1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * Given a vdev type, return the appropriate ops vector. 69 */ 70 static vdev_ops_t * 71 vdev_getops(const char *type) 72 { 73 vdev_ops_t *ops, **opspp; 74 75 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 76 if (strcmp(ops->vdev_op_type, type) == 0) 77 break; 78 79 return (ops); 80 } 81 82 /* 83 * Default asize function: return the MAX of psize with the asize of 84 * all children. This is what's used by anything other than RAID-Z. 85 */ 86 uint64_t 87 vdev_default_asize(vdev_t *vd, uint64_t psize) 88 { 89 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 90 uint64_t csize; 91 92 for (int c = 0; c < vd->vdev_children; c++) { 93 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 94 asize = MAX(asize, csize); 95 } 96 97 return (asize); 98 } 99 100 /* 101 * Get the minimum allocatable size. We define the allocatable size as 102 * the vdev's asize rounded to the nearest metaslab. This allows us to 103 * replace or attach devices which don't have the same physical size but 104 * can still satisfy the same number of allocations. 105 */ 106 uint64_t 107 vdev_get_min_asize(vdev_t *vd) 108 { 109 vdev_t *pvd = vd->vdev_parent; 110 111 /* 112 * If our parent is NULL (inactive spare or cache) or is the root, 113 * just return our own asize. 114 */ 115 if (pvd == NULL) 116 return (vd->vdev_asize); 117 118 /* 119 * The top-level vdev just returns the allocatable size rounded 120 * to the nearest metaslab. 121 */ 122 if (vd == vd->vdev_top) 123 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 124 125 /* 126 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 127 * so each child must provide at least 1/Nth of its asize. 128 */ 129 if (pvd->vdev_ops == &vdev_raidz_ops) 130 return (pvd->vdev_min_asize / pvd->vdev_children); 131 132 return (pvd->vdev_min_asize); 133 } 134 135 void 136 vdev_set_min_asize(vdev_t *vd) 137 { 138 vd->vdev_min_asize = vdev_get_min_asize(vd); 139 140 for (int c = 0; c < vd->vdev_children; c++) 141 vdev_set_min_asize(vd->vdev_child[c]); 142 } 143 144 vdev_t * 145 vdev_lookup_top(spa_t *spa, uint64_t vdev) 146 { 147 vdev_t *rvd = spa->spa_root_vdev; 148 149 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 150 151 if (vdev < rvd->vdev_children) { 152 ASSERT(rvd->vdev_child[vdev] != NULL); 153 return (rvd->vdev_child[vdev]); 154 } 155 156 return (NULL); 157 } 158 159 vdev_t * 160 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 161 { 162 vdev_t *mvd; 163 164 if (vd->vdev_guid == guid) 165 return (vd); 166 167 for (int c = 0; c < vd->vdev_children; c++) 168 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 169 NULL) 170 return (mvd); 171 172 return (NULL); 173 } 174 175 void 176 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 177 { 178 size_t oldsize, newsize; 179 uint64_t id = cvd->vdev_id; 180 vdev_t **newchild; 181 182 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 183 ASSERT(cvd->vdev_parent == NULL); 184 185 cvd->vdev_parent = pvd; 186 187 if (pvd == NULL) 188 return; 189 190 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 191 192 oldsize = pvd->vdev_children * sizeof (vdev_t *); 193 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 194 newsize = pvd->vdev_children * sizeof (vdev_t *); 195 196 newchild = kmem_zalloc(newsize, KM_SLEEP); 197 if (pvd->vdev_child != NULL) { 198 bcopy(pvd->vdev_child, newchild, oldsize); 199 kmem_free(pvd->vdev_child, oldsize); 200 } 201 202 pvd->vdev_child = newchild; 203 pvd->vdev_child[id] = cvd; 204 205 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 206 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 207 208 /* 209 * Walk up all ancestors to update guid sum. 210 */ 211 for (; pvd != NULL; pvd = pvd->vdev_parent) 212 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 213 } 214 215 void 216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 217 { 218 int c; 219 uint_t id = cvd->vdev_id; 220 221 ASSERT(cvd->vdev_parent == pvd); 222 223 if (pvd == NULL) 224 return; 225 226 ASSERT(id < pvd->vdev_children); 227 ASSERT(pvd->vdev_child[id] == cvd); 228 229 pvd->vdev_child[id] = NULL; 230 cvd->vdev_parent = NULL; 231 232 for (c = 0; c < pvd->vdev_children; c++) 233 if (pvd->vdev_child[c]) 234 break; 235 236 if (c == pvd->vdev_children) { 237 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 238 pvd->vdev_child = NULL; 239 pvd->vdev_children = 0; 240 } 241 242 /* 243 * Walk up all ancestors to update guid sum. 244 */ 245 for (; pvd != NULL; pvd = pvd->vdev_parent) 246 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 247 } 248 249 /* 250 * Remove any holes in the child array. 251 */ 252 void 253 vdev_compact_children(vdev_t *pvd) 254 { 255 vdev_t **newchild, *cvd; 256 int oldc = pvd->vdev_children; 257 int newc; 258 259 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 260 261 for (int c = newc = 0; c < oldc; c++) 262 if (pvd->vdev_child[c]) 263 newc++; 264 265 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 266 267 for (int c = newc = 0; c < oldc; c++) { 268 if ((cvd = pvd->vdev_child[c]) != NULL) { 269 newchild[newc] = cvd; 270 cvd->vdev_id = newc++; 271 } 272 } 273 274 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 275 pvd->vdev_child = newchild; 276 pvd->vdev_children = newc; 277 } 278 279 /* 280 * Allocate and minimally initialize a vdev_t. 281 */ 282 vdev_t * 283 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 284 { 285 vdev_t *vd; 286 287 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 288 289 if (spa->spa_root_vdev == NULL) { 290 ASSERT(ops == &vdev_root_ops); 291 spa->spa_root_vdev = vd; 292 spa->spa_load_guid = spa_generate_guid(NULL); 293 } 294 295 if (guid == 0 && ops != &vdev_hole_ops) { 296 if (spa->spa_root_vdev == vd) { 297 /* 298 * The root vdev's guid will also be the pool guid, 299 * which must be unique among all pools. 300 */ 301 guid = spa_generate_guid(NULL); 302 } else { 303 /* 304 * Any other vdev's guid must be unique within the pool. 305 */ 306 guid = spa_generate_guid(spa); 307 } 308 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 309 } 310 311 vd->vdev_spa = spa; 312 vd->vdev_id = id; 313 vd->vdev_guid = guid; 314 vd->vdev_guid_sum = guid; 315 vd->vdev_ops = ops; 316 vd->vdev_state = VDEV_STATE_CLOSED; 317 vd->vdev_ishole = (ops == &vdev_hole_ops); 318 319 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 320 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 321 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 322 for (int t = 0; t < DTL_TYPES; t++) { 323 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 324 &vd->vdev_dtl_lock); 325 } 326 txg_list_create(&vd->vdev_ms_list, 327 offsetof(struct metaslab, ms_txg_node)); 328 txg_list_create(&vd->vdev_dtl_list, 329 offsetof(struct vdev, vdev_dtl_node)); 330 vd->vdev_stat.vs_timestamp = gethrtime(); 331 vdev_queue_init(vd); 332 vdev_cache_init(vd); 333 334 return (vd); 335 } 336 337 /* 338 * Allocate a new vdev. The 'alloctype' is used to control whether we are 339 * creating a new vdev or loading an existing one - the behavior is slightly 340 * different for each case. 341 */ 342 int 343 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 344 int alloctype) 345 { 346 vdev_ops_t *ops; 347 char *type; 348 uint64_t guid = 0, islog, nparity; 349 vdev_t *vd; 350 351 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 352 353 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 354 return (SET_ERROR(EINVAL)); 355 356 if ((ops = vdev_getops(type)) == NULL) 357 return (SET_ERROR(EINVAL)); 358 359 /* 360 * If this is a load, get the vdev guid from the nvlist. 361 * Otherwise, vdev_alloc_common() will generate one for us. 362 */ 363 if (alloctype == VDEV_ALLOC_LOAD) { 364 uint64_t label_id; 365 366 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 367 label_id != id) 368 return (SET_ERROR(EINVAL)); 369 370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 371 return (SET_ERROR(EINVAL)); 372 } else if (alloctype == VDEV_ALLOC_SPARE) { 373 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 374 return (SET_ERROR(EINVAL)); 375 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (SET_ERROR(EINVAL)); 378 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (SET_ERROR(EINVAL)); 381 } 382 383 /* 384 * The first allocated vdev must be of type 'root'. 385 */ 386 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 387 return (SET_ERROR(EINVAL)); 388 389 /* 390 * Determine whether we're a log vdev. 391 */ 392 islog = 0; 393 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 394 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 395 return (SET_ERROR(ENOTSUP)); 396 397 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 398 return (SET_ERROR(ENOTSUP)); 399 400 /* 401 * Set the nparity property for RAID-Z vdevs. 402 */ 403 nparity = -1ULL; 404 if (ops == &vdev_raidz_ops) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 406 &nparity) == 0) { 407 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 408 return (SET_ERROR(EINVAL)); 409 /* 410 * Previous versions could only support 1 or 2 parity 411 * device. 412 */ 413 if (nparity > 1 && 414 spa_version(spa) < SPA_VERSION_RAIDZ2) 415 return (SET_ERROR(ENOTSUP)); 416 if (nparity > 2 && 417 spa_version(spa) < SPA_VERSION_RAIDZ3) 418 return (SET_ERROR(ENOTSUP)); 419 } else { 420 /* 421 * We require the parity to be specified for SPAs that 422 * support multiple parity levels. 423 */ 424 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 425 return (SET_ERROR(EINVAL)); 426 /* 427 * Otherwise, we default to 1 parity device for RAID-Z. 428 */ 429 nparity = 1; 430 } 431 } else { 432 nparity = 0; 433 } 434 ASSERT(nparity != -1ULL); 435 436 vd = vdev_alloc_common(spa, id, guid, ops); 437 438 vd->vdev_islog = islog; 439 vd->vdev_nparity = nparity; 440 441 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 442 vd->vdev_path = spa_strdup(vd->vdev_path); 443 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 444 vd->vdev_devid = spa_strdup(vd->vdev_devid); 445 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 446 &vd->vdev_physpath) == 0) 447 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 448 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 449 vd->vdev_fru = spa_strdup(vd->vdev_fru); 450 451 /* 452 * Set the whole_disk property. If it's not specified, leave the value 453 * as -1. 454 */ 455 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 456 &vd->vdev_wholedisk) != 0) 457 vd->vdev_wholedisk = -1ULL; 458 459 /* 460 * Look for the 'not present' flag. This will only be set if the device 461 * was not present at the time of import. 462 */ 463 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 464 &vd->vdev_not_present); 465 466 /* 467 * Get the alignment requirement. 468 */ 469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 470 471 /* 472 * Retrieve the vdev creation time. 473 */ 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 475 &vd->vdev_crtxg); 476 477 /* 478 * If we're a top-level vdev, try to load the allocation parameters. 479 */ 480 if (parent && !parent->vdev_parent && 481 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 482 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 483 &vd->vdev_ms_array); 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 485 &vd->vdev_ms_shift); 486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 487 &vd->vdev_asize); 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 489 &vd->vdev_removing); 490 } 491 492 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 493 ASSERT(alloctype == VDEV_ALLOC_LOAD || 494 alloctype == VDEV_ALLOC_ADD || 495 alloctype == VDEV_ALLOC_SPLIT || 496 alloctype == VDEV_ALLOC_ROOTPOOL); 497 vd->vdev_mg = metaslab_group_create(islog ? 498 spa_log_class(spa) : spa_normal_class(spa), vd); 499 } 500 501 /* 502 * If we're a leaf vdev, try to load the DTL object and other state. 503 */ 504 if (vd->vdev_ops->vdev_op_leaf && 505 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 506 alloctype == VDEV_ALLOC_ROOTPOOL)) { 507 if (alloctype == VDEV_ALLOC_LOAD) { 508 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 509 &vd->vdev_dtl_object); 510 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 511 &vd->vdev_unspare); 512 } 513 514 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 515 uint64_t spare = 0; 516 517 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 518 &spare) == 0 && spare) 519 spa_spare_add(vd); 520 } 521 522 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 523 &vd->vdev_offline); 524 525 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 526 &vd->vdev_resilver_txg); 527 528 /* 529 * When importing a pool, we want to ignore the persistent fault 530 * state, as the diagnosis made on another system may not be 531 * valid in the current context. Local vdevs will 532 * remain in the faulted state. 533 */ 534 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 535 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 536 &vd->vdev_faulted); 537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 538 &vd->vdev_degraded); 539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 540 &vd->vdev_removed); 541 542 if (vd->vdev_faulted || vd->vdev_degraded) { 543 char *aux; 544 545 vd->vdev_label_aux = 546 VDEV_AUX_ERR_EXCEEDED; 547 if (nvlist_lookup_string(nv, 548 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 549 strcmp(aux, "external") == 0) 550 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 551 } 552 } 553 } 554 555 /* 556 * Add ourselves to the parent's list of children. 557 */ 558 vdev_add_child(parent, vd); 559 560 *vdp = vd; 561 562 return (0); 563 } 564 565 void 566 vdev_free(vdev_t *vd) 567 { 568 spa_t *spa = vd->vdev_spa; 569 570 /* 571 * vdev_free() implies closing the vdev first. This is simpler than 572 * trying to ensure complicated semantics for all callers. 573 */ 574 vdev_close(vd); 575 576 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 577 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 578 579 /* 580 * Free all children. 581 */ 582 for (int c = 0; c < vd->vdev_children; c++) 583 vdev_free(vd->vdev_child[c]); 584 585 ASSERT(vd->vdev_child == NULL); 586 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 587 588 /* 589 * Discard allocation state. 590 */ 591 if (vd->vdev_mg != NULL) { 592 vdev_metaslab_fini(vd); 593 metaslab_group_destroy(vd->vdev_mg); 594 } 595 596 ASSERT0(vd->vdev_stat.vs_space); 597 ASSERT0(vd->vdev_stat.vs_dspace); 598 ASSERT0(vd->vdev_stat.vs_alloc); 599 600 /* 601 * Remove this vdev from its parent's child list. 602 */ 603 vdev_remove_child(vd->vdev_parent, vd); 604 605 ASSERT(vd->vdev_parent == NULL); 606 607 /* 608 * Clean up vdev structure. 609 */ 610 vdev_queue_fini(vd); 611 vdev_cache_fini(vd); 612 613 if (vd->vdev_path) 614 spa_strfree(vd->vdev_path); 615 if (vd->vdev_devid) 616 spa_strfree(vd->vdev_devid); 617 if (vd->vdev_physpath) 618 spa_strfree(vd->vdev_physpath); 619 if (vd->vdev_fru) 620 spa_strfree(vd->vdev_fru); 621 622 if (vd->vdev_isspare) 623 spa_spare_remove(vd); 624 if (vd->vdev_isl2cache) 625 spa_l2cache_remove(vd); 626 627 txg_list_destroy(&vd->vdev_ms_list); 628 txg_list_destroy(&vd->vdev_dtl_list); 629 630 mutex_enter(&vd->vdev_dtl_lock); 631 space_map_close(vd->vdev_dtl_sm); 632 for (int t = 0; t < DTL_TYPES; t++) { 633 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 634 range_tree_destroy(vd->vdev_dtl[t]); 635 } 636 mutex_exit(&vd->vdev_dtl_lock); 637 638 mutex_destroy(&vd->vdev_dtl_lock); 639 mutex_destroy(&vd->vdev_stat_lock); 640 mutex_destroy(&vd->vdev_probe_lock); 641 642 if (vd == spa->spa_root_vdev) 643 spa->spa_root_vdev = NULL; 644 645 kmem_free(vd, sizeof (vdev_t)); 646 } 647 648 /* 649 * Transfer top-level vdev state from svd to tvd. 650 */ 651 static void 652 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 653 { 654 spa_t *spa = svd->vdev_spa; 655 metaslab_t *msp; 656 vdev_t *vd; 657 int t; 658 659 ASSERT(tvd == tvd->vdev_top); 660 661 tvd->vdev_ms_array = svd->vdev_ms_array; 662 tvd->vdev_ms_shift = svd->vdev_ms_shift; 663 tvd->vdev_ms_count = svd->vdev_ms_count; 664 665 svd->vdev_ms_array = 0; 666 svd->vdev_ms_shift = 0; 667 svd->vdev_ms_count = 0; 668 669 if (tvd->vdev_mg) 670 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 671 tvd->vdev_mg = svd->vdev_mg; 672 tvd->vdev_ms = svd->vdev_ms; 673 674 svd->vdev_mg = NULL; 675 svd->vdev_ms = NULL; 676 677 if (tvd->vdev_mg != NULL) 678 tvd->vdev_mg->mg_vd = tvd; 679 680 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 681 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 682 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 683 684 svd->vdev_stat.vs_alloc = 0; 685 svd->vdev_stat.vs_space = 0; 686 svd->vdev_stat.vs_dspace = 0; 687 688 for (t = 0; t < TXG_SIZE; t++) { 689 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 690 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 691 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 692 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 693 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 694 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 695 } 696 697 if (list_link_active(&svd->vdev_config_dirty_node)) { 698 vdev_config_clean(svd); 699 vdev_config_dirty(tvd); 700 } 701 702 if (list_link_active(&svd->vdev_state_dirty_node)) { 703 vdev_state_clean(svd); 704 vdev_state_dirty(tvd); 705 } 706 707 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 708 svd->vdev_deflate_ratio = 0; 709 710 tvd->vdev_islog = svd->vdev_islog; 711 svd->vdev_islog = 0; 712 } 713 714 static void 715 vdev_top_update(vdev_t *tvd, vdev_t *vd) 716 { 717 if (vd == NULL) 718 return; 719 720 vd->vdev_top = tvd; 721 722 for (int c = 0; c < vd->vdev_children; c++) 723 vdev_top_update(tvd, vd->vdev_child[c]); 724 } 725 726 /* 727 * Add a mirror/replacing vdev above an existing vdev. 728 */ 729 vdev_t * 730 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 731 { 732 spa_t *spa = cvd->vdev_spa; 733 vdev_t *pvd = cvd->vdev_parent; 734 vdev_t *mvd; 735 736 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 737 738 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 739 740 mvd->vdev_asize = cvd->vdev_asize; 741 mvd->vdev_min_asize = cvd->vdev_min_asize; 742 mvd->vdev_max_asize = cvd->vdev_max_asize; 743 mvd->vdev_ashift = cvd->vdev_ashift; 744 mvd->vdev_state = cvd->vdev_state; 745 mvd->vdev_crtxg = cvd->vdev_crtxg; 746 747 vdev_remove_child(pvd, cvd); 748 vdev_add_child(pvd, mvd); 749 cvd->vdev_id = mvd->vdev_children; 750 vdev_add_child(mvd, cvd); 751 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 752 753 if (mvd == mvd->vdev_top) 754 vdev_top_transfer(cvd, mvd); 755 756 return (mvd); 757 } 758 759 /* 760 * Remove a 1-way mirror/replacing vdev from the tree. 761 */ 762 void 763 vdev_remove_parent(vdev_t *cvd) 764 { 765 vdev_t *mvd = cvd->vdev_parent; 766 vdev_t *pvd = mvd->vdev_parent; 767 768 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 769 770 ASSERT(mvd->vdev_children == 1); 771 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 772 mvd->vdev_ops == &vdev_replacing_ops || 773 mvd->vdev_ops == &vdev_spare_ops); 774 cvd->vdev_ashift = mvd->vdev_ashift; 775 776 vdev_remove_child(mvd, cvd); 777 vdev_remove_child(pvd, mvd); 778 779 /* 780 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 781 * Otherwise, we could have detached an offline device, and when we 782 * go to import the pool we'll think we have two top-level vdevs, 783 * instead of a different version of the same top-level vdev. 784 */ 785 if (mvd->vdev_top == mvd) { 786 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 787 cvd->vdev_orig_guid = cvd->vdev_guid; 788 cvd->vdev_guid += guid_delta; 789 cvd->vdev_guid_sum += guid_delta; 790 791 /* 792 * If pool not set for autoexpand, we need to also preserve 793 * mvd's asize to prevent automatic expansion of cvd. 794 * Otherwise if we are adjusting the mirror by attaching and 795 * detaching children of non-uniform sizes, the mirror could 796 * autoexpand, unexpectedly requiring larger devices to 797 * re-establish the mirror. 798 */ 799 if (!cvd->vdev_spa->spa_autoexpand) 800 cvd->vdev_asize = mvd->vdev_asize; 801 } 802 cvd->vdev_id = mvd->vdev_id; 803 vdev_add_child(pvd, cvd); 804 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 805 806 if (cvd == cvd->vdev_top) 807 vdev_top_transfer(mvd, cvd); 808 809 ASSERT(mvd->vdev_children == 0); 810 vdev_free(mvd); 811 } 812 813 int 814 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 815 { 816 spa_t *spa = vd->vdev_spa; 817 objset_t *mos = spa->spa_meta_objset; 818 uint64_t m; 819 uint64_t oldc = vd->vdev_ms_count; 820 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 821 metaslab_t **mspp; 822 int error; 823 824 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 825 826 /* 827 * This vdev is not being allocated from yet or is a hole. 828 */ 829 if (vd->vdev_ms_shift == 0) 830 return (0); 831 832 ASSERT(!vd->vdev_ishole); 833 834 /* 835 * Compute the raidz-deflation ratio. Note, we hard-code 836 * in 128k (1 << 17) because it is the current "typical" blocksize. 837 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change, 838 * or we will inconsistently account for existing bp's. 839 */ 840 vd->vdev_deflate_ratio = (1 << 17) / 841 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 842 843 ASSERT(oldc <= newc); 844 845 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 846 847 if (oldc != 0) { 848 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 849 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 850 } 851 852 vd->vdev_ms = mspp; 853 vd->vdev_ms_count = newc; 854 855 for (m = oldc; m < newc; m++) { 856 uint64_t object = 0; 857 858 if (txg == 0) { 859 error = dmu_read(mos, vd->vdev_ms_array, 860 m * sizeof (uint64_t), sizeof (uint64_t), &object, 861 DMU_READ_PREFETCH); 862 if (error) 863 return (error); 864 } 865 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg); 866 } 867 868 if (txg == 0) 869 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 870 871 /* 872 * If the vdev is being removed we don't activate 873 * the metaslabs since we want to ensure that no new 874 * allocations are performed on this device. 875 */ 876 if (oldc == 0 && !vd->vdev_removing) 877 metaslab_group_activate(vd->vdev_mg); 878 879 if (txg == 0) 880 spa_config_exit(spa, SCL_ALLOC, FTAG); 881 882 return (0); 883 } 884 885 void 886 vdev_metaslab_fini(vdev_t *vd) 887 { 888 uint64_t m; 889 uint64_t count = vd->vdev_ms_count; 890 891 if (vd->vdev_ms != NULL) { 892 metaslab_group_passivate(vd->vdev_mg); 893 for (m = 0; m < count; m++) { 894 metaslab_t *msp = vd->vdev_ms[m]; 895 896 if (msp != NULL) 897 metaslab_fini(msp); 898 } 899 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 900 vd->vdev_ms = NULL; 901 } 902 } 903 904 typedef struct vdev_probe_stats { 905 boolean_t vps_readable; 906 boolean_t vps_writeable; 907 int vps_flags; 908 } vdev_probe_stats_t; 909 910 static void 911 vdev_probe_done(zio_t *zio) 912 { 913 spa_t *spa = zio->io_spa; 914 vdev_t *vd = zio->io_vd; 915 vdev_probe_stats_t *vps = zio->io_private; 916 917 ASSERT(vd->vdev_probe_zio != NULL); 918 919 if (zio->io_type == ZIO_TYPE_READ) { 920 if (zio->io_error == 0) 921 vps->vps_readable = 1; 922 if (zio->io_error == 0 && spa_writeable(spa)) { 923 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 924 zio->io_offset, zio->io_size, zio->io_data, 925 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 926 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 927 } else { 928 zio_buf_free(zio->io_data, zio->io_size); 929 } 930 } else if (zio->io_type == ZIO_TYPE_WRITE) { 931 if (zio->io_error == 0) 932 vps->vps_writeable = 1; 933 zio_buf_free(zio->io_data, zio->io_size); 934 } else if (zio->io_type == ZIO_TYPE_NULL) { 935 zio_t *pio; 936 937 vd->vdev_cant_read |= !vps->vps_readable; 938 vd->vdev_cant_write |= !vps->vps_writeable; 939 940 if (vdev_readable(vd) && 941 (vdev_writeable(vd) || !spa_writeable(spa))) { 942 zio->io_error = 0; 943 } else { 944 ASSERT(zio->io_error != 0); 945 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 946 spa, vd, NULL, 0, 0); 947 zio->io_error = SET_ERROR(ENXIO); 948 } 949 950 mutex_enter(&vd->vdev_probe_lock); 951 ASSERT(vd->vdev_probe_zio == zio); 952 vd->vdev_probe_zio = NULL; 953 mutex_exit(&vd->vdev_probe_lock); 954 955 while ((pio = zio_walk_parents(zio)) != NULL) 956 if (!vdev_accessible(vd, pio)) 957 pio->io_error = SET_ERROR(ENXIO); 958 959 kmem_free(vps, sizeof (*vps)); 960 } 961 } 962 963 /* 964 * Determine whether this device is accessible. 965 * 966 * Read and write to several known locations: the pad regions of each 967 * vdev label but the first, which we leave alone in case it contains 968 * a VTOC. 969 */ 970 zio_t * 971 vdev_probe(vdev_t *vd, zio_t *zio) 972 { 973 spa_t *spa = vd->vdev_spa; 974 vdev_probe_stats_t *vps = NULL; 975 zio_t *pio; 976 977 ASSERT(vd->vdev_ops->vdev_op_leaf); 978 979 /* 980 * Don't probe the probe. 981 */ 982 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 983 return (NULL); 984 985 /* 986 * To prevent 'probe storms' when a device fails, we create 987 * just one probe i/o at a time. All zios that want to probe 988 * this vdev will become parents of the probe io. 989 */ 990 mutex_enter(&vd->vdev_probe_lock); 991 992 if ((pio = vd->vdev_probe_zio) == NULL) { 993 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 994 995 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 996 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 997 ZIO_FLAG_TRYHARD; 998 999 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1000 /* 1001 * vdev_cant_read and vdev_cant_write can only 1002 * transition from TRUE to FALSE when we have the 1003 * SCL_ZIO lock as writer; otherwise they can only 1004 * transition from FALSE to TRUE. This ensures that 1005 * any zio looking at these values can assume that 1006 * failures persist for the life of the I/O. That's 1007 * important because when a device has intermittent 1008 * connectivity problems, we want to ensure that 1009 * they're ascribed to the device (ENXIO) and not 1010 * the zio (EIO). 1011 * 1012 * Since we hold SCL_ZIO as writer here, clear both 1013 * values so the probe can reevaluate from first 1014 * principles. 1015 */ 1016 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1017 vd->vdev_cant_read = B_FALSE; 1018 vd->vdev_cant_write = B_FALSE; 1019 } 1020 1021 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1022 vdev_probe_done, vps, 1023 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1024 1025 /* 1026 * We can't change the vdev state in this context, so we 1027 * kick off an async task to do it on our behalf. 1028 */ 1029 if (zio != NULL) { 1030 vd->vdev_probe_wanted = B_TRUE; 1031 spa_async_request(spa, SPA_ASYNC_PROBE); 1032 } 1033 } 1034 1035 if (zio != NULL) 1036 zio_add_child(zio, pio); 1037 1038 mutex_exit(&vd->vdev_probe_lock); 1039 1040 if (vps == NULL) { 1041 ASSERT(zio != NULL); 1042 return (NULL); 1043 } 1044 1045 for (int l = 1; l < VDEV_LABELS; l++) { 1046 zio_nowait(zio_read_phys(pio, vd, 1047 vdev_label_offset(vd->vdev_psize, l, 1048 offsetof(vdev_label_t, vl_pad2)), 1049 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1050 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1051 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1052 } 1053 1054 if (zio == NULL) 1055 return (pio); 1056 1057 zio_nowait(pio); 1058 return (NULL); 1059 } 1060 1061 static void 1062 vdev_open_child(void *arg) 1063 { 1064 vdev_t *vd = arg; 1065 1066 vd->vdev_open_thread = curthread; 1067 vd->vdev_open_error = vdev_open(vd); 1068 vd->vdev_open_thread = NULL; 1069 } 1070 1071 boolean_t 1072 vdev_uses_zvols(vdev_t *vd) 1073 { 1074 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1075 strlen(ZVOL_DIR)) == 0) 1076 return (B_TRUE); 1077 for (int c = 0; c < vd->vdev_children; c++) 1078 if (vdev_uses_zvols(vd->vdev_child[c])) 1079 return (B_TRUE); 1080 return (B_FALSE); 1081 } 1082 1083 void 1084 vdev_open_children(vdev_t *vd) 1085 { 1086 taskq_t *tq; 1087 int children = vd->vdev_children; 1088 1089 /* 1090 * in order to handle pools on top of zvols, do the opens 1091 * in a single thread so that the same thread holds the 1092 * spa_namespace_lock 1093 */ 1094 if (vdev_uses_zvols(vd)) { 1095 for (int c = 0; c < children; c++) 1096 vd->vdev_child[c]->vdev_open_error = 1097 vdev_open(vd->vdev_child[c]); 1098 return; 1099 } 1100 tq = taskq_create("vdev_open", children, minclsyspri, 1101 children, children, TASKQ_PREPOPULATE); 1102 1103 for (int c = 0; c < children; c++) 1104 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1105 TQ_SLEEP) != NULL); 1106 1107 taskq_destroy(tq); 1108 } 1109 1110 /* 1111 * Prepare a virtual device for access. 1112 */ 1113 int 1114 vdev_open(vdev_t *vd) 1115 { 1116 spa_t *spa = vd->vdev_spa; 1117 int error; 1118 uint64_t osize = 0; 1119 uint64_t max_osize = 0; 1120 uint64_t asize, max_asize, psize; 1121 uint64_t ashift = 0; 1122 1123 ASSERT(vd->vdev_open_thread == curthread || 1124 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1125 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1126 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1127 vd->vdev_state == VDEV_STATE_OFFLINE); 1128 1129 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1130 vd->vdev_cant_read = B_FALSE; 1131 vd->vdev_cant_write = B_FALSE; 1132 vd->vdev_min_asize = vdev_get_min_asize(vd); 1133 1134 /* 1135 * If this vdev is not removed, check its fault status. If it's 1136 * faulted, bail out of the open. 1137 */ 1138 if (!vd->vdev_removed && vd->vdev_faulted) { 1139 ASSERT(vd->vdev_children == 0); 1140 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1141 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1142 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1143 vd->vdev_label_aux); 1144 return (SET_ERROR(ENXIO)); 1145 } else if (vd->vdev_offline) { 1146 ASSERT(vd->vdev_children == 0); 1147 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1148 return (SET_ERROR(ENXIO)); 1149 } 1150 1151 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1152 1153 /* 1154 * Reset the vdev_reopening flag so that we actually close 1155 * the vdev on error. 1156 */ 1157 vd->vdev_reopening = B_FALSE; 1158 if (zio_injection_enabled && error == 0) 1159 error = zio_handle_device_injection(vd, NULL, ENXIO); 1160 1161 if (error) { 1162 if (vd->vdev_removed && 1163 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1164 vd->vdev_removed = B_FALSE; 1165 1166 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1167 vd->vdev_stat.vs_aux); 1168 return (error); 1169 } 1170 1171 vd->vdev_removed = B_FALSE; 1172 1173 /* 1174 * Recheck the faulted flag now that we have confirmed that 1175 * the vdev is accessible. If we're faulted, bail. 1176 */ 1177 if (vd->vdev_faulted) { 1178 ASSERT(vd->vdev_children == 0); 1179 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1180 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1181 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1182 vd->vdev_label_aux); 1183 return (SET_ERROR(ENXIO)); 1184 } 1185 1186 if (vd->vdev_degraded) { 1187 ASSERT(vd->vdev_children == 0); 1188 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1189 VDEV_AUX_ERR_EXCEEDED); 1190 } else { 1191 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1192 } 1193 1194 /* 1195 * For hole or missing vdevs we just return success. 1196 */ 1197 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1198 return (0); 1199 1200 for (int c = 0; c < vd->vdev_children; c++) { 1201 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1202 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1203 VDEV_AUX_NONE); 1204 break; 1205 } 1206 } 1207 1208 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1209 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1210 1211 if (vd->vdev_children == 0) { 1212 if (osize < SPA_MINDEVSIZE) { 1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1214 VDEV_AUX_TOO_SMALL); 1215 return (SET_ERROR(EOVERFLOW)); 1216 } 1217 psize = osize; 1218 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1219 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1220 VDEV_LABEL_END_SIZE); 1221 } else { 1222 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1223 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1225 VDEV_AUX_TOO_SMALL); 1226 return (SET_ERROR(EOVERFLOW)); 1227 } 1228 psize = 0; 1229 asize = osize; 1230 max_asize = max_osize; 1231 } 1232 1233 vd->vdev_psize = psize; 1234 1235 /* 1236 * Make sure the allocatable size hasn't shrunk. 1237 */ 1238 if (asize < vd->vdev_min_asize) { 1239 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1240 VDEV_AUX_BAD_LABEL); 1241 return (SET_ERROR(EINVAL)); 1242 } 1243 1244 if (vd->vdev_asize == 0) { 1245 /* 1246 * This is the first-ever open, so use the computed values. 1247 * For testing purposes, a higher ashift can be requested. 1248 */ 1249 vd->vdev_asize = asize; 1250 vd->vdev_max_asize = max_asize; 1251 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1252 } else { 1253 /* 1254 * Detect if the alignment requirement has increased. 1255 * We don't want to make the pool unavailable, just 1256 * issue a warning instead. 1257 */ 1258 if (ashift > vd->vdev_top->vdev_ashift && 1259 vd->vdev_ops->vdev_op_leaf) { 1260 cmn_err(CE_WARN, 1261 "Disk, '%s', has a block alignment that is " 1262 "larger than the pool's alignment\n", 1263 vd->vdev_path); 1264 } 1265 vd->vdev_max_asize = max_asize; 1266 } 1267 1268 /* 1269 * If all children are healthy and the asize has increased, 1270 * then we've experienced dynamic LUN growth. If automatic 1271 * expansion is enabled then use the additional space. 1272 */ 1273 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1274 (vd->vdev_expanding || spa->spa_autoexpand)) 1275 vd->vdev_asize = asize; 1276 1277 vdev_set_min_asize(vd); 1278 1279 /* 1280 * Ensure we can issue some IO before declaring the 1281 * vdev open for business. 1282 */ 1283 if (vd->vdev_ops->vdev_op_leaf && 1284 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1285 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1286 VDEV_AUX_ERR_EXCEEDED); 1287 return (error); 1288 } 1289 1290 /* 1291 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1292 * resilver. But don't do this if we are doing a reopen for a scrub, 1293 * since this would just restart the scrub we are already doing. 1294 */ 1295 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1296 vdev_resilver_needed(vd, NULL, NULL)) 1297 spa_async_request(spa, SPA_ASYNC_RESILVER); 1298 1299 return (0); 1300 } 1301 1302 /* 1303 * Called once the vdevs are all opened, this routine validates the label 1304 * contents. This needs to be done before vdev_load() so that we don't 1305 * inadvertently do repair I/Os to the wrong device. 1306 * 1307 * If 'strict' is false ignore the spa guid check. This is necessary because 1308 * if the machine crashed during a re-guid the new guid might have been written 1309 * to all of the vdev labels, but not the cached config. The strict check 1310 * will be performed when the pool is opened again using the mos config. 1311 * 1312 * This function will only return failure if one of the vdevs indicates that it 1313 * has since been destroyed or exported. This is only possible if 1314 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1315 * will be updated but the function will return 0. 1316 */ 1317 int 1318 vdev_validate(vdev_t *vd, boolean_t strict) 1319 { 1320 spa_t *spa = vd->vdev_spa; 1321 nvlist_t *label; 1322 uint64_t guid = 0, top_guid; 1323 uint64_t state; 1324 1325 for (int c = 0; c < vd->vdev_children; c++) 1326 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1327 return (SET_ERROR(EBADF)); 1328 1329 /* 1330 * If the device has already failed, or was marked offline, don't do 1331 * any further validation. Otherwise, label I/O will fail and we will 1332 * overwrite the previous state. 1333 */ 1334 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1335 uint64_t aux_guid = 0; 1336 nvlist_t *nvl; 1337 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1338 spa_last_synced_txg(spa) : -1ULL; 1339 1340 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1341 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1342 VDEV_AUX_BAD_LABEL); 1343 return (0); 1344 } 1345 1346 /* 1347 * Determine if this vdev has been split off into another 1348 * pool. If so, then refuse to open it. 1349 */ 1350 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1351 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1352 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1353 VDEV_AUX_SPLIT_POOL); 1354 nvlist_free(label); 1355 return (0); 1356 } 1357 1358 if (strict && (nvlist_lookup_uint64(label, 1359 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1360 guid != spa_guid(spa))) { 1361 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1362 VDEV_AUX_CORRUPT_DATA); 1363 nvlist_free(label); 1364 return (0); 1365 } 1366 1367 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1368 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1369 &aux_guid) != 0) 1370 aux_guid = 0; 1371 1372 /* 1373 * If this vdev just became a top-level vdev because its 1374 * sibling was detached, it will have adopted the parent's 1375 * vdev guid -- but the label may or may not be on disk yet. 1376 * Fortunately, either version of the label will have the 1377 * same top guid, so if we're a top-level vdev, we can 1378 * safely compare to that instead. 1379 * 1380 * If we split this vdev off instead, then we also check the 1381 * original pool's guid. We don't want to consider the vdev 1382 * corrupt if it is partway through a split operation. 1383 */ 1384 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1385 &guid) != 0 || 1386 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1387 &top_guid) != 0 || 1388 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1389 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1390 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1391 VDEV_AUX_CORRUPT_DATA); 1392 nvlist_free(label); 1393 return (0); 1394 } 1395 1396 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1397 &state) != 0) { 1398 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1399 VDEV_AUX_CORRUPT_DATA); 1400 nvlist_free(label); 1401 return (0); 1402 } 1403 1404 nvlist_free(label); 1405 1406 /* 1407 * If this is a verbatim import, no need to check the 1408 * state of the pool. 1409 */ 1410 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1411 spa_load_state(spa) == SPA_LOAD_OPEN && 1412 state != POOL_STATE_ACTIVE) 1413 return (SET_ERROR(EBADF)); 1414 1415 /* 1416 * If we were able to open and validate a vdev that was 1417 * previously marked permanently unavailable, clear that state 1418 * now. 1419 */ 1420 if (vd->vdev_not_present) 1421 vd->vdev_not_present = 0; 1422 } 1423 1424 return (0); 1425 } 1426 1427 /* 1428 * Close a virtual device. 1429 */ 1430 void 1431 vdev_close(vdev_t *vd) 1432 { 1433 spa_t *spa = vd->vdev_spa; 1434 vdev_t *pvd = vd->vdev_parent; 1435 1436 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1437 1438 /* 1439 * If our parent is reopening, then we are as well, unless we are 1440 * going offline. 1441 */ 1442 if (pvd != NULL && pvd->vdev_reopening) 1443 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1444 1445 vd->vdev_ops->vdev_op_close(vd); 1446 1447 vdev_cache_purge(vd); 1448 1449 /* 1450 * We record the previous state before we close it, so that if we are 1451 * doing a reopen(), we don't generate FMA ereports if we notice that 1452 * it's still faulted. 1453 */ 1454 vd->vdev_prevstate = vd->vdev_state; 1455 1456 if (vd->vdev_offline) 1457 vd->vdev_state = VDEV_STATE_OFFLINE; 1458 else 1459 vd->vdev_state = VDEV_STATE_CLOSED; 1460 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1461 } 1462 1463 void 1464 vdev_hold(vdev_t *vd) 1465 { 1466 spa_t *spa = vd->vdev_spa; 1467 1468 ASSERT(spa_is_root(spa)); 1469 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1470 return; 1471 1472 for (int c = 0; c < vd->vdev_children; c++) 1473 vdev_hold(vd->vdev_child[c]); 1474 1475 if (vd->vdev_ops->vdev_op_leaf) 1476 vd->vdev_ops->vdev_op_hold(vd); 1477 } 1478 1479 void 1480 vdev_rele(vdev_t *vd) 1481 { 1482 spa_t *spa = vd->vdev_spa; 1483 1484 ASSERT(spa_is_root(spa)); 1485 for (int c = 0; c < vd->vdev_children; c++) 1486 vdev_rele(vd->vdev_child[c]); 1487 1488 if (vd->vdev_ops->vdev_op_leaf) 1489 vd->vdev_ops->vdev_op_rele(vd); 1490 } 1491 1492 /* 1493 * Reopen all interior vdevs and any unopened leaves. We don't actually 1494 * reopen leaf vdevs which had previously been opened as they might deadlock 1495 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1496 * If the leaf has never been opened then open it, as usual. 1497 */ 1498 void 1499 vdev_reopen(vdev_t *vd) 1500 { 1501 spa_t *spa = vd->vdev_spa; 1502 1503 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1504 1505 /* set the reopening flag unless we're taking the vdev offline */ 1506 vd->vdev_reopening = !vd->vdev_offline; 1507 vdev_close(vd); 1508 (void) vdev_open(vd); 1509 1510 /* 1511 * Call vdev_validate() here to make sure we have the same device. 1512 * Otherwise, a device with an invalid label could be successfully 1513 * opened in response to vdev_reopen(). 1514 */ 1515 if (vd->vdev_aux) { 1516 (void) vdev_validate_aux(vd); 1517 if (vdev_readable(vd) && vdev_writeable(vd) && 1518 vd->vdev_aux == &spa->spa_l2cache && 1519 !l2arc_vdev_present(vd)) 1520 l2arc_add_vdev(spa, vd); 1521 } else { 1522 (void) vdev_validate(vd, B_TRUE); 1523 } 1524 1525 /* 1526 * Reassess parent vdev's health. 1527 */ 1528 vdev_propagate_state(vd); 1529 } 1530 1531 int 1532 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1533 { 1534 int error; 1535 1536 /* 1537 * Normally, partial opens (e.g. of a mirror) are allowed. 1538 * For a create, however, we want to fail the request if 1539 * there are any components we can't open. 1540 */ 1541 error = vdev_open(vd); 1542 1543 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1544 vdev_close(vd); 1545 return (error ? error : ENXIO); 1546 } 1547 1548 /* 1549 * Recursively load DTLs and initialize all labels. 1550 */ 1551 if ((error = vdev_dtl_load(vd)) != 0 || 1552 (error = vdev_label_init(vd, txg, isreplacing ? 1553 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1554 vdev_close(vd); 1555 return (error); 1556 } 1557 1558 return (0); 1559 } 1560 1561 void 1562 vdev_metaslab_set_size(vdev_t *vd) 1563 { 1564 /* 1565 * Aim for roughly 200 metaslabs per vdev. 1566 */ 1567 vd->vdev_ms_shift = highbit64(vd->vdev_asize / 200); 1568 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1569 } 1570 1571 void 1572 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1573 { 1574 ASSERT(vd == vd->vdev_top); 1575 ASSERT(!vd->vdev_ishole); 1576 ASSERT(ISP2(flags)); 1577 ASSERT(spa_writeable(vd->vdev_spa)); 1578 1579 if (flags & VDD_METASLAB) 1580 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1581 1582 if (flags & VDD_DTL) 1583 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1584 1585 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1586 } 1587 1588 void 1589 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1590 { 1591 for (int c = 0; c < vd->vdev_children; c++) 1592 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1593 1594 if (vd->vdev_ops->vdev_op_leaf) 1595 vdev_dirty(vd->vdev_top, flags, vd, txg); 1596 } 1597 1598 /* 1599 * DTLs. 1600 * 1601 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1602 * the vdev has less than perfect replication. There are four kinds of DTL: 1603 * 1604 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1605 * 1606 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1607 * 1608 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1609 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1610 * txgs that was scrubbed. 1611 * 1612 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1613 * persistent errors or just some device being offline. 1614 * Unlike the other three, the DTL_OUTAGE map is not generally 1615 * maintained; it's only computed when needed, typically to 1616 * determine whether a device can be detached. 1617 * 1618 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1619 * either has the data or it doesn't. 1620 * 1621 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1622 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1623 * if any child is less than fully replicated, then so is its parent. 1624 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1625 * comprising only those txgs which appear in 'maxfaults' or more children; 1626 * those are the txgs we don't have enough replication to read. For example, 1627 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1628 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1629 * two child DTL_MISSING maps. 1630 * 1631 * It should be clear from the above that to compute the DTLs and outage maps 1632 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1633 * Therefore, that is all we keep on disk. When loading the pool, or after 1634 * a configuration change, we generate all other DTLs from first principles. 1635 */ 1636 void 1637 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1638 { 1639 range_tree_t *rt = vd->vdev_dtl[t]; 1640 1641 ASSERT(t < DTL_TYPES); 1642 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1643 ASSERT(spa_writeable(vd->vdev_spa)); 1644 1645 mutex_enter(rt->rt_lock); 1646 if (!range_tree_contains(rt, txg, size)) 1647 range_tree_add(rt, txg, size); 1648 mutex_exit(rt->rt_lock); 1649 } 1650 1651 boolean_t 1652 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1653 { 1654 range_tree_t *rt = vd->vdev_dtl[t]; 1655 boolean_t dirty = B_FALSE; 1656 1657 ASSERT(t < DTL_TYPES); 1658 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1659 1660 mutex_enter(rt->rt_lock); 1661 if (range_tree_space(rt) != 0) 1662 dirty = range_tree_contains(rt, txg, size); 1663 mutex_exit(rt->rt_lock); 1664 1665 return (dirty); 1666 } 1667 1668 boolean_t 1669 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1670 { 1671 range_tree_t *rt = vd->vdev_dtl[t]; 1672 boolean_t empty; 1673 1674 mutex_enter(rt->rt_lock); 1675 empty = (range_tree_space(rt) == 0); 1676 mutex_exit(rt->rt_lock); 1677 1678 return (empty); 1679 } 1680 1681 /* 1682 * Returns the lowest txg in the DTL range. 1683 */ 1684 static uint64_t 1685 vdev_dtl_min(vdev_t *vd) 1686 { 1687 range_seg_t *rs; 1688 1689 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1690 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1691 ASSERT0(vd->vdev_children); 1692 1693 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1694 return (rs->rs_start - 1); 1695 } 1696 1697 /* 1698 * Returns the highest txg in the DTL. 1699 */ 1700 static uint64_t 1701 vdev_dtl_max(vdev_t *vd) 1702 { 1703 range_seg_t *rs; 1704 1705 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1706 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1707 ASSERT0(vd->vdev_children); 1708 1709 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1710 return (rs->rs_end); 1711 } 1712 1713 /* 1714 * Determine if a resilvering vdev should remove any DTL entries from 1715 * its range. If the vdev was resilvering for the entire duration of the 1716 * scan then it should excise that range from its DTLs. Otherwise, this 1717 * vdev is considered partially resilvered and should leave its DTL 1718 * entries intact. The comment in vdev_dtl_reassess() describes how we 1719 * excise the DTLs. 1720 */ 1721 static boolean_t 1722 vdev_dtl_should_excise(vdev_t *vd) 1723 { 1724 spa_t *spa = vd->vdev_spa; 1725 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1726 1727 ASSERT0(scn->scn_phys.scn_errors); 1728 ASSERT0(vd->vdev_children); 1729 1730 if (vd->vdev_resilver_txg == 0 || 1731 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1732 return (B_TRUE); 1733 1734 /* 1735 * When a resilver is initiated the scan will assign the scn_max_txg 1736 * value to the highest txg value that exists in all DTLs. If this 1737 * device's max DTL is not part of this scan (i.e. it is not in 1738 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1739 * for excision. 1740 */ 1741 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1742 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1743 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1744 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1745 return (B_TRUE); 1746 } 1747 return (B_FALSE); 1748 } 1749 1750 /* 1751 * Reassess DTLs after a config change or scrub completion. 1752 */ 1753 void 1754 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1755 { 1756 spa_t *spa = vd->vdev_spa; 1757 avl_tree_t reftree; 1758 int minref; 1759 1760 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1761 1762 for (int c = 0; c < vd->vdev_children; c++) 1763 vdev_dtl_reassess(vd->vdev_child[c], txg, 1764 scrub_txg, scrub_done); 1765 1766 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1767 return; 1768 1769 if (vd->vdev_ops->vdev_op_leaf) { 1770 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1771 1772 mutex_enter(&vd->vdev_dtl_lock); 1773 1774 /* 1775 * If we've completed a scan cleanly then determine 1776 * if this vdev should remove any DTLs. We only want to 1777 * excise regions on vdevs that were available during 1778 * the entire duration of this scan. 1779 */ 1780 if (scrub_txg != 0 && 1781 (spa->spa_scrub_started || 1782 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1783 vdev_dtl_should_excise(vd)) { 1784 /* 1785 * We completed a scrub up to scrub_txg. If we 1786 * did it without rebooting, then the scrub dtl 1787 * will be valid, so excise the old region and 1788 * fold in the scrub dtl. Otherwise, leave the 1789 * dtl as-is if there was an error. 1790 * 1791 * There's little trick here: to excise the beginning 1792 * of the DTL_MISSING map, we put it into a reference 1793 * tree and then add a segment with refcnt -1 that 1794 * covers the range [0, scrub_txg). This means 1795 * that each txg in that range has refcnt -1 or 0. 1796 * We then add DTL_SCRUB with a refcnt of 2, so that 1797 * entries in the range [0, scrub_txg) will have a 1798 * positive refcnt -- either 1 or 2. We then convert 1799 * the reference tree into the new DTL_MISSING map. 1800 */ 1801 space_reftree_create(&reftree); 1802 space_reftree_add_map(&reftree, 1803 vd->vdev_dtl[DTL_MISSING], 1); 1804 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1805 space_reftree_add_map(&reftree, 1806 vd->vdev_dtl[DTL_SCRUB], 2); 1807 space_reftree_generate_map(&reftree, 1808 vd->vdev_dtl[DTL_MISSING], 1); 1809 space_reftree_destroy(&reftree); 1810 } 1811 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1812 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1813 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1814 if (scrub_done) 1815 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1816 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1817 if (!vdev_readable(vd)) 1818 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1819 else 1820 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1821 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1822 1823 /* 1824 * If the vdev was resilvering and no longer has any 1825 * DTLs then reset its resilvering flag. 1826 */ 1827 if (vd->vdev_resilver_txg != 0 && 1828 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1829 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1830 vd->vdev_resilver_txg = 0; 1831 1832 mutex_exit(&vd->vdev_dtl_lock); 1833 1834 if (txg != 0) 1835 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1836 return; 1837 } 1838 1839 mutex_enter(&vd->vdev_dtl_lock); 1840 for (int t = 0; t < DTL_TYPES; t++) { 1841 /* account for child's outage in parent's missing map */ 1842 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1843 if (t == DTL_SCRUB) 1844 continue; /* leaf vdevs only */ 1845 if (t == DTL_PARTIAL) 1846 minref = 1; /* i.e. non-zero */ 1847 else if (vd->vdev_nparity != 0) 1848 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1849 else 1850 minref = vd->vdev_children; /* any kind of mirror */ 1851 space_reftree_create(&reftree); 1852 for (int c = 0; c < vd->vdev_children; c++) { 1853 vdev_t *cvd = vd->vdev_child[c]; 1854 mutex_enter(&cvd->vdev_dtl_lock); 1855 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1856 mutex_exit(&cvd->vdev_dtl_lock); 1857 } 1858 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1859 space_reftree_destroy(&reftree); 1860 } 1861 mutex_exit(&vd->vdev_dtl_lock); 1862 } 1863 1864 int 1865 vdev_dtl_load(vdev_t *vd) 1866 { 1867 spa_t *spa = vd->vdev_spa; 1868 objset_t *mos = spa->spa_meta_objset; 1869 int error = 0; 1870 1871 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1872 ASSERT(!vd->vdev_ishole); 1873 1874 error = space_map_open(&vd->vdev_dtl_sm, mos, 1875 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1876 if (error) 1877 return (error); 1878 ASSERT(vd->vdev_dtl_sm != NULL); 1879 1880 mutex_enter(&vd->vdev_dtl_lock); 1881 1882 /* 1883 * Now that we've opened the space_map we need to update 1884 * the in-core DTL. 1885 */ 1886 space_map_update(vd->vdev_dtl_sm); 1887 1888 error = space_map_load(vd->vdev_dtl_sm, 1889 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1890 mutex_exit(&vd->vdev_dtl_lock); 1891 1892 return (error); 1893 } 1894 1895 for (int c = 0; c < vd->vdev_children; c++) { 1896 error = vdev_dtl_load(vd->vdev_child[c]); 1897 if (error != 0) 1898 break; 1899 } 1900 1901 return (error); 1902 } 1903 1904 void 1905 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1906 { 1907 spa_t *spa = vd->vdev_spa; 1908 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1909 objset_t *mos = spa->spa_meta_objset; 1910 range_tree_t *rtsync; 1911 kmutex_t rtlock; 1912 dmu_tx_t *tx; 1913 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1914 1915 ASSERT(!vd->vdev_ishole); 1916 ASSERT(vd->vdev_ops->vdev_op_leaf); 1917 1918 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1919 1920 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1921 mutex_enter(&vd->vdev_dtl_lock); 1922 space_map_free(vd->vdev_dtl_sm, tx); 1923 space_map_close(vd->vdev_dtl_sm); 1924 vd->vdev_dtl_sm = NULL; 1925 mutex_exit(&vd->vdev_dtl_lock); 1926 dmu_tx_commit(tx); 1927 return; 1928 } 1929 1930 if (vd->vdev_dtl_sm == NULL) { 1931 uint64_t new_object; 1932 1933 new_object = space_map_alloc(mos, tx); 1934 VERIFY3U(new_object, !=, 0); 1935 1936 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1937 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1938 ASSERT(vd->vdev_dtl_sm != NULL); 1939 } 1940 1941 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1942 1943 rtsync = range_tree_create(NULL, NULL, &rtlock); 1944 1945 mutex_enter(&rtlock); 1946 1947 mutex_enter(&vd->vdev_dtl_lock); 1948 range_tree_walk(rt, range_tree_add, rtsync); 1949 mutex_exit(&vd->vdev_dtl_lock); 1950 1951 space_map_truncate(vd->vdev_dtl_sm, tx); 1952 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1953 range_tree_vacate(rtsync, NULL, NULL); 1954 1955 range_tree_destroy(rtsync); 1956 1957 mutex_exit(&rtlock); 1958 mutex_destroy(&rtlock); 1959 1960 /* 1961 * If the object for the space map has changed then dirty 1962 * the top level so that we update the config. 1963 */ 1964 if (object != space_map_object(vd->vdev_dtl_sm)) { 1965 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1966 "new object %llu", txg, spa_name(spa), object, 1967 space_map_object(vd->vdev_dtl_sm)); 1968 vdev_config_dirty(vd->vdev_top); 1969 } 1970 1971 dmu_tx_commit(tx); 1972 1973 mutex_enter(&vd->vdev_dtl_lock); 1974 space_map_update(vd->vdev_dtl_sm); 1975 mutex_exit(&vd->vdev_dtl_lock); 1976 } 1977 1978 /* 1979 * Determine whether the specified vdev can be offlined/detached/removed 1980 * without losing data. 1981 */ 1982 boolean_t 1983 vdev_dtl_required(vdev_t *vd) 1984 { 1985 spa_t *spa = vd->vdev_spa; 1986 vdev_t *tvd = vd->vdev_top; 1987 uint8_t cant_read = vd->vdev_cant_read; 1988 boolean_t required; 1989 1990 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1991 1992 if (vd == spa->spa_root_vdev || vd == tvd) 1993 return (B_TRUE); 1994 1995 /* 1996 * Temporarily mark the device as unreadable, and then determine 1997 * whether this results in any DTL outages in the top-level vdev. 1998 * If not, we can safely offline/detach/remove the device. 1999 */ 2000 vd->vdev_cant_read = B_TRUE; 2001 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2002 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2003 vd->vdev_cant_read = cant_read; 2004 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2005 2006 if (!required && zio_injection_enabled) 2007 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2008 2009 return (required); 2010 } 2011 2012 /* 2013 * Determine if resilver is needed, and if so the txg range. 2014 */ 2015 boolean_t 2016 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2017 { 2018 boolean_t needed = B_FALSE; 2019 uint64_t thismin = UINT64_MAX; 2020 uint64_t thismax = 0; 2021 2022 if (vd->vdev_children == 0) { 2023 mutex_enter(&vd->vdev_dtl_lock); 2024 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2025 vdev_writeable(vd)) { 2026 2027 thismin = vdev_dtl_min(vd); 2028 thismax = vdev_dtl_max(vd); 2029 needed = B_TRUE; 2030 } 2031 mutex_exit(&vd->vdev_dtl_lock); 2032 } else { 2033 for (int c = 0; c < vd->vdev_children; c++) { 2034 vdev_t *cvd = vd->vdev_child[c]; 2035 uint64_t cmin, cmax; 2036 2037 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2038 thismin = MIN(thismin, cmin); 2039 thismax = MAX(thismax, cmax); 2040 needed = B_TRUE; 2041 } 2042 } 2043 } 2044 2045 if (needed && minp) { 2046 *minp = thismin; 2047 *maxp = thismax; 2048 } 2049 return (needed); 2050 } 2051 2052 void 2053 vdev_load(vdev_t *vd) 2054 { 2055 /* 2056 * Recursively load all children. 2057 */ 2058 for (int c = 0; c < vd->vdev_children; c++) 2059 vdev_load(vd->vdev_child[c]); 2060 2061 /* 2062 * If this is a top-level vdev, initialize its metaslabs. 2063 */ 2064 if (vd == vd->vdev_top && !vd->vdev_ishole && 2065 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2066 vdev_metaslab_init(vd, 0) != 0)) 2067 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2068 VDEV_AUX_CORRUPT_DATA); 2069 2070 /* 2071 * If this is a leaf vdev, load its DTL. 2072 */ 2073 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2074 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2075 VDEV_AUX_CORRUPT_DATA); 2076 } 2077 2078 /* 2079 * The special vdev case is used for hot spares and l2cache devices. Its 2080 * sole purpose it to set the vdev state for the associated vdev. To do this, 2081 * we make sure that we can open the underlying device, then try to read the 2082 * label, and make sure that the label is sane and that it hasn't been 2083 * repurposed to another pool. 2084 */ 2085 int 2086 vdev_validate_aux(vdev_t *vd) 2087 { 2088 nvlist_t *label; 2089 uint64_t guid, version; 2090 uint64_t state; 2091 2092 if (!vdev_readable(vd)) 2093 return (0); 2094 2095 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2096 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2097 VDEV_AUX_CORRUPT_DATA); 2098 return (-1); 2099 } 2100 2101 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2102 !SPA_VERSION_IS_SUPPORTED(version) || 2103 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2104 guid != vd->vdev_guid || 2105 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2106 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2107 VDEV_AUX_CORRUPT_DATA); 2108 nvlist_free(label); 2109 return (-1); 2110 } 2111 2112 /* 2113 * We don't actually check the pool state here. If it's in fact in 2114 * use by another pool, we update this fact on the fly when requested. 2115 */ 2116 nvlist_free(label); 2117 return (0); 2118 } 2119 2120 void 2121 vdev_remove(vdev_t *vd, uint64_t txg) 2122 { 2123 spa_t *spa = vd->vdev_spa; 2124 objset_t *mos = spa->spa_meta_objset; 2125 dmu_tx_t *tx; 2126 2127 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2128 2129 if (vd->vdev_ms != NULL) { 2130 for (int m = 0; m < vd->vdev_ms_count; m++) { 2131 metaslab_t *msp = vd->vdev_ms[m]; 2132 2133 if (msp == NULL || msp->ms_sm == NULL) 2134 continue; 2135 2136 mutex_enter(&msp->ms_lock); 2137 VERIFY0(space_map_allocated(msp->ms_sm)); 2138 space_map_free(msp->ms_sm, tx); 2139 space_map_close(msp->ms_sm); 2140 msp->ms_sm = NULL; 2141 mutex_exit(&msp->ms_lock); 2142 } 2143 } 2144 2145 if (vd->vdev_ms_array) { 2146 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2147 vd->vdev_ms_array = 0; 2148 } 2149 dmu_tx_commit(tx); 2150 } 2151 2152 void 2153 vdev_sync_done(vdev_t *vd, uint64_t txg) 2154 { 2155 metaslab_t *msp; 2156 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2157 2158 ASSERT(!vd->vdev_ishole); 2159 2160 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2161 metaslab_sync_done(msp, txg); 2162 2163 if (reassess) 2164 metaslab_sync_reassess(vd->vdev_mg); 2165 } 2166 2167 void 2168 vdev_sync(vdev_t *vd, uint64_t txg) 2169 { 2170 spa_t *spa = vd->vdev_spa; 2171 vdev_t *lvd; 2172 metaslab_t *msp; 2173 dmu_tx_t *tx; 2174 2175 ASSERT(!vd->vdev_ishole); 2176 2177 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2178 ASSERT(vd == vd->vdev_top); 2179 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2180 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2181 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2182 ASSERT(vd->vdev_ms_array != 0); 2183 vdev_config_dirty(vd); 2184 dmu_tx_commit(tx); 2185 } 2186 2187 /* 2188 * Remove the metadata associated with this vdev once it's empty. 2189 */ 2190 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2191 vdev_remove(vd, txg); 2192 2193 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2194 metaslab_sync(msp, txg); 2195 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2196 } 2197 2198 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2199 vdev_dtl_sync(lvd, txg); 2200 2201 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2202 } 2203 2204 uint64_t 2205 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2206 { 2207 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2208 } 2209 2210 /* 2211 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2212 * not be opened, and no I/O is attempted. 2213 */ 2214 int 2215 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2216 { 2217 vdev_t *vd, *tvd; 2218 2219 spa_vdev_state_enter(spa, SCL_NONE); 2220 2221 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2222 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2223 2224 if (!vd->vdev_ops->vdev_op_leaf) 2225 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2226 2227 tvd = vd->vdev_top; 2228 2229 /* 2230 * We don't directly use the aux state here, but if we do a 2231 * vdev_reopen(), we need this value to be present to remember why we 2232 * were faulted. 2233 */ 2234 vd->vdev_label_aux = aux; 2235 2236 /* 2237 * Faulted state takes precedence over degraded. 2238 */ 2239 vd->vdev_delayed_close = B_FALSE; 2240 vd->vdev_faulted = 1ULL; 2241 vd->vdev_degraded = 0ULL; 2242 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2243 2244 /* 2245 * If this device has the only valid copy of the data, then 2246 * back off and simply mark the vdev as degraded instead. 2247 */ 2248 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2249 vd->vdev_degraded = 1ULL; 2250 vd->vdev_faulted = 0ULL; 2251 2252 /* 2253 * If we reopen the device and it's not dead, only then do we 2254 * mark it degraded. 2255 */ 2256 vdev_reopen(tvd); 2257 2258 if (vdev_readable(vd)) 2259 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2260 } 2261 2262 return (spa_vdev_state_exit(spa, vd, 0)); 2263 } 2264 2265 /* 2266 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2267 * user that something is wrong. The vdev continues to operate as normal as far 2268 * as I/O is concerned. 2269 */ 2270 int 2271 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2272 { 2273 vdev_t *vd; 2274 2275 spa_vdev_state_enter(spa, SCL_NONE); 2276 2277 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2278 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2279 2280 if (!vd->vdev_ops->vdev_op_leaf) 2281 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2282 2283 /* 2284 * If the vdev is already faulted, then don't do anything. 2285 */ 2286 if (vd->vdev_faulted || vd->vdev_degraded) 2287 return (spa_vdev_state_exit(spa, NULL, 0)); 2288 2289 vd->vdev_degraded = 1ULL; 2290 if (!vdev_is_dead(vd)) 2291 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2292 aux); 2293 2294 return (spa_vdev_state_exit(spa, vd, 0)); 2295 } 2296 2297 /* 2298 * Online the given vdev. 2299 * 2300 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2301 * spare device should be detached when the device finishes resilvering. 2302 * Second, the online should be treated like a 'test' online case, so no FMA 2303 * events are generated if the device fails to open. 2304 */ 2305 int 2306 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2307 { 2308 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2309 2310 spa_vdev_state_enter(spa, SCL_NONE); 2311 2312 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2313 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2314 2315 if (!vd->vdev_ops->vdev_op_leaf) 2316 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2317 2318 tvd = vd->vdev_top; 2319 vd->vdev_offline = B_FALSE; 2320 vd->vdev_tmpoffline = B_FALSE; 2321 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2322 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2323 2324 /* XXX - L2ARC 1.0 does not support expansion */ 2325 if (!vd->vdev_aux) { 2326 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2327 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2328 } 2329 2330 vdev_reopen(tvd); 2331 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2332 2333 if (!vd->vdev_aux) { 2334 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2335 pvd->vdev_expanding = B_FALSE; 2336 } 2337 2338 if (newstate) 2339 *newstate = vd->vdev_state; 2340 if ((flags & ZFS_ONLINE_UNSPARE) && 2341 !vdev_is_dead(vd) && vd->vdev_parent && 2342 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2343 vd->vdev_parent->vdev_child[0] == vd) 2344 vd->vdev_unspare = B_TRUE; 2345 2346 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2347 2348 /* XXX - L2ARC 1.0 does not support expansion */ 2349 if (vd->vdev_aux) 2350 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2351 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2352 } 2353 return (spa_vdev_state_exit(spa, vd, 0)); 2354 } 2355 2356 static int 2357 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2358 { 2359 vdev_t *vd, *tvd; 2360 int error = 0; 2361 uint64_t generation; 2362 metaslab_group_t *mg; 2363 2364 top: 2365 spa_vdev_state_enter(spa, SCL_ALLOC); 2366 2367 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2368 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2369 2370 if (!vd->vdev_ops->vdev_op_leaf) 2371 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2372 2373 tvd = vd->vdev_top; 2374 mg = tvd->vdev_mg; 2375 generation = spa->spa_config_generation + 1; 2376 2377 /* 2378 * If the device isn't already offline, try to offline it. 2379 */ 2380 if (!vd->vdev_offline) { 2381 /* 2382 * If this device has the only valid copy of some data, 2383 * don't allow it to be offlined. Log devices are always 2384 * expendable. 2385 */ 2386 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2387 vdev_dtl_required(vd)) 2388 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2389 2390 /* 2391 * If the top-level is a slog and it has had allocations 2392 * then proceed. We check that the vdev's metaslab group 2393 * is not NULL since it's possible that we may have just 2394 * added this vdev but not yet initialized its metaslabs. 2395 */ 2396 if (tvd->vdev_islog && mg != NULL) { 2397 /* 2398 * Prevent any future allocations. 2399 */ 2400 metaslab_group_passivate(mg); 2401 (void) spa_vdev_state_exit(spa, vd, 0); 2402 2403 error = spa_offline_log(spa); 2404 2405 spa_vdev_state_enter(spa, SCL_ALLOC); 2406 2407 /* 2408 * Check to see if the config has changed. 2409 */ 2410 if (error || generation != spa->spa_config_generation) { 2411 metaslab_group_activate(mg); 2412 if (error) 2413 return (spa_vdev_state_exit(spa, 2414 vd, error)); 2415 (void) spa_vdev_state_exit(spa, vd, 0); 2416 goto top; 2417 } 2418 ASSERT0(tvd->vdev_stat.vs_alloc); 2419 } 2420 2421 /* 2422 * Offline this device and reopen its top-level vdev. 2423 * If the top-level vdev is a log device then just offline 2424 * it. Otherwise, if this action results in the top-level 2425 * vdev becoming unusable, undo it and fail the request. 2426 */ 2427 vd->vdev_offline = B_TRUE; 2428 vdev_reopen(tvd); 2429 2430 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2431 vdev_is_dead(tvd)) { 2432 vd->vdev_offline = B_FALSE; 2433 vdev_reopen(tvd); 2434 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2435 } 2436 2437 /* 2438 * Add the device back into the metaslab rotor so that 2439 * once we online the device it's open for business. 2440 */ 2441 if (tvd->vdev_islog && mg != NULL) 2442 metaslab_group_activate(mg); 2443 } 2444 2445 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2446 2447 return (spa_vdev_state_exit(spa, vd, 0)); 2448 } 2449 2450 int 2451 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2452 { 2453 int error; 2454 2455 mutex_enter(&spa->spa_vdev_top_lock); 2456 error = vdev_offline_locked(spa, guid, flags); 2457 mutex_exit(&spa->spa_vdev_top_lock); 2458 2459 return (error); 2460 } 2461 2462 /* 2463 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2464 * vdev_offline(), we assume the spa config is locked. We also clear all 2465 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2466 */ 2467 void 2468 vdev_clear(spa_t *spa, vdev_t *vd) 2469 { 2470 vdev_t *rvd = spa->spa_root_vdev; 2471 2472 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2473 2474 if (vd == NULL) 2475 vd = rvd; 2476 2477 vd->vdev_stat.vs_read_errors = 0; 2478 vd->vdev_stat.vs_write_errors = 0; 2479 vd->vdev_stat.vs_checksum_errors = 0; 2480 2481 for (int c = 0; c < vd->vdev_children; c++) 2482 vdev_clear(spa, vd->vdev_child[c]); 2483 2484 /* 2485 * If we're in the FAULTED state or have experienced failed I/O, then 2486 * clear the persistent state and attempt to reopen the device. We 2487 * also mark the vdev config dirty, so that the new faulted state is 2488 * written out to disk. 2489 */ 2490 if (vd->vdev_faulted || vd->vdev_degraded || 2491 !vdev_readable(vd) || !vdev_writeable(vd)) { 2492 2493 /* 2494 * When reopening in reponse to a clear event, it may be due to 2495 * a fmadm repair request. In this case, if the device is 2496 * still broken, we want to still post the ereport again. 2497 */ 2498 vd->vdev_forcefault = B_TRUE; 2499 2500 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2501 vd->vdev_cant_read = B_FALSE; 2502 vd->vdev_cant_write = B_FALSE; 2503 2504 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2505 2506 vd->vdev_forcefault = B_FALSE; 2507 2508 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2509 vdev_state_dirty(vd->vdev_top); 2510 2511 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2512 spa_async_request(spa, SPA_ASYNC_RESILVER); 2513 2514 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2515 } 2516 2517 /* 2518 * When clearing a FMA-diagnosed fault, we always want to 2519 * unspare the device, as we assume that the original spare was 2520 * done in response to the FMA fault. 2521 */ 2522 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2523 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2524 vd->vdev_parent->vdev_child[0] == vd) 2525 vd->vdev_unspare = B_TRUE; 2526 } 2527 2528 boolean_t 2529 vdev_is_dead(vdev_t *vd) 2530 { 2531 /* 2532 * Holes and missing devices are always considered "dead". 2533 * This simplifies the code since we don't have to check for 2534 * these types of devices in the various code paths. 2535 * Instead we rely on the fact that we skip over dead devices 2536 * before issuing I/O to them. 2537 */ 2538 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2539 vd->vdev_ops == &vdev_missing_ops); 2540 } 2541 2542 boolean_t 2543 vdev_readable(vdev_t *vd) 2544 { 2545 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2546 } 2547 2548 boolean_t 2549 vdev_writeable(vdev_t *vd) 2550 { 2551 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2552 } 2553 2554 boolean_t 2555 vdev_allocatable(vdev_t *vd) 2556 { 2557 uint64_t state = vd->vdev_state; 2558 2559 /* 2560 * We currently allow allocations from vdevs which may be in the 2561 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2562 * fails to reopen then we'll catch it later when we're holding 2563 * the proper locks. Note that we have to get the vdev state 2564 * in a local variable because although it changes atomically, 2565 * we're asking two separate questions about it. 2566 */ 2567 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2568 !vd->vdev_cant_write && !vd->vdev_ishole); 2569 } 2570 2571 boolean_t 2572 vdev_accessible(vdev_t *vd, zio_t *zio) 2573 { 2574 ASSERT(zio->io_vd == vd); 2575 2576 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2577 return (B_FALSE); 2578 2579 if (zio->io_type == ZIO_TYPE_READ) 2580 return (!vd->vdev_cant_read); 2581 2582 if (zio->io_type == ZIO_TYPE_WRITE) 2583 return (!vd->vdev_cant_write); 2584 2585 return (B_TRUE); 2586 } 2587 2588 /* 2589 * Get statistics for the given vdev. 2590 */ 2591 void 2592 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2593 { 2594 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2595 2596 mutex_enter(&vd->vdev_stat_lock); 2597 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2598 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2599 vs->vs_state = vd->vdev_state; 2600 vs->vs_rsize = vdev_get_min_asize(vd); 2601 if (vd->vdev_ops->vdev_op_leaf) 2602 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2603 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2604 mutex_exit(&vd->vdev_stat_lock); 2605 2606 /* 2607 * If we're getting stats on the root vdev, aggregate the I/O counts 2608 * over all top-level vdevs (i.e. the direct children of the root). 2609 */ 2610 if (vd == rvd) { 2611 for (int c = 0; c < rvd->vdev_children; c++) { 2612 vdev_t *cvd = rvd->vdev_child[c]; 2613 vdev_stat_t *cvs = &cvd->vdev_stat; 2614 2615 mutex_enter(&vd->vdev_stat_lock); 2616 for (int t = 0; t < ZIO_TYPES; t++) { 2617 vs->vs_ops[t] += cvs->vs_ops[t]; 2618 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2619 } 2620 cvs->vs_scan_removing = cvd->vdev_removing; 2621 mutex_exit(&vd->vdev_stat_lock); 2622 } 2623 } 2624 } 2625 2626 void 2627 vdev_clear_stats(vdev_t *vd) 2628 { 2629 mutex_enter(&vd->vdev_stat_lock); 2630 vd->vdev_stat.vs_space = 0; 2631 vd->vdev_stat.vs_dspace = 0; 2632 vd->vdev_stat.vs_alloc = 0; 2633 mutex_exit(&vd->vdev_stat_lock); 2634 } 2635 2636 void 2637 vdev_scan_stat_init(vdev_t *vd) 2638 { 2639 vdev_stat_t *vs = &vd->vdev_stat; 2640 2641 for (int c = 0; c < vd->vdev_children; c++) 2642 vdev_scan_stat_init(vd->vdev_child[c]); 2643 2644 mutex_enter(&vd->vdev_stat_lock); 2645 vs->vs_scan_processed = 0; 2646 mutex_exit(&vd->vdev_stat_lock); 2647 } 2648 2649 void 2650 vdev_stat_update(zio_t *zio, uint64_t psize) 2651 { 2652 spa_t *spa = zio->io_spa; 2653 vdev_t *rvd = spa->spa_root_vdev; 2654 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2655 vdev_t *pvd; 2656 uint64_t txg = zio->io_txg; 2657 vdev_stat_t *vs = &vd->vdev_stat; 2658 zio_type_t type = zio->io_type; 2659 int flags = zio->io_flags; 2660 2661 /* 2662 * If this i/o is a gang leader, it didn't do any actual work. 2663 */ 2664 if (zio->io_gang_tree) 2665 return; 2666 2667 if (zio->io_error == 0) { 2668 /* 2669 * If this is a root i/o, don't count it -- we've already 2670 * counted the top-level vdevs, and vdev_get_stats() will 2671 * aggregate them when asked. This reduces contention on 2672 * the root vdev_stat_lock and implicitly handles blocks 2673 * that compress away to holes, for which there is no i/o. 2674 * (Holes never create vdev children, so all the counters 2675 * remain zero, which is what we want.) 2676 * 2677 * Note: this only applies to successful i/o (io_error == 0) 2678 * because unlike i/o counts, errors are not additive. 2679 * When reading a ditto block, for example, failure of 2680 * one top-level vdev does not imply a root-level error. 2681 */ 2682 if (vd == rvd) 2683 return; 2684 2685 ASSERT(vd == zio->io_vd); 2686 2687 if (flags & ZIO_FLAG_IO_BYPASS) 2688 return; 2689 2690 mutex_enter(&vd->vdev_stat_lock); 2691 2692 if (flags & ZIO_FLAG_IO_REPAIR) { 2693 if (flags & ZIO_FLAG_SCAN_THREAD) { 2694 dsl_scan_phys_t *scn_phys = 2695 &spa->spa_dsl_pool->dp_scan->scn_phys; 2696 uint64_t *processed = &scn_phys->scn_processed; 2697 2698 /* XXX cleanup? */ 2699 if (vd->vdev_ops->vdev_op_leaf) 2700 atomic_add_64(processed, psize); 2701 vs->vs_scan_processed += psize; 2702 } 2703 2704 if (flags & ZIO_FLAG_SELF_HEAL) 2705 vs->vs_self_healed += psize; 2706 } 2707 2708 vs->vs_ops[type]++; 2709 vs->vs_bytes[type] += psize; 2710 2711 mutex_exit(&vd->vdev_stat_lock); 2712 return; 2713 } 2714 2715 if (flags & ZIO_FLAG_SPECULATIVE) 2716 return; 2717 2718 /* 2719 * If this is an I/O error that is going to be retried, then ignore the 2720 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2721 * hard errors, when in reality they can happen for any number of 2722 * innocuous reasons (bus resets, MPxIO link failure, etc). 2723 */ 2724 if (zio->io_error == EIO && 2725 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2726 return; 2727 2728 /* 2729 * Intent logs writes won't propagate their error to the root 2730 * I/O so don't mark these types of failures as pool-level 2731 * errors. 2732 */ 2733 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2734 return; 2735 2736 mutex_enter(&vd->vdev_stat_lock); 2737 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2738 if (zio->io_error == ECKSUM) 2739 vs->vs_checksum_errors++; 2740 else 2741 vs->vs_read_errors++; 2742 } 2743 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2744 vs->vs_write_errors++; 2745 mutex_exit(&vd->vdev_stat_lock); 2746 2747 if (type == ZIO_TYPE_WRITE && txg != 0 && 2748 (!(flags & ZIO_FLAG_IO_REPAIR) || 2749 (flags & ZIO_FLAG_SCAN_THREAD) || 2750 spa->spa_claiming)) { 2751 /* 2752 * This is either a normal write (not a repair), or it's 2753 * a repair induced by the scrub thread, or it's a repair 2754 * made by zil_claim() during spa_load() in the first txg. 2755 * In the normal case, we commit the DTL change in the same 2756 * txg as the block was born. In the scrub-induced repair 2757 * case, we know that scrubs run in first-pass syncing context, 2758 * so we commit the DTL change in spa_syncing_txg(spa). 2759 * In the zil_claim() case, we commit in spa_first_txg(spa). 2760 * 2761 * We currently do not make DTL entries for failed spontaneous 2762 * self-healing writes triggered by normal (non-scrubbing) 2763 * reads, because we have no transactional context in which to 2764 * do so -- and it's not clear that it'd be desirable anyway. 2765 */ 2766 if (vd->vdev_ops->vdev_op_leaf) { 2767 uint64_t commit_txg = txg; 2768 if (flags & ZIO_FLAG_SCAN_THREAD) { 2769 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2770 ASSERT(spa_sync_pass(spa) == 1); 2771 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2772 commit_txg = spa_syncing_txg(spa); 2773 } else if (spa->spa_claiming) { 2774 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2775 commit_txg = spa_first_txg(spa); 2776 } 2777 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2778 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2779 return; 2780 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2781 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2782 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2783 } 2784 if (vd != rvd) 2785 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2786 } 2787 } 2788 2789 /* 2790 * Update the in-core space usage stats for this vdev, its metaslab class, 2791 * and the root vdev. 2792 */ 2793 void 2794 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2795 int64_t space_delta) 2796 { 2797 int64_t dspace_delta = space_delta; 2798 spa_t *spa = vd->vdev_spa; 2799 vdev_t *rvd = spa->spa_root_vdev; 2800 metaslab_group_t *mg = vd->vdev_mg; 2801 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2802 2803 ASSERT(vd == vd->vdev_top); 2804 2805 /* 2806 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2807 * factor. We must calculate this here and not at the root vdev 2808 * because the root vdev's psize-to-asize is simply the max of its 2809 * childrens', thus not accurate enough for us. 2810 */ 2811 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2812 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2813 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2814 vd->vdev_deflate_ratio; 2815 2816 mutex_enter(&vd->vdev_stat_lock); 2817 vd->vdev_stat.vs_alloc += alloc_delta; 2818 vd->vdev_stat.vs_space += space_delta; 2819 vd->vdev_stat.vs_dspace += dspace_delta; 2820 mutex_exit(&vd->vdev_stat_lock); 2821 2822 if (mc == spa_normal_class(spa)) { 2823 mutex_enter(&rvd->vdev_stat_lock); 2824 rvd->vdev_stat.vs_alloc += alloc_delta; 2825 rvd->vdev_stat.vs_space += space_delta; 2826 rvd->vdev_stat.vs_dspace += dspace_delta; 2827 mutex_exit(&rvd->vdev_stat_lock); 2828 } 2829 2830 if (mc != NULL) { 2831 ASSERT(rvd == vd->vdev_parent); 2832 ASSERT(vd->vdev_ms_count != 0); 2833 2834 metaslab_class_space_update(mc, 2835 alloc_delta, defer_delta, space_delta, dspace_delta); 2836 } 2837 } 2838 2839 /* 2840 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2841 * so that it will be written out next time the vdev configuration is synced. 2842 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2843 */ 2844 void 2845 vdev_config_dirty(vdev_t *vd) 2846 { 2847 spa_t *spa = vd->vdev_spa; 2848 vdev_t *rvd = spa->spa_root_vdev; 2849 int c; 2850 2851 ASSERT(spa_writeable(spa)); 2852 2853 /* 2854 * If this is an aux vdev (as with l2cache and spare devices), then we 2855 * update the vdev config manually and set the sync flag. 2856 */ 2857 if (vd->vdev_aux != NULL) { 2858 spa_aux_vdev_t *sav = vd->vdev_aux; 2859 nvlist_t **aux; 2860 uint_t naux; 2861 2862 for (c = 0; c < sav->sav_count; c++) { 2863 if (sav->sav_vdevs[c] == vd) 2864 break; 2865 } 2866 2867 if (c == sav->sav_count) { 2868 /* 2869 * We're being removed. There's nothing more to do. 2870 */ 2871 ASSERT(sav->sav_sync == B_TRUE); 2872 return; 2873 } 2874 2875 sav->sav_sync = B_TRUE; 2876 2877 if (nvlist_lookup_nvlist_array(sav->sav_config, 2878 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2879 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2880 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2881 } 2882 2883 ASSERT(c < naux); 2884 2885 /* 2886 * Setting the nvlist in the middle if the array is a little 2887 * sketchy, but it will work. 2888 */ 2889 nvlist_free(aux[c]); 2890 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2891 2892 return; 2893 } 2894 2895 /* 2896 * The dirty list is protected by the SCL_CONFIG lock. The caller 2897 * must either hold SCL_CONFIG as writer, or must be the sync thread 2898 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2899 * so this is sufficient to ensure mutual exclusion. 2900 */ 2901 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2902 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2903 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2904 2905 if (vd == rvd) { 2906 for (c = 0; c < rvd->vdev_children; c++) 2907 vdev_config_dirty(rvd->vdev_child[c]); 2908 } else { 2909 ASSERT(vd == vd->vdev_top); 2910 2911 if (!list_link_active(&vd->vdev_config_dirty_node) && 2912 !vd->vdev_ishole) 2913 list_insert_head(&spa->spa_config_dirty_list, vd); 2914 } 2915 } 2916 2917 void 2918 vdev_config_clean(vdev_t *vd) 2919 { 2920 spa_t *spa = vd->vdev_spa; 2921 2922 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2923 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2924 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2925 2926 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2927 list_remove(&spa->spa_config_dirty_list, vd); 2928 } 2929 2930 /* 2931 * Mark a top-level vdev's state as dirty, so that the next pass of 2932 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2933 * the state changes from larger config changes because they require 2934 * much less locking, and are often needed for administrative actions. 2935 */ 2936 void 2937 vdev_state_dirty(vdev_t *vd) 2938 { 2939 spa_t *spa = vd->vdev_spa; 2940 2941 ASSERT(spa_writeable(spa)); 2942 ASSERT(vd == vd->vdev_top); 2943 2944 /* 2945 * The state list is protected by the SCL_STATE lock. The caller 2946 * must either hold SCL_STATE as writer, or must be the sync thread 2947 * (which holds SCL_STATE as reader). There's only one sync thread, 2948 * so this is sufficient to ensure mutual exclusion. 2949 */ 2950 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2951 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2952 spa_config_held(spa, SCL_STATE, RW_READER))); 2953 2954 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2955 list_insert_head(&spa->spa_state_dirty_list, vd); 2956 } 2957 2958 void 2959 vdev_state_clean(vdev_t *vd) 2960 { 2961 spa_t *spa = vd->vdev_spa; 2962 2963 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2964 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2965 spa_config_held(spa, SCL_STATE, RW_READER))); 2966 2967 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2968 list_remove(&spa->spa_state_dirty_list, vd); 2969 } 2970 2971 /* 2972 * Propagate vdev state up from children to parent. 2973 */ 2974 void 2975 vdev_propagate_state(vdev_t *vd) 2976 { 2977 spa_t *spa = vd->vdev_spa; 2978 vdev_t *rvd = spa->spa_root_vdev; 2979 int degraded = 0, faulted = 0; 2980 int corrupted = 0; 2981 vdev_t *child; 2982 2983 if (vd->vdev_children > 0) { 2984 for (int c = 0; c < vd->vdev_children; c++) { 2985 child = vd->vdev_child[c]; 2986 2987 /* 2988 * Don't factor holes into the decision. 2989 */ 2990 if (child->vdev_ishole) 2991 continue; 2992 2993 if (!vdev_readable(child) || 2994 (!vdev_writeable(child) && spa_writeable(spa))) { 2995 /* 2996 * Root special: if there is a top-level log 2997 * device, treat the root vdev as if it were 2998 * degraded. 2999 */ 3000 if (child->vdev_islog && vd == rvd) 3001 degraded++; 3002 else 3003 faulted++; 3004 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3005 degraded++; 3006 } 3007 3008 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3009 corrupted++; 3010 } 3011 3012 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3013 3014 /* 3015 * Root special: if there is a top-level vdev that cannot be 3016 * opened due to corrupted metadata, then propagate the root 3017 * vdev's aux state as 'corrupt' rather than 'insufficient 3018 * replicas'. 3019 */ 3020 if (corrupted && vd == rvd && 3021 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3022 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3023 VDEV_AUX_CORRUPT_DATA); 3024 } 3025 3026 if (vd->vdev_parent) 3027 vdev_propagate_state(vd->vdev_parent); 3028 } 3029 3030 /* 3031 * Set a vdev's state. If this is during an open, we don't update the parent 3032 * state, because we're in the process of opening children depth-first. 3033 * Otherwise, we propagate the change to the parent. 3034 * 3035 * If this routine places a device in a faulted state, an appropriate ereport is 3036 * generated. 3037 */ 3038 void 3039 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3040 { 3041 uint64_t save_state; 3042 spa_t *spa = vd->vdev_spa; 3043 3044 if (state == vd->vdev_state) { 3045 vd->vdev_stat.vs_aux = aux; 3046 return; 3047 } 3048 3049 save_state = vd->vdev_state; 3050 3051 vd->vdev_state = state; 3052 vd->vdev_stat.vs_aux = aux; 3053 3054 /* 3055 * If we are setting the vdev state to anything but an open state, then 3056 * always close the underlying device unless the device has requested 3057 * a delayed close (i.e. we're about to remove or fault the device). 3058 * Otherwise, we keep accessible but invalid devices open forever. 3059 * We don't call vdev_close() itself, because that implies some extra 3060 * checks (offline, etc) that we don't want here. This is limited to 3061 * leaf devices, because otherwise closing the device will affect other 3062 * children. 3063 */ 3064 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3065 vd->vdev_ops->vdev_op_leaf) 3066 vd->vdev_ops->vdev_op_close(vd); 3067 3068 /* 3069 * If we have brought this vdev back into service, we need 3070 * to notify fmd so that it can gracefully repair any outstanding 3071 * cases due to a missing device. We do this in all cases, even those 3072 * that probably don't correlate to a repaired fault. This is sure to 3073 * catch all cases, and we let the zfs-retire agent sort it out. If 3074 * this is a transient state it's OK, as the retire agent will 3075 * double-check the state of the vdev before repairing it. 3076 */ 3077 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3078 vd->vdev_prevstate != state) 3079 zfs_post_state_change(spa, vd); 3080 3081 if (vd->vdev_removed && 3082 state == VDEV_STATE_CANT_OPEN && 3083 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3084 /* 3085 * If the previous state is set to VDEV_STATE_REMOVED, then this 3086 * device was previously marked removed and someone attempted to 3087 * reopen it. If this failed due to a nonexistent device, then 3088 * keep the device in the REMOVED state. We also let this be if 3089 * it is one of our special test online cases, which is only 3090 * attempting to online the device and shouldn't generate an FMA 3091 * fault. 3092 */ 3093 vd->vdev_state = VDEV_STATE_REMOVED; 3094 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3095 } else if (state == VDEV_STATE_REMOVED) { 3096 vd->vdev_removed = B_TRUE; 3097 } else if (state == VDEV_STATE_CANT_OPEN) { 3098 /* 3099 * If we fail to open a vdev during an import or recovery, we 3100 * mark it as "not available", which signifies that it was 3101 * never there to begin with. Failure to open such a device 3102 * is not considered an error. 3103 */ 3104 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3105 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3106 vd->vdev_ops->vdev_op_leaf) 3107 vd->vdev_not_present = 1; 3108 3109 /* 3110 * Post the appropriate ereport. If the 'prevstate' field is 3111 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3112 * that this is part of a vdev_reopen(). In this case, we don't 3113 * want to post the ereport if the device was already in the 3114 * CANT_OPEN state beforehand. 3115 * 3116 * If the 'checkremove' flag is set, then this is an attempt to 3117 * online the device in response to an insertion event. If we 3118 * hit this case, then we have detected an insertion event for a 3119 * faulted or offline device that wasn't in the removed state. 3120 * In this scenario, we don't post an ereport because we are 3121 * about to replace the device, or attempt an online with 3122 * vdev_forcefault, which will generate the fault for us. 3123 */ 3124 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3125 !vd->vdev_not_present && !vd->vdev_checkremove && 3126 vd != spa->spa_root_vdev) { 3127 const char *class; 3128 3129 switch (aux) { 3130 case VDEV_AUX_OPEN_FAILED: 3131 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3132 break; 3133 case VDEV_AUX_CORRUPT_DATA: 3134 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3135 break; 3136 case VDEV_AUX_NO_REPLICAS: 3137 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3138 break; 3139 case VDEV_AUX_BAD_GUID_SUM: 3140 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3141 break; 3142 case VDEV_AUX_TOO_SMALL: 3143 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3144 break; 3145 case VDEV_AUX_BAD_LABEL: 3146 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3147 break; 3148 default: 3149 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3150 } 3151 3152 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3153 } 3154 3155 /* Erase any notion of persistent removed state */ 3156 vd->vdev_removed = B_FALSE; 3157 } else { 3158 vd->vdev_removed = B_FALSE; 3159 } 3160 3161 if (!isopen && vd->vdev_parent) 3162 vdev_propagate_state(vd->vdev_parent); 3163 } 3164 3165 /* 3166 * Check the vdev configuration to ensure that it's capable of supporting 3167 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3168 * In addition, only a single top-level vdev is allowed and none of the leaves 3169 * can be wholedisks. 3170 */ 3171 boolean_t 3172 vdev_is_bootable(vdev_t *vd) 3173 { 3174 if (!vd->vdev_ops->vdev_op_leaf) { 3175 char *vdev_type = vd->vdev_ops->vdev_op_type; 3176 3177 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3178 vd->vdev_children > 1) { 3179 return (B_FALSE); 3180 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3181 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3182 return (B_FALSE); 3183 } 3184 } else if (vd->vdev_wholedisk == 1) { 3185 return (B_FALSE); 3186 } 3187 3188 for (int c = 0; c < vd->vdev_children; c++) { 3189 if (!vdev_is_bootable(vd->vdev_child[c])) 3190 return (B_FALSE); 3191 } 3192 return (B_TRUE); 3193 } 3194 3195 /* 3196 * Load the state from the original vdev tree (ovd) which 3197 * we've retrieved from the MOS config object. If the original 3198 * vdev was offline or faulted then we transfer that state to the 3199 * device in the current vdev tree (nvd). 3200 */ 3201 void 3202 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3203 { 3204 spa_t *spa = nvd->vdev_spa; 3205 3206 ASSERT(nvd->vdev_top->vdev_islog); 3207 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3208 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3209 3210 for (int c = 0; c < nvd->vdev_children; c++) 3211 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3212 3213 if (nvd->vdev_ops->vdev_op_leaf) { 3214 /* 3215 * Restore the persistent vdev state 3216 */ 3217 nvd->vdev_offline = ovd->vdev_offline; 3218 nvd->vdev_faulted = ovd->vdev_faulted; 3219 nvd->vdev_degraded = ovd->vdev_degraded; 3220 nvd->vdev_removed = ovd->vdev_removed; 3221 } 3222 } 3223 3224 /* 3225 * Determine if a log device has valid content. If the vdev was 3226 * removed or faulted in the MOS config then we know that 3227 * the content on the log device has already been written to the pool. 3228 */ 3229 boolean_t 3230 vdev_log_state_valid(vdev_t *vd) 3231 { 3232 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3233 !vd->vdev_removed) 3234 return (B_TRUE); 3235 3236 for (int c = 0; c < vd->vdev_children; c++) 3237 if (vdev_log_state_valid(vd->vdev_child[c])) 3238 return (B_TRUE); 3239 3240 return (B_FALSE); 3241 } 3242 3243 /* 3244 * Expand a vdev if possible. 3245 */ 3246 void 3247 vdev_expand(vdev_t *vd, uint64_t txg) 3248 { 3249 ASSERT(vd->vdev_top == vd); 3250 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3251 3252 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3253 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3254 vdev_config_dirty(vd); 3255 } 3256 } 3257 3258 /* 3259 * Split a vdev. 3260 */ 3261 void 3262 vdev_split(vdev_t *vd) 3263 { 3264 vdev_t *cvd, *pvd = vd->vdev_parent; 3265 3266 vdev_remove_child(pvd, vd); 3267 vdev_compact_children(pvd); 3268 3269 cvd = pvd->vdev_child[0]; 3270 if (pvd->vdev_children == 1) { 3271 vdev_remove_parent(cvd); 3272 cvd->vdev_splitting = B_TRUE; 3273 } 3274 vdev_propagate_state(cvd); 3275 } 3276 3277 void 3278 vdev_deadman(vdev_t *vd) 3279 { 3280 for (int c = 0; c < vd->vdev_children; c++) { 3281 vdev_t *cvd = vd->vdev_child[c]; 3282 3283 vdev_deadman(cvd); 3284 } 3285 3286 if (vd->vdev_ops->vdev_op_leaf) { 3287 vdev_queue_t *vq = &vd->vdev_queue; 3288 3289 mutex_enter(&vq->vq_lock); 3290 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3291 spa_t *spa = vd->vdev_spa; 3292 zio_t *fio; 3293 uint64_t delta; 3294 3295 /* 3296 * Look at the head of all the pending queues, 3297 * if any I/O has been outstanding for longer than 3298 * the spa_deadman_synctime we panic the system. 3299 */ 3300 fio = avl_first(&vq->vq_active_tree); 3301 delta = gethrtime() - fio->io_timestamp; 3302 if (delta > spa_deadman_synctime(spa)) { 3303 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3304 "delta %lluns, last io %lluns", 3305 fio->io_timestamp, delta, 3306 vq->vq_io_complete_ts); 3307 fm_panic("I/O to pool '%s' appears to be " 3308 "hung.", spa_name(spa)); 3309 } 3310 } 3311 mutex_exit(&vq->vq_lock); 3312 } 3313 }