
576 .ad
577 .RS 6n
578 Highlight subsequent characters (also known as standout mode).
579 .RE

581 .sp
582 .ne 2
583 .na
584 \fB\fB%s\fR\fR
585 .ad
586 .RS 6n
587 Stop highlighting characters.
588 .RE

new/usr/src/man/man3tecla/gl_get_line.3tecla 10

590 .sp
591 .ne 2
592 .na
593 \fB\fB%V\fR\fR
594 .ad
595 .RS 6n
596 Turn on reverse video.
597 .RE

599 .sp
600 .ne 2
601 .na
602 \fB\fB%v\fR\fR
603 .ad
604 .RS 6n
605 Turn off reverse video.
606 .RE

608 .sp
609 .ne 2
610 .na
611 \fB\fB%%\fR\fR
612 .ad
613 .RS 6n
614 Display a single % character.
615 .RE

617 For example, in this mode, a prompt string like "%UOK%u$" would display the
618 prompt "OK$", but with the OK part underlined.
619 .sp
620 Note that although a pair of characters that starts with a % character, but
621 does not match any of the above directives is displayed literally, if a new
622 directive is subsequently introduced which does match, the displayed prompt
623 will change, so it is better to always use %% to display a literal %.
624 .sp
625 Also note that not all terminals support all of these text attributes, and that
626 some substitute a different attribute for missing ones.
627 .RE

629 .sp
630 .ne 2
631 .na
632 \fB\fBGL_LITERAL_PROMPT\fR\fR
633 .ad
634 .RS 21n
635 In this style, the prompt string is printed literally. This is the default
636 style.
637 .RE

639 .SS "Alternate Configuration Sources"
640 .sp
641 .LP
642 By default users have the option of configuring the behavior of
643 \fBgl_get_line()\fR with a configuration file called \fB\&.teclarc\fR in their
644 home directories. The fact that all applications share this same configuration
645 file is both an advantage and a disadvantage. In most cases it is an advantage,
646 since it encourages uniformity, and frees the user from having to configure
647 each application separately. In some applications, however, this single means
648 of configuration is a problem. This is particularly true of embedded software,
649 where there’s no filesystem to read a configuration file from, and also in
650 applications where a radically different choice of keybindings is needed to
651 emulate a legacy keyboard interface. To cater for such cases, the
652 \fBgl_configure_getline()\fR function allows the application to control where
653 configuration information is read from.
654 .sp

new/usr/src/man/man3tecla/gl_get_line.3tecla 11

655 .LP
656 The \fBgl_configure_getline()\fR function allows the configuration commands
657 that would normally be read from a user’s \fB~/.teclarc\fR file, to be read
658 from any or none of, a string, an application specific configuration file,
659 and/or a user-specific configuration file. If this function is called before
660 the first call to \fBgl_get_line()\fR, the default behavior of reading
661 \fB~/.teclarc\fR on the first call to \fBgl_get_line()\fR is disabled, so all
662 configurations must be achieved using the configuration sources specified with
663 this function.
664 .sp
665 .LP
666 If \fIapp_string\fR != \fINULL\fR, then it is interpreted as a string
667 containing one or more configuration commands, separated from each other in the
668 string by embedded newline characters. If \fIapp_file\fR != \fINULL\fR then it
669 is interpreted as the full pathname of an application-specific configuration
670 file. If user_file != \fINULL\fR then it is interpreted as the full path name
671 of a user-specific configuration file, such as \fB~/.teclarc\fR. For example,
672 in the call
673 .sp
674 .in +2
675 .nf
676 gl_configure_getline(gl, "edit-mode vi \en nobeep",
676 gl_configure_getline(gl, "edit-mode vi \n nobeep",
677 "/usr/share/myapp/teclarc", "~/.teclarc");
678 .fi
679 .in -2

681 .sp
682 .LP
683 The \fIapp_string\fR argument causes the calling application to start in
684 \fBvi\fR(1) edit-mode, instead of the default \fBemacs\fR mode, and turns off
685 the use of the terminal bell by the library. It then attempts to read
686 system-wide configuration commands from an optional file called
687 \fB/usr/share/myapp/teclarc\fR, then finally reads user-specific configuration
688 commands from an optional \fB\&.teclarc\fR file in the user’s home directory.
689 Note that the arguments are listed in ascending order of priority, with the
690 contents of \fIapp_string\fR being potentially over riden by commands in
691 \fIapp_file\fR, and commands in \fIapp_file\fR potentially being overriden by
692 commands in \fIuser_file\fR.
693 .sp
694 .LP
695 You can call this function as many times as needed, the results being
696 cumulative, but note that copies of any file names specified with the
697 \fIapp_file\fR and \fIuser_file\fR arguments are recorded internally for
698 subsequent use by the read-init-files key-binding function, so if you plan to
699 call this function multiple times, be sure that the last call specifies the
700 filenames that you want re-read when the user requests that the configuration
701 files be re-read.
702 .sp
703 .LP
704 Individual key sequences can also be bound and unbound using the
705 \fBgl_bind_keyseq()\fR function. The \fIorigin\fR argument specifies the
706 priority of the binding, according to whom it is being established for, and
707 must be one of the following two values.
708 .sp
709 .ne 2
710 .na
711 \fB\fBGL_USER_KEY\fR\fR
712 .ad
713 .RS 15n
714 The user requested this key-binding.
715 .RE

717 .sp
718 .ne 2
719 .na

new/usr/src/man/man3tecla/gl_get_line.3tecla 12

720 \fB\fBGL_APP_KEY\fR\fR
721 .ad
722 .RS 15n
723 This is a default binding set by the application.
724 .RE

726 .sp
727 .LP
728 When both user and application bindings for a given key sequence have been
729 specified, the user binding takes precedence. The application’s binding is
730 subsequently reinstated if the user’s binding is later unbound with either
731 another call to this function, or a call to \fBgl_configure_getline()\fR.
732 .sp
733 .LP
734 The \fIkeyseq\fR argument specifies the key sequence to be bound or unbound,
735 and is expressed in the same way as in a \fB~/.teclarc\fR configuration file.
736 The \fIaction\fR argument must either be a string containing the name of the
737 action to bind the key sequence to, or it must be \fINULL\fR or \fB""\fR to
738 unbind the key sequence.
739 .SS "Customized Word Completion"
740 .sp
741 .LP
742 If in your application you would like to have TAB completion complete other
743 things in addition to or instead of filenames, you can arrange this by
744 registering an alternate completion callback function with a call to the
745 \fBgl_customize_completion()\fR function.
746 .sp
747 .LP
748 The \fIdata\fR argument provides a way for your application to pass arbitrary,
749 application-specific information to the callback function. This is passed to
750 the callback every time that it is called. It might for example point to the
751 symbol table from which possible completions are to be sought. The
752 \fImatch_fn\fR argument specifies the callback function to be called. The
753 \fICplMatchFn\fR function type is defined in <\fBlibtecla.h\fR>, as is a
754 \fBCPL_MATCH_FN()\fR macro that you can use to declare and prototype callback
755 functions. The declaration and responsibilities of callback functions are
756 described in depth on the \fBcpl_complete_word\fR(3TECLA) manual page.
757 .sp
758 .LP
759 The callback function is responsible for looking backwards in the input line
760 from the point at which the user pressed TAB, to find the start of the word
761 being completed. It then must lookup possible completions of this word, and
762 record them one by one in the \fBWordCompletion\fR object that is passed to it
763 as an argument, by calling the \fBcpl_add_completion()\fR function. If the
764 callback function wants to provide filename completion in addition to its own
765 specific completions, it has the option of itself calling the builtin filename
766 completion callback. This also is documented on the
767 \fBcpl_complete_word\fR(3TECLA) manual page.
768 .sp
769 .LP
770 If you would like \fBgl_get_line()\fR to return the current input line when a
771 successful completion is been made, you can arrange this when you call
772 \fBcpl_add_completion()\fR by making the last character of the continuation
773 suffix a newline character. The input line will be updated to display the
774 completion, together with any contiuation suffix up to the newline character,
775 and \fBgl_get_line()\fR will return this input line.
776 .sp
777 .LP
778 If your callback function needs to write something to the terminal, it must
779 call \fBgl_normal_io()\fR before doing so. This will start a new line after the
780 input line that is currently being edited, reinstate normal terminal I/O, and
781 notify \fBgl_get_line()\fR that the input line will need to be redrawn when the
782 callback returns.
783 .SS "Adding Completion Actions"
784 .sp
785 .LP

new/usr/src/man/man3tecla/gl_get_line.3tecla 13

786 In the previous section the ability to customize the behavior of the only
787 default completion action, complete-word, was described. In this section the
788 ability to install additional action functions, so that different types of word
789 completion can be bound to different key sequences, is described. This is
790 achieved by using the \fBgl_completion_action()\fR function.
791 .sp
792 .LP
793 The \fIdata\fR and \fImatch_fn\fR arguments are as described on the
794 \fBcpl_complete_word\fR(3TECLA) manual page, and specify the callback function
795 that should be invoked to identify possible completions. The \fIlist_only\fR
796 argument determines whether the action that is being defined should attempt to
797 complete the word as far as possible in the input line before displaying any
798 possible ambiguous completions, or whether it should simply display the list of
799 possible completions without touching the input line. The former option is
800 selected by specifying a value of 0, and the latter by specifying a value of 1.
801 The \fIname\fR argument specifies the name by which configuration files and
802 future invocations of this function should refer to the action. This must
803 either be the name of an existing completion action to be changed, or be a new
804 unused name for a new action. Finally, the \fIkeyseq\fR argument specifies the
805 default key sequence to bind the action to. If this is \fINULL\fR, no new key
806 sequence will be bound to the action.
807 .sp
808 .LP
809 Beware that in order for the user to be able to change the key sequence that is
810 bound to actions that are installed in this manner, you shouldcall
811 \fBgl_completion_action()\fR to install a given action for the first time
812 between calling \fBnew_GetLine()\fR and the first call to \fBgl_get_line()\fR.
813 Otherwise, when the user’s configuration file is read on the first call to
814 \fBgl_get_line()\fR, the name of the your additional action will not be known,
815 and any reference to it in the configuration file will generate an error.
816 .sp
817 .LP
818 As discussed for \fBgl_customize_completion()\fR, if your callback function
819 needs to write anything to the terminal, it must call \fBgl_normal_io()\fR
820 before doing so.
821 .SS "Defining Custom Actions"
822 .sp
823 .LP
824 Although the built-in key-binding actions are sufficient for the needs of most
825 applications, occasionally a specialized application may need to define one or
826 more custom actions, bound to application-specific key sequences. For example,
827 a sales application would benefit from having a key sequence that displayed the
828 part name that corresponded to a part number preceding the cursor. Such a
829 feature is clearly beyond the scope of the built-in action functions. So for
830 such special cases, the \fBgl_register_action()\fR function is provided.
831 .sp
832 .LP
833 The \fBgl_register_action()\fR function lets the application register an
834 external function, \fIfn\fR, that will thereafter be called whenever either the
835 specified key sequence, \fIkeyseq\fR, is entered by the user, or the user
836 enters any other key sequence that the user subsequently binds to the specified
837 action name, \fIname\fR, in their configuration file. The \fIdata\fR argument
838 can be a pointer to anything that the application wants to have passed to the
839 action function, \fIfn\fR, whenever that function is invoked.
840 .sp
841 .LP
842 The action function, \fIfn\fR, should be declared using the
843 \fBGL_ACTION_FN()\fR macro, which is defined in <\fBlibtecla.h\fR>.
844 .sp
845 .in +2
846 .nf
847 #define GL_ACTION_FN(fn) GlAfterAction (fn)(GetLine *gl, \e
848 void *data, int count, size_t curpos, \e
849 const char *line)
850 .fi
851 .in -2

new/usr/src/man/man3tecla/gl_get_line.3tecla 14

853 .sp
854 .LP
855 The \fIgl\fR and \fIdata\fR arguments are those that were previously passed to
856 \fBgl_register_action()\fR when the action function was registered. The
857 \fIcount\fR argument is a numeric argument which the user has the option of
858 entering using the digit-argument action, before invoking the action. If the
859 user does not enter a number, then the \fIcount\fR argument is set to 1.
860 Nominally this argument is interpreted as a repeat count, meaning that the
861 action should be repeated that many times. In practice however, for some
862 actions a repeat count makes little sense. In such cases, actions can either
863 simply ignore the \fIcount\fR argument, or use its value for a different
864 purpose.
865 .sp
866 .LP
867 A copy of the current input line is passed in the read-only \fIline\fR
868 argument. The current cursor position within this string is given by the index
869 contained in the \fIcurpos\fR argument. Note that direct manipulation of the
870 input line and the cursor position is not permitted because the rules dictated
871 by various modes (such as \fBvi\fR mode versus \fBemacs\fR mode, no-echo mode,
872 and insert mode versus overstrike mode) make it too complex for an application
873 writer to write a conforming editing action, as well as constrain future
874 changes to the internals of \fBgl_get_line()\fR. A potential solution to this
875 dilemma would be to allow the action function to edit the line using the
876 existing editing actions. This is currently under consideration.
877 .sp
878 .LP
879 If the action function wishes to write text to the terminal without this
880 getting mixed up with the displayed text of the input line, or read from the
881 terminal without having to handle raw terminal I/O, then before doing either of
882 these operations, it must temporarily suspend line editing by calling the
883 \fBgl_normal_io()\fR function. This function flushes any pending output to the
884 terminal, moves the cursor to the start of the line that follows the last
885 terminal line of the input line, then restores the terminal to a state that is
886 suitable for use with the C \fBstdio\fR facilities. The latter includes such
887 things as restoring the normal mapping of \en to \er\en, and, when in server
888 mode, restoring the normal blocking form of terminal I/O. Having called this
889 function, the action function can read from and write to the terminal without
890 the fear of creating a mess. It is not necessary for the action function to
891 restore the original editing environment before it returns. This is done
892 automatically by \fBgl_get_line()\fR after the action function returns. The
893 following is a simple example of an action function which writes the sentence
894 "Hello world" on a new terminal line after the line being edited. When this
895 function returns, the input line is redrawn on the line that follows the "Hello
896 world" line, and line editing resumes.
897 .sp
898 .in +2
899 .nf
900 static GL_ACTION_FN(say_hello_fn)
901 {
902 if(gl_normal_io(gl)) /* Temporarily suspend editing */
903 return GLA_ABORT;
904 printf("Hello world\en");
905 return GLA_CONTINUE;
906 }

______unchanged_portion_omitted_

new/usr/src/man/man5/acl.5 1

**
 17944 Tue Sep 10 18:35:21 2013
new/usr/src/man/man5/acl.5
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2008, Sun Microsystems, Inc. All Rights Reserved.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH ACL 5 "Sep 10, 2013"
6 .TH ACL 5 "Sep 29, 2008"
7 .SH NAME
8 acl \- Access Control Lists
9 .SH DESCRIPTION

10 .sp
11 .LP
12 Access control lists (ACLs) are discretionary access control mechanisms that
13 grant and deny access to files and directories. Two different ACL models are
14 supported in the Solaris release:POSIX-draft ACLs and NFSv4 ACLs.
15 .sp
16 .LP
17 The older, POSIX-draft model is supported by the UFS file system. This model is
18 based on a withdrawn ACL POSIX specification that was never standardized. It
19 was subsequently withdrawn by the POSIX committee.
20 .sp
21 .LP
22 The other model is based on the standards of the NFSv4 working group and is an
23 approved standard from the Internet Engineering Task Force (IETF). The ZFS file
24 system uses the NFSv4 model, and provides richer semantics and finer grained
25 permission capabilities than the POSIX-draft model.
26 .SS "\fBPOSIX\fR-draft \fBACL\fRs"
27 .sp
28 .LP
29 POSIX-draft ACLs provide an alternative security mechanism to basic UNIX file
30 permissions in the Solaris release. Their purpose is to further restrict access
31 to files and directories or to extend permissions to a particular user. ACLs
32 can be used to change the permissions for the standard owner, group and other
33 class bits of a file’s mode. ACLs can give additional users and groups access
34 to the file. A directory can also have a special kind of ACL called a
35 \fBdefault\fR ACL, which defines ACL entries to be inherited by descendents of
36 the directory. POSIX-draft ACLs have an ACL entry called \fBmask\fR. The mask
37 defines the maximum permissions that can be granted to additional user and
38 group entries. Whenever a file is created or its mode is changed by
39 \fBchmod\fR(1) or \fBchmod\fR(2), the mask is recomputed. It is recomputed to
40 be the group permission defined in the mode passed to \fBchmod\fR(2).
41 .sp
42 .LP
43 The POSIX-draft ACL model uses the standard \fBrwx\fR model of traditional UNIX
44 permissions.
45 .sp
46 .LP
47 An ACL is represented as follows:
48 .sp
49 .in +2
50 .nf
51 \fIacl_entry\fR[,\fIacl_entry\fR]...
52 .fi
53 .in -2
54 .sp

56 .sp
57 .LP
58 Each \fIacl_entry\fR contains one ACL entry. An ACL entry is represented by two
59 or three colon-separated(\fB:\fR) fields.
60 .sp

new/usr/src/man/man5/acl.5 2

61 .ne 2
62 .na
63 \fB\fIuser\fR:[\fIuid\fR]:\fIperms\fR\fR
64 .ad
65 .RS 21n
66 If \fIuid\fR blank, it represents the file owner.
67 .RE

69 .sp
70 .ne 2
71 .na
72 \fB\fIgroup\fR:[\fIgid\fR]:\fIperms\fR\fR
73 .ad
74 .RS 21n
75 If \fIgid\fR is blank, it represents the owning group.
76 .RE

78 .sp
79 .ne 2
80 .na
81 \fB\fIother\fR:\fIperms\fR\fR
82 .ad
83 .RS 21n
84 Represents the file other class.
85 .RE

87 .sp
88 .ne 2
89 .na
90 \fB\fImask\fR:\fIperms\fR\fR
91 .ad
92 .RS 21n
93 Defines the \fBMAX\fR permission to hand out.
94 .RE

96 .sp
97 .LP
98 For example to give user \fBjoe\fR read and write permissions, the ACL entry is
99 specified as:
100 .sp
101 .in +2
102 .nf
103 user:joe:rw-
104 .fi
105 .in -2
106 .sp

108 .SS "\fBNFS\fRv4 \fBACL\fRs"
109 .sp
110 .LP
111 NFSv4 ACL model is based loosely on the Windows NT ACL model. NFSv4 ACLs
112 provide a much richer ACL model than POSIX-draft ACLs.
113 .sp
114 .LP
115 The major differences between NFSv4 and POSIX-draft ACLs are as follows:
116 .RS +4
117 .TP
118 .ie t \(bu
119 .el o
120 NFSv4 ACLs provide finer grained permissions than the \fBrwx\fR model.
121 .RE
122 .RS +4
123 .TP
124 .ie t \(bu
125 .el o
126 NFSv4 ACLs allow for both \fBALLOW\fR and \fBDENY\fR entries.

new/usr/src/man/man5/acl.5 3

127 .RE
128 .RS +4
129 .TP
130 .ie t \(bu
131 .el o
132 NFSv4 ACLs provide a rich set of inheritance semantics. POSIX ACLs also have
133 inheritance, but with the NFSv4 model you can control the following inheritance
134 features:
135 .RS +4
136 .TP
137 .ie t \(bu
138 .el o
139 Whether inheritance cascades to both files and directories or only to files or
140 directories.
141 .RE
142 .RS +4
143 .TP
144 .ie t \(bu
145 .el o
146 In the case of directories, you can indicate whether inheritance is applied to
147 the directory itself, to just one level of subdirectories, or cascades to all
148 subdirectories of the directory.
149 .RE
150 .RE
151 .RS +4
152 .TP
153 .ie t \(bu
154 .el o
155 NFSv4 ACLs provide a mechanism for hooking into a system’s audit trail.
156 Currently, Solaris does not support this mechanism.
157 .RE
158 .RS +4
159 .TP
160 .ie t \(bu
161 .el o
162 NFSv4 ACLs enable adminstrators to specify the order in which ACL entries are
163 checked. With POSIX-draft ACLs the file system reorders ACL entries into a well
164 defined, strict access, checking order.
165 .RE
166 .sp
167 .LP
168 POSIX-draft ACL semantics can be achieved with NFSv4 ACLs. However, only some
169 NFSv4 ACLs can be translated to equivalent POSIX-draft ACLs.
170 .sp
171 .LP
172 Permissions can be specified in three different \fBchmod\fR ACL formats:
173 verbose, compact, or positional. The verbose format uses words to indicate that
174 the permissions are separated with a forward slash (\fB/\fR) character. Compact
175 format uses the permission letters and positional format uses the permission
176 letters or the hypen (\fB-\fR) to identify no permissions.
177 .sp
178 .LP
179 The permissions for verbose mode and their abbreviated form in parentheses for
180 compact and positional mode are described as follows:
181 .sp
182 .ne 2
183 .na
184 \fBread_data (\fBr\fR)\fR
185 .ad
186 .RS 24n
187 Permission to read the data of the file
188 .RE

190 .sp
191 .ne 2
192 .na

new/usr/src/man/man5/acl.5 4

193 \fBlist_directory (\fBr\fR)\fR
194 .ad
195 .RS 24n
196 Permission to list the contents of a directory.
197 .RE

199 .sp
200 .ne 2
201 .na
202 \fBwrite_data (\fBw\fR)\fR
203 .ad
204 .RS 24n
205 Permission to modify a file’s data anywhere in the file’s offset range. This
206 includes the ability to grow the file or write to any arbitrary offset.
207 .RE

209 .sp
210 .ne 2
211 .na
212 \fBadd_file (\fBw\fR)\fR
213 .ad
214 .RS 24n
215 Permission to add a new file to a directory.
216 .RE

218 .sp
219 .ne 2
220 .na
221 \fBappend_data (\fBp\fR)\fR
222 .ad
223 .RS 24n
224 The ability to modify the file’s data, but only starting at EOF. Currently,
225 this permission is not supported.
226 .RE

228 .sp
229 .ne 2
230 .na
231 \fBadd_subdirectory (\fBp\fR)\fR
232 .ad
233 .RS 24n
234 Permission to create a subdirectory to a directory.
235 .RE

237 .sp
238 .ne 2
239 .na
240 \fBread_xattr (\fBR\fR)\fR
241 .ad
242 .RS 24n
243 The ability to read the extended attributes of a file or do a lookup in the
244 extended attributes directory.
245 .RE

247 .sp
248 .ne 2
249 .na
250 \fBwrite_xattr (\fBW\fR)\fR
251 .ad
252 .RS 24n
253 The ability to create extended attributes or write to the extended attributes
254 directory.
255 .RE

257 .sp
258 .ne 2

new/usr/src/man/man5/acl.5 5

259 .na
260 \fBexecute (\fBx\fR)\fR
261 .ad
262 .RS 24n
263 Permission to execute a file.
264 .RE

266 .sp
267 .ne 2
268 .na
269 \fBread_attributes (\fBa\fR)\fR
270 .ad
271 .RS 24n
272 The ability to read basic attributes (non-ACLs) of a file. Basic attributes are
273 considered to be the stat level attributes. Allowing this access mask bit means
274 that the entity can execute \fBls\fR(1) and \fBstat\fR(2).
275 .RE

277 .sp
278 .ne 2
279 .na
280 \fBwrite_attributes (\fBA\fR)\fR
281 .ad
282 .RS 24n
283 Permission to change the times associated with a file or directory to an
284 arbitrary value.
285 .RE

287 .sp
288 .ne 2
289 .na
290 \fBdelete (\fBd\fR)\fR
291 .ad
292 .RS 24n
293 Permission to delete the file.
294 .RE

296 .sp
297 .ne 2
298 .na
299 \fBdelete_child (\fBD\fR)\fR
300 .ad
301 .RS 24n
302 Permission to delete a file within a directory.
303 .RE

305 .sp
306 .ne 2
307 .na
308 \fBread_acl (\fBc\fR)\fR
309 .ad
310 .RS 24n
311 Permission to read the ACL.
312 .RE

314 .sp
315 .ne 2
316 .na
317 \fBwrite_acl (\fBC\fR)\fR
318 .ad
319 .RS 24n
320 Permission to write the ACL or the ability to execute \fBchmod\fR(1) or
321 \fBsetfacl\fR(1).
322 .RE

324 .sp

new/usr/src/man/man5/acl.5 6

325 .ne 2
326 .na
327 \fBwrite_owner (\fBo\fR)\fR
328 .ad
329 .RS 24n
330 Permission to change the owner or the ability to execute \fBchown\fR(1) or
331 \fBchgrp\fR(1).
332 .RE

334 .sp
335 .ne 2
336 .na
337 \fBsynchronize (\fBs\fR)\fR
338 .ad
339 .RS 24n
340 Permission to access a file locally at the server with synchronous reads and
341 writes. Currently, this permission is not supported.
342 .RE

344 .sp
345 .LP
346 The following inheritance flags are supported by NFSv4:
347 .sp
348 .ne 2
349 .na
350 \fBfile_inherit (\fBf\fR)\fR
351 .ad
352 .RS 26n
353 Inherit to all newly created files in a directory.
354 .RE

356 .sp
357 .ne 2
358 .na
359 \fBdir_inherit (\fBd\fR)\fR
360 .ad
361 .RS 26n
362 Inherit to all newly created directories in a directory.
363 .RE

365 .sp
366 .ne 2
367 .na
368 \fBinherit_only (\fBi\fR)\fR
369 .ad
370 .RS 26n
371 Placed on a directory, but does not apply to the directory itself, only to
372 newly created created files and directories. This flag requires file_inherit
373 and or dir_inherit to indicate what to inherit.
374 .RE

376 .sp
377 .ne 2
378 .na
379 \fBno_propagate (\fBn\fR)\fR
380 .ad
381 .RS 26n
382 Placed on directories and indicates that ACL entries should only be inherited
383 one level of the tree. This flag requires file_inherit and or dir_inherit to
384 indicate what to inherit.
385 .RE

387 .sp
388 .ne 2
389 .na
390 \fBsuccessful_access (\fBS)\fR)\fR

new/usr/src/man/man5/acl.5 7

391 .ad
392 .RS 26n
393 Indicates if an alarm or audit record should be initiated upon successful
394 accesses. Used with audit/alarm ACE types.
395 .RE

397 .sp
398 .ne 2
399 .na
400 \fBfailed_access (\fBF\fR)\fR
401 .ad
402 .RS 26n
403 Indicates if an alarm or audit record should be initiated when access fails.
404 Used with audit/alarm ACE types.
405 .RE

407 .sp
408 .ne 2
409 .na
410 \fBinherited (\fBI\fR)\fR
411 .ad
412 .RS 26n
413 ACE was inherited.
414 .RE

416 .sp
417 .ne 2
418 .na
419 \fB\fB-\fR\fR
420 .ad
421 .RS 26n
422 No permission granted.
423 .RE

425 .sp
426 .LP
427 An NFSv4 ACL is expressed using the following syntax:
428 .sp
429 .in +2
430 .nf
431 \fIacl_entry\fR[,\fIacl_entry\fR]...

433 owner@:<perms>[:inheritance flags]:<allow|deny>
434 group@:<perms>[:inheritance flags]:<allow|deny>
435 everyone@:<perms>[:inheritance flags]:<allow|deny>
436 user:<username>[:inheritance flags]:<allow|deny>
437 group:<groupname>[:inheritance flags]:<allow|deny>
438 .fi
439 .in -2

441 .sp
442 .ne 2
443 .na
444 \fBowner@\fR
445 .ad
446 .RS 10n
447 File owner
448 .RE

450 .sp
451 .ne 2
452 .na
453 \fBgroup@\fR
454 .ad
455 .RS 10n
456 Group owner

new/usr/src/man/man5/acl.5 8

457 .RE

459 .sp
460 .ne 2
461 .na
462 \fBuser\fR
463 .ad
464 .RS 10n
465 Permissions for a specific user
466 .RE

468 .sp
469 .ne 2
470 .na
471 \fBgroup\fR
472 .ad
473 .RS 10n
474 Permissions for a specific group
475 .RE

477 .sp
478 .LP
479 Permission and inheritance flags are separated by a \fB/\fR character.
480 .sp
481 .LP
482 ACL specification examples:
483 .sp
484 .in +2
485 .nf
486 user:fred:read_data/write_data/read_attributes:file_inherit:allow
487 owner@:read_data:allow,group@:read_data:allow,user:tom:read_data:deny
488 .fi
489 .in -2
490 .sp

492 .sp
493 .LP
494 Using the compact ACL format, permissions are specified by using 14 unique
495 letters to indicate permissions.
496 .sp
497 .LP
498 Using the positional ACL format, permissions are specified as positional
499 arguments similar to the \fBls -V\fR format. The hyphen (\fB-\fR), which
500 indicates that no permission is granted at that position, can be omitted and
501 only the required letters have to be specified.
502 .sp
503 .LP
504 The letters above are listed in the order they would be specified in positional
505 notation.
506 .sp
507 .LP
508 With these letters you can specify permissions in the following equivalent
509 ways.
510 .sp
511 .in +2
512 .nf
513 user:fred:rw------R------:file_inherit:allow
514 .fi
515 .in -2
516 .sp

518 .sp
519 .LP
520 Or you can remove the \fB-\fR and scrunch it together.
521 .sp
522 .in +2

new/usr/src/man/man5/acl.5 9

523 .nf
524 user:fred:rwR:file_inherit:allow
525 .fi
526 .in -2
527 .sp

529 .sp
530 .LP
531 The inheritance flags can also be specified in a more compact manner, as
532 follows:
533 .sp
534 .in +2
535 .nf
536 user:fred:rwR:f:allow
537 user:fred:rwR:f------:allow
538 .fi
539 .in -2
540 .sp

542 .SS "Shell-level Solaris \fBAPI\fR"
543 .sp
544 .LP
545 The Solaris command interface supports the manipulation of ACLs. The following
546 Solaris utilities accommodate both ACL models:
547 .sp
548 .ne 2
549 .na
550 \fB\fBchmod\fR\fR
551 .ad
552 .RS 12n
553 The \fBchmod\fR utility has been enhanced to allow for the setting and deleting
554 of ACLs. This is achieved by extending the symbolic-mode argument to support
555 ACL manipulation. See \fBchmod\fR(1) for details.
556 .RE

558 .sp
559 .ne 2
560 .na
561 \fB\fBcompress\fR\fR
562 .ad
563 .RS 12n
564 When a file is compressed any ACL associated with the original file is
565 preserved with the compressed file.
566 .RE

568 .sp
569 .ne 2
570 .na
571 \fB\fBcp\fR\fR
572 .ad
573 .RS 12n
574 By default, \fBcp\fR ignores ACLs, unless the \fB-p\fR option is specified.
575 When \fB-p\fR is specified the owner and group id, permission modes,
576 modification and access times, ACLs, and extended attributes if applicable are
577 preserved.
578 .RE

580 .sp
581 .ne 2
582 .na
583 \fB\fBcpio\fR\fR
584 .ad
585 .RS 12n
586 ACLs are preserved when the \fB-P\fR option is specified.
587 .RE

new/usr/src/man/man5/acl.5 10

589 .sp
590 .ne 2
591 .na
592 \fB\fBfind\fR\fR
593 .ad
594 .RS 12n
595 Find locates files with ACLs when the \fB-acl\fR flag is specified.
596 .RE

598 .sp
599 .ne 2
600 .na
601 \fB\fBls\fR\fR
602 .ad
603 .RS 12n
604 By default \fBls\fR does not display ACL information. When the \fB-v\fR option
605 is specified, a file’s ACL is displayed.
606 .RE

608 .sp
609 .ne 2
610 .na
611 \fB\fBmv\fR\fR
612 .ad
613 .RS 12n
614 When a file is moved, all attributes are carried along with the renamed file.
615 When a file is moved across a file system boundary, the ACLs are replicated. If
616 the ACL information cannot be replicated, the move fails and the source file is
617 not removed.
618 .RE

620 .sp
621 .ne 2
622 .na
623 \fB\fBpack\fR\fR
624 .ad
625 .RS 12n
626 When a file is packed, any ACL associated with the original file is preserved
627 with the packed file.
628 .RE

630 .sp
631 .ne 2
632 .na
633 \fB\fBrcp\fR\fR
634 .ad
635 .RS 12n
636 \fBrcp\fR has been enhanced to support copying. A file’s ACL is only preserved
637 when the remote host supports ACLs.
638 .RE

640 .sp
641 .ne 2
642 .na
643 \fB\fBtar\fR\fR
644 .ad
645 .RS 12n
646 ACLs are preserved when the \fB-p\fR option is specified.
647 .RE

649 .sp
650 .ne 2
651 .na
652 \fB\fBunpack\fR\fR
653 .ad
654 .RS 12n

new/usr/src/man/man5/acl.5 11

655 When a file with an ACL is unpacked, the unpacked file retains the ACL
656 information.
657 .RE

659 .SS "Application-level \fBAPI\fR"
660 .sp
661 .LP
662 The primary interfaces required to access file system ACLs at the programmatic
663 level are the \fBacl_get()\fR and \fBacl_set()\fR functions. These functions
664 support both POSIX draft ACLs and NFSv4 ACLs.
665 .SS "Retrieving a file’s \fBACL\fR"
666 .sp
667 .in +2
668 .nf
669 int acl_get(const char *path, int flag, acl_t **aclp);
670 int facl_get(int fd, int flag, acl_t **aclp);
671 .fi
672 .in -2

674 .sp
675 .LP
676 The \fBacl_get\fR(3SEC) and \fBfacl_get\fR(3SEC) functions retrieves an ACL on
677 a file whose name is given by path or referenced by the open file descriptor
678 fd. The flag argument specifies whether a trivial ACL should be retrieved. When
679 the flag argument equals \fBACL_NO_TRIVIAL\fR then only ACLs that are not
680 trivial are retrieved. The ACL is returned in the \fBaclp\fR argument.
681 .SS "Freeing \fBACL\fR structure"
682 .sp
683 .in +2
684 .nf
685 void acl_free(acl_t *aclp)s;
686 .fi
687 .in -2

689 .sp
690 .LP
691 The \fBacl_free()\fR function frees up memory allocated for the argument
692 \fBaclp;\fR.
693 .SS "Setting an \fBACL\fR on a file"
694 .sp
695 .in +2
696 .nf
697 int acl_set(const char *path, acl_t *aclp);
698 int facl_set(int fd, acl_t *aclp);
699 .fi
700 .in -2

702 .sp
703 .LP
704 The \fBacl_set\fR(3SEC) and \fBfacl_get\fR(3SEC) functions are used for setting
705 an ACL on a file whose name is given by path or referenced by the open file
706 descriptor \fBfd\fR. The \fBaclp\fR argument specifies the ACL to set. The
707 \fBacl_set\fR(3SEC) translates an POSIX-draft ACL into a NFSv4 ACL when the
708 target file systems supports NFSv4 ACLs. No translation is performed when
709 trying to set an NFSv4 ACL on a POSIX-draft ACL supported file system.
710 .SS "Determining an \fBACL\fR’s trivialness"
711 .sp
712 .in +2
713 .nf
714 int acl_trivial(const char *path);
715 .fi
716 .in -2

718 .sp
719 .LP
720 The \fBacl_trivial()\fR function is used to determine whether a file has a

new/usr/src/man/man5/acl.5 12

721 trivial ACL. The trivialness of a file’s ACL depends on the type of ACL it is.
722 For POSIX-draft ACLs, it implies the ACL has greater than
723 \fBMIN_ACL_ENTRIES\fR. For NFSv4/ZFS style ACLs, it implies that the ACL has
724 entries other than \fBowner@\fR, \fBgroup@\fR and \fBeveryone@\fR, inheritance
725 flags are set, or the ACL is not ordered in a manner that meets POSIX access
726 control requirements.
727 .SS "Removing all \fBACL\fRs from a file"
728 .sp
729 .in +2
730 .nf
731 int acl_strip(const char *path, uid_t uid, gid_t gid, mode_t mode);
732 .fi
733 .in -2

735 .sp
736 .LP
737 The \fBacl_strip()\fR function removes all ACLs from a file and replaces them
738 with a trivial ACL based off of the passed in argument mode. After replacing
739 the ACL the owner and group of the file are set to the values specified in the
740 uid and gid parameters.
741 .SS "Converting \fBACL\fRs to/from external representation"
742 .sp
743 .in +2
744 .nf
745 int acl_fromtext(const char *path, acl_t **aclp);
746 char *acl_totext(acl_t *aclp, int flags);
747 .fi
748 .in -2

750 .sp
751 .LP
752 The \fBacl_text()\fR function converts an internal ACL representation pointed
753 to by aclp into an external representation. See \fBDESCRIPTION\fR for details
754 about external representation.
755 .sp
756 .LP
757 The \fBacl_fromtext()\fR functions converts and external representation into an
758 internal representation. See \fBDESCRIPTION\fR for details about external
759 representation.
760 .SH EXAMPLES
761 .sp
762 .LP
763 The following examples demonstrate how the API can be used to perform basic
764 operations on ACLs.
765 .LP
766 \fBExample 1 \fRRetrieving and Setting an ACL
767 .sp
768 .LP
769 Use the following to retrieve an ACL and set it on another file:

771 .sp
772 .in +2
773 .nf
774 error = acl_get("file", ACL_NO_TRIVIAL, &aclp);

776 if (error == 0 && aclp != NULL) {
777 error = acl_set("file2", aclp)
778 acl_free(aclp);
779 }

______unchanged_portion_omitted_
799 \&...
800 .fi
801 .in -2

803 .LP
804 \fBExample 3 \fRDetermining if a File has a Trivial ACL

new/usr/src/man/man5/acl.5 13

805 .sp
806 .LP
807 Use the following to determine if a file has a trivial ACL:

809 .sp
810 .in +2
811 .nf
812 istrivial = acl_trivial("file")

814 if (istrivial == 0)
815 printf("file %s has a trivial ACL\en", file);
815 printf("file %s has a trivial ACL\n", file);
816 else
817 printf("file %s has a NON-trivial ACL\en", file);
817 printf("file %s has a NON-trivial ACL\n", file);
818 \&...
819 .fi
820 .in -2

822 .LP
823 \fBExample 4 \fRRemoving all ACLs from a File
824 .sp
825 .LP
826 Use the following to remove all ACLs from a file, and set a new mode, owner,
827 and group:

829 .sp
830 .in +2
831 .nf
832 error = acl_strip("file", 10, 100, 0644);
833 \&...
834 .fi
835 .in -2

837 .SH SEE ALSO
838 .sp
839 .LP
840 \fBchgrp\fR(1), \fBchmod\fR(1), \fBchown\fR(1), \fBcp\fR(1), \fBcpio\fR(1),
841 \fBfind\fR(1), \fBls\fR(1), \fBmv\fR(1), \fBtar\fR(1), \fBsetfacl\fR(1),
842 \fBchmod\fR(2), \fBacl\fR(2),\fBstat\fR(2),\fBacl_get\fR(3SEC),
843 \fBaclsort\fR(3SEC), \fBacl_fromtext\fR(3SEC), \fBacl_free\fR(3SEC),
844 \fBacl_strip\fR(3SEC), \fBacl_trivial\fR(3SEC)

new/usr/src/man/man5/tecla.5 1

**
 53557 Tue Sep 10 18:35:21 2013
new/usr/src/man/man5/tecla.5
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2000, 2001, 2002, 2003, 2004 by Martin C. Shepherd. All Rights
3 .\" Permission is hereby granted, free of charge, to any person obtaining a copy
4 .\" "Software"), to deal in the Software without restriction, including
5 .\" without limitation the rights to use, copy, modify, merge, publish,
6 .\" distribute, and/or sell copies of the Software, and to permit persons
7 .\" to whom the Software is furnished to do so, provided that the above
8 .\" copyright notice(s) and this permission notice appear in all copies of
9 .\" the Software and that both the above copyright notice(s) and this

10 .\" permission notice appear in supporting documentation.
11 .\"
12 .\" THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
13 .\" OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
14 .\" MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT
15 .\" OF THIRD PARTY RIGHTS. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
16 .\" HOLDERS INCLUDED IN THIS NOTICE BE LIABLE FOR ANY CLAIM, OR ANY SPECIAL
17 .\" INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
18 .\" FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
19 .\" NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION
20 .\" WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
21 .\"
22 .\" Except as contained in this notice, the name of a copyright holder
23 .\" shall not be used in advertising or otherwise to promote the sale, use
24 .\" or other dealings in this Software without prior written authorization
25 .\" of the copyright holder.
26 .\" Portions Copyright (c) 2005, Sun Microsystems, Inc. All Rights Reserved.
27 .TH TECLA 5 "Sep 10, 2013"
27 .TH TECLA 5 "May 20, 2004"
28 .SH NAME
29 tecla, teclarc \- User interface provided by the tecla library.
30 .SH DESCRIPTION
31 .sp
32 .LP
33 This man page describes the command-line editing features that are available to
34 users of programs that read keyboard input via the tecla library. Users of the
35 \fBtcsh shell\fR will find the default key bindings very familiar. Users of the
36 \fBbash\fR shell will also find it quite familiar, but with a few minor
37 differences, most notably in how forward and backward searches through the list
38 of historical commands are performed. There are two major editing modes, one
39 with \fBemacs\fR-like key bindings and another with \fBvi\fR-like key bindings.
40 By default \fBemacs\fR mode is enabled, but \fBvi\fR(1) mode can alternatively
41 be selected via the user’s configuration file. This file can also be used to
42 change the bindings of individual keys to suit the user’s preferences. By
43 default, tab completion is provided. If the application hasn’t reconfigured
44 this to complete other types of symbols, then tab completion completes file
45 names.
46 .SS "Key Sequence Notation"
47 .sp
48 .LP
49 In the rest of this man page, and also in all tecla configuration files, key
50 sequences are expressed as follows.
51 .sp
52 .ne 2
53 .na
54 \fB\fB^A\fR or \fBC-a\fR\fR
55 .ad
56 .RS 13n
57 This is a ’CONTROL-A’, entered by pressing the CONTROL key at the same time as
58 the ’A’ key.
59 .RE

new/usr/src/man/man5/tecla.5 2

61 .sp
62 .ne 2
63 .na
64 \fB\fB\E\fR or \fBM-\fR\fR
65 .ad
66 .RS 13n
67 In key sequences, both of these notations can be entered either by pressing the
68 ESCAPE key, then the following key, or by pressing the META key at the same
69 time as the following key. Thus the key sequence \fBM-p\fR can be typed in two
70 ways, by pressing the ESCAPE key, followed by pressing ’P’, or by pressing the
71 META key at the same time as ’P’.
72 .RE

74 .sp
75 .ne 2
76 .na
77 \fBup\fR
78 .ad
79 .RS 13n
80 This refers to the up-arrow key.
81 .RE

83 .sp
84 .ne 2
85 .na
86 \fBdown\fR
87 .ad
88 .RS 13n
89 This refers to the down-arrow key.
90 .RE

92 .sp
93 .ne 2
94 .na
95 \fBleft\fR
96 .ad
97 .RS 13n
98 This refers to the left-arrow key.
99 .RE

101 .sp
102 .ne 2
103 .na
104 \fBright\fR
105 .ad
106 .RS 13n
107 This refers to the right-arrow key.
108 .RE

110 .sp
111 .ne 2
112 .na
113 \fBa\fR
114 .ad
115 .RS 13n
116 This is just a normal ’A’ key.
117 .RE

119 .SS "The Tecla Configuration File"
120 .sp
121 .LP
122 By default, tecla looks for a file called \fB\&.teclarc\fR in your home
123 directory (ie. \fB~/.teclarc\fR). If it finds this file, it reads it,
124 interpreting each line as defining a new key binding or an editing
125 configuration option. Since the \fBemacs\fR key-bindings are installed by
126 default, if you want to use the non-default \fBvi\fR editing mode, the most

new/usr/src/man/man5/tecla.5 3

127 important item to go in this file is the following line:
128 .sp
129 .in +2
130 .nf
131 edit-mode vi
132 .fi
133 .in -2

135 .sp
136 .LP
137 This will re-configure the default bindings for \fBvi\fR-mode. The complete set
138 of arguments that this command accepts are:
139 .sp
140 .ne 2
141 .na
142 \fBvi\fR
143 .ad
144 .RS 9n
145 Install key bindings like those of the \fBvi\fR editor.
146 .RE

148 .sp
149 .ne 2
150 .na
151 \fBemacs\fR
152 .ad
153 .RS 9n
154 Install key bindings like those of the \fBemacs\fR editor. This is the default.
155 .RE

157 .sp
158 .ne 2
159 .na
160 \fBnone\fR
161 .ad
162 .RS 9n
163 Use just the native line editing facilities provided by the terminal driver.
164 .RE

166 .sp
167 .LP
168 To prevent the terminal bell from being rung, such as when an unrecognized
169 control-sequence is typed, place the following line in the configuration file:
170 .sp
171 .in +2
172 .nf
173 nobeep
174 .fi
175 .in -2

177 .sp
178 .LP
179 An example of a key binding line in the configuration file is the following.
180 .sp
181 .in +2
182 .nf
183 bind M-[2~ insert-mode
184 .fi
185 .in -2

187 .sp
188 .LP
189 On many keyboards, the above key sequence is generated when one presses the
190 insert key, so with this key binding, one can toggle between the
191 \fBemacs\fR-mode insert and overwrite modes by hitting one key. One could also
192 do it by typing out the above sequence of characters one by one. As explained

new/usr/src/man/man5/tecla.5 4

193 above, the \fBM-\fR part of this sequence can be typed either by pressing the
194 ESCAPE key before the following key, or by pressing the META key at the same
195 time as the following key. Thus if you had set the above key binding, and the
196 insert key on your keyboard didn’t generate the above key sequence, you could
197 still type it in either of the following 2 ways.
198 .RS +4
199 .TP
200 1.
201 Hit the ESCAPE key momentarily, then press ’[’, then ’2’, then finally ’~’.
202 .RE
203 .RS +4
204 .TP
205 2.
206 Press the META key at the same time as pressing the ’[’ key, then press ’2’,
207 then ’~’.
208 .RE
209 .sp
210 .LP
211 If you set a key binding for a key sequence that is already bound to a
212 function, the new binding overrides the old one. If in the new binding you omit
213 the name of the new function to bind to the key sequence, the original binding
214 becomes undefined.
215 .sp
216 .LP
217 Starting with versions of \fBlibtecla\fR later than 1.3.3 it is now possible to
218 bind key sequences that begin with a printable character. Previously key
219 sequences were required to start with a CONTROL or META character.
220 .sp
221 .LP
222 Note that the special keywords "up", "down", "left", and "right" refer to the
223 arrow keys, and are thus not treated as key sequences. So, for example, to
224 rebind the up and down arrow keys to use the history search mechanism instead
225 of the simple history recall method, you could place the following in your
226 configuration file:
227 .sp
228 .in +2
229 .nf
230 bind up history-search-backwards
231 bind down history-search-backwards
232 .fi
233 .in -2

235 .sp
236 .LP
237 To unbind an existing binding, you can do this with the bind command by
238 omitting to name any action to rebind the key sequence to. For example, by not
239 specifying an action function, the following command unbinds the default
240 beginning-of-line action from the \fB^A\fR key sequence:
241 .sp
242 .in +2
243 .nf
244 bind ^A
245 .fi
246 .in -2

248 .sp
249 .LP
250 If you create a \fB~/.teclarc\fR configuration file, but it appears to have no
251 effect on the program, check the documentation of the program to see if the
252 author chose a different name for this file.
253 .SS "Filename and Tilde Completion"
254 .sp
255 .LP
256 With the default key bindings, pressing the TAB key (aka. \fB^I\fR) results in
257 tecla attempting to complete the incomplete file name that precedes the cursor.
258 Tecla searches backwards from the cursor, looking for the start of the file

new/usr/src/man/man5/tecla.5 5

259 name, stopping when it hits either a space or the start of the line. If more
260 than one file has the specified prefix, then tecla completes the file name up
261 to the point at which the ambiguous matches start to differ, then lists the
262 possible matches.
263 .sp
264 .LP
265 In addition to literally written file names, tecla can complete files that
266 start with \fB~/\fR and \fB~user/\fR expressions and that contain \fB$envvar\fR
267 expressions. In particular, if you hit TAB within an incomplete \fB~user\fR,
268 expression, tecla will attempt to complete the username, listing any ambiguous
269 matches.
270 .sp
271 .LP
272 The completion binding is implemented using the \fBcpl_complete_word()\fR
273 function, which is also available separately to users of this library. See the
274 \fBcpl_complete_word\fR(3TECLA) man page for more details.
275 .SS "Filename Expansion"
276 .sp
277 .LP
278 With the default key bindings, pressing \fB^X*\fR causes tecla to expand the
279 file name that precedes the cursor, replacing \fB~/\fR and \fB~user/\fR
280 expressions with the corresponding home directories, and replacing
281 \fB$envvar\fR expressions with the value of the specified environment variable,
282 then if there are any wildcards, replacing the so far expanded file name with a
283 space-separated list of the files which match the wild cards.
284 .sp
285 .LP
286 The expansion binding is implemented using the \fBef_expand_file()\fR function.
287 See the \fBef_expand_file\fR(3TECLA) man page for more details.
288 .SS "Recalling Previously Typed Lines"
289 .sp
290 .LP
291 Every time that a new line is entered by the user, it is appended to a list of
292 historical input lines maintained within the \fBGetLine\fR resource object. You
293 can traverse up and down this list using the up and down arrow keys.
294 Alternatively, you can do the same with the \fB^P\fR, and \fB^N\fR keys, and in
295 \fBvi\fR command mode you can alternatively use the k and j characters. Thus
296 pressing up-arrow once, replaces the current input line with the previously
297 entered line. Pressing up-arrow again, replaces this with the line that was
298 entered before it, etc.. Having gone back one or more lines into the history
299 list, one can return to newer lines by pressing down-arrow one or more times.
300 If you do this sufficient times, you will return to the original line that you
301 were entering when you first hit up-arrow.
302 .sp
303 .LP
304 Note that in \fBvi\fR mode, all of the history recall functions switch the
305 library into command mode.
306 .sp
307 .LP
308 In \fBemacs\fR mode the \fBM-p\fR and \fBM-n\fR keys work just like the
309 \fB^P\fR and \fB^N\fR keys, except that they skip all but those historical
310 lines which share the prefix that precedes the cursor. In \fBvi\fR command mode
311 the upper case ’K’ and ’J’ characters do the same thing, except that the string
312 that they search for includes the character under the cursor as well as what
313 precedes it.
314 .sp
315 .LP
316 Thus for example, suppose that you were in \fBemacs\fR mode, and you had just
317 entered the following list of commands in the order shown:
318 .sp
319 .in +2
320 .nf
321 ls ~/tecla/
322 cd ~/tecla
323 ls -l getline.c
324 \fBemacs\fR ~/tecla/getline.c

new/usr/src/man/man5/tecla.5 6

325 .fi
326 .in -2

328 .sp
329 .LP
330 If you next typed:
331 .sp
332 .in +2
333 .nf
334 ls
335 .fi
336 .in -2

338 .sp
339 .LP
340 and then hit \fBM-p\fR, then rather than returning the previously typed
341 \fBemacs\fR line, which doesn’t start with "ls", tecla would recall the "ls -l
342 getline.c" line. Pressing \fBM-p\fR again would recall the "ls ~/tecla/" line.
343 .sp
344 .LP
345 Note that if the string that you are searching for, contains any of the special
346 characters, *, ?, or ’[’, then it is interpretted as a pattern to be matched.
347 Thus, cotinuing with the above example, after typing in the list of commands
348 shown, if you then typed:
349 .sp
350 .in +2
351 .nf
352 *tecla*
353 .fi
354 .in -2

356 .sp
357 .LP
358 and hit \fBM-p\fR, then the "\fBemacs\fR ~/tecla/getline.c" line would be
359 recalled first, since it contains the word tecla somewhere in the line,
360 Similarly, hitting \fBM-p\fR again, would recall the "ls ~/tecla/" line, and
361 hitting it once more would recall the "ls ~/tecla/" line. The pattern syntax is
362 the same as that described for file name expansion, in the
363 \fBef_expand_file\fR(3TECLA).
364 .SS "History Files"
365 .sp
366 .LP
367 Authors of programs that use the tecla library have the option of saving
368 historical command-lines in a file before exiting, and subsequently reading
369 them back in from this file when the program is next started. There is no
370 standard name for this file, since it makes sense for each application to use
371 its own history file, so that commands from different applications don’t get
372 mixed up.
373 .SS "International Character Sets"
374 .sp
375 .LP
376 Since \fBlibtecla\fR version 1.4.0, tecla has been 8-bit clean. This means that
377 all 8-bit characters that are printable in the user’s current locale are now
378 displayed verbatim and included in the returned input line. Assuming that the
379 calling program correctly contains a call like the following,
380 .sp
381 .in +2
382 .nf
383 setlocale(LC_CTYPE, "");
384 .fi
385 .in -2

387 .sp
388 .LP
389 then the current locale is determined by the first of the environment variables
390 \fBLC_CTYPE\fR, \fBLC_ALL\fR, and \fBLANG\fR, that is found to contain a valid

new/usr/src/man/man5/tecla.5 7

391 locale name. If none of these variables are defined, or the program neglects to
392 call \fBsetlocale\fR, then the default C locale is used, which is US 7-bit
393 ASCII. On most unix-like platforms, you can get a list of valid locales by
394 typing the command:
395 .sp
396 .in +2
397 .nf
398 locale -a
399 .fi
400 .in -2

402 .sp
403 .LP
404 at the shell prompt.
405 .SS "Meta Keys and Locales"
406 .sp
407 .LP
408 Beware that in most locales other than the default C locale, META characters
409 become printable, and they are then no longer considered to match \fBM-c\fR
410 style key bindings. This allows international characters to be entered with the
411 compose key without unexpectedly triggering META key bindings. You can still
412 invoke META bindings, since there are actually two ways to do this. For example
413 the binding \fBM-c\fR can also be invoked by pressing the ESCAPE key
414 momentarily, then pressing the c key, and this will work regardless of locale.
415 Moreover, many modern terminal emulators, such as gnome’s gnome-terminal’s and
416 KDE’s konsole terminals, already generate escape pairs like this when you use
417 the META key, rather than a real meta character, and other emulators usually
418 have a way to request this behavior, so you can continue to use the META key on
419 most systems.
420 .sp
421 .LP
422 For example, although xterm terminal emulators generate real 8-bit meta
423 characters by default when you use the META key, they can be configured to
424 output the equivalent escape pair by setting their \fBEightBitInput\fR X
425 resource to False. You can either do this by placing a line like the following
426 in your \fB~/.Xdefaults\fR file,
427 .sp
428 .in +2
429 .nf
430 XTerm*EightBitInput: False
431 .fi
432 .in -2

434 .sp
435 .LP
436 or by starting an \fBxterm\fR with an \fB-xrm\fR \&’*EightBitInput: False’
437 command-line argument. In recent versions of xterm you can toggle this feature
438 on and off with the ’Meta Sends Escape’ option in the menu that is displayed
439 when you press the left mouse button and the CONTROL key within an xterm
440 window. In CDE, dtterms can be similarly coerced to generate escape pairs in
441 place of meta characters, by setting the \fBDtterm*KshMode\fR resource to True.
442 .SS "Entering International Characters"
443 .sp
444 .LP
445 If you don’t have a keyboard that generates all of the international characters
446 that you need, there is usually a compose key that will allow you to enter
447 special characters, or a way to create one. For example, under X windows on
448 unix-like systems, if your keyboard doesn’t have a compose key, you can
449 designate a redundant key to serve this purpose with the xmodmap command. For
450 example, on many PC keyboards there is a microsoft-windows key, which is
451 otherwise useless under Linux. On a laptop, for example, the \fBxev\fR program
452 might report that pressing this key generates keycode 115. To turn this key
453 into a COMPOSE key, do the following:
454 .sp
455 .in +2
456 .nf

new/usr/src/man/man5/tecla.5 8

457 xmodmap -e ’keycode 115 = Multi_key’
458 .fi
459 .in -2

461 .sp
462 .LP
463 Type this key followed by a " character to enter an ’I’ with a umlaut over it.
464 .SS "The Available Key Binding Functions"
465 .sp
466 .LP
467 The following is a list of the editing functions provided by the tecla library.
468 The names in the leftmost column of the list can be used in configuration files
469 to specify which function a given key or combination of keys should invoke.
470 They are also used in the next two sections to list the default key bindings in
471 \fBemacs\fR and \fBvi\fR modes.
472 .sp
473 .ne 2
474 .na
475 \fBuser-interrupt\fR
476 .ad
477 .RS 30n
478 Send a SIGINT signal to the parent process.
479 .RE

481 .sp
482 .ne 2
483 .na
484 \fBsuspend\fR
485 .ad
486 .RS 30n
487 Suspend the parent process.
488 .RE

490 .sp
491 .ne 2
492 .na
493 \fBstop-output\fR
494 .ad
495 .RS 30n
496 Pause terminal output.
497 .RE

499 .sp
500 .ne 2
501 .na
502 \fBstart-output\fR
503 .ad
504 .RS 30n
505 Resume paused terminal output.
506 .RE

508 .sp
509 .ne 2
510 .na
511 \fBliteral-next\fR
512 .ad
513 .RS 30n
514 Arrange for the next character to be treated as a normal character. This allows
515 control characters to be entered.
516 .RE

518 .sp
519 .ne 2
520 .na
521 \fBcursor-right\fR
522 .ad

new/usr/src/man/man5/tecla.5 9

523 .RS 30n
524 Move the cursor one character right.
525 .RE

527 .sp
528 .ne 2
529 .na
530 \fBcursor-left\fR
531 .ad
532 .RS 30n
533 Move the cursor one character left.
534 .RE

536 .sp
537 .ne 2
538 .na
539 \fBinsert-mode\fR
540 .ad
541 .RS 30n
542 Toggle between insert mode and overwrite mode.
543 .RE

545 .sp
546 .ne 2
547 .na
548 \fBbeginning-of-line\fR
549 .ad
550 .RS 30n
551 Move the cursor to the beginning of the line.
552 .RE

554 .sp
555 .ne 2
556 .na
557 \fBend-of-line\fR
558 .ad
559 .RS 30n
560 Move the cursor to the end of the line.
561 .RE

563 .sp
564 .ne 2
565 .na
566 \fBdelete-line\fR
567 .ad
568 .RS 30n
569 Delete the contents of the current line.
570 .RE

572 .sp
573 .ne 2
574 .na
575 \fBkill-line\fR
576 .ad
577 .RS 30n
578 Delete everything that follows the cursor.
579 .RE

581 .sp
582 .ne 2
583 .na
584 \fBbackward-kill-line\fR
585 .ad
586 .RS 30n
587 Delete all characters between the cursor and the start of the line.
588 .RE

new/usr/src/man/man5/tecla.5 10

590 .sp
591 .ne 2
592 .na
593 \fBforward-word\fR
594 .ad
595 .RS 30n
596 Move to the end of the word which follows the cursor.
597 .RE

599 .sp
600 .ne 2
601 .na
602 \fBforward-to-word\fR
603 .ad
604 .RS 30n
605 Move the cursor to the start of the word that follows the cursor.
606 .RE

608 .sp
609 .ne 2
610 .na
611 \fBbackward-word\fR
612 .ad
613 .RS 30n
614 Move to the start of the word which precedes the cursor.
615 .RE

617 .sp
618 .ne 2
619 .na
620 \fBgoto-column\fR
621 .ad
622 .RS 30n
623 Move the cursor to the 1-relative column in the line specified by any preceding
624 digit-argument sequences (see Entering Repeat Counts below).
625 .RE

627 .sp
628 .ne 2
629 .na
630 \fBfind-parenthesis\fR
631 .ad
632 .RS 30n
633 If the cursor is currently over a parenthesis character, move it to the
634 matching parenthesis character. If not over a parenthesis character move right
635 to the next close parenthesis.
636 .RE

638 .sp
639 .ne 2
640 .na
641 \fBforward-delete-char\fR
642 .ad
643 .RS 30n
644 Delete the character under the cursor.
645 .RE

647 .sp
648 .ne 2
649 .na
650 \fBbackward-delete-char\fR
651 .ad
652 .RS 30n
653 Delete the character which precedes the cursor.
654 .RE

new/usr/src/man/man5/tecla.5 11

656 .sp
657 .ne 2
658 .na
659 \fBlist-or-eof\fR
660 .ad
661 .RS 30n
662 This is intended for binding to \fB^D\fR. When invoked when the cursor is
663 within the line it displays all possible completions then redisplays the line
664 unchanged. When invoked on an empty line, it signals end-of-input (EOF) to the
665 caller of \fBgl_get_line()\fR.
666 .RE

668 .sp
669 .ne 2
670 .na
671 \fBdel-char-or-list-or-eof\fR
672 .ad
673 .RS 30n
674 This is intended for binding to \fB^D\fR. When invoked when the cursor is
675 within the line it invokes forward-delete-char. When invoked at the end of the
676 line it displays all possible completions then redisplays the line unchanged.
677 When invoked on an empty line, it signals end-of-input (EOF) to the caller of
678 \fBgl_get_line()\fR.
679 .RE

681 .sp
682 .ne 2
683 .na
684 \fBforward-delete-word\fR
685 .ad
686 .RS 30n
687 Delete the word which follows the cursor.
688 .RE

690 .sp
691 .ne 2
692 .na
693 \fBbackward-delete-word\fR
694 .ad
695 .RS 30n
696 Delete the word which precedes the cursor.
697 .RE

699 .sp
700 .ne 2
701 .na
702 \fBupcase-word\fR
703 .ad
704 .RS 30n
705 Convert all of the characters of the word which follows the cursor, to upper
706 case.
707 .RE

709 .sp
710 .ne 2
711 .na
712 \fBdowncase-word\fR
713 .ad
714 .RS 30n
715 Convert all of the characters of the word which follows the cursor, to lower
716 case.
717 .RE

719 .sp
720 .ne 2

new/usr/src/man/man5/tecla.5 12

721 .na
722 \fBcapitalize-word\fR
723 .ad
724 .RS 30n
725 Capitalize the word which follows the cursor.
726 .RE

728 .sp
729 .ne 2
730 .na
731 \fBchange-case\fR
732 .ad
733 .RS 30n
734 If the next character is upper case, toggle it to lower case and vice versa.
735 .RE

737 .sp
738 .ne 2
739 .na
740 \fBredisplay\fR
741 .ad
742 .RS 30n
743 Redisplay the line.
744 .RE

746 .sp
747 .ne 2
748 .na
749 \fBclear-screen\fR
750 .ad
751 .RS 30n
752 Clear the terminal, then redisplay the current line.
753 .RE

755 .sp
756 .ne 2
757 .na
758 \fBtranspose-chars\fR
759 .ad
760 .RS 30n
761 Swap the character under the cursor with the character just before the cursor.
762 .RE

764 .sp
765 .ne 2
766 .na
767 \fBset-mark\fR
768 .ad
769 .RS 30n
770 Set a mark at the position of the cursor.
771 .RE

773 .sp
774 .ne 2
775 .na
776 \fBexchange-point-and-mark\fR
777 .ad
778 .RS 30n
779 Move the cursor to the last mark that was set, and move the mark to where the
780 cursor used to be.
781 .RE

783 .sp
784 .ne 2
785 .na
786 \fBkill-region\fR

new/usr/src/man/man5/tecla.5 13

787 .ad
788 .RS 30n
789 Delete the characters that lie between the last mark that was set, and the
790 cursor.
791 .RE

793 .sp
794 .ne 2
795 .na
796 \fBcopy-region-as-kill\fR
797 .ad
798 .RS 30n
799 Copy the text between the mark and the cursor to the cut buffer, without
800 deleting the original text.
801 .RE

803 .sp
804 .ne 2
805 .na
806 \fByank\fR
807 .ad
808 .RS 30n
809 Insert the text that was last deleted, just before the current position of the
810 cursor.
811 .RE

813 .sp
814 .ne 2
815 .na
816 \fBappend-yank\fR
817 .ad
818 .RS 30n
819 Paste the current contents of the cut buffer, after the cursor.
820 .RE

822 .sp
823 .ne 2
824 .na
825 \fBup-history\fR
826 .ad
827 .RS 30n
828 Recall the next oldest line that was entered. Note that in \fBvi\fR mode you
829 are left in command mode.
830 .RE

832 .sp
833 .ne 2
834 .na
835 \fBdown-history\fR
836 .ad
837 .RS 30n
838 Recall the next most recent line that was entered. If no history recall session
839 is currently active, the next line from a previous recall session is recalled.
840 Note that in vi mode you are left in command mode.
841 .RE

843 .sp
844 .ne 2
845 .na
846 \fBhistory-search-backward\fR
847 .ad
848 .RS 30n
849 Recall the next oldest line who’s prefix matches the string which currently
850 precedes the cursor (in \fBvi\fR command-mode the character under the cursor is
851 also included in the search string). Note that in \fBvi\fR mode you are left in
852 command mode.

new/usr/src/man/man5/tecla.5 14

853 .RE

855 .sp
856 .ne 2
857 .na
858 \fBhistory-search-forward\fR
859 .ad
860 .RS 30n
861 Recall the next newest line who’s prefix matches the string which currently
862 precedes the cursor (in \fBvi\fR command-mode the character under the cursor is
863 also included in the search string). Note that in \fBvi\fR mode you are left in
864 command mode.
865 .RE

867 .sp
868 .ne 2
869 .na
870 \fBhistory-re-search-backward\fR
871 .ad
872 .RS 30n
873 Recall the next oldest line who’s prefix matches that established by the last
874 invocation of either history-search-forward or history-search-backward.
875 .RE

877 .sp
878 .ne 2
879 .na
880 \fBhistory-re-search-forward\fR
881 .ad
882 .RS 30n
883 Recall the next newest line who’s prefix matches that established by the last
884 invocation of either history-search-forward or history-search-backward.
885 .RE

887 .sp
888 .ne 2
889 .na
890 \fBcomplete-word\fR
891 .ad
892 .RS 30n
893 Attempt to complete the incomplete word which precedes the cursor. Unless the
894 host program has customized word completion, file name completion is attempted.
895 In \fBvi\fR commmand mode the character under the cursor is also included in
896 the word being completed, and you are left in \fBvi\fR insert mode.
897 .RE

899 .sp
900 .ne 2
901 .na
902 \fBexpand-filename\fR
903 .ad
904 .RS 30n
905 Within the command line, expand wild cards, tilde expressions and dollar
906 expressions in the file name which immediately precedes the cursor. In \fBvi\fR
907 commmand mode the character under the cursor is also included in the file name
908 being expanded, and you are left in \fBvi\fR insert mode.
909 .RE

911 .sp
912 .ne 2
913 .na
914 \fBlist-glob\fR
915 .ad
916 .RS 30n
917 List any file names which match the wild-card, tilde and dollar expressions in
918 the file name which immediately precedes the cursor, then redraw the input line

new/usr/src/man/man5/tecla.5 15

919 unchanged.
920 .RE

922 .sp
923 .ne 2
924 .na
925 \fBlist-history\fR
926 .ad
927 .RS 30n
928 Display the contents of the history list for the current history group. If a
929 repeat count of \fB> 1\fR is specified, only that many of the most recent lines
930 are displayed. See the Entering Repeat Counts section.
931 .RE

933 .sp
934 .ne 2
935 .na
936 \fBread-from-file\fR
937 .ad
938 .RS 30n
939 Temporarily switch to reading input from the file who’s name precedes the
940 cursor.
941 .RE

943 .sp
944 .ne 2
945 .na
946 \fBread-init-files\fR
947 .ad
948 .RS 30n
949 Re-read \fBteclarc\fR configuration files.
950 .RE

952 .sp
953 .ne 2
954 .na
955 \fBbeginning-of-history\fR
956 .ad
957 .RS 30n
958 Move to the oldest line in the history list. Note that in \fBvi\fR mode you are
959 left in command mode.
960 .RE

962 .sp
963 .ne 2
964 .na
965 \fBend-of-history\fR
966 .ad
967 .RS 30n
968 Move to the newest line in the history list (ie. the current line). Note that
969 in \fBvi\fR mode this leaves you in command mode.
970 .RE

972 .sp
973 .ne 2
974 .na
975 \fBdigit-argument\fR
976 .ad
977 .RS 30n
978 Enter a repeat count for the next key binding function. For details, see the
979 Entering Repeat Counts section.
980 .RE

982 .sp
983 .ne 2
984 .na

new/usr/src/man/man5/tecla.5 16

985 \fBnewline\fR
986 .ad
987 .RS 30n
988 Terminate and return the current contents of the line, after appending a
989 newline character. The newline character is normally ’\en’, but will be the
989 newline character. The newline character is normally ’\n’, but will be the
990 first character of the key sequence that invoked the newline action, if this
991 happens to be a printable character. If the action was invoked by the ’\n’
992 newline character or the ’\er’ carriage return character, the line is appended
992 newline character or the ’\r’ carriage return character, the line is appended
993 to the history buffer.
994 .RE

996 .sp
997 .ne 2
998 .na
999 \fBrepeat-history\fR

1000 .ad
1001 .RS 30n
1002 Return the line that is being edited, then arrange for the next most recent
1003 entry in the history buffer to be recalled when tecla is next called.
1004 Repeatedly invoking this action causes successive historical input lines to be
1005 re-executed. Note that this action is equivalent to the ’Operate’ action in
1006 ksh.
1007 .RE

1009 .sp
1010 .ne 2
1011 .na
1012 \fBring-bell\fR
1013 .ad
1014 .RS 30n
1015 Ring the terminal bell, unless the bell has been silenced via the nobeep
1016 configuration option (see The Tecla Configuration File section).
1017 .RE

1019 .sp
1020 .ne 2
1021 .na
1022 \fBforward-copy-char\fR
1023 .ad
1024 .RS 30n
1025 Copy the next character into the cut buffer (NB. use repeat counts to copy more
1026 than one).
1027 .RE

1029 .sp
1030 .ne 2
1031 .na
1032 \fBbackward-copy-char\fR
1033 .ad
1034 .RS 30n
1035 Copy the previous character into the cut buffer.
1036 .RE

1038 .sp
1039 .ne 2
1040 .na
1041 \fBforward-copy-word\fR
1042 .ad
1043 .RS 30n
1044 Copy the next word into the cut buffer.
1045 .RE

1047 .sp
1048 .ne 2

new/usr/src/man/man5/tecla.5 17

1049 .na
1050 \fBbackward-copy-word\fR
1051 .ad
1052 .RS 30n
1053 Copy the previous word into the cut buffer.
1054 .RE

1056 .sp
1057 .ne 2
1058 .na
1059 \fBforward-find-char\fR
1060 .ad
1061 .RS 30n
1062 Move the cursor to the next occurrence of the next character that you type.
1063 .RE

1065 .sp
1066 .ne 2
1067 .na
1068 \fBbackward-find-char\fR
1069 .ad
1070 .RS 30n
1071 Move the cursor to the last occurrence of the next character that you type.
1072 .RE

1074 .sp
1075 .ne 2
1076 .na
1077 \fBforward-to-char\fR
1078 .ad
1079 .RS 30n
1080 Move the cursor to the character just before the next occurrence of the next
1081 character that the user types.
1082 .RE

1084 .sp
1085 .ne 2
1086 .na
1087 \fBbackward-to-char\fR
1088 .ad
1089 .RS 30n
1090 Move the cursor to the character just after the last occurrence before the
1091 cursor of the next character that the user types.
1092 .RE

1094 .sp
1095 .ne 2
1096 .na
1097 \fBrepeat-find-char\fR
1098 .ad
1099 .RS 30n
1100 Repeat the last backward-find-char, forward-find-char, backward-to-char or
1101 forward-to-char.
1102 .RE

1104 .sp
1105 .ne 2
1106 .na
1107 \fBinvert-refind-char\fR
1108 .ad
1109 .RS 30n
1110 Repeat the last backward-find-char, forward-find-char, backward-to-char, or
1111 forward-to-char in the opposite direction.
1112 .RE

1114 .sp

new/usr/src/man/man5/tecla.5 18

1115 .ne 2
1116 .na
1117 \fBdelete-to-column\fR
1118 .ad
1119 .RS 30n
1120 Delete the characters from the cursor up to the column that is specified by the
1121 repeat count.
1122 .RE

1124 .sp
1125 .ne 2
1126 .na
1127 \fBdelete-to-parenthesis\fR
1128 .ad
1129 .RS 30n
1130 Delete the characters from the cursor up to and including the matching
1131 parenthesis, or next close parenthesis.
1132 .RE

1134 .sp
1135 .ne 2
1136 .na
1137 \fBforward-delete-find\fR
1138 .ad
1139 .RS 30n
1140 Delete the characters from the cursor up to and including the following
1141 occurence of the next character typed.
1142 .RE

1144 .sp
1145 .ne 2
1146 .na
1147 \fBbackward-delete-find\fR
1148 .ad
1149 .RS 30n
1150 Delete the characters from the cursor up to and including the preceding
1151 occurence of the next character typed.
1152 .RE

1154 .sp
1155 .ne 2
1156 .na
1157 \fBforward-delete-to\fR
1158 .ad
1159 .RS 30n
1160 Delete the characters from the cursor up to, but not including, the following
1161 occurence of the next character typed.
1162 .RE

1164 .sp
1165 .ne 2
1166 .na
1167 \fBbackward-delete-to\fR
1168 .ad
1169 .RS 30n
1170 Delete the characters from the cursor up to, but not including, the preceding
1171 occurence of the next character typed.
1172 .RE

1174 .sp
1175 .ne 2
1176 .na
1177 \fBdelete-refind\fR
1178 .ad
1179 .RS 30n
1180 Repeat the last *-delete-find or *-delete-to action.

new/usr/src/man/man5/tecla.5 19

1181 .RE

1183 .sp
1184 .ne 2
1185 .na
1186 \fBdelete-invert-refind\fR
1187 .ad
1188 .RS 30n
1189 Repeat the last *-delete-find or *-delete-to action, in the opposite direction.
1190 .RE

1192 .sp
1193 .ne 2
1194 .na
1195 \fBcopy-to-column\fR
1196 .ad
1197 .RS 30n
1198 Copy the characters from the cursor up to the column that is specified by the
1199 repeat count, into the cut buffer.
1200 .RE

1202 .sp
1203 .ne 2
1204 .na
1205 \fBcopy-to-parenthesis\fR
1206 .ad
1207 .RS 30n
1208 Copy the characters from the cursor up to and including the matching
1209 parenthesis, or next close parenthesis, into the cut buffer.
1210 .RE

1212 .sp
1213 .ne 2
1214 .na
1215 \fBforward-copy-find\fR
1216 .ad
1217 .RS 30n
1218 Copy the characters from the cursor up to and including the following occurence
1219 of the next character typed, into the cut buffer.
1220 .RE

1222 .sp
1223 .ne 2
1224 .na
1225 \fBbackward-copy-find\fR
1226 .ad
1227 .RS 30n
1228 Copy the characters from the cursor up to and including the preceding occurence
1229 of the next character typed, into the cut buffer.
1230 .RE

1232 .sp
1233 .ne 2
1234 .na
1235 \fBforward-copy-to\fR
1236 .ad
1237 .RS 30n
1238 Copy the characters from the cursor up to, but not including, the following
1239 occurence of the next character typed, into the cut buffer.
1240 .RE

1242 .sp
1243 .ne 2
1244 .na
1245 \fBbackward-copy-to\fR
1246 .ad

new/usr/src/man/man5/tecla.5 20

1247 .RS 30n
1248 Copy the characters from the cursor up to, but not including, the preceding
1249 occurence of the next character typed, into the cut buffer.
1250 .RE

1252 .sp
1253 .ne 2
1254 .na
1255 \fBcopy-refind\fR
1256 .ad
1257 .RS 30n
1258 Repeat the last *-copy-find or *-copy-to action.
1259 .RE

1261 .sp
1262 .ne 2
1263 .na
1264 \fBcopy-invert-refind\fR
1265 .ad
1266 .RS 30n
1267 Repeat the last *-copy-find or *-copy-to action, in the opposite direction.
1268 .RE

1270 .sp
1271 .ne 2
1272 .na
1273 \fBvi-mode\fR
1274 .ad
1275 .RS 30n
1276 Switch to \fBvi\fR mode from emacs mode.
1277 .RE

1279 .sp
1280 .ne 2
1281 .na
1282 \fBemacs-mode\fR
1283 .ad
1284 .RS 30n
1285 Switch to \fBemacs\fR mode from \fBvi\fR mode.
1286 .RE

1288 .sp
1289 .ne 2
1290 .na
1291 \fBvi-insert\fR
1292 .ad
1293 .RS 30n
1294 From \fBvi\fR command mode, switch to insert mode.
1295 .RE

1297 .sp
1298 .ne 2
1299 .na
1300 \fBvi-overwrite\fR
1301 .ad
1302 .RS 30n
1303 From \fBvi\fR command mode, switch to overwrite mode.
1304 .RE

1306 .sp
1307 .ne 2
1308 .na
1309 \fBvi-insert-at-bol\fR
1310 .ad
1311 .RS 30n
1312 From \fBvi\fR command mode, move the cursor to the start of the line and switch

new/usr/src/man/man5/tecla.5 21

1313 to insert mode.
1314 .RE

1316 .sp
1317 .ne 2
1318 .na
1319 \fBvi-append-at-eol\fR
1320 .ad
1321 .RS 30n
1322 From \fBvi\fR command mode, move the cursor to the end of the line and switch
1323 to append mode.
1324 .RE

1326 .sp
1327 .ne 2
1328 .na
1329 \fBvi-append\fR
1330 .ad
1331 .RS 30n
1332 From \fBvi\fR command mode, move the cursor one position right, and switch to
1333 insert mode.
1334 .RE

1336 .sp
1337 .ne 2
1338 .na
1339 \fBvi-replace-char\fR
1340 .ad
1341 .RS 30n
1342 From \fBvi\fR command mode, replace the character under the cursor with the
1343 next character entered.
1344 .RE

1346 .sp
1347 .ne 2
1348 .na
1349 \fBvi-forward-change-char\fR
1350 .ad
1351 .RS 30n
1352 From \fBvi\fR command mode, delete the next character then enter insert mode.
1353 .RE

1355 .sp
1356 .ne 2
1357 .na
1358 \fBvi-backward-change-char\fR
1359 .ad
1360 .RS 30n
1361 From vi command mode, delete the preceding character then enter insert mode.
1362 .RE

1364 .sp
1365 .ne 2
1366 .na
1367 \fBvi-forward-change-word\fR
1368 .ad
1369 .RS 30n
1370 From \fBvi\fR command mode, delete the next word then enter insert mode.
1371 .RE

1373 .sp
1374 .ne 2
1375 .na
1376 \fBvi-backward-change-word\fR
1377 .ad
1378 .RS 30n

new/usr/src/man/man5/tecla.5 22

1379 From vi command mode, delete the preceding word then enter insert mode.
1380 .RE

1382 .sp
1383 .ne 2
1384 .na
1385 \fBvi-change-rest-of-line\fR
1386 .ad
1387 .RS 30n
1388 From \fBvi\fR command mode, delete from the cursor to the end of the line, then
1389 enter insert mode.
1390 .RE

1392 .sp
1393 .ne 2
1394 .na
1395 \fBvi-change-line\fR
1396 .ad
1397 .RS 30n
1398 From \fBvi\fR command mode, delete the current line, then enter insert mode.
1399 .RE

1401 .sp
1402 .ne 2
1403 .na
1404 \fBvi-change-to-bol\fR
1405 .ad
1406 .RS 30n
1407 From \fBvi\fR command mode, delete all characters between the cursor and the
1408 beginning of the line, then enter insert mode.
1409 .RE

1411 .sp
1412 .ne 2
1413 .na
1414 \fBvi-change-to-column\fR
1415 .ad
1416 .RS 30n
1417 From \fBvi\fR command mode, delete the characters from the cursor up to the
1418 column that is specified by the repeat count, then enter insert mode.
1419 .RE

1421 .sp
1422 .ne 2
1423 .na
1424 \fBvi-change-to-parenthesis\fR
1425 .ad
1426 .RS 30n
1427 Delete the characters from the cursor up to and including the matching
1428 parenthesis, or next close parenthesis, then enter \fBvi\fR insert mode.
1429 .RE

1431 .sp
1432 .ne 2
1433 .na
1434 \fBvi-forward-change-find\fR
1435 .ad
1436 .RS 30n
1437 From \fBvi\fR command mode, delete the characters from the cursor up to and
1438 including the following occurence of the next character typed, then enter
1439 insert mode.
1440 .RE

1442 .sp
1443 .ne 2
1444 .na

new/usr/src/man/man5/tecla.5 23

1445 \fBvi-backward-change-find\fR
1446 .ad
1447 .RS 30n
1448 From vi command mode, delete the characters from the cursor up to and including
1449 the preceding occurence of the next character typed, then enter insert mode.
1450 .RE

1452 .sp
1453 .ne 2
1454 .na
1455 \fBvi-forward-change-to\fR
1456 .ad
1457 .RS 30n
1458 From \fBvi\fR command mode, delete the characters from the cursor up to, but
1459 not including, the following occurence of the next character typed, then enter
1460 insert mode.
1461 .RE

1463 .sp
1464 .ne 2
1465 .na
1466 \fBvi-backward-change-to\fR
1467 .ad
1468 .RS 30n
1469 From \fBvi\fR command mode, delete the characters from the cursor up to, but
1470 not including, the preceding occurence of the next character typed, then enter
1471 insert mode.
1472 .RE

1474 .sp
1475 .ne 2
1476 .na
1477 \fBvi-change-refind\fR
1478 .ad
1479 .RS 30n
1480 Repeat the last vi-*-change-find or vi-*-change-to action.
1481 .RE

1483 .sp
1484 .ne 2
1485 .na
1486 \fBvi-change-invert-refind\fR
1487 .ad
1488 .RS 30n
1489 Repeat the last vi-*-change-find or vi-*-change-to action, in the opposite
1490 direction.
1491 .RE

1493 .sp
1494 .ne 2
1495 .na
1496 \fBvi-undo\fR
1497 .ad
1498 .RS 30n
1499 In \fBvi\fR mode, undo the last editing operation.
1500 .RE

1502 .sp
1503 .ne 2
1504 .na
1505 \fBvi-repeat-change\fR
1506 .ad
1507 .RS 30n
1508 In \fBvi\fR command mode, repeat the last command that modified the line.
1509 .RE

new/usr/src/man/man5/tecla.5 24

1511 .SS "Default Key Bindings In \fBemacs\fR Mode"
1512 .sp
1513 .LP
1514 The following default key bindings, which can be overriden by the tecla
1515 configuration file, are designed to mimic most of the bindings of the unix
1516 \fBtcsh shell\fR shell, when it is in \fBemacs\fR editing mode.
1517 .sp
1518 .LP
1519 This is the default editing mode of the tecla library.
1520 .sp
1521 .LP
1522 Under UNIX the terminal driver sets a number of special keys for certain
1523 functions. The tecla library attempts to use the same key bindings to maintain
1524 consistency. The key sequences shown for the following 6 bindings are thus just
1525 examples of what they will probably be set to. If you have used the stty
1526 command to change these keys, then the default bindings should match.
1527 .sp
1528 .ne 2
1529 .na
1530 \fB\fB^C\fR\fR
1531 .ad
1532 .RS 6n
1533 user-interrupt
1534 .RE

1536 .sp
1537 .ne 2
1538 .na
1539 \fB\fB^\\fR\fR
1540 .ad
1541 .RS 6n
1542 abort
1543 .RE

1545 .sp
1546 .ne 2
1547 .na
1548 \fB\fB^Z\fR\fR
1549 .ad
1550 .RS 6n
1551 suspend
1552 .RE

1554 .sp
1555 .ne 2
1556 .na
1557 \fB\fB^Q\fR\fR
1558 .ad
1559 .RS 6n
1560 start-output
1561 .RE

1563 .sp
1564 .ne 2
1565 .na
1566 \fB\fB^S\fR\fR
1567 .ad
1568 .RS 6n
1569 stop-output
1570 .RE

1572 .sp
1573 .ne 2
1574 .na
1575 \fB\fB^V\fR\fR
1576 .ad

new/usr/src/man/man5/tecla.5 25

1577 .RS 6n
1578 literal-next
1579 .RE

1581 .sp
1582 .LP
1583 The cursor keys are refered to by name, as follows. This is necessary because
1584 different types of terminals generate different key sequences when their cursor
1585 keys are pressed.
1586 .sp
1587 .ne 2
1588 .na
1589 \fBright\fR
1590 .ad
1591 .RS 9n
1592 cursor-right
1593 .RE

1595 .sp
1596 .ne 2
1597 .na
1598 \fBleft\fR
1599 .ad
1600 .RS 9n
1601 cursor-left
1602 .RE

1604 .sp
1605 .ne 2
1606 .na
1607 \fBup\fR
1608 .ad
1609 .RS 9n
1610 up-history
1611 .RE

1613 .sp
1614 .ne 2
1615 .na
1616 \fBdown\fR
1617 .ad
1618 .RS 9n
1619 down-history
1620 .RE

1622 .sp
1623 .LP
1624 The remaining bindings don’t depend on the terminal setttings.
1625 .sp
1626 .ne 2
1627 .na
1628 \fB\fB^F\fR\fR
1629 .ad
1630 .RS 21n
1631 cursor-right
1632 .RE

1634 .sp
1635 .ne 2
1636 .na
1637 \fB\fB^B\fR\fR
1638 .ad
1639 .RS 21n
1640 cursor-left
1641 .RE

new/usr/src/man/man5/tecla.5 26

1643 .sp
1644 .ne 2
1645 .na
1646 \fB\fBM-i\fR\fR
1647 .ad
1648 .RS 21n
1649 insert-mode
1650 .RE

1652 .sp
1653 .ne 2
1654 .na
1655 \fB\fB^A\fR\fR
1656 .ad
1657 .RS 21n
1658 beginning-of-line
1659 .RE

1661 .sp
1662 .ne 2
1663 .na
1664 \fB\fB^E\fR\fR
1665 .ad
1666 .RS 21n
1667 end-of-line
1668 .RE

1670 .sp
1671 .ne 2
1672 .na
1673 \fB\fB^U\fR\fR
1674 .ad
1675 .RS 21n
1676 delete-line
1677 .RE

1679 .sp
1680 .ne 2
1681 .na
1682 \fB\fB^K\fR\fR
1683 .ad
1684 .RS 21n
1685 kill-line
1686 .RE

1688 .sp
1689 .ne 2
1690 .na
1691 \fB\fBM-f\fR\fR
1692 .ad
1693 .RS 21n
1694 forward-word
1695 .RE

1697 .sp
1698 .ne 2
1699 .na
1700 \fB\fBM-b\fR\fR
1701 .ad
1702 .RS 21n
1703 backward-word
1704 .RE

1706 .sp
1707 .ne 2
1708 .na

new/usr/src/man/man5/tecla.5 27

1709 \fB\fB^D\fR\fR
1710 .ad
1711 .RS 21n
1712 del-char-or-list-or-eof
1713 .RE

1715 .sp
1716 .ne 2
1717 .na
1718 \fB\fB^H\fR\fR
1719 .ad
1720 .RS 21n
1721 backward-delete-char
1722 .RE

1724 .sp
1725 .ne 2
1726 .na
1727 \fB\fB^?\fR\fR
1728 .ad
1729 .RS 21n
1730 backward-delete-char
1731 .RE

1733 .sp
1734 .ne 2
1735 .na
1736 \fB\fBM-d\fR\fR
1737 .ad
1738 .RS 21n
1739 forward-delete-word
1740 .RE

1742 .sp
1743 .ne 2
1744 .na
1745 \fB\fBM-^H\fR\fR
1746 .ad
1747 .RS 21n
1748 backward-delete-word
1749 .RE

1751 .sp
1752 .ne 2
1753 .na
1754 \fB\fBM-^?\fR\fR
1755 .ad
1756 .RS 21n
1757 backward-delete-word
1758 .RE

1760 .sp
1761 .ne 2
1762 .na
1763 \fB\fBM-u\fR\fR
1764 .ad
1765 .RS 21n
1766 upcase-word
1767 .RE

1769 .sp
1770 .ne 2
1771 .na
1772 \fB\fBM-l\fR\fR
1773 .ad
1774 .RS 21n

new/usr/src/man/man5/tecla.5 28

1775 downcase-word
1776 .RE

1778 .sp
1779 .ne 2
1780 .na
1781 \fB\fBM-c\fR\fR
1782 .ad
1783 .RS 21n
1784 capitalize-word
1785 .RE

1787 .sp
1788 .ne 2
1789 .na
1790 \fB\fB^R\fR\fR
1791 .ad
1792 .RS 21n
1793 redisplay
1794 .RE

1796 .sp
1797 .ne 2
1798 .na
1799 \fB\fB^L\fR\fR
1800 .ad
1801 .RS 21n
1802 clear-screen
1803 .RE

1805 .sp
1806 .ne 2
1807 .na
1808 \fB\fB^T\fR\fR
1809 .ad
1810 .RS 21n
1811 transpose-chars
1812 .RE

1814 .sp
1815 .ne 2
1816 .na
1817 \fB\fB^@\fR\fR
1818 .ad
1819 .RS 21n
1820 set-mark
1821 .RE

1823 .sp
1824 .ne 2
1825 .na
1826 \fB\fB^X^X\fR\fR
1827 .ad
1828 .RS 21n
1829 exchange-point-and-mark
1830 .RE

1832 .sp
1833 .ne 2
1834 .na
1835 \fB\fB^W\fR\fR
1836 .ad
1837 .RS 21n
1838 kill-region
1839 .RE

new/usr/src/man/man5/tecla.5 29

1841 .sp
1842 .ne 2
1843 .na
1844 \fB\fBM-w\fR\fR
1845 .ad
1846 .RS 21n
1847 copy-region-as-kill
1848 .RE

1850 .sp
1851 .ne 2
1852 .na
1853 \fB\fB^Y\fR\fR
1854 .ad
1855 .RS 21n
1856 yank
1857 .RE

1859 .sp
1860 .ne 2
1861 .na
1862 \fB\fB^P\fR\fR
1863 .ad
1864 .RS 21n
1865 up-history
1866 .RE

1868 .sp
1869 .ne 2
1870 .na
1871 \fB\fB^N\fR\fR
1872 .ad
1873 .RS 21n
1874 down-history
1875 .RE

1877 .sp
1878 .ne 2
1879 .na
1880 \fB\fBM-p\fR\fR
1881 .ad
1882 .RS 21n
1883 history-search-backward
1884 .RE

1886 .sp
1887 .ne 2
1888 .na
1889 \fB\fBM-n\fR\fR
1890 .ad
1891 .RS 21n
1892 history-search-forward
1893 .RE

1895 .sp
1896 .ne 2
1897 .na
1898 \fB\fB^I\fR\fR
1899 .ad
1900 .RS 21n
1901 complete-word
1902 .RE

1904 .sp
1905 .ne 2
1906 .na

new/usr/src/man/man5/tecla.5 30

1907 \fB\fB^X*\fR\fR
1908 .ad
1909 .RS 21n
1910 expand-filename
1911 .RE

1913 .sp
1914 .ne 2
1915 .na
1916 \fB\fB^X^F\fR\fR
1917 .ad
1918 .RS 21n
1919 read-from-file
1920 .RE

1922 .sp
1923 .ne 2
1924 .na
1925 \fB\fB^X^R\fR\fR
1926 .ad
1927 .RS 21n
1928 read-init-files
1929 .RE

1931 .sp
1932 .ne 2
1933 .na
1934 \fB\fB^Xg\fR\fR
1935 .ad
1936 .RS 21n
1937 list-glob
1938 .RE

1940 .sp
1941 .ne 2
1942 .na
1943 \fB\fB^Xh\fR\fR
1944 .ad
1945 .RS 21n
1946 list-history
1947 .RE

1949 .sp
1950 .ne 2
1951 .na
1952 \fB\fBM-<\fR\fR
1953 .ad
1954 .RS 21n
1955 beginning-of-history
1956 .RE

1958 .sp
1959 .ne 2
1960 .na
1961 \fB\fBM->\fR\fR
1962 .ad
1963 .RS 21n
1964 end-of-history
1965 .RE

1967 .sp
1968 .ne 2
1969 .na
1970 \fB\fB\en\fR\fR
1970 \fB\fB\n\fR\fR
1971 .ad

new/usr/src/man/man5/tecla.5 31

1972 .RS 21n
1973 newline
1974 .RE

1976 .sp
1977 .ne 2
1978 .na
1979 \fB\fB\er\fR\fR
1979 \fB\fB\r\fR\fR
1980 .ad
1981 .RS 21n
1982 newline
1983 .RE

1985 .sp
1986 .ne 2
1987 .na
1988 \fB\fBM-o\fR\fR
1989 .ad
1990 .RS 21n
1991 repeat-history
1992 .RE

1994 .sp
1995 .ne 2
1996 .na
1997 \fB\fBM-^V\fR\fR
1998 .ad
1999 .RS 21n
2000 \fBvi\fR-mode
2001 .RE

2003 .sp
2004 .ne 2
2005 .na
2006 \fB\fBM-0, M-1, ... M-9\fR\fR
2007 .ad
2008 .RS 21n
2009 digit-argument (see below)
2010 .RE

2012 .sp
2013 .LP
2014 Note that \fB^I\fR is what the TAB key generates, and that \fB^@\fR can be
2015 generated not only by pressing the CONTROL key and the @ key simultaneously,
2016 but also by pressing the CONTROL key and the space bar at the same time.
2017 .SS "Default Key Bindings in \fBvi\fR Mode"
2018 .sp
2019 .LP
2020 The following default key bindings are designed to mimic the \fBvi\fR style of
2021 editing as closely as possible. This means that very few editing functions are
2022 provided in the initial character input mode, editing functions instead being
2023 provided by the \fBvi\fR command mode. The \fBvi\fR command mode is entered
2024 whenever the ESCAPE character is pressed, or whenever a key sequence that
2025 starts with a meta character is entered. In addition to mimicing \fBvi\fR,
2026 \fBlibtecla\fR provides bindings for tab completion, wild-card expansion of
2027 file names, and historical line recall.
2028 .sp
2029 .LP
2030 To learn how to tell the tecla library to use \fBvi\fR mode instead of the
2031 default \fBemacs\fR editing mode, see the earlier section entitled The Tecla
2032 Configuration File.
2033 .sp
2034 .LP
2035 Under UNIX the terminal driver sets a number of special keys for certain
2036 functions. The tecla library attempts to use the same key bindings to maintain

new/usr/src/man/man5/tecla.5 32

2037 consistency, binding them both in input mode and in command mode. The key
2038 sequences shown for the following 6 bindings are thus just examples of what
2039 they will probably be set to. If you have used the \fBstty\fR command to change
2040 these keys, then the default bindings should match.
2041 .sp
2042 .ne 2
2043 .na
2044 \fB\fB^C\fR\fR
2045 .ad
2046 .RS 8n
2047 user-interrupt
2048 .RE

2050 .sp
2051 .ne 2
2052 .na
2053 \fB\fB^\\fR\fR
2054 .ad
2055 .RS 8n
2056 abort
2057 .RE

2059 .sp
2060 .ne 2
2061 .na
2062 \fB\fB^Z\fR\fR
2063 .ad
2064 .RS 8n
2065 suspend
2066 .RE

2068 .sp
2069 .ne 2
2070 .na
2071 \fB\fB^Q\fR\fR
2072 .ad
2073 .RS 8n
2074 start-output
2075 .RE

2077 .sp
2078 .ne 2
2079 .na
2080 \fB\fB^S\fR\fR
2081 .ad
2082 .RS 8n
2083 stop-output
2084 .RE

2086 .sp
2087 .ne 2
2088 .na
2089 \fB\fB^V\fR\fR
2090 .ad
2091 .RS 8n
2092 literal-next
2093 .RE

2095 .sp
2096 .ne 2
2097 .na
2098 \fB\fBM-^C\fR\fR
2099 .ad
2100 .RS 8n
2101 user-interrupt
2102 .RE

new/usr/src/man/man5/tecla.5 33

2104 .sp
2105 .ne 2
2106 .na
2107 \fB\fBM-^\\fR\fR
2108 .ad
2109 .RS 8n
2110 abort
2111 .RE

2113 .sp
2114 .ne 2
2115 .na
2116 \fB\fBM-^Z\fR\fR
2117 .ad
2118 .RS 8n
2119 suspend
2120 .RE

2122 .sp
2123 .ne 2
2124 .na
2125 \fB\fBM-^Q\fR\fR
2126 .ad
2127 .RS 8n
2128 start-output
2129 .RE

2131 .sp
2132 .ne 2
2133 .na
2134 \fB\fBM-^S\fR\fR
2135 .ad
2136 .RS 8n
2137 stop-output
2138 .RE

2140 .sp
2141 .LP
2142 Note that above, most of the bindings are defined twice, once as a raw control
2143 code like \fB^C\fR and then a second time as a META character like \fBM-^C\fR.
2144 The former is the binding for \fBvi\fR input mode, whereas the latter is the
2145 binding for \fBvi\fR command mode. Once in command mode all key sequences that
2146 the user types that they don’t explicitly start with an ESCAPE or a META key,
2147 have their first key secretly converted to a META character before the key
2148 sequence is looked up in the key binding table. Thus, once in command mode,
2149 when you type the letter i, for example, the tecla library actually looks up
2150 the binding for \fBM-i\fR.
2151 .sp
2152 .LP
2153 The cursor keys are refered to by name, as follows. This is necessary because
2154 different types of terminals generate different key sequences when their cursor
2155 keys are pressed.
2156 .sp
2157 .ne 2
2158 .na
2159 \fB\fBright\fR\fR
2160 .ad
2161 .RS 9n
2162 cursor-right
2163 .RE

2165 .sp
2166 .ne 2
2167 .na
2168 \fB\fBleft\fR\fR

new/usr/src/man/man5/tecla.5 34

2169 .ad
2170 .RS 9n
2171 cursor-left
2172 .RE

2174 .sp
2175 .ne 2
2176 .na
2177 \fB\fBup\fR\fR
2178 .ad
2179 .RS 9n
2180 up-history
2181 .RE

2183 .sp
2184 .ne 2
2185 .na
2186 \fB\fBdown\fR\fR
2187 .ad
2188 .RS 9n
2189 down-history
2190 .RE

2192 .sp
2193 .LP
2194 The cursor keys normally generate a key sequence that start with an ESCAPE
2195 character, so beware that using the arrow keys will put you into command mode
2196 (if you aren’t already in command mode).
2197 .sp
2198 .LP
2199 The following are the terminal-independent key bindings for \fBvi\fR input
2200 mode.
2201 .sp
2202 .ne 2
2203 .na
2204 \fB\fB^D\fR\fR
2205 .ad
2206 .RS 8n
2207 list-or-eof
2208 .RE

2210 .sp
2211 .ne 2
2212 .na
2213 \fB\fB^G\fR\fR
2214 .ad
2215 .RS 8n
2216 list-glob
2217 .RE

2219 .sp
2220 .ne 2
2221 .na
2222 \fB\fB^H\fR\fR
2223 .ad
2224 .RS 8n
2225 backward-delete-char
2226 .RE

2228 .sp
2229 .ne 2
2230 .na
2231 \fB\fB^I\fR\fR
2232 .ad
2233 .RS 8n
2234 complete-word

new/usr/src/man/man5/tecla.5 35

2235 .RE

2237 .sp
2238 .ne 2
2239 .na
2240 \fB\fB\er\fR\fR
2240 \fB\fB\r\fR\fR
2241 .ad
2242 .RS 8n
2243 newline
2244 .RE

2246 .sp
2247 .ne 2
2248 .na
2249 \fB\fB\en\fR\fR
2249 \fB\fB\n\fR\fR
2250 .ad
2251 .RS 8n
2252 newline
2253 .RE

2255 .sp
2256 .ne 2
2257 .na
2258 \fB\fB^L\fR\fR
2259 .ad
2260 .RS 8n
2261 clear-screen
2262 .RE

2264 .sp
2265 .ne 2
2266 .na
2267 \fB\fB^N\fR\fR
2268 .ad
2269 .RS 8n
2270 down-history
2271 .RE

2273 .sp
2274 .ne 2
2275 .na
2276 \fB\fB^P\fR\fR
2277 .ad
2278 .RS 8n
2279 up-history
2280 .RE

2282 .sp
2283 .ne 2
2284 .na
2285 \fB\fB^R\fR\fR
2286 .ad
2287 .RS 8n
2288 redisplay
2289 .RE

2291 .sp
2292 .ne 2
2293 .na
2294 \fB\fB^U\fR\fR
2295 .ad
2296 .RS 8n
2297 backward-kill-line
2298 .RE

new/usr/src/man/man5/tecla.5 36

2300 .sp
2301 .ne 2
2302 .na
2303 \fB\fB^W\fR\fR
2304 .ad
2305 .RS 8n
2306 backward-delete-word
2307 .RE

2309 .sp
2310 .ne 2
2311 .na
2312 \fB\fB^X*\fR\fR
2313 .ad
2314 .RS 8n
2315 expand-filename
2316 .RE

2318 .sp
2319 .ne 2
2320 .na
2321 \fB\fB^X^F\fR\fR
2322 .ad
2323 .RS 8n
2324 read-from-file
2325 .RE

2327 .sp
2328 .ne 2
2329 .na
2330 \fB\fB^X^R\fR\fR
2331 .ad
2332 .RS 8n
2333 read-init-files
2334 .RE

2336 .sp
2337 .ne 2
2338 .na
2339 \fB\fB^?\fR\fR
2340 .ad
2341 .RS 8n
2342 backward-delete-char
2343 .RE

2345 .sp
2346 .LP
2347 The following are the key bindings that are defined in \fBvi\fR command mode,
2348 this being specified by them all starting with a META character. As mentioned
2349 above, once in command mode the initial meta character is optional. For
2350 example, you might enter command mode by typing ESCAPE, and then press ’H’
2351 twice to move the cursor two positions to the left. Both ’H’ characters get
2352 quietly converted to \fBM-h\fR before being compared to the key binding table,
2353 the first one because ESCAPE followed by a character is always converted to the
2354 equivalent META character, and the second because command mode was already
2355 active.
2356 .sp
2357 .ne 2
2358 .na
2359 \fB\fBM-\\fR\fR
2360 .ad
2361 .RS 21n
2362 cursor-right (META-space)
2363 .RE

new/usr/src/man/man5/tecla.5 37

2365 .sp
2366 .ne 2
2367 .na
2368 \fB\fBM-$\fR\fR
2369 .ad
2370 .RS 21n
2371 end-of-line
2372 .RE

2374 .sp
2375 .ne 2
2376 .na
2377 \fB\fBM-*\fR\fR
2378 .ad
2379 .RS 21n
2380 expand-filename
2381 .RE

2383 .sp
2384 .ne 2
2385 .na
2386 \fB\fBM-+\fR\fR
2387 .ad
2388 .RS 21n
2389 down-history
2390 .RE

2392 .sp
2393 .ne 2
2394 .na
2395 \fB\fBM--\fR\fR
2396 .ad
2397 .RS 21n
2398 up-history
2399 .RE

2401 .sp
2402 .ne 2
2403 .na
2404 \fB\fBM-<\fR\fR
2405 .ad
2406 .RS 21n
2407 beginning-of-history
2408 .RE

2410 .sp
2411 .ne 2
2412 .na
2413 \fB\fBM->\fR\fR
2414 .ad
2415 .RS 21n
2416 end-of-history
2417 .RE

2419 .sp
2420 .ne 2
2421 .na
2422 \fB\fBM-^\fR\fR
2423 .ad
2424 .RS 21n
2425 beginning-of-line
2426 .RE

2428 .sp
2429 .ne 2
2430 .na

new/usr/src/man/man5/tecla.5 38

2431 \fB\fBM-\fR\fR
2432 .ad
2433 .RS 21n
2434 repeat-find-char
2435 .RE

2437 .sp
2438 .ne 2
2439 .na
2440 \fB\fBM-,\fR\fR
2441 .ad
2442 .RS 21n
2443 invert-refind-char
2444 .RE

2446 .sp
2447 .ne 2
2448 .na
2449 \fB\fBM-|\fR\fR
2450 .ad
2451 .RS 21n
2452 goto-column
2453 .RE

2455 .sp
2456 .ne 2
2457 .na
2458 \fB\fBM-~\fR\fR
2459 .ad
2460 .RS 21n
2461 change-case
2462 .RE

2464 .sp
2465 .ne 2
2466 .na
2467 \fB\fBM-.\fR\fR
2468 .ad
2469 .RS 21n
2470 vi-repeat-change
2471 .RE

2473 .sp
2474 .ne 2
2475 .na
2476 \fB\fBM-%\fR\fR
2477 .ad
2478 .RS 21n
2479 find-parenthesis
2480 .RE

2482 .sp
2483 .ne 2
2484 .na
2485 \fB\fBM-a\fR\fR
2486 .ad
2487 .RS 21n
2488 vi-append
2489 .RE

2491 .sp
2492 .ne 2
2493 .na
2494 \fB\fBM-A\fR\fR
2495 .ad
2496 .RS 21n

new/usr/src/man/man5/tecla.5 39

2497 vi-append-at-eol
2498 .RE

2500 .sp
2501 .ne 2
2502 .na
2503 \fB\fBM-b\fR\fR
2504 .ad
2505 .RS 21n
2506 backward-word
2507 .RE

2509 .sp
2510 .ne 2
2511 .na
2512 \fB\fBM-B\fR\fR
2513 .ad
2514 .RS 21n
2515 backward-word
2516 .RE

2518 .sp
2519 .ne 2
2520 .na
2521 \fB\fBM-C\fR\fR
2522 .ad
2523 .RS 21n
2524 vi-change-rest-of-line
2525 .RE

2527 .sp
2528 .ne 2
2529 .na
2530 \fB\fBM-cb\fR\fR
2531 .ad
2532 .RS 21n
2533 vi-backward-change-word
2534 .RE

2536 .sp
2537 .ne 2
2538 .na
2539 \fB\fBM-cB\fR\fR
2540 .ad
2541 .RS 21n
2542 vi-backward-change-word
2543 .RE

2545 .sp
2546 .ne 2
2547 .na
2548 \fB\fBM-cc\fR\fR
2549 .ad
2550 .RS 21n
2551 vi-change-line
2552 .RE

2554 .sp
2555 .ne 2
2556 .na
2557 \fB\fBM-ce\fR\fR
2558 .ad
2559 .RS 21n
2560 vi-forward-change-word
2561 .RE

new/usr/src/man/man5/tecla.5 40

2563 .sp
2564 .ne 2
2565 .na
2566 \fB\fBM-cE\fR\fR
2567 .ad
2568 .RS 21n
2569 vi-forward-change-word
2570 .RE

2572 .sp
2573 .ne 2
2574 .na
2575 \fB\fBM-cw\fR\fR
2576 .ad
2577 .RS 21n
2578 vi-forward-change-word
2579 .RE

2581 .sp
2582 .ne 2
2583 .na
2584 \fB\fBM-cW\fR\fR
2585 .ad
2586 .RS 21n
2587 vi-forward-change-word
2588 .RE

2590 .sp
2591 .ne 2
2592 .na
2593 \fB\fBM-cF\fR\fR
2594 .ad
2595 .RS 21n
2596 vi-backward-change-find
2597 .RE

2599 .sp
2600 .ne 2
2601 .na
2602 \fB\fBM-cf\fR\fR
2603 .ad
2604 .RS 21n
2605 vi-forward-change-find
2606 .RE

2608 .sp
2609 .ne 2
2610 .na
2611 \fB\fBM-cT\fR\fR
2612 .ad
2613 .RS 21n
2614 vi-backward-change-to
2615 .RE

2617 .sp
2618 .ne 2
2619 .na
2620 \fB\fBM-ct\fR\fR
2621 .ad
2622 .RS 21n
2623 vi-forward-change-to
2624 .RE

2626 .sp
2627 .ne 2
2628 .na

new/usr/src/man/man5/tecla.5 41

2629 \fB\fBM-c;\fR\fR
2630 .ad
2631 .RS 21n
2632 vi-change-refind
2633 .RE

2635 .sp
2636 .ne 2
2637 .na
2638 \fB\fBM-c,\fR\fR
2639 .ad
2640 .RS 21n
2641 vi-change-invert-refind
2642 .RE

2644 .sp
2645 .ne 2
2646 .na
2647 \fB\fBM-ch\fR\fR
2648 .ad
2649 .RS 21n
2650 vi-backward-change-char
2651 .RE

2653 .sp
2654 .ne 2
2655 .na
2656 \fB\fBM-c^H\fR\fR
2657 .ad
2658 .RS 21n
2659 vi-backward-change-char
2660 .RE

2662 .sp
2663 .ne 2
2664 .na
2665 \fB\fBM-c^?\fR\fR
2666 .ad
2667 .RS 21n
2668 vi-backward-change-char
2669 .RE

2671 .sp
2672 .ne 2
2673 .na
2674 \fB\fBM-cl\fR\fR
2675 .ad
2676 .RS 21n
2677 vi-forward-change-char
2678 .RE

2680 .sp
2681 .ne 2
2682 .na
2683 \fB\fBM-c\\fR\fR
2684 .ad
2685 .RS 21n
2686 vi-forward-change-char (META-c-space)
2687 .RE

2689 .sp
2690 .ne 2
2691 .na
2692 \fB\fBM-c^\fR\fR
2693 .ad
2694 .RS 21n

new/usr/src/man/man5/tecla.5 42

2695 vi-change-to-bol
2696 .RE

2698 .sp
2699 .ne 2
2700 .na
2701 \fB\fBM-c0\fR\fR
2702 .ad
2703 .RS 21n
2704 vi-change-to-bol
2705 .RE

2707 .sp
2708 .ne 2
2709 .na
2710 \fB\fBM-c$\fR\fR
2711 .ad
2712 .RS 21n
2713 vi-change-rest-of-line
2714 .RE

2716 .sp
2717 .ne 2
2718 .na
2719 \fB\fBM-c|\fR\fR
2720 .ad
2721 .RS 21n
2722 vi-change-to-column
2723 .RE

2725 .sp
2726 .ne 2
2727 .na
2728 \fB\fBM-c%\fR\fR
2729 .ad
2730 .RS 21n
2731 vi-change-to-parenthesis
2732 .RE

2734 .sp
2735 .ne 2
2736 .na
2737 \fB\fBM-dh\fR\fR
2738 .ad
2739 .RS 21n
2740 backward-delete-char
2741 .RE

2743 .sp
2744 .ne 2
2745 .na
2746 \fB\fBM-d^H\fR\fR
2747 .ad
2748 .RS 21n
2749 backward-delete-char
2750 .RE

2752 .sp
2753 .ne 2
2754 .na
2755 \fB\fBM-d^?\fR\fR
2756 .ad
2757 .RS 21n
2758 backward-delete-char
2759 .RE

new/usr/src/man/man5/tecla.5 43

2761 .sp
2762 .ne 2
2763 .na
2764 \fB\fBM-dl\fR\fR
2765 .ad
2766 .RS 21n
2767 forward-delete-char
2768 .RE

2770 .sp
2771 .ne 2
2772 .na
2773 \fB\fBM-d\fR\fR
2774 .ad
2775 .RS 21n
2776 forward-delete-char (META-d-space)
2777 .RE

2779 .sp
2780 .ne 2
2781 .na
2782 \fB\fBM-dd\fR\fR
2783 .ad
2784 .RS 21n
2785 delete-line
2786 .RE

2788 .sp
2789 .ne 2
2790 .na
2791 \fB\fBM-db\fR\fR
2792 .ad
2793 .RS 21n
2794 backward-delete-word
2795 .RE

2797 .sp
2798 .ne 2
2799 .na
2800 \fB\fBM-dB\fR\fR
2801 .ad
2802 .RS 21n
2803 backward-delete-word
2804 .RE

2806 .sp
2807 .ne 2
2808 .na
2809 \fB\fBM-de\fR\fR
2810 .ad
2811 .RS 21n
2812 forward-delete-word
2813 .RE

2815 .sp
2816 .ne 2
2817 .na
2818 \fB\fBM-dE\fR\fR
2819 .ad
2820 .RS 21n
2821 forward-delete-word
2822 .RE

2824 .sp
2825 .ne 2
2826 .na

new/usr/src/man/man5/tecla.5 44

2827 \fB\fBM-dw\fR\fR
2828 .ad
2829 .RS 21n
2830 forward-delete-word
2831 .RE

2833 .sp
2834 .ne 2
2835 .na
2836 \fB\fBM-dW\fR\fR
2837 .ad
2838 .RS 21n
2839 forward-delete-word
2840 .RE

2842 .sp
2843 .ne 2
2844 .na
2845 \fB\fBM-dF\fR\fR
2846 .ad
2847 .RS 21n
2848 backward-delete-find
2849 .RE

2851 .sp
2852 .ne 2
2853 .na
2854 \fB\fBM-df\fR\fR
2855 .ad
2856 .RS 21n
2857 forward-delete-find
2858 .RE

2860 .sp
2861 .ne 2
2862 .na
2863 \fB\fBM-dT\fR\fR
2864 .ad
2865 .RS 21n
2866 backward-delete-to
2867 .RE

2869 .sp
2870 .ne 2
2871 .na
2872 \fB\fBM-dt\fR\fR
2873 .ad
2874 .RS 21n
2875 forward-delete-to
2876 .RE

2878 .sp
2879 .ne 2
2880 .na
2881 \fB\fBM-d;\fR\fR
2882 .ad
2883 .RS 21n
2884 delete-refind
2885 .RE

2887 .sp
2888 .ne 2
2889 .na
2890 \fB\fBM-d,\fR\fR
2891 .ad
2892 .RS 21n

new/usr/src/man/man5/tecla.5 45

2893 delete-invert-refind
2894 .RE

2896 .sp
2897 .ne 2
2898 .na
2899 \fB\fBM-d^\fR\fR
2900 .ad
2901 .RS 21n
2902 backward-kill-line
2903 .RE

2905 .sp
2906 .ne 2
2907 .na
2908 \fB\fBM-d0\fR\fR
2909 .ad
2910 .RS 21n
2911 backward-kill-line
2912 .RE

2914 .sp
2915 .ne 2
2916 .na
2917 \fB\fBM-d$\fR\fR
2918 .ad
2919 .RS 21n
2920 kill-line
2921 .RE

2923 .sp
2924 .ne 2
2925 .na
2926 \fB\fBM-D\fR\fR
2927 .ad
2928 .RS 21n
2929 kill-line
2930 .RE

2932 .sp
2933 .ne 2
2934 .na
2935 \fB\fBM-d|\fR\fR
2936 .ad
2937 .RS 21n
2938 delete-to-column
2939 .RE

2941 .sp
2942 .ne 2
2943 .na
2944 \fB\fBM-d%\fR\fR
2945 .ad
2946 .RS 21n
2947 delete-to-parenthesis
2948 .RE

2950 .sp
2951 .ne 2
2952 .na
2953 \fB\fBM-e\fR\fR
2954 .ad
2955 .RS 21n
2956 forward-word
2957 .RE

new/usr/src/man/man5/tecla.5 46

2959 .sp
2960 .ne 2
2961 .na
2962 \fB\fBM-E\fR\fR
2963 .ad
2964 .RS 21n
2965 forward-word
2966 .RE

2968 .sp
2969 .ne 2
2970 .na
2971 \fB\fBM-f\fR\fR
2972 .ad
2973 .RS 21n
2974 forward-find-char
2975 .RE

2977 .sp
2978 .ne 2
2979 .na
2980 \fB\fBM-F\fR\fR
2981 .ad
2982 .RS 21n
2983 backward-find-char
2984 .RE

2986 .sp
2987 .ne 2
2988 .na
2989 \fB\fBM--\fR\fR
2990 .ad
2991 .RS 21n
2992 up-history
2993 .RE

2995 .sp
2996 .ne 2
2997 .na
2998 \fB\fBM-h\fR\fR
2999 .ad
3000 .RS 21n
3001 cursor-left
3002 .RE

3004 .sp
3005 .ne 2
3006 .na
3007 \fB\fBM-H\fR\fR
3008 .ad
3009 .RS 21n
3010 beginning-of-history
3011 .RE

3013 .sp
3014 .ne 2
3015 .na
3016 \fB\fBM-i\fR\fR
3017 .ad
3018 .RS 21n
3019 vi-insert
3020 .RE

3022 .sp
3023 .ne 2
3024 .na

new/usr/src/man/man5/tecla.5 47

3025 \fB\fBM-I\fR\fR
3026 .ad
3027 .RS 21n
3028 vi-insert-at-bol
3029 .RE

3031 .sp
3032 .ne 2
3033 .na
3034 \fB\fBM-j\fR\fR
3035 .ad
3036 .RS 21n
3037 down-history
3038 .RE

3040 .sp
3041 .ne 2
3042 .na
3043 \fB\fBM-J\fR\fR
3044 .ad
3045 .RS 21n
3046 history-search-forward
3047 .RE

3049 .sp
3050 .ne 2
3051 .na
3052 \fB\fBM-k\fR\fR
3053 .ad
3054 .RS 21n
3055 up-history
3056 .RE

3058 .sp
3059 .ne 2
3060 .na
3061 \fB\fBM-K\fR\fR
3062 .ad
3063 .RS 21n
3064 history-search-backward
3065 .RE

3067 .sp
3068 .ne 2
3069 .na
3070 \fB\fBM-l\fR\fR
3071 .ad
3072 .RS 21n
3073 cursor-right
3074 .RE

3076 .sp
3077 .ne 2
3078 .na
3079 \fB\fBM-L\fR\fR
3080 .ad
3081 .RS 21n
3082 end-of-history
3083 .RE

3085 .sp
3086 .ne 2
3087 .na
3088 \fB\fBM-n\fR\fR
3089 .ad
3090 .RS 21n

new/usr/src/man/man5/tecla.5 48

3091 history-re-search-forward
3092 .RE

3094 .sp
3095 .ne 2
3096 .na
3097 \fB\fBM-N\fR\fR
3098 .ad
3099 .RS 21n
3100 history-re-search-backward
3101 .RE

3103 .sp
3104 .ne 2
3105 .na
3106 \fB\fBM-p\fR\fR
3107 .ad
3108 .RS 21n
3109 append-yank
3110 .RE

3112 .sp
3113 .ne 2
3114 .na
3115 \fB\fBM-P\fR\fR
3116 .ad
3117 .RS 21n
3118 yank
3119 .RE

3121 .sp
3122 .ne 2
3123 .na
3124 \fB\fBM-r\fR\fR
3125 .ad
3126 .RS 21n
3127 vi-replace-char
3128 .RE

3130 .sp
3131 .ne 2
3132 .na
3133 \fB\fBM-R\fR\fR
3134 .ad
3135 .RS 21n
3136 vi-overwrite
3137 .RE

3139 .sp
3140 .ne 2
3141 .na
3142 \fB\fBM-s\fR\fR
3143 .ad
3144 .RS 21n
3145 vi-forward-change-char
3146 .RE

3148 .sp
3149 .ne 2
3150 .na
3151 \fB\fBM-S\fR\fR
3152 .ad
3153 .RS 21n
3154 vi-change-line
3155 .RE

new/usr/src/man/man5/tecla.5 49

3157 .sp
3158 .ne 2
3159 .na
3160 \fB\fBM-t\fR\fR
3161 .ad
3162 .RS 21n
3163 forward-to-char
3164 .RE

3166 .sp
3167 .ne 2
3168 .na
3169 \fB\fBM-T\fR\fR
3170 .ad
3171 .RS 21n
3172 backward-to-char
3173 .RE

3175 .sp
3176 .ne 2
3177 .na
3178 \fB\fBM-u\fR\fR
3179 .ad
3180 .RS 21n
3181 vi-undo
3182 .RE

3184 .sp
3185 .ne 2
3186 .na
3187 \fB\fBM-w\fR\fR
3188 .ad
3189 .RS 21n
3190 forward-to-word
3191 .RE

3193 .sp
3194 .ne 2
3195 .na
3196 \fB\fBM-W\fR\fR
3197 .ad
3198 .RS 21n
3199 forward-to-word
3200 .RE

3202 .sp
3203 .ne 2
3204 .na
3205 \fB\fBM-x\fR\fR
3206 .ad
3207 .RS 21n
3208 forward-delete-char
3209 .RE

3211 .sp
3212 .ne 2
3213 .na
3214 \fB\fBM-X\fR\fR
3215 .ad
3216 .RS 21n
3217 backward-delete-char
3218 .RE

3220 .sp
3221 .ne 2
3222 .na

new/usr/src/man/man5/tecla.5 50

3223 \fB\fBM-yh\fR\fR
3224 .ad
3225 .RS 21n
3226 backward-copy-char
3227 .RE

3229 .sp
3230 .ne 2
3231 .na
3232 \fB\fBM-y^H\fR\fR
3233 .ad
3234 .RS 21n
3235 backward-copy-char
3236 .RE

3238 .sp
3239 .ne 2
3240 .na
3241 \fB\fBM-y^?\fR\fR
3242 .ad
3243 .RS 21n
3244 backward-copy-char
3245 .RE

3247 .sp
3248 .ne 2
3249 .na
3250 \fB\fBM-yl\fR\fR
3251 .ad
3252 .RS 21n
3253 forward-copy-char
3254 .RE

3256 .sp
3257 .ne 2
3258 .na
3259 \fB\fBM-y\\fR\fR
3260 .ad
3261 .RS 21n
3262 forward-copy-char (META-y-space)
3263 .RE

3265 .sp
3266 .ne 2
3267 .na
3268 \fB\fBM-ye\fR\fR
3269 .ad
3270 .RS 21n
3271 forward-copy-word
3272 .RE

3274 .sp
3275 .ne 2
3276 .na
3277 \fB\fBM-yE\fR\fR
3278 .ad
3279 .RS 21n
3280 forward-copy-word
3281 .RE

3283 .sp
3284 .ne 2
3285 .na
3286 \fB\fBM-yw\fR\fR
3287 .ad
3288 .RS 21n

new/usr/src/man/man5/tecla.5 51

3289 forward-copy-word
3290 .RE

3292 .sp
3293 .ne 2
3294 .na
3295 \fB\fBM-yW\fR\fR
3296 .ad
3297 .RS 21n
3298 forward-copy-word
3299 .RE

3301 .sp
3302 .ne 2
3303 .na
3304 \fB\fBM-yb\fR\fR
3305 .ad
3306 .RS 21n
3307 backward-copy-word
3308 .RE

3310 .sp
3311 .ne 2
3312 .na
3313 \fB\fBM-yB\fR\fR
3314 .ad
3315 .RS 21n
3316 backward-copy-word
3317 .RE

3319 .sp
3320 .ne 2
3321 .na
3322 \fB\fBM-yf\fR\fR
3323 .ad
3324 .RS 21n
3325 forward-copy-find
3326 .RE

3328 .sp
3329 .ne 2
3330 .na
3331 \fB\fBM-yF\fR\fR
3332 .ad
3333 .RS 21n
3334 backward-copy-find
3335 .RE

3337 .sp
3338 .ne 2
3339 .na
3340 \fB\fBM-yt\fR\fR
3341 .ad
3342 .RS 21n
3343 forward-copy-to
3344 .RE

3346 .sp
3347 .ne 2
3348 .na
3349 \fB\fBM-yT\fR\fR
3350 .ad
3351 .RS 21n
3352 backward-copy-to
3353 .RE

new/usr/src/man/man5/tecla.5 52

3355 .sp
3356 .ne 2
3357 .na
3358 \fB\fBM-y;\fR\fR
3359 .ad
3360 .RS 21n
3361 copy-refind
3362 .RE

3364 .sp
3365 .ne 2
3366 .na
3367 \fB\fBM-y,\fR\fR
3368 .ad
3369 .RS 21n
3370 copy-invert-refind
3371 .RE

3373 .sp
3374 .ne 2
3375 .na
3376 \fB\fBM-y^\fR\fR
3377 .ad
3378 .RS 21n
3379 copy-to-bol
3380 .RE

3382 .sp
3383 .ne 2
3384 .na
3385 \fB\fBM-y0\fR\fR
3386 .ad
3387 .RS 21n
3388 copy-to-bol
3389 .RE

3391 .sp
3392 .ne 2
3393 .na
3394 \fB\fBM-y$\fR\fR
3395 .ad
3396 .RS 21n
3397 copy-rest-of-line
3398 .RE

3400 .sp
3401 .ne 2
3402 .na
3403 \fB\fBM-yy\fR\fR
3404 .ad
3405 .RS 21n
3406 copy-line
3407 .RE

3409 .sp
3410 .ne 2
3411 .na
3412 \fB\fBM-Y\fR\fR
3413 .ad
3414 .RS 21n
3415 copy-line
3416 .RE

3418 .sp
3419 .ne 2
3420 .na

new/usr/src/man/man5/tecla.5 53

3421 \fB\fBM-y|\fR\fR
3422 .ad
3423 .RS 21n
3424 copy-to-column
3425 .RE

3427 .sp
3428 .ne 2
3429 .na
3430 \fB\fBM-y%\fR\fR
3431 .ad
3432 .RS 21n
3433 copy-to-parenthesis
3434 .RE

3436 .sp
3437 .ne 2
3438 .na
3439 \fB\fBM-^E\fR\fR
3440 .ad
3441 .RS 21n
3442 emacs-mode
3443 .RE

3445 .sp
3446 .ne 2
3447 .na
3448 \fB\fBM-^H\fR\fR
3449 .ad
3450 .RS 21n
3451 cursor-left
3452 .RE

3454 .sp
3455 .ne 2
3456 .na
3457 \fB\fBM-^?\fR\fR
3458 .ad
3459 .RS 21n
3460 cursor-left
3461 .RE

3463 .sp
3464 .ne 2
3465 .na
3466 \fB\fBM-^L\fR\fR
3467 .ad
3468 .RS 21n
3469 clear-screen
3470 .RE

3472 .sp
3473 .ne 2
3474 .na
3475 \fB\fBM-^N\fR\fR
3476 .ad
3477 .RS 21n
3478 down-history
3479 .RE

3481 .sp
3482 .ne 2
3483 .na
3484 \fB\fBM-^P\fR\fR
3485 .ad
3486 .RS 21n

new/usr/src/man/man5/tecla.5 54

3487 up-history
3488 .RE

3490 .sp
3491 .ne 2
3492 .na
3493 \fB\fBM-^R\fR\fR
3494 .ad
3495 .RS 21n
3496 redisplay
3497 .RE

3499 .sp
3500 .ne 2
3501 .na
3502 \fB\fBM-^D\fR\fR
3503 .ad
3504 .RS 21n
3505 list-or-eof
3506 .RE

3508 .sp
3509 .ne 2
3510 .na
3511 \fB\fBM-^I\fR\fR
3512 .ad
3513 .RS 21n
3514 complete-word
3515 .RE

3517 .sp
3518 .ne 2
3519 .na
3520 \fB\fBM-\r\fR\fR
3521 .ad
3522 .RS 21n
3523 newline
3524 .RE

3526 .sp
3527 .ne 2
3528 .na
3529 \fB\fBM-\en\fR\fR
3529 \fB\fBM-\n\fR\fR
3530 .ad
3531 .RS 21n
3532 newline
3533 .RE

3535 .sp
3536 .ne 2
3537 .na
3538 \fB\fBM-^X^R\fR\fR
3539 .ad
3540 .RS 21n
3541 read-init-files
3542 .RE

3544 .sp
3545 .ne 2
3546 .na
3547 \fB\fBM-^Xh\fR\fR
3548 .ad
3549 .RS 21n
3550 list-history
3551 .RE

new/usr/src/man/man5/tecla.5 55

3553 .sp
3554 .ne 2
3555 .na
3556 \fB\fBM-0, M-1, ... M-9\fR\fR
3557 .ad
3558 .RS 21n
3559 digit-argument (see below)
3560 .RE

3562 .sp
3563 .LP
3564 Note that \fB^I\fR is what the TAB key generates.
3565 .SS "Entering Repeat Counts"
3566 .sp
3567 .LP
3568 Many of the key binding functions described previously, take an optional count,
3569 typed in before the target key sequence. This is interpreted as a repeat count
3570 by most bindings. A notable exception is the goto-column binding, which
3571 interprets the count as a column number.
3572 .sp
3573 .LP
3574 By default you can specify this count argument by pressing the META key while
3575 typing in the numeric count. This relies on the digit-argument action being
3576 bound to ’META-0’, ’META-1’ etc. Once any one of these bindings has been
3577 activated, you can optionally take your finger off the META key to type in the
3578 rest of the number, since every numeric digit thereafter is treated as part of
3579 the number, unless it is preceded by the literal-next binding. As soon as a
3580 non-digit, or literal digit key is pressed the repeat count is terminated and
3581 either causes the just typed character to be added to the line that many times,
3582 or causes the next key binding function to be given that argument.
3583 .sp
3584 .LP
3585 For example, in \fBemacs\fR mode, typing:
3586 .sp
3587 .in +2
3588 .nf
3589 M-12a
3590 .fi
3591 .in -2

3593 .sp
3594 .LP
3595 causes the letter ’a’ to be added to the line 12 times, whereas
3596 .sp
3597 .in +2
3598 .nf
3599 M-4M-c
3600 .fi
3601 .in -2

3603 .sp
3604 .LP
3605 Capitalizes the next 4 words.
3606 .sp
3607 .LP
3608 In \fBvi\fR command mode the meta modifier is automatically added to all
3609 characters typed in, so to enter a count in \fBvi\fR command-mode, just
3610 involves typing in the number, just as it does in the \fBvi\fR editor itself.
3611 So for example, in vi command mode, typing:
3612 .sp
3613 .in +2
3614 .nf
3615 4w2x
3616 .fi
3617 .in -2

new/usr/src/man/man5/tecla.5 56

3619 .sp
3620 .LP
3621 moves the cursor four words to the right, then deletes two characters.
3622 .sp
3623 .LP
3624 You can also bind digit-argument to other key sequences. If these end in a
3625 numeric digit, that digit gets appended to the current repeat count. If it
3626 doesn’t end in a numeric digit, a new repeat count is started with a value of
3627 zero, and can be completed by typing in the number, after letting go of the key
3628 which triggered the digit-argument action.
3629 .SH FILES
3630 .sp
3631 .ne 2
3632 .na
3633 \fB\fB/usr/lib/libtecla.so\fR\fR
3634 .ad
3635 .RS 27n
3636 The tecla library
3637 .RE

3639 .sp
3640 .ne 2
3641 .na
3642 \fB\fB/usr/include/libtecla.h\fR\fR
3643 .ad
3644 .RS 27n
3645 The tecla header file
3646 .RE

3648 .sp
3649 .ne 2
3650 .na
3651 \fB\fB~/.teclarc\fR\fR
3652 .ad
3653 .RS 27n
3654 The personal tecla customization file
3655 .RE

3657 .SH ATTRIBUTES
3658 .sp
3659 .LP
3660 See \fBattributes\fR(5) for descriptions of the following attributes:
3661 .sp

3663 .sp
3664 .TS
3665 box;
3666 c | c
3667 l | l .
3668 ATTRIBUTE TYPE ATTRIBUTE VALUE
3669 _
3670 Interface Stability Evolving
3671 .TE

3673 .SH SEE ALSO
3674 .sp
3675 .LP
3676 \fBvi\fR(1), \fBcpl_complete_word\fR(3TECLA), \fBef_expand_file\fR(3TECLA),
3677 \fBgl_get_line\fR(3TECLA), \fBgl_io_mode\fR(3TECLA), \fBlibtecla\fR(3LIB),
3678 \fBpca_lookup_file\fR(3TECLA), \fBattributes\fR(5)

new/usr/src/man/man7d/poll.7d 1

**
 12638 Tue Sep 10 18:35:21 2013
new/usr/src/man/man7d/poll.7d
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2007 Sun Microsystems, Inc. All Rights Reserved.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH POLL 7D "Sep 10, 2013"
6 .TH POLL 7D "Mar 28, 2007"
7 .SH NAME
8 poll \- driver for fast poll on many file descriptors
9 .SH SYNOPSIS

10 .LP
11 .nf
12 \fB#include <sys/devpoll.h>
13 int fd = open("/dev/poll", O_RDWR);
14 ssize_t n = write(int fd, struct pollfd buf[], int bufsize);
15 int n = ioctl(int fd, DP_POLL, struct dvpoll* arg);
16 int n = ioctl(int fd, DP_ISPOLLED, struct pollfd* pfd);\fR
17 .fi

19 .SH PARAMETERS
20 .sp
21 .ne 2
22 .na
23 \fB\fIfd\fR \fR
24 .ad
25 .RS 12n
26 Open file descriptor that refers to the \fB/dev/poll\fR driver.
27 .RE

29 .sp
30 .ne 2
31 .na
32 \fB\fIpath\fR \fR
33 .ad
34 .RS 12n
35 \fB/dev/poll\fR
36 .RE

38 .sp
39 .ne 2
40 .na
41 \fB\fIbuf\fR \fR
42 .ad
43 .RS 12n
44 Array of \fBpollfd\fR structures.
45 .RE

47 .sp
48 .ne 2
49 .na
50 \fB\fIbufsize\fR \fR
51 .ad
52 .RS 12n
53 Size of \fIbuf\fR in bytes.
54 .RE

56 .sp
57 .ne 2
58 .na
59 \fB\fIarg\fR \fR
60 .ad

new/usr/src/man/man7d/poll.7d 2

61 .RS 12n
62 Pointer to \fBpollcall\fR structure.
63 .RE

65 .sp
66 .ne 2
67 .na
68 \fB\fIpfd\fR \fR
69 .ad
70 .RS 12n
71 Pointer to \fBpollfd\fR structure.
72 .RE

74 .SH DESCRIPTION
75 .LP
76 Note -
77 .sp
78 .RS 2
79 The \fB/dev/poll\fR device, associated driver and corresponding manpages may be
80 removed in a future Solaris release. For similar functionality in the event
81 ports framework, see \fBport_create\fR(3C).
82 .RE
83 .sp
84 .LP
85 The \fB/dev/poll\fR driver is a special driver that enables you to monitor
86 multiple sets of polled file descriptors. By using the \fB/dev/poll\fR
87 driver, you can efficiently poll large numbers of file descriptors. Access to
88 the \fB/dev/poll\fR driver is provided through \fBopen\fR(2), \fBwrite\fR(2),
89 and \fBioctl(2)\fR system calls.
90 .sp
91 .LP
92 Writing an array of \fBpollfd\fR struct to the \fB/dev/poll\fR driver has the
93 effect of adding these file descriptors to the monitored \fBpoll\fR file
94 descriptor set represented by the \fIfd\fR. To monitor multiple file
95 descriptor sets, open the \fB/dev/poll\fR driver multiple times. Each \fBfd\fR
96 corresponds to one set. For each \fBpollfd\fR struct entry (defined in
97 \fBsys/poll.h\fR):
98 .sp
99 .in +2
100 .nf
101 struct pollfd {
102 int fd;
103 short events;
104 short revents;
105 }
106 .fi
107 .in -2

109 .sp
110 .LP
111 The \fBfd\fR field specifies the file descriptor being polled. The
112 \fBevents\fR field indicates the interested \fBpoll\fR \fBevents\fR on the file
113 descriptor. If a \fBpollfd\fR array contains multiple \fBpollfd\fR entries with
114 the same \fBfd\fR field, the "events" field in each \fBpollfd\fR entry is
115 OR’ed. A special \fBPOLLREMOVE\fR event in the \fBevents\fR field of the
116 \fBpollfd\fR structure removes the \fBfd\fR from the monitored set. The
117 \fBrevents\fR field is not used. Write returns the number of bytes written
118 successfully or \fB-1\fR when write fails.
119 .sp
120 .LP
121 The \fBDP_POLL\fR ioctl is used to retrieve returned \fBpoll\fR \fBevents\fR
122 occured on the polled file descriptors in the monitored set represented by
123 \fIfd\fR. \fIarg\fR \fIis\fR \fIa\fR pointer to the devpoll structures which
124 are defined as follows:
125 .sp
126 .in +2

new/usr/src/man/man7d/poll.7d 3

127 .nf
128 struct dvpoll {
129 struct pollfd* dp_fds;
130 int dp_nfds;
131 int dp_timeout;
132 }
133 .fi
134 .in -2

136 .sp
137 .LP
138 The \fBdp_fds\fR points to a buffer that holds an array of returned
139 \fBpollfd\fR structures. The \fBdp_nfds\fR field specifies the size of the
140 buffer in terms of the number of \fBpollfd\fR entries it contains. The
141 \fBdp_nfds\fR field also indicates the maximum number of file descriptors from
142 which poll information can be obtained. If there is no interested \fBevents\fR
143 on any of the polled file descriptors, the \fBDP_POLL\fR ioctl call will wait
144 \fBdp_timeout\fR milliseconds before returning. If \fBdp_timeout\fR is
145 \fB0\fR, the ioctl call returns immediately. If \fBdp_timeout\fR is \fB-1\fR,
146 the call blocks until an interested \fBpoll\fR \fBevents\fR is available or the
147 call is interrupted. Upon return, if the ioctl call has failed, \fB-1\fR is
148 returned. The memory content pointed by \fBdp_fds\fR is not modified. A return
149 value \fB0\fR means the ioctl is timed out. In this case, the memory content
150 pointed by \fBdp_fds\fR is not modified. If the call is successful, it returns
151 the number of valid \fBpollfd\fR entries in the array pointed by \fBdp_fds\fR;
152 the contents of the rest of the buffer is undefined. For each valid
153 \fBpollfd\fR entry, the \fBfd\fR field indicates the file desciptor on which
154 the polled \fBevents\fR happened. The \fBevents\fR field is the user specified
155 \fBpoll\fR \fBevents\fR. The \fBrevents\fR field contains the \fBevents\fR
156 occurred. \fB-1\fR is returned if the call fails.
157 .sp
158 .LP
159 \fBDP_ISPOLLED\fR ioctl allows you to query if a file descriptor is already in
160 the monitored set represented by \fBfd\fR. The \fBfd\fR field of the
161 \fBpollfd\fR structure indicates the file descriptor of interest. The
162 \fBDP_ISPOLLED\fR ioctl returns \fB1\fR if the file descriptor is in the set.
163 The \fBevents\fR field contains \fB0\fR. The \fBrevents\fR field contains the
164 currently polled \fBevents\fR. The ioctl returns \fB0\fR if the file
165 descriptor is not in the set. The \fBpollfd\fR structure pointed by \fIpfd\fR
166 is not modified. The ioctl returns a \fB-1\fR if the call fails.
167 .SH EXAMPLES
168 .sp
169 .LP
170 The following example shows how \fB/dev/poll\fR may be used.
171 .sp
172 .in +2
173 .nf
174 {
175 ...
176 /*
177 * open the driver
178 */
179 if ((wfd = open("/dev/poll", O_RDWR)) < 0) {
180 exit(-1);
181 }
182 pollfd = (struct pollfd*)malloc(sizeof(struct pollfd) * MAXBUF);
183 if (pollfd == NULL) {
184 close(wfd);
185 exit(-1);
186 }
187 /*
188 * initialize buffer
189 */
190 for (i = 0; i < MAXBUF; i++) {
191 pollfd[i].fd = fds[i];
192 pollfd[i].events = POLLIN;

new/usr/src/man/man7d/poll.7d 4

193 pollfd[i].revents = 0;
194 }
195 if (write(wfd, &pollfd[0], sizeof(struct pollfd) * MAXBUF) !=
196 sizeof(struct pollfd) * MAXBUF) {
197 perror("failed to write all pollfds");
198 close (wfd);
199 free(pollfd);
200 exit(-1);
201 }
202 /*
203 * read from the devpoll driver
204 */
205 dopoll.dp_timeout = -1;
206 dopoll.dp_nfds = MAXBUF;
207 dopoll.dp_fds = pollfd;
208 result = ioctl(wfd, DP_POLL, &dopoll);
209 if (result < 0) {
210 perror("/dev/poll ioctl DP_POLL failed");
211 close (wfd);
212 free(pollfd);
213 exit(-1);
214 }
215 for (i = 0; i < result; i++) {
216 read(dopoll.dp_fds[i].fd, rbuf, STRLEN);
217 }
218 ...
219 }
220 .fi
221 .in -2

223 .sp
224 .LP
225 The following example is part of a test program which shows how
226 \fBDP_ISPOLLED()\fR ioctl may be used.
227 .sp
228 .in +2
229 .nf
230 {
231 ...

233 loopcnt = 0;
234 while (loopcnt < ITERATION) {
235 rn = random();
236 rn %= RANGE;
237 if (write(fds[rn], TESTSTRING, strlen(TESTSTRING)) !=
238 strlen(TESTSTRING)) {
239 perror("write to fifo failed.");
240 close (wfd);
241 free(pollfd);
242 error = 1;
243 goto out1;
244 }
245 dpfd.fd = fds[rn];
246 dpfd.events = 0;
247 dpfd.revents = 0;
248 result = ioctl(wfd, DP_ISPOLLED, &dpfd);
249 if (result < 0) {
250 perror("/dev/poll ioctl DP_ISPOLLED failed");
251 printf("errno = %d\en", errno);
251 printf("errno = %d\n", errno);
252 close (wfd);
253 free(pollfd);
254 error = 1;
255 goto out1;
256 }
257 if (result != 1) {

new/usr/src/man/man7d/poll.7d 5

258 printf("DP_ISPOLLED returned incorrect result: %d.\en",
258 printf("DP_ISPOLLED returned incorrect result: %d.\n",
259 result);
260 close (wfd);
261 free(pollfd);
262 error = 1;
263 goto out1;
264 }
265 if (dpfd.fd != fds[rn]) {
266 printf("DP_ISPOLLED returned wrong fd %d, expect %d\en",
266 printf("DP_ISPOLLED returned wrong fd %d, expect %d\n",
267 dpfd.fd, fds[rn]);
268 close (wfd);
269 free(pollfd);
270 error = 1;
271 goto out1;
272 }
273 if (dpfd.revents != POLLIN) {
274 printf("DP_ISPOLLED returned unexpected revents %d\en",
274 printf("DP_ISPOLLED returned unexpected revents %d\n",
275 dpfd.revents);
276 close (wfd);
277 free(pollfd);
278 error = 1;
279 goto out1;
280 }
281 if (read(dpfd.fd, rbuf, strlen(TESTSTRING)) !=
282 strlen(TESTSTRING)) {
283 perror("read from fifo failed");
284 close (wfd);
285 free(pollfd);
286 error = 1;
287 goto out1;
288 }
289 loopcnt++;
290 }

292 .fi
293 .in -2

295 .SH ERRORS
296 .sp
297 .ne 2
298 .na
299 \fB\fBEACCES\fR \fR
300 .ad
301 .RS 11n
302 A process does not have permission to access the content cached in
303 \fB/dev/poll\fR.
304 .RE

306 .sp
307 .ne 2
308 .na
309 \fB\fBEINTR\fR \fR
310 .ad
311 .RS 11n
312 A signal was caught during the execution of the \fBioctl\fR(2) function.
313 .RE

315 .sp
316 .ne 2
317 .na
318 \fB\fBEFAULT\fR \fR
319 .ad
320 .RS 11n

new/usr/src/man/man7d/poll.7d 6

321 The request argument requires a data transfer to or from a buffer pointed to by
322 \fIarg\fR, but \fIarg\fR points to an illegal address.
323 .RE

325 .sp
326 .ne 2
327 .na
328 \fB\fBEINVAL\fR \fR
329 .ad
330 .RS 11n
331 The request or \fIarg\fR parameter is not valid for this device, or field of
332 the dvpoll struct pointed by \fIarg\fR is not valid (for example, when using
333 write/pwrite dp_nfds is greater than {OPEN_MAX}, or when using the DPPOLL ioctl
334 dp_nfds is greater than or equal to {OPEN_MAX}}.
335 .RE

337 .sp
338 .ne 2
339 .na
340 \fB\fBENXIO\fR \fR
341 .ad
342 .RS 11n
343 The \fBO_NONBLOCK\fR flag is set, the named file is a FIFO, the \fBO_WRONLY\fR
344 flag is set, and no process has the file open for reading; or the named file is
345 a character special or block special file and the device associated with this
346 special file does not exist.
347 .RE

349 .SH ATTRIBUTES
350 .sp
351 .LP
352 See \fBattributes\fR(5) for a description of the following attributes:
353 .sp

355 .sp
356 .TS
357 box;
358 l l
359 l l .
360 ATTRIBUTE TYPE ATTRIBUTE VALUE
361 Architecture SPARC, x86
362 Interface Stability Obsolete
363 MT-Level Safe
364 .TE

366 .SH SEE ALSO
367 .sp
368 .LP
369 \fBopen\fR(2), \fBpoll\fR(2), \fBwrite\fR(2), \fBattributes\fR(5)
370 .SH NOTES
371 .sp
372 .LP
373 The \fB/dev/poll\fR API is particularly beneficial to applications that poll a
374 large number of file descriptors repeatedly. Applications will exhibit the
375 best performance gain if the polled file descriptor list rarely change.
376 .sp
377 .LP
378 When using the \fB/dev/poll\fR driver, you should remove a closed file
379 descriptor from a monitored poll set. Failure to do so may result in a
380 \fBPOLLNVAL\fR \fBrevents\fR being returned for the closed file descriptor.
381 When a file descriptor is closed but not removed from the monitored set, and is
382 reused in subsequent open of a different device, you will be polling the device
383 associated with the reused file descriptor. In a multithreaded application,
384 careful coordination among threads doing close and \fBDP_POLL\fR ioctl is
385 recommended for consistent results.
386 .sp

new/usr/src/man/man7d/poll.7d 7

387 .LP
388 The \fB/dev/poll\fR driver caches a list of polled file descriptors, which are
389 specific to a process. Therefore, the \fB/dev/poll\fR file descriptor of a
390 process will be inherited by its child process, just like any other file
391 descriptors. But the child process will have very limited access through this
392 inherited \fB/dev/poll\fR file descriptor. Any attempt to write or do ioctl by
393 the child process will result in an \fBEACCES\fR error. The child process
394 should close the inherited \fB/dev/poll\fR file descriptor and open its own if
395 desired.
396 .sp
397 .LP
398 The \fB/dev/poll\fR driver does not yet support polling. Polling on a
399 \fB/dev/poll\fR file descriptor will result in \fBPOLLERR\fR being returned in
400 the \fBrevents\fR field of \fBpollfd\fR structure.

new/usr/src/man/man7d/tsalarm.7d 1

**
 6502 Tue Sep 10 18:35:21 2013
new/usr/src/man/man7d/tsalarm.7d
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2004, Sun Microsystems, Inc.
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH TSALARM 7D "Sep 10, 2013"
6 .TH TSALARM 7D "Mar 16, 2004"
7 .SH NAME
8 tsalarm \- Alarm device driver
9 .SH SYNOPSIS

10 .LP
11 .nf
12 tsalarm@0:ctl
13 .fi

15 .SH DESCRIPTION
16 .sp
17 .LP
18 The \fBtsalarm\fR driver is a Multi-threaded, loadable non-STREAMS pseudo
19 driver that manages ALOM alarms. The \fBtsalarm\fR driver provides an interface
20 through which alarm relays can be controlled on SUNW,Netra-240 and
21 SUNW,Netra-440 platforms.
22 .SH HARDWARE INTERFACE
23 .sp
24 .LP
25 The alarm hardware differs depending on platform. The Netra 240 and 440
26 platforms features four dry contact alarm relays which are controlled by
27 ALOM. You can set each alarm to "on" or "off" by using ioctl interfaces
28 provided from the host. The four alarms are labeled as "critical," "major,"
29 "minor," and "user." The user alarm is set by a user application depending on
30 system condition. LED’s in front of the box provide a visual indication of the
31 four alarms. The number of alarms and their meanings/labels may vary across
32 platforms.
33 .SH IOCTLS
34 .sp
35 .LP
36 The interface provided by the \fBtsalarm\fR driver comprises ioctls that enable
37 applications to manipulate the alarm module. The alarm module is accessed via
38 two device nodes: i) \fB/dev/lom\fR and \fB/dev/tsalarm:ctl\fR.
39 .sp
40 .LP
41 The following ioctls are supported by the \fB/dev/lom\fR and
42 \fB/dev/tsalarm:ctl\fR devices:
43 .sp
44 .ne 2
45 .na
46 \fB\fBTSIOCALCTL - Turn an alarm on or off.\fR\fR
47 .ad
48 .sp .6
49 .RS 4n
50 The argument is a pointer to the \fBts_aldata_t/lom_aldata_t\fR structure. This
51 structure is described below. \fBalarm_no member\fR is an integer which
52 specifies the alarm to which the command is to be applied. The
53 \fBalarm_state/state\fR structure member indicates the state to which the alarm
54 should be set (where 0 == off). An error (\fBEINVAL\fR) is returned if either
55 an invalid alarm_no or invalid alarm_state is provided.
56 .RE

58 .sp
59 .ne 2
60 .na

new/usr/src/man/man7d/tsalarm.7d 2

61 \fB\fBTSIOCALSTATE - Get the state of the alarms.\fR\fR
62 .ad
63 .sp .6
64 .RS 4n
65 The argument is a pointer to the \fBts_aldata_t/lom_aldata_t\fR structure. This
66 structure is described below. \fBalarm_no member\fR is an integer which
67 indicates the alarm to which the command will be applied. The
68 \fBalarm_state\fR member holds the alarm’s current state and is filled in by
69 the driver. A zero indicates that the alarm is off. An error (\fBEINVAL\fR) is
70 returned if an invalid alarm_no is provided. The structures and definitions for
71 the values are defined below.
72 .RE

74 .sp
75 .LP
76 Alarm values:
77 .sp
78 .in +2
79 .nf
80 The following old style values are defined in <lom.io.h>

82 #define ALARM_NUM_0 0 /* number of zero’th alarm */

84 #define ALARM_NUM_1 1 /* number of first alarm */

86 #define ALARM_NUM_2 2 /* number of second alarm */

88 #define ALARM_NUM_3 3 /* number of third alarm */

90 Alarm values defined in <lom.io.h>

92 #define ALARM_OFF 0 /* Turn off alarm */

94 #define ALARM_ON 1 /* Turn on alarm */
95 .fi
96 .in -2

98 .sp
99 .LP
100 Alarm Data Structure:
101 .sp
102 .in +2
103 .nf
104 This structure is defined in <lom.io.h>

106 typedef struct {

108 int alarm_no; /* alarm to apply command to */

110 int alarm_state; /* state of alarm (0 == off) */

112 } ts_aldata_t;
113 .fi
114 .in -2

116 .sp
117 .LP
118 Use the following LOM interfaces to get and set the alarms. These definitions
119 are included in <lom_io.h>
120 .sp
121 .in +2
122 .nf
123 #define ALARM_CRITICAL 0 /* number of critical alarm */

125 #define ALARM_MAJOR 1 /* number of major alarm */

new/usr/src/man/man7d/tsalarm.7d 3

127 #define ALARM_MINOR 2 /* number of minor alarm */

129 #define ALARM_USER 3 /* number of user alarm */
130 .fi
131 .in -2

133 .sp
134 .LP
135 The following alarm data structure is provided in <lom_io.h>:
136 .sp
137 .in +2
138 .nf
139 typedef struct {

141 int alarm_no;

143 int state;

145 } lom_aldata_t;
146 .fi
147 .in -2

149 .SH ERRORS
150 .sp
151 .LP
152 An \fBopen()\fR will fail if:
153 .sp
154 .ne 2
155 .na
156 \fBENXIO\fR
157 .ad
158 .RS 9n
159 The driver is not installed in the system.
160 .RE

162 .sp
163 .LP
164 An \fBioctl()\fR will fail if:
165 .sp
166 .ne 2
167 .na
168 \fBEFAULT\fR
169 .ad
170 .RS 10n
171 There was a hardware failure during the specified operation.
172 .RE

174 .sp
175 .ne 2
176 .na
177 \fBEINVAL\fR
178 .ad
179 .RS 10n
180 The alarm number specified is not valid or an invalid value was supplied.
181 .RE

183 .sp
184 .ne 2
185 .na
186 \fBENXIO\fR
187 .ad
188 .RS 10n
189 The driver is not installed in the system or the monitor callback routine could
190 not be scheduled.
191 .RE

new/usr/src/man/man7d/tsalarm.7d 4

193 .SH EXAMPLES
194 .sp
195 .in +2
196 .nf
197 How to set an alarm:

199 #include <sys/unistd.h>
200 #include <fcntl.h>
201 #include <stdio.h>
202 #include <lom_io.h>

204 #define LOM_DEVICE "/dev/lom"

206 int
207 main()
208 {
209 lom_aldata_t lld;
210 int fd = open(LOM_DEVICE, O_RDWR);

212 if (fd == -1) {
213 printf("Error opening device: %s\en", LOM_DEVICE);
213 printf("Error opening device: %s\n", LOM_DEVICE);
214 exit (1);
215 }

217 lld.alarm_no = ALARM_CRITICAL; /* Set the critical alarm */
218 lld.state = ALARM_ON; /* Set the alarm */

220 if (ioctl(fd, LOMIOCALCTL, (char *)&lld) != 0)
221 printf("Setting alarm failed");
222 else
223 printf("Alarm set successfully");

225 close(fd);

227 }
228 .fi
229 .in -2

231 .SH FILES
232 .sp
233 .ne 2
234 .na
235 \fB\fB/dev/lom\fR\fR
236 .ad
237 .sp .6
238 .RS 4n
239 LOM device.
240 .RE

242 .sp
243 .ne 2
244 .na
245 \fB\fB/dev/tsalarm:ctl\fR\fR
246 .ad
247 .sp .6
248 .RS 4n
249 Alarm control device.
250 .RE

252 .sp
253 .ne 2
254 .na
255 \fB\fB/platform/platform/kernel/drv/sparcv9/tsalarm\fR\fR
256 .ad
257 .sp .6

new/usr/src/man/man7d/tsalarm.7d 5

258 .RS 4n
259 Device driver module.
260 .RE

262 .sp
263 .ne 2
264 .na
265 \fB\fB/platform/SUNW,Netra-240/kernel/drv/tsalarm.conf\fR\fR
266 .ad
267 .sp .6
268 .RS 4n
269 Driver configuration file.
270 .RE

272 .SH ATTRIBUTES
273 .sp
274 .LP
275 See \fBattributes\fR(5) for descriptions of the following attributes:
276 .sp

278 .sp
279 .TS
280 box;
281 c | c
282 l | l .
283 ATTRIBUTE TYPE ATTRIBUTE VALUE
284 _
285 Architecture SPARC
286 .TE

288 .SH SEE ALSO
289 .sp
290 .LP
291 \fBattributes\fR(5)
292 .sp
293 .LP
294 \fIWriting Device Drivers\fR

new/usr/src/man/man7d/ugen.7d 1

**
 43986 Tue Sep 10 18:35:22 2013
new/usr/src/man/man7d/ugen.7d
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2007, Sun Microsystems, Inc. All Rights Reserved
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH UGEN 7D "Sep 10, 2013"
6 .TH UGEN 7D "Dec 3, 2008"
7 .SH NAME
8 ugen \- USB generic driver
9 .SH SYNOPSIS

10 .LP
11 .nf
12 \fBNode Name@unit-address\fR
13 .fi

15 .LP
16 .nf
17 \fB#include <sys/usb/clients/ugen/usb_ugen.h>\fR
18 .fi

20 .SH DESCRIPTION
21 .sp
22 .LP
23 \fBugen\fR is a generic USBA (Solaris USB Architecture) compliant client
24 character driver that presents USB devices to applications through a standard
25 \fBopen\fR(2), \fBclose\fR(2), \fBread\fR(2), \fBwrite\fR(2),
26 \fBaioread\fR(3C), \fBaiowrite\fR(3C) Unix interface. Uninterpreted raw data
27 are transfered to and from the device via file descriptors created for each USB
28 endpoint. Status is obtained by reading file descriptors created for endpoint
29 and full device status.
30 .sp
31 .LP
32 \fBugen\fR supports control, bulk, isochronous and interrupt (in and out)
33 transfers. \fBlibusb\fR(3LIB) uses \fBugen\fR to access devices that do not
34 contain drivers (such as digital cameras and PDAs). Refer to
35 \fB/usr/sfw/share/doc/libusb/libusb.txt\fR for details.
36 .SH BINDING
37 .sp
38 .LP
39 In general, no explicit binding of the \fBugen\fR driver is necessary because
40 \fBusb_mid\fR(7D) is the default driver for devices without a class or vendor
41 unique driver. \fBusb_mid\fR(7D) creates the same logical device names as
42 \fBugen\fR, but only if no child interfaces are explicitly bound to \fBugen\fR.
43 If it is necessary to bind \fBugen\fR explicitly to a device or interface, the
44 following section explains the necessary steps.
45 .sp
46 .LP
47 \fBugen\fR can bind to a device with one or more interfaces in its entirety, or
48 to a single interface of that device. The binding type depends on information
49 that is passed to \fBadd_drv\fR(1M) or \fBupdate_drv\fR(1M).
50 .sp
51 .LP
52 An \fBadd_drv\fR(1M) command binds \fBugen\fR to a list of device types it is
53 to control. \fBupdate_drv\fR(1M) adds an additional device type to the list of
54 device types being managed by the driver.
55 .sp
56 .LP
57 Names used to bind drivers can be found in \fB/var/adm/messages\fR. When a
58 device is on-lined after hot insertion, and no driver is found, there will be
59 an entry containing:
60 .sp

new/usr/src/man/man7d/ugen.7d 2

61 .in +2
62 .nf
63 USB 2.0 device (usb<vid>,<pid>)...
64 .fi
65 .in -2

67 .sp
68 .LP
69 where vid is the USB vendor identifier in hex and pid is the product
70 identifier in hex supplied by the device descriptor \fBusb_dev_descr\fR(9S).
71 .sp
72 .LP
73 When using ugen for the first time, you must add the driver utilizing
74 \fBadd_drv\fR(1M), using a command of the following form:
75 .sp
76 .in +2
77 .nf
78 Assuming that the vid is 472 and pid is b0b0:

80 add_drv -n -m ’* <device perms> <owner> <group>’
81 -i ’"usb472,b0b0"’ ugen
82 .fi
83 .in -2

85 .sp
86 .LP
87 If the command fails with:
88 .sp
89 .in +2
90 .nf
91 (ugen) already in use as a driver or alias.
92 .fi
93 .in -2

95 .sp
96 .LP
97 \&...add the device using \fBupdate_drv\fR(1M):
98 .sp
99 .in +2
100 .nf
101 update_drv -a -m ’* <device perms> <owner> <group>’
102 -i ’"usb472,b0b0"’ ugen
103 .fi
104 .in -2

106 .sp
107 .LP
108 This binds \fBugen\fR to the entire device.
109 .sp
110 .LP
111 If ugen only binds to one interface of the device, use the following
112 driver_alias instead of usb<vid>,<pid>:
113 .sp
114 .in +2
115 .nf
116 usbif<vid>,<pid>.config<cfg value>.<interface number>
117 .fi
118 .in -2

120 .sp
121 .LP
122 where cfg value is the value of bConfigurationValue in the configuration
123 descriptor (\fBusb_cfg_descr\fR(9S)). For example "usbif1234,4567.config1.0."
124 .sp
125 .LP
126 Note that you can use update_drv to also remove bindings. Please see

new/usr/src/man/man7d/ugen.7d 3

127 \fBupdate_drv\fR(1M) for more information.
128 .sp
129 .LP
130 After a successful add_drv or update_drv, remove the device and reinsert. Check
131 with the \fBprtconf\fR(1M) -D option to determine if \fBugen\fR is successfully
132 bound to the device and the nodes created in /dev/usb/<vid>.<pid> (see below).
133 .sp
134 .LP
135 An example showing how to bind a child device representing interface 0 of
136 configuration 1 of a composite device follows:
137 .sp
138 .in +2
139 .nf
140 update_drv -a -m ’* 0666 root sys’
141 -i ’"usbif472,b0b0.config1.0"’ ugen
142 .fi
143 .in -2

145 .sp
146 .LP
147 Note that you can completely uninstall the \fBugen\fR driver and delete it from
148 the system by doing:
149 .sp
150 .in +2
151 .nf
152 pkgrm SUNWugen
153 .fi
154 .in -2

156 .sp
157 .LP
158 Any \fBpkgadd\fR of SUNWugen after the \fBpkgrm\fR reactivates any pre-existing
159 ugen driver device-bindings.
160 .sp
161 .LP
162 Any pre-existing ugen driver device-bindings are preserved across operating
163 system upgrades.
164 .SH LOGICAL DEVICE NAME FORMAT
165 .sp
166 .LP
167 For each device or child device it manages, \fBugen\fR creates one logical
168 device name for device-wide status and one logical device name for endpoint 0.
169 \fBugen\fR also creates logical device names for all other endpoints within the
170 device node’s binding scope (interface or device), plus logical device names
171 for their status.
172 .sp
173 .LP
174 If separate \fBugen\fR instances control different interfaces of the same
175 device, the device-wide status and endpoint logical device names created for
176 each instance will share access to the same source or endpoint pipes. For
177 example, a device with two interfaces, each operated by their own \fBugen\fR
178 instance, will show \fBendpoint0\fR as \fBif0cntrl0\fR to the first interface,
179 and will show it as \fBif1cntrl0\fR to the second interface. Both of these
180 logical device names share \fBendpoint0\fR. Likewise for the same device,
181 \fBugen\fR makes the device-wide status available as \fBif0devstat\fR to the
182 first interface and as \fBif1devstat\fR to the second interface.
183 \fBif0devstat\fR and \fBif1devstat\fR both return the same data.
184 .sp
185 .LP
186 Any \fBugen\fR logical device name can be held open by only one user at a time,
187 regardless of whether the\fB O_EXCL\fR flag passed to \fBopen\fR(2). When a
188 single pipe or data source is shared by multiple logical device names, such as
189 if[0,1]cntrl0 or if[0,1]devstat above, more than one logical device name
190 sharing the pipe or data source can be open at a time. However, only one user
191 may access the shared pipe or data source at a time, regardless of the logical
192 device name used for access.

new/usr/src/man/man7d/ugen.7d 4

193 .sp
194 .LP
195 When \fBugen\fR is bound to an entire device, the following logical device
196 names are created (each on a single line). \fIN\fR represents the instance
197 number of the device type.
198 .sp
199 .in +2
200 .nf
201 Endpoint 0 (default endpoint):

203 /dev/usb/<vid>.<pid>/<N>/cntrl0
204 /dev/usb/<vid>.<pid>/<N>/cntrl0stat

206 For example:

208 /dev/usb/472.b0b0/0/cntrl0
209 /dev/usb/472.b0b0/0/cntrl0stat

211 Configuration index 1, Endpoints > 0, alternate 0:

213 /dev/usb/<vid>.<pid>/<N>/if<interface#>
214 <in|out|cntrl><endpoint#>
215 /dev/usb/<vid>.<pid>/<N>/if<interface#>
216 <in|out|cntrl><endpoint#>stat

218 For example:

220 /dev/usb/472.b0b0/0/if0in1
221 /dev/usb/472.b0b0/0/if0in1stat

223 Configuration index 1, Endpoints > 0, alternate > 0:

225 /dev/usb/<vid>.<pid>/<N>/if<interface#>.
226 <alternate><in|out|cntrl><endpoint#>
227 /dev/usb/<vid>.<pid>/<N>/if<interface#>.
228 <alternate<in|out|cntrl><endpoint#>stat

230 For example:

232 /dev/usb/472.b0b0/0/if0.1in3
233 /dev/usb/472.b0b0/0/if0.1in3stat

235 Configuration index> 1, Endpoints > 0, alternate 0:
236 /dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>
237 <in|out|cntrl><endpoint#>
238 /dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>
239 <in|out|cntrl><endpoint#>stat

241 For example:

243 /dev/usb/472.b0b0/0/cfg2if0in1
244 /dev/usb/472.b0b0/0/cfg2if0in1stat

246 Note that the configuration value from the configuration
247 descriptor indexed by the configuration index is used in
248 the node name and not the configuration index itself.

250 Configuration index> 1, Endpoints > 0, alternate > 0:
251 /dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>.
252 <alternate<in|out|cntrl><endpoint#>
253 /dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>.
254 <alternate<in|out|cntrl><endpoint#>stat

256 For example:

258 /dev/usb/472.b0b0/0/cfg2if0.1in1

new/usr/src/man/man7d/ugen.7d 5

259 /dev/usb/472.b0b0/0/cfg2if0.1in1stat

261 Device status:

263 /dev/usb/<vid>.<pid>/<N>/devstat

265 For example:

267 /dev/usb/472.b0b0/0/devstat
268 .fi
269 .in -2

271 .sp
272 .LP
273 When \fBugen\fR is bound to a single device interface, the following logical
274 device nodes are created:
275 .sp
276 .in +2
277 .nf
278 Endpoint 0 (default endpoint):

280 /dev/usb/<vid>.<pid>/<N>/if<interface#>cntrl0
281 /dev/usb/<vid>.<pid>/<N>/if<interface#>cntrl0stat

283 For example:

285 /dev/usb/472.b0b0/0/if0cntrl0
286 /dev/usb/472.b0b0/0/if0cntrl0stat

288 Device status:
289 /dev/usb/<vid>.<pid>/<N>/if<interface#>devstat

291 For example:
292 /dev/usb/472.b0b0/0/if0devstat
293 .fi
294 .in -2

296 .sp
297 .LP
298 The format for all other logical device names is identical to the format used
299 when \fBugen\fR is bound to the entire device.
300 .sp
301 .LP
302 Opening the endpoint of a different configuration or different alternate
303 interface will cause an implicit change of configuration or a switch to an
304 alternate interface. A configuration change is prohibited when any non-zero
305 endpoint device nodes are open. An alternate interface switch is prohibited if
306 any endpoint in the same interface is open.
307 .SH HOT-PLUGGING
308 .sp
309 .LP
310 A device may be hot-removed at any time. Following hot-removal, the device
311 status changes to USB_DEV_STAT_DISCONNECTED, the status of open endpoints
312 change to USB_LC_STAT_DISCONNECTED upon their access, and all subsequent
313 transfer requests fail. Endpoints are reactivated by first reinserting the
314 device and then closing and reopening all endpoints that were open when the
315 device was disconnected.
316 .SH CPR (CHECKPOINT/RESUME)
317 .sp
318 .LP
319 CPR (Checkpoint/Resume) may be initiated at any time and is treated similarly
320 to a hot-removal. Upon successful suspend and resume, all subsequent transfer
321 requests fail as an indication to the application to reinitialize. Applications
322 should close and reopen all endpoints to reinstate them. All endpoint and
323 device status on Resume (before close and reopen) is USB_LC_STAT_SUSPENDED. A
324 system suspend will fail while \fBugen\fR is performing a transfer.

new/usr/src/man/man7d/ugen.7d 6

325 .SH DEVICE POWER MANAGEMENT
326 .sp
327 .LP
328 Devices which support remote wakeup can be power managed when they have no open
329 logical device nodes. When an application opens the first logical device node
330 of a device, that application should assume that a reinitialization of device
331 state is required.
332 .SH DEVICE STATUS MANAGEMENT
333 .sp
334 .LP
335 Applications can monitor device status changes by reading the device status
336 from the device status logical name. When opened without O_NONBLOCK and
337 O_NDELAY, all reads from that file descriptor (with the exception of the the
338 intial read that follows the open) block until a device status change occurs.
339 Calls to read will always return immediately if opened with \fBO_NONBLOCK\fR or
340 \fBO_NDELAY\fR. Nonblocking calls to read which have no data to return, return
341 no error and zero bytes read.
342 .sp
343 .LP
344 Device statuses are:
345 .sp
346 .ne 2
347 .na
348 \fBUSB_DEV_STAT_ONLINE\fR
349 .ad
350 .RS 29n
351 Device is available.
352 .RE

354 .sp
355 .ne 2
356 .na
357 \fBUSB_DEV_STAT_DISCONNECTED\fR
358 .ad
359 .RS 29n
360 Device has been disconnected.
361 .RE

363 .sp
364 .ne 2
365 .na
366 \fBUSB_DEV_STAT_RESUMED\fR
367 .ad
368 .RS 29n
369 Device has been resumed, however, endpoints which were open on suspend have not
370 yet been closed and reopened.
371 .RE

373 .sp
374 .ne 2
375 .na
376 \fBUSB_DEV_STAT_UNAVAILABLE\fR
377 .ad
378 .RS 29n
379 Device has been reconnected, however, endpoints which were open on disconnect
380 have not yet been closed and reopened.
381 .RE

383 .sp
384 .LP
385 The following code reads the device status device logical name:
386 .sp
387 .in +2
388 .nf
389 int fd;
390 int status;

new/usr/src/man/man7d/ugen.7d 7

392 if ((fd = open("/dev/usb/472.b0b0/0/devstat",
393 O_RDONLY)) < 0) {
394 /* handle error */
395 }

______unchanged_portion_omitted_

460 data_xfered = write(ep1_data_fd, request, sizeof (request));

462 /* An error occured during the data transfer. */
463 if (data_xfered != sizeof (request)) {

465 /* Read status file descriptor for details on failure. */
466 if (read(ep1_stat_fd, (int *)&status, sizeof (status)) !=
467 sizeof (status)) {
468 status = USB_LC_STAT_UNSPECIFIED_ERR;
469 }

471 /* Take appropriate action. */
472 switch (status) {
473 case USB_LC_STAT_STALL:
474 printf ("Endpoint stalled.\en");
475 break;
476 case ...
477 ...
478 }

480 }
481 .fi
482 .in -2

484 .SH CONTROL TRANSFERS
485 .sp
486 .LP
487 The control endpoint is typically used to set up the device and to query device
488 status or configuration.
489 .sp
490 .LP
491 Applications requiring I/O on a control endpoint should open the corresponding
492 logical device name and use regular UNIX I/O system calls. For example:
493 \fBread\fR(2), \fBwrite\fR(2), \fBaioread\fR(3C) and \fBaiowrite\fR(3C).
494 \fBpoll\fR(2) is not supported on control endpoints.
495 .sp
496 .LP
497 A control endpoint must be opened with \fBO_RDWR\fR since it is bidirectional.
498 It cannot be opened with \fBO_NONBLOCK\fR or \fBO_NDELAY\fR.
499 .sp
500 .LP
501 For example:
502 .sp
503 .in +2
504 .nf
505 fd = open("/dev/usb/472.b0b0/0/cntrl0", O_RDWR);

507 .fi
508 .in -2

510 .sp
511 .in +2
512 .nf
513 fdstat = open("/dev/usb/472.b0b0/0/cntrl0stat", O_RDONLY);
514 .fi
515 .in -2

517 .sp
518 .LP

new/usr/src/man/man7d/ugen.7d 8

519 Control endpoints can be read and written. A \fBread\fR operation receives data
520 \fBfrom\fR the device and a \fBwrite\fR operation sends data \fBto\fR the
521 device.
522 .sp
523 .LP
524 To perform a control-IN transfer, perform a \fBwrite\fR(2) of USB setup data
525 (see section 9.3 of the \fIUSB 1.1\fR or \fI2.0\fR specifications) followed by
526 a \fBread\fR(2) on the same control endpoint to fetch the desired data. For
527 example:
528 .sp
529 .in +2
530 .nf
531 void init_cntrl_req(
532 uchar_t *req, uchar_t bmRequestType, uchar_t bRequest,
533 ushort_t wValue, ushort_t wIndex, ushort_t wLength) {
534 req[0] = bmRequestType;
535 req[1] = bRequest;
536 req[2] = 0xFF & wValue;
537 req[3] = 0xFF & (wValue >> 8);
538 req[4] = 0xFF & wIndex;
539 req[5] = 0xFF & (wIndex >> 8);
540 req[6] = 0xFF & wLength;
541 req[7] = 0xFF & (wLength >> 8);
542 }

544

547 uchar_t dev_descr_req[8];
548 usb_dev_descr_t descr;

550 init_cntrl_req(dev_descr_req,
551 USB_DEV_REQ_DEV_TO_HOST, USB_REQ_GET_DESCR,
552 USB_DESCR_TYPE_SETUP_DEV, 0, sizeof (descr));

554 count = write(fd, dev_descr_req, sizeof (dev_descr_req));
555 if (count != sizeof (dev_descr_req)) {
556 /* do some error recovery */
557 ...
558 }

560 count = read(fd, &descr, sizeof (descr));
561 if (count != sizeof (descr)) {
562 /* do some error recovery */
563 }
564 .fi
565 .in -2

567 .sp
568 .LP
569 The application can issue any number of reads to read data received on a
570 control endpoint. \fBugen\fR successfully completes all reads, returning the
571 number of bytes transferred. Zero is returned when there is no data to
572 transfer.
573 .sp
574 .LP
575 If the \fBread\fR/\fBwrite\fR fails and returns \fB-1\fR, you can access the
576 endpoint’s status device logical name for precise error information:
577 .sp
578 .in +2
579 .nf
580 int status;

582 count = read(fdstat, &status, sizeof (status));
583 if (count == sizeof (status)) {
584 switch (status) {

new/usr/src/man/man7d/ugen.7d 9

585 case USB_LC_STAT_SUSPENDED:
586 case USB_LC_STAT_DISCONNECTED:
587 /* close all endpoints */
588 ...
589 break;
590 default:
591 ...
592 break;
593 }
594 }
595 .fi
596 .in -2

598 .sp
599 .LP
600 Refer to the ERRORS section for all possible error values.
601 .sp
602 .LP
603 To perform a control-OUT transfer, send in a single transfer, the USB setup
604 data followed by any accompanying data bytes.
605 .sp
606 .in +2
607 .nf
608 /* 1st 8 bytes of wbuf are setup. */
609 init_cntrl_req(wbuf,);

611 /* Data bytes begin at byte 8 of wbuf. */
612 bcopy(data, &wuf[8], sizeof (data));

614 /* Send it all in a single transfer. */
615 count = write(fd, wbuf, sizeof (wbuf));
616 .fi
617 .in -2

619 .sp
620 .LP
621 A \fBwrite\fR(2) returns the number of bytes (both setup and data) actually
622 transferred, (whether or not the \fBwrite\fR is completely successful),
623 provided that some data is actually transferred. When no data is transferred,
624 \fBwrite\fR(2) returns \fB-1\fR. Applications can read the corresponding
625 endpoint status to retrieve detailed error information. Note that it is an
626 error to specify a size different than:
627 .sp
628 .LP
629 (number of data bytes + number of setup bytes).
630 .sp
631 .LP
632 Here is a more extensive example which gets all descriptors of a device
633 configuration. For sake of brevity, uninteresting parts are omitted.
634 .sp
635 .in +2
636 .nf
637 #include <sys/usb/usba.h>
638 #include <sys/usb/clients/ugen/usb_ugen.h>

640 uchar_t *config_cloud;
641 uchar_t *curr_descr;

643 uchar_t *bytes;

645 int curr_descr_len;
646 int curr_descr_type;

648 usb_cfg_descr_t cfg_descr;
649 usb_if_descr_t if_descr;
650 usb_ep_descr_t ep_descr;

new/usr/src/man/man7d/ugen.7d 10

652 /* See 9.13 of USB 2.0 spec for ordering. */
653 static char *pipetypes[] = {
654 "Control", "Isochronous", "Bulk", "Interrupt"
655 };

657 /*
658 * Setup to send a request to read just the config descriptor. The
659 * size of the whole cloud, containing all cfg, interface, endpoint,
660 * class and vendor-specific descriptors, will be returned as part of
661 * the config descriptor.
662 */
663 init_cntrl_req(&setup_data, USB_DEV_REQ_DEV_TO_HOST, USB_REQ_GET_DESCR,
664 USB_DESCR_TYPE_SETUP_CFG, 0, USB_CFG_DESCR_SIZE);

666 /*
667 * Write setup data. USB device will prepare to return the whole
668 * config cloud as a response to this. We will read this separately.
669 */
670 count = write(ctrl_fd, &setup_data, sizeof (setup_data));
671 if (count != sizeof (setup_data)) {
672 /* Error recovery. */
673 } else {
674 count = read(ctrl_fd, &cfg_descr, USB_CFG_DESCR_SIZE);
675 if (count != USB_CFG_DESCR_SIZE) {
676 /* Error recovery. */
677 }
678 }

680 /* USB data is little endian. */
681 bytes = (uchar_t *)(&cfg_descr.wTotalLength);
682 totalLength = bytes[0] + (bytes[1] << 8);

684 /*
685 * The size of the whole cloud is in the bLength field. Set up
686 * to read this amount of data, to get the whole cloud.
687 */
688 config_cloud = malloc(totalLength);

690 init_cntrl_req(&setup_data, USB_DEV_REQ_DEV_TO_HOST, USB_REQ_GET_DESCR,
691 USB_DESCR_TYPE_SETUP_CFG, 0, totalLength);

693 count = write(ctrl_fd, &setup_data, sizeof (setup_data));
694 if (count != sizeof (setup_data)) {
695 /* Error recovery. */
696 } else {
697 count = read(ctrl_fd, config_cloud, totalLength);
698 if (count != totalLength) {
699 /* Error recovery. */
700 }
701 }

703 /* Got the data. Now loop, dumping out the descriptors found. */

705 curr_descr = config_cloud;
706 offset = 0;
707 while (offset < totalLength) {

709 /* All descr have length and type at offset 0 and 1 */
710 curr_descr_len = curr_descr[0];
711 curr_descr_type = curr_descr[1];

713 switch (curr_descr_type) {
714 case USB_DESCR_TYPE_CFG:

716 /*

new/usr/src/man/man7d/ugen.7d 11

717 * Copy data into separate structure, needed for
718 * proper alignment of all non char fields. Note:
719 * non-char fields of all descriptors begin on aligned
720 * boundaries. The issue is that some structures may
721 * be adjacent to others which have an odd-numbered
722 * byte size, and may thus start on an odd-numbered
723 * boundary. */
724 bcopy(curr_descr, &cfg_descr, curr_descr_len);

726 /* Remember to read any words in endian-neutral way. */

728 (void) printf("\enConfig %d found.\en",
729 cfg_descr.bConfigurationValue);
730 break;

732 case USB_DESCR_TYPE_IF:
733 bcopy(curr_descr, &if_descr, curr_descr_len);
734 (void) printf("\en\etInterface %d, Alt %d found.\en",
735 if_descr.bInterfaceNumber,
736 if_descr.bAlternateSetting);
737 break;

739 case USB_DESCR_TYPE_EP:
740 bcopy(curr_descr, &ep_descr, curr_descr_len);
741 (void) printf("\en\et\etEndpoint %d (%s-%s) found.\en",
742 (ep_descr.bEndpointAddress & USB_EP_NUM_MASK),
743 (pipetypes[
744 ep_descr.bmAttributes & USB_EP_ATTR_MASK]),
745 ((ep_descr.bEndpointAddress &
746 USB_EP_DIR_IN) ? "IN" : "OUT"));
747 break;

749 default:
750 (void) printf(
751 "\en\et\et\etOther descriptor found. Type:%d\en",
752 curr_descr_type);
753 break;
754 }

756 offset += curr_descr_len;
757 curr_descr = &config_cloud[offset];
758 }
759 .fi
760 .in -2

762 .SH INTERRUPT-IN TRANSFERS
763 .sp
764 .LP
765 Applications requiring data from an interrupt-IN endpoint should open the
766 corresponding logical device name and use \fBread\fR(2), \fBaioread\fR(3C) and
767 \fBpoll\fR(2) system calls.
768 .sp
769 .LP
770 An interrupt-IN endpoint must be opened with \fBO_RDONLY\fR. It can also be
771 opened using \fBO_NONBLOCK\fR or \fBO_NDELAY\fR if desired.
772 .sp
773 .in +2
774 .nf
775 fd = open("/dev/usb/472.b0b0/0/if0in1", O_RDONLY);
776 .fi
777 .in -2

779 .sp
780 .in +2
781 .nf
782 fdstat = open("/dev/usb/472.b0b0/0/if0in1stat", O_RDONLY);

new/usr/src/man/man7d/ugen.7d 12

784 .fi
785 .in -2

787 .sp
788 .LP
789 \fBugen\fR starts polling interrupt\(emIN endpoints immediately upon opening
790 them and stops polling them upon closure. (Polling refers to interrogation of
791 the device by the driver and should not be confused with \fBpoll\fR(2), which
792 is an interrogation of the driver by the application.)
793 .sp
794 .LP
795 A \fBread\fR(2) of an endpoint opened with the \fBO_NONBLOCK\fR or
796 \fBO_NDELAY\fR flags set will not block when there is insufficient data
797 available to satisfy the request. The \fBread\fR simply returns what it can
798 without signifying any error.
799 .sp
800 .LP
801 Applications should continuously check for and consume interrupt data.
802 \fBugen\fR enables buffering of up to one second of incoming data. In case of
803 buffer overflow, \fBugen\fR stops polling the interrupt-IN endpoint until the
804 application consumes all the data. In this case, a \fBread\fR(2) of an empty
805 buffer returns \fB-1\fR, sets the endpoint status to
806 \fBUSB_LC_STAT_INTR_BUF_FULL\fR (to indicate that the buffer had been full and
807 polling had been stopped) and causes \fBugen\fR to start polling the endpoint
808 again. To retrieve the status, the application can open and read the
809 corresponding endpoint’s status device logical name.
810 .sp
811 .in +2
812 .nf
813 for (;;) {
814 count = read(fd, buf, sizeof(buf));
815 if (count == -1) {
816 int cnt, status;

818 cnt = read(fdstat, &status, sizeof (status));
819 if (cnt == -1) {
820 /* more error recovery here */
821 } else {
822 switch (status) {
823 case USB_LC_STAT_INTR_BUF_FULL:
824 ...
825 break;
826 default:
827 ...
828 break;
829 }
830 }
831 }
832 /* process the data */
833
834 }
835 .fi
836 .in -2

838 .sp
839 .LP
840 \fBugen\fR will never drop data. However, the device may drop data if the
841 application cannot read it at the rate that it is produced.
842 .sp
843 .LP
844 Applications requiring unbuffered data from an interrupt-IN endpoint should
845 open the associated status endpoint with O_RDWR before opening the associated
846 interrupt-IN endpoint and write a control byte with USB_EP_INTR_ONE_XFER set.
847 All other bits are reserved and should be 0.
848 .sp

new/usr/src/man/man7d/ugen.7d 13

849 .LP
850 "One transfer" mode will persist until disabled explicitly after the associated
851 interrupt-IN endpoint has been closed by writing a control byte with
852 USB_EP_INTR_ONE_XFER cleared.
853 .sp
854 .LP
855 "One transfer" mode is implicitly disabled when the status/control endpoint is
856 closed.
857 .sp
858 .LP
859 Attempts to change the "one transfer" mode while the endpoint is open will
860 result in \fBEINVAL\fR.
861 .sp
862 .LP
863 An application can open multiple interrupt-IN endpoints and can call
864 \fBpoll\fR(2) to monitor the availability of new data. (Note: poll works with
865 interrupt-IN data endpoints, not their status endpoints.)
866 .sp
867 .in +2
868 .nf
869 struct pollfd pfd[2];

871 bzero(pfd, sizeof (pfd));
872 pfd[0].fd = fd1; /* fd1 is one interrupt-IN endpoint. */
873 pfd[0].events = POLLIN;
874 pfd[1].fd = fd2; /* fd2 is another interrupt-IN endpoint. */
875 pfd[1].events = POLLIN;

877 for (;;) {
878 poll(pfd, 2, -1);

880 if (pfd[0].revents & POLLIN) {
881 count = read(fd1, buf, sizeof (buf));
882
883 }
884 if (pfd[1].revents & POLLIN) {
885 count = read(fd2, buf, sizeof (buf));
886
887 }
888 }
889 .fi
890 .in -2

892 .sp
893 .LP
894 You can monitor the device status endpoint via \fBpoll\fR(2) concurrently with
895 the multiple interrupt-IN endpoints. Simply add another pollfd element to the
896 pfd array in the previous code example, and initialize the new element’s
897 \fBfd\fR field with the file descriptor of the device status endpoint (opened
898 without O_NONBLOCK or O_NDELAY). Set the new element’s event field to POLLIN
899 like the other elements. Note that only interrupt-IN endpoints and the device
900 status endpoint can be monitored using \fBpoll\fR(2).
901 .SH INTERRUPT-OUT TRANSFERS
902 .sp
903 .LP
904 Applications requiring output on an interrupt-OUT endpoint can open the
905 corresponding logical device name and perform regular UNIX I/O system calls
906 such as \fBwrite\fR(2) and \fBaiowrite\fR(3C).
907 .sp
908 .LP
909 An interrupt-OUT endpoint must be opened with O_WRONLY.
910 .sp
911 .in +2
912 .nf
913 fd = open("/dev/usb/472.b0b0/0/if0out3", O_WRONLY);

new/usr/src/man/man7d/ugen.7d 14

915 fdstat = open("/dev/usb/472.b0b0/0/if0out3stat", O_RDONLY);

918 .fi
919 .in -2

921 .sp
922 .LP
923 Data can be written to an interrupt-OUT endpoint as follows:
924 .sp
925 .in +2
926 .nf
927 count = write(fd, buf, sizeof (buf)):
928 if (count == -1) {
929 /* error recovery */
930 }
931 .fi
932 .in -2

934 .SH BULK TRANSFERS
935 .sp
936 .LP
937 Applications requiring I/O on a bulk endpoint can open the corresponding
938 logical device name and perform regular UNIX I/O system calls. For example:
939 \fBread\fR(2), \fBwrite\fR(2), \fBaioread\fR(3C) and \fBaiowrite\fR(3C).
940 \fBpoll\fR(2) is not supported on bulk endpoints.
941 .sp
942 .LP
943 A bulk endpoint must be opened with \fBO_RDONLY\fR or \fBO_WRONLY\fR and cannot
944 be opened with \fBO_NONBLOCK\fR or \fBO_NDELAY:\fR
945 .sp
946 .in +2
947 .nf
948 fd = open("/dev/usb/472.b0b0/0/if0in2", O_RDONLY);
949 .fi
950 .in -2

952 .sp
953 .in +2
954 .nf
955 fdstat = open("/dev/usb/472.b0b0/0/if0in2stat", O_RDONLY);
956 .fi
957 .in -2

959 .sp
960 .LP
961 Data can be read from a bulk-IN endpoint as follows:
962 .sp
963 .in +2
964 .nf
965 count = read(fd, buf, sizeof (buf)):
966 if (count == -1) {
967 /* error recovery */
968 }

970 Data can be written to a bulk-OUT endpoint as follows:

972 count = write(fd, buf, sizeof (buf)):
973 if (count == -1) {
974 /* error recovery */
975 }
976 .fi
977 .in -2

979 .SH ISOCHRONOUS TRANSFERS
980 .sp

new/usr/src/man/man7d/ugen.7d 15

981 .LP
982 Applications requiring I/O on an isochronous endpoint can open the
983 corresponding logical device name and perform regular UNIX I/O system calls
984 such as \fBread\fR(2), \fBwrite\fR(2), \fBpoll\fR(2), \fBaioread\fR(3C) and
985 \fBaiowrite\fR(3C). An isochronous endpoint must be opened with \fBO_RDWR\fR.
986 .sp
987 .in +2
988 .nf
989 fd = open("/dev/usb/472.b0b0/0/if0.3in2", O_RDWR);

991 fdstat = open("/dev/usb/472.b0b0/0/if0.3in2stat", O_RDONLY);
992 .fi
993 .in -2

995 .sp
996 .LP
997 Applications can use the status logical name to retrieve the state of the
998 isochronous data endpoint, including details on why the most recent transfer
999 failed.

1000 .sp
1001 .LP
1002 Applications have the flexibility to specify the number of isochronous packets
1003 and the size of individual packets they want to transfer. Applications should
1004 use the following data structures to exchange isochronous packet information
1005 with the \fBugen\fR driver:
1006 .sp
1007 .in +2
1008 .nf
1009 typedef struct ugen_isoc_pkt_descr {
1010 /*
1011 * Set by the application, for all isochro.
1012 * requests, to the num. of bytes to xfer
1013 * in a packet.
1014 */
1015 ushort_t dsc_isoc_pkt_len;

1017 /*
1018 * Set by ugen to actual num. of bytes sent/received
1019 * in a packet.
1020 */
1021 ushort_t dsc_isoc_pkt_actual_len;

1023 /*
1024 * Per pkt. status set by ugen driver both for the
1025 * isochronous IN and OUT requests. Application can
1026 * use USB_LC_STAT_* to parse the status.
1027 */
1028 int dsc_isoc_pkt_status;
1029 } ugen_isoc_pkt_descr_t;

1031 typedef struct ugen_isoc_req_head {
1032 /* pkt count of the isoc request */
1033 int req_isoc_pkts_count;

1035 /* pkt descriptors */
1036 ugen_isoc_pkt_descr_t req_isoc_pkt_descrs[1];
1037 } ugen_isoc_req_head_t;
1038 .fi
1039 .in -2

1041 .sp
1042 .LP
1043 \fBreq_isoc_pkts_count\fR is limited by the capability of the USB host
1044 controller driver. The current upper bound for the \fBuhci\fR and \fBohci\fR
1045 drivers is 512. The upper bound for the \fBehci\fR driver is 1024.
1046 .sp

new/usr/src/man/man7d/ugen.7d 16

1047 .LP
1048 For an isochronous-IN endpoint, applications must first use the
1049 \fBugen_isoc_req_head_t\fR structure followed by \fBugen_isoc_pkt_descr_t\fR to
1050 write packet request information to the \fBugen\fR node. The \fBugen\fR driver
1051 then checks the validity of the request. If it is valid, the driver immediately
1052 begins isochronous polling on the IN endpoint and applications can proceed with
1053 \fBread\fR(2) of the data on the isochronous-IN endpoint. Upon successful
1054 return of \fBread\fR(2), isochronous packet descriptors (whose
1055 \fBdsc_isoc_pkt_actual_len\fR and \fBdsc_isoc_pkt_status\fR fields were filled
1056 by the driver) are returned, followed by the request’s device payload data.
1057 .sp
1058 .LP
1059 Applications should continuously check for and consume isochronous data. The
1060 \fBugen\fR driver enables buffering of up to eight seconds of incoming data for
1061 full-speed isochronous endpoint, one second of data for high-speed isochronous
1062 endpoints who request one transaction per microframe and 1/3 of a second of
1063 incoming data for high-speed high-bandwidth isochronous endpoints who request
1064 three transactions per microframe. In case of buffer overflow, \fBugen\fR
1065 discards the oldest data.
1066 .sp
1067 .LP
1068 The isochronous-IN polling can only be stopped by a \fBclose\fR(2) associated
1069 file descriptor. If applications want to change packet information, they must
1070 first \fBclose\fR(2) the endpoint to stop the isochronous-IN polling, then
1071 \fBopen\fR(2) the endpoint and \fBwrite\fR(2) new packets request.
1072 .sp
1073 .LP
1074 The following example shows how to read an isochronous-IN endpoint:
1075 .sp
1076 .in +2
1077 .nf
1078 #include <sys/usb/clients/ugen/usb_ugen.h>

1080 char *buf, *p;
1081 ushort_t pktlen;
1082 int pktcnt, i;
1083 int len;
1084 ugen_isoc_req_head_t *req;
1085 ugen_isoc_pkt_descr_t *pktdesc;
1086 char rdbuf[5000];

1088 pktcnt = 4; /* 4 packets in this request */
1089
1090 len = sizeof(int) +
1091 sizeof(ugen_isoc_pkt_descr_t) * pktcount;

1093 buf = malloc(len);
1094 if (!buf) {
1095 /* Error recovery. */
1096 }

1098 req = (ugen_isoc_req_head_t *)buf;
1099 req->req_isoc_pkts_count = pktcnt;

1101 pktdesc = (ugen_isoc_pkt_descr_t *)
1102 (req->req_isoc_pkt_descrs);

1104 for (i = 0; i < pktcnt; i++) {
1105 /*
1106 * pktlen should not exceed xfer
1107 * capability of an endpoint
1108 */
1109 pktdesc[i].dsc_isoc_pkt_len = pktlen;

1111 pktdesc[i].dsc_isoc_pkt_actual_len = 0;
1112 pktdesc[i].dsc_isoc_pkt_status = 0;

new/usr/src/man/man7d/ugen.7d 17

1113 }

1115 /*
1116 * write request info to driver and len must
1117 * be exactly the sum of
1118 * sizeof(int) + sizeof(ugen_isoc_pkt_descr_t) * pktcnt.
1119 * Otherwise, an error is returned.
1120 */
1121 if (write(fd, buf, len) < 0) {
1122 /* Error recovery. */
1123 }

1125 /*
1126 * Read length should be sum of all pkt descriptors
1127 * length + payload data length of all pkts
1128 * (sizeof(ugen_isoc_pkt_descr_t) + pktlen) * pktcnt
1129 */
1130 if (read(fd, rdbuf, (sizeof(ugen_isoc_pkt_descr_t) +
1131 pktlen) * pktcnt) < 0) {
1132 /* Error recovery. */
1133 }

1135 pktdesc = (ugen_isoc_pkt_descr_t *) rdbuf;

1137 /* points to payload beginning */
1138 p = rdbuf + pktcnt * sizeof(ugen_isoc_pkt_descr_t);

1140 for (i = 0; i < pktcnt; i++) {
1141 printf("packet %d len = %d,"
1142 " actual_len = %d, status = 0x%x\en",
1142 " actual_len = %d, status = 0x%x\n",
1143 i, pktdesc->dsc_isoc_pkt_len,
1144 pktdesc->dsc_isoc_pkt_actual_len,
1145 pktdesc->dsc_isoc_pkt_status);

1147 /* Processing data */

1149 /*
1150 * next packet data payload, do NOT use
1151 * dsc_isoc_pkt_actual_len
1152 */
1153 p += pktdesc->dsc_isoc_pkt_len;

1155 pktdesc++;
1156 }
1157 .fi
1158 .in -2

1160 .sp
1161 .LP
1162 For an isochronous-OUT endpoint, applications use the same packet descriptor
1163 and request structures to write request information to the \fBugen\fR node.
1164 Following the packet request head information is the packet payload data. Upon
1165 successful return of \fBwrite\fR(2), applications can \fBread\fR(2) the same
1166 \fBugen\fR file immediately to retrieve the individual packet transfer status
1167 of the last request. If the application isn’t concerned about the status, it
1168 can omit it.
1169 .sp
1170 .LP
1171 In the following example, an application transfers data on an isochronous-OUT
1172 endpoint:
1173 .sp
1174 .in +2
1175 .nf
1176 #include <sys/usb/clients/ugen/usb_ugen.h>
1177 char *buf, *p;

new/usr/src/man/man7d/ugen.7d 18

1178 ushort_t i, pktlen;
1179 int len, pktcnt;
1180 ugen_isoc_req_head_t *req;
1181 ugen_isoc_pkt_descr_t *pktdesc;
1182 char rdbuf[4096];

1184 pktcnt = 4;

1186 /*
1187 * set packet length to a proper value, don’t
1188 * exceed endpoint’s capability
1189 */
1190 pktlen = 1024;

1192 len = sizeof(int) +
1193 sizeof(ugen_isoc_pkt_descr_t) * pktcount;
1194
1195 len += pktlen * pktcnt;

1197 buf = malloc(len);
1198 if (!buf) {
1199 /* Error recovery. */
1200 }

1202 req = (ugen_isoc_req_head_t *)buf;
1203 req->req_isoc_pkts_count = pktcnt;

1205 pktdesc =
1206 (ugen_isoc_pkt_descr_t *)(req->req_isoc_pkt_descrs);

1208 for (i = 0; i < pktcnt; i++) {
1209 pktdesc[i].dsc_isoc_pkt_len = pktlen;
1210 pktdesc[i].dsc_isoc_pkt_actual_len = 0;
1211 pktdesc[i].dsc_isoc_pkt_status = 0;
1212 }
1213
1214 /* moving to beginning of payload data */
1215 p = buf + sizeof(int) + sizeof(*pktdesc) * pktcnt;
1216 for (i = 0; i < pktcnt; i++) {

1218 /* fill in the data buffer */

1220 p += pktlen;
1221 }

1223 /*
1224 * write packet request information and data to ugen driver
1225 *
1226 * len should be the exact value of sizeof(int) +
1227 * sizeof(ugen_isoc_pkt_descr_t) * pktcnt + payload length
1228 */
1229 if (write(fd, buf, len) < 0) {
1230 /* Error recovery. */
1231 }

1233 /* read packet status */
1234 if (read(fd, rdbuf, sizeof(*pktdesc) * pktcnt) < 0) {

1236 /* Error recovery. */

1238 } else {

1240 /* Parse every packet’s transfer status */

1242 }
1243 .fi

new/usr/src/man/man7d/ugen.7d 19

1244 .in -2

1246 .SH ERRORS
1247 .sp
1248 .LP
1249 The following statuses are returned by endpoint status device logical names:
1250 .sp
1251 .ne 2
1252 .na
1253 \fBUSB_LC_STAT_NOERROR\fR
1254 .ad
1255 .sp .6
1256 .RS 4n
1257 No error.
1258 .RE

1260 .sp
1261 .ne 2
1262 .na
1263 \fBUSB_LC_STAT_CRC\fR
1264 .ad
1265 .sp .6
1266 .RS 4n
1267 CRC error detected.
1268 .RE

1270 .sp
1271 .ne 2
1272 .na
1273 \fBUSB_LC_STAT_BITSTUFFING\fR
1274 .ad
1275 .sp .6
1276 .RS 4n
1277 Bit stuffing error.
1278 .RE

1280 .sp
1281 .ne 2
1282 .na
1283 \fBUSB_LC_STAT_DATA_TOGGLE_MM\fR
1284 .ad
1285 .sp .6
1286 .RS 4n
1287 Data toggle did not match.
1288 .RE

1290 .sp
1291 .ne 2
1292 .na
1293 \fBUSB_LC_STAT_STALL\fR
1294 .ad
1295 .sp .6
1296 .RS 4n
1297 Endpoint returned stall.
1298 .RE

1300 .sp
1301 .ne 2
1302 .na
1303 \fBUSB_LC_STAT_DEV_NOT_RESP\fR
1304 .ad
1305 .sp .6
1306 .RS 4n
1307 Device not responding.
1308 .RE

new/usr/src/man/man7d/ugen.7d 20

1310 .sp
1311 .ne 2
1312 .na
1313 \fBUSB_LC_STAT_UNEXP_PID\fR
1314 .ad
1315 .sp .6
1316 .RS 4n
1317 Unexpected Packet Identifier (PID).
1318 .RE

1320 .sp
1321 .ne 2
1322 .na
1323 \fBUSB_LC_STAT_PID_CHECKFAILURE\fR
1324 .ad
1325 .sp .6
1326 .RS 4n
1327 Check bits on PID failed.
1328 .RE

1330 .sp
1331 .ne 2
1332 .na
1333 \fBUSB_LC_STAT_DATA_OVERRUN\fR
1334 .ad
1335 .sp .6
1336 .RS 4n
1337 Data overrun.
1338 .RE

1340 .sp
1341 .ne 2
1342 .na
1343 \fBUSB_LC_STAT_DATA_UNDERRUN\fR
1344 .ad
1345 .sp .6
1346 .RS 4n
1347 Data underrun.
1348 .RE

1350 .sp
1351 .ne 2
1352 .na
1353 \fBUSB_LC_STAT_BUFFER_OVERRUN\fR
1354 .ad
1355 .sp .6
1356 .RS 4n
1357 Buffer overrun.
1358 .RE

1360 .sp
1361 .ne 2
1362 .na
1363 \fBUSB_LC_STAT_BUFFER_UNDERRUN\fR
1364 .ad
1365 .sp .6
1366 .RS 4n
1367 Buffer underrun.
1368 .RE

1370 .sp
1371 .ne 2
1372 .na
1373 \fBUSB_LC_STAT_TIMEOUT\fR
1374 .ad
1375 .sp .6

new/usr/src/man/man7d/ugen.7d 21

1376 .RS 4n
1377 Command timed out.
1378 .RE

1380 .sp
1381 .ne 2
1382 .na
1383 \fBUSB_LC_STAT_NOT_ACCESSED\fR
1384 .ad
1385 .sp .6
1386 .RS 4n
1387 Not accessed by the hardware.
1388 .RE

1390 .sp
1391 .ne 2
1392 .na
1393 \fBUSB_LC_STAT_UNSPECIFIED_ERR\fR
1394 .ad
1395 .sp .6
1396 .RS 4n
1397 Unspecified USBA or HCD error.
1398 .RE

1400 .sp
1401 .ne 2
1402 .na
1403 \fBUSB_LC_STAT_NO_BANDWIDTH\fR
1404 .ad
1405 .sp .6
1406 .RS 4n
1407 No bandwidth available.
1408 .RE

1410 .sp
1411 .ne 2
1412 .na
1413 \fBUSB_LC_STAT_HW_ERR\fR
1414 .ad
1415 .sp .6
1416 .RS 4n
1417 Host Controller h/w error.
1418 .RE

1420 .sp
1421 .ne 2
1422 .na
1423 \fBUSB_LC_STAT_SUSPENDED\fR
1424 .ad
1425 .sp .6
1426 .RS 4n
1427 Device was suspended.
1428 .RE

1430 .sp
1431 .ne 2
1432 .na
1433 \fBUSB_LC_STAT_DISCONNECTED\fR
1434 .ad
1435 .sp .6
1436 .RS 4n
1437 Device was disconnected.
1438 .RE

1440 .sp
1441 .ne 2

new/usr/src/man/man7d/ugen.7d 22

1442 .na
1443 \fBUSB_LC_STAT_INTR_BUF_FULL\fR
1444 .ad
1445 .sp .6
1446 .RS 4n
1447 Polling was stopped as the interrupt-IN data buffer was full. Buffer is now
1448 empty and polling has been resumed.
1449 .RE

1451 .sp
1452 .ne 2
1453 .na
1454 \fBUSB_LC_STAT_INTERRUPTED\fR
1455 .ad
1456 .sp .6
1457 .RS 4n
1458 Request was interrupted.
1459 .RE

1461 .sp
1462 .ne 2
1463 .na
1464 \fBUSB_LC_STAT_NO_RESOURCES\fR
1465 .ad
1466 .sp .6
1467 .RS 4n
1468 No resources available for request.
1469 .RE

1471 .sp
1472 .ne 2
1473 .na
1474 \fBUSB_LC_STAT_INTR_POLLING_FAILED\fR
1475 .ad
1476 .sp .6
1477 .RS 4n
1478 Failed to restart polling.
1479 .RE

1481 .sp
1482 .ne 2
1483 .na
1484 \fBUSB_LC_STAT_ISOC_POLLING_FAILED\fR
1485 .ad
1486 .sp .6
1487 .RS 4n
1488 Failed to start isochronous polling.
1489 .RE

1491 .sp
1492 .ne 2
1493 .na
1494 \fBUSB_LC_STAT_ISOC_UNINITIALIZED\fR
1495 .ad
1496 .sp .6
1497 .RS 4n
1498 Isochronous packet information not initialized.
1499 .RE

1501 .sp
1502 .ne 2
1503 .na
1504 \fBUSB_LC_STAT_ISOC_PKT_ERROR\fR
1505 .ad
1506 .sp .6
1507 .RS 4n

new/usr/src/man/man7d/ugen.7d 23

1508 All packets in this isochronous request have errors. The polling on this
1509 isochronous-IN endpoint is suspended and can be resumed on next \fBread\fR(2).
1510 .RE

1512 .sp
1513 .LP
1514 The following system call \fBerrno\fR values are returned:
1515 .sp
1516 .ne 2
1517 .na
1518 \fB\fBEINVAL\fR\fR
1519 .ad
1520 .RS 11n
1521 An attempt was made to enable or disable "one transfer" mode while the
1522 associated endpoint was open.
1523 .RE

1525 .sp
1526 .ne 2
1527 .na
1528 \fB\fBEBUSY\fR\fR
1529 .ad
1530 .RS 11n
1531 The endpoint has been opened and another open is attempted.
1532 .RE

1534 .sp
1535 .ne 2
1536 .na
1537 \fB\fBEACCES\fR\fR
1538 .ad
1539 .RS 11n
1540 An endpoint open was attempted with incorrect flags.
1541 .RE

1543 .sp
1544 .ne 2
1545 .na
1546 \fB\fBENOTSUP\fR\fR
1547 .ad
1548 .RS 11n
1549 Operation not supported.
1550 .RE

1552 .sp
1553 .ne 2
1554 .na
1555 \fB\fBENXIO\fR\fR
1556 .ad
1557 .RS 11n
1558 Device associated with the file descriptor does not exist.
1559 .RE

1561 .sp
1562 .ne 2
1563 .na
1564 \fBENODEV\fR
1565 .ad
1566 .RS 11n
1567 Device has been hot-removed or a suspend/resume happened before this command.
1568 .RE

1570 .sp
1571 .ne 2
1572 .na
1573 \fBEIO\fR

new/usr/src/man/man7d/ugen.7d 24

1574 .ad
1575 .RS 11n
1576 An I/O error occurred. Send a read on the endpoint status minor node to get the
1577 exact error information.
1578 .RE

1580 .sp
1581 .ne 2
1582 .na
1583 \fBEINTR\fR
1584 .ad
1585 .RS 11n
1586 Interrupted system call.
1587 .RE

1589 .sp
1590 .ne 2
1591 .na
1592 \fBENOMEM\fR
1593 .ad
1594 .RS 11n
1595 No memory for the allocation of internal structures.
1596 .RE

1598 .SH FILES
1599 .sp
1600 .in +2
1601 .nf
1602 /kernel/drv/ugen 32 bit ELF kernel module (x86 platform only)
1603 /kernel/drv/sparcv9/ugen 64 bit ELF kernel module

1605 /dev/usb/<vid>.<pid>/<N>/cntrl0
1606 /dev/usb/<vid>.<pid>/<N>/cntrl0stat

1608 /dev/usb/<vid>.<pid>/<N>/if<interface#>
1609 <in|out|cntrl><endpoint#>
1610 /dev/usb/<vid>.<pid>/<N>/if<interface#>
1611 <in|out|cntrl><endpoint#>stat

1613 /dev/usb/<vid>.<pid>/<N>/if<interface#>.
1614 <alternate><in|out|cntrl<endpoint#>
1615 /dev/usb/<vid>.<pid>/<N>/if<interface#>.
1616 <alternate><in|out|cntrl><endpoint#>stat

1618 /dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>
1619 <in|out|cntrl><endpoint#>
1620 /dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>
1621 <in|out|cntrl<endpoint#stat>

1623 /dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>.
1624 <alternate><in|out|cntrl><endpoint#>
1625 /dev/usb/<vid>.<pid>/<N>/cfg<value>if<interface#>.
1626 <alternate><in|out|cntrl><endpoint#>stat

1629 /dev/usb/<vid>.<pid>/<N>/devstat

1631 /dev/usb/<vid>.<pid>/<N>/if<interface#>cntrl0
1632 /dev/usb/<vid>.<pid>/<N>/if<interface#>cntrl0stat
1633 .fi
1634 .in -2

1636 .sp
1637 .LP
1638 where \fIN\fR is an integer representing the instance number of this type of
1639 device. (All logical device names for a single device share the same \fIN\fR.)

new/usr/src/man/man7d/ugen.7d 25

1640 .SH ATTRIBUTES
1641 .sp
1642 .LP
1643 See \fBattributes\fR(5) for descriptions of the following attributes:
1644 .sp

1646 .sp
1647 .TS
1648 box;
1649 c | c
1650 l | l .
1651 ATTRIBUTE TYPE ATTRIBUTE VALUE
1652 _
1653 Architecture PCI-based SPARC
1654 .TE

1656 .SH SEE ALSO
1657 .sp
1658 .LP
1659 \fBlibusb\fR(3LIB), \fBclose\fR(2), \fBpoll\fR(2), \fBread\fR(2),
1660 \fBwrite\fR(2), \fBaioread\fR(3C), \fBaiowrite\fR(3C), \fBusba\fR(7D),
1661 \fBusb_dev_descr\fR(9S).
1662 .SH DIAGNOSTICS
1663 .sp
1664 .LP
1665 In addition to being logged, the following messages may appear on the system
1666 console. All messages are formatted in the following manner:
1667 .sp
1668 .in +2
1669 .nf
1670 Warning: <device path> (ugen<instance num>): Error Message...
1671 .fi
1672 .in -2
1673 .sp

1675 .sp
1676 .ne 2
1677 .na
1678 \fBToo many minor nodes. \fR
1679 .ad
1680 .sp .6
1681 .RS 4n
1682 Device has too many minor nodes. Not all are available.
1683 .RE

1685 .sp
1686 .ne 2
1687 .na
1688 \fBInstance number too high (<\fInumber\fR>).\fR
1689 .ad
1690 .sp .6
1691 .RS 4n
1692 Too many devices are using this driver.
1693 .RE

1695 .sp
1696 .ne 2
1697 .na
1698 \fBCannot access <device>. Please reconnect.\fR
1699 .ad
1700 .sp .6
1701 .RS 4n
1702 This device has been disconnected because a device other than the original one
1703 has been inserted. The driver informs you of this fact by displaying the name
1704 of the original device.
1705 .RE

new/usr/src/man/man7d/ugen.7d 26

1707 .sp
1708 .ne 2
1709 .na
1710 \fBDevice is not identical to the previous one on this port. Please disconnect
1711 and reconnect.\fR
1712 .ad
1713 .sp .6
1714 .RS 4n
1715 Same condition as described above; however in this case, the driver is unable
1716 to identify the original device with a name string.
1717 .RE

1719 .SH NOTES
1720 .sp
1721 .LP
1722 \fBugen\fR returns \fB-1\fR for all commands and sets \fBerrno\fR to
1723 \fBENODEV\fR when device has been hot-removed or resumed from a suspend. The
1724 application must close and reopen all open minor nodes to reinstate successful
1725 communication.

new/usr/src/man/man7i/agpgart_io.7i 1

**
 21024 Tue Sep 10 18:35:22 2013
new/usr/src/man/man7i/agpgart_io.7i
4023 - Typo in file(1) manpage and various others
**

1 ’\" te
2 .\" Copyright (c) 2008, Sun Microsystems, Inc. All Rights Reserved
3 .\" The contents of this file are subject to the terms of the Common Development
4 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
5 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
6 .TH AGPGART_IO 7I "Sep 10, 2013"
6 .TH AGPGART_IO 7I "Sep 25, 2008"
7 .SH NAME
8 agpgart_io \- Solaris agpgart driver I/O control operations
9 .SH SYNOPSIS

10 .LP
11 .nf
12 #include <sys/agpgart.h>
13 .fi

15 .SH DESCRIPTION
16 .sp
17 .LP
18 The Accelerated Graphics Port (AGP) is a PCI bus technology enhancement that
19 improves 3D graphics performance by using low-cost system memory. AGP chipsets
20 use the Graphics Address Remapping Table (GART) to map discontiguous system
21 memory into a contiguous PCI memory range (known as the AGP Aperture), enabling
22 the graphics card to utilize the mapped aperture range as video memory.
23 .sp
24 .LP
25 The \fBagpgart\fR driver creates a pseudo device node at \fB/dev/agpgart\fR and
26 provides a set of ioctls for managing allocation/deallocation of system
27 memory, setting mappings between system memory and aperture range, and setting
28 up AGP devices. The \fBagpgart\fR driver manages both pseudo and real device
29 nodes, but to initiate AGP-related operations you operate only on the
30 \fB/dev/agpgart\fR pseudo device node. To do this, open \fB/dev/agpgart\fR. The
31 macro defined for the pseudo device node name is:
32 .sp
33 .in +2
34 .nf
35 #define AGP_DEVICE "/dev/agpgart"
36 .fi
37 .in -2

39 .sp
40 .LP
41 The \fBagpgart_io\fR driver implementation is AGP architecture-dependent and
42 cannot be made generic. Currently, the \fBagpgart_io\fR driver only supports
43 specific AGP systems. To determine if a system is supported, run an
44 \fBopen\fR(2) system call on the AGP_DEVICE node. (Note that \fBopen\fR(2)
45 fails if a system is not supported). After the AGP_DEVICE is opened, you can
46 use \fBkstat\fR(1M) to read the system architecture type.
47 .sp
48 .LP
49 In addition to AGP system support, the \fBagpgart\fR ioctls can also be used on
50 Intel integrated graphics devices (IGD). IGD devices usually have no dedicated
51 video memory and must use system memory as video memory. IGD devices contain
52 translation tables (referred to as \fBGTT\fR tables) that are similar to the
53 GART translation table for address mapping purposes.
54 .sp
55 .LP
56 Processes must open the \fBagpgart_io\fR driver utilizing a GRAPHICS_ACCESS
57 privilege. Then all the ioctls can be called by this processes with the saved
58 file descriptor. With the exception of AGPIOC_INFO, the AGPIOC_ACQUIRE ioctl
59 must be called before any other ioctl. Once a process has acquired GART, it
60 cannot be acquired by another process until the former process calls

new/usr/src/man/man7i/agpgart_io.7i 2

61 AGPIOC_RELEASE.
62 .sp
63 .LP
64 If the AGP_DEVICE fails to open, it may be due to one of the following reasons:
65 .sp
66 .ne 2
67 .na
68 \fBEAGAIN\fR
69 .ad
70 .sp .6
71 .RS 4n
72 GART table allocation failed.
73 .RE

75 .sp
76 .ne 2
77 .na
78 \fBEIO\fR
79 .ad
80 .sp .6
81 .RS 4n
82 Internal hardware initialization failed.
83 .RE

85 .sp
86 .ne 2
87 .na
88 \fBENXIO\fR
89 .ad
90 .sp .6
91 .RS 4n
92 Getting device soft state error. (This is unlikely to happen.)
93 .RE

95 .sp
96 .ne 2
97 .na
98 \fB EPERM\fR
99 .ad
100 .sp .6
101 .RS 4n
102 Without enough privilege.
103 .RE

105 .SH IOCTLS
106 .sp
107 .LP
108 With the exception of GPIOC_INFO, all ioctls shown in this section are
109 protected by GRAPHICS_ACCESS privilege. (Only processes with GRAPHICS_ACCESS
110 privilege in its effective set can access the privileged ioctls).
111 .sp
112 .LP
113 Common ioctl error codes are shown below. (Additional error codes may be
114 displayed by individual ioctls.)
115 .sp
116 .ne 2
117 .na
118 \fBENXIO\fR
119 .ad
120 .sp .6
121 .RS 4n
122 Ioctl command not supported or getting device soft state error.
123 .RE

125 .sp
126 .ne 2

new/usr/src/man/man7i/agpgart_io.7i 3

127 .na
128 \fBEPERM\fR
129 .ad
130 .sp .6
131 .RS 4n
132 Process not privileged.
133 .RE

135 .sp
136 .ne 2
137 .na
138 \fB\fBAGPIOC_INFO\fR\fR
139 .ad
140 .sp .6
141 .RS 4n
142 Get system wide AGP or IGD hardware information. This command can be called by
143 any process from user or kernel context.
144 .sp
145 .in +2
146 .nf
147 The argument is a pointer to agp_info_t structure.

149 typedef struct _agp_info {
150 agp_version_t agpi_version; /* OUT: AGP version supported */
151 uint32_t agpi_devid; /* OUT: bridge vendor + device */
152 uint32_t agpi_mode; /* OUT: mode of bridge */
153 ulong_t agpi_aperbase; /* OUT: base of aperture */
154 size_t agpi_apersize; /* OUT: aperture size in MB */
155 uint32_t agpi_pgtotal; /* OUT: max aperture pages avail. */
156 uint32_t agpi_pgsystem; /* OUT: same as pg_total */
157 uint32_t agpi_pgused; /* OUT: no. of currently used pages */
158 } agp_info_t;

160 agpi_version The version of AGP protocol the bridge device is
161 compatible with, for example, major 3 and minor 0
162 means AGP version 3.0.

164 typedef struct _agp_version {
165 uint16_t agpv_major;
166 uint16_t agpv_minor;
167 } agp_version_t;

169 agpi_devid AGP bridge vendor and device ID.
170 agpi_mode Current AGP mode, read from AGP status register of
171 target device. The main bits are defined as below.
172 /* AGP status register bits definition */

174 #define AGPSTAT_RQ_MASK 0xff000000
175 #define AGPSTAT_SBA (0x1 << 9)
176 #define AGPSTAT_OVER4G (0x1 << 5)
177 #define AGPSTAT_FW (0x1 << 4)
178 #define AGPSTAT_RATE_MASK 0x7
179 /* AGP 3.0 only bits */
180 #define AGPSTAT_ARQSZ_MASK (0x7 << 13)
181 #define AGPSTAT_CAL_MASK (0x7 << 10)
182 #define AGPSTAT_GART64B (0x1 << 7)
183 #define AGPSTAT_MODE3 (0x1 << 3)
184 /* rate for 2.0 mode */
185 #define AGP2_RATE_1X 0x1
186 #define AGP2_RATE_2X 0x2
187 #define AGP2_RATE_4X 0x4
188 /* rate for 3.0 mode */
189 #define AGP3_RATE_4X 0x1
190 #define AGP3_RATE_8X 0x2

192 agpi_aperbase The base address of aperture in PCI memory space.

new/usr/src/man/man7i/agpgart_io.7i 4

193 agpi_apersize The size of the aperture in megabytes.
194 agpi_pgtotal Represents the maximum memory
195 pages the system can allocate
196 according to aperture size and
197 system memory size (which may differ
198 from the maximum locked memory a process
199 can have. The latter is subject
200 to the memory resource limit imposed
201 by the resource_controls(5) for each
202 project(4)):

204 project.max-device-locked-memory

206 This value can be modified through system
207 utilities like prctl(1).

209 agpi_pgsystem Same as pg_total.
210 agpi_pgused System pages already allocated by the driver.

212 Return Values:

214 EFAULT Argument copy out error
215 EINVAL Command invalid
216 0 Success
217 .fi
218 .in -2

220 .RE

222 .sp
223 .ne 2
224 .na
225 \fB\fBAGPIOC_ACQUIRE\fR\fR
226 .ad
227 .sp .6
228 .RS 4n
229 Acquire control of GART. With the exception of AGPIOC_INFO, a process must
230 acquire GART before can it call other agpgart ioctl commands. Additionally,
231 only processes with GRAPHICS_ACCESS privilege may access this ioctl. In the
232 current agpgart implementation, GART access is exclusive, meaning that only one
233 process can perform GART operations at a time. To release control over GART,
234 call AGPIOC_RELEASE. This command can be called from user or kernel context.
235 .sp
236 The argument should be NULL.
237 .sp
238 Return values:
239 .sp
240 .ne 2
241 .na
242 \fBEBUSY\fR
243 .ad
244 .RS 9n
245 GART has been acquired
246 .RE

248 .sp
249 .ne 2
250 .na
251 \fB0\fR
252 .ad
253 .RS 9n
254 Success.
255 .RE

257 .RE

new/usr/src/man/man7i/agpgart_io.7i 5

259 .sp
260 .ne 2
261 .na
262 \fB\fBAGPIOC_RELEASE\fR\fR
263 .ad
264 .sp .6
265 .RS 4n
266 Release GART control. If a process releases GART control, it cannot perform
267 additional GART operations until GART is reacquired. Note that this command
268 does not free allocated memory or clear GART entries. (All clear jobs are done
269 by direct calls or by closing the device). When a process exits without making
270 this ioctl, the final \fBclose\fR(2) performs this automatically. This command
271 can be called from user or kernel context.
272 .sp
273 The argument should be NULL.
274 .sp
275 Return values:
276 .sp
277 .ne 2
278 .na
279 \fBEPERM\fR
280 .ad
281 .RS 9n
282 Not owner of GART.
283 .RE

285 .sp
286 .ne 2
287 .na
288 \fB0\fR
289 .ad
290 .RS 9n
291 Success.
292 .RE

294 .RE

296 .sp
297 .ne 2
298 .na
299 \fB\fBAGPIOC_SETUP\fR\fR
300 .ad
301 .sp .6
302 .RS 4n
303 Setup AGPCMD register. An AGPCMD register resides in both the AGP master and
304 target devices. The AGPCMD register controls the working mode of the AGP master
305 and target devices. Each device must be configured using the same mode. This
306 command can be called from user or kernel context.
307 .sp
308 .in +2
309 .nf
310 The argument is a pointer to agp_setup_t structure:

312 typedef struct _agp_setup {
313 uint32_t agps_mode; /* IN: value to be set for AGPCMD */
314 } agp_setup_t;

316 agps_mode Specifying the mode to be set. Each bit of the value may have
317 a specific meaning, please refer to AGP 2.0/3.0 specification
318 or hardware datasheets for details.

320 /* AGP command register bits definition */
321 #define AGPCMD_RQ_MASK 0xff000000
322 #define AGPCMD_SBAEN (0x1 << 9)
323 #define AGPCMD_AGPEN (0x1 << 8)
324 #define AGPCMD_OVER4GEN (0x1 << 5)

new/usr/src/man/man7i/agpgart_io.7i 6

325 #define AGPCMD_FWEN (0x1 << 4)
326 #define AGPCMD_RATE_MASK 0x7
327 /* AGP 3.0 only bits */
328 #define AGP3_CMD_ARQSZ_MASK (0x7 << 13)
329 #define AGP3_CMD_CAL_MASK (0x7 << 10)
330 #define AGP3_CMD_GART64BEN (0x1 << 7)
331 .fi
332 .in -2

334 The final values set to the AGPCMD register of the master/target devices are
335 decided by the agps_mode value and AGPSTAT of the master and target devices.
336 .sp
337 Return Values:
338 .sp
339 .ne 2
340 .na
341 \fBEPERM\fR
342 .ad
343 .RS 10n
344 Not owner of GART.
345 .RE

347 .sp
348 .ne 2
349 .na
350 \fBEFAULT\fR
351 .ad
352 .RS 10n
353 Argument copy in error.
354 .RE

356 .sp
357 .ne 2
358 .na
359 \fBEINVAL\fR
360 .ad
361 .RS 10n
362 Command invalid for non-AGP system.
363 .RE

365 .sp
366 .ne 2
367 .na
368 \fBEIO\fR
369 .ad
370 .RS 10n
371 Hardware setup error.
372 .RE

374 .sp
375 .ne 2
376 .na
377 \fB0\fR
378 .ad
379 .RS 10n
380 Success.
381 .RE

383 .RE

385 .sp
386 .ne 2
387 .na
388 \fB\fBAGPIOC_ALLOCATE\fR\fR
389 .ad
390 .sp .6

new/usr/src/man/man7i/agpgart_io.7i 7

391 .RS 4n
392 Allocate system memory for graphics device. This command returns a unique ID
393 which can be used in subsequent operations to represent the allocated memory.
394 The memory is made up of discontiguous physical pages. In rare cases, special
395 memory types may be required. The allocated memory must be bound to the GART
396 table before it can be used by graphics device. Graphics applications can also
397 \fBmmap\fR(2) the memory to userland for data storing. Memory should be freed
398 when it is no longer used by calling AGPIOC_DEALLOCATE or simply by closing the
399 device. This command can be called from user or kernel context.
400 .sp
401 .in +2
402 .nf
403 The argument is a pointer to agp_allocate_t structure.

405 typedef struct _agp_allocate {
406 int32_t agpa_key; /* OUT:ID of allocated memory */
407 uint32_t agpa_pgcount;/* IN: no. of pages to be allocated */
408 uint32_t agpa_type;/* IN: type of memory to be allocated */
409 uint32_t agpa_physical; /* OUT: reserved */
410 } agp_allocate_t;
411 .fi
412 .in -2

414 .sp
415 .ne 2
416 .na
417 \fBagpa_key\fR
418 .ad
419 .RS 21n
420 Unique ID of the allocated memory.
421 .RE

423 .sp
424 .ne 2
425 .na
426 \fBagpa_pgcount\fR
427 .ad
428 .RS 21n
429 Number of pages to be allocated. The driver currently supports only 4K pages.
430 The value cannot exceed the agpi_pgtotal value returned by AGPIOC_INFO ioct and
431 is subject to the limit of project.max-device-locked-memory. If the memory
432 needed is larger than the resource limit but not larger than agpi_pgtotal, use
433 \fBprctl\fR(1) or other system utilities to change the default value of memory
434 resource limit beforehand.
435 .RE

437 .sp
438 .ne 2
439 .na
440 \fBagpa_type\fR
441 .ad
442 .RS 21n
443 Type of memory to be allocated. The valid value of agpa_type should be
444 AGP_NORMAL. It is defined as:
445 .sp
446 .in +2
447 .nf
448 #define AGP_NORMAL 0
449 .fi
450 .in -2

452 Above, AGP_NORMAL represents the discontiguous non-cachable physical memory
453 which doesn’t consume kernel virtual space but can be mapped to user space by
454 \fBmmap\fR(2). This command may support more type values in the future.
455 .RE

new/usr/src/man/man7i/agpgart_io.7i 8

457 .sp
458 .ne 2
459 .na
460 \fBagpa_physical\fR
461 .ad
462 .RS 21n
463 Reserved for special uses. In normal operations, the value is undefined.
464 .sp
465 Return Values:
466 .sp
467 .ne 2
468 .na
469 \fBEPERM\fR
470 .ad
471 .RS 10n
472 Not owner of GART.
473 .RE

475 .sp
476 .ne 2
477 .na
478 \fBEINVAL\fR
479 .ad
480 .RS 10n
481 Argument not valid.
482 .RE

484 .sp
485 .ne 2
486 .na
487 \fBEFAULT\fR
488 .ad
489 .RS 10n
490 Argument copy in/out error.
491 .RE

493 .sp
494 .ne 2
495 .na
496 \fBENOMEM\fR
497 .ad
498 .RS 10n
499 Memory allocation error.
500 .RE

502 .sp
503 .ne 2
504 .na
505 \fB0\fR
506 .ad
507 .RS 10n
508 Success.
509 .RE

511 .RE

513 .sp
514 .ne 2
515 .na
516 \fBAGPIOC_DEALLOCATE\fR
517 .ad
518 .RS 21n
519 Deallocate the memory identified by a key assigned in a previous allocation. If
520 the memory isn’t unbound from GART, this command unbinds it automatically. The
521 memory should no longer be used and those still in mapping to userland cannot
522 be deallocated. Always call AGPIOC_DEALLOCATE explicitly (instead of

new/usr/src/man/man7i/agpgart_io.7i 9

523 deallocating implicitly by closing the device), as the system won’t carry out
524 the job until the last reference to the device file is dropped. This command
525 from user or kernel context.
526 .sp
527 The input argument is a key of type int32_t, no output argument.
528 .sp
529 Return Values:
530 .sp
531 .ne 2
532 .na
533 \fBEPERM\fR
534 .ad
535 .RS 10n
536 Not owner of GART.
537 .RE

539 .sp
540 .ne 2
541 .na
542 \fBEINVAL\fR
543 .ad
544 .RS 10n
545 Key not valid or memory in use.
546 .RE

548 .sp
549 .ne 2
550 .na
551 \fB0\fR
552 .ad
553 .RS 10n
554 Success.
555 .RE

557 .RE

559 .sp
560 .ne 2
561 .na
562 \fBAGPIOC_BIND\fR
563 .ad
564 .RS 21n
565 Bind allocated memory. This command binds the allocated memory identified
566 by a key to a specific offset of the GART table, which enables GART to
567 translate the aperture range at the offset to system memory. Each GART entry
568 represents one physical page. If the GART range is previously bound to other
569 system memory, it returns an error. Once the memory is bound, it cannot be
570 bound to other offsets unless it is unbound. To unbind the memory, call
571 AGPIOC_UNBIND or deallocate the memory. This command can be called from user or
572 kernel context.
573 .sp
574 .in +2
575 .nf
576 The argument is a pointer to agp_bind_t structure:

578 typedef struct _agp_bind {
579 int32_t agpb_key; /* IN: ID of memory to be bound */
580 uint32_t agpb_pgstart; /* IN: offset in aperture */
581 } agp_bind_t;
582 .fi
583 .in -2

585 .sp
586 .ne 2
587 .na
588 \fBagpb_key\fR

new/usr/src/man/man7i/agpgart_io.7i 10

589 .ad
590 .RS 20n
591 The unique ID of the memory to be bound, which is previously allocated by
592 calling AGPIOC_ALLOCATE.
593 .RE

595 .sp
596 .ne 2
597 .na
598 \fBagpb_pgstart\fR
599 .ad
600 .RS 20n
601 The starting page offset to be bound in aperture space.
602 .RE

604 Return Values:
605 .sp
606 .ne 2
607 .na
608 \fBEPERM\fR
609 .ad
610 .RS 20n
611 Not owner of GART.
612 .RE

614 .sp
615 .ne 2
616 .na
617 \fBEFAULT\fR
618 .ad
619 .RS 20n
620 Argument copy in error.
621 .RE

623 .sp
624 .ne 2
625 .na
626 \fBEINVAL\fR
627 .ad
628 .RS 20n
629 Argument not valid.
630 .RE

632 .sp
633 .ne 2
634 .na
635 \fBEIO\fR
636 .ad
637 .RS 20n
638 Binding to the GTT table of IGD devices failed.
639 .RE

641 .sp
642 .ne 2
643 .na
644 \fB0\fR
645 .ad
646 .RS 20n
647 Success.
648 .RE

650 .RE

652 .sp
653 .ne 2
654 .na

new/usr/src/man/man7i/agpgart_io.7i 11

655 \fBAGPIOC_UNBIND\fR
656 .ad
657 .RS 21n
658 Unbind memory identified by a key from the GART. This command clears the
659 corresponding entries in the GART table. Only the memory not in mapping to
660 userland is allowed to be unbound.
661 .sp
662 This ioctl command can be called from user or kernel context.
663 .sp
664 .in +2
665 .nf
666 The argument is a pointer to agp_unbind_t structure.

668 typedef struct _agp_unbind {
669 int32_t agpu_key; /* IN: key of memory to be unbound*/
670 uint32_t agpu_pri; /* Not used: for compat. with Xorg */
671 } agp_unbind_t;
672 .fi
673 .in -2

675 .sp
676 .ne 2
677 .na
678 \fBagpu_key\fR
679 .ad
680 .RS 20n
681 Unique ID of the memory to be unbound which was previously bound by calling
682 AGPIOC_BIND.
683 .RE

685 .sp
686 .ne 2
687 .na
688 \fBagpu_pri\fR
689 .ad
690 .RS 20n
691 Reserved for compatibility with X.org/XFree86, not used.
692 .RE

694 Return Values:
695 .sp
696 .ne 2
697 .na
698 \fBEPERM\fR
699 .ad
700 .RS 20n
701 Not owner of GART.
702 .RE

704 .sp
705 .ne 2
706 .na
707 \fBEFAULT\fR
708 .ad
709 .RS 20n
710 Argument copy in error.
711 .RE

713 .sp
714 .ne 2
715 .na
716 \fBEINVAL\fR
717 .ad
718 .RS 20n
719 Argument not valid or memory in use.
720 .RE

new/usr/src/man/man7i/agpgart_io.7i 12

722 .sp
723 .ne 2
724 .na
725 \fBEIO\fR
726 .ad
727 .RS 20n
728 Unbinding from the GTT table of IGD devices failed.
729 .RE

731 .sp
732 .ne 2
733 .na
734 \fB0\fR
735 .ad
736 .RS 20n
737 Success
738 .RE

740 .RE

742 .RE

744 .SH EXAMPLE
745 .sp
746 .LP
747 Below is an sample program showing how agpgart ioctls can be used:
748 .sp
749 .in +2
750 .nf
751 #include <stdio.h>
752 #include <stdlib.h>
753 #include <unistd.h
754 #include <sys/ioccom.h>
755 #include <sys/types.h>
756 #include <fcntl.h>
757 #include <errno.h>
758 #include <sys/mman.h>
759 #include <sys/agpgart.h>

761 #define AGP_PAGE_SIZE 4096

763 int main(int argc, char *argv[])
764 {
765 int fd, ret;
766 agp_allocate_t alloc;
767 agp_bind_t bindinfo;
768 agp_info_t agpinfo;
769 agp_setup_t modesetup;
770 int *p = NULL;
771 off_t mapoff;
772 size_t maplen;

774 if((fd = open(AGP_DEVICE, O_RDWR))== -1) {
775 printf("open AGP_DEVICE error with %d\en", errno);\e
776 exit(-1);
777 }
778 printf("device opened\en");

780 ret = ioctl(fd, AGPIOC_INFO, &agpinfo);
781 if(ret == -1) {
782 printf("Get info error %d\en", errno);
782 printf("Get info error %d\n", errno);
783 exit(-1);
784 }
785 printf("AGPSTAT is %x\en", agpinfo.agpi_mode);

new/usr/src/man/man7i/agpgart_io.7i 13

786 printf("APBASE is %x\en", agpinfo.agpi_aperbase);
787 printf("APSIZE is %dMB\en", agpinfo.agpi_apersize);
788 printf("pg_total is %d\en", agpinfo.agpi_pgtotal);

790 ret = ioctl(fd, AGPIOC_ACQUIRE);
791 if(ret == -1) {
792 printf(" Acquire GART error %d\en", errno);
793 exit(-1);
794 }

796 modesetup.agps_mode = agpinfo.agpi_mode;
797 ret = ioctl(fd, AGPIOC_SETUP, &modesetup);
798 if(ret == -1) {
799 printf("set up AGP mode error\en", errno);
800 exit(-1);
801 }

803 printf("Please input the number of pages you want to allocate\en");
804 scanf("%d", &alloc.agpa_pgcount);
805 alloc.agpa_type = AGP_NORMAL;
806 ret = ioctl(fd, AGPIOC_ALLOCATE, &alloc);
807 if(ret == -1) {
808 printf("Allocate memory error %d\en", errno);
809 exit(-1);
810 }

812 printf("Please input the aperture page offset to bind\en");
813 scanf("%d", &bindinfo.agpb_pgstart);
814 bindinfo.agpb_key = alloc.agpa_key;
815 ret = ioctl(fd, AGPIOC_BIND, &bindinfo);
816 if(ret == -1) {
817 printf("Bind error %d\en", errno);
818 exit(-1);
819 }
820 printf("Bind successful\en");

822 /*
823 * Now gart aperture space from (bindinfo.agpb_pgstart) to
824 * (bindinfo.agpb_pgstart + alloc.agpa_pgcount) can be used for
825 * AGP graphics transactions
826 */
827 ...

829 /*
830 * mmap can allow user processes to store graphics data
831 * to the aperture space
832 */
833 maplen = alloc.agpa_pgcount * AGP_PAGE_SIZE;
834 mapoff = bindinfo.agpb_pgstart * AGP_PAGE_SIZE;
835 p = (int *)mmap((caddr_t)0, maplen, (PROT_READ | PROT_WRITE),
836 MAP_SHARED, fd, mapoff);
837 if (p == MAP_FAILED) {
838 printf("Mmap error %d\en", errno);
839 exit(-1);
840 }
841 printf("Mmap successful\en");
842 ...

844 /*
845 * When user processes finish access to the aperture space,
846 * unmap the memory range
847 */
848 munmap((void *)p, maplen);
849 ...

851 /*

new/usr/src/man/man7i/agpgart_io.7i 14

852 * After finishing AGP transactions, the resources can be freed
853 * step by step or simply by close device.
854 */
855 ret = ioctl(fd, AGPIOC_DEALLOCATE, alloc.agpa_key);
856 if(ret == -1) {
857 printf(" Deallocate memory error %d\en", errno);
858 exit(-1);
859 }

861 ret = ioctl(fd, AGPIOC_RELEASE);
862 if(ret == -1) {
863 printf(" Release GART error %d\en", errno);
864 exit(-1);
865 }

867 close(fd);
868 }

______unchanged_portion_omitted_

