1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, Tegile Systems Inc. All rights reserved. 27 * Copyright 2014 OmniTI Computer Consulting, Inc. All rights reserved. 28 */ 29 30 /* 31 * Copyright (c) 2000 to 2010, LSI Corporation. 32 * All rights reserved. 33 * 34 * Redistribution and use in source and binary forms of all code within 35 * this file that is exclusively owned by LSI, with or without 36 * modification, is permitted provided that, in addition to the CDDL 1.0 37 * License requirements, the following conditions are met: 38 * 39 * Neither the name of the author nor the names of its contributors may be 40 * used to endorse or promote products derived from this software without 41 * specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 46 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 47 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 48 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 49 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 50 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 51 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 52 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 54 * DAMAGE. 55 */ 56 57 /* 58 * mptsas3 - This is a driver based on LSI Logic's MPT2.0/2.5 interface. 59 * 60 */ 61 62 #if defined(lint) || defined(DEBUG) 63 #define MPTSAS_DEBUG 64 #endif 65 66 /* 67 * standard header files. 68 */ 69 #include <sys/note.h> 70 #include <sys/scsi/scsi.h> 71 #include <sys/pci.h> 72 #include <sys/file.h> 73 #include <sys/policy.h> 74 #include <sys/model.h> 75 #include <sys/sysevent.h> 76 #include <sys/sysevent/eventdefs.h> 77 #include <sys/sysevent/dr.h> 78 #include <sys/sata/sata_defs.h> 79 #include <sys/scsi/generic/sas.h> 80 #include <sys/scsi/impl/scsi_sas.h> 81 82 #pragma pack(1) 83 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_type.h> 84 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2.h> 85 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_cnfg.h> 86 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_init.h> 87 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_ioc.h> 88 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_sas.h> 89 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_tool.h> 90 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_raid.h> 91 #pragma pack() 92 93 /* 94 * private header files. 95 * 96 */ 97 #include <sys/scsi/impl/scsi_reset_notify.h> 98 #include <sys/scsi/adapters/mpt_sas3/mptsas3_var.h> 99 #include <sys/scsi/adapters/mpt_sas3/mptsas3_ioctl.h> 100 #include <sys/scsi/adapters/mpt_sas3/mptsas3_smhba.h> 101 #include <sys/scsi/adapters/mpt_sas3/mptsas3_hash.h> 102 #include <sys/raidioctl.h> 103 104 #include <sys/fs/dv_node.h> /* devfs_clean */ 105 106 /* 107 * FMA header files 108 */ 109 #include <sys/ddifm.h> 110 #include <sys/fm/protocol.h> 111 #include <sys/fm/util.h> 112 #include <sys/fm/io/ddi.h> 113 114 /* 115 * autoconfiguration data and routines. 116 */ 117 static int mptsas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 118 static int mptsas_detach(dev_info_t *devi, ddi_detach_cmd_t cmd); 119 static int mptsas_power(dev_info_t *dip, int component, int level); 120 121 /* 122 * cb_ops function 123 */ 124 static int mptsas_ioctl(dev_t dev, int cmd, intptr_t data, int mode, 125 cred_t *credp, int *rval); 126 #ifdef __sparc 127 static int mptsas_reset(dev_info_t *devi, ddi_reset_cmd_t cmd); 128 #else /* __sparc */ 129 static int mptsas_quiesce(dev_info_t *devi); 130 #endif /* __sparc */ 131 132 /* 133 * Resource initilaization for hardware 134 */ 135 static void mptsas_setup_cmd_reg(mptsas_t *mpt); 136 static void mptsas_disable_bus_master(mptsas_t *mpt); 137 static void mptsas_hba_fini(mptsas_t *mpt); 138 static void mptsas_cfg_fini(mptsas_t *mptsas_blkp); 139 static int mptsas_hba_setup(mptsas_t *mpt); 140 static void mptsas_hba_teardown(mptsas_t *mpt); 141 static int mptsas_config_space_init(mptsas_t *mpt); 142 static void mptsas_config_space_fini(mptsas_t *mpt); 143 static void mptsas_iport_register(mptsas_t *mpt); 144 static int mptsas_smp_setup(mptsas_t *mpt); 145 static void mptsas_smp_teardown(mptsas_t *mpt); 146 static int mptsas_cache_create(mptsas_t *mpt); 147 static void mptsas_cache_destroy(mptsas_t *mpt); 148 static int mptsas_alloc_request_frames(mptsas_t *mpt); 149 static int mptsas_alloc_sense_bufs(mptsas_t *mpt); 150 static int mptsas_alloc_reply_frames(mptsas_t *mpt); 151 static int mptsas_alloc_free_queue(mptsas_t *mpt); 152 static int mptsas_alloc_post_queue(mptsas_t *mpt); 153 static void mptsas_free_post_queue(mptsas_t *mpt); 154 static void mptsas_alloc_reply_args(mptsas_t *mpt); 155 static int mptsas_alloc_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd); 156 static void mptsas_free_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd); 157 static int mptsas_init_chip(mptsas_t *mpt, int first_time); 158 159 /* 160 * SCSA function prototypes 161 */ 162 static int mptsas_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt); 163 static int mptsas_scsi_reset(struct scsi_address *ap, int level); 164 static int mptsas_scsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt); 165 static int mptsas_scsi_getcap(struct scsi_address *ap, char *cap, int tgtonly); 166 static int mptsas_scsi_setcap(struct scsi_address *ap, char *cap, int value, 167 int tgtonly); 168 static void mptsas_scsi_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt); 169 static struct scsi_pkt *mptsas_scsi_init_pkt(struct scsi_address *ap, 170 struct scsi_pkt *pkt, struct buf *bp, int cmdlen, int statuslen, 171 int tgtlen, int flags, int (*callback)(), caddr_t arg); 172 static void mptsas_scsi_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt); 173 static void mptsas_scsi_destroy_pkt(struct scsi_address *ap, 174 struct scsi_pkt *pkt); 175 static int mptsas_scsi_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip, 176 scsi_hba_tran_t *hba_tran, struct scsi_device *sd); 177 static void mptsas_scsi_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip, 178 scsi_hba_tran_t *hba_tran, struct scsi_device *sd); 179 static int mptsas_scsi_reset_notify(struct scsi_address *ap, int flag, 180 void (*callback)(caddr_t), caddr_t arg); 181 static int mptsas_get_name(struct scsi_device *sd, char *name, int len); 182 static int mptsas_get_bus_addr(struct scsi_device *sd, char *name, int len); 183 static int mptsas_scsi_quiesce(dev_info_t *dip); 184 static int mptsas_scsi_unquiesce(dev_info_t *dip); 185 static int mptsas_bus_config(dev_info_t *pdip, uint_t flags, 186 ddi_bus_config_op_t op, void *arg, dev_info_t **childp); 187 188 /* 189 * SMP functions 190 */ 191 static int mptsas_smp_start(struct smp_pkt *smp_pkt); 192 193 /* 194 * internal function prototypes. 195 */ 196 static void mptsas_list_add(mptsas_t *mpt); 197 static void mptsas_list_del(mptsas_t *mpt); 198 199 static int mptsas_quiesce_bus(mptsas_t *mpt); 200 static int mptsas_unquiesce_bus(mptsas_t *mpt); 201 202 static int mptsas_alloc_handshake_msg(mptsas_t *mpt, size_t alloc_size); 203 static void mptsas_free_handshake_msg(mptsas_t *mpt); 204 205 static void mptsas_ncmds_checkdrain(void *arg); 206 207 static int mptsas_prepare_pkt(mptsas_cmd_t *cmd); 208 static void mptsas_retry_pkt(mptsas_t *mpt, mptsas_cmd_t *sp); 209 static int mptsas_save_cmd_to_slot(mptsas_t *mpt, mptsas_cmd_t *cmd); 210 static int mptsas_accept_pkt(mptsas_t *mpt, mptsas_cmd_t *sp, 211 int *tran_rval); 212 static void mptsas_accept_tx_waitqs(mptsas_t *mpt); 213 static void mptsas_unblock_tx_waitqs(mptsas_t *mpt); 214 static void mptsas_drain_tx_waitq(mptsas_t *mpt, mptsas_tx_waitqueue_t *txwq); 215 static int mptsas_check_targ_intxtion(mptsas_target_t *ptgt, int cmd_pkt_flags); 216 217 static int mptsas_do_detach(dev_info_t *dev); 218 static int mptsas_do_scsi_reset(mptsas_t *mpt, uint16_t devhdl); 219 static int mptsas_do_scsi_abort(mptsas_t *mpt, int target, int lun, 220 struct scsi_pkt *pkt); 221 static int mptsas_scsi_capchk(char *cap, int tgtonly, int *cidxp); 222 223 static void mptsas_handle_qfull(mptsas_t *mpt, mptsas_cmd_t *cmd); 224 static void mptsas_handle_event(void *args); 225 static int mptsas_handle_event_sync(void *args); 226 static void mptsas_handle_dr(void *args); 227 static void mptsas_handle_topo_change(mptsas_topo_change_list_t *topo_node, 228 dev_info_t *pdip); 229 230 static void mptsas_restart_cmd(void *); 231 232 static void mptsas_flush_hba(mptsas_t *mpt); 233 static void mptsas_flush_target(mptsas_t *mpt, ushort_t target, int lun, 234 uint8_t tasktype); 235 static void mptsas_set_pkt_reason(mptsas_t *mpt, mptsas_cmd_t *cmd, 236 uchar_t reason, uint_t stat); 237 238 static uint_t mptsas_intr(caddr_t arg1, caddr_t arg2); 239 static void mptsas_process_intr(mptsas_t *mpt, mptsas_reply_pqueue_t *rpqp, 240 pMpi2ReplyDescriptorsUnion_t reply_desc_union); 241 static void mptsas_handle_scsi_io_success(mptsas_t *mpt, 242 mptsas_reply_pqueue_t *rpqp, pMpi2ReplyDescriptorsUnion_t reply_desc); 243 static void mptsas_handle_address_reply(mptsas_t *mpt, 244 pMpi2ReplyDescriptorsUnion_t reply_desc); 245 static int mptsas_wait_intr(mptsas_t *mpt, int polltime); 246 static void mptsas_sge_setup(mptsas_t *mpt, mptsas_cmd_t *cmd, 247 uint32_t *control, pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl); 248 249 static void mptsas_watch(void *arg); 250 static void mptsas_watchsubr(mptsas_t *mpt); 251 static void mptsas_cmd_timeout(mptsas_t *mpt, mptsas_target_t *ptgt); 252 253 static void mptsas_start_passthru(mptsas_t *mpt, mptsas_cmd_t *cmd); 254 static int mptsas_do_passthru(mptsas_t *mpt, uint8_t *request, uint8_t *reply, 255 uint8_t *data, uint32_t request_size, uint32_t reply_size, 256 uint32_t data_size, uint8_t direction, uint8_t *dataout, 257 uint32_t dataout_size, short timeout, int mode); 258 static int mptsas_free_devhdl(mptsas_t *mpt, uint16_t devhdl); 259 260 static uint8_t mptsas_get_fw_diag_buffer_number(mptsas_t *mpt, 261 uint32_t unique_id); 262 static void mptsas_start_diag(mptsas_t *mpt, mptsas_cmd_t *cmd); 263 static int mptsas_post_fw_diag_buffer(mptsas_t *mpt, 264 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 265 static int mptsas_release_fw_diag_buffer(mptsas_t *mpt, 266 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 267 uint32_t diag_type); 268 static int mptsas_diag_register(mptsas_t *mpt, 269 mptsas_fw_diag_register_t *diag_register, uint32_t *return_code); 270 static int mptsas_diag_unregister(mptsas_t *mpt, 271 mptsas_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 272 static int mptsas_diag_query(mptsas_t *mpt, mptsas_fw_diag_query_t *diag_query, 273 uint32_t *return_code); 274 static int mptsas_diag_read_buffer(mptsas_t *mpt, 275 mptsas_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 276 uint32_t *return_code, int ioctl_mode); 277 static int mptsas_diag_release(mptsas_t *mpt, 278 mptsas_fw_diag_release_t *diag_release, uint32_t *return_code); 279 static int mptsas_do_diag_action(mptsas_t *mpt, uint32_t action, 280 uint8_t *diag_action, uint32_t length, uint32_t *return_code, 281 int ioctl_mode); 282 static int mptsas_diag_action(mptsas_t *mpt, mptsas_diag_action_t *data, 283 int mode); 284 285 static int mptsas_pkt_alloc_extern(mptsas_t *mpt, mptsas_cmd_t *cmd, 286 int cmdlen, int tgtlen, int statuslen, int kf); 287 static void mptsas_pkt_destroy_extern(mptsas_t *mpt, mptsas_cmd_t *cmd); 288 289 static int mptsas_kmem_cache_constructor(void *buf, void *cdrarg, int kmflags); 290 static void mptsas_kmem_cache_destructor(void *buf, void *cdrarg); 291 292 static int mptsas_cache_frames_constructor(void *buf, void *cdrarg, 293 int kmflags); 294 static void mptsas_cache_frames_destructor(void *buf, void *cdrarg); 295 296 static void mptsas_check_scsi_io_error(mptsas_t *mpt, pMpi2SCSIIOReply_t reply, 297 mptsas_cmd_t *cmd); 298 static void mptsas_check_task_mgt(mptsas_t *mpt, 299 pMpi2SCSIManagementReply_t reply, mptsas_cmd_t *cmd); 300 static int mptsas_send_scsi_cmd(mptsas_t *mpt, struct scsi_address *ap, 301 mptsas_target_t *ptgt, uchar_t *cdb, int cdblen, struct buf *data_bp, 302 int *resid); 303 304 static int mptsas_alloc_active_slots(mptsas_t *mpt, int flag); 305 static void mptsas_free_active_slots(mptsas_t *mpt); 306 static int mptsas_start_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd); 307 308 static void mptsas_restart_hba(mptsas_t *mpt); 309 static void mptsas_restart_waitq(mptsas_t *mpt); 310 311 static void mptsas_deliver_doneq_thread(mptsas_t *mpt, 312 mptsas_done_list_t *dlist); 313 static void mptsas_doneq_add(mptsas_t *mpt, mptsas_cmd_t *cmd); 314 static void mptsas_rpdoneq_add(mptsas_t *mpt, mptsas_reply_pqueue_t *rpqp, 315 mptsas_cmd_t *cmd); 316 static void mptsas_doneq_mv(mptsas_done_list_t *from, 317 mptsas_doneq_thread_list_t *item); 318 319 static mptsas_cmd_t *mptsas_doneq_thread_rm(mptsas_t *mpt, uint64_t t); 320 static void mptsas_doneq_empty(mptsas_t *mpt); 321 static void mptsas_rpdoneq_empty(mptsas_reply_pqueue_t *rpqp); 322 static void mptsas_doneq_thread(mptsas_thread_arg_t *arg); 323 static void mptsas_tx_waitq_thread(mptsas_thread_arg_t *arg); 324 325 static mptsas_cmd_t *mptsas_waitq_rm(mptsas_t *mpt); 326 static void mptsas_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd); 327 328 static void mptsas_start_watch_reset_delay(); 329 static void mptsas_setup_bus_reset_delay(mptsas_t *mpt); 330 static void mptsas_watch_reset_delay(void *arg); 331 static int mptsas_watch_reset_delay_subr(mptsas_t *mpt); 332 static void mptsas_set_throttle(struct mptsas *mpt, mptsas_target_t *ptgt, 333 int what); 334 static void mptsas_set_throttle_mtx(struct mptsas *mpt, mptsas_target_t *ptgt, 335 int what); 336 static void mptsas_remove_cmd_nomtx(mptsas_t *mpt, mptsas_cmd_t *cmd); 337 338 /* 339 * helper functions 340 */ 341 static void mptsas_dump_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd); 342 343 static dev_info_t *mptsas_find_child(dev_info_t *pdip, char *name); 344 static dev_info_t *mptsas_find_child_phy(dev_info_t *pdip, uint8_t phy); 345 static dev_info_t *mptsas_find_child_addr(dev_info_t *pdip, uint64_t sasaddr, 346 int lun); 347 static mdi_pathinfo_t *mptsas_find_path_addr(dev_info_t *pdip, uint64_t sasaddr, 348 int lun); 349 static mdi_pathinfo_t *mptsas_find_path_phy(dev_info_t *pdip, uint8_t phy); 350 static dev_info_t *mptsas_find_smp_child(dev_info_t *pdip, char *str_wwn); 351 352 static int mptsas_parse_address(char *name, uint64_t *wwid, uint8_t *phy, 353 int *lun); 354 static int mptsas_parse_smp_name(char *name, uint64_t *wwn); 355 356 static mptsas_target_t *mptsas_phy_to_tgt(mptsas_t *mpt, 357 mptsas_phymask_t phymask, uint8_t phy); 358 static mptsas_target_t *mptsas_wwid_to_ptgt(mptsas_t *mpt, 359 mptsas_phymask_t phymask, uint64_t wwid); 360 static mptsas_smp_t *mptsas_wwid_to_psmp(mptsas_t *mpt, 361 mptsas_phymask_t phymask, uint64_t wwid); 362 363 static int mptsas_inquiry(mptsas_t *mpt, mptsas_target_t *ptgt, int lun, 364 uchar_t page, unsigned char *buf, int len, int *rlen, uchar_t evpd); 365 366 static int mptsas_get_target_device_info(mptsas_t *mpt, uint32_t page_address, 367 uint16_t *handle, mptsas_target_t **pptgt); 368 static void mptsas_update_phymask(mptsas_t *mpt); 369 370 static int mptsas_send_sep(mptsas_t *mpt, mptsas_target_t *ptgt, 371 uint32_t *status, uint8_t cmd); 372 static dev_info_t *mptsas_get_dip_from_dev(dev_t dev, 373 mptsas_phymask_t *phymask); 374 static mptsas_target_t *mptsas_addr_to_ptgt(mptsas_t *mpt, char *addr, 375 mptsas_phymask_t phymask); 376 static int mptsas_flush_led_status(mptsas_t *mpt, mptsas_target_t *ptgt); 377 378 379 /* 380 * Enumeration / DR functions 381 */ 382 static void mptsas_config_all(dev_info_t *pdip); 383 static int mptsas_config_one_addr(dev_info_t *pdip, uint64_t sasaddr, int lun, 384 dev_info_t **lundip); 385 static int mptsas_config_one_phy(dev_info_t *pdip, uint8_t phy, int lun, 386 dev_info_t **lundip); 387 388 static int mptsas_config_target(dev_info_t *pdip, mptsas_target_t *ptgt); 389 static int mptsas_offline_targetdev(dev_info_t *pdip, char *name); 390 static void mptsas_offline_target(mptsas_t *mpt, mptsas_target_t *ptgt, 391 uint8_t topo_flags, dev_info_t *parent); 392 393 static int mptsas_config_raid(dev_info_t *pdip, uint16_t target, 394 dev_info_t **dip); 395 396 static int mptsas_config_luns(dev_info_t *pdip, mptsas_target_t *ptgt); 397 static int mptsas_probe_lun(dev_info_t *pdip, int lun, 398 dev_info_t **dip, mptsas_target_t *ptgt); 399 400 static int mptsas_create_lun(dev_info_t *pdip, struct scsi_inquiry *sd_inq, 401 dev_info_t **dip, mptsas_target_t *ptgt, int lun); 402 403 static int mptsas_create_phys_lun(dev_info_t *pdip, struct scsi_inquiry *sd, 404 char *guid, dev_info_t **dip, mptsas_target_t *ptgt, int lun); 405 static int mptsas_create_virt_lun(dev_info_t *pdip, struct scsi_inquiry *sd, 406 char *guid, dev_info_t **dip, mdi_pathinfo_t **pip, mptsas_target_t *ptgt, 407 int lun); 408 409 static void mptsas_offline_missed_luns(dev_info_t *pdip, 410 uint16_t *repluns, int lun_cnt, mptsas_target_t *ptgt); 411 static int mptsas_offline_lun(dev_info_t *pdip, dev_info_t *rdip, 412 mdi_pathinfo_t *rpip, uint_t flags); 413 414 static int mptsas_config_smp(dev_info_t *pdip, uint64_t sas_wwn, 415 dev_info_t **smp_dip); 416 static int mptsas_offline_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 417 uint_t flags); 418 419 static int mptsas_event_query(mptsas_t *mpt, mptsas_event_query_t *data, 420 int mode, int *rval); 421 static int mptsas_event_enable(mptsas_t *mpt, mptsas_event_enable_t *data, 422 int mode, int *rval); 423 static int mptsas_event_report(mptsas_t *mpt, mptsas_event_report_t *data, 424 int mode, int *rval); 425 static void mptsas_record_event(void *args); 426 static int mptsas_reg_access(mptsas_t *mpt, mptsas_reg_access_t *data, 427 int mode); 428 429 mptsas_target_t *mptsas_tgt_alloc(mptsas_t *, uint16_t, uint64_t, 430 uint32_t, mptsas_phymask_t, uint8_t); 431 static mptsas_smp_t *mptsas_smp_alloc(mptsas_t *, mptsas_smp_t *); 432 static int mptsas_online_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 433 dev_info_t **smp_dip); 434 435 /* 436 * Power management functions 437 */ 438 static int mptsas_get_pci_cap(mptsas_t *mpt); 439 static int mptsas_init_pm(mptsas_t *mpt); 440 441 /* 442 * MPT MSI tunable: 443 * 444 * By default MSI is enabled on all supported platforms. 445 */ 446 boolean_t mptsas_enable_msi = B_TRUE; 447 boolean_t mptsas_enable_msix = B_TRUE; 448 boolean_t mptsas_physical_bind_failed_page_83 = B_FALSE; 449 450 /* 451 * Global switch for use of MPI2.5 FAST PATH. 452 */ 453 boolean_t mptsas3_use_fastpath = B_TRUE; 454 455 static int mptsas_register_intrs(mptsas_t *); 456 static void mptsas_unregister_intrs(mptsas_t *); 457 static int mptsas_add_intrs(mptsas_t *, int); 458 static void mptsas_rem_intrs(mptsas_t *); 459 460 /* 461 * FMA Prototypes 462 */ 463 static void mptsas_fm_init(mptsas_t *mpt); 464 static void mptsas_fm_fini(mptsas_t *mpt); 465 static int mptsas_fm_error_cb(dev_info_t *, ddi_fm_error_t *, const void *); 466 467 extern pri_t minclsyspri, maxclsyspri; 468 /* 469 * NCPUS is used to determine some optimal configurations for number 470 * of threads created to perform specific jobs. If we are invoked because 471 * a disk is part of the root file system ncpus may still be 1 so check 472 * boot_ncpus as well. 473 */ 474 extern int ncpus, boot_ncpus; 475 #define NCPUS max(ncpus, boot_ncpus) 476 477 /* 478 * This device is created by the SCSI pseudo nexus driver (SCSI vHCI). It is 479 * under this device that the paths to a physical device are created when 480 * MPxIO is used. 481 */ 482 extern dev_info_t *scsi_vhci_dip; 483 484 /* 485 * Tunable timeout value for Inquiry VPD page 0x83 486 * By default the value is 30 seconds. 487 */ 488 int mptsas_inq83_retry_timeout = 30; 489 490 /* 491 * Tunable for default SCSI pkt timeout. Defaults to 5 seconds, which should 492 * be plenty for INQUIRY and REPORT_LUNS, which are the only commands currently 493 * issued by mptsas directly. 494 */ 495 int mptsas_scsi_pkt_time = 5; 496 497 /* 498 * This is used to allocate memory for message frame storage, not for 499 * data I/O DMA. All message frames must be stored in the first 4G of 500 * physical memory. 501 */ 502 ddi_dma_attr_t mptsas_dma_attrs = { 503 DMA_ATTR_V0, /* attribute layout version */ 504 0x0ull, /* address low - should be 0 (longlong) */ 505 0xffffffffull, /* address high - 32-bit max range */ 506 0x00ffffffull, /* count max - max DMA object size */ 507 4, /* allocation alignment requirements */ 508 0x78, /* burstsizes - binary encoded values */ 509 1, /* minxfer - gran. of DMA engine */ 510 0x00ffffffull, /* maxxfer - gran. of DMA engine */ 511 0xffffffffull, /* max segment size (DMA boundary) */ 512 MPTSAS_MAX_DMA_SEGS, /* scatter/gather list length */ 513 512, /* granularity - device transfer size */ 514 0 /* flags, set to 0 */ 515 }; 516 517 /* 518 * This is used for data I/O DMA memory allocation. (full 64-bit DMA 519 * physical addresses are supported.) 520 */ 521 ddi_dma_attr_t mptsas_dma_attrs64 = { 522 DMA_ATTR_V0, /* attribute layout version */ 523 0x0ull, /* address low - should be 0 (longlong) */ 524 0xffffffffffffffffull, /* address high - 64-bit max */ 525 0x00ffffffull, /* count max - max DMA object size */ 526 4, /* allocation alignment requirements */ 527 0x78, /* burstsizes - binary encoded values */ 528 1, /* minxfer - gran. of DMA engine */ 529 0x00ffffffull, /* maxxfer - gran. of DMA engine */ 530 0xffffffffull, /* max segment size (DMA boundary) */ 531 MPTSAS_MAX_DMA_SEGS, /* scatter/gather list length */ 532 512, /* granularity - device transfer size */ 533 0 /* flags, set to 0 */ 534 }; 535 536 ddi_device_acc_attr_t mptsas_dev_attr = { 537 DDI_DEVICE_ATTR_V1, 538 DDI_STRUCTURE_LE_ACC, 539 DDI_STRICTORDER_ACC, 540 DDI_DEFAULT_ACC 541 }; 542 543 static struct cb_ops mptsas_cb_ops = { 544 scsi_hba_open, /* open */ 545 scsi_hba_close, /* close */ 546 nodev, /* strategy */ 547 nodev, /* print */ 548 nodev, /* dump */ 549 nodev, /* read */ 550 nodev, /* write */ 551 mptsas_ioctl, /* ioctl */ 552 nodev, /* devmap */ 553 nodev, /* mmap */ 554 nodev, /* segmap */ 555 nochpoll, /* chpoll */ 556 ddi_prop_op, /* cb_prop_op */ 557 NULL, /* streamtab */ 558 D_MP, /* cb_flag */ 559 CB_REV, /* rev */ 560 nodev, /* aread */ 561 nodev /* awrite */ 562 }; 563 564 static struct dev_ops mptsas_ops = { 565 DEVO_REV, /* devo_rev, */ 566 0, /* refcnt */ 567 ddi_no_info, /* info */ 568 nulldev, /* identify */ 569 nulldev, /* probe */ 570 mptsas_attach, /* attach */ 571 mptsas_detach, /* detach */ 572 #ifdef __sparc 573 mptsas_reset, 574 #else 575 nodev, /* reset */ 576 #endif /* __sparc */ 577 &mptsas_cb_ops, /* driver operations */ 578 NULL, /* bus operations */ 579 mptsas_power, /* power management */ 580 #ifdef __sparc 581 ddi_quiesce_not_needed 582 #else 583 mptsas_quiesce /* quiesce */ 584 #endif /* __sparc */ 585 }; 586 587 588 #define MPTSAS_MOD_STRING "MPTSAS3 HBA Driver 00.00.01" 589 590 static struct modldrv modldrv = { 591 &mod_driverops, /* Type of module. This one is a driver */ 592 MPTSAS_MOD_STRING, /* Name of the module. */ 593 &mptsas_ops, /* driver ops */ 594 }; 595 596 static struct modlinkage modlinkage = { 597 MODREV_1, &modldrv, NULL 598 }; 599 #define TARGET_PROP "target" 600 #define LUN_PROP "lun" 601 #define LUN64_PROP "lun64" 602 #define SAS_PROP "sas-mpt" 603 #define MDI_GUID "wwn" 604 #define NDI_GUID "guid" 605 #define MPTSAS_DEV_GONE "mptsas_dev_gone" 606 607 /* 608 * Local static data 609 */ 610 #if defined(MPTSAS_DEBUG) 611 uint32_t mptsas_debug_flags = 0x0; 612 /* 613 * Flags to ignore these messages in local debug ring buffer. 614 * Default is to ignore the watchsubr() output which normally happens 615 * every second. 616 */ 617 uint32_t mptsas_dbglog_imask = 0x40000000; 618 uint32_t mptsas_test_timeout = 0; 619 #endif /* defined(MPTSAS_DEBUG) */ 620 uint32_t mptsas_debug_resets = 0; 621 622 static kmutex_t mptsas_global_mutex; 623 static void *mptsas3_state; /* soft state ptr */ 624 static krwlock_t mptsas_global_rwlock; 625 626 static kmutex_t mptsas_log_mutex; 627 static char mptsas_log_buf[256]; 628 _NOTE(MUTEX_PROTECTS_DATA(mptsas_log_mutex, mptsas_log_buf)) 629 630 static mptsas_t *mptsas_head, *mptsas_tail; 631 static clock_t mptsas_scsi_watchdog_tick; 632 static clock_t mptsas_tick; 633 static timeout_id_t mptsas_reset_watch; 634 static timeout_id_t mptsas_timeout_id; 635 static int mptsas_timeouts_enabled = 0; 636 637 /* 638 * Maximum number of MSI-X interrupts any instance of mptsas3 can use. 639 * Note that if you want to increase this you may have to also bump the 640 * value of ddi_msix_alloc_limit which defaults to 8. 641 * Set to zero to fall back to other interrupt types. 642 */ 643 int mptsas3_max_msix_intrs = 8; 644 645 /* 646 * Default length for extended auto request sense buffers. 647 * All sense buffers need to be under the same alloc because there 648 * is only one common top 32bits (of 64bits) address register. 649 * Most requests only require 32 bytes, but some request >256. 650 * We use rmalloc()/rmfree() on this additional memory to manage the 651 * "extended" requests. 652 */ 653 int mptsas_extreq_sense_bufsize = 256*64; 654 655 /* 656 * Believe that all software resrictions of having to run with DMA 657 * attributes to limit allocation to the first 4G are removed. 658 * However, this flag remains to enable quick switchback should suspicious 659 * problems emerge. 660 * Note that scsi_alloc_consistent_buf() does still adhering to allocating 661 * 32 bit addressable memory, but we can cope if that is changed now. 662 */ 663 int mptsas_use_64bit_msgaddr = 1; 664 665 /* 666 * warlock directives 667 */ 668 _NOTE(SCHEME_PROTECTS_DATA("unique per pkt", scsi_pkt \ 669 mptsas_cmd NcrTableIndirect buf scsi_cdb scsi_status)) 670 _NOTE(SCHEME_PROTECTS_DATA("unique per pkt", smp_pkt)) 671 _NOTE(SCHEME_PROTECTS_DATA("stable data", scsi_device scsi_address)) 672 _NOTE(SCHEME_PROTECTS_DATA("No Mutex Needed", mptsas_tgt_private)) 673 _NOTE(SCHEME_PROTECTS_DATA("No Mutex Needed", scsi_hba_tran::tran_tgt_private)) 674 675 /* 676 * SM - HBA statics 677 */ 678 char *mptsas_driver_rev = MPTSAS_MOD_STRING; 679 680 #ifdef MPTSAS_DEBUG 681 void debug_enter(char *); 682 #endif 683 684 /* 685 * Notes: 686 * - scsi_hba_init(9F) initializes SCSI HBA modules 687 * - must call scsi_hba_fini(9F) if modload() fails 688 */ 689 int 690 _init(void) 691 { 692 int status; 693 /* CONSTCOND */ 694 ASSERT(NO_COMPETING_THREADS); 695 696 NDBG0(("_init")); 697 698 status = ddi_soft_state_init(&mptsas3_state, MPTSAS_SIZE, 699 MPTSAS_INITIAL_SOFT_SPACE); 700 if (status != 0) { 701 return (status); 702 } 703 704 if ((status = scsi_hba_init(&modlinkage)) != 0) { 705 ddi_soft_state_fini(&mptsas3_state); 706 return (status); 707 } 708 709 mutex_init(&mptsas_global_mutex, NULL, MUTEX_DRIVER, NULL); 710 rw_init(&mptsas_global_rwlock, NULL, RW_DRIVER, NULL); 711 mutex_init(&mptsas_log_mutex, NULL, MUTEX_DRIVER, NULL); 712 713 if ((status = mod_install(&modlinkage)) != 0) { 714 mutex_destroy(&mptsas_log_mutex); 715 rw_destroy(&mptsas_global_rwlock); 716 mutex_destroy(&mptsas_global_mutex); 717 ddi_soft_state_fini(&mptsas3_state); 718 scsi_hba_fini(&modlinkage); 719 } 720 721 return (status); 722 } 723 724 /* 725 * Notes: 726 * - scsi_hba_fini(9F) uninitializes SCSI HBA modules 727 */ 728 int 729 _fini(void) 730 { 731 int status; 732 /* CONSTCOND */ 733 ASSERT(NO_COMPETING_THREADS); 734 735 NDBG0(("_fini")); 736 737 if ((status = mod_remove(&modlinkage)) == 0) { 738 ddi_soft_state_fini(&mptsas3_state); 739 scsi_hba_fini(&modlinkage); 740 mutex_destroy(&mptsas_global_mutex); 741 rw_destroy(&mptsas_global_rwlock); 742 mutex_destroy(&mptsas_log_mutex); 743 } 744 return (status); 745 } 746 747 /* 748 * The loadable-module _info(9E) entry point 749 */ 750 int 751 _info(struct modinfo *modinfop) 752 { 753 /* CONSTCOND */ 754 ASSERT(NO_COMPETING_THREADS); 755 NDBG0(("mptsas _info")); 756 757 return (mod_info(&modlinkage, modinfop)); 758 } 759 760 static int 761 mptsas_target_eval_devhdl(const void *op, void *arg) 762 { 763 uint16_t dh = *(uint16_t *)arg; 764 const mptsas_target_t *tp = op; 765 766 return ((int)tp->m_devhdl - (int)dh); 767 } 768 769 static int 770 mptsas_target_eval_slot(const void *op, void *arg) 771 { 772 mptsas_led_control_t *lcp = arg; 773 const mptsas_target_t *tp = op; 774 775 if (tp->m_enclosure != lcp->Enclosure) 776 return ((int)tp->m_enclosure - (int)lcp->Enclosure); 777 778 return ((int)tp->m_slot_num - (int)lcp->Slot); 779 } 780 781 static int 782 mptsas_target_eval_nowwn(const void *op, void *arg) 783 { 784 uint8_t phy = *(uint8_t *)arg; 785 const mptsas_target_t *tp = op; 786 787 if (tp->m_addr.mta_wwn != 0) 788 return (-1); 789 790 return ((int)tp->m_phynum - (int)phy); 791 } 792 793 static int 794 mptsas_smp_eval_devhdl(const void *op, void *arg) 795 { 796 uint16_t dh = *(uint16_t *)arg; 797 const mptsas_smp_t *sp = op; 798 799 return ((int)sp->m_devhdl - (int)dh); 800 } 801 802 static uint64_t 803 mptsas_target_addr_hash(const void *tp) 804 { 805 const mptsas_target_addr_t *tap = tp; 806 807 return ((tap->mta_wwn & 0xffffffffffffULL) | 808 ((uint64_t)tap->mta_phymask << 48)); 809 } 810 811 static int 812 mptsas_target_addr_cmp(const void *a, const void *b) 813 { 814 const mptsas_target_addr_t *aap = a; 815 const mptsas_target_addr_t *bap = b; 816 817 if (aap->mta_wwn < bap->mta_wwn) 818 return (-1); 819 if (aap->mta_wwn > bap->mta_wwn) 820 return (1); 821 return ((int)bap->mta_phymask - (int)aap->mta_phymask); 822 } 823 824 static void 825 mptsas_target_free(void *op) 826 { 827 kmem_free(op, sizeof (mptsas_target_t)); 828 } 829 830 static void 831 mptsas_smp_free(void *op) 832 { 833 kmem_free(op, sizeof (mptsas_smp_t)); 834 } 835 836 static void 837 mptsas_destroy_hashes(mptsas_t *mpt) 838 { 839 mptsas_target_t *tp; 840 mptsas_smp_t *sp; 841 842 for (tp = refhash_first(mpt->m_targets); tp != NULL; 843 tp = refhash_next(mpt->m_targets, tp)) { 844 mutex_destroy(&tp->m_t_mutex); 845 refhash_remove(mpt->m_targets, tp); 846 } 847 for (sp = refhash_first(mpt->m_smp_targets); sp != NULL; 848 sp = refhash_next(mpt->m_smp_targets, sp)) { 849 refhash_remove(mpt->m_smp_targets, sp); 850 } 851 refhash_destroy(mpt->m_targets); 852 refhash_destroy(mpt->m_smp_targets); 853 mpt->m_targets = NULL; 854 mpt->m_smp_targets = NULL; 855 } 856 857 static int 858 mptsas_iport_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 859 { 860 dev_info_t *pdip; 861 mptsas_t *mpt; 862 scsi_hba_tran_t *hba_tran; 863 char *iport = NULL; 864 char phymask[MPTSAS_MAX_PHYS]; 865 mptsas_phymask_t phy_mask = 0; 866 int dynamic_port = 0; 867 uint32_t page_address; 868 char initiator_wwnstr[MPTSAS_WWN_STRLEN]; 869 int rval = DDI_FAILURE; 870 int i = 0; 871 uint8_t numphys = 0; 872 uint8_t phy_id; 873 uint8_t phy_port = 0; 874 uint16_t attached_devhdl = 0; 875 uint32_t dev_info; 876 uint64_t attached_sas_wwn; 877 uint16_t dev_hdl; 878 uint16_t pdev_hdl; 879 uint16_t bay_num, enclosure, io_flags; 880 char attached_wwnstr[MPTSAS_WWN_STRLEN]; 881 882 /* CONSTCOND */ 883 ASSERT(NO_COMPETING_THREADS); 884 885 switch (cmd) { 886 case DDI_ATTACH: 887 break; 888 889 case DDI_RESUME: 890 /* 891 * If this a scsi-iport node, nothing to do here. 892 */ 893 return (DDI_SUCCESS); 894 895 default: 896 return (DDI_FAILURE); 897 } 898 899 pdip = ddi_get_parent(dip); 900 901 if ((hba_tran = ndi_flavorv_get(pdip, SCSA_FLAVOR_SCSI_DEVICE)) == 902 NULL) { 903 cmn_err(CE_WARN, "Failed attach iport because fail to " 904 "get tran vector for the HBA node"); 905 return (DDI_FAILURE); 906 } 907 908 mpt = TRAN2MPT(hba_tran); 909 ASSERT(mpt != NULL); 910 if (mpt == NULL) 911 return (DDI_FAILURE); 912 913 if ((hba_tran = ndi_flavorv_get(dip, SCSA_FLAVOR_SCSI_DEVICE)) == 914 NULL) { 915 mptsas_log(mpt, CE_WARN, "Failed attach iport because fail to " 916 "get tran vector for the iport node"); 917 return (DDI_FAILURE); 918 } 919 920 /* 921 * Overwrite parent's tran_hba_private to iport's tran vector 922 */ 923 hba_tran->tran_hba_private = mpt; 924 925 ddi_report_dev(dip); 926 927 /* 928 * Get SAS address for initiator port according dev_handle 929 */ 930 iport = ddi_get_name_addr(dip); 931 if (iport && strncmp(iport, "v0", 2) == 0) { 932 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 933 MPTSAS_VIRTUAL_PORT, 1) != 934 DDI_PROP_SUCCESS) { 935 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, 936 MPTSAS_VIRTUAL_PORT); 937 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 938 "prop update failed"); 939 return (DDI_FAILURE); 940 } 941 return (DDI_SUCCESS); 942 } 943 944 mutex_enter(&mpt->m_mutex); 945 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 946 bzero(phymask, sizeof (phymask)); 947 (void) sprintf(phymask, 948 "%x", mpt->m_phy_info[i].phy_mask); 949 if (strcmp(phymask, iport) == 0) { 950 break; 951 } 952 } 953 954 if (i == MPTSAS_MAX_PHYS) { 955 mptsas_log(mpt, CE_WARN, "Failed attach port %s because port" 956 "seems not exist", iport); 957 mutex_exit(&mpt->m_mutex); 958 return (DDI_FAILURE); 959 } 960 961 phy_mask = mpt->m_phy_info[i].phy_mask; 962 963 if (mpt->m_phy_info[i].port_flags & AUTO_PORT_CONFIGURATION) 964 dynamic_port = 1; 965 else 966 dynamic_port = 0; 967 968 /* 969 * Update PHY info for smhba 970 */ 971 if (mptsas_smhba_phy_init(mpt)) { 972 mutex_exit(&mpt->m_mutex); 973 mptsas_log(mpt, CE_WARN, "mptsas phy update " 974 "failed"); 975 return (DDI_FAILURE); 976 } 977 978 mutex_exit(&mpt->m_mutex); 979 980 numphys = 0; 981 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 982 if ((phy_mask >> i) & 0x01) { 983 numphys++; 984 } 985 } 986 987 bzero(initiator_wwnstr, sizeof (initiator_wwnstr)); 988 (void) sprintf(initiator_wwnstr, "w%016"PRIx64, 989 mpt->un.m_base_wwid); 990 991 if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, 992 SCSI_ADDR_PROP_INITIATOR_PORT, initiator_wwnstr) != 993 DDI_PROP_SUCCESS) { 994 (void) ddi_prop_remove(DDI_DEV_T_NONE, 995 dip, SCSI_ADDR_PROP_INITIATOR_PORT); 996 mptsas_log(mpt, CE_WARN, "mptsas Initiator port " 997 "prop update failed"); 998 return (DDI_FAILURE); 999 } 1000 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 1001 MPTSAS_NUM_PHYS, numphys) != 1002 DDI_PROP_SUCCESS) { 1003 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, MPTSAS_NUM_PHYS); 1004 return (DDI_FAILURE); 1005 } 1006 1007 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 1008 "phymask", phy_mask) != 1009 DDI_PROP_SUCCESS) { 1010 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "phymask"); 1011 mptsas_log(mpt, CE_WARN, "mptsas phy mask " 1012 "prop update failed"); 1013 return (DDI_FAILURE); 1014 } 1015 1016 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 1017 "dynamic-port", dynamic_port) != 1018 DDI_PROP_SUCCESS) { 1019 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "dynamic-port"); 1020 mptsas_log(mpt, CE_WARN, "mptsas dynamic port " 1021 "prop update failed"); 1022 return (DDI_FAILURE); 1023 } 1024 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 1025 MPTSAS_VIRTUAL_PORT, 0) != 1026 DDI_PROP_SUCCESS) { 1027 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, 1028 MPTSAS_VIRTUAL_PORT); 1029 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 1030 "prop update failed"); 1031 return (DDI_FAILURE); 1032 } 1033 mptsas_smhba_set_all_phy_props(mpt, dip, numphys, phy_mask, 1034 &attached_devhdl); 1035 1036 mutex_enter(&mpt->m_mutex); 1037 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 1038 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)attached_devhdl; 1039 rval = mptsas_get_sas_device_page0(mpt, page_address, &dev_hdl, 1040 &attached_sas_wwn, &dev_info, &phy_port, &phy_id, 1041 &pdev_hdl, &bay_num, &enclosure, &io_flags); 1042 if (rval != DDI_SUCCESS) { 1043 mptsas_log(mpt, CE_WARN, 1044 "Failed to get device page0 for handle:%d", 1045 attached_devhdl); 1046 mutex_exit(&mpt->m_mutex); 1047 return (DDI_FAILURE); 1048 } 1049 1050 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1051 bzero(phymask, sizeof (phymask)); 1052 (void) sprintf(phymask, "%x", mpt->m_phy_info[i].phy_mask); 1053 if (strcmp(phymask, iport) == 0) { 1054 (void) sprintf(&mpt->m_phy_info[i].smhba_info.path[0], 1055 "%x", 1056 mpt->m_phy_info[i].phy_mask); 1057 } 1058 } 1059 mutex_exit(&mpt->m_mutex); 1060 1061 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 1062 (void) sprintf(attached_wwnstr, "w%016"PRIx64, 1063 attached_sas_wwn); 1064 if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, 1065 SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) != 1066 DDI_PROP_SUCCESS) { 1067 (void) ddi_prop_remove(DDI_DEV_T_NONE, 1068 dip, SCSI_ADDR_PROP_ATTACHED_PORT); 1069 return (DDI_FAILURE); 1070 } 1071 1072 /* Create kstats for each phy on this iport */ 1073 1074 mptsas_create_phy_stats(mpt, iport, dip); 1075 1076 /* 1077 * register sas hba iport with mdi (MPxIO/vhci) 1078 */ 1079 if (mdi_phci_register(MDI_HCI_CLASS_SCSI, 1080 dip, 0) == MDI_SUCCESS) { 1081 mpt->m_mpxio_enable = TRUE; 1082 } 1083 return (DDI_SUCCESS); 1084 } 1085 1086 /* 1087 * Notes: 1088 * Set up all device state and allocate data structures, 1089 * mutexes, condition variables, etc. for device operation. 1090 * Add interrupts needed. 1091 * Return DDI_SUCCESS if device is ready, else return DDI_FAILURE. 1092 */ 1093 static int 1094 mptsas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1095 { 1096 mptsas_t *mpt = NULL; 1097 int instance, i, j; 1098 int q_thread_num; 1099 char map_setup = 0; 1100 char config_setup = 0; 1101 char hba_attach_setup = 0; 1102 char smp_attach_setup = 0; 1103 char mutex_init_done = 0; 1104 char event_taskq_create = 0; 1105 char dr_taskq_create = 0; 1106 char doneq_thread_create = 0; 1107 char txwq_thread_create = 0; 1108 char added_watchdog = 0; 1109 scsi_hba_tran_t *hba_tran; 1110 uint_t mem_bar = MEM_SPACE; 1111 int rval = DDI_FAILURE; 1112 1113 /* CONSTCOND */ 1114 ASSERT(NO_COMPETING_THREADS); 1115 1116 if (scsi_hba_iport_unit_address(dip)) { 1117 return (mptsas_iport_attach(dip, cmd)); 1118 } 1119 1120 switch (cmd) { 1121 case DDI_ATTACH: 1122 break; 1123 1124 case DDI_RESUME: 1125 if ((hba_tran = ddi_get_driver_private(dip)) == NULL) 1126 return (DDI_FAILURE); 1127 1128 mpt = TRAN2MPT(hba_tran); 1129 1130 if (!mpt) { 1131 return (DDI_FAILURE); 1132 } 1133 1134 /* 1135 * Reset hardware and softc to "no outstanding commands" 1136 * Note that a check condition can result on first command 1137 * to a target. 1138 */ 1139 mutex_enter(&mpt->m_mutex); 1140 1141 /* 1142 * raise power. 1143 */ 1144 if (mpt->m_options & MPTSAS_OPT_PM) { 1145 mutex_exit(&mpt->m_mutex); 1146 (void) pm_busy_component(dip, 0); 1147 rval = pm_power_has_changed(dip, 0, PM_LEVEL_D0); 1148 if (rval == DDI_SUCCESS) { 1149 mutex_enter(&mpt->m_mutex); 1150 } else { 1151 /* 1152 * The pm_raise_power() call above failed, 1153 * and that can only occur if we were unable 1154 * to reset the hardware. This is probably 1155 * due to unhealty hardware, and because 1156 * important filesystems(such as the root 1157 * filesystem) could be on the attached disks, 1158 * it would not be a good idea to continue, 1159 * as we won't be entirely certain we are 1160 * writing correct data. So we panic() here 1161 * to not only prevent possible data corruption, 1162 * but to give developers or end users a hope 1163 * of identifying and correcting any problems. 1164 */ 1165 fm_panic("mptsas could not reset hardware " 1166 "during resume"); 1167 } 1168 } 1169 1170 mpt->m_suspended = 0; 1171 1172 /* 1173 * Reinitialize ioc 1174 */ 1175 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 1176 if (mptsas_init_chip(mpt, FALSE) == DDI_FAILURE) { 1177 mutex_exit(&mpt->m_mutex); 1178 if (mpt->m_options & MPTSAS_OPT_PM) { 1179 (void) pm_idle_component(dip, 0); 1180 } 1181 fm_panic("mptsas init chip fail during resume"); 1182 } 1183 /* 1184 * mptsas_update_driver_data needs interrupts so enable them 1185 * first. 1186 */ 1187 MPTSAS_ENABLE_INTR(mpt); 1188 mptsas_update_driver_data(mpt); 1189 1190 /* start requests, if possible */ 1191 mptsas_restart_hba(mpt); 1192 1193 mutex_exit(&mpt->m_mutex); 1194 1195 /* 1196 * Restart watch thread 1197 */ 1198 mutex_enter(&mptsas_global_mutex); 1199 if (mptsas_timeout_id == 0) { 1200 mptsas_timeout_id = timeout(mptsas_watch, NULL, 1201 mptsas_tick); 1202 mptsas_timeouts_enabled = 1; 1203 } 1204 mutex_exit(&mptsas_global_mutex); 1205 1206 /* report idle status to pm framework */ 1207 if (mpt->m_options & MPTSAS_OPT_PM) { 1208 (void) pm_idle_component(dip, 0); 1209 } 1210 1211 return (DDI_SUCCESS); 1212 1213 default: 1214 return (DDI_FAILURE); 1215 1216 } 1217 1218 instance = ddi_get_instance(dip); 1219 1220 /* 1221 * Allocate softc information. 1222 */ 1223 if (ddi_soft_state_zalloc(mptsas3_state, instance) != DDI_SUCCESS) { 1224 mptsas_log(NULL, CE_WARN, 1225 "mptsas%d: cannot allocate soft state", instance); 1226 goto fail; 1227 } 1228 1229 mpt = ddi_get_soft_state(mptsas3_state, instance); 1230 1231 if (mpt == NULL) { 1232 mptsas_log(NULL, CE_WARN, 1233 "mptsas%d: cannot get soft state", instance); 1234 goto fail; 1235 } 1236 1237 /* Indicate that we are 'sizeof (scsi_*(9S))' clean. */ 1238 scsi_size_clean(dip); 1239 1240 mpt->m_dip = dip; 1241 mpt->m_instance = instance; 1242 1243 /* Make a per-instance copy of the structures */ 1244 mpt->m_io_dma_attr = mptsas_dma_attrs64; 1245 if (mptsas_use_64bit_msgaddr) { 1246 mpt->m_msg_dma_attr = mptsas_dma_attrs64; 1247 } else { 1248 mpt->m_msg_dma_attr = mptsas_dma_attrs; 1249 } 1250 mpt->m_reg_acc_attr = mptsas_dev_attr; 1251 mpt->m_dev_acc_attr = mptsas_dev_attr; 1252 1253 /* 1254 * Round down the arq sense buffer size to nearest 16 bytes. 1255 */ 1256 mpt->m_req_sense_size = EXTCMDS_STATUS_SIZE; 1257 1258 /* 1259 * Initialize FMA 1260 */ 1261 mpt->m_fm_capabilities = ddi_getprop(DDI_DEV_T_ANY, mpt->m_dip, 1262 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 1263 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 1264 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 1265 1266 mptsas_fm_init(mpt); 1267 1268 if (mptsas_alloc_handshake_msg(mpt, 1269 sizeof (Mpi2SCSITaskManagementRequest_t)) == DDI_FAILURE) { 1270 mptsas_log(mpt, CE_WARN, "cannot initialize handshake msg."); 1271 goto fail; 1272 } 1273 1274 /* 1275 * Setup configuration space 1276 */ 1277 if (mptsas_config_space_init(mpt) == FALSE) { 1278 mptsas_log(mpt, CE_WARN, "mptsas_config_space_init failed"); 1279 goto fail; 1280 } 1281 config_setup++; 1282 1283 if (ddi_regs_map_setup(dip, mem_bar, (caddr_t *)&mpt->m_reg, 1284 0, 0, &mpt->m_reg_acc_attr, &mpt->m_datap) != DDI_SUCCESS) { 1285 mptsas_log(mpt, CE_WARN, "map setup failed"); 1286 goto fail; 1287 } 1288 map_setup++; 1289 1290 /* 1291 * A taskq is created for dealing with the event handler 1292 */ 1293 if ((mpt->m_event_taskq = ddi_taskq_create(dip, "mptsas_event_taskq", 1294 1, TASKQ_DEFAULTPRI, 0)) == NULL) { 1295 mptsas_log(mpt, CE_NOTE, "ddi_taskq_create failed"); 1296 goto fail; 1297 } 1298 event_taskq_create++; 1299 1300 /* 1301 * A taskq is created for dealing with dr events 1302 */ 1303 if ((mpt->m_dr_taskq = ddi_taskq_create(dip, 1304 "mptsas_dr_taskq", 1305 1, TASKQ_DEFAULTPRI, 0)) == NULL) { 1306 mptsas_log(mpt, CE_NOTE, "ddi_taskq_create for discovery " 1307 "failed"); 1308 goto fail; 1309 } 1310 dr_taskq_create++; 1311 1312 cv_init(&mpt->m_qthread_cv, NULL, CV_DRIVER, NULL); 1313 mutex_init(&mpt->m_qthread_mutex, NULL, MUTEX_DRIVER, NULL); 1314 1315 i = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1316 0, "mptsas_enable_txwq_prop", NCPUS > 1); 1317 if (i) { 1318 mpt->m_txwq_thread_n = NUM_TX_WAITQ; 1319 mpt->m_txwq_enabled = FALSE; 1320 if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1321 0, "mptsas_allow_txwq_jumping", 0)) { 1322 mpt->m_txwq_allow_q_jumping = TRUE; 1323 } 1324 i = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1325 0, "mptsas_txwq_threashold_prop", 80000); 1326 mpt->m_txwq_thread_threshold = (uint16_t)i; 1327 } else { 1328 mpt->m_txwq_thread_n = 0; 1329 mpt->m_txwq_enabled = FALSE; 1330 } 1331 1332 if (mpt->m_txwq_thread_n) { 1333 mutex_enter(&mpt->m_qthread_mutex); 1334 for (j = 0; j < NUM_TX_WAITQ; j++) { 1335 mutex_init(&mpt->m_tx_waitq[j].txwq_mutex, NULL, 1336 MUTEX_DRIVER, 1337 NULL); 1338 cv_init(&mpt->m_tx_waitq[j].txwq_cv, NULL, CV_DRIVER, 1339 NULL); 1340 cv_init(&mpt->m_tx_waitq[j].txwq_drain_cv, NULL, 1341 CV_DRIVER, NULL); 1342 mpt->m_tx_waitq[j].txwq_active = TRUE; 1343 mpt->m_tx_waitq[j].txwq_draining = FALSE; 1344 mpt->m_tx_waitq[j].txwq_cmdq = NULL; 1345 mpt->m_tx_waitq[j].txwq_qtail = 1346 &mpt->m_tx_waitq[j].txwq_cmdq; 1347 mutex_enter(&mpt->m_tx_waitq[j].txwq_mutex); 1348 mpt->m_tx_waitq[j].arg.mpt = mpt; 1349 mpt->m_tx_waitq[j].arg.t = j; 1350 mpt->m_tx_waitq[j].txwq_threadp = 1351 thread_create(NULL, 0, mptsas_tx_waitq_thread, 1352 &mpt->m_tx_waitq[j].arg, 1353 0, &p0, TS_RUN, maxclsyspri - 10); 1354 mutex_exit(&mpt->m_tx_waitq[j].txwq_mutex); 1355 } 1356 mutex_exit(&mpt->m_qthread_mutex); 1357 txwq_thread_create++; 1358 } 1359 1360 mpt->m_doneq_thread_threshold = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1361 0, "mptsas_doneq_thread_threshold_prop", 10); 1362 mpt->m_doneq_length_threshold = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1363 0, "mptsas_doneq_length_threshold_prop", 8); 1364 mpt->m_doneq_thread_n = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1365 0, "mptsas_doneq_thread_n_prop", min(NCPUS, 8)); 1366 1367 if (mpt->m_doneq_thread_n) { 1368 mutex_enter(&mpt->m_qthread_mutex); 1369 mpt->m_doneq_thread_id = 1370 kmem_zalloc(sizeof (mptsas_doneq_thread_list_t) 1371 * mpt->m_doneq_thread_n, KM_SLEEP); 1372 1373 for (j = 0; j < mpt->m_doneq_thread_n; j++) { 1374 cv_init(&mpt->m_doneq_thread_id[j].cv, NULL, 1375 CV_DRIVER, NULL); 1376 mutex_init(&mpt->m_doneq_thread_id[j].mutex, NULL, 1377 MUTEX_DRIVER, NULL); 1378 mutex_enter(&mpt->m_doneq_thread_id[j].mutex); 1379 mpt->m_doneq_thread_id[j].flag |= 1380 MPTSAS_DONEQ_THREAD_ACTIVE; 1381 mpt->m_doneq_thread_id[j].arg.mpt = mpt; 1382 mpt->m_doneq_thread_id[j].arg.t = j; 1383 mpt->m_doneq_thread_id[j].threadp = 1384 thread_create(NULL, 0, mptsas_doneq_thread, 1385 &mpt->m_doneq_thread_id[j].arg, 1386 0, &p0, TS_RUN, maxclsyspri - 10); 1387 mpt->m_doneq_thread_id[j].dlist.dl_tail = 1388 &mpt->m_doneq_thread_id[j].dlist.dl_q; 1389 mutex_exit(&mpt->m_doneq_thread_id[j].mutex); 1390 } 1391 mutex_exit(&mpt->m_qthread_mutex); 1392 doneq_thread_create++; 1393 } 1394 1395 /* 1396 * Disable hardware interrupt since we're not ready to 1397 * handle it yet. 1398 */ 1399 MPTSAS_DISABLE_INTR(mpt); 1400 1401 /* 1402 * Initialize mutex used in interrupt handler. 1403 * We don't support hi-level so the mutex's are all adaptive 1404 * and we don't want to register the interrupts until we get 1405 * the chip type information from _init_chip() below. 1406 * Otherwise we would use DDI_INTR_PRI(mpt->m_intr_pri) 1407 * rather than NULL in the mutex_init() calls. 1408 */ 1409 mutex_init(&mpt->m_mutex, NULL, MUTEX_DRIVER, NULL); 1410 mutex_init(&mpt->m_passthru_mutex, NULL, MUTEX_DRIVER, NULL); 1411 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1412 mutex_init(&mpt->m_phy_info[i].smhba_info.phy_mutex, 1413 NULL, MUTEX_DRIVER, NULL); 1414 } 1415 1416 cv_init(&mpt->m_cv, NULL, CV_DRIVER, NULL); 1417 cv_init(&mpt->m_passthru_cv, NULL, CV_DRIVER, NULL); 1418 cv_init(&mpt->m_fw_cv, NULL, CV_DRIVER, NULL); 1419 cv_init(&mpt->m_config_cv, NULL, CV_DRIVER, NULL); 1420 cv_init(&mpt->m_fw_diag_cv, NULL, CV_DRIVER, NULL); 1421 mutex_init_done++; 1422 1423 mutex_enter(&mpt->m_mutex); 1424 /* 1425 * Initialize power management component 1426 */ 1427 if (mpt->m_options & MPTSAS_OPT_PM) { 1428 if (mptsas_init_pm(mpt)) { 1429 mutex_exit(&mpt->m_mutex); 1430 mptsas_log(mpt, CE_WARN, "mptsas pm initialization " 1431 "failed"); 1432 goto fail; 1433 } 1434 } 1435 1436 /* 1437 * Initialize chip using Message Unit Reset, if allowed 1438 */ 1439 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 1440 if (mptsas_init_chip(mpt, TRUE) == DDI_FAILURE) { 1441 mutex_exit(&mpt->m_mutex); 1442 mptsas_log(mpt, CE_WARN, "mptsas chip initialization failed"); 1443 goto fail; 1444 } 1445 1446 /* 1447 * Fill in the phy_info structure and get the base WWID 1448 */ 1449 if (mptsas_get_manufacture_page5(mpt) == DDI_FAILURE) { 1450 mptsas_log(mpt, CE_WARN, 1451 "mptsas_get_manufacture_page5 failed!"); 1452 goto fail; 1453 } 1454 1455 if (mptsas_get_sas_io_unit_page_hndshk(mpt)) { 1456 mptsas_log(mpt, CE_WARN, 1457 "mptsas_get_sas_io_unit_page_hndshk failed!"); 1458 goto fail; 1459 } 1460 1461 if (mptsas_get_manufacture_page0(mpt) == DDI_FAILURE) { 1462 mptsas_log(mpt, CE_WARN, 1463 "mptsas_get_manufacture_page0 failed!"); 1464 goto fail; 1465 } 1466 1467 /* 1468 * If we only have one interrupt the default for doneq_thread_threshold 1469 * should be 0 so that all completion processing goes to the threads. 1470 * Only change it if it wasn't set from .conf file. 1471 */ 1472 if (mpt->m_doneq_thread_n != 0 && 1473 ddi_prop_exists(DDI_DEV_T_ANY, dip, 1474 0, "mptsas_doneq_length_threshold_prop") == 0 && 1475 mpt->m_intr_cnt == 1) { 1476 mpt->m_doneq_length_threshold = 0; 1477 } 1478 1479 1480 mutex_exit(&mpt->m_mutex); 1481 1482 /* 1483 * Register the iport for multiple port HBA 1484 */ 1485 mptsas_iport_register(mpt); 1486 1487 /* 1488 * initialize SCSI HBA transport structure 1489 */ 1490 if (mptsas_hba_setup(mpt) == FALSE) 1491 goto fail; 1492 hba_attach_setup++; 1493 1494 if (mptsas_smp_setup(mpt) == FALSE) 1495 goto fail; 1496 smp_attach_setup++; 1497 1498 if (mptsas_cache_create(mpt) == FALSE) 1499 goto fail; 1500 1501 mpt->m_scsi_reset_delay = ddi_prop_get_int(DDI_DEV_T_ANY, 1502 dip, 0, "scsi-reset-delay", SCSI_DEFAULT_RESET_DELAY); 1503 if (mpt->m_scsi_reset_delay == 0) { 1504 mptsas_log(mpt, CE_NOTE, 1505 "scsi_reset_delay of 0 is not recommended," 1506 " resetting to SCSI_DEFAULT_RESET_DELAY\n"); 1507 mpt->m_scsi_reset_delay = SCSI_DEFAULT_RESET_DELAY; 1508 } 1509 1510 /* 1511 * Initialize the wait and done FIFO queue 1512 */ 1513 mpt->m_dlist.dl_tail = &mpt->m_dlist.dl_q; 1514 mpt->m_waitqtail = &mpt->m_waitq; 1515 1516 /* 1517 * ioc cmd queue initialize 1518 */ 1519 mpt->m_ioc_event_cmdtail = &mpt->m_ioc_event_cmdq; 1520 mpt->m_dev_handle = 0xFFFF; 1521 1522 MPTSAS_ENABLE_INTR(mpt); 1523 1524 /* 1525 * enable event notification 1526 */ 1527 mutex_enter(&mpt->m_mutex); 1528 if (mptsas_ioc_enable_event_notification(mpt)) { 1529 mutex_exit(&mpt->m_mutex); 1530 goto fail; 1531 } 1532 mutex_exit(&mpt->m_mutex); 1533 1534 /* 1535 * used for mptsas_watch 1536 */ 1537 mptsas_list_add(mpt); 1538 1539 mutex_enter(&mptsas_global_mutex); 1540 if (mptsas_timeouts_enabled == 0) { 1541 mptsas_scsi_watchdog_tick = ddi_prop_get_int(DDI_DEV_T_ANY, 1542 dip, 0, "scsi-watchdog-tick", DEFAULT_WD_TICK); 1543 1544 mptsas_tick = mptsas_scsi_watchdog_tick * 1545 drv_usectohz((clock_t)1000000); 1546 1547 mptsas_timeout_id = timeout(mptsas_watch, NULL, mptsas_tick); 1548 mptsas_timeouts_enabled = 1; 1549 } 1550 mutex_exit(&mptsas_global_mutex); 1551 added_watchdog++; 1552 1553 /* 1554 * Initialize PHY info for smhba. 1555 * This requires watchdog to be enabled otherwise if interrupts 1556 * don't work the system will hang. 1557 */ 1558 if (mptsas_smhba_setup(mpt)) { 1559 mptsas_log(mpt, CE_WARN, "mptsas phy initialization " 1560 "failed"); 1561 goto fail; 1562 } 1563 1564 /* Check all dma handles allocated in attach */ 1565 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) 1566 != DDI_SUCCESS) || 1567 (mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl) 1568 != DDI_SUCCESS) || 1569 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) 1570 != DDI_SUCCESS) || 1571 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) 1572 != DDI_SUCCESS) || 1573 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) 1574 != DDI_SUCCESS) || 1575 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) 1576 != DDI_SUCCESS)) { 1577 goto fail; 1578 } 1579 1580 /* Check all acc handles allocated in attach */ 1581 if ((mptsas_check_acc_handle(mpt->m_datap) != DDI_SUCCESS) || 1582 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) 1583 != DDI_SUCCESS) || 1584 (mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl) 1585 != DDI_SUCCESS) || 1586 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) 1587 != DDI_SUCCESS) || 1588 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) 1589 != DDI_SUCCESS) || 1590 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) 1591 != DDI_SUCCESS) || 1592 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) 1593 != DDI_SUCCESS) || 1594 (mptsas_check_acc_handle(mpt->m_config_handle) 1595 != DDI_SUCCESS)) { 1596 goto fail; 1597 } 1598 1599 /* 1600 * After this point, we are not going to fail the attach. 1601 */ 1602 1603 /* Print message of HBA present */ 1604 ddi_report_dev(dip); 1605 1606 /* report idle status to pm framework */ 1607 if (mpt->m_options & MPTSAS_OPT_PM) { 1608 (void) pm_idle_component(dip, 0); 1609 } 1610 1611 return (DDI_SUCCESS); 1612 1613 fail: 1614 mptsas_log(mpt, CE_WARN, "attach failed"); 1615 mptsas_fm_ereport(mpt, DDI_FM_DEVICE_NO_RESPONSE); 1616 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_LOST); 1617 if (mpt) { 1618 /* deallocate in reverse order */ 1619 if (added_watchdog) { 1620 mptsas_list_del(mpt); 1621 mutex_enter(&mptsas_global_mutex); 1622 1623 if (mptsas_timeout_id && (mptsas_head == NULL)) { 1624 timeout_id_t tid = mptsas_timeout_id; 1625 mptsas_timeouts_enabled = 0; 1626 mptsas_timeout_id = 0; 1627 mutex_exit(&mptsas_global_mutex); 1628 (void) untimeout(tid); 1629 mutex_enter(&mptsas_global_mutex); 1630 } 1631 mutex_exit(&mptsas_global_mutex); 1632 } 1633 1634 mptsas_cache_destroy(mpt); 1635 1636 if (smp_attach_setup) { 1637 mptsas_smp_teardown(mpt); 1638 } 1639 if (hba_attach_setup) { 1640 mptsas_hba_teardown(mpt); 1641 } 1642 1643 if (mpt->m_targets) 1644 refhash_destroy(mpt->m_targets); 1645 if (mpt->m_smp_targets) 1646 refhash_destroy(mpt->m_smp_targets); 1647 1648 if (mpt->m_active) { 1649 mptsas_free_active_slots(mpt); 1650 } 1651 if (mpt->m_intr_cnt) { 1652 mptsas_unregister_intrs(mpt); 1653 } 1654 1655 if (doneq_thread_create) { 1656 mutex_enter(&mpt->m_qthread_mutex); 1657 q_thread_num = mpt->m_doneq_thread_n; 1658 for (j = 0; j < q_thread_num; j++) { 1659 mutex_enter(&mpt->m_doneq_thread_id[j].mutex); 1660 mpt->m_doneq_thread_id[j].flag &= 1661 (~MPTSAS_DONEQ_THREAD_ACTIVE); 1662 cv_signal(&mpt->m_doneq_thread_id[j].cv); 1663 mutex_exit(&mpt->m_doneq_thread_id[j].mutex); 1664 } 1665 while (mpt->m_doneq_thread_n) { 1666 cv_wait(&mpt->m_qthread_cv, 1667 &mpt->m_qthread_mutex); 1668 } 1669 for (j = 0; j < q_thread_num; j++) { 1670 cv_destroy(&mpt->m_doneq_thread_id[j].cv); 1671 mutex_destroy(&mpt->m_doneq_thread_id[j].mutex); 1672 } 1673 kmem_free(mpt->m_doneq_thread_id, 1674 sizeof (mptsas_doneq_thread_list_t) 1675 * q_thread_num); 1676 mutex_exit(&mpt->m_qthread_mutex); 1677 } 1678 if (txwq_thread_create) { 1679 mutex_enter(&mpt->m_qthread_mutex); 1680 q_thread_num = mpt->m_txwq_thread_n; 1681 for (j = 0; j < q_thread_num; j++) { 1682 mutex_enter(&mpt->m_tx_waitq[j].txwq_mutex); 1683 mpt->m_tx_waitq[j].txwq_active = FALSE; 1684 cv_signal(&mpt->m_tx_waitq[j].txwq_cv); 1685 mutex_exit(&mpt->m_tx_waitq[j].txwq_mutex); 1686 } 1687 while (mpt->m_txwq_thread_n) { 1688 cv_wait(&mpt->m_qthread_cv, 1689 &mpt->m_qthread_mutex); 1690 } 1691 for (j = 0; j < q_thread_num; j++) { 1692 cv_destroy(&mpt->m_tx_waitq[j].txwq_cv); 1693 cv_destroy(&mpt->m_tx_waitq[j].txwq_drain_cv); 1694 mutex_destroy(&mpt->m_tx_waitq[j].txwq_mutex); 1695 } 1696 } 1697 if (event_taskq_create) { 1698 ddi_taskq_destroy(mpt->m_event_taskq); 1699 } 1700 if (dr_taskq_create) { 1701 ddi_taskq_destroy(mpt->m_dr_taskq); 1702 } 1703 if (mutex_init_done) { 1704 mutex_destroy(&mpt->m_qthread_mutex); 1705 mutex_destroy(&mpt->m_passthru_mutex); 1706 mutex_destroy(&mpt->m_mutex); 1707 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1708 mutex_destroy( 1709 &mpt->m_phy_info[i].smhba_info.phy_mutex); 1710 } 1711 cv_destroy(&mpt->m_qthread_cv); 1712 cv_destroy(&mpt->m_cv); 1713 cv_destroy(&mpt->m_passthru_cv); 1714 cv_destroy(&mpt->m_fw_cv); 1715 cv_destroy(&mpt->m_config_cv); 1716 cv_destroy(&mpt->m_fw_diag_cv); 1717 } 1718 1719 if (map_setup) { 1720 mptsas_cfg_fini(mpt); 1721 } 1722 if (config_setup) { 1723 mptsas_config_space_fini(mpt); 1724 } 1725 mptsas_free_handshake_msg(mpt); 1726 mptsas_hba_fini(mpt); 1727 1728 mptsas_fm_fini(mpt); 1729 ddi_soft_state_free(mptsas3_state, instance); 1730 ddi_prop_remove_all(dip); 1731 } 1732 return (DDI_FAILURE); 1733 } 1734 1735 static int 1736 mptsas_suspend(dev_info_t *devi) 1737 { 1738 mptsas_t *mpt, *g; 1739 scsi_hba_tran_t *tran; 1740 1741 if (scsi_hba_iport_unit_address(devi)) { 1742 return (DDI_SUCCESS); 1743 } 1744 1745 if ((tran = ddi_get_driver_private(devi)) == NULL) 1746 return (DDI_SUCCESS); 1747 1748 mpt = TRAN2MPT(tran); 1749 if (!mpt) { 1750 return (DDI_SUCCESS); 1751 } 1752 1753 mutex_enter(&mpt->m_mutex); 1754 1755 if (mpt->m_suspended++) { 1756 mutex_exit(&mpt->m_mutex); 1757 return (DDI_SUCCESS); 1758 } 1759 1760 /* 1761 * Cancel timeout threads for this mpt 1762 */ 1763 if (mpt->m_quiesce_timeid) { 1764 timeout_id_t tid = mpt->m_quiesce_timeid; 1765 mpt->m_quiesce_timeid = 0; 1766 mutex_exit(&mpt->m_mutex); 1767 (void) untimeout(tid); 1768 mutex_enter(&mpt->m_mutex); 1769 } 1770 1771 if (mpt->m_restart_cmd_timeid) { 1772 timeout_id_t tid = mpt->m_restart_cmd_timeid; 1773 mpt->m_restart_cmd_timeid = 0; 1774 mutex_exit(&mpt->m_mutex); 1775 (void) untimeout(tid); 1776 mutex_enter(&mpt->m_mutex); 1777 } 1778 1779 mutex_exit(&mpt->m_mutex); 1780 1781 (void) pm_idle_component(mpt->m_dip, 0); 1782 1783 /* 1784 * Cancel watch threads if all mpts suspended 1785 */ 1786 rw_enter(&mptsas_global_rwlock, RW_WRITER); 1787 for (g = mptsas_head; g != NULL; g = g->m_next) { 1788 if (!g->m_suspended) 1789 break; 1790 } 1791 rw_exit(&mptsas_global_rwlock); 1792 1793 mutex_enter(&mptsas_global_mutex); 1794 if (g == NULL) { 1795 timeout_id_t tid; 1796 1797 mptsas_timeouts_enabled = 0; 1798 if (mptsas_timeout_id) { 1799 tid = mptsas_timeout_id; 1800 mptsas_timeout_id = 0; 1801 mutex_exit(&mptsas_global_mutex); 1802 (void) untimeout(tid); 1803 mutex_enter(&mptsas_global_mutex); 1804 } 1805 if (mptsas_reset_watch) { 1806 tid = mptsas_reset_watch; 1807 mptsas_reset_watch = 0; 1808 mutex_exit(&mptsas_global_mutex); 1809 (void) untimeout(tid); 1810 mutex_enter(&mptsas_global_mutex); 1811 } 1812 } 1813 mutex_exit(&mptsas_global_mutex); 1814 1815 mutex_enter(&mpt->m_mutex); 1816 1817 /* 1818 * If this mpt is not in full power(PM_LEVEL_D0), just return. 1819 */ 1820 if ((mpt->m_options & MPTSAS_OPT_PM) && 1821 (mpt->m_power_level != PM_LEVEL_D0)) { 1822 mutex_exit(&mpt->m_mutex); 1823 return (DDI_SUCCESS); 1824 } 1825 1826 /* Disable HBA interrupts in hardware */ 1827 MPTSAS_DISABLE_INTR(mpt); 1828 /* 1829 * Send RAID action system shutdown to sync IR 1830 */ 1831 mptsas_raid_action_system_shutdown(mpt); 1832 1833 mutex_exit(&mpt->m_mutex); 1834 1835 /* drain the taskq */ 1836 ddi_taskq_wait(mpt->m_event_taskq); 1837 ddi_taskq_wait(mpt->m_dr_taskq); 1838 1839 return (DDI_SUCCESS); 1840 } 1841 1842 #ifdef __sparc 1843 /*ARGSUSED*/ 1844 static int 1845 mptsas_reset(dev_info_t *devi, ddi_reset_cmd_t cmd) 1846 { 1847 mptsas_t *mpt; 1848 scsi_hba_tran_t *tran; 1849 1850 /* 1851 * If this call is for iport, just return. 1852 */ 1853 if (scsi_hba_iport_unit_address(devi)) 1854 return (DDI_SUCCESS); 1855 1856 if ((tran = ddi_get_driver_private(devi)) == NULL) 1857 return (DDI_SUCCESS); 1858 1859 if ((mpt = TRAN2MPT(tran)) == NULL) 1860 return (DDI_SUCCESS); 1861 1862 /* 1863 * Send RAID action system shutdown to sync IR. Disable HBA 1864 * interrupts in hardware first. 1865 */ 1866 MPTSAS_DISABLE_INTR(mpt); 1867 mptsas_raid_action_system_shutdown(mpt); 1868 1869 return (DDI_SUCCESS); 1870 } 1871 #else /* __sparc */ 1872 /* 1873 * quiesce(9E) entry point. 1874 * 1875 * This function is called when the system is single-threaded at high 1876 * PIL with preemption disabled. Therefore, this function must not be 1877 * blocked. 1878 * 1879 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. 1880 * DDI_FAILURE indicates an error condition and should almost never happen. 1881 */ 1882 static int 1883 mptsas_quiesce(dev_info_t *devi) 1884 { 1885 mptsas_t *mpt; 1886 scsi_hba_tran_t *tran; 1887 1888 /* 1889 * If this call is for iport, just return. 1890 */ 1891 if (scsi_hba_iport_unit_address(devi)) 1892 return (DDI_SUCCESS); 1893 1894 if ((tran = ddi_get_driver_private(devi)) == NULL) 1895 return (DDI_SUCCESS); 1896 1897 if ((mpt = TRAN2MPT(tran)) == NULL) 1898 return (DDI_SUCCESS); 1899 1900 /* Disable HBA interrupts in hardware */ 1901 MPTSAS_DISABLE_INTR(mpt); 1902 /* Send RAID action system shutdonw to sync IR */ 1903 mptsas_raid_action_system_shutdown(mpt); 1904 1905 return (DDI_SUCCESS); 1906 } 1907 #endif /* __sparc */ 1908 1909 /* 1910 * detach(9E). Remove all device allocations and system resources; 1911 * disable device interrupts. 1912 * Return DDI_SUCCESS if done; DDI_FAILURE if there's a problem. 1913 */ 1914 static int 1915 mptsas_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 1916 { 1917 /* CONSTCOND */ 1918 ASSERT(NO_COMPETING_THREADS); 1919 NDBG0(("mptsas_detach: dip=0x%p cmd=0x%p", (void *)devi, (void *)cmd)); 1920 1921 switch (cmd) { 1922 case DDI_DETACH: 1923 return (mptsas_do_detach(devi)); 1924 1925 case DDI_SUSPEND: 1926 return (mptsas_suspend(devi)); 1927 1928 default: 1929 return (DDI_FAILURE); 1930 } 1931 /* NOTREACHED */ 1932 } 1933 1934 static int 1935 mptsas_do_detach(dev_info_t *dip) 1936 { 1937 mptsas_t *mpt; 1938 scsi_hba_tran_t *tran; 1939 int circ = 0; 1940 int circ1 = 0; 1941 mdi_pathinfo_t *pip = NULL; 1942 int i; 1943 int q_thread_num = 0; 1944 1945 NDBG0(("mptsas_do_detach: dip=0x%p", (void *)dip)); 1946 1947 if ((tran = ndi_flavorv_get(dip, SCSA_FLAVOR_SCSI_DEVICE)) == NULL) 1948 return (DDI_FAILURE); 1949 1950 mpt = TRAN2MPT(tran); 1951 if (!mpt) { 1952 return (DDI_FAILURE); 1953 } 1954 /* 1955 * Still have pathinfo child, should not detach mpt driver 1956 */ 1957 if (scsi_hba_iport_unit_address(dip)) { 1958 if (mpt->m_mpxio_enable) { 1959 /* 1960 * MPxIO enabled for the iport 1961 */ 1962 ndi_devi_enter(scsi_vhci_dip, &circ1); 1963 ndi_devi_enter(dip, &circ); 1964 while (pip = mdi_get_next_client_path(dip, NULL)) { 1965 if (mdi_pi_free(pip, 0) == MDI_SUCCESS) { 1966 continue; 1967 } 1968 ndi_devi_exit(dip, circ); 1969 ndi_devi_exit(scsi_vhci_dip, circ1); 1970 NDBG12(("detach failed because of " 1971 "outstanding path info")); 1972 return (DDI_FAILURE); 1973 } 1974 ndi_devi_exit(dip, circ); 1975 ndi_devi_exit(scsi_vhci_dip, circ1); 1976 (void) mdi_phci_unregister(dip, 0); 1977 } 1978 1979 ddi_prop_remove_all(dip); 1980 1981 return (DDI_SUCCESS); 1982 } 1983 1984 /* Make sure power level is D0 before accessing registers */ 1985 if (mpt->m_options & MPTSAS_OPT_PM) { 1986 (void) pm_busy_component(dip, 0); 1987 if (mpt->m_power_level != PM_LEVEL_D0) { 1988 if (pm_raise_power(dip, 0, PM_LEVEL_D0) != 1989 DDI_SUCCESS) { 1990 mptsas_log(mpt, CE_WARN, 1991 "mptsas3%d: Raise power request failed.", 1992 mpt->m_instance); 1993 (void) pm_idle_component(dip, 0); 1994 return (DDI_FAILURE); 1995 } 1996 } 1997 } 1998 1999 /* 2000 * Send RAID action system shutdown to sync IR. After action, send a 2001 * Message Unit Reset. Since after that DMA resource will be freed, 2002 * set ioc to READY state will avoid HBA initiated DMA operation. 2003 */ 2004 mutex_enter(&mpt->m_mutex); 2005 MPTSAS_DISABLE_INTR(mpt); 2006 mptsas_raid_action_system_shutdown(mpt); 2007 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 2008 (void) mptsas_ioc_reset(mpt, FALSE); 2009 mutex_exit(&mpt->m_mutex); 2010 mptsas_rem_intrs(mpt); 2011 ddi_taskq_destroy(mpt->m_event_taskq); 2012 ddi_taskq_destroy(mpt->m_dr_taskq); 2013 2014 if (mpt->m_doneq_thread_n) { 2015 mutex_enter(&mpt->m_qthread_mutex); 2016 q_thread_num = mpt->m_doneq_thread_n; 2017 for (i = 0; i < mpt->m_doneq_thread_n; i++) { 2018 mutex_enter(&mpt->m_doneq_thread_id[i].mutex); 2019 mpt->m_doneq_thread_id[i].flag &= 2020 (~MPTSAS_DONEQ_THREAD_ACTIVE); 2021 cv_signal(&mpt->m_doneq_thread_id[i].cv); 2022 mutex_exit(&mpt->m_doneq_thread_id[i].mutex); 2023 } 2024 while (mpt->m_doneq_thread_n) { 2025 cv_wait(&mpt->m_qthread_cv, 2026 &mpt->m_qthread_mutex); 2027 } 2028 for (i = 0; i < q_thread_num; i++) { 2029 cv_destroy(&mpt->m_doneq_thread_id[i].cv); 2030 mutex_destroy(&mpt->m_doneq_thread_id[i].mutex); 2031 } 2032 kmem_free(mpt->m_doneq_thread_id, 2033 sizeof (mptsas_doneq_thread_list_t) 2034 * q_thread_num); 2035 mutex_exit(&mpt->m_qthread_mutex); 2036 } 2037 if (mpt->m_txwq_thread_n) { 2038 mutex_enter(&mpt->m_qthread_mutex); 2039 q_thread_num = mpt->m_txwq_thread_n; 2040 for (i = 0; i < q_thread_num; i++) { 2041 mutex_enter(&mpt->m_tx_waitq[i].txwq_mutex); 2042 mpt->m_tx_waitq[i].txwq_active = FALSE; 2043 cv_signal(&mpt->m_tx_waitq[i].txwq_cv); 2044 mutex_exit(&mpt->m_tx_waitq[i].txwq_mutex); 2045 } 2046 while (mpt->m_txwq_thread_n) { 2047 cv_wait(&mpt->m_qthread_cv, 2048 &mpt->m_qthread_mutex); 2049 } 2050 for (i = 0; i < q_thread_num; i++) { 2051 cv_destroy(&mpt->m_tx_waitq[i].txwq_cv); 2052 cv_destroy(&mpt->m_tx_waitq[i].txwq_drain_cv); 2053 mutex_destroy(&mpt->m_tx_waitq[i].txwq_mutex); 2054 } 2055 } 2056 2057 scsi_hba_reset_notify_tear_down(mpt->m_reset_notify_listf); 2058 2059 mptsas_list_del(mpt); 2060 2061 /* 2062 * Cancel timeout threads for this mpt 2063 */ 2064 mutex_enter(&mpt->m_mutex); 2065 if (mpt->m_quiesce_timeid) { 2066 timeout_id_t tid = mpt->m_quiesce_timeid; 2067 mpt->m_quiesce_timeid = 0; 2068 mutex_exit(&mpt->m_mutex); 2069 (void) untimeout(tid); 2070 mutex_enter(&mpt->m_mutex); 2071 } 2072 2073 if (mpt->m_restart_cmd_timeid) { 2074 timeout_id_t tid = mpt->m_restart_cmd_timeid; 2075 mpt->m_restart_cmd_timeid = 0; 2076 mutex_exit(&mpt->m_mutex); 2077 (void) untimeout(tid); 2078 mutex_enter(&mpt->m_mutex); 2079 } 2080 2081 mutex_exit(&mpt->m_mutex); 2082 2083 /* 2084 * last mpt? ... if active, CANCEL watch threads. 2085 */ 2086 mutex_enter(&mptsas_global_mutex); 2087 if (mptsas_head == NULL) { 2088 timeout_id_t tid; 2089 /* 2090 * Clear mptsas_timeouts_enable so that the watch thread 2091 * gets restarted on DDI_ATTACH 2092 */ 2093 mptsas_timeouts_enabled = 0; 2094 if (mptsas_timeout_id) { 2095 tid = mptsas_timeout_id; 2096 mptsas_timeout_id = 0; 2097 mutex_exit(&mptsas_global_mutex); 2098 (void) untimeout(tid); 2099 mutex_enter(&mptsas_global_mutex); 2100 } 2101 if (mptsas_reset_watch) { 2102 tid = mptsas_reset_watch; 2103 mptsas_reset_watch = 0; 2104 mutex_exit(&mptsas_global_mutex); 2105 (void) untimeout(tid); 2106 mutex_enter(&mptsas_global_mutex); 2107 } 2108 } 2109 mutex_exit(&mptsas_global_mutex); 2110 2111 /* 2112 * Delete Phy stats 2113 */ 2114 mptsas_destroy_phy_stats(mpt); 2115 2116 mptsas_destroy_hashes(mpt); 2117 2118 /* 2119 * Delete nt_active. 2120 */ 2121 mutex_enter(&mpt->m_mutex); 2122 mptsas_free_active_slots(mpt); 2123 mutex_exit(&mpt->m_mutex); 2124 2125 /* deallocate everything that was allocated in mptsas_attach */ 2126 mptsas_cache_destroy(mpt); 2127 2128 mptsas_hba_fini(mpt); 2129 mptsas_cfg_fini(mpt); 2130 2131 /* Lower the power informing PM Framework */ 2132 if (mpt->m_options & MPTSAS_OPT_PM) { 2133 if (pm_lower_power(dip, 0, PM_LEVEL_D3) != DDI_SUCCESS) 2134 mptsas_log(mpt, CE_WARN, 2135 "!mptsas3%d: Lower power request failed " 2136 "during detach, ignoring.", 2137 mpt->m_instance); 2138 } 2139 2140 mutex_destroy(&mpt->m_qthread_mutex); 2141 mutex_destroy(&mpt->m_passthru_mutex); 2142 mutex_destroy(&mpt->m_mutex); 2143 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 2144 mutex_destroy(&mpt->m_phy_info[i].smhba_info.phy_mutex); 2145 } 2146 cv_destroy(&mpt->m_qthread_cv); 2147 cv_destroy(&mpt->m_cv); 2148 cv_destroy(&mpt->m_passthru_cv); 2149 cv_destroy(&mpt->m_fw_cv); 2150 cv_destroy(&mpt->m_config_cv); 2151 cv_destroy(&mpt->m_fw_diag_cv); 2152 2153 2154 mptsas_smp_teardown(mpt); 2155 mptsas_hba_teardown(mpt); 2156 2157 mptsas_config_space_fini(mpt); 2158 2159 mptsas_free_handshake_msg(mpt); 2160 2161 mptsas_fm_fini(mpt); 2162 ddi_soft_state_free(mptsas3_state, ddi_get_instance(dip)); 2163 ddi_prop_remove_all(dip); 2164 2165 return (DDI_SUCCESS); 2166 } 2167 2168 static void 2169 mptsas_list_add(mptsas_t *mpt) 2170 { 2171 rw_enter(&mptsas_global_rwlock, RW_WRITER); 2172 2173 if (mptsas_head == NULL) { 2174 mptsas_head = mpt; 2175 } else { 2176 mptsas_tail->m_next = mpt; 2177 } 2178 mptsas_tail = mpt; 2179 rw_exit(&mptsas_global_rwlock); 2180 } 2181 2182 static void 2183 mptsas_list_del(mptsas_t *mpt) 2184 { 2185 mptsas_t *m; 2186 /* 2187 * Remove device instance from the global linked list 2188 */ 2189 rw_enter(&mptsas_global_rwlock, RW_WRITER); 2190 if (mptsas_head == mpt) { 2191 m = mptsas_head = mpt->m_next; 2192 } else { 2193 for (m = mptsas_head; m != NULL; m = m->m_next) { 2194 if (m->m_next == mpt) { 2195 m->m_next = mpt->m_next; 2196 break; 2197 } 2198 } 2199 if (m == NULL) { 2200 mptsas_log(mpt, CE_PANIC, "Not in softc list!"); 2201 } 2202 } 2203 2204 if (mptsas_tail == mpt) { 2205 mptsas_tail = m; 2206 } 2207 rw_exit(&mptsas_global_rwlock); 2208 } 2209 2210 static int 2211 mptsas_alloc_handshake_msg(mptsas_t *mpt, size_t alloc_size) 2212 { 2213 ddi_dma_attr_t task_dma_attrs; 2214 2215 mpt->m_hshk_dma_size = 0; 2216 task_dma_attrs = mpt->m_msg_dma_attr; 2217 task_dma_attrs.dma_attr_sgllen = 1; 2218 task_dma_attrs.dma_attr_granular = (uint32_t)(alloc_size); 2219 2220 /* allocate Task Management ddi_dma resources */ 2221 if (mptsas_dma_addr_create(mpt, task_dma_attrs, 2222 &mpt->m_hshk_dma_hdl, &mpt->m_hshk_acc_hdl, &mpt->m_hshk_memp, 2223 alloc_size, NULL) == FALSE) { 2224 return (DDI_FAILURE); 2225 } 2226 mpt->m_hshk_dma_size = alloc_size; 2227 2228 return (DDI_SUCCESS); 2229 } 2230 2231 static void 2232 mptsas_free_handshake_msg(mptsas_t *mpt) 2233 { 2234 if (mpt->m_hshk_dma_size == 0) 2235 return; 2236 mptsas_dma_addr_destroy(&mpt->m_hshk_dma_hdl, &mpt->m_hshk_acc_hdl); 2237 mpt->m_hshk_dma_size = 0; 2238 } 2239 2240 static int 2241 mptsas_hba_setup(mptsas_t *mpt) 2242 { 2243 scsi_hba_tran_t *hba_tran; 2244 int tran_flags; 2245 2246 /* Allocate a transport structure */ 2247 hba_tran = mpt->m_tran = scsi_hba_tran_alloc(mpt->m_dip, 2248 SCSI_HBA_CANSLEEP); 2249 ASSERT(mpt->m_tran != NULL); 2250 2251 hba_tran->tran_hba_private = mpt; 2252 hba_tran->tran_tgt_private = NULL; 2253 2254 hba_tran->tran_tgt_init = mptsas_scsi_tgt_init; 2255 hba_tran->tran_tgt_free = mptsas_scsi_tgt_free; 2256 2257 hba_tran->tran_start = mptsas_scsi_start; 2258 hba_tran->tran_reset = mptsas_scsi_reset; 2259 hba_tran->tran_abort = mptsas_scsi_abort; 2260 hba_tran->tran_getcap = mptsas_scsi_getcap; 2261 hba_tran->tran_setcap = mptsas_scsi_setcap; 2262 hba_tran->tran_init_pkt = mptsas_scsi_init_pkt; 2263 hba_tran->tran_destroy_pkt = mptsas_scsi_destroy_pkt; 2264 2265 hba_tran->tran_dmafree = mptsas_scsi_dmafree; 2266 hba_tran->tran_sync_pkt = mptsas_scsi_sync_pkt; 2267 hba_tran->tran_reset_notify = mptsas_scsi_reset_notify; 2268 2269 hba_tran->tran_get_bus_addr = mptsas_get_bus_addr; 2270 hba_tran->tran_get_name = mptsas_get_name; 2271 2272 hba_tran->tran_quiesce = mptsas_scsi_quiesce; 2273 hba_tran->tran_unquiesce = mptsas_scsi_unquiesce; 2274 hba_tran->tran_bus_reset = NULL; 2275 2276 hba_tran->tran_add_eventcall = NULL; 2277 hba_tran->tran_get_eventcookie = NULL; 2278 hba_tran->tran_post_event = NULL; 2279 hba_tran->tran_remove_eventcall = NULL; 2280 2281 hba_tran->tran_bus_config = mptsas_bus_config; 2282 2283 hba_tran->tran_interconnect_type = INTERCONNECT_SAS; 2284 2285 /* 2286 * All children of the HBA are iports. We need tran was cloned. 2287 * So we pass the flags to SCSA. SCSI_HBA_TRAN_CLONE will be 2288 * inherited to iport's tran vector. 2289 */ 2290 tran_flags = (SCSI_HBA_HBA | SCSI_HBA_TRAN_CLONE); 2291 2292 if (scsi_hba_attach_setup(mpt->m_dip, &mpt->m_msg_dma_attr, 2293 hba_tran, tran_flags) != DDI_SUCCESS) { 2294 mptsas_log(mpt, CE_WARN, "hba attach setup failed"); 2295 scsi_hba_tran_free(hba_tran); 2296 mpt->m_tran = NULL; 2297 return (FALSE); 2298 } 2299 return (TRUE); 2300 } 2301 2302 static void 2303 mptsas_hba_teardown(mptsas_t *mpt) 2304 { 2305 (void) scsi_hba_detach(mpt->m_dip); 2306 if (mpt->m_tran != NULL) { 2307 scsi_hba_tran_free(mpt->m_tran); 2308 mpt->m_tran = NULL; 2309 } 2310 } 2311 2312 static void 2313 mptsas_iport_register(mptsas_t *mpt) 2314 { 2315 int i, j; 2316 mptsas_phymask_t mask = 0x0; 2317 /* 2318 * initial value of mask is 0 2319 */ 2320 mutex_enter(&mpt->m_mutex); 2321 for (i = 0; i < mpt->m_num_phys; i++) { 2322 mptsas_phymask_t phy_mask = 0x0; 2323 char phy_mask_name[MPTSAS_MAX_PHYS]; 2324 uint8_t current_port; 2325 2326 if (mpt->m_phy_info[i].attached_devhdl == 0) 2327 continue; 2328 2329 bzero(phy_mask_name, sizeof (phy_mask_name)); 2330 2331 current_port = mpt->m_phy_info[i].port_num; 2332 2333 if ((mask & (1 << i)) != 0) 2334 continue; 2335 2336 for (j = 0; j < mpt->m_num_phys; j++) { 2337 if (mpt->m_phy_info[j].attached_devhdl && 2338 (mpt->m_phy_info[j].port_num == current_port)) { 2339 phy_mask |= (1 << j); 2340 } 2341 } 2342 mask = mask | phy_mask; 2343 2344 for (j = 0; j < mpt->m_num_phys; j++) { 2345 if ((phy_mask >> j) & 0x01) { 2346 mpt->m_phy_info[j].phy_mask = phy_mask; 2347 } 2348 } 2349 2350 (void) sprintf(phy_mask_name, "%x", phy_mask); 2351 2352 mutex_exit(&mpt->m_mutex); 2353 /* 2354 * register a iport 2355 */ 2356 (void) scsi_hba_iport_register(mpt->m_dip, phy_mask_name); 2357 mutex_enter(&mpt->m_mutex); 2358 } 2359 mutex_exit(&mpt->m_mutex); 2360 /* 2361 * register a virtual port for RAID volume always 2362 */ 2363 (void) scsi_hba_iport_register(mpt->m_dip, "v0"); 2364 2365 } 2366 2367 static int 2368 mptsas_smp_setup(mptsas_t *mpt) 2369 { 2370 mpt->m_smptran = smp_hba_tran_alloc(mpt->m_dip); 2371 ASSERT(mpt->m_smptran != NULL); 2372 mpt->m_smptran->smp_tran_hba_private = mpt; 2373 mpt->m_smptran->smp_tran_start = mptsas_smp_start; 2374 if (smp_hba_attach_setup(mpt->m_dip, mpt->m_smptran) != DDI_SUCCESS) { 2375 mptsas_log(mpt, CE_WARN, "smp attach setup failed"); 2376 smp_hba_tran_free(mpt->m_smptran); 2377 mpt->m_smptran = NULL; 2378 return (FALSE); 2379 } 2380 /* 2381 * Initialize smp hash table 2382 */ 2383 mpt->m_smp_targets = refhash_create(MPTSAS_SMP_BUCKET_COUNT, 2384 mptsas_target_addr_hash, mptsas_target_addr_cmp, 2385 mptsas_smp_free, sizeof (mptsas_smp_t), 2386 offsetof(mptsas_smp_t, m_link), offsetof(mptsas_smp_t, m_addr), 2387 KM_SLEEP); 2388 mpt->m_smp_devhdl = 0xFFFF; 2389 2390 return (TRUE); 2391 } 2392 2393 static void 2394 mptsas_smp_teardown(mptsas_t *mpt) 2395 { 2396 (void) smp_hba_detach(mpt->m_dip); 2397 if (mpt->m_smptran != NULL) { 2398 smp_hba_tran_free(mpt->m_smptran); 2399 mpt->m_smptran = NULL; 2400 } 2401 mpt->m_smp_devhdl = 0; 2402 } 2403 2404 static int 2405 mptsas_cache_create(mptsas_t *mpt) 2406 { 2407 int instance = mpt->m_instance; 2408 char buf[64]; 2409 2410 /* 2411 * create kmem cache for packets 2412 */ 2413 (void) sprintf(buf, "mptsas3%d_cache", instance); 2414 mpt->m_kmem_cache = kmem_cache_create(buf, 2415 sizeof (struct mptsas_cmd) + scsi_pkt_size(), 16, 2416 mptsas_kmem_cache_constructor, mptsas_kmem_cache_destructor, 2417 NULL, (void *)mpt, NULL, 0); 2418 2419 if (mpt->m_kmem_cache == NULL) { 2420 mptsas_log(mpt, CE_WARN, "creating kmem cache failed"); 2421 return (FALSE); 2422 } 2423 2424 /* 2425 * create kmem cache for extra SGL frames if SGL cannot 2426 * be accomodated into main request frame. 2427 */ 2428 (void) sprintf(buf, "mptsas3%d_cache_frames", instance); 2429 mpt->m_cache_frames = kmem_cache_create(buf, 2430 sizeof (mptsas_cache_frames_t), 16, 2431 mptsas_cache_frames_constructor, mptsas_cache_frames_destructor, 2432 NULL, (void *)mpt, NULL, 0); 2433 2434 if (mpt->m_cache_frames == NULL) { 2435 mptsas_log(mpt, CE_WARN, "creating cache for frames failed"); 2436 return (FALSE); 2437 } 2438 2439 return (TRUE); 2440 } 2441 2442 static void 2443 mptsas_cache_destroy(mptsas_t *mpt) 2444 { 2445 /* deallocate in reverse order */ 2446 if (mpt->m_cache_frames) { 2447 kmem_cache_destroy(mpt->m_cache_frames); 2448 mpt->m_cache_frames = NULL; 2449 } 2450 if (mpt->m_kmem_cache) { 2451 kmem_cache_destroy(mpt->m_kmem_cache); 2452 mpt->m_kmem_cache = NULL; 2453 } 2454 } 2455 2456 static int 2457 mptsas_power(dev_info_t *dip, int component, int level) 2458 { 2459 #ifndef __lock_lint 2460 _NOTE(ARGUNUSED(component)) 2461 #endif 2462 mptsas_t *mpt; 2463 int rval = DDI_SUCCESS; 2464 int polls = 0; 2465 uint32_t ioc_status; 2466 2467 if (scsi_hba_iport_unit_address(dip) != 0) 2468 return (DDI_SUCCESS); 2469 2470 mpt = ddi_get_soft_state(mptsas3_state, ddi_get_instance(dip)); 2471 if (mpt == NULL) { 2472 return (DDI_FAILURE); 2473 } 2474 2475 mutex_enter(&mpt->m_mutex); 2476 2477 /* 2478 * If the device is busy, don't lower its power level 2479 */ 2480 if (mpt->m_busy && (mpt->m_power_level > level)) { 2481 mutex_exit(&mpt->m_mutex); 2482 return (DDI_FAILURE); 2483 } 2484 switch (level) { 2485 case PM_LEVEL_D0: 2486 NDBG11(("mptsas3%d: turning power ON.", mpt->m_instance)); 2487 MPTSAS_POWER_ON(mpt); 2488 /* 2489 * Wait up to 30 seconds for IOC to come out of reset. 2490 */ 2491 while (((ioc_status = ddi_get32(mpt->m_datap, 2492 &mpt->m_reg->Doorbell)) & 2493 MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 2494 if (polls++ > 3000) { 2495 break; 2496 } 2497 delay(drv_usectohz(10000)); 2498 } 2499 /* 2500 * If IOC is not in operational state, try to hard reset it. 2501 */ 2502 if ((ioc_status & MPI2_IOC_STATE_MASK) != 2503 MPI2_IOC_STATE_OPERATIONAL) { 2504 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 2505 if (mptsas_restart_ioc(mpt) == DDI_FAILURE) { 2506 mptsas_log(mpt, CE_WARN, 2507 "mptsas_power: hard reset failed"); 2508 mutex_exit(&mpt->m_mutex); 2509 return (DDI_FAILURE); 2510 } 2511 } 2512 mpt->m_power_level = PM_LEVEL_D0; 2513 break; 2514 case PM_LEVEL_D3: 2515 NDBG11(("mptsas3%d: turning power OFF.", mpt->m_instance)); 2516 MPTSAS_POWER_OFF(mpt); 2517 break; 2518 default: 2519 mptsas_log(mpt, CE_WARN, "mptsas3%d: unknown power level <%x>.", 2520 mpt->m_instance, level); 2521 rval = DDI_FAILURE; 2522 break; 2523 } 2524 mutex_exit(&mpt->m_mutex); 2525 return (rval); 2526 } 2527 2528 /* 2529 * Initialize configuration space and figure out which 2530 * chip and revison of the chip the mpt driver is using. 2531 */ 2532 static int 2533 mptsas_config_space_init(mptsas_t *mpt) 2534 { 2535 NDBG0(("mptsas_config_space_init")); 2536 2537 if (mpt->m_config_handle != NULL) 2538 return (TRUE); 2539 2540 if (pci_config_setup(mpt->m_dip, 2541 &mpt->m_config_handle) != DDI_SUCCESS) { 2542 mptsas_log(mpt, CE_WARN, "cannot map configuration space."); 2543 return (FALSE); 2544 } 2545 2546 /* 2547 * This is a workaround for a XMITS ASIC bug which does not 2548 * drive the CBE upper bits. 2549 */ 2550 if (pci_config_get16(mpt->m_config_handle, PCI_CONF_STAT) & 2551 PCI_STAT_PERROR) { 2552 pci_config_put16(mpt->m_config_handle, PCI_CONF_STAT, 2553 PCI_STAT_PERROR); 2554 } 2555 2556 mptsas_setup_cmd_reg(mpt); 2557 2558 /* 2559 * Get the chip device id: 2560 */ 2561 mpt->m_devid = pci_config_get16(mpt->m_config_handle, PCI_CONF_DEVID); 2562 2563 /* 2564 * Save the revision. 2565 */ 2566 mpt->m_revid = pci_config_get8(mpt->m_config_handle, PCI_CONF_REVID); 2567 2568 /* 2569 * Save the SubSystem Vendor and Device IDs 2570 */ 2571 mpt->m_svid = pci_config_get16(mpt->m_config_handle, PCI_CONF_SUBVENID); 2572 mpt->m_ssid = pci_config_get16(mpt->m_config_handle, PCI_CONF_SUBSYSID); 2573 2574 /* 2575 * Set the latency timer to 0x40 as specified by the upa -> pci 2576 * bridge chip design team. This may be done by the sparc pci 2577 * bus nexus driver, but the driver should make sure the latency 2578 * timer is correct for performance reasons. 2579 */ 2580 pci_config_put8(mpt->m_config_handle, PCI_CONF_LATENCY_TIMER, 2581 MPTSAS_LATENCY_TIMER); 2582 2583 (void) mptsas_get_pci_cap(mpt); 2584 return (TRUE); 2585 } 2586 2587 static void 2588 mptsas_config_space_fini(mptsas_t *mpt) 2589 { 2590 if (mpt->m_config_handle != NULL) { 2591 mptsas_disable_bus_master(mpt); 2592 pci_config_teardown(&mpt->m_config_handle); 2593 mpt->m_config_handle = NULL; 2594 } 2595 } 2596 2597 static void 2598 mptsas_setup_cmd_reg(mptsas_t *mpt) 2599 { 2600 ushort_t cmdreg; 2601 2602 /* 2603 * Set the command register to the needed values. 2604 */ 2605 cmdreg = pci_config_get16(mpt->m_config_handle, PCI_CONF_COMM); 2606 cmdreg |= (PCI_COMM_ME | PCI_COMM_SERR_ENABLE | 2607 PCI_COMM_PARITY_DETECT | PCI_COMM_MAE); 2608 cmdreg &= ~PCI_COMM_IO; 2609 pci_config_put16(mpt->m_config_handle, PCI_CONF_COMM, cmdreg); 2610 } 2611 2612 static void 2613 mptsas_disable_bus_master(mptsas_t *mpt) 2614 { 2615 ushort_t cmdreg; 2616 2617 /* 2618 * Clear the master enable bit in the PCI command register. 2619 * This prevents any bus mastering activity like DMA. 2620 */ 2621 cmdreg = pci_config_get16(mpt->m_config_handle, PCI_CONF_COMM); 2622 cmdreg &= ~PCI_COMM_ME; 2623 pci_config_put16(mpt->m_config_handle, PCI_CONF_COMM, cmdreg); 2624 } 2625 2626 int 2627 mptsas_dma_alloc(mptsas_t *mpt, mptsas_dma_alloc_state_t *dma_statep) 2628 { 2629 ddi_dma_attr_t attrs; 2630 2631 attrs = mpt->m_io_dma_attr; 2632 attrs.dma_attr_sgllen = 1; 2633 2634 ASSERT(dma_statep != NULL); 2635 2636 if (mptsas_dma_addr_create(mpt, attrs, &dma_statep->handle, 2637 &dma_statep->accessp, &dma_statep->memp, dma_statep->size, 2638 &dma_statep->cookie) == FALSE) { 2639 return (DDI_FAILURE); 2640 } 2641 2642 return (DDI_SUCCESS); 2643 } 2644 2645 void 2646 mptsas_dma_free(mptsas_dma_alloc_state_t *dma_statep) 2647 { 2648 ASSERT(dma_statep != NULL); 2649 mptsas_dma_addr_destroy(&dma_statep->handle, &dma_statep->accessp); 2650 dma_statep->size = 0; 2651 } 2652 2653 int 2654 mptsas_do_dma(mptsas_t *mpt, uint32_t size, int var, int (*callback)()) 2655 { 2656 ddi_dma_attr_t attrs; 2657 ddi_dma_handle_t dma_handle; 2658 caddr_t memp; 2659 ddi_acc_handle_t accessp; 2660 int rval; 2661 2662 ASSERT(mutex_owned(&mpt->m_mutex)); 2663 2664 attrs = mpt->m_msg_dma_attr; 2665 attrs.dma_attr_sgllen = 1; 2666 attrs.dma_attr_granular = size; 2667 2668 if (mptsas_dma_addr_create(mpt, attrs, &dma_handle, 2669 &accessp, &memp, size, NULL) == FALSE) { 2670 return (DDI_FAILURE); 2671 } 2672 2673 rval = (*callback) (mpt, memp, var, accessp); 2674 2675 if ((mptsas_check_dma_handle(dma_handle) != DDI_SUCCESS) || 2676 (mptsas_check_acc_handle(accessp) != DDI_SUCCESS)) { 2677 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 2678 rval = DDI_FAILURE; 2679 } 2680 2681 mptsas_dma_addr_destroy(&dma_handle, &accessp); 2682 return (rval); 2683 2684 } 2685 2686 static int 2687 mptsas_alloc_request_frames(mptsas_t *mpt) 2688 { 2689 ddi_dma_attr_t frame_dma_attrs; 2690 caddr_t memp; 2691 ddi_dma_cookie_t cookie; 2692 size_t mem_size; 2693 2694 /* 2695 * re-alloc when it has already alloced 2696 */ 2697 if (mpt->m_dma_flags & MPTSAS_REQ_FRAME) { 2698 mptsas_dma_addr_destroy(&mpt->m_dma_req_frame_hdl, 2699 &mpt->m_acc_req_frame_hdl); 2700 mpt->m_dma_flags &= ~MPTSAS_REQ_FRAME; 2701 } 2702 2703 /* 2704 * The size of the request frame pool is: 2705 * Number of Request Frames * Request Frame Size 2706 */ 2707 mem_size = mpt->m_max_requests * mpt->m_req_frame_size; 2708 2709 /* 2710 * set the DMA attributes. System Request Message Frames must be 2711 * aligned on a 16-byte boundry. 2712 */ 2713 frame_dma_attrs = mpt->m_msg_dma_attr; 2714 frame_dma_attrs.dma_attr_align = 16; 2715 frame_dma_attrs.dma_attr_sgllen = 1; 2716 2717 /* 2718 * allocate the request frame pool. 2719 */ 2720 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2721 &mpt->m_dma_req_frame_hdl, &mpt->m_acc_req_frame_hdl, &memp, 2722 mem_size, &cookie) == FALSE) { 2723 return (DDI_FAILURE); 2724 } 2725 2726 /* 2727 * Store the request frame memory address. This chip uses this 2728 * address to dma to and from the driver's frame. The second 2729 * address is the address mpt uses to fill in the frame. 2730 */ 2731 mpt->m_req_frame_dma_addr = cookie.dmac_laddress; 2732 mpt->m_req_frame = memp; 2733 2734 /* 2735 * Clear the request frame pool. 2736 */ 2737 bzero(mpt->m_req_frame, mem_size); 2738 2739 mpt->m_dma_flags |= MPTSAS_REQ_FRAME; 2740 return (DDI_SUCCESS); 2741 } 2742 2743 static int 2744 mptsas_alloc_sense_bufs(mptsas_t *mpt) 2745 { 2746 ddi_dma_attr_t sense_dma_attrs; 2747 caddr_t memp; 2748 ddi_dma_cookie_t cookie; 2749 size_t mem_size; 2750 int num_extrqsense_bufs; 2751 2752 /* 2753 * re-alloc when it has already alloced 2754 */ 2755 if (mpt->m_dma_flags & MPTSAS_REQ_SENSE) { 2756 rmfreemap(mpt->m_erqsense_map); 2757 mptsas_dma_addr_destroy(&mpt->m_dma_req_sense_hdl, 2758 &mpt->m_acc_req_sense_hdl); 2759 mpt->m_dma_flags &= ~MPTSAS_REQ_SENSE; 2760 } 2761 2762 /* 2763 * The size of the request sense pool is: 2764 * (Number of Request Frames - 2 ) * Request Sense Size + 2765 * extra memory for extended sense requests. 2766 */ 2767 mem_size = ((mpt->m_max_requests - 2) * mpt->m_req_sense_size) + 2768 mptsas_extreq_sense_bufsize; 2769 2770 /* 2771 * set the DMA attributes. ARQ buffers 2772 * aligned on a 16-byte boundry. 2773 */ 2774 sense_dma_attrs = mpt->m_msg_dma_attr; 2775 sense_dma_attrs.dma_attr_align = 16; 2776 sense_dma_attrs.dma_attr_sgllen = 1; 2777 2778 /* 2779 * allocate the request sense buffer pool. 2780 */ 2781 if (mptsas_dma_addr_create(mpt, sense_dma_attrs, 2782 &mpt->m_dma_req_sense_hdl, &mpt->m_acc_req_sense_hdl, &memp, 2783 mem_size, &cookie) == FALSE) { 2784 return (DDI_FAILURE); 2785 } 2786 2787 /* 2788 * Store the request sense base memory address. This chip uses this 2789 * address to dma the request sense data. The second 2790 * address is the address mpt uses to access the data. 2791 * The third is the base for the extended rqsense buffers. 2792 */ 2793 mpt->m_req_sense_dma_addr = cookie.dmac_laddress; 2794 mpt->m_req_sense = memp; 2795 memp += (mpt->m_max_requests - 2) * mpt->m_req_sense_size; 2796 mpt->m_extreq_sense = memp; 2797 2798 /* 2799 * The extra memory is divided up into multiples of the base 2800 * buffer size in order to allocate via rmalloc(). 2801 * Note that the rmallocmap cannot start at zero! 2802 */ 2803 num_extrqsense_bufs = mptsas_extreq_sense_bufsize / 2804 mpt->m_req_sense_size; 2805 mpt->m_erqsense_map = rmallocmap_wait(num_extrqsense_bufs); 2806 rmfree(mpt->m_erqsense_map, num_extrqsense_bufs, 1); 2807 2808 /* 2809 * Clear the pool. 2810 */ 2811 bzero(mpt->m_req_sense, mem_size); 2812 2813 mpt->m_dma_flags |= MPTSAS_REQ_SENSE; 2814 return (DDI_SUCCESS); 2815 } 2816 2817 static int 2818 mptsas_alloc_reply_frames(mptsas_t *mpt) 2819 { 2820 ddi_dma_attr_t frame_dma_attrs; 2821 caddr_t memp; 2822 ddi_dma_cookie_t cookie; 2823 size_t mem_size; 2824 2825 /* 2826 * re-alloc when it has already alloced 2827 */ 2828 if (mpt->m_dma_flags & MPTSAS_REPLY_FRAME) { 2829 mptsas_dma_addr_destroy(&mpt->m_dma_reply_frame_hdl, 2830 &mpt->m_acc_reply_frame_hdl); 2831 mpt->m_dma_flags &= ~MPTSAS_REPLY_FRAME; 2832 } 2833 2834 /* 2835 * The size of the reply frame pool is: 2836 * Number of Reply Frames * Reply Frame Size 2837 */ 2838 mem_size = mpt->m_max_replies * mpt->m_reply_frame_size; 2839 2840 /* 2841 * set the DMA attributes. System Reply Message Frames must be 2842 * aligned on a 4-byte boundry. This is the default. 2843 */ 2844 frame_dma_attrs = mpt->m_msg_dma_attr; 2845 frame_dma_attrs.dma_attr_sgllen = 1; 2846 2847 /* 2848 * allocate the reply frame pool 2849 */ 2850 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2851 &mpt->m_dma_reply_frame_hdl, &mpt->m_acc_reply_frame_hdl, &memp, 2852 mem_size, &cookie) == FALSE) { 2853 return (DDI_FAILURE); 2854 } 2855 2856 /* 2857 * Store the reply frame memory address. This chip uses this 2858 * address to dma to and from the driver's frame. The second 2859 * address is the address mpt uses to process the frame. 2860 */ 2861 mpt->m_reply_frame_dma_addr = cookie.dmac_laddress; 2862 mpt->m_reply_frame = memp; 2863 2864 /* 2865 * Clear the reply frame pool. 2866 */ 2867 bzero(mpt->m_reply_frame, mem_size); 2868 2869 mpt->m_dma_flags |= MPTSAS_REPLY_FRAME; 2870 return (DDI_SUCCESS); 2871 } 2872 2873 static int 2874 mptsas_alloc_free_queue(mptsas_t *mpt) 2875 { 2876 ddi_dma_attr_t frame_dma_attrs; 2877 caddr_t memp; 2878 ddi_dma_cookie_t cookie; 2879 size_t mem_size; 2880 2881 /* 2882 * re-alloc when it has already alloced 2883 */ 2884 if (mpt->m_dma_flags & MPTSAS_FREE_QUEUE) { 2885 mptsas_dma_addr_destroy(&mpt->m_dma_free_queue_hdl, 2886 &mpt->m_acc_free_queue_hdl); 2887 mpt->m_dma_flags &= ~MPTSAS_FREE_QUEUE; 2888 } 2889 2890 /* 2891 * The reply free queue size is: 2892 * Reply Free Queue Depth * 4 2893 * The "4" is the size of one 32 bit address (low part of 64-bit 2894 * address) 2895 */ 2896 mem_size = mpt->m_free_queue_depth * 4; 2897 2898 /* 2899 * set the DMA attributes The Reply Free Queue must be aligned on a 2900 * 16-byte boundry. 2901 */ 2902 frame_dma_attrs = mpt->m_msg_dma_attr; 2903 frame_dma_attrs.dma_attr_align = 16; 2904 frame_dma_attrs.dma_attr_sgllen = 1; 2905 2906 /* 2907 * allocate the reply free queue 2908 */ 2909 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2910 &mpt->m_dma_free_queue_hdl, &mpt->m_acc_free_queue_hdl, &memp, 2911 mem_size, &cookie) == FALSE) { 2912 return (DDI_FAILURE); 2913 } 2914 2915 /* 2916 * Store the reply free queue memory address. This chip uses this 2917 * address to read from the reply free queue. The second address 2918 * is the address mpt uses to manage the queue. 2919 */ 2920 mpt->m_free_queue_dma_addr = cookie.dmac_laddress; 2921 mpt->m_free_queue = memp; 2922 2923 /* 2924 * Clear the reply free queue memory. 2925 */ 2926 bzero(mpt->m_free_queue, mem_size); 2927 2928 mpt->m_dma_flags |= MPTSAS_FREE_QUEUE; 2929 return (DDI_SUCCESS); 2930 } 2931 2932 static void 2933 mptsas_free_post_queue(mptsas_t *mpt) 2934 { 2935 mptsas_reply_pqueue_t *rpqp; 2936 int i; 2937 2938 if (mpt->m_dma_flags & MPTSAS_POST_QUEUE) { 2939 mptsas_dma_addr_destroy(&mpt->m_dma_post_queue_hdl, 2940 &mpt->m_acc_post_queue_hdl); 2941 rpqp = mpt->m_rep_post_queues; 2942 for (i = 0; i < mpt->m_post_reply_qcount; i++) { 2943 mutex_destroy(&rpqp->rpq_mutex); 2944 rpqp++; 2945 } 2946 kmem_free(mpt->m_rep_post_queues, 2947 sizeof (mptsas_reply_pqueue_t) * 2948 mpt->m_post_reply_qcount); 2949 mpt->m_dma_flags &= ~MPTSAS_POST_QUEUE; 2950 } 2951 } 2952 2953 static int 2954 mptsas_alloc_post_queue(mptsas_t *mpt) 2955 { 2956 ddi_dma_attr_t frame_dma_attrs; 2957 caddr_t memp; 2958 ddi_dma_cookie_t cookie; 2959 size_t mem_size; 2960 mptsas_reply_pqueue_t *rpqp; 2961 int i; 2962 2963 /* 2964 * re-alloc when it has already alloced 2965 */ 2966 mptsas_free_post_queue(mpt); 2967 2968 /* 2969 * The reply descriptor post queue size is: 2970 * Reply Descriptor Post Queue Depth * 8 2971 * The "8" is the size of each descriptor (8 bytes or 64 bits). 2972 */ 2973 mpt->m_post_reply_qcount = mpt->m_intr_cnt; 2974 mem_size = mpt->m_post_queue_depth * 8 * mpt->m_post_reply_qcount; 2975 2976 /* 2977 * set the DMA attributes. The Reply Descriptor Post Queue must be 2978 * aligned on a 16-byte boundry. 2979 */ 2980 frame_dma_attrs = mpt->m_msg_dma_attr; 2981 frame_dma_attrs.dma_attr_align = 16; 2982 frame_dma_attrs.dma_attr_sgllen = 1; 2983 2984 /* 2985 * Allocate the reply post queue(s). 2986 * MPI2.5 introduces a method to allocate multiple queues 2987 * using a redirect table. For now stick to one contiguous 2988 * chunck. This can get as big as 1Mbyte for 16 queues. 2989 * The spec gives no indication that the queue size can be 2990 * reduced if you have many of them. 2991 */ 2992 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2993 &mpt->m_dma_post_queue_hdl, &mpt->m_acc_post_queue_hdl, &memp, 2994 mem_size, &cookie) == FALSE) { 2995 return (DDI_FAILURE); 2996 } 2997 2998 /* 2999 * Store the reply descriptor post queue memory address. This chip 3000 * uses this address to write to the reply descriptor post queue. The 3001 * second address is the address mpt uses to manage the queue. 3002 */ 3003 mpt->m_post_queue_dma_addr = cookie.dmac_laddress; 3004 mpt->m_post_queue = memp; 3005 3006 mpt->m_rep_post_queues = kmem_zalloc(sizeof (mptsas_reply_pqueue_t) * 3007 mpt->m_post_reply_qcount, KM_SLEEP); 3008 rpqp = mpt->m_rep_post_queues; 3009 for (i = 0; i < mpt->m_post_reply_qcount; i++) { 3010 rpqp->rpq_queue = memp; 3011 mutex_init(&rpqp->rpq_mutex, NULL, MUTEX_DRIVER, NULL); 3012 rpqp->rpq_dlist.dl_tail = &rpqp->rpq_dlist.dl_q; 3013 rpqp->rpq_num = (uint8_t)i; 3014 memp += (mpt->m_post_queue_depth * 8); 3015 rpqp++; 3016 } 3017 3018 /* 3019 * Clear the reply post queue memory. 3020 */ 3021 bzero(mpt->m_post_queue, mem_size); 3022 3023 mpt->m_dma_flags |= MPTSAS_POST_QUEUE; 3024 return (DDI_SUCCESS); 3025 } 3026 3027 static void 3028 mptsas_alloc_reply_args(mptsas_t *mpt) 3029 { 3030 if (mpt->m_replyh_args == NULL) { 3031 mpt->m_replyh_args = kmem_zalloc(sizeof (m_replyh_arg_t) * 3032 mpt->m_max_replies, KM_SLEEP); 3033 } else { 3034 bzero(mpt->m_replyh_args, sizeof (m_replyh_arg_t) * 3035 mpt->m_max_replies); 3036 } 3037 } 3038 3039 static int 3040 mptsas_alloc_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd) 3041 { 3042 mptsas_cache_frames_t *frames = NULL; 3043 if (cmd->cmd_extra_frames == NULL) { 3044 frames = kmem_cache_alloc(mpt->m_cache_frames, KM_NOSLEEP); 3045 if (frames == NULL) { 3046 return (DDI_FAILURE); 3047 } 3048 cmd->cmd_extra_frames = frames; 3049 } 3050 return (DDI_SUCCESS); 3051 } 3052 3053 static void 3054 mptsas_free_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd) 3055 { 3056 if (cmd->cmd_extra_frames) { 3057 kmem_cache_free(mpt->m_cache_frames, 3058 (void *)cmd->cmd_extra_frames); 3059 cmd->cmd_extra_frames = NULL; 3060 } 3061 } 3062 3063 static void 3064 mptsas_cfg_fini(mptsas_t *mpt) 3065 { 3066 NDBG0(("mptsas_cfg_fini")); 3067 ddi_regs_map_free(&mpt->m_datap); 3068 } 3069 3070 static void 3071 mptsas_hba_fini(mptsas_t *mpt) 3072 { 3073 NDBG0(("mptsas_hba_fini")); 3074 3075 /* 3076 * Free up any allocated memory 3077 */ 3078 if (mpt->m_dma_flags & MPTSAS_REQ_FRAME) { 3079 mptsas_dma_addr_destroy(&mpt->m_dma_req_frame_hdl, 3080 &mpt->m_acc_req_frame_hdl); 3081 } 3082 3083 if (mpt->m_dma_flags & MPTSAS_REQ_SENSE) { 3084 rmfreemap(mpt->m_erqsense_map); 3085 mptsas_dma_addr_destroy(&mpt->m_dma_req_sense_hdl, 3086 &mpt->m_acc_req_sense_hdl); 3087 } 3088 3089 if (mpt->m_dma_flags & MPTSAS_REPLY_FRAME) { 3090 mptsas_dma_addr_destroy(&mpt->m_dma_reply_frame_hdl, 3091 &mpt->m_acc_reply_frame_hdl); 3092 } 3093 3094 if (mpt->m_dma_flags & MPTSAS_FREE_QUEUE) { 3095 mptsas_dma_addr_destroy(&mpt->m_dma_free_queue_hdl, 3096 &mpt->m_acc_free_queue_hdl); 3097 } 3098 3099 mptsas_free_post_queue(mpt); 3100 3101 if (mpt->m_replyh_args != NULL) { 3102 kmem_free(mpt->m_replyh_args, sizeof (m_replyh_arg_t) 3103 * mpt->m_max_replies); 3104 } 3105 } 3106 3107 static int 3108 mptsas_name_child(dev_info_t *lun_dip, char *name, int len) 3109 { 3110 int lun = 0; 3111 char *sas_wwn = NULL; 3112 int phynum = -1; 3113 int reallen = 0; 3114 3115 /* Get the target num */ 3116 lun = ddi_prop_get_int(DDI_DEV_T_ANY, lun_dip, DDI_PROP_DONTPASS, 3117 LUN_PROP, 0); 3118 3119 if ((phynum = ddi_prop_get_int(DDI_DEV_T_ANY, lun_dip, 3120 DDI_PROP_DONTPASS, "sata-phy", -1)) != -1) { 3121 /* 3122 * Stick in the address of form "pPHY,LUN" 3123 */ 3124 reallen = snprintf(name, len, "p%x,%x", phynum, lun); 3125 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, lun_dip, 3126 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET_PORT, &sas_wwn) 3127 == DDI_PROP_SUCCESS) { 3128 /* 3129 * Stick in the address of the form "wWWN,LUN" 3130 */ 3131 reallen = snprintf(name, len, "%s,%x", sas_wwn, lun); 3132 ddi_prop_free(sas_wwn); 3133 } else { 3134 return (DDI_FAILURE); 3135 } 3136 3137 ASSERT(reallen < len); 3138 if (reallen >= len) { 3139 mptsas_log(0, CE_WARN, "!mptsas_get_name: name parameter " 3140 "length too small, it needs to be %d bytes", reallen + 1); 3141 } 3142 return (DDI_SUCCESS); 3143 } 3144 3145 /* 3146 * tran_tgt_init(9E) - target device instance initialization 3147 */ 3148 static int 3149 mptsas_scsi_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip, 3150 scsi_hba_tran_t *hba_tran, struct scsi_device *sd) 3151 { 3152 #ifndef __lock_lint 3153 _NOTE(ARGUNUSED(hba_tran)) 3154 #endif 3155 3156 /* 3157 * At this point, the scsi_device structure already exists 3158 * and has been initialized. 3159 * 3160 * Use this function to allocate target-private data structures, 3161 * if needed by this HBA. Add revised flow-control and queue 3162 * properties for child here, if desired and if you can tell they 3163 * support tagged queueing by now. 3164 */ 3165 mptsas_t *mpt; 3166 int lun = sd->sd_address.a_lun; 3167 mdi_pathinfo_t *pip = NULL; 3168 mptsas_tgt_private_t *tgt_private = NULL; 3169 mptsas_target_t *ptgt = NULL; 3170 char *psas_wwn = NULL; 3171 mptsas_phymask_t phymask = 0; 3172 uint64_t sas_wwn = 0; 3173 mptsas_target_addr_t addr; 3174 mpt = SDEV2MPT(sd); 3175 3176 ASSERT(scsi_hba_iport_unit_address(hba_dip) != 0); 3177 3178 NDBG0(("mptsas_scsi_tgt_init: hbadip=0x%p tgtdip=0x%p lun=%d", 3179 (void *)hba_dip, (void *)tgt_dip, lun)); 3180 3181 if (ndi_dev_is_persistent_node(tgt_dip) == 0) { 3182 (void) ndi_merge_node(tgt_dip, mptsas_name_child); 3183 ddi_set_name_addr(tgt_dip, NULL); 3184 return (DDI_FAILURE); 3185 } 3186 /* 3187 * phymask is 0 means the virtual port for RAID 3188 */ 3189 phymask = (mptsas_phymask_t)ddi_prop_get_int(DDI_DEV_T_ANY, hba_dip, 0, 3190 "phymask", 0); 3191 if (mdi_component_is_client(tgt_dip, NULL) == MDI_SUCCESS) { 3192 if ((pip = (void *)(sd->sd_private)) == NULL) { 3193 /* 3194 * Very bad news if this occurs. Somehow scsi_vhci has 3195 * lost the pathinfo node for this target. 3196 */ 3197 return (DDI_NOT_WELL_FORMED); 3198 } 3199 3200 if (mdi_prop_lookup_int(pip, LUN_PROP, &lun) != 3201 DDI_PROP_SUCCESS) { 3202 mptsas_log(mpt, CE_WARN, "Get lun property failed\n"); 3203 return (DDI_FAILURE); 3204 } 3205 3206 if (mdi_prop_lookup_string(pip, SCSI_ADDR_PROP_TARGET_PORT, 3207 &psas_wwn) == MDI_SUCCESS) { 3208 if (scsi_wwnstr_to_wwn(psas_wwn, &sas_wwn)) { 3209 sas_wwn = 0; 3210 } 3211 (void) mdi_prop_free(psas_wwn); 3212 } 3213 } else { 3214 lun = ddi_prop_get_int(DDI_DEV_T_ANY, tgt_dip, 3215 DDI_PROP_DONTPASS, LUN_PROP, 0); 3216 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, tgt_dip, 3217 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET_PORT, &psas_wwn) == 3218 DDI_PROP_SUCCESS) { 3219 if (scsi_wwnstr_to_wwn(psas_wwn, &sas_wwn)) { 3220 sas_wwn = 0; 3221 } 3222 ddi_prop_free(psas_wwn); 3223 } else { 3224 sas_wwn = 0; 3225 } 3226 } 3227 3228 ASSERT((sas_wwn != 0) || (phymask != 0)); 3229 addr.mta_wwn = sas_wwn; 3230 addr.mta_phymask = phymask; 3231 mutex_enter(&mpt->m_mutex); 3232 ptgt = refhash_lookup(mpt->m_targets, &addr); 3233 mutex_exit(&mpt->m_mutex); 3234 if (ptgt == NULL) { 3235 mptsas_log(mpt, CE_WARN, "!tgt_init: target doesn't exist or " 3236 "gone already! phymask:%x, saswwn %"PRIx64, phymask, 3237 sas_wwn); 3238 return (DDI_FAILURE); 3239 } 3240 if (hba_tran->tran_tgt_private == NULL) { 3241 tgt_private = kmem_zalloc(sizeof (mptsas_tgt_private_t), 3242 KM_SLEEP); 3243 tgt_private->t_lun = lun; 3244 tgt_private->t_private = ptgt; 3245 hba_tran->tran_tgt_private = tgt_private; 3246 } 3247 3248 if (mdi_component_is_client(tgt_dip, NULL) == MDI_SUCCESS) { 3249 return (DDI_SUCCESS); 3250 } 3251 mutex_enter(&mpt->m_mutex); 3252 3253 if (ptgt->m_deviceinfo & 3254 (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 3255 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 3256 uchar_t *inq89 = NULL; 3257 int inq89_len = 0x238; 3258 int reallen = 0; 3259 int rval = 0; 3260 struct sata_id *sid = NULL; 3261 char model[SATA_ID_MODEL_LEN + 1]; 3262 char fw[SATA_ID_FW_LEN + 1]; 3263 char *vid, *pid; 3264 int i; 3265 3266 mutex_exit(&mpt->m_mutex); 3267 /* 3268 * According SCSI/ATA Translation -2 (SAT-2) revision 01a 3269 * chapter 12.4.2 VPD page 89h includes 512 bytes ATA IDENTIFY 3270 * DEVICE data or ATA IDENTIFY PACKET DEVICE data. 3271 */ 3272 inq89 = kmem_zalloc(inq89_len, KM_SLEEP); 3273 rval = mptsas_inquiry(mpt, ptgt, 0, 0x89, 3274 inq89, inq89_len, &reallen, 1); 3275 3276 if (rval != 0) { 3277 if (inq89 != NULL) { 3278 kmem_free(inq89, inq89_len); 3279 } 3280 3281 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 3282 "0x89 for SATA target:%x failed!", ptgt->m_devhdl); 3283 return (DDI_SUCCESS); 3284 } 3285 sid = (void *)(&inq89[60]); 3286 3287 swab(sid->ai_model, model, SATA_ID_MODEL_LEN); 3288 swab(sid->ai_fw, fw, SATA_ID_FW_LEN); 3289 3290 model[SATA_ID_MODEL_LEN] = 0; 3291 fw[SATA_ID_FW_LEN] = 0; 3292 3293 /* 3294 * split model into into vid/pid 3295 */ 3296 for (i = 0, pid = model; i < SATA_ID_MODEL_LEN; i++, pid++) 3297 if ((*pid == ' ') || (*pid == '\t')) 3298 break; 3299 if (i < SATA_ID_MODEL_LEN) { 3300 vid = model; 3301 /* 3302 * terminate vid, establish pid 3303 */ 3304 *pid++ = 0; 3305 } else { 3306 /* 3307 * vid will stay "ATA ", the rule is same 3308 * as sata framework implementation. 3309 */ 3310 vid = NULL; 3311 /* 3312 * model is all pid 3313 */ 3314 pid = model; 3315 } 3316 3317 /* 3318 * override SCSA "inquiry-*" properties 3319 */ 3320 if (vid) 3321 (void) scsi_device_prop_update_inqstring(sd, 3322 INQUIRY_VENDOR_ID, vid, strlen(vid)); 3323 if (pid) 3324 (void) scsi_device_prop_update_inqstring(sd, 3325 INQUIRY_PRODUCT_ID, pid, strlen(pid)); 3326 (void) scsi_device_prop_update_inqstring(sd, 3327 INQUIRY_REVISION_ID, fw, strlen(fw)); 3328 3329 if (inq89 != NULL) { 3330 kmem_free(inq89, inq89_len); 3331 } 3332 } else { 3333 mutex_exit(&mpt->m_mutex); 3334 } 3335 3336 return (DDI_SUCCESS); 3337 } 3338 /* 3339 * tran_tgt_free(9E) - target device instance deallocation 3340 */ 3341 static void 3342 mptsas_scsi_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip, 3343 scsi_hba_tran_t *hba_tran, struct scsi_device *sd) 3344 { 3345 #ifndef __lock_lint 3346 _NOTE(ARGUNUSED(hba_dip, tgt_dip, hba_tran, sd)) 3347 #endif 3348 3349 mptsas_tgt_private_t *tgt_private = hba_tran->tran_tgt_private; 3350 3351 if (tgt_private != NULL) { 3352 kmem_free(tgt_private, sizeof (mptsas_tgt_private_t)); 3353 hba_tran->tran_tgt_private = NULL; 3354 } 3355 } 3356 3357 /* 3358 * scsi_pkt handling 3359 * 3360 * Visible to the external world via the transport structure. 3361 */ 3362 3363 /* 3364 * Notes: 3365 * - transport the command to the addressed SCSI target/lun device 3366 * - normal operation is to schedule the command to be transported, 3367 * and return TRAN_ACCEPT if this is successful. 3368 * - if NO_INTR, tran_start must poll device for command completion 3369 */ 3370 static int 3371 mptsas_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt) 3372 { 3373 #ifndef __lock_lint 3374 _NOTE(ARGUNUSED(ap)) 3375 #endif 3376 mptsas_t *mpt = PKT2MPT(pkt); 3377 mptsas_cmd_t *cmd = PKT2CMD(pkt); 3378 int rval, start; 3379 uint8_t pref; 3380 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3381 mptsas_tx_waitqueue_t *txwq; 3382 3383 NDBG1(("mptsas_scsi_start: pkt=0x%p", (void *)pkt)); 3384 ASSERT(ptgt); 3385 if (ptgt == NULL) 3386 return (TRAN_FATAL_ERROR); 3387 3388 /* 3389 * prepare the pkt before taking mutex. 3390 */ 3391 rval = mptsas_prepare_pkt(cmd); 3392 if (rval != TRAN_ACCEPT) { 3393 return (rval); 3394 } 3395 3396 /* 3397 * Send the command to target/lun, however your HBA requires it. 3398 * If busy, return TRAN_BUSY; if there's some other formatting error 3399 * in the packet, return TRAN_BADPKT; otherwise, fall through to the 3400 * return of TRAN_ACCEPT. 3401 * 3402 * Remember that access to shared resources, including the mptsas_t 3403 * data structure and the HBA hardware registers, must be protected 3404 * with mutexes, here and everywhere. 3405 * 3406 * Also remember that at interrupt time, you'll get an argument 3407 * to the interrupt handler which is a pointer to your mptsas_t 3408 * structure; you'll have to remember which commands are outstanding 3409 * and which scsi_pkt is the currently-running command so the 3410 * interrupt handler can refer to the pkt to set completion 3411 * status, call the target driver back through pkt_comp, etc. 3412 * 3413 * If the instance lock is held by other thread, don't spin to wait 3414 * for it. Instead, queue the cmd and next time when the instance lock 3415 * is not held, accept all the queued cmd. A extra tx_waitq is 3416 * introduced to protect the queue. 3417 * 3418 * The polled cmd will not be queud and accepted as usual. 3419 * 3420 * Under the tx_waitq mutex, record whether a thread is draining 3421 * the tx_waitq. An IO requesting thread that finds the instance 3422 * mutex contended appends to the tx_waitq and while holding the 3423 * tx_wait mutex, if the draining flag is not set, sets it and then 3424 * proceeds to spin for the instance mutex. This scheme ensures that 3425 * the last cmd in a burst be processed. 3426 * 3427 * we enable this feature only when the helper threads are enabled, 3428 * at which we think the loads are heavy. 3429 * 3430 * per instance, per queue mutex m_tx_waitq[i].txwq_mutex is 3431 * introduced to protect the txwq_qtail, txwq_cmdq, txwq_len 3432 */ 3433 3434 if (mpt->m_txwq_enabled == TRUE) { 3435 int gotmtx = 0; 3436 3437 if (mpt->m_txwq_allow_q_jumping) { 3438 gotmtx = mutex_tryenter(&mpt->m_mutex); 3439 } 3440 if (gotmtx == 0) { 3441 /* We didn't get the mutex or didn't try */ 3442 if (cmd->cmd_pkt_flags & FLAG_NOINTR) { 3443 mutex_enter(&mpt->m_mutex); 3444 /* Polled commands queue jump */ 3445 mptsas_accept_tx_waitqs(mpt); 3446 } else { 3447 rval = mptsas_check_targ_intxtion( 3448 cmd->cmd_tgt_addr, 3449 cmd->cmd_pkt_flags); 3450 if (rval != TRAN_ACCEPT) { 3451 return (rval); 3452 } 3453 3454 cmd->cmd_flags |= CFLAG_TXQ; 3455 pref = mpt->m_pref_tx_waitq; 3456 txwq = &mpt->m_tx_waitq[pref]; 3457 3458 if (mutex_tryenter(&txwq->txwq_mutex) == 0) { 3459 txwq = &mpt->m_tx_waitq[pref^1]; 3460 mutex_enter(&txwq->txwq_mutex); 3461 } else { 3462 pref ^= 1; 3463 mpt->m_pref_tx_waitq = pref; 3464 } 3465 3466 *txwq->txwq_qtail = cmd; 3467 txwq->txwq_qtail = &cmd->cmd_linkp; 3468 txwq->txwq_len++; 3469 if (!txwq->txwq_draining) { 3470 cv_signal(&txwq->txwq_cv); 3471 } 3472 mutex_exit(&txwq->txwq_mutex); 3473 return (rval); 3474 } 3475 } 3476 } else { 3477 mutex_enter(&mpt->m_mutex); 3478 } 3479 rval = mptsas_check_targ_intxtion(cmd->cmd_tgt_addr, 3480 cmd->cmd_pkt_flags); 3481 if (rval != TRAN_ACCEPT) { 3482 mutex_exit(&mpt->m_mutex); 3483 return (rval); 3484 } 3485 3486 start = mptsas_accept_pkt(mpt, cmd, &rval); 3487 mutex_exit(&mpt->m_mutex); 3488 if (start) { 3489 (void) mptsas_start_cmd(mpt, cmd); 3490 } 3491 3492 return (rval); 3493 } 3494 3495 static int 3496 mptsas_check_targ_intxtion(mptsas_target_t *ptgt, int cmd_pkt_flags) 3497 { 3498 /* 3499 * ptgt->m_dr_flag is a variable that is only ever changed by 3500 * direct write under the main m_mutex. 3501 * It doesn't need a mutex hold to protect this read. 3502 */ 3503 3504 if (ptgt->m_dr_flag == MPTSAS_DR_INTRANSITION) { 3505 if (cmd_pkt_flags & FLAG_NOQUEUE) { 3506 /* 3507 * The command should be allowed to retry by returning 3508 * TRAN_BUSY to stall the I/O's which come from 3509 * scsi_vhci since the device/path is in unstable state 3510 * now. 3511 */ 3512 return (TRAN_BUSY); 3513 } else { 3514 /* 3515 * The device is offline, just fail the command by 3516 * return TRAN_FATAL_ERROR. 3517 */ 3518 return (TRAN_FATAL_ERROR); 3519 } 3520 } 3521 return (TRAN_ACCEPT); 3522 } 3523 3524 /* 3525 * Note that this function has a side effect of releasing the 3526 * per target mutex. 3527 */ 3528 static void 3529 mptsas_offline_target_direct(mptsas_t *mpt, mptsas_target_t *ptgt) 3530 { 3531 char phy_mask_name[MPTSAS_MAX_PHYS]; 3532 mptsas_phymask_t phymask = ptgt->m_addr.mta_phymask; 3533 dev_info_t *parent; 3534 3535 ASSERT(mutex_owned(&mpt->m_mutex)); 3536 3537 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 3538 bzero(phy_mask_name, MPTSAS_MAX_PHYS); 3539 (void) sprintf(phy_mask_name, "%x", phymask); 3540 parent = scsi_hba_iport_find(mpt->m_dip, phy_mask_name); 3541 3542 if (parent != NULL) { 3543 mptsas_offline_target(mpt, ptgt, 3544 ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED ? 3545 MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE : 3546 MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE, 3547 parent); 3548 } else { 3549 mptsas_log(mpt, CE_WARN, "Failed to find an " 3550 "iport for \"%s\", should not happen!", 3551 phy_mask_name); 3552 } 3553 } 3554 3555 /* 3556 * In order to be efficient with the m_mutex (which can be dropped before 3557 * calling mptsas_start_cmd()) indicate if start_cmd should be called via the 3558 * returned value (FALSE or TRUE). Caller is then responsible for doing the 3559 * right thing with the m_mutex. 3560 */ 3561 static int 3562 mptsas_accept_pkt(mptsas_t *mpt, mptsas_cmd_t *cmd, int *tran_rval) 3563 { 3564 int rval = TRAN_ACCEPT; 3565 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3566 3567 NDBG1(("mptsas_accept_pkt: cmd=0x%p", (void *)cmd)); 3568 3569 ASSERT(mutex_owned(&mpt->m_mutex)); 3570 3571 if ((cmd->cmd_flags & CFLAG_PREPARED) == 0) { 3572 rval = mptsas_prepare_pkt(cmd); 3573 if (rval != TRAN_ACCEPT) { 3574 cmd->cmd_flags &= ~CFLAG_TRANFLAG; 3575 goto set_tranrval; 3576 } 3577 } 3578 3579 /* 3580 * If the command came from the tx wait q it may have slipped 3581 * by the check for dr_flag before being added to the queue. 3582 * Fail here with abort status. 3583 */ 3584 if (cmd->cmd_flags & CFLAG_TXQ) { 3585 rval = mptsas_check_targ_intxtion(cmd->cmd_tgt_addr, 3586 cmd->cmd_pkt_flags); 3587 if (rval != TRAN_ACCEPT) { 3588 mptsas_set_pkt_reason(mpt, cmd, CMD_ABORTED, 3589 STAT_ABORTED); 3590 mptsas_doneq_add(mpt, cmd); 3591 mptsas_doneq_empty(mpt); 3592 goto set_tranrval; 3593 } 3594 } 3595 /* 3596 * If HBA is being reset, the DevHandles are being re-initialized, 3597 * which means that they could be invalid even if the target is still 3598 * attached. Check if being reset and if DevHandle is being 3599 * re-initialized. If this is the case, return BUSY so the I/O can be 3600 * retried later. 3601 */ 3602 if ((ptgt->m_devhdl == MPTSAS_INVALID_DEVHDL) && mpt->m_in_reset) { 3603 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 3604 if (cmd->cmd_flags & CFLAG_TXQ) { 3605 mptsas_doneq_add(mpt, cmd); 3606 mptsas_doneq_empty(mpt); 3607 } else { 3608 rval = TRAN_BUSY; 3609 } 3610 goto set_tranrval; 3611 } 3612 3613 mutex_enter(&ptgt->m_t_mutex); 3614 /* 3615 * reset the throttle if we were draining 3616 */ 3617 if ((ptgt->m_t_ncmds == 0) && 3618 (ptgt->m_t_throttle == DRAIN_THROTTLE)) { 3619 NDBG23(("reset throttle")); 3620 ASSERT(ptgt->m_reset_delay == 0); 3621 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 3622 } 3623 3624 /* 3625 * If device handle has already been invalidated, just 3626 * fail the command. In theory, for a command from scsi_vhci 3627 * client it's impossible to receive a command with an invalid 3628 * devhdl since devhdl is set after path offline, target 3629 * driver is not supposed to select an offlined path. 3630 */ 3631 if (ptgt->m_devhdl == MPTSAS_INVALID_DEVHDL) { 3632 NDBG3(("rejecting command, it might because invalid devhdl " 3633 "request.")); 3634 mutex_exit(&ptgt->m_t_mutex); 3635 mptsas_set_pkt_reason(mpt, cmd, CMD_DEV_GONE, STAT_TERMINATED); 3636 if (cmd->cmd_flags & CFLAG_TXQ) { 3637 mptsas_doneq_add(mpt, cmd); 3638 mptsas_doneq_empty(mpt); 3639 } else { 3640 rval = TRAN_FATAL_ERROR; 3641 } 3642 goto set_tranrval; 3643 } 3644 /* 3645 * The first case is the normal case. mpt gets a command from the 3646 * target driver and starts it. 3647 * Since SMID 0 is reserved and the TM slot is reserved, the actual max 3648 * commands is m_max_requests - 2. 3649 */ 3650 if ((mpt->m_ncmds <= (mpt->m_max_requests - 2)) && 3651 (ptgt->m_t_throttle > HOLD_THROTTLE) && 3652 (ptgt->m_t_ncmds < ptgt->m_t_throttle) && 3653 (ptgt->m_reset_delay == 0) && (mpt->m_polled_intr == 0) && 3654 (ptgt->m_t_nwait == 0) && 3655 ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0)) { 3656 ASSERT((cmd->cmd_flags & CFLAG_CMDIOC) == 0); 3657 if (mptsas_save_cmd_to_slot(mpt, cmd) == TRUE) { 3658 ptgt->m_t_ncmds++; 3659 mutex_exit(&ptgt->m_t_mutex); 3660 cmd->cmd_active_expiration = 0; 3661 *tran_rval = rval; 3662 return (TRUE); 3663 } else { 3664 mutex_exit(&ptgt->m_t_mutex); 3665 mptsas_waitq_add(mpt, cmd); 3666 } 3667 } else { 3668 mutex_exit(&ptgt->m_t_mutex); 3669 /* 3670 * Add this pkt to the work queue 3671 */ 3672 mptsas_waitq_add(mpt, cmd); 3673 3674 if (cmd->cmd_pkt_flags & FLAG_NOINTR) { 3675 (void) mptsas_poll(mpt, cmd, MPTSAS_POLL_TIME); 3676 3677 /* 3678 * Only flush the doneq if this is not a TM 3679 * cmd. For TM cmds the flushing of the 3680 * doneq will be done in those routines. 3681 */ 3682 if ((cmd->cmd_flags & CFLAG_TM_CMD) == 0) { 3683 mptsas_doneq_empty(mpt); 3684 } 3685 } 3686 } 3687 set_tranrval: 3688 *tran_rval = rval; 3689 return (FALSE); 3690 } 3691 3692 static void 3693 mptsas_retry_pkt(mptsas_t *mpt, mptsas_cmd_t *cmd) 3694 { 3695 int rval; 3696 3697 cmd->cmd_pkt_flags |= FLAG_HEAD; 3698 cmd->cmd_flags |= CFLAG_RETRY; 3699 cmd->cmd_flags &= ~CFLAG_TXQ; 3700 if (mptsas_accept_pkt(mpt, cmd, &rval)) { 3701 (void) mptsas_start_cmd(mpt, cmd); 3702 } 3703 3704 /* 3705 * If there was a problem clear the retry flag so that the 3706 * command will be completed with error rather than get lost! 3707 */ 3708 if (rval != TRAN_ACCEPT) 3709 cmd->cmd_flags &= ~CFLAG_RETRY; 3710 } 3711 3712 static int 3713 mptsas_save_cmd_to_slot(mptsas_t *mpt, mptsas_cmd_t *cmd) 3714 { 3715 mptsas_slots_t *slots = mpt->m_active; 3716 uint_t slot, start_rotor, rotor, n_normal; 3717 3718 /* 3719 * Account for reserved TM request slot and reserved SMID of 0. 3720 */ 3721 ASSERT(slots->m_n_normal == (mpt->m_max_requests - 2)); 3722 3723 /* 3724 * Find the next available slot, beginning at m_rotor. If no slot is 3725 * available, we'll return FALSE to indicate that. This mechanism 3726 * considers only the normal slots, not the reserved slot 0 nor the 3727 * task management slot m_n_normal + 1. The rotor is left to point to 3728 * the normal slot after the one we select, unless we select the last 3729 * normal slot in which case it returns to slot 1. 3730 */ 3731 start_rotor = rotor = slots->m_rotor; 3732 n_normal = slots->m_n_normal; 3733 do { 3734 slot = rotor++; 3735 if (rotor > n_normal) 3736 rotor = 1; 3737 3738 if (rotor == start_rotor) 3739 break; 3740 } while (slots->m_slot[slot] != NULL); 3741 slots->m_rotor = rotor; 3742 3743 if (slots->m_slot[slot] != NULL) 3744 return (FALSE); 3745 3746 ASSERT(slot != 0 && slot <= slots->m_n_normal); 3747 3748 cmd->cmd_slot = slot; 3749 slots->m_slot[slot] = cmd; 3750 atomic_inc_32(&mpt->m_ncmds); 3751 3752 /* 3753 * Distribute the commands amongst the reply queues (Interrupt vectors). 3754 * Stick to 0 for polled. 3755 */ 3756 if (!(cmd->cmd_pkt_flags & FLAG_NOINTR) && 3757 !(cmd->cmd_flags & (CFLAG_PASSTHRU|CFLAG_CONFIG|CFLAG_FW_DIAG)) && 3758 (mpt->m_post_reply_qcount > 1)) { 3759 cmd->cmd_rpqidx = slot % mpt->m_post_reply_qcount; 3760 } 3761 atomic_inc_32(&mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds); 3762 return (TRUE); 3763 } 3764 3765 int 3766 mptsas_save_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 3767 { 3768 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3769 3770 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 3771 3772 if (!mptsas_save_cmd_to_slot(mpt, cmd)) { 3773 return (FALSE); 3774 } 3775 3776 /* 3777 * only increment per target ncmds if this is not a 3778 * command that has no target associated with it (i.e. a 3779 * event acknoledgement) 3780 */ 3781 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 3782 /* 3783 * Expiration time is set in mptsas_start_cmd 3784 */ 3785 mutex_enter(&ptgt->m_t_mutex); 3786 ptgt->m_t_ncmds++; 3787 mutex_exit(&ptgt->m_t_mutex); 3788 cmd->cmd_active_expiration = 0; 3789 } else { 3790 /* 3791 * Initialize expiration time for passthrough commands, 3792 */ 3793 cmd->cmd_active_expiration = gethrtime() + 3794 (hrtime_t)cmd->cmd_pkt->pkt_time * NANOSEC; 3795 } 3796 return (TRUE); 3797 } 3798 3799 /* 3800 * prepare the pkt: 3801 * the pkt may have been resubmitted or just reused so 3802 * initialize some fields and do some checks. 3803 */ 3804 static int 3805 mptsas_prepare_pkt(mptsas_cmd_t *cmd) 3806 { 3807 struct scsi_pkt *pkt = CMD2PKT(cmd); 3808 3809 NDBG1(("mptsas_prepare_pkt: cmd=0x%p", (void *)cmd)); 3810 3811 /* 3812 * Reinitialize some fields that need it; the packet may 3813 * have been resubmitted 3814 */ 3815 pkt->pkt_reason = CMD_CMPLT; 3816 pkt->pkt_state = 0; 3817 pkt->pkt_statistics = 0; 3818 pkt->pkt_resid = 0; 3819 cmd->cmd_age = 0; 3820 cmd->cmd_pkt_flags = pkt->pkt_flags; 3821 3822 /* 3823 * zero status byte. 3824 */ 3825 *(pkt->pkt_scbp) = 0; 3826 3827 if (cmd->cmd_flags & CFLAG_DMAVALID) { 3828 pkt->pkt_resid = cmd->cmd_dmacount; 3829 3830 /* 3831 * consistent packets need to be sync'ed first 3832 * (only for data going out) 3833 */ 3834 if ((cmd->cmd_flags & CFLAG_CMDIOPB) && 3835 (cmd->cmd_flags & CFLAG_DMASEND)) { 3836 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 3837 DDI_DMA_SYNC_FORDEV); 3838 } 3839 } 3840 3841 cmd->cmd_flags = 3842 (cmd->cmd_flags & ~(CFLAG_TRANFLAG)) | 3843 CFLAG_PREPARED | CFLAG_IN_TRANSPORT; 3844 3845 return (TRAN_ACCEPT); 3846 } 3847 3848 /* 3849 * tran_init_pkt(9E) - allocate scsi_pkt(9S) for command 3850 * 3851 * One of three possibilities: 3852 * - allocate scsi_pkt 3853 * - allocate scsi_pkt and DMA resources 3854 * - allocate DMA resources to an already-allocated pkt 3855 */ 3856 static struct scsi_pkt * 3857 mptsas_scsi_init_pkt(struct scsi_address *ap, struct scsi_pkt *pkt, 3858 struct buf *bp, int cmdlen, int statuslen, int tgtlen, int flags, 3859 int (*callback)(), caddr_t arg) 3860 { 3861 mptsas_cmd_t *cmd, *new_cmd; 3862 mptsas_t *mpt = ADDR2MPT(ap); 3863 int failure = 1; 3864 uint_t oldcookiec; 3865 mptsas_target_t *ptgt = NULL; 3866 int rval; 3867 mptsas_tgt_private_t *tgt_private; 3868 int kf; 3869 3870 kf = (callback == SLEEP_FUNC)? KM_SLEEP: KM_NOSLEEP; 3871 3872 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran-> 3873 tran_tgt_private; 3874 ASSERT(tgt_private != NULL); 3875 if (tgt_private == NULL) { 3876 return (NULL); 3877 } 3878 ptgt = tgt_private->t_private; 3879 ASSERT(ptgt != NULL); 3880 if (ptgt == NULL) 3881 return (NULL); 3882 ap->a_target = ptgt->m_devhdl; 3883 ap->a_lun = tgt_private->t_lun; 3884 3885 ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC); 3886 #ifdef MPTSAS_TEST_EXTRN_ALLOC 3887 statuslen *= 100; tgtlen *= 4; 3888 #endif 3889 NDBG3(("mptsas_scsi_init_pkt:\n" 3890 "\ttgt=%d in=0x%p bp=0x%p clen=%d slen=%d tlen=%d flags=%x", 3891 ap->a_target, (void *)pkt, (void *)bp, 3892 cmdlen, statuslen, tgtlen, flags)); 3893 3894 /* 3895 * Allocate the new packet. 3896 */ 3897 if (pkt == NULL) { 3898 ddi_dma_handle_t save_dma_handle; 3899 3900 cmd = kmem_cache_alloc(mpt->m_kmem_cache, kf); 3901 3902 if (cmd) { 3903 save_dma_handle = cmd->cmd_dmahandle; 3904 bzero(cmd, sizeof (*cmd) + scsi_pkt_size()); 3905 cmd->cmd_dmahandle = save_dma_handle; 3906 3907 pkt = (void *)((uchar_t *)cmd + 3908 sizeof (struct mptsas_cmd)); 3909 pkt->pkt_ha_private = (opaque_t)cmd; 3910 pkt->pkt_address = *ap; 3911 pkt->pkt_private = (opaque_t)cmd->cmd_pkt_private; 3912 pkt->pkt_scbp = (opaque_t)&cmd->cmd_scb; 3913 pkt->pkt_cdbp = (opaque_t)&cmd->cmd_cdb; 3914 cmd->cmd_pkt = (struct scsi_pkt *)pkt; 3915 cmd->cmd_cdblen = (uchar_t)cmdlen; 3916 cmd->cmd_scblen = statuslen; 3917 cmd->cmd_rqslen = SENSE_LENGTH; 3918 cmd->cmd_tgt_addr = ptgt; 3919 failure = 0; 3920 } 3921 3922 if (failure || (cmdlen > sizeof (cmd->cmd_cdb)) || 3923 (tgtlen > PKT_PRIV_LEN) || 3924 (statuslen > EXTCMDS_STATUS_SIZE)) { 3925 if (failure == 0) { 3926 /* 3927 * if extern alloc fails, all will be 3928 * deallocated, including cmd 3929 */ 3930 failure = mptsas_pkt_alloc_extern(mpt, cmd, 3931 cmdlen, tgtlen, statuslen, kf); 3932 } 3933 if (failure) { 3934 /* 3935 * if extern allocation fails, it will 3936 * deallocate the new pkt as well 3937 */ 3938 return (NULL); 3939 } 3940 } 3941 new_cmd = cmd; 3942 3943 } else { 3944 cmd = PKT2CMD(pkt); 3945 new_cmd = NULL; 3946 } 3947 3948 3949 /* grab cmd->cmd_cookiec here as oldcookiec */ 3950 3951 oldcookiec = cmd->cmd_cookiec; 3952 3953 /* 3954 * If the dma was broken up into PARTIAL transfers cmd_nwin will be 3955 * greater than 0 and we'll need to grab the next dma window 3956 */ 3957 /* 3958 * SLM-not doing extra command frame right now; may add later 3959 */ 3960 3961 if (cmd->cmd_nwin > 0) { 3962 3963 /* 3964 * Make sure we havn't gone past the the total number 3965 * of windows 3966 */ 3967 if (++cmd->cmd_winindex >= cmd->cmd_nwin) { 3968 return (NULL); 3969 } 3970 if (ddi_dma_getwin(cmd->cmd_dmahandle, cmd->cmd_winindex, 3971 &cmd->cmd_dma_offset, &cmd->cmd_dma_len, 3972 &cmd->cmd_cookie, &cmd->cmd_cookiec) == DDI_FAILURE) { 3973 return (NULL); 3974 } 3975 goto get_dma_cookies; 3976 } 3977 3978 3979 if (flags & PKT_XARQ) { 3980 cmd->cmd_flags |= CFLAG_XARQ; 3981 } 3982 3983 /* 3984 * DMA resource allocation. This version assumes your 3985 * HBA has some sort of bus-mastering or onboard DMA capability, with a 3986 * scatter-gather list of length MPTSAS_MAX_DMA_SEGS, as given in the 3987 * ddi_dma_attr_t structure and passed to scsi_impl_dmaget. 3988 */ 3989 if (bp && (bp->b_bcount != 0) && 3990 (cmd->cmd_flags & CFLAG_DMAVALID) == 0) { 3991 3992 int cnt, dma_flags; 3993 mptti_t *dmap; /* ptr to the S/G list */ 3994 3995 /* 3996 * Set up DMA memory and position to the next DMA segment. 3997 */ 3998 ASSERT(cmd->cmd_dmahandle != NULL); 3999 4000 if (bp->b_flags & B_READ) { 4001 dma_flags = DDI_DMA_READ; 4002 cmd->cmd_flags &= ~CFLAG_DMASEND; 4003 } else { 4004 dma_flags = DDI_DMA_WRITE; 4005 cmd->cmd_flags |= CFLAG_DMASEND; 4006 } 4007 if (flags & PKT_CONSISTENT) { 4008 cmd->cmd_flags |= CFLAG_CMDIOPB; 4009 dma_flags |= DDI_DMA_CONSISTENT; 4010 } 4011 4012 if (flags & PKT_DMA_PARTIAL) { 4013 dma_flags |= DDI_DMA_PARTIAL; 4014 } 4015 4016 /* 4017 * workaround for byte hole issue on psycho and 4018 * schizo pre 2.1 4019 */ 4020 if ((bp->b_flags & B_READ) && ((bp->b_flags & 4021 (B_PAGEIO|B_REMAPPED)) != B_PAGEIO) && 4022 ((uintptr_t)bp->b_un.b_addr & 0x7)) { 4023 dma_flags |= DDI_DMA_CONSISTENT; 4024 } 4025 4026 rval = ddi_dma_buf_bind_handle(cmd->cmd_dmahandle, bp, 4027 dma_flags, callback, arg, 4028 &cmd->cmd_cookie, &cmd->cmd_cookiec); 4029 if (rval == DDI_DMA_PARTIAL_MAP) { 4030 (void) ddi_dma_numwin(cmd->cmd_dmahandle, 4031 &cmd->cmd_nwin); 4032 cmd->cmd_winindex = 0; 4033 (void) ddi_dma_getwin(cmd->cmd_dmahandle, 4034 cmd->cmd_winindex, &cmd->cmd_dma_offset, 4035 &cmd->cmd_dma_len, &cmd->cmd_cookie, 4036 &cmd->cmd_cookiec); 4037 } else if (rval && (rval != DDI_DMA_MAPPED)) { 4038 switch (rval) { 4039 case DDI_DMA_NORESOURCES: 4040 bioerror(bp, 0); 4041 break; 4042 case DDI_DMA_BADATTR: 4043 case DDI_DMA_NOMAPPING: 4044 bioerror(bp, EFAULT); 4045 break; 4046 case DDI_DMA_TOOBIG: 4047 default: 4048 bioerror(bp, EINVAL); 4049 break; 4050 } 4051 cmd->cmd_flags &= ~CFLAG_DMAVALID; 4052 if (new_cmd) { 4053 mptsas_scsi_destroy_pkt(ap, pkt); 4054 } 4055 return ((struct scsi_pkt *)NULL); 4056 } 4057 4058 get_dma_cookies: 4059 cmd->cmd_flags |= CFLAG_DMAVALID; 4060 ASSERT(cmd->cmd_cookiec > 0); 4061 4062 if (cmd->cmd_cookiec > MPTSAS_MAX_CMD_SEGS) { 4063 mptsas_log(mpt, CE_NOTE, "large cookiec received %d\n", 4064 cmd->cmd_cookiec); 4065 bioerror(bp, EINVAL); 4066 if (new_cmd) { 4067 mptsas_scsi_destroy_pkt(ap, pkt); 4068 } 4069 return ((struct scsi_pkt *)NULL); 4070 } 4071 4072 /* 4073 * Allocate extra SGL buffer if needed. 4074 */ 4075 if ((cmd->cmd_cookiec > MPTSAS_MAX_FRAME_SGES64(mpt)) && 4076 (cmd->cmd_extra_frames == NULL)) { 4077 if (mptsas_alloc_extra_sgl_frame(mpt, cmd) == 4078 DDI_FAILURE) { 4079 mptsas_log(mpt, CE_WARN, "MPT SGL mem alloc " 4080 "failed"); 4081 bioerror(bp, ENOMEM); 4082 if (new_cmd) { 4083 mptsas_scsi_destroy_pkt(ap, pkt); 4084 } 4085 return ((struct scsi_pkt *)NULL); 4086 } 4087 } 4088 4089 /* 4090 * Always use scatter-gather transfer 4091 * Use the loop below to store physical addresses of 4092 * DMA segments, from the DMA cookies, into your HBA's 4093 * scatter-gather list. 4094 * We need to ensure we have enough kmem alloc'd 4095 * for the sg entries since we are no longer using an 4096 * array inside mptsas_cmd_t. 4097 * 4098 * We check cmd->cmd_cookiec against oldcookiec so 4099 * the scatter-gather list is correctly allocated 4100 */ 4101 4102 if (oldcookiec != cmd->cmd_cookiec) { 4103 if (cmd->cmd_sg != (mptti_t *)NULL) { 4104 kmem_free(cmd->cmd_sg, sizeof (mptti_t) * 4105 oldcookiec); 4106 cmd->cmd_sg = NULL; 4107 } 4108 } 4109 4110 if (cmd->cmd_sg == (mptti_t *)NULL) { 4111 cmd->cmd_sg = kmem_alloc((size_t)(sizeof (mptti_t)* 4112 cmd->cmd_cookiec), kf); 4113 4114 if (cmd->cmd_sg == (mptti_t *)NULL) { 4115 mptsas_log(mpt, CE_WARN, 4116 "unable to kmem_alloc enough memory " 4117 "for scatter/gather list"); 4118 /* 4119 * if we have an ENOMEM condition we need to behave 4120 * the same way as the rest of this routine 4121 */ 4122 4123 bioerror(bp, ENOMEM); 4124 if (new_cmd) { 4125 mptsas_scsi_destroy_pkt(ap, pkt); 4126 } 4127 return ((struct scsi_pkt *)NULL); 4128 } 4129 } 4130 4131 dmap = cmd->cmd_sg; 4132 4133 ASSERT(cmd->cmd_cookie.dmac_size != 0); 4134 4135 /* 4136 * store the first segment into the S/G list 4137 */ 4138 dmap->count = cmd->cmd_cookie.dmac_size; 4139 dmap->addr.address64.Low = (uint32_t) 4140 (cmd->cmd_cookie.dmac_laddress & 0xffffffffull); 4141 dmap->addr.address64.High = (uint32_t) 4142 (cmd->cmd_cookie.dmac_laddress >> 32); 4143 4144 /* 4145 * dmacount counts the size of the dma for this window 4146 * (if partial dma is being used). totaldmacount 4147 * keeps track of the total amount of dma we have 4148 * transferred for all the windows (needed to calculate 4149 * the resid value below). 4150 */ 4151 cmd->cmd_dmacount = cmd->cmd_cookie.dmac_size; 4152 cmd->cmd_totaldmacount += cmd->cmd_cookie.dmac_size; 4153 4154 /* 4155 * We already stored the first DMA scatter gather segment, 4156 * start at 1 if we need to store more. 4157 */ 4158 for (cnt = 1; cnt < cmd->cmd_cookiec; cnt++) { 4159 /* 4160 * Get next DMA cookie 4161 */ 4162 ddi_dma_nextcookie(cmd->cmd_dmahandle, 4163 &cmd->cmd_cookie); 4164 dmap++; 4165 4166 cmd->cmd_dmacount += cmd->cmd_cookie.dmac_size; 4167 cmd->cmd_totaldmacount += cmd->cmd_cookie.dmac_size; 4168 4169 /* 4170 * store the segment parms into the S/G list 4171 */ 4172 dmap->count = cmd->cmd_cookie.dmac_size; 4173 dmap->addr.address64.Low = (uint32_t) 4174 (cmd->cmd_cookie.dmac_laddress & 0xffffffffull); 4175 dmap->addr.address64.High = (uint32_t) 4176 (cmd->cmd_cookie.dmac_laddress >> 32); 4177 } 4178 4179 /* 4180 * If this was partially allocated we set the resid 4181 * the amount of data NOT transferred in this window 4182 * If there is only one window, the resid will be 0 4183 */ 4184 pkt->pkt_resid = (bp->b_bcount - cmd->cmd_totaldmacount); 4185 NDBG3(("mptsas_scsi_init_pkt: cmd_dmacount=%d.", 4186 cmd->cmd_dmacount)); 4187 } 4188 return (pkt); 4189 } 4190 4191 /* 4192 * tran_destroy_pkt(9E) - scsi_pkt(9s) deallocation 4193 * 4194 * Notes: 4195 * - also frees DMA resources if allocated 4196 * - implicit DMA synchonization 4197 */ 4198 static void 4199 mptsas_scsi_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 4200 { 4201 mptsas_cmd_t *cmd = PKT2CMD(pkt); 4202 mptsas_t *mpt = ADDR2MPT(ap); 4203 4204 NDBG3(("mptsas_scsi_destroy_pkt: target=%d pkt=0x%p", 4205 ap->a_target, (void *)pkt)); 4206 4207 if (cmd->cmd_flags & CFLAG_DMAVALID) { 4208 (void) ddi_dma_unbind_handle(cmd->cmd_dmahandle); 4209 cmd->cmd_flags &= ~CFLAG_DMAVALID; 4210 } 4211 4212 if (cmd->cmd_sg) { 4213 kmem_free(cmd->cmd_sg, sizeof (mptti_t) * cmd->cmd_cookiec); 4214 cmd->cmd_sg = NULL; 4215 } 4216 4217 mptsas_free_extra_sgl_frame(mpt, cmd); 4218 4219 if ((cmd->cmd_flags & 4220 (CFLAG_FREE | CFLAG_CDBEXTERN | CFLAG_PRIVEXTERN | 4221 CFLAG_SCBEXTERN)) == 0) { 4222 cmd->cmd_flags = CFLAG_FREE; 4223 kmem_cache_free(mpt->m_kmem_cache, (void *)cmd); 4224 } else { 4225 mptsas_pkt_destroy_extern(mpt, cmd); 4226 } 4227 } 4228 4229 /* 4230 * kmem cache constructor and destructor: 4231 * When constructing, we bzero the cmd and allocate the dma handle 4232 * When destructing, just free the dma handle 4233 */ 4234 static int 4235 mptsas_kmem_cache_constructor(void *buf, void *cdrarg, int kmflags) 4236 { 4237 mptsas_cmd_t *cmd = buf; 4238 mptsas_t *mpt = cdrarg; 4239 int (*callback)(caddr_t); 4240 4241 callback = (kmflags == KM_SLEEP)? DDI_DMA_SLEEP: DDI_DMA_DONTWAIT; 4242 4243 NDBG4(("mptsas_kmem_cache_constructor")); 4244 4245 /* 4246 * allocate a dma handle 4247 */ 4248 if ((ddi_dma_alloc_handle(mpt->m_dip, &mpt->m_io_dma_attr, callback, 4249 NULL, &cmd->cmd_dmahandle)) != DDI_SUCCESS) { 4250 cmd->cmd_dmahandle = NULL; 4251 return (-1); 4252 } 4253 return (0); 4254 } 4255 4256 static void 4257 mptsas_kmem_cache_destructor(void *buf, void *cdrarg) 4258 { 4259 #ifndef __lock_lint 4260 _NOTE(ARGUNUSED(cdrarg)) 4261 #endif 4262 mptsas_cmd_t *cmd = buf; 4263 4264 NDBG4(("mptsas_kmem_cache_destructor")); 4265 4266 if (cmd->cmd_dmahandle) { 4267 ddi_dma_free_handle(&cmd->cmd_dmahandle); 4268 cmd->cmd_dmahandle = NULL; 4269 } 4270 } 4271 4272 static int 4273 mptsas_cache_frames_constructor(void *buf, void *cdrarg, int kmflags) 4274 { 4275 mptsas_cache_frames_t *p = buf; 4276 mptsas_t *mpt = cdrarg; 4277 ddi_dma_attr_t frame_dma_attr; 4278 size_t mem_size, alloc_len; 4279 ddi_dma_cookie_t cookie; 4280 uint_t ncookie; 4281 int (*callback)(caddr_t) = (kmflags == KM_SLEEP) 4282 ? DDI_DMA_SLEEP: DDI_DMA_DONTWAIT; 4283 4284 frame_dma_attr = mpt->m_msg_dma_attr; 4285 frame_dma_attr.dma_attr_align = 0x10; 4286 frame_dma_attr.dma_attr_sgllen = 1; 4287 4288 if (ddi_dma_alloc_handle(mpt->m_dip, &frame_dma_attr, callback, NULL, 4289 &p->m_dma_hdl) != DDI_SUCCESS) { 4290 mptsas_log(mpt, CE_WARN, "Unable to allocate dma handle for" 4291 " extra SGL."); 4292 return (DDI_FAILURE); 4293 } 4294 4295 mem_size = (mpt->m_max_request_frames - 1) * mpt->m_req_frame_size; 4296 4297 if (ddi_dma_mem_alloc(p->m_dma_hdl, mem_size, &mpt->m_dev_acc_attr, 4298 DDI_DMA_CONSISTENT, callback, NULL, (caddr_t *)&p->m_frames_addr, 4299 &alloc_len, &p->m_acc_hdl) != DDI_SUCCESS) { 4300 ddi_dma_free_handle(&p->m_dma_hdl); 4301 p->m_dma_hdl = NULL; 4302 mptsas_log(mpt, CE_WARN, "Unable to allocate dma memory for" 4303 " extra SGL."); 4304 return (DDI_FAILURE); 4305 } 4306 4307 if (ddi_dma_addr_bind_handle(p->m_dma_hdl, NULL, p->m_frames_addr, 4308 alloc_len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, callback, NULL, 4309 &cookie, &ncookie) != DDI_DMA_MAPPED) { 4310 (void) ddi_dma_mem_free(&p->m_acc_hdl); 4311 ddi_dma_free_handle(&p->m_dma_hdl); 4312 p->m_dma_hdl = NULL; 4313 mptsas_log(mpt, CE_WARN, "Unable to bind DMA resources for" 4314 " extra SGL"); 4315 return (DDI_FAILURE); 4316 } 4317 4318 /* 4319 * Store the SGL memory address. This chip uses this 4320 * address to dma to and from the driver. The second 4321 * address is the address mpt uses to fill in the SGL. 4322 */ 4323 p->m_phys_addr = cookie.dmac_laddress; 4324 4325 return (DDI_SUCCESS); 4326 } 4327 4328 static void 4329 mptsas_cache_frames_destructor(void *buf, void *cdrarg) 4330 { 4331 #ifndef __lock_lint 4332 _NOTE(ARGUNUSED(cdrarg)) 4333 #endif 4334 mptsas_cache_frames_t *p = buf; 4335 if (p->m_dma_hdl != NULL) { 4336 (void) ddi_dma_unbind_handle(p->m_dma_hdl); 4337 (void) ddi_dma_mem_free(&p->m_acc_hdl); 4338 ddi_dma_free_handle(&p->m_dma_hdl); 4339 p->m_phys_addr = NULL; 4340 p->m_frames_addr = NULL; 4341 p->m_dma_hdl = NULL; 4342 p->m_acc_hdl = NULL; 4343 } 4344 4345 } 4346 4347 /* 4348 * allocate and deallocate external pkt space (ie. not part of mptsas_cmd) 4349 * for non-standard length cdb, pkt_private, status areas 4350 * if allocation fails, then deallocate all external space and the pkt 4351 */ 4352 /* ARGSUSED */ 4353 static int 4354 mptsas_pkt_alloc_extern(mptsas_t *mpt, mptsas_cmd_t *cmd, 4355 int cmdlen, int tgtlen, int statuslen, int kf) 4356 { 4357 caddr_t cdbp, scbp, tgt; 4358 size_t senselength; 4359 4360 NDBG3(("mptsas_pkt_alloc_extern: " 4361 "cmd=0x%p cmdlen=%d tgtlen=%d statuslen=%d kf=%x", 4362 (void *)cmd, cmdlen, tgtlen, statuslen, kf)); 4363 4364 tgt = cdbp = scbp = NULL; 4365 cmd->cmd_scblen = statuslen; 4366 cmd->cmd_privlen = (uchar_t)tgtlen; 4367 4368 if (cmdlen > sizeof (cmd->cmd_cdb)) { 4369 if ((cdbp = kmem_zalloc((size_t)cmdlen, kf)) == NULL) { 4370 goto fail; 4371 } 4372 cmd->cmd_pkt->pkt_cdbp = (opaque_t)cdbp; 4373 cmd->cmd_flags |= CFLAG_CDBEXTERN; 4374 } 4375 if (tgtlen > PKT_PRIV_LEN) { 4376 if ((tgt = kmem_zalloc((size_t)tgtlen, kf)) == NULL) { 4377 goto fail; 4378 } 4379 cmd->cmd_flags |= CFLAG_PRIVEXTERN; 4380 cmd->cmd_pkt->pkt_private = tgt; 4381 } 4382 if (statuslen > EXTCMDS_STATUS_SIZE) { 4383 if ((scbp = kmem_zalloc((size_t)statuslen, kf)) == NULL) { 4384 goto fail; 4385 } 4386 cmd->cmd_flags |= CFLAG_SCBEXTERN; 4387 cmd->cmd_pkt->pkt_scbp = (opaque_t)scbp; 4388 4389 /* allocate sense data buf for DMA */ 4390 4391 senselength = statuslen - MPTSAS_GET_ITEM_OFF( 4392 struct scsi_arq_status, sts_sensedata); 4393 if (senselength > mpt->m_req_sense_size) { 4394 unsigned long i; 4395 cmd->cmd_extrqslen = (uint16_t)senselength; 4396 cmd->cmd_extrqschunks = (senselength + 4397 (mpt->m_req_sense_size - 1))/mpt->m_req_sense_size; 4398 i = rmalloc_wait(mpt->m_erqsense_map, 4399 cmd->cmd_extrqschunks); 4400 ASSERT(i != 0); 4401 cmd->cmd_extrqsidx = i - 1; 4402 cmd->cmd_arq_buf = mpt->m_extreq_sense + 4403 (cmd->cmd_extrqsidx * mpt->m_req_sense_size); 4404 } else { 4405 cmd->cmd_rqslen = (uchar_t)senselength; 4406 } 4407 } 4408 return (0); 4409 fail: 4410 mptsas_pkt_destroy_extern(mpt, cmd); 4411 return (1); 4412 } 4413 4414 /* 4415 * deallocate external pkt space and deallocate the pkt 4416 */ 4417 static void 4418 mptsas_pkt_destroy_extern(mptsas_t *mpt, mptsas_cmd_t *cmd) 4419 { 4420 NDBG3(("mptsas_pkt_destroy_extern: cmd=0x%p", (void *)cmd)); 4421 4422 if (cmd->cmd_flags & CFLAG_FREE) { 4423 mptsas_log(mpt, CE_PANIC, 4424 "mptsas_pkt_destroy_extern: freeing free packet"); 4425 _NOTE(NOT_REACHED) 4426 /* NOTREACHED */ 4427 } 4428 if (cmd->cmd_extrqslen != 0) { 4429 rmfree(mpt->m_erqsense_map, cmd->cmd_extrqschunks, 4430 cmd->cmd_extrqsidx + 1); 4431 } 4432 if (cmd->cmd_flags & CFLAG_CDBEXTERN) { 4433 kmem_free(cmd->cmd_pkt->pkt_cdbp, (size_t)cmd->cmd_cdblen); 4434 } 4435 if (cmd->cmd_flags & CFLAG_SCBEXTERN) { 4436 kmem_free(cmd->cmd_pkt->pkt_scbp, (size_t)cmd->cmd_scblen); 4437 } 4438 if (cmd->cmd_flags & CFLAG_PRIVEXTERN) { 4439 kmem_free(cmd->cmd_pkt->pkt_private, (size_t)cmd->cmd_privlen); 4440 } 4441 cmd->cmd_flags = CFLAG_FREE; 4442 kmem_cache_free(mpt->m_kmem_cache, (void *)cmd); 4443 } 4444 4445 /* 4446 * tran_sync_pkt(9E) - explicit DMA synchronization 4447 */ 4448 /*ARGSUSED*/ 4449 static void 4450 mptsas_scsi_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 4451 { 4452 mptsas_cmd_t *cmd = PKT2CMD(pkt); 4453 4454 NDBG3(("mptsas_scsi_sync_pkt: target=%d, pkt=0x%p", 4455 ap->a_target, (void *)pkt)); 4456 4457 if (cmd->cmd_dmahandle) { 4458 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 4459 (cmd->cmd_flags & CFLAG_DMASEND) ? 4460 DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU); 4461 } 4462 } 4463 4464 /* 4465 * tran_dmafree(9E) - deallocate DMA resources allocated for command 4466 */ 4467 /*ARGSUSED*/ 4468 static void 4469 mptsas_scsi_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt) 4470 { 4471 mptsas_cmd_t *cmd = PKT2CMD(pkt); 4472 mptsas_t *mpt = ADDR2MPT(ap); 4473 4474 NDBG3(("mptsas_scsi_dmafree: target=%d pkt=0x%p", 4475 ap->a_target, (void *)pkt)); 4476 4477 if (cmd->cmd_flags & CFLAG_DMAVALID) { 4478 (void) ddi_dma_unbind_handle(cmd->cmd_dmahandle); 4479 cmd->cmd_flags &= ~CFLAG_DMAVALID; 4480 } 4481 4482 mptsas_free_extra_sgl_frame(mpt, cmd); 4483 } 4484 4485 static void 4486 mptsas_pkt_comp(struct scsi_pkt *pkt, mptsas_cmd_t *cmd) 4487 { 4488 if ((cmd->cmd_flags & CFLAG_CMDIOPB) && 4489 (!(cmd->cmd_flags & CFLAG_DMASEND))) { 4490 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 4491 DDI_DMA_SYNC_FORCPU); 4492 } 4493 (*pkt->pkt_comp)(pkt); 4494 } 4495 4496 static void 4497 mptsas_sge_mainframe(mptsas_cmd_t *cmd, pMpi2SCSIIORequest_t frame, 4498 ddi_acc_handle_t acc_hdl, uint_t cookiec, 4499 uint32_t end_flags) 4500 { 4501 pMpi2SGESimple64_t sge; 4502 mptti_t *dmap; 4503 uint32_t flags; 4504 4505 dmap = cmd->cmd_sg; 4506 4507 sge = (pMpi2SGESimple64_t)(&frame->SGL); 4508 while (cookiec--) { 4509 ddi_put32(acc_hdl, &sge->Address.Low, 4510 dmap->addr.address64.Low); 4511 ddi_put32(acc_hdl, &sge->Address.High, 4512 dmap->addr.address64.High); 4513 ddi_put32(acc_hdl, &sge->FlagsLength, dmap->count); 4514 flags = ddi_get32(acc_hdl, &sge->FlagsLength); 4515 flags |= ((uint32_t) 4516 (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 4517 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4518 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 4519 MPI2_SGE_FLAGS_SHIFT); 4520 4521 /* 4522 * If this is the last cookie, we set the flags 4523 * to indicate so 4524 */ 4525 if (cookiec == 0) { 4526 flags |= end_flags; 4527 } 4528 if (cmd->cmd_flags & CFLAG_DMASEND) { 4529 flags |= (MPI2_SGE_FLAGS_HOST_TO_IOC << 4530 MPI2_SGE_FLAGS_SHIFT); 4531 } else { 4532 flags |= (MPI2_SGE_FLAGS_IOC_TO_HOST << 4533 MPI2_SGE_FLAGS_SHIFT); 4534 } 4535 ddi_put32(acc_hdl, &sge->FlagsLength, flags); 4536 dmap++; 4537 sge++; 4538 } 4539 } 4540 4541 static void 4542 mptsas_sge_chain(mptsas_t *mpt, mptsas_cmd_t *cmd, 4543 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 4544 { 4545 pMpi2SGESimple64_t sge; 4546 pMpi2SGEChain64_t sgechain; 4547 uint64_t nframe_phys_addr; 4548 uint_t cookiec; 4549 mptti_t *dmap; 4550 uint32_t flags; 4551 int i, j, k, l, frames, sgemax; 4552 int temp, maxframe_sges; 4553 uint8_t chainflags; 4554 uint16_t chainlength; 4555 mptsas_cache_frames_t *p; 4556 4557 cookiec = cmd->cmd_cookiec; 4558 4559 /* 4560 * Hereby we start to deal with multiple frames. 4561 * The process is as follows: 4562 * 1. Determine how many frames are needed for SGL element 4563 * storage; Note that all frames are stored in contiguous 4564 * memory space and in 64-bit DMA mode each element is 4565 * 3 double-words (12 bytes) long. 4566 * 2. Fill up the main frame. We need to do this separately 4567 * since it contains the SCSI IO request header and needs 4568 * dedicated processing. Note that the last 4 double-words 4569 * of the SCSI IO header is for SGL element storage 4570 * (MPI2_SGE_IO_UNION). 4571 * 3. Fill the chain element in the main frame, so the DMA 4572 * engine can use the following frames. 4573 * 4. Enter a loop to fill the remaining frames. Note that the 4574 * last frame contains no chain element. The remaining 4575 * frames go into the mpt SGL buffer allocated on the fly, 4576 * not immediately following the main message frame, as in 4577 * Gen1. 4578 * Some restrictions: 4579 * 1. For 64-bit DMA, the simple element and chain element 4580 * are both of 3 double-words (12 bytes) in size, even 4581 * though all frames are stored in the first 4G of mem 4582 * range and the higher 32-bits of the address are always 0. 4583 * 2. On some controllers (like the 1064/1068), a frame can 4584 * hold SGL elements with the last 1 or 2 double-words 4585 * (4 or 8 bytes) un-used. On these controllers, we should 4586 * recognize that there's not enough room for another SGL 4587 * element and move the sge pointer to the next frame. 4588 */ 4589 4590 /* 4591 * Sgemax is the number of SGE's that will fit 4592 * each extra frame and frames is total 4593 * number of frames we'll need. 1 sge entry per 4594 * frame is reseverd for the chain element thus the -1 below. 4595 */ 4596 sgemax = ((mpt->m_req_frame_size / sizeof (MPI2_SGE_SIMPLE64)) - 1); 4597 maxframe_sges = MPTSAS_MAX_FRAME_SGES64(mpt); 4598 temp = (cookiec - (maxframe_sges - 1)) / sgemax; 4599 4600 /* 4601 * A little check to see if we need to round up the number 4602 * of frames we need 4603 */ 4604 if ((cookiec - (maxframe_sges - 1)) - (temp * sgemax) > 1) { 4605 frames = (temp + 1); 4606 } else { 4607 frames = temp; 4608 } 4609 dmap = cmd->cmd_sg; 4610 sge = (pMpi2SGESimple64_t)(&frame->SGL); 4611 4612 /* 4613 * First fill in the main frame 4614 */ 4615 j = maxframe_sges - 1; 4616 mptsas_sge_mainframe(cmd, frame, acc_hdl, j, 4617 ((uint32_t)(MPI2_SGE_FLAGS_LAST_ELEMENT) << 4618 MPI2_SGE_FLAGS_SHIFT)); 4619 dmap += j; 4620 sge += j; 4621 j++; 4622 4623 /* 4624 * Fill in the chain element in the main frame. 4625 * About calculation on ChainOffset: 4626 * 1. Struct msg_scsi_io_request has 4 double-words (16 bytes) 4627 * in the end reserved for SGL element storage 4628 * (MPI2_SGE_IO_UNION); we should count it in our 4629 * calculation. See its definition in the header file. 4630 * 2. Constant j is the counter of the current SGL element 4631 * that will be processed, and (j - 1) is the number of 4632 * SGL elements that have been processed (stored in the 4633 * main frame). 4634 * 3. ChainOffset value should be in units of double-words (4 4635 * bytes) so the last value should be divided by 4. 4636 */ 4637 ddi_put8(acc_hdl, &frame->ChainOffset, 4638 (sizeof (MPI2_SCSI_IO_REQUEST) - 4639 sizeof (MPI2_SGE_IO_UNION) + 4640 (j - 1) * sizeof (MPI2_SGE_SIMPLE64)) >> 2); 4641 sgechain = (pMpi2SGEChain64_t)sge; 4642 chainflags = (MPI2_SGE_FLAGS_CHAIN_ELEMENT | 4643 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4644 MPI2_SGE_FLAGS_64_BIT_ADDRESSING); 4645 ddi_put8(acc_hdl, &sgechain->Flags, chainflags); 4646 4647 /* 4648 * The size of the next frame is the accurate size of space 4649 * (in bytes) used to store the SGL elements. j is the counter 4650 * of SGL elements. (j - 1) is the number of SGL elements that 4651 * have been processed (stored in frames). 4652 */ 4653 if (frames >= 2) { 4654 chainlength = mpt->m_req_frame_size / 4655 sizeof (MPI2_SGE_SIMPLE64) * 4656 sizeof (MPI2_SGE_SIMPLE64); 4657 } else { 4658 chainlength = ((cookiec - (j - 1)) * 4659 sizeof (MPI2_SGE_SIMPLE64)); 4660 } 4661 4662 p = cmd->cmd_extra_frames; 4663 4664 ddi_put16(acc_hdl, &sgechain->Length, chainlength); 4665 ddi_put32(acc_hdl, &sgechain->Address.Low, 4666 (p->m_phys_addr&0xffffffffull)); 4667 ddi_put32(acc_hdl, &sgechain->Address.High, p->m_phys_addr>>32); 4668 4669 /* 4670 * If there are more than 2 frames left we have to 4671 * fill in the next chain offset to the location of 4672 * the chain element in the next frame. 4673 * sgemax is the number of simple elements in an extra 4674 * frame. Note that the value NextChainOffset should be 4675 * in double-words (4 bytes). 4676 */ 4677 if (frames >= 2) { 4678 ddi_put8(acc_hdl, &sgechain->NextChainOffset, 4679 (sgemax * sizeof (MPI2_SGE_SIMPLE64)) >> 2); 4680 } else { 4681 ddi_put8(acc_hdl, &sgechain->NextChainOffset, 0); 4682 } 4683 4684 /* 4685 * Jump to next frame; 4686 * Starting here, chain buffers go into the per command SGL. 4687 * This buffer is allocated when chain buffers are needed. 4688 */ 4689 sge = (pMpi2SGESimple64_t)p->m_frames_addr; 4690 i = cookiec; 4691 4692 /* 4693 * Start filling in frames with SGE's. If we 4694 * reach the end of frame and still have SGE's 4695 * to fill we need to add a chain element and 4696 * use another frame. j will be our counter 4697 * for what cookie we are at and i will be 4698 * the total cookiec. k is the current frame 4699 */ 4700 for (k = 1; k <= frames; k++) { 4701 for (l = 1; (l <= (sgemax + 1)) && (j <= i); j++, l++) { 4702 4703 /* 4704 * If we have reached the end of frame 4705 * and we have more SGE's to fill in 4706 * we have to fill the final entry 4707 * with a chain element and then 4708 * continue to the next frame 4709 */ 4710 if ((l == (sgemax + 1)) && (k != frames)) { 4711 sgechain = (pMpi2SGEChain64_t)sge; 4712 j--; 4713 chainflags = ( 4714 MPI2_SGE_FLAGS_CHAIN_ELEMENT | 4715 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4716 MPI2_SGE_FLAGS_64_BIT_ADDRESSING); 4717 ddi_put8(p->m_acc_hdl, 4718 &sgechain->Flags, chainflags); 4719 /* 4720 * k is the frame counter and (k + 1) 4721 * is the number of the next frame. 4722 * Note that frames are in contiguous 4723 * memory space. 4724 */ 4725 nframe_phys_addr = p->m_phys_addr + 4726 (mpt->m_req_frame_size * k); 4727 ddi_put32(p->m_acc_hdl, 4728 &sgechain->Address.Low, 4729 nframe_phys_addr&0xffffffffull); 4730 ddi_put32(p->m_acc_hdl, 4731 &sgechain->Address.High, 4732 nframe_phys_addr>>32); 4733 4734 /* 4735 * If there are more than 2 frames left 4736 * we have to next chain offset to 4737 * the location of the chain element 4738 * in the next frame and fill in the 4739 * length of the next chain 4740 */ 4741 if ((frames - k) >= 2) { 4742 ddi_put8(p->m_acc_hdl, 4743 &sgechain->NextChainOffset, 4744 (sgemax * 4745 sizeof (MPI2_SGE_SIMPLE64)) 4746 >> 2); 4747 ddi_put16(p->m_acc_hdl, 4748 &sgechain->Length, 4749 mpt->m_req_frame_size / 4750 sizeof (MPI2_SGE_SIMPLE64) * 4751 sizeof (MPI2_SGE_SIMPLE64)); 4752 } else { 4753 /* 4754 * This is the last frame. Set 4755 * the NextChainOffset to 0 and 4756 * Length is the total size of 4757 * all remaining simple elements 4758 */ 4759 ddi_put8(p->m_acc_hdl, 4760 &sgechain->NextChainOffset, 4761 0); 4762 ddi_put16(p->m_acc_hdl, 4763 &sgechain->Length, 4764 (cookiec - j) * 4765 sizeof (MPI2_SGE_SIMPLE64)); 4766 } 4767 4768 /* Jump to the next frame */ 4769 sge = (pMpi2SGESimple64_t) 4770 ((char *)p->m_frames_addr + 4771 (int)mpt->m_req_frame_size * k); 4772 4773 continue; 4774 } 4775 4776 ddi_put32(p->m_acc_hdl, 4777 &sge->Address.Low, 4778 dmap->addr.address64.Low); 4779 ddi_put32(p->m_acc_hdl, 4780 &sge->Address.High, 4781 dmap->addr.address64.High); 4782 ddi_put32(p->m_acc_hdl, 4783 &sge->FlagsLength, dmap->count); 4784 flags = ddi_get32(p->m_acc_hdl, 4785 &sge->FlagsLength); 4786 flags |= ((uint32_t)( 4787 MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 4788 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4789 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 4790 MPI2_SGE_FLAGS_SHIFT); 4791 4792 /* 4793 * If we are at the end of the frame and 4794 * there is another frame to fill in 4795 * we set the last simple element as last 4796 * element 4797 */ 4798 if ((l == sgemax) && (k != frames)) { 4799 flags |= ((uint32_t) 4800 (MPI2_SGE_FLAGS_LAST_ELEMENT) << 4801 MPI2_SGE_FLAGS_SHIFT); 4802 } 4803 4804 /* 4805 * If this is the final cookie we 4806 * indicate it by setting the flags 4807 */ 4808 if (j == i) { 4809 flags |= ((uint32_t) 4810 (MPI2_SGE_FLAGS_LAST_ELEMENT | 4811 MPI2_SGE_FLAGS_END_OF_BUFFER | 4812 MPI2_SGE_FLAGS_END_OF_LIST) << 4813 MPI2_SGE_FLAGS_SHIFT); 4814 } 4815 if (cmd->cmd_flags & CFLAG_DMASEND) { 4816 flags |= 4817 (MPI2_SGE_FLAGS_HOST_TO_IOC << 4818 MPI2_SGE_FLAGS_SHIFT); 4819 } else { 4820 flags |= 4821 (MPI2_SGE_FLAGS_IOC_TO_HOST << 4822 MPI2_SGE_FLAGS_SHIFT); 4823 } 4824 ddi_put32(p->m_acc_hdl, 4825 &sge->FlagsLength, flags); 4826 dmap++; 4827 sge++; 4828 } 4829 } 4830 4831 /* 4832 * Sync DMA with the chain buffers that were just created 4833 */ 4834 (void) ddi_dma_sync(p->m_dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 4835 } 4836 4837 static void 4838 mptsas_ieee_sge_mainframe(mptsas_cmd_t *cmd, pMpi2SCSIIORequest_t frame, 4839 ddi_acc_handle_t acc_hdl, uint_t cookiec, 4840 uint8_t end_flag) 4841 { 4842 pMpi2IeeeSgeSimple64_t ieeesge; 4843 mptti_t *dmap; 4844 uint8_t flags; 4845 4846 dmap = cmd->cmd_sg; 4847 4848 NDBG1(("mptsas_ieee_sge_mainframe: cookiec=%d, %s", cookiec, 4849 cmd->cmd_flags & CFLAG_DMASEND?"Out":"In")); 4850 4851 ieeesge = (pMpi2IeeeSgeSimple64_t)(&frame->SGL); 4852 while (cookiec--) { 4853 ddi_put32(acc_hdl, &ieeesge->Address.Low, 4854 dmap->addr.address64.Low); 4855 ddi_put32(acc_hdl, &ieeesge->Address.High, 4856 dmap->addr.address64.High); 4857 ddi_put32(acc_hdl, &ieeesge->Length, dmap->count); 4858 NDBG1(("mptsas_ieee_sge_mainframe: len=%d, high=0x%x", 4859 dmap->count, dmap->addr.address64.High)); 4860 flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 4861 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 4862 4863 /* 4864 * If this is the last cookie, we set the flags 4865 * to indicate so 4866 */ 4867 if (cookiec == 0) { 4868 flags |= end_flag; 4869 } 4870 4871 /* 4872 * XXX: Hmmm, what about the direction based on 4873 * cmd->cmd_flags & CFLAG_DMASEND? 4874 */ 4875 ddi_put8(acc_hdl, &ieeesge->Flags, flags); 4876 dmap++; 4877 ieeesge++; 4878 } 4879 } 4880 4881 static void 4882 mptsas_ieee_sge_chain(mptsas_t *mpt, mptsas_cmd_t *cmd, 4883 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 4884 { 4885 pMpi2IeeeSgeSimple64_t ieeesge; 4886 pMpi25IeeeSgeChain64_t ieeesgechain; 4887 uint64_t nframe_phys_addr; 4888 uint_t cookiec; 4889 mptti_t *dmap; 4890 uint8_t flags; 4891 int i, j, k, l, frames, sgemax; 4892 int temp, maxframe_sges; 4893 uint8_t chainflags; 4894 uint32_t chainlength; 4895 mptsas_cache_frames_t *p; 4896 4897 cookiec = cmd->cmd_cookiec; 4898 4899 NDBG1(("mptsas_ieee_sge_chain: cookiec=%d", cookiec)); 4900 4901 /* 4902 * Hereby we start to deal with multiple frames. 4903 * The process is as follows: 4904 * 1. Determine how many frames are needed for SGL element 4905 * storage; Note that all frames are stored in contiguous 4906 * memory space and in 64-bit DMA mode each element is 4907 * 4 double-words (16 bytes) long. 4908 * 2. Fill up the main frame. We need to do this separately 4909 * since it contains the SCSI IO request header and needs 4910 * dedicated processing. Note that the last 4 double-words 4911 * of the SCSI IO header is for SGL element storage 4912 * (MPI2_SGE_IO_UNION). 4913 * 3. Fill the chain element in the main frame, so the DMA 4914 * engine can use the following frames. 4915 * 4. Enter a loop to fill the remaining frames. Note that the 4916 * last frame contains no chain element. The remaining 4917 * frames go into the mpt SGL buffer allocated on the fly, 4918 * not immediately following the main message frame, as in 4919 * Gen1. 4920 * Some restrictions: 4921 * 1. For 64-bit DMA, the simple element and chain element 4922 * are both of 4 double-words (16 bytes) in size, even 4923 * though all frames are stored in the first 4G of mem 4924 * range and the higher 32-bits of the address are always 0. 4925 * 2. On some controllers (like the 1064/1068), a frame can 4926 * hold SGL elements with the last 1 or 2 double-words 4927 * (4 or 8 bytes) un-used. On these controllers, we should 4928 * recognize that there's not enough room for another SGL 4929 * element and move the sge pointer to the next frame. 4930 */ 4931 4932 /* 4933 * Sgemax is the number of SGE's that will fit 4934 * each extra frame and frames is total 4935 * number of frames we'll need. 1 sge entry per 4936 * frame is reseverd for the chain element thus the -1 below. 4937 */ 4938 sgemax = ((mpt->m_req_frame_size / sizeof (MPI2_IEEE_SGE_SIMPLE64)) 4939 - 1); 4940 maxframe_sges = MPTSAS_MAX_FRAME_SGES64(mpt); 4941 temp = (cookiec - (maxframe_sges - 1)) / sgemax; 4942 4943 /* 4944 * A little check to see if we need to round up the number 4945 * of frames we need 4946 */ 4947 if ((cookiec - (maxframe_sges - 1)) - (temp * sgemax) > 1) { 4948 frames = (temp + 1); 4949 } else { 4950 frames = temp; 4951 } 4952 NDBG1(("mptsas_ieee_sge_chain: temp=%d, frames=%d", temp, frames)); 4953 dmap = cmd->cmd_sg; 4954 ieeesge = (pMpi2IeeeSgeSimple64_t)(&frame->SGL); 4955 4956 /* 4957 * First fill in the main frame 4958 */ 4959 j = maxframe_sges - 1; 4960 mptsas_ieee_sge_mainframe(cmd, frame, acc_hdl, j, 0); 4961 dmap += j; 4962 ieeesge += j; 4963 j++; 4964 4965 /* 4966 * Fill in the chain element in the main frame. 4967 * About calculation on ChainOffset: 4968 * 1. Struct msg_scsi_io_request has 4 double-words (16 bytes) 4969 * in the end reserved for SGL element storage 4970 * (MPI2_SGE_IO_UNION); we should count it in our 4971 * calculation. See its definition in the header file. 4972 * 2. Constant j is the counter of the current SGL element 4973 * that will be processed, and (j - 1) is the number of 4974 * SGL elements that have been processed (stored in the 4975 * main frame). 4976 * 3. ChainOffset value should be in units of quad-words (16 4977 * bytes) so the last value should be divided by 16. 4978 */ 4979 ddi_put8(acc_hdl, &frame->ChainOffset, 4980 (sizeof (MPI2_SCSI_IO_REQUEST) - 4981 sizeof (MPI2_SGE_IO_UNION) + 4982 (j - 1) * sizeof (MPI2_IEEE_SGE_SIMPLE64)) >> 4); 4983 ieeesgechain = (pMpi25IeeeSgeChain64_t)ieeesge; 4984 chainflags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 4985 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 4986 ddi_put8(acc_hdl, &ieeesgechain->Flags, chainflags); 4987 4988 /* 4989 * The size of the next frame is the accurate size of space 4990 * (in bytes) used to store the SGL elements. j is the counter 4991 * of SGL elements. (j - 1) is the number of SGL elements that 4992 * have been processed (stored in frames). 4993 */ 4994 if (frames >= 2) { 4995 chainlength = mpt->m_req_frame_size / 4996 sizeof (MPI2_IEEE_SGE_SIMPLE64) * 4997 sizeof (MPI2_IEEE_SGE_SIMPLE64); 4998 } else { 4999 chainlength = ((cookiec - (j - 1)) * 5000 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 5001 } 5002 5003 p = cmd->cmd_extra_frames; 5004 5005 ddi_put32(acc_hdl, &ieeesgechain->Length, chainlength); 5006 ddi_put32(acc_hdl, &ieeesgechain->Address.Low, 5007 p->m_phys_addr&0xffffffffull); 5008 ddi_put32(acc_hdl, &ieeesgechain->Address.High, p->m_phys_addr>>32); 5009 5010 /* 5011 * If there are more than 2 frames left we have to 5012 * fill in the next chain offset to the location of 5013 * the chain element in the next frame. 5014 * sgemax is the number of simple elements in an extra 5015 * frame. Note that the value NextChainOffset should be 5016 * in double-words (4 bytes). 5017 */ 5018 if (frames >= 2) { 5019 ddi_put8(acc_hdl, &ieeesgechain->NextChainOffset, 5020 (sgemax * sizeof (MPI2_IEEE_SGE_SIMPLE64)) >> 4); 5021 } else { 5022 ddi_put8(acc_hdl, &ieeesgechain->NextChainOffset, 0); 5023 } 5024 5025 /* 5026 * Jump to next frame; 5027 * Starting here, chain buffers go into the per command SGL. 5028 * This buffer is allocated when chain buffers are needed. 5029 */ 5030 ieeesge = (pMpi2IeeeSgeSimple64_t)p->m_frames_addr; 5031 i = cookiec; 5032 5033 /* 5034 * Start filling in frames with SGE's. If we 5035 * reach the end of frame and still have SGE's 5036 * to fill we need to add a chain element and 5037 * use another frame. j will be our counter 5038 * for what cookie we are at and i will be 5039 * the total cookiec. k is the current frame 5040 */ 5041 for (k = 1; k <= frames; k++) { 5042 for (l = 1; (l <= (sgemax + 1)) && (j <= i); j++, l++) { 5043 5044 /* 5045 * If we have reached the end of frame 5046 * and we have more SGE's to fill in 5047 * we have to fill the final entry 5048 * with a chain element and then 5049 * continue to the next frame 5050 */ 5051 if ((l == (sgemax + 1)) && (k != frames)) { 5052 ieeesgechain = (pMpi25IeeeSgeChain64_t)ieeesge; 5053 j--; 5054 chainflags = 5055 MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 5056 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 5057 ddi_put8(p->m_acc_hdl, 5058 &ieeesgechain->Flags, chainflags); 5059 /* 5060 * k is the frame counter and (k + 1) 5061 * is the number of the next frame. 5062 * Note that frames are in contiguous 5063 * memory space. 5064 */ 5065 nframe_phys_addr = p->m_phys_addr + 5066 (mpt->m_req_frame_size * k); 5067 ddi_put32(p->m_acc_hdl, 5068 &ieeesgechain->Address.Low, 5069 nframe_phys_addr&0xffffffffull); 5070 ddi_put32(p->m_acc_hdl, 5071 &ieeesgechain->Address.High, 5072 nframe_phys_addr>>32); 5073 5074 /* 5075 * If there are more than 2 frames left 5076 * we have to next chain offset to 5077 * the location of the chain element 5078 * in the next frame and fill in the 5079 * length of the next chain 5080 */ 5081 if ((frames - k) >= 2) { 5082 ddi_put8(p->m_acc_hdl, 5083 &ieeesgechain->NextChainOffset, 5084 (sgemax * 5085 sizeof (MPI2_IEEE_SGE_SIMPLE64)) 5086 >> 4); 5087 ddi_put32(p->m_acc_hdl, 5088 &ieeesgechain->Length, 5089 mpt->m_req_frame_size / 5090 sizeof (MPI2_IEEE_SGE_SIMPLE64) * 5091 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 5092 } else { 5093 /* 5094 * This is the last frame. Set 5095 * the NextChainOffset to 0 and 5096 * Length is the total size of 5097 * all remaining simple elements 5098 */ 5099 ddi_put8(p->m_acc_hdl, 5100 &ieeesgechain->NextChainOffset, 5101 0); 5102 ddi_put32(p->m_acc_hdl, 5103 &ieeesgechain->Length, 5104 (cookiec - j) * 5105 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 5106 } 5107 5108 /* Jump to the next frame */ 5109 ieeesge = (pMpi2IeeeSgeSimple64_t) 5110 ((char *)p->m_frames_addr + 5111 (int)mpt->m_req_frame_size * k); 5112 5113 continue; 5114 } 5115 5116 ddi_put32(p->m_acc_hdl, 5117 &ieeesge->Address.Low, 5118 dmap->addr.address64.Low); 5119 ddi_put32(p->m_acc_hdl, 5120 &ieeesge->Address.High, 5121 dmap->addr.address64.High); 5122 ddi_put32(p->m_acc_hdl, 5123 &ieeesge->Length, dmap->count); 5124 flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 5125 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 5126 5127 /* 5128 * If we are at the end of the frame and 5129 * there is another frame to fill in 5130 * do we need to do anything? 5131 * if ((l == sgemax) && (k != frames)) { 5132 * } 5133 */ 5134 5135 /* 5136 * If this is the final cookie set end of list. 5137 */ 5138 if (j == i) { 5139 flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 5140 } 5141 5142 ddi_put8(p->m_acc_hdl, &ieeesge->Flags, flags); 5143 dmap++; 5144 ieeesge++; 5145 } 5146 } 5147 5148 /* 5149 * Sync DMA with the chain buffers that were just created 5150 */ 5151 (void) ddi_dma_sync(p->m_dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 5152 } 5153 5154 static void 5155 mptsas_sge_setup(mptsas_t *mpt, mptsas_cmd_t *cmd, uint32_t *control, 5156 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 5157 { 5158 ASSERT(cmd->cmd_flags & CFLAG_DMAVALID); 5159 5160 NDBG1(("mptsas_sge_setup: cookiec=%d", cmd->cmd_cookiec)); 5161 5162 /* 5163 * Set read/write bit in control. 5164 */ 5165 if (cmd->cmd_flags & CFLAG_DMASEND) { 5166 *control |= MPI2_SCSIIO_CONTROL_WRITE; 5167 } else { 5168 *control |= MPI2_SCSIIO_CONTROL_READ; 5169 } 5170 5171 ddi_put32(acc_hdl, &frame->DataLength, cmd->cmd_dmacount); 5172 5173 /* 5174 * We have 4 cases here. First where we can fit all the 5175 * SG elements into the main frame, and the case 5176 * where we can't. The SG element is also different when using 5177 * MPI2.5 interface. 5178 * If we have more cookies than we can attach to a frame 5179 * we will need to use a chain element to point 5180 * a location of memory where the rest of the S/G 5181 * elements reside. 5182 */ 5183 if (cmd->cmd_cookiec <= MPTSAS_MAX_FRAME_SGES64(mpt)) { 5184 if (mpt->m_MPI25) { 5185 mptsas_ieee_sge_mainframe(cmd, frame, acc_hdl, 5186 cmd->cmd_cookiec, 5187 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 5188 } else { 5189 mptsas_sge_mainframe(cmd, frame, acc_hdl, 5190 cmd->cmd_cookiec, 5191 ((uint32_t)(MPI2_SGE_FLAGS_LAST_ELEMENT 5192 | MPI2_SGE_FLAGS_END_OF_BUFFER 5193 | MPI2_SGE_FLAGS_END_OF_LIST) << 5194 MPI2_SGE_FLAGS_SHIFT)); 5195 } 5196 } else { 5197 if (mpt->m_MPI25) { 5198 mptsas_ieee_sge_chain(mpt, cmd, frame, acc_hdl); 5199 } else { 5200 mptsas_sge_chain(mpt, cmd, frame, acc_hdl); 5201 } 5202 } 5203 } 5204 5205 /* 5206 * Interrupt handling 5207 * Utility routine. Poll for status of a command sent to HBA 5208 * without interrupts (a FLAG_NOINTR command). 5209 */ 5210 int 5211 mptsas_poll(mptsas_t *mpt, mptsas_cmd_t *poll_cmd, int polltime) 5212 { 5213 int rval = TRUE; 5214 uint32_t int_mask; 5215 5216 NDBG5(("mptsas_poll: cmd=0x%p, flags 0x%x", (void *)poll_cmd, 5217 poll_cmd->cmd_flags)); 5218 5219 /* 5220 * Get the current interrupt mask and disable interrupts. When 5221 * re-enabling ints, set mask to saved value. 5222 */ 5223 int_mask = ddi_get32(mpt->m_datap, &mpt->m_reg->HostInterruptMask); 5224 MPTSAS_DISABLE_INTR(mpt); 5225 5226 mpt->m_polled_intr = 1; 5227 5228 if ((poll_cmd->cmd_flags & CFLAG_TM_CMD) == 0) { 5229 mptsas_restart_hba(mpt); 5230 } 5231 5232 /* 5233 * Wait, using drv_usecwait(), long enough for the command to 5234 * reasonably return from the target if the target isn't 5235 * "dead". A polled command may well be sent from scsi_poll, and 5236 * there are retries built in to scsi_poll if the transport 5237 * accepted the packet (TRAN_ACCEPT). scsi_poll waits 1 second 5238 * and retries the transport up to scsi_poll_busycnt times 5239 * (currently 60) if 5240 * 1. pkt_reason is CMD_INCOMPLETE and pkt_state is 0, or 5241 * 2. pkt_reason is CMD_CMPLT and *pkt_scbp has STATUS_BUSY 5242 * 5243 * limit the waiting to avoid a hang in the event that the 5244 * cmd never gets started but we are still receiving interrupts 5245 */ 5246 while (!(poll_cmd->cmd_flags & CFLAG_FINISHED)) { 5247 if (mptsas_wait_intr(mpt, polltime) == FALSE) { 5248 NDBG5(("mptsas_poll: command incomplete")); 5249 rval = FALSE; 5250 break; 5251 } 5252 } 5253 5254 if (rval == FALSE) { 5255 5256 /* 5257 * this isn't supposed to happen, the hba must be wedged 5258 * Mark this cmd as a timeout. 5259 */ 5260 mptsas_set_pkt_reason(mpt, poll_cmd, CMD_TIMEOUT, 5261 (STAT_TIMEOUT|STAT_ABORTED)); 5262 5263 if (poll_cmd->cmd_queued == FALSE) { 5264 5265 NDBG5(("mptsas_poll: not on waitq")); 5266 5267 poll_cmd->cmd_pkt->pkt_state |= 5268 (STATE_GOT_BUS|STATE_GOT_TARGET|STATE_SENT_CMD); 5269 } else { 5270 5271 /* find and remove it from the waitq */ 5272 NDBG5(("mptsas_poll: delete from waitq")); 5273 mptsas_waitq_delete(mpt, poll_cmd); 5274 } 5275 5276 } 5277 mptsas_fma_check(mpt, poll_cmd); 5278 5279 /* 5280 * Clear polling flag, re-enable interrupts. 5281 */ 5282 mpt->m_polled_intr = 0; 5283 ddi_put32(mpt->m_datap, &mpt->m_reg->HostInterruptMask, int_mask); 5284 5285 /* 5286 * If there are queued cmd, start them now. 5287 */ 5288 if (mpt->m_waitq != NULL) { 5289 mptsas_restart_waitq(mpt); 5290 } 5291 5292 NDBG5(("mptsas_poll: done")); 5293 return (rval); 5294 } 5295 5296 /* 5297 * Used for polling cmds and TM function 5298 */ 5299 static int 5300 mptsas_wait_intr(mptsas_t *mpt, int polltime) 5301 { 5302 int cnt, rval = FALSE; 5303 pMpi2ReplyDescriptorsUnion_t reply_desc_union; 5304 mptsas_reply_pqueue_t *rpqp; 5305 5306 NDBG5(("mptsas_wait_intr")); 5307 ASSERT(mutex_owned(&mpt->m_mutex)); 5308 5309 /* 5310 * Keep polling for at least (polltime * 1000) seconds 5311 */ 5312 rpqp = mpt->m_rep_post_queues; 5313 5314 /* 5315 * Drop the main mutex and grab the mutex for reply queue 0 5316 */ 5317 mutex_exit(&mpt->m_mutex); 5318 mutex_enter(&rpqp->rpq_mutex); 5319 for (cnt = 0; cnt < polltime; cnt++) { 5320 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 5321 DDI_DMA_SYNC_FORCPU); 5322 5323 /* 5324 * Polled requests should only come back through 5325 * the first interrupt. 5326 */ 5327 reply_desc_union = (pMpi2ReplyDescriptorsUnion_t) 5328 MPTSAS_GET_NEXT_REPLY(rpqp, rpqp->rpq_index); 5329 5330 if (ddi_get32(mpt->m_acc_post_queue_hdl, 5331 &reply_desc_union->Words.Low) == 0xFFFFFFFF || 5332 ddi_get32(mpt->m_acc_post_queue_hdl, 5333 &reply_desc_union->Words.High) == 0xFFFFFFFF) { 5334 drv_usecwait(1000); 5335 continue; 5336 } 5337 5338 /* 5339 * The reply is valid, process it according to its 5340 * type. 5341 */ 5342 mptsas_process_intr(mpt, rpqp, reply_desc_union); 5343 5344 /* 5345 * Clear the reply descriptor for re-use. 5346 */ 5347 ddi_put64(mpt->m_acc_post_queue_hdl, 5348 &((uint64_t *)(void *)rpqp->rpq_queue)[rpqp->rpq_index], 5349 0xFFFFFFFFFFFFFFFF); 5350 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 5351 DDI_DMA_SYNC_FORDEV); 5352 5353 if (++rpqp->rpq_index == mpt->m_post_queue_depth) { 5354 rpqp->rpq_index = 0; 5355 } 5356 5357 /* 5358 * Update the reply index 5359 */ 5360 ddi_put32(mpt->m_datap, 5361 &mpt->m_reg->ReplyPostHostIndex, rpqp->rpq_index); 5362 rval = TRUE; 5363 break; 5364 } 5365 5366 mutex_exit(&rpqp->rpq_mutex); 5367 mutex_enter(&mpt->m_mutex); 5368 5369 return (rval); 5370 } 5371 5372 static void 5373 mptsas_handle_scsi_io_success(mptsas_t *mpt, 5374 mptsas_reply_pqueue_t *rpqp, 5375 pMpi2ReplyDescriptorsUnion_t reply_desc) 5376 { 5377 pMpi2SCSIIOSuccessReplyDescriptor_t scsi_io_success; 5378 uint16_t SMID; 5379 mptsas_slots_t *slots = mpt->m_active; 5380 mptsas_cmd_t *cmd = NULL; 5381 struct scsi_pkt *pkt; 5382 5383 scsi_io_success = (pMpi2SCSIIOSuccessReplyDescriptor_t)reply_desc; 5384 SMID = ddi_get16(mpt->m_acc_post_queue_hdl, &scsi_io_success->SMID); 5385 5386 /* 5387 * This is a success reply so just complete the IO. First, do a sanity 5388 * check on the SMID. The final slot is used for TM requests, which 5389 * would not come into this reply handler. 5390 */ 5391 if ((SMID == 0) || (SMID > slots->m_n_normal)) { 5392 mptsas_log(mpt, CE_WARN, "?Received invalid SMID of %d\n", 5393 SMID); 5394 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 5395 return; 5396 } 5397 5398 cmd = slots->m_slot[SMID]; 5399 5400 /* 5401 * print warning and return if the slot is empty 5402 */ 5403 if (cmd == NULL) { 5404 mptsas_log(mpt, CE_WARN, "?NULL command for successful SCSI IO " 5405 "in slot %d", SMID); 5406 return; 5407 } 5408 ASSERT(cmd->cmd_rpqidx == rpqp->rpq_num); 5409 5410 pkt = CMD2PKT(cmd); 5411 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | STATE_SENT_CMD | 5412 STATE_GOT_STATUS); 5413 if (cmd->cmd_flags & CFLAG_DMAVALID) { 5414 pkt->pkt_state |= STATE_XFERRED_DATA; 5415 } 5416 pkt->pkt_resid = 0; 5417 5418 if (cmd->cmd_flags & CFLAG_PASSTHRU) { 5419 cmd->cmd_flags |= CFLAG_FINISHED; 5420 cv_broadcast(&mpt->m_passthru_cv); 5421 return; 5422 } 5423 if (!(cmd->cmd_flags & CFLAG_TM_CMD)) { 5424 if (cmd->cmd_flags & CFLAG_CMDIOC) { 5425 mutex_enter(&mpt->m_mutex); 5426 mptsas_remove_cmd(mpt, cmd); 5427 mutex_exit(&mpt->m_mutex); 5428 } else { 5429 #ifdef MPTSAS_DEBUG 5430 /* 5431 * In order to test timeout for a command set 5432 * mptsas_test_timeout via mdb to avoid completion 5433 * processing here. 5434 */ 5435 if (mptsas_test_timeout) { 5436 mptsas_test_timeout = 0; 5437 return; 5438 } 5439 #endif 5440 /* 5441 * This is the normal path, avoid grabbing 5442 * the m_mutex. 5443 */ 5444 mptsas_remove_cmd_nomtx(mpt, cmd); 5445 } 5446 } 5447 5448 if (cmd->cmd_flags & CFLAG_RETRY) { 5449 /* 5450 * The target returned QFULL or busy, do not add tihs 5451 * pkt to the doneq since the hba will retry 5452 * this cmd. 5453 * 5454 * The pkt has already been resubmitted in 5455 * mptsas_handle_qfull() or in mptsas_check_scsi_io_error(). 5456 * Remove this cmd_flag here. 5457 */ 5458 cmd->cmd_flags &= ~CFLAG_RETRY; 5459 } else { 5460 mptsas_rpdoneq_add(mpt, rpqp, cmd); 5461 } 5462 } 5463 5464 static void 5465 mptsas_handle_address_reply(mptsas_t *mpt, 5466 pMpi2ReplyDescriptorsUnion_t reply_desc) 5467 { 5468 pMpi2AddressReplyDescriptor_t address_reply; 5469 pMPI2DefaultReply_t reply; 5470 mptsas_fw_diagnostic_buffer_t *pBuffer; 5471 uint32_t reply_addr, reply_frame_dma_baseaddr; 5472 uint16_t SMID, iocstatus; 5473 mptsas_slots_t *slots = mpt->m_active; 5474 mptsas_cmd_t *cmd = NULL; 5475 uint8_t function, buffer_type; 5476 m_replyh_arg_t *args; 5477 int reply_frame_no; 5478 5479 ASSERT(mutex_owned(&mpt->m_mutex)); 5480 5481 address_reply = (pMpi2AddressReplyDescriptor_t)reply_desc; 5482 reply_addr = ddi_get32(mpt->m_acc_post_queue_hdl, 5483 &address_reply->ReplyFrameAddress); 5484 SMID = ddi_get16(mpt->m_acc_post_queue_hdl, &address_reply->SMID); 5485 5486 /* 5487 * If reply frame is not in the proper range we should ignore this 5488 * message and exit the interrupt handler. 5489 */ 5490 reply_frame_dma_baseaddr = mpt->m_reply_frame_dma_addr & 0xfffffffful; 5491 if ((reply_addr < reply_frame_dma_baseaddr) || 5492 (reply_addr >= (reply_frame_dma_baseaddr + 5493 (mpt->m_reply_frame_size * mpt->m_max_replies))) || 5494 ((reply_addr - reply_frame_dma_baseaddr) % 5495 mpt->m_reply_frame_size != 0)) { 5496 mptsas_log(mpt, CE_WARN, "?Received invalid reply frame " 5497 "address 0x%x\n", reply_addr); 5498 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 5499 return; 5500 } 5501 5502 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 5503 DDI_DMA_SYNC_FORCPU); 5504 reply = (pMPI2DefaultReply_t)(mpt->m_reply_frame + (reply_addr - 5505 reply_frame_dma_baseaddr)); 5506 function = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->Function); 5507 5508 NDBG31(("mptsas_handle_address_reply: function 0x%x, reply_addr=0x%x", 5509 function, reply_addr)); 5510 5511 /* 5512 * don't get slot information and command for events since these values 5513 * don't exist 5514 */ 5515 if ((function != MPI2_FUNCTION_EVENT_NOTIFICATION) && 5516 (function != MPI2_FUNCTION_DIAG_BUFFER_POST)) { 5517 /* 5518 * This could be a TM reply, which use the last allocated SMID, 5519 * so allow for that. 5520 */ 5521 if ((SMID == 0) || (SMID > (slots->m_n_normal + 1))) { 5522 mptsas_log(mpt, CE_WARN, "?Received invalid SMID of " 5523 "%d\n", SMID); 5524 ddi_fm_service_impact(mpt->m_dip, 5525 DDI_SERVICE_UNAFFECTED); 5526 return; 5527 } 5528 5529 cmd = slots->m_slot[SMID]; 5530 5531 /* 5532 * print warning and return if the slot is empty 5533 */ 5534 if (cmd == NULL) { 5535 mptsas_log(mpt, CE_WARN, "?NULL command for address " 5536 "reply in slot %d", SMID); 5537 return; 5538 } 5539 if ((cmd->cmd_flags & 5540 (CFLAG_PASSTHRU | CFLAG_CONFIG | CFLAG_FW_DIAG))) { 5541 cmd->cmd_rfm = reply_addr; 5542 cmd->cmd_flags |= CFLAG_FINISHED; 5543 cv_broadcast(&mpt->m_passthru_cv); 5544 cv_broadcast(&mpt->m_config_cv); 5545 cv_broadcast(&mpt->m_fw_diag_cv); 5546 return; 5547 } else if (!(cmd->cmd_flags & CFLAG_FW_CMD)) { 5548 mptsas_remove_cmd(mpt, cmd); 5549 } 5550 NDBG31(("\t\tmptsas_process_intr: slot=%d", SMID)); 5551 } 5552 /* 5553 * Depending on the function, we need to handle 5554 * the reply frame (and cmd) differently. 5555 */ 5556 switch (function) { 5557 case MPI2_FUNCTION_SCSI_IO_REQUEST: 5558 mptsas_check_scsi_io_error(mpt, (pMpi2SCSIIOReply_t)reply, cmd); 5559 break; 5560 case MPI2_FUNCTION_SCSI_TASK_MGMT: 5561 cmd->cmd_rfm = reply_addr; 5562 mptsas_check_task_mgt(mpt, (pMpi2SCSIManagementReply_t)reply, 5563 cmd); 5564 break; 5565 case MPI2_FUNCTION_FW_DOWNLOAD: 5566 cmd->cmd_flags |= CFLAG_FINISHED; 5567 cv_signal(&mpt->m_fw_cv); 5568 break; 5569 case MPI2_FUNCTION_EVENT_NOTIFICATION: 5570 reply_frame_no = (reply_addr - reply_frame_dma_baseaddr) / 5571 mpt->m_reply_frame_size; 5572 args = &mpt->m_replyh_args[reply_frame_no]; 5573 args->mpt = (void *)mpt; 5574 args->rfm = reply_addr; 5575 5576 /* 5577 * Record the event if its type is enabled in 5578 * this mpt instance by ioctl. 5579 */ 5580 mptsas_record_event(args); 5581 5582 /* 5583 * Handle time critical events 5584 * NOT_RESPONDING/ADDED only now 5585 */ 5586 if (mptsas_handle_event_sync(args) == DDI_SUCCESS) { 5587 /* 5588 * Would not return main process, 5589 * just let taskq resolve ack action 5590 * and ack would be sent in taskq thread 5591 */ 5592 NDBG20(("send mptsas_handle_event_sync success")); 5593 } 5594 5595 if (mpt->m_in_reset) { 5596 NDBG20(("dropping event received during reset")); 5597 return; 5598 } 5599 5600 if ((ddi_taskq_dispatch(mpt->m_event_taskq, mptsas_handle_event, 5601 (void *)args, DDI_NOSLEEP)) != DDI_SUCCESS) { 5602 mptsas_log(mpt, CE_WARN, "No memory available" 5603 "for dispatch taskq"); 5604 /* 5605 * Return the reply frame to the free queue. 5606 */ 5607 ddi_put32(mpt->m_acc_free_queue_hdl, 5608 &((uint32_t *)(void *) 5609 mpt->m_free_queue)[mpt->m_free_index], reply_addr); 5610 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 5611 DDI_DMA_SYNC_FORDEV); 5612 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 5613 mpt->m_free_index = 0; 5614 } 5615 5616 ddi_put32(mpt->m_datap, 5617 &mpt->m_reg->ReplyFreeHostIndex, mpt->m_free_index); 5618 } 5619 return; 5620 case MPI2_FUNCTION_DIAG_BUFFER_POST: 5621 /* 5622 * If SMID is 0, this implies that the reply is due to a 5623 * release function with a status that the buffer has been 5624 * released. Set the buffer flags accordingly. 5625 */ 5626 if (SMID == 0) { 5627 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 5628 &reply->IOCStatus); 5629 buffer_type = ddi_get8(mpt->m_acc_reply_frame_hdl, 5630 &(((pMpi2DiagBufferPostReply_t)reply)->BufferType)); 5631 if (iocstatus == MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) { 5632 pBuffer = 5633 &mpt->m_fw_diag_buffer_list[buffer_type]; 5634 pBuffer->valid_data = TRUE; 5635 pBuffer->owned_by_firmware = FALSE; 5636 pBuffer->immediate = FALSE; 5637 } 5638 } else { 5639 /* 5640 * Normal handling of diag post reply with SMID. 5641 */ 5642 cmd = slots->m_slot[SMID]; 5643 5644 /* 5645 * print warning and return if the slot is empty 5646 */ 5647 if (cmd == NULL) { 5648 mptsas_log(mpt, CE_WARN, "?NULL command for " 5649 "address reply in slot %d", SMID); 5650 return; 5651 } 5652 cmd->cmd_rfm = reply_addr; 5653 cmd->cmd_flags |= CFLAG_FINISHED; 5654 cv_broadcast(&mpt->m_fw_diag_cv); 5655 } 5656 return; 5657 default: 5658 mptsas_log(mpt, CE_WARN, "Unknown function 0x%x ", function); 5659 break; 5660 } 5661 5662 /* 5663 * Return the reply frame to the free queue. 5664 */ 5665 ddi_put32(mpt->m_acc_free_queue_hdl, 5666 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 5667 reply_addr); 5668 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 5669 DDI_DMA_SYNC_FORDEV); 5670 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 5671 mpt->m_free_index = 0; 5672 } 5673 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 5674 mpt->m_free_index); 5675 5676 if (cmd->cmd_flags & CFLAG_FW_CMD) 5677 return; 5678 5679 if (cmd->cmd_flags & CFLAG_RETRY) { 5680 /* 5681 * The target returned QFULL or busy, do not add this 5682 * pkt to the doneq since the hba will retry 5683 * this cmd. 5684 * 5685 * The pkt has already been resubmitted in 5686 * mptsas_handle_qfull() or in mptsas_check_scsi_io_error(). 5687 * Remove this cmd_flag here. 5688 */ 5689 cmd->cmd_flags &= ~CFLAG_RETRY; 5690 } else { 5691 mptsas_doneq_add(mpt, cmd); 5692 } 5693 } 5694 5695 #ifdef MPTSAS_DEBUG 5696 static uint8_t mptsas_last_sense[256]; 5697 #endif 5698 5699 static void 5700 mptsas_check_scsi_io_error(mptsas_t *mpt, pMpi2SCSIIOReply_t reply, 5701 mptsas_cmd_t *cmd) 5702 { 5703 uint8_t scsi_status, scsi_state; 5704 uint16_t ioc_status, cmd_rqs_len; 5705 uint32_t xferred, sensecount, responsedata, loginfo = 0; 5706 struct scsi_pkt *pkt; 5707 struct scsi_arq_status *arqstat; 5708 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 5709 uint8_t *sensedata = NULL; 5710 uint64_t sas_wwn; 5711 uint8_t phy; 5712 char wwn_str[MPTSAS_WWN_STRLEN]; 5713 5714 scsi_status = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->SCSIStatus); 5715 ioc_status = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->IOCStatus); 5716 scsi_state = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->SCSIState); 5717 xferred = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->TransferCount); 5718 sensecount = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->SenseCount); 5719 responsedata = ddi_get32(mpt->m_acc_reply_frame_hdl, 5720 &reply->ResponseInfo); 5721 5722 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 5723 sas_wwn = ptgt->m_addr.mta_wwn; 5724 phy = ptgt->m_phynum; 5725 if (sas_wwn == 0) { 5726 (void) sprintf(wwn_str, "p%x", phy); 5727 } else { 5728 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 5729 } 5730 loginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 5731 &reply->IOCLogInfo); 5732 mptsas_log(mpt, CE_NOTE, 5733 "?Log info 0x%x received for target %d %s.\n" 5734 "\tscsi_status=0x%x, ioc_status=0x%x, scsi_state=0x%x", 5735 loginfo, Tgt(cmd), wwn_str, scsi_status, ioc_status, 5736 scsi_state); 5737 } 5738 5739 NDBG31(("\t\tscsi_status=0x%x, ioc_status=0x%x, scsi_state=0x%x", 5740 scsi_status, ioc_status, scsi_state)); 5741 5742 pkt = CMD2PKT(cmd); 5743 *(pkt->pkt_scbp) = scsi_status; 5744 5745 if (loginfo == 0x31170000) { 5746 /* 5747 * if loginfo PL_LOGINFO_CODE_IO_DEVICE_MISSING_DELAY_RETRY 5748 * 0x31170000 comes, that means the device missing delay 5749 * is in progressing, the command need retry later. 5750 */ 5751 *(pkt->pkt_scbp) = STATUS_BUSY; 5752 return; 5753 } 5754 5755 if ((scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS) && 5756 ((ioc_status & MPI2_IOCSTATUS_MASK) == 5757 MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE)) { 5758 pkt->pkt_reason = CMD_INCOMPLETE; 5759 pkt->pkt_state |= STATE_GOT_BUS; 5760 mutex_enter(&ptgt->m_t_mutex); 5761 if (ptgt->m_reset_delay == 0) { 5762 mptsas_set_throttle(mpt, ptgt, 5763 DRAIN_THROTTLE); 5764 } 5765 mutex_exit(&ptgt->m_t_mutex); 5766 return; 5767 } 5768 5769 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) { 5770 responsedata &= 0x000000FF; 5771 if (responsedata & MPTSAS_SCSI_RESPONSE_CODE_TLR_OFF) { 5772 mptsas_log(mpt, CE_NOTE, "Do not support the TLR\n"); 5773 pkt->pkt_reason = CMD_TLR_OFF; 5774 return; 5775 } 5776 } 5777 5778 5779 switch (scsi_status) { 5780 case MPI2_SCSI_STATUS_CHECK_CONDITION: 5781 (void) ddi_dma_sync(mpt->m_dma_req_sense_hdl, 0, 0, 5782 DDI_DMA_SYNC_FORCPU); 5783 pkt->pkt_resid = (cmd->cmd_dmacount - xferred); 5784 arqstat = (void*)(pkt->pkt_scbp); 5785 arqstat->sts_rqpkt_status = *((struct scsi_status *) 5786 (pkt->pkt_scbp)); 5787 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | 5788 STATE_SENT_CMD | STATE_GOT_STATUS | STATE_ARQ_DONE); 5789 if (cmd->cmd_flags & CFLAG_XARQ) { 5790 pkt->pkt_state |= STATE_XARQ_DONE; 5791 } 5792 if (pkt->pkt_resid != cmd->cmd_dmacount) { 5793 pkt->pkt_state |= STATE_XFERRED_DATA; 5794 } 5795 arqstat->sts_rqpkt_reason = pkt->pkt_reason; 5796 arqstat->sts_rqpkt_state = pkt->pkt_state; 5797 arqstat->sts_rqpkt_state |= STATE_XFERRED_DATA; 5798 arqstat->sts_rqpkt_statistics = pkt->pkt_statistics; 5799 sensedata = (uint8_t *)&arqstat->sts_sensedata; 5800 #ifdef MPTSAS_DEBUG 5801 bcopy((uchar_t *)cmd->cmd_arq_buf, mptsas_last_sense, 5802 cmd->cmd_rqslen); 5803 #endif 5804 if (cmd->cmd_extrqslen != 0) { 5805 cmd_rqs_len = cmd->cmd_extrqslen; 5806 } else { 5807 cmd_rqs_len = cmd->cmd_rqslen; 5808 } 5809 bcopy((uchar_t *)cmd->cmd_arq_buf, sensedata, 5810 ((cmd->cmd_rqslen >= sensecount) ? sensecount : 5811 cmd_rqs_len)); 5812 arqstat->sts_rqpkt_resid = (cmd_rqs_len - sensecount); 5813 cmd->cmd_flags |= CFLAG_CMDARQ; 5814 /* 5815 * Set proper status for pkt if autosense was valid 5816 */ 5817 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 5818 struct scsi_status zero_status = { 0 }; 5819 arqstat->sts_rqpkt_status = zero_status; 5820 } 5821 5822 /* 5823 * ASC=0x47 is parity error 5824 * ASC=0x48 is initiator detected error received 5825 */ 5826 if ((scsi_sense_key(sensedata) == KEY_ABORTED_COMMAND) && 5827 ((scsi_sense_asc(sensedata) == 0x47) || 5828 (scsi_sense_asc(sensedata) == 0x48))) { 5829 mptsas_log(mpt, CE_NOTE, "Aborted_command!"); 5830 } 5831 5832 /* 5833 * ASC/ASCQ=0x3F/0x0E means report_luns data changed 5834 * ASC/ASCQ=0x25/0x00 means invalid lun 5835 */ 5836 if (((scsi_sense_key(sensedata) == KEY_UNIT_ATTENTION) && 5837 (scsi_sense_asc(sensedata) == 0x3F) && 5838 (scsi_sense_ascq(sensedata) == 0x0E)) || 5839 ((scsi_sense_key(sensedata) == KEY_ILLEGAL_REQUEST) && 5840 (scsi_sense_asc(sensedata) == 0x25) && 5841 (scsi_sense_ascq(sensedata) == 0x00))) { 5842 mptsas_topo_change_list_t *topo_node = NULL; 5843 5844 topo_node = kmem_zalloc( 5845 sizeof (mptsas_topo_change_list_t), 5846 KM_NOSLEEP); 5847 if (topo_node == NULL) { 5848 mptsas_log(mpt, CE_NOTE, "No memory" 5849 "resource for handle SAS dynamic" 5850 "reconfigure.\n"); 5851 break; 5852 } 5853 topo_node->mpt = mpt; 5854 topo_node->event = MPTSAS_DR_EVENT_RECONFIG_TARGET; 5855 topo_node->un.phymask = ptgt->m_addr.mta_phymask; 5856 topo_node->devhdl = ptgt->m_devhdl; 5857 topo_node->object = (void *)ptgt; 5858 topo_node->flags = MPTSAS_TOPO_FLAG_LUN_ASSOCIATED; 5859 5860 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 5861 mptsas_handle_dr, 5862 (void *)topo_node, 5863 DDI_NOSLEEP)) != DDI_SUCCESS) { 5864 kmem_free(topo_node, 5865 sizeof (mptsas_topo_change_list_t)); 5866 mptsas_log(mpt, CE_NOTE, "mptsas start taskq" 5867 "for handle SAS dynamic reconfigure" 5868 "failed. \n"); 5869 } 5870 } 5871 break; 5872 case MPI2_SCSI_STATUS_GOOD: 5873 switch (ioc_status & MPI2_IOCSTATUS_MASK) { 5874 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 5875 pkt->pkt_reason = CMD_DEV_GONE; 5876 pkt->pkt_state |= STATE_GOT_BUS; 5877 mutex_enter(&ptgt->m_t_mutex); 5878 if (ptgt->m_reset_delay == 0) { 5879 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 5880 } 5881 mutex_exit(&ptgt->m_t_mutex); 5882 NDBG31(("lost disk for target%d, command:%x", 5883 Tgt(cmd), pkt->pkt_cdbp[0])); 5884 break; 5885 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 5886 NDBG31(("data overrun: xferred=%d", xferred)); 5887 NDBG31(("dmacount=%d", cmd->cmd_dmacount)); 5888 pkt->pkt_reason = CMD_DATA_OVR; 5889 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET 5890 | STATE_SENT_CMD | STATE_GOT_STATUS 5891 | STATE_XFERRED_DATA); 5892 pkt->pkt_resid = 0; 5893 break; 5894 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 5895 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 5896 NDBG31(("data underrun: xferred=%d", xferred)); 5897 NDBG31(("dmacount=%d", cmd->cmd_dmacount)); 5898 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET 5899 | STATE_SENT_CMD | STATE_GOT_STATUS); 5900 pkt->pkt_resid = (cmd->cmd_dmacount - xferred); 5901 if (pkt->pkt_resid != cmd->cmd_dmacount) { 5902 pkt->pkt_state |= STATE_XFERRED_DATA; 5903 } 5904 break; 5905 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 5906 if (cmd->cmd_active_expiration <= gethrtime()) { 5907 /* 5908 * When timeout requested, propagate 5909 * proper reason and statistics to 5910 * target drivers. 5911 */ 5912 mptsas_set_pkt_reason(mpt, cmd, CMD_TIMEOUT, 5913 STAT_BUS_RESET | STAT_TIMEOUT); 5914 } else { 5915 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, 5916 STAT_BUS_RESET); 5917 } 5918 break; 5919 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 5920 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 5921 mptsas_set_pkt_reason(mpt, 5922 cmd, CMD_RESET, STAT_DEV_RESET); 5923 break; 5924 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 5925 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 5926 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET); 5927 mptsas_set_pkt_reason(mpt, 5928 cmd, CMD_TERMINATED, STAT_TERMINATED); 5929 break; 5930 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 5931 case MPI2_IOCSTATUS_BUSY: 5932 /* 5933 * set throttles to drain 5934 */ 5935 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 5936 ptgt = refhash_next(mpt->m_targets, ptgt)) { 5937 mptsas_set_throttle_mtx(mpt, ptgt, 5938 DRAIN_THROTTLE); 5939 } 5940 5941 /* 5942 * retry command 5943 */ 5944 mptsas_retry_pkt(mpt, cmd); 5945 break; 5946 default: 5947 mptsas_log(mpt, CE_WARN, 5948 "unknown ioc_status = %x\n", ioc_status); 5949 mptsas_log(mpt, CE_CONT, "scsi_state = %x, transfer " 5950 "count = %x, scsi_status = %x", scsi_state, 5951 xferred, scsi_status); 5952 break; 5953 } 5954 break; 5955 case MPI2_SCSI_STATUS_TASK_SET_FULL: 5956 mptsas_handle_qfull(mpt, cmd); 5957 break; 5958 case MPI2_SCSI_STATUS_BUSY: 5959 NDBG31(("scsi_status busy received")); 5960 break; 5961 case MPI2_SCSI_STATUS_RESERVATION_CONFLICT: 5962 NDBG31(("scsi_status reservation conflict received")); 5963 break; 5964 default: 5965 mptsas_log(mpt, CE_WARN, "scsi_status=%x, ioc_status=%x\n", 5966 scsi_status, ioc_status); 5967 mptsas_log(mpt, CE_WARN, 5968 "mptsas_process_intr: invalid scsi status\n"); 5969 break; 5970 } 5971 } 5972 5973 static void 5974 mptsas_check_task_mgt(mptsas_t *mpt, pMpi2SCSIManagementReply_t reply, 5975 mptsas_cmd_t *cmd) 5976 { 5977 uint8_t task_type; 5978 uint16_t ioc_status; 5979 uint32_t log_info; 5980 uint16_t dev_handle; 5981 struct scsi_pkt *pkt = CMD2PKT(cmd); 5982 5983 task_type = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->TaskType); 5984 ioc_status = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->IOCStatus); 5985 log_info = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->IOCLogInfo); 5986 dev_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->DevHandle); 5987 5988 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5989 mptsas_log(mpt, CE_WARN, "mptsas_check_task_mgt: Task 0x%x " 5990 "failed. IOCStatus=0x%x IOCLogInfo=0x%x target=%d\n", 5991 task_type, ioc_status, log_info, dev_handle); 5992 pkt->pkt_reason = CMD_INCOMPLETE; 5993 return; 5994 } 5995 5996 switch (task_type) { 5997 case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK: 5998 case MPI2_SCSITASKMGMT_TASKTYPE_CLEAR_TASK_SET: 5999 case MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK: 6000 case MPI2_SCSITASKMGMT_TASKTYPE_CLR_ACA: 6001 case MPI2_SCSITASKMGMT_TASKTYPE_QRY_TASK_SET: 6002 case MPI2_SCSITASKMGMT_TASKTYPE_QRY_UNIT_ATTENTION: 6003 break; 6004 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 6005 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 6006 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 6007 /* 6008 * Check for invalid DevHandle of 0 in case application 6009 * sends bad command. DevHandle of 0 could cause problems. 6010 */ 6011 if (dev_handle == 0) { 6012 mptsas_log(mpt, CE_WARN, "!Can't flush target with" 6013 " DevHandle of 0."); 6014 } else { 6015 mptsas_flush_target(mpt, dev_handle, Lun(cmd), 6016 task_type); 6017 } 6018 break; 6019 default: 6020 mptsas_log(mpt, CE_WARN, "Unknown task management type %d.", 6021 task_type); 6022 mptsas_log(mpt, CE_WARN, "ioc status = %x", ioc_status); 6023 break; 6024 } 6025 } 6026 6027 static void 6028 mptsas_doneq_thread(mptsas_thread_arg_t *arg) 6029 { 6030 mptsas_t *mpt = arg->mpt; 6031 uint32_t t = arg->t; 6032 mptsas_cmd_t *cmd; 6033 struct scsi_pkt *pkt; 6034 mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t]; 6035 6036 mutex_enter(&item->mutex); 6037 while (item->flag & MPTSAS_DONEQ_THREAD_ACTIVE) { 6038 if (!item->dlist.dl_q) { 6039 cv_wait(&item->cv, &item->mutex); 6040 } 6041 pkt = NULL; 6042 if ((cmd = mptsas_doneq_thread_rm(mpt, t)) != NULL) { 6043 cmd->cmd_flags |= CFLAG_COMPLETED; 6044 pkt = CMD2PKT(cmd); 6045 } 6046 mutex_exit(&item->mutex); 6047 if (pkt) { 6048 mptsas_pkt_comp(pkt, cmd); 6049 } 6050 mutex_enter(&item->mutex); 6051 } 6052 mutex_exit(&item->mutex); 6053 mutex_enter(&mpt->m_qthread_mutex); 6054 mpt->m_doneq_thread_n--; 6055 cv_broadcast(&mpt->m_qthread_cv); 6056 mutex_exit(&mpt->m_qthread_mutex); 6057 } 6058 6059 6060 /* 6061 * mpt interrupt handler. 6062 */ 6063 static uint_t 6064 mptsas_intr(caddr_t arg1, caddr_t arg2) 6065 { 6066 mptsas_t *mpt = (void *)arg1; 6067 mptsas_reply_pqueue_t *rpqp; 6068 int reply_q = (int)(uintptr_t)arg2; 6069 pMpi2ReplyDescriptorsUnion_t reply_desc_union; 6070 int found = 0, i, rpqidx; 6071 size_t dma_sync_len; 6072 off_t dma_sync_offset; 6073 uint32_t istat; 6074 6075 NDBG18(("mptsas_intr: arg1 0x%p reply_q 0x%d", (void *)arg1, reply_q)); 6076 6077 rpqp = &mpt->m_rep_post_queues[reply_q]; 6078 6079 /* 6080 * If interrupts are shared by two channels then check whether this 6081 * interrupt is genuinely for this channel by making sure first the 6082 * chip is in high power state. 6083 */ 6084 if ((mpt->m_options & MPTSAS_OPT_PM) && 6085 (mpt->m_power_level != PM_LEVEL_D0)) { 6086 mpt->m_unclaimed_pm_interrupt_count++; 6087 return (DDI_INTR_UNCLAIMED); 6088 } 6089 6090 istat = MPTSAS_GET_ISTAT(mpt); 6091 if (!(istat & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT)) { 6092 NDBG18(("Interrupt bit not set, istat 0x%x", istat)); 6093 mpt->m_unclaimed_no_interrupt_count++; 6094 /* 6095 * Really need a good definition of when this is valid. 6096 * It appears not to be if you have multiple reply post 6097 * queues, there may be a better way - need LSI info. 6098 * For now just count them. 6099 */ 6100 #if 0 6101 return (DDI_INTR_UNCLAIMED); 6102 #endif 6103 } 6104 6105 /* 6106 * If polling, interrupt was triggered by some shared interrupt because 6107 * IOC interrupts are disabled during polling, so polling routine will 6108 * handle any replies. Considering this, if polling is happening, 6109 * return with interrupt unclaimed. 6110 */ 6111 if (mpt->m_polled_intr) { 6112 mptsas_log(mpt, CE_WARN, 6113 "Unclaimed interrupt, rpq %d (Polling), istat 0x%x", 6114 reply_q, istat); 6115 mpt->m_unclaimed_polled_interrupt_count++; 6116 return (DDI_INTR_UNCLAIMED); 6117 } 6118 6119 /* 6120 * At the moment this is the only place the mutex is grabbed. 6121 * So it should never fail! 6122 */ 6123 if (mutex_tryenter(&rpqp->rpq_mutex) == 0) { 6124 mutex_enter(&rpqp->rpq_mutex); 6125 rpqp->rpq_intr_mutexbusy++; 6126 } 6127 6128 dma_sync_len = mpt->m_post_queue_depth * 8; 6129 dma_sync_offset = dma_sync_len * reply_q; 6130 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 6131 dma_sync_offset, dma_sync_len, DDI_DMA_SYNC_FORCPU); 6132 6133 /* 6134 * Go around the reply queue and process each descriptor until 6135 * we get to the next unused one. 6136 * It seems to be an occupational hazard that we get interrupts 6137 * with nothing to do. These are counted below. 6138 */ 6139 rpqidx = rpqp->rpq_index; 6140 #ifndef __lock_lint 6141 _NOTE(CONSTCOND) 6142 #endif 6143 while (TRUE) { 6144 reply_desc_union = (pMpi2ReplyDescriptorsUnion_t) 6145 MPTSAS_GET_NEXT_REPLY(rpqp, rpqidx); 6146 6147 if (ddi_get32(mpt->m_acc_post_queue_hdl, 6148 &reply_desc_union->Words.Low) == 0xFFFFFFFF || 6149 ddi_get32(mpt->m_acc_post_queue_hdl, 6150 &reply_desc_union->Words.High) == 0xFFFFFFFF) { 6151 break; 6152 } 6153 6154 found++; 6155 6156 ASSERT(ddi_get8(mpt->m_acc_post_queue_hdl, 6157 &reply_desc_union->Default.MSIxIndex) == reply_q); 6158 6159 /* 6160 * Process it according to its type. 6161 */ 6162 mptsas_process_intr(mpt, rpqp, reply_desc_union); 6163 6164 /* 6165 * Clear the reply descriptor for re-use. 6166 */ 6167 ddi_put64(mpt->m_acc_post_queue_hdl, 6168 &((uint64_t *)(void *)rpqp->rpq_queue)[rpqidx], 6169 0xFFFFFFFFFFFFFFFF); 6170 6171 /* 6172 * Increment post index and roll over if needed. 6173 */ 6174 if (++rpqidx == mpt->m_post_queue_depth) { 6175 rpqidx = 0; 6176 } 6177 } 6178 6179 if (found == 0) { 6180 rpqp->rpq_intr_unclaimed++; 6181 mutex_exit(&rpqp->rpq_mutex); 6182 mpt->m_unclaimed_nocmd_interrupt_count++; 6183 return (DDI_INTR_UNCLAIMED); 6184 } 6185 rpqp->rpq_index = rpqidx; 6186 6187 rpqp->rpq_intr_count++; 6188 NDBG18(("mptsas_intr complete(%d), did %d loops", reply_q, found)); 6189 6190 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 6191 dma_sync_offset, dma_sync_len, DDI_DMA_SYNC_FORDEV); 6192 6193 mpt->m_interrupt_count++; 6194 6195 /* 6196 * Update the reply index if at least one reply was processed. 6197 * For more than 8 reply queues on SAS3 controllers we have to do 6198 * things a little different. See Chapter 20 in the MPI 2.5 spec. 6199 */ 6200 if (mpt->m_post_reply_qcount > 8) { 6201 /* 6202 * The offsets from the base are multiples of 0x10. 6203 * We are indexing into 32 bit quantities so calculate 6204 * the index for that. 6205 */ 6206 i = (reply_q&~0x7) >> 1; 6207 ddi_put32(mpt->m_datap, 6208 &mpt->m_reg->SuppReplyPostHostIndex[i], 6209 rpqp->rpq_index | 6210 ((reply_q&0x7)<<MPI2_RPHI_MSIX_INDEX_SHIFT)); 6211 (void) ddi_get32(mpt->m_datap, 6212 &mpt->m_reg->SuppReplyPostHostIndex[i]); 6213 } else { 6214 ddi_put32(mpt->m_datap, 6215 &mpt->m_reg->ReplyPostHostIndex, 6216 rpqp->rpq_index | (reply_q<<MPI2_RPHI_MSIX_INDEX_SHIFT)); 6217 (void) ddi_get32(mpt->m_datap, 6218 &mpt->m_reg->ReplyPostHostIndex); 6219 } 6220 6221 /* 6222 * If no helper threads are created, process the doneq in ISR. If 6223 * helpers are created, use the doneq length as a metric to measure the 6224 * load on the interrupt CPU. If it is long enough, which indicates the 6225 * load is heavy, then we deliver the IO completions to the helpers. 6226 * This measurement has some limitations, although it is simple and 6227 * straightforward and works well for most of the cases at present. 6228 * To always use the threads set mptsas_doneq_length_threshold_prop 6229 * to zero in the mpt_sas3.conf file. 6230 * 6231 * Check the current reply queue done queue. 6232 */ 6233 if (rpqp->rpq_dlist.dl_len) { 6234 if (!mpt->m_doneq_thread_n || 6235 (rpqp->rpq_dlist.dl_len <= mpt->m_doneq_length_threshold)) { 6236 mptsas_rpdoneq_empty(rpqp); 6237 } else { 6238 mptsas_deliver_doneq_thread(mpt, &rpqp->rpq_dlist); 6239 } 6240 } 6241 6242 mutex_exit(&rpqp->rpq_mutex); 6243 6244 /* 6245 * Check the main done queue. If we find something 6246 * grab the mutex and check again before processing. 6247 */ 6248 if (mpt->m_dlist.dl_len) { 6249 mutex_enter(&mpt->m_mutex); 6250 if (mpt->m_dlist.dl_len) { 6251 if (!mpt->m_doneq_thread_n || 6252 (mpt->m_dlist.dl_len <= 6253 mpt->m_doneq_length_threshold)) { 6254 mptsas_doneq_empty(mpt); 6255 } else { 6256 mptsas_deliver_doneq_thread(mpt, &mpt->m_dlist); 6257 } 6258 } 6259 mutex_exit(&mpt->m_mutex); 6260 } 6261 6262 /* 6263 * If there are queued cmd, start them now. 6264 */ 6265 if (mpt->m_waitq != NULL) { 6266 mutex_enter(&mpt->m_mutex); 6267 if (mpt->m_waitq != NULL && mpt->m_polled_intr == 0) { 6268 mptsas_restart_waitq(mpt); 6269 } 6270 mutex_exit(&mpt->m_mutex); 6271 } 6272 return (DDI_INTR_CLAIMED); 6273 } 6274 6275 static void 6276 mptsas_process_intr(mptsas_t *mpt, mptsas_reply_pqueue_t *rpqp, 6277 pMpi2ReplyDescriptorsUnion_t reply_desc_union) 6278 { 6279 uint8_t reply_type; 6280 6281 /* 6282 * Should get here with the reply queue mutex held, but not 6283 * the main mpt mutex. Want to avoid grabbing that during 6284 * normal operations if possible. 6285 */ 6286 ASSERT(mutex_owned(&rpqp->rpq_mutex)); 6287 6288 /* 6289 * The reply is valid, process it according to its 6290 * type. Also, set a flag for updated the reply index 6291 * after they've all been processed. 6292 */ 6293 reply_type = ddi_get8(mpt->m_acc_post_queue_hdl, 6294 &reply_desc_union->Default.ReplyFlags); 6295 NDBG18(("mptsas_process_intr(rpq %d) reply_type 0x%x", rpqp->rpq_num, 6296 reply_type)); 6297 reply_type &= MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 6298 if (reply_type == MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 6299 reply_type == MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS) { 6300 mptsas_handle_scsi_io_success(mpt, rpqp, reply_desc_union); 6301 } else if (reply_type == MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 6302 mutex_enter(&mpt->m_mutex); 6303 mptsas_handle_address_reply(mpt, reply_desc_union); 6304 mutex_exit(&mpt->m_mutex); 6305 } else { 6306 mptsas_log(mpt, CE_WARN, "?Bad reply type %x", reply_type); 6307 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 6308 } 6309 } 6310 6311 /* 6312 * handle qfull condition 6313 */ 6314 static void 6315 mptsas_handle_qfull(mptsas_t *mpt, mptsas_cmd_t *cmd) 6316 { 6317 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 6318 6319 mutex_enter(&ptgt->m_t_mutex); 6320 if ((++cmd->cmd_qfull_retries > ptgt->m_qfull_retries) || 6321 (ptgt->m_qfull_retries == 0)) { 6322 /* 6323 * We have exhausted the retries on QFULL, or, 6324 * the target driver has indicated that it 6325 * wants to handle QFULL itself by setting 6326 * qfull-retries capability to 0. In either case 6327 * we want the target driver's QFULL handling 6328 * to kick in. We do this by having pkt_reason 6329 * as CMD_CMPLT and pkt_scbp as STATUS_QFULL. 6330 */ 6331 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 6332 } else { 6333 if (ptgt->m_reset_delay == 0) { 6334 ptgt->m_t_throttle = 6335 max((ptgt->m_t_ncmds - 2), 0); 6336 } 6337 mutex_exit(&ptgt->m_t_mutex); 6338 6339 cmd->cmd_flags &= ~(CFLAG_TRANFLAG); 6340 6341 mptsas_retry_pkt(mpt, cmd); 6342 6343 mutex_enter(&ptgt->m_t_mutex); 6344 /* 6345 * when target gives queue full status with no commands 6346 * outstanding (m_t_ncmds == 0), throttle is set to 0 6347 * (HOLD_THROTTLE), and the queue full handling start 6348 * (see psarc/1994/313); if there are commands outstanding, 6349 * throttle is set to (m_t_ncmds - 2) 6350 */ 6351 if (ptgt->m_t_throttle == HOLD_THROTTLE) { 6352 /* 6353 * By setting throttle to QFULL_THROTTLE, we 6354 * avoid submitting new commands and in 6355 * mptsas_restart_cmd find out slots which need 6356 * their throttles to be cleared. 6357 */ 6358 mptsas_set_throttle(mpt, ptgt, QFULL_THROTTLE); 6359 if (mpt->m_restart_cmd_timeid == 0) { 6360 mpt->m_restart_cmd_timeid = 6361 timeout(mptsas_restart_cmd, mpt, 6362 ptgt->m_qfull_retry_interval); 6363 } 6364 } 6365 } 6366 mutex_exit(&ptgt->m_t_mutex); 6367 } 6368 6369 mptsas_phymask_t 6370 mptsas_physport_to_phymask(mptsas_t *mpt, uint8_t physport) 6371 { 6372 mptsas_phymask_t phy_mask = 0; 6373 uint8_t i = 0; 6374 6375 NDBG20(("mptsas3%d physport_to_phymask enter", mpt->m_instance)); 6376 6377 ASSERT(mutex_owned(&mpt->m_mutex)); 6378 6379 /* 6380 * If physport is 0xFF, this is a RAID volume. Use phymask of 0. 6381 */ 6382 if (physport == 0xFF) { 6383 return (0); 6384 } 6385 6386 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 6387 if (mpt->m_phy_info[i].attached_devhdl && 6388 (mpt->m_phy_info[i].phy_mask != 0) && 6389 (mpt->m_phy_info[i].port_num == physport)) { 6390 phy_mask = mpt->m_phy_info[i].phy_mask; 6391 break; 6392 } 6393 } 6394 NDBG20(("mptsas3%d physport_to_phymask:physport :%x phymask :%x, ", 6395 mpt->m_instance, physport, phy_mask)); 6396 return (phy_mask); 6397 } 6398 6399 /* 6400 * mpt free device handle after device gone, by use of passthrough 6401 */ 6402 static int 6403 mptsas_free_devhdl(mptsas_t *mpt, uint16_t devhdl) 6404 { 6405 Mpi2SasIoUnitControlRequest_t req; 6406 Mpi2SasIoUnitControlReply_t rep; 6407 int ret; 6408 6409 ASSERT(mutex_owned(&mpt->m_mutex)); 6410 6411 /* 6412 * Need to compose a SAS IO Unit Control request message 6413 * and call mptsas_do_passthru() function 6414 */ 6415 bzero(&req, sizeof (req)); 6416 bzero(&rep, sizeof (rep)); 6417 6418 req.Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL; 6419 req.Operation = MPI2_SAS_OP_REMOVE_DEVICE; 6420 req.DevHandle = LE_16(devhdl); 6421 6422 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, NULL, 6423 sizeof (req), sizeof (rep), NULL, 0, NULL, 0, 60, FKIOCTL); 6424 if (ret != 0) { 6425 cmn_err(CE_WARN, "mptsas_free_devhdl: passthru SAS IO Unit " 6426 "Control error %d", ret); 6427 return (DDI_FAILURE); 6428 } 6429 6430 /* do passthrough success, check the ioc status */ 6431 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 6432 cmn_err(CE_WARN, "mptsas_free_devhdl: passthru SAS IO Unit " 6433 "Control IOCStatus %d", LE_16(rep.IOCStatus)); 6434 return (DDI_FAILURE); 6435 } 6436 6437 return (DDI_SUCCESS); 6438 } 6439 6440 static void 6441 mptsas_update_phymask(mptsas_t *mpt) 6442 { 6443 mptsas_phymask_t mask = 0, phy_mask; 6444 char *phy_mask_name; 6445 uint8_t current_port; 6446 int i, j; 6447 6448 NDBG20(("mptsas3%d update phymask ", mpt->m_instance)); 6449 6450 ASSERT(mutex_owned(&mpt->m_mutex)); 6451 6452 (void) mptsas_get_sas_io_unit_page(mpt); 6453 6454 phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP); 6455 6456 for (i = 0; i < mpt->m_num_phys; i++) { 6457 phy_mask = 0x00; 6458 6459 if (mpt->m_phy_info[i].attached_devhdl == 0) 6460 continue; 6461 6462 bzero(phy_mask_name, sizeof (phy_mask_name)); 6463 6464 current_port = mpt->m_phy_info[i].port_num; 6465 6466 if ((mask & (1 << i)) != 0) 6467 continue; 6468 6469 for (j = 0; j < mpt->m_num_phys; j++) { 6470 if (mpt->m_phy_info[j].attached_devhdl && 6471 (mpt->m_phy_info[j].port_num == current_port)) { 6472 phy_mask |= (1 << j); 6473 } 6474 } 6475 mask = mask | phy_mask; 6476 6477 for (j = 0; j < mpt->m_num_phys; j++) { 6478 if ((phy_mask >> j) & 0x01) { 6479 mpt->m_phy_info[j].phy_mask = phy_mask; 6480 } 6481 } 6482 6483 (void) sprintf(phy_mask_name, "%x", phy_mask); 6484 6485 mutex_exit(&mpt->m_mutex); 6486 /* 6487 * register a iport, if the port has already been existed 6488 * SCSA will do nothing and just return. 6489 */ 6490 (void) scsi_hba_iport_register(mpt->m_dip, phy_mask_name); 6491 mutex_enter(&mpt->m_mutex); 6492 } 6493 kmem_free(phy_mask_name, MPTSAS_MAX_PHYS); 6494 NDBG20(("mptsas3%d update phymask return", mpt->m_instance)); 6495 } 6496 6497 /* 6498 * mptsas_handle_dr is a task handler for DR, the DR action includes: 6499 * 1. Directly attched Device Added/Removed. 6500 * 2. Expander Device Added/Removed. 6501 * 3. Indirectly Attached Device Added/Expander. 6502 * 4. LUNs of a existing device status change. 6503 * 5. RAID volume created/deleted. 6504 * 6. Member of RAID volume is released because of RAID deletion. 6505 * 7. Physical disks are removed because of RAID creation. 6506 */ 6507 static void 6508 mptsas_handle_dr(void *args) { 6509 mptsas_topo_change_list_t *topo_node = NULL; 6510 mptsas_topo_change_list_t *save_node = NULL; 6511 mptsas_t *mpt; 6512 dev_info_t *parent = NULL; 6513 mptsas_phymask_t phymask = 0; 6514 char phy_mask_name[MPTSAS_MAX_PHYS]; 6515 uint8_t flags = 0, physport = 0xff; 6516 uint8_t port_update = 0; 6517 uint_t event; 6518 6519 topo_node = (mptsas_topo_change_list_t *)args; 6520 6521 mpt = topo_node->mpt; 6522 event = topo_node->event; 6523 flags = topo_node->flags; 6524 6525 NDBG20(("mptsas3%d handle_dr enter", mpt->m_instance)); 6526 6527 switch (event) { 6528 case MPTSAS_DR_EVENT_RECONFIG_TARGET: 6529 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6530 (flags == MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE) || 6531 (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) { 6532 /* 6533 * Direct attached or expander attached device added 6534 * into system or a Phys Disk that is being unhidden. 6535 */ 6536 port_update = 1; 6537 } 6538 break; 6539 case MPTSAS_DR_EVENT_RECONFIG_SMP: 6540 /* 6541 * New expander added into system, it must be the head 6542 * of topo_change_list_t 6543 */ 6544 port_update = 1; 6545 break; 6546 default: 6547 port_update = 0; 6548 break; 6549 } 6550 /* 6551 * All cases port_update == 1 may cause initiator port form change 6552 */ 6553 mutex_enter(&mpt->m_mutex); 6554 if (mpt->m_port_chng && port_update) { 6555 /* 6556 * mpt->m_port_chng flag indicates some PHYs of initiator 6557 * port have changed to online. So when expander added or 6558 * directly attached device online event come, we force to 6559 * update port information by issueing SAS IO Unit Page and 6560 * update PHYMASKs. 6561 */ 6562 (void) mptsas_update_phymask(mpt); 6563 mpt->m_port_chng = 0; 6564 6565 } 6566 mutex_exit(&mpt->m_mutex); 6567 6568 while (topo_node) { 6569 phymask = 0; 6570 flags = topo_node->flags; 6571 event = topo_node->event; 6572 if (event == MPTSAS_DR_EVENT_REMOVE_HANDLE) { 6573 goto handle_topo_change; 6574 } 6575 if ((event == MPTSAS_DR_EVENT_RECONFIG_TARGET) && 6576 (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) { 6577 /* 6578 * There is no any field in IR_CONFIG_CHANGE 6579 * event indicate physport/phynum, let's get 6580 * parent after SAS Device Page0 request. 6581 */ 6582 goto handle_topo_change; 6583 } 6584 6585 if (parent == NULL) { 6586 physport = topo_node->un.physport; 6587 if (event & (MPTSAS_DR_EVENT_OFFLINE_TARGET | 6588 MPTSAS_DR_EVENT_OFFLINE_SMP)) { 6589 /* 6590 * For all offline events, phymask is known 6591 */ 6592 phymask = topo_node->un.phymask; 6593 goto find_parent; 6594 } 6595 if (flags & MPTSAS_TOPO_FLAG_LUN_ASSOCIATED) { 6596 phymask = topo_node->un.phymask; 6597 goto find_parent; 6598 } 6599 6600 mutex_enter(&mpt->m_mutex); 6601 if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6602 /* 6603 * If the direct attached device added or a 6604 * phys disk is being unhidden, argument 6605 * physport actually is PHY#, so we have to get 6606 * phymask according PHY#. 6607 */ 6608 physport = mpt->m_phy_info[physport].port_num; 6609 } 6610 6611 /* 6612 * Translate physport to phymask so that we can search 6613 * parent dip. 6614 */ 6615 phymask = mptsas_physport_to_phymask(mpt, physport); 6616 mutex_exit(&mpt->m_mutex); 6617 6618 find_parent: 6619 bzero(phy_mask_name, MPTSAS_MAX_PHYS); 6620 /* 6621 * For RAID topology change node, write the iport name 6622 * as v0. 6623 */ 6624 if (flags & MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6625 (void) sprintf(phy_mask_name, "v0"); 6626 } else { 6627 /* 6628 * phymask can be 0 if the drive has been 6629 * pulled by the time an add event is 6630 * processed. If phymask is 0, just skip this 6631 * event and continue. 6632 */ 6633 if (phymask == 0) { 6634 save_node = topo_node; 6635 topo_node = topo_node->next; 6636 ASSERT(save_node); 6637 kmem_free(save_node, 6638 sizeof (mptsas_topo_change_list_t)); 6639 parent = NULL; 6640 continue; 6641 } 6642 (void) sprintf(phy_mask_name, "%x", phymask); 6643 } 6644 parent = scsi_hba_iport_find(mpt->m_dip, 6645 phy_mask_name); 6646 if (parent == NULL) { 6647 mptsas_log(mpt, CE_WARN, "Failed to find an " 6648 "iport for \"%s\", should not happen!", 6649 phy_mask_name); 6650 save_node = topo_node; 6651 topo_node = topo_node->next; 6652 ASSERT(save_node); 6653 kmem_free(save_node, 6654 sizeof (mptsas_topo_change_list_t)); 6655 continue; 6656 } 6657 6658 } 6659 ASSERT(parent); 6660 handle_topo_change: 6661 6662 mutex_enter(&mpt->m_mutex); 6663 /* 6664 * If HBA is being reset, don't perform operations depending 6665 * on the IOC. We must free the topo list, however. 6666 */ 6667 if (!mpt->m_in_reset) 6668 mptsas_handle_topo_change(topo_node, parent); 6669 else 6670 NDBG20(("skipping topo change received during reset")); 6671 mutex_exit(&mpt->m_mutex); 6672 save_node = topo_node; 6673 topo_node = topo_node->next; 6674 ASSERT(save_node); 6675 kmem_free(save_node, sizeof (mptsas_topo_change_list_t)); 6676 6677 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6678 (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) || 6679 (flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED)) { 6680 /* 6681 * If direct attached device associated, make sure 6682 * reset the parent before start the next one. But 6683 * all devices associated with expander shares the 6684 * parent. Also, reset parent if this is for RAID. 6685 */ 6686 parent = NULL; 6687 } 6688 } 6689 } 6690 6691 static void 6692 mptsas_offline_target(mptsas_t *mpt, mptsas_target_t *ptgt, 6693 uint8_t topo_flags, dev_info_t *parent) 6694 { 6695 uint64_t sas_wwn = 0; 6696 uint8_t phy; 6697 char wwn_str[MPTSAS_WWN_STRLEN]; 6698 uint16_t devhdl; 6699 int circ = 0, circ1 = 0; 6700 int rval = 0; 6701 6702 sas_wwn = ptgt->m_addr.mta_wwn; 6703 phy = ptgt->m_phynum; 6704 devhdl = ptgt->m_devhdl; 6705 6706 if (sas_wwn) { 6707 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 6708 } else { 6709 (void) sprintf(wwn_str, "p%x", phy); 6710 } 6711 6712 /* 6713 * Abort all outstanding command on the device 6714 */ 6715 rval = mptsas_do_scsi_reset(mpt, devhdl); 6716 if (rval) { 6717 NDBG20(("mptsas3%d: mptsas_offline_target: reset target " 6718 "before offline devhdl:%x, phymask:%x, rval:%x", 6719 mpt->m_instance, ptgt->m_devhdl, 6720 ptgt->m_addr.mta_phymask, rval)); 6721 } 6722 6723 mutex_exit(&mpt->m_mutex); 6724 6725 ndi_devi_enter(scsi_vhci_dip, &circ); 6726 ndi_devi_enter(parent, &circ1); 6727 rval = mptsas_offline_targetdev(parent, wwn_str); 6728 ndi_devi_exit(parent, circ1); 6729 ndi_devi_exit(scsi_vhci_dip, circ); 6730 NDBG20(("mptsas3%d: mptsas_offline_target %s devhdl:%x, " 6731 "phymask:%x, rval:%x", mpt->m_instance, wwn_str, 6732 ptgt->m_devhdl, ptgt->m_addr.mta_phymask, rval)); 6733 6734 /* 6735 * Clear parent's props for SMHBA support 6736 */ 6737 if (topo_flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6738 if (ddi_prop_update_string(DDI_DEV_T_NONE, parent, 6739 SCSI_ADDR_PROP_ATTACHED_PORT, "") != 6740 DDI_PROP_SUCCESS) { 6741 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6742 SCSI_ADDR_PROP_ATTACHED_PORT); 6743 mptsas_log(mpt, CE_WARN, "mptsas attached port " 6744 "prop update failed"); 6745 } 6746 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6747 MPTSAS_NUM_PHYS, 0) != DDI_PROP_SUCCESS) { 6748 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6749 MPTSAS_NUM_PHYS); 6750 mptsas_log(mpt, CE_WARN, "mptsas num phys " 6751 "prop update failed"); 6752 } 6753 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6754 MPTSAS_VIRTUAL_PORT, 1) != DDI_PROP_SUCCESS) { 6755 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6756 MPTSAS_VIRTUAL_PORT); 6757 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 6758 "prop update failed"); 6759 } 6760 } 6761 6762 mutex_enter(&mpt->m_mutex); 6763 ptgt->m_led_status = 0; 6764 (void) mptsas_flush_led_status(mpt, ptgt); 6765 if (rval == DDI_SUCCESS) { 6766 mutex_destroy(&ptgt->m_t_mutex); 6767 refhash_remove(mpt->m_targets, ptgt); 6768 ptgt = NULL; 6769 } else { 6770 /* 6771 * clean DR_INTRANSITION flag to allow I/O down to 6772 * PHCI driver since failover finished. 6773 * Invalidate the devhdl 6774 */ 6775 ptgt->m_devhdl = MPTSAS_INVALID_DEVHDL; 6776 ptgt->m_tgt_unconfigured = 0; 6777 ptgt->m_dr_flag = MPTSAS_DR_INACTIVE; 6778 } 6779 } 6780 6781 static void 6782 mptsas_handle_topo_change(mptsas_topo_change_list_t *topo_node, 6783 dev_info_t *parent) 6784 { 6785 mptsas_target_t *ptgt = NULL; 6786 mptsas_smp_t *psmp = NULL; 6787 mptsas_t *mpt = (void *)topo_node->mpt; 6788 uint16_t devhdl; 6789 uint16_t attached_devhdl; 6790 int rval = 0; 6791 uint32_t page_address; 6792 uint8_t flags; 6793 dev_info_t *lundip; 6794 int circ = 0, circ1 = 0; 6795 char attached_wwnstr[MPTSAS_WWN_STRLEN]; 6796 6797 NDBG20(("mptsas3%d handle_topo_change enter, devhdl 0x%x," 6798 "event 0x%x, flags 0x%x", mpt->m_instance, topo_node->devhdl, 6799 topo_node->event, topo_node->flags)); 6800 6801 ASSERT(mutex_owned(&mpt->m_mutex)); 6802 6803 switch (topo_node->event) { 6804 case MPTSAS_DR_EVENT_RECONFIG_TARGET: 6805 { 6806 char *phy_mask_name; 6807 mptsas_phymask_t phymask = 0; 6808 6809 if (topo_node->flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6810 /* 6811 * Get latest RAID info. 6812 */ 6813 (void) mptsas_get_raid_info(mpt); 6814 ptgt = refhash_linear_search(mpt->m_targets, 6815 mptsas_target_eval_devhdl, &topo_node->devhdl); 6816 if (ptgt == NULL) 6817 break; 6818 } else { 6819 ptgt = (void *)topo_node->object; 6820 } 6821 6822 if (ptgt == NULL) { 6823 /* 6824 * If a Phys Disk was deleted, RAID info needs to be 6825 * updated to reflect the new topology. 6826 */ 6827 (void) mptsas_get_raid_info(mpt); 6828 6829 /* 6830 * Get sas device page 0 by DevHandle to make sure if 6831 * SSP/SATA end device exist. 6832 */ 6833 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 6834 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 6835 topo_node->devhdl; 6836 6837 rval = mptsas_get_target_device_info(mpt, page_address, 6838 &devhdl, &ptgt); 6839 if (rval == DEV_INFO_WRONG_DEVICE_TYPE) { 6840 mptsas_log(mpt, CE_NOTE, 6841 "mptsas_handle_topo_change: target %d is " 6842 "not a SAS/SATA device. \n", 6843 topo_node->devhdl); 6844 } else if (rval == DEV_INFO_FAIL_ALLOC) { 6845 mptsas_log(mpt, CE_NOTE, 6846 "mptsas_handle_topo_change: could not " 6847 "allocate memory. \n"); 6848 } 6849 /* 6850 * If rval is DEV_INFO_PHYS_DISK than there is nothing 6851 * else to do, just leave. 6852 */ 6853 if (rval != DEV_INFO_SUCCESS) { 6854 return; 6855 } 6856 } 6857 6858 ASSERT(ptgt->m_devhdl == topo_node->devhdl); 6859 6860 mutex_exit(&mpt->m_mutex); 6861 flags = topo_node->flags; 6862 6863 if (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) { 6864 phymask = ptgt->m_addr.mta_phymask; 6865 phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP); 6866 (void) sprintf(phy_mask_name, "%x", phymask); 6867 parent = scsi_hba_iport_find(mpt->m_dip, 6868 phy_mask_name); 6869 kmem_free(phy_mask_name, MPTSAS_MAX_PHYS); 6870 if (parent == NULL) { 6871 mptsas_log(mpt, CE_WARN, "Failed to find a " 6872 "iport for PD, should not happen!"); 6873 mutex_enter(&mpt->m_mutex); 6874 break; 6875 } 6876 } 6877 6878 if (flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6879 ndi_devi_enter(parent, &circ1); 6880 (void) mptsas_config_raid(parent, topo_node->devhdl, 6881 &lundip); 6882 ndi_devi_exit(parent, circ1); 6883 } else { 6884 /* 6885 * hold nexus for bus configure 6886 */ 6887 ndi_devi_enter(scsi_vhci_dip, &circ); 6888 ndi_devi_enter(parent, &circ1); 6889 rval = mptsas_config_target(parent, ptgt); 6890 /* 6891 * release nexus for bus configure 6892 */ 6893 ndi_devi_exit(parent, circ1); 6894 ndi_devi_exit(scsi_vhci_dip, circ); 6895 6896 /* 6897 * Add parent's props for SMHBA support 6898 */ 6899 if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6900 bzero(attached_wwnstr, 6901 sizeof (attached_wwnstr)); 6902 (void) sprintf(attached_wwnstr, "w%016"PRIx64, 6903 ptgt->m_addr.mta_wwn); 6904 if (ddi_prop_update_string(DDI_DEV_T_NONE, 6905 parent, 6906 SCSI_ADDR_PROP_ATTACHED_PORT, 6907 attached_wwnstr) 6908 != DDI_PROP_SUCCESS) { 6909 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6910 parent, 6911 SCSI_ADDR_PROP_ATTACHED_PORT); 6912 mptsas_log(mpt, CE_WARN, "Failed to" 6913 "attached-port props"); 6914 return; 6915 } 6916 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6917 MPTSAS_NUM_PHYS, 1) != 6918 DDI_PROP_SUCCESS) { 6919 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6920 parent, MPTSAS_NUM_PHYS); 6921 mptsas_log(mpt, CE_WARN, "Failed to" 6922 " create num-phys props"); 6923 return; 6924 } 6925 6926 /* 6927 * Update PHY info for smhba 6928 */ 6929 mutex_enter(&mpt->m_mutex); 6930 if (mptsas_smhba_phy_init(mpt)) { 6931 mutex_exit(&mpt->m_mutex); 6932 mptsas_log(mpt, CE_WARN, "mptsas phy" 6933 " update failed"); 6934 return; 6935 } 6936 mutex_exit(&mpt->m_mutex); 6937 6938 /* 6939 * topo_node->un.physport is really the PHY# 6940 * for direct attached devices 6941 */ 6942 mptsas_smhba_set_one_phy_props(mpt, parent, 6943 topo_node->un.physport, &attached_devhdl); 6944 6945 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6946 MPTSAS_VIRTUAL_PORT, 0) != 6947 DDI_PROP_SUCCESS) { 6948 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6949 parent, MPTSAS_VIRTUAL_PORT); 6950 mptsas_log(mpt, CE_WARN, 6951 "mptsas virtual-port" 6952 "port prop update failed"); 6953 return; 6954 } 6955 } 6956 } 6957 mutex_enter(&mpt->m_mutex); 6958 6959 NDBG20(("mptsas3%d handle_topo_change to online devhdl:%x, " 6960 "phymask:%x.", mpt->m_instance, ptgt->m_devhdl, 6961 ptgt->m_addr.mta_phymask)); 6962 break; 6963 } 6964 case MPTSAS_DR_EVENT_OFFLINE_TARGET: 6965 { 6966 devhdl = topo_node->devhdl; 6967 ptgt = refhash_linear_search(mpt->m_targets, 6968 mptsas_target_eval_devhdl, &devhdl); 6969 if (ptgt == NULL) 6970 break; 6971 6972 ASSERT(ptgt->m_devhdl == devhdl); 6973 6974 if ((topo_node->flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) || 6975 (topo_node->flags == 6976 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) { 6977 /* 6978 * Get latest RAID info if RAID volume status changes 6979 * or Phys Disk status changes 6980 */ 6981 (void) mptsas_get_raid_info(mpt); 6982 } 6983 6984 mptsas_offline_target(mpt, ptgt, topo_node->flags, parent); 6985 6986 /* 6987 * Send SAS IO Unit Control to free the dev handle 6988 */ 6989 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6990 (flags == MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE)) { 6991 rval = mptsas_free_devhdl(mpt, devhdl); 6992 6993 NDBG20(("mptsas3%d handle_topo_change to remove " 6994 "devhdl:%x, rval:%x", mpt->m_instance, devhdl, 6995 rval)); 6996 } 6997 6998 break; 6999 } 7000 case MPTSAS_DR_EVENT_REMOVE_HANDLE: 7001 { 7002 devhdl = topo_node->devhdl; 7003 7004 /* 7005 * Do a reset first. 7006 */ 7007 rval = mptsas_do_scsi_reset(mpt, devhdl); 7008 NDBG20(("mpt%d reset target before remove " 7009 "devhdl:%x, rval:%x", mpt->m_instance, devhdl, rval)); 7010 7011 /* 7012 * Send SAS IO Unit Control to free the dev handle 7013 */ 7014 rval = mptsas_free_devhdl(mpt, devhdl); 7015 NDBG20(("mptsas3%d handle_topo_change to remove " 7016 "devhdl:%x, rval:%x", mpt->m_instance, devhdl, 7017 rval)); 7018 break; 7019 } 7020 case MPTSAS_DR_EVENT_RECONFIG_SMP: 7021 { 7022 mptsas_smp_t smp; 7023 dev_info_t *smpdip; 7024 7025 devhdl = topo_node->devhdl; 7026 7027 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_HNDL & 7028 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)devhdl; 7029 rval = mptsas_get_sas_expander_page0(mpt, page_address, &smp); 7030 if (rval != DDI_SUCCESS) { 7031 mptsas_log(mpt, CE_WARN, "failed to online smp, " 7032 "handle %x", devhdl); 7033 return; 7034 } 7035 7036 psmp = mptsas_smp_alloc(mpt, &smp); 7037 if (psmp == NULL) { 7038 return; 7039 } 7040 7041 mutex_exit(&mpt->m_mutex); 7042 ndi_devi_enter(parent, &circ1); 7043 (void) mptsas_online_smp(parent, psmp, &smpdip); 7044 ndi_devi_exit(parent, circ1); 7045 7046 mutex_enter(&mpt->m_mutex); 7047 break; 7048 } 7049 case MPTSAS_DR_EVENT_OFFLINE_SMP: 7050 { 7051 devhdl = topo_node->devhdl; 7052 uint32_t dev_info; 7053 7054 psmp = refhash_linear_search(mpt->m_smp_targets, 7055 mptsas_smp_eval_devhdl, &devhdl); 7056 if (psmp == NULL) 7057 break; 7058 /* 7059 * The mptsas_smp_t data is released only if the dip is offlined 7060 * successfully. 7061 */ 7062 mutex_exit(&mpt->m_mutex); 7063 7064 ndi_devi_enter(parent, &circ1); 7065 rval = mptsas_offline_smp(parent, psmp, NDI_DEVI_REMOVE); 7066 ndi_devi_exit(parent, circ1); 7067 7068 dev_info = psmp->m_deviceinfo; 7069 if ((dev_info & DEVINFO_DIRECT_ATTACHED) == 7070 DEVINFO_DIRECT_ATTACHED) { 7071 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 7072 MPTSAS_VIRTUAL_PORT, 1) != 7073 DDI_PROP_SUCCESS) { 7074 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 7075 MPTSAS_VIRTUAL_PORT); 7076 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 7077 "prop update failed"); 7078 return; 7079 } 7080 /* 7081 * Check whether the smp connected to the iport, 7082 */ 7083 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 7084 MPTSAS_NUM_PHYS, 0) != 7085 DDI_PROP_SUCCESS) { 7086 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 7087 MPTSAS_NUM_PHYS); 7088 mptsas_log(mpt, CE_WARN, "mptsas num phys" 7089 "prop update failed"); 7090 return; 7091 } 7092 /* 7093 * Clear parent's attached-port props 7094 */ 7095 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 7096 if (ddi_prop_update_string(DDI_DEV_T_NONE, parent, 7097 SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) != 7098 DDI_PROP_SUCCESS) { 7099 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 7100 SCSI_ADDR_PROP_ATTACHED_PORT); 7101 mptsas_log(mpt, CE_WARN, "mptsas attached port " 7102 "prop update failed"); 7103 return; 7104 } 7105 } 7106 7107 mutex_enter(&mpt->m_mutex); 7108 NDBG20(("mptsas3%d handle_topo_change to remove devhdl:%x, " 7109 "rval:%x", mpt->m_instance, psmp->m_devhdl, rval)); 7110 if (rval == DDI_SUCCESS) { 7111 refhash_remove(mpt->m_smp_targets, psmp); 7112 } else { 7113 psmp->m_devhdl = MPTSAS_INVALID_DEVHDL; 7114 } 7115 7116 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 7117 7118 break; 7119 } 7120 default: 7121 return; 7122 } 7123 } 7124 7125 /* 7126 * Record the event if its type is enabled in mpt instance by ioctl. 7127 */ 7128 static void 7129 mptsas_record_event(void *args) 7130 { 7131 m_replyh_arg_t *replyh_arg; 7132 pMpi2EventNotificationReply_t eventreply; 7133 uint32_t event, rfm; 7134 mptsas_t *mpt; 7135 int i, j; 7136 uint16_t event_data_len; 7137 boolean_t sendAEN = FALSE; 7138 7139 replyh_arg = (m_replyh_arg_t *)args; 7140 rfm = replyh_arg->rfm; 7141 mpt = replyh_arg->mpt; 7142 7143 eventreply = (pMpi2EventNotificationReply_t) 7144 (mpt->m_reply_frame + (rfm - 7145 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 7146 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 7147 7148 7149 /* 7150 * Generate a system event to let anyone who cares know that a 7151 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 7152 * event mask is set to. 7153 */ 7154 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 7155 sendAEN = TRUE; 7156 } 7157 7158 /* 7159 * Record the event only if it is not masked. Determine which dword 7160 * and bit of event mask to test. 7161 */ 7162 i = (uint8_t)(event / 32); 7163 j = (uint8_t)(event % 32); 7164 if ((i < 4) && ((1 << j) & mpt->m_event_mask[i])) { 7165 i = mpt->m_event_index; 7166 mpt->m_events[i].Type = event; 7167 mpt->m_events[i].Number = ++mpt->m_event_number; 7168 bzero(mpt->m_events[i].Data, MPTSAS_MAX_EVENT_DATA_LENGTH * 4); 7169 event_data_len = ddi_get16(mpt->m_acc_reply_frame_hdl, 7170 &eventreply->EventDataLength); 7171 7172 if (event_data_len > 0) { 7173 /* 7174 * Limit data to size in m_event entry 7175 */ 7176 if (event_data_len > MPTSAS_MAX_EVENT_DATA_LENGTH) { 7177 event_data_len = MPTSAS_MAX_EVENT_DATA_LENGTH; 7178 } 7179 for (j = 0; j < event_data_len; j++) { 7180 mpt->m_events[i].Data[j] = 7181 ddi_get32(mpt->m_acc_reply_frame_hdl, 7182 &(eventreply->EventData[j])); 7183 } 7184 7185 /* 7186 * check for index wrap-around 7187 */ 7188 if (++i == MPTSAS_EVENT_QUEUE_SIZE) { 7189 i = 0; 7190 } 7191 mpt->m_event_index = (uint8_t)i; 7192 7193 /* 7194 * Set flag to send the event. 7195 */ 7196 sendAEN = TRUE; 7197 } 7198 } 7199 7200 /* 7201 * Generate a system event if flag is set to let anyone who cares know 7202 * that an event has occurred. 7203 */ 7204 if (sendAEN) { 7205 (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 7206 "SAS", NULL, NULL, DDI_NOSLEEP); 7207 } 7208 } 7209 7210 #define SMP_RESET_IN_PROGRESS MPI2_EVENT_SAS_TOPO_LR_SMP_RESET_IN_PROGRESS 7211 /* 7212 * handle sync events from ioc in interrupt 7213 * return value: 7214 * DDI_SUCCESS: The event is handled by this func 7215 * DDI_FAILURE: Event is not handled 7216 */ 7217 static int 7218 mptsas_handle_event_sync(void *args) 7219 { 7220 m_replyh_arg_t *replyh_arg; 7221 pMpi2EventNotificationReply_t eventreply; 7222 uint32_t event, rfm; 7223 mptsas_t *mpt; 7224 uint_t iocstatus; 7225 7226 replyh_arg = (m_replyh_arg_t *)args; 7227 rfm = replyh_arg->rfm; 7228 mpt = replyh_arg->mpt; 7229 7230 ASSERT(mutex_owned(&mpt->m_mutex)); 7231 7232 eventreply = (pMpi2EventNotificationReply_t) 7233 (mpt->m_reply_frame + (rfm - 7234 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 7235 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 7236 7237 if (iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 7238 &eventreply->IOCStatus)) { 7239 if (iocstatus == MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 7240 mptsas_log(mpt, CE_WARN, 7241 "!mptsas_handle_event_sync: event 0x%x, " 7242 "IOCStatus=0x%x, " 7243 "IOCLogInfo=0x%x", event, iocstatus, 7244 ddi_get32(mpt->m_acc_reply_frame_hdl, 7245 &eventreply->IOCLogInfo)); 7246 } else { 7247 mptsas_log(mpt, CE_WARN, 7248 "mptsas_handle_event_sync: event 0x%x, " 7249 "IOCStatus=0x%x, " 7250 "(IOCLogInfo=0x%x)", event, iocstatus, 7251 ddi_get32(mpt->m_acc_reply_frame_hdl, 7252 &eventreply->IOCLogInfo)); 7253 } 7254 } 7255 7256 /* 7257 * figure out what kind of event we got and handle accordingly 7258 */ 7259 switch (event) { 7260 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 7261 { 7262 pMpi2EventDataSasTopologyChangeList_t sas_topo_change_list; 7263 uint8_t num_entries, expstatus, phy; 7264 uint8_t phystatus, physport, state, i; 7265 uint8_t start_phy_num, link_rate; 7266 uint16_t dev_handle, reason_code; 7267 uint16_t enc_handle, expd_handle; 7268 char string[80], curr[80], prev[80]; 7269 mptsas_topo_change_list_t *topo_head = NULL; 7270 mptsas_topo_change_list_t *topo_tail = NULL; 7271 mptsas_topo_change_list_t *topo_node = NULL; 7272 mptsas_target_t *ptgt; 7273 mptsas_smp_t *psmp; 7274 uint8_t flags = 0, exp_flag; 7275 smhba_info_t *pSmhba = NULL; 7276 7277 NDBG20(("mptsas_handle_event_sync: SAS topology change")); 7278 7279 sas_topo_change_list = (pMpi2EventDataSasTopologyChangeList_t) 7280 eventreply->EventData; 7281 7282 enc_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7283 &sas_topo_change_list->EnclosureHandle); 7284 expd_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7285 &sas_topo_change_list->ExpanderDevHandle); 7286 num_entries = ddi_get8(mpt->m_acc_reply_frame_hdl, 7287 &sas_topo_change_list->NumEntries); 7288 start_phy_num = ddi_get8(mpt->m_acc_reply_frame_hdl, 7289 &sas_topo_change_list->StartPhyNum); 7290 expstatus = ddi_get8(mpt->m_acc_reply_frame_hdl, 7291 &sas_topo_change_list->ExpStatus); 7292 physport = ddi_get8(mpt->m_acc_reply_frame_hdl, 7293 &sas_topo_change_list->PhysicalPort); 7294 7295 string[0] = 0; 7296 if (expd_handle) { 7297 flags = MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED; 7298 switch (expstatus) { 7299 case MPI2_EVENT_SAS_TOPO_ES_ADDED: 7300 (void) sprintf(string, " added"); 7301 /* 7302 * New expander device added 7303 */ 7304 mpt->m_port_chng = 1; 7305 topo_node = kmem_zalloc( 7306 sizeof (mptsas_topo_change_list_t), 7307 KM_SLEEP); 7308 topo_node->mpt = mpt; 7309 topo_node->event = MPTSAS_DR_EVENT_RECONFIG_SMP; 7310 topo_node->un.physport = physport; 7311 topo_node->devhdl = expd_handle; 7312 topo_node->flags = flags; 7313 topo_node->object = NULL; 7314 if (topo_head == NULL) { 7315 topo_head = topo_tail = topo_node; 7316 } else { 7317 topo_tail->next = topo_node; 7318 topo_tail = topo_node; 7319 } 7320 break; 7321 case MPI2_EVENT_SAS_TOPO_ES_NOT_RESPONDING: 7322 (void) sprintf(string, " not responding, " 7323 "removed"); 7324 psmp = refhash_linear_search(mpt->m_smp_targets, 7325 mptsas_smp_eval_devhdl, &expd_handle); 7326 if (psmp == NULL) 7327 break; 7328 7329 topo_node = kmem_zalloc( 7330 sizeof (mptsas_topo_change_list_t), 7331 KM_SLEEP); 7332 topo_node->mpt = mpt; 7333 topo_node->un.phymask = 7334 psmp->m_addr.mta_phymask; 7335 topo_node->event = MPTSAS_DR_EVENT_OFFLINE_SMP; 7336 topo_node->devhdl = expd_handle; 7337 topo_node->flags = flags; 7338 topo_node->object = NULL; 7339 if (topo_head == NULL) { 7340 topo_head = topo_tail = topo_node; 7341 } else { 7342 topo_tail->next = topo_node; 7343 topo_tail = topo_node; 7344 } 7345 break; 7346 case MPI2_EVENT_SAS_TOPO_ES_RESPONDING: 7347 break; 7348 case MPI2_EVENT_SAS_TOPO_ES_DELAY_NOT_RESPONDING: 7349 (void) sprintf(string, " not responding, " 7350 "delaying removal"); 7351 break; 7352 default: 7353 break; 7354 } 7355 } else { 7356 flags = MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE; 7357 } 7358 7359 NDBG20(("SAS TOPOLOGY CHANGE for enclosure %x expander %x%s\n", 7360 enc_handle, expd_handle, string)); 7361 for (i = 0; i < num_entries; i++) { 7362 phy = i + start_phy_num; 7363 phystatus = ddi_get8(mpt->m_acc_reply_frame_hdl, 7364 &sas_topo_change_list->PHY[i].PhyStatus); 7365 dev_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7366 &sas_topo_change_list->PHY[i].AttachedDevHandle); 7367 reason_code = phystatus & MPI2_EVENT_SAS_TOPO_RC_MASK; 7368 /* 7369 * Filter out processing of Phy Vacant Status unless 7370 * the reason code is "Not Responding". Process all 7371 * other combinations of Phy Status and Reason Codes. 7372 */ 7373 if ((phystatus & 7374 MPI2_EVENT_SAS_TOPO_PHYSTATUS_VACANT) && 7375 (reason_code != 7376 MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING)) { 7377 continue; 7378 } 7379 curr[0] = 0; 7380 prev[0] = 0; 7381 string[0] = 0; 7382 switch (reason_code) { 7383 case MPI2_EVENT_SAS_TOPO_RC_TARG_ADDED: 7384 { 7385 NDBG20(("mptsas3%d phy %d physical_port %d " 7386 "dev_handle %d added", mpt->m_instance, phy, 7387 physport, dev_handle)); 7388 link_rate = ddi_get8(mpt->m_acc_reply_frame_hdl, 7389 &sas_topo_change_list->PHY[i].LinkRate); 7390 state = (link_rate & 7391 MPI2_EVENT_SAS_TOPO_LR_CURRENT_MASK) >> 7392 MPI2_EVENT_SAS_TOPO_LR_CURRENT_SHIFT; 7393 switch (state) { 7394 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 7395 (void) sprintf(curr, "is disabled"); 7396 break; 7397 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 7398 (void) sprintf(curr, "is offline, " 7399 "failed speed negotiation"); 7400 break; 7401 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 7402 (void) sprintf(curr, "SATA OOB " 7403 "complete"); 7404 break; 7405 case SMP_RESET_IN_PROGRESS: 7406 (void) sprintf(curr, "SMP reset in " 7407 "progress"); 7408 break; 7409 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 7410 (void) sprintf(curr, "is online at " 7411 "1.5 Gbps"); 7412 break; 7413 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 7414 (void) sprintf(curr, "is online at 3.0 " 7415 "Gbps"); 7416 break; 7417 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 7418 (void) sprintf(curr, "is online at 6.0 " 7419 "Gbps"); 7420 break; 7421 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 7422 (void) sprintf(curr, 7423 "is online at 12.0 Gbps"); 7424 break; 7425 default: 7426 (void) sprintf(curr, "state is " 7427 "unknown"); 7428 break; 7429 } 7430 /* 7431 * New target device added into the system. 7432 * Set association flag according to if an 7433 * expander is used or not. 7434 */ 7435 exp_flag = 7436 MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE; 7437 if (flags == 7438 MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED) { 7439 flags = exp_flag; 7440 } 7441 topo_node = kmem_zalloc( 7442 sizeof (mptsas_topo_change_list_t), 7443 KM_SLEEP); 7444 topo_node->mpt = mpt; 7445 topo_node->event = 7446 MPTSAS_DR_EVENT_RECONFIG_TARGET; 7447 if (expd_handle == 0) { 7448 /* 7449 * Per MPI 2, if expander dev handle 7450 * is 0, it's a directly attached 7451 * device. So driver use PHY to decide 7452 * which iport is associated 7453 */ 7454 physport = phy; 7455 mpt->m_port_chng = 1; 7456 } 7457 topo_node->un.physport = physport; 7458 topo_node->devhdl = dev_handle; 7459 topo_node->flags = flags; 7460 topo_node->object = NULL; 7461 if (topo_head == NULL) { 7462 topo_head = topo_tail = topo_node; 7463 } else { 7464 topo_tail->next = topo_node; 7465 topo_tail = topo_node; 7466 } 7467 break; 7468 } 7469 case MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING: 7470 { 7471 NDBG20(("mptsas3%d phy %d physical_port %d " 7472 "dev_handle %d removed", mpt->m_instance, 7473 phy, physport, dev_handle)); 7474 /* 7475 * Set association flag according to if an 7476 * expander is used or not. 7477 */ 7478 exp_flag = 7479 MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE; 7480 if (flags == 7481 MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED) { 7482 flags = exp_flag; 7483 } 7484 /* 7485 * Target device is removed from the system 7486 * Before the device is really offline from 7487 * from system. 7488 */ 7489 ptgt = refhash_linear_search(mpt->m_targets, 7490 mptsas_target_eval_devhdl, &dev_handle); 7491 /* 7492 * If ptgt is NULL here, it means that the 7493 * DevHandle is not in the hash table. This is 7494 * reasonable sometimes. For example, if a 7495 * disk was pulled, then added, then pulled 7496 * again, the disk will not have been put into 7497 * the hash table because the add event will 7498 * have an invalid phymask. BUT, this does not 7499 * mean that the DevHandle is invalid. The 7500 * controller will still have a valid DevHandle 7501 * that must be removed. To do this, use the 7502 * MPTSAS_DR_EVENT_REMOVE_HANDLE event. 7503 */ 7504 if (ptgt == NULL) { 7505 topo_node = kmem_zalloc( 7506 sizeof (mptsas_topo_change_list_t), 7507 KM_SLEEP); 7508 topo_node->mpt = mpt; 7509 topo_node->un.phymask = 0; 7510 topo_node->event = 7511 MPTSAS_DR_EVENT_REMOVE_HANDLE; 7512 topo_node->devhdl = dev_handle; 7513 topo_node->flags = flags; 7514 topo_node->object = NULL; 7515 if (topo_head == NULL) { 7516 topo_head = topo_tail = 7517 topo_node; 7518 } else { 7519 topo_tail->next = topo_node; 7520 topo_tail = topo_node; 7521 } 7522 break; 7523 } 7524 7525 /* 7526 * Update DR flag immediately avoid I/O failure 7527 * before failover finish. We won't add 7528 * any following commands into waitq, instead, 7529 * we need return TRAN_BUSY in the tran_start 7530 * context. 7531 */ 7532 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7533 7534 topo_node = kmem_zalloc( 7535 sizeof (mptsas_topo_change_list_t), 7536 KM_SLEEP); 7537 topo_node->mpt = mpt; 7538 topo_node->un.phymask = 7539 ptgt->m_addr.mta_phymask; 7540 topo_node->event = 7541 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7542 topo_node->devhdl = dev_handle; 7543 topo_node->flags = flags; 7544 topo_node->object = NULL; 7545 if (topo_head == NULL) { 7546 topo_head = topo_tail = topo_node; 7547 } else { 7548 topo_tail->next = topo_node; 7549 topo_tail = topo_node; 7550 } 7551 break; 7552 } 7553 case MPI2_EVENT_SAS_TOPO_RC_PHY_CHANGED: 7554 link_rate = ddi_get8(mpt->m_acc_reply_frame_hdl, 7555 &sas_topo_change_list->PHY[i].LinkRate); 7556 state = (link_rate & 7557 MPI2_EVENT_SAS_TOPO_LR_CURRENT_MASK) >> 7558 MPI2_EVENT_SAS_TOPO_LR_CURRENT_SHIFT; 7559 pSmhba = &mpt->m_phy_info[i].smhba_info; 7560 pSmhba->negotiated_link_rate = state; 7561 switch (state) { 7562 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 7563 (void) sprintf(curr, "is disabled"); 7564 mptsas_smhba_log_sysevent(mpt, 7565 ESC_SAS_PHY_EVENT, 7566 SAS_PHY_REMOVE, 7567 &mpt->m_phy_info[i].smhba_info); 7568 mpt->m_phy_info[i].smhba_info. 7569 negotiated_link_rate 7570 = 0x1; 7571 break; 7572 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 7573 (void) sprintf(curr, "is offline, " 7574 "failed speed negotiation"); 7575 mptsas_smhba_log_sysevent(mpt, 7576 ESC_SAS_PHY_EVENT, 7577 SAS_PHY_OFFLINE, 7578 &mpt->m_phy_info[i].smhba_info); 7579 break; 7580 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 7581 (void) sprintf(curr, "SATA OOB " 7582 "complete"); 7583 break; 7584 case SMP_RESET_IN_PROGRESS: 7585 (void) sprintf(curr, "SMP reset in " 7586 "progress"); 7587 break; 7588 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 7589 (void) sprintf(curr, "is online at " 7590 "1.5 Gbps"); 7591 if ((expd_handle == 0) && 7592 (enc_handle == 1)) { 7593 mpt->m_port_chng = 1; 7594 } 7595 mptsas_smhba_log_sysevent(mpt, 7596 ESC_SAS_PHY_EVENT, 7597 SAS_PHY_ONLINE, 7598 &mpt->m_phy_info[i].smhba_info); 7599 break; 7600 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 7601 (void) sprintf(curr, "is online at 3.0 " 7602 "Gbps"); 7603 if ((expd_handle == 0) && 7604 (enc_handle == 1)) { 7605 mpt->m_port_chng = 1; 7606 } 7607 mptsas_smhba_log_sysevent(mpt, 7608 ESC_SAS_PHY_EVENT, 7609 SAS_PHY_ONLINE, 7610 &mpt->m_phy_info[i].smhba_info); 7611 break; 7612 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 7613 (void) sprintf(curr, "is online at " 7614 "6.0 Gbps"); 7615 if ((expd_handle == 0) && 7616 (enc_handle == 1)) { 7617 mpt->m_port_chng = 1; 7618 } 7619 mptsas_smhba_log_sysevent(mpt, 7620 ESC_SAS_PHY_EVENT, 7621 SAS_PHY_ONLINE, 7622 &mpt->m_phy_info[i].smhba_info); 7623 break; 7624 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 7625 (void) sprintf(curr, "is online at " 7626 "12.0 Gbps"); 7627 if ((expd_handle == 0) && 7628 (enc_handle == 1)) { 7629 mpt->m_port_chng = 1; 7630 } 7631 mptsas_smhba_log_sysevent(mpt, 7632 ESC_SAS_PHY_EVENT, 7633 SAS_PHY_ONLINE, 7634 &mpt->m_phy_info[i].smhba_info); 7635 break; 7636 default: 7637 (void) sprintf(curr, "state is " 7638 "unknown"); 7639 break; 7640 } 7641 7642 state = (link_rate & 7643 MPI2_EVENT_SAS_TOPO_LR_PREV_MASK) >> 7644 MPI2_EVENT_SAS_TOPO_LR_PREV_SHIFT; 7645 switch (state) { 7646 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 7647 (void) sprintf(prev, ", was disabled"); 7648 break; 7649 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 7650 (void) sprintf(prev, ", was offline, " 7651 "failed speed negotiation"); 7652 break; 7653 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 7654 (void) sprintf(prev, ", was SATA OOB " 7655 "complete"); 7656 break; 7657 case SMP_RESET_IN_PROGRESS: 7658 (void) sprintf(prev, ", was SMP reset " 7659 "in progress"); 7660 break; 7661 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 7662 (void) sprintf(prev, ", was online at " 7663 "1.5 Gbps"); 7664 break; 7665 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 7666 (void) sprintf(prev, ", was online at " 7667 "3.0 Gbps"); 7668 break; 7669 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 7670 (void) sprintf(prev, ", was online at " 7671 "6.0 Gbps"); 7672 break; 7673 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 7674 (void) sprintf(prev, ", was online at " 7675 "12.0 Gbps"); 7676 break; 7677 default: 7678 break; 7679 } 7680 (void) sprintf(&string[strlen(string)], "link " 7681 "changed, "); 7682 break; 7683 case MPI2_EVENT_SAS_TOPO_RC_NO_CHANGE: 7684 continue; 7685 case MPI2_EVENT_SAS_TOPO_RC_DELAY_NOT_RESPONDING: 7686 (void) sprintf(&string[strlen(string)], 7687 "target not responding, delaying " 7688 "removal"); 7689 break; 7690 } 7691 NDBG20(("mptsas3%d phy %d DevHandle %x, %s%s%s\n", 7692 mpt->m_instance, phy, dev_handle, string, curr, 7693 prev)); 7694 } 7695 if (topo_head != NULL) { 7696 /* 7697 * Launch DR taskq to handle topology change 7698 */ 7699 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 7700 mptsas_handle_dr, (void *)topo_head, 7701 DDI_NOSLEEP)) != DDI_SUCCESS) { 7702 while (topo_head != NULL) { 7703 topo_node = topo_head; 7704 topo_head = topo_head->next; 7705 kmem_free(topo_node, 7706 sizeof (mptsas_topo_change_list_t)); 7707 } 7708 mptsas_log(mpt, CE_NOTE, "mptsas start taskq " 7709 "for handle SAS DR event failed. \n"); 7710 } 7711 } 7712 break; 7713 } 7714 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 7715 { 7716 Mpi2EventDataIrConfigChangeList_t *irChangeList; 7717 mptsas_topo_change_list_t *topo_head = NULL; 7718 mptsas_topo_change_list_t *topo_tail = NULL; 7719 mptsas_topo_change_list_t *topo_node = NULL; 7720 mptsas_target_t *ptgt; 7721 uint8_t num_entries, i, reason; 7722 uint16_t volhandle, diskhandle; 7723 7724 irChangeList = (pMpi2EventDataIrConfigChangeList_t) 7725 eventreply->EventData; 7726 num_entries = ddi_get8(mpt->m_acc_reply_frame_hdl, 7727 &irChangeList->NumElements); 7728 7729 NDBG20(("mptsas3%d IR_CONFIGURATION_CHANGE_LIST event received", 7730 mpt->m_instance)); 7731 7732 for (i = 0; i < num_entries; i++) { 7733 reason = ddi_get8(mpt->m_acc_reply_frame_hdl, 7734 &irChangeList->ConfigElement[i].ReasonCode); 7735 volhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7736 &irChangeList->ConfigElement[i].VolDevHandle); 7737 diskhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7738 &irChangeList->ConfigElement[i].PhysDiskDevHandle); 7739 7740 switch (reason) { 7741 case MPI2_EVENT_IR_CHANGE_RC_ADDED: 7742 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_CREATED: 7743 { 7744 NDBG20(("mptsas %d volume added\n", 7745 mpt->m_instance)); 7746 7747 topo_node = kmem_zalloc( 7748 sizeof (mptsas_topo_change_list_t), 7749 KM_SLEEP); 7750 7751 topo_node->mpt = mpt; 7752 topo_node->event = 7753 MPTSAS_DR_EVENT_RECONFIG_TARGET; 7754 topo_node->un.physport = 0xff; 7755 topo_node->devhdl = volhandle; 7756 topo_node->flags = 7757 MPTSAS_TOPO_FLAG_RAID_ASSOCIATED; 7758 topo_node->object = NULL; 7759 if (topo_head == NULL) { 7760 topo_head = topo_tail = topo_node; 7761 } else { 7762 topo_tail->next = topo_node; 7763 topo_tail = topo_node; 7764 } 7765 break; 7766 } 7767 case MPI2_EVENT_IR_CHANGE_RC_REMOVED: 7768 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_DELETED: 7769 { 7770 NDBG20(("mptsas %d volume deleted\n", 7771 mpt->m_instance)); 7772 ptgt = refhash_linear_search(mpt->m_targets, 7773 mptsas_target_eval_devhdl, &volhandle); 7774 if (ptgt == NULL) 7775 break; 7776 7777 /* 7778 * Clear any flags related to volume 7779 */ 7780 (void) mptsas_delete_volume(mpt, volhandle); 7781 7782 /* 7783 * Update DR flag immediately avoid I/O failure 7784 */ 7785 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7786 7787 topo_node = kmem_zalloc( 7788 sizeof (mptsas_topo_change_list_t), 7789 KM_SLEEP); 7790 topo_node->mpt = mpt; 7791 topo_node->un.phymask = 7792 ptgt->m_addr.mta_phymask; 7793 topo_node->event = 7794 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7795 topo_node->devhdl = volhandle; 7796 topo_node->flags = 7797 MPTSAS_TOPO_FLAG_RAID_ASSOCIATED; 7798 topo_node->object = (void *)ptgt; 7799 if (topo_head == NULL) { 7800 topo_head = topo_tail = topo_node; 7801 } else { 7802 topo_tail->next = topo_node; 7803 topo_tail = topo_node; 7804 } 7805 break; 7806 } 7807 case MPI2_EVENT_IR_CHANGE_RC_PD_CREATED: 7808 case MPI2_EVENT_IR_CHANGE_RC_HIDE: 7809 { 7810 ptgt = refhash_linear_search(mpt->m_targets, 7811 mptsas_target_eval_devhdl, &diskhandle); 7812 if (ptgt == NULL) 7813 break; 7814 7815 /* 7816 * Update DR flag immediately avoid I/O failure 7817 */ 7818 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7819 7820 topo_node = kmem_zalloc( 7821 sizeof (mptsas_topo_change_list_t), 7822 KM_SLEEP); 7823 topo_node->mpt = mpt; 7824 topo_node->un.phymask = 7825 ptgt->m_addr.mta_phymask; 7826 topo_node->event = 7827 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7828 topo_node->devhdl = diskhandle; 7829 topo_node->flags = 7830 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED; 7831 topo_node->object = (void *)ptgt; 7832 if (topo_head == NULL) { 7833 topo_head = topo_tail = topo_node; 7834 } else { 7835 topo_tail->next = topo_node; 7836 topo_tail = topo_node; 7837 } 7838 break; 7839 } 7840 case MPI2_EVENT_IR_CHANGE_RC_UNHIDE: 7841 case MPI2_EVENT_IR_CHANGE_RC_PD_DELETED: 7842 { 7843 /* 7844 * The physical drive is released by a IR 7845 * volume. But we cannot get the the physport 7846 * or phynum from the event data, so we only 7847 * can get the physport/phynum after SAS 7848 * Device Page0 request for the devhdl. 7849 */ 7850 topo_node = kmem_zalloc( 7851 sizeof (mptsas_topo_change_list_t), 7852 KM_SLEEP); 7853 topo_node->mpt = mpt; 7854 topo_node->un.phymask = 0; 7855 topo_node->event = 7856 MPTSAS_DR_EVENT_RECONFIG_TARGET; 7857 topo_node->devhdl = diskhandle; 7858 topo_node->flags = 7859 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED; 7860 topo_node->object = NULL; 7861 mpt->m_port_chng = 1; 7862 if (topo_head == NULL) { 7863 topo_head = topo_tail = topo_node; 7864 } else { 7865 topo_tail->next = topo_node; 7866 topo_tail = topo_node; 7867 } 7868 break; 7869 } 7870 default: 7871 break; 7872 } 7873 } 7874 7875 if (topo_head != NULL) { 7876 /* 7877 * Launch DR taskq to handle topology change 7878 */ 7879 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 7880 mptsas_handle_dr, (void *)topo_head, 7881 DDI_NOSLEEP)) != DDI_SUCCESS) { 7882 while (topo_head != NULL) { 7883 topo_node = topo_head; 7884 topo_head = topo_head->next; 7885 kmem_free(topo_node, 7886 sizeof (mptsas_topo_change_list_t)); 7887 } 7888 mptsas_log(mpt, CE_NOTE, "mptsas start taskq " 7889 "for handle SAS DR event failed. \n"); 7890 } 7891 } 7892 break; 7893 } 7894 default: 7895 return (DDI_FAILURE); 7896 } 7897 7898 return (DDI_SUCCESS); 7899 } 7900 7901 /* 7902 * handle events from ioc 7903 */ 7904 static void 7905 mptsas_handle_event(void *args) 7906 { 7907 m_replyh_arg_t *replyh_arg; 7908 pMpi2EventNotificationReply_t eventreply; 7909 uint32_t event, iocloginfo, rfm; 7910 uint32_t status; 7911 uint8_t port; 7912 mptsas_t *mpt; 7913 uint_t iocstatus; 7914 7915 replyh_arg = (m_replyh_arg_t *)args; 7916 rfm = replyh_arg->rfm; 7917 mpt = replyh_arg->mpt; 7918 7919 mutex_enter(&mpt->m_mutex); 7920 /* 7921 * If HBA is being reset, drop incoming event. 7922 */ 7923 if (mpt->m_in_reset) { 7924 NDBG20(("dropping event received prior to reset")); 7925 mutex_exit(&mpt->m_mutex); 7926 return; 7927 } 7928 7929 eventreply = (pMpi2EventNotificationReply_t) 7930 (mpt->m_reply_frame + (rfm - 7931 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 7932 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 7933 7934 if (iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 7935 &eventreply->IOCStatus)) { 7936 if (iocstatus == MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 7937 mptsas_log(mpt, CE_WARN, 7938 "!mptsas_handle_event: IOCStatus=0x%x, " 7939 "IOCLogInfo=0x%x", iocstatus, 7940 ddi_get32(mpt->m_acc_reply_frame_hdl, 7941 &eventreply->IOCLogInfo)); 7942 } else { 7943 mptsas_log(mpt, CE_WARN, 7944 "mptsas_handle_event: IOCStatus=0x%x, " 7945 "IOCLogInfo=0x%x", iocstatus, 7946 ddi_get32(mpt->m_acc_reply_frame_hdl, 7947 &eventreply->IOCLogInfo)); 7948 } 7949 } 7950 7951 /* 7952 * figure out what kind of event we got and handle accordingly 7953 */ 7954 switch (event) { 7955 case MPI2_EVENT_LOG_ENTRY_ADDED: 7956 break; 7957 case MPI2_EVENT_LOG_DATA: 7958 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 7959 &eventreply->IOCLogInfo); 7960 NDBG20(("mptsas %d log info %x received.\n", mpt->m_instance, 7961 iocloginfo)); 7962 break; 7963 case MPI2_EVENT_STATE_CHANGE: 7964 NDBG20(("mptsas3%d state change.", mpt->m_instance)); 7965 break; 7966 case MPI2_EVENT_HARD_RESET_RECEIVED: 7967 NDBG20(("mptsas3%d event change.", mpt->m_instance)); 7968 break; 7969 case MPI2_EVENT_SAS_DISCOVERY: 7970 { 7971 MPI2_EVENT_DATA_SAS_DISCOVERY *sasdiscovery; 7972 char string[80]; 7973 uint8_t rc; 7974 7975 sasdiscovery = 7976 (pMpi2EventDataSasDiscovery_t)eventreply->EventData; 7977 7978 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 7979 &sasdiscovery->ReasonCode); 7980 port = ddi_get8(mpt->m_acc_reply_frame_hdl, 7981 &sasdiscovery->PhysicalPort); 7982 status = ddi_get32(mpt->m_acc_reply_frame_hdl, 7983 &sasdiscovery->DiscoveryStatus); 7984 7985 string[0] = 0; 7986 switch (rc) { 7987 case MPI2_EVENT_SAS_DISC_RC_STARTED: 7988 (void) sprintf(string, "STARTING"); 7989 break; 7990 case MPI2_EVENT_SAS_DISC_RC_COMPLETED: 7991 (void) sprintf(string, "COMPLETED"); 7992 break; 7993 default: 7994 (void) sprintf(string, "UNKNOWN"); 7995 break; 7996 } 7997 7998 NDBG20(("SAS DISCOVERY is %s for port %d, status %x", string, 7999 port, status)); 8000 8001 break; 8002 } 8003 case MPI2_EVENT_EVENT_CHANGE: 8004 NDBG20(("mptsas3%d event change.", mpt->m_instance)); 8005 break; 8006 case MPI2_EVENT_TASK_SET_FULL: 8007 { 8008 pMpi2EventDataTaskSetFull_t taskfull; 8009 8010 taskfull = (pMpi2EventDataTaskSetFull_t)eventreply->EventData; 8011 8012 NDBG20(("TASK_SET_FULL received for mptsas3%d, depth %d\n", 8013 mpt->m_instance, ddi_get16(mpt->m_acc_reply_frame_hdl, 8014 &taskfull->CurrentDepth))); 8015 break; 8016 } 8017 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 8018 { 8019 /* 8020 * SAS TOPOLOGY CHANGE LIST Event has already been handled 8021 * in mptsas_handle_event_sync() of interrupt context 8022 */ 8023 break; 8024 } 8025 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 8026 { 8027 pMpi2EventDataSasEnclDevStatusChange_t encstatus; 8028 uint8_t rc; 8029 char string[80]; 8030 8031 encstatus = (pMpi2EventDataSasEnclDevStatusChange_t) 8032 eventreply->EventData; 8033 8034 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 8035 &encstatus->ReasonCode); 8036 switch (rc) { 8037 case MPI2_EVENT_SAS_ENCL_RC_ADDED: 8038 (void) sprintf(string, "added"); 8039 break; 8040 case MPI2_EVENT_SAS_ENCL_RC_NOT_RESPONDING: 8041 (void) sprintf(string, ", not responding"); 8042 break; 8043 default: 8044 break; 8045 } 8046 NDBG20(("mptsas3%d ENCLOSURE STATUS CHANGE for enclosure " 8047 "%x%s\n", mpt->m_instance, 8048 ddi_get16(mpt->m_acc_reply_frame_hdl, 8049 &encstatus->EnclosureHandle), string)); 8050 break; 8051 } 8052 8053 /* 8054 * MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE is handled by 8055 * mptsas_handle_event_sync,in here just send ack message. 8056 */ 8057 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 8058 { 8059 pMpi2EventDataSasDeviceStatusChange_t statuschange; 8060 uint8_t rc; 8061 uint16_t devhdl; 8062 uint64_t wwn = 0; 8063 uint32_t wwn_lo, wwn_hi; 8064 8065 statuschange = (pMpi2EventDataSasDeviceStatusChange_t) 8066 eventreply->EventData; 8067 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 8068 &statuschange->ReasonCode); 8069 wwn_lo = ddi_get32(mpt->m_acc_reply_frame_hdl, 8070 (uint32_t *)(void *)&statuschange->SASAddress); 8071 wwn_hi = ddi_get32(mpt->m_acc_reply_frame_hdl, 8072 (uint32_t *)(void *)&statuschange->SASAddress + 1); 8073 wwn = ((uint64_t)wwn_hi << 32) | wwn_lo; 8074 devhdl = ddi_get16(mpt->m_acc_reply_frame_hdl, 8075 &statuschange->DevHandle); 8076 8077 NDBG13(("MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE wwn is %"PRIx64, 8078 wwn)); 8079 8080 switch (rc) { 8081 case MPI2_EVENT_SAS_DEV_STAT_RC_SMART_DATA: 8082 NDBG20(("SMART data received, ASC/ASCQ = %02x/%02x", 8083 ddi_get8(mpt->m_acc_reply_frame_hdl, 8084 &statuschange->ASC), 8085 ddi_get8(mpt->m_acc_reply_frame_hdl, 8086 &statuschange->ASCQ))); 8087 break; 8088 8089 case MPI2_EVENT_SAS_DEV_STAT_RC_UNSUPPORTED: 8090 NDBG20(("Device not supported")); 8091 break; 8092 8093 case MPI2_EVENT_SAS_DEV_STAT_RC_INTERNAL_DEVICE_RESET: 8094 NDBG20(("IOC internally generated the Target Reset " 8095 "for devhdl:%x", devhdl)); 8096 break; 8097 8098 case MPI2_EVENT_SAS_DEV_STAT_RC_CMP_INTERNAL_DEV_RESET: 8099 NDBG20(("IOC's internally generated Target Reset " 8100 "completed for devhdl:%x", devhdl)); 8101 break; 8102 8103 case MPI2_EVENT_SAS_DEV_STAT_RC_TASK_ABORT_INTERNAL: 8104 NDBG20(("IOC internally generated Abort Task")); 8105 break; 8106 8107 case MPI2_EVENT_SAS_DEV_STAT_RC_CMP_TASK_ABORT_INTERNAL: 8108 NDBG20(("IOC's internally generated Abort Task " 8109 "completed")); 8110 break; 8111 8112 case MPI2_EVENT_SAS_DEV_STAT_RC_ABORT_TASK_SET_INTERNAL: 8113 NDBG20(("IOC internally generated Abort Task Set")); 8114 break; 8115 8116 case MPI2_EVENT_SAS_DEV_STAT_RC_CLEAR_TASK_SET_INTERNAL: 8117 NDBG20(("IOC internally generated Clear Task Set")); 8118 break; 8119 8120 case MPI2_EVENT_SAS_DEV_STAT_RC_QUERY_TASK_INTERNAL: 8121 NDBG20(("IOC internally generated Query Task")); 8122 break; 8123 8124 case MPI2_EVENT_SAS_DEV_STAT_RC_ASYNC_NOTIFICATION: 8125 NDBG20(("Device sent an Asynchronous Notification")); 8126 break; 8127 8128 default: 8129 break; 8130 } 8131 break; 8132 } 8133 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 8134 { 8135 /* 8136 * IR TOPOLOGY CHANGE LIST Event has already been handled 8137 * in mpt_handle_event_sync() of interrupt context 8138 */ 8139 break; 8140 } 8141 case MPI2_EVENT_IR_OPERATION_STATUS: 8142 { 8143 Mpi2EventDataIrOperationStatus_t *irOpStatus; 8144 char reason_str[80]; 8145 uint8_t rc, percent; 8146 uint16_t handle; 8147 8148 irOpStatus = (pMpi2EventDataIrOperationStatus_t) 8149 eventreply->EventData; 8150 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 8151 &irOpStatus->RAIDOperation); 8152 percent = ddi_get8(mpt->m_acc_reply_frame_hdl, 8153 &irOpStatus->PercentComplete); 8154 handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 8155 &irOpStatus->VolDevHandle); 8156 8157 switch (rc) { 8158 case MPI2_EVENT_IR_RAIDOP_RESYNC: 8159 (void) sprintf(reason_str, "resync"); 8160 break; 8161 case MPI2_EVENT_IR_RAIDOP_ONLINE_CAP_EXPANSION: 8162 (void) sprintf(reason_str, "online capacity " 8163 "expansion"); 8164 break; 8165 case MPI2_EVENT_IR_RAIDOP_CONSISTENCY_CHECK: 8166 (void) sprintf(reason_str, "consistency check"); 8167 break; 8168 default: 8169 (void) sprintf(reason_str, "unknown reason %x", 8170 rc); 8171 } 8172 8173 NDBG20(("mptsas3%d raid operational status: (%s)" 8174 "\thandle(0x%04x), percent complete(%d)\n", 8175 mpt->m_instance, reason_str, handle, percent)); 8176 break; 8177 } 8178 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 8179 { 8180 pMpi2EventDataSasBroadcastPrimitive_t sas_broadcast; 8181 uint8_t phy_num; 8182 uint8_t primitive; 8183 8184 sas_broadcast = (pMpi2EventDataSasBroadcastPrimitive_t) 8185 eventreply->EventData; 8186 8187 phy_num = ddi_get8(mpt->m_acc_reply_frame_hdl, 8188 &sas_broadcast->PhyNum); 8189 primitive = ddi_get8(mpt->m_acc_reply_frame_hdl, 8190 &sas_broadcast->Primitive); 8191 8192 switch (primitive) { 8193 case MPI2_EVENT_PRIMITIVE_CHANGE: 8194 mptsas_smhba_log_sysevent(mpt, 8195 ESC_SAS_HBA_PORT_BROADCAST, 8196 SAS_PORT_BROADCAST_CHANGE, 8197 &mpt->m_phy_info[phy_num].smhba_info); 8198 break; 8199 case MPI2_EVENT_PRIMITIVE_SES: 8200 mptsas_smhba_log_sysevent(mpt, 8201 ESC_SAS_HBA_PORT_BROADCAST, 8202 SAS_PORT_BROADCAST_SES, 8203 &mpt->m_phy_info[phy_num].smhba_info); 8204 break; 8205 case MPI2_EVENT_PRIMITIVE_EXPANDER: 8206 mptsas_smhba_log_sysevent(mpt, 8207 ESC_SAS_HBA_PORT_BROADCAST, 8208 SAS_PORT_BROADCAST_D01_4, 8209 &mpt->m_phy_info[phy_num].smhba_info); 8210 break; 8211 case MPI2_EVENT_PRIMITIVE_ASYNCHRONOUS_EVENT: 8212 mptsas_smhba_log_sysevent(mpt, 8213 ESC_SAS_HBA_PORT_BROADCAST, 8214 SAS_PORT_BROADCAST_D04_7, 8215 &mpt->m_phy_info[phy_num].smhba_info); 8216 break; 8217 case MPI2_EVENT_PRIMITIVE_RESERVED3: 8218 mptsas_smhba_log_sysevent(mpt, 8219 ESC_SAS_HBA_PORT_BROADCAST, 8220 SAS_PORT_BROADCAST_D16_7, 8221 &mpt->m_phy_info[phy_num].smhba_info); 8222 break; 8223 case MPI2_EVENT_PRIMITIVE_RESERVED4: 8224 mptsas_smhba_log_sysevent(mpt, 8225 ESC_SAS_HBA_PORT_BROADCAST, 8226 SAS_PORT_BROADCAST_D29_7, 8227 &mpt->m_phy_info[phy_num].smhba_info); 8228 break; 8229 case MPI2_EVENT_PRIMITIVE_CHANGE0_RESERVED: 8230 mptsas_smhba_log_sysevent(mpt, 8231 ESC_SAS_HBA_PORT_BROADCAST, 8232 SAS_PORT_BROADCAST_D24_0, 8233 &mpt->m_phy_info[phy_num].smhba_info); 8234 break; 8235 case MPI2_EVENT_PRIMITIVE_CHANGE1_RESERVED: 8236 mptsas_smhba_log_sysevent(mpt, 8237 ESC_SAS_HBA_PORT_BROADCAST, 8238 SAS_PORT_BROADCAST_D27_4, 8239 &mpt->m_phy_info[phy_num].smhba_info); 8240 break; 8241 default: 8242 NDBG16(("mptsas3%d: unknown BROADCAST PRIMITIVE" 8243 " %x received", 8244 mpt->m_instance, primitive)); 8245 break; 8246 } 8247 NDBG16(("mptsas3%d sas broadcast primitive: " 8248 "\tprimitive(0x%04x), phy(%d) complete\n", 8249 mpt->m_instance, primitive, phy_num)); 8250 break; 8251 } 8252 case MPI2_EVENT_IR_VOLUME: 8253 { 8254 Mpi2EventDataIrVolume_t *irVolume; 8255 uint16_t devhandle; 8256 uint32_t state; 8257 int config, vol; 8258 uint8_t found = FALSE; 8259 8260 irVolume = (pMpi2EventDataIrVolume_t)eventreply->EventData; 8261 state = ddi_get32(mpt->m_acc_reply_frame_hdl, 8262 &irVolume->NewValue); 8263 devhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 8264 &irVolume->VolDevHandle); 8265 8266 NDBG20(("EVENT_IR_VOLUME event is received")); 8267 8268 /* 8269 * Get latest RAID info and then find the DevHandle for this 8270 * event in the configuration. If the DevHandle is not found 8271 * just exit the event. 8272 */ 8273 (void) mptsas_get_raid_info(mpt); 8274 for (config = 0; (config < mpt->m_num_raid_configs) && 8275 (!found); config++) { 8276 for (vol = 0; vol < MPTSAS_MAX_RAIDVOLS; vol++) { 8277 if (mpt->m_raidconfig[config].m_raidvol[vol]. 8278 m_raidhandle == devhandle) { 8279 found = TRUE; 8280 break; 8281 } 8282 } 8283 } 8284 if (!found) { 8285 break; 8286 } 8287 8288 switch (irVolume->ReasonCode) { 8289 case MPI2_EVENT_IR_VOLUME_RC_SETTINGS_CHANGED: 8290 { 8291 uint32_t i; 8292 mpt->m_raidconfig[config].m_raidvol[vol].m_settings = 8293 state; 8294 8295 i = state & MPI2_RAIDVOL0_SETTING_MASK_WRITE_CACHING; 8296 mptsas_log(mpt, CE_NOTE, " Volume %d settings changed" 8297 ", auto-config of hot-swap drives is %s" 8298 ", write caching is %s" 8299 ", hot-spare pool mask is %02x\n", 8300 vol, state & 8301 MPI2_RAIDVOL0_SETTING_AUTO_CONFIG_HSWAP_DISABLE 8302 ? "disabled" : "enabled", 8303 i == MPI2_RAIDVOL0_SETTING_UNCHANGED 8304 ? "controlled by member disks" : 8305 i == MPI2_RAIDVOL0_SETTING_DISABLE_WRITE_CACHING 8306 ? "disabled" : 8307 i == MPI2_RAIDVOL0_SETTING_ENABLE_WRITE_CACHING 8308 ? "enabled" : 8309 "incorrectly set", 8310 (state >> 16) & 0xff); 8311 break; 8312 } 8313 case MPI2_EVENT_IR_VOLUME_RC_STATE_CHANGED: 8314 { 8315 mpt->m_raidconfig[config].m_raidvol[vol].m_state = 8316 (uint8_t)state; 8317 8318 mptsas_log(mpt, CE_NOTE, 8319 "Volume %d is now %s\n", vol, 8320 state == MPI2_RAID_VOL_STATE_OPTIMAL 8321 ? "optimal" : 8322 state == MPI2_RAID_VOL_STATE_DEGRADED 8323 ? "degraded" : 8324 state == MPI2_RAID_VOL_STATE_ONLINE 8325 ? "online" : 8326 state == MPI2_RAID_VOL_STATE_INITIALIZING 8327 ? "initializing" : 8328 state == MPI2_RAID_VOL_STATE_FAILED 8329 ? "failed" : 8330 state == MPI2_RAID_VOL_STATE_MISSING 8331 ? "missing" : 8332 "state unknown"); 8333 break; 8334 } 8335 case MPI2_EVENT_IR_VOLUME_RC_STATUS_FLAGS_CHANGED: 8336 { 8337 mpt->m_raidconfig[config].m_raidvol[vol]. 8338 m_statusflags = state; 8339 8340 mptsas_log(mpt, CE_NOTE, 8341 " Volume %d is now %s%s%s%s%s%s%s%s%s\n", 8342 vol, 8343 state & MPI2_RAIDVOL0_STATUS_FLAG_ENABLED 8344 ? ", enabled" : ", disabled", 8345 state & MPI2_RAIDVOL0_STATUS_FLAG_QUIESCED 8346 ? ", quiesced" : "", 8347 state & MPI2_RAIDVOL0_STATUS_FLAG_VOLUME_INACTIVE 8348 ? ", inactive" : ", active", 8349 state & 8350 MPI2_RAIDVOL0_STATUS_FLAG_BAD_BLOCK_TABLE_FULL 8351 ? ", bad block table is full" : "", 8352 state & 8353 MPI2_RAIDVOL0_STATUS_FLAG_RESYNC_IN_PROGRESS 8354 ? ", resync in progress" : "", 8355 state & MPI2_RAIDVOL0_STATUS_FLAG_BACKGROUND_INIT 8356 ? ", background initialization in progress" : "", 8357 state & 8358 MPI2_RAIDVOL0_STATUS_FLAG_CAPACITY_EXPANSION 8359 ? ", capacity expansion in progress" : "", 8360 state & 8361 MPI2_RAIDVOL0_STATUS_FLAG_CONSISTENCY_CHECK 8362 ? ", consistency check in progress" : "", 8363 state & MPI2_RAIDVOL0_STATUS_FLAG_DATA_SCRUB 8364 ? ", data scrub in progress" : ""); 8365 break; 8366 } 8367 default: 8368 break; 8369 } 8370 break; 8371 } 8372 case MPI2_EVENT_IR_PHYSICAL_DISK: 8373 { 8374 Mpi2EventDataIrPhysicalDisk_t *irPhysDisk; 8375 uint16_t devhandle, enchandle, slot; 8376 uint32_t status, state; 8377 uint8_t physdisknum, reason; 8378 8379 irPhysDisk = (Mpi2EventDataIrPhysicalDisk_t *) 8380 eventreply->EventData; 8381 physdisknum = ddi_get8(mpt->m_acc_reply_frame_hdl, 8382 &irPhysDisk->PhysDiskNum); 8383 devhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 8384 &irPhysDisk->PhysDiskDevHandle); 8385 enchandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 8386 &irPhysDisk->EnclosureHandle); 8387 slot = ddi_get16(mpt->m_acc_reply_frame_hdl, 8388 &irPhysDisk->Slot); 8389 state = ddi_get32(mpt->m_acc_reply_frame_hdl, 8390 &irPhysDisk->NewValue); 8391 reason = ddi_get8(mpt->m_acc_reply_frame_hdl, 8392 &irPhysDisk->ReasonCode); 8393 8394 NDBG20(("EVENT_IR_PHYSICAL_DISK event is received")); 8395 8396 switch (reason) { 8397 case MPI2_EVENT_IR_PHYSDISK_RC_SETTINGS_CHANGED: 8398 mptsas_log(mpt, CE_NOTE, 8399 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 8400 "for enclosure with handle 0x%x is now in hot " 8401 "spare pool %d", 8402 physdisknum, devhandle, slot, enchandle, 8403 (state >> 16) & 0xff); 8404 break; 8405 8406 case MPI2_EVENT_IR_PHYSDISK_RC_STATUS_FLAGS_CHANGED: 8407 status = state; 8408 mptsas_log(mpt, CE_NOTE, 8409 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 8410 "for enclosure with handle 0x%x is now " 8411 "%s%s%s%s%s\n", physdisknum, devhandle, slot, 8412 enchandle, 8413 status & MPI2_PHYSDISK0_STATUS_FLAG_INACTIVE_VOLUME 8414 ? ", inactive" : ", active", 8415 status & MPI2_PHYSDISK0_STATUS_FLAG_OUT_OF_SYNC 8416 ? ", out of sync" : "", 8417 status & MPI2_PHYSDISK0_STATUS_FLAG_QUIESCED 8418 ? ", quiesced" : "", 8419 status & 8420 MPI2_PHYSDISK0_STATUS_FLAG_WRITE_CACHE_ENABLED 8421 ? ", write cache enabled" : "", 8422 status & MPI2_PHYSDISK0_STATUS_FLAG_OCE_TARGET 8423 ? ", capacity expansion target" : ""); 8424 break; 8425 8426 case MPI2_EVENT_IR_PHYSDISK_RC_STATE_CHANGED: 8427 mptsas_log(mpt, CE_NOTE, 8428 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 8429 "for enclosure with handle 0x%x is now %s\n", 8430 physdisknum, devhandle, slot, enchandle, 8431 state == MPI2_RAID_PD_STATE_OPTIMAL 8432 ? "optimal" : 8433 state == MPI2_RAID_PD_STATE_REBUILDING 8434 ? "rebuilding" : 8435 state == MPI2_RAID_PD_STATE_DEGRADED 8436 ? "degraded" : 8437 state == MPI2_RAID_PD_STATE_HOT_SPARE 8438 ? "a hot spare" : 8439 state == MPI2_RAID_PD_STATE_ONLINE 8440 ? "online" : 8441 state == MPI2_RAID_PD_STATE_OFFLINE 8442 ? "offline" : 8443 state == MPI2_RAID_PD_STATE_NOT_COMPATIBLE 8444 ? "not compatible" : 8445 state == MPI2_RAID_PD_STATE_NOT_CONFIGURED 8446 ? "not configured" : 8447 "state unknown"); 8448 break; 8449 } 8450 break; 8451 } 8452 default: 8453 NDBG20(("mptsas3%d: unknown event %x received", 8454 mpt->m_instance, event)); 8455 break; 8456 } 8457 8458 /* 8459 * Return the reply frame to the free queue. 8460 */ 8461 ddi_put32(mpt->m_acc_free_queue_hdl, 8462 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], rfm); 8463 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 8464 DDI_DMA_SYNC_FORDEV); 8465 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 8466 mpt->m_free_index = 0; 8467 } 8468 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 8469 mpt->m_free_index); 8470 mutex_exit(&mpt->m_mutex); 8471 } 8472 8473 /* 8474 * invoked from timeout() to restart qfull cmds with throttle == 0 8475 */ 8476 static void 8477 mptsas_restart_cmd(void *arg) 8478 { 8479 mptsas_t *mpt = arg; 8480 mptsas_target_t *ptgt = NULL; 8481 8482 mutex_enter(&mpt->m_mutex); 8483 8484 mpt->m_restart_cmd_timeid = 0; 8485 8486 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 8487 ptgt = refhash_next(mpt->m_targets, ptgt)) { 8488 mutex_enter(&ptgt->m_t_mutex); 8489 if (ptgt->m_reset_delay == 0) { 8490 if (ptgt->m_t_throttle == QFULL_THROTTLE) { 8491 mptsas_set_throttle(mpt, ptgt, 8492 MAX_THROTTLE); 8493 } 8494 } 8495 mutex_exit(&ptgt->m_t_mutex); 8496 } 8497 mptsas_restart_hba(mpt); 8498 mutex_exit(&mpt->m_mutex); 8499 } 8500 8501 /* 8502 * Assume some checks have been done prior to calling this 8503 * function so we don't need to consider taking the m_mutex. 8504 */ 8505 static void 8506 mptsas_remove_cmd_nomtx(mptsas_t *mpt, mptsas_cmd_t *cmd) 8507 { 8508 int slot; 8509 mptsas_slots_t *slots = mpt->m_active; 8510 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8511 8512 ASSERT(cmd != NULL); 8513 ASSERT(cmd->cmd_queued == FALSE); 8514 ASSERT((cmd->cmd_flags & CFLAG_CMDIOC) == 0); 8515 8516 slot = cmd->cmd_slot; 8517 8518 /* 8519 * remove the cmd. 8520 */ 8521 if (cmd == slots->m_slot[slot]) { 8522 NDBG31(("mptsas_remove_cmd_nomtx: removing cmd=0x%p, flags " 8523 "0x%x", (void *)cmd, cmd->cmd_flags)); 8524 slots->m_slot[slot] = NULL; 8525 ASSERT(mpt->m_ncmds != 0); 8526 atomic_dec_32(&mpt->m_ncmds); 8527 ASSERT(mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds != 0); 8528 atomic_dec_32( 8529 &mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds); 8530 8531 /* 8532 * Decrement per target ncmds, we know this is not an 8533 * IOC cmd and it therefore has a target associated with it. 8534 */ 8535 mutex_enter(&ptgt->m_t_mutex); 8536 ASSERT(ptgt->m_t_ncmds != 0); 8537 ptgt->m_t_ncmds--; 8538 8539 /* 8540 * reset throttle if we just ran an untagged command 8541 * to a tagged target 8542 */ 8543 if ((ptgt->m_t_ncmds == 0) && 8544 ((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0)) { 8545 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 8546 } 8547 8548 /* 8549 * Remove this command from the active queue. 8550 */ 8551 if (cmd->cmd_active_expiration != 0) { 8552 TAILQ_REMOVE(&ptgt->m_active_cmdq, cmd, 8553 cmd_active_link); 8554 cmd->cmd_active_expiration = 0; 8555 } 8556 mutex_exit(&ptgt->m_t_mutex); 8557 } 8558 8559 ASSERT(cmd != slots->m_slot[cmd->cmd_slot]); 8560 } 8561 8562 void 8563 mptsas_remove_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 8564 { 8565 int slot; 8566 mptsas_slots_t *slots = mpt->m_active; 8567 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8568 8569 ASSERT(cmd != NULL); 8570 ASSERT(cmd->cmd_queued == FALSE); 8571 8572 /* 8573 * Task Management cmds are removed in their own routines. Also, 8574 * we don't want to modify timeout based on TM cmds. 8575 */ 8576 if (cmd->cmd_flags & CFLAG_TM_CMD) { 8577 return; 8578 } 8579 8580 slot = cmd->cmd_slot; 8581 8582 /* 8583 * remove the cmd. 8584 */ 8585 if (cmd == slots->m_slot[slot]) { 8586 NDBG31(("mptsas_remove_cmd: removing cmd=0x%p, flags 0x%x", 8587 (void *)cmd, cmd->cmd_flags)); 8588 slots->m_slot[slot] = NULL; 8589 ASSERT(mpt->m_ncmds != 0); 8590 atomic_dec_32(&mpt->m_ncmds); 8591 ASSERT(mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds != 0); 8592 atomic_dec_32( 8593 &mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds); 8594 8595 /* 8596 * only decrement per target ncmds if command 8597 * has a target associated with it. 8598 */ 8599 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 8600 mutex_enter(&ptgt->m_t_mutex); 8601 ASSERT(ptgt->m_t_ncmds != 0); 8602 ptgt->m_t_ncmds--; 8603 8604 /* 8605 * reset throttle if we just ran an untagged command 8606 * to a tagged target 8607 */ 8608 if ((ptgt->m_t_ncmds == 0) && 8609 ((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0)) { 8610 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 8611 } 8612 8613 /* 8614 * Remove this command from the active queue. 8615 */ 8616 if (cmd->cmd_active_expiration != 0) { 8617 TAILQ_REMOVE(&ptgt->m_active_cmdq, cmd, 8618 cmd_active_link); 8619 cmd->cmd_active_expiration = 0; 8620 } 8621 mutex_exit(&ptgt->m_t_mutex); 8622 } 8623 8624 } 8625 8626 /* 8627 * This is all we need to do for ioc commands. 8628 */ 8629 if (cmd->cmd_flags & CFLAG_CMDIOC) { 8630 mptsas_return_to_pool(mpt, cmd); 8631 return; 8632 } 8633 8634 ASSERT(cmd != slots->m_slot[cmd->cmd_slot]); 8635 } 8636 8637 /* 8638 * accept all cmds on the tx_waitq if any and then 8639 * start a fresh request from the top of the device queue. 8640 * 8641 * since there are always cmds queued on the tx_waitq, and rare cmds on 8642 * the instance waitq, so this function should not be invoked in the ISR, 8643 * the mptsas_restart_waitq() is invoked in the ISR instead. otherwise, the 8644 * burden belongs to the IO dispatch CPUs is moved the interrupt CPU. 8645 */ 8646 static void 8647 mptsas_restart_hba(mptsas_t *mpt) 8648 { 8649 ASSERT(mutex_owned(&mpt->m_mutex)); 8650 8651 mptsas_accept_tx_waitqs(mpt); 8652 mptsas_restart_waitq(mpt); 8653 } 8654 8655 /* 8656 * start a fresh request from the top of the device queue 8657 */ 8658 static void 8659 mptsas_restart_waitq(mptsas_t *mpt) 8660 { 8661 mptsas_cmd_t *cmd, *next_cmd; 8662 mptsas_target_t *ptgt = NULL; 8663 8664 NDBG1(("mptsas_restart_waitq: mpt=0x%p", (void *)mpt)); 8665 8666 ASSERT(mutex_owned(&mpt->m_mutex)); 8667 8668 /* 8669 * If there is a reset delay, don't start any cmds. Otherwise, start 8670 * as many cmds as possible. 8671 * Since SMID 0 is reserved and the TM slot is reserved, the actual max 8672 * commands is m_max_requests - 2. 8673 */ 8674 cmd = mpt->m_waitq; 8675 8676 while (cmd != NULL) { 8677 next_cmd = cmd->cmd_linkp; 8678 if (cmd->cmd_flags & CFLAG_PASSTHRU) { 8679 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8680 /* 8681 * passthru command get slot need 8682 * set CFLAG_PREPARED. 8683 */ 8684 cmd->cmd_flags |= CFLAG_PREPARED; 8685 mptsas_waitq_delete(mpt, cmd); 8686 mptsas_start_passthru(mpt, cmd); 8687 } 8688 cmd = next_cmd; 8689 continue; 8690 } 8691 if (cmd->cmd_flags & CFLAG_CONFIG) { 8692 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8693 /* 8694 * Send the config page request and delete it 8695 * from the waitq. 8696 */ 8697 cmd->cmd_flags |= CFLAG_PREPARED; 8698 mptsas_waitq_delete(mpt, cmd); 8699 mptsas_start_config_page_access(mpt, cmd); 8700 } 8701 cmd = next_cmd; 8702 continue; 8703 } 8704 if (cmd->cmd_flags & CFLAG_FW_DIAG) { 8705 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8706 /* 8707 * Send the FW Diag request and delete if from 8708 * the waitq. 8709 */ 8710 cmd->cmd_flags |= CFLAG_PREPARED; 8711 mptsas_waitq_delete(mpt, cmd); 8712 mptsas_start_diag(mpt, cmd); 8713 } 8714 cmd = next_cmd; 8715 continue; 8716 } 8717 8718 ptgt = cmd->cmd_tgt_addr; 8719 if (ptgt) { 8720 mutex_enter(&ptgt->m_t_mutex); 8721 if ((ptgt->m_t_throttle == DRAIN_THROTTLE) && 8722 (ptgt->m_t_ncmds == 0)) { 8723 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 8724 } 8725 if ((mpt->m_ncmds <= (mpt->m_max_requests - 2)) && 8726 (ptgt->m_reset_delay == 0) && 8727 (ptgt->m_t_ncmds < ptgt->m_t_throttle)) { 8728 mutex_exit(&ptgt->m_t_mutex); 8729 8730 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8731 mptsas_waitq_delete(mpt, cmd); 8732 mutex_exit(&mpt->m_mutex); 8733 (void) mptsas_start_cmd(mpt, cmd); 8734 mutex_enter(&mpt->m_mutex); 8735 cmd = mpt->m_waitq; 8736 continue; 8737 } 8738 } else { 8739 mutex_exit(&ptgt->m_t_mutex); 8740 } 8741 } 8742 cmd = next_cmd; 8743 } 8744 } 8745 8746 /* 8747 * Cmds are queued if scsi_start() doesn't get the m_mutex lock(no wait) 8748 * or if the decision has been made to always do that. Setting 8749 * mptsas_allow_txq_jumping to zero will allow higher performance on 8750 * a heavily loaded system as there is less disruption to the flow here. 8751 * There are 2 threads that handle one queue each. The idea is that 8752 * they take it in turn to grab the m_mutex to run the mptsas_accept_pkt() 8753 * function and then drop it while the cmd is started in mptsas_start_cmd(). 8754 */ 8755 static void 8756 mptsas_tx_waitq_thread(mptsas_thread_arg_t *arg) 8757 { 8758 mptsas_t *mpt = arg->mpt; 8759 mptsas_tx_waitqueue_t *txwq = &mpt->m_tx_waitq[arg->t]; 8760 8761 mutex_enter(&txwq->txwq_mutex); 8762 while (txwq->txwq_active) { 8763 mptsas_drain_tx_waitq(mpt, txwq); 8764 if (txwq->txwq_wdrain) { 8765 cv_signal(&txwq->txwq_drain_cv); 8766 } 8767 cv_wait(&txwq->txwq_cv, &txwq->txwq_mutex); 8768 } 8769 mutex_exit(&txwq->txwq_mutex); 8770 mutex_enter(&mpt->m_qthread_mutex); 8771 mpt->m_txwq_thread_n--; 8772 cv_broadcast(&mpt->m_qthread_cv); 8773 mutex_exit(&mpt->m_qthread_mutex); 8774 } 8775 8776 /* 8777 * Set the draining flag, disconnect the list and process one at a time 8778 * so that the cmds are sent in order. 8779 */ 8780 static void 8781 mptsas_drain_tx_waitq(mptsas_t *mpt, mptsas_tx_waitqueue_t *txwq) 8782 { 8783 mptsas_cmd_t *cmd, *ncmd; 8784 int rval, start; 8785 #ifdef MPTSAS_DEBUG 8786 uint32_t qlen; 8787 #endif 8788 8789 txwq->txwq_draining = TRUE; 8790 #ifndef __lock_lint 8791 _NOTE(CONSTCOND) 8792 #endif 8793 while (TRUE) { 8794 8795 /* 8796 * A Bus Reset could occur at any time but it will have to 8797 * wait for the main mutex before flushing the tx_waitq. 8798 * Pull all commands at once, then follow the list in order to 8799 * reduce txwq_mutex hold time. If there is a Bus Reset at 8800 * some point the commands will get to the waitq and then be 8801 * flushed. 8802 */ 8803 cmd = txwq->txwq_cmdq; 8804 8805 if (cmd == NULL) { 8806 txwq->txwq_draining = FALSE; 8807 return; 8808 } 8809 txwq->txwq_cmdq = NULL; 8810 txwq->txwq_qtail = &txwq->txwq_cmdq; 8811 #ifdef MPTSAS_DEBUG 8812 qlen = txwq->txwq_len; 8813 #endif 8814 txwq->txwq_len = 0; 8815 mutex_exit(&txwq->txwq_mutex); 8816 8817 while (cmd) { 8818 ncmd = cmd->cmd_linkp; 8819 cmd->cmd_linkp = NULL; 8820 mutex_enter(&mpt->m_mutex); 8821 start = mptsas_accept_pkt(mpt, cmd, &rval); 8822 mutex_exit(&mpt->m_mutex); 8823 if (start) { 8824 (void) mptsas_start_cmd(mpt, cmd); 8825 } 8826 if (rval != TRAN_ACCEPT) 8827 cmn_err(CE_WARN, 8828 "mpt: mptsas_drain_tx_waitq: failed " 8829 "(rval=0x%x) to accept cmd 0x%p on queue\n", 8830 rval, (void *)cmd); 8831 cmd = ncmd; 8832 #ifdef MPTSAS_DEBUG 8833 qlen--; 8834 #endif 8835 } 8836 ASSERT(qlen == 0); 8837 mutex_enter(&txwq->txwq_mutex); 8838 } 8839 } 8840 8841 /* 8842 * Stop the drain threads from picking up a new list. 8843 * Optionally wait for the current list being processed to drain through. 8844 * Add to and processing the tx waitq is now on hold until unblock is called. 8845 */ 8846 static void 8847 mptsas_block_tx_waitqs(mptsas_t *mpt, int wait) 8848 { 8849 int i; 8850 uint8_t wdrain = 0; 8851 mptsas_tx_waitqueue_t *txwq; 8852 8853 ASSERT(mutex_owned(&mpt->m_mutex)); 8854 8855 if (mpt->m_txwq_thread_n == 0) { 8856 return; 8857 } 8858 8859 /* 8860 * Turn off the use of the tx wait queues by scsi_start(). 8861 * This is just a dynamic flag no need for a mutex. 8862 */ 8863 mpt->m_txwq_enabled = BLOCKED; 8864 8865 for (i = 0; i < NUM_TX_WAITQ; i++) { 8866 txwq = &mpt->m_tx_waitq[i]; 8867 mutex_enter(&txwq->txwq_mutex); 8868 txwq->txwq_wdrain = TRUE; 8869 if (txwq->txwq_draining && wait) 8870 wdrain |= (1<<i); 8871 mutex_exit(&txwq->txwq_mutex); 8872 } 8873 8874 if (wdrain) { 8875 /* 8876 * Because the threads disconnect the entire queue each time 8877 * round in order to drain to completely drain we have to 8878 * drop the main mutex otherwise the drain threads get stuck. 8879 */ 8880 mutex_exit(&mpt->m_mutex); 8881 for (i = 0; i < NUM_TX_WAITQ; i++) { 8882 if (wdrain & (1<<i)) { 8883 txwq = &mpt->m_tx_waitq[i]; 8884 mutex_enter(&txwq->txwq_mutex); 8885 while (txwq->txwq_draining) { 8886 cv_wait(&txwq->txwq_drain_cv, 8887 &txwq->txwq_mutex); 8888 } 8889 mutex_exit(&txwq->txwq_mutex); 8890 } 8891 } 8892 mutex_enter(&mpt->m_mutex); 8893 } 8894 } 8895 8896 static void 8897 mptsas_unblock_tx_waitqs(mptsas_t *mpt) 8898 { 8899 int i; 8900 mptsas_tx_waitqueue_t *txwq; 8901 8902 if (mpt->m_txwq_thread_n == 0) { 8903 return; 8904 } 8905 8906 for (i = 0; i < NUM_TX_WAITQ; i++) { 8907 txwq = &mpt->m_tx_waitq[i]; 8908 mutex_enter(&txwq->txwq_mutex); 8909 txwq->txwq_wdrain = FALSE; 8910 cv_signal(&txwq->txwq_cv); 8911 mutex_exit(&txwq->txwq_mutex); 8912 } 8913 8914 mpt->m_txwq_enabled = FALSE; 8915 } 8916 8917 static void 8918 mptsas_accept_tx_waitqs(mptsas_t *mpt) 8919 { 8920 /* 8921 * Block with drain and unblock will leave us in a state where 8922 * we have the main mutex, there is nothing on the tx wait queues 8923 * and they are not in use until watch notices high activity again. 8924 */ 8925 mptsas_block_tx_waitqs(mpt, 1); 8926 mptsas_unblock_tx_waitqs(mpt); 8927 } 8928 8929 /* 8930 * mpt tag type lookup 8931 */ 8932 static char mptsas_tag_lookup[] = 8933 {0, MSG_HEAD_QTAG, MSG_ORDERED_QTAG, 0, MSG_SIMPLE_QTAG}; 8934 8935 static int 8936 mptsas_start_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 8937 { 8938 struct scsi_pkt *pkt = CMD2PKT(cmd); 8939 uint32_t control = 0; 8940 caddr_t mem, arsbuf; 8941 pMpi2SCSIIORequest_t io_request; 8942 ddi_dma_handle_t dma_hdl = mpt->m_dma_req_frame_hdl; 8943 ddi_acc_handle_t acc_hdl = mpt->m_acc_req_frame_hdl; 8944 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8945 uint16_t SMID, io_flags = 0, ars_size; 8946 uint8_t MSIidx; 8947 uint64_t request_desc; 8948 uint32_t ars_dmaaddrlow; 8949 mptsas_cmd_t *c; 8950 8951 NDBG1(("mptsas_start_cmd: cmd=0x%p, flags 0x%x", (void *)cmd, 8952 cmd->cmd_flags)); 8953 8954 /* 8955 * Set SMID and increment index. Rollover to 1 instead of 0 if index 8956 * is at the max. 0 is an invalid SMID, so we call the first index 1. 8957 */ 8958 SMID = cmd->cmd_slot; 8959 MSIidx = cmd->cmd_rpqidx; 8960 8961 /* 8962 * It is possible for back to back device reset to 8963 * happen before the reset delay has expired. That's 8964 * ok, just let the device reset go out on the bus. 8965 */ 8966 if ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0) { 8967 ASSERT(ptgt->m_reset_delay == 0); 8968 } 8969 8970 /* 8971 * if a non-tagged cmd is submitted to an active tagged target 8972 * then drain before submitting this cmd; SCSI-2 allows RQSENSE 8973 * to be untagged 8974 */ 8975 mutex_enter(&ptgt->m_t_mutex); 8976 if (((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0) && 8977 (ptgt->m_t_ncmds > 1) && 8978 ((cmd->cmd_flags & CFLAG_TM_CMD) == 0) && 8979 (*(cmd->cmd_pkt->pkt_cdbp) != SCMD_REQUEST_SENSE)) { 8980 if ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0) { 8981 NDBG23(("target=%d, untagged cmd, start draining\n", 8982 ptgt->m_devhdl)); 8983 8984 if (ptgt->m_reset_delay == 0) { 8985 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 8986 } 8987 mutex_exit(&ptgt->m_t_mutex); 8988 8989 mutex_enter(&mpt->m_mutex); 8990 mptsas_remove_cmd(mpt, cmd); 8991 cmd->cmd_pkt_flags |= FLAG_HEAD; 8992 mptsas_waitq_add(mpt, cmd); 8993 mutex_exit(&mpt->m_mutex); 8994 } else { 8995 mutex_exit(&ptgt->m_t_mutex); 8996 } 8997 return (DDI_FAILURE); 8998 } 8999 9000 /* 9001 * Set correct tag bits. 9002 */ 9003 if (cmd->cmd_pkt_flags & FLAG_TAGMASK) { 9004 switch (mptsas_tag_lookup[((cmd->cmd_pkt_flags & 9005 FLAG_TAGMASK) >> 12)]) { 9006 case MSG_SIMPLE_QTAG: 9007 control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 9008 break; 9009 case MSG_HEAD_QTAG: 9010 control |= MPI2_SCSIIO_CONTROL_HEADOFQ; 9011 break; 9012 case MSG_ORDERED_QTAG: 9013 control |= MPI2_SCSIIO_CONTROL_ORDEREDQ; 9014 break; 9015 default: 9016 mptsas_log(mpt, CE_WARN, "mpt: Invalid tag type\n"); 9017 break; 9018 } 9019 } else { 9020 if (*(cmd->cmd_pkt->pkt_cdbp) != SCMD_REQUEST_SENSE) { 9021 ptgt->m_t_throttle = 1; 9022 } 9023 control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 9024 } 9025 9026 /* 9027 * Set timeout. 9028 */ 9029 cmd->cmd_active_expiration = 9030 gethrtime() + (hrtime_t)pkt->pkt_time * NANOSEC; 9031 9032 c = TAILQ_FIRST(&ptgt->m_active_cmdq); 9033 if (c == NULL || 9034 c->cmd_active_expiration < cmd->cmd_active_expiration) { 9035 /* 9036 * Common case is that this is the last pending expiration 9037 * (or queue is empty). Insert at head of the queue. 9038 */ 9039 TAILQ_INSERT_HEAD(&ptgt->m_active_cmdq, cmd, cmd_active_link); 9040 } else { 9041 /* 9042 * Queue is not empty and first element expires later than 9043 * this command. Search for element expiring sooner. 9044 */ 9045 while ((c = TAILQ_NEXT(c, cmd_active_link)) != NULL) { 9046 if (c->cmd_active_expiration < 9047 cmd->cmd_active_expiration) { 9048 TAILQ_INSERT_BEFORE(c, cmd, cmd_active_link); 9049 break; 9050 } 9051 } 9052 if (c == NULL) { 9053 /* 9054 * No element found expiring sooner, append to 9055 * non-empty queue. 9056 */ 9057 TAILQ_INSERT_TAIL(&ptgt->m_active_cmdq, cmd, 9058 cmd_active_link); 9059 } 9060 } 9061 9062 mutex_exit(&ptgt->m_t_mutex); 9063 9064 if (cmd->cmd_pkt_flags & FLAG_TLR) { 9065 control |= MPI2_SCSIIO_CONTROL_TLR_ON; 9066 } 9067 9068 mem = mpt->m_req_frame + (mpt->m_req_frame_size * SMID); 9069 io_request = (pMpi2SCSIIORequest_t)mem; 9070 if (cmd->cmd_extrqslen != 0) { 9071 /* 9072 * Mapping of the buffer was done in mptsas_pkt_alloc_extern(). 9073 * Calculate the DMA address with the same offset. 9074 */ 9075 arsbuf = cmd->cmd_arq_buf; 9076 ars_size = cmd->cmd_extrqslen; 9077 ars_dmaaddrlow = (mpt->m_req_sense_dma_addr + 9078 ((uintptr_t)arsbuf - (uintptr_t)mpt->m_req_sense)) & 9079 0xffffffffull; 9080 } else { 9081 arsbuf = mpt->m_req_sense + (mpt->m_req_sense_size * (SMID-1)); 9082 cmd->cmd_arq_buf = arsbuf; 9083 ars_size = mpt->m_req_sense_size; 9084 ars_dmaaddrlow = (mpt->m_req_sense_dma_addr + 9085 (mpt->m_req_sense_size * (SMID-1))) & 9086 0xffffffffull; 9087 } 9088 bzero(io_request, sizeof (Mpi2SCSIIORequest_t)); 9089 bzero(arsbuf, ars_size); 9090 9091 ddi_put8(acc_hdl, &io_request->SGLOffset0, offsetof 9092 (MPI2_SCSI_IO_REQUEST, SGL) / 4); 9093 mptsas_init_std_hdr(acc_hdl, io_request, ptgt->m_devhdl, Lun(cmd), 0, 9094 MPI2_FUNCTION_SCSI_IO_REQUEST); 9095 9096 (void) ddi_rep_put8(acc_hdl, (uint8_t *)pkt->pkt_cdbp, 9097 io_request->CDB.CDB32, cmd->cmd_cdblen, DDI_DEV_AUTOINCR); 9098 9099 io_flags = cmd->cmd_cdblen; 9100 if (mptsas3_use_fastpath && 9101 ptgt->m_io_flags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) { 9102 io_flags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH; 9103 request_desc = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 9104 } else { 9105 request_desc = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 9106 } 9107 ddi_put16(acc_hdl, &io_request->IoFlags, io_flags); 9108 /* 9109 * setup the Scatter/Gather DMA list for this request 9110 */ 9111 if (cmd->cmd_cookiec > 0) { 9112 mptsas_sge_setup(mpt, cmd, &control, io_request, acc_hdl); 9113 } else { 9114 ddi_put32(acc_hdl, &io_request->SGL.MpiSimple.FlagsLength, 9115 ((uint32_t)MPI2_SGE_FLAGS_LAST_ELEMENT | 9116 MPI2_SGE_FLAGS_END_OF_BUFFER | 9117 MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 9118 MPI2_SGE_FLAGS_END_OF_LIST) << MPI2_SGE_FLAGS_SHIFT); 9119 } 9120 9121 /* 9122 * save ARQ information 9123 */ 9124 ddi_put8(acc_hdl, &io_request->SenseBufferLength, cmd->cmd_rqslen); 9125 ddi_put32(acc_hdl, &io_request->SenseBufferLowAddress, ars_dmaaddrlow); 9126 9127 ddi_put32(acc_hdl, &io_request->Control, control); 9128 9129 NDBG31(("starting message=%d(0x%p), with cmd=0x%p", 9130 SMID, (void *)io_request, (void *)cmd)); 9131 9132 (void) ddi_dma_sync(dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 9133 9134 /* 9135 * Build request descriptor and write it to the request desc post reg. 9136 */ 9137 request_desc |= (SMID << 16) + (MSIidx << 8); 9138 request_desc |= ((uint64_t)ptgt->m_devhdl << 48); 9139 MPTSAS_START_CMD(mpt, request_desc); 9140 9141 #if 0 9142 /* Is this of any benefit here, what is it going to catch? */ 9143 if ((mptsas_check_dma_handle(dma_hdl) != DDI_SUCCESS) || 9144 (mptsas_check_acc_handle(acc_hdl) != DDI_SUCCESS)) { 9145 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 9146 return (DDI_FAILURE); 9147 } 9148 #endif 9149 return (DDI_SUCCESS); 9150 } 9151 9152 /* 9153 * Select a helper thread to handle given doneq. 9154 * Note that we don't require to have the main m_mutex here, but worst case 9155 * is that we wont follow the thread rotation to the letter. 9156 * However must ensure we have the mutex that covers the source dlist when 9157 * we actually hand off. 9158 */ 9159 static void 9160 mptsas_deliver_doneq_thread(mptsas_t *mpt, mptsas_done_list_t *dlist) 9161 { 9162 uint32_t t, i, j = mpt->m_doneq_next_thread; 9163 uint32_t min = 0xffffffff; 9164 mptsas_doneq_thread_list_t *item; 9165 9166 /* 9167 * No need to take indivudual list mutex's during the loop. 9168 * We are only reading values and the worst that will happen is that 9169 * we pick the wrong thread. 9170 */ 9171 for (i = 0; i < mpt->m_doneq_thread_n; i++) { 9172 item = &mpt->m_doneq_thread_id[j]; 9173 9174 /* 9175 * If the completed command on help thread[i] less than 9176 * doneq_thread_threshold, then pick the thread[j]. Otherwise 9177 * pick a thread which has least completed command. 9178 */ 9179 if (item->dlist.dl_len < mpt->m_doneq_thread_threshold) { 9180 t = j; 9181 break; 9182 } 9183 if (item->dlist.dl_len < min) { 9184 min = item->dlist.dl_len; 9185 t = j; 9186 } 9187 if (++j == mpt->m_doneq_thread_n) { 9188 j = 0; 9189 } 9190 } 9191 item = &mpt->m_doneq_thread_id[t]; 9192 mutex_enter(&item->mutex); 9193 mptsas_doneq_mv(dlist, item); 9194 cv_signal(&item->cv); 9195 mutex_exit(&item->mutex); 9196 9197 /* 9198 * Next time start at the next thread. 9199 * This will minimize the potential of grabing a lock 9200 * for a thread that is busy, either on a very busy systems 9201 * or on one that is configured to do all command completion 9202 * processing through threads. 9203 */ 9204 if (++t == mpt->m_doneq_thread_n) { 9205 t = 0; 9206 } 9207 mpt->m_doneq_next_thread = (uint16_t)t; 9208 } 9209 9210 /* 9211 * move one doneq to another. 9212 */ 9213 static void 9214 mptsas_doneq_mv(mptsas_done_list_t *from, mptsas_doneq_thread_list_t *item) 9215 { 9216 mptsas_done_list_t *to = &item->dlist; 9217 mptsas_cmd_t *cmd; 9218 9219 if ((cmd = from->dl_q) != NULL) { 9220 *to->dl_tail = cmd; 9221 to->dl_tail = from->dl_tail; 9222 to->dl_len += from->dl_len; 9223 from->dl_q = NULL; 9224 from->dl_tail = &from->dl_q; 9225 from->dl_len = 0; 9226 } 9227 } 9228 9229 void 9230 mptsas_fma_check(mptsas_t *mpt, mptsas_cmd_t *cmd) 9231 { 9232 struct scsi_pkt *pkt = CMD2PKT(cmd); 9233 9234 /* Check all acc and dma handles */ 9235 if ((mptsas_check_acc_handle(mpt->m_datap) != 9236 DDI_SUCCESS) || 9237 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 9238 DDI_SUCCESS) || 9239 (mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl) != 9240 DDI_SUCCESS) || 9241 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) != 9242 DDI_SUCCESS) || 9243 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) != 9244 DDI_SUCCESS) || 9245 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) != 9246 DDI_SUCCESS) || 9247 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) != 9248 DDI_SUCCESS) || 9249 (mptsas_check_acc_handle(mpt->m_config_handle) != 9250 DDI_SUCCESS)) { 9251 ddi_fm_service_impact(mpt->m_dip, 9252 DDI_SERVICE_UNAFFECTED); 9253 ddi_fm_acc_err_clear(mpt->m_config_handle, 9254 DDI_FME_VER0); 9255 pkt->pkt_reason = CMD_TRAN_ERR; 9256 pkt->pkt_statistics = 0; 9257 } 9258 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 9259 DDI_SUCCESS) || 9260 (mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl) != 9261 DDI_SUCCESS) || 9262 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) != 9263 DDI_SUCCESS) || 9264 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) != 9265 DDI_SUCCESS) || 9266 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) != 9267 DDI_SUCCESS) || 9268 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) != 9269 DDI_SUCCESS)) { 9270 ddi_fm_service_impact(mpt->m_dip, 9271 DDI_SERVICE_UNAFFECTED); 9272 pkt->pkt_reason = CMD_TRAN_ERR; 9273 pkt->pkt_statistics = 0; 9274 } 9275 if (cmd->cmd_dmahandle && 9276 (mptsas_check_dma_handle(cmd->cmd_dmahandle) != DDI_SUCCESS)) { 9277 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 9278 pkt->pkt_reason = CMD_TRAN_ERR; 9279 pkt->pkt_statistics = 0; 9280 } 9281 if ((cmd->cmd_extra_frames && 9282 ((mptsas_check_dma_handle(cmd->cmd_extra_frames->m_dma_hdl) != 9283 DDI_SUCCESS) || 9284 (mptsas_check_acc_handle(cmd->cmd_extra_frames->m_acc_hdl) != 9285 DDI_SUCCESS)))) { 9286 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 9287 pkt->pkt_reason = CMD_TRAN_ERR; 9288 pkt->pkt_statistics = 0; 9289 } 9290 } 9291 9292 /* 9293 * These routines manipulate the queue of commands that 9294 * are waiting for their completion routines to be called. 9295 * The queue is usually in FIFO order but on an MP system 9296 * it's possible for the completion routines to get out 9297 * of order. If that's a problem you need to add a global 9298 * mutex around the code that calls the completion routine 9299 * in the interrupt handler. 9300 */ 9301 static void 9302 mptsas_doneq_add(mptsas_t *mpt, mptsas_cmd_t *cmd) 9303 { 9304 struct scsi_pkt *pkt = CMD2PKT(cmd); 9305 9306 NDBG31(("mptsas_doneq_add: cmd=0x%p", (void *)cmd)); 9307 9308 ASSERT((cmd->cmd_flags & CFLAG_COMPLETED) == 0); 9309 cmd->cmd_linkp = NULL; 9310 cmd->cmd_flags |= CFLAG_FINISHED; 9311 cmd->cmd_flags &= ~CFLAG_IN_TRANSPORT; 9312 9313 mptsas_fma_check(mpt, cmd); 9314 9315 /* 9316 * only add scsi pkts that have completion routines to 9317 * the doneq. no intr cmds do not have callbacks. 9318 */ 9319 if (pkt && (pkt->pkt_comp)) { 9320 *mpt->m_dlist.dl_tail = cmd; 9321 mpt->m_dlist.dl_tail = &cmd->cmd_linkp; 9322 mpt->m_dlist.dl_len++; 9323 } 9324 } 9325 9326 static void 9327 mptsas_rpdoneq_add(mptsas_t *mpt, mptsas_reply_pqueue_t *rpqp, 9328 mptsas_cmd_t *cmd) 9329 { 9330 struct scsi_pkt *pkt = CMD2PKT(cmd); 9331 9332 NDBG31(("mptsas_rpdoneq_add: cmd=0x%p", (void *)cmd)); 9333 9334 ASSERT((cmd->cmd_flags & CFLAG_COMPLETED) == 0); 9335 cmd->cmd_linkp = NULL; 9336 cmd->cmd_flags |= CFLAG_FINISHED; 9337 cmd->cmd_flags &= ~CFLAG_IN_TRANSPORT; 9338 9339 mptsas_fma_check(mpt, cmd); 9340 9341 /* 9342 * only add scsi pkts that have completion routines to 9343 * the doneq. no intr cmds do not have callbacks. 9344 */ 9345 if (pkt && (pkt->pkt_comp)) { 9346 *rpqp->rpq_dlist.dl_tail = cmd; 9347 rpqp->rpq_dlist.dl_tail = &cmd->cmd_linkp; 9348 rpqp->rpq_dlist.dl_len++; 9349 } 9350 } 9351 9352 static mptsas_cmd_t * 9353 mptsas_doneq_thread_rm(mptsas_t *mpt, uint64_t t) 9354 { 9355 mptsas_cmd_t *cmd; 9356 mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t]; 9357 9358 /* pop one off the done queue */ 9359 if ((cmd = item->dlist.dl_q) != NULL) { 9360 /* if the queue is now empty fix the tail pointer */ 9361 NDBG31(("mptsas_doneq_thread_rm: cmd=0x%p", (void *)cmd)); 9362 if ((item->dlist.dl_q = cmd->cmd_linkp) == NULL) { 9363 item->dlist.dl_tail = &item->dlist.dl_q; 9364 } 9365 cmd->cmd_linkp = NULL; 9366 item->dlist.dl_len--; 9367 } 9368 return (cmd); 9369 } 9370 9371 static void 9372 mptsas_doneq_empty(mptsas_t *mpt) 9373 { 9374 if (mpt->m_dlist.dl_q) { 9375 mptsas_cmd_t *cmd, *next; 9376 struct scsi_pkt *pkt; 9377 9378 cmd = mpt->m_dlist.dl_q; 9379 mpt->m_dlist.dl_q = NULL; 9380 mpt->m_dlist.dl_tail = &mpt->m_dlist.dl_q; 9381 mpt->m_dlist.dl_len = 0; 9382 9383 mutex_exit(&mpt->m_mutex); 9384 /* 9385 * run the completion routines of all the 9386 * completed commands 9387 */ 9388 while (cmd != NULL) { 9389 next = cmd->cmd_linkp; 9390 cmd->cmd_linkp = NULL; 9391 /* run this command's completion routine */ 9392 cmd->cmd_flags |= CFLAG_COMPLETED; 9393 pkt = CMD2PKT(cmd); 9394 mptsas_pkt_comp(pkt, cmd); 9395 cmd = next; 9396 } 9397 mutex_enter(&mpt->m_mutex); 9398 } 9399 } 9400 9401 static void 9402 mptsas_rpdoneq_empty(mptsas_reply_pqueue_t *rpqp) 9403 { 9404 if (rpqp->rpq_dlist.dl_q) { 9405 mptsas_cmd_t *cmd, *next; 9406 struct scsi_pkt *pkt; 9407 9408 cmd = rpqp->rpq_dlist.dl_q; 9409 rpqp->rpq_dlist.dl_q = NULL; 9410 rpqp->rpq_dlist.dl_tail = &rpqp->rpq_dlist.dl_q; 9411 rpqp->rpq_dlist.dl_len = 0; 9412 9413 mutex_exit(&rpqp->rpq_mutex); 9414 /* 9415 * run the completion routines of all the 9416 * completed commands 9417 */ 9418 while (cmd != NULL) { 9419 next = cmd->cmd_linkp; 9420 cmd->cmd_linkp = NULL; 9421 /* run this command's completion routine */ 9422 cmd->cmd_flags |= CFLAG_COMPLETED; 9423 pkt = CMD2PKT(cmd); 9424 mptsas_pkt_comp(pkt, cmd); 9425 cmd = next; 9426 } 9427 mutex_enter(&rpqp->rpq_mutex); 9428 } 9429 } 9430 9431 /* 9432 * These routines manipulate the target's queue of pending requests 9433 */ 9434 void 9435 mptsas_waitq_add(mptsas_t *mpt, mptsas_cmd_t *cmd) 9436 { 9437 NDBG7(("mptsas_waitq_add: cmd=0x%p", (void *)cmd)); 9438 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 9439 cmd->cmd_queued = TRUE; 9440 if (ptgt) 9441 ptgt->m_t_nwait++; 9442 if (cmd->cmd_pkt_flags & FLAG_HEAD) { 9443 if ((cmd->cmd_linkp = mpt->m_waitq) == NULL) { 9444 mpt->m_waitqtail = &cmd->cmd_linkp; 9445 } 9446 mpt->m_waitq = cmd; 9447 } else { 9448 cmd->cmd_linkp = NULL; 9449 *(mpt->m_waitqtail) = cmd; 9450 mpt->m_waitqtail = &cmd->cmd_linkp; 9451 } 9452 } 9453 9454 static mptsas_cmd_t * 9455 mptsas_waitq_rm(mptsas_t *mpt) 9456 { 9457 mptsas_cmd_t *cmd; 9458 mptsas_target_t *ptgt; 9459 NDBG7(("mptsas_waitq_rm")); 9460 9461 MPTSAS_WAITQ_RM(mpt, cmd); 9462 9463 NDBG7(("mptsas_waitq_rm: cmd=0x%p", (void *)cmd)); 9464 if (cmd) { 9465 ptgt = cmd->cmd_tgt_addr; 9466 if (ptgt) { 9467 ptgt->m_t_nwait--; 9468 ASSERT(ptgt->m_t_nwait >= 0); 9469 } 9470 } 9471 return (cmd); 9472 } 9473 9474 /* 9475 * remove specified cmd from the middle of the wait queue. 9476 */ 9477 static void 9478 mptsas_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd) 9479 { 9480 mptsas_cmd_t *prevp = mpt->m_waitq; 9481 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 9482 9483 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 9484 (void *)mpt, (void *)cmd)); 9485 if (ptgt) { 9486 ptgt->m_t_nwait--; 9487 ASSERT(ptgt->m_t_nwait >= 0); 9488 } 9489 9490 if (prevp == cmd) { 9491 if ((mpt->m_waitq = cmd->cmd_linkp) == NULL) 9492 mpt->m_waitqtail = &mpt->m_waitq; 9493 9494 cmd->cmd_linkp = NULL; 9495 cmd->cmd_queued = FALSE; 9496 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 9497 (void *)mpt, (void *)cmd)); 9498 return; 9499 } 9500 9501 while (prevp != NULL) { 9502 if (prevp->cmd_linkp == cmd) { 9503 if ((prevp->cmd_linkp = cmd->cmd_linkp) == NULL) 9504 mpt->m_waitqtail = &prevp->cmd_linkp; 9505 9506 cmd->cmd_linkp = NULL; 9507 cmd->cmd_queued = FALSE; 9508 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 9509 (void *)mpt, (void *)cmd)); 9510 return; 9511 } 9512 prevp = prevp->cmd_linkp; 9513 } 9514 cmn_err(CE_PANIC, "mpt: mptsas_waitq_delete: queue botch"); 9515 } 9516 9517 /* 9518 * device and bus reset handling 9519 * 9520 * Notes: 9521 * - RESET_ALL: reset the controller 9522 * - RESET_TARGET: reset the target specified in scsi_address 9523 */ 9524 static int 9525 mptsas_scsi_reset(struct scsi_address *ap, int level) 9526 { 9527 mptsas_t *mpt = ADDR2MPT(ap); 9528 int rval; 9529 mptsas_tgt_private_t *tgt_private; 9530 mptsas_target_t *ptgt = NULL; 9531 9532 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran->tran_tgt_private; 9533 ptgt = tgt_private->t_private; 9534 if (ptgt == NULL) { 9535 return (FALSE); 9536 } 9537 NDBG22(("mptsas_scsi_reset: target=%d level=%d", ptgt->m_devhdl, 9538 level)); 9539 9540 mutex_enter(&mpt->m_mutex); 9541 /* 9542 * if we are not in panic set up a reset delay for this target 9543 */ 9544 if (!ddi_in_panic()) { 9545 mptsas_setup_bus_reset_delay(mpt); 9546 } else { 9547 drv_usecwait(mpt->m_scsi_reset_delay * 1000); 9548 } 9549 rval = mptsas_do_scsi_reset(mpt, ptgt->m_devhdl); 9550 mutex_exit(&mpt->m_mutex); 9551 9552 /* 9553 * The transport layer expect to only see TRUE and 9554 * FALSE. Therefore, we will adjust the return value 9555 * if mptsas_do_scsi_reset returns FAILED. 9556 */ 9557 if (rval == FAILED) 9558 rval = FALSE; 9559 return (rval); 9560 } 9561 9562 static int 9563 mptsas_do_scsi_reset(mptsas_t *mpt, uint16_t devhdl) 9564 { 9565 int rval = FALSE; 9566 uint8_t config, disk; 9567 9568 ASSERT(mutex_owned(&mpt->m_mutex)); 9569 9570 if (mptsas_debug_resets) { 9571 mptsas_log(mpt, CE_WARN, "mptsas_do_scsi_reset: target=%d", 9572 devhdl); 9573 } 9574 9575 /* 9576 * Issue a Target Reset message to the target specified but not to a 9577 * disk making up a raid volume. Just look through the RAID config 9578 * Phys Disk list of DevHandles. If the target's DevHandle is in this 9579 * list, then don't reset this target. 9580 */ 9581 for (config = 0; config < mpt->m_num_raid_configs; config++) { 9582 for (disk = 0; disk < MPTSAS_MAX_DISKS_IN_CONFIG; disk++) { 9583 if (devhdl == mpt->m_raidconfig[config]. 9584 m_physdisk_devhdl[disk]) { 9585 return (TRUE); 9586 } 9587 } 9588 } 9589 9590 rval = mptsas_ioc_task_management(mpt, 9591 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, devhdl, 0, NULL, 0, 0); 9592 9593 mptsas_doneq_empty(mpt); 9594 return (rval); 9595 } 9596 9597 static int 9598 mptsas_scsi_reset_notify(struct scsi_address *ap, int flag, 9599 void (*callback)(caddr_t), caddr_t arg) 9600 { 9601 mptsas_t *mpt = ADDR2MPT(ap); 9602 9603 NDBG22(("mptsas_scsi_reset_notify: tgt=%d", ap->a_target)); 9604 9605 return (scsi_hba_reset_notify_setup(ap, flag, callback, arg, 9606 &mpt->m_mutex, &mpt->m_reset_notify_listf)); 9607 } 9608 9609 static int 9610 mptsas_get_name(struct scsi_device *sd, char *name, int len) 9611 { 9612 dev_info_t *lun_dip = NULL; 9613 9614 ASSERT(sd != NULL); 9615 ASSERT(name != NULL); 9616 lun_dip = sd->sd_dev; 9617 ASSERT(lun_dip != NULL); 9618 9619 if (mptsas_name_child(lun_dip, name, len) == DDI_SUCCESS) { 9620 return (1); 9621 } else { 9622 return (0); 9623 } 9624 } 9625 9626 static int 9627 mptsas_get_bus_addr(struct scsi_device *sd, char *name, int len) 9628 { 9629 return (mptsas_get_name(sd, name, len)); 9630 } 9631 9632 static void 9633 mptsas_set_throttle(mptsas_t *mpt, mptsas_target_t *ptgt, int what) 9634 { 9635 9636 NDBG25(("mptsas_set_throttle: throttle=%x", what)); 9637 9638 /* 9639 * if the bus is draining/quiesced, no changes to the throttles 9640 * are allowed. Not allowing change of throttles during draining 9641 * limits error recovery but will reduce draining time 9642 * 9643 * all throttles should have been set to HOLD_THROTTLE 9644 */ 9645 if (mpt->m_softstate & (MPTSAS_SS_QUIESCED | MPTSAS_SS_DRAINING)) { 9646 return; 9647 } 9648 9649 if (what == HOLD_THROTTLE) { 9650 ptgt->m_t_throttle = HOLD_THROTTLE; 9651 } else if (ptgt->m_reset_delay == 0) { 9652 ptgt->m_t_throttle = what; 9653 } 9654 } 9655 9656 static void 9657 mptsas_set_throttle_mtx(mptsas_t *mpt, mptsas_target_t *ptgt, int what) 9658 { 9659 if (mpt->m_softstate & (MPTSAS_SS_QUIESCED | MPTSAS_SS_DRAINING)) { 9660 return; 9661 } 9662 9663 mutex_enter(&ptgt->m_t_mutex); 9664 mptsas_set_throttle(mpt, ptgt, what); 9665 mutex_exit(&ptgt->m_t_mutex); 9666 } 9667 9668 /* 9669 * Find all commands in the tx_waitq's for target and lun (if lun not -1), 9670 * remove them from the queues and return the linked list. 9671 */ 9672 static mptsas_cmd_t * 9673 mptsas_strip_targetlun_from_txwqs(mptsas_t *mpt, ushort_t target, int lun) 9674 { 9675 mptsas_cmd_t *cmd, *clist, **tailp, **prev_tailp; 9676 mptsas_tx_waitqueue_t *txwq; 9677 int i; 9678 9679 clist = NULL; 9680 tailp = &clist; 9681 9682 for (i = 0; i < NUM_TX_WAITQ; i++) { 9683 txwq = &mpt->m_tx_waitq[i]; 9684 mutex_enter(&txwq->txwq_mutex); 9685 prev_tailp = &txwq->txwq_cmdq; 9686 cmd = txwq->txwq_cmdq; 9687 while (cmd != NULL) { 9688 if (Tgt(cmd) == target && 9689 (lun == -1 || (Lun(cmd) == lun))) { 9690 *prev_tailp = cmd->cmd_linkp; 9691 *tailp = cmd; 9692 tailp = &cmd->cmd_linkp; 9693 cmd = cmd->cmd_linkp; 9694 *tailp = NULL; 9695 } else { 9696 prev_tailp = &cmd->cmd_linkp; 9697 cmd = cmd->cmd_linkp; 9698 } 9699 } 9700 txwq->txwq_qtail = prev_tailp; 9701 mutex_exit(&txwq->txwq_mutex); 9702 } 9703 return (clist); 9704 } 9705 9706 /* 9707 * Clean up from a device reset. 9708 * For the case of target reset, this function clears the waitq of all 9709 * commands for a particular target. For the case of abort task set, this 9710 * function clears the waitq of all commonds for a particular target/lun. 9711 */ 9712 static void 9713 mptsas_flush_target(mptsas_t *mpt, ushort_t target, int lun, uint8_t tasktype) 9714 { 9715 mptsas_slots_t *slots = mpt->m_active; 9716 mptsas_cmd_t *cmd, *next_cmd; 9717 int slot; 9718 uchar_t reason; 9719 uint_t stat; 9720 hrtime_t timestamp; 9721 9722 NDBG25(("mptsas_flush_target: target=%d lun=%d", target, lun)); 9723 9724 timestamp = gethrtime(); 9725 9726 /* 9727 * Make sure the I/O Controller has flushed all cmds 9728 * that are associated with this target for a target reset 9729 * and target/lun for abort task set. 9730 * Account for TM requests, which use the last SMID. 9731 */ 9732 for (slot = 0; slot <= mpt->m_active->m_n_normal; slot++) { 9733 if ((cmd = slots->m_slot[slot]) == NULL) 9734 continue; 9735 reason = CMD_RESET; 9736 stat = STAT_DEV_RESET; 9737 switch (tasktype) { 9738 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 9739 if (Tgt(cmd) == target) { 9740 if (cmd->cmd_active_expiration <= timestamp) { 9741 /* 9742 * When timeout requested, propagate 9743 * proper reason and statistics to 9744 * target drivers. 9745 */ 9746 reason = CMD_TIMEOUT; 9747 stat |= STAT_TIMEOUT; 9748 } 9749 NDBG25(("mptsas_flush_target discovered non-" 9750 "NULL cmd in slot %d, tasktype 0x%x", slot, 9751 tasktype)); 9752 mptsas_dump_cmd(mpt, cmd); 9753 mptsas_remove_cmd(mpt, cmd); 9754 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9755 mptsas_doneq_add(mpt, cmd); 9756 } 9757 break; 9758 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 9759 reason = CMD_ABORTED; 9760 stat = STAT_ABORTED; 9761 /*FALLTHROUGH*/ 9762 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 9763 if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) { 9764 if (cmd->cmd_active_expiration <= timestamp) { 9765 stat |= STAT_TIMEOUT; 9766 } 9767 9768 NDBG25(("mptsas_flush_target discovered non-" 9769 "NULL cmd in slot %d, tasktype 0x%x", slot, 9770 tasktype)); 9771 mptsas_dump_cmd(mpt, cmd); 9772 mptsas_remove_cmd(mpt, cmd); 9773 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9774 mptsas_doneq_add(mpt, cmd); 9775 } 9776 break; 9777 default: 9778 break; 9779 } 9780 } 9781 9782 /* 9783 * Flush the waitq and tx_waitq of this target's cmds 9784 */ 9785 cmd = mpt->m_waitq; 9786 9787 reason = CMD_RESET; 9788 stat = STAT_DEV_RESET; 9789 9790 switch (tasktype) { 9791 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 9792 while (cmd != NULL) { 9793 next_cmd = cmd->cmd_linkp; 9794 if (Tgt(cmd) == target) { 9795 mptsas_waitq_delete(mpt, cmd); 9796 mptsas_set_pkt_reason(mpt, cmd, 9797 reason, stat); 9798 mptsas_doneq_add(mpt, cmd); 9799 } 9800 cmd = next_cmd; 9801 } 9802 cmd = mptsas_strip_targetlun_from_txwqs(mpt, target, -1); 9803 while (cmd != NULL) { 9804 next_cmd = cmd->cmd_linkp; 9805 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9806 mptsas_doneq_add(mpt, cmd); 9807 cmd = next_cmd; 9808 } 9809 break; 9810 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 9811 reason = CMD_ABORTED; 9812 stat = STAT_ABORTED; 9813 /*FALLTHROUGH*/ 9814 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 9815 while (cmd != NULL) { 9816 next_cmd = cmd->cmd_linkp; 9817 if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) { 9818 mptsas_waitq_delete(mpt, cmd); 9819 mptsas_set_pkt_reason(mpt, cmd, 9820 reason, stat); 9821 mptsas_doneq_add(mpt, cmd); 9822 } 9823 cmd = next_cmd; 9824 } 9825 cmd = mptsas_strip_targetlun_from_txwqs(mpt, target, lun); 9826 while (cmd != NULL) { 9827 next_cmd = cmd->cmd_linkp; 9828 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9829 mptsas_doneq_add(mpt, cmd); 9830 cmd = next_cmd; 9831 } 9832 break; 9833 default: 9834 mptsas_log(mpt, CE_WARN, "Unknown task management type %d.", 9835 tasktype); 9836 break; 9837 } 9838 } 9839 9840 /* 9841 * Clean up hba state, abort all outstanding command and commands in waitq 9842 * reset timeout of all targets. 9843 */ 9844 static void 9845 mptsas_flush_hba(mptsas_t *mpt) 9846 { 9847 mptsas_slots_t *slots = mpt->m_active; 9848 mptsas_cmd_t *cmd, *ncmd; 9849 int slot, i; 9850 9851 NDBG25(("mptsas_flush_hba")); 9852 9853 /* 9854 * The I/O Controller should have already sent back 9855 * all commands via the scsi I/O reply frame. Make 9856 * sure all commands have been flushed. 9857 * Account for TM request, which use the last SMID. 9858 */ 9859 for (slot = 0; slot <= mpt->m_active->m_n_normal; slot++) { 9860 if ((cmd = slots->m_slot[slot]) == NULL) 9861 continue; 9862 9863 if (cmd->cmd_flags & CFLAG_CMDIOC) { 9864 /* 9865 * Need to make sure to tell everyone that might be 9866 * waiting on this command that it's going to fail. If 9867 * we get here, this command will never timeout because 9868 * the active command table is going to be re-allocated, 9869 * so there will be nothing to check against a time out. 9870 * Instead, mark the command as failed due to reset. 9871 */ 9872 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, 9873 STAT_BUS_RESET); 9874 if ((cmd->cmd_flags & 9875 (CFLAG_PASSTHRU | CFLAG_CONFIG | CFLAG_FW_DIAG))) { 9876 cmd->cmd_flags |= CFLAG_FINISHED; 9877 cv_broadcast(&mpt->m_passthru_cv); 9878 cv_broadcast(&mpt->m_config_cv); 9879 cv_broadcast(&mpt->m_fw_diag_cv); 9880 } 9881 continue; 9882 } 9883 9884 NDBG25(("mptsas_flush_hba discovered non-NULL cmd in slot %d", 9885 slot)); 9886 mptsas_dump_cmd(mpt, cmd); 9887 9888 mptsas_remove_cmd(mpt, cmd); 9889 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 9890 mptsas_doneq_add(mpt, cmd); 9891 } 9892 9893 /* 9894 * Flush the waitq. 9895 */ 9896 while ((cmd = mptsas_waitq_rm(mpt)) != NULL) { 9897 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 9898 if ((cmd->cmd_flags & CFLAG_PASSTHRU) || 9899 (cmd->cmd_flags & CFLAG_CONFIG) || 9900 (cmd->cmd_flags & CFLAG_FW_DIAG)) { 9901 cmd->cmd_flags |= CFLAG_FINISHED; 9902 cv_broadcast(&mpt->m_passthru_cv); 9903 cv_broadcast(&mpt->m_config_cv); 9904 cv_broadcast(&mpt->m_fw_diag_cv); 9905 } else { 9906 mptsas_doneq_add(mpt, cmd); 9907 } 9908 } 9909 9910 /* 9911 * Flush the tx_waitqs 9912 */ 9913 for (i = 0; i < NUM_TX_WAITQ; i++) { 9914 mutex_enter(&mpt->m_tx_waitq[i].txwq_mutex); 9915 cmd = mpt->m_tx_waitq[i].txwq_cmdq; 9916 mpt->m_tx_waitq[i].txwq_cmdq = NULL; 9917 mpt->m_tx_waitq[i].txwq_qtail = &mpt->m_tx_waitq[i].txwq_cmdq; 9918 mutex_exit(&mpt->m_tx_waitq[i].txwq_mutex); 9919 while (cmd != NULL) { 9920 ncmd = cmd->cmd_linkp; 9921 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, 9922 STAT_BUS_RESET); 9923 mptsas_doneq_add(mpt, cmd); 9924 cmd = ncmd; 9925 } 9926 } 9927 9928 /* 9929 * Drain the taskqs prior to reallocating resources. 9930 */ 9931 mutex_exit(&mpt->m_mutex); 9932 ddi_taskq_wait(mpt->m_event_taskq); 9933 ddi_taskq_wait(mpt->m_dr_taskq); 9934 mutex_enter(&mpt->m_mutex); 9935 } 9936 9937 /* 9938 * set pkt_reason and OR in pkt_statistics flag 9939 */ 9940 static void 9941 mptsas_set_pkt_reason(mptsas_t *mpt, mptsas_cmd_t *cmd, uchar_t reason, 9942 uint_t stat) 9943 { 9944 #ifndef __lock_lint 9945 _NOTE(ARGUNUSED(mpt)) 9946 #endif 9947 9948 NDBG25(("mptsas_set_pkt_reason: cmd=0x%p reason=%x stat=%x", 9949 (void *)cmd, reason, stat)); 9950 9951 if (cmd) { 9952 if (cmd->cmd_pkt->pkt_reason == CMD_CMPLT) { 9953 cmd->cmd_pkt->pkt_reason = reason; 9954 } 9955 cmd->cmd_pkt->pkt_statistics |= stat; 9956 } 9957 } 9958 9959 static void 9960 mptsas_start_watch_reset_delay() 9961 { 9962 NDBG22(("mptsas_start_watch_reset_delay")); 9963 9964 mutex_enter(&mptsas_global_mutex); 9965 if (mptsas_reset_watch == NULL && mptsas_timeouts_enabled) { 9966 mptsas_reset_watch = timeout(mptsas_watch_reset_delay, NULL, 9967 drv_usectohz((clock_t) 9968 MPTSAS_WATCH_RESET_DELAY_TICK * 1000)); 9969 ASSERT(mptsas_reset_watch != NULL); 9970 } 9971 mutex_exit(&mptsas_global_mutex); 9972 } 9973 9974 static void 9975 mptsas_setup_bus_reset_delay(mptsas_t *mpt) 9976 { 9977 mptsas_target_t *ptgt = NULL; 9978 9979 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 9980 9981 NDBG22(("mptsas_setup_bus_reset_delay")); 9982 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 9983 ptgt = refhash_next(mpt->m_targets, ptgt)) { 9984 mutex_enter(&ptgt->m_t_mutex); 9985 mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE); 9986 ptgt->m_reset_delay = mpt->m_scsi_reset_delay; 9987 mutex_exit(&ptgt->m_t_mutex); 9988 } 9989 9990 mptsas_start_watch_reset_delay(); 9991 } 9992 9993 /* 9994 * mptsas_watch_reset_delay(_subr) is invoked by timeout() and checks every 9995 * mpt instance for active reset delays 9996 */ 9997 static void 9998 mptsas_watch_reset_delay(void *arg) 9999 { 10000 #ifndef __lock_lint 10001 _NOTE(ARGUNUSED(arg)) 10002 #endif 10003 10004 mptsas_t *mpt; 10005 int not_done = 0; 10006 10007 NDBG22(("mptsas_watch_reset_delay")); 10008 10009 mutex_enter(&mptsas_global_mutex); 10010 mptsas_reset_watch = 0; 10011 mutex_exit(&mptsas_global_mutex); 10012 rw_enter(&mptsas_global_rwlock, RW_READER); 10013 for (mpt = mptsas_head; mpt != NULL; mpt = mpt->m_next) { 10014 if (mpt->m_tran == 0) { 10015 continue; 10016 } 10017 mutex_enter(&mpt->m_mutex); 10018 not_done += mptsas_watch_reset_delay_subr(mpt); 10019 mutex_exit(&mpt->m_mutex); 10020 } 10021 rw_exit(&mptsas_global_rwlock); 10022 10023 if (not_done) { 10024 mptsas_start_watch_reset_delay(); 10025 } 10026 } 10027 10028 static int 10029 mptsas_watch_reset_delay_subr(mptsas_t *mpt) 10030 { 10031 int done = 0; 10032 int restart = 0; 10033 mptsas_target_t *ptgt = NULL; 10034 10035 NDBG22(("mptsas_watch_reset_delay_subr: mpt=0x%p", (void *)mpt)); 10036 10037 ASSERT(mutex_owned(&mpt->m_mutex)); 10038 10039 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10040 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10041 mutex_enter(&ptgt->m_t_mutex); 10042 if (ptgt->m_reset_delay != 0) { 10043 ptgt->m_reset_delay -= 10044 MPTSAS_WATCH_RESET_DELAY_TICK; 10045 if (ptgt->m_reset_delay <= 0) { 10046 ptgt->m_reset_delay = 0; 10047 mptsas_set_throttle(mpt, ptgt, 10048 MAX_THROTTLE); 10049 restart++; 10050 } else { 10051 done = -1; 10052 } 10053 } 10054 mutex_exit(&ptgt->m_t_mutex); 10055 } 10056 10057 if (restart > 0) { 10058 mptsas_restart_hba(mpt); 10059 } 10060 return (done); 10061 } 10062 10063 #ifdef MPTSAS_TEST 10064 static void 10065 mptsas_test_reset(mptsas_t *mpt, int target) 10066 { 10067 mptsas_target_t *ptgt = NULL; 10068 10069 if (mptsas_rtest == target) { 10070 if (mptsas_do_scsi_reset(mpt, target) == TRUE) { 10071 mptsas_rtest = -1; 10072 } 10073 if (mptsas_rtest == -1) { 10074 NDBG22(("mptsas_test_reset success")); 10075 } 10076 } 10077 } 10078 #endif 10079 10080 /* 10081 * abort handling: 10082 * 10083 * Notes: 10084 * - if pkt is not NULL, abort just that command 10085 * - if pkt is NULL, abort all outstanding commands for target 10086 */ 10087 static int 10088 mptsas_scsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt) 10089 { 10090 mptsas_t *mpt = ADDR2MPT(ap); 10091 int rval; 10092 mptsas_tgt_private_t *tgt_private; 10093 int target, lun; 10094 10095 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran-> 10096 tran_tgt_private; 10097 ASSERT(tgt_private != NULL); 10098 target = tgt_private->t_private->m_devhdl; 10099 lun = tgt_private->t_lun; 10100 10101 NDBG23(("mptsas_scsi_abort: target=%d.%d", target, lun)); 10102 10103 mutex_enter(&mpt->m_mutex); 10104 rval = mptsas_do_scsi_abort(mpt, target, lun, pkt); 10105 mutex_exit(&mpt->m_mutex); 10106 return (rval); 10107 } 10108 10109 static int 10110 mptsas_do_scsi_abort(mptsas_t *mpt, int target, int lun, struct scsi_pkt *pkt) 10111 { 10112 mptsas_cmd_t *sp = NULL; 10113 mptsas_slots_t *slots = mpt->m_active; 10114 int rval = FALSE; 10115 10116 ASSERT(mutex_owned(&mpt->m_mutex)); 10117 10118 /* 10119 * Abort the command pkt on the target/lun in ap. If pkt is 10120 * NULL, abort all outstanding commands on that target/lun. 10121 * If you can abort them, return 1, else return 0. 10122 * Each packet that's aborted should be sent back to the target 10123 * driver through the callback routine, with pkt_reason set to 10124 * CMD_ABORTED. 10125 * 10126 * abort cmd pkt on HBA hardware; clean out of outstanding 10127 * command lists, etc. 10128 */ 10129 if (pkt != NULL) { 10130 /* abort the specified packet */ 10131 sp = PKT2CMD(pkt); 10132 10133 if (sp->cmd_queued) { 10134 NDBG23(("mptsas_do_scsi_abort: queued sp=0x%p aborted", 10135 (void *)sp)); 10136 mptsas_waitq_delete(mpt, sp); 10137 mptsas_set_pkt_reason(mpt, sp, CMD_ABORTED, 10138 STAT_ABORTED); 10139 mptsas_doneq_add(mpt, sp); 10140 rval = TRUE; 10141 goto done; 10142 } 10143 10144 /* 10145 * Have mpt firmware abort this command 10146 */ 10147 10148 if (slots->m_slot[sp->cmd_slot] != NULL) { 10149 rval = mptsas_ioc_task_management(mpt, 10150 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK, target, 10151 lun, NULL, 0, 0); 10152 10153 /* 10154 * The transport layer expects only TRUE and FALSE. 10155 * Therefore, if mptsas_ioc_task_management returns 10156 * FAILED we will return FALSE. 10157 */ 10158 if (rval == FAILED) 10159 rval = FALSE; 10160 goto done; 10161 } 10162 } 10163 10164 /* 10165 * If pkt is NULL then abort task set 10166 */ 10167 rval = mptsas_ioc_task_management(mpt, 10168 MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET, target, lun, NULL, 0, 0); 10169 10170 /* 10171 * The transport layer expects only TRUE and FALSE. 10172 * Therefore, if mptsas_ioc_task_management returns 10173 * FAILED we will return FALSE. 10174 */ 10175 if (rval == FAILED) 10176 rval = FALSE; 10177 10178 #ifdef MPTSAS_TEST 10179 if (rval && mptsas_test_stop) { 10180 debug_enter("mptsas_do_scsi_abort"); 10181 } 10182 #endif 10183 10184 done: 10185 mptsas_doneq_empty(mpt); 10186 return (rval); 10187 } 10188 10189 /* 10190 * capability handling: 10191 * (*tran_getcap). Get the capability named, and return its value. 10192 */ 10193 static int 10194 mptsas_scsi_getcap(struct scsi_address *ap, char *cap, int tgtonly) 10195 { 10196 mptsas_t *mpt = ADDR2MPT(ap); 10197 int ckey; 10198 int rval = FALSE; 10199 10200 NDBG24(("mptsas_scsi_getcap: target=%d, cap=%s tgtonly=%x", 10201 ap->a_target, cap, tgtonly)); 10202 10203 mutex_enter(&mpt->m_mutex); 10204 10205 if ((mptsas_scsi_capchk(cap, tgtonly, &ckey)) != TRUE) { 10206 mutex_exit(&mpt->m_mutex); 10207 return (UNDEFINED); 10208 } 10209 10210 switch (ckey) { 10211 case SCSI_CAP_DMA_MAX: 10212 rval = (int)mpt->m_msg_dma_attr.dma_attr_maxxfer; 10213 break; 10214 case SCSI_CAP_ARQ: 10215 rval = TRUE; 10216 break; 10217 case SCSI_CAP_MSG_OUT: 10218 case SCSI_CAP_PARITY: 10219 case SCSI_CAP_UNTAGGED_QING: 10220 rval = TRUE; 10221 break; 10222 case SCSI_CAP_TAGGED_QING: 10223 rval = TRUE; 10224 break; 10225 case SCSI_CAP_RESET_NOTIFICATION: 10226 rval = TRUE; 10227 break; 10228 case SCSI_CAP_LINKED_CMDS: 10229 rval = FALSE; 10230 break; 10231 case SCSI_CAP_QFULL_RETRIES: 10232 rval = ((mptsas_tgt_private_t *)(ap->a_hba_tran-> 10233 tran_tgt_private))->t_private->m_qfull_retries; 10234 break; 10235 case SCSI_CAP_QFULL_RETRY_INTERVAL: 10236 rval = drv_hztousec(((mptsas_tgt_private_t *) 10237 (ap->a_hba_tran->tran_tgt_private))-> 10238 t_private->m_qfull_retry_interval) / 1000; 10239 break; 10240 case SCSI_CAP_CDB_LEN: 10241 rval = CDB_GROUP4; 10242 break; 10243 case SCSI_CAP_INTERCONNECT_TYPE: 10244 rval = INTERCONNECT_SAS; 10245 break; 10246 case SCSI_CAP_TRAN_LAYER_RETRIES: 10247 if (mpt->m_ioc_capabilities & 10248 MPI2_IOCFACTS_CAPABILITY_TLR) 10249 rval = TRUE; 10250 else 10251 rval = FALSE; 10252 break; 10253 default: 10254 rval = UNDEFINED; 10255 break; 10256 } 10257 10258 NDBG24(("mptsas_scsi_getcap: %s, rval=%x", cap, rval)); 10259 10260 mutex_exit(&mpt->m_mutex); 10261 return (rval); 10262 } 10263 10264 /* 10265 * (*tran_setcap). Set the capability named to the value given. 10266 */ 10267 static int 10268 mptsas_scsi_setcap(struct scsi_address *ap, char *cap, int value, int tgtonly) 10269 { 10270 mptsas_t *mpt = ADDR2MPT(ap); 10271 mptsas_target_t *ptgt; 10272 int ckey; 10273 int rval = FALSE; 10274 10275 NDBG24(("mptsas_scsi_setcap: target=%d, cap=%s value=%x tgtonly=%x", 10276 ap->a_target, cap, value, tgtonly)); 10277 10278 if (!tgtonly) { 10279 return (rval); 10280 } 10281 10282 mutex_enter(&mpt->m_mutex); 10283 10284 if ((mptsas_scsi_capchk(cap, tgtonly, &ckey)) != TRUE) { 10285 mutex_exit(&mpt->m_mutex); 10286 return (UNDEFINED); 10287 } 10288 10289 switch (ckey) { 10290 case SCSI_CAP_DMA_MAX: 10291 case SCSI_CAP_MSG_OUT: 10292 case SCSI_CAP_PARITY: 10293 case SCSI_CAP_INITIATOR_ID: 10294 case SCSI_CAP_LINKED_CMDS: 10295 case SCSI_CAP_UNTAGGED_QING: 10296 case SCSI_CAP_RESET_NOTIFICATION: 10297 /* 10298 * None of these are settable via 10299 * the capability interface. 10300 */ 10301 break; 10302 case SCSI_CAP_ARQ: 10303 /* 10304 * We cannot turn off arq so return false if asked to 10305 */ 10306 if (value) { 10307 rval = TRUE; 10308 } else { 10309 rval = FALSE; 10310 } 10311 break; 10312 case SCSI_CAP_TAGGED_QING: 10313 ptgt = ((mptsas_tgt_private_t *) 10314 (ap->a_hba_tran->tran_tgt_private))->t_private; 10315 mptsas_set_throttle_mtx(mpt, ptgt, MAX_THROTTLE); 10316 rval = TRUE; 10317 break; 10318 case SCSI_CAP_QFULL_RETRIES: 10319 ((mptsas_tgt_private_t *)(ap->a_hba_tran->tran_tgt_private))-> 10320 t_private->m_qfull_retries = (uchar_t)value; 10321 rval = TRUE; 10322 break; 10323 case SCSI_CAP_QFULL_RETRY_INTERVAL: 10324 ((mptsas_tgt_private_t *)(ap->a_hba_tran->tran_tgt_private))-> 10325 t_private->m_qfull_retry_interval = 10326 drv_usectohz(value * 1000); 10327 rval = TRUE; 10328 break; 10329 default: 10330 rval = UNDEFINED; 10331 break; 10332 } 10333 mutex_exit(&mpt->m_mutex); 10334 return (rval); 10335 } 10336 10337 /* 10338 * Utility routine for mptsas_ifsetcap/ifgetcap 10339 */ 10340 /*ARGSUSED*/ 10341 static int 10342 mptsas_scsi_capchk(char *cap, int tgtonly, int *cidxp) 10343 { 10344 NDBG24(("mptsas_scsi_capchk: cap=%s", cap)); 10345 10346 if (!cap) 10347 return (FALSE); 10348 10349 *cidxp = scsi_hba_lookup_capstr(cap); 10350 return (TRUE); 10351 } 10352 10353 static int 10354 mptsas_alloc_active_slots(mptsas_t *mpt, int flag) 10355 { 10356 mptsas_slots_t *old_active = mpt->m_active; 10357 mptsas_slots_t *new_active; 10358 size_t size; 10359 10360 /* 10361 * if there are active commands, then we cannot 10362 * change size of active slots array. 10363 */ 10364 ASSERT(mpt->m_ncmds == 0); 10365 10366 size = MPTSAS_SLOTS_SIZE(mpt); 10367 new_active = kmem_zalloc(size, flag); 10368 if (new_active == NULL) { 10369 NDBG1(("new active alloc failed")); 10370 return (-1); 10371 } 10372 /* 10373 * Since SMID 0 is reserved and the TM slot is reserved, the 10374 * number of slots that can be used at any one time is 10375 * m_max_requests - 2. 10376 */ 10377 new_active->m_n_normal = (mpt->m_max_requests - 2); 10378 new_active->m_size = size; 10379 new_active->m_rotor = 1; 10380 if (old_active) 10381 mptsas_free_active_slots(mpt); 10382 mpt->m_active = new_active; 10383 10384 return (0); 10385 } 10386 10387 static void 10388 mptsas_free_active_slots(mptsas_t *mpt) 10389 { 10390 mptsas_slots_t *active = mpt->m_active; 10391 size_t size; 10392 10393 if (active == NULL) 10394 return; 10395 size = active->m_size; 10396 kmem_free(active, size); 10397 mpt->m_active = NULL; 10398 } 10399 10400 /* 10401 * Error logging, printing, and debug print routines. 10402 */ 10403 static char *mptsas_label = "mpt_sas3"; 10404 10405 /*PRINTFLIKE3*/ 10406 void 10407 mptsas_log(mptsas_t *mpt, int level, char *fmt, ...) 10408 { 10409 dev_info_t *dev; 10410 va_list ap; 10411 10412 if (mpt) { 10413 dev = mpt->m_dip; 10414 } else { 10415 dev = 0; 10416 } 10417 10418 mutex_enter(&mptsas_log_mutex); 10419 10420 va_start(ap, fmt); 10421 (void) vsprintf(mptsas_log_buf, fmt, ap); 10422 va_end(ap); 10423 10424 if (level == CE_CONT) { 10425 scsi_log(dev, mptsas_label, level, "%s\n", mptsas_log_buf); 10426 } else { 10427 scsi_log(dev, mptsas_label, level, "%s", mptsas_log_buf); 10428 } 10429 10430 mutex_exit(&mptsas_log_mutex); 10431 } 10432 10433 #ifdef MPTSAS_DEBUG 10434 /* 10435 * Use a circular buffer to log messages to private memory. 10436 * No mutexes, so there is the opportunity for this to miss lines. 10437 * But it's fast and does not hold up the proceedings too much. 10438 */ 10439 static char mptsas_dbglog_bufs[32][256]; 10440 static uint32_t mptsas_dbglog_idx = 1; 10441 10442 /*PRINTFLIKE1*/ 10443 void 10444 mptsas_debug_log(char *fmt, ...) 10445 { 10446 va_list ap; 10447 uint32_t idx; 10448 10449 if (!mptsas_dbglog_idx) { 10450 return; 10451 } 10452 idx = (mptsas_dbglog_idx++) & 0x1f; 10453 10454 va_start(ap, fmt); 10455 (void) vsnprintf(mptsas_dbglog_bufs[idx], 10456 sizeof (mptsas_dbglog_bufs[0]), fmt, ap); 10457 va_end(ap); 10458 } 10459 10460 /*PRINTFLIKE1*/ 10461 void 10462 mptsas_printf(char *fmt, ...) 10463 { 10464 dev_info_t *dev = 0; 10465 va_list ap; 10466 10467 mutex_enter(&mptsas_log_mutex); 10468 10469 va_start(ap, fmt); 10470 (void) vsprintf(mptsas_log_buf, fmt, ap); 10471 va_end(ap); 10472 10473 #ifdef PROM_PRINTF 10474 prom_printf("%s:\t%s\n", mptsas_label, mptsas_log_buf); 10475 #else 10476 scsi_log(dev, mptsas_label, CE_CONT, "!%s\n", mptsas_log_buf); 10477 #endif 10478 mutex_exit(&mptsas_log_mutex); 10479 } 10480 #endif 10481 10482 /* 10483 * timeout handling 10484 */ 10485 static void 10486 mptsas_watch(void *arg) 10487 { 10488 #ifndef __lock_lint 10489 _NOTE(ARGUNUSED(arg)) 10490 #endif 10491 10492 mptsas_t *mpt; 10493 uint32_t doorbell; 10494 10495 NDBG30(("mptsas_watch")); 10496 10497 rw_enter(&mptsas_global_rwlock, RW_READER); 10498 for (mpt = mptsas_head; mpt != (mptsas_t *)NULL; mpt = mpt->m_next) { 10499 10500 mutex_enter(&mpt->m_mutex); 10501 10502 /* Skip device if not powered on */ 10503 if (mpt->m_options & MPTSAS_OPT_PM) { 10504 if (mpt->m_power_level == PM_LEVEL_D0) { 10505 (void) pm_busy_component(mpt->m_dip, 0); 10506 mpt->m_busy = 1; 10507 } else { 10508 mutex_exit(&mpt->m_mutex); 10509 continue; 10510 } 10511 } 10512 10513 /* 10514 * Check if controller is in a FAULT state. If so, reset it. 10515 */ 10516 doorbell = ddi_get32(mpt->m_datap, &mpt->m_reg->Doorbell); 10517 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 10518 doorbell &= MPI2_DOORBELL_DATA_MASK; 10519 mptsas_log(mpt, CE_WARN, "MPT Firmware Fault, " 10520 "code: %04x", doorbell); 10521 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 10522 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 10523 mptsas_log(mpt, CE_WARN, "Reset failed" 10524 "after fault was detected"); 10525 } 10526 } 10527 10528 /* 10529 * For now, always call mptsas_watchsubr. 10530 */ 10531 mptsas_watchsubr(mpt); 10532 10533 if (mpt->m_options & MPTSAS_OPT_PM) { 10534 mpt->m_busy = 0; 10535 (void) pm_idle_component(mpt->m_dip, 0); 10536 } 10537 10538 mutex_exit(&mpt->m_mutex); 10539 } 10540 rw_exit(&mptsas_global_rwlock); 10541 10542 mutex_enter(&mptsas_global_mutex); 10543 if (mptsas_timeouts_enabled) 10544 mptsas_timeout_id = timeout(mptsas_watch, NULL, mptsas_tick); 10545 mutex_exit(&mptsas_global_mutex); 10546 } 10547 10548 int mptsas_monitor_for_txwqs = 1; 10549 static void 10550 mptsas_watchsubr(mptsas_t *mpt) 10551 { 10552 int i; 10553 mptsas_cmd_t *cmd; 10554 mptsas_target_t *ptgt = NULL; 10555 hrtime_t timestamp = gethrtime(); 10556 boolean_t restart_hba = B_FALSE; 10557 10558 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 10559 10560 NDBG30(("mptsas_watchsubr: mpt=0x%p, ncmds %d, nstarted %d", 10561 (void *)mpt, mpt->m_ncmds, mpt->m_ncstarted)); 10562 10563 mpt->m_lncstarted = mpt->m_ncstarted; 10564 if (mpt->m_txwq_thread_n != 0 && mpt->m_txwq_enabled != BLOCKED && 10565 mptsas_monitor_for_txwqs) { 10566 i = mpt->m_ncstarted/mptsas_scsi_watchdog_tick; 10567 if (i > mpt->m_txwq_thread_threshold) { 10568 mpt->m_txwq_enabled = TRUE; 10569 } else if (i < (mpt->m_txwq_thread_threshold>>1)) { 10570 mpt->m_txwq_enabled = FALSE; 10571 } 10572 } 10573 mpt->m_ncstarted = 0; 10574 10575 /* 10576 * Check for commands stuck in active slot 10577 * Account for TM requests, which use the last SMID. 10578 */ 10579 for (i = 0; i <= mpt->m_active->m_n_normal; i++) { 10580 if ((cmd = mpt->m_active->m_slot[i]) != NULL) { 10581 if (cmd->cmd_active_expiration <= timestamp) { 10582 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 10583 /* 10584 * There seems to be a command stuck 10585 * in the active slot. Drain throttle. 10586 */ 10587 ptgt = cmd->cmd_tgt_addr; 10588 mptsas_set_throttle_mtx(mpt, ptgt, 10589 DRAIN_THROTTLE); 10590 } else if (cmd->cmd_flags & 10591 (CFLAG_PASSTHRU | CFLAG_CONFIG | 10592 CFLAG_FW_DIAG)) { 10593 /* 10594 * passthrough command timeout 10595 */ 10596 cmd->cmd_flags |= (CFLAG_FINISHED | 10597 CFLAG_TIMEOUT); 10598 cv_broadcast(&mpt->m_passthru_cv); 10599 cv_broadcast(&mpt->m_config_cv); 10600 cv_broadcast(&mpt->m_fw_diag_cv); 10601 } 10602 } 10603 } 10604 } 10605 10606 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10607 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10608 mutex_enter(&ptgt->m_t_mutex); 10609 /* 10610 * If we were draining due to a qfull condition, 10611 * go back to full throttle. 10612 */ 10613 if ((ptgt->m_t_throttle < MAX_THROTTLE) && 10614 (ptgt->m_t_throttle > HOLD_THROTTLE) && 10615 (ptgt->m_t_ncmds < ptgt->m_t_throttle)) { 10616 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 10617 restart_hba = B_TRUE; 10618 } 10619 10620 cmd = TAILQ_LAST(&ptgt->m_active_cmdq, mptsas_active_cmdq); 10621 if (cmd != NULL) { 10622 if (cmd->cmd_active_expiration <= timestamp) { 10623 /* 10624 * Earliest command timeout expired. 10625 * Drain throttle. 10626 */ 10627 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 10628 10629 /* 10630 * Check for remaining commands. 10631 */ 10632 cmd = TAILQ_FIRST(&ptgt->m_active_cmdq); 10633 if (cmd->cmd_active_expiration > timestamp) { 10634 /* 10635 * Wait for remaining commands to 10636 * complete or time out. 10637 */ 10638 NDBG23(("command timed out, " 10639 "pending drain")); 10640 } else { 10641 mutex_exit(&ptgt->m_t_mutex); 10642 10643 /* 10644 * All command timeouts expired. 10645 */ 10646 mptsas_log(mpt, CE_NOTE, 10647 "Timeout of %d seconds " 10648 "expired with %d commands on " 10649 "target %d lun %d.", 10650 cmd->cmd_pkt->pkt_time, 10651 ptgt->m_t_ncmds, 10652 ptgt->m_devhdl, Lun(cmd)); 10653 10654 mptsas_cmd_timeout(mpt, ptgt); 10655 continue; 10656 } 10657 } else if (cmd->cmd_active_expiration <= timestamp + 10658 (hrtime_t)mptsas_scsi_watchdog_tick * NANOSEC) { 10659 NDBG23(("pending timeout")); 10660 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 10661 } 10662 } 10663 mutex_exit(&ptgt->m_t_mutex); 10664 } 10665 if (restart_hba == B_TRUE) { 10666 mptsas_restart_hba(mpt); 10667 } 10668 } 10669 10670 /* 10671 * timeout recovery 10672 */ 10673 static void 10674 mptsas_cmd_timeout(mptsas_t *mpt, mptsas_target_t *ptgt) 10675 { 10676 uint16_t devhdl; 10677 uint64_t sas_wwn; 10678 uint8_t phy; 10679 char wwn_str[MPTSAS_WWN_STRLEN]; 10680 10681 devhdl = ptgt->m_devhdl; 10682 sas_wwn = ptgt->m_addr.mta_wwn; 10683 phy = ptgt->m_phynum; 10684 if (sas_wwn == 0) { 10685 (void) sprintf(wwn_str, "p%x", phy); 10686 } else { 10687 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 10688 } 10689 10690 NDBG29(("mptsas_cmd_timeout: target=%d", devhdl)); 10691 mptsas_log(mpt, CE_WARN, "Disconnected command timeout for " 10692 "target %d %s, enclosure %u .", devhdl, wwn_str, 10693 ptgt->m_enclosure); 10694 10695 /* 10696 * Abort all outstanding commands on the device. 10697 */ 10698 NDBG29(("mptsas_cmd_timeout: device reset")); 10699 if (mptsas_do_scsi_reset(mpt, devhdl) != TRUE) { 10700 mptsas_log(mpt, CE_WARN, "Target %d reset for command timeout " 10701 "recovery failed!", devhdl); 10702 } 10703 } 10704 10705 /* 10706 * Device / Hotplug control 10707 */ 10708 static int 10709 mptsas_scsi_quiesce(dev_info_t *dip) 10710 { 10711 mptsas_t *mpt; 10712 scsi_hba_tran_t *tran; 10713 10714 tran = ddi_get_driver_private(dip); 10715 if (tran == NULL || (mpt = TRAN2MPT(tran)) == NULL) 10716 return (-1); 10717 10718 return (mptsas_quiesce_bus(mpt)); 10719 } 10720 10721 static int 10722 mptsas_scsi_unquiesce(dev_info_t *dip) 10723 { 10724 mptsas_t *mpt; 10725 scsi_hba_tran_t *tran; 10726 10727 tran = ddi_get_driver_private(dip); 10728 if (tran == NULL || (mpt = TRAN2MPT(tran)) == NULL) 10729 return (-1); 10730 10731 return (mptsas_unquiesce_bus(mpt)); 10732 } 10733 10734 static int 10735 mptsas_quiesce_bus(mptsas_t *mpt) 10736 { 10737 mptsas_target_t *ptgt = NULL; 10738 10739 NDBG28(("mptsas_quiesce_bus")); 10740 mutex_enter(&mpt->m_mutex); 10741 10742 /* Set all the throttles to zero */ 10743 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10744 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10745 mptsas_set_throttle_mtx(mpt, ptgt, HOLD_THROTTLE); 10746 } 10747 10748 /* If there are any outstanding commands in the queue */ 10749 if (mpt->m_ncmds) { 10750 mpt->m_softstate |= MPTSAS_SS_DRAINING; 10751 mpt->m_quiesce_timeid = timeout(mptsas_ncmds_checkdrain, 10752 mpt, (MPTSAS_QUIESCE_TIMEOUT * drv_usectohz(1000000))); 10753 if (cv_wait_sig(&mpt->m_cv, &mpt->m_mutex) == 0) { 10754 /* 10755 * Quiesce has been interrupted 10756 */ 10757 mpt->m_softstate &= ~MPTSAS_SS_DRAINING; 10758 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10759 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10760 mptsas_set_throttle_mtx(mpt, ptgt, 10761 MAX_THROTTLE); 10762 } 10763 mptsas_restart_hba(mpt); 10764 if (mpt->m_quiesce_timeid != 0) { 10765 timeout_id_t tid = mpt->m_quiesce_timeid; 10766 mpt->m_quiesce_timeid = 0; 10767 mutex_exit(&mpt->m_mutex); 10768 (void) untimeout(tid); 10769 return (-1); 10770 } 10771 mutex_exit(&mpt->m_mutex); 10772 return (-1); 10773 } else { 10774 /* Bus has been quiesced */ 10775 ASSERT(mpt->m_quiesce_timeid == 0); 10776 mpt->m_softstate &= ~MPTSAS_SS_DRAINING; 10777 mpt->m_softstate |= MPTSAS_SS_QUIESCED; 10778 mutex_exit(&mpt->m_mutex); 10779 return (0); 10780 } 10781 } 10782 /* Bus was not busy - QUIESCED */ 10783 mutex_exit(&mpt->m_mutex); 10784 10785 return (0); 10786 } 10787 10788 static int 10789 mptsas_unquiesce_bus(mptsas_t *mpt) 10790 { 10791 mptsas_target_t *ptgt = NULL; 10792 10793 NDBG28(("mptsas_unquiesce_bus")); 10794 mutex_enter(&mpt->m_mutex); 10795 mpt->m_softstate &= ~MPTSAS_SS_QUIESCED; 10796 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10797 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10798 mptsas_set_throttle_mtx(mpt, ptgt, MAX_THROTTLE); 10799 } 10800 mptsas_restart_hba(mpt); 10801 mutex_exit(&mpt->m_mutex); 10802 return (0); 10803 } 10804 10805 static void 10806 mptsas_ncmds_checkdrain(void *arg) 10807 { 10808 mptsas_t *mpt = arg; 10809 mptsas_target_t *ptgt = NULL; 10810 10811 mutex_enter(&mpt->m_mutex); 10812 if (mpt->m_softstate & MPTSAS_SS_DRAINING) { 10813 mpt->m_quiesce_timeid = 0; 10814 if (mpt->m_ncmds == 0) { 10815 /* Command queue has been drained */ 10816 cv_signal(&mpt->m_cv); 10817 } else { 10818 /* 10819 * The throttle may have been reset because 10820 * of a SCSI bus reset 10821 */ 10822 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10823 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10824 mptsas_set_throttle_mtx(mpt, ptgt, 10825 HOLD_THROTTLE); 10826 } 10827 10828 mpt->m_quiesce_timeid = timeout(mptsas_ncmds_checkdrain, 10829 mpt, (MPTSAS_QUIESCE_TIMEOUT * 10830 drv_usectohz(1000000))); 10831 } 10832 } 10833 mutex_exit(&mpt->m_mutex); 10834 } 10835 10836 /*ARGSUSED*/ 10837 static void 10838 mptsas_dump_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 10839 { 10840 int i; 10841 uint8_t *cp = (uchar_t *)cmd->cmd_pkt->pkt_cdbp; 10842 char buf[128]; 10843 10844 buf[0] = '\0'; 10845 NDBG25(("?Cmd (0x%p) dump for Target %d Lun %d:\n", (void *)cmd, 10846 Tgt(cmd), Lun(cmd))); 10847 (void) sprintf(&buf[0], "\tcdb=["); 10848 for (i = 0; i < (int)cmd->cmd_cdblen; i++) { 10849 (void) sprintf(&buf[strlen(buf)], " 0x%x", *cp++); 10850 } 10851 (void) sprintf(&buf[strlen(buf)], " ]"); 10852 NDBG25(("?%s\n", buf)); 10853 NDBG25(("?pkt_flags=0x%x pkt_statistics=0x%x pkt_state=0x%x\n", 10854 cmd->cmd_pkt->pkt_flags, cmd->cmd_pkt->pkt_statistics, 10855 cmd->cmd_pkt->pkt_state)); 10856 NDBG25(("?pkt_scbp=0x%x cmd_flags=0x%x\n", cmd->cmd_pkt->pkt_scbp ? 10857 *(cmd->cmd_pkt->pkt_scbp) : 0, cmd->cmd_flags)); 10858 } 10859 10860 static void 10861 mptsas_passthru_sge(ddi_acc_handle_t acc_hdl, mptsas_pt_request_t *pt, 10862 pMpi2SGESimple64_t sgep) 10863 { 10864 uint32_t sge_flags; 10865 uint32_t data_size, dataout_size; 10866 ddi_dma_cookie_t data_cookie; 10867 ddi_dma_cookie_t dataout_cookie; 10868 10869 data_size = pt->data_size; 10870 dataout_size = pt->dataout_size; 10871 data_cookie = pt->data_cookie; 10872 dataout_cookie = pt->dataout_cookie; 10873 10874 if (dataout_size) { 10875 sge_flags = dataout_size | 10876 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 10877 MPI2_SGE_FLAGS_END_OF_BUFFER | 10878 MPI2_SGE_FLAGS_HOST_TO_IOC | 10879 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 10880 MPI2_SGE_FLAGS_SHIFT); 10881 ddi_put32(acc_hdl, &sgep->FlagsLength, sge_flags); 10882 ddi_put32(acc_hdl, &sgep->Address.Low, 10883 (uint32_t)(dataout_cookie.dmac_laddress & 0xffffffffull)); 10884 ddi_put32(acc_hdl, &sgep->Address.High, 10885 (uint32_t)(dataout_cookie.dmac_laddress >> 32)); 10886 sgep++; 10887 } 10888 sge_flags = data_size; 10889 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 10890 MPI2_SGE_FLAGS_LAST_ELEMENT | 10891 MPI2_SGE_FLAGS_END_OF_BUFFER | 10892 MPI2_SGE_FLAGS_END_OF_LIST | 10893 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 10894 MPI2_SGE_FLAGS_SHIFT); 10895 if (pt->direction == MPTSAS_PASS_THRU_DIRECTION_WRITE) { 10896 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 10897 MPI2_SGE_FLAGS_SHIFT); 10898 } else { 10899 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 10900 MPI2_SGE_FLAGS_SHIFT); 10901 } 10902 ddi_put32(acc_hdl, &sgep->FlagsLength, sge_flags); 10903 ddi_put32(acc_hdl, &sgep->Address.Low, 10904 (uint32_t)(data_cookie.dmac_laddress & 0xffffffffull)); 10905 ddi_put32(acc_hdl, &sgep->Address.High, 10906 (uint32_t)(data_cookie.dmac_laddress >> 32)); 10907 } 10908 10909 static void 10910 mptsas_passthru_ieee_sge(ddi_acc_handle_t acc_hdl, mptsas_pt_request_t *pt, 10911 pMpi2IeeeSgeSimple64_t ieeesgep) 10912 { 10913 uint8_t sge_flags; 10914 uint32_t data_size, dataout_size; 10915 ddi_dma_cookie_t data_cookie; 10916 ddi_dma_cookie_t dataout_cookie; 10917 10918 data_size = pt->data_size; 10919 dataout_size = pt->dataout_size; 10920 data_cookie = pt->data_cookie; 10921 dataout_cookie = pt->dataout_cookie; 10922 10923 sge_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 10924 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 10925 if (dataout_size) { 10926 ddi_put32(acc_hdl, &ieeesgep->Length, dataout_size); 10927 ddi_put32(acc_hdl, &ieeesgep->Address.Low, 10928 (uint32_t)(dataout_cookie.dmac_laddress & 10929 0xffffffffull)); 10930 ddi_put32(acc_hdl, &ieeesgep->Address.High, 10931 (uint32_t)(dataout_cookie.dmac_laddress >> 32)); 10932 ddi_put8(acc_hdl, &ieeesgep->Flags, sge_flags); 10933 ieeesgep++; 10934 } 10935 sge_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 10936 ddi_put32(acc_hdl, &ieeesgep->Length, data_size); 10937 ddi_put32(acc_hdl, &ieeesgep->Address.Low, 10938 (uint32_t)(data_cookie.dmac_laddress & 0xffffffffull)); 10939 ddi_put32(acc_hdl, &ieeesgep->Address.High, 10940 (uint32_t)(data_cookie.dmac_laddress >> 32)); 10941 ddi_put8(acc_hdl, &ieeesgep->Flags, sge_flags); 10942 } 10943 10944 static void 10945 mptsas_start_passthru(mptsas_t *mpt, mptsas_cmd_t *cmd) 10946 { 10947 caddr_t memp; 10948 pMPI2RequestHeader_t request_hdrp; 10949 struct scsi_pkt *pkt = cmd->cmd_pkt; 10950 mptsas_pt_request_t *pt = pkt->pkt_ha_private; 10951 uint32_t request_size; 10952 uint64_t request_desc = 0; 10953 uint64_t sense_bufp; 10954 uint8_t desc_type; 10955 uint8_t *request, function; 10956 ddi_dma_handle_t dma_hdl = mpt->m_dma_req_frame_hdl; 10957 ddi_acc_handle_t acc_hdl = mpt->m_acc_req_frame_hdl; 10958 10959 desc_type = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 10960 10961 request = pt->request; 10962 request_size = pt->request_size; 10963 10964 /* 10965 * Store the passthrough message in memory location 10966 * corresponding to our slot number 10967 */ 10968 memp = mpt->m_req_frame + (mpt->m_req_frame_size * cmd->cmd_slot); 10969 request_hdrp = (pMPI2RequestHeader_t)memp; 10970 bzero(memp, mpt->m_req_frame_size); 10971 10972 bcopy(request, memp, request_size); 10973 10974 NDBG15(("mptsas_start_passthru: Func 0x%x, MsgFlags 0x%x, " 10975 "size=%d, in %d, out %d", request_hdrp->Function, 10976 request_hdrp->MsgFlags, request_size, 10977 pt->data_size, pt->dataout_size)); 10978 10979 /* 10980 * Add an SGE, even if the length is zero. 10981 */ 10982 if (mpt->m_MPI25 && pt->simple == 0) { 10983 mptsas_passthru_ieee_sge(acc_hdl, pt, 10984 (pMpi2IeeeSgeSimple64_t) 10985 ((uint8_t *)request_hdrp + pt->sgl_offset)); 10986 } else { 10987 mptsas_passthru_sge(acc_hdl, pt, 10988 (pMpi2SGESimple64_t) 10989 ((uint8_t *)request_hdrp + pt->sgl_offset)); 10990 } 10991 10992 function = request_hdrp->Function; 10993 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 10994 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 10995 pMpi2SCSIIORequest_t scsi_io_req; 10996 10997 NDBG15(("mptsas_start_passthru: Is SCSI IO Req")); 10998 scsi_io_req = (pMpi2SCSIIORequest_t)request_hdrp; 10999 /* 11000 * Put SGE for data and data_out buffer at the end of 11001 * scsi_io_request message header.(64 bytes in total) 11002 * Following above SGEs, the residual space will be 11003 * used by sense data. 11004 */ 11005 ddi_put8(acc_hdl, 11006 &scsi_io_req->SenseBufferLength, 11007 (uint8_t)(request_size - 64)); 11008 11009 sense_bufp = (uint32_t)(mpt->m_req_frame_dma_addr + 11010 (mpt->m_req_frame_size * cmd->cmd_slot) & 0xffffffffull); 11011 sense_bufp += 64; 11012 ddi_put32(acc_hdl, 11013 &scsi_io_req->SenseBufferLowAddress, sense_bufp); 11014 11015 /* 11016 * Set SGLOffset0 value 11017 */ 11018 ddi_put8(acc_hdl, &scsi_io_req->SGLOffset0, 11019 offsetof(MPI2_SCSI_IO_REQUEST, SGL) / 4); 11020 11021 /* 11022 * Setup descriptor info. RAID passthrough must use the 11023 * default request descriptor which is already set, so if this 11024 * is a SCSI IO request, change the descriptor to SCSI IO. 11025 */ 11026 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 11027 desc_type = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 11028 request_desc = (((uint64_t)ddi_get16(acc_hdl, 11029 &scsi_io_req->DevHandle)) << 48); 11030 } 11031 } 11032 11033 /* 11034 * We must wait till the message has been completed before 11035 * beginning the next message so we wait for this one to 11036 * finish. 11037 */ 11038 (void) ddi_dma_sync(dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 11039 request_desc |= ((cmd->cmd_slot << 16) | desc_type); 11040 cmd->cmd_rfm = NULL; 11041 MPTSAS_START_CMD(mpt, request_desc); 11042 if ((mptsas_check_dma_handle(dma_hdl) != DDI_SUCCESS) || 11043 (mptsas_check_acc_handle(acc_hdl) != DDI_SUCCESS)) { 11044 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 11045 } 11046 } 11047 11048 typedef void (mps_pre_f)(mptsas_t *, mptsas_pt_request_t *); 11049 static mps_pre_f mpi_pre_ioc_facts; 11050 static mps_pre_f mpi_pre_port_facts; 11051 static mps_pre_f mpi_pre_fw_download; 11052 static mps_pre_f mpi_pre_fw_25_download; 11053 static mps_pre_f mpi_pre_fw_upload; 11054 static mps_pre_f mpi_pre_fw_25_upload; 11055 static mps_pre_f mpi_pre_sata_passthrough; 11056 static mps_pre_f mpi_pre_smp_passthrough; 11057 static mps_pre_f mpi_pre_config; 11058 static mps_pre_f mpi_pre_sas_io_unit_control; 11059 static mps_pre_f mpi_pre_scsi_io_req; 11060 11061 /* 11062 * Prepare the pt for a SAS2 FW_DOWNLOAD request. 11063 */ 11064 static void 11065 mpi_pre_fw_download(mptsas_t *mpt, mptsas_pt_request_t *pt) 11066 { 11067 pMpi2FWDownloadTCSGE_t tcsge; 11068 pMpi2FWDownloadRequest req; 11069 11070 /* 11071 * If SAS3, call separate function. 11072 */ 11073 if (mpt->m_MPI25) { 11074 mpi_pre_fw_25_download(mpt, pt); 11075 return; 11076 } 11077 11078 /* 11079 * User requests should come in with the Transaction 11080 * context element where the SGL will go. Putting the 11081 * SGL after that seems to work, but don't really know 11082 * why. Other drivers tend to create an extra SGL and 11083 * refer to the TCE through that. 11084 */ 11085 req = (pMpi2FWDownloadRequest)pt->request; 11086 tcsge = (pMpi2FWDownloadTCSGE_t)&req->SGL; 11087 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 11088 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 11089 mptsas_log(mpt, CE_WARN, "FW Download tce invalid!"); 11090 } 11091 11092 pt->sgl_offset = offsetof(MPI2_FW_DOWNLOAD_REQUEST, SGL) + 11093 sizeof (*tcsge); 11094 if (pt->request_size != pt->sgl_offset) 11095 NDBG15(("mpi_pre_fw_download(): Incorrect req size, " 11096 "0x%x, should be 0x%x, dataoutsz 0x%x", 11097 (int)pt->request_size, (int)pt->sgl_offset, 11098 (int)pt->dataout_size)); 11099 if (pt->data_size < sizeof (MPI2_FW_DOWNLOAD_REPLY)) 11100 NDBG15(("mpi_pre_fw_download(): Incorrect rep size, " 11101 "0x%x, should be 0x%x", pt->data_size, 11102 (int)sizeof (MPI2_FW_DOWNLOAD_REPLY))); 11103 } 11104 11105 /* 11106 * Prepare the pt for a SAS3 FW_DOWNLOAD request. 11107 */ 11108 static void 11109 mpi_pre_fw_25_download(mptsas_t *mpt, mptsas_pt_request_t *pt) 11110 { 11111 pMpi2FWDownloadTCSGE_t tcsge; 11112 pMpi2FWDownloadRequest req2; 11113 pMpi25FWDownloadRequest req25; 11114 11115 /* 11116 * User requests should come in with the Transaction 11117 * context element where the SGL will go. The new firmware 11118 * Doesn't use TCE and has space in the main request for 11119 * this information. So move to the right place. 11120 */ 11121 req2 = (pMpi2FWDownloadRequest)pt->request; 11122 req25 = (pMpi25FWDownloadRequest)pt->request; 11123 tcsge = (pMpi2FWDownloadTCSGE_t)&req2->SGL; 11124 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 11125 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 11126 mptsas_log(mpt, CE_WARN, "FW Download tce invalid!"); 11127 } 11128 req25->ImageOffset = tcsge->ImageOffset; 11129 req25->ImageSize = tcsge->ImageSize; 11130 11131 pt->sgl_offset = offsetof(MPI25_FW_DOWNLOAD_REQUEST, SGL); 11132 if (pt->request_size != pt->sgl_offset) 11133 NDBG15(("mpi_pre_fw_25_download(): Incorrect req size, " 11134 "0x%x, should be 0x%x, dataoutsz 0x%x", 11135 pt->request_size, pt->sgl_offset, 11136 pt->dataout_size)); 11137 if (pt->data_size < sizeof (MPI2_FW_DOWNLOAD_REPLY)) 11138 NDBG15(("mpi_pre_fw_25_download(): Incorrect rep size, " 11139 "0x%x, should be 0x%x", pt->data_size, 11140 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 11141 } 11142 11143 /* 11144 * Prepare the pt for a SAS2 FW_UPLOAD request. 11145 */ 11146 static void 11147 mpi_pre_fw_upload(mptsas_t *mpt, mptsas_pt_request_t *pt) 11148 { 11149 pMpi2FWUploadTCSGE_t tcsge; 11150 pMpi2FWUploadRequest_t req; 11151 11152 /* 11153 * If SAS3, call separate function. 11154 */ 11155 if (mpt->m_MPI25) { 11156 mpi_pre_fw_25_upload(mpt, pt); 11157 return; 11158 } 11159 11160 /* 11161 * User requests should come in with the Transaction 11162 * context element where the SGL will go. Putting the 11163 * SGL after that seems to work, but don't really know 11164 * why. Other drivers tend to create an extra SGL and 11165 * refer to the TCE through that. 11166 */ 11167 req = (pMpi2FWUploadRequest_t)pt->request; 11168 tcsge = (pMpi2FWUploadTCSGE_t)&req->SGL; 11169 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 11170 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 11171 mptsas_log(mpt, CE_WARN, "FW Upload tce invalid!"); 11172 } 11173 11174 pt->sgl_offset = offsetof(MPI2_FW_UPLOAD_REQUEST, SGL) + 11175 sizeof (*tcsge); 11176 if (pt->request_size != pt->sgl_offset) 11177 NDBG15(("mpi_pre_fw_upload(): Incorrect req size, " 11178 "0x%x, should be 0x%x, dataoutsz 0x%x", 11179 pt->request_size, pt->sgl_offset, 11180 pt->dataout_size)); 11181 if (pt->data_size < sizeof (MPI2_FW_UPLOAD_REPLY)) 11182 NDBG15(("mpi_pre_fw_upload(): Incorrect rep size, " 11183 "0x%x, should be 0x%x", pt->data_size, 11184 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 11185 } 11186 11187 /* 11188 * Prepare the pt a SAS3 FW_UPLOAD request. 11189 */ 11190 static void 11191 mpi_pre_fw_25_upload(mptsas_t *mpt, mptsas_pt_request_t *pt) 11192 { 11193 pMpi2FWUploadTCSGE_t tcsge; 11194 pMpi2FWUploadRequest_t req2; 11195 pMpi25FWUploadRequest_t req25; 11196 11197 /* 11198 * User requests should come in with the Transaction 11199 * context element where the SGL will go. The new firmware 11200 * Doesn't use TCE and has space in the main request for 11201 * this information. So move to the right place. 11202 */ 11203 req2 = (pMpi2FWUploadRequest_t)pt->request; 11204 req25 = (pMpi25FWUploadRequest_t)pt->request; 11205 tcsge = (pMpi2FWUploadTCSGE_t)&req2->SGL; 11206 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 11207 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 11208 mptsas_log(mpt, CE_WARN, "FW Upload tce invalid!"); 11209 } 11210 req25->ImageOffset = tcsge->ImageOffset; 11211 req25->ImageSize = tcsge->ImageSize; 11212 11213 pt->sgl_offset = offsetof(MPI25_FW_UPLOAD_REQUEST, SGL); 11214 if (pt->request_size != pt->sgl_offset) 11215 NDBG15(("mpi_pre_fw_25_upload(): Incorrect req size, " 11216 "0x%x, should be 0x%x, dataoutsz 0x%x", 11217 pt->request_size, pt->sgl_offset, 11218 pt->dataout_size)); 11219 if (pt->data_size < sizeof (MPI2_FW_UPLOAD_REPLY)) 11220 NDBG15(("mpi_pre_fw_25_upload(): Incorrect rep size, " 11221 "0x%x, should be 0x%x", pt->data_size, 11222 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 11223 } 11224 11225 /* 11226 * Prepare the pt for an IOC_FACTS request. 11227 */ 11228 static void 11229 mpi_pre_ioc_facts(mptsas_t *mpt, mptsas_pt_request_t *pt) 11230 { 11231 #ifndef __lock_lint 11232 _NOTE(ARGUNUSED(mpt)) 11233 #endif 11234 if (pt->request_size != sizeof (MPI2_IOC_FACTS_REQUEST)) 11235 NDBG15(("mpi_pre_ioc_facts(): Incorrect req size, " 11236 "0x%x, should be 0x%x, dataoutsz 0x%x", 11237 pt->request_size, 11238 (int)sizeof (MPI2_IOC_FACTS_REQUEST), 11239 pt->dataout_size)); 11240 if (pt->data_size != sizeof (MPI2_IOC_FACTS_REPLY)) 11241 NDBG15(("mpi_pre_ioc_facts(): Incorrect rep size, " 11242 "0x%x, should be 0x%x", pt->data_size, 11243 (int)sizeof (MPI2_IOC_FACTS_REPLY))); 11244 pt->sgl_offset = (uint16_t)pt->request_size; 11245 } 11246 11247 /* 11248 * Prepare the pt for a PORT_FACTS request. 11249 */ 11250 static void 11251 mpi_pre_port_facts(mptsas_t *mpt, mptsas_pt_request_t *pt) 11252 { 11253 #ifndef __lock_lint 11254 _NOTE(ARGUNUSED(mpt)) 11255 #endif 11256 if (pt->request_size != sizeof (MPI2_PORT_FACTS_REQUEST)) 11257 NDBG15(("mpi_pre_port_facts(): Incorrect req size, " 11258 "0x%x, should be 0x%x, dataoutsz 0x%x", 11259 pt->request_size, 11260 (int)sizeof (MPI2_PORT_FACTS_REQUEST), 11261 pt->dataout_size)); 11262 if (pt->data_size != sizeof (MPI2_PORT_FACTS_REPLY)) 11263 NDBG15(("mpi_pre_port_facts(): Incorrect rep size, " 11264 "0x%x, should be 0x%x", pt->data_size, 11265 (int)sizeof (MPI2_PORT_FACTS_REPLY))); 11266 pt->sgl_offset = (uint16_t)pt->request_size; 11267 } 11268 11269 /* 11270 * Prepare pt for a SATA_PASSTHROUGH request. 11271 */ 11272 static void 11273 mpi_pre_sata_passthrough(mptsas_t *mpt, mptsas_pt_request_t *pt) 11274 { 11275 #ifndef __lock_lint 11276 _NOTE(ARGUNUSED(mpt)) 11277 #endif 11278 pt->sgl_offset = offsetof(MPI2_SATA_PASSTHROUGH_REQUEST, SGL); 11279 if (pt->request_size != pt->sgl_offset) 11280 NDBG15(("mpi_pre_sata_passthrough(): Incorrect req size, " 11281 "0x%x, should be 0x%x, dataoutsz 0x%x", 11282 pt->request_size, pt->sgl_offset, 11283 pt->dataout_size)); 11284 if (pt->data_size != sizeof (MPI2_SATA_PASSTHROUGH_REPLY)) 11285 NDBG15(("mpi_pre_sata_passthrough(): Incorrect rep size, " 11286 "0x%x, should be 0x%x", pt->data_size, 11287 (int)sizeof (MPI2_SATA_PASSTHROUGH_REPLY))); 11288 } 11289 11290 static void 11291 mpi_pre_smp_passthrough(mptsas_t *mpt, mptsas_pt_request_t *pt) 11292 { 11293 #ifndef __lock_lint 11294 _NOTE(ARGUNUSED(mpt)) 11295 #endif 11296 pt->sgl_offset = offsetof(MPI2_SMP_PASSTHROUGH_REQUEST, SGL); 11297 if (pt->request_size != pt->sgl_offset) 11298 NDBG15(("mpi_pre_smp_passthrough(): Incorrect req size, " 11299 "0x%x, should be 0x%x, dataoutsz 0x%x", 11300 pt->request_size, pt->sgl_offset, 11301 pt->dataout_size)); 11302 if (pt->data_size != sizeof (MPI2_SMP_PASSTHROUGH_REPLY)) 11303 NDBG15(("mpi_pre_smp_passthrough(): Incorrect rep size, " 11304 "0x%x, should be 0x%x", pt->data_size, 11305 (int)sizeof (MPI2_SMP_PASSTHROUGH_REPLY))); 11306 } 11307 11308 /* 11309 * Prepare pt for a CONFIG request. 11310 */ 11311 static void 11312 mpi_pre_config(mptsas_t *mpt, mptsas_pt_request_t *pt) 11313 { 11314 #ifndef __lock_lint 11315 _NOTE(ARGUNUSED(mpt)) 11316 #endif 11317 pt->sgl_offset = offsetof(MPI2_CONFIG_REQUEST, PageBufferSGE); 11318 if (pt->request_size != pt->sgl_offset) 11319 NDBG15(("mpi_pre_config(): Incorrect req size, 0x%x, " 11320 "should be 0x%x, dataoutsz 0x%x", pt->request_size, 11321 pt->sgl_offset, pt->dataout_size)); 11322 if (pt->data_size != sizeof (MPI2_CONFIG_REPLY)) 11323 NDBG15(("mpi_pre_config(): Incorrect rep size, 0x%x, " 11324 "should be 0x%x", pt->data_size, 11325 (int)sizeof (MPI2_CONFIG_REPLY))); 11326 pt->simple = 1; 11327 } 11328 11329 /* 11330 * Prepare pt for a SCSI_IO_REQ request. 11331 */ 11332 static void 11333 mpi_pre_scsi_io_req(mptsas_t *mpt, mptsas_pt_request_t *pt) 11334 { 11335 #ifndef __lock_lint 11336 _NOTE(ARGUNUSED(mpt)) 11337 #endif 11338 pt->sgl_offset = offsetof(MPI2_SCSI_IO_REQUEST, SGL); 11339 if (pt->request_size != pt->sgl_offset) 11340 NDBG15(("mpi_pre_config(): Incorrect req size, 0x%x, " 11341 "should be 0x%x, dataoutsz 0x%x", pt->request_size, 11342 pt->sgl_offset, 11343 pt->dataout_size)); 11344 if (pt->data_size != sizeof (MPI2_SCSI_IO_REPLY)) 11345 NDBG15(("mpi_pre_config(): Incorrect rep size, 0x%x, " 11346 "should be 0x%x", pt->data_size, 11347 (int)sizeof (MPI2_SCSI_IO_REPLY))); 11348 } 11349 11350 /* 11351 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 11352 */ 11353 static void 11354 mpi_pre_sas_io_unit_control(mptsas_t *mpt, mptsas_pt_request_t *pt) 11355 { 11356 #ifndef __lock_lint 11357 _NOTE(ARGUNUSED(mpt)) 11358 #endif 11359 pt->sgl_offset = (uint16_t)pt->request_size; 11360 } 11361 11362 /* 11363 * A set of functions to prepare an mps_command for the various 11364 * supported requests. 11365 */ 11366 struct mps_func { 11367 U8 Function; 11368 char *Name; 11369 mps_pre_f *f_pre; 11370 } mps_func_list[] = { 11371 { MPI2_FUNCTION_IOC_FACTS, "IOC_FACTS", mpi_pre_ioc_facts }, 11372 { MPI2_FUNCTION_PORT_FACTS, "PORT_FACTS", mpi_pre_port_facts }, 11373 { MPI2_FUNCTION_FW_DOWNLOAD, "FW_DOWNLOAD", mpi_pre_fw_download }, 11374 { MPI2_FUNCTION_FW_UPLOAD, "FW_UPLOAD", mpi_pre_fw_upload }, 11375 { MPI2_FUNCTION_SATA_PASSTHROUGH, "SATA_PASSTHROUGH", 11376 mpi_pre_sata_passthrough }, 11377 { MPI2_FUNCTION_SMP_PASSTHROUGH, "SMP_PASSTHROUGH", 11378 mpi_pre_smp_passthrough}, 11379 { MPI2_FUNCTION_SCSI_IO_REQUEST, "SCSI_IO_REQUEST", 11380 mpi_pre_scsi_io_req}, 11381 { MPI2_FUNCTION_CONFIG, "CONFIG", mpi_pre_config}, 11382 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, "SAS_IO_UNIT_CONTROL", 11383 mpi_pre_sas_io_unit_control }, 11384 { 0xFF, NULL, NULL } /* list end */ 11385 }; 11386 11387 static void 11388 mptsas_prep_sgl_offset(mptsas_t *mpt, mptsas_pt_request_t *pt) 11389 { 11390 pMPI2RequestHeader_t hdr; 11391 struct mps_func *f; 11392 11393 hdr = (pMPI2RequestHeader_t)pt->request; 11394 11395 for (f = mps_func_list; f->f_pre != NULL; f++) { 11396 if (hdr->Function == f->Function) { 11397 f->f_pre(mpt, pt); 11398 NDBG15(("mptsas_prep_sgl_offset: Function %s," 11399 " sgl_offset 0x%x", f->Name, 11400 pt->sgl_offset)); 11401 return; 11402 } 11403 } 11404 NDBG15(("mptsas_prep_sgl_offset: Unknown Function 0x%02x," 11405 " returning req_size 0x%x for sgl_offset", 11406 hdr->Function, pt->request_size)); 11407 pt->sgl_offset = (uint16_t)pt->request_size; 11408 } 11409 11410 11411 static int 11412 mptsas_do_passthru(mptsas_t *mpt, uint8_t *request, uint8_t *reply, 11413 uint8_t *data, uint32_t request_size, uint32_t reply_size, 11414 uint32_t data_size, uint8_t direction, uint8_t *dataout, 11415 uint32_t dataout_size, short timeout, int mode) 11416 { 11417 mptsas_pt_request_t pt; 11418 mptsas_dma_alloc_state_t data_dma_state; 11419 mptsas_dma_alloc_state_t dataout_dma_state; 11420 caddr_t memp; 11421 mptsas_cmd_t *cmd = NULL; 11422 struct scsi_pkt *pkt; 11423 uint32_t reply_len = 0, sense_len = 0; 11424 pMPI2RequestHeader_t request_hdrp; 11425 pMPI2RequestHeader_t request_msg; 11426 pMPI2DefaultReply_t reply_msg; 11427 Mpi2SCSIIOReply_t rep_msg; 11428 int i, status = 0, pt_flags = 0, rv = 0; 11429 int rvalue; 11430 uint8_t function; 11431 11432 ASSERT(mutex_owned(&mpt->m_mutex)); 11433 11434 reply_msg = (pMPI2DefaultReply_t)(&rep_msg); 11435 bzero(reply_msg, sizeof (MPI2_DEFAULT_REPLY)); 11436 request_msg = kmem_zalloc(request_size, KM_SLEEP); 11437 11438 mutex_exit(&mpt->m_mutex); 11439 /* 11440 * copy in the request buffer since it could be used by 11441 * another thread when the pt request into waitq 11442 */ 11443 if (ddi_copyin(request, request_msg, request_size, mode)) { 11444 mutex_enter(&mpt->m_mutex); 11445 status = EFAULT; 11446 mptsas_log(mpt, CE_WARN, "failed to copy request data"); 11447 goto out; 11448 } 11449 mutex_enter(&mpt->m_mutex); 11450 11451 function = request_msg->Function; 11452 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 11453 pMpi2SCSITaskManagementRequest_t task; 11454 task = (pMpi2SCSITaskManagementRequest_t)request_msg; 11455 mptsas_setup_bus_reset_delay(mpt); 11456 rv = mptsas_ioc_task_management(mpt, task->TaskType, 11457 task->DevHandle, (int)task->LUN[1], reply, reply_size, 11458 mode); 11459 11460 if (rv != TRUE) { 11461 status = EIO; 11462 mptsas_log(mpt, CE_WARN, "task management failed"); 11463 } 11464 goto out; 11465 } 11466 11467 if (data_size != 0) { 11468 data_dma_state.size = data_size; 11469 if (mptsas_dma_alloc(mpt, &data_dma_state) != DDI_SUCCESS) { 11470 status = ENOMEM; 11471 mptsas_log(mpt, CE_WARN, "failed to alloc DMA " 11472 "resource"); 11473 goto out; 11474 } 11475 pt_flags |= MPTSAS_DATA_ALLOCATED; 11476 if (direction == MPTSAS_PASS_THRU_DIRECTION_WRITE) { 11477 mutex_exit(&mpt->m_mutex); 11478 for (i = 0; i < data_size; i++) { 11479 if (ddi_copyin(data + i, (uint8_t *) 11480 data_dma_state.memp + i, 1, mode)) { 11481 mutex_enter(&mpt->m_mutex); 11482 status = EFAULT; 11483 mptsas_log(mpt, CE_WARN, "failed to " 11484 "copy read data"); 11485 goto out; 11486 } 11487 } 11488 mutex_enter(&mpt->m_mutex); 11489 } 11490 } 11491 else 11492 bzero(&data_dma_state, sizeof (data_dma_state)); 11493 11494 if (dataout_size != 0) { 11495 dataout_dma_state.size = dataout_size; 11496 if (mptsas_dma_alloc(mpt, &dataout_dma_state) != DDI_SUCCESS) { 11497 status = ENOMEM; 11498 mptsas_log(mpt, CE_WARN, "failed to alloc DMA " 11499 "resource"); 11500 goto out; 11501 } 11502 pt_flags |= MPTSAS_DATAOUT_ALLOCATED; 11503 mutex_exit(&mpt->m_mutex); 11504 for (i = 0; i < dataout_size; i++) { 11505 if (ddi_copyin(dataout + i, (uint8_t *) 11506 dataout_dma_state.memp + i, 1, mode)) { 11507 mutex_enter(&mpt->m_mutex); 11508 mptsas_log(mpt, CE_WARN, "failed to copy out" 11509 " data"); 11510 status = EFAULT; 11511 goto out; 11512 } 11513 } 11514 mutex_enter(&mpt->m_mutex); 11515 } 11516 else 11517 bzero(&dataout_dma_state, sizeof (dataout_dma_state)); 11518 11519 if ((rvalue = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 11520 status = EAGAIN; 11521 mptsas_log(mpt, CE_NOTE, "event ack command pool is full"); 11522 goto out; 11523 } 11524 pt_flags |= MPTSAS_REQUEST_POOL_CMD; 11525 11526 bzero((caddr_t)cmd, sizeof (*cmd)); 11527 bzero((caddr_t)pkt, scsi_pkt_size()); 11528 bzero((caddr_t)&pt, sizeof (pt)); 11529 11530 cmd->ioc_cmd_slot = (uint32_t)(rvalue); 11531 11532 pt.request = (uint8_t *)request_msg; 11533 pt.direction = direction; 11534 pt.simple = 0; 11535 pt.request_size = request_size; 11536 pt.data_size = data_size; 11537 pt.dataout_size = dataout_size; 11538 pt.data_cookie = data_dma_state.cookie; 11539 pt.dataout_cookie = dataout_dma_state.cookie; 11540 mptsas_prep_sgl_offset(mpt, &pt); 11541 11542 /* 11543 * Form a blank cmd/pkt to store the acknowledgement message 11544 */ 11545 pkt->pkt_cdbp = (opaque_t)&cmd->cmd_cdb[0]; 11546 pkt->pkt_scbp = (opaque_t)&cmd->cmd_scb; 11547 pkt->pkt_ha_private = (opaque_t)&pt; 11548 pkt->pkt_flags = FLAG_HEAD; 11549 pkt->pkt_time = timeout; 11550 cmd->cmd_pkt = pkt; 11551 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_PASSTHRU; 11552 11553 /* 11554 * Save the command in a slot 11555 */ 11556 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 11557 /* 11558 * Once passthru command get slot, set cmd_flags 11559 * CFLAG_PREPARED. 11560 */ 11561 cmd->cmd_flags |= CFLAG_PREPARED; 11562 mptsas_start_passthru(mpt, cmd); 11563 } else { 11564 mptsas_waitq_add(mpt, cmd); 11565 } 11566 11567 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 11568 cv_wait(&mpt->m_passthru_cv, &mpt->m_mutex); 11569 } 11570 11571 if (cmd->cmd_flags & CFLAG_PREPARED) { 11572 memp = mpt->m_req_frame + (mpt->m_req_frame_size * 11573 cmd->cmd_slot); 11574 request_hdrp = (pMPI2RequestHeader_t)memp; 11575 } 11576 11577 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 11578 status = ETIMEDOUT; 11579 mptsas_log(mpt, CE_WARN, "passthrough command timeout"); 11580 pt_flags |= MPTSAS_CMD_TIMEOUT; 11581 goto out; 11582 } 11583 11584 if (cmd->cmd_rfm) { 11585 /* 11586 * cmd_rfm is zero means the command reply is a CONTEXT 11587 * reply and no PCI Write to post the free reply SMFA 11588 * because no reply message frame is used. 11589 * cmd_rfm is non-zero means the reply is a ADDRESS 11590 * reply and reply message frame is used. 11591 */ 11592 pt_flags |= MPTSAS_ADDRESS_REPLY; 11593 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 11594 DDI_DMA_SYNC_FORCPU); 11595 reply_msg = (pMPI2DefaultReply_t) 11596 (mpt->m_reply_frame + (cmd->cmd_rfm - 11597 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 11598 } 11599 11600 mptsas_fma_check(mpt, cmd); 11601 if (pkt->pkt_reason == CMD_TRAN_ERR) { 11602 status = EAGAIN; 11603 mptsas_log(mpt, CE_WARN, "passthru fma error"); 11604 goto out; 11605 } 11606 if (pkt->pkt_reason == CMD_RESET) { 11607 status = EAGAIN; 11608 mptsas_log(mpt, CE_WARN, "ioc reset abort passthru"); 11609 goto out; 11610 } 11611 11612 if (pkt->pkt_reason == CMD_INCOMPLETE) { 11613 status = EIO; 11614 mptsas_log(mpt, CE_WARN, "passthrough command incomplete"); 11615 goto out; 11616 } 11617 11618 mutex_exit(&mpt->m_mutex); 11619 if (cmd->cmd_flags & CFLAG_PREPARED) { 11620 function = request_hdrp->Function; 11621 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 11622 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 11623 reply_len = sizeof (MPI2_SCSI_IO_REPLY); 11624 sense_len = reply_size - reply_len; 11625 } else { 11626 reply_len = reply_size; 11627 sense_len = 0; 11628 } 11629 11630 for (i = 0; i < reply_len; i++) { 11631 if (ddi_copyout((uint8_t *)reply_msg + i, reply + i, 1, 11632 mode)) { 11633 mutex_enter(&mpt->m_mutex); 11634 status = EFAULT; 11635 mptsas_log(mpt, CE_WARN, "failed to copy out " 11636 "reply data"); 11637 goto out; 11638 } 11639 } 11640 for (i = 0; i < sense_len; i++) { 11641 if (ddi_copyout((uint8_t *)request_hdrp + 64 + i, 11642 reply + reply_len + i, 1, mode)) { 11643 mutex_enter(&mpt->m_mutex); 11644 status = EFAULT; 11645 mptsas_log(mpt, CE_WARN, "failed to copy out " 11646 "sense data"); 11647 goto out; 11648 } 11649 } 11650 } 11651 11652 if (data_size) { 11653 if (direction != MPTSAS_PASS_THRU_DIRECTION_WRITE) { 11654 (void) ddi_dma_sync(data_dma_state.handle, 0, 0, 11655 DDI_DMA_SYNC_FORCPU); 11656 for (i = 0; i < data_size; i++) { 11657 if (ddi_copyout((uint8_t *)( 11658 data_dma_state.memp + i), data + i, 1, 11659 mode)) { 11660 mutex_enter(&mpt->m_mutex); 11661 status = EFAULT; 11662 mptsas_log(mpt, CE_WARN, "failed to " 11663 "copy out the reply data"); 11664 goto out; 11665 } 11666 } 11667 } 11668 } 11669 mutex_enter(&mpt->m_mutex); 11670 out: 11671 /* 11672 * Put the reply frame back on the free queue, increment the free 11673 * index, and write the new index to the free index register. But only 11674 * if this reply is an ADDRESS reply. 11675 */ 11676 if (pt_flags & MPTSAS_ADDRESS_REPLY) { 11677 ddi_put32(mpt->m_acc_free_queue_hdl, 11678 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 11679 cmd->cmd_rfm); 11680 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 11681 DDI_DMA_SYNC_FORDEV); 11682 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 11683 mpt->m_free_index = 0; 11684 } 11685 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 11686 mpt->m_free_index); 11687 } 11688 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 11689 mptsas_remove_cmd(mpt, cmd); 11690 pt_flags &= (~MPTSAS_REQUEST_POOL_CMD); 11691 } 11692 if (pt_flags & MPTSAS_REQUEST_POOL_CMD) 11693 mptsas_return_to_pool(mpt, cmd); 11694 if (pt_flags & MPTSAS_DATA_ALLOCATED) { 11695 if (mptsas_check_dma_handle(data_dma_state.handle) != 11696 DDI_SUCCESS) { 11697 ddi_fm_service_impact(mpt->m_dip, 11698 DDI_SERVICE_UNAFFECTED); 11699 status = EFAULT; 11700 } 11701 mptsas_dma_free(&data_dma_state); 11702 } 11703 if (pt_flags & MPTSAS_DATAOUT_ALLOCATED) { 11704 if (mptsas_check_dma_handle(dataout_dma_state.handle) != 11705 DDI_SUCCESS) { 11706 ddi_fm_service_impact(mpt->m_dip, 11707 DDI_SERVICE_UNAFFECTED); 11708 status = EFAULT; 11709 } 11710 mptsas_dma_free(&dataout_dma_state); 11711 } 11712 if (pt_flags & MPTSAS_CMD_TIMEOUT) { 11713 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 11714 mptsas_log(mpt, CE_WARN, "mptsas_restart_ioc failed"); 11715 } 11716 } 11717 if (request_msg) 11718 kmem_free(request_msg, request_size); 11719 11720 return (status); 11721 } 11722 11723 static int 11724 mptsas_pass_thru(mptsas_t *mpt, mptsas_pass_thru_t *data, int mode) 11725 { 11726 /* 11727 * If timeout is 0, set timeout to default of 60 seconds. 11728 */ 11729 if (data->Timeout == 0) { 11730 data->Timeout = MPTSAS_PASS_THRU_TIME_DEFAULT; 11731 } 11732 11733 if (((data->DataSize == 0) && 11734 (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_NONE)) || 11735 ((data->DataSize != 0) && 11736 ((data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_READ) || 11737 (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_WRITE) || 11738 ((data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_BOTH) && 11739 (data->DataOutSize != 0))))) { 11740 if (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_BOTH) { 11741 data->DataDirection = MPTSAS_PASS_THRU_DIRECTION_READ; 11742 } else { 11743 data->DataOutSize = 0; 11744 } 11745 /* 11746 * Send passthru request messages 11747 */ 11748 return (mptsas_do_passthru(mpt, 11749 (uint8_t *)((uintptr_t)data->PtrRequest), 11750 (uint8_t *)((uintptr_t)data->PtrReply), 11751 (uint8_t *)((uintptr_t)data->PtrData), 11752 data->RequestSize, data->ReplySize, 11753 data->DataSize, (uint8_t)data->DataDirection, 11754 (uint8_t *)((uintptr_t)data->PtrDataOut), 11755 data->DataOutSize, data->Timeout, mode)); 11756 } else { 11757 return (EINVAL); 11758 } 11759 } 11760 11761 static uint8_t 11762 mptsas_get_fw_diag_buffer_number(mptsas_t *mpt, uint32_t unique_id) 11763 { 11764 uint8_t index; 11765 11766 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 11767 if (mpt->m_fw_diag_buffer_list[index].unique_id == unique_id) { 11768 return (index); 11769 } 11770 } 11771 11772 return (MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND); 11773 } 11774 11775 static void 11776 mptsas_start_diag(mptsas_t *mpt, mptsas_cmd_t *cmd) 11777 { 11778 pMpi2DiagBufferPostRequest_t pDiag_post_msg; 11779 pMpi2DiagReleaseRequest_t pDiag_release_msg; 11780 struct scsi_pkt *pkt = cmd->cmd_pkt; 11781 mptsas_diag_request_t *diag = pkt->pkt_ha_private; 11782 uint32_t i; 11783 uint64_t request_desc; 11784 11785 ASSERT(mutex_owned(&mpt->m_mutex)); 11786 11787 /* 11788 * Form the diag message depending on the post or release function. 11789 */ 11790 if (diag->function == MPI2_FUNCTION_DIAG_BUFFER_POST) { 11791 pDiag_post_msg = (pMpi2DiagBufferPostRequest_t) 11792 (mpt->m_req_frame + (mpt->m_req_frame_size * 11793 cmd->cmd_slot)); 11794 bzero(pDiag_post_msg, mpt->m_req_frame_size); 11795 ddi_put8(mpt->m_acc_req_frame_hdl, &pDiag_post_msg->Function, 11796 diag->function); 11797 ddi_put8(mpt->m_acc_req_frame_hdl, &pDiag_post_msg->BufferType, 11798 diag->pBuffer->buffer_type); 11799 ddi_put8(mpt->m_acc_req_frame_hdl, 11800 &pDiag_post_msg->ExtendedType, 11801 diag->pBuffer->extended_type); 11802 ddi_put32(mpt->m_acc_req_frame_hdl, 11803 &pDiag_post_msg->BufferLength, 11804 diag->pBuffer->buffer_data.size); 11805 for (i = 0; i < (sizeof (pDiag_post_msg->ProductSpecific) / 4); 11806 i++) { 11807 ddi_put32(mpt->m_acc_req_frame_hdl, 11808 &pDiag_post_msg->ProductSpecific[i], 11809 diag->pBuffer->product_specific[i]); 11810 } 11811 ddi_put32(mpt->m_acc_req_frame_hdl, 11812 &pDiag_post_msg->BufferAddress.Low, 11813 (uint32_t)(diag->pBuffer->buffer_data.cookie.dmac_laddress 11814 & 0xffffffffull)); 11815 ddi_put32(mpt->m_acc_req_frame_hdl, 11816 &pDiag_post_msg->BufferAddress.High, 11817 (uint32_t)(diag->pBuffer->buffer_data.cookie.dmac_laddress 11818 >> 32)); 11819 } else { 11820 pDiag_release_msg = (pMpi2DiagReleaseRequest_t) 11821 (mpt->m_req_frame + (mpt->m_req_frame_size * 11822 cmd->cmd_slot)); 11823 bzero(pDiag_release_msg, mpt->m_req_frame_size); 11824 ddi_put8(mpt->m_acc_req_frame_hdl, 11825 &pDiag_release_msg->Function, diag->function); 11826 ddi_put8(mpt->m_acc_req_frame_hdl, 11827 &pDiag_release_msg->BufferType, 11828 diag->pBuffer->buffer_type); 11829 } 11830 11831 /* 11832 * Send the message 11833 */ 11834 (void) ddi_dma_sync(mpt->m_dma_req_frame_hdl, 0, 0, 11835 DDI_DMA_SYNC_FORDEV); 11836 request_desc = (cmd->cmd_slot << 16) | 11837 MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 11838 cmd->cmd_rfm = NULL; 11839 MPTSAS_START_CMD(mpt, request_desc); 11840 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 11841 DDI_SUCCESS) || 11842 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 11843 DDI_SUCCESS)) { 11844 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 11845 } 11846 } 11847 11848 static int 11849 mptsas_post_fw_diag_buffer(mptsas_t *mpt, 11850 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 11851 { 11852 mptsas_diag_request_t diag; 11853 int status, slot_num, post_flags = 0; 11854 mptsas_cmd_t *cmd = NULL; 11855 struct scsi_pkt *pkt; 11856 pMpi2DiagBufferPostReply_t reply; 11857 uint16_t iocstatus; 11858 uint32_t iocloginfo, transfer_length; 11859 11860 /* 11861 * If buffer is not enabled, just leave. 11862 */ 11863 *return_code = MPTSAS_FW_DIAG_ERROR_POST_FAILED; 11864 if (!pBuffer->enabled) { 11865 status = DDI_FAILURE; 11866 goto out; 11867 } 11868 11869 /* 11870 * Clear some flags initially. 11871 */ 11872 pBuffer->force_release = FALSE; 11873 pBuffer->valid_data = FALSE; 11874 pBuffer->owned_by_firmware = FALSE; 11875 11876 /* 11877 * Get a cmd buffer from the cmd buffer pool 11878 */ 11879 if ((slot_num = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 11880 status = DDI_FAILURE; 11881 mptsas_log(mpt, CE_NOTE, "command pool is full: Post FW Diag"); 11882 goto out; 11883 } 11884 post_flags |= MPTSAS_REQUEST_POOL_CMD; 11885 11886 bzero((caddr_t)cmd, sizeof (*cmd)); 11887 bzero((caddr_t)pkt, scsi_pkt_size()); 11888 11889 cmd->ioc_cmd_slot = (uint32_t)(slot_num); 11890 11891 diag.pBuffer = pBuffer; 11892 diag.function = MPI2_FUNCTION_DIAG_BUFFER_POST; 11893 11894 /* 11895 * Form a blank cmd/pkt to store the acknowledgement message 11896 */ 11897 pkt->pkt_ha_private = (opaque_t)&diag; 11898 pkt->pkt_flags = FLAG_HEAD; 11899 pkt->pkt_time = 60; 11900 cmd->cmd_pkt = pkt; 11901 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_FW_DIAG; 11902 11903 /* 11904 * Save the command in a slot 11905 */ 11906 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 11907 /* 11908 * Once passthru command get slot, set cmd_flags 11909 * CFLAG_PREPARED. 11910 */ 11911 cmd->cmd_flags |= CFLAG_PREPARED; 11912 mptsas_start_diag(mpt, cmd); 11913 } else { 11914 mptsas_waitq_add(mpt, cmd); 11915 } 11916 11917 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 11918 cv_wait(&mpt->m_fw_diag_cv, &mpt->m_mutex); 11919 } 11920 11921 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 11922 status = DDI_FAILURE; 11923 mptsas_log(mpt, CE_WARN, "Post FW Diag command timeout"); 11924 goto out; 11925 } 11926 11927 /* 11928 * cmd_rfm points to the reply message if a reply was given. Check the 11929 * IOCStatus to make sure everything went OK with the FW diag request 11930 * and set buffer flags. 11931 */ 11932 if (cmd->cmd_rfm) { 11933 post_flags |= MPTSAS_ADDRESS_REPLY; 11934 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 11935 DDI_DMA_SYNC_FORCPU); 11936 reply = (pMpi2DiagBufferPostReply_t)(mpt->m_reply_frame + 11937 (cmd->cmd_rfm - 11938 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 11939 11940 /* 11941 * Get the reply message data 11942 */ 11943 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 11944 &reply->IOCStatus); 11945 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 11946 &reply->IOCLogInfo); 11947 transfer_length = ddi_get32(mpt->m_acc_reply_frame_hdl, 11948 &reply->TransferLength); 11949 11950 /* 11951 * If post failed quit. 11952 */ 11953 if (iocstatus != MPI2_IOCSTATUS_SUCCESS) { 11954 status = DDI_FAILURE; 11955 NDBG13(("post FW Diag Buffer failed: IOCStatus=0x%x, " 11956 "IOCLogInfo=0x%x, TransferLength=0x%x", iocstatus, 11957 iocloginfo, transfer_length)); 11958 goto out; 11959 } 11960 11961 /* 11962 * Post was successful. 11963 */ 11964 pBuffer->valid_data = TRUE; 11965 pBuffer->owned_by_firmware = TRUE; 11966 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 11967 status = DDI_SUCCESS; 11968 } 11969 11970 out: 11971 /* 11972 * Put the reply frame back on the free queue, increment the free 11973 * index, and write the new index to the free index register. But only 11974 * if this reply is an ADDRESS reply. 11975 */ 11976 if (post_flags & MPTSAS_ADDRESS_REPLY) { 11977 ddi_put32(mpt->m_acc_free_queue_hdl, 11978 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 11979 cmd->cmd_rfm); 11980 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 11981 DDI_DMA_SYNC_FORDEV); 11982 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 11983 mpt->m_free_index = 0; 11984 } 11985 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 11986 mpt->m_free_index); 11987 } 11988 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 11989 mptsas_remove_cmd(mpt, cmd); 11990 post_flags &= (~MPTSAS_REQUEST_POOL_CMD); 11991 } 11992 if (post_flags & MPTSAS_REQUEST_POOL_CMD) { 11993 mptsas_return_to_pool(mpt, cmd); 11994 } 11995 11996 return (status); 11997 } 11998 11999 static int 12000 mptsas_release_fw_diag_buffer(mptsas_t *mpt, 12001 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 12002 uint32_t diag_type) 12003 { 12004 mptsas_diag_request_t diag; 12005 int status, slot_num, rel_flags = 0; 12006 mptsas_cmd_t *cmd = NULL; 12007 struct scsi_pkt *pkt; 12008 pMpi2DiagReleaseReply_t reply; 12009 uint16_t iocstatus; 12010 uint32_t iocloginfo; 12011 12012 /* 12013 * If buffer is not enabled, just leave. 12014 */ 12015 *return_code = MPTSAS_FW_DIAG_ERROR_RELEASE_FAILED; 12016 if (!pBuffer->enabled) { 12017 mptsas_log(mpt, CE_NOTE, "This buffer type is not supported " 12018 "by the IOC"); 12019 status = DDI_FAILURE; 12020 goto out; 12021 } 12022 12023 /* 12024 * Clear some flags initially. 12025 */ 12026 pBuffer->force_release = FALSE; 12027 pBuffer->valid_data = FALSE; 12028 pBuffer->owned_by_firmware = FALSE; 12029 12030 /* 12031 * Get a cmd buffer from the cmd buffer pool 12032 */ 12033 if ((slot_num = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 12034 status = DDI_FAILURE; 12035 mptsas_log(mpt, CE_NOTE, "command pool is full: Release FW " 12036 "Diag"); 12037 goto out; 12038 } 12039 rel_flags |= MPTSAS_REQUEST_POOL_CMD; 12040 12041 bzero((caddr_t)cmd, sizeof (*cmd)); 12042 bzero((caddr_t)pkt, scsi_pkt_size()); 12043 12044 cmd->ioc_cmd_slot = (uint32_t)(slot_num); 12045 12046 diag.pBuffer = pBuffer; 12047 diag.function = MPI2_FUNCTION_DIAG_RELEASE; 12048 12049 /* 12050 * Form a blank cmd/pkt to store the acknowledgement message 12051 */ 12052 pkt->pkt_ha_private = (opaque_t)&diag; 12053 pkt->pkt_flags = FLAG_HEAD; 12054 pkt->pkt_time = 60; 12055 cmd->cmd_pkt = pkt; 12056 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_FW_DIAG; 12057 12058 /* 12059 * Save the command in a slot 12060 */ 12061 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 12062 /* 12063 * Once passthru command get slot, set cmd_flags 12064 * CFLAG_PREPARED. 12065 */ 12066 cmd->cmd_flags |= CFLAG_PREPARED; 12067 mptsas_start_diag(mpt, cmd); 12068 } else { 12069 mptsas_waitq_add(mpt, cmd); 12070 } 12071 12072 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 12073 cv_wait(&mpt->m_fw_diag_cv, &mpt->m_mutex); 12074 } 12075 12076 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 12077 status = DDI_FAILURE; 12078 mptsas_log(mpt, CE_WARN, "Release FW Diag command timeout"); 12079 goto out; 12080 } 12081 12082 /* 12083 * cmd_rfm points to the reply message if a reply was given. Check the 12084 * IOCStatus to make sure everything went OK with the FW diag request 12085 * and set buffer flags. 12086 */ 12087 if (cmd->cmd_rfm) { 12088 rel_flags |= MPTSAS_ADDRESS_REPLY; 12089 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 12090 DDI_DMA_SYNC_FORCPU); 12091 reply = (pMpi2DiagReleaseReply_t)(mpt->m_reply_frame + 12092 (cmd->cmd_rfm - 12093 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 12094 12095 /* 12096 * Get the reply message data 12097 */ 12098 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 12099 &reply->IOCStatus); 12100 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 12101 &reply->IOCLogInfo); 12102 12103 /* 12104 * If release failed quit. 12105 */ 12106 if ((iocstatus != MPI2_IOCSTATUS_SUCCESS) || 12107 pBuffer->owned_by_firmware) { 12108 status = DDI_FAILURE; 12109 NDBG13(("release FW Diag Buffer failed: " 12110 "IOCStatus=0x%x, IOCLogInfo=0x%x", iocstatus, 12111 iocloginfo)); 12112 goto out; 12113 } 12114 12115 /* 12116 * Release was successful. 12117 */ 12118 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 12119 status = DDI_SUCCESS; 12120 12121 /* 12122 * If this was for an UNREGISTER diag type command, clear the 12123 * unique ID. 12124 */ 12125 if (diag_type == MPTSAS_FW_DIAG_TYPE_UNREGISTER) { 12126 pBuffer->unique_id = MPTSAS_FW_DIAG_INVALID_UID; 12127 } 12128 } 12129 12130 out: 12131 /* 12132 * Put the reply frame back on the free queue, increment the free 12133 * index, and write the new index to the free index register. But only 12134 * if this reply is an ADDRESS reply. 12135 */ 12136 if (rel_flags & MPTSAS_ADDRESS_REPLY) { 12137 ddi_put32(mpt->m_acc_free_queue_hdl, 12138 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 12139 cmd->cmd_rfm); 12140 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 12141 DDI_DMA_SYNC_FORDEV); 12142 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 12143 mpt->m_free_index = 0; 12144 } 12145 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 12146 mpt->m_free_index); 12147 } 12148 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 12149 mptsas_remove_cmd(mpt, cmd); 12150 rel_flags &= (~MPTSAS_REQUEST_POOL_CMD); 12151 } 12152 if (rel_flags & MPTSAS_REQUEST_POOL_CMD) { 12153 mptsas_return_to_pool(mpt, cmd); 12154 } 12155 12156 return (status); 12157 } 12158 12159 static int 12160 mptsas_diag_register(mptsas_t *mpt, mptsas_fw_diag_register_t *diag_register, 12161 uint32_t *return_code) 12162 { 12163 mptsas_fw_diagnostic_buffer_t *pBuffer; 12164 uint8_t extended_type, buffer_type, i; 12165 uint32_t buffer_size; 12166 uint32_t unique_id; 12167 int status; 12168 12169 ASSERT(mutex_owned(&mpt->m_mutex)); 12170 12171 extended_type = diag_register->ExtendedType; 12172 buffer_type = diag_register->BufferType; 12173 buffer_size = diag_register->RequestedBufferSize; 12174 unique_id = diag_register->UniqueId; 12175 12176 /* 12177 * Check for valid buffer type 12178 */ 12179 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 12180 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12181 return (DDI_FAILURE); 12182 } 12183 12184 /* 12185 * Get the current buffer and look up the unique ID. The unique ID 12186 * should not be found. If it is, the ID is already in use. 12187 */ 12188 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12189 pBuffer = &mpt->m_fw_diag_buffer_list[buffer_type]; 12190 if (i != MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12191 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12192 return (DDI_FAILURE); 12193 } 12194 12195 /* 12196 * The buffer's unique ID should not be registered yet, and the given 12197 * unique ID cannot be 0. 12198 */ 12199 if ((pBuffer->unique_id != MPTSAS_FW_DIAG_INVALID_UID) || 12200 (unique_id == MPTSAS_FW_DIAG_INVALID_UID)) { 12201 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12202 return (DDI_FAILURE); 12203 } 12204 12205 /* 12206 * If this buffer is already posted as immediate, just change owner. 12207 */ 12208 if (pBuffer->immediate && pBuffer->owned_by_firmware && 12209 (pBuffer->unique_id == MPTSAS_FW_DIAG_INVALID_UID)) { 12210 pBuffer->immediate = FALSE; 12211 pBuffer->unique_id = unique_id; 12212 return (DDI_SUCCESS); 12213 } 12214 12215 /* 12216 * Post a new buffer after checking if it's enabled. The DMA buffer 12217 * that is allocated will be contiguous (sgl_len = 1). 12218 */ 12219 if (!pBuffer->enabled) { 12220 *return_code = MPTSAS_FW_DIAG_ERROR_NO_BUFFER; 12221 return (DDI_FAILURE); 12222 } 12223 bzero(&pBuffer->buffer_data, sizeof (mptsas_dma_alloc_state_t)); 12224 pBuffer->buffer_data.size = buffer_size; 12225 if (mptsas_dma_alloc(mpt, &pBuffer->buffer_data) != DDI_SUCCESS) { 12226 mptsas_log(mpt, CE_WARN, "failed to alloc DMA resource for " 12227 "diag buffer: size = %d bytes", buffer_size); 12228 *return_code = MPTSAS_FW_DIAG_ERROR_NO_BUFFER; 12229 return (DDI_FAILURE); 12230 } 12231 12232 /* 12233 * Copy the given info to the diag buffer and post the buffer. 12234 */ 12235 pBuffer->buffer_type = buffer_type; 12236 pBuffer->immediate = FALSE; 12237 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 12238 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 12239 i++) { 12240 pBuffer->product_specific[i] = 12241 diag_register->ProductSpecific[i]; 12242 } 12243 } 12244 pBuffer->extended_type = extended_type; 12245 pBuffer->unique_id = unique_id; 12246 status = mptsas_post_fw_diag_buffer(mpt, pBuffer, return_code); 12247 12248 if (mptsas_check_dma_handle(pBuffer->buffer_data.handle) != 12249 DDI_SUCCESS) { 12250 mptsas_log(mpt, CE_WARN, "Check of DMA handle failed in " 12251 "mptsas_diag_register."); 12252 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 12253 status = DDI_FAILURE; 12254 } 12255 12256 /* 12257 * In case there was a failure, free the DMA buffer. 12258 */ 12259 if (status == DDI_FAILURE) { 12260 mptsas_dma_free(&pBuffer->buffer_data); 12261 } 12262 12263 return (status); 12264 } 12265 12266 static int 12267 mptsas_diag_unregister(mptsas_t *mpt, 12268 mptsas_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 12269 { 12270 mptsas_fw_diagnostic_buffer_t *pBuffer; 12271 uint8_t i; 12272 uint32_t unique_id; 12273 int status; 12274 12275 ASSERT(mutex_owned(&mpt->m_mutex)); 12276 12277 unique_id = diag_unregister->UniqueId; 12278 12279 /* 12280 * Get the current buffer and look up the unique ID. The unique ID 12281 * should be there. 12282 */ 12283 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12284 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12285 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12286 return (DDI_FAILURE); 12287 } 12288 12289 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 12290 12291 /* 12292 * Try to release the buffer from FW before freeing it. If release 12293 * fails, don't free the DMA buffer in case FW tries to access it 12294 * later. If buffer is not owned by firmware, can't release it. 12295 */ 12296 if (!pBuffer->owned_by_firmware) { 12297 status = DDI_SUCCESS; 12298 } else { 12299 status = mptsas_release_fw_diag_buffer(mpt, pBuffer, 12300 return_code, MPTSAS_FW_DIAG_TYPE_UNREGISTER); 12301 } 12302 12303 /* 12304 * At this point, return the current status no matter what happens with 12305 * the DMA buffer. 12306 */ 12307 pBuffer->unique_id = MPTSAS_FW_DIAG_INVALID_UID; 12308 if (status == DDI_SUCCESS) { 12309 if (mptsas_check_dma_handle(pBuffer->buffer_data.handle) != 12310 DDI_SUCCESS) { 12311 mptsas_log(mpt, CE_WARN, "Check of DMA handle failed " 12312 "in mptsas_diag_unregister."); 12313 ddi_fm_service_impact(mpt->m_dip, 12314 DDI_SERVICE_UNAFFECTED); 12315 } 12316 mptsas_dma_free(&pBuffer->buffer_data); 12317 } 12318 12319 return (status); 12320 } 12321 12322 static int 12323 mptsas_diag_query(mptsas_t *mpt, mptsas_fw_diag_query_t *diag_query, 12324 uint32_t *return_code) 12325 { 12326 mptsas_fw_diagnostic_buffer_t *pBuffer; 12327 uint8_t i; 12328 uint32_t unique_id; 12329 12330 ASSERT(mutex_owned(&mpt->m_mutex)); 12331 12332 unique_id = diag_query->UniqueId; 12333 12334 /* 12335 * If ID is valid, query on ID. 12336 * If ID is invalid, query on buffer type. 12337 */ 12338 if (unique_id == MPTSAS_FW_DIAG_INVALID_UID) { 12339 i = diag_query->BufferType; 12340 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 12341 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12342 return (DDI_FAILURE); 12343 } 12344 } else { 12345 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12346 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12347 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12348 return (DDI_FAILURE); 12349 } 12350 } 12351 12352 /* 12353 * Fill query structure with the diag buffer info. 12354 */ 12355 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 12356 diag_query->BufferType = pBuffer->buffer_type; 12357 diag_query->ExtendedType = pBuffer->extended_type; 12358 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 12359 for (i = 0; i < (sizeof (diag_query->ProductSpecific) / 4); 12360 i++) { 12361 diag_query->ProductSpecific[i] = 12362 pBuffer->product_specific[i]; 12363 } 12364 } 12365 diag_query->TotalBufferSize = pBuffer->buffer_data.size; 12366 diag_query->DriverAddedBufferSize = 0; 12367 diag_query->UniqueId = pBuffer->unique_id; 12368 diag_query->ApplicationFlags = 0; 12369 diag_query->DiagnosticFlags = 0; 12370 12371 /* 12372 * Set/Clear application flags 12373 */ 12374 if (pBuffer->immediate) { 12375 diag_query->ApplicationFlags &= ~MPTSAS_FW_DIAG_FLAG_APP_OWNED; 12376 } else { 12377 diag_query->ApplicationFlags |= MPTSAS_FW_DIAG_FLAG_APP_OWNED; 12378 } 12379 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 12380 diag_query->ApplicationFlags |= 12381 MPTSAS_FW_DIAG_FLAG_BUFFER_VALID; 12382 } else { 12383 diag_query->ApplicationFlags &= 12384 ~MPTSAS_FW_DIAG_FLAG_BUFFER_VALID; 12385 } 12386 if (pBuffer->owned_by_firmware) { 12387 diag_query->ApplicationFlags |= 12388 MPTSAS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 12389 } else { 12390 diag_query->ApplicationFlags &= 12391 ~MPTSAS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 12392 } 12393 12394 return (DDI_SUCCESS); 12395 } 12396 12397 static int 12398 mptsas_diag_read_buffer(mptsas_t *mpt, 12399 mptsas_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 12400 uint32_t *return_code, int ioctl_mode) 12401 { 12402 mptsas_fw_diagnostic_buffer_t *pBuffer; 12403 uint8_t i, *pData; 12404 uint32_t unique_id, byte; 12405 int status; 12406 12407 ASSERT(mutex_owned(&mpt->m_mutex)); 12408 12409 unique_id = diag_read_buffer->UniqueId; 12410 12411 /* 12412 * Get the current buffer and look up the unique ID. The unique ID 12413 * should be there. 12414 */ 12415 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12416 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12417 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12418 return (DDI_FAILURE); 12419 } 12420 12421 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 12422 12423 /* 12424 * Make sure requested read is within limits 12425 */ 12426 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 12427 pBuffer->buffer_data.size) { 12428 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12429 return (DDI_FAILURE); 12430 } 12431 12432 /* 12433 * Copy the requested data from DMA to the diag_read_buffer. The DMA 12434 * buffer that was allocated is one contiguous buffer. 12435 */ 12436 pData = (uint8_t *)(pBuffer->buffer_data.memp + 12437 diag_read_buffer->StartingOffset); 12438 (void) ddi_dma_sync(pBuffer->buffer_data.handle, 0, 0, 12439 DDI_DMA_SYNC_FORCPU); 12440 for (byte = 0; byte < diag_read_buffer->BytesToRead; byte++) { 12441 if (ddi_copyout(pData + byte, ioctl_buf + byte, 1, ioctl_mode) 12442 != 0) { 12443 return (DDI_FAILURE); 12444 } 12445 } 12446 diag_read_buffer->Status = 0; 12447 12448 /* 12449 * Set or clear the Force Release flag. 12450 */ 12451 if (pBuffer->force_release) { 12452 diag_read_buffer->Flags |= MPTSAS_FW_DIAG_FLAG_FORCE_RELEASE; 12453 } else { 12454 diag_read_buffer->Flags &= ~MPTSAS_FW_DIAG_FLAG_FORCE_RELEASE; 12455 } 12456 12457 /* 12458 * If buffer is to be reregistered, make sure it's not already owned by 12459 * firmware first. 12460 */ 12461 status = DDI_SUCCESS; 12462 if (!pBuffer->owned_by_firmware) { 12463 if (diag_read_buffer->Flags & MPTSAS_FW_DIAG_FLAG_REREGISTER) { 12464 status = mptsas_post_fw_diag_buffer(mpt, pBuffer, 12465 return_code); 12466 } 12467 } 12468 12469 return (status); 12470 } 12471 12472 static int 12473 mptsas_diag_release(mptsas_t *mpt, mptsas_fw_diag_release_t *diag_release, 12474 uint32_t *return_code) 12475 { 12476 mptsas_fw_diagnostic_buffer_t *pBuffer; 12477 uint8_t i; 12478 uint32_t unique_id; 12479 int status; 12480 12481 ASSERT(mutex_owned(&mpt->m_mutex)); 12482 12483 unique_id = diag_release->UniqueId; 12484 12485 /* 12486 * Get the current buffer and look up the unique ID. The unique ID 12487 * should be there. 12488 */ 12489 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12490 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12491 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12492 return (DDI_FAILURE); 12493 } 12494 12495 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 12496 12497 /* 12498 * If buffer is not owned by firmware, it's already been released. 12499 */ 12500 if (!pBuffer->owned_by_firmware) { 12501 *return_code = MPTSAS_FW_DIAG_ERROR_ALREADY_RELEASED; 12502 return (DDI_FAILURE); 12503 } 12504 12505 /* 12506 * Release the buffer. 12507 */ 12508 status = mptsas_release_fw_diag_buffer(mpt, pBuffer, return_code, 12509 MPTSAS_FW_DIAG_TYPE_RELEASE); 12510 return (status); 12511 } 12512 12513 static int 12514 mptsas_do_diag_action(mptsas_t *mpt, uint32_t action, uint8_t *diag_action, 12515 uint32_t length, uint32_t *return_code, int ioctl_mode) 12516 { 12517 mptsas_fw_diag_register_t diag_register; 12518 mptsas_fw_diag_unregister_t diag_unregister; 12519 mptsas_fw_diag_query_t diag_query; 12520 mptsas_diag_read_buffer_t diag_read_buffer; 12521 mptsas_fw_diag_release_t diag_release; 12522 int status = DDI_SUCCESS; 12523 uint32_t original_return_code, read_buf_len; 12524 12525 ASSERT(mutex_owned(&mpt->m_mutex)); 12526 12527 original_return_code = *return_code; 12528 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 12529 12530 switch (action) { 12531 case MPTSAS_FW_DIAG_TYPE_REGISTER: 12532 if (!length) { 12533 *return_code = 12534 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12535 status = DDI_FAILURE; 12536 break; 12537 } 12538 if (ddi_copyin(diag_action, &diag_register, 12539 sizeof (diag_register), ioctl_mode) != 0) { 12540 return (DDI_FAILURE); 12541 } 12542 status = mptsas_diag_register(mpt, &diag_register, 12543 return_code); 12544 break; 12545 12546 case MPTSAS_FW_DIAG_TYPE_UNREGISTER: 12547 if (length < sizeof (diag_unregister)) { 12548 *return_code = 12549 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12550 status = DDI_FAILURE; 12551 break; 12552 } 12553 if (ddi_copyin(diag_action, &diag_unregister, 12554 sizeof (diag_unregister), ioctl_mode) != 0) { 12555 return (DDI_FAILURE); 12556 } 12557 status = mptsas_diag_unregister(mpt, &diag_unregister, 12558 return_code); 12559 break; 12560 12561 case MPTSAS_FW_DIAG_TYPE_QUERY: 12562 if (length < sizeof (diag_query)) { 12563 *return_code = 12564 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12565 status = DDI_FAILURE; 12566 break; 12567 } 12568 if (ddi_copyin(diag_action, &diag_query, 12569 sizeof (diag_query), ioctl_mode) != 0) { 12570 return (DDI_FAILURE); 12571 } 12572 status = mptsas_diag_query(mpt, &diag_query, 12573 return_code); 12574 if (status == DDI_SUCCESS) { 12575 if (ddi_copyout(&diag_query, diag_action, 12576 sizeof (diag_query), ioctl_mode) != 0) { 12577 return (DDI_FAILURE); 12578 } 12579 } 12580 break; 12581 12582 case MPTSAS_FW_DIAG_TYPE_READ_BUFFER: 12583 if (ddi_copyin(diag_action, &diag_read_buffer, 12584 sizeof (diag_read_buffer) - 4, ioctl_mode) != 0) { 12585 return (DDI_FAILURE); 12586 } 12587 read_buf_len = sizeof (diag_read_buffer) - 12588 sizeof (diag_read_buffer.DataBuffer) + 12589 diag_read_buffer.BytesToRead; 12590 if (length < read_buf_len) { 12591 *return_code = 12592 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12593 status = DDI_FAILURE; 12594 break; 12595 } 12596 status = mptsas_diag_read_buffer(mpt, 12597 &diag_read_buffer, diag_action + 12598 sizeof (diag_read_buffer) - 4, return_code, 12599 ioctl_mode); 12600 if (status == DDI_SUCCESS) { 12601 if (ddi_copyout(&diag_read_buffer, diag_action, 12602 sizeof (diag_read_buffer) - 4, ioctl_mode) 12603 != 0) { 12604 return (DDI_FAILURE); 12605 } 12606 } 12607 break; 12608 12609 case MPTSAS_FW_DIAG_TYPE_RELEASE: 12610 if (length < sizeof (diag_release)) { 12611 *return_code = 12612 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12613 status = DDI_FAILURE; 12614 break; 12615 } 12616 if (ddi_copyin(diag_action, &diag_release, 12617 sizeof (diag_release), ioctl_mode) != 0) { 12618 return (DDI_FAILURE); 12619 } 12620 status = mptsas_diag_release(mpt, &diag_release, 12621 return_code); 12622 break; 12623 12624 default: 12625 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12626 status = DDI_FAILURE; 12627 break; 12628 } 12629 12630 if ((status == DDI_FAILURE) && 12631 (original_return_code == MPTSAS_FW_DIAG_NEW) && 12632 (*return_code != MPTSAS_FW_DIAG_ERROR_SUCCESS)) { 12633 status = DDI_SUCCESS; 12634 } 12635 12636 return (status); 12637 } 12638 12639 static int 12640 mptsas_diag_action(mptsas_t *mpt, mptsas_diag_action_t *user_data, int mode) 12641 { 12642 int status; 12643 mptsas_diag_action_t driver_data; 12644 12645 ASSERT(mutex_owned(&mpt->m_mutex)); 12646 12647 /* 12648 * Copy the user data to a driver data buffer. 12649 */ 12650 if (ddi_copyin(user_data, &driver_data, sizeof (mptsas_diag_action_t), 12651 mode) == 0) { 12652 /* 12653 * Send diag action request if Action is valid 12654 */ 12655 if (driver_data.Action == MPTSAS_FW_DIAG_TYPE_REGISTER || 12656 driver_data.Action == MPTSAS_FW_DIAG_TYPE_UNREGISTER || 12657 driver_data.Action == MPTSAS_FW_DIAG_TYPE_QUERY || 12658 driver_data.Action == MPTSAS_FW_DIAG_TYPE_READ_BUFFER || 12659 driver_data.Action == MPTSAS_FW_DIAG_TYPE_RELEASE) { 12660 status = mptsas_do_diag_action(mpt, driver_data.Action, 12661 (void *)(uintptr_t)driver_data.PtrDiagAction, 12662 driver_data.Length, &driver_data.ReturnCode, 12663 mode); 12664 if (status == DDI_SUCCESS) { 12665 if (ddi_copyout(&driver_data.ReturnCode, 12666 &user_data->ReturnCode, 12667 sizeof (user_data->ReturnCode), mode) 12668 != 0) { 12669 status = EFAULT; 12670 } else { 12671 status = 0; 12672 } 12673 } else { 12674 status = EIO; 12675 } 12676 } else { 12677 status = EINVAL; 12678 } 12679 } else { 12680 status = EFAULT; 12681 } 12682 12683 return (status); 12684 } 12685 12686 /* 12687 * This routine handles the "event query" ioctl. 12688 */ 12689 static int 12690 mptsas_event_query(mptsas_t *mpt, mptsas_event_query_t *data, int mode, 12691 int *rval) 12692 { 12693 int status; 12694 mptsas_event_query_t driverdata; 12695 uint8_t i; 12696 12697 driverdata.Entries = MPTSAS_EVENT_QUEUE_SIZE; 12698 12699 mutex_enter(&mpt->m_mutex); 12700 for (i = 0; i < 4; i++) { 12701 driverdata.Types[i] = mpt->m_event_mask[i]; 12702 } 12703 mutex_exit(&mpt->m_mutex); 12704 12705 if (ddi_copyout(&driverdata, data, sizeof (driverdata), mode) != 0) { 12706 status = EFAULT; 12707 } else { 12708 *rval = MPTIOCTL_STATUS_GOOD; 12709 status = 0; 12710 } 12711 12712 return (status); 12713 } 12714 12715 /* 12716 * This routine handles the "event enable" ioctl. 12717 */ 12718 static int 12719 mptsas_event_enable(mptsas_t *mpt, mptsas_event_enable_t *data, int mode, 12720 int *rval) 12721 { 12722 int status; 12723 mptsas_event_enable_t driverdata; 12724 uint8_t i; 12725 12726 if (ddi_copyin(data, &driverdata, sizeof (driverdata), mode) == 0) { 12727 mutex_enter(&mpt->m_mutex); 12728 for (i = 0; i < 4; i++) { 12729 mpt->m_event_mask[i] = driverdata.Types[i]; 12730 } 12731 mutex_exit(&mpt->m_mutex); 12732 12733 *rval = MPTIOCTL_STATUS_GOOD; 12734 status = 0; 12735 } else { 12736 status = EFAULT; 12737 } 12738 return (status); 12739 } 12740 12741 /* 12742 * This routine handles the "event report" ioctl. 12743 */ 12744 static int 12745 mptsas_event_report(mptsas_t *mpt, mptsas_event_report_t *data, int mode, 12746 int *rval) 12747 { 12748 int status; 12749 mptsas_event_report_t driverdata; 12750 12751 mutex_enter(&mpt->m_mutex); 12752 12753 if (ddi_copyin(&data->Size, &driverdata.Size, sizeof (driverdata.Size), 12754 mode) == 0) { 12755 if (driverdata.Size >= sizeof (mpt->m_events)) { 12756 if (ddi_copyout(mpt->m_events, data->Events, 12757 sizeof (mpt->m_events), mode) != 0) { 12758 status = EFAULT; 12759 } else { 12760 if (driverdata.Size > sizeof (mpt->m_events)) { 12761 driverdata.Size = 12762 sizeof (mpt->m_events); 12763 if (ddi_copyout(&driverdata.Size, 12764 &data->Size, 12765 sizeof (driverdata.Size), 12766 mode) != 0) { 12767 status = EFAULT; 12768 } else { 12769 *rval = MPTIOCTL_STATUS_GOOD; 12770 status = 0; 12771 } 12772 } else { 12773 *rval = MPTIOCTL_STATUS_GOOD; 12774 status = 0; 12775 } 12776 } 12777 } else { 12778 *rval = MPTIOCTL_STATUS_LEN_TOO_SHORT; 12779 status = 0; 12780 } 12781 } else { 12782 status = EFAULT; 12783 } 12784 12785 mutex_exit(&mpt->m_mutex); 12786 return (status); 12787 } 12788 12789 static void 12790 mptsas_lookup_pci_data(mptsas_t *mpt, mptsas_adapter_data_t *adapter_data) 12791 { 12792 int *reg_data; 12793 uint_t reglen; 12794 12795 /* 12796 * Lookup the 'reg' property and extract the other data 12797 */ 12798 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, mpt->m_dip, 12799 DDI_PROP_DONTPASS, "reg", ®_data, ®len) == 12800 DDI_PROP_SUCCESS) { 12801 /* 12802 * Extract the PCI data from the 'reg' property first DWORD. 12803 * The entry looks like the following: 12804 * First DWORD: 12805 * Bits 0 - 7 8-bit Register number 12806 * Bits 8 - 10 3-bit Function number 12807 * Bits 11 - 15 5-bit Device number 12808 * Bits 16 - 23 8-bit Bus number 12809 * Bits 24 - 25 2-bit Address Space type identifier 12810 * 12811 */ 12812 adapter_data->PciInformation.u.bits.BusNumber = 12813 (reg_data[0] & 0x00FF0000) >> 16; 12814 adapter_data->PciInformation.u.bits.DeviceNumber = 12815 (reg_data[0] & 0x0000F800) >> 11; 12816 adapter_data->PciInformation.u.bits.FunctionNumber = 12817 (reg_data[0] & 0x00000700) >> 8; 12818 ddi_prop_free((void *)reg_data); 12819 } else { 12820 /* 12821 * If we can't determine the PCI data then we fill in FF's for 12822 * the data to indicate this. 12823 */ 12824 adapter_data->PCIDeviceHwId = 0xFFFFFFFF; 12825 adapter_data->MpiPortNumber = 0xFFFFFFFF; 12826 adapter_data->PciInformation.u.AsDWORD = 0xFFFFFFFF; 12827 } 12828 12829 /* 12830 * Saved in the mpt->m_fwversion 12831 */ 12832 adapter_data->MpiFirmwareVersion = mpt->m_fwversion; 12833 } 12834 12835 static void 12836 mptsas_read_adapter_data(mptsas_t *mpt, mptsas_adapter_data_t *adapter_data) 12837 { 12838 char *driver_verstr = MPTSAS_MOD_STRING; 12839 12840 mptsas_lookup_pci_data(mpt, adapter_data); 12841 adapter_data->AdapterType = MPTIOCTL_ADAPTER_TYPE_SAS3; 12842 adapter_data->PCIDeviceHwId = (uint32_t)mpt->m_devid; 12843 adapter_data->PCIDeviceHwRev = (uint32_t)mpt->m_revid; 12844 adapter_data->SubSystemId = (uint32_t)mpt->m_ssid; 12845 adapter_data->SubsystemVendorId = (uint32_t)mpt->m_svid; 12846 (void) strcpy((char *)&adapter_data->DriverVersion[0], driver_verstr); 12847 adapter_data->BiosVersion = 0; 12848 (void) mptsas_get_bios_page3(mpt, &adapter_data->BiosVersion); 12849 } 12850 12851 static void 12852 mptsas_read_pci_info(mptsas_t *mpt, mptsas_pci_info_t *pci_info) 12853 { 12854 int *reg_data, i; 12855 uint_t reglen; 12856 12857 /* 12858 * Lookup the 'reg' property and extract the other data 12859 */ 12860 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, mpt->m_dip, 12861 DDI_PROP_DONTPASS, "reg", ®_data, ®len) == 12862 DDI_PROP_SUCCESS) { 12863 /* 12864 * Extract the PCI data from the 'reg' property first DWORD. 12865 * The entry looks like the following: 12866 * First DWORD: 12867 * Bits 8 - 10 3-bit Function number 12868 * Bits 11 - 15 5-bit Device number 12869 * Bits 16 - 23 8-bit Bus number 12870 */ 12871 pci_info->BusNumber = (reg_data[0] & 0x00FF0000) >> 16; 12872 pci_info->DeviceNumber = (reg_data[0] & 0x0000F800) >> 11; 12873 pci_info->FunctionNumber = (reg_data[0] & 0x00000700) >> 8; 12874 ddi_prop_free((void *)reg_data); 12875 } else { 12876 /* 12877 * If we can't determine the PCI info then we fill in FF's for 12878 * the data to indicate this. 12879 */ 12880 pci_info->BusNumber = 0xFFFFFFFF; 12881 pci_info->DeviceNumber = 0xFF; 12882 pci_info->FunctionNumber = 0xFF; 12883 } 12884 12885 /* 12886 * Now get the interrupt vector and the pci header. The vector can 12887 * only be 0 right now. The header is the first 256 bytes of config 12888 * space. 12889 */ 12890 pci_info->InterruptVector = 0; 12891 for (i = 0; i < sizeof (pci_info->PciHeader); i++) { 12892 pci_info->PciHeader[i] = pci_config_get8(mpt->m_config_handle, 12893 i); 12894 } 12895 } 12896 12897 static int 12898 mptsas_reg_access(mptsas_t *mpt, mptsas_reg_access_t *data, int mode) 12899 { 12900 int status = 0; 12901 mptsas_reg_access_t driverdata; 12902 12903 mutex_enter(&mpt->m_mutex); 12904 if (ddi_copyin(data, &driverdata, sizeof (driverdata), mode) == 0) { 12905 switch (driverdata.Command) { 12906 /* 12907 * IO access is not supported. 12908 */ 12909 case REG_IO_READ: 12910 case REG_IO_WRITE: 12911 mptsas_log(mpt, CE_WARN, "IO access is not " 12912 "supported. Use memory access."); 12913 status = EINVAL; 12914 break; 12915 12916 case REG_MEM_READ: 12917 driverdata.RegData = ddi_get32(mpt->m_datap, 12918 (uint32_t *)(void *)mpt->m_reg + 12919 driverdata.RegOffset); 12920 if (ddi_copyout(&driverdata.RegData, 12921 &data->RegData, 12922 sizeof (driverdata.RegData), mode) != 0) { 12923 mptsas_log(mpt, CE_WARN, "Register " 12924 "Read Failed"); 12925 status = EFAULT; 12926 } 12927 break; 12928 12929 case REG_MEM_WRITE: 12930 ddi_put32(mpt->m_datap, 12931 (uint32_t *)(void *)mpt->m_reg + 12932 driverdata.RegOffset, 12933 driverdata.RegData); 12934 break; 12935 12936 default: 12937 status = EINVAL; 12938 break; 12939 } 12940 } else { 12941 status = EFAULT; 12942 } 12943 12944 mutex_exit(&mpt->m_mutex); 12945 return (status); 12946 } 12947 12948 static int 12949 led_control(mptsas_t *mpt, intptr_t data, int mode) 12950 { 12951 int ret = 0; 12952 mptsas_led_control_t lc; 12953 mptsas_target_t *ptgt; 12954 12955 if (ddi_copyin((void *)data, &lc, sizeof (lc), mode) != 0) { 12956 return (EFAULT); 12957 } 12958 12959 if ((lc.Command != MPTSAS_LEDCTL_FLAG_SET && 12960 lc.Command != MPTSAS_LEDCTL_FLAG_GET) || 12961 lc.Led < MPTSAS_LEDCTL_LED_MIN || 12962 lc.Led > MPTSAS_LEDCTL_LED_MAX || 12963 (lc.Command == MPTSAS_LEDCTL_FLAG_SET && lc.LedStatus != 0 && 12964 lc.LedStatus != 1)) { 12965 return (EINVAL); 12966 } 12967 12968 if ((lc.Command == MPTSAS_LEDCTL_FLAG_SET && (mode & FWRITE) == 0) || 12969 (lc.Command == MPTSAS_LEDCTL_FLAG_GET && (mode & FREAD) == 0)) 12970 return (EACCES); 12971 12972 /* Locate the target we're interrogating... */ 12973 mutex_enter(&mpt->m_mutex); 12974 ptgt = refhash_linear_search(mpt->m_targets, 12975 mptsas_target_eval_slot, &lc); 12976 if (ptgt == NULL) { 12977 /* We could not find a target for that enclosure/slot. */ 12978 mutex_exit(&mpt->m_mutex); 12979 return (ENOENT); 12980 } 12981 12982 if (lc.Command == MPTSAS_LEDCTL_FLAG_SET) { 12983 /* Update our internal LED state. */ 12984 ptgt->m_led_status &= ~(1 << (lc.Led - 1)); 12985 ptgt->m_led_status |= lc.LedStatus << (lc.Led - 1); 12986 12987 /* Flush it to the controller. */ 12988 ret = mptsas_flush_led_status(mpt, ptgt); 12989 mutex_exit(&mpt->m_mutex); 12990 return (ret); 12991 } 12992 12993 /* Return our internal LED state. */ 12994 lc.LedStatus = (ptgt->m_led_status >> (lc.Led - 1)) & 1; 12995 mutex_exit(&mpt->m_mutex); 12996 12997 if (ddi_copyout(&lc, (void *)data, sizeof (lc), mode) != 0) { 12998 return (EFAULT); 12999 } 13000 13001 return (0); 13002 } 13003 13004 static int 13005 get_disk_info(mptsas_t *mpt, intptr_t data, int mode) 13006 { 13007 uint16_t i = 0; 13008 uint16_t count = 0; 13009 int ret = 0; 13010 mptsas_target_t *ptgt; 13011 mptsas_disk_info_t *di; 13012 STRUCT_DECL(mptsas_get_disk_info, gdi); 13013 13014 if ((mode & FREAD) == 0) 13015 return (EACCES); 13016 13017 STRUCT_INIT(gdi, get_udatamodel()); 13018 13019 if (ddi_copyin((void *)data, STRUCT_BUF(gdi), STRUCT_SIZE(gdi), 13020 mode) != 0) { 13021 return (EFAULT); 13022 } 13023 13024 /* Find out how many targets there are. */ 13025 mutex_enter(&mpt->m_mutex); 13026 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 13027 ptgt = refhash_next(mpt->m_targets, ptgt)) { 13028 count++; 13029 } 13030 mutex_exit(&mpt->m_mutex); 13031 13032 /* 13033 * If we haven't been asked to copy out information on each target, 13034 * then just return the count. 13035 */ 13036 STRUCT_FSET(gdi, DiskCount, count); 13037 if (STRUCT_FGETP(gdi, PtrDiskInfoArray) == NULL) 13038 goto copy_out; 13039 13040 /* 13041 * If we haven't been given a large enough buffer to copy out into, 13042 * let the caller know. 13043 */ 13044 if (STRUCT_FGET(gdi, DiskInfoArraySize) < 13045 count * sizeof (mptsas_disk_info_t)) { 13046 ret = ENOSPC; 13047 goto copy_out; 13048 } 13049 13050 di = kmem_zalloc(count * sizeof (mptsas_disk_info_t), KM_SLEEP); 13051 13052 mutex_enter(&mpt->m_mutex); 13053 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 13054 ptgt = refhash_next(mpt->m_targets, ptgt)) { 13055 if (i >= count) { 13056 /* 13057 * The number of targets changed while we weren't 13058 * looking, so give up. 13059 */ 13060 refhash_rele(mpt->m_targets, ptgt); 13061 mutex_exit(&mpt->m_mutex); 13062 kmem_free(di, count * sizeof (mptsas_disk_info_t)); 13063 return (EAGAIN); 13064 } 13065 di[i].Instance = mpt->m_instance; 13066 di[i].Enclosure = ptgt->m_enclosure; 13067 di[i].Slot = ptgt->m_slot_num; 13068 di[i].SasAddress = ptgt->m_addr.mta_wwn; 13069 i++; 13070 } 13071 mutex_exit(&mpt->m_mutex); 13072 STRUCT_FSET(gdi, DiskCount, i); 13073 13074 /* Copy out the disk information to the caller. */ 13075 if (ddi_copyout((void *)di, STRUCT_FGETP(gdi, PtrDiskInfoArray), 13076 i * sizeof (mptsas_disk_info_t), mode) != 0) { 13077 ret = EFAULT; 13078 } 13079 13080 kmem_free(di, count * sizeof (mptsas_disk_info_t)); 13081 13082 copy_out: 13083 if (ddi_copyout(STRUCT_BUF(gdi), (void *)data, STRUCT_SIZE(gdi), 13084 mode) != 0) { 13085 ret = EFAULT; 13086 } 13087 13088 return (ret); 13089 } 13090 13091 static int 13092 mptsas_ioctl(dev_t dev, int cmd, intptr_t data, int mode, cred_t *credp, 13093 int *rval) 13094 { 13095 int status = 0; 13096 mptsas_t *mpt; 13097 mptsas_update_flash_t flashdata; 13098 mptsas_pass_thru_t passthru_data; 13099 mptsas_adapter_data_t adapter_data; 13100 mptsas_pci_info_t pci_info; 13101 int copylen; 13102 13103 int iport_flag = 0; 13104 dev_info_t *dip = NULL; 13105 mptsas_phymask_t phymask = 0; 13106 struct devctl_iocdata *dcp = NULL; 13107 char *addr = NULL; 13108 mptsas_target_t *ptgt = NULL; 13109 13110 *rval = MPTIOCTL_STATUS_GOOD; 13111 if (secpolicy_sys_config(credp, B_FALSE) != 0) { 13112 return (EPERM); 13113 } 13114 13115 mpt = ddi_get_soft_state(mptsas3_state, MINOR2INST(getminor(dev))); 13116 if (mpt == NULL) { 13117 /* 13118 * Called from iport node, get the states 13119 */ 13120 iport_flag = 1; 13121 dip = mptsas_get_dip_from_dev(dev, &phymask); 13122 if (dip == NULL) { 13123 return (ENXIO); 13124 } 13125 mpt = DIP2MPT(dip); 13126 } 13127 /* Make sure power level is D0 before accessing registers */ 13128 mutex_enter(&mpt->m_mutex); 13129 if (mpt->m_options & MPTSAS_OPT_PM) { 13130 (void) pm_busy_component(mpt->m_dip, 0); 13131 if (mpt->m_power_level != PM_LEVEL_D0) { 13132 mutex_exit(&mpt->m_mutex); 13133 if (pm_raise_power(mpt->m_dip, 0, PM_LEVEL_D0) != 13134 DDI_SUCCESS) { 13135 mptsas_log(mpt, CE_WARN, 13136 "mptsas3%d: mptsas_ioctl: Raise power " 13137 "request failed.", mpt->m_instance); 13138 (void) pm_idle_component(mpt->m_dip, 0); 13139 return (ENXIO); 13140 } 13141 } else { 13142 mutex_exit(&mpt->m_mutex); 13143 } 13144 } else { 13145 mutex_exit(&mpt->m_mutex); 13146 } 13147 13148 if (iport_flag) { 13149 status = scsi_hba_ioctl(dev, cmd, data, mode, credp, rval); 13150 if (status != 0) { 13151 goto out; 13152 } 13153 /* 13154 * The following code control the OK2RM LED, it doesn't affect 13155 * the ioctl return status. 13156 */ 13157 if ((cmd == DEVCTL_DEVICE_ONLINE) || 13158 (cmd == DEVCTL_DEVICE_OFFLINE)) { 13159 if (ndi_dc_allochdl((void *)data, &dcp) != 13160 NDI_SUCCESS) { 13161 goto out; 13162 } 13163 addr = ndi_dc_getaddr(dcp); 13164 ptgt = mptsas_addr_to_ptgt(mpt, addr, phymask); 13165 if (ptgt == NULL) { 13166 NDBG14(("mptsas_ioctl led control: tgt %s not " 13167 "found", addr)); 13168 ndi_dc_freehdl(dcp); 13169 goto out; 13170 } 13171 mutex_enter(&mpt->m_mutex); 13172 if (cmd == DEVCTL_DEVICE_ONLINE) { 13173 ptgt->m_tgt_unconfigured = 0; 13174 } else if (cmd == DEVCTL_DEVICE_OFFLINE) { 13175 ptgt->m_tgt_unconfigured = 1; 13176 } 13177 if (cmd == DEVCTL_DEVICE_OFFLINE) { 13178 ptgt->m_led_status |= 13179 (1 << (MPTSAS_LEDCTL_LED_OK2RM - 1)); 13180 } else { 13181 ptgt->m_led_status &= 13182 ~(1 << (MPTSAS_LEDCTL_LED_OK2RM - 1)); 13183 } 13184 (void) mptsas_flush_led_status(mpt, ptgt); 13185 mutex_exit(&mpt->m_mutex); 13186 ndi_dc_freehdl(dcp); 13187 } 13188 goto out; 13189 } 13190 switch (cmd) { 13191 case MPTIOCTL_GET_DISK_INFO: 13192 status = get_disk_info(mpt, data, mode); 13193 break; 13194 case MPTIOCTL_LED_CONTROL: 13195 status = led_control(mpt, data, mode); 13196 break; 13197 case MPTIOCTL_UPDATE_FLASH: 13198 if (ddi_copyin((void *)data, &flashdata, 13199 sizeof (struct mptsas_update_flash), mode)) { 13200 status = EFAULT; 13201 break; 13202 } 13203 13204 mutex_enter(&mpt->m_mutex); 13205 if (mptsas_update_flash(mpt, 13206 (caddr_t)(long)flashdata.PtrBuffer, 13207 flashdata.ImageSize, flashdata.ImageType, mode)) { 13208 status = EFAULT; 13209 } 13210 13211 /* 13212 * Reset the chip to start using the new 13213 * firmware. Reset if failed also. 13214 */ 13215 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 13216 if (mptsas_restart_ioc(mpt) == DDI_FAILURE) { 13217 status = EFAULT; 13218 } 13219 mutex_exit(&mpt->m_mutex); 13220 break; 13221 case MPTIOCTL_PASS_THRU: 13222 /* 13223 * The user has requested to pass through a command to 13224 * be executed by the MPT firmware. Call our routine 13225 * which does this. Only allow one passthru IOCTL at 13226 * one time. Other threads will block on 13227 * m_passthru_mutex, which is of adaptive variant. 13228 */ 13229 if (ddi_copyin((void *)data, &passthru_data, 13230 sizeof (mptsas_pass_thru_t), mode)) { 13231 status = EFAULT; 13232 break; 13233 } 13234 mutex_enter(&mpt->m_passthru_mutex); 13235 mutex_enter(&mpt->m_mutex); 13236 status = mptsas_pass_thru(mpt, &passthru_data, mode); 13237 mutex_exit(&mpt->m_mutex); 13238 mutex_exit(&mpt->m_passthru_mutex); 13239 13240 break; 13241 case MPTIOCTL_GET_ADAPTER_DATA: 13242 /* 13243 * The user has requested to read adapter data. Call 13244 * our routine which does this. 13245 */ 13246 bzero(&adapter_data, sizeof (mptsas_adapter_data_t)); 13247 if (ddi_copyin((void *)data, (void *)&adapter_data, 13248 sizeof (mptsas_adapter_data_t), mode)) { 13249 status = EFAULT; 13250 break; 13251 } 13252 if (adapter_data.StructureLength >= 13253 sizeof (mptsas_adapter_data_t)) { 13254 adapter_data.StructureLength = (uint32_t) 13255 sizeof (mptsas_adapter_data_t); 13256 copylen = sizeof (mptsas_adapter_data_t); 13257 mutex_enter(&mpt->m_mutex); 13258 mptsas_read_adapter_data(mpt, &adapter_data); 13259 mutex_exit(&mpt->m_mutex); 13260 } else { 13261 adapter_data.StructureLength = (uint32_t) 13262 sizeof (mptsas_adapter_data_t); 13263 copylen = sizeof (adapter_data.StructureLength); 13264 *rval = MPTIOCTL_STATUS_LEN_TOO_SHORT; 13265 } 13266 if (ddi_copyout((void *)(&adapter_data), (void *)data, 13267 copylen, mode) != 0) { 13268 status = EFAULT; 13269 } 13270 break; 13271 case MPTIOCTL_GET_PCI_INFO: 13272 /* 13273 * The user has requested to read pci info. Call 13274 * our routine which does this. 13275 */ 13276 bzero(&pci_info, sizeof (mptsas_pci_info_t)); 13277 mutex_enter(&mpt->m_mutex); 13278 mptsas_read_pci_info(mpt, &pci_info); 13279 mutex_exit(&mpt->m_mutex); 13280 if (ddi_copyout((void *)(&pci_info), (void *)data, 13281 sizeof (mptsas_pci_info_t), mode) != 0) { 13282 status = EFAULT; 13283 } 13284 break; 13285 case MPTIOCTL_RESET_ADAPTER: 13286 mutex_enter(&mpt->m_mutex); 13287 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 13288 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 13289 mptsas_log(mpt, CE_WARN, "reset adapter IOCTL " 13290 "failed"); 13291 status = EFAULT; 13292 } 13293 mutex_exit(&mpt->m_mutex); 13294 break; 13295 case MPTIOCTL_DIAG_ACTION: 13296 /* 13297 * The user has done a diag buffer action. Call our 13298 * routine which does this. Only allow one diag action 13299 * at one time. 13300 */ 13301 mutex_enter(&mpt->m_mutex); 13302 if (mpt->m_diag_action_in_progress) { 13303 mutex_exit(&mpt->m_mutex); 13304 return (EBUSY); 13305 } 13306 mpt->m_diag_action_in_progress = 1; 13307 status = mptsas_diag_action(mpt, 13308 (mptsas_diag_action_t *)data, mode); 13309 mpt->m_diag_action_in_progress = 0; 13310 mutex_exit(&mpt->m_mutex); 13311 break; 13312 case MPTIOCTL_EVENT_QUERY: 13313 /* 13314 * The user has done an event query. Call our routine 13315 * which does this. 13316 */ 13317 status = mptsas_event_query(mpt, 13318 (mptsas_event_query_t *)data, mode, rval); 13319 break; 13320 case MPTIOCTL_EVENT_ENABLE: 13321 /* 13322 * The user has done an event enable. Call our routine 13323 * which does this. 13324 */ 13325 status = mptsas_event_enable(mpt, 13326 (mptsas_event_enable_t *)data, mode, rval); 13327 break; 13328 case MPTIOCTL_EVENT_REPORT: 13329 /* 13330 * The user has done an event report. Call our routine 13331 * which does this. 13332 */ 13333 status = mptsas_event_report(mpt, 13334 (mptsas_event_report_t *)data, mode, rval); 13335 break; 13336 case MPTIOCTL_REG_ACCESS: 13337 /* 13338 * The user has requested register access. Call our 13339 * routine which does this. 13340 */ 13341 status = mptsas_reg_access(mpt, 13342 (mptsas_reg_access_t *)data, mode); 13343 break; 13344 default: 13345 status = scsi_hba_ioctl(dev, cmd, data, mode, credp, 13346 rval); 13347 break; 13348 } 13349 13350 out: 13351 return (status); 13352 } 13353 13354 int 13355 mptsas_restart_ioc(mptsas_t *mpt) 13356 { 13357 int rval = DDI_SUCCESS; 13358 mptsas_target_t *ptgt = NULL; 13359 13360 ASSERT(mutex_owned(&mpt->m_mutex)); 13361 13362 /* 13363 * Set a flag telling I/O path that we're processing a reset. This is 13364 * needed because after the reset is complete, the hash table still 13365 * needs to be rebuilt. If I/Os are started before the hash table is 13366 * rebuilt, I/O errors will occur. This flag allows I/Os to be marked 13367 * so that they can be retried. 13368 */ 13369 mpt->m_in_reset = TRUE; 13370 13371 /* 13372 * Set all throttles to HOLD 13373 */ 13374 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 13375 ptgt = refhash_next(mpt->m_targets, ptgt)) { 13376 mptsas_set_throttle_mtx(mpt, ptgt, HOLD_THROTTLE); 13377 } 13378 13379 /* 13380 * Disable interrupts 13381 */ 13382 MPTSAS_DISABLE_INTR(mpt); 13383 13384 /* 13385 * Abort all commands: outstanding commands, commands in waitq and 13386 * tx_waitq. 13387 */ 13388 mptsas_flush_hba(mpt); 13389 13390 /* 13391 * Reinitialize the chip. 13392 */ 13393 if (mptsas_init_chip(mpt, FALSE) == DDI_FAILURE) { 13394 rval = DDI_FAILURE; 13395 } 13396 13397 /* 13398 * Enable interrupts again 13399 */ 13400 MPTSAS_ENABLE_INTR(mpt); 13401 13402 /* 13403 * If mptsas_init_chip was successful, update the driver data. 13404 */ 13405 if (rval == DDI_SUCCESS) { 13406 mptsas_update_driver_data(mpt); 13407 } 13408 13409 /* 13410 * Reset the throttles 13411 */ 13412 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 13413 ptgt = refhash_next(mpt->m_targets, ptgt)) { 13414 mptsas_set_throttle_mtx(mpt, ptgt, MAX_THROTTLE); 13415 } 13416 13417 mptsas_doneq_empty(mpt); 13418 mptsas_restart_hba(mpt); 13419 13420 if (rval != DDI_SUCCESS) { 13421 mptsas_fm_ereport(mpt, DDI_FM_DEVICE_NO_RESPONSE); 13422 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_LOST); 13423 } 13424 13425 /* 13426 * Clear the reset flag so that I/Os can continue. 13427 */ 13428 mpt->m_in_reset = FALSE; 13429 13430 return (rval); 13431 } 13432 13433 static int 13434 mptsas_init_chip(mptsas_t *mpt, int first_time) 13435 { 13436 ddi_dma_cookie_t cookie; 13437 mptsas_reply_pqueue_t *rpqp; 13438 uint32_t i, j; 13439 int rval; 13440 13441 /* 13442 * Check to see if the firmware image is valid 13443 */ 13444 if (ddi_get32(mpt->m_datap, &mpt->m_reg->HostDiagnostic) & 13445 MPI2_DIAG_FLASH_BAD_SIG) { 13446 mptsas_log(mpt, CE_WARN, "mptsas bad flash signature!"); 13447 goto fail; 13448 } 13449 13450 /* 13451 * Reset the chip 13452 */ 13453 rval = mptsas_ioc_reset(mpt, first_time); 13454 if (rval == MPTSAS_RESET_FAIL) { 13455 mptsas_log(mpt, CE_WARN, "hard reset failed!"); 13456 goto fail; 13457 } 13458 13459 if ((rval == MPTSAS_SUCCESS_MUR) && (!first_time)) { 13460 goto mur; 13461 } 13462 /* 13463 * Setup configuration space 13464 */ 13465 if (mptsas_config_space_init(mpt) == FALSE) { 13466 mptsas_log(mpt, CE_WARN, "mptsas_config_space_init " 13467 "failed!"); 13468 goto fail; 13469 } 13470 13471 /* 13472 * IOC facts can change after a diag reset so all buffers that are 13473 * based on these numbers must be de-allocated and re-allocated. Get 13474 * new IOC facts each time chip is initialized. 13475 */ 13476 if (mptsas_ioc_get_facts(mpt) == DDI_FAILURE) { 13477 mptsas_log(mpt, CE_WARN, "mptsas_ioc_get_facts failed"); 13478 goto fail; 13479 } 13480 13481 /* 13482 * Now we know chip MSIX capabilitites and it's not been done 13483 * previously register interrupts accordingly. Need to know this 13484 * information before allocating the reply frames below. 13485 */ 13486 if (mpt->m_intr_cnt == 0) { 13487 if (mptsas_register_intrs(mpt) == FALSE) 13488 goto fail; 13489 } 13490 13491 mpt->m_targets = refhash_create(MPTSAS_TARGET_BUCKET_COUNT, 13492 mptsas_target_addr_hash, mptsas_target_addr_cmp, 13493 mptsas_target_free, sizeof (mptsas_target_t), 13494 offsetof(mptsas_target_t, m_link), 13495 offsetof(mptsas_target_t, m_addr), KM_SLEEP); 13496 13497 if (mptsas_alloc_active_slots(mpt, KM_SLEEP)) { 13498 goto fail; 13499 } 13500 /* 13501 * Allocate request message frames, reply free queue, reply descriptor 13502 * post queue, and reply message frames using latest IOC facts. 13503 */ 13504 if (mptsas_alloc_request_frames(mpt) == DDI_FAILURE) { 13505 mptsas_log(mpt, CE_WARN, "mptsas_alloc_request_frames failed"); 13506 goto fail; 13507 } 13508 if (mptsas_alloc_sense_bufs(mpt) == DDI_FAILURE) { 13509 mptsas_log(mpt, CE_WARN, "mptsas_alloc_sense_bufs failed"); 13510 goto fail; 13511 } 13512 if (mptsas_alloc_free_queue(mpt) == DDI_FAILURE) { 13513 mptsas_log(mpt, CE_WARN, "mptsas_alloc_free_queue failed!"); 13514 goto fail; 13515 } 13516 if (mptsas_alloc_post_queue(mpt) == DDI_FAILURE) { 13517 mptsas_log(mpt, CE_WARN, "mptsas_alloc_post_queue failed!"); 13518 goto fail; 13519 } 13520 if (mptsas_alloc_reply_frames(mpt) == DDI_FAILURE) { 13521 mptsas_log(mpt, CE_WARN, "mptsas_alloc_reply_frames failed!"); 13522 goto fail; 13523 } 13524 13525 mur: 13526 /* 13527 * Re-Initialize ioc to operational state 13528 */ 13529 if (mptsas_ioc_init(mpt) == DDI_FAILURE) { 13530 mptsas_log(mpt, CE_WARN, "mptsas_ioc_init failed"); 13531 goto fail; 13532 } 13533 13534 mptsas_alloc_reply_args(mpt); 13535 13536 /* 13537 * Initialize the Reply Free Queue with the physical addresses of our 13538 * reply frames. 13539 */ 13540 cookie.dmac_address = mpt->m_reply_frame_dma_addr&0xfffffffful; 13541 for (i = 0; i < mpt->m_max_replies; i++) { 13542 ddi_put32(mpt->m_acc_free_queue_hdl, 13543 &((uint32_t *)(void *)mpt->m_free_queue)[i], 13544 cookie.dmac_address); 13545 cookie.dmac_address += mpt->m_reply_frame_size; 13546 } 13547 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 13548 DDI_DMA_SYNC_FORDEV); 13549 13550 /* 13551 * Initialize the reply free index to one past the last frame on the 13552 * queue. This will signify that the queue is empty to start with. 13553 */ 13554 mpt->m_free_index = i; 13555 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, i); 13556 13557 /* 13558 * Initialize the reply post queue to 0xFFFFFFFF,0xFFFFFFFF's 13559 * and the indexes to 0. 13560 */ 13561 rpqp = mpt->m_rep_post_queues; 13562 for (j = 0; j < mpt->m_post_reply_qcount; j++) { 13563 for (i = 0; i < mpt->m_post_queue_depth; i++) { 13564 ddi_put64(mpt->m_acc_post_queue_hdl, 13565 &((uint64_t *)(void *)rpqp->rpq_queue)[i], 13566 0xFFFFFFFFFFFFFFFF); 13567 } 13568 rpqp->rpq_index = 0; 13569 rpqp++; 13570 } 13571 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 13572 DDI_DMA_SYNC_FORDEV); 13573 13574 /* 13575 * Initialise all the reply post queue indexes. 13576 */ 13577 for (j = 0; j < mpt->m_post_reply_qcount; j++) { 13578 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyPostHostIndex, 13579 j << MPI2_RPHI_MSIX_INDEX_SHIFT); 13580 } 13581 13582 /* 13583 * Enable ports 13584 */ 13585 if (mptsas_ioc_enable_port(mpt) == DDI_FAILURE) { 13586 mptsas_log(mpt, CE_WARN, "mptsas_ioc_enable_port failed"); 13587 goto fail; 13588 } 13589 13590 /* 13591 * enable events 13592 */ 13593 if (mptsas_ioc_enable_event_notification(mpt)) { 13594 mptsas_log(mpt, CE_WARN, 13595 "mptsas_ioc_enable_event_notification failed"); 13596 goto fail; 13597 } 13598 13599 /* 13600 * We need checks in attach and these. 13601 * chip_init is called in mult. places 13602 */ 13603 13604 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 13605 DDI_SUCCESS) || 13606 (mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl) != 13607 DDI_SUCCESS) || 13608 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) != 13609 DDI_SUCCESS) || 13610 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) != 13611 DDI_SUCCESS) || 13612 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) != 13613 DDI_SUCCESS) || 13614 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) != 13615 DDI_SUCCESS)) { 13616 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 13617 goto fail; 13618 } 13619 13620 /* Check all acc handles */ 13621 if ((mptsas_check_acc_handle(mpt->m_datap) != DDI_SUCCESS) || 13622 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 13623 DDI_SUCCESS) || 13624 (mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl) != 13625 DDI_SUCCESS) || 13626 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) != 13627 DDI_SUCCESS) || 13628 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) != 13629 DDI_SUCCESS) || 13630 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) != 13631 DDI_SUCCESS) || 13632 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) != 13633 DDI_SUCCESS) || 13634 (mptsas_check_acc_handle(mpt->m_config_handle) != 13635 DDI_SUCCESS)) { 13636 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 13637 goto fail; 13638 } 13639 13640 return (DDI_SUCCESS); 13641 13642 fail: 13643 return (DDI_FAILURE); 13644 } 13645 13646 static int 13647 mptsas_get_pci_cap(mptsas_t *mpt) 13648 { 13649 ushort_t caps_ptr, cap, cap_count; 13650 13651 if (mpt->m_config_handle == NULL) 13652 return (FALSE); 13653 /* 13654 * Check if capabilities list is supported and if so, 13655 * get initial capabilities pointer and clear bits 0,1. 13656 */ 13657 if (pci_config_get16(mpt->m_config_handle, PCI_CONF_STAT) 13658 & PCI_STAT_CAP) { 13659 caps_ptr = P2ALIGN(pci_config_get8(mpt->m_config_handle, 13660 PCI_CONF_CAP_PTR), 4); 13661 } else { 13662 caps_ptr = PCI_CAP_NEXT_PTR_NULL; 13663 } 13664 13665 /* 13666 * Walk capabilities if supported. 13667 */ 13668 for (cap_count = 0; caps_ptr != PCI_CAP_NEXT_PTR_NULL; ) { 13669 13670 /* 13671 * Check that we haven't exceeded the maximum number of 13672 * capabilities and that the pointer is in a valid range. 13673 */ 13674 if (++cap_count > 48) { 13675 mptsas_log(mpt, CE_WARN, 13676 "too many device capabilities.\n"); 13677 break; 13678 } 13679 if (caps_ptr < 64) { 13680 mptsas_log(mpt, CE_WARN, 13681 "capabilities pointer 0x%x out of range.\n", 13682 caps_ptr); 13683 break; 13684 } 13685 13686 /* 13687 * Get next capability and check that it is valid. 13688 * For now, we only support power management. 13689 */ 13690 cap = pci_config_get8(mpt->m_config_handle, caps_ptr); 13691 switch (cap) { 13692 case PCI_CAP_ID_PM: 13693 mptsas_log(mpt, CE_NOTE, 13694 "?mptsas3%d supports power management.\n", 13695 mpt->m_instance); 13696 mpt->m_options |= MPTSAS_OPT_PM; 13697 13698 /* Save PMCSR offset */ 13699 mpt->m_pmcsr_offset = caps_ptr + PCI_PMCSR; 13700 break; 13701 case PCI_CAP_ID_MSI: 13702 mptsas_log(mpt, CE_NOTE, 13703 "?mptsas3%d supports MSI.\n", 13704 mpt->m_instance); 13705 mpt->m_options |= MPTSAS_OPT_MSI; 13706 break; 13707 case PCI_CAP_ID_MSI_X: 13708 mptsas_log(mpt, CE_NOTE, 13709 "?mptsas3%d supports MSI-X.\n", 13710 mpt->m_instance); 13711 mpt->m_options |= MPTSAS_OPT_MSI_X; 13712 break; 13713 /* 13714 * The following capabilities are valid. Any others 13715 * will cause a message to be logged. 13716 */ 13717 case PCI_CAP_ID_VPD: 13718 case PCI_CAP_ID_PCIX: 13719 case PCI_CAP_ID_PCI_E: 13720 break; 13721 default: 13722 mptsas_log(mpt, CE_NOTE, 13723 "?mptsas3%d unrecognized capability " 13724 "0x%x.\n", mpt->m_instance, cap); 13725 break; 13726 } 13727 13728 /* 13729 * Get next capabilities pointer and clear bits 0,1. 13730 */ 13731 caps_ptr = P2ALIGN(pci_config_get8(mpt->m_config_handle, 13732 (caps_ptr + PCI_CAP_NEXT_PTR)), 4); 13733 } 13734 return (TRUE); 13735 } 13736 13737 static int 13738 mptsas_init_pm(mptsas_t *mpt) 13739 { 13740 char pmc_name[16]; 13741 char *pmc[] = { 13742 NULL, 13743 "0=Off (PCI D3 State)", 13744 "3=On (PCI D0 State)", 13745 NULL 13746 }; 13747 uint16_t pmcsr_stat; 13748 13749 /* 13750 * If PCI's capability does not support PM, then don't need 13751 * to registe the pm-components 13752 */ 13753 if (!(mpt->m_options & MPTSAS_OPT_PM)) 13754 return (DDI_SUCCESS); 13755 /* 13756 * If power management is supported by this chip, create 13757 * pm-components property for the power management framework 13758 */ 13759 (void) sprintf(pmc_name, "NAME=mptsas3%d", mpt->m_instance); 13760 pmc[0] = pmc_name; 13761 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, mpt->m_dip, 13762 "pm-components", pmc, 3) != DDI_PROP_SUCCESS) { 13763 mpt->m_options &= ~MPTSAS_OPT_PM; 13764 mptsas_log(mpt, CE_WARN, 13765 "mptsas3%d: pm-component property creation failed.", 13766 mpt->m_instance); 13767 return (DDI_FAILURE); 13768 } 13769 13770 /* 13771 * Power on device. 13772 */ 13773 (void) pm_busy_component(mpt->m_dip, 0); 13774 pmcsr_stat = pci_config_get16(mpt->m_config_handle, 13775 mpt->m_pmcsr_offset); 13776 if ((pmcsr_stat & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_D0) { 13777 mptsas_log(mpt, CE_WARN, "mptsas3%d: Power up the device", 13778 mpt->m_instance); 13779 pci_config_put16(mpt->m_config_handle, mpt->m_pmcsr_offset, 13780 PCI_PMCSR_D0); 13781 } 13782 if (pm_power_has_changed(mpt->m_dip, 0, PM_LEVEL_D0) != DDI_SUCCESS) { 13783 mptsas_log(mpt, CE_WARN, "pm_power_has_changed failed"); 13784 return (DDI_FAILURE); 13785 } 13786 mpt->m_power_level = PM_LEVEL_D0; 13787 /* 13788 * Set pm idle delay. 13789 */ 13790 mpt->m_pm_idle_delay = ddi_prop_get_int(DDI_DEV_T_ANY, 13791 mpt->m_dip, 0, "mptsas-pm-idle-delay", MPTSAS_PM_IDLE_TIMEOUT); 13792 13793 return (DDI_SUCCESS); 13794 } 13795 13796 static int 13797 mptsas_register_intrs(mptsas_t *mpt) 13798 { 13799 dev_info_t *dip; 13800 int intr_types; 13801 13802 dip = mpt->m_dip; 13803 13804 /* Get supported interrupt types */ 13805 if (ddi_intr_get_supported_types(dip, &intr_types) != DDI_SUCCESS) { 13806 mptsas_log(mpt, CE_WARN, "ddi_intr_get_supported_types " 13807 "failed\n"); 13808 return (FALSE); 13809 } 13810 13811 NDBG6(("ddi_intr_get_supported_types() returned: 0x%x", intr_types)); 13812 13813 /* 13814 * Try MSIX first. 13815 */ 13816 if (mptsas_enable_msix && (intr_types & DDI_INTR_TYPE_MSIX)) { 13817 if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_MSIX) == DDI_SUCCESS) { 13818 NDBG6(("Using MSI-X interrupt type")); 13819 mpt->m_intr_type = DDI_INTR_TYPE_MSIX; 13820 return (TRUE); 13821 } 13822 } 13823 13824 /* 13825 * Try MSI, but fall back to FIXED 13826 */ 13827 if (mptsas_enable_msi && (intr_types & DDI_INTR_TYPE_MSI)) { 13828 if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_MSI) == DDI_SUCCESS) { 13829 NDBG6(("Using MSI interrupt type")); 13830 mpt->m_intr_type = DDI_INTR_TYPE_MSI; 13831 return (TRUE); 13832 } 13833 } 13834 if (intr_types & DDI_INTR_TYPE_FIXED) { 13835 if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_FIXED) == DDI_SUCCESS) { 13836 NDBG6(("Using FIXED interrupt type")); 13837 mpt->m_intr_type = DDI_INTR_TYPE_FIXED; 13838 return (TRUE); 13839 } else { 13840 NDBG6(("FIXED interrupt registration failed")); 13841 return (FALSE); 13842 } 13843 } 13844 13845 return (FALSE); 13846 } 13847 13848 static void 13849 mptsas_unregister_intrs(mptsas_t *mpt) 13850 { 13851 mptsas_rem_intrs(mpt); 13852 } 13853 13854 /* 13855 * mptsas_add_intrs: 13856 * 13857 * Register FIXED or MSI interrupts. 13858 */ 13859 static int 13860 mptsas_add_intrs(mptsas_t *mpt, int intr_type) 13861 { 13862 dev_info_t *dip = mpt->m_dip; 13863 int avail, actual, count = 0; 13864 int i, flag, ret; 13865 13866 NDBG6(("mptsas_add_intrs:interrupt type 0x%x", intr_type)); 13867 13868 /* Get number of interrupts */ 13869 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 13870 if ((ret != DDI_SUCCESS) || (count <= 0)) { 13871 mptsas_log(mpt, CE_WARN, "ddi_intr_get_nintrs() failed, " 13872 "ret %d count %d\n", ret, count); 13873 13874 return (DDI_FAILURE); 13875 } 13876 13877 /* Get number of interrupts available to this device */ 13878 ret = ddi_intr_get_navail(dip, intr_type, &avail); 13879 if ((ret != DDI_SUCCESS) || (avail == 0)) { 13880 mptsas_log(mpt, CE_WARN, "ddi_intr_get_navail() failed, " 13881 "ret %d avail %d\n", ret, avail); 13882 13883 return (DDI_FAILURE); 13884 } 13885 13886 if (count < avail) { 13887 mptsas_log(mpt, CE_NOTE, "ddi_intr_get_nvail returned %d, " 13888 "navail() returned %d", count, avail); 13889 } 13890 13891 NDBG6(("mptsas_add_intrs:count %d, avail %d", count, avail)); 13892 13893 if (intr_type == DDI_INTR_TYPE_MSIX) { 13894 if (!mptsas3_max_msix_intrs) { 13895 return (DDI_FAILURE); 13896 } 13897 13898 /* 13899 * Restrict the number of interrupts, firstly by 13900 * the number returned from the IOCInfo, then by 13901 * overall restriction. 13902 */ 13903 if (avail > mpt->m_max_msix_vectors) { 13904 avail = mpt->m_max_msix_vectors? 13905 mpt->m_max_msix_vectors:1; 13906 NDBG6(("mptsas_add_intrs: mmmv avail %d", avail)); 13907 } 13908 if (avail > mptsas3_max_msix_intrs) { 13909 avail = mptsas3_max_msix_intrs; 13910 NDBG6(("mptsas_add_intrs: m3mmi avail %d", avail)); 13911 } 13912 } 13913 if (intr_type == DDI_INTR_TYPE_MSI) { 13914 NDBG6(("mptsas_add_intrs: MSI avail %d", avail)); 13915 avail = 1; 13916 } 13917 13918 /* Allocate an array of interrupt handles */ 13919 mpt->m_intr_size = avail * sizeof (ddi_intr_handle_t); 13920 mpt->m_htable = kmem_alloc(mpt->m_intr_size, KM_SLEEP); 13921 13922 flag = DDI_INTR_ALLOC_NORMAL; 13923 13924 /* call ddi_intr_alloc() */ 13925 ret = ddi_intr_alloc(dip, mpt->m_htable, intr_type, 0, 13926 avail, &actual, flag); 13927 13928 if ((ret != DDI_SUCCESS) || (actual == 0)) { 13929 mptsas_log(mpt, CE_WARN, "ddi_intr_alloc() failed, ret %d\n", 13930 ret); 13931 kmem_free(mpt->m_htable, mpt->m_intr_size); 13932 return (DDI_FAILURE); 13933 } 13934 13935 NDBG6(("mptsas_add_intrs: actual %d, avail %d", actual, avail)); 13936 /* use interrupt count returned or abort? */ 13937 if (actual < avail) { 13938 mptsas_log(mpt, CE_NOTE, 13939 "Interrupts requested: %d, received: %d\n", 13940 avail, actual); 13941 } 13942 13943 /* 13944 * Get priority for first msi, assume remaining are all the same 13945 */ 13946 if ((ret = ddi_intr_get_pri(mpt->m_htable[0], 13947 &mpt->m_intr_pri)) != DDI_SUCCESS) { 13948 mptsas_log(mpt, CE_WARN, "ddi_intr_get_pri() failed %d\n", ret); 13949 13950 /* Free already allocated intr */ 13951 for (i = 0; i < actual; i++) { 13952 (void) ddi_intr_free(mpt->m_htable[i]); 13953 } 13954 13955 kmem_free(mpt->m_htable, mpt->m_intr_size); 13956 return (DDI_FAILURE); 13957 } 13958 13959 /* Test for high level mutex */ 13960 if (mpt->m_intr_pri >= ddi_intr_get_hilevel_pri()) { 13961 mptsas_log(mpt, CE_WARN, "mptsas_add_intrs: " 13962 "Hi level interrupt not supported\n"); 13963 13964 /* Free already allocated intr */ 13965 for (i = 0; i < actual; i++) { 13966 (void) ddi_intr_free(mpt->m_htable[i]); 13967 } 13968 13969 kmem_free(mpt->m_htable, mpt->m_intr_size); 13970 return (DDI_FAILURE); 13971 } 13972 13973 /* Call ddi_intr_add_handler() */ 13974 for (i = 0; i < actual; i++) { 13975 if ((ret = ddi_intr_add_handler(mpt->m_htable[i], mptsas_intr, 13976 (caddr_t)mpt, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 13977 mptsas_log(mpt, CE_WARN, "ddi_intr_add_handler() " 13978 "failed %d\n", ret); 13979 13980 /* Free already allocated intr */ 13981 for (i = 0; i < actual; i++) { 13982 (void) ddi_intr_free(mpt->m_htable[i]); 13983 } 13984 13985 kmem_free(mpt->m_htable, mpt->m_intr_size); 13986 return (DDI_FAILURE); 13987 } 13988 } 13989 13990 if ((ret = ddi_intr_get_cap(mpt->m_htable[0], &mpt->m_intr_cap)) 13991 != DDI_SUCCESS) { 13992 mptsas_log(mpt, CE_WARN, "ddi_intr_get_cap() failed %d\n", ret); 13993 13994 /* Free already allocated intr */ 13995 for (i = 0; i < actual; i++) { 13996 (void) ddi_intr_free(mpt->m_htable[i]); 13997 } 13998 13999 kmem_free(mpt->m_htable, mpt->m_intr_size); 14000 return (DDI_FAILURE); 14001 } 14002 14003 mpt->m_intr_cnt = actual; 14004 14005 /* 14006 * Enable interrupts 14007 */ 14008 if (mpt->m_intr_cap & DDI_INTR_FLAG_BLOCK) { 14009 /* Call ddi_intr_block_enable() for MSI interrupts */ 14010 (void) ddi_intr_block_enable(mpt->m_htable, mpt->m_intr_cnt); 14011 } else { 14012 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 14013 for (i = 0; i < mpt->m_intr_cnt; i++) { 14014 (void) ddi_intr_enable(mpt->m_htable[i]); 14015 } 14016 } 14017 14018 switch (intr_type) { 14019 case DDI_INTR_TYPE_MSIX: 14020 mptsas_log(mpt, CE_NOTE, "?Using %d MSI-X interrupt(s) " 14021 "(Available sys %d, mpt %d, Requested %d)\n", 14022 actual, count, mpt->m_max_msix_vectors, avail); 14023 break; 14024 case DDI_INTR_TYPE_MSI: 14025 mptsas_log(mpt, CE_NOTE, "Using single MSI interrupt\n"); 14026 break; 14027 case DDI_INTR_TYPE_FIXED: 14028 default: 14029 mptsas_log(mpt, CE_NOTE, "Using single fixed interrupt\n"); 14030 break; 14031 } 14032 14033 return (DDI_SUCCESS); 14034 } 14035 14036 /* 14037 * mptsas_rem_intrs: 14038 * 14039 * Unregister FIXED or MSI interrupts 14040 */ 14041 static void 14042 mptsas_rem_intrs(mptsas_t *mpt) 14043 { 14044 int i; 14045 14046 NDBG6(("mptsas_rem_intrs")); 14047 14048 /* Disable all interrupts */ 14049 if (mpt->m_intr_cap & DDI_INTR_FLAG_BLOCK) { 14050 /* Call ddi_intr_block_disable() */ 14051 (void) ddi_intr_block_disable(mpt->m_htable, mpt->m_intr_cnt); 14052 } else { 14053 for (i = 0; i < mpt->m_intr_cnt; i++) { 14054 (void) ddi_intr_disable(mpt->m_htable[i]); 14055 } 14056 } 14057 14058 /* Call ddi_intr_remove_handler() */ 14059 for (i = 0; i < mpt->m_intr_cnt; i++) { 14060 (void) ddi_intr_remove_handler(mpt->m_htable[i]); 14061 (void) ddi_intr_free(mpt->m_htable[i]); 14062 } 14063 kmem_free(mpt->m_htable, mpt->m_intr_size); 14064 mpt->m_intr_cnt = 0; 14065 } 14066 14067 /* 14068 * The IO fault service error handling callback function 14069 */ 14070 /*ARGSUSED*/ 14071 static int 14072 mptsas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 14073 { 14074 /* 14075 * as the driver can always deal with an error in any dma or 14076 * access handle, we can just return the fme_status value. 14077 */ 14078 pci_ereport_post(dip, err, NULL); 14079 return (err->fme_status); 14080 } 14081 14082 /* 14083 * mptsas_fm_init - initialize fma capabilities and register with IO 14084 * fault services. 14085 */ 14086 static void 14087 mptsas_fm_init(mptsas_t *mpt) 14088 { 14089 /* 14090 * Need to change iblock to priority for new MSI intr 14091 */ 14092 ddi_iblock_cookie_t fm_ibc; 14093 14094 /* Only register with IO Fault Services if we have some capability */ 14095 if (mpt->m_fm_capabilities) { 14096 /* Adjust access and dma attributes for FMA */ 14097 mpt->m_reg_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC; 14098 mpt->m_msg_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 14099 mpt->m_io_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 14100 14101 /* 14102 * Register capabilities with IO Fault Services. 14103 * mpt->m_fm_capabilities will be updated to indicate 14104 * capabilities actually supported (not requested.) 14105 */ 14106 ddi_fm_init(mpt->m_dip, &mpt->m_fm_capabilities, &fm_ibc); 14107 14108 /* 14109 * Initialize pci ereport capabilities if ereport 14110 * capable (should always be.) 14111 */ 14112 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities) || 14113 DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 14114 pci_ereport_setup(mpt->m_dip); 14115 } 14116 14117 /* 14118 * Register error callback if error callback capable. 14119 */ 14120 if (DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 14121 ddi_fm_handler_register(mpt->m_dip, 14122 mptsas_fm_error_cb, (void *) mpt); 14123 } 14124 } 14125 } 14126 14127 /* 14128 * mptsas_fm_fini - Releases fma capabilities and un-registers with IO 14129 * fault services. 14130 * 14131 */ 14132 static void 14133 mptsas_fm_fini(mptsas_t *mpt) 14134 { 14135 /* Only unregister FMA capabilities if registered */ 14136 if (mpt->m_fm_capabilities) { 14137 14138 /* 14139 * Un-register error callback if error callback capable. 14140 */ 14141 14142 if (DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 14143 ddi_fm_handler_unregister(mpt->m_dip); 14144 } 14145 14146 /* 14147 * Release any resources allocated by pci_ereport_setup() 14148 */ 14149 14150 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities) || 14151 DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 14152 pci_ereport_teardown(mpt->m_dip); 14153 } 14154 14155 /* Unregister from IO Fault Services */ 14156 ddi_fm_fini(mpt->m_dip); 14157 14158 /* Adjust access and dma attributes for FMA */ 14159 mpt->m_reg_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC; 14160 mpt->m_msg_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR; 14161 mpt->m_io_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR; 14162 14163 } 14164 } 14165 14166 int 14167 mptsas_check_acc_handle(ddi_acc_handle_t handle) 14168 { 14169 ddi_fm_error_t de; 14170 14171 if (handle == NULL) 14172 return (DDI_FAILURE); 14173 ddi_fm_acc_err_get(handle, &de, DDI_FME_VER0); 14174 return (de.fme_status); 14175 } 14176 14177 int 14178 mptsas_check_dma_handle(ddi_dma_handle_t handle) 14179 { 14180 ddi_fm_error_t de; 14181 14182 if (handle == NULL) 14183 return (DDI_FAILURE); 14184 ddi_fm_dma_err_get(handle, &de, DDI_FME_VER0); 14185 return (de.fme_status); 14186 } 14187 14188 void 14189 mptsas_fm_ereport(mptsas_t *mpt, char *detail) 14190 { 14191 uint64_t ena; 14192 char buf[FM_MAX_CLASS]; 14193 14194 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail); 14195 ena = fm_ena_generate(0, FM_ENA_FMT1); 14196 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities)) { 14197 ddi_fm_ereport_post(mpt->m_dip, buf, ena, DDI_NOSLEEP, 14198 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); 14199 } 14200 } 14201 14202 static int 14203 mptsas_get_target_device_info(mptsas_t *mpt, uint32_t page_address, 14204 uint16_t *dev_handle, mptsas_target_t **pptgt) 14205 { 14206 int rval; 14207 uint32_t dev_info; 14208 uint64_t sas_wwn; 14209 mptsas_phymask_t phymask; 14210 uint8_t physport, phynum, config, disk; 14211 uint64_t devicename; 14212 uint16_t pdev_hdl; 14213 mptsas_target_t *tmp_tgt = NULL; 14214 uint16_t bay_num, enclosure, io_flags; 14215 14216 ASSERT(*pptgt == NULL); 14217 14218 rval = mptsas_get_sas_device_page0(mpt, page_address, dev_handle, 14219 &sas_wwn, &dev_info, &physport, &phynum, &pdev_hdl, 14220 &bay_num, &enclosure, &io_flags); 14221 if (rval != DDI_SUCCESS) { 14222 rval = DEV_INFO_FAIL_PAGE0; 14223 return (rval); 14224 } 14225 14226 if ((dev_info & (MPI2_SAS_DEVICE_INFO_SSP_TARGET | 14227 MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 14228 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) == NULL) { 14229 rval = DEV_INFO_WRONG_DEVICE_TYPE; 14230 return (rval); 14231 } 14232 14233 /* 14234 * Check if the dev handle is for a Phys Disk. If so, set return value 14235 * and exit. Don't add Phys Disks to hash. 14236 */ 14237 for (config = 0; config < mpt->m_num_raid_configs; config++) { 14238 for (disk = 0; disk < MPTSAS_MAX_DISKS_IN_CONFIG; disk++) { 14239 if (*dev_handle == mpt->m_raidconfig[config]. 14240 m_physdisk_devhdl[disk]) { 14241 rval = DEV_INFO_PHYS_DISK; 14242 return (rval); 14243 } 14244 } 14245 } 14246 14247 /* 14248 * Get SATA Device Name from SAS device page0 for 14249 * sata device, if device name doesn't exist, set mta_wwn to 14250 * 0 for direct attached SATA. For the device behind the expander 14251 * we still can use STP address assigned by expander. 14252 */ 14253 if (dev_info & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 14254 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 14255 mutex_exit(&mpt->m_mutex); 14256 /* alloc a tmp_tgt to send the cmd */ 14257 tmp_tgt = kmem_zalloc(sizeof (struct mptsas_target), 14258 KM_SLEEP); 14259 tmp_tgt->m_devhdl = *dev_handle; 14260 tmp_tgt->m_deviceinfo = dev_info; 14261 tmp_tgt->m_qfull_retries = QFULL_RETRIES; 14262 tmp_tgt->m_qfull_retry_interval = 14263 drv_usectohz(QFULL_RETRY_INTERVAL * 1000); 14264 tmp_tgt->m_t_throttle = MAX_THROTTLE; 14265 mutex_init(&tmp_tgt->m_t_mutex, NULL, MUTEX_DRIVER, NULL); 14266 devicename = mptsas_get_sata_guid(mpt, tmp_tgt, 0); 14267 mutex_destroy(&tmp_tgt->m_t_mutex); 14268 kmem_free(tmp_tgt, sizeof (struct mptsas_target)); 14269 mutex_enter(&mpt->m_mutex); 14270 if (devicename != 0 && (((devicename >> 56) & 0xf0) == 0x50)) { 14271 sas_wwn = devicename; 14272 } else if (dev_info & MPI2_SAS_DEVICE_INFO_DIRECT_ATTACH) { 14273 sas_wwn = 0; 14274 } 14275 } 14276 14277 phymask = mptsas_physport_to_phymask(mpt, physport); 14278 *pptgt = mptsas_tgt_alloc(mpt, *dev_handle, sas_wwn, 14279 dev_info, phymask, phynum); 14280 if (*pptgt == NULL) { 14281 mptsas_log(mpt, CE_WARN, "Failed to allocated target" 14282 "structure!"); 14283 rval = DEV_INFO_FAIL_ALLOC; 14284 return (rval); 14285 } 14286 (*pptgt)->m_io_flags = io_flags; 14287 (*pptgt)->m_enclosure = enclosure; 14288 (*pptgt)->m_slot_num = bay_num; 14289 return (DEV_INFO_SUCCESS); 14290 } 14291 14292 uint64_t 14293 mptsas_get_sata_guid(mptsas_t *mpt, mptsas_target_t *ptgt, int lun) 14294 { 14295 uint64_t sata_guid = 0, *pwwn = NULL; 14296 int target = ptgt->m_devhdl; 14297 uchar_t *inq83 = NULL; 14298 int inq83_len = 0xFF; 14299 uchar_t *dblk = NULL; 14300 int inq83_retry = 3; 14301 int rval = DDI_FAILURE; 14302 14303 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 14304 14305 inq83_retry: 14306 rval = mptsas_inquiry(mpt, ptgt, lun, 0x83, inq83, 14307 inq83_len, NULL, 1); 14308 if (rval != DDI_SUCCESS) { 14309 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 14310 "0x83 for target:%x, lun:%x failed!", target, lun); 14311 goto out; 14312 } 14313 /* According to SAT2, the first descriptor is logic unit name */ 14314 dblk = &inq83[4]; 14315 if ((dblk[1] & 0x30) != 0) { 14316 mptsas_log(mpt, CE_WARN, "!Descriptor is not lun associated."); 14317 goto out; 14318 } 14319 pwwn = (uint64_t *)(void *)(&dblk[4]); 14320 if ((dblk[4] & 0xf0) == 0x50) { 14321 sata_guid = BE_64(*pwwn); 14322 goto out; 14323 } else if (dblk[4] == 'A') { 14324 NDBG20(("SATA drive has no NAA format GUID.")); 14325 goto out; 14326 } else { 14327 /* The data is not ready, wait and retry */ 14328 inq83_retry--; 14329 if (inq83_retry <= 0) { 14330 goto out; 14331 } 14332 NDBG20(("The GUID is not ready, retry...")); 14333 delay(1 * drv_usectohz(1000000)); 14334 goto inq83_retry; 14335 } 14336 out: 14337 kmem_free(inq83, inq83_len); 14338 return (sata_guid); 14339 } 14340 14341 static int 14342 mptsas_inquiry(mptsas_t *mpt, mptsas_target_t *ptgt, int lun, uchar_t page, 14343 unsigned char *buf, int len, int *reallen, uchar_t evpd) 14344 { 14345 uchar_t cdb[CDB_GROUP0]; 14346 struct scsi_address ap; 14347 struct buf *data_bp = NULL; 14348 int resid = 0; 14349 int ret = DDI_FAILURE; 14350 14351 ASSERT(len <= 0xffff); 14352 14353 ap.a_target = MPTSAS_INVALID_DEVHDL; 14354 ap.a_lun = (uchar_t)(lun); 14355 ap.a_hba_tran = mpt->m_tran; 14356 14357 data_bp = scsi_alloc_consistent_buf(&ap, 14358 (struct buf *)NULL, len, B_READ, NULL_FUNC, NULL); 14359 if (data_bp == NULL) { 14360 return (ret); 14361 } 14362 bzero(cdb, CDB_GROUP0); 14363 cdb[0] = SCMD_INQUIRY; 14364 cdb[1] = evpd; 14365 cdb[2] = page; 14366 cdb[3] = (len & 0xff00) >> 8; 14367 cdb[4] = (len & 0x00ff); 14368 cdb[5] = 0; 14369 14370 ret = mptsas_send_scsi_cmd(mpt, &ap, ptgt, &cdb[0], CDB_GROUP0, data_bp, 14371 &resid); 14372 if (ret == DDI_SUCCESS) { 14373 if (reallen) { 14374 *reallen = len - resid; 14375 } 14376 bcopy((caddr_t)data_bp->b_un.b_addr, buf, len); 14377 } 14378 if (data_bp) { 14379 scsi_free_consistent_buf(data_bp); 14380 } 14381 return (ret); 14382 } 14383 14384 static int 14385 mptsas_send_scsi_cmd(mptsas_t *mpt, struct scsi_address *ap, 14386 mptsas_target_t *ptgt, uchar_t *cdb, int cdblen, struct buf *data_bp, 14387 int *resid) 14388 { 14389 struct scsi_pkt *pktp = NULL; 14390 scsi_hba_tran_t *tran_clone = NULL; 14391 mptsas_tgt_private_t *tgt_private = NULL; 14392 int ret = DDI_FAILURE; 14393 14394 /* 14395 * scsi_hba_tran_t->tran_tgt_private is used to pass the address 14396 * information to scsi_init_pkt, allocate a scsi_hba_tran structure 14397 * to simulate the cmds from sd 14398 */ 14399 tran_clone = kmem_alloc( 14400 sizeof (scsi_hba_tran_t), KM_SLEEP); 14401 if (tran_clone == NULL) { 14402 goto out; 14403 } 14404 bcopy((caddr_t)mpt->m_tran, 14405 (caddr_t)tran_clone, sizeof (scsi_hba_tran_t)); 14406 tgt_private = kmem_alloc( 14407 sizeof (mptsas_tgt_private_t), KM_SLEEP); 14408 if (tgt_private == NULL) { 14409 goto out; 14410 } 14411 tgt_private->t_lun = ap->a_lun; 14412 tgt_private->t_private = ptgt; 14413 tran_clone->tran_tgt_private = tgt_private; 14414 ap->a_hba_tran = tran_clone; 14415 14416 pktp = scsi_init_pkt(ap, (struct scsi_pkt *)NULL, 14417 data_bp, cdblen, sizeof (struct scsi_arq_status), 14418 0, PKT_CONSISTENT, NULL, NULL); 14419 if (pktp == NULL) { 14420 goto out; 14421 } 14422 bcopy(cdb, pktp->pkt_cdbp, cdblen); 14423 pktp->pkt_flags = FLAG_NOPARITY; 14424 pktp->pkt_time = mptsas_scsi_pkt_time; 14425 if (scsi_poll(pktp) < 0) { 14426 goto out; 14427 } 14428 if (((struct scsi_status *)pktp->pkt_scbp)->sts_chk) { 14429 goto out; 14430 } 14431 if (resid != NULL) { 14432 *resid = pktp->pkt_resid; 14433 } 14434 14435 ret = DDI_SUCCESS; 14436 out: 14437 if (pktp) { 14438 scsi_destroy_pkt(pktp); 14439 } 14440 if (tran_clone) { 14441 kmem_free(tran_clone, sizeof (scsi_hba_tran_t)); 14442 } 14443 if (tgt_private) { 14444 kmem_free(tgt_private, sizeof (mptsas_tgt_private_t)); 14445 } 14446 return (ret); 14447 } 14448 static int 14449 mptsas_parse_address(char *name, uint64_t *wwid, uint8_t *phy, int *lun) 14450 { 14451 char *cp = NULL; 14452 char *ptr = NULL; 14453 size_t s = 0; 14454 char *wwid_str = NULL; 14455 char *lun_str = NULL; 14456 long lunnum; 14457 long phyid = -1; 14458 int rc = DDI_FAILURE; 14459 14460 ptr = name; 14461 ASSERT(ptr[0] == 'w' || ptr[0] == 'p'); 14462 ptr++; 14463 if ((cp = strchr(ptr, ',')) == NULL) { 14464 return (DDI_FAILURE); 14465 } 14466 14467 wwid_str = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14468 s = (uintptr_t)cp - (uintptr_t)ptr; 14469 14470 bcopy(ptr, wwid_str, s); 14471 wwid_str[s] = '\0'; 14472 14473 ptr = ++cp; 14474 14475 if ((cp = strchr(ptr, '\0')) == NULL) { 14476 goto out; 14477 } 14478 lun_str = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14479 s = (uintptr_t)cp - (uintptr_t)ptr; 14480 14481 bcopy(ptr, lun_str, s); 14482 lun_str[s] = '\0'; 14483 14484 if (name[0] == 'p') { 14485 rc = ddi_strtol(wwid_str, NULL, 0x10, &phyid); 14486 } else { 14487 rc = scsi_wwnstr_to_wwn(wwid_str, wwid); 14488 } 14489 if (rc != DDI_SUCCESS) 14490 goto out; 14491 14492 if (phyid != -1) { 14493 ASSERT(phyid < MPTSAS_MAX_PHYS); 14494 *phy = (uint8_t)phyid; 14495 } 14496 rc = ddi_strtol(lun_str, NULL, 0x10, &lunnum); 14497 if (rc != 0) 14498 goto out; 14499 14500 *lun = (int)lunnum; 14501 rc = DDI_SUCCESS; 14502 out: 14503 if (wwid_str) 14504 kmem_free(wwid_str, SCSI_MAXNAMELEN); 14505 if (lun_str) 14506 kmem_free(lun_str, SCSI_MAXNAMELEN); 14507 14508 return (rc); 14509 } 14510 14511 /* 14512 * mptsas_parse_smp_name() is to parse sas wwn string 14513 * which format is "wWWN" 14514 */ 14515 static int 14516 mptsas_parse_smp_name(char *name, uint64_t *wwn) 14517 { 14518 char *ptr = name; 14519 14520 if (*ptr != 'w') { 14521 return (DDI_FAILURE); 14522 } 14523 14524 ptr++; 14525 if (scsi_wwnstr_to_wwn(ptr, wwn)) { 14526 return (DDI_FAILURE); 14527 } 14528 return (DDI_SUCCESS); 14529 } 14530 14531 static int 14532 mptsas_bus_config(dev_info_t *pdip, uint_t flag, 14533 ddi_bus_config_op_t op, void *arg, dev_info_t **childp) 14534 { 14535 int ret = NDI_FAILURE; 14536 int circ = 0; 14537 int circ1 = 0; 14538 mptsas_t *mpt; 14539 char *ptr = NULL; 14540 char *devnm = NULL; 14541 uint64_t wwid = 0; 14542 uint8_t phy = 0xFF; 14543 int lun = 0; 14544 uint_t mflags = flag; 14545 int bconfig = TRUE; 14546 14547 if (scsi_hba_iport_unit_address(pdip) == 0) { 14548 return (DDI_FAILURE); 14549 } 14550 14551 mpt = DIP2MPT(pdip); 14552 if (!mpt) { 14553 return (DDI_FAILURE); 14554 } 14555 /* 14556 * Hold the nexus across the bus_config 14557 */ 14558 ndi_devi_enter(scsi_vhci_dip, &circ); 14559 ndi_devi_enter(pdip, &circ1); 14560 switch (op) { 14561 case BUS_CONFIG_ONE: 14562 /* parse wwid/target name out of name given */ 14563 if ((ptr = strchr((char *)arg, '@')) == NULL) { 14564 ret = NDI_FAILURE; 14565 break; 14566 } 14567 ptr++; 14568 if (strncmp((char *)arg, "smp", 3) == 0) { 14569 /* 14570 * This is a SMP target device 14571 */ 14572 ret = mptsas_parse_smp_name(ptr, &wwid); 14573 if (ret != DDI_SUCCESS) { 14574 ret = NDI_FAILURE; 14575 break; 14576 } 14577 ret = mptsas_config_smp(pdip, wwid, childp); 14578 } else if ((ptr[0] == 'w') || (ptr[0] == 'p')) { 14579 /* 14580 * OBP could pass down a non-canonical form 14581 * bootpath without LUN part when LUN is 0. 14582 * So driver need adjust the string. 14583 */ 14584 if (strchr(ptr, ',') == NULL) { 14585 devnm = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14586 (void) sprintf(devnm, "%s,0", (char *)arg); 14587 ptr = strchr(devnm, '@'); 14588 ptr++; 14589 } 14590 14591 /* 14592 * The device path is wWWID format and the device 14593 * is not SMP target device. 14594 */ 14595 ret = mptsas_parse_address(ptr, &wwid, &phy, &lun); 14596 if (ret != DDI_SUCCESS) { 14597 ret = NDI_FAILURE; 14598 break; 14599 } 14600 *childp = NULL; 14601 if (ptr[0] == 'w') { 14602 ret = mptsas_config_one_addr(pdip, wwid, 14603 lun, childp); 14604 } else if (ptr[0] == 'p') { 14605 ret = mptsas_config_one_phy(pdip, phy, lun, 14606 childp); 14607 } 14608 14609 /* 14610 * If this is CD/DVD device in OBP path, the 14611 * ndi_busop_bus_config can be skipped as config one 14612 * operation is done above. 14613 */ 14614 if ((ret == NDI_SUCCESS) && (*childp != NULL) && 14615 (strcmp(ddi_node_name(*childp), "cdrom") == 0) && 14616 (strncmp((char *)arg, "disk", 4) == 0)) { 14617 bconfig = FALSE; 14618 ndi_hold_devi(*childp); 14619 } 14620 } else { 14621 ret = NDI_FAILURE; 14622 break; 14623 } 14624 14625 /* 14626 * DDI group instructed us to use this flag. 14627 */ 14628 mflags |= NDI_MDI_FALLBACK; 14629 break; 14630 case BUS_CONFIG_DRIVER: 14631 case BUS_CONFIG_ALL: 14632 mptsas_config_all(pdip); 14633 ret = NDI_SUCCESS; 14634 break; 14635 } 14636 14637 if ((ret == NDI_SUCCESS) && bconfig) { 14638 ret = ndi_busop_bus_config(pdip, mflags, op, 14639 (devnm == NULL) ? arg : devnm, childp, 0); 14640 } 14641 14642 ndi_devi_exit(pdip, circ1); 14643 ndi_devi_exit(scsi_vhci_dip, circ); 14644 if (devnm != NULL) 14645 kmem_free(devnm, SCSI_MAXNAMELEN); 14646 return (ret); 14647 } 14648 14649 static int 14650 mptsas_probe_lun(dev_info_t *pdip, int lun, dev_info_t **dip, 14651 mptsas_target_t *ptgt) 14652 { 14653 int rval = DDI_FAILURE; 14654 struct scsi_inquiry *sd_inq = NULL; 14655 mptsas_t *mpt = DIP2MPT(pdip); 14656 14657 sd_inq = (struct scsi_inquiry *)kmem_alloc(SUN_INQSIZE, KM_SLEEP); 14658 14659 rval = mptsas_inquiry(mpt, ptgt, lun, 0, (uchar_t *)sd_inq, 14660 SUN_INQSIZE, 0, (uchar_t)0); 14661 14662 if ((rval == DDI_SUCCESS) && MPTSAS_VALID_LUN(sd_inq)) { 14663 rval = mptsas_create_lun(pdip, sd_inq, dip, ptgt, lun); 14664 } else { 14665 rval = DDI_FAILURE; 14666 } 14667 14668 kmem_free(sd_inq, SUN_INQSIZE); 14669 return (rval); 14670 } 14671 14672 static int 14673 mptsas_config_one_addr(dev_info_t *pdip, uint64_t sasaddr, int lun, 14674 dev_info_t **lundip) 14675 { 14676 int rval; 14677 mptsas_t *mpt = DIP2MPT(pdip); 14678 int phymask; 14679 mptsas_target_t *ptgt = NULL; 14680 14681 /* 14682 * Get the physical port associated to the iport 14683 */ 14684 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 14685 "phymask", 0); 14686 14687 ptgt = mptsas_wwid_to_ptgt(mpt, phymask, sasaddr); 14688 if (ptgt == NULL) { 14689 /* 14690 * didn't match any device by searching 14691 */ 14692 return (DDI_FAILURE); 14693 } 14694 /* 14695 * If the LUN already exists and the status is online, 14696 * we just return the pointer to dev_info_t directly. 14697 * For the mdi_pathinfo node, we'll handle it in 14698 * mptsas_create_virt_lun() 14699 * TODO should be also in mptsas_handle_dr 14700 */ 14701 14702 *lundip = mptsas_find_child_addr(pdip, sasaddr, lun); 14703 if (*lundip != NULL) { 14704 /* 14705 * TODO Another senario is, we hotplug the same disk 14706 * on the same slot, the devhdl changed, is this 14707 * possible? 14708 * tgt_private->t_private != ptgt 14709 */ 14710 if (sasaddr != ptgt->m_addr.mta_wwn) { 14711 /* 14712 * The device has changed although the devhdl is the 14713 * same (Enclosure mapping mode, change drive on the 14714 * same slot) 14715 */ 14716 return (DDI_FAILURE); 14717 } 14718 return (DDI_SUCCESS); 14719 } 14720 14721 if (phymask == 0) { 14722 /* 14723 * Configure IR volume 14724 */ 14725 rval = mptsas_config_raid(pdip, ptgt->m_devhdl, lundip); 14726 return (rval); 14727 } 14728 rval = mptsas_probe_lun(pdip, lun, lundip, ptgt); 14729 14730 return (rval); 14731 } 14732 14733 static int 14734 mptsas_config_one_phy(dev_info_t *pdip, uint8_t phy, int lun, 14735 dev_info_t **lundip) 14736 { 14737 int rval; 14738 mptsas_t *mpt = DIP2MPT(pdip); 14739 mptsas_phymask_t phymask; 14740 mptsas_target_t *ptgt = NULL; 14741 14742 /* 14743 * Get the physical port associated to the iport 14744 */ 14745 phymask = (mptsas_phymask_t)ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 14746 "phymask", 0); 14747 14748 ptgt = mptsas_phy_to_tgt(mpt, phymask, phy); 14749 if (ptgt == NULL) { 14750 /* 14751 * didn't match any device by searching 14752 */ 14753 return (DDI_FAILURE); 14754 } 14755 14756 /* 14757 * If the LUN already exists and the status is online, 14758 * we just return the pointer to dev_info_t directly. 14759 * For the mdi_pathinfo node, we'll handle it in 14760 * mptsas_create_virt_lun(). 14761 */ 14762 14763 *lundip = mptsas_find_child_phy(pdip, phy); 14764 if (*lundip != NULL) { 14765 return (DDI_SUCCESS); 14766 } 14767 14768 rval = mptsas_probe_lun(pdip, lun, lundip, ptgt); 14769 14770 return (rval); 14771 } 14772 14773 static int 14774 mptsas_retrieve_lundata(int lun_cnt, uint8_t *buf, uint16_t *lun_num, 14775 uint8_t *lun_addr_type) 14776 { 14777 uint32_t lun_idx = 0; 14778 14779 ASSERT(lun_num != NULL); 14780 ASSERT(lun_addr_type != NULL); 14781 14782 lun_idx = (lun_cnt + 1) * MPTSAS_SCSI_REPORTLUNS_ADDRESS_SIZE; 14783 /* determine report luns addressing type */ 14784 switch (buf[lun_idx] & MPTSAS_SCSI_REPORTLUNS_ADDRESS_MASK) { 14785 /* 14786 * Vendors in the field have been found to be concatenating 14787 * bus/target/lun to equal the complete lun value instead 14788 * of switching to flat space addressing 14789 */ 14790 /* 00b - peripheral device addressing method */ 14791 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_PERIPHERAL: 14792 /* FALLTHRU */ 14793 /* 10b - logical unit addressing method */ 14794 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_LOGICAL_UNIT: 14795 /* FALLTHRU */ 14796 /* 01b - flat space addressing method */ 14797 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_FLAT_SPACE: 14798 /* byte0 bit0-5=msb lun byte1 bit0-7=lsb lun */ 14799 *lun_addr_type = (buf[lun_idx] & 14800 MPTSAS_SCSI_REPORTLUNS_ADDRESS_MASK) >> 6; 14801 *lun_num = (buf[lun_idx] & 0x3F) << 8; 14802 *lun_num |= buf[lun_idx + 1]; 14803 return (DDI_SUCCESS); 14804 default: 14805 return (DDI_FAILURE); 14806 } 14807 } 14808 14809 static int 14810 mptsas_config_luns(dev_info_t *pdip, mptsas_target_t *ptgt) 14811 { 14812 struct buf *repluns_bp = NULL; 14813 struct scsi_address ap; 14814 uchar_t cdb[CDB_GROUP5]; 14815 int ret = DDI_FAILURE; 14816 int retry = 0; 14817 int lun_list_len = 0; 14818 uint16_t lun_num = 0; 14819 uint8_t lun_addr_type = 0; 14820 uint32_t lun_cnt = 0; 14821 uint32_t lun_total = 0; 14822 dev_info_t *cdip = NULL; 14823 uint16_t *saved_repluns = NULL; 14824 char *buffer = NULL; 14825 int buf_len = 128; 14826 mptsas_t *mpt = DIP2MPT(pdip); 14827 uint64_t sas_wwn = 0; 14828 uint8_t phy = 0xFF; 14829 uint32_t dev_info = 0; 14830 14831 mutex_enter(&mpt->m_mutex); 14832 sas_wwn = ptgt->m_addr.mta_wwn; 14833 phy = ptgt->m_phynum; 14834 dev_info = ptgt->m_deviceinfo; 14835 mutex_exit(&mpt->m_mutex); 14836 14837 if (sas_wwn == 0) { 14838 /* 14839 * It's a SATA without Device Name 14840 * So don't try multi-LUNs 14841 */ 14842 if (mptsas_find_child_phy(pdip, phy)) { 14843 return (DDI_SUCCESS); 14844 } else { 14845 /* 14846 * need configure and create node 14847 */ 14848 return (DDI_FAILURE); 14849 } 14850 } 14851 14852 /* 14853 * WWN (SAS address or Device Name exist) 14854 */ 14855 if (dev_info & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 14856 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 14857 /* 14858 * SATA device with Device Name 14859 * So don't try multi-LUNs 14860 */ 14861 if (mptsas_find_child_addr(pdip, sas_wwn, 0)) { 14862 return (DDI_SUCCESS); 14863 } else { 14864 return (DDI_FAILURE); 14865 } 14866 } 14867 14868 do { 14869 ap.a_target = MPTSAS_INVALID_DEVHDL; 14870 ap.a_lun = 0; 14871 ap.a_hba_tran = mpt->m_tran; 14872 repluns_bp = scsi_alloc_consistent_buf(&ap, 14873 (struct buf *)NULL, buf_len, B_READ, NULL_FUNC, NULL); 14874 if (repluns_bp == NULL) { 14875 retry++; 14876 continue; 14877 } 14878 bzero(cdb, CDB_GROUP5); 14879 cdb[0] = SCMD_REPORT_LUNS; 14880 cdb[6] = (buf_len & 0xff000000) >> 24; 14881 cdb[7] = (buf_len & 0x00ff0000) >> 16; 14882 cdb[8] = (buf_len & 0x0000ff00) >> 8; 14883 cdb[9] = (buf_len & 0x000000ff); 14884 14885 ret = mptsas_send_scsi_cmd(mpt, &ap, ptgt, &cdb[0], CDB_GROUP5, 14886 repluns_bp, NULL); 14887 if (ret != DDI_SUCCESS) { 14888 scsi_free_consistent_buf(repluns_bp); 14889 retry++; 14890 continue; 14891 } 14892 lun_list_len = BE_32(*(int *)((void *)( 14893 repluns_bp->b_un.b_addr))); 14894 if (buf_len >= lun_list_len + 8) { 14895 ret = DDI_SUCCESS; 14896 break; 14897 } 14898 scsi_free_consistent_buf(repluns_bp); 14899 buf_len = lun_list_len + 8; 14900 14901 } while (retry < 3); 14902 14903 if (ret != DDI_SUCCESS) 14904 return (ret); 14905 buffer = (char *)repluns_bp->b_un.b_addr; 14906 /* 14907 * find out the number of luns returned by the SCSI ReportLun call 14908 * and allocate buffer space 14909 */ 14910 lun_total = lun_list_len / MPTSAS_SCSI_REPORTLUNS_ADDRESS_SIZE; 14911 saved_repluns = kmem_zalloc(sizeof (uint16_t) * lun_total, KM_SLEEP); 14912 if (saved_repluns == NULL) { 14913 scsi_free_consistent_buf(repluns_bp); 14914 return (DDI_FAILURE); 14915 } 14916 for (lun_cnt = 0; lun_cnt < lun_total; lun_cnt++) { 14917 if (mptsas_retrieve_lundata(lun_cnt, (uint8_t *)(buffer), 14918 &lun_num, &lun_addr_type) != DDI_SUCCESS) { 14919 continue; 14920 } 14921 saved_repluns[lun_cnt] = lun_num; 14922 if (cdip = mptsas_find_child_addr(pdip, sas_wwn, lun_num)) 14923 ret = DDI_SUCCESS; 14924 else 14925 ret = mptsas_probe_lun(pdip, lun_num, &cdip, 14926 ptgt); 14927 if ((ret == DDI_SUCCESS) && (cdip != NULL)) { 14928 (void) ndi_prop_remove(DDI_DEV_T_NONE, cdip, 14929 MPTSAS_DEV_GONE); 14930 } 14931 } 14932 mptsas_offline_missed_luns(pdip, saved_repluns, lun_total, ptgt); 14933 kmem_free(saved_repluns, sizeof (uint16_t) * lun_total); 14934 scsi_free_consistent_buf(repluns_bp); 14935 return (DDI_SUCCESS); 14936 } 14937 14938 static int 14939 mptsas_config_raid(dev_info_t *pdip, uint16_t target, dev_info_t **dip) 14940 { 14941 int rval = DDI_FAILURE; 14942 struct scsi_inquiry *sd_inq = NULL; 14943 mptsas_t *mpt = DIP2MPT(pdip); 14944 mptsas_target_t *ptgt = NULL; 14945 14946 mutex_enter(&mpt->m_mutex); 14947 ptgt = refhash_linear_search(mpt->m_targets, 14948 mptsas_target_eval_devhdl, &target); 14949 mutex_exit(&mpt->m_mutex); 14950 if (ptgt == NULL) { 14951 mptsas_log(mpt, CE_WARN, "Volume with VolDevHandle of 0x%x " 14952 "not found.", target); 14953 return (rval); 14954 } 14955 14956 sd_inq = (struct scsi_inquiry *)kmem_alloc(SUN_INQSIZE, KM_SLEEP); 14957 rval = mptsas_inquiry(mpt, ptgt, 0, 0, (uchar_t *)sd_inq, 14958 SUN_INQSIZE, 0, (uchar_t)0); 14959 14960 if ((rval == DDI_SUCCESS) && MPTSAS_VALID_LUN(sd_inq)) { 14961 rval = mptsas_create_phys_lun(pdip, sd_inq, NULL, dip, ptgt, 14962 0); 14963 } else { 14964 rval = DDI_FAILURE; 14965 } 14966 14967 kmem_free(sd_inq, SUN_INQSIZE); 14968 return (rval); 14969 } 14970 14971 /* 14972 * configure all RAID volumes for virtual iport 14973 */ 14974 static void 14975 mptsas_config_all_viport(dev_info_t *pdip) 14976 { 14977 mptsas_t *mpt = DIP2MPT(pdip); 14978 int config, vol; 14979 int target; 14980 dev_info_t *lundip = NULL; 14981 14982 /* 14983 * Get latest RAID info and search for any Volume DevHandles. If any 14984 * are found, configure the volume. 14985 */ 14986 mutex_enter(&mpt->m_mutex); 14987 for (config = 0; config < mpt->m_num_raid_configs; config++) { 14988 for (vol = 0; vol < MPTSAS_MAX_RAIDVOLS; vol++) { 14989 if (mpt->m_raidconfig[config].m_raidvol[vol].m_israid 14990 == 1) { 14991 target = mpt->m_raidconfig[config]. 14992 m_raidvol[vol].m_raidhandle; 14993 mutex_exit(&mpt->m_mutex); 14994 (void) mptsas_config_raid(pdip, target, 14995 &lundip); 14996 mutex_enter(&mpt->m_mutex); 14997 } 14998 } 14999 } 15000 mutex_exit(&mpt->m_mutex); 15001 } 15002 15003 static void 15004 mptsas_offline_missed_luns(dev_info_t *pdip, uint16_t *repluns, 15005 int lun_cnt, mptsas_target_t *ptgt) 15006 { 15007 dev_info_t *child = NULL, *savechild = NULL; 15008 mdi_pathinfo_t *pip = NULL, *savepip = NULL; 15009 uint64_t sas_wwn, wwid; 15010 uint8_t phy; 15011 int lun; 15012 int i; 15013 int find; 15014 char *addr; 15015 char *nodename; 15016 mptsas_t *mpt = DIP2MPT(pdip); 15017 15018 mutex_enter(&mpt->m_mutex); 15019 wwid = ptgt->m_addr.mta_wwn; 15020 mutex_exit(&mpt->m_mutex); 15021 15022 child = ddi_get_child(pdip); 15023 while (child) { 15024 find = 0; 15025 savechild = child; 15026 child = ddi_get_next_sibling(child); 15027 15028 nodename = ddi_node_name(savechild); 15029 if (strcmp(nodename, "smp") == 0) { 15030 continue; 15031 } 15032 15033 addr = ddi_get_name_addr(savechild); 15034 if (addr == NULL) { 15035 continue; 15036 } 15037 15038 if (mptsas_parse_address(addr, &sas_wwn, &phy, &lun) != 15039 DDI_SUCCESS) { 15040 continue; 15041 } 15042 15043 if (wwid == sas_wwn) { 15044 for (i = 0; i < lun_cnt; i++) { 15045 if (repluns[i] == lun) { 15046 find = 1; 15047 break; 15048 } 15049 } 15050 } else { 15051 continue; 15052 } 15053 if (find == 0) { 15054 /* 15055 * The lun has not been there already 15056 */ 15057 (void) mptsas_offline_lun(pdip, savechild, NULL, 15058 NDI_DEVI_REMOVE); 15059 } 15060 } 15061 15062 pip = mdi_get_next_client_path(pdip, NULL); 15063 while (pip) { 15064 find = 0; 15065 savepip = pip; 15066 addr = MDI_PI(pip)->pi_addr; 15067 15068 pip = mdi_get_next_client_path(pdip, pip); 15069 15070 if (addr == NULL) { 15071 continue; 15072 } 15073 15074 if (mptsas_parse_address(addr, &sas_wwn, &phy, 15075 &lun) != DDI_SUCCESS) { 15076 continue; 15077 } 15078 15079 if (sas_wwn == wwid) { 15080 for (i = 0; i < lun_cnt; i++) { 15081 if (repluns[i] == lun) { 15082 find = 1; 15083 break; 15084 } 15085 } 15086 } else { 15087 continue; 15088 } 15089 15090 if (find == 0) { 15091 /* 15092 * The lun has not been there already 15093 */ 15094 (void) mptsas_offline_lun(pdip, NULL, savepip, 15095 NDI_DEVI_REMOVE); 15096 } 15097 } 15098 } 15099 15100 void 15101 mptsas_update_hashtab(struct mptsas *mpt) 15102 { 15103 uint32_t page_address; 15104 int rval = 0; 15105 uint16_t dev_handle; 15106 mptsas_target_t *ptgt = NULL; 15107 mptsas_smp_t smp_node; 15108 15109 /* 15110 * Get latest RAID info. 15111 */ 15112 (void) mptsas_get_raid_info(mpt); 15113 15114 dev_handle = mpt->m_smp_devhdl; 15115 for (; mpt->m_done_traverse_smp == 0; ) { 15116 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_GET_NEXT_HNDL & 15117 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)dev_handle; 15118 if (mptsas_get_sas_expander_page0(mpt, page_address, &smp_node) 15119 != DDI_SUCCESS) { 15120 break; 15121 } 15122 mpt->m_smp_devhdl = dev_handle = smp_node.m_devhdl; 15123 (void) mptsas_smp_alloc(mpt, &smp_node); 15124 } 15125 15126 /* 15127 * Config target devices 15128 */ 15129 dev_handle = mpt->m_dev_handle; 15130 15131 /* 15132 * Do loop to get sas device page 0 by GetNextHandle till the 15133 * the last handle. If the sas device is a SATA/SSP target, 15134 * we try to config it. 15135 */ 15136 for (; mpt->m_done_traverse_dev == 0; ) { 15137 ptgt = NULL; 15138 page_address = 15139 (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 15140 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 15141 (uint32_t)dev_handle; 15142 rval = mptsas_get_target_device_info(mpt, page_address, 15143 &dev_handle, &ptgt); 15144 if ((rval == DEV_INFO_FAIL_PAGE0) || 15145 (rval == DEV_INFO_FAIL_ALLOC)) { 15146 break; 15147 } 15148 15149 mpt->m_dev_handle = dev_handle; 15150 } 15151 15152 } 15153 15154 void 15155 mptsas_update_driver_data(struct mptsas *mpt) 15156 { 15157 mptsas_target_t *tp; 15158 mptsas_smp_t *sp; 15159 15160 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 15161 15162 /* 15163 * TODO after hard reset, update the driver data structures 15164 * 1. update port/phymask mapping table mpt->m_phy_info 15165 * 2. invalid all the entries in hash table 15166 * m_devhdl = 0xffff and m_deviceinfo = 0 15167 * 3. call sas_device_page/expander_page to update hash table 15168 */ 15169 mptsas_update_phymask(mpt); 15170 /* 15171 * Invalid the existing entries 15172 * 15173 * XXX - It seems like we should just delete everything here. We are 15174 * holding the lock and are about to refresh all the targets in both 15175 * hashes anyway. Given the path we're in, what outstanding async 15176 * event could possibly be trying to reference one of these things 15177 * without taking the lock, and how would that be useful anyway? 15178 */ 15179 for (tp = refhash_first(mpt->m_targets); tp != NULL; 15180 tp = refhash_next(mpt->m_targets, tp)) { 15181 tp->m_devhdl = MPTSAS_INVALID_DEVHDL; 15182 tp->m_deviceinfo = 0; 15183 tp->m_dr_flag = MPTSAS_DR_INACTIVE; 15184 } 15185 for (sp = refhash_first(mpt->m_smp_targets); sp != NULL; 15186 sp = refhash_next(mpt->m_smp_targets, sp)) { 15187 sp->m_devhdl = MPTSAS_INVALID_DEVHDL; 15188 sp->m_deviceinfo = 0; 15189 } 15190 mpt->m_done_traverse_dev = 0; 15191 mpt->m_done_traverse_smp = 0; 15192 mpt->m_dev_handle = mpt->m_smp_devhdl = MPTSAS_INVALID_DEVHDL; 15193 mptsas_update_hashtab(mpt); 15194 } 15195 15196 static void 15197 mptsas_config_all(dev_info_t *pdip) 15198 { 15199 dev_info_t *smpdip = NULL; 15200 mptsas_t *mpt = DIP2MPT(pdip); 15201 int phymask = 0; 15202 mptsas_phymask_t phy_mask; 15203 mptsas_target_t *ptgt = NULL; 15204 mptsas_smp_t *psmp; 15205 15206 /* 15207 * Get the phymask associated to the iport 15208 */ 15209 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 15210 "phymask", 0); 15211 15212 /* 15213 * Enumerate RAID volumes here (phymask == 0). 15214 */ 15215 if (phymask == 0) { 15216 mptsas_config_all_viport(pdip); 15217 return; 15218 } 15219 15220 mutex_enter(&mpt->m_mutex); 15221 15222 if (!mpt->m_done_traverse_dev || !mpt->m_done_traverse_smp) { 15223 mptsas_update_hashtab(mpt); 15224 } 15225 15226 for (psmp = refhash_first(mpt->m_smp_targets); psmp != NULL; 15227 psmp = refhash_next(mpt->m_smp_targets, psmp)) { 15228 phy_mask = psmp->m_addr.mta_phymask; 15229 if (phy_mask == phymask) { 15230 smpdip = NULL; 15231 mutex_exit(&mpt->m_mutex); 15232 (void) mptsas_online_smp(pdip, psmp, &smpdip); 15233 mutex_enter(&mpt->m_mutex); 15234 } 15235 } 15236 15237 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 15238 ptgt = refhash_next(mpt->m_targets, ptgt)) { 15239 phy_mask = ptgt->m_addr.mta_phymask; 15240 if (phy_mask == phymask) { 15241 mutex_exit(&mpt->m_mutex); 15242 (void) mptsas_config_target(pdip, ptgt); 15243 mutex_enter(&mpt->m_mutex); 15244 } 15245 } 15246 mutex_exit(&mpt->m_mutex); 15247 } 15248 15249 static int 15250 mptsas_config_target(dev_info_t *pdip, mptsas_target_t *ptgt) 15251 { 15252 int rval = DDI_FAILURE; 15253 dev_info_t *tdip; 15254 15255 rval = mptsas_config_luns(pdip, ptgt); 15256 if (rval != DDI_SUCCESS) { 15257 /* 15258 * The return value means the SCMD_REPORT_LUNS 15259 * did not execute successfully. The target maybe 15260 * doesn't support such command. 15261 */ 15262 rval = mptsas_probe_lun(pdip, 0, &tdip, ptgt); 15263 } 15264 return (rval); 15265 } 15266 15267 /* 15268 * Return fail if not all the childs/paths are freed. 15269 * if there is any path under the HBA, the return value will be always fail 15270 * because we didn't call mdi_pi_free for path 15271 */ 15272 static int 15273 mptsas_offline_targetdev(dev_info_t *pdip, char *name) 15274 { 15275 dev_info_t *child = NULL, *prechild = NULL; 15276 mdi_pathinfo_t *pip = NULL, *savepip = NULL; 15277 int tmp_rval, rval = DDI_SUCCESS; 15278 char *addr, *cp; 15279 size_t s; 15280 mptsas_t *mpt = DIP2MPT(pdip); 15281 15282 child = ddi_get_child(pdip); 15283 while (child) { 15284 addr = ddi_get_name_addr(child); 15285 prechild = child; 15286 child = ddi_get_next_sibling(child); 15287 15288 if (addr == NULL) { 15289 continue; 15290 } 15291 if ((cp = strchr(addr, ',')) == NULL) { 15292 continue; 15293 } 15294 15295 s = (uintptr_t)cp - (uintptr_t)addr; 15296 15297 if (strncmp(addr, name, s) != 0) { 15298 continue; 15299 } 15300 15301 tmp_rval = mptsas_offline_lun(pdip, prechild, NULL, 15302 NDI_DEVI_REMOVE); 15303 if (tmp_rval != DDI_SUCCESS) { 15304 rval = DDI_FAILURE; 15305 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 15306 prechild, MPTSAS_DEV_GONE) != 15307 DDI_PROP_SUCCESS) { 15308 mptsas_log(mpt, CE_WARN, 15309 "unable to create property for " 15310 "SAS %s (MPTSAS_DEV_GONE)", addr); 15311 } 15312 } 15313 } 15314 15315 pip = mdi_get_next_client_path(pdip, NULL); 15316 while (pip) { 15317 addr = MDI_PI(pip)->pi_addr; 15318 savepip = pip; 15319 pip = mdi_get_next_client_path(pdip, pip); 15320 if (addr == NULL) { 15321 continue; 15322 } 15323 15324 if ((cp = strchr(addr, ',')) == NULL) { 15325 continue; 15326 } 15327 15328 s = (uintptr_t)cp - (uintptr_t)addr; 15329 15330 if (strncmp(addr, name, s) != 0) { 15331 continue; 15332 } 15333 15334 (void) mptsas_offline_lun(pdip, NULL, savepip, 15335 NDI_DEVI_REMOVE); 15336 /* 15337 * driver will not invoke mdi_pi_free, so path will not 15338 * be freed forever, return DDI_FAILURE. 15339 */ 15340 rval = DDI_FAILURE; 15341 } 15342 return (rval); 15343 } 15344 15345 static int 15346 mptsas_offline_lun(dev_info_t *pdip, dev_info_t *rdip, 15347 mdi_pathinfo_t *rpip, uint_t flags) 15348 { 15349 int rval = DDI_FAILURE; 15350 char *devname; 15351 dev_info_t *cdip, *parent; 15352 15353 if (rpip != NULL) { 15354 parent = scsi_vhci_dip; 15355 cdip = mdi_pi_get_client(rpip); 15356 } else if (rdip != NULL) { 15357 parent = pdip; 15358 cdip = rdip; 15359 } else { 15360 return (DDI_FAILURE); 15361 } 15362 15363 /* 15364 * Make sure node is attached otherwise 15365 * it won't have related cache nodes to 15366 * clean up. i_ddi_devi_attached is 15367 * similiar to i_ddi_node_state(cdip) >= 15368 * DS_ATTACHED. 15369 */ 15370 if (i_ddi_devi_attached(cdip)) { 15371 15372 /* Get full devname */ 15373 devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 15374 (void) ddi_deviname(cdip, devname); 15375 /* Clean cache */ 15376 (void) devfs_clean(parent, devname + 1, 15377 DV_CLEAN_FORCE); 15378 kmem_free(devname, MAXNAMELEN + 1); 15379 } 15380 if (rpip != NULL) { 15381 if (MDI_PI_IS_OFFLINE(rpip)) { 15382 rval = DDI_SUCCESS; 15383 } else { 15384 rval = mdi_pi_offline(rpip, 0); 15385 } 15386 } else { 15387 rval = ndi_devi_offline(cdip, flags); 15388 } 15389 15390 return (rval); 15391 } 15392 15393 static dev_info_t * 15394 mptsas_find_smp_child(dev_info_t *parent, char *str_wwn) 15395 { 15396 dev_info_t *child = NULL; 15397 char *smp_wwn = NULL; 15398 15399 child = ddi_get_child(parent); 15400 while (child) { 15401 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child, 15402 DDI_PROP_DONTPASS, SMP_WWN, &smp_wwn) 15403 != DDI_SUCCESS) { 15404 child = ddi_get_next_sibling(child); 15405 continue; 15406 } 15407 15408 if (strcmp(smp_wwn, str_wwn) == 0) { 15409 ddi_prop_free(smp_wwn); 15410 break; 15411 } 15412 child = ddi_get_next_sibling(child); 15413 ddi_prop_free(smp_wwn); 15414 } 15415 return (child); 15416 } 15417 15418 static int 15419 mptsas_offline_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, uint_t flags) 15420 { 15421 int rval = DDI_FAILURE; 15422 char *devname; 15423 char wwn_str[MPTSAS_WWN_STRLEN]; 15424 dev_info_t *cdip; 15425 15426 (void) sprintf(wwn_str, "%"PRIx64, smp_node->m_addr.mta_wwn); 15427 15428 cdip = mptsas_find_smp_child(pdip, wwn_str); 15429 15430 if (cdip == NULL) 15431 return (DDI_SUCCESS); 15432 15433 /* 15434 * Make sure node is attached otherwise 15435 * it won't have related cache nodes to 15436 * clean up. i_ddi_devi_attached is 15437 * similiar to i_ddi_node_state(cdip) >= 15438 * DS_ATTACHED. 15439 */ 15440 if (i_ddi_devi_attached(cdip)) { 15441 15442 /* Get full devname */ 15443 devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 15444 (void) ddi_deviname(cdip, devname); 15445 /* Clean cache */ 15446 (void) devfs_clean(pdip, devname + 1, 15447 DV_CLEAN_FORCE); 15448 kmem_free(devname, MAXNAMELEN + 1); 15449 } 15450 15451 rval = ndi_devi_offline(cdip, flags); 15452 15453 return (rval); 15454 } 15455 15456 static dev_info_t * 15457 mptsas_find_child(dev_info_t *pdip, char *name) 15458 { 15459 dev_info_t *child = NULL; 15460 char *rname = NULL; 15461 int rval = DDI_FAILURE; 15462 15463 rname = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15464 15465 child = ddi_get_child(pdip); 15466 while (child) { 15467 rval = mptsas_name_child(child, rname, SCSI_MAXNAMELEN); 15468 if (rval != DDI_SUCCESS) { 15469 child = ddi_get_next_sibling(child); 15470 bzero(rname, SCSI_MAXNAMELEN); 15471 continue; 15472 } 15473 15474 if (strcmp(rname, name) == 0) { 15475 break; 15476 } 15477 child = ddi_get_next_sibling(child); 15478 bzero(rname, SCSI_MAXNAMELEN); 15479 } 15480 15481 kmem_free(rname, SCSI_MAXNAMELEN); 15482 15483 return (child); 15484 } 15485 15486 15487 static dev_info_t * 15488 mptsas_find_child_addr(dev_info_t *pdip, uint64_t sasaddr, int lun) 15489 { 15490 dev_info_t *child = NULL; 15491 char *name = NULL; 15492 char *addr = NULL; 15493 15494 name = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15495 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15496 (void) sprintf(name, "%016"PRIx64, sasaddr); 15497 (void) sprintf(addr, "w%s,%x", name, lun); 15498 child = mptsas_find_child(pdip, addr); 15499 kmem_free(name, SCSI_MAXNAMELEN); 15500 kmem_free(addr, SCSI_MAXNAMELEN); 15501 return (child); 15502 } 15503 15504 static dev_info_t * 15505 mptsas_find_child_phy(dev_info_t *pdip, uint8_t phy) 15506 { 15507 dev_info_t *child; 15508 char *addr; 15509 15510 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15511 (void) sprintf(addr, "p%x,0", phy); 15512 child = mptsas_find_child(pdip, addr); 15513 kmem_free(addr, SCSI_MAXNAMELEN); 15514 return (child); 15515 } 15516 15517 static mdi_pathinfo_t * 15518 mptsas_find_path_phy(dev_info_t *pdip, uint8_t phy) 15519 { 15520 mdi_pathinfo_t *path; 15521 char *addr = NULL; 15522 15523 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15524 (void) sprintf(addr, "p%x,0", phy); 15525 path = mdi_pi_find(pdip, NULL, addr); 15526 kmem_free(addr, SCSI_MAXNAMELEN); 15527 return (path); 15528 } 15529 15530 static mdi_pathinfo_t * 15531 mptsas_find_path_addr(dev_info_t *parent, uint64_t sasaddr, int lun) 15532 { 15533 mdi_pathinfo_t *path; 15534 char *name = NULL; 15535 char *addr = NULL; 15536 15537 name = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15538 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15539 (void) sprintf(name, "%016"PRIx64, sasaddr); 15540 (void) sprintf(addr, "w%s,%x", name, lun); 15541 path = mdi_pi_find(parent, NULL, addr); 15542 kmem_free(name, SCSI_MAXNAMELEN); 15543 kmem_free(addr, SCSI_MAXNAMELEN); 15544 15545 return (path); 15546 } 15547 15548 static int 15549 mptsas_create_lun(dev_info_t *pdip, struct scsi_inquiry *sd_inq, 15550 dev_info_t **lun_dip, mptsas_target_t *ptgt, int lun) 15551 { 15552 int i = 0; 15553 uchar_t *inq83 = NULL; 15554 int inq83_len1 = 0xFF; 15555 int inq83_len = 0; 15556 int rval = DDI_FAILURE; 15557 ddi_devid_t devid; 15558 char *guid = NULL; 15559 int target = ptgt->m_devhdl; 15560 mdi_pathinfo_t *pip = NULL; 15561 mptsas_t *mpt = DIP2MPT(pdip); 15562 15563 /* 15564 * For DVD/CD ROM and tape devices and optical 15565 * devices, we won't try to enumerate them under 15566 * scsi_vhci, so no need to try page83 15567 */ 15568 if (sd_inq && (sd_inq->inq_dtype == DTYPE_RODIRECT || 15569 sd_inq->inq_dtype == DTYPE_OPTICAL || 15570 sd_inq->inq_dtype == DTYPE_ESI)) 15571 goto create_lun; 15572 15573 /* 15574 * The LCA returns good SCSI status, but corrupt page 83 data the first 15575 * time it is queried. The solution is to keep trying to request page83 15576 * and verify the GUID is not (DDI_NOT_WELL_FORMED) in 15577 * mptsas_inq83_retry_timeout seconds. If the timeout expires, driver 15578 * give up to get VPD page at this stage and fail the enumeration. 15579 */ 15580 15581 inq83 = kmem_zalloc(inq83_len1, KM_SLEEP); 15582 15583 for (i = 0; i < mptsas_inq83_retry_timeout; i++) { 15584 rval = mptsas_inquiry(mpt, ptgt, lun, 0x83, inq83, 15585 inq83_len1, &inq83_len, 1); 15586 if (rval != 0) { 15587 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 15588 "0x83 for target:%x, lun:%x failed!", target, lun); 15589 if (mptsas_physical_bind_failed_page_83 != B_FALSE) 15590 goto create_lun; 15591 goto out; 15592 } 15593 /* 15594 * create DEVID from inquiry data 15595 */ 15596 if ((rval = ddi_devid_scsi_encode( 15597 DEVID_SCSI_ENCODE_VERSION_LATEST, NULL, (uchar_t *)sd_inq, 15598 sizeof (struct scsi_inquiry), NULL, 0, inq83, 15599 (size_t)inq83_len, &devid)) == DDI_SUCCESS) { 15600 /* 15601 * extract GUID from DEVID 15602 */ 15603 guid = ddi_devid_to_guid(devid); 15604 15605 /* 15606 * Do not enable MPXIO if the strlen(guid) is greater 15607 * than MPTSAS_MAX_GUID_LEN, this constrain would be 15608 * handled by framework later. 15609 */ 15610 if (guid && (strlen(guid) > MPTSAS_MAX_GUID_LEN)) { 15611 ddi_devid_free_guid(guid); 15612 guid = NULL; 15613 if (mpt->m_mpxio_enable == TRUE) { 15614 mptsas_log(mpt, CE_NOTE, "!Target:%x, " 15615 "lun:%x doesn't have a valid GUID, " 15616 "multipathing for this drive is " 15617 "not enabled", target, lun); 15618 } 15619 } 15620 15621 /* 15622 * devid no longer needed 15623 */ 15624 ddi_devid_free(devid); 15625 break; 15626 } else if (rval == DDI_NOT_WELL_FORMED) { 15627 /* 15628 * return value of ddi_devid_scsi_encode equal to 15629 * DDI_NOT_WELL_FORMED means DEVID_RETRY, it worth 15630 * to retry inquiry page 0x83 and get GUID. 15631 */ 15632 NDBG20(("Not well formed devid, retry...")); 15633 delay(1 * drv_usectohz(1000000)); 15634 continue; 15635 } else { 15636 mptsas_log(mpt, CE_WARN, "!Encode devid failed for " 15637 "path target:%x, lun:%x", target, lun); 15638 rval = DDI_FAILURE; 15639 goto create_lun; 15640 } 15641 } 15642 15643 if (i == mptsas_inq83_retry_timeout) { 15644 mptsas_log(mpt, CE_WARN, "!Repeated page83 requests timeout " 15645 "for path target:%x, lun:%x", target, lun); 15646 } 15647 15648 rval = DDI_FAILURE; 15649 15650 create_lun: 15651 if ((guid != NULL) && (mpt->m_mpxio_enable == TRUE)) { 15652 rval = mptsas_create_virt_lun(pdip, sd_inq, guid, lun_dip, &pip, 15653 ptgt, lun); 15654 } 15655 if (rval != DDI_SUCCESS) { 15656 rval = mptsas_create_phys_lun(pdip, sd_inq, guid, lun_dip, 15657 ptgt, lun); 15658 15659 } 15660 out: 15661 if (guid != NULL) { 15662 /* 15663 * guid no longer needed 15664 */ 15665 ddi_devid_free_guid(guid); 15666 } 15667 if (inq83 != NULL) 15668 kmem_free(inq83, inq83_len1); 15669 return (rval); 15670 } 15671 15672 static int 15673 mptsas_create_virt_lun(dev_info_t *pdip, struct scsi_inquiry *inq, char *guid, 15674 dev_info_t **lun_dip, mdi_pathinfo_t **pip, mptsas_target_t *ptgt, int lun) 15675 { 15676 int target; 15677 char *nodename = NULL; 15678 char **compatible = NULL; 15679 int ncompatible = 0; 15680 int mdi_rtn = MDI_FAILURE; 15681 int rval = DDI_FAILURE; 15682 char *old_guid = NULL; 15683 mptsas_t *mpt = DIP2MPT(pdip); 15684 char *lun_addr = NULL; 15685 char wwn_str[MPTSAS_WWN_STRLEN]; 15686 char *component = NULL; 15687 uint8_t phy = 0xFF; 15688 uint64_t sas_wwn; 15689 int64_t lun64 = 0; 15690 uint32_t devinfo; 15691 uint16_t dev_hdl; 15692 uint16_t pdev_hdl; 15693 uint64_t dev_sas_wwn; 15694 uint64_t pdev_sas_wwn; 15695 uint32_t pdev_info; 15696 uint8_t physport; 15697 uint8_t phy_id; 15698 uint32_t page_address; 15699 uint16_t bay_num, enclosure, io_flags; 15700 char pdev_wwn_str[MPTSAS_WWN_STRLEN]; 15701 uint32_t dev_info; 15702 15703 mutex_enter(&mpt->m_mutex); 15704 target = ptgt->m_devhdl; 15705 sas_wwn = ptgt->m_addr.mta_wwn; 15706 devinfo = ptgt->m_deviceinfo; 15707 phy = ptgt->m_phynum; 15708 mutex_exit(&mpt->m_mutex); 15709 15710 if (sas_wwn) { 15711 *pip = mptsas_find_path_addr(pdip, sas_wwn, lun); 15712 } else { 15713 *pip = mptsas_find_path_phy(pdip, phy); 15714 } 15715 15716 if (*pip != NULL) { 15717 *lun_dip = MDI_PI(*pip)->pi_client->ct_dip; 15718 ASSERT(*lun_dip != NULL); 15719 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, *lun_dip, 15720 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM), 15721 MDI_CLIENT_GUID_PROP, &old_guid) == DDI_SUCCESS) { 15722 if (strncmp(guid, old_guid, strlen(guid)) == 0) { 15723 /* 15724 * Same path back online again. 15725 */ 15726 (void) ddi_prop_free(old_guid); 15727 if ((!MDI_PI_IS_ONLINE(*pip)) && 15728 (!MDI_PI_IS_STANDBY(*pip)) && 15729 (ptgt->m_tgt_unconfigured == 0)) { 15730 rval = mdi_pi_online(*pip, 0); 15731 mutex_enter(&mpt->m_mutex); 15732 ptgt->m_led_status = 0; 15733 (void) mptsas_flush_led_status(mpt, 15734 ptgt); 15735 mutex_exit(&mpt->m_mutex); 15736 } else { 15737 rval = DDI_SUCCESS; 15738 } 15739 if (rval != DDI_SUCCESS) { 15740 mptsas_log(mpt, CE_WARN, "path:target: " 15741 "%x, lun:%x online failed!", target, 15742 lun); 15743 *pip = NULL; 15744 *lun_dip = NULL; 15745 } 15746 return (rval); 15747 } else { 15748 /* 15749 * The GUID of the LUN has changed which maybe 15750 * because customer mapped another volume to the 15751 * same LUN. 15752 */ 15753 mptsas_log(mpt, CE_WARN, "The GUID of the " 15754 "target:%x, lun:%x was changed, maybe " 15755 "because someone mapped another volume " 15756 "to the same LUN", target, lun); 15757 (void) ddi_prop_free(old_guid); 15758 if (!MDI_PI_IS_OFFLINE(*pip)) { 15759 rval = mdi_pi_offline(*pip, 0); 15760 if (rval != MDI_SUCCESS) { 15761 mptsas_log(mpt, CE_WARN, "path:" 15762 "target:%x, lun:%x offline " 15763 "failed!", target, lun); 15764 *pip = NULL; 15765 *lun_dip = NULL; 15766 return (DDI_FAILURE); 15767 } 15768 } 15769 if (mdi_pi_free(*pip, 0) != MDI_SUCCESS) { 15770 mptsas_log(mpt, CE_WARN, "path:target:" 15771 "%x, lun:%x free failed!", target, 15772 lun); 15773 *pip = NULL; 15774 *lun_dip = NULL; 15775 return (DDI_FAILURE); 15776 } 15777 } 15778 } else { 15779 mptsas_log(mpt, CE_WARN, "Can't get client-guid " 15780 "property for path:target:%x, lun:%x", target, lun); 15781 *pip = NULL; 15782 *lun_dip = NULL; 15783 return (DDI_FAILURE); 15784 } 15785 } 15786 scsi_hba_nodename_compatible_get(inq, NULL, 15787 inq->inq_dtype, NULL, &nodename, &compatible, &ncompatible); 15788 15789 /* 15790 * if nodename can't be determined then print a message and skip it 15791 */ 15792 if (nodename == NULL) { 15793 mptsas_log(mpt, CE_WARN, "found no compatible " 15794 "driver for target%d lun %d dtype:0x%02x", target, lun, 15795 inq->inq_dtype); 15796 return (DDI_FAILURE); 15797 } 15798 15799 /* The property is needed by MPAPI */ 15800 (void) sprintf(wwn_str, "%016"PRIx64, sas_wwn); 15801 15802 lun_addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15803 if (guid) { 15804 (void) sprintf(lun_addr, "w%s,%x", wwn_str, lun); 15805 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 15806 } else { 15807 (void) sprintf(lun_addr, "p%x,%x", phy, lun); 15808 (void) sprintf(wwn_str, "p%x", phy); 15809 } 15810 15811 mdi_rtn = mdi_pi_alloc_compatible(pdip, nodename, 15812 guid, lun_addr, compatible, ncompatible, 15813 0, pip); 15814 if (mdi_rtn == MDI_SUCCESS) { 15815 15816 if (mdi_prop_update_string(*pip, MDI_GUID, 15817 guid) != DDI_SUCCESS) { 15818 mptsas_log(mpt, CE_WARN, "unable to " 15819 "create prop for target %d lun %d (MDI_GUID)", 15820 target, lun); 15821 mdi_rtn = MDI_FAILURE; 15822 goto virt_create_done; 15823 } 15824 15825 if (mdi_prop_update_int(*pip, LUN_PROP, 15826 lun) != DDI_SUCCESS) { 15827 mptsas_log(mpt, CE_WARN, "unable to " 15828 "create prop for target %d lun %d (LUN_PROP)", 15829 target, lun); 15830 mdi_rtn = MDI_FAILURE; 15831 goto virt_create_done; 15832 } 15833 lun64 = (int64_t)lun; 15834 if (mdi_prop_update_int64(*pip, LUN64_PROP, 15835 lun64) != DDI_SUCCESS) { 15836 mptsas_log(mpt, CE_WARN, "unable to " 15837 "create prop for target %d (LUN64_PROP)", 15838 target); 15839 mdi_rtn = MDI_FAILURE; 15840 goto virt_create_done; 15841 } 15842 if (mdi_prop_update_string_array(*pip, "compatible", 15843 compatible, ncompatible) != 15844 DDI_PROP_SUCCESS) { 15845 mptsas_log(mpt, CE_WARN, "unable to " 15846 "create prop for target %d lun %d (COMPATIBLE)", 15847 target, lun); 15848 mdi_rtn = MDI_FAILURE; 15849 goto virt_create_done; 15850 } 15851 if (sas_wwn && (mdi_prop_update_string(*pip, 15852 SCSI_ADDR_PROP_TARGET_PORT, wwn_str) != DDI_PROP_SUCCESS)) { 15853 mptsas_log(mpt, CE_WARN, "unable to " 15854 "create prop for target %d lun %d " 15855 "(target-port)", target, lun); 15856 mdi_rtn = MDI_FAILURE; 15857 goto virt_create_done; 15858 } else if ((sas_wwn == 0) && (mdi_prop_update_int(*pip, 15859 "sata-phy", phy) != DDI_PROP_SUCCESS)) { 15860 /* 15861 * Direct attached SATA device without DeviceName 15862 */ 15863 mptsas_log(mpt, CE_WARN, "unable to " 15864 "create prop for SAS target %d lun %d " 15865 "(sata-phy)", target, lun); 15866 mdi_rtn = MDI_FAILURE; 15867 goto virt_create_done; 15868 } 15869 mutex_enter(&mpt->m_mutex); 15870 15871 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15872 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 15873 (uint32_t)ptgt->m_devhdl; 15874 rval = mptsas_get_sas_device_page0(mpt, page_address, 15875 &dev_hdl, &dev_sas_wwn, &dev_info, &physport, 15876 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 15877 if (rval != DDI_SUCCESS) { 15878 mutex_exit(&mpt->m_mutex); 15879 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 15880 "parent device for handle %d", page_address); 15881 mdi_rtn = MDI_FAILURE; 15882 goto virt_create_done; 15883 } 15884 15885 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15886 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)pdev_hdl; 15887 rval = mptsas_get_sas_device_page0(mpt, page_address, 15888 &dev_hdl, &pdev_sas_wwn, &pdev_info, &physport, 15889 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 15890 if (rval != DDI_SUCCESS) { 15891 mutex_exit(&mpt->m_mutex); 15892 mptsas_log(mpt, CE_WARN, "mptsas unable to get" 15893 "device info for handle %d", page_address); 15894 mdi_rtn = MDI_FAILURE; 15895 goto virt_create_done; 15896 } 15897 15898 mutex_exit(&mpt->m_mutex); 15899 15900 /* 15901 * If this device direct attached to the controller 15902 * set the attached-port to the base wwid 15903 */ 15904 if ((ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 15905 != DEVINFO_DIRECT_ATTACHED) { 15906 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 15907 pdev_sas_wwn); 15908 } else { 15909 /* 15910 * Update the iport's attached-port to guid 15911 */ 15912 if (sas_wwn == 0) { 15913 (void) sprintf(wwn_str, "p%x", phy); 15914 } else { 15915 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 15916 } 15917 if (ddi_prop_update_string(DDI_DEV_T_NONE, 15918 pdip, SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 15919 DDI_PROP_SUCCESS) { 15920 mptsas_log(mpt, CE_WARN, 15921 "mptsas unable to create " 15922 "property for iport target-port" 15923 " %s (sas_wwn)", 15924 wwn_str); 15925 mdi_rtn = MDI_FAILURE; 15926 goto virt_create_done; 15927 } 15928 15929 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 15930 mpt->un.m_base_wwid); 15931 } 15932 15933 if (mdi_prop_update_string(*pip, 15934 SCSI_ADDR_PROP_ATTACHED_PORT, pdev_wwn_str) != 15935 DDI_PROP_SUCCESS) { 15936 mptsas_log(mpt, CE_WARN, "unable to create " 15937 "property for iport attached-port %s (sas_wwn)", 15938 pdev_wwn_str); 15939 mdi_rtn = MDI_FAILURE; 15940 goto virt_create_done; 15941 } 15942 15943 15944 if (inq->inq_dtype == 0) { 15945 component = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 15946 /* 15947 * set obp path for pathinfo 15948 */ 15949 (void) snprintf(component, MAXPATHLEN, 15950 "disk@%s", lun_addr); 15951 15952 if (mdi_pi_pathname_obp_set(*pip, component) != 15953 DDI_SUCCESS) { 15954 mptsas_log(mpt, CE_WARN, 15955 "unable to set obp-path for object %s", 15956 component); 15957 mdi_rtn = MDI_FAILURE; 15958 goto virt_create_done; 15959 } 15960 } 15961 15962 *lun_dip = MDI_PI(*pip)->pi_client->ct_dip; 15963 if (devinfo & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 15964 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 15965 if ((ndi_prop_update_int(DDI_DEV_T_NONE, *lun_dip, 15966 "pm-capable", 1)) != 15967 DDI_PROP_SUCCESS) { 15968 mptsas_log(mpt, CE_WARN, 15969 "failed to create pm-capable " 15970 "property, target %d", target); 15971 mdi_rtn = MDI_FAILURE; 15972 goto virt_create_done; 15973 } 15974 } 15975 /* 15976 * Create the phy-num property 15977 */ 15978 if (mdi_prop_update_int(*pip, "phy-num", 15979 ptgt->m_phynum) != DDI_SUCCESS) { 15980 mptsas_log(mpt, CE_WARN, "unable to " 15981 "create phy-num property for target %d lun %d", 15982 target, lun); 15983 mdi_rtn = MDI_FAILURE; 15984 goto virt_create_done; 15985 } 15986 NDBG20(("new path:%s onlining,", MDI_PI(*pip)->pi_addr)); 15987 mdi_rtn = mdi_pi_online(*pip, 0); 15988 if (mdi_rtn == MDI_SUCCESS) { 15989 mutex_enter(&mpt->m_mutex); 15990 ptgt->m_led_status = 0; 15991 (void) mptsas_flush_led_status(mpt, ptgt); 15992 mutex_exit(&mpt->m_mutex); 15993 } 15994 if (mdi_rtn == MDI_NOT_SUPPORTED) { 15995 mdi_rtn = MDI_FAILURE; 15996 } 15997 virt_create_done: 15998 if (*pip && mdi_rtn != MDI_SUCCESS) { 15999 (void) mdi_pi_free(*pip, 0); 16000 *pip = NULL; 16001 *lun_dip = NULL; 16002 } 16003 } 16004 16005 scsi_hba_nodename_compatible_free(nodename, compatible); 16006 if (lun_addr != NULL) { 16007 kmem_free(lun_addr, SCSI_MAXNAMELEN); 16008 } 16009 if (component != NULL) { 16010 kmem_free(component, MAXPATHLEN); 16011 } 16012 16013 return ((mdi_rtn == MDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 16014 } 16015 16016 static int 16017 mptsas_create_phys_lun(dev_info_t *pdip, struct scsi_inquiry *inq, 16018 char *guid, dev_info_t **lun_dip, mptsas_target_t *ptgt, int lun) 16019 { 16020 int target; 16021 int rval; 16022 int ndi_rtn = NDI_FAILURE; 16023 uint64_t be_sas_wwn; 16024 char *nodename = NULL; 16025 char **compatible = NULL; 16026 int ncompatible = 0; 16027 int instance = 0; 16028 mptsas_t *mpt = DIP2MPT(pdip); 16029 char wwn_str[MPTSAS_WWN_STRLEN]; 16030 char component[MAXPATHLEN]; 16031 uint8_t phy = 0xFF; 16032 uint64_t sas_wwn; 16033 uint32_t devinfo; 16034 uint16_t dev_hdl; 16035 uint16_t pdev_hdl; 16036 uint64_t pdev_sas_wwn; 16037 uint64_t dev_sas_wwn; 16038 uint32_t pdev_info; 16039 uint8_t physport; 16040 uint8_t phy_id; 16041 uint32_t page_address; 16042 uint16_t bay_num, enclosure, io_flags; 16043 char pdev_wwn_str[MPTSAS_WWN_STRLEN]; 16044 uint32_t dev_info; 16045 int64_t lun64 = 0; 16046 16047 mutex_enter(&mpt->m_mutex); 16048 target = ptgt->m_devhdl; 16049 sas_wwn = ptgt->m_addr.mta_wwn; 16050 devinfo = ptgt->m_deviceinfo; 16051 phy = ptgt->m_phynum; 16052 mutex_exit(&mpt->m_mutex); 16053 16054 /* 16055 * generate compatible property with binding-set "mpt" 16056 */ 16057 scsi_hba_nodename_compatible_get(inq, NULL, inq->inq_dtype, NULL, 16058 &nodename, &compatible, &ncompatible); 16059 16060 /* 16061 * if nodename can't be determined then print a message and skip it 16062 */ 16063 if (nodename == NULL) { 16064 mptsas_log(mpt, CE_WARN, "mptsas found no compatible driver " 16065 "for target %d lun %d", target, lun); 16066 return (DDI_FAILURE); 16067 } 16068 16069 ndi_rtn = ndi_devi_alloc(pdip, nodename, 16070 DEVI_SID_NODEID, lun_dip); 16071 16072 /* 16073 * if lun alloc success, set props 16074 */ 16075 if (ndi_rtn == NDI_SUCCESS) { 16076 16077 if (ndi_prop_update_int(DDI_DEV_T_NONE, 16078 *lun_dip, LUN_PROP, lun) != 16079 DDI_PROP_SUCCESS) { 16080 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16081 "property for target %d lun %d (LUN_PROP)", 16082 target, lun); 16083 ndi_rtn = NDI_FAILURE; 16084 goto phys_create_done; 16085 } 16086 16087 lun64 = (int64_t)lun; 16088 if (ndi_prop_update_int64(DDI_DEV_T_NONE, 16089 *lun_dip, LUN64_PROP, lun64) != 16090 DDI_PROP_SUCCESS) { 16091 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16092 "property for target %d lun64 %d (LUN64_PROP)", 16093 target, lun); 16094 ndi_rtn = NDI_FAILURE; 16095 goto phys_create_done; 16096 } 16097 if (ndi_prop_update_string_array(DDI_DEV_T_NONE, 16098 *lun_dip, "compatible", compatible, ncompatible) 16099 != DDI_PROP_SUCCESS) { 16100 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16101 "property for target %d lun %d (COMPATIBLE)", 16102 target, lun); 16103 ndi_rtn = NDI_FAILURE; 16104 goto phys_create_done; 16105 } 16106 16107 /* 16108 * We need the SAS WWN for non-multipath devices, so 16109 * we'll use the same property as that multipathing 16110 * devices need to present for MPAPI. If we don't have 16111 * a WWN (e.g. parallel SCSI), don't create the prop. 16112 */ 16113 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 16114 if (sas_wwn && ndi_prop_update_string(DDI_DEV_T_NONE, 16115 *lun_dip, SCSI_ADDR_PROP_TARGET_PORT, wwn_str) 16116 != DDI_PROP_SUCCESS) { 16117 mptsas_log(mpt, CE_WARN, "mptsas unable to " 16118 "create property for SAS target %d lun %d " 16119 "(target-port)", target, lun); 16120 ndi_rtn = NDI_FAILURE; 16121 goto phys_create_done; 16122 } 16123 16124 be_sas_wwn = BE_64(sas_wwn); 16125 if (sas_wwn && ndi_prop_update_byte_array( 16126 DDI_DEV_T_NONE, *lun_dip, "port-wwn", 16127 (uchar_t *)&be_sas_wwn, 8) != DDI_PROP_SUCCESS) { 16128 mptsas_log(mpt, CE_WARN, "mptsas unable to " 16129 "create property for SAS target %d lun %d " 16130 "(port-wwn)", target, lun); 16131 ndi_rtn = NDI_FAILURE; 16132 goto phys_create_done; 16133 } else if ((sas_wwn == 0) && (ndi_prop_update_int( 16134 DDI_DEV_T_NONE, *lun_dip, "sata-phy", phy) != 16135 DDI_PROP_SUCCESS)) { 16136 /* 16137 * Direct attached SATA device without DeviceName 16138 */ 16139 mptsas_log(mpt, CE_WARN, "mptsas unable to " 16140 "create property for SAS target %d lun %d " 16141 "(sata-phy)", target, lun); 16142 ndi_rtn = NDI_FAILURE; 16143 goto phys_create_done; 16144 } 16145 16146 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 16147 *lun_dip, SAS_PROP) != DDI_PROP_SUCCESS) { 16148 mptsas_log(mpt, CE_WARN, "mptsas unable to" 16149 "create property for SAS target %d lun %d" 16150 " (SAS_PROP)", target, lun); 16151 ndi_rtn = NDI_FAILURE; 16152 goto phys_create_done; 16153 } 16154 if (guid && (ndi_prop_update_string(DDI_DEV_T_NONE, 16155 *lun_dip, NDI_GUID, guid) != DDI_SUCCESS)) { 16156 mptsas_log(mpt, CE_WARN, "mptsas unable " 16157 "to create guid property for target %d " 16158 "lun %d", target, lun); 16159 ndi_rtn = NDI_FAILURE; 16160 goto phys_create_done; 16161 } 16162 16163 /* 16164 * The following code is to set properties for SM-HBA support, 16165 * it doesn't apply to RAID volumes 16166 */ 16167 if (ptgt->m_addr.mta_phymask == 0) 16168 goto phys_raid_lun; 16169 16170 mutex_enter(&mpt->m_mutex); 16171 16172 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 16173 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 16174 (uint32_t)ptgt->m_devhdl; 16175 rval = mptsas_get_sas_device_page0(mpt, page_address, 16176 &dev_hdl, &dev_sas_wwn, &dev_info, 16177 &physport, &phy_id, &pdev_hdl, 16178 &bay_num, &enclosure, &io_flags); 16179 if (rval != DDI_SUCCESS) { 16180 mutex_exit(&mpt->m_mutex); 16181 mptsas_log(mpt, CE_WARN, "mptsas unable to get" 16182 "parent device for handle %d.", page_address); 16183 ndi_rtn = NDI_FAILURE; 16184 goto phys_create_done; 16185 } 16186 16187 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 16188 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)pdev_hdl; 16189 rval = mptsas_get_sas_device_page0(mpt, page_address, 16190 &dev_hdl, &pdev_sas_wwn, &pdev_info, &physport, 16191 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 16192 if (rval != DDI_SUCCESS) { 16193 mutex_exit(&mpt->m_mutex); 16194 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16195 "device for handle %d.", page_address); 16196 ndi_rtn = NDI_FAILURE; 16197 goto phys_create_done; 16198 } 16199 16200 mutex_exit(&mpt->m_mutex); 16201 16202 /* 16203 * If this device direct attached to the controller 16204 * set the attached-port to the base wwid 16205 */ 16206 if ((ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 16207 != DEVINFO_DIRECT_ATTACHED) { 16208 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 16209 pdev_sas_wwn); 16210 } else { 16211 /* 16212 * Update the iport's attached-port to guid 16213 */ 16214 if (sas_wwn == 0) { 16215 (void) sprintf(wwn_str, "p%x", phy); 16216 } else { 16217 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 16218 } 16219 if (ddi_prop_update_string(DDI_DEV_T_NONE, 16220 pdip, SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 16221 DDI_PROP_SUCCESS) { 16222 mptsas_log(mpt, CE_WARN, 16223 "mptsas unable to create " 16224 "property for iport target-port" 16225 " %s (sas_wwn)", 16226 wwn_str); 16227 ndi_rtn = NDI_FAILURE; 16228 goto phys_create_done; 16229 } 16230 16231 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 16232 mpt->un.m_base_wwid); 16233 } 16234 16235 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16236 *lun_dip, SCSI_ADDR_PROP_ATTACHED_PORT, pdev_wwn_str) != 16237 DDI_PROP_SUCCESS) { 16238 mptsas_log(mpt, CE_WARN, 16239 "mptsas unable to create " 16240 "property for iport attached-port %s (sas_wwn)", 16241 pdev_wwn_str); 16242 ndi_rtn = NDI_FAILURE; 16243 goto phys_create_done; 16244 } 16245 16246 if (IS_SATA_DEVICE(dev_info)) { 16247 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16248 *lun_dip, MPTSAS_VARIANT, "sata") != 16249 DDI_PROP_SUCCESS) { 16250 mptsas_log(mpt, CE_WARN, 16251 "mptsas unable to create " 16252 "property for device variant "); 16253 ndi_rtn = NDI_FAILURE; 16254 goto phys_create_done; 16255 } 16256 } 16257 16258 if (IS_ATAPI_DEVICE(dev_info)) { 16259 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16260 *lun_dip, MPTSAS_VARIANT, "atapi") != 16261 DDI_PROP_SUCCESS) { 16262 mptsas_log(mpt, CE_WARN, 16263 "mptsas unable to create " 16264 "property for device variant "); 16265 ndi_rtn = NDI_FAILURE; 16266 goto phys_create_done; 16267 } 16268 } 16269 16270 phys_raid_lun: 16271 /* 16272 * if this is a SAS controller, and the target is a SATA 16273 * drive, set the 'pm-capable' property for sd and if on 16274 * an OPL platform, also check if this is an ATAPI 16275 * device. 16276 */ 16277 instance = ddi_get_instance(mpt->m_dip); 16278 if (devinfo & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 16279 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 16280 NDBG2(("mptsas3%d: creating pm-capable property, " 16281 "target %d", instance, target)); 16282 16283 if ((ndi_prop_update_int(DDI_DEV_T_NONE, 16284 *lun_dip, "pm-capable", 1)) != 16285 DDI_PROP_SUCCESS) { 16286 mptsas_log(mpt, CE_WARN, "mptsas " 16287 "failed to create pm-capable " 16288 "property, target %d", target); 16289 ndi_rtn = NDI_FAILURE; 16290 goto phys_create_done; 16291 } 16292 16293 } 16294 16295 if ((inq->inq_dtype == 0) || (inq->inq_dtype == 5)) { 16296 /* 16297 * add 'obp-path' properties for devinfo 16298 */ 16299 bzero(wwn_str, sizeof (wwn_str)); 16300 (void) sprintf(wwn_str, "%016"PRIx64, sas_wwn); 16301 if (guid) { 16302 (void) snprintf(component, MAXPATHLEN, 16303 "disk@w%s,%x", wwn_str, lun); 16304 } else { 16305 (void) snprintf(component, MAXPATHLEN, 16306 "disk@p%x,%x", phy, lun); 16307 } 16308 if (ddi_pathname_obp_set(*lun_dip, component) 16309 != DDI_SUCCESS) { 16310 mptsas_log(mpt, CE_WARN, "mpt_sas driver " 16311 "unable to set obp-path for SAS " 16312 "object %s", component); 16313 ndi_rtn = NDI_FAILURE; 16314 goto phys_create_done; 16315 } 16316 } 16317 /* 16318 * Create the phy-num property for non-raid disk 16319 */ 16320 if (ptgt->m_addr.mta_phymask != 0) { 16321 if (ndi_prop_update_int(DDI_DEV_T_NONE, 16322 *lun_dip, "phy-num", ptgt->m_phynum) != 16323 DDI_PROP_SUCCESS) { 16324 mptsas_log(mpt, CE_WARN, 16325 "failed to create phy-num property for " 16326 "target %d", target); 16327 ndi_rtn = NDI_FAILURE; 16328 goto phys_create_done; 16329 } 16330 } 16331 phys_create_done: 16332 /* 16333 * If props were setup ok, online the lun 16334 */ 16335 if (ndi_rtn == NDI_SUCCESS) { 16336 /* 16337 * Try to online the new node 16338 */ 16339 ndi_rtn = ndi_devi_online(*lun_dip, NDI_ONLINE_ATTACH); 16340 } 16341 if (ndi_rtn == NDI_SUCCESS) { 16342 mutex_enter(&mpt->m_mutex); 16343 ptgt->m_led_status = 0; 16344 (void) mptsas_flush_led_status(mpt, ptgt); 16345 mutex_exit(&mpt->m_mutex); 16346 } 16347 16348 /* 16349 * If success set rtn flag, else unwire alloc'd lun 16350 */ 16351 if (ndi_rtn != NDI_SUCCESS) { 16352 NDBG12(("unable to online " 16353 "target %d lun %d", target, lun)); 16354 ndi_prop_remove_all(*lun_dip); 16355 (void) ndi_devi_free(*lun_dip); 16356 *lun_dip = NULL; 16357 } 16358 } 16359 16360 scsi_hba_nodename_compatible_free(nodename, compatible); 16361 16362 return ((ndi_rtn == NDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 16363 } 16364 16365 static int 16366 mptsas_probe_smp(dev_info_t *pdip, uint64_t wwn) 16367 { 16368 mptsas_t *mpt = DIP2MPT(pdip); 16369 struct smp_device smp_sd; 16370 16371 /* XXX An HBA driver should not be allocating an smp_device. */ 16372 bzero(&smp_sd, sizeof (struct smp_device)); 16373 smp_sd.smp_sd_address.smp_a_hba_tran = mpt->m_smptran; 16374 bcopy(&wwn, smp_sd.smp_sd_address.smp_a_wwn, SAS_WWN_BYTE_SIZE); 16375 16376 if (smp_probe(&smp_sd) != DDI_PROBE_SUCCESS) 16377 return (NDI_FAILURE); 16378 return (NDI_SUCCESS); 16379 } 16380 16381 static int 16382 mptsas_config_smp(dev_info_t *pdip, uint64_t sas_wwn, dev_info_t **smp_dip) 16383 { 16384 mptsas_t *mpt = DIP2MPT(pdip); 16385 mptsas_smp_t *psmp = NULL; 16386 int rval; 16387 int phymask; 16388 16389 /* 16390 * Get the physical port associated to the iport 16391 * PHYMASK TODO 16392 */ 16393 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 16394 "phymask", 0); 16395 /* 16396 * Find the smp node in hash table with specified sas address and 16397 * physical port 16398 */ 16399 psmp = mptsas_wwid_to_psmp(mpt, phymask, sas_wwn); 16400 if (psmp == NULL) { 16401 return (DDI_FAILURE); 16402 } 16403 16404 rval = mptsas_online_smp(pdip, psmp, smp_dip); 16405 16406 return (rval); 16407 } 16408 16409 static int 16410 mptsas_online_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 16411 dev_info_t **smp_dip) 16412 { 16413 char wwn_str[MPTSAS_WWN_STRLEN]; 16414 char attached_wwn_str[MPTSAS_WWN_STRLEN]; 16415 int ndi_rtn = NDI_FAILURE; 16416 int rval = 0; 16417 mptsas_smp_t dev_info; 16418 uint32_t page_address; 16419 mptsas_t *mpt = DIP2MPT(pdip); 16420 uint16_t dev_hdl; 16421 uint64_t sas_wwn; 16422 uint64_t smp_sas_wwn; 16423 uint8_t physport; 16424 uint8_t phy_id; 16425 uint16_t pdev_hdl; 16426 uint8_t numphys = 0; 16427 uint16_t i = 0; 16428 char phymask[MPTSAS_MAX_PHYS]; 16429 char *iport = NULL; 16430 mptsas_phymask_t phy_mask = 0; 16431 uint16_t attached_devhdl; 16432 uint16_t bay_num, enclosure, io_flags; 16433 16434 (void) sprintf(wwn_str, "%"PRIx64, smp_node->m_addr.mta_wwn); 16435 16436 /* 16437 * Probe smp device, prevent the node of removed device from being 16438 * configured succesfully 16439 */ 16440 if (mptsas_probe_smp(pdip, smp_node->m_addr.mta_wwn) != NDI_SUCCESS) { 16441 return (DDI_FAILURE); 16442 } 16443 16444 if ((*smp_dip = mptsas_find_smp_child(pdip, wwn_str)) != NULL) { 16445 return (DDI_SUCCESS); 16446 } 16447 16448 ndi_rtn = ndi_devi_alloc(pdip, "smp", DEVI_SID_NODEID, smp_dip); 16449 16450 /* 16451 * if lun alloc success, set props 16452 */ 16453 if (ndi_rtn == NDI_SUCCESS) { 16454 /* 16455 * Set the flavor of the child to be SMP flavored 16456 */ 16457 ndi_flavor_set(*smp_dip, SCSA_FLAVOR_SMP); 16458 16459 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16460 *smp_dip, SMP_WWN, wwn_str) != 16461 DDI_PROP_SUCCESS) { 16462 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16463 "property for smp device %s (sas_wwn)", 16464 wwn_str); 16465 ndi_rtn = NDI_FAILURE; 16466 goto smp_create_done; 16467 } 16468 (void) sprintf(wwn_str, "w%"PRIx64, smp_node->m_addr.mta_wwn); 16469 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16470 *smp_dip, SCSI_ADDR_PROP_TARGET_PORT, wwn_str) != 16471 DDI_PROP_SUCCESS) { 16472 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16473 "property for iport target-port %s (sas_wwn)", 16474 wwn_str); 16475 ndi_rtn = NDI_FAILURE; 16476 goto smp_create_done; 16477 } 16478 16479 mutex_enter(&mpt->m_mutex); 16480 16481 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_HNDL & 16482 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | smp_node->m_devhdl; 16483 rval = mptsas_get_sas_expander_page0(mpt, page_address, 16484 &dev_info); 16485 if (rval != DDI_SUCCESS) { 16486 mutex_exit(&mpt->m_mutex); 16487 mptsas_log(mpt, CE_WARN, 16488 "mptsas unable to get expander " 16489 "parent device info for %x", page_address); 16490 ndi_rtn = NDI_FAILURE; 16491 goto smp_create_done; 16492 } 16493 16494 smp_node->m_pdevhdl = dev_info.m_pdevhdl; 16495 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 16496 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 16497 (uint32_t)dev_info.m_pdevhdl; 16498 rval = mptsas_get_sas_device_page0(mpt, page_address, 16499 &dev_hdl, &sas_wwn, &smp_node->m_pdevinfo, &physport, 16500 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 16501 if (rval != DDI_SUCCESS) { 16502 mutex_exit(&mpt->m_mutex); 16503 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 16504 "device info for %x", page_address); 16505 ndi_rtn = NDI_FAILURE; 16506 goto smp_create_done; 16507 } 16508 16509 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 16510 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 16511 (uint32_t)dev_info.m_devhdl; 16512 rval = mptsas_get_sas_device_page0(mpt, page_address, 16513 &dev_hdl, &smp_sas_wwn, &smp_node->m_deviceinfo, 16514 &physport, &phy_id, &pdev_hdl, &bay_num, &enclosure, 16515 &io_flags); 16516 if (rval != DDI_SUCCESS) { 16517 mutex_exit(&mpt->m_mutex); 16518 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 16519 "device info for %x", page_address); 16520 ndi_rtn = NDI_FAILURE; 16521 goto smp_create_done; 16522 } 16523 mutex_exit(&mpt->m_mutex); 16524 16525 /* 16526 * If this smp direct attached to the controller 16527 * set the attached-port to the base wwid 16528 */ 16529 if ((smp_node->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 16530 != DEVINFO_DIRECT_ATTACHED) { 16531 (void) sprintf(attached_wwn_str, "w%016"PRIx64, 16532 sas_wwn); 16533 } else { 16534 (void) sprintf(attached_wwn_str, "w%016"PRIx64, 16535 mpt->un.m_base_wwid); 16536 } 16537 16538 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16539 *smp_dip, SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwn_str) != 16540 DDI_PROP_SUCCESS) { 16541 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16542 "property for smp attached-port %s (sas_wwn)", 16543 attached_wwn_str); 16544 ndi_rtn = NDI_FAILURE; 16545 goto smp_create_done; 16546 } 16547 16548 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 16549 *smp_dip, SMP_PROP) != DDI_PROP_SUCCESS) { 16550 mptsas_log(mpt, CE_WARN, "mptsas unable to " 16551 "create property for SMP %s (SMP_PROP) ", 16552 wwn_str); 16553 ndi_rtn = NDI_FAILURE; 16554 goto smp_create_done; 16555 } 16556 16557 /* 16558 * check the smp to see whether it direct 16559 * attached to the controller 16560 */ 16561 if ((smp_node->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 16562 != DEVINFO_DIRECT_ATTACHED) { 16563 goto smp_create_done; 16564 } 16565 numphys = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 16566 DDI_PROP_DONTPASS, MPTSAS_NUM_PHYS, -1); 16567 if (numphys > 0) { 16568 goto smp_create_done; 16569 } 16570 /* 16571 * this iport is an old iport, we need to 16572 * reconfig the props for it. 16573 */ 16574 if (ddi_prop_update_int(DDI_DEV_T_NONE, pdip, 16575 MPTSAS_VIRTUAL_PORT, 0) != 16576 DDI_PROP_SUCCESS) { 16577 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 16578 MPTSAS_VIRTUAL_PORT); 16579 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 16580 "prop update failed"); 16581 goto smp_create_done; 16582 } 16583 16584 mutex_enter(&mpt->m_mutex); 16585 numphys = 0; 16586 iport = ddi_get_name_addr(pdip); 16587 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 16588 bzero(phymask, sizeof (phymask)); 16589 (void) sprintf(phymask, 16590 "%x", mpt->m_phy_info[i].phy_mask); 16591 if (strcmp(phymask, iport) == 0) { 16592 phy_mask = mpt->m_phy_info[i].phy_mask; 16593 break; 16594 } 16595 } 16596 16597 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 16598 if ((phy_mask >> i) & 0x01) { 16599 numphys++; 16600 } 16601 } 16602 /* 16603 * Update PHY info for smhba 16604 */ 16605 if (mptsas_smhba_phy_init(mpt)) { 16606 mutex_exit(&mpt->m_mutex); 16607 mptsas_log(mpt, CE_WARN, "mptsas phy update " 16608 "failed"); 16609 goto smp_create_done; 16610 } 16611 mutex_exit(&mpt->m_mutex); 16612 16613 mptsas_smhba_set_all_phy_props(mpt, pdip, numphys, phy_mask, 16614 &attached_devhdl); 16615 16616 if (ddi_prop_update_int(DDI_DEV_T_NONE, pdip, 16617 MPTSAS_NUM_PHYS, numphys) != 16618 DDI_PROP_SUCCESS) { 16619 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 16620 MPTSAS_NUM_PHYS); 16621 mptsas_log(mpt, CE_WARN, "mptsas update " 16622 "num phys props failed"); 16623 goto smp_create_done; 16624 } 16625 /* 16626 * Add parent's props for SMHBA support 16627 */ 16628 if (ddi_prop_update_string(DDI_DEV_T_NONE, pdip, 16629 SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 16630 DDI_PROP_SUCCESS) { 16631 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 16632 SCSI_ADDR_PROP_ATTACHED_PORT); 16633 mptsas_log(mpt, CE_WARN, "mptsas update iport" 16634 "attached-port failed"); 16635 goto smp_create_done; 16636 } 16637 16638 smp_create_done: 16639 /* 16640 * If props were setup ok, online the lun 16641 */ 16642 if (ndi_rtn == NDI_SUCCESS) { 16643 /* 16644 * Try to online the new node 16645 */ 16646 ndi_rtn = ndi_devi_online(*smp_dip, NDI_ONLINE_ATTACH); 16647 } 16648 16649 /* 16650 * If success set rtn flag, else unwire alloc'd lun 16651 */ 16652 if (ndi_rtn != NDI_SUCCESS) { 16653 NDBG12(("mptsas unable to online " 16654 "SMP target %s", wwn_str)); 16655 ndi_prop_remove_all(*smp_dip); 16656 (void) ndi_devi_free(*smp_dip); 16657 } 16658 } 16659 16660 return ((ndi_rtn == NDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 16661 } 16662 16663 /* smp transport routine */ 16664 static int mptsas_smp_start(struct smp_pkt *smp_pkt) 16665 { 16666 uint64_t wwn; 16667 Mpi2SmpPassthroughRequest_t req; 16668 Mpi2SmpPassthroughReply_t rep; 16669 uint8_t direction = 0; 16670 mptsas_t *mpt; 16671 int ret; 16672 uint64_t tmp64; 16673 16674 mpt = (mptsas_t *)smp_pkt->smp_pkt_address-> 16675 smp_a_hba_tran->smp_tran_hba_private; 16676 16677 bcopy(smp_pkt->smp_pkt_address->smp_a_wwn, &wwn, SAS_WWN_BYTE_SIZE); 16678 /* 16679 * Need to compose a SMP request message 16680 * and call mptsas_do_passthru() function 16681 */ 16682 bzero(&req, sizeof (req)); 16683 bzero(&rep, sizeof (rep)); 16684 req.PassthroughFlags = 0; 16685 req.PhysicalPort = 0xff; 16686 req.ChainOffset = 0; 16687 req.Function = MPI2_FUNCTION_SMP_PASSTHROUGH; 16688 16689 if ((smp_pkt->smp_pkt_reqsize & 0xffff0000ul) != 0) { 16690 smp_pkt->smp_pkt_reason = ERANGE; 16691 return (DDI_FAILURE); 16692 } 16693 req.RequestDataLength = LE_16((uint16_t)(smp_pkt->smp_pkt_reqsize - 4)); 16694 16695 req.MsgFlags = 0; 16696 tmp64 = LE_64(wwn); 16697 bcopy(&tmp64, &req.SASAddress, SAS_WWN_BYTE_SIZE); 16698 if (smp_pkt->smp_pkt_rspsize > 0) { 16699 direction |= MPTSAS_PASS_THRU_DIRECTION_READ; 16700 } 16701 if (smp_pkt->smp_pkt_reqsize > 0) { 16702 direction |= MPTSAS_PASS_THRU_DIRECTION_WRITE; 16703 } 16704 16705 mutex_enter(&mpt->m_mutex); 16706 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, 16707 (uint8_t *)smp_pkt->smp_pkt_rsp, 16708 offsetof(Mpi2SmpPassthroughRequest_t, SGL), sizeof (rep), 16709 smp_pkt->smp_pkt_rspsize - 4, direction, 16710 (uint8_t *)smp_pkt->smp_pkt_req, smp_pkt->smp_pkt_reqsize - 4, 16711 smp_pkt->smp_pkt_timeout, FKIOCTL); 16712 mutex_exit(&mpt->m_mutex); 16713 if (ret != 0) { 16714 cmn_err(CE_WARN, "smp_start do passthru error %d", ret); 16715 smp_pkt->smp_pkt_reason = (uchar_t)(ret); 16716 return (DDI_FAILURE); 16717 } 16718 /* do passthrough success, check the smp status */ 16719 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 16720 switch (LE_16(rep.IOCStatus)) { 16721 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 16722 smp_pkt->smp_pkt_reason = ENODEV; 16723 break; 16724 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 16725 smp_pkt->smp_pkt_reason = EOVERFLOW; 16726 break; 16727 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 16728 smp_pkt->smp_pkt_reason = EIO; 16729 break; 16730 default: 16731 mptsas_log(mpt, CE_NOTE, "smp_start: get unknown ioc" 16732 "status:%x", LE_16(rep.IOCStatus)); 16733 smp_pkt->smp_pkt_reason = EIO; 16734 break; 16735 } 16736 return (DDI_FAILURE); 16737 } 16738 if (rep.SASStatus != MPI2_SASSTATUS_SUCCESS) { 16739 mptsas_log(mpt, CE_NOTE, "smp_start: get error SAS status:%x", 16740 rep.SASStatus); 16741 smp_pkt->smp_pkt_reason = EIO; 16742 return (DDI_FAILURE); 16743 } 16744 16745 return (DDI_SUCCESS); 16746 } 16747 16748 /* 16749 * If we didn't get a match, we need to get sas page0 for each device, and 16750 * untill we get a match. If failed, return NULL 16751 */ 16752 static mptsas_target_t * 16753 mptsas_phy_to_tgt(mptsas_t *mpt, mptsas_phymask_t phymask, uint8_t phy) 16754 { 16755 int i, j = 0; 16756 int rval = 0; 16757 uint16_t cur_handle; 16758 uint32_t page_address; 16759 mptsas_target_t *ptgt = NULL; 16760 16761 /* 16762 * PHY named device must be direct attached and attaches to 16763 * narrow port, if the iport is not parent of the device which 16764 * we are looking for. 16765 */ 16766 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 16767 if ((1 << i) & phymask) 16768 j++; 16769 } 16770 16771 if (j > 1) 16772 return (NULL); 16773 16774 /* 16775 * Must be a narrow port and single device attached to the narrow port 16776 * So the physical port num of device which is equal to the iport's 16777 * port num is the device what we are looking for. 16778 */ 16779 16780 if (mpt->m_phy_info[phy].phy_mask != phymask) 16781 return (NULL); 16782 16783 mutex_enter(&mpt->m_mutex); 16784 16785 ptgt = refhash_linear_search(mpt->m_targets, mptsas_target_eval_nowwn, 16786 &phy); 16787 if (ptgt != NULL) { 16788 mutex_exit(&mpt->m_mutex); 16789 return (ptgt); 16790 } 16791 16792 if (mpt->m_done_traverse_dev) { 16793 mutex_exit(&mpt->m_mutex); 16794 return (NULL); 16795 } 16796 16797 /* If didn't get a match, come here */ 16798 cur_handle = mpt->m_dev_handle; 16799 for (; ; ) { 16800 ptgt = NULL; 16801 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 16802 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)cur_handle; 16803 rval = mptsas_get_target_device_info(mpt, page_address, 16804 &cur_handle, &ptgt); 16805 if ((rval == DEV_INFO_FAIL_PAGE0) || 16806 (rval == DEV_INFO_FAIL_ALLOC)) { 16807 break; 16808 } 16809 if ((rval == DEV_INFO_WRONG_DEVICE_TYPE) || 16810 (rval == DEV_INFO_PHYS_DISK)) { 16811 continue; 16812 } 16813 mpt->m_dev_handle = cur_handle; 16814 16815 if ((ptgt->m_addr.mta_wwn == 0) && (ptgt->m_phynum == phy)) { 16816 break; 16817 } 16818 } 16819 16820 mutex_exit(&mpt->m_mutex); 16821 return (ptgt); 16822 } 16823 16824 /* 16825 * The ptgt->m_addr.mta_wwn contains the wwid for each disk. 16826 * For Raid volumes, we need to check m_raidvol[x].m_raidwwid 16827 * If we didn't get a match, we need to get sas page0 for each device, and 16828 * untill we get a match 16829 * If failed, return NULL 16830 */ 16831 static mptsas_target_t * 16832 mptsas_wwid_to_ptgt(mptsas_t *mpt, mptsas_phymask_t phymask, uint64_t wwid) 16833 { 16834 int rval = 0; 16835 uint16_t cur_handle; 16836 uint32_t page_address; 16837 mptsas_target_t *tmp_tgt = NULL; 16838 mptsas_target_addr_t addr; 16839 16840 addr.mta_wwn = wwid; 16841 addr.mta_phymask = phymask; 16842 mutex_enter(&mpt->m_mutex); 16843 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16844 if (tmp_tgt != NULL) { 16845 mutex_exit(&mpt->m_mutex); 16846 return (tmp_tgt); 16847 } 16848 16849 if (phymask == 0) { 16850 /* 16851 * It's IR volume 16852 */ 16853 rval = mptsas_get_raid_info(mpt); 16854 if (rval) { 16855 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16856 } 16857 mutex_exit(&mpt->m_mutex); 16858 return (tmp_tgt); 16859 } 16860 16861 if (mpt->m_done_traverse_dev) { 16862 mutex_exit(&mpt->m_mutex); 16863 return (NULL); 16864 } 16865 16866 /* If didn't get a match, come here */ 16867 cur_handle = mpt->m_dev_handle; 16868 for (;;) { 16869 tmp_tgt = NULL; 16870 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 16871 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | cur_handle; 16872 rval = mptsas_get_target_device_info(mpt, page_address, 16873 &cur_handle, &tmp_tgt); 16874 if ((rval == DEV_INFO_FAIL_PAGE0) || 16875 (rval == DEV_INFO_FAIL_ALLOC)) { 16876 tmp_tgt = NULL; 16877 break; 16878 } 16879 if ((rval == DEV_INFO_WRONG_DEVICE_TYPE) || 16880 (rval == DEV_INFO_PHYS_DISK)) { 16881 continue; 16882 } 16883 mpt->m_dev_handle = cur_handle; 16884 if ((tmp_tgt->m_addr.mta_wwn) && 16885 (tmp_tgt->m_addr.mta_wwn == wwid) && 16886 (tmp_tgt->m_addr.mta_phymask == phymask)) { 16887 break; 16888 } 16889 } 16890 16891 mutex_exit(&mpt->m_mutex); 16892 return (tmp_tgt); 16893 } 16894 16895 static mptsas_smp_t * 16896 mptsas_wwid_to_psmp(mptsas_t *mpt, mptsas_phymask_t phymask, uint64_t wwid) 16897 { 16898 int rval = 0; 16899 uint16_t cur_handle; 16900 uint32_t page_address; 16901 mptsas_smp_t smp_node, *psmp = NULL; 16902 mptsas_target_addr_t addr; 16903 16904 addr.mta_wwn = wwid; 16905 addr.mta_phymask = phymask; 16906 mutex_enter(&mpt->m_mutex); 16907 psmp = refhash_lookup(mpt->m_smp_targets, &addr); 16908 if (psmp != NULL) { 16909 mutex_exit(&mpt->m_mutex); 16910 return (psmp); 16911 } 16912 16913 if (mpt->m_done_traverse_smp) { 16914 mutex_exit(&mpt->m_mutex); 16915 return (NULL); 16916 } 16917 16918 /* If didn't get a match, come here */ 16919 cur_handle = mpt->m_smp_devhdl; 16920 for (;;) { 16921 psmp = NULL; 16922 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_GET_NEXT_HNDL & 16923 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)cur_handle; 16924 rval = mptsas_get_sas_expander_page0(mpt, page_address, 16925 &smp_node); 16926 if (rval != DDI_SUCCESS) { 16927 break; 16928 } 16929 mpt->m_smp_devhdl = cur_handle = smp_node.m_devhdl; 16930 psmp = mptsas_smp_alloc(mpt, &smp_node); 16931 ASSERT(psmp); 16932 if ((psmp->m_addr.mta_wwn) && (psmp->m_addr.mta_wwn == wwid) && 16933 (psmp->m_addr.mta_phymask == phymask)) { 16934 break; 16935 } 16936 } 16937 16938 mutex_exit(&mpt->m_mutex); 16939 return (psmp); 16940 } 16941 16942 mptsas_target_t * 16943 mptsas_tgt_alloc(mptsas_t *mpt, uint16_t devhdl, uint64_t wwid, 16944 uint32_t devinfo, mptsas_phymask_t phymask, uint8_t phynum) 16945 { 16946 mptsas_target_t *tmp_tgt = NULL; 16947 mptsas_target_addr_t addr; 16948 16949 addr.mta_wwn = wwid; 16950 addr.mta_phymask = phymask; 16951 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16952 if (tmp_tgt != NULL) { 16953 NDBG20(("Hash item already exist")); 16954 tmp_tgt->m_deviceinfo = devinfo; 16955 tmp_tgt->m_devhdl = devhdl; /* XXX - duplicate? */ 16956 return (tmp_tgt); 16957 } 16958 tmp_tgt = kmem_zalloc(sizeof (struct mptsas_target), KM_SLEEP); 16959 if (tmp_tgt == NULL) { 16960 cmn_err(CE_WARN, "Fatal, allocated tgt failed"); 16961 return (NULL); 16962 } 16963 tmp_tgt->m_devhdl = devhdl; 16964 tmp_tgt->m_addr.mta_wwn = wwid; 16965 tmp_tgt->m_deviceinfo = devinfo; 16966 tmp_tgt->m_addr.mta_phymask = phymask; 16967 tmp_tgt->m_phynum = phynum; 16968 /* Initialized the tgt structure */ 16969 tmp_tgt->m_qfull_retries = QFULL_RETRIES; 16970 tmp_tgt->m_qfull_retry_interval = 16971 drv_usectohz(QFULL_RETRY_INTERVAL * 1000); 16972 tmp_tgt->m_t_throttle = MAX_THROTTLE; 16973 mutex_init(&tmp_tgt->m_t_mutex, NULL, MUTEX_DRIVER, NULL); 16974 TAILQ_INIT(&tmp_tgt->m_active_cmdq); 16975 16976 refhash_insert(mpt->m_targets, tmp_tgt); 16977 16978 return (tmp_tgt); 16979 } 16980 16981 static void 16982 mptsas_smp_target_copy(mptsas_smp_t *src, mptsas_smp_t *dst) 16983 { 16984 dst->m_devhdl = src->m_devhdl; 16985 dst->m_deviceinfo = src->m_deviceinfo; 16986 dst->m_pdevhdl = src->m_pdevhdl; 16987 dst->m_pdevinfo = src->m_pdevinfo; 16988 } 16989 16990 static mptsas_smp_t * 16991 mptsas_smp_alloc(mptsas_t *mpt, mptsas_smp_t *data) 16992 { 16993 mptsas_target_addr_t addr; 16994 mptsas_smp_t *ret_data; 16995 16996 addr.mta_wwn = data->m_addr.mta_wwn; 16997 addr.mta_phymask = data->m_addr.mta_phymask; 16998 ret_data = refhash_lookup(mpt->m_smp_targets, &addr); 16999 /* 17000 * If there's already a matching SMP target, update its fields 17001 * in place. Since the address is not changing, it's safe to do 17002 * this. We cannot just bcopy() here because the structure we've 17003 * been given has invalid hash links. 17004 */ 17005 if (ret_data != NULL) { 17006 mptsas_smp_target_copy(data, ret_data); 17007 return (ret_data); 17008 } 17009 17010 ret_data = kmem_alloc(sizeof (mptsas_smp_t), KM_SLEEP); 17011 bcopy(data, ret_data, sizeof (mptsas_smp_t)); 17012 refhash_insert(mpt->m_smp_targets, ret_data); 17013 return (ret_data); 17014 } 17015 17016 /* 17017 * Functions for SGPIO LED support 17018 */ 17019 static dev_info_t * 17020 mptsas_get_dip_from_dev(dev_t dev, mptsas_phymask_t *phymask) 17021 { 17022 dev_info_t *dip; 17023 int prop; 17024 dip = e_ddi_hold_devi_by_dev(dev, 0); 17025 if (dip == NULL) 17026 return (dip); 17027 prop = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, 17028 "phymask", 0); 17029 *phymask = (mptsas_phymask_t)prop; 17030 ddi_release_devi(dip); 17031 return (dip); 17032 } 17033 static mptsas_target_t * 17034 mptsas_addr_to_ptgt(mptsas_t *mpt, char *addr, mptsas_phymask_t phymask) 17035 { 17036 uint8_t phynum; 17037 uint64_t wwn; 17038 int lun; 17039 mptsas_target_t *ptgt = NULL; 17040 17041 if (mptsas_parse_address(addr, &wwn, &phynum, &lun) != DDI_SUCCESS) { 17042 return (NULL); 17043 } 17044 if (addr[0] == 'w') { 17045 ptgt = mptsas_wwid_to_ptgt(mpt, (int)phymask, wwn); 17046 } else { 17047 ptgt = mptsas_phy_to_tgt(mpt, (int)phymask, phynum); 17048 } 17049 return (ptgt); 17050 } 17051 17052 static int 17053 mptsas_flush_led_status(mptsas_t *mpt, mptsas_target_t *ptgt) 17054 { 17055 uint32_t slotstatus = 0; 17056 17057 /* Build an MPI2 Slot Status based on our view of the world */ 17058 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_IDENT - 1))) 17059 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_IDENTIFY_REQUEST; 17060 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_FAIL - 1))) 17061 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_PREDICTED_FAULT; 17062 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_OK2RM - 1))) 17063 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_REQUEST_REMOVE; 17064 17065 /* Write it to the controller */ 17066 NDBG14(("mptsas_ioctl: set LED status %x for slot %x", 17067 slotstatus, ptgt->m_slot_num)); 17068 return (mptsas_send_sep(mpt, ptgt, &slotstatus, 17069 MPI2_SEP_REQ_ACTION_WRITE_STATUS)); 17070 } 17071 17072 /* 17073 * send sep request, use enclosure/slot addressing 17074 */ 17075 static int 17076 mptsas_send_sep(mptsas_t *mpt, mptsas_target_t *ptgt, 17077 uint32_t *status, uint8_t act) 17078 { 17079 Mpi2SepRequest_t req; 17080 Mpi2SepReply_t rep; 17081 int ret; 17082 17083 ASSERT(mutex_owned(&mpt->m_mutex)); 17084 17085 /* 17086 * We only support SEP control of directly-attached targets, in which 17087 * case the "SEP" we're talking to is a virtual one contained within 17088 * the HBA itself. This is necessary because DA targets typically have 17089 * no other mechanism for LED control. Targets for which a separate 17090 * enclosure service processor exists should be controlled via ses(7d) 17091 * or sgen(7d). Furthermore, since such requests can time out, they 17092 * should be made in user context rather than in response to 17093 * asynchronous fabric changes. 17094 * 17095 * In addition, we do not support this operation for RAID volumes, 17096 * since there is no slot associated with them. 17097 */ 17098 if (!(ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) || 17099 ptgt->m_addr.mta_phymask == 0) { 17100 return (ENOTTY); 17101 } 17102 17103 bzero(&req, sizeof (req)); 17104 bzero(&rep, sizeof (rep)); 17105 17106 req.Function = MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR; 17107 req.Action = act; 17108 req.Flags = MPI2_SEP_REQ_FLAGS_ENCLOSURE_SLOT_ADDRESS; 17109 req.EnclosureHandle = LE_16(ptgt->m_enclosure); 17110 req.Slot = LE_16(ptgt->m_slot_num); 17111 if (act == MPI2_SEP_REQ_ACTION_WRITE_STATUS) { 17112 req.SlotStatus = LE_32(*status); 17113 } 17114 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, NULL, 17115 sizeof (req), sizeof (rep), NULL, 0, NULL, 0, 60, FKIOCTL); 17116 if (ret != 0) { 17117 mptsas_log(mpt, CE_NOTE, "mptsas_send_sep: passthru SEP " 17118 "Processor Request message error %d", ret); 17119 return (ret); 17120 } 17121 /* do passthrough success, check the ioc status */ 17122 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 17123 mptsas_log(mpt, CE_NOTE, "send_sep act %x: ioc " 17124 "status:%x loginfo %x", act, LE_16(rep.IOCStatus), 17125 LE_32(rep.IOCLogInfo)); 17126 switch (LE_16(rep.IOCStatus) & MPI2_IOCSTATUS_MASK) { 17127 case MPI2_IOCSTATUS_INVALID_FUNCTION: 17128 case MPI2_IOCSTATUS_INVALID_VPID: 17129 case MPI2_IOCSTATUS_INVALID_FIELD: 17130 case MPI2_IOCSTATUS_INVALID_STATE: 17131 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 17132 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 17133 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 17134 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 17135 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 17136 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 17137 return (EINVAL); 17138 case MPI2_IOCSTATUS_BUSY: 17139 return (EBUSY); 17140 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 17141 return (EAGAIN); 17142 case MPI2_IOCSTATUS_INVALID_SGL: 17143 case MPI2_IOCSTATUS_INTERNAL_ERROR: 17144 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 17145 default: 17146 return (EIO); 17147 } 17148 } 17149 if (act != MPI2_SEP_REQ_ACTION_WRITE_STATUS) { 17150 *status = LE_32(rep.SlotStatus); 17151 } 17152 17153 return (0); 17154 } 17155 17156 int 17157 mptsas_dma_addr_create(mptsas_t *mpt, ddi_dma_attr_t dma_attr, 17158 ddi_dma_handle_t *dma_hdp, ddi_acc_handle_t *acc_hdp, caddr_t *dma_memp, 17159 uint32_t alloc_size, ddi_dma_cookie_t *cookiep) 17160 { 17161 ddi_dma_cookie_t new_cookie; 17162 size_t alloc_len; 17163 uint_t ncookie; 17164 17165 if (cookiep == NULL) 17166 cookiep = &new_cookie; 17167 17168 if (ddi_dma_alloc_handle(mpt->m_dip, &dma_attr, DDI_DMA_SLEEP, 17169 NULL, dma_hdp) != DDI_SUCCESS) { 17170 return (FALSE); 17171 } 17172 17173 if (ddi_dma_mem_alloc(*dma_hdp, alloc_size, &mpt->m_dev_acc_attr, 17174 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, dma_memp, &alloc_len, 17175 acc_hdp) != DDI_SUCCESS) { 17176 ddi_dma_free_handle(dma_hdp); 17177 return (FALSE); 17178 } 17179 17180 if (ddi_dma_addr_bind_handle(*dma_hdp, NULL, *dma_memp, alloc_len, 17181 (DDI_DMA_RDWR | DDI_DMA_CONSISTENT), DDI_DMA_SLEEP, NULL, 17182 cookiep, &ncookie) != DDI_DMA_MAPPED) { 17183 (void) ddi_dma_mem_free(acc_hdp); 17184 ddi_dma_free_handle(dma_hdp); 17185 return (FALSE); 17186 } 17187 17188 return (TRUE); 17189 } 17190 17191 void 17192 mptsas_dma_addr_destroy(ddi_dma_handle_t *dma_hdp, ddi_acc_handle_t *acc_hdp) 17193 { 17194 if (*dma_hdp == NULL) 17195 return; 17196 17197 (void) ddi_dma_unbind_handle(*dma_hdp); 17198 (void) ddi_dma_mem_free(acc_hdp); 17199 ddi_dma_free_handle(dma_hdp); 17200 }