new usr/src/uts/comon/fs/zfs/arc.c

R R R R

131644 NMon Jun 4 22:08:28 2012
new usr/src/uts/comon/fs/zfs/arc.c
%* NO COMMVENTS *

R R R R R

1/*

I
I
EE I I T T N R I I I T R I R R

[y
N
L T
~

24 *
*/

CDDL HEADER START

The contents of this file are subject to the ternms of the
Common Devel opment and Distribution License (the "License").
You may not use this file except in conpliance with the License.

You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
or http://ww. opensol aris.org/os/licensing.

See the License for the specific | anguage governing perm ssions

and limtations under the License.

When distributing Covered Code, include this CDDL HEADER in each
file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.

If applicable, add the follow ng bel ow this CDDL HEADER, with the
fields enclosed by brackets "[]" replaced with your own identifying
information: Portions Copyright [yyyy]l [nane of copyright owner]

CDDL HEADER END

Copyright (c) 2005, 2010, Oracle and/or its affiliates. Al rights reserved.

Copyright 2011 Nexenta Systens, Inc. Al rights reserved.
Copyright (c) 2012 by Del phix. Al rights reserved.

DVA- based Adj ustabl e Repl acement Cache

While nuch of the theory of operation used here is

based on the self-tuning, |ow overhead repl acenent cache
presented by Megi ddo and Mbdha at FAST 2003, there are sone
significant differences:

1. The Megi ddo and Mbdha nodel assunmes any page is evictable.
Pages in its cache cannot be "locked" into menory. This makes
the eviction algorithmsinple: evict the last page in the list.
This al so nake the performance characteristics easy to reason
about. Qur cache is not so sinple. At any given nonent, sone
subset of the blocks in the cache are un-evictable because we
have handed out a reference to them Blocks are only evictable
when there are no external references active. This nakes
eviction far nore problematic: we choose to evict the evictable
bl ocks that are the "lowest" in the list.

There are tinmes when it is not possible to evict the requested
space. In these circunstances we are unable to adjust the cache
size. To prevent the cache grow ng unbounded at these tinmes we
inplement a "cache throttle" that slows the flow of new data
into the cache until we can nake space avail able.

2. The Megi ddo and Mbddha nodel assunes a fixed cache size.
Pages are evicted when the cache is full and there is a cache
mss. Qur nodel has a variable sized cache. It grows with
high use, but also tries to react to nenory pressure fromthe
operating system decreasing its size when system nenory is
tight.

3. The Megi ddo and Mddha nodel assunes a fixed page size. All
el ements of the cache are therefor exactly the sane size. So
when adj usting the cache size following a cache miss, its sinply

new usr/src/uts/comon/fs/zfs/arc.c

a matter of choosing a single page to evict. |In our nodel, we
have vari abl e sized cache bl ocks (rangeing from512 bytes to
128K bytes). W therefor choose a set of blocks to evict to make
space for a cache miss that approxi mates as closely as possible
the space used by the new bl ock.

See also: "ARC: A Sel f-Tuning, Low Overhead Repl acement Cache"
by N. Megiddo & D. Mdha, FAST 2003

B

The | ocki ng nodel :

A new reference to a cache buffer can be obtained in two
ways: 1) via a hash table | ookup using the DVA as a key,
or 2) via one of the ARC lists. The arc_read() interface
uses nmethod 1, while the internal arc algorithnms for

adj usting the cache use nethod 2. W therefor provide two
types of locks: 1) the hash table |ock array, and 2) the
arc list |ocks.

Buf fers do not have their own nutexes, rather they rely on the
hash tabl e mutexes for the bulk of their protection (i.e. nost
fields in the arc_buf_hdr_t are protected by these nutexes).
Buf fers do not have their own nmutexs, rather they rely on the
hash table mutexs for the bulk of their protection (i.e. nost
fields in the arc_buf_hdr_t are protected by these mutexs).

buf _hash_find() returns the appropriate nutex (held) when it
| ocates the requested buffer in the hash table. It returns
NULL for the nutex if the buffer was not in the table.

buf _hash_renove() expects the appropriate hash nutex to be
already held before it is invoked.

Each arc state also has a nmutex which is used to protect the
buffer list associated with the state. Wen attenpting to
obtain a hash table lock while holding an arc list |ock you

must use: nutex_tryenter() to avoid deadl ock. Al so note that
the active state nutex nust be held before the ghost state nutex.

Arc buffers may have an associated eviction callback function.

This function will be invoked prior to renmoving the buffer (e.g.

in arc_do_user_evicts()). Note however that the data associ ated

with the buffer may be evicted prior to the callback. The call back
must be nade with *no | ocks hel d* (to prevent deadl ock). Additionally,
the users of callbacks nust ensure that their private data is
protected from sinmul taneous cal | backs from arc_buf_evict ()

and arc_do_user_evicts().

Note that the majority of the performance stats are nanipul ated
with atonic operations.

The L2ARC uses the |2arc_buflist_ntx global nutex for the follow ng:

- L2ARC buflist creation

- L2ARC buflist eviction

- L2ARC write conpletion, which wal ks L2ARC buflists

- ARC header destruction, as it rempves from L2ARC buflists
- ARC header release, as it renpves from L2ARC buflists

I T T T T I S I I

/

#i ncl ude <sys/spa. h>
#i ncl ude <sys/zio. h>
#i ncl ude <sys/zfs_context.h>
#i ncl ude <sys/arc. h>

new usr/src/uts/comon/fs/zfs/arc.c

125
126
127
128
129
130
131
132
133
134
135
136

138
139
140

142
143
144

146
147

149
150
151

#i
#i
#i

ncl ude <sys/refcount. h>
ncl ude <sys/vdev. h>
ncl ude <sys/vdev_i npl . h>

#i fdef _KERNEL

#i
#i
#i
#i

ncl ude <sys/vnsystm h>

ncl ude <vnf anon. h>

ncl ude <sys/fs/swapnode. h>
ncl ude <sys/dnlc. h>

#endi f

#i
#i
#i

st
st
st

ncl ude <sys/callb. h>
ncl ude <sys/kstat.h>
ncl ude <zfs_fletcher. h>

atic kmutex_t arc_recl ai mthr_| ock;
atic kcondvar _t arc_reclaimthr_cv; /* used to signal reclaimthr */
atic uint8_t arc_thread_exit;

extern int zfs_wite_limt_shift;

extern uint64_t

zfs_wite_limt_nmax

extern knmutex_t zfs_wite_limt_| oci(;

#define ARC_REDUCE_DNLC_PERCENT 3

ui

nt_t arc_reduce_dnl c_percent = ARC_REDUCE_DNLC PERCENT;

typedef enumarc_reclaimstrategy {

ARC_RECLAI M_AGGR,

> 1. /* Aggressive reclaimstrategy */
ARC_RECLAI M_CONS

/* Conservative reclaimstrategy */

152 } arc_reclaimstrategy_t;
__unchanged_portion_omtted_

2638 /*

2639 * "Read" the block at the specified DVA (in bp) via the

2639 * "Read" the block block at the specified DVA (in bp) via the

2640 * cache. If the block is found in the cache, invoke the provided
2641 * callback imedi ately and return. Note that the ‘zio paraneter
2642 * in the callback will be NULL in this case, since no | O was

2643 * required. If the block is not in the cache pass the read request
2644 * on to the spa with a substitute callback function, so that the
2645 * requested block will be added to the cache.

2646 *

2647 * If a read request arrives for a block that has a read in-progress,
2648 * either wait for the in-progress read to conplete (and return the
2649 * results); or, if this is aread with a "done" func, add a record
2650 * to the read to invoke the "done" func when the read conpl etes,
2651 * and return; or just return.

2652 *

2653 * arc_read_done() will invoke all the requested "done" functions
2654 * for readers of this block.

2655 *

2656 * Nornmal callers should use arc_read and pass the arc buffer and offset
2657 * for the bp. But if you know you don’t need | ocking, you can use
2658 * arc_read_bp.

2659 */

2660 int

2661 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2662 arc_done_func_t *done, void *private, int priority, int zio_flags,
2663 uint32_t *arc_flags, const zbookmark_t *zb)

2664 {

2665 int err;

2667 if (pbuf == NULL) {

2668 /*

2669 * XXX This happens fromtraverse call back funcs, for
2670 * the objset_phys_t bl ock.

2671 */

2672 return (arc_read_nol ock(pio, spa, bp, done, private, priority,

new usr/src/uts/comon/fs/zfs/arc.c

2673 zio_flags, arc_flags, zb));

2674 1

2676 ASSERT(! ref count _i s_zer o(&buf ->b_hdr->b_refcnt));

2677 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2678 rw_ent er (&pbuf - >b_dat a_| ock, RW READER);

2680 err = arc_read_nol ock(pio, spa, bp, done, private, priority,
2681 zio_flags, arc_flags, zb);

2682 rw_exit (&buf->b_data_l ock);

2684 return (err);

2685 }

__unchanged_portion_onitted_

