
new/usr/src/uts/common/fs/zfs/arc.c 1

**
 131644 Mon Jun 4 22:08:28 2012
new/usr/src/uts/common/fs/zfs/arc.c
*** NO COMMENTS ***
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012 by Delphix. All rights reserved.
25 */

27 /*
28 * DVA-based Adjustable Replacement Cache
29 *
30 * While much of the theory of operation used here is
31 * based on the self-tuning, low overhead replacement cache
32 * presented by Megiddo and Modha at FAST 2003, there are some
33 * significant differences:
34 *
35 * 1. The Megiddo and Modha model assumes any page is evictable.
36 * Pages in its cache cannot be "locked" into memory. This makes
37 * the eviction algorithm simple: evict the last page in the list.
38 * This also make the performance characteristics easy to reason
39 * about. Our cache is not so simple. At any given moment, some
40 * subset of the blocks in the cache are un-evictable because we
41 * have handed out a reference to them. Blocks are only evictable
42 * when there are no external references active. This makes
43 * eviction far more problematic: we choose to evict the evictable
44 * blocks that are the "lowest" in the list.
45 *
46 * There are times when it is not possible to evict the requested
47 * space. In these circumstances we are unable to adjust the cache
48 * size. To prevent the cache growing unbounded at these times we
49 * implement a "cache throttle" that slows the flow of new data
50 * into the cache until we can make space available.
51 *
52 * 2. The Megiddo and Modha model assumes a fixed cache size.
53 * Pages are evicted when the cache is full and there is a cache
54 * miss. Our model has a variable sized cache. It grows with
55 * high use, but also tries to react to memory pressure from the
56 * operating system: decreasing its size when system memory is
57 * tight.
58 *
59 * 3. The Megiddo and Modha model assumes a fixed page size. All
60 * elements of the cache are therefor exactly the same size. So
61 * when adjusting the cache size following a cache miss, its simply

new/usr/src/uts/common/fs/zfs/arc.c 2

62 * a matter of choosing a single page to evict. In our model, we
63 * have variable sized cache blocks (rangeing from 512 bytes to
64 * 128K bytes). We therefor choose a set of blocks to evict to make
65 * space for a cache miss that approximates as closely as possible
66 * the space used by the new block.
67 *
68 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
69 * by N. Megiddo & D. Modha, FAST 2003
70 */

72 /*
73 * The locking model:
74 *
75 * A new reference to a cache buffer can be obtained in two
76 * ways: 1) via a hash table lookup using the DVA as a key,
77 * or 2) via one of the ARC lists. The arc_read() interface
78 * uses method 1, while the internal arc algorithms for
79 * adjusting the cache use method 2. We therefor provide two
80 * types of locks: 1) the hash table lock array, and 2) the
81 * arc list locks.
82 *
83 * Buffers do not have their own mutexes, rather they rely on the
84 * hash table mutexes for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexes).
83 * Buffers do not have their own mutexs, rather they rely on the
84 * hash table mutexs for the bulk of their protection (i.e. most
85 * fields in the arc_buf_hdr_t are protected by these mutexs).
86 *
87 * buf_hash_find() returns the appropriate mutex (held) when it
88 * locates the requested buffer in the hash table. It returns
89 * NULL for the mutex if the buffer was not in the table.
90 *
91 * buf_hash_remove() expects the appropriate hash mutex to be
92 * already held before it is invoked.
93 *
94 * Each arc state also has a mutex which is used to protect the
95 * buffer list associated with the state. When attempting to
96 * obtain a hash table lock while holding an arc list lock you
97 * must use: mutex_tryenter() to avoid deadlock. Also note that
98 * the active state mutex must be held before the ghost state mutex.
99 *
100 * Arc buffers may have an associated eviction callback function.
101 * This function will be invoked prior to removing the buffer (e.g.
102 * in arc_do_user_evicts()). Note however that the data associated
103 * with the buffer may be evicted prior to the callback. The callback
104 * must be made with *no locks held* (to prevent deadlock). Additionally,
105 * the users of callbacks must ensure that their private data is
106 * protected from simultaneous callbacks from arc_buf_evict()
107 * and arc_do_user_evicts().
108 *
109 * Note that the majority of the performance stats are manipulated
110 * with atomic operations.
111 *
112 * The L2ARC uses the l2arc_buflist_mtx global mutex for the following:
113 *
114 * - L2ARC buflist creation
115 * - L2ARC buflist eviction
116 * - L2ARC write completion, which walks L2ARC buflists
117 * - ARC header destruction, as it removes from L2ARC buflists
118 * - ARC header release, as it removes from L2ARC buflists
119 */

121 #include <sys/spa.h>
122 #include <sys/zio.h>
123 #include <sys/zfs_context.h>
124 #include <sys/arc.h>

new/usr/src/uts/common/fs/zfs/arc.c 3

125 #include <sys/refcount.h>
126 #include <sys/vdev.h>
127 #include <sys/vdev_impl.h>
128 #ifdef _KERNEL
129 #include <sys/vmsystm.h>
130 #include <vm/anon.h>
131 #include <sys/fs/swapnode.h>
132 #include <sys/dnlc.h>
133 #endif
134 #include <sys/callb.h>
135 #include <sys/kstat.h>
136 #include <zfs_fletcher.h>

138 static kmutex_t arc_reclaim_thr_lock;
139 static kcondvar_t arc_reclaim_thr_cv; /* used to signal reclaim thr */
140 static uint8_t arc_thread_exit;

142 extern int zfs_write_limit_shift;
143 extern uint64_t zfs_write_limit_max;
144 extern kmutex_t zfs_write_limit_lock;

146 #define ARC_REDUCE_DNLC_PERCENT 3
147 uint_t arc_reduce_dnlc_percent = ARC_REDUCE_DNLC_PERCENT;

149 typedef enum arc_reclaim_strategy {
150 ARC_RECLAIM_AGGR, /* Aggressive reclaim strategy */
151 ARC_RECLAIM_CONS /* Conservative reclaim strategy */
152 } arc_reclaim_strategy_t;

______unchanged_portion_omitted_

2638 /*
2639 * "Read" the block at the specified DVA (in bp) via the
2639 * "Read" the block block at the specified DVA (in bp) via the
2640 * cache. If the block is found in the cache, invoke the provided
2641 * callback immediately and return. Note that the ‘zio’ parameter
2642 * in the callback will be NULL in this case, since no IO was
2643 * required. If the block is not in the cache pass the read request
2644 * on to the spa with a substitute callback function, so that the
2645 * requested block will be added to the cache.
2646 *
2647 * If a read request arrives for a block that has a read in-progress,
2648 * either wait for the in-progress read to complete (and return the
2649 * results); or, if this is a read with a "done" func, add a record
2650 * to the read to invoke the "done" func when the read completes,
2651 * and return; or just return.
2652 *
2653 * arc_read_done() will invoke all the requested "done" functions
2654 * for readers of this block.
2655 *
2656 * Normal callers should use arc_read and pass the arc buffer and offset
2657 * for the bp. But if you know you don’t need locking, you can use
2658 * arc_read_bp.
2659 */
2660 int
2661 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp, arc_buf_t *pbuf,
2662 arc_done_func_t *done, void *private, int priority, int zio_flags,
2663 uint32_t *arc_flags, const zbookmark_t *zb)
2664 {
2665 int err;

2667 if (pbuf == NULL) {
2668 /*
2669 * XXX This happens from traverse callback funcs, for
2670 * the objset_phys_t block.
2671 */
2672 return (arc_read_nolock(pio, spa, bp, done, private, priority,

new/usr/src/uts/common/fs/zfs/arc.c 4

2673 zio_flags, arc_flags, zb));
2674 }

2676 ASSERT(!refcount_is_zero(&pbuf->b_hdr->b_refcnt));
2677 ASSERT3U((char *)bp - (char *)pbuf->b_data, <, pbuf->b_hdr->b_size);
2678 rw_enter(&pbuf->b_data_lock, RW_READER);

2680 err = arc_read_nolock(pio, spa, bp, done, private, priority,
2681 zio_flags, arc_flags, zb);
2682 rw_exit(&pbuf->b_data_lock);

2684 return (err);
2685 }
______unchanged_portion_omitted_

