1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2009, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright (c) 2014, Tegile Systems Inc. All rights reserved. 27 * Copyright 2014 OmniTI Computer Consulting, Inc. All rights reserved. 28 */ 29 30 /* 31 * Copyright (c) 2000 to 2010, LSI Corporation. 32 * All rights reserved. 33 * 34 * Redistribution and use in source and binary forms of all code within 35 * this file that is exclusively owned by LSI, with or without 36 * modification, is permitted provided that, in addition to the CDDL 1.0 37 * License requirements, the following conditions are met: 38 * 39 * Neither the name of the author nor the names of its contributors may be 40 * used to endorse or promote products derived from this software without 41 * specific prior written permission. 42 * 43 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 44 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 45 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS 46 * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE 47 * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, 48 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, 49 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS 50 * OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 51 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 52 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 53 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 54 * DAMAGE. 55 */ 56 57 /* 58 * mptsas3 - This is a driver based on LSI Logic's MPT2.0/2.5 interface. 59 * 60 */ 61 62 #if defined(lint) || defined(DEBUG) 63 #define MPTSAS_DEBUG 64 #endif 65 66 /* 67 * standard header files. 68 */ 69 #include <sys/note.h> 70 #include <sys/scsi/scsi.h> 71 #include <sys/pci.h> 72 #include <sys/file.h> 73 #include <sys/policy.h> 74 #include <sys/model.h> 75 #include <sys/sysevent.h> 76 #include <sys/sysevent/eventdefs.h> 77 #include <sys/sysevent/dr.h> 78 #include <sys/sata/sata_defs.h> 79 #include <sys/scsi/generic/sas.h> 80 #include <sys/scsi/impl/scsi_sas.h> 81 82 #pragma pack(1) 83 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_type.h> 84 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2.h> 85 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_cnfg.h> 86 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_init.h> 87 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_ioc.h> 88 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_sas.h> 89 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_tool.h> 90 #include <sys/scsi/adapters/mpt_sas3/mpi/mpi2_raid.h> 91 #pragma pack() 92 93 /* 94 * private header files. 95 * 96 */ 97 #include <sys/scsi/impl/scsi_reset_notify.h> 98 #include <sys/scsi/adapters/mpt_sas3/mptsas3_var.h> 99 #include <sys/scsi/adapters/mpt_sas3/mptsas3_ioctl.h> 100 #include <sys/scsi/adapters/mpt_sas3/mptsas3_smhba.h> 101 #include <sys/scsi/adapters/mpt_sas3/mptsas3_hash.h> 102 #include <sys/raidioctl.h> 103 104 #include <sys/fs/dv_node.h> /* devfs_clean */ 105 106 /* 107 * FMA header files 108 */ 109 #include <sys/ddifm.h> 110 #include <sys/fm/protocol.h> 111 #include <sys/fm/util.h> 112 #include <sys/fm/io/ddi.h> 113 114 /* 115 * autoconfiguration data and routines. 116 */ 117 static int mptsas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd); 118 static int mptsas_detach(dev_info_t *devi, ddi_detach_cmd_t cmd); 119 static int mptsas_power(dev_info_t *dip, int component, int level); 120 121 /* 122 * cb_ops function 123 */ 124 static int mptsas_ioctl(dev_t dev, int cmd, intptr_t data, int mode, 125 cred_t *credp, int *rval); 126 #ifdef __sparc 127 static int mptsas_reset(dev_info_t *devi, ddi_reset_cmd_t cmd); 128 #else /* __sparc */ 129 static int mptsas_quiesce(dev_info_t *devi); 130 #endif /* __sparc */ 131 132 /* 133 * Resource initilaization for hardware 134 */ 135 static void mptsas_setup_cmd_reg(mptsas_t *mpt); 136 static void mptsas_disable_bus_master(mptsas_t *mpt); 137 static void mptsas_hba_fini(mptsas_t *mpt); 138 static void mptsas_cfg_fini(mptsas_t *mptsas_blkp); 139 static int mptsas_hba_setup(mptsas_t *mpt); 140 static void mptsas_hba_teardown(mptsas_t *mpt); 141 static int mptsas_config_space_init(mptsas_t *mpt); 142 static void mptsas_config_space_fini(mptsas_t *mpt); 143 static void mptsas_iport_register(mptsas_t *mpt); 144 static int mptsas_smp_setup(mptsas_t *mpt); 145 static void mptsas_smp_teardown(mptsas_t *mpt); 146 static int mptsas_cache_create(mptsas_t *mpt); 147 static void mptsas_cache_destroy(mptsas_t *mpt); 148 static int mptsas_alloc_request_frames(mptsas_t *mpt); 149 static int mptsas_alloc_sense_bufs(mptsas_t *mpt); 150 static int mptsas_alloc_reply_frames(mptsas_t *mpt); 151 static int mptsas_alloc_free_queue(mptsas_t *mpt); 152 static int mptsas_alloc_post_queue(mptsas_t *mpt); 153 static void mptsas_free_post_queue(mptsas_t *mpt); 154 static void mptsas_alloc_reply_args(mptsas_t *mpt); 155 static int mptsas_alloc_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd); 156 static void mptsas_free_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd); 157 static int mptsas_init_chip(mptsas_t *mpt, int first_time); 158 159 /* 160 * SCSA function prototypes 161 */ 162 static int mptsas_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt); 163 static int mptsas_scsi_reset(struct scsi_address *ap, int level); 164 static int mptsas_scsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt); 165 static int mptsas_scsi_getcap(struct scsi_address *ap, char *cap, int tgtonly); 166 static int mptsas_scsi_setcap(struct scsi_address *ap, char *cap, int value, 167 int tgtonly); 168 static void mptsas_scsi_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt); 169 static struct scsi_pkt *mptsas_scsi_init_pkt(struct scsi_address *ap, 170 struct scsi_pkt *pkt, struct buf *bp, int cmdlen, int statuslen, 171 int tgtlen, int flags, int (*callback)(), caddr_t arg); 172 static void mptsas_scsi_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt); 173 static void mptsas_scsi_destroy_pkt(struct scsi_address *ap, 174 struct scsi_pkt *pkt); 175 static int mptsas_scsi_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip, 176 scsi_hba_tran_t *hba_tran, struct scsi_device *sd); 177 static void mptsas_scsi_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip, 178 scsi_hba_tran_t *hba_tran, struct scsi_device *sd); 179 static int mptsas_scsi_reset_notify(struct scsi_address *ap, int flag, 180 void (*callback)(caddr_t), caddr_t arg); 181 static int mptsas_get_name(struct scsi_device *sd, char *name, int len); 182 static int mptsas_get_bus_addr(struct scsi_device *sd, char *name, int len); 183 static int mptsas_scsi_quiesce(dev_info_t *dip); 184 static int mptsas_scsi_unquiesce(dev_info_t *dip); 185 static int mptsas_bus_config(dev_info_t *pdip, uint_t flags, 186 ddi_bus_config_op_t op, void *arg, dev_info_t **childp); 187 188 /* 189 * SMP functions 190 */ 191 static int mptsas_smp_start(struct smp_pkt *smp_pkt); 192 193 /* 194 * internal function prototypes. 195 */ 196 static void mptsas_list_add(mptsas_t *mpt); 197 static void mptsas_list_del(mptsas_t *mpt); 198 199 static int mptsas_quiesce_bus(mptsas_t *mpt); 200 static int mptsas_unquiesce_bus(mptsas_t *mpt); 201 202 static int mptsas_alloc_handshake_msg(mptsas_t *mpt, size_t alloc_size); 203 static void mptsas_free_handshake_msg(mptsas_t *mpt); 204 205 static void mptsas_ncmds_checkdrain(void *arg); 206 207 static int mptsas_prepare_pkt(mptsas_cmd_t *cmd); 208 static void mptsas_retry_pkt(mptsas_t *mpt, mptsas_cmd_t *sp); 209 static int mptsas_save_cmd_to_slot(mptsas_t *mpt, mptsas_cmd_t *cmd); 210 static int mptsas_accept_pkt(mptsas_t *mpt, mptsas_cmd_t *sp, 211 int *tran_rval); 212 static void mptsas_accept_tx_waitqs(mptsas_t *mpt); 213 static void mptsas_unblock_tx_waitqs(mptsas_t *mpt); 214 static void mptsas_drain_tx_waitq(mptsas_t *mpt, mptsas_tx_waitqueue_t *txwq); 215 static int mptsas_check_targ_intxtion(mptsas_target_t *ptgt, int cmd_pkt_flags); 216 217 static int mptsas_do_detach(dev_info_t *dev); 218 static int mptsas_do_scsi_reset(mptsas_t *mpt, uint16_t devhdl); 219 static int mptsas_do_scsi_abort(mptsas_t *mpt, int target, int lun, 220 struct scsi_pkt *pkt); 221 static int mptsas_scsi_capchk(char *cap, int tgtonly, int *cidxp); 222 223 static void mptsas_handle_qfull(mptsas_t *mpt, mptsas_cmd_t *cmd); 224 static void mptsas_handle_event(void *args); 225 static int mptsas_handle_event_sync(void *args); 226 static void mptsas_handle_dr(void *args); 227 static void mptsas_handle_topo_change(mptsas_topo_change_list_t *topo_node, 228 dev_info_t *pdip); 229 230 static void mptsas_restart_cmd(void *); 231 232 static void mptsas_flush_hba(mptsas_t *mpt); 233 static void mptsas_flush_target(mptsas_t *mpt, ushort_t target, int lun, 234 uint8_t tasktype); 235 static void mptsas_set_pkt_reason(mptsas_t *mpt, mptsas_cmd_t *cmd, 236 uchar_t reason, uint_t stat); 237 238 static uint_t mptsas_intr(caddr_t arg1, caddr_t arg2); 239 static void mptsas_process_intr(mptsas_t *mpt, mptsas_reply_pqueue_t *rpqp, 240 pMpi2ReplyDescriptorsUnion_t reply_desc_union); 241 static void mptsas_handle_scsi_io_success(mptsas_t *mpt, 242 mptsas_reply_pqueue_t *rpqp, pMpi2ReplyDescriptorsUnion_t reply_desc); 243 static void mptsas_handle_address_reply(mptsas_t *mpt, 244 pMpi2ReplyDescriptorsUnion_t reply_desc); 245 static int mptsas_wait_intr(mptsas_t *mpt, int polltime); 246 static void mptsas_sge_setup(mptsas_t *mpt, mptsas_cmd_t *cmd, 247 uint32_t *control, pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl); 248 249 static void mptsas_watch(void *arg); 250 static void mptsas_watchsubr(mptsas_t *mpt); 251 static void mptsas_cmd_timeout(mptsas_t *mpt, mptsas_target_t *ptgt); 252 253 static void mptsas_start_passthru(mptsas_t *mpt, mptsas_cmd_t *cmd); 254 static int mptsas_do_passthru(mptsas_t *mpt, uint8_t *request, uint8_t *reply, 255 uint8_t *data, uint32_t request_size, uint32_t reply_size, 256 uint32_t data_size, uint8_t direction, uint8_t *dataout, 257 uint32_t dataout_size, short timeout, int mode); 258 static int mptsas_free_devhdl(mptsas_t *mpt, uint16_t devhdl); 259 260 static uint8_t mptsas_get_fw_diag_buffer_number(mptsas_t *mpt, 261 uint32_t unique_id); 262 static void mptsas_start_diag(mptsas_t *mpt, mptsas_cmd_t *cmd); 263 static int mptsas_post_fw_diag_buffer(mptsas_t *mpt, 264 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code); 265 static int mptsas_release_fw_diag_buffer(mptsas_t *mpt, 266 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 267 uint32_t diag_type); 268 static int mptsas_diag_register(mptsas_t *mpt, 269 mptsas_fw_diag_register_t *diag_register, uint32_t *return_code); 270 static int mptsas_diag_unregister(mptsas_t *mpt, 271 mptsas_fw_diag_unregister_t *diag_unregister, uint32_t *return_code); 272 static int mptsas_diag_query(mptsas_t *mpt, mptsas_fw_diag_query_t *diag_query, 273 uint32_t *return_code); 274 static int mptsas_diag_read_buffer(mptsas_t *mpt, 275 mptsas_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 276 uint32_t *return_code, int ioctl_mode); 277 static int mptsas_diag_release(mptsas_t *mpt, 278 mptsas_fw_diag_release_t *diag_release, uint32_t *return_code); 279 static int mptsas_do_diag_action(mptsas_t *mpt, uint32_t action, 280 uint8_t *diag_action, uint32_t length, uint32_t *return_code, 281 int ioctl_mode); 282 static int mptsas_diag_action(mptsas_t *mpt, mptsas_diag_action_t *data, 283 int mode); 284 285 static int mptsas_pkt_alloc_extern(mptsas_t *mpt, mptsas_cmd_t *cmd, 286 int cmdlen, int tgtlen, int statuslen, int kf); 287 static void mptsas_pkt_destroy_extern(mptsas_t *mpt, mptsas_cmd_t *cmd); 288 289 static int mptsas_kmem_cache_constructor(void *buf, void *cdrarg, int kmflags); 290 static void mptsas_kmem_cache_destructor(void *buf, void *cdrarg); 291 292 static int mptsas_cache_frames_constructor(void *buf, void *cdrarg, 293 int kmflags); 294 static void mptsas_cache_frames_destructor(void *buf, void *cdrarg); 295 296 static void mptsas_check_scsi_io_error(mptsas_t *mpt, pMpi2SCSIIOReply_t reply, 297 mptsas_cmd_t *cmd); 298 static void mptsas_check_task_mgt(mptsas_t *mpt, 299 pMpi2SCSIManagementReply_t reply, mptsas_cmd_t *cmd); 300 static int mptsas_send_scsi_cmd(mptsas_t *mpt, struct scsi_address *ap, 301 mptsas_target_t *ptgt, uchar_t *cdb, int cdblen, struct buf *data_bp, 302 int *resid); 303 304 static int mptsas_alloc_active_slots(mptsas_t *mpt, int flag); 305 static void mptsas_free_active_slots(mptsas_t *mpt); 306 static int mptsas_start_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd); 307 308 static void mptsas_restart_hba(mptsas_t *mpt); 309 static void mptsas_restart_waitq(mptsas_t *mpt); 310 311 static void mptsas_deliver_doneq_thread(mptsas_t *mpt, 312 mptsas_done_list_t *dlist); 313 static void mptsas_doneq_add(mptsas_t *mpt, mptsas_cmd_t *cmd); 314 static void mptsas_rpdoneq_add(mptsas_t *mpt, mptsas_reply_pqueue_t *rpqp, 315 mptsas_cmd_t *cmd); 316 static void mptsas_doneq_mv(mptsas_done_list_t *from, 317 mptsas_doneq_thread_list_t *item); 318 319 static mptsas_cmd_t *mptsas_doneq_thread_rm(mptsas_t *mpt, uint64_t t); 320 static void mptsas_doneq_empty(mptsas_t *mpt); 321 static void mptsas_rpdoneq_empty(mptsas_reply_pqueue_t *rpqp); 322 static void mptsas_doneq_thread(mptsas_thread_arg_t *arg); 323 static void mptsas_tx_waitq_thread(mptsas_thread_arg_t *arg); 324 325 static mptsas_cmd_t *mptsas_waitq_rm(mptsas_t *mpt); 326 static void mptsas_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd); 327 328 static void mptsas_start_watch_reset_delay(); 329 static void mptsas_setup_bus_reset_delay(mptsas_t *mpt); 330 static void mptsas_watch_reset_delay(void *arg); 331 static int mptsas_watch_reset_delay_subr(mptsas_t *mpt); 332 static void mptsas_set_throttle(struct mptsas *mpt, mptsas_target_t *ptgt, 333 int what); 334 static void mptsas_set_throttle_mtx(struct mptsas *mpt, mptsas_target_t *ptgt, 335 int what); 336 static void mptsas_remove_cmd_nomtx(mptsas_t *mpt, mptsas_cmd_t *cmd); 337 338 /* 339 * helper functions 340 */ 341 static void mptsas_dump_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd); 342 343 static dev_info_t *mptsas_find_child(dev_info_t *pdip, char *name); 344 static dev_info_t *mptsas_find_child_phy(dev_info_t *pdip, uint8_t phy); 345 static dev_info_t *mptsas_find_child_addr(dev_info_t *pdip, uint64_t sasaddr, 346 int lun); 347 static mdi_pathinfo_t *mptsas_find_path_addr(dev_info_t *pdip, uint64_t sasaddr, 348 int lun); 349 static mdi_pathinfo_t *mptsas_find_path_phy(dev_info_t *pdip, uint8_t phy); 350 static dev_info_t *mptsas_find_smp_child(dev_info_t *pdip, char *str_wwn); 351 352 static int mptsas_parse_address(char *name, uint64_t *wwid, uint8_t *phy, 353 int *lun); 354 static int mptsas_parse_smp_name(char *name, uint64_t *wwn); 355 356 static mptsas_target_t *mptsas_phy_to_tgt(mptsas_t *mpt, 357 mptsas_phymask_t phymask, uint8_t phy); 358 static mptsas_target_t *mptsas_wwid_to_ptgt(mptsas_t *mpt, 359 mptsas_phymask_t phymask, uint64_t wwid); 360 static mptsas_smp_t *mptsas_wwid_to_psmp(mptsas_t *mpt, 361 mptsas_phymask_t phymask, uint64_t wwid); 362 363 static int mptsas_inquiry(mptsas_t *mpt, mptsas_target_t *ptgt, int lun, 364 uchar_t page, unsigned char *buf, int len, int *rlen, uchar_t evpd); 365 366 static int mptsas_get_target_device_info(mptsas_t *mpt, uint32_t page_address, 367 uint16_t *handle, mptsas_target_t **pptgt); 368 static void mptsas_update_phymask(mptsas_t *mpt); 369 370 static int mptsas_send_sep(mptsas_t *mpt, mptsas_target_t *ptgt, 371 uint32_t *status, uint8_t cmd); 372 static dev_info_t *mptsas_get_dip_from_dev(dev_t dev, 373 mptsas_phymask_t *phymask); 374 static mptsas_target_t *mptsas_addr_to_ptgt(mptsas_t *mpt, char *addr, 375 mptsas_phymask_t phymask); 376 static int mptsas_flush_led_status(mptsas_t *mpt, mptsas_target_t *ptgt); 377 378 379 /* 380 * Enumeration / DR functions 381 */ 382 static void mptsas_config_all(dev_info_t *pdip); 383 static int mptsas_config_one_addr(dev_info_t *pdip, uint64_t sasaddr, int lun, 384 dev_info_t **lundip); 385 static int mptsas_config_one_phy(dev_info_t *pdip, uint8_t phy, int lun, 386 dev_info_t **lundip); 387 388 static int mptsas_config_target(dev_info_t *pdip, mptsas_target_t *ptgt); 389 static int mptsas_offline_targetdev(dev_info_t *pdip, char *name); 390 static void mptsas_offline_target(mptsas_t *mpt, mptsas_target_t *ptgt, 391 uint8_t topo_flags, dev_info_t *parent); 392 393 static int mptsas_config_raid(dev_info_t *pdip, uint16_t target, 394 dev_info_t **dip); 395 396 static int mptsas_config_luns(dev_info_t *pdip, mptsas_target_t *ptgt); 397 static int mptsas_probe_lun(dev_info_t *pdip, int lun, 398 dev_info_t **dip, mptsas_target_t *ptgt); 399 400 static int mptsas_create_lun(dev_info_t *pdip, struct scsi_inquiry *sd_inq, 401 dev_info_t **dip, mptsas_target_t *ptgt, int lun); 402 403 static int mptsas_create_phys_lun(dev_info_t *pdip, struct scsi_inquiry *sd, 404 char *guid, dev_info_t **dip, mptsas_target_t *ptgt, int lun); 405 static int mptsas_create_virt_lun(dev_info_t *pdip, struct scsi_inquiry *sd, 406 char *guid, dev_info_t **dip, mdi_pathinfo_t **pip, mptsas_target_t *ptgt, 407 int lun); 408 409 static void mptsas_offline_missed_luns(dev_info_t *pdip, 410 uint16_t *repluns, int lun_cnt, mptsas_target_t *ptgt); 411 static int mptsas_offline_lun(dev_info_t *pdip, dev_info_t *rdip, 412 mdi_pathinfo_t *rpip, uint_t flags); 413 414 static int mptsas_config_smp(dev_info_t *pdip, uint64_t sas_wwn, 415 dev_info_t **smp_dip); 416 static int mptsas_offline_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 417 uint_t flags); 418 419 static int mptsas_event_query(mptsas_t *mpt, mptsas_event_query_t *data, 420 int mode, int *rval); 421 static int mptsas_event_enable(mptsas_t *mpt, mptsas_event_enable_t *data, 422 int mode, int *rval); 423 static int mptsas_event_report(mptsas_t *mpt, mptsas_event_report_t *data, 424 int mode, int *rval); 425 static void mptsas_record_event(void *args); 426 static int mptsas_reg_access(mptsas_t *mpt, mptsas_reg_access_t *data, 427 int mode); 428 429 mptsas_target_t *mptsas_tgt_alloc(mptsas_t *, uint16_t, uint64_t, 430 uint32_t, mptsas_phymask_t, uint8_t); 431 static mptsas_smp_t *mptsas_smp_alloc(mptsas_t *, mptsas_smp_t *); 432 static int mptsas_online_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 433 dev_info_t **smp_dip); 434 435 /* 436 * Power management functions 437 */ 438 static int mptsas_get_pci_cap(mptsas_t *mpt); 439 static int mptsas_init_pm(mptsas_t *mpt); 440 441 /* 442 * MPT MSI tunable: 443 * 444 * By default MSI is enabled on all supported platforms. 445 */ 446 boolean_t mptsas_enable_msi = B_TRUE; 447 boolean_t mptsas_enable_msix = B_TRUE; 448 boolean_t mptsas_physical_bind_failed_page_83 = B_FALSE; 449 450 /* 451 * Global switch for use of MPI2.5 FAST PATH. 452 */ 453 boolean_t mptsas3_use_fastpath = B_TRUE; 454 455 static int mptsas_register_intrs(mptsas_t *); 456 static void mptsas_unregister_intrs(mptsas_t *); 457 static int mptsas_add_intrs(mptsas_t *, int); 458 static void mptsas_rem_intrs(mptsas_t *); 459 460 /* 461 * FMA Prototypes 462 */ 463 static void mptsas_fm_init(mptsas_t *mpt); 464 static void mptsas_fm_fini(mptsas_t *mpt); 465 static int mptsas_fm_error_cb(dev_info_t *, ddi_fm_error_t *, const void *); 466 467 extern pri_t minclsyspri, maxclsyspri; 468 /* 469 * NCPUS is used to determine some optimal configurations for number 470 * of threads created to perform specific jobs. If we are invoked because 471 * a disk is part of the root file system ncpus may still be 1 so check 472 * boot_ncpus as well. 473 */ 474 extern int ncpus, boot_ncpus; 475 #define NCPUS max(ncpus, boot_ncpus) 476 477 /* 478 * This device is created by the SCSI pseudo nexus driver (SCSI vHCI). It is 479 * under this device that the paths to a physical device are created when 480 * MPxIO is used. 481 */ 482 extern dev_info_t *scsi_vhci_dip; 483 484 /* 485 * Tunable timeout value for Inquiry VPD page 0x83 486 * By default the value is 30 seconds. 487 */ 488 int mptsas_inq83_retry_timeout = 30; 489 490 /* 491 * Tunable for default SCSI pkt timeout. Defaults to 5 seconds, which should 492 * be plenty for INQUIRY and REPORT_LUNS, which are the only commands currently 493 * issued by mptsas directly. 494 */ 495 int mptsas_scsi_pkt_time = 5; 496 497 /* 498 * This is used to allocate memory for message frame storage, not for 499 * data I/O DMA. All message frames must be stored in the first 4G of 500 * physical memory. 501 */ 502 ddi_dma_attr_t mptsas_dma_attrs = { 503 DMA_ATTR_V0, /* attribute layout version */ 504 0x0ull, /* address low - should be 0 (longlong) */ 505 0xffffffffull, /* address high - 32-bit max range */ 506 0x00ffffffull, /* count max - max DMA object size */ 507 4, /* allocation alignment requirements */ 508 0x78, /* burstsizes - binary encoded values */ 509 1, /* minxfer - gran. of DMA engine */ 510 0x00ffffffull, /* maxxfer - gran. of DMA engine */ 511 0xffffffffull, /* max segment size (DMA boundary) */ 512 MPTSAS_MAX_DMA_SEGS, /* scatter/gather list length */ 513 512, /* granularity - device transfer size */ 514 0 /* flags, set to 0 */ 515 }; 516 517 /* 518 * This is used for data I/O DMA memory allocation. (full 64-bit DMA 519 * physical addresses are supported.) 520 */ 521 ddi_dma_attr_t mptsas_dma_attrs64 = { 522 DMA_ATTR_V0, /* attribute layout version */ 523 0x0ull, /* address low - should be 0 (longlong) */ 524 0xffffffffffffffffull, /* address high - 64-bit max */ 525 0x00ffffffull, /* count max - max DMA object size */ 526 4, /* allocation alignment requirements */ 527 0x78, /* burstsizes - binary encoded values */ 528 1, /* minxfer - gran. of DMA engine */ 529 0x00ffffffull, /* maxxfer - gran. of DMA engine */ 530 0xffffffffull, /* max segment size (DMA boundary) */ 531 MPTSAS_MAX_DMA_SEGS, /* scatter/gather list length */ 532 512, /* granularity - device transfer size */ 533 0 /* flags, set to 0 */ 534 }; 535 536 ddi_device_acc_attr_t mptsas_dev_attr = { 537 DDI_DEVICE_ATTR_V1, 538 DDI_STRUCTURE_LE_ACC, 539 DDI_STRICTORDER_ACC, 540 DDI_DEFAULT_ACC 541 }; 542 543 static struct cb_ops mptsas_cb_ops = { 544 scsi_hba_open, /* open */ 545 scsi_hba_close, /* close */ 546 nodev, /* strategy */ 547 nodev, /* print */ 548 nodev, /* dump */ 549 nodev, /* read */ 550 nodev, /* write */ 551 mptsas_ioctl, /* ioctl */ 552 nodev, /* devmap */ 553 nodev, /* mmap */ 554 nodev, /* segmap */ 555 nochpoll, /* chpoll */ 556 ddi_prop_op, /* cb_prop_op */ 557 NULL, /* streamtab */ 558 D_MP, /* cb_flag */ 559 CB_REV, /* rev */ 560 nodev, /* aread */ 561 nodev /* awrite */ 562 }; 563 564 static struct dev_ops mptsas_ops = { 565 DEVO_REV, /* devo_rev, */ 566 0, /* refcnt */ 567 ddi_no_info, /* info */ 568 nulldev, /* identify */ 569 nulldev, /* probe */ 570 mptsas_attach, /* attach */ 571 mptsas_detach, /* detach */ 572 #ifdef __sparc 573 mptsas_reset, 574 #else 575 nodev, /* reset */ 576 #endif /* __sparc */ 577 &mptsas_cb_ops, /* driver operations */ 578 NULL, /* bus operations */ 579 mptsas_power, /* power management */ 580 #ifdef __sparc 581 ddi_quiesce_not_needed 582 #else 583 mptsas_quiesce /* quiesce */ 584 #endif /* __sparc */ 585 }; 586 587 588 #define MPTSAS_MOD_STRING "MPTSAS3 HBA Driver 00.00.01" 589 590 static struct modldrv modldrv = { 591 &mod_driverops, /* Type of module. This one is a driver */ 592 MPTSAS_MOD_STRING, /* Name of the module. */ 593 &mptsas_ops, /* driver ops */ 594 }; 595 596 static struct modlinkage modlinkage = { 597 MODREV_1, &modldrv, NULL 598 }; 599 #define TARGET_PROP "target" 600 #define LUN_PROP "lun" 601 #define LUN64_PROP "lun64" 602 #define SAS_PROP "sas-mpt" 603 #define MDI_GUID "wwn" 604 #define NDI_GUID "guid" 605 #define MPTSAS_DEV_GONE "mptsas_dev_gone" 606 607 /* 608 * Local static data 609 */ 610 #if defined(MPTSAS_DEBUG) 611 uint32_t mptsas_debug_flags = 0x0; 612 /* 613 * Flags to ignore these messages in local debug ring buffer. 614 * Default is to ignore the watchsubr() output which normally happens 615 * every second. 616 */ 617 uint32_t mptsas_dbglog_imask = 0x40000000; 618 uint32_t mptsas_test_timeout = 0; 619 #endif /* defined(MPTSAS_DEBUG) */ 620 uint32_t mptsas_debug_resets = 0; 621 622 static kmutex_t mptsas_global_mutex; 623 static void *mptsas3_state; /* soft state ptr */ 624 static krwlock_t mptsas_global_rwlock; 625 626 static kmutex_t mptsas_log_mutex; 627 static char mptsas_log_buf[256]; 628 _NOTE(MUTEX_PROTECTS_DATA(mptsas_log_mutex, mptsas_log_buf)) 629 630 static mptsas_t *mptsas_head, *mptsas_tail; 631 static clock_t mptsas_scsi_watchdog_tick; 632 static clock_t mptsas_tick; 633 static timeout_id_t mptsas_reset_watch; 634 static timeout_id_t mptsas_timeout_id; 635 static int mptsas_timeouts_enabled = 0; 636 637 /* 638 * Maximum number of MSI-X interrupts any instance of mptsas3 can use. 639 * Note that if you want to increase this you may have to also bump the 640 * value of ddi_msix_alloc_limit which defaults to 8. 641 * Set to zero to fall back to other interrupt types. 642 */ 643 int mptsas3_max_msix_intrs = 8; 644 645 /* 646 * Default length for extended auto request sense buffers. 647 * All sense buffers need to be under the same alloc because there 648 * is only one common top 32bits (of 64bits) address register. 649 * Most requests only require 32 bytes, but some request >256. 650 * We use rmalloc()/rmfree() on this additional memory to manage the 651 * "extended" requests. 652 */ 653 int mptsas_extreq_sense_bufsize = 256*64; 654 655 /* 656 * Believe that all software resrictions of having to run with DMA 657 * attributes to limit allocation to the first 4G are removed. 658 * However, this flag remains to enable quick switchback should suspicious 659 * problems emerge. 660 * Note that scsi_alloc_consistent_buf() does still adhering to allocating 661 * 32 bit addressable memory, but we can cope if that is changed now. 662 */ 663 int mptsas_use_64bit_msgaddr = 1; 664 665 /* 666 * warlock directives 667 */ 668 _NOTE(SCHEME_PROTECTS_DATA("unique per pkt", scsi_pkt \ 669 mptsas_cmd NcrTableIndirect buf scsi_cdb scsi_status)) 670 _NOTE(SCHEME_PROTECTS_DATA("unique per pkt", smp_pkt)) 671 _NOTE(SCHEME_PROTECTS_DATA("stable data", scsi_device scsi_address)) 672 _NOTE(SCHEME_PROTECTS_DATA("No Mutex Needed", mptsas_tgt_private)) 673 _NOTE(SCHEME_PROTECTS_DATA("No Mutex Needed", scsi_hba_tran::tran_tgt_private)) 674 675 /* 676 * SM - HBA statics 677 */ 678 char *mptsas_driver_rev = MPTSAS_MOD_STRING; 679 680 #ifdef MPTSAS_DEBUG 681 void debug_enter(char *); 682 #endif 683 684 /* 685 * Notes: 686 * - scsi_hba_init(9F) initializes SCSI HBA modules 687 * - must call scsi_hba_fini(9F) if modload() fails 688 */ 689 int 690 _init(void) 691 { 692 int status; 693 /* CONSTCOND */ 694 ASSERT(NO_COMPETING_THREADS); 695 696 NDBG0(("_init")); 697 698 status = ddi_soft_state_init(&mptsas3_state, MPTSAS_SIZE, 699 MPTSAS_INITIAL_SOFT_SPACE); 700 if (status != 0) { 701 return (status); 702 } 703 704 if ((status = scsi_hba_init(&modlinkage)) != 0) { 705 ddi_soft_state_fini(&mptsas3_state); 706 return (status); 707 } 708 709 mutex_init(&mptsas_global_mutex, NULL, MUTEX_DRIVER, NULL); 710 rw_init(&mptsas_global_rwlock, NULL, RW_DRIVER, NULL); 711 mutex_init(&mptsas_log_mutex, NULL, MUTEX_DRIVER, NULL); 712 713 if ((status = mod_install(&modlinkage)) != 0) { 714 mutex_destroy(&mptsas_log_mutex); 715 rw_destroy(&mptsas_global_rwlock); 716 mutex_destroy(&mptsas_global_mutex); 717 ddi_soft_state_fini(&mptsas3_state); 718 scsi_hba_fini(&modlinkage); 719 } 720 721 return (status); 722 } 723 724 /* 725 * Notes: 726 * - scsi_hba_fini(9F) uninitializes SCSI HBA modules 727 */ 728 int 729 _fini(void) 730 { 731 int status; 732 /* CONSTCOND */ 733 ASSERT(NO_COMPETING_THREADS); 734 735 NDBG0(("_fini")); 736 737 if ((status = mod_remove(&modlinkage)) == 0) { 738 ddi_soft_state_fini(&mptsas3_state); 739 scsi_hba_fini(&modlinkage); 740 mutex_destroy(&mptsas_global_mutex); 741 rw_destroy(&mptsas_global_rwlock); 742 mutex_destroy(&mptsas_log_mutex); 743 } 744 return (status); 745 } 746 747 /* 748 * The loadable-module _info(9E) entry point 749 */ 750 int 751 _info(struct modinfo *modinfop) 752 { 753 /* CONSTCOND */ 754 ASSERT(NO_COMPETING_THREADS); 755 NDBG0(("mptsas _info")); 756 757 return (mod_info(&modlinkage, modinfop)); 758 } 759 760 static int 761 mptsas_target_eval_devhdl(const void *op, void *arg) 762 { 763 uint16_t dh = *(uint16_t *)arg; 764 const mptsas_target_t *tp = op; 765 766 return ((int)tp->m_devhdl - (int)dh); 767 } 768 769 static int 770 mptsas_target_eval_slot(const void *op, void *arg) 771 { 772 mptsas_led_control_t *lcp = arg; 773 const mptsas_target_t *tp = op; 774 775 if (tp->m_enclosure != lcp->Enclosure) 776 return ((int)tp->m_enclosure - (int)lcp->Enclosure); 777 778 return ((int)tp->m_slot_num - (int)lcp->Slot); 779 } 780 781 static int 782 mptsas_target_eval_nowwn(const void *op, void *arg) 783 { 784 uint8_t phy = *(uint8_t *)arg; 785 const mptsas_target_t *tp = op; 786 787 if (tp->m_addr.mta_wwn != 0) 788 return (-1); 789 790 return ((int)tp->m_phynum - (int)phy); 791 } 792 793 static int 794 mptsas_smp_eval_devhdl(const void *op, void *arg) 795 { 796 uint16_t dh = *(uint16_t *)arg; 797 const mptsas_smp_t *sp = op; 798 799 return ((int)sp->m_devhdl - (int)dh); 800 } 801 802 static uint64_t 803 mptsas_target_addr_hash(const void *tp) 804 { 805 const mptsas_target_addr_t *tap = tp; 806 807 return ((tap->mta_wwn & 0xffffffffffffULL) | 808 ((uint64_t)tap->mta_phymask << 48)); 809 } 810 811 static int 812 mptsas_target_addr_cmp(const void *a, const void *b) 813 { 814 const mptsas_target_addr_t *aap = a; 815 const mptsas_target_addr_t *bap = b; 816 817 if (aap->mta_wwn < bap->mta_wwn) 818 return (-1); 819 if (aap->mta_wwn > bap->mta_wwn) 820 return (1); 821 return ((int)bap->mta_phymask - (int)aap->mta_phymask); 822 } 823 824 static void 825 mptsas_target_free(void *op) 826 { 827 kmem_free(op, sizeof (mptsas_target_t)); 828 } 829 830 static void 831 mptsas_smp_free(void *op) 832 { 833 kmem_free(op, sizeof (mptsas_smp_t)); 834 } 835 836 static void 837 mptsas_destroy_hashes(mptsas_t *mpt) 838 { 839 mptsas_target_t *tp; 840 mptsas_smp_t *sp; 841 842 for (tp = refhash_first(mpt->m_targets); tp != NULL; 843 tp = refhash_next(mpt->m_targets, tp)) { 844 mutex_destroy(&tp->m_t_mutex); 845 refhash_remove(mpt->m_targets, tp); 846 } 847 for (sp = refhash_first(mpt->m_smp_targets); sp != NULL; 848 sp = refhash_next(mpt->m_smp_targets, sp)) { 849 refhash_remove(mpt->m_smp_targets, sp); 850 } 851 refhash_destroy(mpt->m_targets); 852 refhash_destroy(mpt->m_smp_targets); 853 mpt->m_targets = NULL; 854 mpt->m_smp_targets = NULL; 855 } 856 857 static int 858 mptsas_iport_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 859 { 860 dev_info_t *pdip; 861 mptsas_t *mpt; 862 scsi_hba_tran_t *hba_tran; 863 char *iport = NULL; 864 char phymask[MPTSAS_MAX_PHYS]; 865 mptsas_phymask_t phy_mask = 0; 866 int dynamic_port = 0; 867 uint32_t page_address; 868 char initiator_wwnstr[MPTSAS_WWN_STRLEN]; 869 int rval = DDI_FAILURE; 870 int i = 0; 871 uint8_t numphys = 0; 872 uint8_t phy_id; 873 uint8_t phy_port = 0; 874 uint16_t attached_devhdl = 0; 875 uint32_t dev_info; 876 uint64_t attached_sas_wwn; 877 uint16_t dev_hdl; 878 uint16_t pdev_hdl; 879 uint16_t bay_num, enclosure, io_flags; 880 char attached_wwnstr[MPTSAS_WWN_STRLEN]; 881 882 /* CONSTCOND */ 883 ASSERT(NO_COMPETING_THREADS); 884 885 switch (cmd) { 886 case DDI_ATTACH: 887 break; 888 889 case DDI_RESUME: 890 /* 891 * If this a scsi-iport node, nothing to do here. 892 */ 893 return (DDI_SUCCESS); 894 895 default: 896 return (DDI_FAILURE); 897 } 898 899 pdip = ddi_get_parent(dip); 900 901 if ((hba_tran = ndi_flavorv_get(pdip, SCSA_FLAVOR_SCSI_DEVICE)) == 902 NULL) { 903 cmn_err(CE_WARN, "Failed attach iport because fail to " 904 "get tran vector for the HBA node"); 905 return (DDI_FAILURE); 906 } 907 908 mpt = TRAN2MPT(hba_tran); 909 ASSERT(mpt != NULL); 910 if (mpt == NULL) 911 return (DDI_FAILURE); 912 913 if ((hba_tran = ndi_flavorv_get(dip, SCSA_FLAVOR_SCSI_DEVICE)) == 914 NULL) { 915 mptsas_log(mpt, CE_WARN, "Failed attach iport because fail to " 916 "get tran vector for the iport node"); 917 return (DDI_FAILURE); 918 } 919 920 /* 921 * Overwrite parent's tran_hba_private to iport's tran vector 922 */ 923 hba_tran->tran_hba_private = mpt; 924 925 ddi_report_dev(dip); 926 927 /* 928 * Get SAS address for initiator port according dev_handle 929 */ 930 iport = ddi_get_name_addr(dip); 931 if (iport && strncmp(iport, "v0", 2) == 0) { 932 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 933 MPTSAS_VIRTUAL_PORT, 1) != 934 DDI_PROP_SUCCESS) { 935 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, 936 MPTSAS_VIRTUAL_PORT); 937 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 938 "prop update failed"); 939 return (DDI_FAILURE); 940 } 941 return (DDI_SUCCESS); 942 } 943 944 mutex_enter(&mpt->m_mutex); 945 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 946 bzero(phymask, sizeof (phymask)); 947 (void) sprintf(phymask, 948 "%x", mpt->m_phy_info[i].phy_mask); 949 if (strcmp(phymask, iport) == 0) { 950 break; 951 } 952 } 953 954 if (i == MPTSAS_MAX_PHYS) { 955 mptsas_log(mpt, CE_WARN, "Failed attach port %s because port" 956 "seems not exist", iport); 957 mutex_exit(&mpt->m_mutex); 958 return (DDI_FAILURE); 959 } 960 961 phy_mask = mpt->m_phy_info[i].phy_mask; 962 963 if (mpt->m_phy_info[i].port_flags & AUTO_PORT_CONFIGURATION) 964 dynamic_port = 1; 965 else 966 dynamic_port = 0; 967 968 /* 969 * Update PHY info for smhba 970 */ 971 if (mptsas_smhba_phy_init(mpt)) { 972 mutex_exit(&mpt->m_mutex); 973 mptsas_log(mpt, CE_WARN, "mptsas phy update " 974 "failed"); 975 return (DDI_FAILURE); 976 } 977 978 mutex_exit(&mpt->m_mutex); 979 980 numphys = 0; 981 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 982 if ((phy_mask >> i) & 0x01) { 983 numphys++; 984 } 985 } 986 987 bzero(initiator_wwnstr, sizeof (initiator_wwnstr)); 988 (void) sprintf(initiator_wwnstr, "w%016"PRIx64, 989 mpt->un.m_base_wwid); 990 991 if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, 992 SCSI_ADDR_PROP_INITIATOR_PORT, initiator_wwnstr) != 993 DDI_PROP_SUCCESS) { 994 (void) ddi_prop_remove(DDI_DEV_T_NONE, 995 dip, SCSI_ADDR_PROP_INITIATOR_PORT); 996 mptsas_log(mpt, CE_WARN, "mptsas Initiator port " 997 "prop update failed"); 998 return (DDI_FAILURE); 999 } 1000 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 1001 MPTSAS_NUM_PHYS, numphys) != 1002 DDI_PROP_SUCCESS) { 1003 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, MPTSAS_NUM_PHYS); 1004 return (DDI_FAILURE); 1005 } 1006 1007 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 1008 "phymask", phy_mask) != 1009 DDI_PROP_SUCCESS) { 1010 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "phymask"); 1011 mptsas_log(mpt, CE_WARN, "mptsas phy mask " 1012 "prop update failed"); 1013 return (DDI_FAILURE); 1014 } 1015 1016 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 1017 "dynamic-port", dynamic_port) != 1018 DDI_PROP_SUCCESS) { 1019 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, "dynamic-port"); 1020 mptsas_log(mpt, CE_WARN, "mptsas dynamic port " 1021 "prop update failed"); 1022 return (DDI_FAILURE); 1023 } 1024 if (ddi_prop_update_int(DDI_DEV_T_NONE, dip, 1025 MPTSAS_VIRTUAL_PORT, 0) != 1026 DDI_PROP_SUCCESS) { 1027 (void) ddi_prop_remove(DDI_DEV_T_NONE, dip, 1028 MPTSAS_VIRTUAL_PORT); 1029 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 1030 "prop update failed"); 1031 return (DDI_FAILURE); 1032 } 1033 mptsas_smhba_set_all_phy_props(mpt, dip, numphys, phy_mask, 1034 &attached_devhdl); 1035 1036 mutex_enter(&mpt->m_mutex); 1037 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 1038 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)attached_devhdl; 1039 rval = mptsas_get_sas_device_page0(mpt, page_address, &dev_hdl, 1040 &attached_sas_wwn, &dev_info, &phy_port, &phy_id, 1041 &pdev_hdl, &bay_num, &enclosure, &io_flags); 1042 if (rval != DDI_SUCCESS) { 1043 mptsas_log(mpt, CE_WARN, 1044 "Failed to get device page0 for handle:%d", 1045 attached_devhdl); 1046 mutex_exit(&mpt->m_mutex); 1047 return (DDI_FAILURE); 1048 } 1049 1050 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1051 bzero(phymask, sizeof (phymask)); 1052 (void) sprintf(phymask, "%x", mpt->m_phy_info[i].phy_mask); 1053 if (strcmp(phymask, iport) == 0) { 1054 (void) sprintf(&mpt->m_phy_info[i].smhba_info.path[0], 1055 "%x", 1056 mpt->m_phy_info[i].phy_mask); 1057 } 1058 } 1059 mutex_exit(&mpt->m_mutex); 1060 1061 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 1062 (void) sprintf(attached_wwnstr, "w%016"PRIx64, 1063 attached_sas_wwn); 1064 if (ddi_prop_update_string(DDI_DEV_T_NONE, dip, 1065 SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) != 1066 DDI_PROP_SUCCESS) { 1067 (void) ddi_prop_remove(DDI_DEV_T_NONE, 1068 dip, SCSI_ADDR_PROP_ATTACHED_PORT); 1069 return (DDI_FAILURE); 1070 } 1071 1072 /* Create kstats for each phy on this iport */ 1073 1074 mptsas_create_phy_stats(mpt, iport, dip); 1075 1076 /* 1077 * register sas hba iport with mdi (MPxIO/vhci) 1078 */ 1079 if (mdi_phci_register(MDI_HCI_CLASS_SCSI, 1080 dip, 0) == MDI_SUCCESS) { 1081 mpt->m_mpxio_enable = TRUE; 1082 } 1083 return (DDI_SUCCESS); 1084 } 1085 1086 /* 1087 * Notes: 1088 * Set up all device state and allocate data structures, 1089 * mutexes, condition variables, etc. for device operation. 1090 * Add interrupts needed. 1091 * Return DDI_SUCCESS if device is ready, else return DDI_FAILURE. 1092 */ 1093 static int 1094 mptsas_attach(dev_info_t *dip, ddi_attach_cmd_t cmd) 1095 { 1096 mptsas_t *mpt = NULL; 1097 int instance, i, j; 1098 int q_thread_num; 1099 char map_setup = 0; 1100 char config_setup = 0; 1101 char hba_attach_setup = 0; 1102 char smp_attach_setup = 0; 1103 char mutex_init_done = 0; 1104 char event_taskq_create = 0; 1105 char dr_taskq_create = 0; 1106 char doneq_thread_create = 0; 1107 char txwq_thread_create = 0; 1108 char added_watchdog = 0; 1109 scsi_hba_tran_t *hba_tran; 1110 uint_t mem_bar = MEM_SPACE; 1111 int rval = DDI_FAILURE; 1112 1113 /* CONSTCOND */ 1114 ASSERT(NO_COMPETING_THREADS); 1115 1116 if (scsi_hba_iport_unit_address(dip)) { 1117 return (mptsas_iport_attach(dip, cmd)); 1118 } 1119 1120 switch (cmd) { 1121 case DDI_ATTACH: 1122 break; 1123 1124 case DDI_RESUME: 1125 if ((hba_tran = ddi_get_driver_private(dip)) == NULL) 1126 return (DDI_FAILURE); 1127 1128 mpt = TRAN2MPT(hba_tran); 1129 1130 if (!mpt) { 1131 return (DDI_FAILURE); 1132 } 1133 1134 /* 1135 * Reset hardware and softc to "no outstanding commands" 1136 * Note that a check condition can result on first command 1137 * to a target. 1138 */ 1139 mutex_enter(&mpt->m_mutex); 1140 1141 /* 1142 * raise power. 1143 */ 1144 if (mpt->m_options & MPTSAS_OPT_PM) { 1145 mutex_exit(&mpt->m_mutex); 1146 (void) pm_busy_component(dip, 0); 1147 rval = pm_power_has_changed(dip, 0, PM_LEVEL_D0); 1148 if (rval == DDI_SUCCESS) { 1149 mutex_enter(&mpt->m_mutex); 1150 } else { 1151 /* 1152 * The pm_raise_power() call above failed, 1153 * and that can only occur if we were unable 1154 * to reset the hardware. This is probably 1155 * due to unhealty hardware, and because 1156 * important filesystems(such as the root 1157 * filesystem) could be on the attached disks, 1158 * it would not be a good idea to continue, 1159 * as we won't be entirely certain we are 1160 * writing correct data. So we panic() here 1161 * to not only prevent possible data corruption, 1162 * but to give developers or end users a hope 1163 * of identifying and correcting any problems. 1164 */ 1165 fm_panic("mptsas could not reset hardware " 1166 "during resume"); 1167 } 1168 } 1169 1170 mpt->m_suspended = 0; 1171 1172 /* 1173 * Reinitialize ioc 1174 */ 1175 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 1176 if (mptsas_init_chip(mpt, FALSE) == DDI_FAILURE) { 1177 mutex_exit(&mpt->m_mutex); 1178 if (mpt->m_options & MPTSAS_OPT_PM) { 1179 (void) pm_idle_component(dip, 0); 1180 } 1181 fm_panic("mptsas init chip fail during resume"); 1182 } 1183 /* 1184 * mptsas_update_driver_data needs interrupts so enable them 1185 * first. 1186 */ 1187 MPTSAS_ENABLE_INTR(mpt); 1188 mptsas_update_driver_data(mpt); 1189 1190 /* start requests, if possible */ 1191 mptsas_restart_hba(mpt); 1192 1193 mutex_exit(&mpt->m_mutex); 1194 1195 /* 1196 * Restart watch thread 1197 */ 1198 mutex_enter(&mptsas_global_mutex); 1199 if (mptsas_timeout_id == 0) { 1200 mptsas_timeout_id = timeout(mptsas_watch, NULL, 1201 mptsas_tick); 1202 mptsas_timeouts_enabled = 1; 1203 } 1204 mutex_exit(&mptsas_global_mutex); 1205 1206 /* report idle status to pm framework */ 1207 if (mpt->m_options & MPTSAS_OPT_PM) { 1208 (void) pm_idle_component(dip, 0); 1209 } 1210 1211 return (DDI_SUCCESS); 1212 1213 default: 1214 return (DDI_FAILURE); 1215 1216 } 1217 1218 instance = ddi_get_instance(dip); 1219 1220 /* 1221 * Allocate softc information. 1222 */ 1223 if (ddi_soft_state_zalloc(mptsas3_state, instance) != DDI_SUCCESS) { 1224 mptsas_log(NULL, CE_WARN, 1225 "mptsas%d: cannot allocate soft state", instance); 1226 goto fail; 1227 } 1228 1229 mpt = ddi_get_soft_state(mptsas3_state, instance); 1230 1231 if (mpt == NULL) { 1232 mptsas_log(NULL, CE_WARN, 1233 "mptsas%d: cannot get soft state", instance); 1234 goto fail; 1235 } 1236 1237 /* Indicate that we are 'sizeof (scsi_*(9S))' clean. */ 1238 scsi_size_clean(dip); 1239 1240 mpt->m_dip = dip; 1241 mpt->m_instance = instance; 1242 1243 /* Make a per-instance copy of the structures */ 1244 mpt->m_io_dma_attr = mptsas_dma_attrs64; 1245 if (mptsas_use_64bit_msgaddr) { 1246 mpt->m_msg_dma_attr = mptsas_dma_attrs64; 1247 } else { 1248 mpt->m_msg_dma_attr = mptsas_dma_attrs; 1249 } 1250 mpt->m_reg_acc_attr = mptsas_dev_attr; 1251 mpt->m_dev_acc_attr = mptsas_dev_attr; 1252 1253 /* 1254 * Round down the arq sense buffer size to nearest 16 bytes. 1255 */ 1256 mpt->m_req_sense_size = EXTCMDS_STATUS_SIZE; 1257 1258 /* 1259 * Initialize FMA 1260 */ 1261 mpt->m_fm_capabilities = ddi_getprop(DDI_DEV_T_ANY, mpt->m_dip, 1262 DDI_PROP_CANSLEEP | DDI_PROP_DONTPASS, "fm-capable", 1263 DDI_FM_EREPORT_CAPABLE | DDI_FM_ACCCHK_CAPABLE | 1264 DDI_FM_DMACHK_CAPABLE | DDI_FM_ERRCB_CAPABLE); 1265 1266 mptsas_fm_init(mpt); 1267 1268 if (mptsas_alloc_handshake_msg(mpt, 1269 sizeof (Mpi2SCSITaskManagementRequest_t)) == DDI_FAILURE) { 1270 mptsas_log(mpt, CE_WARN, "cannot initialize handshake msg."); 1271 goto fail; 1272 } 1273 1274 /* 1275 * Setup configuration space 1276 */ 1277 if (mptsas_config_space_init(mpt) == FALSE) { 1278 mptsas_log(mpt, CE_WARN, "mptsas_config_space_init failed"); 1279 goto fail; 1280 } 1281 config_setup++; 1282 1283 if (ddi_regs_map_setup(dip, mem_bar, (caddr_t *)&mpt->m_reg, 1284 0, 0, &mpt->m_reg_acc_attr, &mpt->m_datap) != DDI_SUCCESS) { 1285 mptsas_log(mpt, CE_WARN, "map setup failed"); 1286 goto fail; 1287 } 1288 map_setup++; 1289 1290 /* 1291 * A taskq is created for dealing with the event handler 1292 */ 1293 if ((mpt->m_event_taskq = ddi_taskq_create(dip, "mptsas_event_taskq", 1294 1, TASKQ_DEFAULTPRI, 0)) == NULL) { 1295 mptsas_log(mpt, CE_NOTE, "ddi_taskq_create failed"); 1296 goto fail; 1297 } 1298 event_taskq_create++; 1299 1300 /* 1301 * A taskq is created for dealing with dr events 1302 */ 1303 if ((mpt->m_dr_taskq = ddi_taskq_create(dip, 1304 "mptsas_dr_taskq", 1305 1, TASKQ_DEFAULTPRI, 0)) == NULL) { 1306 mptsas_log(mpt, CE_NOTE, "ddi_taskq_create for discovery " 1307 "failed"); 1308 goto fail; 1309 } 1310 dr_taskq_create++; 1311 1312 cv_init(&mpt->m_qthread_cv, NULL, CV_DRIVER, NULL); 1313 mutex_init(&mpt->m_qthread_mutex, NULL, MUTEX_DRIVER, NULL); 1314 1315 i = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1316 0, "mptsas_enable_txwq_prop", NCPUS > 1); 1317 if (i) { 1318 mpt->m_txwq_thread_n = NUM_TX_WAITQ; 1319 mpt->m_txwq_enabled = FALSE; 1320 if (ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1321 0, "mptsas_allow_txwq_jumping", 0)) { 1322 mpt->m_txwq_allow_q_jumping = TRUE; 1323 } 1324 i = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1325 0, "mptsas_txwq_threashold_prop", 80000); 1326 mpt->m_txwq_thread_threshold = (uint16_t)i; 1327 } else { 1328 mpt->m_txwq_thread_n = 0; 1329 mpt->m_txwq_enabled = FALSE; 1330 } 1331 1332 if (mpt->m_txwq_thread_n) { 1333 mutex_enter(&mpt->m_qthread_mutex); 1334 for (j = 0; j < NUM_TX_WAITQ; j++) { 1335 mutex_init(&mpt->m_tx_waitq[j].txwq_mutex, NULL, 1336 MUTEX_DRIVER, 1337 NULL); 1338 cv_init(&mpt->m_tx_waitq[j].txwq_cv, NULL, CV_DRIVER, 1339 NULL); 1340 cv_init(&mpt->m_tx_waitq[j].txwq_drain_cv, NULL, 1341 CV_DRIVER, NULL); 1342 mpt->m_tx_waitq[j].txwq_active = TRUE; 1343 mpt->m_tx_waitq[j].txwq_draining = FALSE; 1344 mpt->m_tx_waitq[j].txwq_cmdq = NULL; 1345 mpt->m_tx_waitq[j].txwq_qtail = 1346 &mpt->m_tx_waitq[j].txwq_cmdq; 1347 mutex_enter(&mpt->m_tx_waitq[j].txwq_mutex); 1348 mpt->m_tx_waitq[j].arg.mpt = mpt; 1349 mpt->m_tx_waitq[j].arg.t = j; 1350 mpt->m_tx_waitq[j].txwq_threadp = 1351 thread_create(NULL, 0, mptsas_tx_waitq_thread, 1352 &mpt->m_tx_waitq[j].arg, 1353 0, &p0, TS_RUN, maxclsyspri - 10); 1354 mutex_exit(&mpt->m_tx_waitq[j].txwq_mutex); 1355 } 1356 mutex_exit(&mpt->m_qthread_mutex); 1357 txwq_thread_create++; 1358 } 1359 1360 mpt->m_doneq_thread_threshold = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1361 0, "mptsas_doneq_thread_threshold_prop", 10); 1362 mpt->m_doneq_length_threshold = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1363 0, "mptsas_doneq_length_threshold_prop", 8); 1364 mpt->m_doneq_thread_n = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 1365 0, "mptsas_doneq_thread_n_prop", min(NCPUS, 8)); 1366 1367 if (mpt->m_doneq_thread_n) { 1368 mutex_enter(&mpt->m_qthread_mutex); 1369 mpt->m_doneq_thread_id = 1370 kmem_zalloc(sizeof (mptsas_doneq_thread_list_t) 1371 * mpt->m_doneq_thread_n, KM_SLEEP); 1372 1373 for (j = 0; j < mpt->m_doneq_thread_n; j++) { 1374 cv_init(&mpt->m_doneq_thread_id[j].cv, NULL, 1375 CV_DRIVER, NULL); 1376 mutex_init(&mpt->m_doneq_thread_id[j].mutex, NULL, 1377 MUTEX_DRIVER, NULL); 1378 mutex_enter(&mpt->m_doneq_thread_id[j].mutex); 1379 mpt->m_doneq_thread_id[j].flag |= 1380 MPTSAS_DONEQ_THREAD_ACTIVE; 1381 mpt->m_doneq_thread_id[j].arg.mpt = mpt; 1382 mpt->m_doneq_thread_id[j].arg.t = j; 1383 mpt->m_doneq_thread_id[j].threadp = 1384 thread_create(NULL, 0, mptsas_doneq_thread, 1385 &mpt->m_doneq_thread_id[j].arg, 1386 0, &p0, TS_RUN, maxclsyspri - 10); 1387 mpt->m_doneq_thread_id[j].dlist.dl_tail = 1388 &mpt->m_doneq_thread_id[j].dlist.dl_q; 1389 mutex_exit(&mpt->m_doneq_thread_id[j].mutex); 1390 } 1391 mutex_exit(&mpt->m_qthread_mutex); 1392 doneq_thread_create++; 1393 } 1394 1395 /* 1396 * Disable hardware interrupt since we're not ready to 1397 * handle it yet. 1398 */ 1399 MPTSAS_DISABLE_INTR(mpt); 1400 1401 /* 1402 * Initialize mutex used in interrupt handler. 1403 * We don't support hi-level so the mutex's are all adaptive 1404 * and we don't want to register the interrupts until we get 1405 * the chip type information from _init_chip() below. 1406 * Otherwise we would use DDI_INTR_PRI(mpt->m_intr_pri) 1407 * rather than NULL in the mutex_init() calls. 1408 */ 1409 mutex_init(&mpt->m_mutex, NULL, MUTEX_DRIVER, NULL); 1410 mutex_init(&mpt->m_passthru_mutex, NULL, MUTEX_DRIVER, NULL); 1411 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1412 mutex_init(&mpt->m_phy_info[i].smhba_info.phy_mutex, 1413 NULL, MUTEX_DRIVER, NULL); 1414 } 1415 1416 cv_init(&mpt->m_cv, NULL, CV_DRIVER, NULL); 1417 cv_init(&mpt->m_passthru_cv, NULL, CV_DRIVER, NULL); 1418 cv_init(&mpt->m_fw_cv, NULL, CV_DRIVER, NULL); 1419 cv_init(&mpt->m_config_cv, NULL, CV_DRIVER, NULL); 1420 cv_init(&mpt->m_fw_diag_cv, NULL, CV_DRIVER, NULL); 1421 mutex_init_done++; 1422 1423 mutex_enter(&mpt->m_mutex); 1424 /* 1425 * Initialize power management component 1426 */ 1427 if (mpt->m_options & MPTSAS_OPT_PM) { 1428 if (mptsas_init_pm(mpt)) { 1429 mutex_exit(&mpt->m_mutex); 1430 mptsas_log(mpt, CE_WARN, "mptsas pm initialization " 1431 "failed"); 1432 goto fail; 1433 } 1434 } 1435 1436 /* 1437 * Initialize chip using Message Unit Reset, if allowed 1438 */ 1439 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 1440 if (mptsas_init_chip(mpt, TRUE) == DDI_FAILURE) { 1441 mutex_exit(&mpt->m_mutex); 1442 mptsas_log(mpt, CE_WARN, "mptsas chip initialization failed"); 1443 goto fail; 1444 } 1445 1446 /* 1447 * Fill in the phy_info structure and get the base WWID 1448 */ 1449 if (mptsas_get_manufacture_page5(mpt) == DDI_FAILURE) { 1450 mptsas_log(mpt, CE_WARN, 1451 "mptsas_get_manufacture_page5 failed!"); 1452 goto fail; 1453 } 1454 1455 if (mptsas_get_sas_io_unit_page_hndshk(mpt)) { 1456 mptsas_log(mpt, CE_WARN, 1457 "mptsas_get_sas_io_unit_page_hndshk failed!"); 1458 goto fail; 1459 } 1460 1461 if (mptsas_get_manufacture_page0(mpt) == DDI_FAILURE) { 1462 mptsas_log(mpt, CE_WARN, 1463 "mptsas_get_manufacture_page0 failed!"); 1464 goto fail; 1465 } 1466 1467 /* 1468 * If we only have one interrupt the default for doneq_thread_threshold 1469 * should be 0 so that all completion processing goes to the threads. 1470 * Only change it if it wasn't set from .conf file. 1471 */ 1472 if (mpt->m_doneq_thread_n != 0 && 1473 ddi_prop_exists(DDI_DEV_T_ANY, dip, 1474 0, "mptsas_doneq_length_threshold_prop") == 0 && 1475 mpt->m_intr_cnt == 1) { 1476 mpt->m_doneq_length_threshold = 0; 1477 } 1478 1479 1480 mutex_exit(&mpt->m_mutex); 1481 1482 /* 1483 * Register the iport for multiple port HBA 1484 */ 1485 mptsas_iport_register(mpt); 1486 1487 /* 1488 * initialize SCSI HBA transport structure 1489 */ 1490 if (mptsas_hba_setup(mpt) == FALSE) 1491 goto fail; 1492 hba_attach_setup++; 1493 1494 if (mptsas_smp_setup(mpt) == FALSE) 1495 goto fail; 1496 smp_attach_setup++; 1497 1498 if (mptsas_cache_create(mpt) == FALSE) 1499 goto fail; 1500 1501 mpt->m_scsi_reset_delay = ddi_prop_get_int(DDI_DEV_T_ANY, 1502 dip, 0, "scsi-reset-delay", SCSI_DEFAULT_RESET_DELAY); 1503 if (mpt->m_scsi_reset_delay == 0) { 1504 mptsas_log(mpt, CE_NOTE, 1505 "scsi_reset_delay of 0 is not recommended," 1506 " resetting to SCSI_DEFAULT_RESET_DELAY\n"); 1507 mpt->m_scsi_reset_delay = SCSI_DEFAULT_RESET_DELAY; 1508 } 1509 1510 /* 1511 * Initialize the wait and done FIFO queue 1512 */ 1513 mpt->m_dlist.dl_tail = &mpt->m_dlist.dl_q; 1514 mpt->m_waitqtail = &mpt->m_waitq; 1515 1516 /* 1517 * ioc cmd queue initialize 1518 */ 1519 mpt->m_ioc_event_cmdtail = &mpt->m_ioc_event_cmdq; 1520 mpt->m_dev_handle = 0xFFFF; 1521 1522 MPTSAS_ENABLE_INTR(mpt); 1523 1524 /* 1525 * enable event notification 1526 */ 1527 mutex_enter(&mpt->m_mutex); 1528 if (mptsas_ioc_enable_event_notification(mpt)) { 1529 mutex_exit(&mpt->m_mutex); 1530 goto fail; 1531 } 1532 mutex_exit(&mpt->m_mutex); 1533 1534 /* 1535 * used for mptsas_watch 1536 */ 1537 mptsas_list_add(mpt); 1538 1539 mutex_enter(&mptsas_global_mutex); 1540 if (mptsas_timeouts_enabled == 0) { 1541 mptsas_scsi_watchdog_tick = ddi_prop_get_int(DDI_DEV_T_ANY, 1542 dip, 0, "scsi-watchdog-tick", DEFAULT_WD_TICK); 1543 1544 mptsas_tick = mptsas_scsi_watchdog_tick * 1545 drv_usectohz((clock_t)1000000); 1546 1547 mptsas_timeout_id = timeout(mptsas_watch, NULL, mptsas_tick); 1548 mptsas_timeouts_enabled = 1; 1549 } 1550 mutex_exit(&mptsas_global_mutex); 1551 added_watchdog++; 1552 1553 /* 1554 * Initialize PHY info for smhba. 1555 * This requires watchdog to be enabled otherwise if interrupts 1556 * don't work the system will hang. 1557 */ 1558 if (mptsas_smhba_setup(mpt)) { 1559 mptsas_log(mpt, CE_WARN, "mptsas phy initialization " 1560 "failed"); 1561 goto fail; 1562 } 1563 1564 /* Check all dma handles allocated in attach */ 1565 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) 1566 != DDI_SUCCESS) || 1567 (mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl) 1568 != DDI_SUCCESS) || 1569 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) 1570 != DDI_SUCCESS) || 1571 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) 1572 != DDI_SUCCESS) || 1573 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) 1574 != DDI_SUCCESS) || 1575 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) 1576 != DDI_SUCCESS)) { 1577 goto fail; 1578 } 1579 1580 /* Check all acc handles allocated in attach */ 1581 if ((mptsas_check_acc_handle(mpt->m_datap) != DDI_SUCCESS) || 1582 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) 1583 != DDI_SUCCESS) || 1584 (mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl) 1585 != DDI_SUCCESS) || 1586 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) 1587 != DDI_SUCCESS) || 1588 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) 1589 != DDI_SUCCESS) || 1590 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) 1591 != DDI_SUCCESS) || 1592 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) 1593 != DDI_SUCCESS) || 1594 (mptsas_check_acc_handle(mpt->m_config_handle) 1595 != DDI_SUCCESS)) { 1596 goto fail; 1597 } 1598 1599 /* 1600 * After this point, we are not going to fail the attach. 1601 */ 1602 1603 /* Print message of HBA present */ 1604 ddi_report_dev(dip); 1605 1606 /* report idle status to pm framework */ 1607 if (mpt->m_options & MPTSAS_OPT_PM) { 1608 (void) pm_idle_component(dip, 0); 1609 } 1610 1611 return (DDI_SUCCESS); 1612 1613 fail: 1614 mptsas_log(mpt, CE_WARN, "attach failed"); 1615 mptsas_fm_ereport(mpt, DDI_FM_DEVICE_NO_RESPONSE); 1616 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_LOST); 1617 if (mpt) { 1618 /* deallocate in reverse order */ 1619 if (added_watchdog) { 1620 mptsas_list_del(mpt); 1621 mutex_enter(&mptsas_global_mutex); 1622 1623 if (mptsas_timeout_id && (mptsas_head == NULL)) { 1624 timeout_id_t tid = mptsas_timeout_id; 1625 mptsas_timeouts_enabled = 0; 1626 mptsas_timeout_id = 0; 1627 mutex_exit(&mptsas_global_mutex); 1628 (void) untimeout(tid); 1629 mutex_enter(&mptsas_global_mutex); 1630 } 1631 mutex_exit(&mptsas_global_mutex); 1632 } 1633 1634 mptsas_cache_destroy(mpt); 1635 1636 if (smp_attach_setup) { 1637 mptsas_smp_teardown(mpt); 1638 } 1639 if (hba_attach_setup) { 1640 mptsas_hba_teardown(mpt); 1641 } 1642 1643 if (mpt->m_targets) 1644 refhash_destroy(mpt->m_targets); 1645 if (mpt->m_smp_targets) 1646 refhash_destroy(mpt->m_smp_targets); 1647 1648 if (mpt->m_active) { 1649 mptsas_free_active_slots(mpt); 1650 } 1651 if (mpt->m_intr_cnt) { 1652 mptsas_unregister_intrs(mpt); 1653 } 1654 1655 if (doneq_thread_create) { 1656 mutex_enter(&mpt->m_qthread_mutex); 1657 q_thread_num = mpt->m_doneq_thread_n; 1658 for (j = 0; j < q_thread_num; j++) { 1659 mutex_enter(&mpt->m_doneq_thread_id[j].mutex); 1660 mpt->m_doneq_thread_id[j].flag &= 1661 (~MPTSAS_DONEQ_THREAD_ACTIVE); 1662 cv_signal(&mpt->m_doneq_thread_id[j].cv); 1663 mutex_exit(&mpt->m_doneq_thread_id[j].mutex); 1664 } 1665 while (mpt->m_doneq_thread_n) { 1666 cv_wait(&mpt->m_qthread_cv, 1667 &mpt->m_qthread_mutex); 1668 } 1669 for (j = 0; j < q_thread_num; j++) { 1670 cv_destroy(&mpt->m_doneq_thread_id[j].cv); 1671 mutex_destroy(&mpt->m_doneq_thread_id[j].mutex); 1672 } 1673 kmem_free(mpt->m_doneq_thread_id, 1674 sizeof (mptsas_doneq_thread_list_t) 1675 * q_thread_num); 1676 mutex_exit(&mpt->m_qthread_mutex); 1677 } 1678 if (txwq_thread_create) { 1679 mutex_enter(&mpt->m_qthread_mutex); 1680 q_thread_num = mpt->m_txwq_thread_n; 1681 for (j = 0; j < q_thread_num; j++) { 1682 mutex_enter(&mpt->m_tx_waitq[j].txwq_mutex); 1683 mpt->m_tx_waitq[j].txwq_active = FALSE; 1684 cv_signal(&mpt->m_tx_waitq[j].txwq_cv); 1685 mutex_exit(&mpt->m_tx_waitq[j].txwq_mutex); 1686 } 1687 while (mpt->m_txwq_thread_n) { 1688 cv_wait(&mpt->m_qthread_cv, 1689 &mpt->m_qthread_mutex); 1690 } 1691 for (j = 0; j < q_thread_num; j++) { 1692 cv_destroy(&mpt->m_tx_waitq[j].txwq_cv); 1693 cv_destroy(&mpt->m_tx_waitq[j].txwq_drain_cv); 1694 mutex_destroy(&mpt->m_tx_waitq[j].txwq_mutex); 1695 } 1696 } 1697 if (event_taskq_create) { 1698 ddi_taskq_destroy(mpt->m_event_taskq); 1699 } 1700 if (dr_taskq_create) { 1701 ddi_taskq_destroy(mpt->m_dr_taskq); 1702 } 1703 if (mutex_init_done) { 1704 mutex_destroy(&mpt->m_qthread_mutex); 1705 mutex_destroy(&mpt->m_passthru_mutex); 1706 mutex_destroy(&mpt->m_mutex); 1707 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 1708 mutex_destroy( 1709 &mpt->m_phy_info[i].smhba_info.phy_mutex); 1710 } 1711 cv_destroy(&mpt->m_qthread_cv); 1712 cv_destroy(&mpt->m_cv); 1713 cv_destroy(&mpt->m_passthru_cv); 1714 cv_destroy(&mpt->m_fw_cv); 1715 cv_destroy(&mpt->m_config_cv); 1716 cv_destroy(&mpt->m_fw_diag_cv); 1717 } 1718 1719 if (map_setup) { 1720 mptsas_cfg_fini(mpt); 1721 } 1722 if (config_setup) { 1723 mptsas_config_space_fini(mpt); 1724 } 1725 mptsas_free_handshake_msg(mpt); 1726 mptsas_hba_fini(mpt); 1727 1728 mptsas_fm_fini(mpt); 1729 ddi_soft_state_free(mptsas3_state, instance); 1730 ddi_prop_remove_all(dip); 1731 } 1732 return (DDI_FAILURE); 1733 } 1734 1735 static int 1736 mptsas_suspend(dev_info_t *devi) 1737 { 1738 mptsas_t *mpt, *g; 1739 scsi_hba_tran_t *tran; 1740 1741 if (scsi_hba_iport_unit_address(devi)) { 1742 return (DDI_SUCCESS); 1743 } 1744 1745 if ((tran = ddi_get_driver_private(devi)) == NULL) 1746 return (DDI_SUCCESS); 1747 1748 mpt = TRAN2MPT(tran); 1749 if (!mpt) { 1750 return (DDI_SUCCESS); 1751 } 1752 1753 mutex_enter(&mpt->m_mutex); 1754 1755 if (mpt->m_suspended++) { 1756 mutex_exit(&mpt->m_mutex); 1757 return (DDI_SUCCESS); 1758 } 1759 1760 /* 1761 * Cancel timeout threads for this mpt 1762 */ 1763 if (mpt->m_quiesce_timeid) { 1764 timeout_id_t tid = mpt->m_quiesce_timeid; 1765 mpt->m_quiesce_timeid = 0; 1766 mutex_exit(&mpt->m_mutex); 1767 (void) untimeout(tid); 1768 mutex_enter(&mpt->m_mutex); 1769 } 1770 1771 if (mpt->m_restart_cmd_timeid) { 1772 timeout_id_t tid = mpt->m_restart_cmd_timeid; 1773 mpt->m_restart_cmd_timeid = 0; 1774 mutex_exit(&mpt->m_mutex); 1775 (void) untimeout(tid); 1776 mutex_enter(&mpt->m_mutex); 1777 } 1778 1779 mutex_exit(&mpt->m_mutex); 1780 1781 (void) pm_idle_component(mpt->m_dip, 0); 1782 1783 /* 1784 * Cancel watch threads if all mpts suspended 1785 */ 1786 rw_enter(&mptsas_global_rwlock, RW_WRITER); 1787 for (g = mptsas_head; g != NULL; g = g->m_next) { 1788 if (!g->m_suspended) 1789 break; 1790 } 1791 rw_exit(&mptsas_global_rwlock); 1792 1793 mutex_enter(&mptsas_global_mutex); 1794 if (g == NULL) { 1795 timeout_id_t tid; 1796 1797 mptsas_timeouts_enabled = 0; 1798 if (mptsas_timeout_id) { 1799 tid = mptsas_timeout_id; 1800 mptsas_timeout_id = 0; 1801 mutex_exit(&mptsas_global_mutex); 1802 (void) untimeout(tid); 1803 mutex_enter(&mptsas_global_mutex); 1804 } 1805 if (mptsas_reset_watch) { 1806 tid = mptsas_reset_watch; 1807 mptsas_reset_watch = 0; 1808 mutex_exit(&mptsas_global_mutex); 1809 (void) untimeout(tid); 1810 mutex_enter(&mptsas_global_mutex); 1811 } 1812 } 1813 mutex_exit(&mptsas_global_mutex); 1814 1815 mutex_enter(&mpt->m_mutex); 1816 1817 /* 1818 * If this mpt is not in full power(PM_LEVEL_D0), just return. 1819 */ 1820 if ((mpt->m_options & MPTSAS_OPT_PM) && 1821 (mpt->m_power_level != PM_LEVEL_D0)) { 1822 mutex_exit(&mpt->m_mutex); 1823 return (DDI_SUCCESS); 1824 } 1825 1826 /* Disable HBA interrupts in hardware */ 1827 MPTSAS_DISABLE_INTR(mpt); 1828 /* 1829 * Send RAID action system shutdown to sync IR 1830 */ 1831 mptsas_raid_action_system_shutdown(mpt); 1832 1833 mutex_exit(&mpt->m_mutex); 1834 1835 /* drain the taskq */ 1836 ddi_taskq_wait(mpt->m_event_taskq); 1837 ddi_taskq_wait(mpt->m_dr_taskq); 1838 1839 return (DDI_SUCCESS); 1840 } 1841 1842 #ifdef __sparc 1843 /*ARGSUSED*/ 1844 static int 1845 mptsas_reset(dev_info_t *devi, ddi_reset_cmd_t cmd) 1846 { 1847 mptsas_t *mpt; 1848 scsi_hba_tran_t *tran; 1849 1850 /* 1851 * If this call is for iport, just return. 1852 */ 1853 if (scsi_hba_iport_unit_address(devi)) 1854 return (DDI_SUCCESS); 1855 1856 if ((tran = ddi_get_driver_private(devi)) == NULL) 1857 return (DDI_SUCCESS); 1858 1859 if ((mpt = TRAN2MPT(tran)) == NULL) 1860 return (DDI_SUCCESS); 1861 1862 /* 1863 * Send RAID action system shutdown to sync IR. Disable HBA 1864 * interrupts in hardware first. 1865 */ 1866 MPTSAS_DISABLE_INTR(mpt); 1867 mptsas_raid_action_system_shutdown(mpt); 1868 1869 return (DDI_SUCCESS); 1870 } 1871 #else /* __sparc */ 1872 /* 1873 * quiesce(9E) entry point. 1874 * 1875 * This function is called when the system is single-threaded at high 1876 * PIL with preemption disabled. Therefore, this function must not be 1877 * blocked. 1878 * 1879 * This function returns DDI_SUCCESS on success, or DDI_FAILURE on failure. 1880 * DDI_FAILURE indicates an error condition and should almost never happen. 1881 */ 1882 static int 1883 mptsas_quiesce(dev_info_t *devi) 1884 { 1885 mptsas_t *mpt; 1886 scsi_hba_tran_t *tran; 1887 1888 /* 1889 * If this call is for iport, just return. 1890 */ 1891 if (scsi_hba_iport_unit_address(devi)) 1892 return (DDI_SUCCESS); 1893 1894 if ((tran = ddi_get_driver_private(devi)) == NULL) 1895 return (DDI_SUCCESS); 1896 1897 if ((mpt = TRAN2MPT(tran)) == NULL) 1898 return (DDI_SUCCESS); 1899 1900 /* Disable HBA interrupts in hardware */ 1901 MPTSAS_DISABLE_INTR(mpt); 1902 /* Send RAID action system shutdonw to sync IR */ 1903 mptsas_raid_action_system_shutdown(mpt); 1904 1905 return (DDI_SUCCESS); 1906 } 1907 #endif /* __sparc */ 1908 1909 /* 1910 * detach(9E). Remove all device allocations and system resources; 1911 * disable device interrupts. 1912 * Return DDI_SUCCESS if done; DDI_FAILURE if there's a problem. 1913 */ 1914 static int 1915 mptsas_detach(dev_info_t *devi, ddi_detach_cmd_t cmd) 1916 { 1917 /* CONSTCOND */ 1918 ASSERT(NO_COMPETING_THREADS); 1919 NDBG0(("mptsas_detach: dip=0x%p cmd=0x%p", (void *)devi, (void *)cmd)); 1920 1921 switch (cmd) { 1922 case DDI_DETACH: 1923 return (mptsas_do_detach(devi)); 1924 1925 case DDI_SUSPEND: 1926 return (mptsas_suspend(devi)); 1927 1928 default: 1929 return (DDI_FAILURE); 1930 } 1931 /* NOTREACHED */ 1932 } 1933 1934 static int 1935 mptsas_do_detach(dev_info_t *dip) 1936 { 1937 mptsas_t *mpt; 1938 scsi_hba_tran_t *tran; 1939 int circ = 0; 1940 int circ1 = 0; 1941 mdi_pathinfo_t *pip = NULL; 1942 int i; 1943 int q_thread_num = 0; 1944 1945 NDBG0(("mptsas_do_detach: dip=0x%p", (void *)dip)); 1946 1947 if ((tran = ndi_flavorv_get(dip, SCSA_FLAVOR_SCSI_DEVICE)) == NULL) 1948 return (DDI_FAILURE); 1949 1950 mpt = TRAN2MPT(tran); 1951 if (!mpt) { 1952 return (DDI_FAILURE); 1953 } 1954 /* 1955 * Still have pathinfo child, should not detach mpt driver 1956 */ 1957 if (scsi_hba_iport_unit_address(dip)) { 1958 if (mpt->m_mpxio_enable) { 1959 /* 1960 * MPxIO enabled for the iport 1961 */ 1962 ndi_devi_enter(scsi_vhci_dip, &circ1); 1963 ndi_devi_enter(dip, &circ); 1964 while (pip = mdi_get_next_client_path(dip, NULL)) { 1965 if (mdi_pi_free(pip, 0) == MDI_SUCCESS) { 1966 continue; 1967 } 1968 ndi_devi_exit(dip, circ); 1969 ndi_devi_exit(scsi_vhci_dip, circ1); 1970 NDBG12(("detach failed because of " 1971 "outstanding path info")); 1972 return (DDI_FAILURE); 1973 } 1974 ndi_devi_exit(dip, circ); 1975 ndi_devi_exit(scsi_vhci_dip, circ1); 1976 (void) mdi_phci_unregister(dip, 0); 1977 } 1978 1979 ddi_prop_remove_all(dip); 1980 1981 return (DDI_SUCCESS); 1982 } 1983 1984 /* Make sure power level is D0 before accessing registers */ 1985 if (mpt->m_options & MPTSAS_OPT_PM) { 1986 (void) pm_busy_component(dip, 0); 1987 if (mpt->m_power_level != PM_LEVEL_D0) { 1988 if (pm_raise_power(dip, 0, PM_LEVEL_D0) != 1989 DDI_SUCCESS) { 1990 mptsas_log(mpt, CE_WARN, 1991 "mptsas3%d: Raise power request failed.", 1992 mpt->m_instance); 1993 (void) pm_idle_component(dip, 0); 1994 return (DDI_FAILURE); 1995 } 1996 } 1997 } 1998 1999 /* 2000 * Send RAID action system shutdown to sync IR. After action, send a 2001 * Message Unit Reset. Since after that DMA resource will be freed, 2002 * set ioc to READY state will avoid HBA initiated DMA operation. 2003 */ 2004 mutex_enter(&mpt->m_mutex); 2005 MPTSAS_DISABLE_INTR(mpt); 2006 mptsas_raid_action_system_shutdown(mpt); 2007 mpt->m_softstate |= MPTSAS_SS_MSG_UNIT_RESET; 2008 (void) mptsas_ioc_reset(mpt, FALSE); 2009 mutex_exit(&mpt->m_mutex); 2010 mptsas_rem_intrs(mpt); 2011 ddi_taskq_destroy(mpt->m_event_taskq); 2012 ddi_taskq_destroy(mpt->m_dr_taskq); 2013 2014 if (mpt->m_doneq_thread_n) { 2015 mutex_enter(&mpt->m_qthread_mutex); 2016 q_thread_num = mpt->m_doneq_thread_n; 2017 for (i = 0; i < mpt->m_doneq_thread_n; i++) { 2018 mutex_enter(&mpt->m_doneq_thread_id[i].mutex); 2019 mpt->m_doneq_thread_id[i].flag &= 2020 (~MPTSAS_DONEQ_THREAD_ACTIVE); 2021 cv_signal(&mpt->m_doneq_thread_id[i].cv); 2022 mutex_exit(&mpt->m_doneq_thread_id[i].mutex); 2023 } 2024 while (mpt->m_doneq_thread_n) { 2025 cv_wait(&mpt->m_qthread_cv, 2026 &mpt->m_qthread_mutex); 2027 } 2028 for (i = 0; i < q_thread_num; i++) { 2029 cv_destroy(&mpt->m_doneq_thread_id[i].cv); 2030 mutex_destroy(&mpt->m_doneq_thread_id[i].mutex); 2031 } 2032 kmem_free(mpt->m_doneq_thread_id, 2033 sizeof (mptsas_doneq_thread_list_t) 2034 * q_thread_num); 2035 mutex_exit(&mpt->m_qthread_mutex); 2036 } 2037 if (mpt->m_txwq_thread_n) { 2038 mutex_enter(&mpt->m_qthread_mutex); 2039 q_thread_num = mpt->m_txwq_thread_n; 2040 for (i = 0; i < q_thread_num; i++) { 2041 mutex_enter(&mpt->m_tx_waitq[i].txwq_mutex); 2042 mpt->m_tx_waitq[i].txwq_active = FALSE; 2043 cv_signal(&mpt->m_tx_waitq[i].txwq_cv); 2044 mutex_exit(&mpt->m_tx_waitq[i].txwq_mutex); 2045 } 2046 while (mpt->m_txwq_thread_n) { 2047 cv_wait(&mpt->m_qthread_cv, 2048 &mpt->m_qthread_mutex); 2049 } 2050 for (i = 0; i < q_thread_num; i++) { 2051 cv_destroy(&mpt->m_tx_waitq[i].txwq_cv); 2052 cv_destroy(&mpt->m_tx_waitq[i].txwq_drain_cv); 2053 mutex_destroy(&mpt->m_tx_waitq[i].txwq_mutex); 2054 } 2055 } 2056 2057 scsi_hba_reset_notify_tear_down(mpt->m_reset_notify_listf); 2058 2059 mptsas_list_del(mpt); 2060 2061 /* 2062 * Cancel timeout threads for this mpt 2063 */ 2064 mutex_enter(&mpt->m_mutex); 2065 if (mpt->m_quiesce_timeid) { 2066 timeout_id_t tid = mpt->m_quiesce_timeid; 2067 mpt->m_quiesce_timeid = 0; 2068 mutex_exit(&mpt->m_mutex); 2069 (void) untimeout(tid); 2070 mutex_enter(&mpt->m_mutex); 2071 } 2072 2073 if (mpt->m_restart_cmd_timeid) { 2074 timeout_id_t tid = mpt->m_restart_cmd_timeid; 2075 mpt->m_restart_cmd_timeid = 0; 2076 mutex_exit(&mpt->m_mutex); 2077 (void) untimeout(tid); 2078 mutex_enter(&mpt->m_mutex); 2079 } 2080 2081 mutex_exit(&mpt->m_mutex); 2082 2083 /* 2084 * last mpt? ... if active, CANCEL watch threads. 2085 */ 2086 mutex_enter(&mptsas_global_mutex); 2087 if (mptsas_head == NULL) { 2088 timeout_id_t tid; 2089 /* 2090 * Clear mptsas_timeouts_enable so that the watch thread 2091 * gets restarted on DDI_ATTACH 2092 */ 2093 mptsas_timeouts_enabled = 0; 2094 if (mptsas_timeout_id) { 2095 tid = mptsas_timeout_id; 2096 mptsas_timeout_id = 0; 2097 mutex_exit(&mptsas_global_mutex); 2098 (void) untimeout(tid); 2099 mutex_enter(&mptsas_global_mutex); 2100 } 2101 if (mptsas_reset_watch) { 2102 tid = mptsas_reset_watch; 2103 mptsas_reset_watch = 0; 2104 mutex_exit(&mptsas_global_mutex); 2105 (void) untimeout(tid); 2106 mutex_enter(&mptsas_global_mutex); 2107 } 2108 } 2109 mutex_exit(&mptsas_global_mutex); 2110 2111 /* 2112 * Delete Phy stats 2113 */ 2114 mptsas_destroy_phy_stats(mpt); 2115 2116 mptsas_destroy_hashes(mpt); 2117 2118 /* 2119 * Delete nt_active. 2120 */ 2121 mutex_enter(&mpt->m_mutex); 2122 mptsas_free_active_slots(mpt); 2123 mutex_exit(&mpt->m_mutex); 2124 2125 /* deallocate everything that was allocated in mptsas_attach */ 2126 mptsas_cache_destroy(mpt); 2127 2128 mptsas_hba_fini(mpt); 2129 mptsas_cfg_fini(mpt); 2130 2131 /* Lower the power informing PM Framework */ 2132 if (mpt->m_options & MPTSAS_OPT_PM) { 2133 if (pm_lower_power(dip, 0, PM_LEVEL_D3) != DDI_SUCCESS) 2134 mptsas_log(mpt, CE_WARN, 2135 "!mptsas3%d: Lower power request failed " 2136 "during detach, ignoring.", 2137 mpt->m_instance); 2138 } 2139 2140 mutex_destroy(&mpt->m_qthread_mutex); 2141 mutex_destroy(&mpt->m_passthru_mutex); 2142 mutex_destroy(&mpt->m_mutex); 2143 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 2144 mutex_destroy(&mpt->m_phy_info[i].smhba_info.phy_mutex); 2145 } 2146 cv_destroy(&mpt->m_qthread_cv); 2147 cv_destroy(&mpt->m_cv); 2148 cv_destroy(&mpt->m_passthru_cv); 2149 cv_destroy(&mpt->m_fw_cv); 2150 cv_destroy(&mpt->m_config_cv); 2151 cv_destroy(&mpt->m_fw_diag_cv); 2152 2153 2154 mptsas_smp_teardown(mpt); 2155 mptsas_hba_teardown(mpt); 2156 2157 mptsas_config_space_fini(mpt); 2158 2159 mptsas_free_handshake_msg(mpt); 2160 2161 mptsas_fm_fini(mpt); 2162 ddi_soft_state_free(mptsas3_state, ddi_get_instance(dip)); 2163 ddi_prop_remove_all(dip); 2164 2165 return (DDI_SUCCESS); 2166 } 2167 2168 static void 2169 mptsas_list_add(mptsas_t *mpt) 2170 { 2171 rw_enter(&mptsas_global_rwlock, RW_WRITER); 2172 2173 if (mptsas_head == NULL) { 2174 mptsas_head = mpt; 2175 } else { 2176 mptsas_tail->m_next = mpt; 2177 } 2178 mptsas_tail = mpt; 2179 rw_exit(&mptsas_global_rwlock); 2180 } 2181 2182 static void 2183 mptsas_list_del(mptsas_t *mpt) 2184 { 2185 mptsas_t *m; 2186 /* 2187 * Remove device instance from the global linked list 2188 */ 2189 rw_enter(&mptsas_global_rwlock, RW_WRITER); 2190 if (mptsas_head == mpt) { 2191 m = mptsas_head = mpt->m_next; 2192 } else { 2193 for (m = mptsas_head; m != NULL; m = m->m_next) { 2194 if (m->m_next == mpt) { 2195 m->m_next = mpt->m_next; 2196 break; 2197 } 2198 } 2199 if (m == NULL) { 2200 mptsas_log(mpt, CE_PANIC, "Not in softc list!"); 2201 } 2202 } 2203 2204 if (mptsas_tail == mpt) { 2205 mptsas_tail = m; 2206 } 2207 rw_exit(&mptsas_global_rwlock); 2208 } 2209 2210 static int 2211 mptsas_alloc_handshake_msg(mptsas_t *mpt, size_t alloc_size) 2212 { 2213 ddi_dma_attr_t task_dma_attrs; 2214 2215 mpt->m_hshk_dma_size = 0; 2216 task_dma_attrs = mpt->m_msg_dma_attr; 2217 task_dma_attrs.dma_attr_sgllen = 1; 2218 task_dma_attrs.dma_attr_granular = (uint32_t)(alloc_size); 2219 2220 /* allocate Task Management ddi_dma resources */ 2221 if (mptsas_dma_addr_create(mpt, task_dma_attrs, 2222 &mpt->m_hshk_dma_hdl, &mpt->m_hshk_acc_hdl, &mpt->m_hshk_memp, 2223 alloc_size, NULL) == FALSE) { 2224 return (DDI_FAILURE); 2225 } 2226 mpt->m_hshk_dma_size = alloc_size; 2227 2228 return (DDI_SUCCESS); 2229 } 2230 2231 static void 2232 mptsas_free_handshake_msg(mptsas_t *mpt) 2233 { 2234 if (mpt->m_hshk_dma_size == 0) 2235 return; 2236 mptsas_dma_addr_destroy(&mpt->m_hshk_dma_hdl, &mpt->m_hshk_acc_hdl); 2237 mpt->m_hshk_dma_size = 0; 2238 } 2239 2240 static int 2241 mptsas_hba_setup(mptsas_t *mpt) 2242 { 2243 scsi_hba_tran_t *hba_tran; 2244 int tran_flags; 2245 2246 /* Allocate a transport structure */ 2247 hba_tran = mpt->m_tran = scsi_hba_tran_alloc(mpt->m_dip, 2248 SCSI_HBA_CANSLEEP); 2249 ASSERT(mpt->m_tran != NULL); 2250 2251 hba_tran->tran_hba_private = mpt; 2252 hba_tran->tran_tgt_private = NULL; 2253 2254 hba_tran->tran_tgt_init = mptsas_scsi_tgt_init; 2255 hba_tran->tran_tgt_free = mptsas_scsi_tgt_free; 2256 2257 hba_tran->tran_start = mptsas_scsi_start; 2258 hba_tran->tran_reset = mptsas_scsi_reset; 2259 hba_tran->tran_abort = mptsas_scsi_abort; 2260 hba_tran->tran_getcap = mptsas_scsi_getcap; 2261 hba_tran->tran_setcap = mptsas_scsi_setcap; 2262 hba_tran->tran_init_pkt = mptsas_scsi_init_pkt; 2263 hba_tran->tran_destroy_pkt = mptsas_scsi_destroy_pkt; 2264 2265 hba_tran->tran_dmafree = mptsas_scsi_dmafree; 2266 hba_tran->tran_sync_pkt = mptsas_scsi_sync_pkt; 2267 hba_tran->tran_reset_notify = mptsas_scsi_reset_notify; 2268 2269 hba_tran->tran_get_bus_addr = mptsas_get_bus_addr; 2270 hba_tran->tran_get_name = mptsas_get_name; 2271 2272 hba_tran->tran_quiesce = mptsas_scsi_quiesce; 2273 hba_tran->tran_unquiesce = mptsas_scsi_unquiesce; 2274 hba_tran->tran_bus_reset = NULL; 2275 2276 hba_tran->tran_add_eventcall = NULL; 2277 hba_tran->tran_get_eventcookie = NULL; 2278 hba_tran->tran_post_event = NULL; 2279 hba_tran->tran_remove_eventcall = NULL; 2280 2281 hba_tran->tran_bus_config = mptsas_bus_config; 2282 2283 hba_tran->tran_interconnect_type = INTERCONNECT_SAS; 2284 2285 /* 2286 * All children of the HBA are iports. We need tran was cloned. 2287 * So we pass the flags to SCSA. SCSI_HBA_TRAN_CLONE will be 2288 * inherited to iport's tran vector. 2289 */ 2290 tran_flags = (SCSI_HBA_HBA | SCSI_HBA_TRAN_CLONE); 2291 2292 if (scsi_hba_attach_setup(mpt->m_dip, &mpt->m_msg_dma_attr, 2293 hba_tran, tran_flags) != DDI_SUCCESS) { 2294 mptsas_log(mpt, CE_WARN, "hba attach setup failed"); 2295 scsi_hba_tran_free(hba_tran); 2296 mpt->m_tran = NULL; 2297 return (FALSE); 2298 } 2299 return (TRUE); 2300 } 2301 2302 static void 2303 mptsas_hba_teardown(mptsas_t *mpt) 2304 { 2305 (void) scsi_hba_detach(mpt->m_dip); 2306 if (mpt->m_tran != NULL) { 2307 scsi_hba_tran_free(mpt->m_tran); 2308 mpt->m_tran = NULL; 2309 } 2310 } 2311 2312 static void 2313 mptsas_iport_register(mptsas_t *mpt) 2314 { 2315 int i, j; 2316 mptsas_phymask_t mask = 0x0; 2317 /* 2318 * initial value of mask is 0 2319 */ 2320 mutex_enter(&mpt->m_mutex); 2321 for (i = 0; i < mpt->m_num_phys; i++) { 2322 mptsas_phymask_t phy_mask = 0x0; 2323 char phy_mask_name[MPTSAS_MAX_PHYS]; 2324 uint8_t current_port; 2325 2326 if (mpt->m_phy_info[i].attached_devhdl == 0) 2327 continue; 2328 2329 bzero(phy_mask_name, sizeof (phy_mask_name)); 2330 2331 current_port = mpt->m_phy_info[i].port_num; 2332 2333 if ((mask & (1 << i)) != 0) 2334 continue; 2335 2336 for (j = 0; j < mpt->m_num_phys; j++) { 2337 if (mpt->m_phy_info[j].attached_devhdl && 2338 (mpt->m_phy_info[j].port_num == current_port)) { 2339 phy_mask |= (1 << j); 2340 } 2341 } 2342 mask = mask | phy_mask; 2343 2344 for (j = 0; j < mpt->m_num_phys; j++) { 2345 if ((phy_mask >> j) & 0x01) { 2346 mpt->m_phy_info[j].phy_mask = phy_mask; 2347 } 2348 } 2349 2350 (void) sprintf(phy_mask_name, "%x", phy_mask); 2351 2352 mutex_exit(&mpt->m_mutex); 2353 /* 2354 * register a iport 2355 */ 2356 (void) scsi_hba_iport_register(mpt->m_dip, phy_mask_name); 2357 mutex_enter(&mpt->m_mutex); 2358 } 2359 mutex_exit(&mpt->m_mutex); 2360 /* 2361 * register a virtual port for RAID volume always 2362 */ 2363 (void) scsi_hba_iport_register(mpt->m_dip, "v0"); 2364 2365 } 2366 2367 static int 2368 mptsas_smp_setup(mptsas_t *mpt) 2369 { 2370 mpt->m_smptran = smp_hba_tran_alloc(mpt->m_dip); 2371 ASSERT(mpt->m_smptran != NULL); 2372 mpt->m_smptran->smp_tran_hba_private = mpt; 2373 mpt->m_smptran->smp_tran_start = mptsas_smp_start; 2374 if (smp_hba_attach_setup(mpt->m_dip, mpt->m_smptran) != DDI_SUCCESS) { 2375 mptsas_log(mpt, CE_WARN, "smp attach setup failed"); 2376 smp_hba_tran_free(mpt->m_smptran); 2377 mpt->m_smptran = NULL; 2378 return (FALSE); 2379 } 2380 /* 2381 * Initialize smp hash table 2382 */ 2383 mpt->m_smp_targets = refhash_create(MPTSAS_SMP_BUCKET_COUNT, 2384 mptsas_target_addr_hash, mptsas_target_addr_cmp, 2385 mptsas_smp_free, sizeof (mptsas_smp_t), 2386 offsetof(mptsas_smp_t, m_link), offsetof(mptsas_smp_t, m_addr), 2387 KM_SLEEP); 2388 mpt->m_smp_devhdl = 0xFFFF; 2389 2390 return (TRUE); 2391 } 2392 2393 static void 2394 mptsas_smp_teardown(mptsas_t *mpt) 2395 { 2396 (void) smp_hba_detach(mpt->m_dip); 2397 if (mpt->m_smptran != NULL) { 2398 smp_hba_tran_free(mpt->m_smptran); 2399 mpt->m_smptran = NULL; 2400 } 2401 mpt->m_smp_devhdl = 0; 2402 } 2403 2404 static int 2405 mptsas_cache_create(mptsas_t *mpt) 2406 { 2407 int instance = mpt->m_instance; 2408 char buf[64]; 2409 2410 /* 2411 * create kmem cache for packets 2412 */ 2413 (void) sprintf(buf, "mptsas3%d_cache", instance); 2414 mpt->m_kmem_cache = kmem_cache_create(buf, 2415 sizeof (struct mptsas_cmd) + scsi_pkt_size(), 16, 2416 mptsas_kmem_cache_constructor, mptsas_kmem_cache_destructor, 2417 NULL, (void *)mpt, NULL, 0); 2418 2419 if (mpt->m_kmem_cache == NULL) { 2420 mptsas_log(mpt, CE_WARN, "creating kmem cache failed"); 2421 return (FALSE); 2422 } 2423 2424 /* 2425 * create kmem cache for extra SGL frames if SGL cannot 2426 * be accomodated into main request frame. 2427 */ 2428 (void) sprintf(buf, "mptsas3%d_cache_frames", instance); 2429 mpt->m_cache_frames = kmem_cache_create(buf, 2430 sizeof (mptsas_cache_frames_t), 16, 2431 mptsas_cache_frames_constructor, mptsas_cache_frames_destructor, 2432 NULL, (void *)mpt, NULL, 0); 2433 2434 if (mpt->m_cache_frames == NULL) { 2435 mptsas_log(mpt, CE_WARN, "creating cache for frames failed"); 2436 return (FALSE); 2437 } 2438 2439 return (TRUE); 2440 } 2441 2442 static void 2443 mptsas_cache_destroy(mptsas_t *mpt) 2444 { 2445 /* deallocate in reverse order */ 2446 if (mpt->m_cache_frames) { 2447 kmem_cache_destroy(mpt->m_cache_frames); 2448 mpt->m_cache_frames = NULL; 2449 } 2450 if (mpt->m_kmem_cache) { 2451 kmem_cache_destroy(mpt->m_kmem_cache); 2452 mpt->m_kmem_cache = NULL; 2453 } 2454 } 2455 2456 static int 2457 mptsas_power(dev_info_t *dip, int component, int level) 2458 { 2459 #ifndef __lock_lint 2460 _NOTE(ARGUNUSED(component)) 2461 #endif 2462 mptsas_t *mpt; 2463 int rval = DDI_SUCCESS; 2464 int polls = 0; 2465 uint32_t ioc_status; 2466 2467 if (scsi_hba_iport_unit_address(dip) != 0) 2468 return (DDI_SUCCESS); 2469 2470 mpt = ddi_get_soft_state(mptsas3_state, ddi_get_instance(dip)); 2471 if (mpt == NULL) { 2472 return (DDI_FAILURE); 2473 } 2474 2475 mutex_enter(&mpt->m_mutex); 2476 2477 /* 2478 * If the device is busy, don't lower its power level 2479 */ 2480 if (mpt->m_busy && (mpt->m_power_level > level)) { 2481 mutex_exit(&mpt->m_mutex); 2482 return (DDI_FAILURE); 2483 } 2484 switch (level) { 2485 case PM_LEVEL_D0: 2486 NDBG11(("mptsas3%d: turning power ON.", mpt->m_instance)); 2487 MPTSAS_POWER_ON(mpt); 2488 /* 2489 * Wait up to 30 seconds for IOC to come out of reset. 2490 */ 2491 while (((ioc_status = ddi_get32(mpt->m_datap, 2492 &mpt->m_reg->Doorbell)) & 2493 MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_RESET) { 2494 if (polls++ > 3000) { 2495 break; 2496 } 2497 delay(drv_usectohz(10000)); 2498 } 2499 /* 2500 * If IOC is not in operational state, try to hard reset it. 2501 */ 2502 if ((ioc_status & MPI2_IOC_STATE_MASK) != 2503 MPI2_IOC_STATE_OPERATIONAL) { 2504 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 2505 if (mptsas_restart_ioc(mpt) == DDI_FAILURE) { 2506 mptsas_log(mpt, CE_WARN, 2507 "mptsas_power: hard reset failed"); 2508 mutex_exit(&mpt->m_mutex); 2509 return (DDI_FAILURE); 2510 } 2511 } 2512 mpt->m_power_level = PM_LEVEL_D0; 2513 break; 2514 case PM_LEVEL_D3: 2515 NDBG11(("mptsas3%d: turning power OFF.", mpt->m_instance)); 2516 MPTSAS_POWER_OFF(mpt); 2517 break; 2518 default: 2519 mptsas_log(mpt, CE_WARN, "mptsas3%d: unknown power level <%x>.", 2520 mpt->m_instance, level); 2521 rval = DDI_FAILURE; 2522 break; 2523 } 2524 mutex_exit(&mpt->m_mutex); 2525 return (rval); 2526 } 2527 2528 /* 2529 * Initialize configuration space and figure out which 2530 * chip and revison of the chip the mpt driver is using. 2531 */ 2532 static int 2533 mptsas_config_space_init(mptsas_t *mpt) 2534 { 2535 NDBG0(("mptsas_config_space_init")); 2536 2537 if (mpt->m_config_handle != NULL) 2538 return (TRUE); 2539 2540 if (pci_config_setup(mpt->m_dip, 2541 &mpt->m_config_handle) != DDI_SUCCESS) { 2542 mptsas_log(mpt, CE_WARN, "cannot map configuration space."); 2543 return (FALSE); 2544 } 2545 2546 /* 2547 * This is a workaround for a XMITS ASIC bug which does not 2548 * drive the CBE upper bits. 2549 */ 2550 if (pci_config_get16(mpt->m_config_handle, PCI_CONF_STAT) & 2551 PCI_STAT_PERROR) { 2552 pci_config_put16(mpt->m_config_handle, PCI_CONF_STAT, 2553 PCI_STAT_PERROR); 2554 } 2555 2556 mptsas_setup_cmd_reg(mpt); 2557 2558 /* 2559 * Get the chip device id: 2560 */ 2561 mpt->m_devid = pci_config_get16(mpt->m_config_handle, PCI_CONF_DEVID); 2562 2563 /* 2564 * Save the revision. 2565 */ 2566 mpt->m_revid = pci_config_get8(mpt->m_config_handle, PCI_CONF_REVID); 2567 2568 /* 2569 * Save the SubSystem Vendor and Device IDs 2570 */ 2571 mpt->m_svid = pci_config_get16(mpt->m_config_handle, PCI_CONF_SUBVENID); 2572 mpt->m_ssid = pci_config_get16(mpt->m_config_handle, PCI_CONF_SUBSYSID); 2573 2574 /* 2575 * Set the latency timer to 0x40 as specified by the upa -> pci 2576 * bridge chip design team. This may be done by the sparc pci 2577 * bus nexus driver, but the driver should make sure the latency 2578 * timer is correct for performance reasons. 2579 */ 2580 pci_config_put8(mpt->m_config_handle, PCI_CONF_LATENCY_TIMER, 2581 MPTSAS_LATENCY_TIMER); 2582 2583 (void) mptsas_get_pci_cap(mpt); 2584 return (TRUE); 2585 } 2586 2587 static void 2588 mptsas_config_space_fini(mptsas_t *mpt) 2589 { 2590 if (mpt->m_config_handle != NULL) { 2591 mptsas_disable_bus_master(mpt); 2592 pci_config_teardown(&mpt->m_config_handle); 2593 mpt->m_config_handle = NULL; 2594 } 2595 } 2596 2597 static void 2598 mptsas_setup_cmd_reg(mptsas_t *mpt) 2599 { 2600 ushort_t cmdreg; 2601 2602 /* 2603 * Set the command register to the needed values. 2604 */ 2605 cmdreg = pci_config_get16(mpt->m_config_handle, PCI_CONF_COMM); 2606 cmdreg |= (PCI_COMM_ME | PCI_COMM_SERR_ENABLE | 2607 PCI_COMM_PARITY_DETECT | PCI_COMM_MAE); 2608 cmdreg &= ~PCI_COMM_IO; 2609 pci_config_put16(mpt->m_config_handle, PCI_CONF_COMM, cmdreg); 2610 } 2611 2612 static void 2613 mptsas_disable_bus_master(mptsas_t *mpt) 2614 { 2615 ushort_t cmdreg; 2616 2617 /* 2618 * Clear the master enable bit in the PCI command register. 2619 * This prevents any bus mastering activity like DMA. 2620 */ 2621 cmdreg = pci_config_get16(mpt->m_config_handle, PCI_CONF_COMM); 2622 cmdreg &= ~PCI_COMM_ME; 2623 pci_config_put16(mpt->m_config_handle, PCI_CONF_COMM, cmdreg); 2624 } 2625 2626 int 2627 mptsas_dma_alloc(mptsas_t *mpt, mptsas_dma_alloc_state_t *dma_statep) 2628 { 2629 ddi_dma_attr_t attrs; 2630 2631 attrs = mpt->m_io_dma_attr; 2632 attrs.dma_attr_sgllen = 1; 2633 2634 ASSERT(dma_statep != NULL); 2635 2636 if (mptsas_dma_addr_create(mpt, attrs, &dma_statep->handle, 2637 &dma_statep->accessp, &dma_statep->memp, dma_statep->size, 2638 &dma_statep->cookie) == FALSE) { 2639 return (DDI_FAILURE); 2640 } 2641 2642 return (DDI_SUCCESS); 2643 } 2644 2645 void 2646 mptsas_dma_free(mptsas_dma_alloc_state_t *dma_statep) 2647 { 2648 ASSERT(dma_statep != NULL); 2649 mptsas_dma_addr_destroy(&dma_statep->handle, &dma_statep->accessp); 2650 dma_statep->size = 0; 2651 } 2652 2653 int 2654 mptsas_do_dma(mptsas_t *mpt, uint32_t size, int var, int (*callback)()) 2655 { 2656 ddi_dma_attr_t attrs; 2657 ddi_dma_handle_t dma_handle; 2658 caddr_t memp; 2659 ddi_acc_handle_t accessp; 2660 int rval; 2661 2662 ASSERT(mutex_owned(&mpt->m_mutex)); 2663 2664 attrs = mpt->m_msg_dma_attr; 2665 attrs.dma_attr_sgllen = 1; 2666 attrs.dma_attr_granular = size; 2667 2668 if (mptsas_dma_addr_create(mpt, attrs, &dma_handle, 2669 &accessp, &memp, size, NULL) == FALSE) { 2670 return (DDI_FAILURE); 2671 } 2672 2673 rval = (*callback) (mpt, memp, var, accessp); 2674 2675 if ((mptsas_check_dma_handle(dma_handle) != DDI_SUCCESS) || 2676 (mptsas_check_acc_handle(accessp) != DDI_SUCCESS)) { 2677 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 2678 rval = DDI_FAILURE; 2679 } 2680 2681 mptsas_dma_addr_destroy(&dma_handle, &accessp); 2682 return (rval); 2683 2684 } 2685 2686 static int 2687 mptsas_alloc_request_frames(mptsas_t *mpt) 2688 { 2689 ddi_dma_attr_t frame_dma_attrs; 2690 caddr_t memp; 2691 ddi_dma_cookie_t cookie; 2692 size_t mem_size; 2693 2694 /* 2695 * re-alloc when it has already alloced 2696 */ 2697 if (mpt->m_dma_flags & MPTSAS_REQ_FRAME) { 2698 mptsas_dma_addr_destroy(&mpt->m_dma_req_frame_hdl, 2699 &mpt->m_acc_req_frame_hdl); 2700 mpt->m_dma_flags &= ~MPTSAS_REQ_FRAME; 2701 } 2702 2703 /* 2704 * The size of the request frame pool is: 2705 * Number of Request Frames * Request Frame Size 2706 */ 2707 mem_size = mpt->m_max_requests * mpt->m_req_frame_size; 2708 2709 /* 2710 * set the DMA attributes. System Request Message Frames must be 2711 * aligned on a 16-byte boundry. 2712 */ 2713 frame_dma_attrs = mpt->m_msg_dma_attr; 2714 frame_dma_attrs.dma_attr_align = 16; 2715 frame_dma_attrs.dma_attr_sgllen = 1; 2716 2717 /* 2718 * allocate the request frame pool. 2719 */ 2720 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2721 &mpt->m_dma_req_frame_hdl, &mpt->m_acc_req_frame_hdl, &memp, 2722 mem_size, &cookie) == FALSE) { 2723 return (DDI_FAILURE); 2724 } 2725 2726 /* 2727 * Store the request frame memory address. This chip uses this 2728 * address to dma to and from the driver's frame. The second 2729 * address is the address mpt uses to fill in the frame. 2730 */ 2731 mpt->m_req_frame_dma_addr = cookie.dmac_laddress; 2732 mpt->m_req_frame = memp; 2733 2734 /* 2735 * Clear the request frame pool. 2736 */ 2737 bzero(mpt->m_req_frame, mem_size); 2738 2739 mpt->m_dma_flags |= MPTSAS_REQ_FRAME; 2740 return (DDI_SUCCESS); 2741 } 2742 2743 static int 2744 mptsas_alloc_sense_bufs(mptsas_t *mpt) 2745 { 2746 ddi_dma_attr_t sense_dma_attrs; 2747 caddr_t memp; 2748 ddi_dma_cookie_t cookie; 2749 size_t mem_size; 2750 int num_extrqsense_bufs; 2751 2752 /* 2753 * re-alloc when it has already alloced 2754 */ 2755 if (mpt->m_dma_flags & MPTSAS_REQ_SENSE) { 2756 rmfreemap(mpt->m_erqsense_map); 2757 mptsas_dma_addr_destroy(&mpt->m_dma_req_sense_hdl, 2758 &mpt->m_acc_req_sense_hdl); 2759 mpt->m_dma_flags &= ~MPTSAS_REQ_SENSE; 2760 } 2761 2762 /* 2763 * The size of the request sense pool is: 2764 * (Number of Request Frames - 2 ) * Request Sense Size + 2765 * extra memory for extended sense requests. 2766 */ 2767 mem_size = ((mpt->m_max_requests - 2) * mpt->m_req_sense_size) + 2768 mptsas_extreq_sense_bufsize; 2769 2770 /* 2771 * set the DMA attributes. ARQ buffers 2772 * aligned on a 16-byte boundry. 2773 */ 2774 sense_dma_attrs = mpt->m_msg_dma_attr; 2775 sense_dma_attrs.dma_attr_align = 16; 2776 sense_dma_attrs.dma_attr_sgllen = 1; 2777 2778 /* 2779 * allocate the request sense buffer pool. 2780 */ 2781 if (mptsas_dma_addr_create(mpt, sense_dma_attrs, 2782 &mpt->m_dma_req_sense_hdl, &mpt->m_acc_req_sense_hdl, &memp, 2783 mem_size, &cookie) == FALSE) { 2784 return (DDI_FAILURE); 2785 } 2786 2787 /* 2788 * Store the request sense base memory address. This chip uses this 2789 * address to dma the request sense data. The second 2790 * address is the address mpt uses to access the data. 2791 * The third is the base for the extended rqsense buffers. 2792 */ 2793 mpt->m_req_sense_dma_addr = cookie.dmac_laddress; 2794 mpt->m_req_sense = memp; 2795 memp += (mpt->m_max_requests - 2) * mpt->m_req_sense_size; 2796 mpt->m_extreq_sense = memp; 2797 2798 /* 2799 * The extra memory is divided up into multiples of the base 2800 * buffer size in order to allocate via rmalloc(). 2801 * Note that the rmallocmap cannot start at zero! 2802 */ 2803 num_extrqsense_bufs = mptsas_extreq_sense_bufsize / 2804 mpt->m_req_sense_size; 2805 mpt->m_erqsense_map = rmallocmap_wait(num_extrqsense_bufs); 2806 rmfree(mpt->m_erqsense_map, num_extrqsense_bufs, 1); 2807 2808 /* 2809 * Clear the pool. 2810 */ 2811 bzero(mpt->m_req_sense, mem_size); 2812 2813 mpt->m_dma_flags |= MPTSAS_REQ_SENSE; 2814 return (DDI_SUCCESS); 2815 } 2816 2817 static int 2818 mptsas_alloc_reply_frames(mptsas_t *mpt) 2819 { 2820 ddi_dma_attr_t frame_dma_attrs; 2821 caddr_t memp; 2822 ddi_dma_cookie_t cookie; 2823 size_t mem_size; 2824 2825 /* 2826 * re-alloc when it has already alloced 2827 */ 2828 if (mpt->m_dma_flags & MPTSAS_REPLY_FRAME) { 2829 mptsas_dma_addr_destroy(&mpt->m_dma_reply_frame_hdl, 2830 &mpt->m_acc_reply_frame_hdl); 2831 mpt->m_dma_flags &= ~MPTSAS_REPLY_FRAME; 2832 } 2833 2834 /* 2835 * The size of the reply frame pool is: 2836 * Number of Reply Frames * Reply Frame Size 2837 */ 2838 mem_size = mpt->m_max_replies * mpt->m_reply_frame_size; 2839 2840 /* 2841 * set the DMA attributes. System Reply Message Frames must be 2842 * aligned on a 4-byte boundry. This is the default. 2843 */ 2844 frame_dma_attrs = mpt->m_msg_dma_attr; 2845 frame_dma_attrs.dma_attr_sgllen = 1; 2846 2847 /* 2848 * allocate the reply frame pool 2849 */ 2850 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2851 &mpt->m_dma_reply_frame_hdl, &mpt->m_acc_reply_frame_hdl, &memp, 2852 mem_size, &cookie) == FALSE) { 2853 return (DDI_FAILURE); 2854 } 2855 2856 /* 2857 * Store the reply frame memory address. This chip uses this 2858 * address to dma to and from the driver's frame. The second 2859 * address is the address mpt uses to process the frame. 2860 */ 2861 mpt->m_reply_frame_dma_addr = cookie.dmac_laddress; 2862 mpt->m_reply_frame = memp; 2863 2864 /* 2865 * Clear the reply frame pool. 2866 */ 2867 bzero(mpt->m_reply_frame, mem_size); 2868 2869 mpt->m_dma_flags |= MPTSAS_REPLY_FRAME; 2870 return (DDI_SUCCESS); 2871 } 2872 2873 static int 2874 mptsas_alloc_free_queue(mptsas_t *mpt) 2875 { 2876 ddi_dma_attr_t frame_dma_attrs; 2877 caddr_t memp; 2878 ddi_dma_cookie_t cookie; 2879 size_t mem_size; 2880 2881 /* 2882 * re-alloc when it has already alloced 2883 */ 2884 if (mpt->m_dma_flags & MPTSAS_FREE_QUEUE) { 2885 mptsas_dma_addr_destroy(&mpt->m_dma_free_queue_hdl, 2886 &mpt->m_acc_free_queue_hdl); 2887 mpt->m_dma_flags &= ~MPTSAS_FREE_QUEUE; 2888 } 2889 2890 /* 2891 * The reply free queue size is: 2892 * Reply Free Queue Depth * 4 2893 * The "4" is the size of one 32 bit address (low part of 64-bit 2894 * address) 2895 */ 2896 mem_size = mpt->m_free_queue_depth * 4; 2897 2898 /* 2899 * set the DMA attributes The Reply Free Queue must be aligned on a 2900 * 16-byte boundry. 2901 */ 2902 frame_dma_attrs = mpt->m_msg_dma_attr; 2903 frame_dma_attrs.dma_attr_align = 16; 2904 frame_dma_attrs.dma_attr_sgllen = 1; 2905 2906 /* 2907 * allocate the reply free queue 2908 */ 2909 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2910 &mpt->m_dma_free_queue_hdl, &mpt->m_acc_free_queue_hdl, &memp, 2911 mem_size, &cookie) == FALSE) { 2912 return (DDI_FAILURE); 2913 } 2914 2915 /* 2916 * Store the reply free queue memory address. This chip uses this 2917 * address to read from the reply free queue. The second address 2918 * is the address mpt uses to manage the queue. 2919 */ 2920 mpt->m_free_queue_dma_addr = cookie.dmac_laddress; 2921 mpt->m_free_queue = memp; 2922 2923 /* 2924 * Clear the reply free queue memory. 2925 */ 2926 bzero(mpt->m_free_queue, mem_size); 2927 2928 mpt->m_dma_flags |= MPTSAS_FREE_QUEUE; 2929 return (DDI_SUCCESS); 2930 } 2931 2932 static void 2933 mptsas_free_post_queue(mptsas_t *mpt) 2934 { 2935 mptsas_reply_pqueue_t *rpqp; 2936 int i; 2937 2938 if (mpt->m_dma_flags & MPTSAS_POST_QUEUE) { 2939 mptsas_dma_addr_destroy(&mpt->m_dma_post_queue_hdl, 2940 &mpt->m_acc_post_queue_hdl); 2941 rpqp = mpt->m_rep_post_queues; 2942 for (i = 0; i < mpt->m_post_reply_qcount; i++) { 2943 mutex_destroy(&rpqp->rpq_mutex); 2944 rpqp++; 2945 } 2946 kmem_free(mpt->m_rep_post_queues, 2947 sizeof (mptsas_reply_pqueue_t) * 2948 mpt->m_post_reply_qcount); 2949 mpt->m_dma_flags &= ~MPTSAS_POST_QUEUE; 2950 } 2951 } 2952 2953 static int 2954 mptsas_alloc_post_queue(mptsas_t *mpt) 2955 { 2956 ddi_dma_attr_t frame_dma_attrs; 2957 caddr_t memp; 2958 ddi_dma_cookie_t cookie; 2959 size_t mem_size; 2960 mptsas_reply_pqueue_t *rpqp; 2961 int i; 2962 2963 /* 2964 * re-alloc when it has already alloced 2965 */ 2966 mptsas_free_post_queue(mpt); 2967 2968 /* 2969 * The reply descriptor post queue size is: 2970 * Reply Descriptor Post Queue Depth * 8 2971 * The "8" is the size of each descriptor (8 bytes or 64 bits). 2972 */ 2973 mpt->m_post_reply_qcount = mpt->m_intr_cnt; 2974 mem_size = mpt->m_post_queue_depth * 8 * mpt->m_post_reply_qcount; 2975 2976 /* 2977 * set the DMA attributes. The Reply Descriptor Post Queue must be 2978 * aligned on a 16-byte boundry. 2979 */ 2980 frame_dma_attrs = mpt->m_msg_dma_attr; 2981 frame_dma_attrs.dma_attr_align = 16; 2982 frame_dma_attrs.dma_attr_sgllen = 1; 2983 2984 /* 2985 * Allocate the reply post queue(s). 2986 * MPI2.5 introduces a method to allocate multiple queues 2987 * using a redirect table. For now stick to one contiguous 2988 * chunck. This can get as big as 1Mbyte for 16 queues. 2989 * The spec gives no indication that the queue size can be 2990 * reduced if you have many of them. 2991 */ 2992 if (mptsas_dma_addr_create(mpt, frame_dma_attrs, 2993 &mpt->m_dma_post_queue_hdl, &mpt->m_acc_post_queue_hdl, &memp, 2994 mem_size, &cookie) == FALSE) { 2995 return (DDI_FAILURE); 2996 } 2997 2998 /* 2999 * Store the reply descriptor post queue memory address. This chip 3000 * uses this address to write to the reply descriptor post queue. The 3001 * second address is the address mpt uses to manage the queue. 3002 */ 3003 mpt->m_post_queue_dma_addr = cookie.dmac_laddress; 3004 mpt->m_post_queue = memp; 3005 3006 mpt->m_rep_post_queues = kmem_zalloc(sizeof (mptsas_reply_pqueue_t) * 3007 mpt->m_post_reply_qcount, KM_SLEEP); 3008 rpqp = mpt->m_rep_post_queues; 3009 for (i = 0; i < mpt->m_post_reply_qcount; i++) { 3010 rpqp->rpq_queue = memp; 3011 mutex_init(&rpqp->rpq_mutex, NULL, MUTEX_DRIVER, NULL); 3012 rpqp->rpq_dlist.dl_tail = &rpqp->rpq_dlist.dl_q; 3013 rpqp->rpq_num = (uint8_t)i; 3014 memp += (mpt->m_post_queue_depth * 8); 3015 rpqp++; 3016 } 3017 3018 /* 3019 * Clear the reply post queue memory. 3020 */ 3021 bzero(mpt->m_post_queue, mem_size); 3022 3023 mpt->m_dma_flags |= MPTSAS_POST_QUEUE; 3024 return (DDI_SUCCESS); 3025 } 3026 3027 static void 3028 mptsas_alloc_reply_args(mptsas_t *mpt) 3029 { 3030 if (mpt->m_replyh_args == NULL) { 3031 mpt->m_replyh_args = kmem_zalloc(sizeof (m_replyh_arg_t) * 3032 mpt->m_max_replies, KM_SLEEP); 3033 } else { 3034 bzero(mpt->m_replyh_args, sizeof (m_replyh_arg_t) * 3035 mpt->m_max_replies); 3036 } 3037 } 3038 3039 static int 3040 mptsas_alloc_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd) 3041 { 3042 mptsas_cache_frames_t *frames = NULL; 3043 if (cmd->cmd_extra_frames == NULL) { 3044 frames = kmem_cache_alloc(mpt->m_cache_frames, KM_NOSLEEP); 3045 if (frames == NULL) { 3046 return (DDI_FAILURE); 3047 } 3048 cmd->cmd_extra_frames = frames; 3049 } 3050 return (DDI_SUCCESS); 3051 } 3052 3053 static void 3054 mptsas_free_extra_sgl_frame(mptsas_t *mpt, mptsas_cmd_t *cmd) 3055 { 3056 if (cmd->cmd_extra_frames) { 3057 kmem_cache_free(mpt->m_cache_frames, 3058 (void *)cmd->cmd_extra_frames); 3059 cmd->cmd_extra_frames = NULL; 3060 } 3061 } 3062 3063 static void 3064 mptsas_cfg_fini(mptsas_t *mpt) 3065 { 3066 NDBG0(("mptsas_cfg_fini")); 3067 ddi_regs_map_free(&mpt->m_datap); 3068 } 3069 3070 static void 3071 mptsas_hba_fini(mptsas_t *mpt) 3072 { 3073 NDBG0(("mptsas_hba_fini")); 3074 3075 /* 3076 * Free up any allocated memory 3077 */ 3078 if (mpt->m_dma_flags & MPTSAS_REQ_FRAME) { 3079 mptsas_dma_addr_destroy(&mpt->m_dma_req_frame_hdl, 3080 &mpt->m_acc_req_frame_hdl); 3081 } 3082 3083 if (mpt->m_dma_flags & MPTSAS_REQ_SENSE) { 3084 rmfreemap(mpt->m_erqsense_map); 3085 mptsas_dma_addr_destroy(&mpt->m_dma_req_sense_hdl, 3086 &mpt->m_acc_req_sense_hdl); 3087 } 3088 3089 if (mpt->m_dma_flags & MPTSAS_REPLY_FRAME) { 3090 mptsas_dma_addr_destroy(&mpt->m_dma_reply_frame_hdl, 3091 &mpt->m_acc_reply_frame_hdl); 3092 } 3093 3094 if (mpt->m_dma_flags & MPTSAS_FREE_QUEUE) { 3095 mptsas_dma_addr_destroy(&mpt->m_dma_free_queue_hdl, 3096 &mpt->m_acc_free_queue_hdl); 3097 } 3098 3099 mptsas_free_post_queue(mpt); 3100 3101 if (mpt->m_replyh_args != NULL) { 3102 kmem_free(mpt->m_replyh_args, sizeof (m_replyh_arg_t) 3103 * mpt->m_max_replies); 3104 } 3105 } 3106 3107 static int 3108 mptsas_name_child(dev_info_t *lun_dip, char *name, int len) 3109 { 3110 int lun = 0; 3111 char *sas_wwn = NULL; 3112 int phynum = -1; 3113 int reallen = 0; 3114 3115 /* Get the target num */ 3116 lun = ddi_prop_get_int(DDI_DEV_T_ANY, lun_dip, DDI_PROP_DONTPASS, 3117 LUN_PROP, 0); 3118 3119 if ((phynum = ddi_prop_get_int(DDI_DEV_T_ANY, lun_dip, 3120 DDI_PROP_DONTPASS, "sata-phy", -1)) != -1) { 3121 /* 3122 * Stick in the address of form "pPHY,LUN" 3123 */ 3124 reallen = snprintf(name, len, "p%x,%x", phynum, lun); 3125 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, lun_dip, 3126 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET_PORT, &sas_wwn) 3127 == DDI_PROP_SUCCESS) { 3128 /* 3129 * Stick in the address of the form "wWWN,LUN" 3130 */ 3131 reallen = snprintf(name, len, "%s,%x", sas_wwn, lun); 3132 ddi_prop_free(sas_wwn); 3133 } else { 3134 return (DDI_FAILURE); 3135 } 3136 3137 ASSERT(reallen < len); 3138 if (reallen >= len) { 3139 mptsas_log(0, CE_WARN, "!mptsas_get_name: name parameter " 3140 "length too small, it needs to be %d bytes", reallen + 1); 3141 } 3142 return (DDI_SUCCESS); 3143 } 3144 3145 /* 3146 * tran_tgt_init(9E) - target device instance initialization 3147 */ 3148 static int 3149 mptsas_scsi_tgt_init(dev_info_t *hba_dip, dev_info_t *tgt_dip, 3150 scsi_hba_tran_t *hba_tran, struct scsi_device *sd) 3151 { 3152 #ifndef __lock_lint 3153 _NOTE(ARGUNUSED(hba_tran)) 3154 #endif 3155 3156 /* 3157 * At this point, the scsi_device structure already exists 3158 * and has been initialized. 3159 * 3160 * Use this function to allocate target-private data structures, 3161 * if needed by this HBA. Add revised flow-control and queue 3162 * properties for child here, if desired and if you can tell they 3163 * support tagged queueing by now. 3164 */ 3165 mptsas_t *mpt; 3166 int lun = sd->sd_address.a_lun; 3167 mdi_pathinfo_t *pip = NULL; 3168 mptsas_tgt_private_t *tgt_private = NULL; 3169 mptsas_target_t *ptgt = NULL; 3170 char *psas_wwn = NULL; 3171 mptsas_phymask_t phymask = 0; 3172 uint64_t sas_wwn = 0; 3173 mptsas_target_addr_t addr; 3174 mpt = SDEV2MPT(sd); 3175 3176 ASSERT(scsi_hba_iport_unit_address(hba_dip) != 0); 3177 3178 NDBG0(("mptsas_scsi_tgt_init: hbadip=0x%p tgtdip=0x%p lun=%d", 3179 (void *)hba_dip, (void *)tgt_dip, lun)); 3180 3181 if (ndi_dev_is_persistent_node(tgt_dip) == 0) { 3182 (void) ndi_merge_node(tgt_dip, mptsas_name_child); 3183 ddi_set_name_addr(tgt_dip, NULL); 3184 return (DDI_FAILURE); 3185 } 3186 /* 3187 * phymask is 0 means the virtual port for RAID 3188 */ 3189 phymask = (mptsas_phymask_t)ddi_prop_get_int(DDI_DEV_T_ANY, hba_dip, 0, 3190 "phymask", 0); 3191 if (mdi_component_is_client(tgt_dip, NULL) == MDI_SUCCESS) { 3192 if ((pip = (void *)(sd->sd_private)) == NULL) { 3193 /* 3194 * Very bad news if this occurs. Somehow scsi_vhci has 3195 * lost the pathinfo node for this target. 3196 */ 3197 return (DDI_NOT_WELL_FORMED); 3198 } 3199 3200 if (mdi_prop_lookup_int(pip, LUN_PROP, &lun) != 3201 DDI_PROP_SUCCESS) { 3202 mptsas_log(mpt, CE_WARN, "Get lun property failed\n"); 3203 return (DDI_FAILURE); 3204 } 3205 3206 if (mdi_prop_lookup_string(pip, SCSI_ADDR_PROP_TARGET_PORT, 3207 &psas_wwn) == MDI_SUCCESS) { 3208 if (scsi_wwnstr_to_wwn(psas_wwn, &sas_wwn)) { 3209 sas_wwn = 0; 3210 } 3211 (void) mdi_prop_free(psas_wwn); 3212 } 3213 } else { 3214 lun = ddi_prop_get_int(DDI_DEV_T_ANY, tgt_dip, 3215 DDI_PROP_DONTPASS, LUN_PROP, 0); 3216 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, tgt_dip, 3217 DDI_PROP_DONTPASS, SCSI_ADDR_PROP_TARGET_PORT, &psas_wwn) == 3218 DDI_PROP_SUCCESS) { 3219 if (scsi_wwnstr_to_wwn(psas_wwn, &sas_wwn)) { 3220 sas_wwn = 0; 3221 } 3222 ddi_prop_free(psas_wwn); 3223 } else { 3224 sas_wwn = 0; 3225 } 3226 } 3227 3228 ASSERT((sas_wwn != 0) || (phymask != 0)); 3229 addr.mta_wwn = sas_wwn; 3230 addr.mta_phymask = phymask; 3231 mutex_enter(&mpt->m_mutex); 3232 ptgt = refhash_lookup(mpt->m_targets, &addr); 3233 mutex_exit(&mpt->m_mutex); 3234 if (ptgt == NULL) { 3235 mptsas_log(mpt, CE_WARN, "!tgt_init: target doesn't exist or " 3236 "gone already! phymask:%x, saswwn %"PRIx64, phymask, 3237 sas_wwn); 3238 return (DDI_FAILURE); 3239 } 3240 if (hba_tran->tran_tgt_private == NULL) { 3241 tgt_private = kmem_zalloc(sizeof (mptsas_tgt_private_t), 3242 KM_SLEEP); 3243 tgt_private->t_lun = lun; 3244 tgt_private->t_private = ptgt; 3245 hba_tran->tran_tgt_private = tgt_private; 3246 } 3247 3248 if (mdi_component_is_client(tgt_dip, NULL) == MDI_SUCCESS) { 3249 return (DDI_SUCCESS); 3250 } 3251 mutex_enter(&mpt->m_mutex); 3252 3253 if (ptgt->m_deviceinfo & 3254 (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 3255 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 3256 uchar_t *inq89 = NULL; 3257 int inq89_len = 0x238; 3258 int reallen = 0; 3259 int rval = 0; 3260 struct sata_id *sid = NULL; 3261 char model[SATA_ID_MODEL_LEN + 1]; 3262 char fw[SATA_ID_FW_LEN + 1]; 3263 char *vid, *pid; 3264 int i; 3265 3266 mutex_exit(&mpt->m_mutex); 3267 /* 3268 * According SCSI/ATA Translation -2 (SAT-2) revision 01a 3269 * chapter 12.4.2 VPD page 89h includes 512 bytes ATA IDENTIFY 3270 * DEVICE data or ATA IDENTIFY PACKET DEVICE data. 3271 */ 3272 inq89 = kmem_zalloc(inq89_len, KM_SLEEP); 3273 rval = mptsas_inquiry(mpt, ptgt, 0, 0x89, 3274 inq89, inq89_len, &reallen, 1); 3275 3276 if (rval != 0) { 3277 if (inq89 != NULL) { 3278 kmem_free(inq89, inq89_len); 3279 } 3280 3281 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 3282 "0x89 for SATA target:%x failed!", ptgt->m_devhdl); 3283 return (DDI_SUCCESS); 3284 } 3285 sid = (void *)(&inq89[60]); 3286 3287 swab(sid->ai_model, model, SATA_ID_MODEL_LEN); 3288 swab(sid->ai_fw, fw, SATA_ID_FW_LEN); 3289 3290 model[SATA_ID_MODEL_LEN] = 0; 3291 fw[SATA_ID_FW_LEN] = 0; 3292 3293 /* 3294 * split model into into vid/pid 3295 */ 3296 for (i = 0, pid = model; i < SATA_ID_MODEL_LEN; i++, pid++) 3297 if ((*pid == ' ') || (*pid == '\t')) 3298 break; 3299 if (i < SATA_ID_MODEL_LEN) { 3300 vid = model; 3301 /* 3302 * terminate vid, establish pid 3303 */ 3304 *pid++ = 0; 3305 } else { 3306 /* 3307 * vid will stay "ATA ", the rule is same 3308 * as sata framework implementation. 3309 */ 3310 vid = NULL; 3311 /* 3312 * model is all pid 3313 */ 3314 pid = model; 3315 } 3316 3317 /* 3318 * override SCSA "inquiry-*" properties 3319 */ 3320 if (vid) 3321 (void) scsi_device_prop_update_inqstring(sd, 3322 INQUIRY_VENDOR_ID, vid, strlen(vid)); 3323 if (pid) 3324 (void) scsi_device_prop_update_inqstring(sd, 3325 INQUIRY_PRODUCT_ID, pid, strlen(pid)); 3326 (void) scsi_device_prop_update_inqstring(sd, 3327 INQUIRY_REVISION_ID, fw, strlen(fw)); 3328 3329 if (inq89 != NULL) { 3330 kmem_free(inq89, inq89_len); 3331 } 3332 } else { 3333 mutex_exit(&mpt->m_mutex); 3334 } 3335 3336 return (DDI_SUCCESS); 3337 } 3338 /* 3339 * tran_tgt_free(9E) - target device instance deallocation 3340 */ 3341 static void 3342 mptsas_scsi_tgt_free(dev_info_t *hba_dip, dev_info_t *tgt_dip, 3343 scsi_hba_tran_t *hba_tran, struct scsi_device *sd) 3344 { 3345 #ifndef __lock_lint 3346 _NOTE(ARGUNUSED(hba_dip, tgt_dip, hba_tran, sd)) 3347 #endif 3348 3349 mptsas_tgt_private_t *tgt_private = hba_tran->tran_tgt_private; 3350 3351 if (tgt_private != NULL) { 3352 kmem_free(tgt_private, sizeof (mptsas_tgt_private_t)); 3353 hba_tran->tran_tgt_private = NULL; 3354 } 3355 } 3356 3357 /* 3358 * scsi_pkt handling 3359 * 3360 * Visible to the external world via the transport structure. 3361 */ 3362 3363 /* 3364 * Notes: 3365 * - transport the command to the addressed SCSI target/lun device 3366 * - normal operation is to schedule the command to be transported, 3367 * and return TRAN_ACCEPT if this is successful. 3368 * - if NO_INTR, tran_start must poll device for command completion 3369 */ 3370 static int 3371 mptsas_scsi_start(struct scsi_address *ap, struct scsi_pkt *pkt) 3372 { 3373 #ifndef __lock_lint 3374 _NOTE(ARGUNUSED(ap)) 3375 #endif 3376 mptsas_t *mpt = PKT2MPT(pkt); 3377 mptsas_cmd_t *cmd = PKT2CMD(pkt); 3378 int rval, start; 3379 uint8_t pref; 3380 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3381 mptsas_tx_waitqueue_t *txwq; 3382 3383 NDBG1(("mptsas_scsi_start: pkt=0x%p", (void *)pkt)); 3384 ASSERT(ptgt); 3385 if (ptgt == NULL) 3386 return (TRAN_FATAL_ERROR); 3387 3388 /* 3389 * prepare the pkt before taking mutex. 3390 */ 3391 rval = mptsas_prepare_pkt(cmd); 3392 if (rval != TRAN_ACCEPT) { 3393 return (rval); 3394 } 3395 3396 /* 3397 * Send the command to target/lun, however your HBA requires it. 3398 * If busy, return TRAN_BUSY; if there's some other formatting error 3399 * in the packet, return TRAN_BADPKT; otherwise, fall through to the 3400 * return of TRAN_ACCEPT. 3401 * 3402 * Remember that access to shared resources, including the mptsas_t 3403 * data structure and the HBA hardware registers, must be protected 3404 * with mutexes, here and everywhere. 3405 * 3406 * Also remember that at interrupt time, you'll get an argument 3407 * to the interrupt handler which is a pointer to your mptsas_t 3408 * structure; you'll have to remember which commands are outstanding 3409 * and which scsi_pkt is the currently-running command so the 3410 * interrupt handler can refer to the pkt to set completion 3411 * status, call the target driver back through pkt_comp, etc. 3412 * 3413 * If the instance lock is held by other thread, don't spin to wait 3414 * for it. Instead, queue the cmd and next time when the instance lock 3415 * is not held, accept all the queued cmd. A extra tx_waitq is 3416 * introduced to protect the queue. 3417 * 3418 * The polled cmd will not be queud and accepted as usual. 3419 * 3420 * Under the tx_waitq mutex, record whether a thread is draining 3421 * the tx_waitq. An IO requesting thread that finds the instance 3422 * mutex contended appends to the tx_waitq and while holding the 3423 * tx_wait mutex, if the draining flag is not set, sets it and then 3424 * proceeds to spin for the instance mutex. This scheme ensures that 3425 * the last cmd in a burst be processed. 3426 * 3427 * we enable this feature only when the helper threads are enabled, 3428 * at which we think the loads are heavy. 3429 * 3430 * per instance, per queue mutex m_tx_waitq[i].txwq_mutex is 3431 * introduced to protect the txwq_qtail, txwq_cmdq, txwq_len 3432 */ 3433 3434 if (mpt->m_txwq_enabled == TRUE) { 3435 int gotmtx = 0; 3436 3437 if (mpt->m_txwq_allow_q_jumping) { 3438 gotmtx = mutex_tryenter(&mpt->m_mutex); 3439 } 3440 if (gotmtx == 0) { 3441 /* We didn't get the mutex or didn't try */ 3442 if (cmd->cmd_pkt_flags & FLAG_NOINTR) { 3443 mutex_enter(&mpt->m_mutex); 3444 /* Polled commands queue jump */ 3445 mptsas_accept_tx_waitqs(mpt); 3446 } else { 3447 rval = mptsas_check_targ_intxtion( 3448 cmd->cmd_tgt_addr, 3449 cmd->cmd_pkt_flags); 3450 if (rval != TRAN_ACCEPT) { 3451 return (rval); 3452 } 3453 3454 cmd->cmd_flags |= CFLAG_TXQ; 3455 pref = mpt->m_pref_tx_waitq; 3456 txwq = &mpt->m_tx_waitq[pref]; 3457 3458 if (mutex_tryenter(&txwq->txwq_mutex) == 0) { 3459 txwq = &mpt->m_tx_waitq[pref^1]; 3460 mutex_enter(&txwq->txwq_mutex); 3461 } else { 3462 pref ^= 1; 3463 mpt->m_pref_tx_waitq = pref; 3464 } 3465 3466 *txwq->txwq_qtail = cmd; 3467 txwq->txwq_qtail = &cmd->cmd_linkp; 3468 txwq->txwq_len++; 3469 if (!txwq->txwq_draining) { 3470 cv_signal(&txwq->txwq_cv); 3471 } 3472 mutex_exit(&txwq->txwq_mutex); 3473 return (rval); 3474 } 3475 } 3476 } else { 3477 mutex_enter(&mpt->m_mutex); 3478 } 3479 rval = mptsas_check_targ_intxtion(cmd->cmd_tgt_addr, 3480 cmd->cmd_pkt_flags); 3481 if (rval != TRAN_ACCEPT) { 3482 mutex_exit(&mpt->m_mutex); 3483 return (rval); 3484 } 3485 3486 start = mptsas_accept_pkt(mpt, cmd, &rval); 3487 mutex_exit(&mpt->m_mutex); 3488 if (start) { 3489 (void) mptsas_start_cmd(mpt, cmd); 3490 } 3491 3492 return (rval); 3493 } 3494 3495 static int 3496 mptsas_check_targ_intxtion(mptsas_target_t *ptgt, int cmd_pkt_flags) 3497 { 3498 /* 3499 * ptgt->m_dr_flag is a variable that is only ever changed by 3500 * direct write under the main m_mutex. 3501 * It doesn't need a mutex hold to protect this read. 3502 */ 3503 3504 if (ptgt->m_dr_flag == MPTSAS_DR_INTRANSITION) { 3505 if (cmd_pkt_flags & FLAG_NOQUEUE) { 3506 /* 3507 * The command should be allowed to retry by returning 3508 * TRAN_BUSY to stall the I/O's which come from 3509 * scsi_vhci since the device/path is in unstable state 3510 * now. 3511 */ 3512 return (TRAN_BUSY); 3513 } else { 3514 /* 3515 * The device is offline, just fail the command by 3516 * return TRAN_FATAL_ERROR. 3517 */ 3518 return (TRAN_FATAL_ERROR); 3519 } 3520 } 3521 return (TRAN_ACCEPT); 3522 } 3523 3524 #if 0 3525 /* 3526 * Note that this function has a side effect of releasing the 3527 * per target mutex. 3528 */ 3529 static void 3530 mptsas_offline_target_direct(mptsas_t *mpt, mptsas_target_t *ptgt) 3531 { 3532 char phy_mask_name[MPTSAS_MAX_PHYS]; 3533 mptsas_phymask_t phymask = ptgt->m_addr.mta_phymask; 3534 dev_info_t *parent; 3535 3536 ASSERT(mutex_owned(&mpt->m_mutex)); 3537 3538 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 3539 bzero(phy_mask_name, MPTSAS_MAX_PHYS); 3540 (void) sprintf(phy_mask_name, "%x", phymask); 3541 parent = scsi_hba_iport_find(mpt->m_dip, phy_mask_name); 3542 3543 if (parent != NULL) { 3544 mptsas_offline_target(mpt, ptgt, 3545 ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED ? 3546 MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE : 3547 MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE, 3548 parent); 3549 } else { 3550 mptsas_log(mpt, CE_WARN, "Failed to find an " 3551 "iport for \"%s\", should not happen!", 3552 phy_mask_name); 3553 } 3554 } 3555 #endif 3556 3557 /* 3558 * In order to be efficient with the m_mutex (which can be dropped before 3559 * calling mptsas_start_cmd()) indicate if start_cmd should be called via the 3560 * returned value (FALSE or TRUE). Caller is then responsible for doing the 3561 * right thing with the m_mutex. 3562 */ 3563 static int 3564 mptsas_accept_pkt(mptsas_t *mpt, mptsas_cmd_t *cmd, int *tran_rval) 3565 { 3566 int rval = TRAN_ACCEPT; 3567 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3568 3569 NDBG1(("mptsas_accept_pkt: cmd=0x%p", (void *)cmd)); 3570 3571 ASSERT(mutex_owned(&mpt->m_mutex)); 3572 3573 if ((cmd->cmd_flags & CFLAG_PREPARED) == 0) { 3574 rval = mptsas_prepare_pkt(cmd); 3575 if (rval != TRAN_ACCEPT) { 3576 cmd->cmd_flags &= ~CFLAG_TRANFLAG; 3577 goto set_tranrval; 3578 } 3579 } 3580 3581 /* 3582 * If the command came from the tx wait q it may have slipped 3583 * by the check for dr_flag before being added to the queue. 3584 * Fail here with abort status. 3585 */ 3586 if (cmd->cmd_flags & CFLAG_TXQ) { 3587 rval = mptsas_check_targ_intxtion(cmd->cmd_tgt_addr, 3588 cmd->cmd_pkt_flags); 3589 if (rval != TRAN_ACCEPT) { 3590 mptsas_set_pkt_reason(mpt, cmd, CMD_ABORTED, 3591 STAT_ABORTED); 3592 mptsas_doneq_add(mpt, cmd); 3593 mptsas_doneq_empty(mpt); 3594 goto set_tranrval; 3595 } 3596 } 3597 /* 3598 * If HBA is being reset, the DevHandles are being re-initialized, 3599 * which means that they could be invalid even if the target is still 3600 * attached. Check if being reset and if DevHandle is being 3601 * re-initialized. If this is the case, return BUSY so the I/O can be 3602 * retried later. 3603 */ 3604 if ((ptgt->m_devhdl == MPTSAS_INVALID_DEVHDL) && mpt->m_in_reset) { 3605 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 3606 if (cmd->cmd_flags & CFLAG_TXQ) { 3607 mptsas_doneq_add(mpt, cmd); 3608 mptsas_doneq_empty(mpt); 3609 } else { 3610 rval = TRAN_BUSY; 3611 } 3612 goto set_tranrval; 3613 } 3614 3615 mutex_enter(&ptgt->m_t_mutex); 3616 /* 3617 * reset the throttle if we were draining 3618 */ 3619 if ((ptgt->m_t_ncmds == 0) && 3620 (ptgt->m_t_throttle == DRAIN_THROTTLE)) { 3621 NDBG23(("reset throttle")); 3622 ASSERT(ptgt->m_reset_delay == 0); 3623 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 3624 } 3625 3626 /* 3627 * If device handle has already been invalidated, just 3628 * fail the command. In theory, for a command from scsi_vhci 3629 * client it's impossible to receive a command with an invalid 3630 * devhdl since devhdl is set after path offline, target 3631 * driver is not supposed to select an offlined path. 3632 */ 3633 if (ptgt->m_devhdl == MPTSAS_INVALID_DEVHDL) { 3634 NDBG3(("rejecting command, it might because invalid devhdl " 3635 "request.")); 3636 mutex_exit(&ptgt->m_t_mutex); 3637 mptsas_set_pkt_reason(mpt, cmd, CMD_DEV_GONE, STAT_TERMINATED); 3638 if (cmd->cmd_flags & CFLAG_TXQ) { 3639 mptsas_doneq_add(mpt, cmd); 3640 mptsas_doneq_empty(mpt); 3641 } else { 3642 rval = TRAN_FATAL_ERROR; 3643 } 3644 goto set_tranrval; 3645 } 3646 /* 3647 * The first case is the normal case. mpt gets a command from the 3648 * target driver and starts it. 3649 * Since SMID 0 is reserved and the TM slot is reserved, the actual max 3650 * commands is m_max_requests - 2. 3651 */ 3652 if ((mpt->m_ncmds <= (mpt->m_max_requests - 2)) && 3653 (ptgt->m_t_throttle > HOLD_THROTTLE) && 3654 (ptgt->m_t_ncmds < ptgt->m_t_throttle) && 3655 (ptgt->m_reset_delay == 0) && (mpt->m_polled_intr == 0) && 3656 (ptgt->m_t_nwait == 0) && 3657 ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0)) { 3658 ASSERT((cmd->cmd_flags & CFLAG_CMDIOC) == 0); 3659 if (mptsas_save_cmd_to_slot(mpt, cmd) == TRUE) { 3660 ptgt->m_t_ncmds++; 3661 mutex_exit(&ptgt->m_t_mutex); 3662 cmd->cmd_active_expiration = 0; 3663 *tran_rval = rval; 3664 return (TRUE); 3665 } else { 3666 mutex_exit(&ptgt->m_t_mutex); 3667 mptsas_waitq_add(mpt, cmd); 3668 } 3669 } else { 3670 mutex_exit(&ptgt->m_t_mutex); 3671 /* 3672 * Add this pkt to the work queue 3673 */ 3674 mptsas_waitq_add(mpt, cmd); 3675 3676 if (cmd->cmd_pkt_flags & FLAG_NOINTR) { 3677 (void) mptsas_poll(mpt, cmd, MPTSAS_POLL_TIME); 3678 3679 /* 3680 * Only flush the doneq if this is not a TM 3681 * cmd. For TM cmds the flushing of the 3682 * doneq will be done in those routines. 3683 */ 3684 if ((cmd->cmd_flags & CFLAG_TM_CMD) == 0) { 3685 mptsas_doneq_empty(mpt); 3686 } 3687 } 3688 } 3689 set_tranrval: 3690 *tran_rval = rval; 3691 return (FALSE); 3692 } 3693 3694 static void 3695 mptsas_retry_pkt(mptsas_t *mpt, mptsas_cmd_t *cmd) 3696 { 3697 int rval; 3698 3699 cmd->cmd_pkt_flags |= FLAG_HEAD; 3700 cmd->cmd_flags |= CFLAG_RETRY; 3701 cmd->cmd_flags &= ~CFLAG_TXQ; 3702 if (mptsas_accept_pkt(mpt, cmd, &rval)) { 3703 (void) mptsas_start_cmd(mpt, cmd); 3704 } 3705 3706 /* 3707 * If there was a problem clear the retry flag so that the 3708 * command will be completed with error rather than get lost! 3709 */ 3710 if (rval != TRAN_ACCEPT) 3711 cmd->cmd_flags &= ~CFLAG_RETRY; 3712 } 3713 3714 static int 3715 mptsas_save_cmd_to_slot(mptsas_t *mpt, mptsas_cmd_t *cmd) 3716 { 3717 mptsas_slots_t *slots = mpt->m_active; 3718 uint_t slot, start_rotor, rotor, n_normal; 3719 3720 /* 3721 * Account for reserved TM request slot and reserved SMID of 0. 3722 */ 3723 ASSERT(slots->m_n_normal == (mpt->m_max_requests - 2)); 3724 3725 /* 3726 * Find the next available slot, beginning at m_rotor. If no slot is 3727 * available, we'll return FALSE to indicate that. This mechanism 3728 * considers only the normal slots, not the reserved slot 0 nor the 3729 * task management slot m_n_normal + 1. The rotor is left to point to 3730 * the normal slot after the one we select, unless we select the last 3731 * normal slot in which case it returns to slot 1. 3732 */ 3733 start_rotor = rotor = slots->m_rotor; 3734 n_normal = slots->m_n_normal; 3735 do { 3736 slot = rotor++; 3737 if (rotor > n_normal) 3738 rotor = 1; 3739 3740 if (rotor == start_rotor) 3741 break; 3742 } while (slots->m_slot[slot] != NULL); 3743 slots->m_rotor = rotor; 3744 3745 if (slots->m_slot[slot] != NULL) 3746 return (FALSE); 3747 3748 ASSERT(slot != 0 && slot <= slots->m_n_normal); 3749 3750 cmd->cmd_slot = slot; 3751 slots->m_slot[slot] = cmd; 3752 atomic_inc_32(&mpt->m_ncmds); 3753 3754 /* 3755 * Distribute the commands amongst the reply queues (Interrupt vectors). 3756 * Stick to 0 for polled. 3757 */ 3758 if (!(cmd->cmd_pkt_flags & FLAG_NOINTR) && 3759 !(cmd->cmd_flags & (CFLAG_PASSTHRU|CFLAG_CONFIG|CFLAG_FW_DIAG)) && 3760 (mpt->m_post_reply_qcount > 1)) { 3761 cmd->cmd_rpqidx = slot % mpt->m_post_reply_qcount; 3762 } 3763 atomic_inc_32(&mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds); 3764 return (TRUE); 3765 } 3766 3767 int 3768 mptsas_save_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 3769 { 3770 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 3771 3772 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 3773 3774 if (!mptsas_save_cmd_to_slot(mpt, cmd)) { 3775 return (FALSE); 3776 } 3777 3778 /* 3779 * only increment per target ncmds if this is not a 3780 * command that has no target associated with it (i.e. a 3781 * event acknoledgement) 3782 */ 3783 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 3784 /* 3785 * Expiration time is set in mptsas_start_cmd 3786 */ 3787 mutex_enter(&ptgt->m_t_mutex); 3788 ptgt->m_t_ncmds++; 3789 mutex_exit(&ptgt->m_t_mutex); 3790 cmd->cmd_active_expiration = 0; 3791 } else { 3792 /* 3793 * Initialize expiration time for passthrough commands, 3794 */ 3795 cmd->cmd_active_expiration = gethrtime() + 3796 (hrtime_t)cmd->cmd_pkt->pkt_time * NANOSEC; 3797 } 3798 return (TRUE); 3799 } 3800 3801 /* 3802 * prepare the pkt: 3803 * the pkt may have been resubmitted or just reused so 3804 * initialize some fields and do some checks. 3805 */ 3806 static int 3807 mptsas_prepare_pkt(mptsas_cmd_t *cmd) 3808 { 3809 struct scsi_pkt *pkt = CMD2PKT(cmd); 3810 3811 NDBG1(("mptsas_prepare_pkt: cmd=0x%p", (void *)cmd)); 3812 3813 /* 3814 * Reinitialize some fields that need it; the packet may 3815 * have been resubmitted 3816 */ 3817 pkt->pkt_reason = CMD_CMPLT; 3818 pkt->pkt_state = 0; 3819 pkt->pkt_statistics = 0; 3820 pkt->pkt_resid = 0; 3821 cmd->cmd_age = 0; 3822 cmd->cmd_pkt_flags = pkt->pkt_flags; 3823 3824 /* 3825 * zero status byte. 3826 */ 3827 *(pkt->pkt_scbp) = 0; 3828 3829 if (cmd->cmd_flags & CFLAG_DMAVALID) { 3830 pkt->pkt_resid = cmd->cmd_dmacount; 3831 3832 /* 3833 * consistent packets need to be sync'ed first 3834 * (only for data going out) 3835 */ 3836 if ((cmd->cmd_flags & CFLAG_CMDIOPB) && 3837 (cmd->cmd_flags & CFLAG_DMASEND)) { 3838 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 3839 DDI_DMA_SYNC_FORDEV); 3840 } 3841 } 3842 3843 cmd->cmd_flags = 3844 (cmd->cmd_flags & ~(CFLAG_TRANFLAG)) | 3845 CFLAG_PREPARED | CFLAG_IN_TRANSPORT; 3846 3847 return (TRAN_ACCEPT); 3848 } 3849 3850 /* 3851 * tran_init_pkt(9E) - allocate scsi_pkt(9S) for command 3852 * 3853 * One of three possibilities: 3854 * - allocate scsi_pkt 3855 * - allocate scsi_pkt and DMA resources 3856 * - allocate DMA resources to an already-allocated pkt 3857 */ 3858 static struct scsi_pkt * 3859 mptsas_scsi_init_pkt(struct scsi_address *ap, struct scsi_pkt *pkt, 3860 struct buf *bp, int cmdlen, int statuslen, int tgtlen, int flags, 3861 int (*callback)(), caddr_t arg) 3862 { 3863 mptsas_cmd_t *cmd, *new_cmd; 3864 mptsas_t *mpt = ADDR2MPT(ap); 3865 int failure = 1; 3866 uint_t oldcookiec; 3867 mptsas_target_t *ptgt = NULL; 3868 int rval; 3869 mptsas_tgt_private_t *tgt_private; 3870 int kf; 3871 3872 kf = (callback == SLEEP_FUNC)? KM_SLEEP: KM_NOSLEEP; 3873 3874 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran-> 3875 tran_tgt_private; 3876 ASSERT(tgt_private != NULL); 3877 if (tgt_private == NULL) { 3878 return (NULL); 3879 } 3880 ptgt = tgt_private->t_private; 3881 ASSERT(ptgt != NULL); 3882 if (ptgt == NULL) 3883 return (NULL); 3884 ap->a_target = ptgt->m_devhdl; 3885 ap->a_lun = tgt_private->t_lun; 3886 3887 ASSERT(callback == NULL_FUNC || callback == SLEEP_FUNC); 3888 #ifdef MPTSAS_TEST_EXTRN_ALLOC 3889 statuslen *= 100; tgtlen *= 4; 3890 #endif 3891 NDBG3(("mptsas_scsi_init_pkt:\n" 3892 "\ttgt=%d in=0x%p bp=0x%p clen=%d slen=%d tlen=%d flags=%x", 3893 ap->a_target, (void *)pkt, (void *)bp, 3894 cmdlen, statuslen, tgtlen, flags)); 3895 3896 /* 3897 * Allocate the new packet. 3898 */ 3899 if (pkt == NULL) { 3900 ddi_dma_handle_t save_dma_handle; 3901 3902 cmd = kmem_cache_alloc(mpt->m_kmem_cache, kf); 3903 3904 if (cmd) { 3905 save_dma_handle = cmd->cmd_dmahandle; 3906 bzero(cmd, sizeof (*cmd) + scsi_pkt_size()); 3907 cmd->cmd_dmahandle = save_dma_handle; 3908 3909 pkt = (void *)((uchar_t *)cmd + 3910 sizeof (struct mptsas_cmd)); 3911 pkt->pkt_ha_private = (opaque_t)cmd; 3912 pkt->pkt_address = *ap; 3913 pkt->pkt_private = (opaque_t)cmd->cmd_pkt_private; 3914 pkt->pkt_scbp = (opaque_t)&cmd->cmd_scb; 3915 pkt->pkt_cdbp = (opaque_t)&cmd->cmd_cdb; 3916 cmd->cmd_pkt = (struct scsi_pkt *)pkt; 3917 cmd->cmd_cdblen = (uchar_t)cmdlen; 3918 cmd->cmd_scblen = statuslen; 3919 cmd->cmd_rqslen = SENSE_LENGTH; 3920 cmd->cmd_tgt_addr = ptgt; 3921 failure = 0; 3922 } 3923 3924 if (failure || (cmdlen > sizeof (cmd->cmd_cdb)) || 3925 (tgtlen > PKT_PRIV_LEN) || 3926 (statuslen > EXTCMDS_STATUS_SIZE)) { 3927 if (failure == 0) { 3928 /* 3929 * if extern alloc fails, all will be 3930 * deallocated, including cmd 3931 */ 3932 failure = mptsas_pkt_alloc_extern(mpt, cmd, 3933 cmdlen, tgtlen, statuslen, kf); 3934 } 3935 if (failure) { 3936 /* 3937 * if extern allocation fails, it will 3938 * deallocate the new pkt as well 3939 */ 3940 return (NULL); 3941 } 3942 } 3943 new_cmd = cmd; 3944 3945 } else { 3946 cmd = PKT2CMD(pkt); 3947 new_cmd = NULL; 3948 } 3949 3950 3951 /* grab cmd->cmd_cookiec here as oldcookiec */ 3952 3953 oldcookiec = cmd->cmd_cookiec; 3954 3955 /* 3956 * If the dma was broken up into PARTIAL transfers cmd_nwin will be 3957 * greater than 0 and we'll need to grab the next dma window 3958 */ 3959 /* 3960 * SLM-not doing extra command frame right now; may add later 3961 */ 3962 3963 if (cmd->cmd_nwin > 0) { 3964 3965 /* 3966 * Make sure we havn't gone past the the total number 3967 * of windows 3968 */ 3969 if (++cmd->cmd_winindex >= cmd->cmd_nwin) { 3970 return (NULL); 3971 } 3972 if (ddi_dma_getwin(cmd->cmd_dmahandle, cmd->cmd_winindex, 3973 &cmd->cmd_dma_offset, &cmd->cmd_dma_len, 3974 &cmd->cmd_cookie, &cmd->cmd_cookiec) == DDI_FAILURE) { 3975 return (NULL); 3976 } 3977 goto get_dma_cookies; 3978 } 3979 3980 3981 if (flags & PKT_XARQ) { 3982 cmd->cmd_flags |= CFLAG_XARQ; 3983 } 3984 3985 /* 3986 * DMA resource allocation. This version assumes your 3987 * HBA has some sort of bus-mastering or onboard DMA capability, with a 3988 * scatter-gather list of length MPTSAS_MAX_DMA_SEGS, as given in the 3989 * ddi_dma_attr_t structure and passed to scsi_impl_dmaget. 3990 */ 3991 if (bp && (bp->b_bcount != 0) && 3992 (cmd->cmd_flags & CFLAG_DMAVALID) == 0) { 3993 3994 int cnt, dma_flags; 3995 mptti_t *dmap; /* ptr to the S/G list */ 3996 3997 /* 3998 * Set up DMA memory and position to the next DMA segment. 3999 */ 4000 ASSERT(cmd->cmd_dmahandle != NULL); 4001 4002 if (bp->b_flags & B_READ) { 4003 dma_flags = DDI_DMA_READ; 4004 cmd->cmd_flags &= ~CFLAG_DMASEND; 4005 } else { 4006 dma_flags = DDI_DMA_WRITE; 4007 cmd->cmd_flags |= CFLAG_DMASEND; 4008 } 4009 if (flags & PKT_CONSISTENT) { 4010 cmd->cmd_flags |= CFLAG_CMDIOPB; 4011 dma_flags |= DDI_DMA_CONSISTENT; 4012 } 4013 4014 if (flags & PKT_DMA_PARTIAL) { 4015 dma_flags |= DDI_DMA_PARTIAL; 4016 } 4017 4018 /* 4019 * workaround for byte hole issue on psycho and 4020 * schizo pre 2.1 4021 */ 4022 if ((bp->b_flags & B_READ) && ((bp->b_flags & 4023 (B_PAGEIO|B_REMAPPED)) != B_PAGEIO) && 4024 ((uintptr_t)bp->b_un.b_addr & 0x7)) { 4025 dma_flags |= DDI_DMA_CONSISTENT; 4026 } 4027 4028 rval = ddi_dma_buf_bind_handle(cmd->cmd_dmahandle, bp, 4029 dma_flags, callback, arg, 4030 &cmd->cmd_cookie, &cmd->cmd_cookiec); 4031 if (rval == DDI_DMA_PARTIAL_MAP) { 4032 (void) ddi_dma_numwin(cmd->cmd_dmahandle, 4033 &cmd->cmd_nwin); 4034 cmd->cmd_winindex = 0; 4035 (void) ddi_dma_getwin(cmd->cmd_dmahandle, 4036 cmd->cmd_winindex, &cmd->cmd_dma_offset, 4037 &cmd->cmd_dma_len, &cmd->cmd_cookie, 4038 &cmd->cmd_cookiec); 4039 } else if (rval && (rval != DDI_DMA_MAPPED)) { 4040 switch (rval) { 4041 case DDI_DMA_NORESOURCES: 4042 bioerror(bp, 0); 4043 break; 4044 case DDI_DMA_BADATTR: 4045 case DDI_DMA_NOMAPPING: 4046 bioerror(bp, EFAULT); 4047 break; 4048 case DDI_DMA_TOOBIG: 4049 default: 4050 bioerror(bp, EINVAL); 4051 break; 4052 } 4053 cmd->cmd_flags &= ~CFLAG_DMAVALID; 4054 if (new_cmd) { 4055 mptsas_scsi_destroy_pkt(ap, pkt); 4056 } 4057 return ((struct scsi_pkt *)NULL); 4058 } 4059 4060 get_dma_cookies: 4061 cmd->cmd_flags |= CFLAG_DMAVALID; 4062 ASSERT(cmd->cmd_cookiec > 0); 4063 4064 if (cmd->cmd_cookiec > MPTSAS_MAX_CMD_SEGS) { 4065 mptsas_log(mpt, CE_NOTE, "large cookiec received %d\n", 4066 cmd->cmd_cookiec); 4067 bioerror(bp, EINVAL); 4068 if (new_cmd) { 4069 mptsas_scsi_destroy_pkt(ap, pkt); 4070 } 4071 return ((struct scsi_pkt *)NULL); 4072 } 4073 4074 /* 4075 * Allocate extra SGL buffer if needed. 4076 */ 4077 if ((cmd->cmd_cookiec > MPTSAS_MAX_FRAME_SGES64(mpt)) && 4078 (cmd->cmd_extra_frames == NULL)) { 4079 if (mptsas_alloc_extra_sgl_frame(mpt, cmd) == 4080 DDI_FAILURE) { 4081 mptsas_log(mpt, CE_WARN, "MPT SGL mem alloc " 4082 "failed"); 4083 bioerror(bp, ENOMEM); 4084 if (new_cmd) { 4085 mptsas_scsi_destroy_pkt(ap, pkt); 4086 } 4087 return ((struct scsi_pkt *)NULL); 4088 } 4089 } 4090 4091 /* 4092 * Always use scatter-gather transfer 4093 * Use the loop below to store physical addresses of 4094 * DMA segments, from the DMA cookies, into your HBA's 4095 * scatter-gather list. 4096 * We need to ensure we have enough kmem alloc'd 4097 * for the sg entries since we are no longer using an 4098 * array inside mptsas_cmd_t. 4099 * 4100 * We check cmd->cmd_cookiec against oldcookiec so 4101 * the scatter-gather list is correctly allocated 4102 */ 4103 4104 if (oldcookiec != cmd->cmd_cookiec) { 4105 if (cmd->cmd_sg != (mptti_t *)NULL) { 4106 kmem_free(cmd->cmd_sg, sizeof (mptti_t) * 4107 oldcookiec); 4108 cmd->cmd_sg = NULL; 4109 } 4110 } 4111 4112 if (cmd->cmd_sg == (mptti_t *)NULL) { 4113 cmd->cmd_sg = kmem_alloc((size_t)(sizeof (mptti_t)* 4114 cmd->cmd_cookiec), kf); 4115 4116 if (cmd->cmd_sg == (mptti_t *)NULL) { 4117 mptsas_log(mpt, CE_WARN, 4118 "unable to kmem_alloc enough memory " 4119 "for scatter/gather list"); 4120 /* 4121 * if we have an ENOMEM condition we need to behave 4122 * the same way as the rest of this routine 4123 */ 4124 4125 bioerror(bp, ENOMEM); 4126 if (new_cmd) { 4127 mptsas_scsi_destroy_pkt(ap, pkt); 4128 } 4129 return ((struct scsi_pkt *)NULL); 4130 } 4131 } 4132 4133 dmap = cmd->cmd_sg; 4134 4135 ASSERT(cmd->cmd_cookie.dmac_size != 0); 4136 4137 /* 4138 * store the first segment into the S/G list 4139 */ 4140 dmap->count = cmd->cmd_cookie.dmac_size; 4141 dmap->addr.address64.Low = (uint32_t) 4142 (cmd->cmd_cookie.dmac_laddress & 0xffffffffull); 4143 dmap->addr.address64.High = (uint32_t) 4144 (cmd->cmd_cookie.dmac_laddress >> 32); 4145 4146 /* 4147 * dmacount counts the size of the dma for this window 4148 * (if partial dma is being used). totaldmacount 4149 * keeps track of the total amount of dma we have 4150 * transferred for all the windows (needed to calculate 4151 * the resid value below). 4152 */ 4153 cmd->cmd_dmacount = cmd->cmd_cookie.dmac_size; 4154 cmd->cmd_totaldmacount += cmd->cmd_cookie.dmac_size; 4155 4156 /* 4157 * We already stored the first DMA scatter gather segment, 4158 * start at 1 if we need to store more. 4159 */ 4160 for (cnt = 1; cnt < cmd->cmd_cookiec; cnt++) { 4161 /* 4162 * Get next DMA cookie 4163 */ 4164 ddi_dma_nextcookie(cmd->cmd_dmahandle, 4165 &cmd->cmd_cookie); 4166 dmap++; 4167 4168 cmd->cmd_dmacount += cmd->cmd_cookie.dmac_size; 4169 cmd->cmd_totaldmacount += cmd->cmd_cookie.dmac_size; 4170 4171 /* 4172 * store the segment parms into the S/G list 4173 */ 4174 dmap->count = cmd->cmd_cookie.dmac_size; 4175 dmap->addr.address64.Low = (uint32_t) 4176 (cmd->cmd_cookie.dmac_laddress & 0xffffffffull); 4177 dmap->addr.address64.High = (uint32_t) 4178 (cmd->cmd_cookie.dmac_laddress >> 32); 4179 } 4180 4181 /* 4182 * If this was partially allocated we set the resid 4183 * the amount of data NOT transferred in this window 4184 * If there is only one window, the resid will be 0 4185 */ 4186 pkt->pkt_resid = (bp->b_bcount - cmd->cmd_totaldmacount); 4187 NDBG3(("mptsas_scsi_init_pkt: cmd_dmacount=%d.", 4188 cmd->cmd_dmacount)); 4189 } 4190 return (pkt); 4191 } 4192 4193 /* 4194 * tran_destroy_pkt(9E) - scsi_pkt(9s) deallocation 4195 * 4196 * Notes: 4197 * - also frees DMA resources if allocated 4198 * - implicit DMA synchonization 4199 */ 4200 static void 4201 mptsas_scsi_destroy_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 4202 { 4203 mptsas_cmd_t *cmd = PKT2CMD(pkt); 4204 mptsas_t *mpt = ADDR2MPT(ap); 4205 4206 NDBG3(("mptsas_scsi_destroy_pkt: target=%d pkt=0x%p", 4207 ap->a_target, (void *)pkt)); 4208 4209 if (cmd->cmd_flags & CFLAG_DMAVALID) { 4210 (void) ddi_dma_unbind_handle(cmd->cmd_dmahandle); 4211 cmd->cmd_flags &= ~CFLAG_DMAVALID; 4212 } 4213 4214 if (cmd->cmd_sg) { 4215 kmem_free(cmd->cmd_sg, sizeof (mptti_t) * cmd->cmd_cookiec); 4216 cmd->cmd_sg = NULL; 4217 } 4218 4219 mptsas_free_extra_sgl_frame(mpt, cmd); 4220 4221 if ((cmd->cmd_flags & 4222 (CFLAG_FREE | CFLAG_CDBEXTERN | CFLAG_PRIVEXTERN | 4223 CFLAG_SCBEXTERN)) == 0) { 4224 cmd->cmd_flags = CFLAG_FREE; 4225 kmem_cache_free(mpt->m_kmem_cache, (void *)cmd); 4226 } else { 4227 mptsas_pkt_destroy_extern(mpt, cmd); 4228 } 4229 } 4230 4231 /* 4232 * kmem cache constructor and destructor: 4233 * When constructing, we bzero the cmd and allocate the dma handle 4234 * When destructing, just free the dma handle 4235 */ 4236 static int 4237 mptsas_kmem_cache_constructor(void *buf, void *cdrarg, int kmflags) 4238 { 4239 mptsas_cmd_t *cmd = buf; 4240 mptsas_t *mpt = cdrarg; 4241 int (*callback)(caddr_t); 4242 4243 callback = (kmflags == KM_SLEEP)? DDI_DMA_SLEEP: DDI_DMA_DONTWAIT; 4244 4245 NDBG4(("mptsas_kmem_cache_constructor")); 4246 4247 /* 4248 * allocate a dma handle 4249 */ 4250 if ((ddi_dma_alloc_handle(mpt->m_dip, &mpt->m_io_dma_attr, callback, 4251 NULL, &cmd->cmd_dmahandle)) != DDI_SUCCESS) { 4252 cmd->cmd_dmahandle = NULL; 4253 return (-1); 4254 } 4255 return (0); 4256 } 4257 4258 static void 4259 mptsas_kmem_cache_destructor(void *buf, void *cdrarg) 4260 { 4261 #ifndef __lock_lint 4262 _NOTE(ARGUNUSED(cdrarg)) 4263 #endif 4264 mptsas_cmd_t *cmd = buf; 4265 4266 NDBG4(("mptsas_kmem_cache_destructor")); 4267 4268 if (cmd->cmd_dmahandle) { 4269 ddi_dma_free_handle(&cmd->cmd_dmahandle); 4270 cmd->cmd_dmahandle = NULL; 4271 } 4272 } 4273 4274 static int 4275 mptsas_cache_frames_constructor(void *buf, void *cdrarg, int kmflags) 4276 { 4277 mptsas_cache_frames_t *p = buf; 4278 mptsas_t *mpt = cdrarg; 4279 ddi_dma_attr_t frame_dma_attr; 4280 size_t mem_size, alloc_len; 4281 ddi_dma_cookie_t cookie; 4282 uint_t ncookie; 4283 int (*callback)(caddr_t) = (kmflags == KM_SLEEP) 4284 ? DDI_DMA_SLEEP: DDI_DMA_DONTWAIT; 4285 4286 frame_dma_attr = mpt->m_msg_dma_attr; 4287 frame_dma_attr.dma_attr_align = 0x10; 4288 frame_dma_attr.dma_attr_sgllen = 1; 4289 4290 if (ddi_dma_alloc_handle(mpt->m_dip, &frame_dma_attr, callback, NULL, 4291 &p->m_dma_hdl) != DDI_SUCCESS) { 4292 mptsas_log(mpt, CE_WARN, "Unable to allocate dma handle for" 4293 " extra SGL."); 4294 return (DDI_FAILURE); 4295 } 4296 4297 mem_size = (mpt->m_max_request_frames - 1) * mpt->m_req_frame_size; 4298 4299 if (ddi_dma_mem_alloc(p->m_dma_hdl, mem_size, &mpt->m_dev_acc_attr, 4300 DDI_DMA_CONSISTENT, callback, NULL, (caddr_t *)&p->m_frames_addr, 4301 &alloc_len, &p->m_acc_hdl) != DDI_SUCCESS) { 4302 ddi_dma_free_handle(&p->m_dma_hdl); 4303 p->m_dma_hdl = NULL; 4304 mptsas_log(mpt, CE_WARN, "Unable to allocate dma memory for" 4305 " extra SGL."); 4306 return (DDI_FAILURE); 4307 } 4308 4309 if (ddi_dma_addr_bind_handle(p->m_dma_hdl, NULL, p->m_frames_addr, 4310 alloc_len, DDI_DMA_RDWR | DDI_DMA_CONSISTENT, callback, NULL, 4311 &cookie, &ncookie) != DDI_DMA_MAPPED) { 4312 (void) ddi_dma_mem_free(&p->m_acc_hdl); 4313 ddi_dma_free_handle(&p->m_dma_hdl); 4314 p->m_dma_hdl = NULL; 4315 mptsas_log(mpt, CE_WARN, "Unable to bind DMA resources for" 4316 " extra SGL"); 4317 return (DDI_FAILURE); 4318 } 4319 4320 /* 4321 * Store the SGL memory address. This chip uses this 4322 * address to dma to and from the driver. The second 4323 * address is the address mpt uses to fill in the SGL. 4324 */ 4325 p->m_phys_addr = cookie.dmac_laddress; 4326 4327 return (DDI_SUCCESS); 4328 } 4329 4330 static void 4331 mptsas_cache_frames_destructor(void *buf, void *cdrarg) 4332 { 4333 #ifndef __lock_lint 4334 _NOTE(ARGUNUSED(cdrarg)) 4335 #endif 4336 mptsas_cache_frames_t *p = buf; 4337 if (p->m_dma_hdl != NULL) { 4338 (void) ddi_dma_unbind_handle(p->m_dma_hdl); 4339 (void) ddi_dma_mem_free(&p->m_acc_hdl); 4340 ddi_dma_free_handle(&p->m_dma_hdl); 4341 p->m_phys_addr = NULL; 4342 p->m_frames_addr = NULL; 4343 p->m_dma_hdl = NULL; 4344 p->m_acc_hdl = NULL; 4345 } 4346 4347 } 4348 4349 /* 4350 * allocate and deallocate external pkt space (ie. not part of mptsas_cmd) 4351 * for non-standard length cdb, pkt_private, status areas 4352 * if allocation fails, then deallocate all external space and the pkt 4353 */ 4354 /* ARGSUSED */ 4355 static int 4356 mptsas_pkt_alloc_extern(mptsas_t *mpt, mptsas_cmd_t *cmd, 4357 int cmdlen, int tgtlen, int statuslen, int kf) 4358 { 4359 caddr_t cdbp, scbp, tgt; 4360 size_t senselength; 4361 4362 NDBG3(("mptsas_pkt_alloc_extern: " 4363 "cmd=0x%p cmdlen=%d tgtlen=%d statuslen=%d kf=%x", 4364 (void *)cmd, cmdlen, tgtlen, statuslen, kf)); 4365 4366 tgt = cdbp = scbp = NULL; 4367 cmd->cmd_scblen = statuslen; 4368 cmd->cmd_privlen = (uchar_t)tgtlen; 4369 4370 if (cmdlen > sizeof (cmd->cmd_cdb)) { 4371 if ((cdbp = kmem_zalloc((size_t)cmdlen, kf)) == NULL) { 4372 goto fail; 4373 } 4374 cmd->cmd_pkt->pkt_cdbp = (opaque_t)cdbp; 4375 cmd->cmd_flags |= CFLAG_CDBEXTERN; 4376 } 4377 if (tgtlen > PKT_PRIV_LEN) { 4378 if ((tgt = kmem_zalloc((size_t)tgtlen, kf)) == NULL) { 4379 goto fail; 4380 } 4381 cmd->cmd_flags |= CFLAG_PRIVEXTERN; 4382 cmd->cmd_pkt->pkt_private = tgt; 4383 } 4384 if (statuslen > EXTCMDS_STATUS_SIZE) { 4385 if ((scbp = kmem_zalloc((size_t)statuslen, kf)) == NULL) { 4386 goto fail; 4387 } 4388 cmd->cmd_flags |= CFLAG_SCBEXTERN; 4389 cmd->cmd_pkt->pkt_scbp = (opaque_t)scbp; 4390 4391 /* allocate sense data buf for DMA */ 4392 4393 senselength = statuslen - MPTSAS_GET_ITEM_OFF( 4394 struct scsi_arq_status, sts_sensedata); 4395 if (senselength > mpt->m_req_sense_size) { 4396 unsigned long i; 4397 cmd->cmd_extrqslen = (uint16_t)senselength; 4398 cmd->cmd_extrqschunks = (senselength + 4399 (mpt->m_req_sense_size - 1))/mpt->m_req_sense_size; 4400 i = rmalloc_wait(mpt->m_erqsense_map, 4401 cmd->cmd_extrqschunks); 4402 ASSERT(i != 0); 4403 cmd->cmd_extrqsidx = i - 1; 4404 cmd->cmd_arq_buf = mpt->m_extreq_sense + 4405 (cmd->cmd_extrqsidx * mpt->m_req_sense_size); 4406 } else { 4407 cmd->cmd_rqslen = (uchar_t)senselength; 4408 } 4409 } 4410 return (0); 4411 fail: 4412 mptsas_pkt_destroy_extern(mpt, cmd); 4413 return (1); 4414 } 4415 4416 /* 4417 * deallocate external pkt space and deallocate the pkt 4418 */ 4419 static void 4420 mptsas_pkt_destroy_extern(mptsas_t *mpt, mptsas_cmd_t *cmd) 4421 { 4422 NDBG3(("mptsas_pkt_destroy_extern: cmd=0x%p", (void *)cmd)); 4423 4424 if (cmd->cmd_flags & CFLAG_FREE) { 4425 mptsas_log(mpt, CE_PANIC, 4426 "mptsas_pkt_destroy_extern: freeing free packet"); 4427 _NOTE(NOT_REACHED) 4428 /* NOTREACHED */ 4429 } 4430 if (cmd->cmd_extrqslen != 0) { 4431 rmfree(mpt->m_erqsense_map, cmd->cmd_extrqschunks, 4432 cmd->cmd_extrqsidx + 1); 4433 } 4434 if (cmd->cmd_flags & CFLAG_CDBEXTERN) { 4435 kmem_free(cmd->cmd_pkt->pkt_cdbp, (size_t)cmd->cmd_cdblen); 4436 } 4437 if (cmd->cmd_flags & CFLAG_SCBEXTERN) { 4438 kmem_free(cmd->cmd_pkt->pkt_scbp, (size_t)cmd->cmd_scblen); 4439 } 4440 if (cmd->cmd_flags & CFLAG_PRIVEXTERN) { 4441 kmem_free(cmd->cmd_pkt->pkt_private, (size_t)cmd->cmd_privlen); 4442 } 4443 cmd->cmd_flags = CFLAG_FREE; 4444 kmem_cache_free(mpt->m_kmem_cache, (void *)cmd); 4445 } 4446 4447 /* 4448 * tran_sync_pkt(9E) - explicit DMA synchronization 4449 */ 4450 /*ARGSUSED*/ 4451 static void 4452 mptsas_scsi_sync_pkt(struct scsi_address *ap, struct scsi_pkt *pkt) 4453 { 4454 mptsas_cmd_t *cmd = PKT2CMD(pkt); 4455 4456 NDBG3(("mptsas_scsi_sync_pkt: target=%d, pkt=0x%p", 4457 ap->a_target, (void *)pkt)); 4458 4459 if (cmd->cmd_dmahandle) { 4460 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 4461 (cmd->cmd_flags & CFLAG_DMASEND) ? 4462 DDI_DMA_SYNC_FORDEV : DDI_DMA_SYNC_FORCPU); 4463 } 4464 } 4465 4466 /* 4467 * tran_dmafree(9E) - deallocate DMA resources allocated for command 4468 */ 4469 /*ARGSUSED*/ 4470 static void 4471 mptsas_scsi_dmafree(struct scsi_address *ap, struct scsi_pkt *pkt) 4472 { 4473 mptsas_cmd_t *cmd = PKT2CMD(pkt); 4474 mptsas_t *mpt = ADDR2MPT(ap); 4475 4476 NDBG3(("mptsas_scsi_dmafree: target=%d pkt=0x%p", 4477 ap->a_target, (void *)pkt)); 4478 4479 if (cmd->cmd_flags & CFLAG_DMAVALID) { 4480 (void) ddi_dma_unbind_handle(cmd->cmd_dmahandle); 4481 cmd->cmd_flags &= ~CFLAG_DMAVALID; 4482 } 4483 4484 mptsas_free_extra_sgl_frame(mpt, cmd); 4485 } 4486 4487 static void 4488 mptsas_pkt_comp(struct scsi_pkt *pkt, mptsas_cmd_t *cmd) 4489 { 4490 if ((cmd->cmd_flags & CFLAG_CMDIOPB) && 4491 (!(cmd->cmd_flags & CFLAG_DMASEND))) { 4492 (void) ddi_dma_sync(cmd->cmd_dmahandle, 0, 0, 4493 DDI_DMA_SYNC_FORCPU); 4494 } 4495 (*pkt->pkt_comp)(pkt); 4496 } 4497 4498 static void 4499 mptsas_sge_mainframe(mptsas_cmd_t *cmd, pMpi2SCSIIORequest_t frame, 4500 ddi_acc_handle_t acc_hdl, uint_t cookiec, 4501 uint32_t end_flags) 4502 { 4503 pMpi2SGESimple64_t sge; 4504 mptti_t *dmap; 4505 uint32_t flags; 4506 4507 dmap = cmd->cmd_sg; 4508 4509 sge = (pMpi2SGESimple64_t)(&frame->SGL); 4510 while (cookiec--) { 4511 ddi_put32(acc_hdl, &sge->Address.Low, 4512 dmap->addr.address64.Low); 4513 ddi_put32(acc_hdl, &sge->Address.High, 4514 dmap->addr.address64.High); 4515 ddi_put32(acc_hdl, &sge->FlagsLength, dmap->count); 4516 flags = ddi_get32(acc_hdl, &sge->FlagsLength); 4517 flags |= ((uint32_t) 4518 (MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 4519 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4520 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 4521 MPI2_SGE_FLAGS_SHIFT); 4522 4523 /* 4524 * If this is the last cookie, we set the flags 4525 * to indicate so 4526 */ 4527 if (cookiec == 0) { 4528 flags |= end_flags; 4529 } 4530 if (cmd->cmd_flags & CFLAG_DMASEND) { 4531 flags |= (MPI2_SGE_FLAGS_HOST_TO_IOC << 4532 MPI2_SGE_FLAGS_SHIFT); 4533 } else { 4534 flags |= (MPI2_SGE_FLAGS_IOC_TO_HOST << 4535 MPI2_SGE_FLAGS_SHIFT); 4536 } 4537 ddi_put32(acc_hdl, &sge->FlagsLength, flags); 4538 dmap++; 4539 sge++; 4540 } 4541 } 4542 4543 static void 4544 mptsas_sge_chain(mptsas_t *mpt, mptsas_cmd_t *cmd, 4545 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 4546 { 4547 pMpi2SGESimple64_t sge; 4548 pMpi2SGEChain64_t sgechain; 4549 uint64_t nframe_phys_addr; 4550 uint_t cookiec; 4551 mptti_t *dmap; 4552 uint32_t flags; 4553 int i, j, k, l, frames, sgemax; 4554 int temp, maxframe_sges; 4555 uint8_t chainflags; 4556 uint16_t chainlength; 4557 mptsas_cache_frames_t *p; 4558 4559 cookiec = cmd->cmd_cookiec; 4560 4561 /* 4562 * Hereby we start to deal with multiple frames. 4563 * The process is as follows: 4564 * 1. Determine how many frames are needed for SGL element 4565 * storage; Note that all frames are stored in contiguous 4566 * memory space and in 64-bit DMA mode each element is 4567 * 3 double-words (12 bytes) long. 4568 * 2. Fill up the main frame. We need to do this separately 4569 * since it contains the SCSI IO request header and needs 4570 * dedicated processing. Note that the last 4 double-words 4571 * of the SCSI IO header is for SGL element storage 4572 * (MPI2_SGE_IO_UNION). 4573 * 3. Fill the chain element in the main frame, so the DMA 4574 * engine can use the following frames. 4575 * 4. Enter a loop to fill the remaining frames. Note that the 4576 * last frame contains no chain element. The remaining 4577 * frames go into the mpt SGL buffer allocated on the fly, 4578 * not immediately following the main message frame, as in 4579 * Gen1. 4580 * Some restrictions: 4581 * 1. For 64-bit DMA, the simple element and chain element 4582 * are both of 3 double-words (12 bytes) in size, even 4583 * though all frames are stored in the first 4G of mem 4584 * range and the higher 32-bits of the address are always 0. 4585 * 2. On some controllers (like the 1064/1068), a frame can 4586 * hold SGL elements with the last 1 or 2 double-words 4587 * (4 or 8 bytes) un-used. On these controllers, we should 4588 * recognize that there's not enough room for another SGL 4589 * element and move the sge pointer to the next frame. 4590 */ 4591 4592 /* 4593 * Sgemax is the number of SGE's that will fit 4594 * each extra frame and frames is total 4595 * number of frames we'll need. 1 sge entry per 4596 * frame is reseverd for the chain element thus the -1 below. 4597 */ 4598 sgemax = ((mpt->m_req_frame_size / sizeof (MPI2_SGE_SIMPLE64)) - 1); 4599 maxframe_sges = MPTSAS_MAX_FRAME_SGES64(mpt); 4600 temp = (cookiec - (maxframe_sges - 1)) / sgemax; 4601 4602 /* 4603 * A little check to see if we need to round up the number 4604 * of frames we need 4605 */ 4606 if ((cookiec - (maxframe_sges - 1)) - (temp * sgemax) > 1) { 4607 frames = (temp + 1); 4608 } else { 4609 frames = temp; 4610 } 4611 dmap = cmd->cmd_sg; 4612 sge = (pMpi2SGESimple64_t)(&frame->SGL); 4613 4614 /* 4615 * First fill in the main frame 4616 */ 4617 j = maxframe_sges - 1; 4618 mptsas_sge_mainframe(cmd, frame, acc_hdl, j, 4619 ((uint32_t)(MPI2_SGE_FLAGS_LAST_ELEMENT) << 4620 MPI2_SGE_FLAGS_SHIFT)); 4621 dmap += j; 4622 sge += j; 4623 j++; 4624 4625 /* 4626 * Fill in the chain element in the main frame. 4627 * About calculation on ChainOffset: 4628 * 1. Struct msg_scsi_io_request has 4 double-words (16 bytes) 4629 * in the end reserved for SGL element storage 4630 * (MPI2_SGE_IO_UNION); we should count it in our 4631 * calculation. See its definition in the header file. 4632 * 2. Constant j is the counter of the current SGL element 4633 * that will be processed, and (j - 1) is the number of 4634 * SGL elements that have been processed (stored in the 4635 * main frame). 4636 * 3. ChainOffset value should be in units of double-words (4 4637 * bytes) so the last value should be divided by 4. 4638 */ 4639 ddi_put8(acc_hdl, &frame->ChainOffset, 4640 (sizeof (MPI2_SCSI_IO_REQUEST) - 4641 sizeof (MPI2_SGE_IO_UNION) + 4642 (j - 1) * sizeof (MPI2_SGE_SIMPLE64)) >> 2); 4643 sgechain = (pMpi2SGEChain64_t)sge; 4644 chainflags = (MPI2_SGE_FLAGS_CHAIN_ELEMENT | 4645 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4646 MPI2_SGE_FLAGS_64_BIT_ADDRESSING); 4647 ddi_put8(acc_hdl, &sgechain->Flags, chainflags); 4648 4649 /* 4650 * The size of the next frame is the accurate size of space 4651 * (in bytes) used to store the SGL elements. j is the counter 4652 * of SGL elements. (j - 1) is the number of SGL elements that 4653 * have been processed (stored in frames). 4654 */ 4655 if (frames >= 2) { 4656 chainlength = mpt->m_req_frame_size / 4657 sizeof (MPI2_SGE_SIMPLE64) * 4658 sizeof (MPI2_SGE_SIMPLE64); 4659 } else { 4660 chainlength = ((cookiec - (j - 1)) * 4661 sizeof (MPI2_SGE_SIMPLE64)); 4662 } 4663 4664 p = cmd->cmd_extra_frames; 4665 4666 ddi_put16(acc_hdl, &sgechain->Length, chainlength); 4667 ddi_put32(acc_hdl, &sgechain->Address.Low, 4668 (p->m_phys_addr&0xffffffffull)); 4669 ddi_put32(acc_hdl, &sgechain->Address.High, p->m_phys_addr>>32); 4670 4671 /* 4672 * If there are more than 2 frames left we have to 4673 * fill in the next chain offset to the location of 4674 * the chain element in the next frame. 4675 * sgemax is the number of simple elements in an extra 4676 * frame. Note that the value NextChainOffset should be 4677 * in double-words (4 bytes). 4678 */ 4679 if (frames >= 2) { 4680 ddi_put8(acc_hdl, &sgechain->NextChainOffset, 4681 (sgemax * sizeof (MPI2_SGE_SIMPLE64)) >> 2); 4682 } else { 4683 ddi_put8(acc_hdl, &sgechain->NextChainOffset, 0); 4684 } 4685 4686 /* 4687 * Jump to next frame; 4688 * Starting here, chain buffers go into the per command SGL. 4689 * This buffer is allocated when chain buffers are needed. 4690 */ 4691 sge = (pMpi2SGESimple64_t)p->m_frames_addr; 4692 i = cookiec; 4693 4694 /* 4695 * Start filling in frames with SGE's. If we 4696 * reach the end of frame and still have SGE's 4697 * to fill we need to add a chain element and 4698 * use another frame. j will be our counter 4699 * for what cookie we are at and i will be 4700 * the total cookiec. k is the current frame 4701 */ 4702 for (k = 1; k <= frames; k++) { 4703 for (l = 1; (l <= (sgemax + 1)) && (j <= i); j++, l++) { 4704 4705 /* 4706 * If we have reached the end of frame 4707 * and we have more SGE's to fill in 4708 * we have to fill the final entry 4709 * with a chain element and then 4710 * continue to the next frame 4711 */ 4712 if ((l == (sgemax + 1)) && (k != frames)) { 4713 sgechain = (pMpi2SGEChain64_t)sge; 4714 j--; 4715 chainflags = ( 4716 MPI2_SGE_FLAGS_CHAIN_ELEMENT | 4717 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4718 MPI2_SGE_FLAGS_64_BIT_ADDRESSING); 4719 ddi_put8(p->m_acc_hdl, 4720 &sgechain->Flags, chainflags); 4721 /* 4722 * k is the frame counter and (k + 1) 4723 * is the number of the next frame. 4724 * Note that frames are in contiguous 4725 * memory space. 4726 */ 4727 nframe_phys_addr = p->m_phys_addr + 4728 (mpt->m_req_frame_size * k); 4729 ddi_put32(p->m_acc_hdl, 4730 &sgechain->Address.Low, 4731 nframe_phys_addr&0xffffffffull); 4732 ddi_put32(p->m_acc_hdl, 4733 &sgechain->Address.High, 4734 nframe_phys_addr>>32); 4735 4736 /* 4737 * If there are more than 2 frames left 4738 * we have to next chain offset to 4739 * the location of the chain element 4740 * in the next frame and fill in the 4741 * length of the next chain 4742 */ 4743 if ((frames - k) >= 2) { 4744 ddi_put8(p->m_acc_hdl, 4745 &sgechain->NextChainOffset, 4746 (sgemax * 4747 sizeof (MPI2_SGE_SIMPLE64)) 4748 >> 2); 4749 ddi_put16(p->m_acc_hdl, 4750 &sgechain->Length, 4751 mpt->m_req_frame_size / 4752 sizeof (MPI2_SGE_SIMPLE64) * 4753 sizeof (MPI2_SGE_SIMPLE64)); 4754 } else { 4755 /* 4756 * This is the last frame. Set 4757 * the NextChainOffset to 0 and 4758 * Length is the total size of 4759 * all remaining simple elements 4760 */ 4761 ddi_put8(p->m_acc_hdl, 4762 &sgechain->NextChainOffset, 4763 0); 4764 ddi_put16(p->m_acc_hdl, 4765 &sgechain->Length, 4766 (cookiec - j) * 4767 sizeof (MPI2_SGE_SIMPLE64)); 4768 } 4769 4770 /* Jump to the next frame */ 4771 sge = (pMpi2SGESimple64_t) 4772 ((char *)p->m_frames_addr + 4773 (int)mpt->m_req_frame_size * k); 4774 4775 continue; 4776 } 4777 4778 ddi_put32(p->m_acc_hdl, 4779 &sge->Address.Low, 4780 dmap->addr.address64.Low); 4781 ddi_put32(p->m_acc_hdl, 4782 &sge->Address.High, 4783 dmap->addr.address64.High); 4784 ddi_put32(p->m_acc_hdl, 4785 &sge->FlagsLength, dmap->count); 4786 flags = ddi_get32(p->m_acc_hdl, 4787 &sge->FlagsLength); 4788 flags |= ((uint32_t)( 4789 MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 4790 MPI2_SGE_FLAGS_SYSTEM_ADDRESS | 4791 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 4792 MPI2_SGE_FLAGS_SHIFT); 4793 4794 /* 4795 * If we are at the end of the frame and 4796 * there is another frame to fill in 4797 * we set the last simple element as last 4798 * element 4799 */ 4800 if ((l == sgemax) && (k != frames)) { 4801 flags |= ((uint32_t) 4802 (MPI2_SGE_FLAGS_LAST_ELEMENT) << 4803 MPI2_SGE_FLAGS_SHIFT); 4804 } 4805 4806 /* 4807 * If this is the final cookie we 4808 * indicate it by setting the flags 4809 */ 4810 if (j == i) { 4811 flags |= ((uint32_t) 4812 (MPI2_SGE_FLAGS_LAST_ELEMENT | 4813 MPI2_SGE_FLAGS_END_OF_BUFFER | 4814 MPI2_SGE_FLAGS_END_OF_LIST) << 4815 MPI2_SGE_FLAGS_SHIFT); 4816 } 4817 if (cmd->cmd_flags & CFLAG_DMASEND) { 4818 flags |= 4819 (MPI2_SGE_FLAGS_HOST_TO_IOC << 4820 MPI2_SGE_FLAGS_SHIFT); 4821 } else { 4822 flags |= 4823 (MPI2_SGE_FLAGS_IOC_TO_HOST << 4824 MPI2_SGE_FLAGS_SHIFT); 4825 } 4826 ddi_put32(p->m_acc_hdl, 4827 &sge->FlagsLength, flags); 4828 dmap++; 4829 sge++; 4830 } 4831 } 4832 4833 /* 4834 * Sync DMA with the chain buffers that were just created 4835 */ 4836 (void) ddi_dma_sync(p->m_dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 4837 } 4838 4839 static void 4840 mptsas_ieee_sge_mainframe(mptsas_cmd_t *cmd, pMpi2SCSIIORequest_t frame, 4841 ddi_acc_handle_t acc_hdl, uint_t cookiec, 4842 uint8_t end_flag) 4843 { 4844 pMpi2IeeeSgeSimple64_t ieeesge; 4845 mptti_t *dmap; 4846 uint8_t flags; 4847 4848 dmap = cmd->cmd_sg; 4849 4850 NDBG1(("mptsas_ieee_sge_mainframe: cookiec=%d, %s", cookiec, 4851 cmd->cmd_flags & CFLAG_DMASEND?"Out":"In")); 4852 4853 ieeesge = (pMpi2IeeeSgeSimple64_t)(&frame->SGL); 4854 while (cookiec--) { 4855 ddi_put32(acc_hdl, &ieeesge->Address.Low, 4856 dmap->addr.address64.Low); 4857 ddi_put32(acc_hdl, &ieeesge->Address.High, 4858 dmap->addr.address64.High); 4859 ddi_put32(acc_hdl, &ieeesge->Length, dmap->count); 4860 NDBG1(("mptsas_ieee_sge_mainframe: len=%d, high=0x%x", 4861 dmap->count, dmap->addr.address64.High)); 4862 flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 4863 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 4864 4865 /* 4866 * If this is the last cookie, we set the flags 4867 * to indicate so 4868 */ 4869 if (cookiec == 0) { 4870 flags |= end_flag; 4871 } 4872 4873 /* 4874 * XXX: Hmmm, what about the direction based on 4875 * cmd->cmd_flags & CFLAG_DMASEND? 4876 */ 4877 ddi_put8(acc_hdl, &ieeesge->Flags, flags); 4878 dmap++; 4879 ieeesge++; 4880 } 4881 } 4882 4883 static void 4884 mptsas_ieee_sge_chain(mptsas_t *mpt, mptsas_cmd_t *cmd, 4885 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 4886 { 4887 pMpi2IeeeSgeSimple64_t ieeesge; 4888 pMpi25IeeeSgeChain64_t ieeesgechain; 4889 uint64_t nframe_phys_addr; 4890 uint_t cookiec; 4891 mptti_t *dmap; 4892 uint8_t flags; 4893 int i, j, k, l, frames, sgemax; 4894 int temp, maxframe_sges; 4895 uint8_t chainflags; 4896 uint32_t chainlength; 4897 mptsas_cache_frames_t *p; 4898 4899 cookiec = cmd->cmd_cookiec; 4900 4901 NDBG1(("mptsas_ieee_sge_chain: cookiec=%d", cookiec)); 4902 4903 /* 4904 * Hereby we start to deal with multiple frames. 4905 * The process is as follows: 4906 * 1. Determine how many frames are needed for SGL element 4907 * storage; Note that all frames are stored in contiguous 4908 * memory space and in 64-bit DMA mode each element is 4909 * 4 double-words (16 bytes) long. 4910 * 2. Fill up the main frame. We need to do this separately 4911 * since it contains the SCSI IO request header and needs 4912 * dedicated processing. Note that the last 4 double-words 4913 * of the SCSI IO header is for SGL element storage 4914 * (MPI2_SGE_IO_UNION). 4915 * 3. Fill the chain element in the main frame, so the DMA 4916 * engine can use the following frames. 4917 * 4. Enter a loop to fill the remaining frames. Note that the 4918 * last frame contains no chain element. The remaining 4919 * frames go into the mpt SGL buffer allocated on the fly, 4920 * not immediately following the main message frame, as in 4921 * Gen1. 4922 * Some restrictions: 4923 * 1. For 64-bit DMA, the simple element and chain element 4924 * are both of 4 double-words (16 bytes) in size, even 4925 * though all frames are stored in the first 4G of mem 4926 * range and the higher 32-bits of the address are always 0. 4927 * 2. On some controllers (like the 1064/1068), a frame can 4928 * hold SGL elements with the last 1 or 2 double-words 4929 * (4 or 8 bytes) un-used. On these controllers, we should 4930 * recognize that there's not enough room for another SGL 4931 * element and move the sge pointer to the next frame. 4932 */ 4933 4934 /* 4935 * Sgemax is the number of SGE's that will fit 4936 * each extra frame and frames is total 4937 * number of frames we'll need. 1 sge entry per 4938 * frame is reseverd for the chain element thus the -1 below. 4939 */ 4940 sgemax = ((mpt->m_req_frame_size / sizeof (MPI2_IEEE_SGE_SIMPLE64)) 4941 - 1); 4942 maxframe_sges = MPTSAS_MAX_FRAME_SGES64(mpt); 4943 temp = (cookiec - (maxframe_sges - 1)) / sgemax; 4944 4945 /* 4946 * A little check to see if we need to round up the number 4947 * of frames we need 4948 */ 4949 if ((cookiec - (maxframe_sges - 1)) - (temp * sgemax) > 1) { 4950 frames = (temp + 1); 4951 } else { 4952 frames = temp; 4953 } 4954 NDBG1(("mptsas_ieee_sge_chain: temp=%d, frames=%d", temp, frames)); 4955 dmap = cmd->cmd_sg; 4956 ieeesge = (pMpi2IeeeSgeSimple64_t)(&frame->SGL); 4957 4958 /* 4959 * First fill in the main frame 4960 */ 4961 j = maxframe_sges - 1; 4962 mptsas_ieee_sge_mainframe(cmd, frame, acc_hdl, j, 0); 4963 dmap += j; 4964 ieeesge += j; 4965 j++; 4966 4967 /* 4968 * Fill in the chain element in the main frame. 4969 * About calculation on ChainOffset: 4970 * 1. Struct msg_scsi_io_request has 4 double-words (16 bytes) 4971 * in the end reserved for SGL element storage 4972 * (MPI2_SGE_IO_UNION); we should count it in our 4973 * calculation. See its definition in the header file. 4974 * 2. Constant j is the counter of the current SGL element 4975 * that will be processed, and (j - 1) is the number of 4976 * SGL elements that have been processed (stored in the 4977 * main frame). 4978 * 3. ChainOffset value should be in units of quad-words (16 4979 * bytes) so the last value should be divided by 16. 4980 */ 4981 ddi_put8(acc_hdl, &frame->ChainOffset, 4982 (sizeof (MPI2_SCSI_IO_REQUEST) - 4983 sizeof (MPI2_SGE_IO_UNION) + 4984 (j - 1) * sizeof (MPI2_IEEE_SGE_SIMPLE64)) >> 4); 4985 ieeesgechain = (pMpi25IeeeSgeChain64_t)ieeesge; 4986 chainflags = (MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 4987 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 4988 ddi_put8(acc_hdl, &ieeesgechain->Flags, chainflags); 4989 4990 /* 4991 * The size of the next frame is the accurate size of space 4992 * (in bytes) used to store the SGL elements. j is the counter 4993 * of SGL elements. (j - 1) is the number of SGL elements that 4994 * have been processed (stored in frames). 4995 */ 4996 if (frames >= 2) { 4997 chainlength = mpt->m_req_frame_size / 4998 sizeof (MPI2_IEEE_SGE_SIMPLE64) * 4999 sizeof (MPI2_IEEE_SGE_SIMPLE64); 5000 } else { 5001 chainlength = ((cookiec - (j - 1)) * 5002 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 5003 } 5004 5005 p = cmd->cmd_extra_frames; 5006 5007 ddi_put32(acc_hdl, &ieeesgechain->Length, chainlength); 5008 ddi_put32(acc_hdl, &ieeesgechain->Address.Low, 5009 p->m_phys_addr&0xffffffffull); 5010 ddi_put32(acc_hdl, &ieeesgechain->Address.High, p->m_phys_addr>>32); 5011 5012 /* 5013 * If there are more than 2 frames left we have to 5014 * fill in the next chain offset to the location of 5015 * the chain element in the next frame. 5016 * sgemax is the number of simple elements in an extra 5017 * frame. Note that the value NextChainOffset should be 5018 * in double-words (4 bytes). 5019 */ 5020 if (frames >= 2) { 5021 ddi_put8(acc_hdl, &ieeesgechain->NextChainOffset, 5022 (sgemax * sizeof (MPI2_IEEE_SGE_SIMPLE64)) >> 4); 5023 } else { 5024 ddi_put8(acc_hdl, &ieeesgechain->NextChainOffset, 0); 5025 } 5026 5027 /* 5028 * Jump to next frame; 5029 * Starting here, chain buffers go into the per command SGL. 5030 * This buffer is allocated when chain buffers are needed. 5031 */ 5032 ieeesge = (pMpi2IeeeSgeSimple64_t)p->m_frames_addr; 5033 i = cookiec; 5034 5035 /* 5036 * Start filling in frames with SGE's. If we 5037 * reach the end of frame and still have SGE's 5038 * to fill we need to add a chain element and 5039 * use another frame. j will be our counter 5040 * for what cookie we are at and i will be 5041 * the total cookiec. k is the current frame 5042 */ 5043 for (k = 1; k <= frames; k++) { 5044 for (l = 1; (l <= (sgemax + 1)) && (j <= i); j++, l++) { 5045 5046 /* 5047 * If we have reached the end of frame 5048 * and we have more SGE's to fill in 5049 * we have to fill the final entry 5050 * with a chain element and then 5051 * continue to the next frame 5052 */ 5053 if ((l == (sgemax + 1)) && (k != frames)) { 5054 ieeesgechain = (pMpi25IeeeSgeChain64_t)ieeesge; 5055 j--; 5056 chainflags = 5057 MPI2_IEEE_SGE_FLAGS_CHAIN_ELEMENT | 5058 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR; 5059 ddi_put8(p->m_acc_hdl, 5060 &ieeesgechain->Flags, chainflags); 5061 /* 5062 * k is the frame counter and (k + 1) 5063 * is the number of the next frame. 5064 * Note that frames are in contiguous 5065 * memory space. 5066 */ 5067 nframe_phys_addr = p->m_phys_addr + 5068 (mpt->m_req_frame_size * k); 5069 ddi_put32(p->m_acc_hdl, 5070 &ieeesgechain->Address.Low, 5071 nframe_phys_addr&0xffffffffull); 5072 ddi_put32(p->m_acc_hdl, 5073 &ieeesgechain->Address.High, 5074 nframe_phys_addr>>32); 5075 5076 /* 5077 * If there are more than 2 frames left 5078 * we have to next chain offset to 5079 * the location of the chain element 5080 * in the next frame and fill in the 5081 * length of the next chain 5082 */ 5083 if ((frames - k) >= 2) { 5084 ddi_put8(p->m_acc_hdl, 5085 &ieeesgechain->NextChainOffset, 5086 (sgemax * 5087 sizeof (MPI2_IEEE_SGE_SIMPLE64)) 5088 >> 4); 5089 ddi_put32(p->m_acc_hdl, 5090 &ieeesgechain->Length, 5091 mpt->m_req_frame_size / 5092 sizeof (MPI2_IEEE_SGE_SIMPLE64) * 5093 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 5094 } else { 5095 /* 5096 * This is the last frame. Set 5097 * the NextChainOffset to 0 and 5098 * Length is the total size of 5099 * all remaining simple elements 5100 */ 5101 ddi_put8(p->m_acc_hdl, 5102 &ieeesgechain->NextChainOffset, 5103 0); 5104 ddi_put32(p->m_acc_hdl, 5105 &ieeesgechain->Length, 5106 (cookiec - j) * 5107 sizeof (MPI2_IEEE_SGE_SIMPLE64)); 5108 } 5109 5110 /* Jump to the next frame */ 5111 ieeesge = (pMpi2IeeeSgeSimple64_t) 5112 ((char *)p->m_frames_addr + 5113 (int)mpt->m_req_frame_size * k); 5114 5115 continue; 5116 } 5117 5118 ddi_put32(p->m_acc_hdl, 5119 &ieeesge->Address.Low, 5120 dmap->addr.address64.Low); 5121 ddi_put32(p->m_acc_hdl, 5122 &ieeesge->Address.High, 5123 dmap->addr.address64.High); 5124 ddi_put32(p->m_acc_hdl, 5125 &ieeesge->Length, dmap->count); 5126 flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 5127 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 5128 5129 /* 5130 * If we are at the end of the frame and 5131 * there is another frame to fill in 5132 * do we need to do anything? 5133 * if ((l == sgemax) && (k != frames)) { 5134 * } 5135 */ 5136 5137 /* 5138 * If this is the final cookie set end of list. 5139 */ 5140 if (j == i) { 5141 flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 5142 } 5143 5144 ddi_put8(p->m_acc_hdl, &ieeesge->Flags, flags); 5145 dmap++; 5146 ieeesge++; 5147 } 5148 } 5149 5150 /* 5151 * Sync DMA with the chain buffers that were just created 5152 */ 5153 (void) ddi_dma_sync(p->m_dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 5154 } 5155 5156 static void 5157 mptsas_sge_setup(mptsas_t *mpt, mptsas_cmd_t *cmd, uint32_t *control, 5158 pMpi2SCSIIORequest_t frame, ddi_acc_handle_t acc_hdl) 5159 { 5160 ASSERT(cmd->cmd_flags & CFLAG_DMAVALID); 5161 5162 NDBG1(("mptsas_sge_setup: cookiec=%d", cmd->cmd_cookiec)); 5163 5164 /* 5165 * Set read/write bit in control. 5166 */ 5167 if (cmd->cmd_flags & CFLAG_DMASEND) { 5168 *control |= MPI2_SCSIIO_CONTROL_WRITE; 5169 } else { 5170 *control |= MPI2_SCSIIO_CONTROL_READ; 5171 } 5172 5173 ddi_put32(acc_hdl, &frame->DataLength, cmd->cmd_dmacount); 5174 5175 /* 5176 * We have 4 cases here. First where we can fit all the 5177 * SG elements into the main frame, and the case 5178 * where we can't. The SG element is also different when using 5179 * MPI2.5 interface. 5180 * If we have more cookies than we can attach to a frame 5181 * we will need to use a chain element to point 5182 * a location of memory where the rest of the S/G 5183 * elements reside. 5184 */ 5185 if (cmd->cmd_cookiec <= MPTSAS_MAX_FRAME_SGES64(mpt)) { 5186 if (mpt->m_MPI25) { 5187 mptsas_ieee_sge_mainframe(cmd, frame, acc_hdl, 5188 cmd->cmd_cookiec, 5189 MPI25_IEEE_SGE_FLAGS_END_OF_LIST); 5190 } else { 5191 mptsas_sge_mainframe(cmd, frame, acc_hdl, 5192 cmd->cmd_cookiec, 5193 ((uint32_t)(MPI2_SGE_FLAGS_LAST_ELEMENT 5194 | MPI2_SGE_FLAGS_END_OF_BUFFER 5195 | MPI2_SGE_FLAGS_END_OF_LIST) << 5196 MPI2_SGE_FLAGS_SHIFT)); 5197 } 5198 } else { 5199 if (mpt->m_MPI25) { 5200 mptsas_ieee_sge_chain(mpt, cmd, frame, acc_hdl); 5201 } else { 5202 mptsas_sge_chain(mpt, cmd, frame, acc_hdl); 5203 } 5204 } 5205 } 5206 5207 /* 5208 * Interrupt handling 5209 * Utility routine. Poll for status of a command sent to HBA 5210 * without interrupts (a FLAG_NOINTR command). 5211 */ 5212 int 5213 mptsas_poll(mptsas_t *mpt, mptsas_cmd_t *poll_cmd, int polltime) 5214 { 5215 int rval = TRUE; 5216 uint32_t int_mask; 5217 5218 NDBG5(("mptsas_poll: cmd=0x%p, flags 0x%x", (void *)poll_cmd, 5219 poll_cmd->cmd_flags)); 5220 5221 /* 5222 * Get the current interrupt mask and disable interrupts. When 5223 * re-enabling ints, set mask to saved value. 5224 */ 5225 int_mask = ddi_get32(mpt->m_datap, &mpt->m_reg->HostInterruptMask); 5226 MPTSAS_DISABLE_INTR(mpt); 5227 5228 mpt->m_polled_intr = 1; 5229 5230 if ((poll_cmd->cmd_flags & CFLAG_TM_CMD) == 0) { 5231 mptsas_restart_hba(mpt); 5232 } 5233 5234 /* 5235 * Wait, using drv_usecwait(), long enough for the command to 5236 * reasonably return from the target if the target isn't 5237 * "dead". A polled command may well be sent from scsi_poll, and 5238 * there are retries built in to scsi_poll if the transport 5239 * accepted the packet (TRAN_ACCEPT). scsi_poll waits 1 second 5240 * and retries the transport up to scsi_poll_busycnt times 5241 * (currently 60) if 5242 * 1. pkt_reason is CMD_INCOMPLETE and pkt_state is 0, or 5243 * 2. pkt_reason is CMD_CMPLT and *pkt_scbp has STATUS_BUSY 5244 * 5245 * limit the waiting to avoid a hang in the event that the 5246 * cmd never gets started but we are still receiving interrupts 5247 */ 5248 while (!(poll_cmd->cmd_flags & CFLAG_FINISHED)) { 5249 if (mptsas_wait_intr(mpt, polltime) == FALSE) { 5250 NDBG5(("mptsas_poll: command incomplete")); 5251 rval = FALSE; 5252 break; 5253 } 5254 } 5255 5256 if (rval == FALSE) { 5257 5258 /* 5259 * this isn't supposed to happen, the hba must be wedged 5260 * Mark this cmd as a timeout. 5261 */ 5262 mptsas_set_pkt_reason(mpt, poll_cmd, CMD_TIMEOUT, 5263 (STAT_TIMEOUT|STAT_ABORTED)); 5264 5265 if (poll_cmd->cmd_queued == FALSE) { 5266 5267 NDBG5(("mptsas_poll: not on waitq")); 5268 5269 poll_cmd->cmd_pkt->pkt_state |= 5270 (STATE_GOT_BUS|STATE_GOT_TARGET|STATE_SENT_CMD); 5271 } else { 5272 5273 /* find and remove it from the waitq */ 5274 NDBG5(("mptsas_poll: delete from waitq")); 5275 mptsas_waitq_delete(mpt, poll_cmd); 5276 } 5277 5278 } 5279 mptsas_fma_check(mpt, poll_cmd); 5280 5281 /* 5282 * Clear polling flag, re-enable interrupts. 5283 */ 5284 mpt->m_polled_intr = 0; 5285 ddi_put32(mpt->m_datap, &mpt->m_reg->HostInterruptMask, int_mask); 5286 5287 /* 5288 * If there are queued cmd, start them now. 5289 */ 5290 if (mpt->m_waitq != NULL) { 5291 mptsas_restart_waitq(mpt); 5292 } 5293 5294 NDBG5(("mptsas_poll: done")); 5295 return (rval); 5296 } 5297 5298 /* 5299 * Used for polling cmds and TM function 5300 */ 5301 static int 5302 mptsas_wait_intr(mptsas_t *mpt, int polltime) 5303 { 5304 int cnt, rval = FALSE; 5305 pMpi2ReplyDescriptorsUnion_t reply_desc_union; 5306 mptsas_reply_pqueue_t *rpqp; 5307 5308 NDBG5(("mptsas_wait_intr")); 5309 ASSERT(mutex_owned(&mpt->m_mutex)); 5310 5311 /* 5312 * Keep polling for at least (polltime * 1000) seconds 5313 */ 5314 rpqp = mpt->m_rep_post_queues; 5315 5316 /* 5317 * Drop the main mutex and grab the mutex for reply queue 0 5318 */ 5319 mutex_exit(&mpt->m_mutex); 5320 mutex_enter(&rpqp->rpq_mutex); 5321 for (cnt = 0; cnt < polltime; cnt++) { 5322 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 5323 DDI_DMA_SYNC_FORCPU); 5324 5325 /* 5326 * Polled requests should only come back through 5327 * the first interrupt. 5328 */ 5329 reply_desc_union = (pMpi2ReplyDescriptorsUnion_t) 5330 MPTSAS_GET_NEXT_REPLY(rpqp, rpqp->rpq_index); 5331 5332 if (ddi_get32(mpt->m_acc_post_queue_hdl, 5333 &reply_desc_union->Words.Low) == 0xFFFFFFFF || 5334 ddi_get32(mpt->m_acc_post_queue_hdl, 5335 &reply_desc_union->Words.High) == 0xFFFFFFFF) { 5336 drv_usecwait(1000); 5337 continue; 5338 } 5339 5340 /* 5341 * The reply is valid, process it according to its 5342 * type. 5343 */ 5344 mptsas_process_intr(mpt, rpqp, reply_desc_union); 5345 5346 /* 5347 * Clear the reply descriptor for re-use. 5348 */ 5349 ddi_put64(mpt->m_acc_post_queue_hdl, 5350 &((uint64_t *)(void *)rpqp->rpq_queue)[rpqp->rpq_index], 5351 0xFFFFFFFFFFFFFFFF); 5352 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 5353 DDI_DMA_SYNC_FORDEV); 5354 5355 if (++rpqp->rpq_index == mpt->m_post_queue_depth) { 5356 rpqp->rpq_index = 0; 5357 } 5358 5359 /* 5360 * Update the reply index 5361 */ 5362 ddi_put32(mpt->m_datap, 5363 &mpt->m_reg->ReplyPostHostIndex, rpqp->rpq_index); 5364 rval = TRUE; 5365 break; 5366 } 5367 5368 mutex_exit(&rpqp->rpq_mutex); 5369 mutex_enter(&mpt->m_mutex); 5370 5371 return (rval); 5372 } 5373 5374 static void 5375 mptsas_handle_scsi_io_success(mptsas_t *mpt, 5376 mptsas_reply_pqueue_t *rpqp, 5377 pMpi2ReplyDescriptorsUnion_t reply_desc) 5378 { 5379 pMpi2SCSIIOSuccessReplyDescriptor_t scsi_io_success; 5380 uint16_t SMID; 5381 mptsas_slots_t *slots = mpt->m_active; 5382 mptsas_cmd_t *cmd = NULL; 5383 struct scsi_pkt *pkt; 5384 5385 scsi_io_success = (pMpi2SCSIIOSuccessReplyDescriptor_t)reply_desc; 5386 SMID = ddi_get16(mpt->m_acc_post_queue_hdl, &scsi_io_success->SMID); 5387 5388 /* 5389 * This is a success reply so just complete the IO. First, do a sanity 5390 * check on the SMID. The final slot is used for TM requests, which 5391 * would not come into this reply handler. 5392 */ 5393 if ((SMID == 0) || (SMID > slots->m_n_normal)) { 5394 mptsas_log(mpt, CE_WARN, "?Received invalid SMID of %d\n", 5395 SMID); 5396 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 5397 return; 5398 } 5399 5400 cmd = slots->m_slot[SMID]; 5401 5402 /* 5403 * print warning and return if the slot is empty 5404 */ 5405 if (cmd == NULL) { 5406 mptsas_log(mpt, CE_WARN, "?NULL command for successful SCSI IO " 5407 "in slot %d", SMID); 5408 return; 5409 } 5410 ASSERT(cmd->cmd_rpqidx == rpqp->rpq_num); 5411 5412 pkt = CMD2PKT(cmd); 5413 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | STATE_SENT_CMD | 5414 STATE_GOT_STATUS); 5415 if (cmd->cmd_flags & CFLAG_DMAVALID) { 5416 pkt->pkt_state |= STATE_XFERRED_DATA; 5417 } 5418 pkt->pkt_resid = 0; 5419 5420 if (cmd->cmd_flags & CFLAG_PASSTHRU) { 5421 cmd->cmd_flags |= CFLAG_FINISHED; 5422 cv_broadcast(&mpt->m_passthru_cv); 5423 return; 5424 } 5425 if (!(cmd->cmd_flags & CFLAG_TM_CMD)) { 5426 if (cmd->cmd_flags & CFLAG_CMDIOC) { 5427 mutex_enter(&mpt->m_mutex); 5428 mptsas_remove_cmd(mpt, cmd); 5429 mutex_exit(&mpt->m_mutex); 5430 } else { 5431 #ifdef MPTSAS_DEBUG 5432 /* 5433 * In order to test timeout for a command set 5434 * mptsas_test_timeout via mdb to avoid completion 5435 * processing here. 5436 */ 5437 if (mptsas_test_timeout) { 5438 mptsas_test_timeout = 0; 5439 return; 5440 } 5441 #endif 5442 /* 5443 * This is the normal path, avoid grabbing 5444 * the m_mutex. 5445 */ 5446 mptsas_remove_cmd_nomtx(mpt, cmd); 5447 } 5448 } 5449 5450 if (cmd->cmd_flags & CFLAG_RETRY) { 5451 /* 5452 * The target returned QFULL or busy, do not add tihs 5453 * pkt to the doneq since the hba will retry 5454 * this cmd. 5455 * 5456 * The pkt has already been resubmitted in 5457 * mptsas_handle_qfull() or in mptsas_check_scsi_io_error(). 5458 * Remove this cmd_flag here. 5459 */ 5460 cmd->cmd_flags &= ~CFLAG_RETRY; 5461 } else { 5462 mptsas_rpdoneq_add(mpt, rpqp, cmd); 5463 } 5464 } 5465 5466 static void 5467 mptsas_handle_address_reply(mptsas_t *mpt, 5468 pMpi2ReplyDescriptorsUnion_t reply_desc) 5469 { 5470 pMpi2AddressReplyDescriptor_t address_reply; 5471 pMPI2DefaultReply_t reply; 5472 mptsas_fw_diagnostic_buffer_t *pBuffer; 5473 uint32_t reply_addr, reply_frame_dma_baseaddr; 5474 uint16_t SMID, iocstatus; 5475 mptsas_slots_t *slots = mpt->m_active; 5476 mptsas_cmd_t *cmd = NULL; 5477 uint8_t function, buffer_type; 5478 m_replyh_arg_t *args; 5479 int reply_frame_no; 5480 5481 ASSERT(mutex_owned(&mpt->m_mutex)); 5482 5483 address_reply = (pMpi2AddressReplyDescriptor_t)reply_desc; 5484 reply_addr = ddi_get32(mpt->m_acc_post_queue_hdl, 5485 &address_reply->ReplyFrameAddress); 5486 SMID = ddi_get16(mpt->m_acc_post_queue_hdl, &address_reply->SMID); 5487 5488 /* 5489 * If reply frame is not in the proper range we should ignore this 5490 * message and exit the interrupt handler. 5491 */ 5492 reply_frame_dma_baseaddr = mpt->m_reply_frame_dma_addr & 0xfffffffful; 5493 if ((reply_addr < reply_frame_dma_baseaddr) || 5494 (reply_addr >= (reply_frame_dma_baseaddr + 5495 (mpt->m_reply_frame_size * mpt->m_max_replies))) || 5496 ((reply_addr - reply_frame_dma_baseaddr) % 5497 mpt->m_reply_frame_size != 0)) { 5498 mptsas_log(mpt, CE_WARN, "?Received invalid reply frame " 5499 "address 0x%x\n", reply_addr); 5500 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 5501 return; 5502 } 5503 5504 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 5505 DDI_DMA_SYNC_FORCPU); 5506 reply = (pMPI2DefaultReply_t)(mpt->m_reply_frame + (reply_addr - 5507 reply_frame_dma_baseaddr)); 5508 function = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->Function); 5509 5510 NDBG31(("mptsas_handle_address_reply: function 0x%x, reply_addr=0x%x", 5511 function, reply_addr)); 5512 5513 /* 5514 * don't get slot information and command for events since these values 5515 * don't exist 5516 */ 5517 if ((function != MPI2_FUNCTION_EVENT_NOTIFICATION) && 5518 (function != MPI2_FUNCTION_DIAG_BUFFER_POST)) { 5519 /* 5520 * This could be a TM reply, which use the last allocated SMID, 5521 * so allow for that. 5522 */ 5523 if ((SMID == 0) || (SMID > (slots->m_n_normal + 1))) { 5524 mptsas_log(mpt, CE_WARN, "?Received invalid SMID of " 5525 "%d\n", SMID); 5526 ddi_fm_service_impact(mpt->m_dip, 5527 DDI_SERVICE_UNAFFECTED); 5528 return; 5529 } 5530 5531 cmd = slots->m_slot[SMID]; 5532 5533 /* 5534 * print warning and return if the slot is empty 5535 */ 5536 if (cmd == NULL) { 5537 mptsas_log(mpt, CE_WARN, "?NULL command for address " 5538 "reply in slot %d", SMID); 5539 return; 5540 } 5541 if ((cmd->cmd_flags & 5542 (CFLAG_PASSTHRU | CFLAG_CONFIG | CFLAG_FW_DIAG))) { 5543 cmd->cmd_rfm = reply_addr; 5544 cmd->cmd_flags |= CFLAG_FINISHED; 5545 cv_broadcast(&mpt->m_passthru_cv); 5546 cv_broadcast(&mpt->m_config_cv); 5547 cv_broadcast(&mpt->m_fw_diag_cv); 5548 return; 5549 } else if (!(cmd->cmd_flags & CFLAG_FW_CMD)) { 5550 mptsas_remove_cmd(mpt, cmd); 5551 } 5552 NDBG31(("\t\tmptsas_process_intr: slot=%d", SMID)); 5553 } 5554 /* 5555 * Depending on the function, we need to handle 5556 * the reply frame (and cmd) differently. 5557 */ 5558 switch (function) { 5559 case MPI2_FUNCTION_SCSI_IO_REQUEST: 5560 mptsas_check_scsi_io_error(mpt, (pMpi2SCSIIOReply_t)reply, cmd); 5561 break; 5562 case MPI2_FUNCTION_SCSI_TASK_MGMT: 5563 cmd->cmd_rfm = reply_addr; 5564 mptsas_check_task_mgt(mpt, (pMpi2SCSIManagementReply_t)reply, 5565 cmd); 5566 break; 5567 case MPI2_FUNCTION_FW_DOWNLOAD: 5568 cmd->cmd_flags |= CFLAG_FINISHED; 5569 cv_signal(&mpt->m_fw_cv); 5570 break; 5571 case MPI2_FUNCTION_EVENT_NOTIFICATION: 5572 reply_frame_no = (reply_addr - reply_frame_dma_baseaddr) / 5573 mpt->m_reply_frame_size; 5574 args = &mpt->m_replyh_args[reply_frame_no]; 5575 args->mpt = (void *)mpt; 5576 args->rfm = reply_addr; 5577 5578 /* 5579 * Record the event if its type is enabled in 5580 * this mpt instance by ioctl. 5581 */ 5582 mptsas_record_event(args); 5583 5584 /* 5585 * Handle time critical events 5586 * NOT_RESPONDING/ADDED only now 5587 */ 5588 if (mptsas_handle_event_sync(args) == DDI_SUCCESS) { 5589 /* 5590 * Would not return main process, 5591 * just let taskq resolve ack action 5592 * and ack would be sent in taskq thread 5593 */ 5594 NDBG20(("send mptsas_handle_event_sync success")); 5595 } 5596 5597 if (mpt->m_in_reset) { 5598 NDBG20(("dropping event received during reset")); 5599 return; 5600 } 5601 5602 if ((ddi_taskq_dispatch(mpt->m_event_taskq, mptsas_handle_event, 5603 (void *)args, DDI_NOSLEEP)) != DDI_SUCCESS) { 5604 mptsas_log(mpt, CE_WARN, "No memory available" 5605 "for dispatch taskq"); 5606 /* 5607 * Return the reply frame to the free queue. 5608 */ 5609 ddi_put32(mpt->m_acc_free_queue_hdl, 5610 &((uint32_t *)(void *) 5611 mpt->m_free_queue)[mpt->m_free_index], reply_addr); 5612 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 5613 DDI_DMA_SYNC_FORDEV); 5614 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 5615 mpt->m_free_index = 0; 5616 } 5617 5618 ddi_put32(mpt->m_datap, 5619 &mpt->m_reg->ReplyFreeHostIndex, mpt->m_free_index); 5620 } 5621 return; 5622 case MPI2_FUNCTION_DIAG_BUFFER_POST: 5623 /* 5624 * If SMID is 0, this implies that the reply is due to a 5625 * release function with a status that the buffer has been 5626 * released. Set the buffer flags accordingly. 5627 */ 5628 if (SMID == 0) { 5629 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 5630 &reply->IOCStatus); 5631 buffer_type = ddi_get8(mpt->m_acc_reply_frame_hdl, 5632 &(((pMpi2DiagBufferPostReply_t)reply)->BufferType)); 5633 if (iocstatus == MPI2_IOCSTATUS_DIAGNOSTIC_RELEASED) { 5634 pBuffer = 5635 &mpt->m_fw_diag_buffer_list[buffer_type]; 5636 pBuffer->valid_data = TRUE; 5637 pBuffer->owned_by_firmware = FALSE; 5638 pBuffer->immediate = FALSE; 5639 } 5640 } else { 5641 /* 5642 * Normal handling of diag post reply with SMID. 5643 */ 5644 cmd = slots->m_slot[SMID]; 5645 5646 /* 5647 * print warning and return if the slot is empty 5648 */ 5649 if (cmd == NULL) { 5650 mptsas_log(mpt, CE_WARN, "?NULL command for " 5651 "address reply in slot %d", SMID); 5652 return; 5653 } 5654 cmd->cmd_rfm = reply_addr; 5655 cmd->cmd_flags |= CFLAG_FINISHED; 5656 cv_broadcast(&mpt->m_fw_diag_cv); 5657 } 5658 return; 5659 default: 5660 mptsas_log(mpt, CE_WARN, "Unknown function 0x%x ", function); 5661 break; 5662 } 5663 5664 /* 5665 * Return the reply frame to the free queue. 5666 */ 5667 ddi_put32(mpt->m_acc_free_queue_hdl, 5668 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 5669 reply_addr); 5670 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 5671 DDI_DMA_SYNC_FORDEV); 5672 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 5673 mpt->m_free_index = 0; 5674 } 5675 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 5676 mpt->m_free_index); 5677 5678 if (cmd->cmd_flags & CFLAG_FW_CMD) 5679 return; 5680 5681 if (cmd->cmd_flags & CFLAG_RETRY) { 5682 /* 5683 * The target returned QFULL or busy, do not add this 5684 * pkt to the doneq since the hba will retry 5685 * this cmd. 5686 * 5687 * The pkt has already been resubmitted in 5688 * mptsas_handle_qfull() or in mptsas_check_scsi_io_error(). 5689 * Remove this cmd_flag here. 5690 */ 5691 cmd->cmd_flags &= ~CFLAG_RETRY; 5692 } else { 5693 mptsas_doneq_add(mpt, cmd); 5694 } 5695 } 5696 5697 #ifdef MPTSAS_DEBUG 5698 static uint8_t mptsas_last_sense[256]; 5699 #endif 5700 5701 static void 5702 mptsas_check_scsi_io_error(mptsas_t *mpt, pMpi2SCSIIOReply_t reply, 5703 mptsas_cmd_t *cmd) 5704 { 5705 uint8_t scsi_status, scsi_state; 5706 uint16_t ioc_status, cmd_rqs_len; 5707 uint32_t xferred, sensecount, responsedata, loginfo = 0; 5708 struct scsi_pkt *pkt; 5709 struct scsi_arq_status *arqstat; 5710 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 5711 uint8_t *sensedata = NULL; 5712 uint64_t sas_wwn; 5713 uint8_t phy; 5714 char wwn_str[MPTSAS_WWN_STRLEN]; 5715 5716 scsi_status = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->SCSIStatus); 5717 ioc_status = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->IOCStatus); 5718 scsi_state = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->SCSIState); 5719 xferred = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->TransferCount); 5720 sensecount = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->SenseCount); 5721 responsedata = ddi_get32(mpt->m_acc_reply_frame_hdl, 5722 &reply->ResponseInfo); 5723 5724 if (ioc_status & MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 5725 sas_wwn = ptgt->m_addr.mta_wwn; 5726 phy = ptgt->m_phynum; 5727 if (sas_wwn == 0) { 5728 (void) sprintf(wwn_str, "p%x", phy); 5729 } else { 5730 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 5731 } 5732 loginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 5733 &reply->IOCLogInfo); 5734 mptsas_log(mpt, CE_NOTE, 5735 "?Log info 0x%x received for target %d %s.\n" 5736 "\tscsi_status=0x%x, ioc_status=0x%x, scsi_state=0x%x", 5737 loginfo, Tgt(cmd), wwn_str, scsi_status, ioc_status, 5738 scsi_state); 5739 } 5740 5741 NDBG31(("\t\tscsi_status=0x%x, ioc_status=0x%x, scsi_state=0x%x", 5742 scsi_status, ioc_status, scsi_state)); 5743 5744 pkt = CMD2PKT(cmd); 5745 *(pkt->pkt_scbp) = scsi_status; 5746 5747 if (loginfo == 0x31170000) { 5748 /* 5749 * if loginfo PL_LOGINFO_CODE_IO_DEVICE_MISSING_DELAY_RETRY 5750 * 0x31170000 comes, that means the device missing delay 5751 * is in progressing, the command need retry later. 5752 */ 5753 *(pkt->pkt_scbp) = STATUS_BUSY; 5754 return; 5755 } 5756 5757 if ((scsi_state & MPI2_SCSI_STATE_NO_SCSI_STATUS) && 5758 ((ioc_status & MPI2_IOCSTATUS_MASK) == 5759 MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE)) { 5760 pkt->pkt_reason = CMD_INCOMPLETE; 5761 pkt->pkt_state |= STATE_GOT_BUS; 5762 mutex_enter(&ptgt->m_t_mutex); 5763 if (ptgt->m_reset_delay == 0) { 5764 mptsas_set_throttle(mpt, ptgt, 5765 DRAIN_THROTTLE); 5766 } 5767 mutex_exit(&ptgt->m_t_mutex); 5768 return; 5769 } 5770 5771 if (scsi_state & MPI2_SCSI_STATE_RESPONSE_INFO_VALID) { 5772 responsedata &= 0x000000FF; 5773 if (responsedata & MPTSAS_SCSI_RESPONSE_CODE_TLR_OFF) { 5774 mptsas_log(mpt, CE_NOTE, "Do not support the TLR\n"); 5775 pkt->pkt_reason = CMD_TLR_OFF; 5776 return; 5777 } 5778 } 5779 5780 5781 switch (scsi_status) { 5782 case MPI2_SCSI_STATUS_CHECK_CONDITION: 5783 (void) ddi_dma_sync(mpt->m_dma_req_sense_hdl, 0, 0, 5784 DDI_DMA_SYNC_FORCPU); 5785 pkt->pkt_resid = (cmd->cmd_dmacount - xferred); 5786 arqstat = (void*)(pkt->pkt_scbp); 5787 arqstat->sts_rqpkt_status = *((struct scsi_status *) 5788 (pkt->pkt_scbp)); 5789 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET | 5790 STATE_SENT_CMD | STATE_GOT_STATUS | STATE_ARQ_DONE); 5791 if (cmd->cmd_flags & CFLAG_XARQ) { 5792 pkt->pkt_state |= STATE_XARQ_DONE; 5793 } 5794 if (pkt->pkt_resid != cmd->cmd_dmacount) { 5795 pkt->pkt_state |= STATE_XFERRED_DATA; 5796 } 5797 arqstat->sts_rqpkt_reason = pkt->pkt_reason; 5798 arqstat->sts_rqpkt_state = pkt->pkt_state; 5799 arqstat->sts_rqpkt_state |= STATE_XFERRED_DATA; 5800 arqstat->sts_rqpkt_statistics = pkt->pkt_statistics; 5801 sensedata = (uint8_t *)&arqstat->sts_sensedata; 5802 #ifdef MPTSAS_DEBUG 5803 bcopy((uchar_t *)cmd->cmd_arq_buf, mptsas_last_sense, 5804 cmd->cmd_rqslen); 5805 #endif 5806 if (cmd->cmd_extrqslen != 0) { 5807 cmd_rqs_len = cmd->cmd_extrqslen; 5808 } else { 5809 cmd_rqs_len = cmd->cmd_rqslen; 5810 } 5811 bcopy((uchar_t *)cmd->cmd_arq_buf, sensedata, 5812 ((cmd->cmd_rqslen >= sensecount) ? sensecount : 5813 cmd_rqs_len)); 5814 arqstat->sts_rqpkt_resid = (cmd_rqs_len - sensecount); 5815 cmd->cmd_flags |= CFLAG_CMDARQ; 5816 /* 5817 * Set proper status for pkt if autosense was valid 5818 */ 5819 if (scsi_state & MPI2_SCSI_STATE_AUTOSENSE_VALID) { 5820 struct scsi_status zero_status = { 0 }; 5821 arqstat->sts_rqpkt_status = zero_status; 5822 } 5823 5824 /* 5825 * ASC=0x47 is parity error 5826 * ASC=0x48 is initiator detected error received 5827 */ 5828 if ((scsi_sense_key(sensedata) == KEY_ABORTED_COMMAND) && 5829 ((scsi_sense_asc(sensedata) == 0x47) || 5830 (scsi_sense_asc(sensedata) == 0x48))) { 5831 mptsas_log(mpt, CE_NOTE, "Aborted_command!"); 5832 } 5833 5834 /* 5835 * ASC/ASCQ=0x3F/0x0E means report_luns data changed 5836 * ASC/ASCQ=0x25/0x00 means invalid lun 5837 */ 5838 if (((scsi_sense_key(sensedata) == KEY_UNIT_ATTENTION) && 5839 (scsi_sense_asc(sensedata) == 0x3F) && 5840 (scsi_sense_ascq(sensedata) == 0x0E)) || 5841 ((scsi_sense_key(sensedata) == KEY_ILLEGAL_REQUEST) && 5842 (scsi_sense_asc(sensedata) == 0x25) && 5843 (scsi_sense_ascq(sensedata) == 0x00))) { 5844 mptsas_topo_change_list_t *topo_node = NULL; 5845 5846 topo_node = kmem_zalloc( 5847 sizeof (mptsas_topo_change_list_t), 5848 KM_NOSLEEP); 5849 if (topo_node == NULL) { 5850 mptsas_log(mpt, CE_NOTE, "No memory" 5851 "resource for handle SAS dynamic" 5852 "reconfigure.\n"); 5853 break; 5854 } 5855 topo_node->mpt = mpt; 5856 topo_node->event = MPTSAS_DR_EVENT_RECONFIG_TARGET; 5857 topo_node->un.phymask = ptgt->m_addr.mta_phymask; 5858 topo_node->devhdl = ptgt->m_devhdl; 5859 topo_node->object = (void *)ptgt; 5860 topo_node->flags = MPTSAS_TOPO_FLAG_LUN_ASSOCIATED; 5861 5862 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 5863 mptsas_handle_dr, 5864 (void *)topo_node, 5865 DDI_NOSLEEP)) != DDI_SUCCESS) { 5866 kmem_free(topo_node, 5867 sizeof (mptsas_topo_change_list_t)); 5868 mptsas_log(mpt, CE_NOTE, "mptsas start taskq" 5869 "for handle SAS dynamic reconfigure" 5870 "failed. \n"); 5871 } 5872 } 5873 break; 5874 case MPI2_SCSI_STATUS_GOOD: 5875 switch (ioc_status & MPI2_IOCSTATUS_MASK) { 5876 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 5877 pkt->pkt_reason = CMD_DEV_GONE; 5878 pkt->pkt_state |= STATE_GOT_BUS; 5879 mutex_enter(&ptgt->m_t_mutex); 5880 if (ptgt->m_reset_delay == 0) { 5881 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 5882 } 5883 mutex_exit(&ptgt->m_t_mutex); 5884 NDBG31(("lost disk for target%d, command:%x", 5885 Tgt(cmd), pkt->pkt_cdbp[0])); 5886 break; 5887 case MPI2_IOCSTATUS_SCSI_DATA_OVERRUN: 5888 NDBG31(("data overrun: xferred=%d", xferred)); 5889 NDBG31(("dmacount=%d", cmd->cmd_dmacount)); 5890 pkt->pkt_reason = CMD_DATA_OVR; 5891 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET 5892 | STATE_SENT_CMD | STATE_GOT_STATUS 5893 | STATE_XFERRED_DATA); 5894 pkt->pkt_resid = 0; 5895 break; 5896 case MPI2_IOCSTATUS_SCSI_RESIDUAL_MISMATCH: 5897 case MPI2_IOCSTATUS_SCSI_DATA_UNDERRUN: 5898 NDBG31(("data underrun: xferred=%d", xferred)); 5899 NDBG31(("dmacount=%d", cmd->cmd_dmacount)); 5900 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET 5901 | STATE_SENT_CMD | STATE_GOT_STATUS); 5902 pkt->pkt_resid = (cmd->cmd_dmacount - xferred); 5903 if (pkt->pkt_resid != cmd->cmd_dmacount) { 5904 pkt->pkt_state |= STATE_XFERRED_DATA; 5905 } 5906 break; 5907 case MPI2_IOCSTATUS_SCSI_TASK_TERMINATED: 5908 if (cmd->cmd_active_expiration <= gethrtime()) { 5909 /* 5910 * When timeout requested, propagate 5911 * proper reason and statistics to 5912 * target drivers. 5913 */ 5914 mptsas_set_pkt_reason(mpt, cmd, CMD_TIMEOUT, 5915 STAT_BUS_RESET | STAT_TIMEOUT); 5916 } else { 5917 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, 5918 STAT_BUS_RESET); 5919 } 5920 break; 5921 case MPI2_IOCSTATUS_SCSI_IOC_TERMINATED: 5922 case MPI2_IOCSTATUS_SCSI_EXT_TERMINATED: 5923 mptsas_set_pkt_reason(mpt, 5924 cmd, CMD_RESET, STAT_DEV_RESET); 5925 break; 5926 case MPI2_IOCSTATUS_SCSI_IO_DATA_ERROR: 5927 case MPI2_IOCSTATUS_SCSI_PROTOCOL_ERROR: 5928 pkt->pkt_state |= (STATE_GOT_BUS | STATE_GOT_TARGET); 5929 mptsas_set_pkt_reason(mpt, 5930 cmd, CMD_TERMINATED, STAT_TERMINATED); 5931 break; 5932 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 5933 case MPI2_IOCSTATUS_BUSY: 5934 /* 5935 * set throttles to drain 5936 */ 5937 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 5938 ptgt = refhash_next(mpt->m_targets, ptgt)) { 5939 mptsas_set_throttle_mtx(mpt, ptgt, 5940 DRAIN_THROTTLE); 5941 } 5942 5943 /* 5944 * retry command 5945 */ 5946 mptsas_retry_pkt(mpt, cmd); 5947 break; 5948 default: 5949 mptsas_log(mpt, CE_WARN, 5950 "unknown ioc_status = %x\n", ioc_status); 5951 mptsas_log(mpt, CE_CONT, "scsi_state = %x, transfer " 5952 "count = %x, scsi_status = %x", scsi_state, 5953 xferred, scsi_status); 5954 break; 5955 } 5956 break; 5957 case MPI2_SCSI_STATUS_TASK_SET_FULL: 5958 mptsas_handle_qfull(mpt, cmd); 5959 break; 5960 case MPI2_SCSI_STATUS_BUSY: 5961 NDBG31(("scsi_status busy received")); 5962 break; 5963 case MPI2_SCSI_STATUS_RESERVATION_CONFLICT: 5964 NDBG31(("scsi_status reservation conflict received")); 5965 break; 5966 default: 5967 mptsas_log(mpt, CE_WARN, "scsi_status=%x, ioc_status=%x\n", 5968 scsi_status, ioc_status); 5969 mptsas_log(mpt, CE_WARN, 5970 "mptsas_process_intr: invalid scsi status\n"); 5971 break; 5972 } 5973 } 5974 5975 static void 5976 mptsas_check_task_mgt(mptsas_t *mpt, pMpi2SCSIManagementReply_t reply, 5977 mptsas_cmd_t *cmd) 5978 { 5979 uint8_t task_type; 5980 uint16_t ioc_status; 5981 uint32_t log_info; 5982 uint16_t dev_handle; 5983 struct scsi_pkt *pkt = CMD2PKT(cmd); 5984 5985 task_type = ddi_get8(mpt->m_acc_reply_frame_hdl, &reply->TaskType); 5986 ioc_status = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->IOCStatus); 5987 log_info = ddi_get32(mpt->m_acc_reply_frame_hdl, &reply->IOCLogInfo); 5988 dev_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, &reply->DevHandle); 5989 5990 if (ioc_status != MPI2_IOCSTATUS_SUCCESS) { 5991 mptsas_log(mpt, CE_WARN, "mptsas_check_task_mgt: Task 0x%x " 5992 "failed. IOCStatus=0x%x IOCLogInfo=0x%x target=%d\n", 5993 task_type, ioc_status, log_info, dev_handle); 5994 pkt->pkt_reason = CMD_INCOMPLETE; 5995 return; 5996 } 5997 5998 switch (task_type) { 5999 case MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK: 6000 case MPI2_SCSITASKMGMT_TASKTYPE_CLEAR_TASK_SET: 6001 case MPI2_SCSITASKMGMT_TASKTYPE_QUERY_TASK: 6002 case MPI2_SCSITASKMGMT_TASKTYPE_CLR_ACA: 6003 case MPI2_SCSITASKMGMT_TASKTYPE_QRY_TASK_SET: 6004 case MPI2_SCSITASKMGMT_TASKTYPE_QRY_UNIT_ATTENTION: 6005 break; 6006 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 6007 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 6008 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 6009 /* 6010 * Check for invalid DevHandle of 0 in case application 6011 * sends bad command. DevHandle of 0 could cause problems. 6012 */ 6013 if (dev_handle == 0) { 6014 mptsas_log(mpt, CE_WARN, "!Can't flush target with" 6015 " DevHandle of 0."); 6016 } else { 6017 mptsas_flush_target(mpt, dev_handle, Lun(cmd), 6018 task_type); 6019 } 6020 break; 6021 default: 6022 mptsas_log(mpt, CE_WARN, "Unknown task management type %d.", 6023 task_type); 6024 mptsas_log(mpt, CE_WARN, "ioc status = %x", ioc_status); 6025 break; 6026 } 6027 } 6028 6029 static void 6030 mptsas_doneq_thread(mptsas_thread_arg_t *arg) 6031 { 6032 mptsas_t *mpt = arg->mpt; 6033 uint32_t t = arg->t; 6034 mptsas_cmd_t *cmd; 6035 struct scsi_pkt *pkt; 6036 mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t]; 6037 6038 mutex_enter(&item->mutex); 6039 while (item->flag & MPTSAS_DONEQ_THREAD_ACTIVE) { 6040 if (!item->dlist.dl_q) { 6041 cv_wait(&item->cv, &item->mutex); 6042 } 6043 pkt = NULL; 6044 if ((cmd = mptsas_doneq_thread_rm(mpt, t)) != NULL) { 6045 cmd->cmd_flags |= CFLAG_COMPLETED; 6046 pkt = CMD2PKT(cmd); 6047 } 6048 mutex_exit(&item->mutex); 6049 if (pkt) { 6050 mptsas_pkt_comp(pkt, cmd); 6051 } 6052 mutex_enter(&item->mutex); 6053 } 6054 mutex_exit(&item->mutex); 6055 mutex_enter(&mpt->m_qthread_mutex); 6056 mpt->m_doneq_thread_n--; 6057 cv_broadcast(&mpt->m_qthread_cv); 6058 mutex_exit(&mpt->m_qthread_mutex); 6059 } 6060 6061 6062 /* 6063 * mpt interrupt handler. 6064 */ 6065 static uint_t 6066 mptsas_intr(caddr_t arg1, caddr_t arg2) 6067 { 6068 mptsas_t *mpt = (void *)arg1; 6069 mptsas_reply_pqueue_t *rpqp; 6070 int reply_q = (int)(uintptr_t)arg2; 6071 pMpi2ReplyDescriptorsUnion_t reply_desc_union; 6072 int found = 0, i, rpqidx; 6073 size_t dma_sync_len; 6074 off_t dma_sync_offset; 6075 uint32_t istat; 6076 6077 NDBG18(("mptsas_intr: arg1 0x%p reply_q 0x%d", (void *)arg1, reply_q)); 6078 6079 rpqp = &mpt->m_rep_post_queues[reply_q]; 6080 6081 /* 6082 * If interrupts are shared by two channels then check whether this 6083 * interrupt is genuinely for this channel by making sure first the 6084 * chip is in high power state. 6085 */ 6086 if ((mpt->m_options & MPTSAS_OPT_PM) && 6087 (mpt->m_power_level != PM_LEVEL_D0)) { 6088 mpt->m_unclaimed_pm_interrupt_count++; 6089 return (DDI_INTR_UNCLAIMED); 6090 } 6091 6092 istat = MPTSAS_GET_ISTAT(mpt); 6093 if (!(istat & MPI2_HIS_REPLY_DESCRIPTOR_INTERRUPT)) { 6094 NDBG18(("Interrupt bit not set, istat 0x%x", istat)); 6095 mpt->m_unclaimed_no_interrupt_count++; 6096 /* 6097 * Really need a good definition of when this is valid. 6098 * It appears not to be if you have multiple reply post 6099 * queues, there may be a better way - need LSI info. 6100 * For now just count them. 6101 */ 6102 #if 0 6103 return (DDI_INTR_UNCLAIMED); 6104 #endif 6105 } 6106 6107 /* 6108 * If polling, interrupt was triggered by some shared interrupt because 6109 * IOC interrupts are disabled during polling, so polling routine will 6110 * handle any replies. Considering this, if polling is happening, 6111 * return with interrupt unclaimed. 6112 */ 6113 if (mpt->m_polled_intr) { 6114 mptsas_log(mpt, CE_WARN, 6115 "Unclaimed interrupt, rpq %d (Polling), istat 0x%x", 6116 reply_q, istat); 6117 mpt->m_unclaimed_polled_interrupt_count++; 6118 return (DDI_INTR_UNCLAIMED); 6119 } 6120 6121 /* 6122 * At the moment this is the only place the mutex is grabbed. 6123 * So it should never fail! 6124 */ 6125 if (mutex_tryenter(&rpqp->rpq_mutex) == 0) { 6126 mutex_enter(&rpqp->rpq_mutex); 6127 rpqp->rpq_intr_mutexbusy++; 6128 } 6129 6130 dma_sync_len = mpt->m_post_queue_depth * 8; 6131 dma_sync_offset = dma_sync_len * reply_q; 6132 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 6133 dma_sync_offset, dma_sync_len, DDI_DMA_SYNC_FORCPU); 6134 6135 /* 6136 * Go around the reply queue and process each descriptor until 6137 * we get to the next unused one. 6138 * It seems to be an occupational hazard that we get interrupts 6139 * with nothing to do. These are counted below. 6140 */ 6141 rpqidx = rpqp->rpq_index; 6142 #ifndef __lock_lint 6143 _NOTE(CONSTCOND) 6144 #endif 6145 while (TRUE) { 6146 reply_desc_union = (pMpi2ReplyDescriptorsUnion_t) 6147 MPTSAS_GET_NEXT_REPLY(rpqp, rpqidx); 6148 6149 if (ddi_get32(mpt->m_acc_post_queue_hdl, 6150 &reply_desc_union->Words.Low) == 0xFFFFFFFF || 6151 ddi_get32(mpt->m_acc_post_queue_hdl, 6152 &reply_desc_union->Words.High) == 0xFFFFFFFF) { 6153 break; 6154 } 6155 6156 found++; 6157 6158 ASSERT(ddi_get8(mpt->m_acc_post_queue_hdl, 6159 &reply_desc_union->Default.MSIxIndex) == reply_q); 6160 6161 /* 6162 * Process it according to its type. 6163 */ 6164 mptsas_process_intr(mpt, rpqp, reply_desc_union); 6165 6166 /* 6167 * Clear the reply descriptor for re-use. 6168 */ 6169 ddi_put64(mpt->m_acc_post_queue_hdl, 6170 &((uint64_t *)(void *)rpqp->rpq_queue)[rpqidx], 6171 0xFFFFFFFFFFFFFFFF); 6172 6173 /* 6174 * Increment post index and roll over if needed. 6175 */ 6176 if (++rpqidx == mpt->m_post_queue_depth) { 6177 rpqidx = 0; 6178 } 6179 } 6180 6181 if (found == 0) { 6182 rpqp->rpq_intr_unclaimed++; 6183 mutex_exit(&rpqp->rpq_mutex); 6184 mpt->m_unclaimed_nocmd_interrupt_count++; 6185 return (DDI_INTR_UNCLAIMED); 6186 } 6187 rpqp->rpq_index = rpqidx; 6188 6189 rpqp->rpq_intr_count++; 6190 NDBG18(("mptsas_intr complete(%d), did %d loops", reply_q, found)); 6191 6192 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 6193 dma_sync_offset, dma_sync_len, DDI_DMA_SYNC_FORDEV); 6194 6195 mpt->m_interrupt_count++; 6196 6197 /* 6198 * Update the reply index if at least one reply was processed. 6199 * For more than 8 reply queues on SAS3 controllers we have to do 6200 * things a little different. See Chapter 20 in the MPI 2.5 spec. 6201 */ 6202 if (mpt->m_post_reply_qcount > 8) { 6203 /* 6204 * The offsets from the base are multiples of 0x10. 6205 * We are indexing into 32 bit quantities so calculate 6206 * the index for that. 6207 */ 6208 i = (reply_q&~0x7) >> 1; 6209 ddi_put32(mpt->m_datap, 6210 &mpt->m_reg->SuppReplyPostHostIndex[i], 6211 rpqp->rpq_index | 6212 ((reply_q&0x7)<<MPI2_RPHI_MSIX_INDEX_SHIFT)); 6213 (void) ddi_get32(mpt->m_datap, 6214 &mpt->m_reg->SuppReplyPostHostIndex[i]); 6215 } else { 6216 ddi_put32(mpt->m_datap, 6217 &mpt->m_reg->ReplyPostHostIndex, 6218 rpqp->rpq_index | (reply_q<<MPI2_RPHI_MSIX_INDEX_SHIFT)); 6219 (void) ddi_get32(mpt->m_datap, 6220 &mpt->m_reg->ReplyPostHostIndex); 6221 } 6222 6223 /* 6224 * If no helper threads are created, process the doneq in ISR. If 6225 * helpers are created, use the doneq length as a metric to measure the 6226 * load on the interrupt CPU. If it is long enough, which indicates the 6227 * load is heavy, then we deliver the IO completions to the helpers. 6228 * This measurement has some limitations, although it is simple and 6229 * straightforward and works well for most of the cases at present. 6230 * To always use the threads set mptsas_doneq_length_threshold_prop 6231 * to zero in the mpt_sas3.conf file. 6232 * 6233 * Check the current reply queue done queue. 6234 */ 6235 if (rpqp->rpq_dlist.dl_len) { 6236 if (!mpt->m_doneq_thread_n || 6237 (rpqp->rpq_dlist.dl_len <= mpt->m_doneq_length_threshold)) { 6238 mptsas_rpdoneq_empty(rpqp); 6239 } else { 6240 mptsas_deliver_doneq_thread(mpt, &rpqp->rpq_dlist); 6241 } 6242 } 6243 6244 mutex_exit(&rpqp->rpq_mutex); 6245 6246 /* 6247 * Check the main done queue. If we find something 6248 * grab the mutex and check again before processing. 6249 */ 6250 if (mpt->m_dlist.dl_len) { 6251 mutex_enter(&mpt->m_mutex); 6252 if (mpt->m_dlist.dl_len) { 6253 if (!mpt->m_doneq_thread_n || 6254 (mpt->m_dlist.dl_len <= 6255 mpt->m_doneq_length_threshold)) { 6256 mptsas_doneq_empty(mpt); 6257 } else { 6258 mptsas_deliver_doneq_thread(mpt, &mpt->m_dlist); 6259 } 6260 } 6261 mutex_exit(&mpt->m_mutex); 6262 } 6263 6264 /* 6265 * If there are queued cmd, start them now. 6266 */ 6267 if (mpt->m_waitq != NULL) { 6268 mutex_enter(&mpt->m_mutex); 6269 if (mpt->m_waitq != NULL && mpt->m_polled_intr == 0) { 6270 mptsas_restart_waitq(mpt); 6271 } 6272 mutex_exit(&mpt->m_mutex); 6273 } 6274 return (DDI_INTR_CLAIMED); 6275 } 6276 6277 static void 6278 mptsas_process_intr(mptsas_t *mpt, mptsas_reply_pqueue_t *rpqp, 6279 pMpi2ReplyDescriptorsUnion_t reply_desc_union) 6280 { 6281 uint8_t reply_type; 6282 6283 /* 6284 * Should get here with the reply queue mutex held, but not 6285 * the main mpt mutex. Want to avoid grabbing that during 6286 * normal operations if possible. 6287 */ 6288 ASSERT(mutex_owned(&rpqp->rpq_mutex)); 6289 6290 /* 6291 * The reply is valid, process it according to its 6292 * type. Also, set a flag for updated the reply index 6293 * after they've all been processed. 6294 */ 6295 reply_type = ddi_get8(mpt->m_acc_post_queue_hdl, 6296 &reply_desc_union->Default.ReplyFlags); 6297 NDBG18(("mptsas_process_intr(rpq %d) reply_type 0x%x", rpqp->rpq_num, 6298 reply_type)); 6299 reply_type &= MPI2_RPY_DESCRIPT_FLAGS_TYPE_MASK; 6300 if (reply_type == MPI2_RPY_DESCRIPT_FLAGS_SCSI_IO_SUCCESS || 6301 reply_type == MPI25_RPY_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO_SUCCESS) { 6302 mptsas_handle_scsi_io_success(mpt, rpqp, reply_desc_union); 6303 } else if (reply_type == MPI2_RPY_DESCRIPT_FLAGS_ADDRESS_REPLY) { 6304 mutex_enter(&mpt->m_mutex); 6305 mptsas_handle_address_reply(mpt, reply_desc_union); 6306 mutex_exit(&mpt->m_mutex); 6307 } else { 6308 mptsas_log(mpt, CE_WARN, "?Bad reply type %x", reply_type); 6309 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 6310 } 6311 } 6312 6313 /* 6314 * handle qfull condition 6315 */ 6316 static void 6317 mptsas_handle_qfull(mptsas_t *mpt, mptsas_cmd_t *cmd) 6318 { 6319 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 6320 6321 mutex_enter(&ptgt->m_t_mutex); 6322 if ((++cmd->cmd_qfull_retries > ptgt->m_qfull_retries) || 6323 (ptgt->m_qfull_retries == 0)) { 6324 /* 6325 * We have exhausted the retries on QFULL, or, 6326 * the target driver has indicated that it 6327 * wants to handle QFULL itself by setting 6328 * qfull-retries capability to 0. In either case 6329 * we want the target driver's QFULL handling 6330 * to kick in. We do this by having pkt_reason 6331 * as CMD_CMPLT and pkt_scbp as STATUS_QFULL. 6332 */ 6333 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 6334 } else { 6335 if (ptgt->m_reset_delay == 0) { 6336 ptgt->m_t_throttle = 6337 max((ptgt->m_t_ncmds - 2), 0); 6338 } 6339 mutex_exit(&ptgt->m_t_mutex); 6340 6341 cmd->cmd_flags &= ~(CFLAG_TRANFLAG); 6342 6343 mptsas_retry_pkt(mpt, cmd); 6344 6345 mutex_enter(&ptgt->m_t_mutex); 6346 /* 6347 * when target gives queue full status with no commands 6348 * outstanding (m_t_ncmds == 0), throttle is set to 0 6349 * (HOLD_THROTTLE), and the queue full handling start 6350 * (see psarc/1994/313); if there are commands outstanding, 6351 * throttle is set to (m_t_ncmds - 2) 6352 */ 6353 if (ptgt->m_t_throttle == HOLD_THROTTLE) { 6354 /* 6355 * By setting throttle to QFULL_THROTTLE, we 6356 * avoid submitting new commands and in 6357 * mptsas_restart_cmd find out slots which need 6358 * their throttles to be cleared. 6359 */ 6360 mptsas_set_throttle(mpt, ptgt, QFULL_THROTTLE); 6361 if (mpt->m_restart_cmd_timeid == 0) { 6362 mpt->m_restart_cmd_timeid = 6363 timeout(mptsas_restart_cmd, mpt, 6364 ptgt->m_qfull_retry_interval); 6365 } 6366 } 6367 } 6368 mutex_exit(&ptgt->m_t_mutex); 6369 } 6370 6371 mptsas_phymask_t 6372 mptsas_physport_to_phymask(mptsas_t *mpt, uint8_t physport) 6373 { 6374 mptsas_phymask_t phy_mask = 0; 6375 uint8_t i = 0; 6376 6377 NDBG20(("mptsas3%d physport_to_phymask enter", mpt->m_instance)); 6378 6379 ASSERT(mutex_owned(&mpt->m_mutex)); 6380 6381 /* 6382 * If physport is 0xFF, this is a RAID volume. Use phymask of 0. 6383 */ 6384 if (physport == 0xFF) { 6385 return (0); 6386 } 6387 6388 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 6389 if (mpt->m_phy_info[i].attached_devhdl && 6390 (mpt->m_phy_info[i].phy_mask != 0) && 6391 (mpt->m_phy_info[i].port_num == physport)) { 6392 phy_mask = mpt->m_phy_info[i].phy_mask; 6393 break; 6394 } 6395 } 6396 NDBG20(("mptsas3%d physport_to_phymask:physport :%x phymask :%x, ", 6397 mpt->m_instance, physport, phy_mask)); 6398 return (phy_mask); 6399 } 6400 6401 /* 6402 * mpt free device handle after device gone, by use of passthrough 6403 */ 6404 static int 6405 mptsas_free_devhdl(mptsas_t *mpt, uint16_t devhdl) 6406 { 6407 Mpi2SasIoUnitControlRequest_t req; 6408 Mpi2SasIoUnitControlReply_t rep; 6409 int ret; 6410 6411 ASSERT(mutex_owned(&mpt->m_mutex)); 6412 6413 /* 6414 * Need to compose a SAS IO Unit Control request message 6415 * and call mptsas_do_passthru() function 6416 */ 6417 bzero(&req, sizeof (req)); 6418 bzero(&rep, sizeof (rep)); 6419 6420 req.Function = MPI2_FUNCTION_SAS_IO_UNIT_CONTROL; 6421 req.Operation = MPI2_SAS_OP_REMOVE_DEVICE; 6422 req.DevHandle = LE_16(devhdl); 6423 6424 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, NULL, 6425 sizeof (req), sizeof (rep), NULL, 0, NULL, 0, 60, FKIOCTL); 6426 if (ret != 0) { 6427 cmn_err(CE_WARN, "mptsas_free_devhdl: passthru SAS IO Unit " 6428 "Control error %d", ret); 6429 return (DDI_FAILURE); 6430 } 6431 6432 /* do passthrough success, check the ioc status */ 6433 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 6434 cmn_err(CE_WARN, "mptsas_free_devhdl: passthru SAS IO Unit " 6435 "Control IOCStatus %d", LE_16(rep.IOCStatus)); 6436 return (DDI_FAILURE); 6437 } 6438 6439 return (DDI_SUCCESS); 6440 } 6441 6442 static void 6443 mptsas_update_phymask(mptsas_t *mpt) 6444 { 6445 mptsas_phymask_t mask = 0, phy_mask; 6446 char *phy_mask_name; 6447 uint8_t current_port; 6448 int i, j; 6449 6450 NDBG20(("mptsas3%d update phymask ", mpt->m_instance)); 6451 6452 ASSERT(mutex_owned(&mpt->m_mutex)); 6453 6454 (void) mptsas_get_sas_io_unit_page(mpt); 6455 6456 phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP); 6457 6458 for (i = 0; i < mpt->m_num_phys; i++) { 6459 phy_mask = 0x00; 6460 6461 if (mpt->m_phy_info[i].attached_devhdl == 0) 6462 continue; 6463 6464 bzero(phy_mask_name, sizeof (phy_mask_name)); 6465 6466 current_port = mpt->m_phy_info[i].port_num; 6467 6468 if ((mask & (1 << i)) != 0) 6469 continue; 6470 6471 for (j = 0; j < mpt->m_num_phys; j++) { 6472 if (mpt->m_phy_info[j].attached_devhdl && 6473 (mpt->m_phy_info[j].port_num == current_port)) { 6474 phy_mask |= (1 << j); 6475 } 6476 } 6477 mask = mask | phy_mask; 6478 6479 for (j = 0; j < mpt->m_num_phys; j++) { 6480 if ((phy_mask >> j) & 0x01) { 6481 mpt->m_phy_info[j].phy_mask = phy_mask; 6482 } 6483 } 6484 6485 (void) sprintf(phy_mask_name, "%x", phy_mask); 6486 6487 mutex_exit(&mpt->m_mutex); 6488 /* 6489 * register a iport, if the port has already been existed 6490 * SCSA will do nothing and just return. 6491 */ 6492 (void) scsi_hba_iport_register(mpt->m_dip, phy_mask_name); 6493 mutex_enter(&mpt->m_mutex); 6494 } 6495 kmem_free(phy_mask_name, MPTSAS_MAX_PHYS); 6496 NDBG20(("mptsas3%d update phymask return", mpt->m_instance)); 6497 } 6498 6499 /* 6500 * mptsas_handle_dr is a task handler for DR, the DR action includes: 6501 * 1. Directly attched Device Added/Removed. 6502 * 2. Expander Device Added/Removed. 6503 * 3. Indirectly Attached Device Added/Expander. 6504 * 4. LUNs of a existing device status change. 6505 * 5. RAID volume created/deleted. 6506 * 6. Member of RAID volume is released because of RAID deletion. 6507 * 7. Physical disks are removed because of RAID creation. 6508 */ 6509 static void 6510 mptsas_handle_dr(void *args) { 6511 mptsas_topo_change_list_t *topo_node = NULL; 6512 mptsas_topo_change_list_t *save_node = NULL; 6513 mptsas_t *mpt; 6514 dev_info_t *parent = NULL; 6515 mptsas_phymask_t phymask = 0; 6516 char phy_mask_name[MPTSAS_MAX_PHYS]; 6517 uint8_t flags = 0, physport = 0xff; 6518 uint8_t port_update = 0; 6519 uint_t event; 6520 6521 topo_node = (mptsas_topo_change_list_t *)args; 6522 6523 mpt = topo_node->mpt; 6524 event = topo_node->event; 6525 flags = topo_node->flags; 6526 6527 NDBG20(("mptsas3%d handle_dr enter", mpt->m_instance)); 6528 6529 switch (event) { 6530 case MPTSAS_DR_EVENT_RECONFIG_TARGET: 6531 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6532 (flags == MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE) || 6533 (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) { 6534 /* 6535 * Direct attached or expander attached device added 6536 * into system or a Phys Disk that is being unhidden. 6537 */ 6538 port_update = 1; 6539 } 6540 break; 6541 case MPTSAS_DR_EVENT_RECONFIG_SMP: 6542 /* 6543 * New expander added into system, it must be the head 6544 * of topo_change_list_t 6545 */ 6546 port_update = 1; 6547 break; 6548 default: 6549 port_update = 0; 6550 break; 6551 } 6552 /* 6553 * All cases port_update == 1 may cause initiator port form change 6554 */ 6555 mutex_enter(&mpt->m_mutex); 6556 if (mpt->m_port_chng && port_update) { 6557 /* 6558 * mpt->m_port_chng flag indicates some PHYs of initiator 6559 * port have changed to online. So when expander added or 6560 * directly attached device online event come, we force to 6561 * update port information by issueing SAS IO Unit Page and 6562 * update PHYMASKs. 6563 */ 6564 (void) mptsas_update_phymask(mpt); 6565 mpt->m_port_chng = 0; 6566 6567 } 6568 mutex_exit(&mpt->m_mutex); 6569 6570 while (topo_node) { 6571 phymask = 0; 6572 flags = topo_node->flags; 6573 event = topo_node->event; 6574 if (event == MPTSAS_DR_EVENT_REMOVE_HANDLE) { 6575 goto handle_topo_change; 6576 } 6577 if ((event == MPTSAS_DR_EVENT_RECONFIG_TARGET) && 6578 (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) { 6579 /* 6580 * There is no any field in IR_CONFIG_CHANGE 6581 * event indicate physport/phynum, let's get 6582 * parent after SAS Device Page0 request. 6583 */ 6584 goto handle_topo_change; 6585 } 6586 6587 if (parent == NULL) { 6588 physport = topo_node->un.physport; 6589 if (event & (MPTSAS_DR_EVENT_OFFLINE_TARGET | 6590 MPTSAS_DR_EVENT_OFFLINE_SMP)) { 6591 /* 6592 * For all offline events, phymask is known 6593 */ 6594 phymask = topo_node->un.phymask; 6595 goto find_parent; 6596 } 6597 if (flags & MPTSAS_TOPO_FLAG_LUN_ASSOCIATED) { 6598 phymask = topo_node->un.phymask; 6599 goto find_parent; 6600 } 6601 6602 mutex_enter(&mpt->m_mutex); 6603 if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6604 /* 6605 * If the direct attached device added or a 6606 * phys disk is being unhidden, argument 6607 * physport actually is PHY#, so we have to get 6608 * phymask according PHY#. 6609 */ 6610 physport = mpt->m_phy_info[physport].port_num; 6611 } 6612 6613 /* 6614 * Translate physport to phymask so that we can search 6615 * parent dip. 6616 */ 6617 phymask = mptsas_physport_to_phymask(mpt, physport); 6618 mutex_exit(&mpt->m_mutex); 6619 6620 find_parent: 6621 bzero(phy_mask_name, MPTSAS_MAX_PHYS); 6622 /* 6623 * For RAID topology change node, write the iport name 6624 * as v0. 6625 */ 6626 if (flags & MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6627 (void) sprintf(phy_mask_name, "v0"); 6628 } else { 6629 /* 6630 * phymask can be 0 if the drive has been 6631 * pulled by the time an add event is 6632 * processed. If phymask is 0, just skip this 6633 * event and continue. 6634 */ 6635 if (phymask == 0) { 6636 save_node = topo_node; 6637 topo_node = topo_node->next; 6638 ASSERT(save_node); 6639 kmem_free(save_node, 6640 sizeof (mptsas_topo_change_list_t)); 6641 parent = NULL; 6642 continue; 6643 } 6644 (void) sprintf(phy_mask_name, "%x", phymask); 6645 } 6646 parent = scsi_hba_iport_find(mpt->m_dip, 6647 phy_mask_name); 6648 if (parent == NULL) { 6649 mptsas_log(mpt, CE_WARN, "Failed to find an " 6650 "iport for \"%s\", should not happen!", 6651 phy_mask_name); 6652 save_node = topo_node; 6653 topo_node = topo_node->next; 6654 ASSERT(save_node); 6655 kmem_free(save_node, 6656 sizeof (mptsas_topo_change_list_t)); 6657 continue; 6658 } 6659 6660 } 6661 ASSERT(parent); 6662 handle_topo_change: 6663 6664 mutex_enter(&mpt->m_mutex); 6665 /* 6666 * If HBA is being reset, don't perform operations depending 6667 * on the IOC. We must free the topo list, however. 6668 */ 6669 if (!mpt->m_in_reset) 6670 mptsas_handle_topo_change(topo_node, parent); 6671 else 6672 NDBG20(("skipping topo change received during reset")); 6673 mutex_exit(&mpt->m_mutex); 6674 save_node = topo_node; 6675 topo_node = topo_node->next; 6676 ASSERT(save_node); 6677 kmem_free(save_node, sizeof (mptsas_topo_change_list_t)); 6678 6679 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6680 (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) || 6681 (flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED)) { 6682 /* 6683 * If direct attached device associated, make sure 6684 * reset the parent before start the next one. But 6685 * all devices associated with expander shares the 6686 * parent. Also, reset parent if this is for RAID. 6687 */ 6688 parent = NULL; 6689 } 6690 } 6691 } 6692 6693 static void 6694 mptsas_offline_target(mptsas_t *mpt, mptsas_target_t *ptgt, 6695 uint8_t topo_flags, dev_info_t *parent) 6696 { 6697 uint64_t sas_wwn = 0; 6698 uint8_t phy; 6699 char wwn_str[MPTSAS_WWN_STRLEN]; 6700 uint16_t devhdl; 6701 int circ = 0, circ1 = 0; 6702 int rval = 0; 6703 6704 sas_wwn = ptgt->m_addr.mta_wwn; 6705 phy = ptgt->m_phynum; 6706 devhdl = ptgt->m_devhdl; 6707 6708 if (sas_wwn) { 6709 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 6710 } else { 6711 (void) sprintf(wwn_str, "p%x", phy); 6712 } 6713 6714 /* 6715 * Abort all outstanding command on the device 6716 */ 6717 rval = mptsas_do_scsi_reset(mpt, devhdl); 6718 if (rval) { 6719 NDBG20(("mptsas3%d: mptsas_offline_target: reset target " 6720 "before offline devhdl:%x, phymask:%x, rval:%x", 6721 mpt->m_instance, ptgt->m_devhdl, 6722 ptgt->m_addr.mta_phymask, rval)); 6723 } 6724 6725 mutex_exit(&mpt->m_mutex); 6726 6727 ndi_devi_enter(scsi_vhci_dip, &circ); 6728 ndi_devi_enter(parent, &circ1); 6729 rval = mptsas_offline_targetdev(parent, wwn_str); 6730 ndi_devi_exit(parent, circ1); 6731 ndi_devi_exit(scsi_vhci_dip, circ); 6732 NDBG20(("mptsas3%d: mptsas_offline_target %s devhdl:%x, " 6733 "phymask:%x, rval:%x", mpt->m_instance, wwn_str, 6734 ptgt->m_devhdl, ptgt->m_addr.mta_phymask, rval)); 6735 6736 /* 6737 * Clear parent's props for SMHBA support 6738 */ 6739 if (topo_flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6740 if (ddi_prop_update_string(DDI_DEV_T_NONE, parent, 6741 SCSI_ADDR_PROP_ATTACHED_PORT, "") != 6742 DDI_PROP_SUCCESS) { 6743 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6744 SCSI_ADDR_PROP_ATTACHED_PORT); 6745 mptsas_log(mpt, CE_WARN, "mptsas attached port " 6746 "prop update failed"); 6747 } 6748 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6749 MPTSAS_NUM_PHYS, 0) != DDI_PROP_SUCCESS) { 6750 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6751 MPTSAS_NUM_PHYS); 6752 mptsas_log(mpt, CE_WARN, "mptsas num phys " 6753 "prop update failed"); 6754 } 6755 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6756 MPTSAS_VIRTUAL_PORT, 1) != DDI_PROP_SUCCESS) { 6757 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 6758 MPTSAS_VIRTUAL_PORT); 6759 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 6760 "prop update failed"); 6761 } 6762 } 6763 6764 mutex_enter(&mpt->m_mutex); 6765 ptgt->m_led_status = 0; 6766 (void) mptsas_flush_led_status(mpt, ptgt); 6767 if (rval == DDI_SUCCESS) { 6768 mutex_destroy(&ptgt->m_t_mutex); 6769 refhash_remove(mpt->m_targets, ptgt); 6770 ptgt = NULL; 6771 } else { 6772 /* 6773 * clean DR_INTRANSITION flag to allow I/O down to 6774 * PHCI driver since failover finished. 6775 * Invalidate the devhdl 6776 */ 6777 ptgt->m_devhdl = MPTSAS_INVALID_DEVHDL; 6778 ptgt->m_tgt_unconfigured = 0; 6779 ptgt->m_dr_flag = MPTSAS_DR_INACTIVE; 6780 } 6781 } 6782 6783 static void 6784 mptsas_handle_topo_change(mptsas_topo_change_list_t *topo_node, 6785 dev_info_t *parent) 6786 { 6787 mptsas_target_t *ptgt = NULL; 6788 mptsas_smp_t *psmp = NULL; 6789 mptsas_t *mpt = (void *)topo_node->mpt; 6790 uint16_t devhdl; 6791 uint16_t attached_devhdl; 6792 int rval = 0; 6793 uint32_t page_address; 6794 uint8_t flags; 6795 dev_info_t *lundip; 6796 int circ = 0, circ1 = 0; 6797 char attached_wwnstr[MPTSAS_WWN_STRLEN]; 6798 6799 NDBG20(("mptsas3%d handle_topo_change enter, devhdl 0x%x," 6800 "event 0x%x, flags 0x%x", mpt->m_instance, topo_node->devhdl, 6801 topo_node->event, topo_node->flags)); 6802 6803 ASSERT(mutex_owned(&mpt->m_mutex)); 6804 6805 switch (topo_node->event) { 6806 case MPTSAS_DR_EVENT_RECONFIG_TARGET: 6807 { 6808 char *phy_mask_name; 6809 mptsas_phymask_t phymask = 0; 6810 6811 if (topo_node->flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6812 /* 6813 * Get latest RAID info. 6814 */ 6815 (void) mptsas_get_raid_info(mpt); 6816 ptgt = refhash_linear_search(mpt->m_targets, 6817 mptsas_target_eval_devhdl, &topo_node->devhdl); 6818 if (ptgt == NULL) 6819 break; 6820 } else { 6821 ptgt = (void *)topo_node->object; 6822 } 6823 6824 if (ptgt == NULL) { 6825 /* 6826 * If a Phys Disk was deleted, RAID info needs to be 6827 * updated to reflect the new topology. 6828 */ 6829 (void) mptsas_get_raid_info(mpt); 6830 6831 /* 6832 * Get sas device page 0 by DevHandle to make sure if 6833 * SSP/SATA end device exist. 6834 */ 6835 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 6836 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 6837 topo_node->devhdl; 6838 6839 rval = mptsas_get_target_device_info(mpt, page_address, 6840 &devhdl, &ptgt); 6841 if (rval == DEV_INFO_WRONG_DEVICE_TYPE) { 6842 mptsas_log(mpt, CE_NOTE, 6843 "mptsas_handle_topo_change: target %d is " 6844 "not a SAS/SATA device. \n", 6845 topo_node->devhdl); 6846 } else if (rval == DEV_INFO_FAIL_ALLOC) { 6847 mptsas_log(mpt, CE_NOTE, 6848 "mptsas_handle_topo_change: could not " 6849 "allocate memory. \n"); 6850 } 6851 /* 6852 * If rval is DEV_INFO_PHYS_DISK than there is nothing 6853 * else to do, just leave. 6854 */ 6855 if (rval != DEV_INFO_SUCCESS) { 6856 return; 6857 } 6858 } 6859 6860 ASSERT(ptgt->m_devhdl == topo_node->devhdl); 6861 6862 mutex_exit(&mpt->m_mutex); 6863 flags = topo_node->flags; 6864 6865 if (flags == MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED) { 6866 phymask = ptgt->m_addr.mta_phymask; 6867 phy_mask_name = kmem_zalloc(MPTSAS_MAX_PHYS, KM_SLEEP); 6868 (void) sprintf(phy_mask_name, "%x", phymask); 6869 parent = scsi_hba_iport_find(mpt->m_dip, 6870 phy_mask_name); 6871 kmem_free(phy_mask_name, MPTSAS_MAX_PHYS); 6872 if (parent == NULL) { 6873 mptsas_log(mpt, CE_WARN, "Failed to find a " 6874 "iport for PD, should not happen!"); 6875 mutex_enter(&mpt->m_mutex); 6876 break; 6877 } 6878 } 6879 6880 if (flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) { 6881 ndi_devi_enter(parent, &circ1); 6882 (void) mptsas_config_raid(parent, topo_node->devhdl, 6883 &lundip); 6884 ndi_devi_exit(parent, circ1); 6885 } else { 6886 /* 6887 * hold nexus for bus configure 6888 */ 6889 ndi_devi_enter(scsi_vhci_dip, &circ); 6890 ndi_devi_enter(parent, &circ1); 6891 rval = mptsas_config_target(parent, ptgt); 6892 /* 6893 * release nexus for bus configure 6894 */ 6895 ndi_devi_exit(parent, circ1); 6896 ndi_devi_exit(scsi_vhci_dip, circ); 6897 6898 /* 6899 * Add parent's props for SMHBA support 6900 */ 6901 if (flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) { 6902 bzero(attached_wwnstr, 6903 sizeof (attached_wwnstr)); 6904 (void) sprintf(attached_wwnstr, "w%016"PRIx64, 6905 ptgt->m_addr.mta_wwn); 6906 if (ddi_prop_update_string(DDI_DEV_T_NONE, 6907 parent, 6908 SCSI_ADDR_PROP_ATTACHED_PORT, 6909 attached_wwnstr) 6910 != DDI_PROP_SUCCESS) { 6911 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6912 parent, 6913 SCSI_ADDR_PROP_ATTACHED_PORT); 6914 mptsas_log(mpt, CE_WARN, "Failed to" 6915 "attached-port props"); 6916 return; 6917 } 6918 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6919 MPTSAS_NUM_PHYS, 1) != 6920 DDI_PROP_SUCCESS) { 6921 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6922 parent, MPTSAS_NUM_PHYS); 6923 mptsas_log(mpt, CE_WARN, "Failed to" 6924 " create num-phys props"); 6925 return; 6926 } 6927 6928 /* 6929 * Update PHY info for smhba 6930 */ 6931 mutex_enter(&mpt->m_mutex); 6932 if (mptsas_smhba_phy_init(mpt)) { 6933 mutex_exit(&mpt->m_mutex); 6934 mptsas_log(mpt, CE_WARN, "mptsas phy" 6935 " update failed"); 6936 return; 6937 } 6938 mutex_exit(&mpt->m_mutex); 6939 6940 /* 6941 * topo_node->un.physport is really the PHY# 6942 * for direct attached devices 6943 */ 6944 mptsas_smhba_set_one_phy_props(mpt, parent, 6945 topo_node->un.physport, &attached_devhdl); 6946 6947 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 6948 MPTSAS_VIRTUAL_PORT, 0) != 6949 DDI_PROP_SUCCESS) { 6950 (void) ddi_prop_remove(DDI_DEV_T_NONE, 6951 parent, MPTSAS_VIRTUAL_PORT); 6952 mptsas_log(mpt, CE_WARN, 6953 "mptsas virtual-port" 6954 "port prop update failed"); 6955 return; 6956 } 6957 } 6958 } 6959 mutex_enter(&mpt->m_mutex); 6960 6961 NDBG20(("mptsas3%d handle_topo_change to online devhdl:%x, " 6962 "phymask:%x.", mpt->m_instance, ptgt->m_devhdl, 6963 ptgt->m_addr.mta_phymask)); 6964 break; 6965 } 6966 case MPTSAS_DR_EVENT_OFFLINE_TARGET: 6967 { 6968 devhdl = topo_node->devhdl; 6969 ptgt = refhash_linear_search(mpt->m_targets, 6970 mptsas_target_eval_devhdl, &devhdl); 6971 if (ptgt == NULL) 6972 break; 6973 6974 ASSERT(ptgt->m_devhdl == devhdl); 6975 6976 if ((topo_node->flags == MPTSAS_TOPO_FLAG_RAID_ASSOCIATED) || 6977 (topo_node->flags == 6978 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED)) { 6979 /* 6980 * Get latest RAID info if RAID volume status changes 6981 * or Phys Disk status changes 6982 */ 6983 (void) mptsas_get_raid_info(mpt); 6984 } 6985 6986 mptsas_offline_target(mpt, ptgt, topo_node->flags, parent); 6987 6988 /* 6989 * Send SAS IO Unit Control to free the dev handle 6990 */ 6991 if ((flags == MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE) || 6992 (flags == MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE)) { 6993 rval = mptsas_free_devhdl(mpt, devhdl); 6994 6995 NDBG20(("mptsas3%d handle_topo_change to remove " 6996 "devhdl:%x, rval:%x", mpt->m_instance, devhdl, 6997 rval)); 6998 } 6999 7000 break; 7001 } 7002 case MPTSAS_DR_EVENT_REMOVE_HANDLE: 7003 { 7004 devhdl = topo_node->devhdl; 7005 7006 /* 7007 * Do a reset first. 7008 */ 7009 rval = mptsas_do_scsi_reset(mpt, devhdl); 7010 NDBG20(("mpt%d reset target before remove " 7011 "devhdl:%x, rval:%x", mpt->m_instance, devhdl, rval)); 7012 7013 /* 7014 * Send SAS IO Unit Control to free the dev handle 7015 */ 7016 rval = mptsas_free_devhdl(mpt, devhdl); 7017 NDBG20(("mptsas3%d handle_topo_change to remove " 7018 "devhdl:%x, rval:%x", mpt->m_instance, devhdl, 7019 rval)); 7020 break; 7021 } 7022 case MPTSAS_DR_EVENT_RECONFIG_SMP: 7023 { 7024 mptsas_smp_t smp; 7025 dev_info_t *smpdip; 7026 7027 devhdl = topo_node->devhdl; 7028 7029 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_HNDL & 7030 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)devhdl; 7031 rval = mptsas_get_sas_expander_page0(mpt, page_address, &smp); 7032 if (rval != DDI_SUCCESS) { 7033 mptsas_log(mpt, CE_WARN, "failed to online smp, " 7034 "handle %x", devhdl); 7035 return; 7036 } 7037 7038 psmp = mptsas_smp_alloc(mpt, &smp); 7039 if (psmp == NULL) { 7040 return; 7041 } 7042 7043 mutex_exit(&mpt->m_mutex); 7044 ndi_devi_enter(parent, &circ1); 7045 (void) mptsas_online_smp(parent, psmp, &smpdip); 7046 ndi_devi_exit(parent, circ1); 7047 7048 mutex_enter(&mpt->m_mutex); 7049 break; 7050 } 7051 case MPTSAS_DR_EVENT_OFFLINE_SMP: 7052 { 7053 devhdl = topo_node->devhdl; 7054 uint32_t dev_info; 7055 7056 psmp = refhash_linear_search(mpt->m_smp_targets, 7057 mptsas_smp_eval_devhdl, &devhdl); 7058 if (psmp == NULL) 7059 break; 7060 /* 7061 * The mptsas_smp_t data is released only if the dip is offlined 7062 * successfully. 7063 */ 7064 mutex_exit(&mpt->m_mutex); 7065 7066 ndi_devi_enter(parent, &circ1); 7067 rval = mptsas_offline_smp(parent, psmp, NDI_DEVI_REMOVE); 7068 ndi_devi_exit(parent, circ1); 7069 7070 dev_info = psmp->m_deviceinfo; 7071 if ((dev_info & DEVINFO_DIRECT_ATTACHED) == 7072 DEVINFO_DIRECT_ATTACHED) { 7073 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 7074 MPTSAS_VIRTUAL_PORT, 1) != 7075 DDI_PROP_SUCCESS) { 7076 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 7077 MPTSAS_VIRTUAL_PORT); 7078 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 7079 "prop update failed"); 7080 return; 7081 } 7082 /* 7083 * Check whether the smp connected to the iport, 7084 */ 7085 if (ddi_prop_update_int(DDI_DEV_T_NONE, parent, 7086 MPTSAS_NUM_PHYS, 0) != 7087 DDI_PROP_SUCCESS) { 7088 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 7089 MPTSAS_NUM_PHYS); 7090 mptsas_log(mpt, CE_WARN, "mptsas num phys" 7091 "prop update failed"); 7092 return; 7093 } 7094 /* 7095 * Clear parent's attached-port props 7096 */ 7097 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 7098 if (ddi_prop_update_string(DDI_DEV_T_NONE, parent, 7099 SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwnstr) != 7100 DDI_PROP_SUCCESS) { 7101 (void) ddi_prop_remove(DDI_DEV_T_NONE, parent, 7102 SCSI_ADDR_PROP_ATTACHED_PORT); 7103 mptsas_log(mpt, CE_WARN, "mptsas attached port " 7104 "prop update failed"); 7105 return; 7106 } 7107 } 7108 7109 mutex_enter(&mpt->m_mutex); 7110 NDBG20(("mptsas3%d handle_topo_change to remove devhdl:%x, " 7111 "rval:%x", mpt->m_instance, psmp->m_devhdl, rval)); 7112 if (rval == DDI_SUCCESS) { 7113 refhash_remove(mpt->m_smp_targets, psmp); 7114 } else { 7115 psmp->m_devhdl = MPTSAS_INVALID_DEVHDL; 7116 } 7117 7118 bzero(attached_wwnstr, sizeof (attached_wwnstr)); 7119 7120 break; 7121 } 7122 default: 7123 return; 7124 } 7125 } 7126 7127 /* 7128 * Record the event if its type is enabled in mpt instance by ioctl. 7129 */ 7130 static void 7131 mptsas_record_event(void *args) 7132 { 7133 m_replyh_arg_t *replyh_arg; 7134 pMpi2EventNotificationReply_t eventreply; 7135 uint32_t event, rfm; 7136 mptsas_t *mpt; 7137 int i, j; 7138 uint16_t event_data_len; 7139 boolean_t sendAEN = FALSE; 7140 7141 replyh_arg = (m_replyh_arg_t *)args; 7142 rfm = replyh_arg->rfm; 7143 mpt = replyh_arg->mpt; 7144 7145 eventreply = (pMpi2EventNotificationReply_t) 7146 (mpt->m_reply_frame + (rfm - 7147 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 7148 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 7149 7150 7151 /* 7152 * Generate a system event to let anyone who cares know that a 7153 * LOG_ENTRY_ADDED event has occurred. This is sent no matter what the 7154 * event mask is set to. 7155 */ 7156 if (event == MPI2_EVENT_LOG_ENTRY_ADDED) { 7157 sendAEN = TRUE; 7158 } 7159 7160 /* 7161 * Record the event only if it is not masked. Determine which dword 7162 * and bit of event mask to test. 7163 */ 7164 i = (uint8_t)(event / 32); 7165 j = (uint8_t)(event % 32); 7166 if ((i < 4) && ((1 << j) & mpt->m_event_mask[i])) { 7167 i = mpt->m_event_index; 7168 mpt->m_events[i].Type = event; 7169 mpt->m_events[i].Number = ++mpt->m_event_number; 7170 bzero(mpt->m_events[i].Data, MPTSAS_MAX_EVENT_DATA_LENGTH * 4); 7171 event_data_len = ddi_get16(mpt->m_acc_reply_frame_hdl, 7172 &eventreply->EventDataLength); 7173 7174 if (event_data_len > 0) { 7175 /* 7176 * Limit data to size in m_event entry 7177 */ 7178 if (event_data_len > MPTSAS_MAX_EVENT_DATA_LENGTH) { 7179 event_data_len = MPTSAS_MAX_EVENT_DATA_LENGTH; 7180 } 7181 for (j = 0; j < event_data_len; j++) { 7182 mpt->m_events[i].Data[j] = 7183 ddi_get32(mpt->m_acc_reply_frame_hdl, 7184 &(eventreply->EventData[j])); 7185 } 7186 7187 /* 7188 * check for index wrap-around 7189 */ 7190 if (++i == MPTSAS_EVENT_QUEUE_SIZE) { 7191 i = 0; 7192 } 7193 mpt->m_event_index = (uint8_t)i; 7194 7195 /* 7196 * Set flag to send the event. 7197 */ 7198 sendAEN = TRUE; 7199 } 7200 } 7201 7202 /* 7203 * Generate a system event if flag is set to let anyone who cares know 7204 * that an event has occurred. 7205 */ 7206 if (sendAEN) { 7207 (void) ddi_log_sysevent(mpt->m_dip, DDI_VENDOR_LSI, "MPT_SAS", 7208 "SAS", NULL, NULL, DDI_NOSLEEP); 7209 } 7210 } 7211 7212 #define SMP_RESET_IN_PROGRESS MPI2_EVENT_SAS_TOPO_LR_SMP_RESET_IN_PROGRESS 7213 /* 7214 * handle sync events from ioc in interrupt 7215 * return value: 7216 * DDI_SUCCESS: The event is handled by this func 7217 * DDI_FAILURE: Event is not handled 7218 */ 7219 static int 7220 mptsas_handle_event_sync(void *args) 7221 { 7222 m_replyh_arg_t *replyh_arg; 7223 pMpi2EventNotificationReply_t eventreply; 7224 uint32_t event, rfm; 7225 mptsas_t *mpt; 7226 uint_t iocstatus; 7227 7228 replyh_arg = (m_replyh_arg_t *)args; 7229 rfm = replyh_arg->rfm; 7230 mpt = replyh_arg->mpt; 7231 7232 ASSERT(mutex_owned(&mpt->m_mutex)); 7233 7234 eventreply = (pMpi2EventNotificationReply_t) 7235 (mpt->m_reply_frame + (rfm - 7236 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 7237 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 7238 7239 if (iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 7240 &eventreply->IOCStatus)) { 7241 if (iocstatus == MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 7242 mptsas_log(mpt, CE_WARN, 7243 "!mptsas_handle_event_sync: event 0x%x, " 7244 "IOCStatus=0x%x, " 7245 "IOCLogInfo=0x%x", event, iocstatus, 7246 ddi_get32(mpt->m_acc_reply_frame_hdl, 7247 &eventreply->IOCLogInfo)); 7248 } else { 7249 mptsas_log(mpt, CE_WARN, 7250 "mptsas_handle_event_sync: event 0x%x, " 7251 "IOCStatus=0x%x, " 7252 "(IOCLogInfo=0x%x)", event, iocstatus, 7253 ddi_get32(mpt->m_acc_reply_frame_hdl, 7254 &eventreply->IOCLogInfo)); 7255 } 7256 } 7257 7258 /* 7259 * figure out what kind of event we got and handle accordingly 7260 */ 7261 switch (event) { 7262 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 7263 { 7264 pMpi2EventDataSasTopologyChangeList_t sas_topo_change_list; 7265 uint8_t num_entries, expstatus, phy; 7266 uint8_t phystatus, physport, state, i; 7267 uint8_t start_phy_num, link_rate; 7268 uint16_t dev_handle, reason_code; 7269 uint16_t enc_handle, expd_handle; 7270 char string[80], curr[80], prev[80]; 7271 mptsas_topo_change_list_t *topo_head = NULL; 7272 mptsas_topo_change_list_t *topo_tail = NULL; 7273 mptsas_topo_change_list_t *topo_node = NULL; 7274 mptsas_target_t *ptgt; 7275 mptsas_smp_t *psmp; 7276 uint8_t flags = 0, exp_flag; 7277 smhba_info_t *pSmhba = NULL; 7278 7279 NDBG20(("mptsas_handle_event_sync: SAS topology change")); 7280 7281 sas_topo_change_list = (pMpi2EventDataSasTopologyChangeList_t) 7282 eventreply->EventData; 7283 7284 enc_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7285 &sas_topo_change_list->EnclosureHandle); 7286 expd_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7287 &sas_topo_change_list->ExpanderDevHandle); 7288 num_entries = ddi_get8(mpt->m_acc_reply_frame_hdl, 7289 &sas_topo_change_list->NumEntries); 7290 start_phy_num = ddi_get8(mpt->m_acc_reply_frame_hdl, 7291 &sas_topo_change_list->StartPhyNum); 7292 expstatus = ddi_get8(mpt->m_acc_reply_frame_hdl, 7293 &sas_topo_change_list->ExpStatus); 7294 physport = ddi_get8(mpt->m_acc_reply_frame_hdl, 7295 &sas_topo_change_list->PhysicalPort); 7296 7297 string[0] = 0; 7298 if (expd_handle) { 7299 flags = MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED; 7300 switch (expstatus) { 7301 case MPI2_EVENT_SAS_TOPO_ES_ADDED: 7302 (void) sprintf(string, " added"); 7303 /* 7304 * New expander device added 7305 */ 7306 mpt->m_port_chng = 1; 7307 topo_node = kmem_zalloc( 7308 sizeof (mptsas_topo_change_list_t), 7309 KM_SLEEP); 7310 topo_node->mpt = mpt; 7311 topo_node->event = MPTSAS_DR_EVENT_RECONFIG_SMP; 7312 topo_node->un.physport = physport; 7313 topo_node->devhdl = expd_handle; 7314 topo_node->flags = flags; 7315 topo_node->object = NULL; 7316 if (topo_head == NULL) { 7317 topo_head = topo_tail = topo_node; 7318 } else { 7319 topo_tail->next = topo_node; 7320 topo_tail = topo_node; 7321 } 7322 break; 7323 case MPI2_EVENT_SAS_TOPO_ES_NOT_RESPONDING: 7324 (void) sprintf(string, " not responding, " 7325 "removed"); 7326 psmp = refhash_linear_search(mpt->m_smp_targets, 7327 mptsas_smp_eval_devhdl, &expd_handle); 7328 if (psmp == NULL) 7329 break; 7330 7331 topo_node = kmem_zalloc( 7332 sizeof (mptsas_topo_change_list_t), 7333 KM_SLEEP); 7334 topo_node->mpt = mpt; 7335 topo_node->un.phymask = 7336 psmp->m_addr.mta_phymask; 7337 topo_node->event = MPTSAS_DR_EVENT_OFFLINE_SMP; 7338 topo_node->devhdl = expd_handle; 7339 topo_node->flags = flags; 7340 topo_node->object = NULL; 7341 if (topo_head == NULL) { 7342 topo_head = topo_tail = topo_node; 7343 } else { 7344 topo_tail->next = topo_node; 7345 topo_tail = topo_node; 7346 } 7347 break; 7348 case MPI2_EVENT_SAS_TOPO_ES_RESPONDING: 7349 break; 7350 case MPI2_EVENT_SAS_TOPO_ES_DELAY_NOT_RESPONDING: 7351 (void) sprintf(string, " not responding, " 7352 "delaying removal"); 7353 break; 7354 default: 7355 break; 7356 } 7357 } else { 7358 flags = MPTSAS_TOPO_FLAG_DIRECT_ATTACHED_DEVICE; 7359 } 7360 7361 NDBG20(("SAS TOPOLOGY CHANGE for enclosure %x expander %x%s\n", 7362 enc_handle, expd_handle, string)); 7363 for (i = 0; i < num_entries; i++) { 7364 phy = i + start_phy_num; 7365 phystatus = ddi_get8(mpt->m_acc_reply_frame_hdl, 7366 &sas_topo_change_list->PHY[i].PhyStatus); 7367 dev_handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7368 &sas_topo_change_list->PHY[i].AttachedDevHandle); 7369 reason_code = phystatus & MPI2_EVENT_SAS_TOPO_RC_MASK; 7370 /* 7371 * Filter out processing of Phy Vacant Status unless 7372 * the reason code is "Not Responding". Process all 7373 * other combinations of Phy Status and Reason Codes. 7374 */ 7375 if ((phystatus & 7376 MPI2_EVENT_SAS_TOPO_PHYSTATUS_VACANT) && 7377 (reason_code != 7378 MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING)) { 7379 continue; 7380 } 7381 curr[0] = 0; 7382 prev[0] = 0; 7383 string[0] = 0; 7384 switch (reason_code) { 7385 case MPI2_EVENT_SAS_TOPO_RC_TARG_ADDED: 7386 { 7387 NDBG20(("mptsas3%d phy %d physical_port %d " 7388 "dev_handle %d added", mpt->m_instance, phy, 7389 physport, dev_handle)); 7390 link_rate = ddi_get8(mpt->m_acc_reply_frame_hdl, 7391 &sas_topo_change_list->PHY[i].LinkRate); 7392 state = (link_rate & 7393 MPI2_EVENT_SAS_TOPO_LR_CURRENT_MASK) >> 7394 MPI2_EVENT_SAS_TOPO_LR_CURRENT_SHIFT; 7395 switch (state) { 7396 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 7397 (void) sprintf(curr, "is disabled"); 7398 break; 7399 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 7400 (void) sprintf(curr, "is offline, " 7401 "failed speed negotiation"); 7402 break; 7403 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 7404 (void) sprintf(curr, "SATA OOB " 7405 "complete"); 7406 break; 7407 case SMP_RESET_IN_PROGRESS: 7408 (void) sprintf(curr, "SMP reset in " 7409 "progress"); 7410 break; 7411 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 7412 (void) sprintf(curr, "is online at " 7413 "1.5 Gbps"); 7414 break; 7415 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 7416 (void) sprintf(curr, "is online at 3.0 " 7417 "Gbps"); 7418 break; 7419 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 7420 (void) sprintf(curr, "is online at 6.0 " 7421 "Gbps"); 7422 break; 7423 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 7424 (void) sprintf(curr, 7425 "is online at 12.0 Gbps"); 7426 break; 7427 default: 7428 (void) sprintf(curr, "state is " 7429 "unknown"); 7430 break; 7431 } 7432 /* 7433 * New target device added into the system. 7434 * Set association flag according to if an 7435 * expander is used or not. 7436 */ 7437 exp_flag = 7438 MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE; 7439 if (flags == 7440 MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED) { 7441 flags = exp_flag; 7442 } 7443 topo_node = kmem_zalloc( 7444 sizeof (mptsas_topo_change_list_t), 7445 KM_SLEEP); 7446 topo_node->mpt = mpt; 7447 topo_node->event = 7448 MPTSAS_DR_EVENT_RECONFIG_TARGET; 7449 if (expd_handle == 0) { 7450 /* 7451 * Per MPI 2, if expander dev handle 7452 * is 0, it's a directly attached 7453 * device. So driver use PHY to decide 7454 * which iport is associated 7455 */ 7456 physport = phy; 7457 mpt->m_port_chng = 1; 7458 } 7459 topo_node->un.physport = physport; 7460 topo_node->devhdl = dev_handle; 7461 topo_node->flags = flags; 7462 topo_node->object = NULL; 7463 if (topo_head == NULL) { 7464 topo_head = topo_tail = topo_node; 7465 } else { 7466 topo_tail->next = topo_node; 7467 topo_tail = topo_node; 7468 } 7469 break; 7470 } 7471 case MPI2_EVENT_SAS_TOPO_RC_TARG_NOT_RESPONDING: 7472 { 7473 NDBG20(("mptsas3%d phy %d physical_port %d " 7474 "dev_handle %d removed", mpt->m_instance, 7475 phy, physport, dev_handle)); 7476 /* 7477 * Set association flag according to if an 7478 * expander is used or not. 7479 */ 7480 exp_flag = 7481 MPTSAS_TOPO_FLAG_EXPANDER_ATTACHED_DEVICE; 7482 if (flags == 7483 MPTSAS_TOPO_FLAG_EXPANDER_ASSOCIATED) { 7484 flags = exp_flag; 7485 } 7486 /* 7487 * Target device is removed from the system 7488 * Before the device is really offline from 7489 * from system. 7490 */ 7491 ptgt = refhash_linear_search(mpt->m_targets, 7492 mptsas_target_eval_devhdl, &dev_handle); 7493 /* 7494 * If ptgt is NULL here, it means that the 7495 * DevHandle is not in the hash table. This is 7496 * reasonable sometimes. For example, if a 7497 * disk was pulled, then added, then pulled 7498 * again, the disk will not have been put into 7499 * the hash table because the add event will 7500 * have an invalid phymask. BUT, this does not 7501 * mean that the DevHandle is invalid. The 7502 * controller will still have a valid DevHandle 7503 * that must be removed. To do this, use the 7504 * MPTSAS_DR_EVENT_REMOVE_HANDLE event. 7505 */ 7506 if (ptgt == NULL) { 7507 topo_node = kmem_zalloc( 7508 sizeof (mptsas_topo_change_list_t), 7509 KM_SLEEP); 7510 topo_node->mpt = mpt; 7511 topo_node->un.phymask = 0; 7512 topo_node->event = 7513 MPTSAS_DR_EVENT_REMOVE_HANDLE; 7514 topo_node->devhdl = dev_handle; 7515 topo_node->flags = flags; 7516 topo_node->object = NULL; 7517 if (topo_head == NULL) { 7518 topo_head = topo_tail = 7519 topo_node; 7520 } else { 7521 topo_tail->next = topo_node; 7522 topo_tail = topo_node; 7523 } 7524 break; 7525 } 7526 7527 /* 7528 * Update DR flag immediately avoid I/O failure 7529 * before failover finish. We won't add 7530 * any following commands into waitq, instead, 7531 * we need return TRAN_BUSY in the tran_start 7532 * context. 7533 */ 7534 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7535 7536 topo_node = kmem_zalloc( 7537 sizeof (mptsas_topo_change_list_t), 7538 KM_SLEEP); 7539 topo_node->mpt = mpt; 7540 topo_node->un.phymask = 7541 ptgt->m_addr.mta_phymask; 7542 topo_node->event = 7543 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7544 topo_node->devhdl = dev_handle; 7545 topo_node->flags = flags; 7546 topo_node->object = NULL; 7547 if (topo_head == NULL) { 7548 topo_head = topo_tail = topo_node; 7549 } else { 7550 topo_tail->next = topo_node; 7551 topo_tail = topo_node; 7552 } 7553 break; 7554 } 7555 case MPI2_EVENT_SAS_TOPO_RC_PHY_CHANGED: 7556 link_rate = ddi_get8(mpt->m_acc_reply_frame_hdl, 7557 &sas_topo_change_list->PHY[i].LinkRate); 7558 state = (link_rate & 7559 MPI2_EVENT_SAS_TOPO_LR_CURRENT_MASK) >> 7560 MPI2_EVENT_SAS_TOPO_LR_CURRENT_SHIFT; 7561 pSmhba = &mpt->m_phy_info[i].smhba_info; 7562 pSmhba->negotiated_link_rate = state; 7563 switch (state) { 7564 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 7565 (void) sprintf(curr, "is disabled"); 7566 mptsas_smhba_log_sysevent(mpt, 7567 ESC_SAS_PHY_EVENT, 7568 SAS_PHY_REMOVE, 7569 &mpt->m_phy_info[i].smhba_info); 7570 mpt->m_phy_info[i].smhba_info. 7571 negotiated_link_rate 7572 = 0x1; 7573 break; 7574 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 7575 (void) sprintf(curr, "is offline, " 7576 "failed speed negotiation"); 7577 mptsas_smhba_log_sysevent(mpt, 7578 ESC_SAS_PHY_EVENT, 7579 SAS_PHY_OFFLINE, 7580 &mpt->m_phy_info[i].smhba_info); 7581 break; 7582 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 7583 (void) sprintf(curr, "SATA OOB " 7584 "complete"); 7585 break; 7586 case SMP_RESET_IN_PROGRESS: 7587 (void) sprintf(curr, "SMP reset in " 7588 "progress"); 7589 break; 7590 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 7591 (void) sprintf(curr, "is online at " 7592 "1.5 Gbps"); 7593 if ((expd_handle == 0) && 7594 (enc_handle == 1)) { 7595 mpt->m_port_chng = 1; 7596 } 7597 mptsas_smhba_log_sysevent(mpt, 7598 ESC_SAS_PHY_EVENT, 7599 SAS_PHY_ONLINE, 7600 &mpt->m_phy_info[i].smhba_info); 7601 break; 7602 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 7603 (void) sprintf(curr, "is online at 3.0 " 7604 "Gbps"); 7605 if ((expd_handle == 0) && 7606 (enc_handle == 1)) { 7607 mpt->m_port_chng = 1; 7608 } 7609 mptsas_smhba_log_sysevent(mpt, 7610 ESC_SAS_PHY_EVENT, 7611 SAS_PHY_ONLINE, 7612 &mpt->m_phy_info[i].smhba_info); 7613 break; 7614 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 7615 (void) sprintf(curr, "is online at " 7616 "6.0 Gbps"); 7617 if ((expd_handle == 0) && 7618 (enc_handle == 1)) { 7619 mpt->m_port_chng = 1; 7620 } 7621 mptsas_smhba_log_sysevent(mpt, 7622 ESC_SAS_PHY_EVENT, 7623 SAS_PHY_ONLINE, 7624 &mpt->m_phy_info[i].smhba_info); 7625 break; 7626 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 7627 (void) sprintf(curr, "is online at " 7628 "12.0 Gbps"); 7629 if ((expd_handle == 0) && 7630 (enc_handle == 1)) { 7631 mpt->m_port_chng = 1; 7632 } 7633 mptsas_smhba_log_sysevent(mpt, 7634 ESC_SAS_PHY_EVENT, 7635 SAS_PHY_ONLINE, 7636 &mpt->m_phy_info[i].smhba_info); 7637 break; 7638 default: 7639 (void) sprintf(curr, "state is " 7640 "unknown"); 7641 break; 7642 } 7643 7644 state = (link_rate & 7645 MPI2_EVENT_SAS_TOPO_LR_PREV_MASK) >> 7646 MPI2_EVENT_SAS_TOPO_LR_PREV_SHIFT; 7647 switch (state) { 7648 case MPI2_EVENT_SAS_TOPO_LR_PHY_DISABLED: 7649 (void) sprintf(prev, ", was disabled"); 7650 break; 7651 case MPI2_EVENT_SAS_TOPO_LR_NEGOTIATION_FAILED: 7652 (void) sprintf(prev, ", was offline, " 7653 "failed speed negotiation"); 7654 break; 7655 case MPI2_EVENT_SAS_TOPO_LR_SATA_OOB_COMPLETE: 7656 (void) sprintf(prev, ", was SATA OOB " 7657 "complete"); 7658 break; 7659 case SMP_RESET_IN_PROGRESS: 7660 (void) sprintf(prev, ", was SMP reset " 7661 "in progress"); 7662 break; 7663 case MPI2_EVENT_SAS_TOPO_LR_RATE_1_5: 7664 (void) sprintf(prev, ", was online at " 7665 "1.5 Gbps"); 7666 break; 7667 case MPI2_EVENT_SAS_TOPO_LR_RATE_3_0: 7668 (void) sprintf(prev, ", was online at " 7669 "3.0 Gbps"); 7670 break; 7671 case MPI2_EVENT_SAS_TOPO_LR_RATE_6_0: 7672 (void) sprintf(prev, ", was online at " 7673 "6.0 Gbps"); 7674 break; 7675 case MPI25_EVENT_SAS_TOPO_LR_RATE_12_0: 7676 (void) sprintf(prev, ", was online at " 7677 "12.0 Gbps"); 7678 break; 7679 default: 7680 break; 7681 } 7682 (void) sprintf(&string[strlen(string)], "link " 7683 "changed, "); 7684 break; 7685 case MPI2_EVENT_SAS_TOPO_RC_NO_CHANGE: 7686 continue; 7687 case MPI2_EVENT_SAS_TOPO_RC_DELAY_NOT_RESPONDING: 7688 (void) sprintf(&string[strlen(string)], 7689 "target not responding, delaying " 7690 "removal"); 7691 break; 7692 } 7693 NDBG20(("mptsas3%d phy %d DevHandle %x, %s%s%s\n", 7694 mpt->m_instance, phy, dev_handle, string, curr, 7695 prev)); 7696 } 7697 if (topo_head != NULL) { 7698 /* 7699 * Launch DR taskq to handle topology change 7700 */ 7701 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 7702 mptsas_handle_dr, (void *)topo_head, 7703 DDI_NOSLEEP)) != DDI_SUCCESS) { 7704 while (topo_head != NULL) { 7705 topo_node = topo_head; 7706 topo_head = topo_head->next; 7707 kmem_free(topo_node, 7708 sizeof (mptsas_topo_change_list_t)); 7709 } 7710 mptsas_log(mpt, CE_NOTE, "mptsas start taskq " 7711 "for handle SAS DR event failed. \n"); 7712 } 7713 } 7714 break; 7715 } 7716 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 7717 { 7718 Mpi2EventDataIrConfigChangeList_t *irChangeList; 7719 mptsas_topo_change_list_t *topo_head = NULL; 7720 mptsas_topo_change_list_t *topo_tail = NULL; 7721 mptsas_topo_change_list_t *topo_node = NULL; 7722 mptsas_target_t *ptgt; 7723 uint8_t num_entries, i, reason; 7724 uint16_t volhandle, diskhandle; 7725 7726 irChangeList = (pMpi2EventDataIrConfigChangeList_t) 7727 eventreply->EventData; 7728 num_entries = ddi_get8(mpt->m_acc_reply_frame_hdl, 7729 &irChangeList->NumElements); 7730 7731 NDBG20(("mptsas3%d IR_CONFIGURATION_CHANGE_LIST event received", 7732 mpt->m_instance)); 7733 7734 for (i = 0; i < num_entries; i++) { 7735 reason = ddi_get8(mpt->m_acc_reply_frame_hdl, 7736 &irChangeList->ConfigElement[i].ReasonCode); 7737 volhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7738 &irChangeList->ConfigElement[i].VolDevHandle); 7739 diskhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 7740 &irChangeList->ConfigElement[i].PhysDiskDevHandle); 7741 7742 switch (reason) { 7743 case MPI2_EVENT_IR_CHANGE_RC_ADDED: 7744 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_CREATED: 7745 { 7746 NDBG20(("mptsas %d volume added\n", 7747 mpt->m_instance)); 7748 7749 topo_node = kmem_zalloc( 7750 sizeof (mptsas_topo_change_list_t), 7751 KM_SLEEP); 7752 7753 topo_node->mpt = mpt; 7754 topo_node->event = 7755 MPTSAS_DR_EVENT_RECONFIG_TARGET; 7756 topo_node->un.physport = 0xff; 7757 topo_node->devhdl = volhandle; 7758 topo_node->flags = 7759 MPTSAS_TOPO_FLAG_RAID_ASSOCIATED; 7760 topo_node->object = NULL; 7761 if (topo_head == NULL) { 7762 topo_head = topo_tail = topo_node; 7763 } else { 7764 topo_tail->next = topo_node; 7765 topo_tail = topo_node; 7766 } 7767 break; 7768 } 7769 case MPI2_EVENT_IR_CHANGE_RC_REMOVED: 7770 case MPI2_EVENT_IR_CHANGE_RC_VOLUME_DELETED: 7771 { 7772 NDBG20(("mptsas %d volume deleted\n", 7773 mpt->m_instance)); 7774 ptgt = refhash_linear_search(mpt->m_targets, 7775 mptsas_target_eval_devhdl, &volhandle); 7776 if (ptgt == NULL) 7777 break; 7778 7779 /* 7780 * Clear any flags related to volume 7781 */ 7782 (void) mptsas_delete_volume(mpt, volhandle); 7783 7784 /* 7785 * Update DR flag immediately avoid I/O failure 7786 */ 7787 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7788 7789 topo_node = kmem_zalloc( 7790 sizeof (mptsas_topo_change_list_t), 7791 KM_SLEEP); 7792 topo_node->mpt = mpt; 7793 topo_node->un.phymask = 7794 ptgt->m_addr.mta_phymask; 7795 topo_node->event = 7796 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7797 topo_node->devhdl = volhandle; 7798 topo_node->flags = 7799 MPTSAS_TOPO_FLAG_RAID_ASSOCIATED; 7800 topo_node->object = (void *)ptgt; 7801 if (topo_head == NULL) { 7802 topo_head = topo_tail = topo_node; 7803 } else { 7804 topo_tail->next = topo_node; 7805 topo_tail = topo_node; 7806 } 7807 break; 7808 } 7809 case MPI2_EVENT_IR_CHANGE_RC_PD_CREATED: 7810 case MPI2_EVENT_IR_CHANGE_RC_HIDE: 7811 { 7812 ptgt = refhash_linear_search(mpt->m_targets, 7813 mptsas_target_eval_devhdl, &diskhandle); 7814 if (ptgt == NULL) 7815 break; 7816 7817 /* 7818 * Update DR flag immediately avoid I/O failure 7819 */ 7820 ptgt->m_dr_flag = MPTSAS_DR_INTRANSITION; 7821 7822 topo_node = kmem_zalloc( 7823 sizeof (mptsas_topo_change_list_t), 7824 KM_SLEEP); 7825 topo_node->mpt = mpt; 7826 topo_node->un.phymask = 7827 ptgt->m_addr.mta_phymask; 7828 topo_node->event = 7829 MPTSAS_DR_EVENT_OFFLINE_TARGET; 7830 topo_node->devhdl = diskhandle; 7831 topo_node->flags = 7832 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED; 7833 topo_node->object = (void *)ptgt; 7834 if (topo_head == NULL) { 7835 topo_head = topo_tail = topo_node; 7836 } else { 7837 topo_tail->next = topo_node; 7838 topo_tail = topo_node; 7839 } 7840 break; 7841 } 7842 case MPI2_EVENT_IR_CHANGE_RC_UNHIDE: 7843 case MPI2_EVENT_IR_CHANGE_RC_PD_DELETED: 7844 { 7845 /* 7846 * The physical drive is released by a IR 7847 * volume. But we cannot get the the physport 7848 * or phynum from the event data, so we only 7849 * can get the physport/phynum after SAS 7850 * Device Page0 request for the devhdl. 7851 */ 7852 topo_node = kmem_zalloc( 7853 sizeof (mptsas_topo_change_list_t), 7854 KM_SLEEP); 7855 topo_node->mpt = mpt; 7856 topo_node->un.phymask = 0; 7857 topo_node->event = 7858 MPTSAS_DR_EVENT_RECONFIG_TARGET; 7859 topo_node->devhdl = diskhandle; 7860 topo_node->flags = 7861 MPTSAS_TOPO_FLAG_RAID_PHYSDRV_ASSOCIATED; 7862 topo_node->object = NULL; 7863 mpt->m_port_chng = 1; 7864 if (topo_head == NULL) { 7865 topo_head = topo_tail = topo_node; 7866 } else { 7867 topo_tail->next = topo_node; 7868 topo_tail = topo_node; 7869 } 7870 break; 7871 } 7872 default: 7873 break; 7874 } 7875 } 7876 7877 if (topo_head != NULL) { 7878 /* 7879 * Launch DR taskq to handle topology change 7880 */ 7881 if ((ddi_taskq_dispatch(mpt->m_dr_taskq, 7882 mptsas_handle_dr, (void *)topo_head, 7883 DDI_NOSLEEP)) != DDI_SUCCESS) { 7884 while (topo_head != NULL) { 7885 topo_node = topo_head; 7886 topo_head = topo_head->next; 7887 kmem_free(topo_node, 7888 sizeof (mptsas_topo_change_list_t)); 7889 } 7890 mptsas_log(mpt, CE_NOTE, "mptsas start taskq " 7891 "for handle SAS DR event failed. \n"); 7892 } 7893 } 7894 break; 7895 } 7896 default: 7897 return (DDI_FAILURE); 7898 } 7899 7900 return (DDI_SUCCESS); 7901 } 7902 7903 /* 7904 * handle events from ioc 7905 */ 7906 static void 7907 mptsas_handle_event(void *args) 7908 { 7909 m_replyh_arg_t *replyh_arg; 7910 pMpi2EventNotificationReply_t eventreply; 7911 uint32_t event, iocloginfo, rfm; 7912 uint32_t status; 7913 uint8_t port; 7914 mptsas_t *mpt; 7915 uint_t iocstatus; 7916 7917 replyh_arg = (m_replyh_arg_t *)args; 7918 rfm = replyh_arg->rfm; 7919 mpt = replyh_arg->mpt; 7920 7921 mutex_enter(&mpt->m_mutex); 7922 /* 7923 * If HBA is being reset, drop incoming event. 7924 */ 7925 if (mpt->m_in_reset) { 7926 NDBG20(("dropping event received prior to reset")); 7927 mutex_exit(&mpt->m_mutex); 7928 return; 7929 } 7930 7931 eventreply = (pMpi2EventNotificationReply_t) 7932 (mpt->m_reply_frame + (rfm - 7933 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 7934 event = ddi_get16(mpt->m_acc_reply_frame_hdl, &eventreply->Event); 7935 7936 if (iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 7937 &eventreply->IOCStatus)) { 7938 if (iocstatus == MPI2_IOCSTATUS_FLAG_LOG_INFO_AVAILABLE) { 7939 mptsas_log(mpt, CE_WARN, 7940 "!mptsas_handle_event: IOCStatus=0x%x, " 7941 "IOCLogInfo=0x%x", iocstatus, 7942 ddi_get32(mpt->m_acc_reply_frame_hdl, 7943 &eventreply->IOCLogInfo)); 7944 } else { 7945 mptsas_log(mpt, CE_WARN, 7946 "mptsas_handle_event: IOCStatus=0x%x, " 7947 "IOCLogInfo=0x%x", iocstatus, 7948 ddi_get32(mpt->m_acc_reply_frame_hdl, 7949 &eventreply->IOCLogInfo)); 7950 } 7951 } 7952 7953 /* 7954 * figure out what kind of event we got and handle accordingly 7955 */ 7956 switch (event) { 7957 case MPI2_EVENT_LOG_ENTRY_ADDED: 7958 break; 7959 case MPI2_EVENT_LOG_DATA: 7960 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 7961 &eventreply->IOCLogInfo); 7962 NDBG20(("mptsas %d log info %x received.\n", mpt->m_instance, 7963 iocloginfo)); 7964 break; 7965 case MPI2_EVENT_STATE_CHANGE: 7966 NDBG20(("mptsas3%d state change.", mpt->m_instance)); 7967 break; 7968 case MPI2_EVENT_HARD_RESET_RECEIVED: 7969 NDBG20(("mptsas3%d event change.", mpt->m_instance)); 7970 break; 7971 case MPI2_EVENT_SAS_DISCOVERY: 7972 { 7973 MPI2_EVENT_DATA_SAS_DISCOVERY *sasdiscovery; 7974 char string[80]; 7975 uint8_t rc; 7976 7977 sasdiscovery = 7978 (pMpi2EventDataSasDiscovery_t)eventreply->EventData; 7979 7980 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 7981 &sasdiscovery->ReasonCode); 7982 port = ddi_get8(mpt->m_acc_reply_frame_hdl, 7983 &sasdiscovery->PhysicalPort); 7984 status = ddi_get32(mpt->m_acc_reply_frame_hdl, 7985 &sasdiscovery->DiscoveryStatus); 7986 7987 string[0] = 0; 7988 switch (rc) { 7989 case MPI2_EVENT_SAS_DISC_RC_STARTED: 7990 (void) sprintf(string, "STARTING"); 7991 break; 7992 case MPI2_EVENT_SAS_DISC_RC_COMPLETED: 7993 (void) sprintf(string, "COMPLETED"); 7994 break; 7995 default: 7996 (void) sprintf(string, "UNKNOWN"); 7997 break; 7998 } 7999 8000 NDBG20(("SAS DISCOVERY is %s for port %d, status %x", string, 8001 port, status)); 8002 8003 break; 8004 } 8005 case MPI2_EVENT_EVENT_CHANGE: 8006 NDBG20(("mptsas3%d event change.", mpt->m_instance)); 8007 break; 8008 case MPI2_EVENT_TASK_SET_FULL: 8009 { 8010 pMpi2EventDataTaskSetFull_t taskfull; 8011 8012 taskfull = (pMpi2EventDataTaskSetFull_t)eventreply->EventData; 8013 8014 NDBG20(("TASK_SET_FULL received for mptsas3%d, depth %d\n", 8015 mpt->m_instance, ddi_get16(mpt->m_acc_reply_frame_hdl, 8016 &taskfull->CurrentDepth))); 8017 break; 8018 } 8019 case MPI2_EVENT_SAS_TOPOLOGY_CHANGE_LIST: 8020 { 8021 /* 8022 * SAS TOPOLOGY CHANGE LIST Event has already been handled 8023 * in mptsas_handle_event_sync() of interrupt context 8024 */ 8025 break; 8026 } 8027 case MPI2_EVENT_SAS_ENCL_DEVICE_STATUS_CHANGE: 8028 { 8029 pMpi2EventDataSasEnclDevStatusChange_t encstatus; 8030 uint8_t rc; 8031 char string[80]; 8032 8033 encstatus = (pMpi2EventDataSasEnclDevStatusChange_t) 8034 eventreply->EventData; 8035 8036 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 8037 &encstatus->ReasonCode); 8038 switch (rc) { 8039 case MPI2_EVENT_SAS_ENCL_RC_ADDED: 8040 (void) sprintf(string, "added"); 8041 break; 8042 case MPI2_EVENT_SAS_ENCL_RC_NOT_RESPONDING: 8043 (void) sprintf(string, ", not responding"); 8044 break; 8045 default: 8046 break; 8047 } 8048 NDBG20(("mptsas3%d ENCLOSURE STATUS CHANGE for enclosure " 8049 "%x%s\n", mpt->m_instance, 8050 ddi_get16(mpt->m_acc_reply_frame_hdl, 8051 &encstatus->EnclosureHandle), string)); 8052 break; 8053 } 8054 8055 /* 8056 * MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE is handled by 8057 * mptsas_handle_event_sync,in here just send ack message. 8058 */ 8059 case MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE: 8060 { 8061 pMpi2EventDataSasDeviceStatusChange_t statuschange; 8062 uint8_t rc; 8063 uint16_t devhdl; 8064 uint64_t wwn = 0; 8065 uint32_t wwn_lo, wwn_hi; 8066 8067 statuschange = (pMpi2EventDataSasDeviceStatusChange_t) 8068 eventreply->EventData; 8069 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 8070 &statuschange->ReasonCode); 8071 wwn_lo = ddi_get32(mpt->m_acc_reply_frame_hdl, 8072 (uint32_t *)(void *)&statuschange->SASAddress); 8073 wwn_hi = ddi_get32(mpt->m_acc_reply_frame_hdl, 8074 (uint32_t *)(void *)&statuschange->SASAddress + 1); 8075 wwn = ((uint64_t)wwn_hi << 32) | wwn_lo; 8076 devhdl = ddi_get16(mpt->m_acc_reply_frame_hdl, 8077 &statuschange->DevHandle); 8078 8079 NDBG13(("MPI2_EVENT_SAS_DEVICE_STATUS_CHANGE wwn is %"PRIx64, 8080 wwn)); 8081 8082 switch (rc) { 8083 case MPI2_EVENT_SAS_DEV_STAT_RC_SMART_DATA: 8084 NDBG20(("SMART data received, ASC/ASCQ = %02x/%02x", 8085 ddi_get8(mpt->m_acc_reply_frame_hdl, 8086 &statuschange->ASC), 8087 ddi_get8(mpt->m_acc_reply_frame_hdl, 8088 &statuschange->ASCQ))); 8089 break; 8090 8091 case MPI2_EVENT_SAS_DEV_STAT_RC_UNSUPPORTED: 8092 NDBG20(("Device not supported")); 8093 break; 8094 8095 case MPI2_EVENT_SAS_DEV_STAT_RC_INTERNAL_DEVICE_RESET: 8096 NDBG20(("IOC internally generated the Target Reset " 8097 "for devhdl:%x", devhdl)); 8098 break; 8099 8100 case MPI2_EVENT_SAS_DEV_STAT_RC_CMP_INTERNAL_DEV_RESET: 8101 NDBG20(("IOC's internally generated Target Reset " 8102 "completed for devhdl:%x", devhdl)); 8103 break; 8104 8105 case MPI2_EVENT_SAS_DEV_STAT_RC_TASK_ABORT_INTERNAL: 8106 NDBG20(("IOC internally generated Abort Task")); 8107 break; 8108 8109 case MPI2_EVENT_SAS_DEV_STAT_RC_CMP_TASK_ABORT_INTERNAL: 8110 NDBG20(("IOC's internally generated Abort Task " 8111 "completed")); 8112 break; 8113 8114 case MPI2_EVENT_SAS_DEV_STAT_RC_ABORT_TASK_SET_INTERNAL: 8115 NDBG20(("IOC internally generated Abort Task Set")); 8116 break; 8117 8118 case MPI2_EVENT_SAS_DEV_STAT_RC_CLEAR_TASK_SET_INTERNAL: 8119 NDBG20(("IOC internally generated Clear Task Set")); 8120 break; 8121 8122 case MPI2_EVENT_SAS_DEV_STAT_RC_QUERY_TASK_INTERNAL: 8123 NDBG20(("IOC internally generated Query Task")); 8124 break; 8125 8126 case MPI2_EVENT_SAS_DEV_STAT_RC_ASYNC_NOTIFICATION: 8127 NDBG20(("Device sent an Asynchronous Notification")); 8128 break; 8129 8130 default: 8131 break; 8132 } 8133 break; 8134 } 8135 case MPI2_EVENT_IR_CONFIGURATION_CHANGE_LIST: 8136 { 8137 /* 8138 * IR TOPOLOGY CHANGE LIST Event has already been handled 8139 * in mpt_handle_event_sync() of interrupt context 8140 */ 8141 break; 8142 } 8143 case MPI2_EVENT_IR_OPERATION_STATUS: 8144 { 8145 Mpi2EventDataIrOperationStatus_t *irOpStatus; 8146 char reason_str[80]; 8147 uint8_t rc, percent; 8148 uint16_t handle; 8149 8150 irOpStatus = (pMpi2EventDataIrOperationStatus_t) 8151 eventreply->EventData; 8152 rc = ddi_get8(mpt->m_acc_reply_frame_hdl, 8153 &irOpStatus->RAIDOperation); 8154 percent = ddi_get8(mpt->m_acc_reply_frame_hdl, 8155 &irOpStatus->PercentComplete); 8156 handle = ddi_get16(mpt->m_acc_reply_frame_hdl, 8157 &irOpStatus->VolDevHandle); 8158 8159 switch (rc) { 8160 case MPI2_EVENT_IR_RAIDOP_RESYNC: 8161 (void) sprintf(reason_str, "resync"); 8162 break; 8163 case MPI2_EVENT_IR_RAIDOP_ONLINE_CAP_EXPANSION: 8164 (void) sprintf(reason_str, "online capacity " 8165 "expansion"); 8166 break; 8167 case MPI2_EVENT_IR_RAIDOP_CONSISTENCY_CHECK: 8168 (void) sprintf(reason_str, "consistency check"); 8169 break; 8170 default: 8171 (void) sprintf(reason_str, "unknown reason %x", 8172 rc); 8173 } 8174 8175 NDBG20(("mptsas3%d raid operational status: (%s)" 8176 "\thandle(0x%04x), percent complete(%d)\n", 8177 mpt->m_instance, reason_str, handle, percent)); 8178 break; 8179 } 8180 case MPI2_EVENT_SAS_BROADCAST_PRIMITIVE: 8181 { 8182 pMpi2EventDataSasBroadcastPrimitive_t sas_broadcast; 8183 uint8_t phy_num; 8184 uint8_t primitive; 8185 8186 sas_broadcast = (pMpi2EventDataSasBroadcastPrimitive_t) 8187 eventreply->EventData; 8188 8189 phy_num = ddi_get8(mpt->m_acc_reply_frame_hdl, 8190 &sas_broadcast->PhyNum); 8191 primitive = ddi_get8(mpt->m_acc_reply_frame_hdl, 8192 &sas_broadcast->Primitive); 8193 8194 switch (primitive) { 8195 case MPI2_EVENT_PRIMITIVE_CHANGE: 8196 mptsas_smhba_log_sysevent(mpt, 8197 ESC_SAS_HBA_PORT_BROADCAST, 8198 SAS_PORT_BROADCAST_CHANGE, 8199 &mpt->m_phy_info[phy_num].smhba_info); 8200 break; 8201 case MPI2_EVENT_PRIMITIVE_SES: 8202 mptsas_smhba_log_sysevent(mpt, 8203 ESC_SAS_HBA_PORT_BROADCAST, 8204 SAS_PORT_BROADCAST_SES, 8205 &mpt->m_phy_info[phy_num].smhba_info); 8206 break; 8207 case MPI2_EVENT_PRIMITIVE_EXPANDER: 8208 mptsas_smhba_log_sysevent(mpt, 8209 ESC_SAS_HBA_PORT_BROADCAST, 8210 SAS_PORT_BROADCAST_D01_4, 8211 &mpt->m_phy_info[phy_num].smhba_info); 8212 break; 8213 case MPI2_EVENT_PRIMITIVE_ASYNCHRONOUS_EVENT: 8214 mptsas_smhba_log_sysevent(mpt, 8215 ESC_SAS_HBA_PORT_BROADCAST, 8216 SAS_PORT_BROADCAST_D04_7, 8217 &mpt->m_phy_info[phy_num].smhba_info); 8218 break; 8219 case MPI2_EVENT_PRIMITIVE_RESERVED3: 8220 mptsas_smhba_log_sysevent(mpt, 8221 ESC_SAS_HBA_PORT_BROADCAST, 8222 SAS_PORT_BROADCAST_D16_7, 8223 &mpt->m_phy_info[phy_num].smhba_info); 8224 break; 8225 case MPI2_EVENT_PRIMITIVE_RESERVED4: 8226 mptsas_smhba_log_sysevent(mpt, 8227 ESC_SAS_HBA_PORT_BROADCAST, 8228 SAS_PORT_BROADCAST_D29_7, 8229 &mpt->m_phy_info[phy_num].smhba_info); 8230 break; 8231 case MPI2_EVENT_PRIMITIVE_CHANGE0_RESERVED: 8232 mptsas_smhba_log_sysevent(mpt, 8233 ESC_SAS_HBA_PORT_BROADCAST, 8234 SAS_PORT_BROADCAST_D24_0, 8235 &mpt->m_phy_info[phy_num].smhba_info); 8236 break; 8237 case MPI2_EVENT_PRIMITIVE_CHANGE1_RESERVED: 8238 mptsas_smhba_log_sysevent(mpt, 8239 ESC_SAS_HBA_PORT_BROADCAST, 8240 SAS_PORT_BROADCAST_D27_4, 8241 &mpt->m_phy_info[phy_num].smhba_info); 8242 break; 8243 default: 8244 NDBG16(("mptsas3%d: unknown BROADCAST PRIMITIVE" 8245 " %x received", 8246 mpt->m_instance, primitive)); 8247 break; 8248 } 8249 NDBG16(("mptsas3%d sas broadcast primitive: " 8250 "\tprimitive(0x%04x), phy(%d) complete\n", 8251 mpt->m_instance, primitive, phy_num)); 8252 break; 8253 } 8254 case MPI2_EVENT_IR_VOLUME: 8255 { 8256 Mpi2EventDataIrVolume_t *irVolume; 8257 uint16_t devhandle; 8258 uint32_t state; 8259 int config, vol; 8260 uint8_t found = FALSE; 8261 8262 irVolume = (pMpi2EventDataIrVolume_t)eventreply->EventData; 8263 state = ddi_get32(mpt->m_acc_reply_frame_hdl, 8264 &irVolume->NewValue); 8265 devhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 8266 &irVolume->VolDevHandle); 8267 8268 NDBG20(("EVENT_IR_VOLUME event is received")); 8269 8270 /* 8271 * Get latest RAID info and then find the DevHandle for this 8272 * event in the configuration. If the DevHandle is not found 8273 * just exit the event. 8274 */ 8275 (void) mptsas_get_raid_info(mpt); 8276 for (config = 0; (config < mpt->m_num_raid_configs) && 8277 (!found); config++) { 8278 for (vol = 0; vol < MPTSAS_MAX_RAIDVOLS; vol++) { 8279 if (mpt->m_raidconfig[config].m_raidvol[vol]. 8280 m_raidhandle == devhandle) { 8281 found = TRUE; 8282 break; 8283 } 8284 } 8285 } 8286 if (!found) { 8287 break; 8288 } 8289 8290 switch (irVolume->ReasonCode) { 8291 case MPI2_EVENT_IR_VOLUME_RC_SETTINGS_CHANGED: 8292 { 8293 uint32_t i; 8294 mpt->m_raidconfig[config].m_raidvol[vol].m_settings = 8295 state; 8296 8297 i = state & MPI2_RAIDVOL0_SETTING_MASK_WRITE_CACHING; 8298 mptsas_log(mpt, CE_NOTE, " Volume %d settings changed" 8299 ", auto-config of hot-swap drives is %s" 8300 ", write caching is %s" 8301 ", hot-spare pool mask is %02x\n", 8302 vol, state & 8303 MPI2_RAIDVOL0_SETTING_AUTO_CONFIG_HSWAP_DISABLE 8304 ? "disabled" : "enabled", 8305 i == MPI2_RAIDVOL0_SETTING_UNCHANGED 8306 ? "controlled by member disks" : 8307 i == MPI2_RAIDVOL0_SETTING_DISABLE_WRITE_CACHING 8308 ? "disabled" : 8309 i == MPI2_RAIDVOL0_SETTING_ENABLE_WRITE_CACHING 8310 ? "enabled" : 8311 "incorrectly set", 8312 (state >> 16) & 0xff); 8313 break; 8314 } 8315 case MPI2_EVENT_IR_VOLUME_RC_STATE_CHANGED: 8316 { 8317 mpt->m_raidconfig[config].m_raidvol[vol].m_state = 8318 (uint8_t)state; 8319 8320 mptsas_log(mpt, CE_NOTE, 8321 "Volume %d is now %s\n", vol, 8322 state == MPI2_RAID_VOL_STATE_OPTIMAL 8323 ? "optimal" : 8324 state == MPI2_RAID_VOL_STATE_DEGRADED 8325 ? "degraded" : 8326 state == MPI2_RAID_VOL_STATE_ONLINE 8327 ? "online" : 8328 state == MPI2_RAID_VOL_STATE_INITIALIZING 8329 ? "initializing" : 8330 state == MPI2_RAID_VOL_STATE_FAILED 8331 ? "failed" : 8332 state == MPI2_RAID_VOL_STATE_MISSING 8333 ? "missing" : 8334 "state unknown"); 8335 break; 8336 } 8337 case MPI2_EVENT_IR_VOLUME_RC_STATUS_FLAGS_CHANGED: 8338 { 8339 mpt->m_raidconfig[config].m_raidvol[vol]. 8340 m_statusflags = state; 8341 8342 mptsas_log(mpt, CE_NOTE, 8343 " Volume %d is now %s%s%s%s%s%s%s%s%s\n", 8344 vol, 8345 state & MPI2_RAIDVOL0_STATUS_FLAG_ENABLED 8346 ? ", enabled" : ", disabled", 8347 state & MPI2_RAIDVOL0_STATUS_FLAG_QUIESCED 8348 ? ", quiesced" : "", 8349 state & MPI2_RAIDVOL0_STATUS_FLAG_VOLUME_INACTIVE 8350 ? ", inactive" : ", active", 8351 state & 8352 MPI2_RAIDVOL0_STATUS_FLAG_BAD_BLOCK_TABLE_FULL 8353 ? ", bad block table is full" : "", 8354 state & 8355 MPI2_RAIDVOL0_STATUS_FLAG_RESYNC_IN_PROGRESS 8356 ? ", resync in progress" : "", 8357 state & MPI2_RAIDVOL0_STATUS_FLAG_BACKGROUND_INIT 8358 ? ", background initialization in progress" : "", 8359 state & 8360 MPI2_RAIDVOL0_STATUS_FLAG_CAPACITY_EXPANSION 8361 ? ", capacity expansion in progress" : "", 8362 state & 8363 MPI2_RAIDVOL0_STATUS_FLAG_CONSISTENCY_CHECK 8364 ? ", consistency check in progress" : "", 8365 state & MPI2_RAIDVOL0_STATUS_FLAG_DATA_SCRUB 8366 ? ", data scrub in progress" : ""); 8367 break; 8368 } 8369 default: 8370 break; 8371 } 8372 break; 8373 } 8374 case MPI2_EVENT_IR_PHYSICAL_DISK: 8375 { 8376 Mpi2EventDataIrPhysicalDisk_t *irPhysDisk; 8377 uint16_t devhandle, enchandle, slot; 8378 uint32_t status, state; 8379 uint8_t physdisknum, reason; 8380 8381 irPhysDisk = (Mpi2EventDataIrPhysicalDisk_t *) 8382 eventreply->EventData; 8383 physdisknum = ddi_get8(mpt->m_acc_reply_frame_hdl, 8384 &irPhysDisk->PhysDiskNum); 8385 devhandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 8386 &irPhysDisk->PhysDiskDevHandle); 8387 enchandle = ddi_get16(mpt->m_acc_reply_frame_hdl, 8388 &irPhysDisk->EnclosureHandle); 8389 slot = ddi_get16(mpt->m_acc_reply_frame_hdl, 8390 &irPhysDisk->Slot); 8391 state = ddi_get32(mpt->m_acc_reply_frame_hdl, 8392 &irPhysDisk->NewValue); 8393 reason = ddi_get8(mpt->m_acc_reply_frame_hdl, 8394 &irPhysDisk->ReasonCode); 8395 8396 NDBG20(("EVENT_IR_PHYSICAL_DISK event is received")); 8397 8398 switch (reason) { 8399 case MPI2_EVENT_IR_PHYSDISK_RC_SETTINGS_CHANGED: 8400 mptsas_log(mpt, CE_NOTE, 8401 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 8402 "for enclosure with handle 0x%x is now in hot " 8403 "spare pool %d", 8404 physdisknum, devhandle, slot, enchandle, 8405 (state >> 16) & 0xff); 8406 break; 8407 8408 case MPI2_EVENT_IR_PHYSDISK_RC_STATUS_FLAGS_CHANGED: 8409 status = state; 8410 mptsas_log(mpt, CE_NOTE, 8411 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 8412 "for enclosure with handle 0x%x is now " 8413 "%s%s%s%s%s\n", physdisknum, devhandle, slot, 8414 enchandle, 8415 status & MPI2_PHYSDISK0_STATUS_FLAG_INACTIVE_VOLUME 8416 ? ", inactive" : ", active", 8417 status & MPI2_PHYSDISK0_STATUS_FLAG_OUT_OF_SYNC 8418 ? ", out of sync" : "", 8419 status & MPI2_PHYSDISK0_STATUS_FLAG_QUIESCED 8420 ? ", quiesced" : "", 8421 status & 8422 MPI2_PHYSDISK0_STATUS_FLAG_WRITE_CACHE_ENABLED 8423 ? ", write cache enabled" : "", 8424 status & MPI2_PHYSDISK0_STATUS_FLAG_OCE_TARGET 8425 ? ", capacity expansion target" : ""); 8426 break; 8427 8428 case MPI2_EVENT_IR_PHYSDISK_RC_STATE_CHANGED: 8429 mptsas_log(mpt, CE_NOTE, 8430 " PhysDiskNum %d with DevHandle 0x%x in slot %d " 8431 "for enclosure with handle 0x%x is now %s\n", 8432 physdisknum, devhandle, slot, enchandle, 8433 state == MPI2_RAID_PD_STATE_OPTIMAL 8434 ? "optimal" : 8435 state == MPI2_RAID_PD_STATE_REBUILDING 8436 ? "rebuilding" : 8437 state == MPI2_RAID_PD_STATE_DEGRADED 8438 ? "degraded" : 8439 state == MPI2_RAID_PD_STATE_HOT_SPARE 8440 ? "a hot spare" : 8441 state == MPI2_RAID_PD_STATE_ONLINE 8442 ? "online" : 8443 state == MPI2_RAID_PD_STATE_OFFLINE 8444 ? "offline" : 8445 state == MPI2_RAID_PD_STATE_NOT_COMPATIBLE 8446 ? "not compatible" : 8447 state == MPI2_RAID_PD_STATE_NOT_CONFIGURED 8448 ? "not configured" : 8449 "state unknown"); 8450 break; 8451 } 8452 break; 8453 } 8454 default: 8455 NDBG20(("mptsas3%d: unknown event %x received", 8456 mpt->m_instance, event)); 8457 break; 8458 } 8459 8460 /* 8461 * Return the reply frame to the free queue. 8462 */ 8463 ddi_put32(mpt->m_acc_free_queue_hdl, 8464 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], rfm); 8465 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 8466 DDI_DMA_SYNC_FORDEV); 8467 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 8468 mpt->m_free_index = 0; 8469 } 8470 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 8471 mpt->m_free_index); 8472 mutex_exit(&mpt->m_mutex); 8473 } 8474 8475 /* 8476 * invoked from timeout() to restart qfull cmds with throttle == 0 8477 */ 8478 static void 8479 mptsas_restart_cmd(void *arg) 8480 { 8481 mptsas_t *mpt = arg; 8482 mptsas_target_t *ptgt = NULL; 8483 8484 mutex_enter(&mpt->m_mutex); 8485 8486 mpt->m_restart_cmd_timeid = 0; 8487 8488 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 8489 ptgt = refhash_next(mpt->m_targets, ptgt)) { 8490 mutex_enter(&ptgt->m_t_mutex); 8491 if (ptgt->m_reset_delay == 0) { 8492 if (ptgt->m_t_throttle == QFULL_THROTTLE) { 8493 mptsas_set_throttle(mpt, ptgt, 8494 MAX_THROTTLE); 8495 } 8496 } 8497 mutex_exit(&ptgt->m_t_mutex); 8498 } 8499 mptsas_restart_hba(mpt); 8500 mutex_exit(&mpt->m_mutex); 8501 } 8502 8503 /* 8504 * Assume some checks have been done prior to calling this 8505 * function so we don't need to consider taking the m_mutex. 8506 */ 8507 static void 8508 mptsas_remove_cmd_nomtx(mptsas_t *mpt, mptsas_cmd_t *cmd) 8509 { 8510 int slot; 8511 mptsas_slots_t *slots = mpt->m_active; 8512 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8513 8514 ASSERT(cmd != NULL); 8515 ASSERT(cmd->cmd_queued == FALSE); 8516 ASSERT((cmd->cmd_flags & CFLAG_CMDIOC) == 0); 8517 8518 slot = cmd->cmd_slot; 8519 8520 /* 8521 * remove the cmd. 8522 */ 8523 if (cmd == slots->m_slot[slot]) { 8524 NDBG31(("mptsas_remove_cmd_nomtx: removing cmd=0x%p, flags " 8525 "0x%x", (void *)cmd, cmd->cmd_flags)); 8526 slots->m_slot[slot] = NULL; 8527 ASSERT(mpt->m_ncmds != 0); 8528 atomic_dec_32(&mpt->m_ncmds); 8529 ASSERT(mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds != 0); 8530 atomic_dec_32( 8531 &mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds); 8532 8533 /* 8534 * Decrement per target ncmds, we know this is not an 8535 * IOC cmd and it therefore has a target associated with it. 8536 */ 8537 mutex_enter(&ptgt->m_t_mutex); 8538 ASSERT(ptgt->m_t_ncmds != 0); 8539 ptgt->m_t_ncmds--; 8540 8541 /* 8542 * reset throttle if we just ran an untagged command 8543 * to a tagged target 8544 */ 8545 if ((ptgt->m_t_ncmds == 0) && 8546 ((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0)) { 8547 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 8548 } 8549 8550 /* 8551 * Remove this command from the active queue. 8552 */ 8553 if (cmd->cmd_active_expiration != 0) { 8554 TAILQ_REMOVE(&ptgt->m_active_cmdq, cmd, 8555 cmd_active_link); 8556 cmd->cmd_active_expiration = 0; 8557 } 8558 mutex_exit(&ptgt->m_t_mutex); 8559 } 8560 8561 ASSERT(cmd != slots->m_slot[cmd->cmd_slot]); 8562 } 8563 8564 void 8565 mptsas_remove_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 8566 { 8567 int slot; 8568 mptsas_slots_t *slots = mpt->m_active; 8569 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8570 8571 ASSERT(cmd != NULL); 8572 ASSERT(cmd->cmd_queued == FALSE); 8573 8574 /* 8575 * Task Management cmds are removed in their own routines. Also, 8576 * we don't want to modify timeout based on TM cmds. 8577 */ 8578 if (cmd->cmd_flags & CFLAG_TM_CMD) { 8579 return; 8580 } 8581 8582 slot = cmd->cmd_slot; 8583 8584 /* 8585 * remove the cmd. 8586 */ 8587 if (cmd == slots->m_slot[slot]) { 8588 NDBG31(("mptsas_remove_cmd: removing cmd=0x%p, flags 0x%x", 8589 (void *)cmd, cmd->cmd_flags)); 8590 slots->m_slot[slot] = NULL; 8591 ASSERT(mpt->m_ncmds != 0); 8592 atomic_dec_32(&mpt->m_ncmds); 8593 ASSERT(mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds != 0); 8594 atomic_dec_32( 8595 &mpt->m_rep_post_queues[cmd->cmd_rpqidx].rpq_ncmds); 8596 8597 /* 8598 * only decrement per target ncmds if command 8599 * has a target associated with it. 8600 */ 8601 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 8602 mutex_enter(&ptgt->m_t_mutex); 8603 ASSERT(ptgt->m_t_ncmds != 0); 8604 ptgt->m_t_ncmds--; 8605 8606 /* 8607 * reset throttle if we just ran an untagged command 8608 * to a tagged target 8609 */ 8610 if ((ptgt->m_t_ncmds == 0) && 8611 ((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0)) { 8612 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 8613 } 8614 8615 /* 8616 * Remove this command from the active queue. 8617 */ 8618 if (cmd->cmd_active_expiration != 0) { 8619 TAILQ_REMOVE(&ptgt->m_active_cmdq, cmd, 8620 cmd_active_link); 8621 cmd->cmd_active_expiration = 0; 8622 } 8623 mutex_exit(&ptgt->m_t_mutex); 8624 } 8625 8626 } 8627 8628 /* 8629 * This is all we need to do for ioc commands. 8630 */ 8631 if (cmd->cmd_flags & CFLAG_CMDIOC) { 8632 mptsas_return_to_pool(mpt, cmd); 8633 return; 8634 } 8635 8636 ASSERT(cmd != slots->m_slot[cmd->cmd_slot]); 8637 } 8638 8639 /* 8640 * accept all cmds on the tx_waitq if any and then 8641 * start a fresh request from the top of the device queue. 8642 * 8643 * since there are always cmds queued on the tx_waitq, and rare cmds on 8644 * the instance waitq, so this function should not be invoked in the ISR, 8645 * the mptsas_restart_waitq() is invoked in the ISR instead. otherwise, the 8646 * burden belongs to the IO dispatch CPUs is moved the interrupt CPU. 8647 */ 8648 static void 8649 mptsas_restart_hba(mptsas_t *mpt) 8650 { 8651 ASSERT(mutex_owned(&mpt->m_mutex)); 8652 8653 mptsas_accept_tx_waitqs(mpt); 8654 mptsas_restart_waitq(mpt); 8655 } 8656 8657 /* 8658 * start a fresh request from the top of the device queue 8659 */ 8660 static void 8661 mptsas_restart_waitq(mptsas_t *mpt) 8662 { 8663 mptsas_cmd_t *cmd, *next_cmd; 8664 mptsas_target_t *ptgt = NULL; 8665 8666 NDBG1(("mptsas_restart_waitq: mpt=0x%p", (void *)mpt)); 8667 8668 ASSERT(mutex_owned(&mpt->m_mutex)); 8669 8670 /* 8671 * If there is a reset delay, don't start any cmds. Otherwise, start 8672 * as many cmds as possible. 8673 * Since SMID 0 is reserved and the TM slot is reserved, the actual max 8674 * commands is m_max_requests - 2. 8675 */ 8676 cmd = mpt->m_waitq; 8677 8678 while (cmd != NULL) { 8679 next_cmd = cmd->cmd_linkp; 8680 if (cmd->cmd_flags & CFLAG_PASSTHRU) { 8681 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8682 /* 8683 * passthru command get slot need 8684 * set CFLAG_PREPARED. 8685 */ 8686 cmd->cmd_flags |= CFLAG_PREPARED; 8687 mptsas_waitq_delete(mpt, cmd); 8688 mptsas_start_passthru(mpt, cmd); 8689 } 8690 cmd = next_cmd; 8691 continue; 8692 } 8693 if (cmd->cmd_flags & CFLAG_CONFIG) { 8694 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8695 /* 8696 * Send the config page request and delete it 8697 * from the waitq. 8698 */ 8699 cmd->cmd_flags |= CFLAG_PREPARED; 8700 mptsas_waitq_delete(mpt, cmd); 8701 mptsas_start_config_page_access(mpt, cmd); 8702 } 8703 cmd = next_cmd; 8704 continue; 8705 } 8706 if (cmd->cmd_flags & CFLAG_FW_DIAG) { 8707 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8708 /* 8709 * Send the FW Diag request and delete if from 8710 * the waitq. 8711 */ 8712 cmd->cmd_flags |= CFLAG_PREPARED; 8713 mptsas_waitq_delete(mpt, cmd); 8714 mptsas_start_diag(mpt, cmd); 8715 } 8716 cmd = next_cmd; 8717 continue; 8718 } 8719 8720 ptgt = cmd->cmd_tgt_addr; 8721 if (ptgt) { 8722 mutex_enter(&ptgt->m_t_mutex); 8723 if ((ptgt->m_t_throttle == DRAIN_THROTTLE) && 8724 (ptgt->m_t_ncmds == 0)) { 8725 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 8726 } 8727 if ((mpt->m_ncmds <= (mpt->m_max_requests - 2)) && 8728 (ptgt->m_reset_delay == 0) && 8729 (ptgt->m_t_ncmds < ptgt->m_t_throttle)) { 8730 mutex_exit(&ptgt->m_t_mutex); 8731 8732 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 8733 mptsas_waitq_delete(mpt, cmd); 8734 mutex_exit(&mpt->m_mutex); 8735 (void) mptsas_start_cmd(mpt, cmd); 8736 mutex_enter(&mpt->m_mutex); 8737 cmd = mpt->m_waitq; 8738 continue; 8739 } 8740 } else { 8741 mutex_exit(&ptgt->m_t_mutex); 8742 } 8743 } 8744 cmd = next_cmd; 8745 } 8746 } 8747 8748 /* 8749 * Cmds are queued if scsi_start() doesn't get the m_mutex lock(no wait) 8750 * or if the decision has been made to always do that. Setting 8751 * mptsas_allow_txq_jumping to zero will allow higher performance on 8752 * a heavily loaded system as there is less disruption to the flow here. 8753 * There are 2 threads that handle one queue each. The idea is that 8754 * they take it in turn to grab the m_mutex to run the mptsas_accept_pkt() 8755 * function and then drop it while the cmd is started in mptsas_start_cmd(). 8756 */ 8757 static void 8758 mptsas_tx_waitq_thread(mptsas_thread_arg_t *arg) 8759 { 8760 mptsas_t *mpt = arg->mpt; 8761 mptsas_tx_waitqueue_t *txwq = &mpt->m_tx_waitq[arg->t]; 8762 8763 mutex_enter(&txwq->txwq_mutex); 8764 while (txwq->txwq_active) { 8765 mptsas_drain_tx_waitq(mpt, txwq); 8766 if (txwq->txwq_wdrain) { 8767 cv_signal(&txwq->txwq_drain_cv); 8768 } 8769 cv_wait(&txwq->txwq_cv, &txwq->txwq_mutex); 8770 } 8771 mutex_exit(&txwq->txwq_mutex); 8772 mutex_enter(&mpt->m_qthread_mutex); 8773 mpt->m_txwq_thread_n--; 8774 cv_broadcast(&mpt->m_qthread_cv); 8775 mutex_exit(&mpt->m_qthread_mutex); 8776 } 8777 8778 /* 8779 * Set the draining flag, disconnect the list and process one at a time 8780 * so that the cmds are sent in order. 8781 */ 8782 static void 8783 mptsas_drain_tx_waitq(mptsas_t *mpt, mptsas_tx_waitqueue_t *txwq) 8784 { 8785 mptsas_cmd_t *cmd, *ncmd; 8786 int rval, start; 8787 #ifdef MPTSAS_DEBUG 8788 uint32_t qlen; 8789 #endif 8790 8791 txwq->txwq_draining = TRUE; 8792 #ifndef __lock_lint 8793 _NOTE(CONSTCOND) 8794 #endif 8795 while (TRUE) { 8796 8797 /* 8798 * A Bus Reset could occur at any time but it will have to 8799 * wait for the main mutex before flushing the tx_waitq. 8800 * Pull all commands at once, then follow the list in order to 8801 * reduce txwq_mutex hold time. If there is a Bus Reset at 8802 * some point the commands will get to the waitq and then be 8803 * flushed. 8804 */ 8805 cmd = txwq->txwq_cmdq; 8806 8807 if (cmd == NULL) { 8808 txwq->txwq_draining = FALSE; 8809 return; 8810 } 8811 txwq->txwq_cmdq = NULL; 8812 txwq->txwq_qtail = &txwq->txwq_cmdq; 8813 #ifdef MPTSAS_DEBUG 8814 qlen = txwq->txwq_len; 8815 #endif 8816 txwq->txwq_len = 0; 8817 mutex_exit(&txwq->txwq_mutex); 8818 8819 while (cmd) { 8820 ncmd = cmd->cmd_linkp; 8821 cmd->cmd_linkp = NULL; 8822 mutex_enter(&mpt->m_mutex); 8823 start = mptsas_accept_pkt(mpt, cmd, &rval); 8824 mutex_exit(&mpt->m_mutex); 8825 if (start) { 8826 (void) mptsas_start_cmd(mpt, cmd); 8827 } 8828 if (rval != TRAN_ACCEPT) 8829 cmn_err(CE_WARN, 8830 "mpt: mptsas_drain_tx_waitq: failed " 8831 "(rval=0x%x) to accept cmd 0x%p on queue\n", 8832 rval, (void *)cmd); 8833 cmd = ncmd; 8834 #ifdef MPTSAS_DEBUG 8835 qlen--; 8836 #endif 8837 } 8838 ASSERT(qlen == 0); 8839 mutex_enter(&txwq->txwq_mutex); 8840 } 8841 } 8842 8843 /* 8844 * Stop the drain threads from picking up a new list. 8845 * Optionally wait for the current list being processed to drain through. 8846 * Add to and processing the tx waitq is now on hold until unblock is called. 8847 */ 8848 static void 8849 mptsas_block_tx_waitqs(mptsas_t *mpt, int wait) 8850 { 8851 int i; 8852 uint8_t wdrain = 0; 8853 mptsas_tx_waitqueue_t *txwq; 8854 8855 ASSERT(mutex_owned(&mpt->m_mutex)); 8856 8857 if (mpt->m_txwq_thread_n == 0) { 8858 return; 8859 } 8860 8861 /* 8862 * Turn off the use of the tx wait queues by scsi_start(). 8863 * This is just a dynamic flag no need for a mutex. 8864 */ 8865 mpt->m_txwq_enabled = BLOCKED; 8866 8867 for (i = 0; i < NUM_TX_WAITQ; i++) { 8868 txwq = &mpt->m_tx_waitq[i]; 8869 mutex_enter(&txwq->txwq_mutex); 8870 txwq->txwq_wdrain = TRUE; 8871 if (txwq->txwq_draining && wait) 8872 wdrain |= (1<<i); 8873 mutex_exit(&txwq->txwq_mutex); 8874 } 8875 8876 if (wdrain) { 8877 /* 8878 * Because the threads disconnect the entire queue each time 8879 * round in order to drain to completely drain we have to 8880 * drop the main mutex otherwise the drain threads get stuck. 8881 */ 8882 mutex_exit(&mpt->m_mutex); 8883 for (i = 0; i < NUM_TX_WAITQ; i++) { 8884 if (wdrain & (1<<i)) { 8885 txwq = &mpt->m_tx_waitq[i]; 8886 mutex_enter(&txwq->txwq_mutex); 8887 while (txwq->txwq_draining) { 8888 cv_wait(&txwq->txwq_drain_cv, 8889 &txwq->txwq_mutex); 8890 } 8891 mutex_exit(&txwq->txwq_mutex); 8892 } 8893 } 8894 mutex_enter(&mpt->m_mutex); 8895 } 8896 } 8897 8898 static void 8899 mptsas_unblock_tx_waitqs(mptsas_t *mpt) 8900 { 8901 int i; 8902 mptsas_tx_waitqueue_t *txwq; 8903 8904 if (mpt->m_txwq_thread_n == 0) { 8905 return; 8906 } 8907 8908 for (i = 0; i < NUM_TX_WAITQ; i++) { 8909 txwq = &mpt->m_tx_waitq[i]; 8910 mutex_enter(&txwq->txwq_mutex); 8911 txwq->txwq_wdrain = FALSE; 8912 cv_signal(&txwq->txwq_cv); 8913 mutex_exit(&txwq->txwq_mutex); 8914 } 8915 8916 mpt->m_txwq_enabled = FALSE; 8917 } 8918 8919 static void 8920 mptsas_accept_tx_waitqs(mptsas_t *mpt) 8921 { 8922 /* 8923 * Block with drain and unblock will leave us in a state where 8924 * we have the main mutex, there is nothing on the tx wait queues 8925 * and they are not in use until watch notices high activity again. 8926 */ 8927 mptsas_block_tx_waitqs(mpt, 1); 8928 mptsas_unblock_tx_waitqs(mpt); 8929 } 8930 8931 /* 8932 * mpt tag type lookup 8933 */ 8934 static char mptsas_tag_lookup[] = 8935 {0, MSG_HEAD_QTAG, MSG_ORDERED_QTAG, 0, MSG_SIMPLE_QTAG}; 8936 8937 static int 8938 mptsas_start_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 8939 { 8940 struct scsi_pkt *pkt = CMD2PKT(cmd); 8941 uint32_t control = 0; 8942 caddr_t mem, arsbuf; 8943 pMpi2SCSIIORequest_t io_request; 8944 ddi_dma_handle_t dma_hdl = mpt->m_dma_req_frame_hdl; 8945 ddi_acc_handle_t acc_hdl = mpt->m_acc_req_frame_hdl; 8946 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 8947 uint16_t SMID, io_flags = 0, ars_size; 8948 uint8_t MSIidx; 8949 uint64_t request_desc; 8950 uint32_t ars_dmaaddrlow; 8951 mptsas_cmd_t *c; 8952 8953 NDBG1(("mptsas_start_cmd: cmd=0x%p, flags 0x%x", (void *)cmd, 8954 cmd->cmd_flags)); 8955 8956 /* 8957 * Set SMID and increment index. Rollover to 1 instead of 0 if index 8958 * is at the max. 0 is an invalid SMID, so we call the first index 1. 8959 */ 8960 SMID = cmd->cmd_slot; 8961 MSIidx = cmd->cmd_rpqidx; 8962 8963 /* 8964 * It is possible for back to back device reset to 8965 * happen before the reset delay has expired. That's 8966 * ok, just let the device reset go out on the bus. 8967 */ 8968 if ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0) { 8969 ASSERT(ptgt->m_reset_delay == 0); 8970 } 8971 8972 /* 8973 * if a non-tagged cmd is submitted to an active tagged target 8974 * then drain before submitting this cmd; SCSI-2 allows RQSENSE 8975 * to be untagged 8976 */ 8977 mutex_enter(&ptgt->m_t_mutex); 8978 if (((cmd->cmd_pkt_flags & FLAG_TAGMASK) == 0) && 8979 (ptgt->m_t_ncmds > 1) && 8980 ((cmd->cmd_flags & CFLAG_TM_CMD) == 0) && 8981 (*(cmd->cmd_pkt->pkt_cdbp) != SCMD_REQUEST_SENSE)) { 8982 if ((cmd->cmd_pkt_flags & FLAG_NOINTR) == 0) { 8983 NDBG23(("target=%d, untagged cmd, start draining\n", 8984 ptgt->m_devhdl)); 8985 8986 if (ptgt->m_reset_delay == 0) { 8987 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 8988 } 8989 mutex_exit(&ptgt->m_t_mutex); 8990 8991 mutex_enter(&mpt->m_mutex); 8992 mptsas_remove_cmd(mpt, cmd); 8993 cmd->cmd_pkt_flags |= FLAG_HEAD; 8994 mptsas_waitq_add(mpt, cmd); 8995 mutex_exit(&mpt->m_mutex); 8996 } else { 8997 mutex_exit(&ptgt->m_t_mutex); 8998 } 8999 return (DDI_FAILURE); 9000 } 9001 9002 /* 9003 * Set correct tag bits. 9004 */ 9005 if (cmd->cmd_pkt_flags & FLAG_TAGMASK) { 9006 switch (mptsas_tag_lookup[((cmd->cmd_pkt_flags & 9007 FLAG_TAGMASK) >> 12)]) { 9008 case MSG_SIMPLE_QTAG: 9009 control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 9010 break; 9011 case MSG_HEAD_QTAG: 9012 control |= MPI2_SCSIIO_CONTROL_HEADOFQ; 9013 break; 9014 case MSG_ORDERED_QTAG: 9015 control |= MPI2_SCSIIO_CONTROL_ORDEREDQ; 9016 break; 9017 default: 9018 mptsas_log(mpt, CE_WARN, "mpt: Invalid tag type\n"); 9019 break; 9020 } 9021 } else { 9022 if (*(cmd->cmd_pkt->pkt_cdbp) != SCMD_REQUEST_SENSE) { 9023 ptgt->m_t_throttle = 1; 9024 } 9025 control |= MPI2_SCSIIO_CONTROL_SIMPLEQ; 9026 } 9027 9028 /* 9029 * Set timeout. 9030 */ 9031 cmd->cmd_active_expiration = 9032 gethrtime() + (hrtime_t)pkt->pkt_time * NANOSEC; 9033 9034 c = TAILQ_FIRST(&ptgt->m_active_cmdq); 9035 if (c == NULL || 9036 c->cmd_active_expiration < cmd->cmd_active_expiration) { 9037 /* 9038 * Common case is that this is the last pending expiration 9039 * (or queue is empty). Insert at head of the queue. 9040 */ 9041 TAILQ_INSERT_HEAD(&ptgt->m_active_cmdq, cmd, cmd_active_link); 9042 } else { 9043 /* 9044 * Queue is not empty and first element expires later than 9045 * this command. Search for element expiring sooner. 9046 */ 9047 while ((c = TAILQ_NEXT(c, cmd_active_link)) != NULL) { 9048 if (c->cmd_active_expiration < 9049 cmd->cmd_active_expiration) { 9050 TAILQ_INSERT_BEFORE(c, cmd, cmd_active_link); 9051 break; 9052 } 9053 } 9054 if (c == NULL) { 9055 /* 9056 * No element found expiring sooner, append to 9057 * non-empty queue. 9058 */ 9059 TAILQ_INSERT_TAIL(&ptgt->m_active_cmdq, cmd, 9060 cmd_active_link); 9061 } 9062 } 9063 9064 mutex_exit(&ptgt->m_t_mutex); 9065 9066 if (cmd->cmd_pkt_flags & FLAG_TLR) { 9067 control |= MPI2_SCSIIO_CONTROL_TLR_ON; 9068 } 9069 9070 mem = mpt->m_req_frame + (mpt->m_req_frame_size * SMID); 9071 io_request = (pMpi2SCSIIORequest_t)mem; 9072 if (cmd->cmd_extrqslen != 0) { 9073 /* 9074 * Mapping of the buffer was done in mptsas_pkt_alloc_extern(). 9075 * Calculate the DMA address with the same offset. 9076 */ 9077 arsbuf = cmd->cmd_arq_buf; 9078 ars_size = cmd->cmd_extrqslen; 9079 ars_dmaaddrlow = (mpt->m_req_sense_dma_addr + 9080 ((uintptr_t)arsbuf - (uintptr_t)mpt->m_req_sense)) & 9081 0xffffffffull; 9082 } else { 9083 arsbuf = mpt->m_req_sense + (mpt->m_req_sense_size * (SMID-1)); 9084 cmd->cmd_arq_buf = arsbuf; 9085 ars_size = mpt->m_req_sense_size; 9086 ars_dmaaddrlow = (mpt->m_req_sense_dma_addr + 9087 (mpt->m_req_sense_size * (SMID-1))) & 9088 0xffffffffull; 9089 } 9090 bzero(io_request, sizeof (Mpi2SCSIIORequest_t)); 9091 bzero(arsbuf, ars_size); 9092 9093 ddi_put8(acc_hdl, &io_request->SGLOffset0, offsetof 9094 (MPI2_SCSI_IO_REQUEST, SGL) / 4); 9095 mptsas_init_std_hdr(acc_hdl, io_request, ptgt->m_devhdl, Lun(cmd), 0, 9096 MPI2_FUNCTION_SCSI_IO_REQUEST); 9097 9098 (void) ddi_rep_put8(acc_hdl, (uint8_t *)pkt->pkt_cdbp, 9099 io_request->CDB.CDB32, cmd->cmd_cdblen, DDI_DEV_AUTOINCR); 9100 9101 io_flags = cmd->cmd_cdblen; 9102 if (mptsas3_use_fastpath && 9103 ptgt->m_io_flags & MPI25_SAS_DEVICE0_FLAGS_ENABLED_FAST_PATH) { 9104 io_flags |= MPI25_SCSIIO_IOFLAGS_FAST_PATH; 9105 request_desc = MPI25_REQ_DESCRIPT_FLAGS_FAST_PATH_SCSI_IO; 9106 } else { 9107 request_desc = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 9108 } 9109 ddi_put16(acc_hdl, &io_request->IoFlags, io_flags); 9110 /* 9111 * setup the Scatter/Gather DMA list for this request 9112 */ 9113 if (cmd->cmd_cookiec > 0) { 9114 mptsas_sge_setup(mpt, cmd, &control, io_request, acc_hdl); 9115 } else { 9116 ddi_put32(acc_hdl, &io_request->SGL.MpiSimple.FlagsLength, 9117 ((uint32_t)MPI2_SGE_FLAGS_LAST_ELEMENT | 9118 MPI2_SGE_FLAGS_END_OF_BUFFER | 9119 MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 9120 MPI2_SGE_FLAGS_END_OF_LIST) << MPI2_SGE_FLAGS_SHIFT); 9121 } 9122 9123 /* 9124 * save ARQ information 9125 */ 9126 ddi_put8(acc_hdl, &io_request->SenseBufferLength, cmd->cmd_rqslen); 9127 ddi_put32(acc_hdl, &io_request->SenseBufferLowAddress, ars_dmaaddrlow); 9128 9129 ddi_put32(acc_hdl, &io_request->Control, control); 9130 9131 NDBG31(("starting message=%d(0x%p), with cmd=0x%p", 9132 SMID, (void *)io_request, (void *)cmd)); 9133 9134 (void) ddi_dma_sync(dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 9135 9136 /* 9137 * Build request descriptor and write it to the request desc post reg. 9138 */ 9139 request_desc |= (SMID << 16) + (MSIidx << 8); 9140 request_desc |= ((uint64_t)ptgt->m_devhdl << 48); 9141 MPTSAS_START_CMD(mpt, request_desc); 9142 9143 #if 0 9144 /* Is this of any benefit here, what is it going to catch? */ 9145 if ((mptsas_check_dma_handle(dma_hdl) != DDI_SUCCESS) || 9146 (mptsas_check_acc_handle(acc_hdl) != DDI_SUCCESS)) { 9147 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 9148 return (DDI_FAILURE); 9149 } 9150 #endif 9151 return (DDI_SUCCESS); 9152 } 9153 9154 /* 9155 * Select a helper thread to handle given doneq. 9156 * Note that we don't require to have the main m_mutex here, but worst case 9157 * is that we wont follow the thread rotation to the letter. 9158 * However must ensure we have the mutex that covers the source dlist when 9159 * we actually hand off. 9160 */ 9161 static void 9162 mptsas_deliver_doneq_thread(mptsas_t *mpt, mptsas_done_list_t *dlist) 9163 { 9164 uint32_t t, i, j = mpt->m_doneq_next_thread; 9165 uint32_t min = 0xffffffff; 9166 mptsas_doneq_thread_list_t *item; 9167 9168 /* 9169 * No need to take indivudual list mutex's during the loop. 9170 * We are only reading values and the worst that will happen is that 9171 * we pick the wrong thread. 9172 */ 9173 for (i = 0; i < mpt->m_doneq_thread_n; i++) { 9174 item = &mpt->m_doneq_thread_id[j]; 9175 9176 /* 9177 * If the completed command on help thread[i] less than 9178 * doneq_thread_threshold, then pick the thread[j]. Otherwise 9179 * pick a thread which has least completed command. 9180 */ 9181 if (item->dlist.dl_len < mpt->m_doneq_thread_threshold) { 9182 t = j; 9183 break; 9184 } 9185 if (item->dlist.dl_len < min) { 9186 min = item->dlist.dl_len; 9187 t = j; 9188 } 9189 if (++j == mpt->m_doneq_thread_n) { 9190 j = 0; 9191 } 9192 } 9193 item = &mpt->m_doneq_thread_id[t]; 9194 mutex_enter(&item->mutex); 9195 mptsas_doneq_mv(dlist, item); 9196 cv_signal(&item->cv); 9197 mutex_exit(&item->mutex); 9198 9199 /* 9200 * Next time start at the next thread. 9201 * This will minimize the potential of grabing a lock 9202 * for a thread that is busy, either on a very busy systems 9203 * or on one that is configured to do all command completion 9204 * processing through threads. 9205 */ 9206 if (++t == mpt->m_doneq_thread_n) { 9207 t = 0; 9208 } 9209 mpt->m_doneq_next_thread = (uint16_t)t; 9210 } 9211 9212 /* 9213 * move one doneq to another. 9214 */ 9215 static void 9216 mptsas_doneq_mv(mptsas_done_list_t *from, mptsas_doneq_thread_list_t *item) 9217 { 9218 mptsas_done_list_t *to = &item->dlist; 9219 mptsas_cmd_t *cmd; 9220 9221 if ((cmd = from->dl_q) != NULL) { 9222 *to->dl_tail = cmd; 9223 to->dl_tail = from->dl_tail; 9224 to->dl_len += from->dl_len; 9225 from->dl_q = NULL; 9226 from->dl_tail = &from->dl_q; 9227 from->dl_len = 0; 9228 } 9229 } 9230 9231 void 9232 mptsas_fma_check(mptsas_t *mpt, mptsas_cmd_t *cmd) 9233 { 9234 struct scsi_pkt *pkt = CMD2PKT(cmd); 9235 9236 /* Check all acc and dma handles */ 9237 if ((mptsas_check_acc_handle(mpt->m_datap) != 9238 DDI_SUCCESS) || 9239 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 9240 DDI_SUCCESS) || 9241 (mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl) != 9242 DDI_SUCCESS) || 9243 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) != 9244 DDI_SUCCESS) || 9245 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) != 9246 DDI_SUCCESS) || 9247 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) != 9248 DDI_SUCCESS) || 9249 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) != 9250 DDI_SUCCESS) || 9251 (mptsas_check_acc_handle(mpt->m_config_handle) != 9252 DDI_SUCCESS)) { 9253 ddi_fm_service_impact(mpt->m_dip, 9254 DDI_SERVICE_UNAFFECTED); 9255 ddi_fm_acc_err_clear(mpt->m_config_handle, 9256 DDI_FME_VER0); 9257 pkt->pkt_reason = CMD_TRAN_ERR; 9258 pkt->pkt_statistics = 0; 9259 } 9260 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 9261 DDI_SUCCESS) || 9262 (mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl) != 9263 DDI_SUCCESS) || 9264 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) != 9265 DDI_SUCCESS) || 9266 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) != 9267 DDI_SUCCESS) || 9268 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) != 9269 DDI_SUCCESS) || 9270 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) != 9271 DDI_SUCCESS)) { 9272 ddi_fm_service_impact(mpt->m_dip, 9273 DDI_SERVICE_UNAFFECTED); 9274 pkt->pkt_reason = CMD_TRAN_ERR; 9275 pkt->pkt_statistics = 0; 9276 } 9277 if (cmd->cmd_dmahandle && 9278 (mptsas_check_dma_handle(cmd->cmd_dmahandle) != DDI_SUCCESS)) { 9279 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 9280 pkt->pkt_reason = CMD_TRAN_ERR; 9281 pkt->pkt_statistics = 0; 9282 } 9283 if ((cmd->cmd_extra_frames && 9284 ((mptsas_check_dma_handle(cmd->cmd_extra_frames->m_dma_hdl) != 9285 DDI_SUCCESS) || 9286 (mptsas_check_acc_handle(cmd->cmd_extra_frames->m_acc_hdl) != 9287 DDI_SUCCESS)))) { 9288 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 9289 pkt->pkt_reason = CMD_TRAN_ERR; 9290 pkt->pkt_statistics = 0; 9291 } 9292 } 9293 9294 /* 9295 * These routines manipulate the queue of commands that 9296 * are waiting for their completion routines to be called. 9297 * The queue is usually in FIFO order but on an MP system 9298 * it's possible for the completion routines to get out 9299 * of order. If that's a problem you need to add a global 9300 * mutex around the code that calls the completion routine 9301 * in the interrupt handler. 9302 */ 9303 static void 9304 mptsas_doneq_add(mptsas_t *mpt, mptsas_cmd_t *cmd) 9305 { 9306 struct scsi_pkt *pkt = CMD2PKT(cmd); 9307 9308 NDBG31(("mptsas_doneq_add: cmd=0x%p", (void *)cmd)); 9309 9310 ASSERT((cmd->cmd_flags & CFLAG_COMPLETED) == 0); 9311 cmd->cmd_linkp = NULL; 9312 cmd->cmd_flags |= CFLAG_FINISHED; 9313 cmd->cmd_flags &= ~CFLAG_IN_TRANSPORT; 9314 9315 mptsas_fma_check(mpt, cmd); 9316 9317 /* 9318 * only add scsi pkts that have completion routines to 9319 * the doneq. no intr cmds do not have callbacks. 9320 */ 9321 if (pkt && (pkt->pkt_comp)) { 9322 *mpt->m_dlist.dl_tail = cmd; 9323 mpt->m_dlist.dl_tail = &cmd->cmd_linkp; 9324 mpt->m_dlist.dl_len++; 9325 } 9326 } 9327 9328 static void 9329 mptsas_rpdoneq_add(mptsas_t *mpt, mptsas_reply_pqueue_t *rpqp, 9330 mptsas_cmd_t *cmd) 9331 { 9332 struct scsi_pkt *pkt = CMD2PKT(cmd); 9333 9334 NDBG31(("mptsas_rpdoneq_add: cmd=0x%p", (void *)cmd)); 9335 9336 ASSERT((cmd->cmd_flags & CFLAG_COMPLETED) == 0); 9337 cmd->cmd_linkp = NULL; 9338 cmd->cmd_flags |= CFLAG_FINISHED; 9339 cmd->cmd_flags &= ~CFLAG_IN_TRANSPORT; 9340 9341 mptsas_fma_check(mpt, cmd); 9342 9343 /* 9344 * only add scsi pkts that have completion routines to 9345 * the doneq. no intr cmds do not have callbacks. 9346 */ 9347 if (pkt && (pkt->pkt_comp)) { 9348 *rpqp->rpq_dlist.dl_tail = cmd; 9349 rpqp->rpq_dlist.dl_tail = &cmd->cmd_linkp; 9350 rpqp->rpq_dlist.dl_len++; 9351 } 9352 } 9353 9354 static mptsas_cmd_t * 9355 mptsas_doneq_thread_rm(mptsas_t *mpt, uint64_t t) 9356 { 9357 mptsas_cmd_t *cmd; 9358 mptsas_doneq_thread_list_t *item = &mpt->m_doneq_thread_id[t]; 9359 9360 /* pop one off the done queue */ 9361 if ((cmd = item->dlist.dl_q) != NULL) { 9362 /* if the queue is now empty fix the tail pointer */ 9363 NDBG31(("mptsas_doneq_thread_rm: cmd=0x%p", (void *)cmd)); 9364 if ((item->dlist.dl_q = cmd->cmd_linkp) == NULL) { 9365 item->dlist.dl_tail = &item->dlist.dl_q; 9366 } 9367 cmd->cmd_linkp = NULL; 9368 item->dlist.dl_len--; 9369 } 9370 return (cmd); 9371 } 9372 9373 static void 9374 mptsas_doneq_empty(mptsas_t *mpt) 9375 { 9376 if (mpt->m_dlist.dl_q) { 9377 mptsas_cmd_t *cmd, *next; 9378 struct scsi_pkt *pkt; 9379 9380 cmd = mpt->m_dlist.dl_q; 9381 mpt->m_dlist.dl_q = NULL; 9382 mpt->m_dlist.dl_tail = &mpt->m_dlist.dl_q; 9383 mpt->m_dlist.dl_len = 0; 9384 9385 mutex_exit(&mpt->m_mutex); 9386 /* 9387 * run the completion routines of all the 9388 * completed commands 9389 */ 9390 while (cmd != NULL) { 9391 next = cmd->cmd_linkp; 9392 cmd->cmd_linkp = NULL; 9393 /* run this command's completion routine */ 9394 cmd->cmd_flags |= CFLAG_COMPLETED; 9395 pkt = CMD2PKT(cmd); 9396 mptsas_pkt_comp(pkt, cmd); 9397 cmd = next; 9398 } 9399 mutex_enter(&mpt->m_mutex); 9400 } 9401 } 9402 9403 static void 9404 mptsas_rpdoneq_empty(mptsas_reply_pqueue_t *rpqp) 9405 { 9406 if (rpqp->rpq_dlist.dl_q) { 9407 mptsas_cmd_t *cmd, *next; 9408 struct scsi_pkt *pkt; 9409 9410 cmd = rpqp->rpq_dlist.dl_q; 9411 rpqp->rpq_dlist.dl_q = NULL; 9412 rpqp->rpq_dlist.dl_tail = &rpqp->rpq_dlist.dl_q; 9413 rpqp->rpq_dlist.dl_len = 0; 9414 9415 mutex_exit(&rpqp->rpq_mutex); 9416 /* 9417 * run the completion routines of all the 9418 * completed commands 9419 */ 9420 while (cmd != NULL) { 9421 next = cmd->cmd_linkp; 9422 cmd->cmd_linkp = NULL; 9423 /* run this command's completion routine */ 9424 cmd->cmd_flags |= CFLAG_COMPLETED; 9425 pkt = CMD2PKT(cmd); 9426 mptsas_pkt_comp(pkt, cmd); 9427 cmd = next; 9428 } 9429 mutex_enter(&rpqp->rpq_mutex); 9430 } 9431 } 9432 9433 /* 9434 * These routines manipulate the target's queue of pending requests 9435 */ 9436 void 9437 mptsas_waitq_add(mptsas_t *mpt, mptsas_cmd_t *cmd) 9438 { 9439 NDBG7(("mptsas_waitq_add: cmd=0x%p", (void *)cmd)); 9440 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 9441 cmd->cmd_queued = TRUE; 9442 if (ptgt) 9443 ptgt->m_t_nwait++; 9444 if (cmd->cmd_pkt_flags & FLAG_HEAD) { 9445 if ((cmd->cmd_linkp = mpt->m_waitq) == NULL) { 9446 mpt->m_waitqtail = &cmd->cmd_linkp; 9447 } 9448 mpt->m_waitq = cmd; 9449 } else { 9450 cmd->cmd_linkp = NULL; 9451 *(mpt->m_waitqtail) = cmd; 9452 mpt->m_waitqtail = &cmd->cmd_linkp; 9453 } 9454 } 9455 9456 static mptsas_cmd_t * 9457 mptsas_waitq_rm(mptsas_t *mpt) 9458 { 9459 mptsas_cmd_t *cmd; 9460 mptsas_target_t *ptgt; 9461 NDBG7(("mptsas_waitq_rm")); 9462 9463 MPTSAS_WAITQ_RM(mpt, cmd); 9464 9465 NDBG7(("mptsas_waitq_rm: cmd=0x%p", (void *)cmd)); 9466 if (cmd) { 9467 ptgt = cmd->cmd_tgt_addr; 9468 if (ptgt) { 9469 ptgt->m_t_nwait--; 9470 ASSERT(ptgt->m_t_nwait >= 0); 9471 } 9472 } 9473 return (cmd); 9474 } 9475 9476 /* 9477 * remove specified cmd from the middle of the wait queue. 9478 */ 9479 static void 9480 mptsas_waitq_delete(mptsas_t *mpt, mptsas_cmd_t *cmd) 9481 { 9482 mptsas_cmd_t *prevp = mpt->m_waitq; 9483 mptsas_target_t *ptgt = cmd->cmd_tgt_addr; 9484 9485 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 9486 (void *)mpt, (void *)cmd)); 9487 if (ptgt) { 9488 ptgt->m_t_nwait--; 9489 ASSERT(ptgt->m_t_nwait >= 0); 9490 } 9491 9492 if (prevp == cmd) { 9493 if ((mpt->m_waitq = cmd->cmd_linkp) == NULL) 9494 mpt->m_waitqtail = &mpt->m_waitq; 9495 9496 cmd->cmd_linkp = NULL; 9497 cmd->cmd_queued = FALSE; 9498 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 9499 (void *)mpt, (void *)cmd)); 9500 return; 9501 } 9502 9503 while (prevp != NULL) { 9504 if (prevp->cmd_linkp == cmd) { 9505 if ((prevp->cmd_linkp = cmd->cmd_linkp) == NULL) 9506 mpt->m_waitqtail = &prevp->cmd_linkp; 9507 9508 cmd->cmd_linkp = NULL; 9509 cmd->cmd_queued = FALSE; 9510 NDBG7(("mptsas_waitq_delete: mpt=0x%p cmd=0x%p", 9511 (void *)mpt, (void *)cmd)); 9512 return; 9513 } 9514 prevp = prevp->cmd_linkp; 9515 } 9516 cmn_err(CE_PANIC, "mpt: mptsas_waitq_delete: queue botch"); 9517 } 9518 9519 /* 9520 * device and bus reset handling 9521 * 9522 * Notes: 9523 * - RESET_ALL: reset the controller 9524 * - RESET_TARGET: reset the target specified in scsi_address 9525 */ 9526 static int 9527 mptsas_scsi_reset(struct scsi_address *ap, int level) 9528 { 9529 mptsas_t *mpt = ADDR2MPT(ap); 9530 int rval; 9531 mptsas_tgt_private_t *tgt_private; 9532 mptsas_target_t *ptgt = NULL; 9533 9534 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran->tran_tgt_private; 9535 ptgt = tgt_private->t_private; 9536 if (ptgt == NULL) { 9537 return (FALSE); 9538 } 9539 NDBG22(("mptsas_scsi_reset: target=%d level=%d", ptgt->m_devhdl, 9540 level)); 9541 9542 mutex_enter(&mpt->m_mutex); 9543 /* 9544 * if we are not in panic set up a reset delay for this target 9545 */ 9546 if (!ddi_in_panic()) { 9547 mptsas_setup_bus_reset_delay(mpt); 9548 } else { 9549 drv_usecwait(mpt->m_scsi_reset_delay * 1000); 9550 } 9551 rval = mptsas_do_scsi_reset(mpt, ptgt->m_devhdl); 9552 mutex_exit(&mpt->m_mutex); 9553 9554 /* 9555 * The transport layer expect to only see TRUE and 9556 * FALSE. Therefore, we will adjust the return value 9557 * if mptsas_do_scsi_reset returns FAILED. 9558 */ 9559 if (rval == FAILED) 9560 rval = FALSE; 9561 return (rval); 9562 } 9563 9564 static int 9565 mptsas_do_scsi_reset(mptsas_t *mpt, uint16_t devhdl) 9566 { 9567 int rval = FALSE; 9568 uint8_t config, disk; 9569 9570 ASSERT(mutex_owned(&mpt->m_mutex)); 9571 9572 if (mptsas_debug_resets) { 9573 mptsas_log(mpt, CE_WARN, "mptsas_do_scsi_reset: target=%d", 9574 devhdl); 9575 } 9576 9577 /* 9578 * Issue a Target Reset message to the target specified but not to a 9579 * disk making up a raid volume. Just look through the RAID config 9580 * Phys Disk list of DevHandles. If the target's DevHandle is in this 9581 * list, then don't reset this target. 9582 */ 9583 for (config = 0; config < mpt->m_num_raid_configs; config++) { 9584 for (disk = 0; disk < MPTSAS_MAX_DISKS_IN_CONFIG; disk++) { 9585 if (devhdl == mpt->m_raidconfig[config]. 9586 m_physdisk_devhdl[disk]) { 9587 return (TRUE); 9588 } 9589 } 9590 } 9591 9592 rval = mptsas_ioc_task_management(mpt, 9593 MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET, devhdl, 0, NULL, 0, 0); 9594 9595 mptsas_doneq_empty(mpt); 9596 return (rval); 9597 } 9598 9599 static int 9600 mptsas_scsi_reset_notify(struct scsi_address *ap, int flag, 9601 void (*callback)(caddr_t), caddr_t arg) 9602 { 9603 mptsas_t *mpt = ADDR2MPT(ap); 9604 9605 NDBG22(("mptsas_scsi_reset_notify: tgt=%d", ap->a_target)); 9606 9607 return (scsi_hba_reset_notify_setup(ap, flag, callback, arg, 9608 &mpt->m_mutex, &mpt->m_reset_notify_listf)); 9609 } 9610 9611 static int 9612 mptsas_get_name(struct scsi_device *sd, char *name, int len) 9613 { 9614 dev_info_t *lun_dip = NULL; 9615 9616 ASSERT(sd != NULL); 9617 ASSERT(name != NULL); 9618 lun_dip = sd->sd_dev; 9619 ASSERT(lun_dip != NULL); 9620 9621 if (mptsas_name_child(lun_dip, name, len) == DDI_SUCCESS) { 9622 return (1); 9623 } else { 9624 return (0); 9625 } 9626 } 9627 9628 static int 9629 mptsas_get_bus_addr(struct scsi_device *sd, char *name, int len) 9630 { 9631 return (mptsas_get_name(sd, name, len)); 9632 } 9633 9634 static void 9635 mptsas_set_throttle(mptsas_t *mpt, mptsas_target_t *ptgt, int what) 9636 { 9637 9638 NDBG25(("mptsas_set_throttle: throttle=%x", what)); 9639 9640 /* 9641 * if the bus is draining/quiesced, no changes to the throttles 9642 * are allowed. Not allowing change of throttles during draining 9643 * limits error recovery but will reduce draining time 9644 * 9645 * all throttles should have been set to HOLD_THROTTLE 9646 */ 9647 if (mpt->m_softstate & (MPTSAS_SS_QUIESCED | MPTSAS_SS_DRAINING)) { 9648 return; 9649 } 9650 9651 if (what == HOLD_THROTTLE) { 9652 ptgt->m_t_throttle = HOLD_THROTTLE; 9653 } else if (ptgt->m_reset_delay == 0) { 9654 ptgt->m_t_throttle = what; 9655 } 9656 } 9657 9658 static void 9659 mptsas_set_throttle_mtx(mptsas_t *mpt, mptsas_target_t *ptgt, int what) 9660 { 9661 if (mpt->m_softstate & (MPTSAS_SS_QUIESCED | MPTSAS_SS_DRAINING)) { 9662 return; 9663 } 9664 9665 mutex_enter(&ptgt->m_t_mutex); 9666 mptsas_set_throttle(mpt, ptgt, what); 9667 mutex_exit(&ptgt->m_t_mutex); 9668 } 9669 9670 /* 9671 * Find all commands in the tx_waitq's for target and lun (if lun not -1), 9672 * remove them from the queues and return the linked list. 9673 */ 9674 static mptsas_cmd_t * 9675 mptsas_strip_targetlun_from_txwqs(mptsas_t *mpt, ushort_t target, int lun) 9676 { 9677 mptsas_cmd_t *cmd, *clist, **tailp, **prev_tailp; 9678 mptsas_tx_waitqueue_t *txwq; 9679 int i; 9680 9681 clist = NULL; 9682 tailp = &clist; 9683 9684 for (i = 0; i < NUM_TX_WAITQ; i++) { 9685 txwq = &mpt->m_tx_waitq[i]; 9686 mutex_enter(&txwq->txwq_mutex); 9687 prev_tailp = &txwq->txwq_cmdq; 9688 cmd = txwq->txwq_cmdq; 9689 while (cmd != NULL) { 9690 if (Tgt(cmd) == target && 9691 (lun == -1 || (Lun(cmd) == lun))) { 9692 *prev_tailp = cmd->cmd_linkp; 9693 *tailp = cmd; 9694 tailp = &cmd->cmd_linkp; 9695 cmd = cmd->cmd_linkp; 9696 *tailp = NULL; 9697 } else { 9698 prev_tailp = &cmd->cmd_linkp; 9699 cmd = cmd->cmd_linkp; 9700 } 9701 } 9702 txwq->txwq_qtail = prev_tailp; 9703 mutex_exit(&txwq->txwq_mutex); 9704 } 9705 return (clist); 9706 } 9707 9708 /* 9709 * Clean up from a device reset. 9710 * For the case of target reset, this function clears the waitq of all 9711 * commands for a particular target. For the case of abort task set, this 9712 * function clears the waitq of all commonds for a particular target/lun. 9713 */ 9714 static void 9715 mptsas_flush_target(mptsas_t *mpt, ushort_t target, int lun, uint8_t tasktype) 9716 { 9717 mptsas_slots_t *slots = mpt->m_active; 9718 mptsas_cmd_t *cmd, *next_cmd; 9719 int slot; 9720 uchar_t reason; 9721 uint_t stat; 9722 hrtime_t timestamp; 9723 9724 NDBG25(("mptsas_flush_target: target=%d lun=%d", target, lun)); 9725 9726 timestamp = gethrtime(); 9727 9728 /* 9729 * Make sure the I/O Controller has flushed all cmds 9730 * that are associated with this target for a target reset 9731 * and target/lun for abort task set. 9732 * Account for TM requests, which use the last SMID. 9733 */ 9734 for (slot = 0; slot <= mpt->m_active->m_n_normal; slot++) { 9735 if ((cmd = slots->m_slot[slot]) == NULL) 9736 continue; 9737 reason = CMD_RESET; 9738 stat = STAT_DEV_RESET; 9739 switch (tasktype) { 9740 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 9741 if (Tgt(cmd) == target) { 9742 if (cmd->cmd_active_expiration <= timestamp) { 9743 /* 9744 * When timeout requested, propagate 9745 * proper reason and statistics to 9746 * target drivers. 9747 */ 9748 reason = CMD_TIMEOUT; 9749 stat |= STAT_TIMEOUT; 9750 } 9751 NDBG25(("mptsas_flush_target discovered non-" 9752 "NULL cmd in slot %d, tasktype 0x%x", slot, 9753 tasktype)); 9754 mptsas_dump_cmd(mpt, cmd); 9755 mptsas_remove_cmd(mpt, cmd); 9756 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9757 mptsas_doneq_add(mpt, cmd); 9758 } 9759 break; 9760 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 9761 reason = CMD_ABORTED; 9762 stat = STAT_ABORTED; 9763 /*FALLTHROUGH*/ 9764 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 9765 if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) { 9766 if (cmd->cmd_active_expiration <= timestamp) { 9767 stat |= STAT_TIMEOUT; 9768 } 9769 9770 NDBG25(("mptsas_flush_target discovered non-" 9771 "NULL cmd in slot %d, tasktype 0x%x", slot, 9772 tasktype)); 9773 mptsas_dump_cmd(mpt, cmd); 9774 mptsas_remove_cmd(mpt, cmd); 9775 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9776 mptsas_doneq_add(mpt, cmd); 9777 } 9778 break; 9779 default: 9780 break; 9781 } 9782 } 9783 9784 /* 9785 * Flush the waitq and tx_waitq of this target's cmds 9786 */ 9787 cmd = mpt->m_waitq; 9788 9789 reason = CMD_RESET; 9790 stat = STAT_DEV_RESET; 9791 9792 switch (tasktype) { 9793 case MPI2_SCSITASKMGMT_TASKTYPE_TARGET_RESET: 9794 while (cmd != NULL) { 9795 next_cmd = cmd->cmd_linkp; 9796 if (Tgt(cmd) == target) { 9797 mptsas_waitq_delete(mpt, cmd); 9798 mptsas_set_pkt_reason(mpt, cmd, 9799 reason, stat); 9800 mptsas_doneq_add(mpt, cmd); 9801 } 9802 cmd = next_cmd; 9803 } 9804 cmd = mptsas_strip_targetlun_from_txwqs(mpt, target, -1); 9805 while (cmd != NULL) { 9806 next_cmd = cmd->cmd_linkp; 9807 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9808 mptsas_doneq_add(mpt, cmd); 9809 cmd = next_cmd; 9810 } 9811 break; 9812 case MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET: 9813 reason = CMD_ABORTED; 9814 stat = STAT_ABORTED; 9815 /*FALLTHROUGH*/ 9816 case MPI2_SCSITASKMGMT_TASKTYPE_LOGICAL_UNIT_RESET: 9817 while (cmd != NULL) { 9818 next_cmd = cmd->cmd_linkp; 9819 if ((Tgt(cmd) == target) && (Lun(cmd) == lun)) { 9820 mptsas_waitq_delete(mpt, cmd); 9821 mptsas_set_pkt_reason(mpt, cmd, 9822 reason, stat); 9823 mptsas_doneq_add(mpt, cmd); 9824 } 9825 cmd = next_cmd; 9826 } 9827 cmd = mptsas_strip_targetlun_from_txwqs(mpt, target, lun); 9828 while (cmd != NULL) { 9829 next_cmd = cmd->cmd_linkp; 9830 mptsas_set_pkt_reason(mpt, cmd, reason, stat); 9831 mptsas_doneq_add(mpt, cmd); 9832 cmd = next_cmd; 9833 } 9834 break; 9835 default: 9836 mptsas_log(mpt, CE_WARN, "Unknown task management type %d.", 9837 tasktype); 9838 break; 9839 } 9840 } 9841 9842 /* 9843 * Clean up hba state, abort all outstanding command and commands in waitq 9844 * reset timeout of all targets. 9845 */ 9846 static void 9847 mptsas_flush_hba(mptsas_t *mpt) 9848 { 9849 mptsas_slots_t *slots = mpt->m_active; 9850 mptsas_cmd_t *cmd, *ncmd; 9851 int slot, i; 9852 9853 NDBG25(("mptsas_flush_hba")); 9854 9855 /* 9856 * The I/O Controller should have already sent back 9857 * all commands via the scsi I/O reply frame. Make 9858 * sure all commands have been flushed. 9859 * Account for TM request, which use the last SMID. 9860 */ 9861 for (slot = 0; slot <= mpt->m_active->m_n_normal; slot++) { 9862 if ((cmd = slots->m_slot[slot]) == NULL) 9863 continue; 9864 9865 if (cmd->cmd_flags & CFLAG_CMDIOC) { 9866 /* 9867 * Need to make sure to tell everyone that might be 9868 * waiting on this command that it's going to fail. If 9869 * we get here, this command will never timeout because 9870 * the active command table is going to be re-allocated, 9871 * so there will be nothing to check against a time out. 9872 * Instead, mark the command as failed due to reset. 9873 */ 9874 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, 9875 STAT_BUS_RESET); 9876 if ((cmd->cmd_flags & 9877 (CFLAG_PASSTHRU | CFLAG_CONFIG | CFLAG_FW_DIAG))) { 9878 cmd->cmd_flags |= CFLAG_FINISHED; 9879 cv_broadcast(&mpt->m_passthru_cv); 9880 cv_broadcast(&mpt->m_config_cv); 9881 cv_broadcast(&mpt->m_fw_diag_cv); 9882 } 9883 continue; 9884 } 9885 9886 NDBG25(("mptsas_flush_hba discovered non-NULL cmd in slot %d", 9887 slot)); 9888 mptsas_dump_cmd(mpt, cmd); 9889 9890 mptsas_remove_cmd(mpt, cmd); 9891 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 9892 mptsas_doneq_add(mpt, cmd); 9893 } 9894 9895 /* 9896 * Flush the waitq. 9897 */ 9898 while ((cmd = mptsas_waitq_rm(mpt)) != NULL) { 9899 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, STAT_BUS_RESET); 9900 if ((cmd->cmd_flags & CFLAG_PASSTHRU) || 9901 (cmd->cmd_flags & CFLAG_CONFIG) || 9902 (cmd->cmd_flags & CFLAG_FW_DIAG)) { 9903 cmd->cmd_flags |= CFLAG_FINISHED; 9904 cv_broadcast(&mpt->m_passthru_cv); 9905 cv_broadcast(&mpt->m_config_cv); 9906 cv_broadcast(&mpt->m_fw_diag_cv); 9907 } else { 9908 mptsas_doneq_add(mpt, cmd); 9909 } 9910 } 9911 9912 /* 9913 * Flush the tx_waitqs 9914 */ 9915 for (i = 0; i < NUM_TX_WAITQ; i++) { 9916 mutex_enter(&mpt->m_tx_waitq[i].txwq_mutex); 9917 cmd = mpt->m_tx_waitq[i].txwq_cmdq; 9918 mpt->m_tx_waitq[i].txwq_cmdq = NULL; 9919 mpt->m_tx_waitq[i].txwq_qtail = &mpt->m_tx_waitq[i].txwq_cmdq; 9920 mutex_exit(&mpt->m_tx_waitq[i].txwq_mutex); 9921 while (cmd != NULL) { 9922 ncmd = cmd->cmd_linkp; 9923 mptsas_set_pkt_reason(mpt, cmd, CMD_RESET, 9924 STAT_BUS_RESET); 9925 mptsas_doneq_add(mpt, cmd); 9926 cmd = ncmd; 9927 } 9928 } 9929 9930 /* 9931 * Drain the taskqs prior to reallocating resources. 9932 */ 9933 mutex_exit(&mpt->m_mutex); 9934 ddi_taskq_wait(mpt->m_event_taskq); 9935 ddi_taskq_wait(mpt->m_dr_taskq); 9936 mutex_enter(&mpt->m_mutex); 9937 } 9938 9939 /* 9940 * set pkt_reason and OR in pkt_statistics flag 9941 */ 9942 static void 9943 mptsas_set_pkt_reason(mptsas_t *mpt, mptsas_cmd_t *cmd, uchar_t reason, 9944 uint_t stat) 9945 { 9946 #ifndef __lock_lint 9947 _NOTE(ARGUNUSED(mpt)) 9948 #endif 9949 9950 NDBG25(("mptsas_set_pkt_reason: cmd=0x%p reason=%x stat=%x", 9951 (void *)cmd, reason, stat)); 9952 9953 if (cmd) { 9954 if (cmd->cmd_pkt->pkt_reason == CMD_CMPLT) { 9955 cmd->cmd_pkt->pkt_reason = reason; 9956 } 9957 cmd->cmd_pkt->pkt_statistics |= stat; 9958 } 9959 } 9960 9961 static void 9962 mptsas_start_watch_reset_delay() 9963 { 9964 NDBG22(("mptsas_start_watch_reset_delay")); 9965 9966 mutex_enter(&mptsas_global_mutex); 9967 if (mptsas_reset_watch == NULL && mptsas_timeouts_enabled) { 9968 mptsas_reset_watch = timeout(mptsas_watch_reset_delay, NULL, 9969 drv_usectohz((clock_t) 9970 MPTSAS_WATCH_RESET_DELAY_TICK * 1000)); 9971 ASSERT(mptsas_reset_watch != NULL); 9972 } 9973 mutex_exit(&mptsas_global_mutex); 9974 } 9975 9976 static void 9977 mptsas_setup_bus_reset_delay(mptsas_t *mpt) 9978 { 9979 mptsas_target_t *ptgt = NULL; 9980 9981 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 9982 9983 NDBG22(("mptsas_setup_bus_reset_delay")); 9984 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 9985 ptgt = refhash_next(mpt->m_targets, ptgt)) { 9986 mutex_enter(&ptgt->m_t_mutex); 9987 mptsas_set_throttle(mpt, ptgt, HOLD_THROTTLE); 9988 ptgt->m_reset_delay = mpt->m_scsi_reset_delay; 9989 mutex_exit(&ptgt->m_t_mutex); 9990 } 9991 9992 mptsas_start_watch_reset_delay(); 9993 } 9994 9995 /* 9996 * mptsas_watch_reset_delay(_subr) is invoked by timeout() and checks every 9997 * mpt instance for active reset delays 9998 */ 9999 static void 10000 mptsas_watch_reset_delay(void *arg) 10001 { 10002 #ifndef __lock_lint 10003 _NOTE(ARGUNUSED(arg)) 10004 #endif 10005 10006 mptsas_t *mpt; 10007 int not_done = 0; 10008 10009 NDBG22(("mptsas_watch_reset_delay")); 10010 10011 mutex_enter(&mptsas_global_mutex); 10012 mptsas_reset_watch = 0; 10013 mutex_exit(&mptsas_global_mutex); 10014 rw_enter(&mptsas_global_rwlock, RW_READER); 10015 for (mpt = mptsas_head; mpt != NULL; mpt = mpt->m_next) { 10016 if (mpt->m_tran == 0) { 10017 continue; 10018 } 10019 mutex_enter(&mpt->m_mutex); 10020 not_done += mptsas_watch_reset_delay_subr(mpt); 10021 mutex_exit(&mpt->m_mutex); 10022 } 10023 rw_exit(&mptsas_global_rwlock); 10024 10025 if (not_done) { 10026 mptsas_start_watch_reset_delay(); 10027 } 10028 } 10029 10030 static int 10031 mptsas_watch_reset_delay_subr(mptsas_t *mpt) 10032 { 10033 int done = 0; 10034 int restart = 0; 10035 mptsas_target_t *ptgt = NULL; 10036 10037 NDBG22(("mptsas_watch_reset_delay_subr: mpt=0x%p", (void *)mpt)); 10038 10039 ASSERT(mutex_owned(&mpt->m_mutex)); 10040 10041 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10042 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10043 mutex_enter(&ptgt->m_t_mutex); 10044 if (ptgt->m_reset_delay != 0) { 10045 ptgt->m_reset_delay -= 10046 MPTSAS_WATCH_RESET_DELAY_TICK; 10047 if (ptgt->m_reset_delay <= 0) { 10048 ptgt->m_reset_delay = 0; 10049 mptsas_set_throttle(mpt, ptgt, 10050 MAX_THROTTLE); 10051 restart++; 10052 } else { 10053 done = -1; 10054 } 10055 } 10056 mutex_exit(&ptgt->m_t_mutex); 10057 } 10058 10059 if (restart > 0) { 10060 mptsas_restart_hba(mpt); 10061 } 10062 return (done); 10063 } 10064 10065 #ifdef MPTSAS_TEST 10066 static void 10067 mptsas_test_reset(mptsas_t *mpt, int target) 10068 { 10069 mptsas_target_t *ptgt = NULL; 10070 10071 if (mptsas_rtest == target) { 10072 if (mptsas_do_scsi_reset(mpt, target) == TRUE) { 10073 mptsas_rtest = -1; 10074 } 10075 if (mptsas_rtest == -1) { 10076 NDBG22(("mptsas_test_reset success")); 10077 } 10078 } 10079 } 10080 #endif 10081 10082 /* 10083 * abort handling: 10084 * 10085 * Notes: 10086 * - if pkt is not NULL, abort just that command 10087 * - if pkt is NULL, abort all outstanding commands for target 10088 */ 10089 static int 10090 mptsas_scsi_abort(struct scsi_address *ap, struct scsi_pkt *pkt) 10091 { 10092 mptsas_t *mpt = ADDR2MPT(ap); 10093 int rval; 10094 mptsas_tgt_private_t *tgt_private; 10095 int target, lun; 10096 10097 tgt_private = (mptsas_tgt_private_t *)ap->a_hba_tran-> 10098 tran_tgt_private; 10099 ASSERT(tgt_private != NULL); 10100 target = tgt_private->t_private->m_devhdl; 10101 lun = tgt_private->t_lun; 10102 10103 NDBG23(("mptsas_scsi_abort: target=%d.%d", target, lun)); 10104 10105 mutex_enter(&mpt->m_mutex); 10106 rval = mptsas_do_scsi_abort(mpt, target, lun, pkt); 10107 mutex_exit(&mpt->m_mutex); 10108 return (rval); 10109 } 10110 10111 static int 10112 mptsas_do_scsi_abort(mptsas_t *mpt, int target, int lun, struct scsi_pkt *pkt) 10113 { 10114 mptsas_cmd_t *sp = NULL; 10115 mptsas_slots_t *slots = mpt->m_active; 10116 int rval = FALSE; 10117 10118 ASSERT(mutex_owned(&mpt->m_mutex)); 10119 10120 /* 10121 * Abort the command pkt on the target/lun in ap. If pkt is 10122 * NULL, abort all outstanding commands on that target/lun. 10123 * If you can abort them, return 1, else return 0. 10124 * Each packet that's aborted should be sent back to the target 10125 * driver through the callback routine, with pkt_reason set to 10126 * CMD_ABORTED. 10127 * 10128 * abort cmd pkt on HBA hardware; clean out of outstanding 10129 * command lists, etc. 10130 */ 10131 if (pkt != NULL) { 10132 /* abort the specified packet */ 10133 sp = PKT2CMD(pkt); 10134 10135 if (sp->cmd_queued) { 10136 NDBG23(("mptsas_do_scsi_abort: queued sp=0x%p aborted", 10137 (void *)sp)); 10138 mptsas_waitq_delete(mpt, sp); 10139 mptsas_set_pkt_reason(mpt, sp, CMD_ABORTED, 10140 STAT_ABORTED); 10141 mptsas_doneq_add(mpt, sp); 10142 rval = TRUE; 10143 goto done; 10144 } 10145 10146 /* 10147 * Have mpt firmware abort this command 10148 */ 10149 10150 if (slots->m_slot[sp->cmd_slot] != NULL) { 10151 rval = mptsas_ioc_task_management(mpt, 10152 MPI2_SCSITASKMGMT_TASKTYPE_ABORT_TASK, target, 10153 lun, NULL, 0, 0); 10154 10155 /* 10156 * The transport layer expects only TRUE and FALSE. 10157 * Therefore, if mptsas_ioc_task_management returns 10158 * FAILED we will return FALSE. 10159 */ 10160 if (rval == FAILED) 10161 rval = FALSE; 10162 goto done; 10163 } 10164 } 10165 10166 /* 10167 * If pkt is NULL then abort task set 10168 */ 10169 rval = mptsas_ioc_task_management(mpt, 10170 MPI2_SCSITASKMGMT_TASKTYPE_ABRT_TASK_SET, target, lun, NULL, 0, 0); 10171 10172 /* 10173 * The transport layer expects only TRUE and FALSE. 10174 * Therefore, if mptsas_ioc_task_management returns 10175 * FAILED we will return FALSE. 10176 */ 10177 if (rval == FAILED) 10178 rval = FALSE; 10179 10180 #ifdef MPTSAS_TEST 10181 if (rval && mptsas_test_stop) { 10182 debug_enter("mptsas_do_scsi_abort"); 10183 } 10184 #endif 10185 10186 done: 10187 mptsas_doneq_empty(mpt); 10188 return (rval); 10189 } 10190 10191 /* 10192 * capability handling: 10193 * (*tran_getcap). Get the capability named, and return its value. 10194 */ 10195 static int 10196 mptsas_scsi_getcap(struct scsi_address *ap, char *cap, int tgtonly) 10197 { 10198 mptsas_t *mpt = ADDR2MPT(ap); 10199 int ckey; 10200 int rval = FALSE; 10201 10202 NDBG24(("mptsas_scsi_getcap: target=%d, cap=%s tgtonly=%x", 10203 ap->a_target, cap, tgtonly)); 10204 10205 mutex_enter(&mpt->m_mutex); 10206 10207 if ((mptsas_scsi_capchk(cap, tgtonly, &ckey)) != TRUE) { 10208 mutex_exit(&mpt->m_mutex); 10209 return (UNDEFINED); 10210 } 10211 10212 switch (ckey) { 10213 case SCSI_CAP_DMA_MAX: 10214 rval = (int)mpt->m_msg_dma_attr.dma_attr_maxxfer; 10215 break; 10216 case SCSI_CAP_ARQ: 10217 rval = TRUE; 10218 break; 10219 case SCSI_CAP_MSG_OUT: 10220 case SCSI_CAP_PARITY: 10221 case SCSI_CAP_UNTAGGED_QING: 10222 rval = TRUE; 10223 break; 10224 case SCSI_CAP_TAGGED_QING: 10225 rval = TRUE; 10226 break; 10227 case SCSI_CAP_RESET_NOTIFICATION: 10228 rval = TRUE; 10229 break; 10230 case SCSI_CAP_LINKED_CMDS: 10231 rval = FALSE; 10232 break; 10233 case SCSI_CAP_QFULL_RETRIES: 10234 rval = ((mptsas_tgt_private_t *)(ap->a_hba_tran-> 10235 tran_tgt_private))->t_private->m_qfull_retries; 10236 break; 10237 case SCSI_CAP_QFULL_RETRY_INTERVAL: 10238 rval = drv_hztousec(((mptsas_tgt_private_t *) 10239 (ap->a_hba_tran->tran_tgt_private))-> 10240 t_private->m_qfull_retry_interval) / 1000; 10241 break; 10242 case SCSI_CAP_CDB_LEN: 10243 rval = CDB_GROUP4; 10244 break; 10245 case SCSI_CAP_INTERCONNECT_TYPE: 10246 rval = INTERCONNECT_SAS; 10247 break; 10248 case SCSI_CAP_TRAN_LAYER_RETRIES: 10249 if (mpt->m_ioc_capabilities & 10250 MPI2_IOCFACTS_CAPABILITY_TLR) 10251 rval = TRUE; 10252 else 10253 rval = FALSE; 10254 break; 10255 default: 10256 rval = UNDEFINED; 10257 break; 10258 } 10259 10260 NDBG24(("mptsas_scsi_getcap: %s, rval=%x", cap, rval)); 10261 10262 mutex_exit(&mpt->m_mutex); 10263 return (rval); 10264 } 10265 10266 /* 10267 * (*tran_setcap). Set the capability named to the value given. 10268 */ 10269 static int 10270 mptsas_scsi_setcap(struct scsi_address *ap, char *cap, int value, int tgtonly) 10271 { 10272 mptsas_t *mpt = ADDR2MPT(ap); 10273 mptsas_target_t *ptgt; 10274 int ckey; 10275 int rval = FALSE; 10276 10277 NDBG24(("mptsas_scsi_setcap: target=%d, cap=%s value=%x tgtonly=%x", 10278 ap->a_target, cap, value, tgtonly)); 10279 10280 if (!tgtonly) { 10281 return (rval); 10282 } 10283 10284 mutex_enter(&mpt->m_mutex); 10285 10286 if ((mptsas_scsi_capchk(cap, tgtonly, &ckey)) != TRUE) { 10287 mutex_exit(&mpt->m_mutex); 10288 return (UNDEFINED); 10289 } 10290 10291 switch (ckey) { 10292 case SCSI_CAP_DMA_MAX: 10293 case SCSI_CAP_MSG_OUT: 10294 case SCSI_CAP_PARITY: 10295 case SCSI_CAP_INITIATOR_ID: 10296 case SCSI_CAP_LINKED_CMDS: 10297 case SCSI_CAP_UNTAGGED_QING: 10298 case SCSI_CAP_RESET_NOTIFICATION: 10299 /* 10300 * None of these are settable via 10301 * the capability interface. 10302 */ 10303 break; 10304 case SCSI_CAP_ARQ: 10305 /* 10306 * We cannot turn off arq so return false if asked to 10307 */ 10308 if (value) { 10309 rval = TRUE; 10310 } else { 10311 rval = FALSE; 10312 } 10313 break; 10314 case SCSI_CAP_TAGGED_QING: 10315 ptgt = ((mptsas_tgt_private_t *) 10316 (ap->a_hba_tran->tran_tgt_private))->t_private; 10317 mptsas_set_throttle_mtx(mpt, ptgt, MAX_THROTTLE); 10318 rval = TRUE; 10319 break; 10320 case SCSI_CAP_QFULL_RETRIES: 10321 ((mptsas_tgt_private_t *)(ap->a_hba_tran->tran_tgt_private))-> 10322 t_private->m_qfull_retries = (uchar_t)value; 10323 rval = TRUE; 10324 break; 10325 case SCSI_CAP_QFULL_RETRY_INTERVAL: 10326 ((mptsas_tgt_private_t *)(ap->a_hba_tran->tran_tgt_private))-> 10327 t_private->m_qfull_retry_interval = 10328 drv_usectohz(value * 1000); 10329 rval = TRUE; 10330 break; 10331 default: 10332 rval = UNDEFINED; 10333 break; 10334 } 10335 mutex_exit(&mpt->m_mutex); 10336 return (rval); 10337 } 10338 10339 /* 10340 * Utility routine for mptsas_ifsetcap/ifgetcap 10341 */ 10342 /*ARGSUSED*/ 10343 static int 10344 mptsas_scsi_capchk(char *cap, int tgtonly, int *cidxp) 10345 { 10346 NDBG24(("mptsas_scsi_capchk: cap=%s", cap)); 10347 10348 if (!cap) 10349 return (FALSE); 10350 10351 *cidxp = scsi_hba_lookup_capstr(cap); 10352 return (TRUE); 10353 } 10354 10355 static int 10356 mptsas_alloc_active_slots(mptsas_t *mpt, int flag) 10357 { 10358 mptsas_slots_t *old_active = mpt->m_active; 10359 mptsas_slots_t *new_active; 10360 size_t size; 10361 10362 /* 10363 * if there are active commands, then we cannot 10364 * change size of active slots array. 10365 */ 10366 ASSERT(mpt->m_ncmds == 0); 10367 10368 size = MPTSAS_SLOTS_SIZE(mpt); 10369 new_active = kmem_zalloc(size, flag); 10370 if (new_active == NULL) { 10371 NDBG1(("new active alloc failed")); 10372 return (-1); 10373 } 10374 /* 10375 * Since SMID 0 is reserved and the TM slot is reserved, the 10376 * number of slots that can be used at any one time is 10377 * m_max_requests - 2. 10378 */ 10379 new_active->m_n_normal = (mpt->m_max_requests - 2); 10380 new_active->m_size = size; 10381 new_active->m_rotor = 1; 10382 if (old_active) 10383 mptsas_free_active_slots(mpt); 10384 mpt->m_active = new_active; 10385 10386 return (0); 10387 } 10388 10389 static void 10390 mptsas_free_active_slots(mptsas_t *mpt) 10391 { 10392 mptsas_slots_t *active = mpt->m_active; 10393 size_t size; 10394 10395 if (active == NULL) 10396 return; 10397 size = active->m_size; 10398 kmem_free(active, size); 10399 mpt->m_active = NULL; 10400 } 10401 10402 /* 10403 * Error logging, printing, and debug print routines. 10404 */ 10405 static char *mptsas_label = "mpt_sas3"; 10406 10407 /*PRINTFLIKE3*/ 10408 void 10409 mptsas_log(mptsas_t *mpt, int level, char *fmt, ...) 10410 { 10411 dev_info_t *dev; 10412 va_list ap; 10413 10414 if (mpt) { 10415 dev = mpt->m_dip; 10416 } else { 10417 dev = 0; 10418 } 10419 10420 mutex_enter(&mptsas_log_mutex); 10421 10422 va_start(ap, fmt); 10423 (void) vsprintf(mptsas_log_buf, fmt, ap); 10424 va_end(ap); 10425 10426 if (level == CE_CONT) { 10427 scsi_log(dev, mptsas_label, level, "%s\n", mptsas_log_buf); 10428 } else { 10429 scsi_log(dev, mptsas_label, level, "%s", mptsas_log_buf); 10430 } 10431 10432 mutex_exit(&mptsas_log_mutex); 10433 } 10434 10435 #ifdef MPTSAS_DEBUG 10436 /* 10437 * Use a circular buffer to log messages to private memory. 10438 * No mutexes, so there is the opportunity for this to miss lines. 10439 * But it's fast and does not hold up the proceedings too much. 10440 */ 10441 static char mptsas_dbglog_bufs[32][256]; 10442 static uint32_t mptsas_dbglog_idx = 1; 10443 10444 /*PRINTFLIKE1*/ 10445 void 10446 mptsas_debug_log(char *fmt, ...) 10447 { 10448 va_list ap; 10449 uint32_t idx; 10450 10451 if (!mptsas_dbglog_idx) { 10452 return; 10453 } 10454 idx = (mptsas_dbglog_idx++) & 0x1f; 10455 10456 va_start(ap, fmt); 10457 (void) vsnprintf(mptsas_dbglog_bufs[idx], 10458 sizeof (mptsas_dbglog_bufs[0]), fmt, ap); 10459 va_end(ap); 10460 } 10461 10462 /*PRINTFLIKE1*/ 10463 void 10464 mptsas_printf(char *fmt, ...) 10465 { 10466 dev_info_t *dev = 0; 10467 va_list ap; 10468 10469 mutex_enter(&mptsas_log_mutex); 10470 10471 va_start(ap, fmt); 10472 (void) vsprintf(mptsas_log_buf, fmt, ap); 10473 va_end(ap); 10474 10475 #ifdef PROM_PRINTF 10476 prom_printf("%s:\t%s\n", mptsas_label, mptsas_log_buf); 10477 #else 10478 scsi_log(dev, mptsas_label, CE_CONT, "!%s\n", mptsas_log_buf); 10479 #endif 10480 mutex_exit(&mptsas_log_mutex); 10481 } 10482 #endif 10483 10484 /* 10485 * timeout handling 10486 */ 10487 static void 10488 mptsas_watch(void *arg) 10489 { 10490 #ifndef __lock_lint 10491 _NOTE(ARGUNUSED(arg)) 10492 #endif 10493 10494 mptsas_t *mpt; 10495 uint32_t doorbell; 10496 10497 NDBG30(("mptsas_watch")); 10498 10499 rw_enter(&mptsas_global_rwlock, RW_READER); 10500 for (mpt = mptsas_head; mpt != (mptsas_t *)NULL; mpt = mpt->m_next) { 10501 10502 mutex_enter(&mpt->m_mutex); 10503 10504 /* Skip device if not powered on */ 10505 if (mpt->m_options & MPTSAS_OPT_PM) { 10506 if (mpt->m_power_level == PM_LEVEL_D0) { 10507 (void) pm_busy_component(mpt->m_dip, 0); 10508 mpt->m_busy = 1; 10509 } else { 10510 mutex_exit(&mpt->m_mutex); 10511 continue; 10512 } 10513 } 10514 10515 /* 10516 * Check if controller is in a FAULT state. If so, reset it. 10517 */ 10518 doorbell = ddi_get32(mpt->m_datap, &mpt->m_reg->Doorbell); 10519 if ((doorbell & MPI2_IOC_STATE_MASK) == MPI2_IOC_STATE_FAULT) { 10520 doorbell &= MPI2_DOORBELL_DATA_MASK; 10521 mptsas_log(mpt, CE_WARN, "MPT Firmware Fault, " 10522 "code: %04x", doorbell); 10523 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 10524 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 10525 mptsas_log(mpt, CE_WARN, "Reset failed" 10526 "after fault was detected"); 10527 } 10528 } 10529 10530 /* 10531 * For now, always call mptsas_watchsubr. 10532 */ 10533 mptsas_watchsubr(mpt); 10534 10535 if (mpt->m_options & MPTSAS_OPT_PM) { 10536 mpt->m_busy = 0; 10537 (void) pm_idle_component(mpt->m_dip, 0); 10538 } 10539 10540 mutex_exit(&mpt->m_mutex); 10541 } 10542 rw_exit(&mptsas_global_rwlock); 10543 10544 mutex_enter(&mptsas_global_mutex); 10545 if (mptsas_timeouts_enabled) 10546 mptsas_timeout_id = timeout(mptsas_watch, NULL, mptsas_tick); 10547 mutex_exit(&mptsas_global_mutex); 10548 } 10549 10550 int mptsas_monitor_for_txwqs = 1; 10551 static void 10552 mptsas_watchsubr(mptsas_t *mpt) 10553 { 10554 int i; 10555 mptsas_cmd_t *cmd; 10556 mptsas_target_t *ptgt = NULL; 10557 hrtime_t timestamp = gethrtime(); 10558 boolean_t restart_hba = B_FALSE; 10559 10560 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 10561 10562 NDBG30(("mptsas_watchsubr: mpt=0x%p, ncmds %d, nstarted %d", 10563 (void *)mpt, mpt->m_ncmds, mpt->m_ncstarted)); 10564 10565 mpt->m_lncstarted = mpt->m_ncstarted; 10566 if (mpt->m_txwq_thread_n != 0 && mpt->m_txwq_enabled != BLOCKED && 10567 mptsas_monitor_for_txwqs) { 10568 i = mpt->m_ncstarted/mptsas_scsi_watchdog_tick; 10569 if (i > mpt->m_txwq_thread_threshold) { 10570 mpt->m_txwq_enabled = TRUE; 10571 } else if (i < (mpt->m_txwq_thread_threshold>>1)) { 10572 mpt->m_txwq_enabled = FALSE; 10573 } 10574 } 10575 mpt->m_ncstarted = 0; 10576 10577 /* 10578 * Check for commands stuck in active slot 10579 * Account for TM requests, which use the last SMID. 10580 */ 10581 for (i = 0; i <= mpt->m_active->m_n_normal; i++) { 10582 if ((cmd = mpt->m_active->m_slot[i]) != NULL) { 10583 if (cmd->cmd_active_expiration <= timestamp) { 10584 if ((cmd->cmd_flags & CFLAG_CMDIOC) == 0) { 10585 /* 10586 * There seems to be a command stuck 10587 * in the active slot. Drain throttle. 10588 */ 10589 ptgt = cmd->cmd_tgt_addr; 10590 mptsas_set_throttle_mtx(mpt, ptgt, 10591 DRAIN_THROTTLE); 10592 } else if (cmd->cmd_flags & 10593 (CFLAG_PASSTHRU | CFLAG_CONFIG | 10594 CFLAG_FW_DIAG)) { 10595 /* 10596 * passthrough command timeout 10597 */ 10598 cmd->cmd_flags |= (CFLAG_FINISHED | 10599 CFLAG_TIMEOUT); 10600 cv_broadcast(&mpt->m_passthru_cv); 10601 cv_broadcast(&mpt->m_config_cv); 10602 cv_broadcast(&mpt->m_fw_diag_cv); 10603 } 10604 } 10605 } 10606 } 10607 10608 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10609 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10610 mutex_enter(&ptgt->m_t_mutex); 10611 /* 10612 * If we were draining due to a qfull condition, 10613 * go back to full throttle. 10614 */ 10615 if ((ptgt->m_t_throttle < MAX_THROTTLE) && 10616 (ptgt->m_t_throttle > HOLD_THROTTLE) && 10617 (ptgt->m_t_ncmds < ptgt->m_t_throttle)) { 10618 mptsas_set_throttle(mpt, ptgt, MAX_THROTTLE); 10619 restart_hba = B_TRUE; 10620 } 10621 10622 cmd = TAILQ_LAST(&ptgt->m_active_cmdq, mptsas_active_cmdq); 10623 if (cmd != NULL) { 10624 if (cmd->cmd_active_expiration <= timestamp) { 10625 /* 10626 * Earliest command timeout expired. 10627 * Drain throttle. 10628 */ 10629 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 10630 10631 /* 10632 * Check for remaining commands. 10633 */ 10634 cmd = TAILQ_FIRST(&ptgt->m_active_cmdq); 10635 if (cmd->cmd_active_expiration > timestamp) { 10636 /* 10637 * Wait for remaining commands to 10638 * complete or time out. 10639 */ 10640 NDBG23(("command timed out, " 10641 "pending drain")); 10642 } else { 10643 mutex_exit(&ptgt->m_t_mutex); 10644 10645 /* 10646 * All command timeouts expired. 10647 */ 10648 mptsas_log(mpt, CE_NOTE, 10649 "Timeout of %d seconds " 10650 "expired with %d commands on " 10651 "target %d lun %d.", 10652 cmd->cmd_pkt->pkt_time, 10653 ptgt->m_t_ncmds, 10654 ptgt->m_devhdl, Lun(cmd)); 10655 10656 mptsas_cmd_timeout(mpt, ptgt); 10657 continue; 10658 } 10659 } else if (cmd->cmd_active_expiration <= timestamp + 10660 (hrtime_t)mptsas_scsi_watchdog_tick * NANOSEC) { 10661 NDBG23(("pending timeout")); 10662 mptsas_set_throttle(mpt, ptgt, DRAIN_THROTTLE); 10663 } 10664 } 10665 mutex_exit(&ptgt->m_t_mutex); 10666 } 10667 if (restart_hba == B_TRUE) { 10668 mptsas_restart_hba(mpt); 10669 } 10670 } 10671 10672 /* 10673 * timeout recovery 10674 */ 10675 static void 10676 mptsas_cmd_timeout(mptsas_t *mpt, mptsas_target_t *ptgt) 10677 { 10678 uint16_t devhdl; 10679 uint64_t sas_wwn; 10680 uint8_t phy; 10681 char wwn_str[MPTSAS_WWN_STRLEN]; 10682 10683 devhdl = ptgt->m_devhdl; 10684 sas_wwn = ptgt->m_addr.mta_wwn; 10685 phy = ptgt->m_phynum; 10686 if (sas_wwn == 0) { 10687 (void) sprintf(wwn_str, "p%x", phy); 10688 } else { 10689 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 10690 } 10691 10692 NDBG29(("mptsas_cmd_timeout: target=%d", devhdl)); 10693 mptsas_log(mpt, CE_WARN, "Disconnected command timeout for " 10694 "target %d %s, enclosure %u .", devhdl, wwn_str, 10695 ptgt->m_enclosure); 10696 10697 /* 10698 * Abort all outstanding commands on the device. 10699 */ 10700 NDBG29(("mptsas_cmd_timeout: device reset")); 10701 if (mptsas_do_scsi_reset(mpt, devhdl) != TRUE) { 10702 mptsas_log(mpt, CE_WARN, "Target %d reset for command timeout " 10703 "recovery failed!", devhdl); 10704 } 10705 } 10706 10707 /* 10708 * Device / Hotplug control 10709 */ 10710 static int 10711 mptsas_scsi_quiesce(dev_info_t *dip) 10712 { 10713 mptsas_t *mpt; 10714 scsi_hba_tran_t *tran; 10715 10716 tran = ddi_get_driver_private(dip); 10717 if (tran == NULL || (mpt = TRAN2MPT(tran)) == NULL) 10718 return (-1); 10719 10720 return (mptsas_quiesce_bus(mpt)); 10721 } 10722 10723 static int 10724 mptsas_scsi_unquiesce(dev_info_t *dip) 10725 { 10726 mptsas_t *mpt; 10727 scsi_hba_tran_t *tran; 10728 10729 tran = ddi_get_driver_private(dip); 10730 if (tran == NULL || (mpt = TRAN2MPT(tran)) == NULL) 10731 return (-1); 10732 10733 return (mptsas_unquiesce_bus(mpt)); 10734 } 10735 10736 static int 10737 mptsas_quiesce_bus(mptsas_t *mpt) 10738 { 10739 mptsas_target_t *ptgt = NULL; 10740 10741 NDBG28(("mptsas_quiesce_bus")); 10742 mutex_enter(&mpt->m_mutex); 10743 10744 /* Set all the throttles to zero */ 10745 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10746 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10747 mptsas_set_throttle_mtx(mpt, ptgt, HOLD_THROTTLE); 10748 } 10749 10750 /* If there are any outstanding commands in the queue */ 10751 if (mpt->m_ncmds) { 10752 mpt->m_softstate |= MPTSAS_SS_DRAINING; 10753 mpt->m_quiesce_timeid = timeout(mptsas_ncmds_checkdrain, 10754 mpt, (MPTSAS_QUIESCE_TIMEOUT * drv_usectohz(1000000))); 10755 if (cv_wait_sig(&mpt->m_cv, &mpt->m_mutex) == 0) { 10756 /* 10757 * Quiesce has been interrupted 10758 */ 10759 mpt->m_softstate &= ~MPTSAS_SS_DRAINING; 10760 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10761 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10762 mptsas_set_throttle_mtx(mpt, ptgt, 10763 MAX_THROTTLE); 10764 } 10765 mptsas_restart_hba(mpt); 10766 if (mpt->m_quiesce_timeid != 0) { 10767 timeout_id_t tid = mpt->m_quiesce_timeid; 10768 mpt->m_quiesce_timeid = 0; 10769 mutex_exit(&mpt->m_mutex); 10770 (void) untimeout(tid); 10771 return (-1); 10772 } 10773 mutex_exit(&mpt->m_mutex); 10774 return (-1); 10775 } else { 10776 /* Bus has been quiesced */ 10777 ASSERT(mpt->m_quiesce_timeid == 0); 10778 mpt->m_softstate &= ~MPTSAS_SS_DRAINING; 10779 mpt->m_softstate |= MPTSAS_SS_QUIESCED; 10780 mutex_exit(&mpt->m_mutex); 10781 return (0); 10782 } 10783 } 10784 /* Bus was not busy - QUIESCED */ 10785 mutex_exit(&mpt->m_mutex); 10786 10787 return (0); 10788 } 10789 10790 static int 10791 mptsas_unquiesce_bus(mptsas_t *mpt) 10792 { 10793 mptsas_target_t *ptgt = NULL; 10794 10795 NDBG28(("mptsas_unquiesce_bus")); 10796 mutex_enter(&mpt->m_mutex); 10797 mpt->m_softstate &= ~MPTSAS_SS_QUIESCED; 10798 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10799 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10800 mptsas_set_throttle_mtx(mpt, ptgt, MAX_THROTTLE); 10801 } 10802 mptsas_restart_hba(mpt); 10803 mutex_exit(&mpt->m_mutex); 10804 return (0); 10805 } 10806 10807 static void 10808 mptsas_ncmds_checkdrain(void *arg) 10809 { 10810 mptsas_t *mpt = arg; 10811 mptsas_target_t *ptgt = NULL; 10812 10813 mutex_enter(&mpt->m_mutex); 10814 if (mpt->m_softstate & MPTSAS_SS_DRAINING) { 10815 mpt->m_quiesce_timeid = 0; 10816 if (mpt->m_ncmds == 0) { 10817 /* Command queue has been drained */ 10818 cv_signal(&mpt->m_cv); 10819 } else { 10820 /* 10821 * The throttle may have been reset because 10822 * of a SCSI bus reset 10823 */ 10824 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 10825 ptgt = refhash_next(mpt->m_targets, ptgt)) { 10826 mptsas_set_throttle_mtx(mpt, ptgt, 10827 HOLD_THROTTLE); 10828 } 10829 10830 mpt->m_quiesce_timeid = timeout(mptsas_ncmds_checkdrain, 10831 mpt, (MPTSAS_QUIESCE_TIMEOUT * 10832 drv_usectohz(1000000))); 10833 } 10834 } 10835 mutex_exit(&mpt->m_mutex); 10836 } 10837 10838 /*ARGSUSED*/ 10839 static void 10840 mptsas_dump_cmd(mptsas_t *mpt, mptsas_cmd_t *cmd) 10841 { 10842 int i; 10843 uint8_t *cp = (uchar_t *)cmd->cmd_pkt->pkt_cdbp; 10844 char buf[128]; 10845 10846 buf[0] = '\0'; 10847 NDBG25(("?Cmd (0x%p) dump for Target %d Lun %d:\n", (void *)cmd, 10848 Tgt(cmd), Lun(cmd))); 10849 (void) sprintf(&buf[0], "\tcdb=["); 10850 for (i = 0; i < (int)cmd->cmd_cdblen; i++) { 10851 (void) sprintf(&buf[strlen(buf)], " 0x%x", *cp++); 10852 } 10853 (void) sprintf(&buf[strlen(buf)], " ]"); 10854 NDBG25(("?%s\n", buf)); 10855 NDBG25(("?pkt_flags=0x%x pkt_statistics=0x%x pkt_state=0x%x\n", 10856 cmd->cmd_pkt->pkt_flags, cmd->cmd_pkt->pkt_statistics, 10857 cmd->cmd_pkt->pkt_state)); 10858 NDBG25(("?pkt_scbp=0x%x cmd_flags=0x%x\n", cmd->cmd_pkt->pkt_scbp ? 10859 *(cmd->cmd_pkt->pkt_scbp) : 0, cmd->cmd_flags)); 10860 } 10861 10862 static void 10863 mptsas_passthru_sge(ddi_acc_handle_t acc_hdl, mptsas_pt_request_t *pt, 10864 pMpi2SGESimple64_t sgep) 10865 { 10866 uint32_t sge_flags; 10867 uint32_t data_size, dataout_size; 10868 ddi_dma_cookie_t data_cookie; 10869 ddi_dma_cookie_t dataout_cookie; 10870 10871 data_size = pt->data_size; 10872 dataout_size = pt->dataout_size; 10873 data_cookie = pt->data_cookie; 10874 dataout_cookie = pt->dataout_cookie; 10875 10876 if (dataout_size) { 10877 sge_flags = dataout_size | 10878 ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 10879 MPI2_SGE_FLAGS_END_OF_BUFFER | 10880 MPI2_SGE_FLAGS_HOST_TO_IOC | 10881 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 10882 MPI2_SGE_FLAGS_SHIFT); 10883 ddi_put32(acc_hdl, &sgep->FlagsLength, sge_flags); 10884 ddi_put32(acc_hdl, &sgep->Address.Low, 10885 (uint32_t)(dataout_cookie.dmac_laddress & 0xffffffffull)); 10886 ddi_put32(acc_hdl, &sgep->Address.High, 10887 (uint32_t)(dataout_cookie.dmac_laddress >> 32)); 10888 sgep++; 10889 } 10890 sge_flags = data_size; 10891 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_SIMPLE_ELEMENT | 10892 MPI2_SGE_FLAGS_LAST_ELEMENT | 10893 MPI2_SGE_FLAGS_END_OF_BUFFER | 10894 MPI2_SGE_FLAGS_END_OF_LIST | 10895 MPI2_SGE_FLAGS_64_BIT_ADDRESSING) << 10896 MPI2_SGE_FLAGS_SHIFT); 10897 if (pt->direction == MPTSAS_PASS_THRU_DIRECTION_WRITE) { 10898 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_HOST_TO_IOC) << 10899 MPI2_SGE_FLAGS_SHIFT); 10900 } else { 10901 sge_flags |= ((uint32_t)(MPI2_SGE_FLAGS_IOC_TO_HOST) << 10902 MPI2_SGE_FLAGS_SHIFT); 10903 } 10904 ddi_put32(acc_hdl, &sgep->FlagsLength, sge_flags); 10905 ddi_put32(acc_hdl, &sgep->Address.Low, 10906 (uint32_t)(data_cookie.dmac_laddress & 0xffffffffull)); 10907 ddi_put32(acc_hdl, &sgep->Address.High, 10908 (uint32_t)(data_cookie.dmac_laddress >> 32)); 10909 } 10910 10911 static void 10912 mptsas_passthru_ieee_sge(ddi_acc_handle_t acc_hdl, mptsas_pt_request_t *pt, 10913 pMpi2IeeeSgeSimple64_t ieeesgep) 10914 { 10915 uint8_t sge_flags; 10916 uint32_t data_size, dataout_size; 10917 ddi_dma_cookie_t data_cookie; 10918 ddi_dma_cookie_t dataout_cookie; 10919 10920 data_size = pt->data_size; 10921 dataout_size = pt->dataout_size; 10922 data_cookie = pt->data_cookie; 10923 dataout_cookie = pt->dataout_cookie; 10924 10925 sge_flags = (MPI2_IEEE_SGE_FLAGS_SIMPLE_ELEMENT | 10926 MPI2_IEEE_SGE_FLAGS_SYSTEM_ADDR); 10927 if (dataout_size) { 10928 ddi_put32(acc_hdl, &ieeesgep->Length, dataout_size); 10929 ddi_put32(acc_hdl, &ieeesgep->Address.Low, 10930 (uint32_t)(dataout_cookie.dmac_laddress & 10931 0xffffffffull)); 10932 ddi_put32(acc_hdl, &ieeesgep->Address.High, 10933 (uint32_t)(dataout_cookie.dmac_laddress >> 32)); 10934 ddi_put8(acc_hdl, &ieeesgep->Flags, sge_flags); 10935 ieeesgep++; 10936 } 10937 sge_flags |= MPI25_IEEE_SGE_FLAGS_END_OF_LIST; 10938 ddi_put32(acc_hdl, &ieeesgep->Length, data_size); 10939 ddi_put32(acc_hdl, &ieeesgep->Address.Low, 10940 (uint32_t)(data_cookie.dmac_laddress & 0xffffffffull)); 10941 ddi_put32(acc_hdl, &ieeesgep->Address.High, 10942 (uint32_t)(data_cookie.dmac_laddress >> 32)); 10943 ddi_put8(acc_hdl, &ieeesgep->Flags, sge_flags); 10944 } 10945 10946 static void 10947 mptsas_start_passthru(mptsas_t *mpt, mptsas_cmd_t *cmd) 10948 { 10949 caddr_t memp; 10950 pMPI2RequestHeader_t request_hdrp; 10951 struct scsi_pkt *pkt = cmd->cmd_pkt; 10952 mptsas_pt_request_t *pt = pkt->pkt_ha_private; 10953 uint32_t request_size; 10954 uint64_t request_desc = 0; 10955 uint64_t sense_bufp; 10956 uint8_t desc_type; 10957 uint8_t *request, function; 10958 ddi_dma_handle_t dma_hdl = mpt->m_dma_req_frame_hdl; 10959 ddi_acc_handle_t acc_hdl = mpt->m_acc_req_frame_hdl; 10960 10961 desc_type = MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 10962 10963 request = pt->request; 10964 request_size = pt->request_size; 10965 10966 /* 10967 * Store the passthrough message in memory location 10968 * corresponding to our slot number 10969 */ 10970 memp = mpt->m_req_frame + (mpt->m_req_frame_size * cmd->cmd_slot); 10971 request_hdrp = (pMPI2RequestHeader_t)memp; 10972 bzero(memp, mpt->m_req_frame_size); 10973 10974 bcopy(request, memp, request_size); 10975 10976 NDBG15(("mptsas_start_passthru: Func 0x%x, MsgFlags 0x%x, " 10977 "size=%d, in %d, out %d", request_hdrp->Function, 10978 request_hdrp->MsgFlags, request_size, 10979 pt->data_size, pt->dataout_size)); 10980 10981 /* 10982 * Add an SGE, even if the length is zero. 10983 */ 10984 if (mpt->m_MPI25 && pt->simple == 0) { 10985 mptsas_passthru_ieee_sge(acc_hdl, pt, 10986 (pMpi2IeeeSgeSimple64_t) 10987 ((uint8_t *)request_hdrp + pt->sgl_offset)); 10988 } else { 10989 mptsas_passthru_sge(acc_hdl, pt, 10990 (pMpi2SGESimple64_t) 10991 ((uint8_t *)request_hdrp + pt->sgl_offset)); 10992 } 10993 10994 function = request_hdrp->Function; 10995 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 10996 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 10997 pMpi2SCSIIORequest_t scsi_io_req; 10998 10999 NDBG15(("mptsas_start_passthru: Is SCSI IO Req")); 11000 scsi_io_req = (pMpi2SCSIIORequest_t)request_hdrp; 11001 /* 11002 * Put SGE for data and data_out buffer at the end of 11003 * scsi_io_request message header.(64 bytes in total) 11004 * Following above SGEs, the residual space will be 11005 * used by sense data. 11006 */ 11007 ddi_put8(acc_hdl, 11008 &scsi_io_req->SenseBufferLength, 11009 (uint8_t)(request_size - 64)); 11010 11011 sense_bufp = (uint32_t)(mpt->m_req_frame_dma_addr + 11012 (mpt->m_req_frame_size * cmd->cmd_slot) & 0xffffffffull); 11013 sense_bufp += 64; 11014 ddi_put32(acc_hdl, 11015 &scsi_io_req->SenseBufferLowAddress, sense_bufp); 11016 11017 /* 11018 * Set SGLOffset0 value 11019 */ 11020 ddi_put8(acc_hdl, &scsi_io_req->SGLOffset0, 11021 offsetof(MPI2_SCSI_IO_REQUEST, SGL) / 4); 11022 11023 /* 11024 * Setup descriptor info. RAID passthrough must use the 11025 * default request descriptor which is already set, so if this 11026 * is a SCSI IO request, change the descriptor to SCSI IO. 11027 */ 11028 if (function == MPI2_FUNCTION_SCSI_IO_REQUEST) { 11029 desc_type = MPI2_REQ_DESCRIPT_FLAGS_SCSI_IO; 11030 request_desc = (((uint64_t)ddi_get16(acc_hdl, 11031 &scsi_io_req->DevHandle)) << 48); 11032 } 11033 } 11034 11035 /* 11036 * We must wait till the message has been completed before 11037 * beginning the next message so we wait for this one to 11038 * finish. 11039 */ 11040 (void) ddi_dma_sync(dma_hdl, 0, 0, DDI_DMA_SYNC_FORDEV); 11041 request_desc |= ((cmd->cmd_slot << 16) | desc_type); 11042 cmd->cmd_rfm = NULL; 11043 MPTSAS_START_CMD(mpt, request_desc); 11044 if ((mptsas_check_dma_handle(dma_hdl) != DDI_SUCCESS) || 11045 (mptsas_check_acc_handle(acc_hdl) != DDI_SUCCESS)) { 11046 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 11047 } 11048 } 11049 11050 typedef void (mps_pre_f)(mptsas_t *, mptsas_pt_request_t *); 11051 static mps_pre_f mpi_pre_ioc_facts; 11052 static mps_pre_f mpi_pre_port_facts; 11053 static mps_pre_f mpi_pre_fw_download; 11054 static mps_pre_f mpi_pre_fw_25_download; 11055 static mps_pre_f mpi_pre_fw_upload; 11056 static mps_pre_f mpi_pre_fw_25_upload; 11057 static mps_pre_f mpi_pre_sata_passthrough; 11058 static mps_pre_f mpi_pre_smp_passthrough; 11059 static mps_pre_f mpi_pre_config; 11060 static mps_pre_f mpi_pre_sas_io_unit_control; 11061 static mps_pre_f mpi_pre_scsi_io_req; 11062 11063 /* 11064 * Prepare the pt for a SAS2 FW_DOWNLOAD request. 11065 */ 11066 static void 11067 mpi_pre_fw_download(mptsas_t *mpt, mptsas_pt_request_t *pt) 11068 { 11069 pMpi2FWDownloadTCSGE_t tcsge; 11070 pMpi2FWDownloadRequest req; 11071 11072 /* 11073 * If SAS3, call separate function. 11074 */ 11075 if (mpt->m_MPI25) { 11076 mpi_pre_fw_25_download(mpt, pt); 11077 return; 11078 } 11079 11080 /* 11081 * User requests should come in with the Transaction 11082 * context element where the SGL will go. Putting the 11083 * SGL after that seems to work, but don't really know 11084 * why. Other drivers tend to create an extra SGL and 11085 * refer to the TCE through that. 11086 */ 11087 req = (pMpi2FWDownloadRequest)pt->request; 11088 tcsge = (pMpi2FWDownloadTCSGE_t)&req->SGL; 11089 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 11090 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 11091 mptsas_log(mpt, CE_WARN, "FW Download tce invalid!"); 11092 } 11093 11094 pt->sgl_offset = offsetof(MPI2_FW_DOWNLOAD_REQUEST, SGL) + 11095 sizeof (*tcsge); 11096 if (pt->request_size != pt->sgl_offset) 11097 NDBG15(("mpi_pre_fw_download(): Incorrect req size, " 11098 "0x%x, should be 0x%x, dataoutsz 0x%x", 11099 (int)pt->request_size, (int)pt->sgl_offset, 11100 (int)pt->dataout_size)); 11101 if (pt->data_size < sizeof (MPI2_FW_DOWNLOAD_REPLY)) 11102 NDBG15(("mpi_pre_fw_download(): Incorrect rep size, " 11103 "0x%x, should be 0x%x", pt->data_size, 11104 (int)sizeof (MPI2_FW_DOWNLOAD_REPLY))); 11105 } 11106 11107 /* 11108 * Prepare the pt for a SAS3 FW_DOWNLOAD request. 11109 */ 11110 static void 11111 mpi_pre_fw_25_download(mptsas_t *mpt, mptsas_pt_request_t *pt) 11112 { 11113 pMpi2FWDownloadTCSGE_t tcsge; 11114 pMpi2FWDownloadRequest req2; 11115 pMpi25FWDownloadRequest req25; 11116 11117 /* 11118 * User requests should come in with the Transaction 11119 * context element where the SGL will go. The new firmware 11120 * Doesn't use TCE and has space in the main request for 11121 * this information. So move to the right place. 11122 */ 11123 req2 = (pMpi2FWDownloadRequest)pt->request; 11124 req25 = (pMpi25FWDownloadRequest)pt->request; 11125 tcsge = (pMpi2FWDownloadTCSGE_t)&req2->SGL; 11126 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 11127 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 11128 mptsas_log(mpt, CE_WARN, "FW Download tce invalid!"); 11129 } 11130 req25->ImageOffset = tcsge->ImageOffset; 11131 req25->ImageSize = tcsge->ImageSize; 11132 11133 pt->sgl_offset = offsetof(MPI25_FW_DOWNLOAD_REQUEST, SGL); 11134 if (pt->request_size != pt->sgl_offset) 11135 NDBG15(("mpi_pre_fw_25_download(): Incorrect req size, " 11136 "0x%x, should be 0x%x, dataoutsz 0x%x", 11137 pt->request_size, pt->sgl_offset, 11138 pt->dataout_size)); 11139 if (pt->data_size < sizeof (MPI2_FW_DOWNLOAD_REPLY)) 11140 NDBG15(("mpi_pre_fw_25_download(): Incorrect rep size, " 11141 "0x%x, should be 0x%x", pt->data_size, 11142 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 11143 } 11144 11145 /* 11146 * Prepare the pt for a SAS2 FW_UPLOAD request. 11147 */ 11148 static void 11149 mpi_pre_fw_upload(mptsas_t *mpt, mptsas_pt_request_t *pt) 11150 { 11151 pMpi2FWUploadTCSGE_t tcsge; 11152 pMpi2FWUploadRequest_t req; 11153 11154 /* 11155 * If SAS3, call separate function. 11156 */ 11157 if (mpt->m_MPI25) { 11158 mpi_pre_fw_25_upload(mpt, pt); 11159 return; 11160 } 11161 11162 /* 11163 * User requests should come in with the Transaction 11164 * context element where the SGL will go. Putting the 11165 * SGL after that seems to work, but don't really know 11166 * why. Other drivers tend to create an extra SGL and 11167 * refer to the TCE through that. 11168 */ 11169 req = (pMpi2FWUploadRequest_t)pt->request; 11170 tcsge = (pMpi2FWUploadTCSGE_t)&req->SGL; 11171 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 11172 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 11173 mptsas_log(mpt, CE_WARN, "FW Upload tce invalid!"); 11174 } 11175 11176 pt->sgl_offset = offsetof(MPI2_FW_UPLOAD_REQUEST, SGL) + 11177 sizeof (*tcsge); 11178 if (pt->request_size != pt->sgl_offset) 11179 NDBG15(("mpi_pre_fw_upload(): Incorrect req size, " 11180 "0x%x, should be 0x%x, dataoutsz 0x%x", 11181 pt->request_size, pt->sgl_offset, 11182 pt->dataout_size)); 11183 if (pt->data_size < sizeof (MPI2_FW_UPLOAD_REPLY)) 11184 NDBG15(("mpi_pre_fw_upload(): Incorrect rep size, " 11185 "0x%x, should be 0x%x", pt->data_size, 11186 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 11187 } 11188 11189 /* 11190 * Prepare the pt a SAS3 FW_UPLOAD request. 11191 */ 11192 static void 11193 mpi_pre_fw_25_upload(mptsas_t *mpt, mptsas_pt_request_t *pt) 11194 { 11195 pMpi2FWUploadTCSGE_t tcsge; 11196 pMpi2FWUploadRequest_t req2; 11197 pMpi25FWUploadRequest_t req25; 11198 11199 /* 11200 * User requests should come in with the Transaction 11201 * context element where the SGL will go. The new firmware 11202 * Doesn't use TCE and has space in the main request for 11203 * this information. So move to the right place. 11204 */ 11205 req2 = (pMpi2FWUploadRequest_t)pt->request; 11206 req25 = (pMpi25FWUploadRequest_t)pt->request; 11207 tcsge = (pMpi2FWUploadTCSGE_t)&req2->SGL; 11208 if (tcsge->ContextSize != 0 || tcsge->DetailsLength != 12 || 11209 tcsge->Flags != MPI2_SGE_FLAGS_TRANSACTION_ELEMENT) { 11210 mptsas_log(mpt, CE_WARN, "FW Upload tce invalid!"); 11211 } 11212 req25->ImageOffset = tcsge->ImageOffset; 11213 req25->ImageSize = tcsge->ImageSize; 11214 11215 pt->sgl_offset = offsetof(MPI25_FW_UPLOAD_REQUEST, SGL); 11216 if (pt->request_size != pt->sgl_offset) 11217 NDBG15(("mpi_pre_fw_25_upload(): Incorrect req size, " 11218 "0x%x, should be 0x%x, dataoutsz 0x%x", 11219 pt->request_size, pt->sgl_offset, 11220 pt->dataout_size)); 11221 if (pt->data_size < sizeof (MPI2_FW_UPLOAD_REPLY)) 11222 NDBG15(("mpi_pre_fw_25_upload(): Incorrect rep size, " 11223 "0x%x, should be 0x%x", pt->data_size, 11224 (int)sizeof (MPI2_FW_UPLOAD_REPLY))); 11225 } 11226 11227 /* 11228 * Prepare the pt for an IOC_FACTS request. 11229 */ 11230 static void 11231 mpi_pre_ioc_facts(mptsas_t *mpt, mptsas_pt_request_t *pt) 11232 { 11233 #ifndef __lock_lint 11234 _NOTE(ARGUNUSED(mpt)) 11235 #endif 11236 if (pt->request_size != sizeof (MPI2_IOC_FACTS_REQUEST)) 11237 NDBG15(("mpi_pre_ioc_facts(): Incorrect req size, " 11238 "0x%x, should be 0x%x, dataoutsz 0x%x", 11239 pt->request_size, 11240 (int)sizeof (MPI2_IOC_FACTS_REQUEST), 11241 pt->dataout_size)); 11242 if (pt->data_size != sizeof (MPI2_IOC_FACTS_REPLY)) 11243 NDBG15(("mpi_pre_ioc_facts(): Incorrect rep size, " 11244 "0x%x, should be 0x%x", pt->data_size, 11245 (int)sizeof (MPI2_IOC_FACTS_REPLY))); 11246 pt->sgl_offset = (uint16_t)pt->request_size; 11247 } 11248 11249 /* 11250 * Prepare the pt for a PORT_FACTS request. 11251 */ 11252 static void 11253 mpi_pre_port_facts(mptsas_t *mpt, mptsas_pt_request_t *pt) 11254 { 11255 #ifndef __lock_lint 11256 _NOTE(ARGUNUSED(mpt)) 11257 #endif 11258 if (pt->request_size != sizeof (MPI2_PORT_FACTS_REQUEST)) 11259 NDBG15(("mpi_pre_port_facts(): Incorrect req size, " 11260 "0x%x, should be 0x%x, dataoutsz 0x%x", 11261 pt->request_size, 11262 (int)sizeof (MPI2_PORT_FACTS_REQUEST), 11263 pt->dataout_size)); 11264 if (pt->data_size != sizeof (MPI2_PORT_FACTS_REPLY)) 11265 NDBG15(("mpi_pre_port_facts(): Incorrect rep size, " 11266 "0x%x, should be 0x%x", pt->data_size, 11267 (int)sizeof (MPI2_PORT_FACTS_REPLY))); 11268 pt->sgl_offset = (uint16_t)pt->request_size; 11269 } 11270 11271 /* 11272 * Prepare pt for a SATA_PASSTHROUGH request. 11273 */ 11274 static void 11275 mpi_pre_sata_passthrough(mptsas_t *mpt, mptsas_pt_request_t *pt) 11276 { 11277 #ifndef __lock_lint 11278 _NOTE(ARGUNUSED(mpt)) 11279 #endif 11280 pt->sgl_offset = offsetof(MPI2_SATA_PASSTHROUGH_REQUEST, SGL); 11281 if (pt->request_size != pt->sgl_offset) 11282 NDBG15(("mpi_pre_sata_passthrough(): Incorrect req size, " 11283 "0x%x, should be 0x%x, dataoutsz 0x%x", 11284 pt->request_size, pt->sgl_offset, 11285 pt->dataout_size)); 11286 if (pt->data_size != sizeof (MPI2_SATA_PASSTHROUGH_REPLY)) 11287 NDBG15(("mpi_pre_sata_passthrough(): Incorrect rep size, " 11288 "0x%x, should be 0x%x", pt->data_size, 11289 (int)sizeof (MPI2_SATA_PASSTHROUGH_REPLY))); 11290 } 11291 11292 static void 11293 mpi_pre_smp_passthrough(mptsas_t *mpt, mptsas_pt_request_t *pt) 11294 { 11295 #ifndef __lock_lint 11296 _NOTE(ARGUNUSED(mpt)) 11297 #endif 11298 pt->sgl_offset = offsetof(MPI2_SMP_PASSTHROUGH_REQUEST, SGL); 11299 if (pt->request_size != pt->sgl_offset) 11300 NDBG15(("mpi_pre_smp_passthrough(): Incorrect req size, " 11301 "0x%x, should be 0x%x, dataoutsz 0x%x", 11302 pt->request_size, pt->sgl_offset, 11303 pt->dataout_size)); 11304 if (pt->data_size != sizeof (MPI2_SMP_PASSTHROUGH_REPLY)) 11305 NDBG15(("mpi_pre_smp_passthrough(): Incorrect rep size, " 11306 "0x%x, should be 0x%x", pt->data_size, 11307 (int)sizeof (MPI2_SMP_PASSTHROUGH_REPLY))); 11308 } 11309 11310 /* 11311 * Prepare pt for a CONFIG request. 11312 */ 11313 static void 11314 mpi_pre_config(mptsas_t *mpt, mptsas_pt_request_t *pt) 11315 { 11316 #ifndef __lock_lint 11317 _NOTE(ARGUNUSED(mpt)) 11318 #endif 11319 pt->sgl_offset = offsetof(MPI2_CONFIG_REQUEST, PageBufferSGE); 11320 if (pt->request_size != pt->sgl_offset) 11321 NDBG15(("mpi_pre_config(): Incorrect req size, 0x%x, " 11322 "should be 0x%x, dataoutsz 0x%x", pt->request_size, 11323 pt->sgl_offset, pt->dataout_size)); 11324 if (pt->data_size != sizeof (MPI2_CONFIG_REPLY)) 11325 NDBG15(("mpi_pre_config(): Incorrect rep size, 0x%x, " 11326 "should be 0x%x", pt->data_size, 11327 (int)sizeof (MPI2_CONFIG_REPLY))); 11328 pt->simple = 1; 11329 } 11330 11331 /* 11332 * Prepare pt for a SCSI_IO_REQ request. 11333 */ 11334 static void 11335 mpi_pre_scsi_io_req(mptsas_t *mpt, mptsas_pt_request_t *pt) 11336 { 11337 #ifndef __lock_lint 11338 _NOTE(ARGUNUSED(mpt)) 11339 #endif 11340 pt->sgl_offset = offsetof(MPI2_SCSI_IO_REQUEST, SGL); 11341 if (pt->request_size != pt->sgl_offset) 11342 NDBG15(("mpi_pre_config(): Incorrect req size, 0x%x, " 11343 "should be 0x%x, dataoutsz 0x%x", pt->request_size, 11344 pt->sgl_offset, 11345 pt->dataout_size)); 11346 if (pt->data_size != sizeof (MPI2_SCSI_IO_REPLY)) 11347 NDBG15(("mpi_pre_config(): Incorrect rep size, 0x%x, " 11348 "should be 0x%x", pt->data_size, 11349 (int)sizeof (MPI2_SCSI_IO_REPLY))); 11350 } 11351 11352 /* 11353 * Prepare the mps_command for a SAS_IO_UNIT_CONTROL request. 11354 */ 11355 static void 11356 mpi_pre_sas_io_unit_control(mptsas_t *mpt, mptsas_pt_request_t *pt) 11357 { 11358 #ifndef __lock_lint 11359 _NOTE(ARGUNUSED(mpt)) 11360 #endif 11361 pt->sgl_offset = (uint16_t)pt->request_size; 11362 } 11363 11364 /* 11365 * A set of functions to prepare an mps_command for the various 11366 * supported requests. 11367 */ 11368 struct mps_func { 11369 U8 Function; 11370 char *Name; 11371 mps_pre_f *f_pre; 11372 } mps_func_list[] = { 11373 { MPI2_FUNCTION_IOC_FACTS, "IOC_FACTS", mpi_pre_ioc_facts }, 11374 { MPI2_FUNCTION_PORT_FACTS, "PORT_FACTS", mpi_pre_port_facts }, 11375 { MPI2_FUNCTION_FW_DOWNLOAD, "FW_DOWNLOAD", mpi_pre_fw_download }, 11376 { MPI2_FUNCTION_FW_UPLOAD, "FW_UPLOAD", mpi_pre_fw_upload }, 11377 { MPI2_FUNCTION_SATA_PASSTHROUGH, "SATA_PASSTHROUGH", 11378 mpi_pre_sata_passthrough }, 11379 { MPI2_FUNCTION_SMP_PASSTHROUGH, "SMP_PASSTHROUGH", 11380 mpi_pre_smp_passthrough}, 11381 { MPI2_FUNCTION_SCSI_IO_REQUEST, "SCSI_IO_REQUEST", 11382 mpi_pre_scsi_io_req}, 11383 { MPI2_FUNCTION_CONFIG, "CONFIG", mpi_pre_config}, 11384 { MPI2_FUNCTION_SAS_IO_UNIT_CONTROL, "SAS_IO_UNIT_CONTROL", 11385 mpi_pre_sas_io_unit_control }, 11386 { 0xFF, NULL, NULL } /* list end */ 11387 }; 11388 11389 static void 11390 mptsas_prep_sgl_offset(mptsas_t *mpt, mptsas_pt_request_t *pt) 11391 { 11392 pMPI2RequestHeader_t hdr; 11393 struct mps_func *f; 11394 11395 hdr = (pMPI2RequestHeader_t)pt->request; 11396 11397 for (f = mps_func_list; f->f_pre != NULL; f++) { 11398 if (hdr->Function == f->Function) { 11399 f->f_pre(mpt, pt); 11400 NDBG15(("mptsas_prep_sgl_offset: Function %s," 11401 " sgl_offset 0x%x", f->Name, 11402 pt->sgl_offset)); 11403 return; 11404 } 11405 } 11406 NDBG15(("mptsas_prep_sgl_offset: Unknown Function 0x%02x," 11407 " returning req_size 0x%x for sgl_offset", 11408 hdr->Function, pt->request_size)); 11409 pt->sgl_offset = (uint16_t)pt->request_size; 11410 } 11411 11412 11413 static int 11414 mptsas_do_passthru(mptsas_t *mpt, uint8_t *request, uint8_t *reply, 11415 uint8_t *data, uint32_t request_size, uint32_t reply_size, 11416 uint32_t data_size, uint8_t direction, uint8_t *dataout, 11417 uint32_t dataout_size, short timeout, int mode) 11418 { 11419 mptsas_pt_request_t pt; 11420 mptsas_dma_alloc_state_t data_dma_state; 11421 mptsas_dma_alloc_state_t dataout_dma_state; 11422 caddr_t memp; 11423 mptsas_cmd_t *cmd = NULL; 11424 struct scsi_pkt *pkt; 11425 uint32_t reply_len = 0, sense_len = 0; 11426 pMPI2RequestHeader_t request_hdrp; 11427 pMPI2RequestHeader_t request_msg; 11428 pMPI2DefaultReply_t reply_msg; 11429 Mpi2SCSIIOReply_t rep_msg; 11430 int i, status = 0, pt_flags = 0, rv = 0; 11431 int rvalue; 11432 uint8_t function; 11433 11434 ASSERT(mutex_owned(&mpt->m_mutex)); 11435 11436 reply_msg = (pMPI2DefaultReply_t)(&rep_msg); 11437 bzero(reply_msg, sizeof (MPI2_DEFAULT_REPLY)); 11438 request_msg = kmem_zalloc(request_size, KM_SLEEP); 11439 11440 mutex_exit(&mpt->m_mutex); 11441 /* 11442 * copy in the request buffer since it could be used by 11443 * another thread when the pt request into waitq 11444 */ 11445 if (ddi_copyin(request, request_msg, request_size, mode)) { 11446 mutex_enter(&mpt->m_mutex); 11447 status = EFAULT; 11448 mptsas_log(mpt, CE_WARN, "failed to copy request data"); 11449 goto out; 11450 } 11451 mutex_enter(&mpt->m_mutex); 11452 11453 function = request_msg->Function; 11454 if (function == MPI2_FUNCTION_SCSI_TASK_MGMT) { 11455 pMpi2SCSITaskManagementRequest_t task; 11456 task = (pMpi2SCSITaskManagementRequest_t)request_msg; 11457 mptsas_setup_bus_reset_delay(mpt); 11458 rv = mptsas_ioc_task_management(mpt, task->TaskType, 11459 task->DevHandle, (int)task->LUN[1], reply, reply_size, 11460 mode); 11461 11462 if (rv != TRUE) { 11463 status = EIO; 11464 mptsas_log(mpt, CE_WARN, "task management failed"); 11465 } 11466 goto out; 11467 } 11468 11469 if (data_size != 0) { 11470 data_dma_state.size = data_size; 11471 if (mptsas_dma_alloc(mpt, &data_dma_state) != DDI_SUCCESS) { 11472 status = ENOMEM; 11473 mptsas_log(mpt, CE_WARN, "failed to alloc DMA " 11474 "resource"); 11475 goto out; 11476 } 11477 pt_flags |= MPTSAS_DATA_ALLOCATED; 11478 if (direction == MPTSAS_PASS_THRU_DIRECTION_WRITE) { 11479 mutex_exit(&mpt->m_mutex); 11480 for (i = 0; i < data_size; i++) { 11481 if (ddi_copyin(data + i, (uint8_t *) 11482 data_dma_state.memp + i, 1, mode)) { 11483 mutex_enter(&mpt->m_mutex); 11484 status = EFAULT; 11485 mptsas_log(mpt, CE_WARN, "failed to " 11486 "copy read data"); 11487 goto out; 11488 } 11489 } 11490 mutex_enter(&mpt->m_mutex); 11491 } 11492 } 11493 else 11494 bzero(&data_dma_state, sizeof (data_dma_state)); 11495 11496 if (dataout_size != 0) { 11497 dataout_dma_state.size = dataout_size; 11498 if (mptsas_dma_alloc(mpt, &dataout_dma_state) != DDI_SUCCESS) { 11499 status = ENOMEM; 11500 mptsas_log(mpt, CE_WARN, "failed to alloc DMA " 11501 "resource"); 11502 goto out; 11503 } 11504 pt_flags |= MPTSAS_DATAOUT_ALLOCATED; 11505 mutex_exit(&mpt->m_mutex); 11506 for (i = 0; i < dataout_size; i++) { 11507 if (ddi_copyin(dataout + i, (uint8_t *) 11508 dataout_dma_state.memp + i, 1, mode)) { 11509 mutex_enter(&mpt->m_mutex); 11510 mptsas_log(mpt, CE_WARN, "failed to copy out" 11511 " data"); 11512 status = EFAULT; 11513 goto out; 11514 } 11515 } 11516 mutex_enter(&mpt->m_mutex); 11517 } 11518 else 11519 bzero(&dataout_dma_state, sizeof (dataout_dma_state)); 11520 11521 if ((rvalue = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 11522 status = EAGAIN; 11523 mptsas_log(mpt, CE_NOTE, "event ack command pool is full"); 11524 goto out; 11525 } 11526 pt_flags |= MPTSAS_REQUEST_POOL_CMD; 11527 11528 bzero((caddr_t)cmd, sizeof (*cmd)); 11529 bzero((caddr_t)pkt, scsi_pkt_size()); 11530 bzero((caddr_t)&pt, sizeof (pt)); 11531 11532 cmd->ioc_cmd_slot = (uint32_t)(rvalue); 11533 11534 pt.request = (uint8_t *)request_msg; 11535 pt.direction = direction; 11536 pt.simple = 0; 11537 pt.request_size = request_size; 11538 pt.data_size = data_size; 11539 pt.dataout_size = dataout_size; 11540 pt.data_cookie = data_dma_state.cookie; 11541 pt.dataout_cookie = dataout_dma_state.cookie; 11542 mptsas_prep_sgl_offset(mpt, &pt); 11543 11544 /* 11545 * Form a blank cmd/pkt to store the acknowledgement message 11546 */ 11547 pkt->pkt_cdbp = (opaque_t)&cmd->cmd_cdb[0]; 11548 pkt->pkt_scbp = (opaque_t)&cmd->cmd_scb; 11549 pkt->pkt_ha_private = (opaque_t)&pt; 11550 pkt->pkt_flags = FLAG_HEAD; 11551 pkt->pkt_time = timeout; 11552 cmd->cmd_pkt = pkt; 11553 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_PASSTHRU; 11554 11555 /* 11556 * Save the command in a slot 11557 */ 11558 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 11559 /* 11560 * Once passthru command get slot, set cmd_flags 11561 * CFLAG_PREPARED. 11562 */ 11563 cmd->cmd_flags |= CFLAG_PREPARED; 11564 mptsas_start_passthru(mpt, cmd); 11565 } else { 11566 mptsas_waitq_add(mpt, cmd); 11567 } 11568 11569 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 11570 cv_wait(&mpt->m_passthru_cv, &mpt->m_mutex); 11571 } 11572 11573 if (cmd->cmd_flags & CFLAG_PREPARED) { 11574 memp = mpt->m_req_frame + (mpt->m_req_frame_size * 11575 cmd->cmd_slot); 11576 request_hdrp = (pMPI2RequestHeader_t)memp; 11577 } 11578 11579 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 11580 status = ETIMEDOUT; 11581 mptsas_log(mpt, CE_WARN, "passthrough command timeout"); 11582 pt_flags |= MPTSAS_CMD_TIMEOUT; 11583 goto out; 11584 } 11585 11586 if (cmd->cmd_rfm) { 11587 /* 11588 * cmd_rfm is zero means the command reply is a CONTEXT 11589 * reply and no PCI Write to post the free reply SMFA 11590 * because no reply message frame is used. 11591 * cmd_rfm is non-zero means the reply is a ADDRESS 11592 * reply and reply message frame is used. 11593 */ 11594 pt_flags |= MPTSAS_ADDRESS_REPLY; 11595 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 11596 DDI_DMA_SYNC_FORCPU); 11597 reply_msg = (pMPI2DefaultReply_t) 11598 (mpt->m_reply_frame + (cmd->cmd_rfm - 11599 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 11600 } 11601 11602 mptsas_fma_check(mpt, cmd); 11603 if (pkt->pkt_reason == CMD_TRAN_ERR) { 11604 status = EAGAIN; 11605 mptsas_log(mpt, CE_WARN, "passthru fma error"); 11606 goto out; 11607 } 11608 if (pkt->pkt_reason == CMD_RESET) { 11609 status = EAGAIN; 11610 mptsas_log(mpt, CE_WARN, "ioc reset abort passthru"); 11611 goto out; 11612 } 11613 11614 if (pkt->pkt_reason == CMD_INCOMPLETE) { 11615 status = EIO; 11616 mptsas_log(mpt, CE_WARN, "passthrough command incomplete"); 11617 goto out; 11618 } 11619 11620 mutex_exit(&mpt->m_mutex); 11621 if (cmd->cmd_flags & CFLAG_PREPARED) { 11622 function = request_hdrp->Function; 11623 if ((function == MPI2_FUNCTION_SCSI_IO_REQUEST) || 11624 (function == MPI2_FUNCTION_RAID_SCSI_IO_PASSTHROUGH)) { 11625 reply_len = sizeof (MPI2_SCSI_IO_REPLY); 11626 sense_len = reply_size - reply_len; 11627 } else { 11628 reply_len = reply_size; 11629 sense_len = 0; 11630 } 11631 11632 for (i = 0; i < reply_len; i++) { 11633 if (ddi_copyout((uint8_t *)reply_msg + i, reply + i, 1, 11634 mode)) { 11635 mutex_enter(&mpt->m_mutex); 11636 status = EFAULT; 11637 mptsas_log(mpt, CE_WARN, "failed to copy out " 11638 "reply data"); 11639 goto out; 11640 } 11641 } 11642 for (i = 0; i < sense_len; i++) { 11643 if (ddi_copyout((uint8_t *)request_hdrp + 64 + i, 11644 reply + reply_len + i, 1, mode)) { 11645 mutex_enter(&mpt->m_mutex); 11646 status = EFAULT; 11647 mptsas_log(mpt, CE_WARN, "failed to copy out " 11648 "sense data"); 11649 goto out; 11650 } 11651 } 11652 } 11653 11654 if (data_size) { 11655 if (direction != MPTSAS_PASS_THRU_DIRECTION_WRITE) { 11656 (void) ddi_dma_sync(data_dma_state.handle, 0, 0, 11657 DDI_DMA_SYNC_FORCPU); 11658 for (i = 0; i < data_size; i++) { 11659 if (ddi_copyout((uint8_t *)( 11660 data_dma_state.memp + i), data + i, 1, 11661 mode)) { 11662 mutex_enter(&mpt->m_mutex); 11663 status = EFAULT; 11664 mptsas_log(mpt, CE_WARN, "failed to " 11665 "copy out the reply data"); 11666 goto out; 11667 } 11668 } 11669 } 11670 } 11671 mutex_enter(&mpt->m_mutex); 11672 out: 11673 /* 11674 * Put the reply frame back on the free queue, increment the free 11675 * index, and write the new index to the free index register. But only 11676 * if this reply is an ADDRESS reply. 11677 */ 11678 if (pt_flags & MPTSAS_ADDRESS_REPLY) { 11679 ddi_put32(mpt->m_acc_free_queue_hdl, 11680 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 11681 cmd->cmd_rfm); 11682 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 11683 DDI_DMA_SYNC_FORDEV); 11684 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 11685 mpt->m_free_index = 0; 11686 } 11687 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 11688 mpt->m_free_index); 11689 } 11690 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 11691 mptsas_remove_cmd(mpt, cmd); 11692 pt_flags &= (~MPTSAS_REQUEST_POOL_CMD); 11693 } 11694 if (pt_flags & MPTSAS_REQUEST_POOL_CMD) 11695 mptsas_return_to_pool(mpt, cmd); 11696 if (pt_flags & MPTSAS_DATA_ALLOCATED) { 11697 if (mptsas_check_dma_handle(data_dma_state.handle) != 11698 DDI_SUCCESS) { 11699 ddi_fm_service_impact(mpt->m_dip, 11700 DDI_SERVICE_UNAFFECTED); 11701 status = EFAULT; 11702 } 11703 mptsas_dma_free(&data_dma_state); 11704 } 11705 if (pt_flags & MPTSAS_DATAOUT_ALLOCATED) { 11706 if (mptsas_check_dma_handle(dataout_dma_state.handle) != 11707 DDI_SUCCESS) { 11708 ddi_fm_service_impact(mpt->m_dip, 11709 DDI_SERVICE_UNAFFECTED); 11710 status = EFAULT; 11711 } 11712 mptsas_dma_free(&dataout_dma_state); 11713 } 11714 if (pt_flags & MPTSAS_CMD_TIMEOUT) { 11715 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 11716 mptsas_log(mpt, CE_WARN, "mptsas_restart_ioc failed"); 11717 } 11718 } 11719 if (request_msg) 11720 kmem_free(request_msg, request_size); 11721 11722 return (status); 11723 } 11724 11725 static int 11726 mptsas_pass_thru(mptsas_t *mpt, mptsas_pass_thru_t *data, int mode) 11727 { 11728 /* 11729 * If timeout is 0, set timeout to default of 60 seconds. 11730 */ 11731 if (data->Timeout == 0) { 11732 data->Timeout = MPTSAS_PASS_THRU_TIME_DEFAULT; 11733 } 11734 11735 if (((data->DataSize == 0) && 11736 (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_NONE)) || 11737 ((data->DataSize != 0) && 11738 ((data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_READ) || 11739 (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_WRITE) || 11740 ((data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_BOTH) && 11741 (data->DataOutSize != 0))))) { 11742 if (data->DataDirection == MPTSAS_PASS_THRU_DIRECTION_BOTH) { 11743 data->DataDirection = MPTSAS_PASS_THRU_DIRECTION_READ; 11744 } else { 11745 data->DataOutSize = 0; 11746 } 11747 /* 11748 * Send passthru request messages 11749 */ 11750 return (mptsas_do_passthru(mpt, 11751 (uint8_t *)((uintptr_t)data->PtrRequest), 11752 (uint8_t *)((uintptr_t)data->PtrReply), 11753 (uint8_t *)((uintptr_t)data->PtrData), 11754 data->RequestSize, data->ReplySize, 11755 data->DataSize, (uint8_t)data->DataDirection, 11756 (uint8_t *)((uintptr_t)data->PtrDataOut), 11757 data->DataOutSize, data->Timeout, mode)); 11758 } else { 11759 return (EINVAL); 11760 } 11761 } 11762 11763 static uint8_t 11764 mptsas_get_fw_diag_buffer_number(mptsas_t *mpt, uint32_t unique_id) 11765 { 11766 uint8_t index; 11767 11768 for (index = 0; index < MPI2_DIAG_BUF_TYPE_COUNT; index++) { 11769 if (mpt->m_fw_diag_buffer_list[index].unique_id == unique_id) { 11770 return (index); 11771 } 11772 } 11773 11774 return (MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND); 11775 } 11776 11777 static void 11778 mptsas_start_diag(mptsas_t *mpt, mptsas_cmd_t *cmd) 11779 { 11780 pMpi2DiagBufferPostRequest_t pDiag_post_msg; 11781 pMpi2DiagReleaseRequest_t pDiag_release_msg; 11782 struct scsi_pkt *pkt = cmd->cmd_pkt; 11783 mptsas_diag_request_t *diag = pkt->pkt_ha_private; 11784 uint32_t i; 11785 uint64_t request_desc; 11786 11787 ASSERT(mutex_owned(&mpt->m_mutex)); 11788 11789 /* 11790 * Form the diag message depending on the post or release function. 11791 */ 11792 if (diag->function == MPI2_FUNCTION_DIAG_BUFFER_POST) { 11793 pDiag_post_msg = (pMpi2DiagBufferPostRequest_t) 11794 (mpt->m_req_frame + (mpt->m_req_frame_size * 11795 cmd->cmd_slot)); 11796 bzero(pDiag_post_msg, mpt->m_req_frame_size); 11797 ddi_put8(mpt->m_acc_req_frame_hdl, &pDiag_post_msg->Function, 11798 diag->function); 11799 ddi_put8(mpt->m_acc_req_frame_hdl, &pDiag_post_msg->BufferType, 11800 diag->pBuffer->buffer_type); 11801 ddi_put8(mpt->m_acc_req_frame_hdl, 11802 &pDiag_post_msg->ExtendedType, 11803 diag->pBuffer->extended_type); 11804 ddi_put32(mpt->m_acc_req_frame_hdl, 11805 &pDiag_post_msg->BufferLength, 11806 diag->pBuffer->buffer_data.size); 11807 for (i = 0; i < (sizeof (pDiag_post_msg->ProductSpecific) / 4); 11808 i++) { 11809 ddi_put32(mpt->m_acc_req_frame_hdl, 11810 &pDiag_post_msg->ProductSpecific[i], 11811 diag->pBuffer->product_specific[i]); 11812 } 11813 ddi_put32(mpt->m_acc_req_frame_hdl, 11814 &pDiag_post_msg->BufferAddress.Low, 11815 (uint32_t)(diag->pBuffer->buffer_data.cookie.dmac_laddress 11816 & 0xffffffffull)); 11817 ddi_put32(mpt->m_acc_req_frame_hdl, 11818 &pDiag_post_msg->BufferAddress.High, 11819 (uint32_t)(diag->pBuffer->buffer_data.cookie.dmac_laddress 11820 >> 32)); 11821 } else { 11822 pDiag_release_msg = (pMpi2DiagReleaseRequest_t) 11823 (mpt->m_req_frame + (mpt->m_req_frame_size * 11824 cmd->cmd_slot)); 11825 bzero(pDiag_release_msg, mpt->m_req_frame_size); 11826 ddi_put8(mpt->m_acc_req_frame_hdl, 11827 &pDiag_release_msg->Function, diag->function); 11828 ddi_put8(mpt->m_acc_req_frame_hdl, 11829 &pDiag_release_msg->BufferType, 11830 diag->pBuffer->buffer_type); 11831 } 11832 11833 /* 11834 * Send the message 11835 */ 11836 (void) ddi_dma_sync(mpt->m_dma_req_frame_hdl, 0, 0, 11837 DDI_DMA_SYNC_FORDEV); 11838 request_desc = (cmd->cmd_slot << 16) | 11839 MPI2_REQ_DESCRIPT_FLAGS_DEFAULT_TYPE; 11840 cmd->cmd_rfm = NULL; 11841 MPTSAS_START_CMD(mpt, request_desc); 11842 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 11843 DDI_SUCCESS) || 11844 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 11845 DDI_SUCCESS)) { 11846 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 11847 } 11848 } 11849 11850 static int 11851 mptsas_post_fw_diag_buffer(mptsas_t *mpt, 11852 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code) 11853 { 11854 mptsas_diag_request_t diag; 11855 int status, slot_num, post_flags = 0; 11856 mptsas_cmd_t *cmd = NULL; 11857 struct scsi_pkt *pkt; 11858 pMpi2DiagBufferPostReply_t reply; 11859 uint16_t iocstatus; 11860 uint32_t iocloginfo, transfer_length; 11861 11862 /* 11863 * If buffer is not enabled, just leave. 11864 */ 11865 *return_code = MPTSAS_FW_DIAG_ERROR_POST_FAILED; 11866 if (!pBuffer->enabled) { 11867 status = DDI_FAILURE; 11868 goto out; 11869 } 11870 11871 /* 11872 * Clear some flags initially. 11873 */ 11874 pBuffer->force_release = FALSE; 11875 pBuffer->valid_data = FALSE; 11876 pBuffer->owned_by_firmware = FALSE; 11877 11878 /* 11879 * Get a cmd buffer from the cmd buffer pool 11880 */ 11881 if ((slot_num = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 11882 status = DDI_FAILURE; 11883 mptsas_log(mpt, CE_NOTE, "command pool is full: Post FW Diag"); 11884 goto out; 11885 } 11886 post_flags |= MPTSAS_REQUEST_POOL_CMD; 11887 11888 bzero((caddr_t)cmd, sizeof (*cmd)); 11889 bzero((caddr_t)pkt, scsi_pkt_size()); 11890 11891 cmd->ioc_cmd_slot = (uint32_t)(slot_num); 11892 11893 diag.pBuffer = pBuffer; 11894 diag.function = MPI2_FUNCTION_DIAG_BUFFER_POST; 11895 11896 /* 11897 * Form a blank cmd/pkt to store the acknowledgement message 11898 */ 11899 pkt->pkt_ha_private = (opaque_t)&diag; 11900 pkt->pkt_flags = FLAG_HEAD; 11901 pkt->pkt_time = 60; 11902 cmd->cmd_pkt = pkt; 11903 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_FW_DIAG; 11904 11905 /* 11906 * Save the command in a slot 11907 */ 11908 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 11909 /* 11910 * Once passthru command get slot, set cmd_flags 11911 * CFLAG_PREPARED. 11912 */ 11913 cmd->cmd_flags |= CFLAG_PREPARED; 11914 mptsas_start_diag(mpt, cmd); 11915 } else { 11916 mptsas_waitq_add(mpt, cmd); 11917 } 11918 11919 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 11920 cv_wait(&mpt->m_fw_diag_cv, &mpt->m_mutex); 11921 } 11922 11923 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 11924 status = DDI_FAILURE; 11925 mptsas_log(mpt, CE_WARN, "Post FW Diag command timeout"); 11926 goto out; 11927 } 11928 11929 /* 11930 * cmd_rfm points to the reply message if a reply was given. Check the 11931 * IOCStatus to make sure everything went OK with the FW diag request 11932 * and set buffer flags. 11933 */ 11934 if (cmd->cmd_rfm) { 11935 post_flags |= MPTSAS_ADDRESS_REPLY; 11936 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 11937 DDI_DMA_SYNC_FORCPU); 11938 reply = (pMpi2DiagBufferPostReply_t)(mpt->m_reply_frame + 11939 (cmd->cmd_rfm - 11940 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 11941 11942 /* 11943 * Get the reply message data 11944 */ 11945 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 11946 &reply->IOCStatus); 11947 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 11948 &reply->IOCLogInfo); 11949 transfer_length = ddi_get32(mpt->m_acc_reply_frame_hdl, 11950 &reply->TransferLength); 11951 11952 /* 11953 * If post failed quit. 11954 */ 11955 if (iocstatus != MPI2_IOCSTATUS_SUCCESS) { 11956 status = DDI_FAILURE; 11957 NDBG13(("post FW Diag Buffer failed: IOCStatus=0x%x, " 11958 "IOCLogInfo=0x%x, TransferLength=0x%x", iocstatus, 11959 iocloginfo, transfer_length)); 11960 goto out; 11961 } 11962 11963 /* 11964 * Post was successful. 11965 */ 11966 pBuffer->valid_data = TRUE; 11967 pBuffer->owned_by_firmware = TRUE; 11968 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 11969 status = DDI_SUCCESS; 11970 } 11971 11972 out: 11973 /* 11974 * Put the reply frame back on the free queue, increment the free 11975 * index, and write the new index to the free index register. But only 11976 * if this reply is an ADDRESS reply. 11977 */ 11978 if (post_flags & MPTSAS_ADDRESS_REPLY) { 11979 ddi_put32(mpt->m_acc_free_queue_hdl, 11980 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 11981 cmd->cmd_rfm); 11982 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 11983 DDI_DMA_SYNC_FORDEV); 11984 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 11985 mpt->m_free_index = 0; 11986 } 11987 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 11988 mpt->m_free_index); 11989 } 11990 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 11991 mptsas_remove_cmd(mpt, cmd); 11992 post_flags &= (~MPTSAS_REQUEST_POOL_CMD); 11993 } 11994 if (post_flags & MPTSAS_REQUEST_POOL_CMD) { 11995 mptsas_return_to_pool(mpt, cmd); 11996 } 11997 11998 return (status); 11999 } 12000 12001 static int 12002 mptsas_release_fw_diag_buffer(mptsas_t *mpt, 12003 mptsas_fw_diagnostic_buffer_t *pBuffer, uint32_t *return_code, 12004 uint32_t diag_type) 12005 { 12006 mptsas_diag_request_t diag; 12007 int status, slot_num, rel_flags = 0; 12008 mptsas_cmd_t *cmd = NULL; 12009 struct scsi_pkt *pkt; 12010 pMpi2DiagReleaseReply_t reply; 12011 uint16_t iocstatus; 12012 uint32_t iocloginfo; 12013 12014 /* 12015 * If buffer is not enabled, just leave. 12016 */ 12017 *return_code = MPTSAS_FW_DIAG_ERROR_RELEASE_FAILED; 12018 if (!pBuffer->enabled) { 12019 mptsas_log(mpt, CE_NOTE, "This buffer type is not supported " 12020 "by the IOC"); 12021 status = DDI_FAILURE; 12022 goto out; 12023 } 12024 12025 /* 12026 * Clear some flags initially. 12027 */ 12028 pBuffer->force_release = FALSE; 12029 pBuffer->valid_data = FALSE; 12030 pBuffer->owned_by_firmware = FALSE; 12031 12032 /* 12033 * Get a cmd buffer from the cmd buffer pool 12034 */ 12035 if ((slot_num = (mptsas_request_from_pool(mpt, &cmd, &pkt))) == -1) { 12036 status = DDI_FAILURE; 12037 mptsas_log(mpt, CE_NOTE, "command pool is full: Release FW " 12038 "Diag"); 12039 goto out; 12040 } 12041 rel_flags |= MPTSAS_REQUEST_POOL_CMD; 12042 12043 bzero((caddr_t)cmd, sizeof (*cmd)); 12044 bzero((caddr_t)pkt, scsi_pkt_size()); 12045 12046 cmd->ioc_cmd_slot = (uint32_t)(slot_num); 12047 12048 diag.pBuffer = pBuffer; 12049 diag.function = MPI2_FUNCTION_DIAG_RELEASE; 12050 12051 /* 12052 * Form a blank cmd/pkt to store the acknowledgement message 12053 */ 12054 pkt->pkt_ha_private = (opaque_t)&diag; 12055 pkt->pkt_flags = FLAG_HEAD; 12056 pkt->pkt_time = 60; 12057 cmd->cmd_pkt = pkt; 12058 cmd->cmd_flags = CFLAG_CMDIOC | CFLAG_FW_DIAG; 12059 12060 /* 12061 * Save the command in a slot 12062 */ 12063 if (mptsas_save_cmd(mpt, cmd) == TRUE) { 12064 /* 12065 * Once passthru command get slot, set cmd_flags 12066 * CFLAG_PREPARED. 12067 */ 12068 cmd->cmd_flags |= CFLAG_PREPARED; 12069 mptsas_start_diag(mpt, cmd); 12070 } else { 12071 mptsas_waitq_add(mpt, cmd); 12072 } 12073 12074 while ((cmd->cmd_flags & CFLAG_FINISHED) == 0) { 12075 cv_wait(&mpt->m_fw_diag_cv, &mpt->m_mutex); 12076 } 12077 12078 if (cmd->cmd_flags & CFLAG_TIMEOUT) { 12079 status = DDI_FAILURE; 12080 mptsas_log(mpt, CE_WARN, "Release FW Diag command timeout"); 12081 goto out; 12082 } 12083 12084 /* 12085 * cmd_rfm points to the reply message if a reply was given. Check the 12086 * IOCStatus to make sure everything went OK with the FW diag request 12087 * and set buffer flags. 12088 */ 12089 if (cmd->cmd_rfm) { 12090 rel_flags |= MPTSAS_ADDRESS_REPLY; 12091 (void) ddi_dma_sync(mpt->m_dma_reply_frame_hdl, 0, 0, 12092 DDI_DMA_SYNC_FORCPU); 12093 reply = (pMpi2DiagReleaseReply_t)(mpt->m_reply_frame + 12094 (cmd->cmd_rfm - 12095 (mpt->m_reply_frame_dma_addr&0xfffffffful))); 12096 12097 /* 12098 * Get the reply message data 12099 */ 12100 iocstatus = ddi_get16(mpt->m_acc_reply_frame_hdl, 12101 &reply->IOCStatus); 12102 iocloginfo = ddi_get32(mpt->m_acc_reply_frame_hdl, 12103 &reply->IOCLogInfo); 12104 12105 /* 12106 * If release failed quit. 12107 */ 12108 if ((iocstatus != MPI2_IOCSTATUS_SUCCESS) || 12109 pBuffer->owned_by_firmware) { 12110 status = DDI_FAILURE; 12111 NDBG13(("release FW Diag Buffer failed: " 12112 "IOCStatus=0x%x, IOCLogInfo=0x%x", iocstatus, 12113 iocloginfo)); 12114 goto out; 12115 } 12116 12117 /* 12118 * Release was successful. 12119 */ 12120 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 12121 status = DDI_SUCCESS; 12122 12123 /* 12124 * If this was for an UNREGISTER diag type command, clear the 12125 * unique ID. 12126 */ 12127 if (diag_type == MPTSAS_FW_DIAG_TYPE_UNREGISTER) { 12128 pBuffer->unique_id = MPTSAS_FW_DIAG_INVALID_UID; 12129 } 12130 } 12131 12132 out: 12133 /* 12134 * Put the reply frame back on the free queue, increment the free 12135 * index, and write the new index to the free index register. But only 12136 * if this reply is an ADDRESS reply. 12137 */ 12138 if (rel_flags & MPTSAS_ADDRESS_REPLY) { 12139 ddi_put32(mpt->m_acc_free_queue_hdl, 12140 &((uint32_t *)(void *)mpt->m_free_queue)[mpt->m_free_index], 12141 cmd->cmd_rfm); 12142 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 12143 DDI_DMA_SYNC_FORDEV); 12144 if (++mpt->m_free_index == mpt->m_free_queue_depth) { 12145 mpt->m_free_index = 0; 12146 } 12147 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, 12148 mpt->m_free_index); 12149 } 12150 if (cmd && (cmd->cmd_flags & CFLAG_PREPARED)) { 12151 mptsas_remove_cmd(mpt, cmd); 12152 rel_flags &= (~MPTSAS_REQUEST_POOL_CMD); 12153 } 12154 if (rel_flags & MPTSAS_REQUEST_POOL_CMD) { 12155 mptsas_return_to_pool(mpt, cmd); 12156 } 12157 12158 return (status); 12159 } 12160 12161 static int 12162 mptsas_diag_register(mptsas_t *mpt, mptsas_fw_diag_register_t *diag_register, 12163 uint32_t *return_code) 12164 { 12165 mptsas_fw_diagnostic_buffer_t *pBuffer; 12166 uint8_t extended_type, buffer_type, i; 12167 uint32_t buffer_size; 12168 uint32_t unique_id; 12169 int status; 12170 12171 ASSERT(mutex_owned(&mpt->m_mutex)); 12172 12173 extended_type = diag_register->ExtendedType; 12174 buffer_type = diag_register->BufferType; 12175 buffer_size = diag_register->RequestedBufferSize; 12176 unique_id = diag_register->UniqueId; 12177 12178 /* 12179 * Check for valid buffer type 12180 */ 12181 if (buffer_type >= MPI2_DIAG_BUF_TYPE_COUNT) { 12182 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12183 return (DDI_FAILURE); 12184 } 12185 12186 /* 12187 * Get the current buffer and look up the unique ID. The unique ID 12188 * should not be found. If it is, the ID is already in use. 12189 */ 12190 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12191 pBuffer = &mpt->m_fw_diag_buffer_list[buffer_type]; 12192 if (i != MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12193 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12194 return (DDI_FAILURE); 12195 } 12196 12197 /* 12198 * The buffer's unique ID should not be registered yet, and the given 12199 * unique ID cannot be 0. 12200 */ 12201 if ((pBuffer->unique_id != MPTSAS_FW_DIAG_INVALID_UID) || 12202 (unique_id == MPTSAS_FW_DIAG_INVALID_UID)) { 12203 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12204 return (DDI_FAILURE); 12205 } 12206 12207 /* 12208 * If this buffer is already posted as immediate, just change owner. 12209 */ 12210 if (pBuffer->immediate && pBuffer->owned_by_firmware && 12211 (pBuffer->unique_id == MPTSAS_FW_DIAG_INVALID_UID)) { 12212 pBuffer->immediate = FALSE; 12213 pBuffer->unique_id = unique_id; 12214 return (DDI_SUCCESS); 12215 } 12216 12217 /* 12218 * Post a new buffer after checking if it's enabled. The DMA buffer 12219 * that is allocated will be contiguous (sgl_len = 1). 12220 */ 12221 if (!pBuffer->enabled) { 12222 *return_code = MPTSAS_FW_DIAG_ERROR_NO_BUFFER; 12223 return (DDI_FAILURE); 12224 } 12225 bzero(&pBuffer->buffer_data, sizeof (mptsas_dma_alloc_state_t)); 12226 pBuffer->buffer_data.size = buffer_size; 12227 if (mptsas_dma_alloc(mpt, &pBuffer->buffer_data) != DDI_SUCCESS) { 12228 mptsas_log(mpt, CE_WARN, "failed to alloc DMA resource for " 12229 "diag buffer: size = %d bytes", buffer_size); 12230 *return_code = MPTSAS_FW_DIAG_ERROR_NO_BUFFER; 12231 return (DDI_FAILURE); 12232 } 12233 12234 /* 12235 * Copy the given info to the diag buffer and post the buffer. 12236 */ 12237 pBuffer->buffer_type = buffer_type; 12238 pBuffer->immediate = FALSE; 12239 if (buffer_type == MPI2_DIAG_BUF_TYPE_TRACE) { 12240 for (i = 0; i < (sizeof (pBuffer->product_specific) / 4); 12241 i++) { 12242 pBuffer->product_specific[i] = 12243 diag_register->ProductSpecific[i]; 12244 } 12245 } 12246 pBuffer->extended_type = extended_type; 12247 pBuffer->unique_id = unique_id; 12248 status = mptsas_post_fw_diag_buffer(mpt, pBuffer, return_code); 12249 12250 if (mptsas_check_dma_handle(pBuffer->buffer_data.handle) != 12251 DDI_SUCCESS) { 12252 mptsas_log(mpt, CE_WARN, "Check of DMA handle failed in " 12253 "mptsas_diag_register."); 12254 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 12255 status = DDI_FAILURE; 12256 } 12257 12258 /* 12259 * In case there was a failure, free the DMA buffer. 12260 */ 12261 if (status == DDI_FAILURE) { 12262 mptsas_dma_free(&pBuffer->buffer_data); 12263 } 12264 12265 return (status); 12266 } 12267 12268 static int 12269 mptsas_diag_unregister(mptsas_t *mpt, 12270 mptsas_fw_diag_unregister_t *diag_unregister, uint32_t *return_code) 12271 { 12272 mptsas_fw_diagnostic_buffer_t *pBuffer; 12273 uint8_t i; 12274 uint32_t unique_id; 12275 int status; 12276 12277 ASSERT(mutex_owned(&mpt->m_mutex)); 12278 12279 unique_id = diag_unregister->UniqueId; 12280 12281 /* 12282 * Get the current buffer and look up the unique ID. The unique ID 12283 * should be there. 12284 */ 12285 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12286 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12287 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12288 return (DDI_FAILURE); 12289 } 12290 12291 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 12292 12293 /* 12294 * Try to release the buffer from FW before freeing it. If release 12295 * fails, don't free the DMA buffer in case FW tries to access it 12296 * later. If buffer is not owned by firmware, can't release it. 12297 */ 12298 if (!pBuffer->owned_by_firmware) { 12299 status = DDI_SUCCESS; 12300 } else { 12301 status = mptsas_release_fw_diag_buffer(mpt, pBuffer, 12302 return_code, MPTSAS_FW_DIAG_TYPE_UNREGISTER); 12303 } 12304 12305 /* 12306 * At this point, return the current status no matter what happens with 12307 * the DMA buffer. 12308 */ 12309 pBuffer->unique_id = MPTSAS_FW_DIAG_INVALID_UID; 12310 if (status == DDI_SUCCESS) { 12311 if (mptsas_check_dma_handle(pBuffer->buffer_data.handle) != 12312 DDI_SUCCESS) { 12313 mptsas_log(mpt, CE_WARN, "Check of DMA handle failed " 12314 "in mptsas_diag_unregister."); 12315 ddi_fm_service_impact(mpt->m_dip, 12316 DDI_SERVICE_UNAFFECTED); 12317 } 12318 mptsas_dma_free(&pBuffer->buffer_data); 12319 } 12320 12321 return (status); 12322 } 12323 12324 static int 12325 mptsas_diag_query(mptsas_t *mpt, mptsas_fw_diag_query_t *diag_query, 12326 uint32_t *return_code) 12327 { 12328 mptsas_fw_diagnostic_buffer_t *pBuffer; 12329 uint8_t i; 12330 uint32_t unique_id; 12331 12332 ASSERT(mutex_owned(&mpt->m_mutex)); 12333 12334 unique_id = diag_query->UniqueId; 12335 12336 /* 12337 * If ID is valid, query on ID. 12338 * If ID is invalid, query on buffer type. 12339 */ 12340 if (unique_id == MPTSAS_FW_DIAG_INVALID_UID) { 12341 i = diag_query->BufferType; 12342 if (i >= MPI2_DIAG_BUF_TYPE_COUNT) { 12343 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12344 return (DDI_FAILURE); 12345 } 12346 } else { 12347 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12348 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12349 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12350 return (DDI_FAILURE); 12351 } 12352 } 12353 12354 /* 12355 * Fill query structure with the diag buffer info. 12356 */ 12357 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 12358 diag_query->BufferType = pBuffer->buffer_type; 12359 diag_query->ExtendedType = pBuffer->extended_type; 12360 if (diag_query->BufferType == MPI2_DIAG_BUF_TYPE_TRACE) { 12361 for (i = 0; i < (sizeof (diag_query->ProductSpecific) / 4); 12362 i++) { 12363 diag_query->ProductSpecific[i] = 12364 pBuffer->product_specific[i]; 12365 } 12366 } 12367 diag_query->TotalBufferSize = pBuffer->buffer_data.size; 12368 diag_query->DriverAddedBufferSize = 0; 12369 diag_query->UniqueId = pBuffer->unique_id; 12370 diag_query->ApplicationFlags = 0; 12371 diag_query->DiagnosticFlags = 0; 12372 12373 /* 12374 * Set/Clear application flags 12375 */ 12376 if (pBuffer->immediate) { 12377 diag_query->ApplicationFlags &= ~MPTSAS_FW_DIAG_FLAG_APP_OWNED; 12378 } else { 12379 diag_query->ApplicationFlags |= MPTSAS_FW_DIAG_FLAG_APP_OWNED; 12380 } 12381 if (pBuffer->valid_data || pBuffer->owned_by_firmware) { 12382 diag_query->ApplicationFlags |= 12383 MPTSAS_FW_DIAG_FLAG_BUFFER_VALID; 12384 } else { 12385 diag_query->ApplicationFlags &= 12386 ~MPTSAS_FW_DIAG_FLAG_BUFFER_VALID; 12387 } 12388 if (pBuffer->owned_by_firmware) { 12389 diag_query->ApplicationFlags |= 12390 MPTSAS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 12391 } else { 12392 diag_query->ApplicationFlags &= 12393 ~MPTSAS_FW_DIAG_FLAG_FW_BUFFER_ACCESS; 12394 } 12395 12396 return (DDI_SUCCESS); 12397 } 12398 12399 static int 12400 mptsas_diag_read_buffer(mptsas_t *mpt, 12401 mptsas_diag_read_buffer_t *diag_read_buffer, uint8_t *ioctl_buf, 12402 uint32_t *return_code, int ioctl_mode) 12403 { 12404 mptsas_fw_diagnostic_buffer_t *pBuffer; 12405 uint8_t i, *pData; 12406 uint32_t unique_id, byte; 12407 int status; 12408 12409 ASSERT(mutex_owned(&mpt->m_mutex)); 12410 12411 unique_id = diag_read_buffer->UniqueId; 12412 12413 /* 12414 * Get the current buffer and look up the unique ID. The unique ID 12415 * should be there. 12416 */ 12417 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12418 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12419 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12420 return (DDI_FAILURE); 12421 } 12422 12423 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 12424 12425 /* 12426 * Make sure requested read is within limits 12427 */ 12428 if (diag_read_buffer->StartingOffset + diag_read_buffer->BytesToRead > 12429 pBuffer->buffer_data.size) { 12430 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12431 return (DDI_FAILURE); 12432 } 12433 12434 /* 12435 * Copy the requested data from DMA to the diag_read_buffer. The DMA 12436 * buffer that was allocated is one contiguous buffer. 12437 */ 12438 pData = (uint8_t *)(pBuffer->buffer_data.memp + 12439 diag_read_buffer->StartingOffset); 12440 (void) ddi_dma_sync(pBuffer->buffer_data.handle, 0, 0, 12441 DDI_DMA_SYNC_FORCPU); 12442 for (byte = 0; byte < diag_read_buffer->BytesToRead; byte++) { 12443 if (ddi_copyout(pData + byte, ioctl_buf + byte, 1, ioctl_mode) 12444 != 0) { 12445 return (DDI_FAILURE); 12446 } 12447 } 12448 diag_read_buffer->Status = 0; 12449 12450 /* 12451 * Set or clear the Force Release flag. 12452 */ 12453 if (pBuffer->force_release) { 12454 diag_read_buffer->Flags |= MPTSAS_FW_DIAG_FLAG_FORCE_RELEASE; 12455 } else { 12456 diag_read_buffer->Flags &= ~MPTSAS_FW_DIAG_FLAG_FORCE_RELEASE; 12457 } 12458 12459 /* 12460 * If buffer is to be reregistered, make sure it's not already owned by 12461 * firmware first. 12462 */ 12463 status = DDI_SUCCESS; 12464 if (!pBuffer->owned_by_firmware) { 12465 if (diag_read_buffer->Flags & MPTSAS_FW_DIAG_FLAG_REREGISTER) { 12466 status = mptsas_post_fw_diag_buffer(mpt, pBuffer, 12467 return_code); 12468 } 12469 } 12470 12471 return (status); 12472 } 12473 12474 static int 12475 mptsas_diag_release(mptsas_t *mpt, mptsas_fw_diag_release_t *diag_release, 12476 uint32_t *return_code) 12477 { 12478 mptsas_fw_diagnostic_buffer_t *pBuffer; 12479 uint8_t i; 12480 uint32_t unique_id; 12481 int status; 12482 12483 ASSERT(mutex_owned(&mpt->m_mutex)); 12484 12485 unique_id = diag_release->UniqueId; 12486 12487 /* 12488 * Get the current buffer and look up the unique ID. The unique ID 12489 * should be there. 12490 */ 12491 i = mptsas_get_fw_diag_buffer_number(mpt, unique_id); 12492 if (i == MPTSAS_FW_DIAGNOSTIC_UID_NOT_FOUND) { 12493 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_UID; 12494 return (DDI_FAILURE); 12495 } 12496 12497 pBuffer = &mpt->m_fw_diag_buffer_list[i]; 12498 12499 /* 12500 * If buffer is not owned by firmware, it's already been released. 12501 */ 12502 if (!pBuffer->owned_by_firmware) { 12503 *return_code = MPTSAS_FW_DIAG_ERROR_ALREADY_RELEASED; 12504 return (DDI_FAILURE); 12505 } 12506 12507 /* 12508 * Release the buffer. 12509 */ 12510 status = mptsas_release_fw_diag_buffer(mpt, pBuffer, return_code, 12511 MPTSAS_FW_DIAG_TYPE_RELEASE); 12512 return (status); 12513 } 12514 12515 static int 12516 mptsas_do_diag_action(mptsas_t *mpt, uint32_t action, uint8_t *diag_action, 12517 uint32_t length, uint32_t *return_code, int ioctl_mode) 12518 { 12519 mptsas_fw_diag_register_t diag_register; 12520 mptsas_fw_diag_unregister_t diag_unregister; 12521 mptsas_fw_diag_query_t diag_query; 12522 mptsas_diag_read_buffer_t diag_read_buffer; 12523 mptsas_fw_diag_release_t diag_release; 12524 int status = DDI_SUCCESS; 12525 uint32_t original_return_code, read_buf_len; 12526 12527 ASSERT(mutex_owned(&mpt->m_mutex)); 12528 12529 original_return_code = *return_code; 12530 *return_code = MPTSAS_FW_DIAG_ERROR_SUCCESS; 12531 12532 switch (action) { 12533 case MPTSAS_FW_DIAG_TYPE_REGISTER: 12534 if (!length) { 12535 *return_code = 12536 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12537 status = DDI_FAILURE; 12538 break; 12539 } 12540 if (ddi_copyin(diag_action, &diag_register, 12541 sizeof (diag_register), ioctl_mode) != 0) { 12542 return (DDI_FAILURE); 12543 } 12544 status = mptsas_diag_register(mpt, &diag_register, 12545 return_code); 12546 break; 12547 12548 case MPTSAS_FW_DIAG_TYPE_UNREGISTER: 12549 if (length < sizeof (diag_unregister)) { 12550 *return_code = 12551 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12552 status = DDI_FAILURE; 12553 break; 12554 } 12555 if (ddi_copyin(diag_action, &diag_unregister, 12556 sizeof (diag_unregister), ioctl_mode) != 0) { 12557 return (DDI_FAILURE); 12558 } 12559 status = mptsas_diag_unregister(mpt, &diag_unregister, 12560 return_code); 12561 break; 12562 12563 case MPTSAS_FW_DIAG_TYPE_QUERY: 12564 if (length < sizeof (diag_query)) { 12565 *return_code = 12566 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12567 status = DDI_FAILURE; 12568 break; 12569 } 12570 if (ddi_copyin(diag_action, &diag_query, 12571 sizeof (diag_query), ioctl_mode) != 0) { 12572 return (DDI_FAILURE); 12573 } 12574 status = mptsas_diag_query(mpt, &diag_query, 12575 return_code); 12576 if (status == DDI_SUCCESS) { 12577 if (ddi_copyout(&diag_query, diag_action, 12578 sizeof (diag_query), ioctl_mode) != 0) { 12579 return (DDI_FAILURE); 12580 } 12581 } 12582 break; 12583 12584 case MPTSAS_FW_DIAG_TYPE_READ_BUFFER: 12585 if (ddi_copyin(diag_action, &diag_read_buffer, 12586 sizeof (diag_read_buffer) - 4, ioctl_mode) != 0) { 12587 return (DDI_FAILURE); 12588 } 12589 read_buf_len = sizeof (diag_read_buffer) - 12590 sizeof (diag_read_buffer.DataBuffer) + 12591 diag_read_buffer.BytesToRead; 12592 if (length < read_buf_len) { 12593 *return_code = 12594 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12595 status = DDI_FAILURE; 12596 break; 12597 } 12598 status = mptsas_diag_read_buffer(mpt, 12599 &diag_read_buffer, diag_action + 12600 sizeof (diag_read_buffer) - 4, return_code, 12601 ioctl_mode); 12602 if (status == DDI_SUCCESS) { 12603 if (ddi_copyout(&diag_read_buffer, diag_action, 12604 sizeof (diag_read_buffer) - 4, ioctl_mode) 12605 != 0) { 12606 return (DDI_FAILURE); 12607 } 12608 } 12609 break; 12610 12611 case MPTSAS_FW_DIAG_TYPE_RELEASE: 12612 if (length < sizeof (diag_release)) { 12613 *return_code = 12614 MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12615 status = DDI_FAILURE; 12616 break; 12617 } 12618 if (ddi_copyin(diag_action, &diag_release, 12619 sizeof (diag_release), ioctl_mode) != 0) { 12620 return (DDI_FAILURE); 12621 } 12622 status = mptsas_diag_release(mpt, &diag_release, 12623 return_code); 12624 break; 12625 12626 default: 12627 *return_code = MPTSAS_FW_DIAG_ERROR_INVALID_PARAMETER; 12628 status = DDI_FAILURE; 12629 break; 12630 } 12631 12632 if ((status == DDI_FAILURE) && 12633 (original_return_code == MPTSAS_FW_DIAG_NEW) && 12634 (*return_code != MPTSAS_FW_DIAG_ERROR_SUCCESS)) { 12635 status = DDI_SUCCESS; 12636 } 12637 12638 return (status); 12639 } 12640 12641 static int 12642 mptsas_diag_action(mptsas_t *mpt, mptsas_diag_action_t *user_data, int mode) 12643 { 12644 int status; 12645 mptsas_diag_action_t driver_data; 12646 12647 ASSERT(mutex_owned(&mpt->m_mutex)); 12648 12649 /* 12650 * Copy the user data to a driver data buffer. 12651 */ 12652 if (ddi_copyin(user_data, &driver_data, sizeof (mptsas_diag_action_t), 12653 mode) == 0) { 12654 /* 12655 * Send diag action request if Action is valid 12656 */ 12657 if (driver_data.Action == MPTSAS_FW_DIAG_TYPE_REGISTER || 12658 driver_data.Action == MPTSAS_FW_DIAG_TYPE_UNREGISTER || 12659 driver_data.Action == MPTSAS_FW_DIAG_TYPE_QUERY || 12660 driver_data.Action == MPTSAS_FW_DIAG_TYPE_READ_BUFFER || 12661 driver_data.Action == MPTSAS_FW_DIAG_TYPE_RELEASE) { 12662 status = mptsas_do_diag_action(mpt, driver_data.Action, 12663 (void *)(uintptr_t)driver_data.PtrDiagAction, 12664 driver_data.Length, &driver_data.ReturnCode, 12665 mode); 12666 if (status == DDI_SUCCESS) { 12667 if (ddi_copyout(&driver_data.ReturnCode, 12668 &user_data->ReturnCode, 12669 sizeof (user_data->ReturnCode), mode) 12670 != 0) { 12671 status = EFAULT; 12672 } else { 12673 status = 0; 12674 } 12675 } else { 12676 status = EIO; 12677 } 12678 } else { 12679 status = EINVAL; 12680 } 12681 } else { 12682 status = EFAULT; 12683 } 12684 12685 return (status); 12686 } 12687 12688 /* 12689 * This routine handles the "event query" ioctl. 12690 */ 12691 static int 12692 mptsas_event_query(mptsas_t *mpt, mptsas_event_query_t *data, int mode, 12693 int *rval) 12694 { 12695 int status; 12696 mptsas_event_query_t driverdata; 12697 uint8_t i; 12698 12699 driverdata.Entries = MPTSAS_EVENT_QUEUE_SIZE; 12700 12701 mutex_enter(&mpt->m_mutex); 12702 for (i = 0; i < 4; i++) { 12703 driverdata.Types[i] = mpt->m_event_mask[i]; 12704 } 12705 mutex_exit(&mpt->m_mutex); 12706 12707 if (ddi_copyout(&driverdata, data, sizeof (driverdata), mode) != 0) { 12708 status = EFAULT; 12709 } else { 12710 *rval = MPTIOCTL_STATUS_GOOD; 12711 status = 0; 12712 } 12713 12714 return (status); 12715 } 12716 12717 /* 12718 * This routine handles the "event enable" ioctl. 12719 */ 12720 static int 12721 mptsas_event_enable(mptsas_t *mpt, mptsas_event_enable_t *data, int mode, 12722 int *rval) 12723 { 12724 int status; 12725 mptsas_event_enable_t driverdata; 12726 uint8_t i; 12727 12728 if (ddi_copyin(data, &driverdata, sizeof (driverdata), mode) == 0) { 12729 mutex_enter(&mpt->m_mutex); 12730 for (i = 0; i < 4; i++) { 12731 mpt->m_event_mask[i] = driverdata.Types[i]; 12732 } 12733 mutex_exit(&mpt->m_mutex); 12734 12735 *rval = MPTIOCTL_STATUS_GOOD; 12736 status = 0; 12737 } else { 12738 status = EFAULT; 12739 } 12740 return (status); 12741 } 12742 12743 /* 12744 * This routine handles the "event report" ioctl. 12745 */ 12746 static int 12747 mptsas_event_report(mptsas_t *mpt, mptsas_event_report_t *data, int mode, 12748 int *rval) 12749 { 12750 int status; 12751 mptsas_event_report_t driverdata; 12752 12753 mutex_enter(&mpt->m_mutex); 12754 12755 if (ddi_copyin(&data->Size, &driverdata.Size, sizeof (driverdata.Size), 12756 mode) == 0) { 12757 if (driverdata.Size >= sizeof (mpt->m_events)) { 12758 if (ddi_copyout(mpt->m_events, data->Events, 12759 sizeof (mpt->m_events), mode) != 0) { 12760 status = EFAULT; 12761 } else { 12762 if (driverdata.Size > sizeof (mpt->m_events)) { 12763 driverdata.Size = 12764 sizeof (mpt->m_events); 12765 if (ddi_copyout(&driverdata.Size, 12766 &data->Size, 12767 sizeof (driverdata.Size), 12768 mode) != 0) { 12769 status = EFAULT; 12770 } else { 12771 *rval = MPTIOCTL_STATUS_GOOD; 12772 status = 0; 12773 } 12774 } else { 12775 *rval = MPTIOCTL_STATUS_GOOD; 12776 status = 0; 12777 } 12778 } 12779 } else { 12780 *rval = MPTIOCTL_STATUS_LEN_TOO_SHORT; 12781 status = 0; 12782 } 12783 } else { 12784 status = EFAULT; 12785 } 12786 12787 mutex_exit(&mpt->m_mutex); 12788 return (status); 12789 } 12790 12791 static void 12792 mptsas_lookup_pci_data(mptsas_t *mpt, mptsas_adapter_data_t *adapter_data) 12793 { 12794 int *reg_data; 12795 uint_t reglen; 12796 12797 /* 12798 * Lookup the 'reg' property and extract the other data 12799 */ 12800 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, mpt->m_dip, 12801 DDI_PROP_DONTPASS, "reg", ®_data, ®len) == 12802 DDI_PROP_SUCCESS) { 12803 /* 12804 * Extract the PCI data from the 'reg' property first DWORD. 12805 * The entry looks like the following: 12806 * First DWORD: 12807 * Bits 0 - 7 8-bit Register number 12808 * Bits 8 - 10 3-bit Function number 12809 * Bits 11 - 15 5-bit Device number 12810 * Bits 16 - 23 8-bit Bus number 12811 * Bits 24 - 25 2-bit Address Space type identifier 12812 * 12813 */ 12814 adapter_data->PciInformation.u.bits.BusNumber = 12815 (reg_data[0] & 0x00FF0000) >> 16; 12816 adapter_data->PciInformation.u.bits.DeviceNumber = 12817 (reg_data[0] & 0x0000F800) >> 11; 12818 adapter_data->PciInformation.u.bits.FunctionNumber = 12819 (reg_data[0] & 0x00000700) >> 8; 12820 ddi_prop_free((void *)reg_data); 12821 } else { 12822 /* 12823 * If we can't determine the PCI data then we fill in FF's for 12824 * the data to indicate this. 12825 */ 12826 adapter_data->PCIDeviceHwId = 0xFFFFFFFF; 12827 adapter_data->MpiPortNumber = 0xFFFFFFFF; 12828 adapter_data->PciInformation.u.AsDWORD = 0xFFFFFFFF; 12829 } 12830 12831 /* 12832 * Saved in the mpt->m_fwversion 12833 */ 12834 adapter_data->MpiFirmwareVersion = mpt->m_fwversion; 12835 } 12836 12837 static void 12838 mptsas_read_adapter_data(mptsas_t *mpt, mptsas_adapter_data_t *adapter_data) 12839 { 12840 char *driver_verstr = MPTSAS_MOD_STRING; 12841 12842 mptsas_lookup_pci_data(mpt, adapter_data); 12843 adapter_data->AdapterType = MPTIOCTL_ADAPTER_TYPE_SAS3; 12844 adapter_data->PCIDeviceHwId = (uint32_t)mpt->m_devid; 12845 adapter_data->PCIDeviceHwRev = (uint32_t)mpt->m_revid; 12846 adapter_data->SubSystemId = (uint32_t)mpt->m_ssid; 12847 adapter_data->SubsystemVendorId = (uint32_t)mpt->m_svid; 12848 (void) strcpy((char *)&adapter_data->DriverVersion[0], driver_verstr); 12849 adapter_data->BiosVersion = 0; 12850 (void) mptsas_get_bios_page3(mpt, &adapter_data->BiosVersion); 12851 } 12852 12853 static void 12854 mptsas_read_pci_info(mptsas_t *mpt, mptsas_pci_info_t *pci_info) 12855 { 12856 int *reg_data, i; 12857 uint_t reglen; 12858 12859 /* 12860 * Lookup the 'reg' property and extract the other data 12861 */ 12862 if (ddi_prop_lookup_int_array(DDI_DEV_T_ANY, mpt->m_dip, 12863 DDI_PROP_DONTPASS, "reg", ®_data, ®len) == 12864 DDI_PROP_SUCCESS) { 12865 /* 12866 * Extract the PCI data from the 'reg' property first DWORD. 12867 * The entry looks like the following: 12868 * First DWORD: 12869 * Bits 8 - 10 3-bit Function number 12870 * Bits 11 - 15 5-bit Device number 12871 * Bits 16 - 23 8-bit Bus number 12872 */ 12873 pci_info->BusNumber = (reg_data[0] & 0x00FF0000) >> 16; 12874 pci_info->DeviceNumber = (reg_data[0] & 0x0000F800) >> 11; 12875 pci_info->FunctionNumber = (reg_data[0] & 0x00000700) >> 8; 12876 ddi_prop_free((void *)reg_data); 12877 } else { 12878 /* 12879 * If we can't determine the PCI info then we fill in FF's for 12880 * the data to indicate this. 12881 */ 12882 pci_info->BusNumber = 0xFFFFFFFF; 12883 pci_info->DeviceNumber = 0xFF; 12884 pci_info->FunctionNumber = 0xFF; 12885 } 12886 12887 /* 12888 * Now get the interrupt vector and the pci header. The vector can 12889 * only be 0 right now. The header is the first 256 bytes of config 12890 * space. 12891 */ 12892 pci_info->InterruptVector = 0; 12893 for (i = 0; i < sizeof (pci_info->PciHeader); i++) { 12894 pci_info->PciHeader[i] = pci_config_get8(mpt->m_config_handle, 12895 i); 12896 } 12897 } 12898 12899 static int 12900 mptsas_reg_access(mptsas_t *mpt, mptsas_reg_access_t *data, int mode) 12901 { 12902 int status = 0; 12903 mptsas_reg_access_t driverdata; 12904 12905 mutex_enter(&mpt->m_mutex); 12906 if (ddi_copyin(data, &driverdata, sizeof (driverdata), mode) == 0) { 12907 switch (driverdata.Command) { 12908 /* 12909 * IO access is not supported. 12910 */ 12911 case REG_IO_READ: 12912 case REG_IO_WRITE: 12913 mptsas_log(mpt, CE_WARN, "IO access is not " 12914 "supported. Use memory access."); 12915 status = EINVAL; 12916 break; 12917 12918 case REG_MEM_READ: 12919 driverdata.RegData = ddi_get32(mpt->m_datap, 12920 (uint32_t *)(void *)mpt->m_reg + 12921 driverdata.RegOffset); 12922 if (ddi_copyout(&driverdata.RegData, 12923 &data->RegData, 12924 sizeof (driverdata.RegData), mode) != 0) { 12925 mptsas_log(mpt, CE_WARN, "Register " 12926 "Read Failed"); 12927 status = EFAULT; 12928 } 12929 break; 12930 12931 case REG_MEM_WRITE: 12932 ddi_put32(mpt->m_datap, 12933 (uint32_t *)(void *)mpt->m_reg + 12934 driverdata.RegOffset, 12935 driverdata.RegData); 12936 break; 12937 12938 default: 12939 status = EINVAL; 12940 break; 12941 } 12942 } else { 12943 status = EFAULT; 12944 } 12945 12946 mutex_exit(&mpt->m_mutex); 12947 return (status); 12948 } 12949 12950 static int 12951 led_control(mptsas_t *mpt, intptr_t data, int mode) 12952 { 12953 int ret = 0; 12954 mptsas_led_control_t lc; 12955 mptsas_target_t *ptgt; 12956 12957 if (ddi_copyin((void *)data, &lc, sizeof (lc), mode) != 0) { 12958 return (EFAULT); 12959 } 12960 12961 if ((lc.Command != MPTSAS_LEDCTL_FLAG_SET && 12962 lc.Command != MPTSAS_LEDCTL_FLAG_GET) || 12963 lc.Led < MPTSAS_LEDCTL_LED_MIN || 12964 lc.Led > MPTSAS_LEDCTL_LED_MAX || 12965 (lc.Command == MPTSAS_LEDCTL_FLAG_SET && lc.LedStatus != 0 && 12966 lc.LedStatus != 1)) { 12967 return (EINVAL); 12968 } 12969 12970 if ((lc.Command == MPTSAS_LEDCTL_FLAG_SET && (mode & FWRITE) == 0) || 12971 (lc.Command == MPTSAS_LEDCTL_FLAG_GET && (mode & FREAD) == 0)) 12972 return (EACCES); 12973 12974 /* Locate the target we're interrogating... */ 12975 mutex_enter(&mpt->m_mutex); 12976 ptgt = refhash_linear_search(mpt->m_targets, 12977 mptsas_target_eval_slot, &lc); 12978 if (ptgt == NULL) { 12979 /* We could not find a target for that enclosure/slot. */ 12980 mutex_exit(&mpt->m_mutex); 12981 return (ENOENT); 12982 } 12983 12984 if (lc.Command == MPTSAS_LEDCTL_FLAG_SET) { 12985 /* Update our internal LED state. */ 12986 ptgt->m_led_status &= ~(1 << (lc.Led - 1)); 12987 ptgt->m_led_status |= lc.LedStatus << (lc.Led - 1); 12988 12989 /* Flush it to the controller. */ 12990 ret = mptsas_flush_led_status(mpt, ptgt); 12991 mutex_exit(&mpt->m_mutex); 12992 return (ret); 12993 } 12994 12995 /* Return our internal LED state. */ 12996 lc.LedStatus = (ptgt->m_led_status >> (lc.Led - 1)) & 1; 12997 mutex_exit(&mpt->m_mutex); 12998 12999 if (ddi_copyout(&lc, (void *)data, sizeof (lc), mode) != 0) { 13000 return (EFAULT); 13001 } 13002 13003 return (0); 13004 } 13005 13006 static int 13007 get_disk_info(mptsas_t *mpt, intptr_t data, int mode) 13008 { 13009 uint16_t i = 0; 13010 uint16_t count = 0; 13011 int ret = 0; 13012 mptsas_target_t *ptgt; 13013 mptsas_disk_info_t *di; 13014 STRUCT_DECL(mptsas_get_disk_info, gdi); 13015 13016 if ((mode & FREAD) == 0) 13017 return (EACCES); 13018 13019 STRUCT_INIT(gdi, get_udatamodel()); 13020 13021 if (ddi_copyin((void *)data, STRUCT_BUF(gdi), STRUCT_SIZE(gdi), 13022 mode) != 0) { 13023 return (EFAULT); 13024 } 13025 13026 /* Find out how many targets there are. */ 13027 mutex_enter(&mpt->m_mutex); 13028 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 13029 ptgt = refhash_next(mpt->m_targets, ptgt)) { 13030 count++; 13031 } 13032 mutex_exit(&mpt->m_mutex); 13033 13034 /* 13035 * If we haven't been asked to copy out information on each target, 13036 * then just return the count. 13037 */ 13038 STRUCT_FSET(gdi, DiskCount, count); 13039 if (STRUCT_FGETP(gdi, PtrDiskInfoArray) == NULL) 13040 goto copy_out; 13041 13042 /* 13043 * If we haven't been given a large enough buffer to copy out into, 13044 * let the caller know. 13045 */ 13046 if (STRUCT_FGET(gdi, DiskInfoArraySize) < 13047 count * sizeof (mptsas_disk_info_t)) { 13048 ret = ENOSPC; 13049 goto copy_out; 13050 } 13051 13052 di = kmem_zalloc(count * sizeof (mptsas_disk_info_t), KM_SLEEP); 13053 13054 mutex_enter(&mpt->m_mutex); 13055 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 13056 ptgt = refhash_next(mpt->m_targets, ptgt)) { 13057 if (i >= count) { 13058 /* 13059 * The number of targets changed while we weren't 13060 * looking, so give up. 13061 */ 13062 refhash_rele(mpt->m_targets, ptgt); 13063 mutex_exit(&mpt->m_mutex); 13064 kmem_free(di, count * sizeof (mptsas_disk_info_t)); 13065 return (EAGAIN); 13066 } 13067 di[i].Instance = mpt->m_instance; 13068 di[i].Enclosure = ptgt->m_enclosure; 13069 di[i].Slot = ptgt->m_slot_num; 13070 di[i].SasAddress = ptgt->m_addr.mta_wwn; 13071 i++; 13072 } 13073 mutex_exit(&mpt->m_mutex); 13074 STRUCT_FSET(gdi, DiskCount, i); 13075 13076 /* Copy out the disk information to the caller. */ 13077 if (ddi_copyout((void *)di, STRUCT_FGETP(gdi, PtrDiskInfoArray), 13078 i * sizeof (mptsas_disk_info_t), mode) != 0) { 13079 ret = EFAULT; 13080 } 13081 13082 kmem_free(di, count * sizeof (mptsas_disk_info_t)); 13083 13084 copy_out: 13085 if (ddi_copyout(STRUCT_BUF(gdi), (void *)data, STRUCT_SIZE(gdi), 13086 mode) != 0) { 13087 ret = EFAULT; 13088 } 13089 13090 return (ret); 13091 } 13092 13093 static int 13094 mptsas_ioctl(dev_t dev, int cmd, intptr_t data, int mode, cred_t *credp, 13095 int *rval) 13096 { 13097 int status = 0; 13098 mptsas_t *mpt; 13099 mptsas_update_flash_t flashdata; 13100 mptsas_pass_thru_t passthru_data; 13101 mptsas_adapter_data_t adapter_data; 13102 mptsas_pci_info_t pci_info; 13103 int copylen; 13104 13105 int iport_flag = 0; 13106 dev_info_t *dip = NULL; 13107 mptsas_phymask_t phymask = 0; 13108 struct devctl_iocdata *dcp = NULL; 13109 char *addr = NULL; 13110 mptsas_target_t *ptgt = NULL; 13111 13112 *rval = MPTIOCTL_STATUS_GOOD; 13113 if (secpolicy_sys_config(credp, B_FALSE) != 0) { 13114 return (EPERM); 13115 } 13116 13117 mpt = ddi_get_soft_state(mptsas3_state, MINOR2INST(getminor(dev))); 13118 if (mpt == NULL) { 13119 /* 13120 * Called from iport node, get the states 13121 */ 13122 iport_flag = 1; 13123 dip = mptsas_get_dip_from_dev(dev, &phymask); 13124 if (dip == NULL) { 13125 return (ENXIO); 13126 } 13127 mpt = DIP2MPT(dip); 13128 } 13129 /* Make sure power level is D0 before accessing registers */ 13130 mutex_enter(&mpt->m_mutex); 13131 if (mpt->m_options & MPTSAS_OPT_PM) { 13132 (void) pm_busy_component(mpt->m_dip, 0); 13133 if (mpt->m_power_level != PM_LEVEL_D0) { 13134 mutex_exit(&mpt->m_mutex); 13135 if (pm_raise_power(mpt->m_dip, 0, PM_LEVEL_D0) != 13136 DDI_SUCCESS) { 13137 mptsas_log(mpt, CE_WARN, 13138 "mptsas3%d: mptsas_ioctl: Raise power " 13139 "request failed.", mpt->m_instance); 13140 (void) pm_idle_component(mpt->m_dip, 0); 13141 return (ENXIO); 13142 } 13143 } else { 13144 mutex_exit(&mpt->m_mutex); 13145 } 13146 } else { 13147 mutex_exit(&mpt->m_mutex); 13148 } 13149 13150 if (iport_flag) { 13151 status = scsi_hba_ioctl(dev, cmd, data, mode, credp, rval); 13152 if (status != 0) { 13153 goto out; 13154 } 13155 /* 13156 * The following code control the OK2RM LED, it doesn't affect 13157 * the ioctl return status. 13158 */ 13159 if ((cmd == DEVCTL_DEVICE_ONLINE) || 13160 (cmd == DEVCTL_DEVICE_OFFLINE)) { 13161 if (ndi_dc_allochdl((void *)data, &dcp) != 13162 NDI_SUCCESS) { 13163 goto out; 13164 } 13165 addr = ndi_dc_getaddr(dcp); 13166 ptgt = mptsas_addr_to_ptgt(mpt, addr, phymask); 13167 if (ptgt == NULL) { 13168 NDBG14(("mptsas_ioctl led control: tgt %s not " 13169 "found", addr)); 13170 ndi_dc_freehdl(dcp); 13171 goto out; 13172 } 13173 mutex_enter(&mpt->m_mutex); 13174 if (cmd == DEVCTL_DEVICE_ONLINE) { 13175 ptgt->m_tgt_unconfigured = 0; 13176 } else if (cmd == DEVCTL_DEVICE_OFFLINE) { 13177 ptgt->m_tgt_unconfigured = 1; 13178 } 13179 if (cmd == DEVCTL_DEVICE_OFFLINE) { 13180 ptgt->m_led_status |= 13181 (1 << (MPTSAS_LEDCTL_LED_OK2RM - 1)); 13182 } else { 13183 ptgt->m_led_status &= 13184 ~(1 << (MPTSAS_LEDCTL_LED_OK2RM - 1)); 13185 } 13186 (void) mptsas_flush_led_status(mpt, ptgt); 13187 mutex_exit(&mpt->m_mutex); 13188 ndi_dc_freehdl(dcp); 13189 } 13190 goto out; 13191 } 13192 switch (cmd) { 13193 case MPTIOCTL_GET_DISK_INFO: 13194 status = get_disk_info(mpt, data, mode); 13195 break; 13196 case MPTIOCTL_LED_CONTROL: 13197 status = led_control(mpt, data, mode); 13198 break; 13199 case MPTIOCTL_UPDATE_FLASH: 13200 if (ddi_copyin((void *)data, &flashdata, 13201 sizeof (struct mptsas_update_flash), mode)) { 13202 status = EFAULT; 13203 break; 13204 } 13205 13206 mutex_enter(&mpt->m_mutex); 13207 if (mptsas_update_flash(mpt, 13208 (caddr_t)(long)flashdata.PtrBuffer, 13209 flashdata.ImageSize, flashdata.ImageType, mode)) { 13210 status = EFAULT; 13211 } 13212 13213 /* 13214 * Reset the chip to start using the new 13215 * firmware. Reset if failed also. 13216 */ 13217 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 13218 if (mptsas_restart_ioc(mpt) == DDI_FAILURE) { 13219 status = EFAULT; 13220 } 13221 mutex_exit(&mpt->m_mutex); 13222 break; 13223 case MPTIOCTL_PASS_THRU: 13224 /* 13225 * The user has requested to pass through a command to 13226 * be executed by the MPT firmware. Call our routine 13227 * which does this. Only allow one passthru IOCTL at 13228 * one time. Other threads will block on 13229 * m_passthru_mutex, which is of adaptive variant. 13230 */ 13231 if (ddi_copyin((void *)data, &passthru_data, 13232 sizeof (mptsas_pass_thru_t), mode)) { 13233 status = EFAULT; 13234 break; 13235 } 13236 mutex_enter(&mpt->m_passthru_mutex); 13237 mutex_enter(&mpt->m_mutex); 13238 status = mptsas_pass_thru(mpt, &passthru_data, mode); 13239 mutex_exit(&mpt->m_mutex); 13240 mutex_exit(&mpt->m_passthru_mutex); 13241 13242 break; 13243 case MPTIOCTL_GET_ADAPTER_DATA: 13244 /* 13245 * The user has requested to read adapter data. Call 13246 * our routine which does this. 13247 */ 13248 bzero(&adapter_data, sizeof (mptsas_adapter_data_t)); 13249 if (ddi_copyin((void *)data, (void *)&adapter_data, 13250 sizeof (mptsas_adapter_data_t), mode)) { 13251 status = EFAULT; 13252 break; 13253 } 13254 if (adapter_data.StructureLength >= 13255 sizeof (mptsas_adapter_data_t)) { 13256 adapter_data.StructureLength = (uint32_t) 13257 sizeof (mptsas_adapter_data_t); 13258 copylen = sizeof (mptsas_adapter_data_t); 13259 mutex_enter(&mpt->m_mutex); 13260 mptsas_read_adapter_data(mpt, &adapter_data); 13261 mutex_exit(&mpt->m_mutex); 13262 } else { 13263 adapter_data.StructureLength = (uint32_t) 13264 sizeof (mptsas_adapter_data_t); 13265 copylen = sizeof (adapter_data.StructureLength); 13266 *rval = MPTIOCTL_STATUS_LEN_TOO_SHORT; 13267 } 13268 if (ddi_copyout((void *)(&adapter_data), (void *)data, 13269 copylen, mode) != 0) { 13270 status = EFAULT; 13271 } 13272 break; 13273 case MPTIOCTL_GET_PCI_INFO: 13274 /* 13275 * The user has requested to read pci info. Call 13276 * our routine which does this. 13277 */ 13278 bzero(&pci_info, sizeof (mptsas_pci_info_t)); 13279 mutex_enter(&mpt->m_mutex); 13280 mptsas_read_pci_info(mpt, &pci_info); 13281 mutex_exit(&mpt->m_mutex); 13282 if (ddi_copyout((void *)(&pci_info), (void *)data, 13283 sizeof (mptsas_pci_info_t), mode) != 0) { 13284 status = EFAULT; 13285 } 13286 break; 13287 case MPTIOCTL_RESET_ADAPTER: 13288 mutex_enter(&mpt->m_mutex); 13289 mpt->m_softstate &= ~MPTSAS_SS_MSG_UNIT_RESET; 13290 if ((mptsas_restart_ioc(mpt)) == DDI_FAILURE) { 13291 mptsas_log(mpt, CE_WARN, "reset adapter IOCTL " 13292 "failed"); 13293 status = EFAULT; 13294 } 13295 mutex_exit(&mpt->m_mutex); 13296 break; 13297 case MPTIOCTL_DIAG_ACTION: 13298 /* 13299 * The user has done a diag buffer action. Call our 13300 * routine which does this. Only allow one diag action 13301 * at one time. 13302 */ 13303 mutex_enter(&mpt->m_mutex); 13304 if (mpt->m_diag_action_in_progress) { 13305 mutex_exit(&mpt->m_mutex); 13306 return (EBUSY); 13307 } 13308 mpt->m_diag_action_in_progress = 1; 13309 status = mptsas_diag_action(mpt, 13310 (mptsas_diag_action_t *)data, mode); 13311 mpt->m_diag_action_in_progress = 0; 13312 mutex_exit(&mpt->m_mutex); 13313 break; 13314 case MPTIOCTL_EVENT_QUERY: 13315 /* 13316 * The user has done an event query. Call our routine 13317 * which does this. 13318 */ 13319 status = mptsas_event_query(mpt, 13320 (mptsas_event_query_t *)data, mode, rval); 13321 break; 13322 case MPTIOCTL_EVENT_ENABLE: 13323 /* 13324 * The user has done an event enable. Call our routine 13325 * which does this. 13326 */ 13327 status = mptsas_event_enable(mpt, 13328 (mptsas_event_enable_t *)data, mode, rval); 13329 break; 13330 case MPTIOCTL_EVENT_REPORT: 13331 /* 13332 * The user has done an event report. Call our routine 13333 * which does this. 13334 */ 13335 status = mptsas_event_report(mpt, 13336 (mptsas_event_report_t *)data, mode, rval); 13337 break; 13338 case MPTIOCTL_REG_ACCESS: 13339 /* 13340 * The user has requested register access. Call our 13341 * routine which does this. 13342 */ 13343 status = mptsas_reg_access(mpt, 13344 (mptsas_reg_access_t *)data, mode); 13345 break; 13346 default: 13347 status = scsi_hba_ioctl(dev, cmd, data, mode, credp, 13348 rval); 13349 break; 13350 } 13351 13352 out: 13353 return (status); 13354 } 13355 13356 int 13357 mptsas_restart_ioc(mptsas_t *mpt) 13358 { 13359 int rval = DDI_SUCCESS; 13360 mptsas_target_t *ptgt = NULL; 13361 13362 ASSERT(mutex_owned(&mpt->m_mutex)); 13363 13364 /* 13365 * Set a flag telling I/O path that we're processing a reset. This is 13366 * needed because after the reset is complete, the hash table still 13367 * needs to be rebuilt. If I/Os are started before the hash table is 13368 * rebuilt, I/O errors will occur. This flag allows I/Os to be marked 13369 * so that they can be retried. 13370 */ 13371 mpt->m_in_reset = TRUE; 13372 13373 /* 13374 * Set all throttles to HOLD 13375 */ 13376 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 13377 ptgt = refhash_next(mpt->m_targets, ptgt)) { 13378 mptsas_set_throttle_mtx(mpt, ptgt, HOLD_THROTTLE); 13379 } 13380 13381 /* 13382 * Disable interrupts 13383 */ 13384 MPTSAS_DISABLE_INTR(mpt); 13385 13386 /* 13387 * Abort all commands: outstanding commands, commands in waitq and 13388 * tx_waitq. 13389 */ 13390 mptsas_flush_hba(mpt); 13391 13392 /* 13393 * Reinitialize the chip. 13394 */ 13395 if (mptsas_init_chip(mpt, FALSE) == DDI_FAILURE) { 13396 rval = DDI_FAILURE; 13397 } 13398 13399 /* 13400 * Enable interrupts again 13401 */ 13402 MPTSAS_ENABLE_INTR(mpt); 13403 13404 /* 13405 * If mptsas_init_chip was successful, update the driver data. 13406 */ 13407 if (rval == DDI_SUCCESS) { 13408 mptsas_update_driver_data(mpt); 13409 } 13410 13411 /* 13412 * Reset the throttles 13413 */ 13414 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 13415 ptgt = refhash_next(mpt->m_targets, ptgt)) { 13416 mptsas_set_throttle_mtx(mpt, ptgt, MAX_THROTTLE); 13417 } 13418 13419 mptsas_doneq_empty(mpt); 13420 mptsas_restart_hba(mpt); 13421 13422 if (rval != DDI_SUCCESS) { 13423 mptsas_fm_ereport(mpt, DDI_FM_DEVICE_NO_RESPONSE); 13424 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_LOST); 13425 } 13426 13427 /* 13428 * Clear the reset flag so that I/Os can continue. 13429 */ 13430 mpt->m_in_reset = FALSE; 13431 13432 return (rval); 13433 } 13434 13435 static int 13436 mptsas_init_chip(mptsas_t *mpt, int first_time) 13437 { 13438 ddi_dma_cookie_t cookie; 13439 mptsas_reply_pqueue_t *rpqp; 13440 uint32_t i, j; 13441 int rval; 13442 13443 /* 13444 * Check to see if the firmware image is valid 13445 */ 13446 if (ddi_get32(mpt->m_datap, &mpt->m_reg->HostDiagnostic) & 13447 MPI2_DIAG_FLASH_BAD_SIG) { 13448 mptsas_log(mpt, CE_WARN, "mptsas bad flash signature!"); 13449 goto fail; 13450 } 13451 13452 /* 13453 * Reset the chip 13454 */ 13455 rval = mptsas_ioc_reset(mpt, first_time); 13456 if (rval == MPTSAS_RESET_FAIL) { 13457 mptsas_log(mpt, CE_WARN, "hard reset failed!"); 13458 goto fail; 13459 } 13460 13461 if ((rval == MPTSAS_SUCCESS_MUR) && (!first_time)) { 13462 goto mur; 13463 } 13464 /* 13465 * Setup configuration space 13466 */ 13467 if (mptsas_config_space_init(mpt) == FALSE) { 13468 mptsas_log(mpt, CE_WARN, "mptsas_config_space_init " 13469 "failed!"); 13470 goto fail; 13471 } 13472 13473 /* 13474 * IOC facts can change after a diag reset so all buffers that are 13475 * based on these numbers must be de-allocated and re-allocated. Get 13476 * new IOC facts each time chip is initialized. 13477 */ 13478 if (mptsas_ioc_get_facts(mpt) == DDI_FAILURE) { 13479 mptsas_log(mpt, CE_WARN, "mptsas_ioc_get_facts failed"); 13480 goto fail; 13481 } 13482 13483 /* 13484 * Now we know chip MSIX capabilitites and it's not been done 13485 * previously register interrupts accordingly. Need to know this 13486 * information before allocating the reply frames below. 13487 */ 13488 if (mpt->m_intr_cnt == 0) { 13489 if (mptsas_register_intrs(mpt) == FALSE) 13490 goto fail; 13491 } 13492 13493 mpt->m_targets = refhash_create(MPTSAS_TARGET_BUCKET_COUNT, 13494 mptsas_target_addr_hash, mptsas_target_addr_cmp, 13495 mptsas_target_free, sizeof (mptsas_target_t), 13496 offsetof(mptsas_target_t, m_link), 13497 offsetof(mptsas_target_t, m_addr), KM_SLEEP); 13498 13499 if (mptsas_alloc_active_slots(mpt, KM_SLEEP)) { 13500 goto fail; 13501 } 13502 /* 13503 * Allocate request message frames, reply free queue, reply descriptor 13504 * post queue, and reply message frames using latest IOC facts. 13505 */ 13506 if (mptsas_alloc_request_frames(mpt) == DDI_FAILURE) { 13507 mptsas_log(mpt, CE_WARN, "mptsas_alloc_request_frames failed"); 13508 goto fail; 13509 } 13510 if (mptsas_alloc_sense_bufs(mpt) == DDI_FAILURE) { 13511 mptsas_log(mpt, CE_WARN, "mptsas_alloc_sense_bufs failed"); 13512 goto fail; 13513 } 13514 if (mptsas_alloc_free_queue(mpt) == DDI_FAILURE) { 13515 mptsas_log(mpt, CE_WARN, "mptsas_alloc_free_queue failed!"); 13516 goto fail; 13517 } 13518 if (mptsas_alloc_post_queue(mpt) == DDI_FAILURE) { 13519 mptsas_log(mpt, CE_WARN, "mptsas_alloc_post_queue failed!"); 13520 goto fail; 13521 } 13522 if (mptsas_alloc_reply_frames(mpt) == DDI_FAILURE) { 13523 mptsas_log(mpt, CE_WARN, "mptsas_alloc_reply_frames failed!"); 13524 goto fail; 13525 } 13526 13527 mur: 13528 /* 13529 * Re-Initialize ioc to operational state 13530 */ 13531 if (mptsas_ioc_init(mpt) == DDI_FAILURE) { 13532 mptsas_log(mpt, CE_WARN, "mptsas_ioc_init failed"); 13533 goto fail; 13534 } 13535 13536 mptsas_alloc_reply_args(mpt); 13537 13538 /* 13539 * Initialize the Reply Free Queue with the physical addresses of our 13540 * reply frames. 13541 */ 13542 cookie.dmac_address = mpt->m_reply_frame_dma_addr&0xfffffffful; 13543 for (i = 0; i < mpt->m_max_replies; i++) { 13544 ddi_put32(mpt->m_acc_free_queue_hdl, 13545 &((uint32_t *)(void *)mpt->m_free_queue)[i], 13546 cookie.dmac_address); 13547 cookie.dmac_address += mpt->m_reply_frame_size; 13548 } 13549 (void) ddi_dma_sync(mpt->m_dma_free_queue_hdl, 0, 0, 13550 DDI_DMA_SYNC_FORDEV); 13551 13552 /* 13553 * Initialize the reply free index to one past the last frame on the 13554 * queue. This will signify that the queue is empty to start with. 13555 */ 13556 mpt->m_free_index = i; 13557 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyFreeHostIndex, i); 13558 13559 /* 13560 * Initialize the reply post queue to 0xFFFFFFFF,0xFFFFFFFF's 13561 * and the indexes to 0. 13562 */ 13563 rpqp = mpt->m_rep_post_queues; 13564 for (j = 0; j < mpt->m_post_reply_qcount; j++) { 13565 for (i = 0; i < mpt->m_post_queue_depth; i++) { 13566 ddi_put64(mpt->m_acc_post_queue_hdl, 13567 &((uint64_t *)(void *)rpqp->rpq_queue)[i], 13568 0xFFFFFFFFFFFFFFFF); 13569 } 13570 rpqp->rpq_index = 0; 13571 rpqp++; 13572 } 13573 (void) ddi_dma_sync(mpt->m_dma_post_queue_hdl, 0, 0, 13574 DDI_DMA_SYNC_FORDEV); 13575 13576 /* 13577 * Initialise all the reply post queue indexes. 13578 */ 13579 for (j = 0; j < mpt->m_post_reply_qcount; j++) { 13580 ddi_put32(mpt->m_datap, &mpt->m_reg->ReplyPostHostIndex, 13581 j << MPI2_RPHI_MSIX_INDEX_SHIFT); 13582 } 13583 13584 /* 13585 * Enable ports 13586 */ 13587 if (mptsas_ioc_enable_port(mpt) == DDI_FAILURE) { 13588 mptsas_log(mpt, CE_WARN, "mptsas_ioc_enable_port failed"); 13589 goto fail; 13590 } 13591 13592 /* 13593 * enable events 13594 */ 13595 if (mptsas_ioc_enable_event_notification(mpt)) { 13596 mptsas_log(mpt, CE_WARN, 13597 "mptsas_ioc_enable_event_notification failed"); 13598 goto fail; 13599 } 13600 13601 /* 13602 * We need checks in attach and these. 13603 * chip_init is called in mult. places 13604 */ 13605 13606 if ((mptsas_check_dma_handle(mpt->m_dma_req_frame_hdl) != 13607 DDI_SUCCESS) || 13608 (mptsas_check_dma_handle(mpt->m_dma_req_sense_hdl) != 13609 DDI_SUCCESS) || 13610 (mptsas_check_dma_handle(mpt->m_dma_reply_frame_hdl) != 13611 DDI_SUCCESS) || 13612 (mptsas_check_dma_handle(mpt->m_dma_free_queue_hdl) != 13613 DDI_SUCCESS) || 13614 (mptsas_check_dma_handle(mpt->m_dma_post_queue_hdl) != 13615 DDI_SUCCESS) || 13616 (mptsas_check_dma_handle(mpt->m_hshk_dma_hdl) != 13617 DDI_SUCCESS)) { 13618 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 13619 goto fail; 13620 } 13621 13622 /* Check all acc handles */ 13623 if ((mptsas_check_acc_handle(mpt->m_datap) != DDI_SUCCESS) || 13624 (mptsas_check_acc_handle(mpt->m_acc_req_frame_hdl) != 13625 DDI_SUCCESS) || 13626 (mptsas_check_acc_handle(mpt->m_acc_req_sense_hdl) != 13627 DDI_SUCCESS) || 13628 (mptsas_check_acc_handle(mpt->m_acc_reply_frame_hdl) != 13629 DDI_SUCCESS) || 13630 (mptsas_check_acc_handle(mpt->m_acc_free_queue_hdl) != 13631 DDI_SUCCESS) || 13632 (mptsas_check_acc_handle(mpt->m_acc_post_queue_hdl) != 13633 DDI_SUCCESS) || 13634 (mptsas_check_acc_handle(mpt->m_hshk_acc_hdl) != 13635 DDI_SUCCESS) || 13636 (mptsas_check_acc_handle(mpt->m_config_handle) != 13637 DDI_SUCCESS)) { 13638 ddi_fm_service_impact(mpt->m_dip, DDI_SERVICE_UNAFFECTED); 13639 goto fail; 13640 } 13641 13642 return (DDI_SUCCESS); 13643 13644 fail: 13645 return (DDI_FAILURE); 13646 } 13647 13648 static int 13649 mptsas_get_pci_cap(mptsas_t *mpt) 13650 { 13651 ushort_t caps_ptr, cap, cap_count; 13652 13653 if (mpt->m_config_handle == NULL) 13654 return (FALSE); 13655 /* 13656 * Check if capabilities list is supported and if so, 13657 * get initial capabilities pointer and clear bits 0,1. 13658 */ 13659 if (pci_config_get16(mpt->m_config_handle, PCI_CONF_STAT) 13660 & PCI_STAT_CAP) { 13661 caps_ptr = P2ALIGN(pci_config_get8(mpt->m_config_handle, 13662 PCI_CONF_CAP_PTR), 4); 13663 } else { 13664 caps_ptr = PCI_CAP_NEXT_PTR_NULL; 13665 } 13666 13667 /* 13668 * Walk capabilities if supported. 13669 */ 13670 for (cap_count = 0; caps_ptr != PCI_CAP_NEXT_PTR_NULL; ) { 13671 13672 /* 13673 * Check that we haven't exceeded the maximum number of 13674 * capabilities and that the pointer is in a valid range. 13675 */ 13676 if (++cap_count > 48) { 13677 mptsas_log(mpt, CE_WARN, 13678 "too many device capabilities.\n"); 13679 break; 13680 } 13681 if (caps_ptr < 64) { 13682 mptsas_log(mpt, CE_WARN, 13683 "capabilities pointer 0x%x out of range.\n", 13684 caps_ptr); 13685 break; 13686 } 13687 13688 /* 13689 * Get next capability and check that it is valid. 13690 * For now, we only support power management. 13691 */ 13692 cap = pci_config_get8(mpt->m_config_handle, caps_ptr); 13693 switch (cap) { 13694 case PCI_CAP_ID_PM: 13695 mptsas_log(mpt, CE_NOTE, 13696 "?mptsas3%d supports power management.\n", 13697 mpt->m_instance); 13698 mpt->m_options |= MPTSAS_OPT_PM; 13699 13700 /* Save PMCSR offset */ 13701 mpt->m_pmcsr_offset = caps_ptr + PCI_PMCSR; 13702 break; 13703 case PCI_CAP_ID_MSI: 13704 mptsas_log(mpt, CE_NOTE, 13705 "?mptsas3%d supports MSI.\n", 13706 mpt->m_instance); 13707 mpt->m_options |= MPTSAS_OPT_MSI; 13708 break; 13709 case PCI_CAP_ID_MSI_X: 13710 mptsas_log(mpt, CE_NOTE, 13711 "?mptsas3%d supports MSI-X.\n", 13712 mpt->m_instance); 13713 mpt->m_options |= MPTSAS_OPT_MSI_X; 13714 break; 13715 /* 13716 * The following capabilities are valid. Any others 13717 * will cause a message to be logged. 13718 */ 13719 case PCI_CAP_ID_VPD: 13720 case PCI_CAP_ID_PCIX: 13721 case PCI_CAP_ID_PCI_E: 13722 break; 13723 default: 13724 mptsas_log(mpt, CE_NOTE, 13725 "?mptsas3%d unrecognized capability " 13726 "0x%x.\n", mpt->m_instance, cap); 13727 break; 13728 } 13729 13730 /* 13731 * Get next capabilities pointer and clear bits 0,1. 13732 */ 13733 caps_ptr = P2ALIGN(pci_config_get8(mpt->m_config_handle, 13734 (caps_ptr + PCI_CAP_NEXT_PTR)), 4); 13735 } 13736 return (TRUE); 13737 } 13738 13739 static int 13740 mptsas_init_pm(mptsas_t *mpt) 13741 { 13742 char pmc_name[16]; 13743 char *pmc[] = { 13744 NULL, 13745 "0=Off (PCI D3 State)", 13746 "3=On (PCI D0 State)", 13747 NULL 13748 }; 13749 uint16_t pmcsr_stat; 13750 13751 /* 13752 * If PCI's capability does not support PM, then don't need 13753 * to registe the pm-components 13754 */ 13755 if (!(mpt->m_options & MPTSAS_OPT_PM)) 13756 return (DDI_SUCCESS); 13757 /* 13758 * If power management is supported by this chip, create 13759 * pm-components property for the power management framework 13760 */ 13761 (void) sprintf(pmc_name, "NAME=mptsas3%d", mpt->m_instance); 13762 pmc[0] = pmc_name; 13763 if (ddi_prop_update_string_array(DDI_DEV_T_NONE, mpt->m_dip, 13764 "pm-components", pmc, 3) != DDI_PROP_SUCCESS) { 13765 mpt->m_options &= ~MPTSAS_OPT_PM; 13766 mptsas_log(mpt, CE_WARN, 13767 "mptsas3%d: pm-component property creation failed.", 13768 mpt->m_instance); 13769 return (DDI_FAILURE); 13770 } 13771 13772 /* 13773 * Power on device. 13774 */ 13775 (void) pm_busy_component(mpt->m_dip, 0); 13776 pmcsr_stat = pci_config_get16(mpt->m_config_handle, 13777 mpt->m_pmcsr_offset); 13778 if ((pmcsr_stat & PCI_PMCSR_STATE_MASK) != PCI_PMCSR_D0) { 13779 mptsas_log(mpt, CE_WARN, "mptsas3%d: Power up the device", 13780 mpt->m_instance); 13781 pci_config_put16(mpt->m_config_handle, mpt->m_pmcsr_offset, 13782 PCI_PMCSR_D0); 13783 } 13784 if (pm_power_has_changed(mpt->m_dip, 0, PM_LEVEL_D0) != DDI_SUCCESS) { 13785 mptsas_log(mpt, CE_WARN, "pm_power_has_changed failed"); 13786 return (DDI_FAILURE); 13787 } 13788 mpt->m_power_level = PM_LEVEL_D0; 13789 /* 13790 * Set pm idle delay. 13791 */ 13792 mpt->m_pm_idle_delay = ddi_prop_get_int(DDI_DEV_T_ANY, 13793 mpt->m_dip, 0, "mptsas-pm-idle-delay", MPTSAS_PM_IDLE_TIMEOUT); 13794 13795 return (DDI_SUCCESS); 13796 } 13797 13798 static int 13799 mptsas_register_intrs(mptsas_t *mpt) 13800 { 13801 dev_info_t *dip; 13802 int intr_types; 13803 13804 dip = mpt->m_dip; 13805 13806 /* Get supported interrupt types */ 13807 if (ddi_intr_get_supported_types(dip, &intr_types) != DDI_SUCCESS) { 13808 mptsas_log(mpt, CE_WARN, "ddi_intr_get_supported_types " 13809 "failed\n"); 13810 return (FALSE); 13811 } 13812 13813 NDBG6(("ddi_intr_get_supported_types() returned: 0x%x", intr_types)); 13814 13815 /* 13816 * Try MSIX first. 13817 */ 13818 if (mptsas_enable_msix && (intr_types & DDI_INTR_TYPE_MSIX)) { 13819 if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_MSIX) == DDI_SUCCESS) { 13820 NDBG6(("Using MSI-X interrupt type")); 13821 mpt->m_intr_type = DDI_INTR_TYPE_MSIX; 13822 return (TRUE); 13823 } 13824 } 13825 13826 /* 13827 * Try MSI, but fall back to FIXED 13828 */ 13829 if (mptsas_enable_msi && (intr_types & DDI_INTR_TYPE_MSI)) { 13830 if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_MSI) == DDI_SUCCESS) { 13831 NDBG6(("Using MSI interrupt type")); 13832 mpt->m_intr_type = DDI_INTR_TYPE_MSI; 13833 return (TRUE); 13834 } 13835 } 13836 if (intr_types & DDI_INTR_TYPE_FIXED) { 13837 if (mptsas_add_intrs(mpt, DDI_INTR_TYPE_FIXED) == DDI_SUCCESS) { 13838 NDBG6(("Using FIXED interrupt type")); 13839 mpt->m_intr_type = DDI_INTR_TYPE_FIXED; 13840 return (TRUE); 13841 } else { 13842 NDBG6(("FIXED interrupt registration failed")); 13843 return (FALSE); 13844 } 13845 } 13846 13847 return (FALSE); 13848 } 13849 13850 static void 13851 mptsas_unregister_intrs(mptsas_t *mpt) 13852 { 13853 mptsas_rem_intrs(mpt); 13854 } 13855 13856 /* 13857 * mptsas_add_intrs: 13858 * 13859 * Register FIXED or MSI interrupts. 13860 */ 13861 static int 13862 mptsas_add_intrs(mptsas_t *mpt, int intr_type) 13863 { 13864 dev_info_t *dip = mpt->m_dip; 13865 int avail, actual, count = 0; 13866 int i, flag, ret; 13867 13868 NDBG6(("mptsas_add_intrs:interrupt type 0x%x", intr_type)); 13869 13870 /* Get number of interrupts */ 13871 ret = ddi_intr_get_nintrs(dip, intr_type, &count); 13872 if ((ret != DDI_SUCCESS) || (count <= 0)) { 13873 mptsas_log(mpt, CE_WARN, "ddi_intr_get_nintrs() failed, " 13874 "ret %d count %d\n", ret, count); 13875 13876 return (DDI_FAILURE); 13877 } 13878 13879 /* Get number of interrupts available to this device */ 13880 ret = ddi_intr_get_navail(dip, intr_type, &avail); 13881 if ((ret != DDI_SUCCESS) || (avail == 0)) { 13882 mptsas_log(mpt, CE_WARN, "ddi_intr_get_navail() failed, " 13883 "ret %d avail %d\n", ret, avail); 13884 13885 return (DDI_FAILURE); 13886 } 13887 13888 if (count < avail) { 13889 mptsas_log(mpt, CE_NOTE, "ddi_intr_get_nvail returned %d, " 13890 "navail() returned %d", count, avail); 13891 } 13892 13893 NDBG6(("mptsas_add_intrs:count %d, avail %d", count, avail)); 13894 13895 if (intr_type == DDI_INTR_TYPE_MSIX) { 13896 if (!mptsas3_max_msix_intrs) { 13897 return (DDI_FAILURE); 13898 } 13899 13900 /* 13901 * Restrict the number of interrupts, firstly by 13902 * the number returned from the IOCInfo, then by 13903 * overall restriction. 13904 */ 13905 if (avail > mpt->m_max_msix_vectors) { 13906 avail = mpt->m_max_msix_vectors? 13907 mpt->m_max_msix_vectors:1; 13908 NDBG6(("mptsas_add_intrs: mmmv avail %d", avail)); 13909 } 13910 if (avail > mptsas3_max_msix_intrs) { 13911 avail = mptsas3_max_msix_intrs; 13912 NDBG6(("mptsas_add_intrs: m3mmi avail %d", avail)); 13913 } 13914 } 13915 if (intr_type == DDI_INTR_TYPE_MSI) { 13916 NDBG6(("mptsas_add_intrs: MSI avail %d", avail)); 13917 avail = 1; 13918 } 13919 13920 /* Allocate an array of interrupt handles */ 13921 mpt->m_intr_size = avail * sizeof (ddi_intr_handle_t); 13922 mpt->m_htable = kmem_alloc(mpt->m_intr_size, KM_SLEEP); 13923 13924 flag = DDI_INTR_ALLOC_NORMAL; 13925 13926 /* call ddi_intr_alloc() */ 13927 ret = ddi_intr_alloc(dip, mpt->m_htable, intr_type, 0, 13928 avail, &actual, flag); 13929 13930 if ((ret != DDI_SUCCESS) || (actual == 0)) { 13931 mptsas_log(mpt, CE_WARN, "ddi_intr_alloc() failed, ret %d\n", 13932 ret); 13933 kmem_free(mpt->m_htable, mpt->m_intr_size); 13934 return (DDI_FAILURE); 13935 } 13936 13937 NDBG6(("mptsas_add_intrs: actual %d, avail %d", actual, avail)); 13938 /* use interrupt count returned or abort? */ 13939 if (actual < avail) { 13940 mptsas_log(mpt, CE_NOTE, 13941 "Interrupts requested: %d, received: %d\n", 13942 avail, actual); 13943 } 13944 13945 /* 13946 * Get priority for first msi, assume remaining are all the same 13947 */ 13948 if ((ret = ddi_intr_get_pri(mpt->m_htable[0], 13949 &mpt->m_intr_pri)) != DDI_SUCCESS) { 13950 mptsas_log(mpt, CE_WARN, "ddi_intr_get_pri() failed %d\n", ret); 13951 13952 /* Free already allocated intr */ 13953 for (i = 0; i < actual; i++) { 13954 (void) ddi_intr_free(mpt->m_htable[i]); 13955 } 13956 13957 kmem_free(mpt->m_htable, mpt->m_intr_size); 13958 return (DDI_FAILURE); 13959 } 13960 13961 /* Test for high level mutex */ 13962 if (mpt->m_intr_pri >= ddi_intr_get_hilevel_pri()) { 13963 mptsas_log(mpt, CE_WARN, "mptsas_add_intrs: " 13964 "Hi level interrupt not supported\n"); 13965 13966 /* Free already allocated intr */ 13967 for (i = 0; i < actual; i++) { 13968 (void) ddi_intr_free(mpt->m_htable[i]); 13969 } 13970 13971 kmem_free(mpt->m_htable, mpt->m_intr_size); 13972 return (DDI_FAILURE); 13973 } 13974 13975 /* Call ddi_intr_add_handler() */ 13976 for (i = 0; i < actual; i++) { 13977 if ((ret = ddi_intr_add_handler(mpt->m_htable[i], mptsas_intr, 13978 (caddr_t)mpt, (caddr_t)(uintptr_t)i)) != DDI_SUCCESS) { 13979 mptsas_log(mpt, CE_WARN, "ddi_intr_add_handler() " 13980 "failed %d\n", ret); 13981 13982 /* Free already allocated intr */ 13983 for (i = 0; i < actual; i++) { 13984 (void) ddi_intr_free(mpt->m_htable[i]); 13985 } 13986 13987 kmem_free(mpt->m_htable, mpt->m_intr_size); 13988 return (DDI_FAILURE); 13989 } 13990 } 13991 13992 if ((ret = ddi_intr_get_cap(mpt->m_htable[0], &mpt->m_intr_cap)) 13993 != DDI_SUCCESS) { 13994 mptsas_log(mpt, CE_WARN, "ddi_intr_get_cap() failed %d\n", ret); 13995 13996 /* Free already allocated intr */ 13997 for (i = 0; i < actual; i++) { 13998 (void) ddi_intr_free(mpt->m_htable[i]); 13999 } 14000 14001 kmem_free(mpt->m_htable, mpt->m_intr_size); 14002 return (DDI_FAILURE); 14003 } 14004 14005 mpt->m_intr_cnt = actual; 14006 14007 /* 14008 * Enable interrupts 14009 */ 14010 if (mpt->m_intr_cap & DDI_INTR_FLAG_BLOCK) { 14011 /* Call ddi_intr_block_enable() for MSI interrupts */ 14012 (void) ddi_intr_block_enable(mpt->m_htable, mpt->m_intr_cnt); 14013 } else { 14014 /* Call ddi_intr_enable for MSI or FIXED interrupts */ 14015 for (i = 0; i < mpt->m_intr_cnt; i++) { 14016 (void) ddi_intr_enable(mpt->m_htable[i]); 14017 } 14018 } 14019 14020 switch (intr_type) { 14021 case DDI_INTR_TYPE_MSIX: 14022 mptsas_log(mpt, CE_NOTE, "?Using %d MSI-X interrupt(s) " 14023 "(Available sys %d, mpt %d, Requested %d)\n", 14024 actual, count, mpt->m_max_msix_vectors, avail); 14025 break; 14026 case DDI_INTR_TYPE_MSI: 14027 mptsas_log(mpt, CE_NOTE, "Using single MSI interrupt\n"); 14028 break; 14029 case DDI_INTR_TYPE_FIXED: 14030 default: 14031 mptsas_log(mpt, CE_NOTE, "Using single fixed interrupt\n"); 14032 break; 14033 } 14034 14035 return (DDI_SUCCESS); 14036 } 14037 14038 /* 14039 * mptsas_rem_intrs: 14040 * 14041 * Unregister FIXED or MSI interrupts 14042 */ 14043 static void 14044 mptsas_rem_intrs(mptsas_t *mpt) 14045 { 14046 int i; 14047 14048 NDBG6(("mptsas_rem_intrs")); 14049 14050 /* Disable all interrupts */ 14051 if (mpt->m_intr_cap & DDI_INTR_FLAG_BLOCK) { 14052 /* Call ddi_intr_block_disable() */ 14053 (void) ddi_intr_block_disable(mpt->m_htable, mpt->m_intr_cnt); 14054 } else { 14055 for (i = 0; i < mpt->m_intr_cnt; i++) { 14056 (void) ddi_intr_disable(mpt->m_htable[i]); 14057 } 14058 } 14059 14060 /* Call ddi_intr_remove_handler() */ 14061 for (i = 0; i < mpt->m_intr_cnt; i++) { 14062 (void) ddi_intr_remove_handler(mpt->m_htable[i]); 14063 (void) ddi_intr_free(mpt->m_htable[i]); 14064 } 14065 kmem_free(mpt->m_htable, mpt->m_intr_size); 14066 mpt->m_intr_cnt = 0; 14067 } 14068 14069 /* 14070 * The IO fault service error handling callback function 14071 */ 14072 /*ARGSUSED*/ 14073 static int 14074 mptsas_fm_error_cb(dev_info_t *dip, ddi_fm_error_t *err, const void *impl_data) 14075 { 14076 /* 14077 * as the driver can always deal with an error in any dma or 14078 * access handle, we can just return the fme_status value. 14079 */ 14080 pci_ereport_post(dip, err, NULL); 14081 return (err->fme_status); 14082 } 14083 14084 /* 14085 * mptsas_fm_init - initialize fma capabilities and register with IO 14086 * fault services. 14087 */ 14088 static void 14089 mptsas_fm_init(mptsas_t *mpt) 14090 { 14091 /* 14092 * Need to change iblock to priority for new MSI intr 14093 */ 14094 ddi_iblock_cookie_t fm_ibc; 14095 14096 /* Only register with IO Fault Services if we have some capability */ 14097 if (mpt->m_fm_capabilities) { 14098 /* Adjust access and dma attributes for FMA */ 14099 mpt->m_reg_acc_attr.devacc_attr_access = DDI_FLAGERR_ACC; 14100 mpt->m_msg_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 14101 mpt->m_io_dma_attr.dma_attr_flags |= DDI_DMA_FLAGERR; 14102 14103 /* 14104 * Register capabilities with IO Fault Services. 14105 * mpt->m_fm_capabilities will be updated to indicate 14106 * capabilities actually supported (not requested.) 14107 */ 14108 ddi_fm_init(mpt->m_dip, &mpt->m_fm_capabilities, &fm_ibc); 14109 14110 /* 14111 * Initialize pci ereport capabilities if ereport 14112 * capable (should always be.) 14113 */ 14114 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities) || 14115 DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 14116 pci_ereport_setup(mpt->m_dip); 14117 } 14118 14119 /* 14120 * Register error callback if error callback capable. 14121 */ 14122 if (DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 14123 ddi_fm_handler_register(mpt->m_dip, 14124 mptsas_fm_error_cb, (void *) mpt); 14125 } 14126 } 14127 } 14128 14129 /* 14130 * mptsas_fm_fini - Releases fma capabilities and un-registers with IO 14131 * fault services. 14132 * 14133 */ 14134 static void 14135 mptsas_fm_fini(mptsas_t *mpt) 14136 { 14137 /* Only unregister FMA capabilities if registered */ 14138 if (mpt->m_fm_capabilities) { 14139 14140 /* 14141 * Un-register error callback if error callback capable. 14142 */ 14143 14144 if (DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 14145 ddi_fm_handler_unregister(mpt->m_dip); 14146 } 14147 14148 /* 14149 * Release any resources allocated by pci_ereport_setup() 14150 */ 14151 14152 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities) || 14153 DDI_FM_ERRCB_CAP(mpt->m_fm_capabilities)) { 14154 pci_ereport_teardown(mpt->m_dip); 14155 } 14156 14157 /* Unregister from IO Fault Services */ 14158 ddi_fm_fini(mpt->m_dip); 14159 14160 /* Adjust access and dma attributes for FMA */ 14161 mpt->m_reg_acc_attr.devacc_attr_access = DDI_DEFAULT_ACC; 14162 mpt->m_msg_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR; 14163 mpt->m_io_dma_attr.dma_attr_flags &= ~DDI_DMA_FLAGERR; 14164 14165 } 14166 } 14167 14168 int 14169 mptsas_check_acc_handle(ddi_acc_handle_t handle) 14170 { 14171 ddi_fm_error_t de; 14172 14173 if (handle == NULL) 14174 return (DDI_FAILURE); 14175 ddi_fm_acc_err_get(handle, &de, DDI_FME_VER0); 14176 return (de.fme_status); 14177 } 14178 14179 int 14180 mptsas_check_dma_handle(ddi_dma_handle_t handle) 14181 { 14182 ddi_fm_error_t de; 14183 14184 if (handle == NULL) 14185 return (DDI_FAILURE); 14186 ddi_fm_dma_err_get(handle, &de, DDI_FME_VER0); 14187 return (de.fme_status); 14188 } 14189 14190 void 14191 mptsas_fm_ereport(mptsas_t *mpt, char *detail) 14192 { 14193 uint64_t ena; 14194 char buf[FM_MAX_CLASS]; 14195 14196 (void) snprintf(buf, FM_MAX_CLASS, "%s.%s", DDI_FM_DEVICE, detail); 14197 ena = fm_ena_generate(0, FM_ENA_FMT1); 14198 if (DDI_FM_EREPORT_CAP(mpt->m_fm_capabilities)) { 14199 ddi_fm_ereport_post(mpt->m_dip, buf, ena, DDI_NOSLEEP, 14200 FM_VERSION, DATA_TYPE_UINT8, FM_EREPORT_VERS0, NULL); 14201 } 14202 } 14203 14204 static int 14205 mptsas_get_target_device_info(mptsas_t *mpt, uint32_t page_address, 14206 uint16_t *dev_handle, mptsas_target_t **pptgt) 14207 { 14208 int rval; 14209 uint32_t dev_info; 14210 uint64_t sas_wwn; 14211 mptsas_phymask_t phymask; 14212 uint8_t physport, phynum, config, disk; 14213 uint64_t devicename; 14214 uint16_t pdev_hdl; 14215 mptsas_target_t *tmp_tgt = NULL; 14216 uint16_t bay_num, enclosure, io_flags; 14217 14218 ASSERT(*pptgt == NULL); 14219 14220 rval = mptsas_get_sas_device_page0(mpt, page_address, dev_handle, 14221 &sas_wwn, &dev_info, &physport, &phynum, &pdev_hdl, 14222 &bay_num, &enclosure, &io_flags); 14223 if (rval != DDI_SUCCESS) { 14224 rval = DEV_INFO_FAIL_PAGE0; 14225 return (rval); 14226 } 14227 14228 if ((dev_info & (MPI2_SAS_DEVICE_INFO_SSP_TARGET | 14229 MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 14230 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) == NULL) { 14231 rval = DEV_INFO_WRONG_DEVICE_TYPE; 14232 return (rval); 14233 } 14234 14235 /* 14236 * Check if the dev handle is for a Phys Disk. If so, set return value 14237 * and exit. Don't add Phys Disks to hash. 14238 */ 14239 for (config = 0; config < mpt->m_num_raid_configs; config++) { 14240 for (disk = 0; disk < MPTSAS_MAX_DISKS_IN_CONFIG; disk++) { 14241 if (*dev_handle == mpt->m_raidconfig[config]. 14242 m_physdisk_devhdl[disk]) { 14243 rval = DEV_INFO_PHYS_DISK; 14244 return (rval); 14245 } 14246 } 14247 } 14248 14249 /* 14250 * Get SATA Device Name from SAS device page0 for 14251 * sata device, if device name doesn't exist, set mta_wwn to 14252 * 0 for direct attached SATA. For the device behind the expander 14253 * we still can use STP address assigned by expander. 14254 */ 14255 if (dev_info & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 14256 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 14257 mutex_exit(&mpt->m_mutex); 14258 /* alloc a tmp_tgt to send the cmd */ 14259 tmp_tgt = kmem_zalloc(sizeof (struct mptsas_target), 14260 KM_SLEEP); 14261 tmp_tgt->m_devhdl = *dev_handle; 14262 tmp_tgt->m_deviceinfo = dev_info; 14263 tmp_tgt->m_qfull_retries = QFULL_RETRIES; 14264 tmp_tgt->m_qfull_retry_interval = 14265 drv_usectohz(QFULL_RETRY_INTERVAL * 1000); 14266 tmp_tgt->m_t_throttle = MAX_THROTTLE; 14267 mutex_init(&tmp_tgt->m_t_mutex, NULL, MUTEX_DRIVER, NULL); 14268 devicename = mptsas_get_sata_guid(mpt, tmp_tgt, 0); 14269 mutex_destroy(&tmp_tgt->m_t_mutex); 14270 kmem_free(tmp_tgt, sizeof (struct mptsas_target)); 14271 mutex_enter(&mpt->m_mutex); 14272 if (devicename != 0 && (((devicename >> 56) & 0xf0) == 0x50)) { 14273 sas_wwn = devicename; 14274 } else if (dev_info & MPI2_SAS_DEVICE_INFO_DIRECT_ATTACH) { 14275 sas_wwn = 0; 14276 } 14277 } 14278 14279 phymask = mptsas_physport_to_phymask(mpt, physport); 14280 *pptgt = mptsas_tgt_alloc(mpt, *dev_handle, sas_wwn, 14281 dev_info, phymask, phynum); 14282 if (*pptgt == NULL) { 14283 mptsas_log(mpt, CE_WARN, "Failed to allocated target" 14284 "structure!"); 14285 rval = DEV_INFO_FAIL_ALLOC; 14286 return (rval); 14287 } 14288 (*pptgt)->m_io_flags = io_flags; 14289 (*pptgt)->m_enclosure = enclosure; 14290 (*pptgt)->m_slot_num = bay_num; 14291 return (DEV_INFO_SUCCESS); 14292 } 14293 14294 uint64_t 14295 mptsas_get_sata_guid(mptsas_t *mpt, mptsas_target_t *ptgt, int lun) 14296 { 14297 uint64_t sata_guid = 0, *pwwn = NULL; 14298 int target = ptgt->m_devhdl; 14299 uchar_t *inq83 = NULL; 14300 int inq83_len = 0xFF; 14301 uchar_t *dblk = NULL; 14302 int inq83_retry = 3; 14303 int rval = DDI_FAILURE; 14304 14305 inq83 = kmem_zalloc(inq83_len, KM_SLEEP); 14306 14307 inq83_retry: 14308 rval = mptsas_inquiry(mpt, ptgt, lun, 0x83, inq83, 14309 inq83_len, NULL, 1); 14310 if (rval != DDI_SUCCESS) { 14311 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 14312 "0x83 for target:%x, lun:%x failed!", target, lun); 14313 goto out; 14314 } 14315 /* According to SAT2, the first descriptor is logic unit name */ 14316 dblk = &inq83[4]; 14317 if ((dblk[1] & 0x30) != 0) { 14318 mptsas_log(mpt, CE_WARN, "!Descriptor is not lun associated."); 14319 goto out; 14320 } 14321 pwwn = (uint64_t *)(void *)(&dblk[4]); 14322 if ((dblk[4] & 0xf0) == 0x50) { 14323 sata_guid = BE_64(*pwwn); 14324 goto out; 14325 } else if (dblk[4] == 'A') { 14326 NDBG20(("SATA drive has no NAA format GUID.")); 14327 goto out; 14328 } else { 14329 /* The data is not ready, wait and retry */ 14330 inq83_retry--; 14331 if (inq83_retry <= 0) { 14332 goto out; 14333 } 14334 NDBG20(("The GUID is not ready, retry...")); 14335 delay(1 * drv_usectohz(1000000)); 14336 goto inq83_retry; 14337 } 14338 out: 14339 kmem_free(inq83, inq83_len); 14340 return (sata_guid); 14341 } 14342 14343 static int 14344 mptsas_inquiry(mptsas_t *mpt, mptsas_target_t *ptgt, int lun, uchar_t page, 14345 unsigned char *buf, int len, int *reallen, uchar_t evpd) 14346 { 14347 uchar_t cdb[CDB_GROUP0]; 14348 struct scsi_address ap; 14349 struct buf *data_bp = NULL; 14350 int resid = 0; 14351 int ret = DDI_FAILURE; 14352 14353 ASSERT(len <= 0xffff); 14354 14355 ap.a_target = MPTSAS_INVALID_DEVHDL; 14356 ap.a_lun = (uchar_t)(lun); 14357 ap.a_hba_tran = mpt->m_tran; 14358 14359 data_bp = scsi_alloc_consistent_buf(&ap, 14360 (struct buf *)NULL, len, B_READ, NULL_FUNC, NULL); 14361 if (data_bp == NULL) { 14362 return (ret); 14363 } 14364 bzero(cdb, CDB_GROUP0); 14365 cdb[0] = SCMD_INQUIRY; 14366 cdb[1] = evpd; 14367 cdb[2] = page; 14368 cdb[3] = (len & 0xff00) >> 8; 14369 cdb[4] = (len & 0x00ff); 14370 cdb[5] = 0; 14371 14372 ret = mptsas_send_scsi_cmd(mpt, &ap, ptgt, &cdb[0], CDB_GROUP0, data_bp, 14373 &resid); 14374 if (ret == DDI_SUCCESS) { 14375 if (reallen) { 14376 *reallen = len - resid; 14377 } 14378 bcopy((caddr_t)data_bp->b_un.b_addr, buf, len); 14379 } 14380 if (data_bp) { 14381 scsi_free_consistent_buf(data_bp); 14382 } 14383 return (ret); 14384 } 14385 14386 static int 14387 mptsas_send_scsi_cmd(mptsas_t *mpt, struct scsi_address *ap, 14388 mptsas_target_t *ptgt, uchar_t *cdb, int cdblen, struct buf *data_bp, 14389 int *resid) 14390 { 14391 struct scsi_pkt *pktp = NULL; 14392 scsi_hba_tran_t *tran_clone = NULL; 14393 mptsas_tgt_private_t *tgt_private = NULL; 14394 int ret = DDI_FAILURE; 14395 14396 /* 14397 * scsi_hba_tran_t->tran_tgt_private is used to pass the address 14398 * information to scsi_init_pkt, allocate a scsi_hba_tran structure 14399 * to simulate the cmds from sd 14400 */ 14401 tran_clone = kmem_alloc( 14402 sizeof (scsi_hba_tran_t), KM_SLEEP); 14403 if (tran_clone == NULL) { 14404 goto out; 14405 } 14406 bcopy((caddr_t)mpt->m_tran, 14407 (caddr_t)tran_clone, sizeof (scsi_hba_tran_t)); 14408 tgt_private = kmem_alloc( 14409 sizeof (mptsas_tgt_private_t), KM_SLEEP); 14410 if (tgt_private == NULL) { 14411 goto out; 14412 } 14413 tgt_private->t_lun = ap->a_lun; 14414 tgt_private->t_private = ptgt; 14415 tran_clone->tran_tgt_private = tgt_private; 14416 ap->a_hba_tran = tran_clone; 14417 14418 pktp = scsi_init_pkt(ap, (struct scsi_pkt *)NULL, 14419 data_bp, cdblen, sizeof (struct scsi_arq_status), 14420 0, PKT_CONSISTENT, NULL, NULL); 14421 if (pktp == NULL) { 14422 goto out; 14423 } 14424 bcopy(cdb, pktp->pkt_cdbp, cdblen); 14425 pktp->pkt_flags = FLAG_NOPARITY; 14426 pktp->pkt_time = mptsas_scsi_pkt_time; 14427 if (scsi_poll(pktp) < 0) { 14428 goto out; 14429 } 14430 if (((struct scsi_status *)pktp->pkt_scbp)->sts_chk) { 14431 goto out; 14432 } 14433 if (resid != NULL) { 14434 *resid = pktp->pkt_resid; 14435 } 14436 14437 ret = DDI_SUCCESS; 14438 out: 14439 if (pktp) { 14440 scsi_destroy_pkt(pktp); 14441 } 14442 if (tran_clone) { 14443 kmem_free(tran_clone, sizeof (scsi_hba_tran_t)); 14444 } 14445 if (tgt_private) { 14446 kmem_free(tgt_private, sizeof (mptsas_tgt_private_t)); 14447 } 14448 return (ret); 14449 } 14450 static int 14451 mptsas_parse_address(char *name, uint64_t *wwid, uint8_t *phy, int *lun) 14452 { 14453 char *cp = NULL; 14454 char *ptr = NULL; 14455 size_t s = 0; 14456 char *wwid_str = NULL; 14457 char *lun_str = NULL; 14458 long lunnum; 14459 long phyid = -1; 14460 int rc = DDI_FAILURE; 14461 14462 ptr = name; 14463 ASSERT(ptr[0] == 'w' || ptr[0] == 'p'); 14464 ptr++; 14465 if ((cp = strchr(ptr, ',')) == NULL) { 14466 return (DDI_FAILURE); 14467 } 14468 14469 wwid_str = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14470 s = (uintptr_t)cp - (uintptr_t)ptr; 14471 14472 bcopy(ptr, wwid_str, s); 14473 wwid_str[s] = '\0'; 14474 14475 ptr = ++cp; 14476 14477 if ((cp = strchr(ptr, '\0')) == NULL) { 14478 goto out; 14479 } 14480 lun_str = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14481 s = (uintptr_t)cp - (uintptr_t)ptr; 14482 14483 bcopy(ptr, lun_str, s); 14484 lun_str[s] = '\0'; 14485 14486 if (name[0] == 'p') { 14487 rc = ddi_strtol(wwid_str, NULL, 0x10, &phyid); 14488 } else { 14489 rc = scsi_wwnstr_to_wwn(wwid_str, wwid); 14490 } 14491 if (rc != DDI_SUCCESS) 14492 goto out; 14493 14494 if (phyid != -1) { 14495 ASSERT(phyid < MPTSAS_MAX_PHYS); 14496 *phy = (uint8_t)phyid; 14497 } 14498 rc = ddi_strtol(lun_str, NULL, 0x10, &lunnum); 14499 if (rc != 0) 14500 goto out; 14501 14502 *lun = (int)lunnum; 14503 rc = DDI_SUCCESS; 14504 out: 14505 if (wwid_str) 14506 kmem_free(wwid_str, SCSI_MAXNAMELEN); 14507 if (lun_str) 14508 kmem_free(lun_str, SCSI_MAXNAMELEN); 14509 14510 return (rc); 14511 } 14512 14513 /* 14514 * mptsas_parse_smp_name() is to parse sas wwn string 14515 * which format is "wWWN" 14516 */ 14517 static int 14518 mptsas_parse_smp_name(char *name, uint64_t *wwn) 14519 { 14520 char *ptr = name; 14521 14522 if (*ptr != 'w') { 14523 return (DDI_FAILURE); 14524 } 14525 14526 ptr++; 14527 if (scsi_wwnstr_to_wwn(ptr, wwn)) { 14528 return (DDI_FAILURE); 14529 } 14530 return (DDI_SUCCESS); 14531 } 14532 14533 static int 14534 mptsas_bus_config(dev_info_t *pdip, uint_t flag, 14535 ddi_bus_config_op_t op, void *arg, dev_info_t **childp) 14536 { 14537 int ret = NDI_FAILURE; 14538 int circ = 0; 14539 int circ1 = 0; 14540 mptsas_t *mpt; 14541 char *ptr = NULL; 14542 char *devnm = NULL; 14543 uint64_t wwid = 0; 14544 uint8_t phy = 0xFF; 14545 int lun = 0; 14546 uint_t mflags = flag; 14547 int bconfig = TRUE; 14548 14549 if (scsi_hba_iport_unit_address(pdip) == 0) { 14550 return (DDI_FAILURE); 14551 } 14552 14553 mpt = DIP2MPT(pdip); 14554 if (!mpt) { 14555 return (DDI_FAILURE); 14556 } 14557 /* 14558 * Hold the nexus across the bus_config 14559 */ 14560 ndi_devi_enter(scsi_vhci_dip, &circ); 14561 ndi_devi_enter(pdip, &circ1); 14562 switch (op) { 14563 case BUS_CONFIG_ONE: 14564 /* parse wwid/target name out of name given */ 14565 if ((ptr = strchr((char *)arg, '@')) == NULL) { 14566 ret = NDI_FAILURE; 14567 break; 14568 } 14569 ptr++; 14570 if (strncmp((char *)arg, "smp", 3) == 0) { 14571 /* 14572 * This is a SMP target device 14573 */ 14574 ret = mptsas_parse_smp_name(ptr, &wwid); 14575 if (ret != DDI_SUCCESS) { 14576 ret = NDI_FAILURE; 14577 break; 14578 } 14579 ret = mptsas_config_smp(pdip, wwid, childp); 14580 } else if ((ptr[0] == 'w') || (ptr[0] == 'p')) { 14581 /* 14582 * OBP could pass down a non-canonical form 14583 * bootpath without LUN part when LUN is 0. 14584 * So driver need adjust the string. 14585 */ 14586 if (strchr(ptr, ',') == NULL) { 14587 devnm = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 14588 (void) sprintf(devnm, "%s,0", (char *)arg); 14589 ptr = strchr(devnm, '@'); 14590 ptr++; 14591 } 14592 14593 /* 14594 * The device path is wWWID format and the device 14595 * is not SMP target device. 14596 */ 14597 ret = mptsas_parse_address(ptr, &wwid, &phy, &lun); 14598 if (ret != DDI_SUCCESS) { 14599 ret = NDI_FAILURE; 14600 break; 14601 } 14602 *childp = NULL; 14603 if (ptr[0] == 'w') { 14604 ret = mptsas_config_one_addr(pdip, wwid, 14605 lun, childp); 14606 } else if (ptr[0] == 'p') { 14607 ret = mptsas_config_one_phy(pdip, phy, lun, 14608 childp); 14609 } 14610 14611 /* 14612 * If this is CD/DVD device in OBP path, the 14613 * ndi_busop_bus_config can be skipped as config one 14614 * operation is done above. 14615 */ 14616 if ((ret == NDI_SUCCESS) && (*childp != NULL) && 14617 (strcmp(ddi_node_name(*childp), "cdrom") == 0) && 14618 (strncmp((char *)arg, "disk", 4) == 0)) { 14619 bconfig = FALSE; 14620 ndi_hold_devi(*childp); 14621 } 14622 } else { 14623 ret = NDI_FAILURE; 14624 break; 14625 } 14626 14627 /* 14628 * DDI group instructed us to use this flag. 14629 */ 14630 mflags |= NDI_MDI_FALLBACK; 14631 break; 14632 case BUS_CONFIG_DRIVER: 14633 case BUS_CONFIG_ALL: 14634 mptsas_config_all(pdip); 14635 ret = NDI_SUCCESS; 14636 break; 14637 } 14638 14639 if ((ret == NDI_SUCCESS) && bconfig) { 14640 ret = ndi_busop_bus_config(pdip, mflags, op, 14641 (devnm == NULL) ? arg : devnm, childp, 0); 14642 } 14643 14644 ndi_devi_exit(pdip, circ1); 14645 ndi_devi_exit(scsi_vhci_dip, circ); 14646 if (devnm != NULL) 14647 kmem_free(devnm, SCSI_MAXNAMELEN); 14648 return (ret); 14649 } 14650 14651 static int 14652 mptsas_probe_lun(dev_info_t *pdip, int lun, dev_info_t **dip, 14653 mptsas_target_t *ptgt) 14654 { 14655 int rval = DDI_FAILURE; 14656 struct scsi_inquiry *sd_inq = NULL; 14657 mptsas_t *mpt = DIP2MPT(pdip); 14658 14659 sd_inq = (struct scsi_inquiry *)kmem_alloc(SUN_INQSIZE, KM_SLEEP); 14660 14661 rval = mptsas_inquiry(mpt, ptgt, lun, 0, (uchar_t *)sd_inq, 14662 SUN_INQSIZE, 0, (uchar_t)0); 14663 14664 if ((rval == DDI_SUCCESS) && MPTSAS_VALID_LUN(sd_inq)) { 14665 rval = mptsas_create_lun(pdip, sd_inq, dip, ptgt, lun); 14666 } else { 14667 rval = DDI_FAILURE; 14668 } 14669 14670 kmem_free(sd_inq, SUN_INQSIZE); 14671 return (rval); 14672 } 14673 14674 static int 14675 mptsas_config_one_addr(dev_info_t *pdip, uint64_t sasaddr, int lun, 14676 dev_info_t **lundip) 14677 { 14678 int rval; 14679 mptsas_t *mpt = DIP2MPT(pdip); 14680 int phymask; 14681 mptsas_target_t *ptgt = NULL; 14682 14683 /* 14684 * Get the physical port associated to the iport 14685 */ 14686 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 14687 "phymask", 0); 14688 14689 ptgt = mptsas_wwid_to_ptgt(mpt, phymask, sasaddr); 14690 if (ptgt == NULL) { 14691 /* 14692 * didn't match any device by searching 14693 */ 14694 return (DDI_FAILURE); 14695 } 14696 /* 14697 * If the LUN already exists and the status is online, 14698 * we just return the pointer to dev_info_t directly. 14699 * For the mdi_pathinfo node, we'll handle it in 14700 * mptsas_create_virt_lun() 14701 * TODO should be also in mptsas_handle_dr 14702 */ 14703 14704 *lundip = mptsas_find_child_addr(pdip, sasaddr, lun); 14705 if (*lundip != NULL) { 14706 /* 14707 * TODO Another senario is, we hotplug the same disk 14708 * on the same slot, the devhdl changed, is this 14709 * possible? 14710 * tgt_private->t_private != ptgt 14711 */ 14712 if (sasaddr != ptgt->m_addr.mta_wwn) { 14713 /* 14714 * The device has changed although the devhdl is the 14715 * same (Enclosure mapping mode, change drive on the 14716 * same slot) 14717 */ 14718 return (DDI_FAILURE); 14719 } 14720 return (DDI_SUCCESS); 14721 } 14722 14723 if (phymask == 0) { 14724 /* 14725 * Configure IR volume 14726 */ 14727 rval = mptsas_config_raid(pdip, ptgt->m_devhdl, lundip); 14728 return (rval); 14729 } 14730 rval = mptsas_probe_lun(pdip, lun, lundip, ptgt); 14731 14732 return (rval); 14733 } 14734 14735 static int 14736 mptsas_config_one_phy(dev_info_t *pdip, uint8_t phy, int lun, 14737 dev_info_t **lundip) 14738 { 14739 int rval; 14740 mptsas_t *mpt = DIP2MPT(pdip); 14741 mptsas_phymask_t phymask; 14742 mptsas_target_t *ptgt = NULL; 14743 14744 /* 14745 * Get the physical port associated to the iport 14746 */ 14747 phymask = (mptsas_phymask_t)ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 14748 "phymask", 0); 14749 14750 ptgt = mptsas_phy_to_tgt(mpt, phymask, phy); 14751 if (ptgt == NULL) { 14752 /* 14753 * didn't match any device by searching 14754 */ 14755 return (DDI_FAILURE); 14756 } 14757 14758 /* 14759 * If the LUN already exists and the status is online, 14760 * we just return the pointer to dev_info_t directly. 14761 * For the mdi_pathinfo node, we'll handle it in 14762 * mptsas_create_virt_lun(). 14763 */ 14764 14765 *lundip = mptsas_find_child_phy(pdip, phy); 14766 if (*lundip != NULL) { 14767 return (DDI_SUCCESS); 14768 } 14769 14770 rval = mptsas_probe_lun(pdip, lun, lundip, ptgt); 14771 14772 return (rval); 14773 } 14774 14775 static int 14776 mptsas_retrieve_lundata(int lun_cnt, uint8_t *buf, uint16_t *lun_num, 14777 uint8_t *lun_addr_type) 14778 { 14779 uint32_t lun_idx = 0; 14780 14781 ASSERT(lun_num != NULL); 14782 ASSERT(lun_addr_type != NULL); 14783 14784 lun_idx = (lun_cnt + 1) * MPTSAS_SCSI_REPORTLUNS_ADDRESS_SIZE; 14785 /* determine report luns addressing type */ 14786 switch (buf[lun_idx] & MPTSAS_SCSI_REPORTLUNS_ADDRESS_MASK) { 14787 /* 14788 * Vendors in the field have been found to be concatenating 14789 * bus/target/lun to equal the complete lun value instead 14790 * of switching to flat space addressing 14791 */ 14792 /* 00b - peripheral device addressing method */ 14793 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_PERIPHERAL: 14794 /* FALLTHRU */ 14795 /* 10b - logical unit addressing method */ 14796 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_LOGICAL_UNIT: 14797 /* FALLTHRU */ 14798 /* 01b - flat space addressing method */ 14799 case MPTSAS_SCSI_REPORTLUNS_ADDRESS_FLAT_SPACE: 14800 /* byte0 bit0-5=msb lun byte1 bit0-7=lsb lun */ 14801 *lun_addr_type = (buf[lun_idx] & 14802 MPTSAS_SCSI_REPORTLUNS_ADDRESS_MASK) >> 6; 14803 *lun_num = (buf[lun_idx] & 0x3F) << 8; 14804 *lun_num |= buf[lun_idx + 1]; 14805 return (DDI_SUCCESS); 14806 default: 14807 return (DDI_FAILURE); 14808 } 14809 } 14810 14811 static int 14812 mptsas_config_luns(dev_info_t *pdip, mptsas_target_t *ptgt) 14813 { 14814 struct buf *repluns_bp = NULL; 14815 struct scsi_address ap; 14816 uchar_t cdb[CDB_GROUP5]; 14817 int ret = DDI_FAILURE; 14818 int retry = 0; 14819 int lun_list_len = 0; 14820 uint16_t lun_num = 0; 14821 uint8_t lun_addr_type = 0; 14822 uint32_t lun_cnt = 0; 14823 uint32_t lun_total = 0; 14824 dev_info_t *cdip = NULL; 14825 uint16_t *saved_repluns = NULL; 14826 char *buffer = NULL; 14827 int buf_len = 128; 14828 mptsas_t *mpt = DIP2MPT(pdip); 14829 uint64_t sas_wwn = 0; 14830 uint8_t phy = 0xFF; 14831 uint32_t dev_info = 0; 14832 14833 mutex_enter(&mpt->m_mutex); 14834 sas_wwn = ptgt->m_addr.mta_wwn; 14835 phy = ptgt->m_phynum; 14836 dev_info = ptgt->m_deviceinfo; 14837 mutex_exit(&mpt->m_mutex); 14838 14839 if (sas_wwn == 0) { 14840 /* 14841 * It's a SATA without Device Name 14842 * So don't try multi-LUNs 14843 */ 14844 if (mptsas_find_child_phy(pdip, phy)) { 14845 return (DDI_SUCCESS); 14846 } else { 14847 /* 14848 * need configure and create node 14849 */ 14850 return (DDI_FAILURE); 14851 } 14852 } 14853 14854 /* 14855 * WWN (SAS address or Device Name exist) 14856 */ 14857 if (dev_info & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 14858 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 14859 /* 14860 * SATA device with Device Name 14861 * So don't try multi-LUNs 14862 */ 14863 if (mptsas_find_child_addr(pdip, sas_wwn, 0)) { 14864 return (DDI_SUCCESS); 14865 } else { 14866 return (DDI_FAILURE); 14867 } 14868 } 14869 14870 do { 14871 ap.a_target = MPTSAS_INVALID_DEVHDL; 14872 ap.a_lun = 0; 14873 ap.a_hba_tran = mpt->m_tran; 14874 repluns_bp = scsi_alloc_consistent_buf(&ap, 14875 (struct buf *)NULL, buf_len, B_READ, NULL_FUNC, NULL); 14876 if (repluns_bp == NULL) { 14877 retry++; 14878 continue; 14879 } 14880 bzero(cdb, CDB_GROUP5); 14881 cdb[0] = SCMD_REPORT_LUNS; 14882 cdb[6] = (buf_len & 0xff000000) >> 24; 14883 cdb[7] = (buf_len & 0x00ff0000) >> 16; 14884 cdb[8] = (buf_len & 0x0000ff00) >> 8; 14885 cdb[9] = (buf_len & 0x000000ff); 14886 14887 ret = mptsas_send_scsi_cmd(mpt, &ap, ptgt, &cdb[0], CDB_GROUP5, 14888 repluns_bp, NULL); 14889 if (ret != DDI_SUCCESS) { 14890 scsi_free_consistent_buf(repluns_bp); 14891 retry++; 14892 continue; 14893 } 14894 lun_list_len = BE_32(*(int *)((void *)( 14895 repluns_bp->b_un.b_addr))); 14896 if (buf_len >= lun_list_len + 8) { 14897 ret = DDI_SUCCESS; 14898 break; 14899 } 14900 scsi_free_consistent_buf(repluns_bp); 14901 buf_len = lun_list_len + 8; 14902 14903 } while (retry < 3); 14904 14905 if (ret != DDI_SUCCESS) 14906 return (ret); 14907 buffer = (char *)repluns_bp->b_un.b_addr; 14908 /* 14909 * find out the number of luns returned by the SCSI ReportLun call 14910 * and allocate buffer space 14911 */ 14912 lun_total = lun_list_len / MPTSAS_SCSI_REPORTLUNS_ADDRESS_SIZE; 14913 saved_repluns = kmem_zalloc(sizeof (uint16_t) * lun_total, KM_SLEEP); 14914 if (saved_repluns == NULL) { 14915 scsi_free_consistent_buf(repluns_bp); 14916 return (DDI_FAILURE); 14917 } 14918 for (lun_cnt = 0; lun_cnt < lun_total; lun_cnt++) { 14919 if (mptsas_retrieve_lundata(lun_cnt, (uint8_t *)(buffer), 14920 &lun_num, &lun_addr_type) != DDI_SUCCESS) { 14921 continue; 14922 } 14923 saved_repluns[lun_cnt] = lun_num; 14924 if (cdip = mptsas_find_child_addr(pdip, sas_wwn, lun_num)) 14925 ret = DDI_SUCCESS; 14926 else 14927 ret = mptsas_probe_lun(pdip, lun_num, &cdip, 14928 ptgt); 14929 if ((ret == DDI_SUCCESS) && (cdip != NULL)) { 14930 (void) ndi_prop_remove(DDI_DEV_T_NONE, cdip, 14931 MPTSAS_DEV_GONE); 14932 } 14933 } 14934 mptsas_offline_missed_luns(pdip, saved_repluns, lun_total, ptgt); 14935 kmem_free(saved_repluns, sizeof (uint16_t) * lun_total); 14936 scsi_free_consistent_buf(repluns_bp); 14937 return (DDI_SUCCESS); 14938 } 14939 14940 static int 14941 mptsas_config_raid(dev_info_t *pdip, uint16_t target, dev_info_t **dip) 14942 { 14943 int rval = DDI_FAILURE; 14944 struct scsi_inquiry *sd_inq = NULL; 14945 mptsas_t *mpt = DIP2MPT(pdip); 14946 mptsas_target_t *ptgt = NULL; 14947 14948 mutex_enter(&mpt->m_mutex); 14949 ptgt = refhash_linear_search(mpt->m_targets, 14950 mptsas_target_eval_devhdl, &target); 14951 mutex_exit(&mpt->m_mutex); 14952 if (ptgt == NULL) { 14953 mptsas_log(mpt, CE_WARN, "Volume with VolDevHandle of 0x%x " 14954 "not found.", target); 14955 return (rval); 14956 } 14957 14958 sd_inq = (struct scsi_inquiry *)kmem_alloc(SUN_INQSIZE, KM_SLEEP); 14959 rval = mptsas_inquiry(mpt, ptgt, 0, 0, (uchar_t *)sd_inq, 14960 SUN_INQSIZE, 0, (uchar_t)0); 14961 14962 if ((rval == DDI_SUCCESS) && MPTSAS_VALID_LUN(sd_inq)) { 14963 rval = mptsas_create_phys_lun(pdip, sd_inq, NULL, dip, ptgt, 14964 0); 14965 } else { 14966 rval = DDI_FAILURE; 14967 } 14968 14969 kmem_free(sd_inq, SUN_INQSIZE); 14970 return (rval); 14971 } 14972 14973 /* 14974 * configure all RAID volumes for virtual iport 14975 */ 14976 static void 14977 mptsas_config_all_viport(dev_info_t *pdip) 14978 { 14979 mptsas_t *mpt = DIP2MPT(pdip); 14980 int config, vol; 14981 int target; 14982 dev_info_t *lundip = NULL; 14983 14984 /* 14985 * Get latest RAID info and search for any Volume DevHandles. If any 14986 * are found, configure the volume. 14987 */ 14988 mutex_enter(&mpt->m_mutex); 14989 for (config = 0; config < mpt->m_num_raid_configs; config++) { 14990 for (vol = 0; vol < MPTSAS_MAX_RAIDVOLS; vol++) { 14991 if (mpt->m_raidconfig[config].m_raidvol[vol].m_israid 14992 == 1) { 14993 target = mpt->m_raidconfig[config]. 14994 m_raidvol[vol].m_raidhandle; 14995 mutex_exit(&mpt->m_mutex); 14996 (void) mptsas_config_raid(pdip, target, 14997 &lundip); 14998 mutex_enter(&mpt->m_mutex); 14999 } 15000 } 15001 } 15002 mutex_exit(&mpt->m_mutex); 15003 } 15004 15005 static void 15006 mptsas_offline_missed_luns(dev_info_t *pdip, uint16_t *repluns, 15007 int lun_cnt, mptsas_target_t *ptgt) 15008 { 15009 dev_info_t *child = NULL, *savechild = NULL; 15010 mdi_pathinfo_t *pip = NULL, *savepip = NULL; 15011 uint64_t sas_wwn, wwid; 15012 uint8_t phy; 15013 int lun; 15014 int i; 15015 int find; 15016 char *addr; 15017 char *nodename; 15018 mptsas_t *mpt = DIP2MPT(pdip); 15019 15020 mutex_enter(&mpt->m_mutex); 15021 wwid = ptgt->m_addr.mta_wwn; 15022 mutex_exit(&mpt->m_mutex); 15023 15024 child = ddi_get_child(pdip); 15025 while (child) { 15026 find = 0; 15027 savechild = child; 15028 child = ddi_get_next_sibling(child); 15029 15030 nodename = ddi_node_name(savechild); 15031 if (strcmp(nodename, "smp") == 0) { 15032 continue; 15033 } 15034 15035 addr = ddi_get_name_addr(savechild); 15036 if (addr == NULL) { 15037 continue; 15038 } 15039 15040 if (mptsas_parse_address(addr, &sas_wwn, &phy, &lun) != 15041 DDI_SUCCESS) { 15042 continue; 15043 } 15044 15045 if (wwid == sas_wwn) { 15046 for (i = 0; i < lun_cnt; i++) { 15047 if (repluns[i] == lun) { 15048 find = 1; 15049 break; 15050 } 15051 } 15052 } else { 15053 continue; 15054 } 15055 if (find == 0) { 15056 /* 15057 * The lun has not been there already 15058 */ 15059 (void) mptsas_offline_lun(pdip, savechild, NULL, 15060 NDI_DEVI_REMOVE); 15061 } 15062 } 15063 15064 pip = mdi_get_next_client_path(pdip, NULL); 15065 while (pip) { 15066 find = 0; 15067 savepip = pip; 15068 addr = MDI_PI(pip)->pi_addr; 15069 15070 pip = mdi_get_next_client_path(pdip, pip); 15071 15072 if (addr == NULL) { 15073 continue; 15074 } 15075 15076 if (mptsas_parse_address(addr, &sas_wwn, &phy, 15077 &lun) != DDI_SUCCESS) { 15078 continue; 15079 } 15080 15081 if (sas_wwn == wwid) { 15082 for (i = 0; i < lun_cnt; i++) { 15083 if (repluns[i] == lun) { 15084 find = 1; 15085 break; 15086 } 15087 } 15088 } else { 15089 continue; 15090 } 15091 15092 if (find == 0) { 15093 /* 15094 * The lun has not been there already 15095 */ 15096 (void) mptsas_offline_lun(pdip, NULL, savepip, 15097 NDI_DEVI_REMOVE); 15098 } 15099 } 15100 } 15101 15102 void 15103 mptsas_update_hashtab(struct mptsas *mpt) 15104 { 15105 uint32_t page_address; 15106 int rval = 0; 15107 uint16_t dev_handle; 15108 mptsas_target_t *ptgt = NULL; 15109 mptsas_smp_t smp_node; 15110 15111 /* 15112 * Get latest RAID info. 15113 */ 15114 (void) mptsas_get_raid_info(mpt); 15115 15116 dev_handle = mpt->m_smp_devhdl; 15117 for (; mpt->m_done_traverse_smp == 0; ) { 15118 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_GET_NEXT_HNDL & 15119 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)dev_handle; 15120 if (mptsas_get_sas_expander_page0(mpt, page_address, &smp_node) 15121 != DDI_SUCCESS) { 15122 break; 15123 } 15124 mpt->m_smp_devhdl = dev_handle = smp_node.m_devhdl; 15125 (void) mptsas_smp_alloc(mpt, &smp_node); 15126 } 15127 15128 /* 15129 * Config target devices 15130 */ 15131 dev_handle = mpt->m_dev_handle; 15132 15133 /* 15134 * Do loop to get sas device page 0 by GetNextHandle till the 15135 * the last handle. If the sas device is a SATA/SSP target, 15136 * we try to config it. 15137 */ 15138 for (; mpt->m_done_traverse_dev == 0; ) { 15139 ptgt = NULL; 15140 page_address = 15141 (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 15142 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 15143 (uint32_t)dev_handle; 15144 rval = mptsas_get_target_device_info(mpt, page_address, 15145 &dev_handle, &ptgt); 15146 if ((rval == DEV_INFO_FAIL_PAGE0) || 15147 (rval == DEV_INFO_FAIL_ALLOC)) { 15148 break; 15149 } 15150 15151 mpt->m_dev_handle = dev_handle; 15152 } 15153 15154 } 15155 15156 void 15157 mptsas_update_driver_data(struct mptsas *mpt) 15158 { 15159 mptsas_target_t *tp; 15160 mptsas_smp_t *sp; 15161 15162 ASSERT(MUTEX_HELD(&mpt->m_mutex)); 15163 15164 /* 15165 * TODO after hard reset, update the driver data structures 15166 * 1. update port/phymask mapping table mpt->m_phy_info 15167 * 2. invalid all the entries in hash table 15168 * m_devhdl = 0xffff and m_deviceinfo = 0 15169 * 3. call sas_device_page/expander_page to update hash table 15170 */ 15171 mptsas_update_phymask(mpt); 15172 /* 15173 * Invalid the existing entries 15174 * 15175 * XXX - It seems like we should just delete everything here. We are 15176 * holding the lock and are about to refresh all the targets in both 15177 * hashes anyway. Given the path we're in, what outstanding async 15178 * event could possibly be trying to reference one of these things 15179 * without taking the lock, and how would that be useful anyway? 15180 */ 15181 for (tp = refhash_first(mpt->m_targets); tp != NULL; 15182 tp = refhash_next(mpt->m_targets, tp)) { 15183 tp->m_devhdl = MPTSAS_INVALID_DEVHDL; 15184 tp->m_deviceinfo = 0; 15185 tp->m_dr_flag = MPTSAS_DR_INACTIVE; 15186 } 15187 for (sp = refhash_first(mpt->m_smp_targets); sp != NULL; 15188 sp = refhash_next(mpt->m_smp_targets, sp)) { 15189 sp->m_devhdl = MPTSAS_INVALID_DEVHDL; 15190 sp->m_deviceinfo = 0; 15191 } 15192 mpt->m_done_traverse_dev = 0; 15193 mpt->m_done_traverse_smp = 0; 15194 mpt->m_dev_handle = mpt->m_smp_devhdl = MPTSAS_INVALID_DEVHDL; 15195 mptsas_update_hashtab(mpt); 15196 } 15197 15198 static void 15199 mptsas_config_all(dev_info_t *pdip) 15200 { 15201 dev_info_t *smpdip = NULL; 15202 mptsas_t *mpt = DIP2MPT(pdip); 15203 int phymask = 0; 15204 mptsas_phymask_t phy_mask; 15205 mptsas_target_t *ptgt = NULL; 15206 mptsas_smp_t *psmp; 15207 15208 /* 15209 * Get the phymask associated to the iport 15210 */ 15211 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 15212 "phymask", 0); 15213 15214 /* 15215 * Enumerate RAID volumes here (phymask == 0). 15216 */ 15217 if (phymask == 0) { 15218 mptsas_config_all_viport(pdip); 15219 return; 15220 } 15221 15222 mutex_enter(&mpt->m_mutex); 15223 15224 if (!mpt->m_done_traverse_dev || !mpt->m_done_traverse_smp) { 15225 mptsas_update_hashtab(mpt); 15226 } 15227 15228 for (psmp = refhash_first(mpt->m_smp_targets); psmp != NULL; 15229 psmp = refhash_next(mpt->m_smp_targets, psmp)) { 15230 phy_mask = psmp->m_addr.mta_phymask; 15231 if (phy_mask == phymask) { 15232 smpdip = NULL; 15233 mutex_exit(&mpt->m_mutex); 15234 (void) mptsas_online_smp(pdip, psmp, &smpdip); 15235 mutex_enter(&mpt->m_mutex); 15236 } 15237 } 15238 15239 for (ptgt = refhash_first(mpt->m_targets); ptgt != NULL; 15240 ptgt = refhash_next(mpt->m_targets, ptgt)) { 15241 phy_mask = ptgt->m_addr.mta_phymask; 15242 if (phy_mask == phymask) { 15243 mutex_exit(&mpt->m_mutex); 15244 (void) mptsas_config_target(pdip, ptgt); 15245 mutex_enter(&mpt->m_mutex); 15246 } 15247 } 15248 mutex_exit(&mpt->m_mutex); 15249 } 15250 15251 static int 15252 mptsas_config_target(dev_info_t *pdip, mptsas_target_t *ptgt) 15253 { 15254 int rval = DDI_FAILURE; 15255 dev_info_t *tdip; 15256 15257 rval = mptsas_config_luns(pdip, ptgt); 15258 if (rval != DDI_SUCCESS) { 15259 /* 15260 * The return value means the SCMD_REPORT_LUNS 15261 * did not execute successfully. The target maybe 15262 * doesn't support such command. 15263 */ 15264 rval = mptsas_probe_lun(pdip, 0, &tdip, ptgt); 15265 } 15266 return (rval); 15267 } 15268 15269 /* 15270 * Return fail if not all the childs/paths are freed. 15271 * if there is any path under the HBA, the return value will be always fail 15272 * because we didn't call mdi_pi_free for path 15273 */ 15274 static int 15275 mptsas_offline_targetdev(dev_info_t *pdip, char *name) 15276 { 15277 dev_info_t *child = NULL, *prechild = NULL; 15278 mdi_pathinfo_t *pip = NULL, *savepip = NULL; 15279 int tmp_rval, rval = DDI_SUCCESS; 15280 char *addr, *cp; 15281 size_t s; 15282 mptsas_t *mpt = DIP2MPT(pdip); 15283 15284 child = ddi_get_child(pdip); 15285 while (child) { 15286 addr = ddi_get_name_addr(child); 15287 prechild = child; 15288 child = ddi_get_next_sibling(child); 15289 15290 if (addr == NULL) { 15291 continue; 15292 } 15293 if ((cp = strchr(addr, ',')) == NULL) { 15294 continue; 15295 } 15296 15297 s = (uintptr_t)cp - (uintptr_t)addr; 15298 15299 if (strncmp(addr, name, s) != 0) { 15300 continue; 15301 } 15302 15303 tmp_rval = mptsas_offline_lun(pdip, prechild, NULL, 15304 NDI_DEVI_REMOVE); 15305 if (tmp_rval != DDI_SUCCESS) { 15306 rval = DDI_FAILURE; 15307 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 15308 prechild, MPTSAS_DEV_GONE) != 15309 DDI_PROP_SUCCESS) { 15310 mptsas_log(mpt, CE_WARN, 15311 "unable to create property for " 15312 "SAS %s (MPTSAS_DEV_GONE)", addr); 15313 } 15314 } 15315 } 15316 15317 pip = mdi_get_next_client_path(pdip, NULL); 15318 while (pip) { 15319 addr = MDI_PI(pip)->pi_addr; 15320 savepip = pip; 15321 pip = mdi_get_next_client_path(pdip, pip); 15322 if (addr == NULL) { 15323 continue; 15324 } 15325 15326 if ((cp = strchr(addr, ',')) == NULL) { 15327 continue; 15328 } 15329 15330 s = (uintptr_t)cp - (uintptr_t)addr; 15331 15332 if (strncmp(addr, name, s) != 0) { 15333 continue; 15334 } 15335 15336 (void) mptsas_offline_lun(pdip, NULL, savepip, 15337 NDI_DEVI_REMOVE); 15338 /* 15339 * driver will not invoke mdi_pi_free, so path will not 15340 * be freed forever, return DDI_FAILURE. 15341 */ 15342 rval = DDI_FAILURE; 15343 } 15344 return (rval); 15345 } 15346 15347 static int 15348 mptsas_offline_lun(dev_info_t *pdip, dev_info_t *rdip, 15349 mdi_pathinfo_t *rpip, uint_t flags) 15350 { 15351 int rval = DDI_FAILURE; 15352 char *devname; 15353 dev_info_t *cdip, *parent; 15354 15355 if (rpip != NULL) { 15356 parent = scsi_vhci_dip; 15357 cdip = mdi_pi_get_client(rpip); 15358 } else if (rdip != NULL) { 15359 parent = pdip; 15360 cdip = rdip; 15361 } else { 15362 return (DDI_FAILURE); 15363 } 15364 15365 /* 15366 * Make sure node is attached otherwise 15367 * it won't have related cache nodes to 15368 * clean up. i_ddi_devi_attached is 15369 * similiar to i_ddi_node_state(cdip) >= 15370 * DS_ATTACHED. 15371 */ 15372 if (i_ddi_devi_attached(cdip)) { 15373 15374 /* Get full devname */ 15375 devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 15376 (void) ddi_deviname(cdip, devname); 15377 /* Clean cache */ 15378 (void) devfs_clean(parent, devname + 1, 15379 DV_CLEAN_FORCE); 15380 kmem_free(devname, MAXNAMELEN + 1); 15381 } 15382 if (rpip != NULL) { 15383 if (MDI_PI_IS_OFFLINE(rpip)) { 15384 rval = DDI_SUCCESS; 15385 } else { 15386 rval = mdi_pi_offline(rpip, 0); 15387 } 15388 } else { 15389 rval = ndi_devi_offline(cdip, flags); 15390 } 15391 15392 return (rval); 15393 } 15394 15395 static dev_info_t * 15396 mptsas_find_smp_child(dev_info_t *parent, char *str_wwn) 15397 { 15398 dev_info_t *child = NULL; 15399 char *smp_wwn = NULL; 15400 15401 child = ddi_get_child(parent); 15402 while (child) { 15403 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, child, 15404 DDI_PROP_DONTPASS, SMP_WWN, &smp_wwn) 15405 != DDI_SUCCESS) { 15406 child = ddi_get_next_sibling(child); 15407 continue; 15408 } 15409 15410 if (strcmp(smp_wwn, str_wwn) == 0) { 15411 ddi_prop_free(smp_wwn); 15412 break; 15413 } 15414 child = ddi_get_next_sibling(child); 15415 ddi_prop_free(smp_wwn); 15416 } 15417 return (child); 15418 } 15419 15420 static int 15421 mptsas_offline_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, uint_t flags) 15422 { 15423 int rval = DDI_FAILURE; 15424 char *devname; 15425 char wwn_str[MPTSAS_WWN_STRLEN]; 15426 dev_info_t *cdip; 15427 15428 (void) sprintf(wwn_str, "%"PRIx64, smp_node->m_addr.mta_wwn); 15429 15430 cdip = mptsas_find_smp_child(pdip, wwn_str); 15431 15432 if (cdip == NULL) 15433 return (DDI_SUCCESS); 15434 15435 /* 15436 * Make sure node is attached otherwise 15437 * it won't have related cache nodes to 15438 * clean up. i_ddi_devi_attached is 15439 * similiar to i_ddi_node_state(cdip) >= 15440 * DS_ATTACHED. 15441 */ 15442 if (i_ddi_devi_attached(cdip)) { 15443 15444 /* Get full devname */ 15445 devname = kmem_alloc(MAXNAMELEN + 1, KM_SLEEP); 15446 (void) ddi_deviname(cdip, devname); 15447 /* Clean cache */ 15448 (void) devfs_clean(pdip, devname + 1, 15449 DV_CLEAN_FORCE); 15450 kmem_free(devname, MAXNAMELEN + 1); 15451 } 15452 15453 rval = ndi_devi_offline(cdip, flags); 15454 15455 return (rval); 15456 } 15457 15458 static dev_info_t * 15459 mptsas_find_child(dev_info_t *pdip, char *name) 15460 { 15461 dev_info_t *child = NULL; 15462 char *rname = NULL; 15463 int rval = DDI_FAILURE; 15464 15465 rname = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15466 15467 child = ddi_get_child(pdip); 15468 while (child) { 15469 rval = mptsas_name_child(child, rname, SCSI_MAXNAMELEN); 15470 if (rval != DDI_SUCCESS) { 15471 child = ddi_get_next_sibling(child); 15472 bzero(rname, SCSI_MAXNAMELEN); 15473 continue; 15474 } 15475 15476 if (strcmp(rname, name) == 0) { 15477 break; 15478 } 15479 child = ddi_get_next_sibling(child); 15480 bzero(rname, SCSI_MAXNAMELEN); 15481 } 15482 15483 kmem_free(rname, SCSI_MAXNAMELEN); 15484 15485 return (child); 15486 } 15487 15488 15489 static dev_info_t * 15490 mptsas_find_child_addr(dev_info_t *pdip, uint64_t sasaddr, int lun) 15491 { 15492 dev_info_t *child = NULL; 15493 char *name = NULL; 15494 char *addr = NULL; 15495 15496 name = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15497 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15498 (void) sprintf(name, "%016"PRIx64, sasaddr); 15499 (void) sprintf(addr, "w%s,%x", name, lun); 15500 child = mptsas_find_child(pdip, addr); 15501 kmem_free(name, SCSI_MAXNAMELEN); 15502 kmem_free(addr, SCSI_MAXNAMELEN); 15503 return (child); 15504 } 15505 15506 static dev_info_t * 15507 mptsas_find_child_phy(dev_info_t *pdip, uint8_t phy) 15508 { 15509 dev_info_t *child; 15510 char *addr; 15511 15512 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15513 (void) sprintf(addr, "p%x,0", phy); 15514 child = mptsas_find_child(pdip, addr); 15515 kmem_free(addr, SCSI_MAXNAMELEN); 15516 return (child); 15517 } 15518 15519 static mdi_pathinfo_t * 15520 mptsas_find_path_phy(dev_info_t *pdip, uint8_t phy) 15521 { 15522 mdi_pathinfo_t *path; 15523 char *addr = NULL; 15524 15525 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15526 (void) sprintf(addr, "p%x,0", phy); 15527 path = mdi_pi_find(pdip, NULL, addr); 15528 kmem_free(addr, SCSI_MAXNAMELEN); 15529 return (path); 15530 } 15531 15532 static mdi_pathinfo_t * 15533 mptsas_find_path_addr(dev_info_t *parent, uint64_t sasaddr, int lun) 15534 { 15535 mdi_pathinfo_t *path; 15536 char *name = NULL; 15537 char *addr = NULL; 15538 15539 name = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15540 addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15541 (void) sprintf(name, "%016"PRIx64, sasaddr); 15542 (void) sprintf(addr, "w%s,%x", name, lun); 15543 path = mdi_pi_find(parent, NULL, addr); 15544 kmem_free(name, SCSI_MAXNAMELEN); 15545 kmem_free(addr, SCSI_MAXNAMELEN); 15546 15547 return (path); 15548 } 15549 15550 static int 15551 mptsas_create_lun(dev_info_t *pdip, struct scsi_inquiry *sd_inq, 15552 dev_info_t **lun_dip, mptsas_target_t *ptgt, int lun) 15553 { 15554 int i = 0; 15555 uchar_t *inq83 = NULL; 15556 int inq83_len1 = 0xFF; 15557 int inq83_len = 0; 15558 int rval = DDI_FAILURE; 15559 ddi_devid_t devid; 15560 char *guid = NULL; 15561 int target = ptgt->m_devhdl; 15562 mdi_pathinfo_t *pip = NULL; 15563 mptsas_t *mpt = DIP2MPT(pdip); 15564 15565 /* 15566 * For DVD/CD ROM and tape devices and optical 15567 * devices, we won't try to enumerate them under 15568 * scsi_vhci, so no need to try page83 15569 */ 15570 if (sd_inq && (sd_inq->inq_dtype == DTYPE_RODIRECT || 15571 sd_inq->inq_dtype == DTYPE_OPTICAL || 15572 sd_inq->inq_dtype == DTYPE_ESI)) 15573 goto create_lun; 15574 15575 /* 15576 * The LCA returns good SCSI status, but corrupt page 83 data the first 15577 * time it is queried. The solution is to keep trying to request page83 15578 * and verify the GUID is not (DDI_NOT_WELL_FORMED) in 15579 * mptsas_inq83_retry_timeout seconds. If the timeout expires, driver 15580 * give up to get VPD page at this stage and fail the enumeration. 15581 */ 15582 15583 inq83 = kmem_zalloc(inq83_len1, KM_SLEEP); 15584 15585 for (i = 0; i < mptsas_inq83_retry_timeout; i++) { 15586 rval = mptsas_inquiry(mpt, ptgt, lun, 0x83, inq83, 15587 inq83_len1, &inq83_len, 1); 15588 if (rval != 0) { 15589 mptsas_log(mpt, CE_WARN, "!mptsas request inquiry page " 15590 "0x83 for target:%x, lun:%x failed!", target, lun); 15591 if (mptsas_physical_bind_failed_page_83 != B_FALSE) 15592 goto create_lun; 15593 goto out; 15594 } 15595 /* 15596 * create DEVID from inquiry data 15597 */ 15598 if ((rval = ddi_devid_scsi_encode( 15599 DEVID_SCSI_ENCODE_VERSION_LATEST, NULL, (uchar_t *)sd_inq, 15600 sizeof (struct scsi_inquiry), NULL, 0, inq83, 15601 (size_t)inq83_len, &devid)) == DDI_SUCCESS) { 15602 /* 15603 * extract GUID from DEVID 15604 */ 15605 guid = ddi_devid_to_guid(devid); 15606 15607 /* 15608 * Do not enable MPXIO if the strlen(guid) is greater 15609 * than MPTSAS_MAX_GUID_LEN, this constrain would be 15610 * handled by framework later. 15611 */ 15612 if (guid && (strlen(guid) > MPTSAS_MAX_GUID_LEN)) { 15613 ddi_devid_free_guid(guid); 15614 guid = NULL; 15615 if (mpt->m_mpxio_enable == TRUE) { 15616 mptsas_log(mpt, CE_NOTE, "!Target:%x, " 15617 "lun:%x doesn't have a valid GUID, " 15618 "multipathing for this drive is " 15619 "not enabled", target, lun); 15620 } 15621 } 15622 15623 /* 15624 * devid no longer needed 15625 */ 15626 ddi_devid_free(devid); 15627 break; 15628 } else if (rval == DDI_NOT_WELL_FORMED) { 15629 /* 15630 * return value of ddi_devid_scsi_encode equal to 15631 * DDI_NOT_WELL_FORMED means DEVID_RETRY, it worth 15632 * to retry inquiry page 0x83 and get GUID. 15633 */ 15634 NDBG20(("Not well formed devid, retry...")); 15635 delay(1 * drv_usectohz(1000000)); 15636 continue; 15637 } else { 15638 mptsas_log(mpt, CE_WARN, "!Encode devid failed for " 15639 "path target:%x, lun:%x", target, lun); 15640 rval = DDI_FAILURE; 15641 goto create_lun; 15642 } 15643 } 15644 15645 if (i == mptsas_inq83_retry_timeout) { 15646 mptsas_log(mpt, CE_WARN, "!Repeated page83 requests timeout " 15647 "for path target:%x, lun:%x", target, lun); 15648 } 15649 15650 rval = DDI_FAILURE; 15651 15652 create_lun: 15653 if ((guid != NULL) && (mpt->m_mpxio_enable == TRUE)) { 15654 rval = mptsas_create_virt_lun(pdip, sd_inq, guid, lun_dip, &pip, 15655 ptgt, lun); 15656 } 15657 if (rval != DDI_SUCCESS) { 15658 rval = mptsas_create_phys_lun(pdip, sd_inq, guid, lun_dip, 15659 ptgt, lun); 15660 15661 } 15662 out: 15663 if (guid != NULL) { 15664 /* 15665 * guid no longer needed 15666 */ 15667 ddi_devid_free_guid(guid); 15668 } 15669 if (inq83 != NULL) 15670 kmem_free(inq83, inq83_len1); 15671 return (rval); 15672 } 15673 15674 static int 15675 mptsas_create_virt_lun(dev_info_t *pdip, struct scsi_inquiry *inq, char *guid, 15676 dev_info_t **lun_dip, mdi_pathinfo_t **pip, mptsas_target_t *ptgt, int lun) 15677 { 15678 int target; 15679 char *nodename = NULL; 15680 char **compatible = NULL; 15681 int ncompatible = 0; 15682 int mdi_rtn = MDI_FAILURE; 15683 int rval = DDI_FAILURE; 15684 char *old_guid = NULL; 15685 mptsas_t *mpt = DIP2MPT(pdip); 15686 char *lun_addr = NULL; 15687 char wwn_str[MPTSAS_WWN_STRLEN]; 15688 char *component = NULL; 15689 uint8_t phy = 0xFF; 15690 uint64_t sas_wwn; 15691 int64_t lun64 = 0; 15692 uint32_t devinfo; 15693 uint16_t dev_hdl; 15694 uint16_t pdev_hdl; 15695 uint64_t dev_sas_wwn; 15696 uint64_t pdev_sas_wwn; 15697 uint32_t pdev_info; 15698 uint8_t physport; 15699 uint8_t phy_id; 15700 uint32_t page_address; 15701 uint16_t bay_num, enclosure, io_flags; 15702 char pdev_wwn_str[MPTSAS_WWN_STRLEN]; 15703 uint32_t dev_info; 15704 15705 mutex_enter(&mpt->m_mutex); 15706 target = ptgt->m_devhdl; 15707 sas_wwn = ptgt->m_addr.mta_wwn; 15708 devinfo = ptgt->m_deviceinfo; 15709 phy = ptgt->m_phynum; 15710 mutex_exit(&mpt->m_mutex); 15711 15712 if (sas_wwn) { 15713 *pip = mptsas_find_path_addr(pdip, sas_wwn, lun); 15714 } else { 15715 *pip = mptsas_find_path_phy(pdip, phy); 15716 } 15717 15718 if (*pip != NULL) { 15719 *lun_dip = MDI_PI(*pip)->pi_client->ct_dip; 15720 ASSERT(*lun_dip != NULL); 15721 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, *lun_dip, 15722 (DDI_PROP_DONTPASS | DDI_PROP_NOTPROM), 15723 MDI_CLIENT_GUID_PROP, &old_guid) == DDI_SUCCESS) { 15724 if (strncmp(guid, old_guid, strlen(guid)) == 0) { 15725 /* 15726 * Same path back online again. 15727 */ 15728 (void) ddi_prop_free(old_guid); 15729 if ((!MDI_PI_IS_ONLINE(*pip)) && 15730 (!MDI_PI_IS_STANDBY(*pip)) && 15731 (ptgt->m_tgt_unconfigured == 0)) { 15732 rval = mdi_pi_online(*pip, 0); 15733 mutex_enter(&mpt->m_mutex); 15734 ptgt->m_led_status = 0; 15735 (void) mptsas_flush_led_status(mpt, 15736 ptgt); 15737 mutex_exit(&mpt->m_mutex); 15738 } else { 15739 rval = DDI_SUCCESS; 15740 } 15741 if (rval != DDI_SUCCESS) { 15742 mptsas_log(mpt, CE_WARN, "path:target: " 15743 "%x, lun:%x online failed!", target, 15744 lun); 15745 *pip = NULL; 15746 *lun_dip = NULL; 15747 } 15748 return (rval); 15749 } else { 15750 /* 15751 * The GUID of the LUN has changed which maybe 15752 * because customer mapped another volume to the 15753 * same LUN. 15754 */ 15755 mptsas_log(mpt, CE_WARN, "The GUID of the " 15756 "target:%x, lun:%x was changed, maybe " 15757 "because someone mapped another volume " 15758 "to the same LUN", target, lun); 15759 (void) ddi_prop_free(old_guid); 15760 if (!MDI_PI_IS_OFFLINE(*pip)) { 15761 rval = mdi_pi_offline(*pip, 0); 15762 if (rval != MDI_SUCCESS) { 15763 mptsas_log(mpt, CE_WARN, "path:" 15764 "target:%x, lun:%x offline " 15765 "failed!", target, lun); 15766 *pip = NULL; 15767 *lun_dip = NULL; 15768 return (DDI_FAILURE); 15769 } 15770 } 15771 if (mdi_pi_free(*pip, 0) != MDI_SUCCESS) { 15772 mptsas_log(mpt, CE_WARN, "path:target:" 15773 "%x, lun:%x free failed!", target, 15774 lun); 15775 *pip = NULL; 15776 *lun_dip = NULL; 15777 return (DDI_FAILURE); 15778 } 15779 } 15780 } else { 15781 mptsas_log(mpt, CE_WARN, "Can't get client-guid " 15782 "property for path:target:%x, lun:%x", target, lun); 15783 *pip = NULL; 15784 *lun_dip = NULL; 15785 return (DDI_FAILURE); 15786 } 15787 } 15788 scsi_hba_nodename_compatible_get(inq, NULL, 15789 inq->inq_dtype, NULL, &nodename, &compatible, &ncompatible); 15790 15791 /* 15792 * if nodename can't be determined then print a message and skip it 15793 */ 15794 if (nodename == NULL) { 15795 mptsas_log(mpt, CE_WARN, "found no compatible " 15796 "driver for target%d lun %d dtype:0x%02x", target, lun, 15797 inq->inq_dtype); 15798 return (DDI_FAILURE); 15799 } 15800 15801 /* The property is needed by MPAPI */ 15802 (void) sprintf(wwn_str, "%016"PRIx64, sas_wwn); 15803 15804 lun_addr = kmem_zalloc(SCSI_MAXNAMELEN, KM_SLEEP); 15805 if (guid) { 15806 (void) sprintf(lun_addr, "w%s,%x", wwn_str, lun); 15807 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 15808 } else { 15809 (void) sprintf(lun_addr, "p%x,%x", phy, lun); 15810 (void) sprintf(wwn_str, "p%x", phy); 15811 } 15812 15813 mdi_rtn = mdi_pi_alloc_compatible(pdip, nodename, 15814 guid, lun_addr, compatible, ncompatible, 15815 0, pip); 15816 if (mdi_rtn == MDI_SUCCESS) { 15817 15818 if (mdi_prop_update_string(*pip, MDI_GUID, 15819 guid) != DDI_SUCCESS) { 15820 mptsas_log(mpt, CE_WARN, "unable to " 15821 "create prop for target %d lun %d (MDI_GUID)", 15822 target, lun); 15823 mdi_rtn = MDI_FAILURE; 15824 goto virt_create_done; 15825 } 15826 15827 if (mdi_prop_update_int(*pip, LUN_PROP, 15828 lun) != DDI_SUCCESS) { 15829 mptsas_log(mpt, CE_WARN, "unable to " 15830 "create prop for target %d lun %d (LUN_PROP)", 15831 target, lun); 15832 mdi_rtn = MDI_FAILURE; 15833 goto virt_create_done; 15834 } 15835 lun64 = (int64_t)lun; 15836 if (mdi_prop_update_int64(*pip, LUN64_PROP, 15837 lun64) != DDI_SUCCESS) { 15838 mptsas_log(mpt, CE_WARN, "unable to " 15839 "create prop for target %d (LUN64_PROP)", 15840 target); 15841 mdi_rtn = MDI_FAILURE; 15842 goto virt_create_done; 15843 } 15844 if (mdi_prop_update_string_array(*pip, "compatible", 15845 compatible, ncompatible) != 15846 DDI_PROP_SUCCESS) { 15847 mptsas_log(mpt, CE_WARN, "unable to " 15848 "create prop for target %d lun %d (COMPATIBLE)", 15849 target, lun); 15850 mdi_rtn = MDI_FAILURE; 15851 goto virt_create_done; 15852 } 15853 if (sas_wwn && (mdi_prop_update_string(*pip, 15854 SCSI_ADDR_PROP_TARGET_PORT, wwn_str) != DDI_PROP_SUCCESS)) { 15855 mptsas_log(mpt, CE_WARN, "unable to " 15856 "create prop for target %d lun %d " 15857 "(target-port)", target, lun); 15858 mdi_rtn = MDI_FAILURE; 15859 goto virt_create_done; 15860 } else if ((sas_wwn == 0) && (mdi_prop_update_int(*pip, 15861 "sata-phy", phy) != DDI_PROP_SUCCESS)) { 15862 /* 15863 * Direct attached SATA device without DeviceName 15864 */ 15865 mptsas_log(mpt, CE_WARN, "unable to " 15866 "create prop for SAS target %d lun %d " 15867 "(sata-phy)", target, lun); 15868 mdi_rtn = MDI_FAILURE; 15869 goto virt_create_done; 15870 } 15871 mutex_enter(&mpt->m_mutex); 15872 15873 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15874 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 15875 (uint32_t)ptgt->m_devhdl; 15876 rval = mptsas_get_sas_device_page0(mpt, page_address, 15877 &dev_hdl, &dev_sas_wwn, &dev_info, &physport, 15878 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 15879 if (rval != DDI_SUCCESS) { 15880 mutex_exit(&mpt->m_mutex); 15881 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 15882 "parent device for handle %d", page_address); 15883 mdi_rtn = MDI_FAILURE; 15884 goto virt_create_done; 15885 } 15886 15887 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 15888 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)pdev_hdl; 15889 rval = mptsas_get_sas_device_page0(mpt, page_address, 15890 &dev_hdl, &pdev_sas_wwn, &pdev_info, &physport, 15891 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 15892 if (rval != DDI_SUCCESS) { 15893 mutex_exit(&mpt->m_mutex); 15894 mptsas_log(mpt, CE_WARN, "mptsas unable to get" 15895 "device info for handle %d", page_address); 15896 mdi_rtn = MDI_FAILURE; 15897 goto virt_create_done; 15898 } 15899 15900 mutex_exit(&mpt->m_mutex); 15901 15902 /* 15903 * If this device direct attached to the controller 15904 * set the attached-port to the base wwid 15905 */ 15906 if ((ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 15907 != DEVINFO_DIRECT_ATTACHED) { 15908 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 15909 pdev_sas_wwn); 15910 } else { 15911 /* 15912 * Update the iport's attached-port to guid 15913 */ 15914 if (sas_wwn == 0) { 15915 (void) sprintf(wwn_str, "p%x", phy); 15916 } else { 15917 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 15918 } 15919 if (ddi_prop_update_string(DDI_DEV_T_NONE, 15920 pdip, SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 15921 DDI_PROP_SUCCESS) { 15922 mptsas_log(mpt, CE_WARN, 15923 "mptsas unable to create " 15924 "property for iport target-port" 15925 " %s (sas_wwn)", 15926 wwn_str); 15927 mdi_rtn = MDI_FAILURE; 15928 goto virt_create_done; 15929 } 15930 15931 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 15932 mpt->un.m_base_wwid); 15933 } 15934 15935 if (mdi_prop_update_string(*pip, 15936 SCSI_ADDR_PROP_ATTACHED_PORT, pdev_wwn_str) != 15937 DDI_PROP_SUCCESS) { 15938 mptsas_log(mpt, CE_WARN, "unable to create " 15939 "property for iport attached-port %s (sas_wwn)", 15940 pdev_wwn_str); 15941 mdi_rtn = MDI_FAILURE; 15942 goto virt_create_done; 15943 } 15944 15945 15946 if (inq->inq_dtype == 0) { 15947 component = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 15948 /* 15949 * set obp path for pathinfo 15950 */ 15951 (void) snprintf(component, MAXPATHLEN, 15952 "disk@%s", lun_addr); 15953 15954 if (mdi_pi_pathname_obp_set(*pip, component) != 15955 DDI_SUCCESS) { 15956 mptsas_log(mpt, CE_WARN, 15957 "unable to set obp-path for object %s", 15958 component); 15959 mdi_rtn = MDI_FAILURE; 15960 goto virt_create_done; 15961 } 15962 } 15963 15964 *lun_dip = MDI_PI(*pip)->pi_client->ct_dip; 15965 if (devinfo & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 15966 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 15967 if ((ndi_prop_update_int(DDI_DEV_T_NONE, *lun_dip, 15968 "pm-capable", 1)) != 15969 DDI_PROP_SUCCESS) { 15970 mptsas_log(mpt, CE_WARN, 15971 "failed to create pm-capable " 15972 "property, target %d", target); 15973 mdi_rtn = MDI_FAILURE; 15974 goto virt_create_done; 15975 } 15976 } 15977 /* 15978 * Create the phy-num property 15979 */ 15980 if (mdi_prop_update_int(*pip, "phy-num", 15981 ptgt->m_phynum) != DDI_SUCCESS) { 15982 mptsas_log(mpt, CE_WARN, "unable to " 15983 "create phy-num property for target %d lun %d", 15984 target, lun); 15985 mdi_rtn = MDI_FAILURE; 15986 goto virt_create_done; 15987 } 15988 NDBG20(("new path:%s onlining,", MDI_PI(*pip)->pi_addr)); 15989 mdi_rtn = mdi_pi_online(*pip, 0); 15990 if (mdi_rtn == MDI_SUCCESS) { 15991 mutex_enter(&mpt->m_mutex); 15992 ptgt->m_led_status = 0; 15993 (void) mptsas_flush_led_status(mpt, ptgt); 15994 mutex_exit(&mpt->m_mutex); 15995 } 15996 if (mdi_rtn == MDI_NOT_SUPPORTED) { 15997 mdi_rtn = MDI_FAILURE; 15998 } 15999 virt_create_done: 16000 if (*pip && mdi_rtn != MDI_SUCCESS) { 16001 (void) mdi_pi_free(*pip, 0); 16002 *pip = NULL; 16003 *lun_dip = NULL; 16004 } 16005 } 16006 16007 scsi_hba_nodename_compatible_free(nodename, compatible); 16008 if (lun_addr != NULL) { 16009 kmem_free(lun_addr, SCSI_MAXNAMELEN); 16010 } 16011 if (component != NULL) { 16012 kmem_free(component, MAXPATHLEN); 16013 } 16014 16015 return ((mdi_rtn == MDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 16016 } 16017 16018 static int 16019 mptsas_create_phys_lun(dev_info_t *pdip, struct scsi_inquiry *inq, 16020 char *guid, dev_info_t **lun_dip, mptsas_target_t *ptgt, int lun) 16021 { 16022 int target; 16023 int rval; 16024 int ndi_rtn = NDI_FAILURE; 16025 uint64_t be_sas_wwn; 16026 char *nodename = NULL; 16027 char **compatible = NULL; 16028 int ncompatible = 0; 16029 int instance = 0; 16030 mptsas_t *mpt = DIP2MPT(pdip); 16031 char wwn_str[MPTSAS_WWN_STRLEN]; 16032 char component[MAXPATHLEN]; 16033 uint8_t phy = 0xFF; 16034 uint64_t sas_wwn; 16035 uint32_t devinfo; 16036 uint16_t dev_hdl; 16037 uint16_t pdev_hdl; 16038 uint64_t pdev_sas_wwn; 16039 uint64_t dev_sas_wwn; 16040 uint32_t pdev_info; 16041 uint8_t physport; 16042 uint8_t phy_id; 16043 uint32_t page_address; 16044 uint16_t bay_num, enclosure, io_flags; 16045 char pdev_wwn_str[MPTSAS_WWN_STRLEN]; 16046 uint32_t dev_info; 16047 int64_t lun64 = 0; 16048 16049 mutex_enter(&mpt->m_mutex); 16050 target = ptgt->m_devhdl; 16051 sas_wwn = ptgt->m_addr.mta_wwn; 16052 devinfo = ptgt->m_deviceinfo; 16053 phy = ptgt->m_phynum; 16054 mutex_exit(&mpt->m_mutex); 16055 16056 /* 16057 * generate compatible property with binding-set "mpt" 16058 */ 16059 scsi_hba_nodename_compatible_get(inq, NULL, inq->inq_dtype, NULL, 16060 &nodename, &compatible, &ncompatible); 16061 16062 /* 16063 * if nodename can't be determined then print a message and skip it 16064 */ 16065 if (nodename == NULL) { 16066 mptsas_log(mpt, CE_WARN, "mptsas found no compatible driver " 16067 "for target %d lun %d", target, lun); 16068 return (DDI_FAILURE); 16069 } 16070 16071 ndi_rtn = ndi_devi_alloc(pdip, nodename, 16072 DEVI_SID_NODEID, lun_dip); 16073 16074 /* 16075 * if lun alloc success, set props 16076 */ 16077 if (ndi_rtn == NDI_SUCCESS) { 16078 16079 if (ndi_prop_update_int(DDI_DEV_T_NONE, 16080 *lun_dip, LUN_PROP, lun) != 16081 DDI_PROP_SUCCESS) { 16082 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16083 "property for target %d lun %d (LUN_PROP)", 16084 target, lun); 16085 ndi_rtn = NDI_FAILURE; 16086 goto phys_create_done; 16087 } 16088 16089 lun64 = (int64_t)lun; 16090 if (ndi_prop_update_int64(DDI_DEV_T_NONE, 16091 *lun_dip, LUN64_PROP, lun64) != 16092 DDI_PROP_SUCCESS) { 16093 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16094 "property for target %d lun64 %d (LUN64_PROP)", 16095 target, lun); 16096 ndi_rtn = NDI_FAILURE; 16097 goto phys_create_done; 16098 } 16099 if (ndi_prop_update_string_array(DDI_DEV_T_NONE, 16100 *lun_dip, "compatible", compatible, ncompatible) 16101 != DDI_PROP_SUCCESS) { 16102 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16103 "property for target %d lun %d (COMPATIBLE)", 16104 target, lun); 16105 ndi_rtn = NDI_FAILURE; 16106 goto phys_create_done; 16107 } 16108 16109 /* 16110 * We need the SAS WWN for non-multipath devices, so 16111 * we'll use the same property as that multipathing 16112 * devices need to present for MPAPI. If we don't have 16113 * a WWN (e.g. parallel SCSI), don't create the prop. 16114 */ 16115 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 16116 if (sas_wwn && ndi_prop_update_string(DDI_DEV_T_NONE, 16117 *lun_dip, SCSI_ADDR_PROP_TARGET_PORT, wwn_str) 16118 != DDI_PROP_SUCCESS) { 16119 mptsas_log(mpt, CE_WARN, "mptsas unable to " 16120 "create property for SAS target %d lun %d " 16121 "(target-port)", target, lun); 16122 ndi_rtn = NDI_FAILURE; 16123 goto phys_create_done; 16124 } 16125 16126 be_sas_wwn = BE_64(sas_wwn); 16127 if (sas_wwn && ndi_prop_update_byte_array( 16128 DDI_DEV_T_NONE, *lun_dip, "port-wwn", 16129 (uchar_t *)&be_sas_wwn, 8) != DDI_PROP_SUCCESS) { 16130 mptsas_log(mpt, CE_WARN, "mptsas unable to " 16131 "create property for SAS target %d lun %d " 16132 "(port-wwn)", target, lun); 16133 ndi_rtn = NDI_FAILURE; 16134 goto phys_create_done; 16135 } else if ((sas_wwn == 0) && (ndi_prop_update_int( 16136 DDI_DEV_T_NONE, *lun_dip, "sata-phy", phy) != 16137 DDI_PROP_SUCCESS)) { 16138 /* 16139 * Direct attached SATA device without DeviceName 16140 */ 16141 mptsas_log(mpt, CE_WARN, "mptsas unable to " 16142 "create property for SAS target %d lun %d " 16143 "(sata-phy)", target, lun); 16144 ndi_rtn = NDI_FAILURE; 16145 goto phys_create_done; 16146 } 16147 16148 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 16149 *lun_dip, SAS_PROP) != DDI_PROP_SUCCESS) { 16150 mptsas_log(mpt, CE_WARN, "mptsas unable to" 16151 "create property for SAS target %d lun %d" 16152 " (SAS_PROP)", target, lun); 16153 ndi_rtn = NDI_FAILURE; 16154 goto phys_create_done; 16155 } 16156 if (guid && (ndi_prop_update_string(DDI_DEV_T_NONE, 16157 *lun_dip, NDI_GUID, guid) != DDI_SUCCESS)) { 16158 mptsas_log(mpt, CE_WARN, "mptsas unable " 16159 "to create guid property for target %d " 16160 "lun %d", target, lun); 16161 ndi_rtn = NDI_FAILURE; 16162 goto phys_create_done; 16163 } 16164 16165 /* 16166 * The following code is to set properties for SM-HBA support, 16167 * it doesn't apply to RAID volumes 16168 */ 16169 if (ptgt->m_addr.mta_phymask == 0) 16170 goto phys_raid_lun; 16171 16172 mutex_enter(&mpt->m_mutex); 16173 16174 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 16175 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 16176 (uint32_t)ptgt->m_devhdl; 16177 rval = mptsas_get_sas_device_page0(mpt, page_address, 16178 &dev_hdl, &dev_sas_wwn, &dev_info, 16179 &physport, &phy_id, &pdev_hdl, 16180 &bay_num, &enclosure, &io_flags); 16181 if (rval != DDI_SUCCESS) { 16182 mutex_exit(&mpt->m_mutex); 16183 mptsas_log(mpt, CE_WARN, "mptsas unable to get" 16184 "parent device for handle %d.", page_address); 16185 ndi_rtn = NDI_FAILURE; 16186 goto phys_create_done; 16187 } 16188 16189 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 16190 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)pdev_hdl; 16191 rval = mptsas_get_sas_device_page0(mpt, page_address, 16192 &dev_hdl, &pdev_sas_wwn, &pdev_info, &physport, 16193 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 16194 if (rval != DDI_SUCCESS) { 16195 mutex_exit(&mpt->m_mutex); 16196 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16197 "device for handle %d.", page_address); 16198 ndi_rtn = NDI_FAILURE; 16199 goto phys_create_done; 16200 } 16201 16202 mutex_exit(&mpt->m_mutex); 16203 16204 /* 16205 * If this device direct attached to the controller 16206 * set the attached-port to the base wwid 16207 */ 16208 if ((ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 16209 != DEVINFO_DIRECT_ATTACHED) { 16210 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 16211 pdev_sas_wwn); 16212 } else { 16213 /* 16214 * Update the iport's attached-port to guid 16215 */ 16216 if (sas_wwn == 0) { 16217 (void) sprintf(wwn_str, "p%x", phy); 16218 } else { 16219 (void) sprintf(wwn_str, "w%016"PRIx64, sas_wwn); 16220 } 16221 if (ddi_prop_update_string(DDI_DEV_T_NONE, 16222 pdip, SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 16223 DDI_PROP_SUCCESS) { 16224 mptsas_log(mpt, CE_WARN, 16225 "mptsas unable to create " 16226 "property for iport target-port" 16227 " %s (sas_wwn)", 16228 wwn_str); 16229 ndi_rtn = NDI_FAILURE; 16230 goto phys_create_done; 16231 } 16232 16233 (void) sprintf(pdev_wwn_str, "w%016"PRIx64, 16234 mpt->un.m_base_wwid); 16235 } 16236 16237 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16238 *lun_dip, SCSI_ADDR_PROP_ATTACHED_PORT, pdev_wwn_str) != 16239 DDI_PROP_SUCCESS) { 16240 mptsas_log(mpt, CE_WARN, 16241 "mptsas unable to create " 16242 "property for iport attached-port %s (sas_wwn)", 16243 pdev_wwn_str); 16244 ndi_rtn = NDI_FAILURE; 16245 goto phys_create_done; 16246 } 16247 16248 if (IS_SATA_DEVICE(dev_info)) { 16249 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16250 *lun_dip, MPTSAS_VARIANT, "sata") != 16251 DDI_PROP_SUCCESS) { 16252 mptsas_log(mpt, CE_WARN, 16253 "mptsas unable to create " 16254 "property for device variant "); 16255 ndi_rtn = NDI_FAILURE; 16256 goto phys_create_done; 16257 } 16258 } 16259 16260 if (IS_ATAPI_DEVICE(dev_info)) { 16261 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16262 *lun_dip, MPTSAS_VARIANT, "atapi") != 16263 DDI_PROP_SUCCESS) { 16264 mptsas_log(mpt, CE_WARN, 16265 "mptsas unable to create " 16266 "property for device variant "); 16267 ndi_rtn = NDI_FAILURE; 16268 goto phys_create_done; 16269 } 16270 } 16271 16272 phys_raid_lun: 16273 /* 16274 * if this is a SAS controller, and the target is a SATA 16275 * drive, set the 'pm-capable' property for sd and if on 16276 * an OPL platform, also check if this is an ATAPI 16277 * device. 16278 */ 16279 instance = ddi_get_instance(mpt->m_dip); 16280 if (devinfo & (MPI2_SAS_DEVICE_INFO_SATA_DEVICE | 16281 MPI2_SAS_DEVICE_INFO_ATAPI_DEVICE)) { 16282 NDBG2(("mptsas3%d: creating pm-capable property, " 16283 "target %d", instance, target)); 16284 16285 if ((ndi_prop_update_int(DDI_DEV_T_NONE, 16286 *lun_dip, "pm-capable", 1)) != 16287 DDI_PROP_SUCCESS) { 16288 mptsas_log(mpt, CE_WARN, "mptsas " 16289 "failed to create pm-capable " 16290 "property, target %d", target); 16291 ndi_rtn = NDI_FAILURE; 16292 goto phys_create_done; 16293 } 16294 16295 } 16296 16297 if ((inq->inq_dtype == 0) || (inq->inq_dtype == 5)) { 16298 /* 16299 * add 'obp-path' properties for devinfo 16300 */ 16301 bzero(wwn_str, sizeof (wwn_str)); 16302 (void) sprintf(wwn_str, "%016"PRIx64, sas_wwn); 16303 if (guid) { 16304 (void) snprintf(component, MAXPATHLEN, 16305 "disk@w%s,%x", wwn_str, lun); 16306 } else { 16307 (void) snprintf(component, MAXPATHLEN, 16308 "disk@p%x,%x", phy, lun); 16309 } 16310 if (ddi_pathname_obp_set(*lun_dip, component) 16311 != DDI_SUCCESS) { 16312 mptsas_log(mpt, CE_WARN, "mpt_sas driver " 16313 "unable to set obp-path for SAS " 16314 "object %s", component); 16315 ndi_rtn = NDI_FAILURE; 16316 goto phys_create_done; 16317 } 16318 } 16319 /* 16320 * Create the phy-num property for non-raid disk 16321 */ 16322 if (ptgt->m_addr.mta_phymask != 0) { 16323 if (ndi_prop_update_int(DDI_DEV_T_NONE, 16324 *lun_dip, "phy-num", ptgt->m_phynum) != 16325 DDI_PROP_SUCCESS) { 16326 mptsas_log(mpt, CE_WARN, 16327 "failed to create phy-num property for " 16328 "target %d", target); 16329 ndi_rtn = NDI_FAILURE; 16330 goto phys_create_done; 16331 } 16332 } 16333 phys_create_done: 16334 /* 16335 * If props were setup ok, online the lun 16336 */ 16337 if (ndi_rtn == NDI_SUCCESS) { 16338 /* 16339 * Try to online the new node 16340 */ 16341 ndi_rtn = ndi_devi_online(*lun_dip, NDI_ONLINE_ATTACH); 16342 } 16343 if (ndi_rtn == NDI_SUCCESS) { 16344 mutex_enter(&mpt->m_mutex); 16345 ptgt->m_led_status = 0; 16346 (void) mptsas_flush_led_status(mpt, ptgt); 16347 mutex_exit(&mpt->m_mutex); 16348 } 16349 16350 /* 16351 * If success set rtn flag, else unwire alloc'd lun 16352 */ 16353 if (ndi_rtn != NDI_SUCCESS) { 16354 NDBG12(("unable to online " 16355 "target %d lun %d", target, lun)); 16356 ndi_prop_remove_all(*lun_dip); 16357 (void) ndi_devi_free(*lun_dip); 16358 *lun_dip = NULL; 16359 } 16360 } 16361 16362 scsi_hba_nodename_compatible_free(nodename, compatible); 16363 16364 return ((ndi_rtn == NDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 16365 } 16366 16367 static int 16368 mptsas_probe_smp(dev_info_t *pdip, uint64_t wwn) 16369 { 16370 mptsas_t *mpt = DIP2MPT(pdip); 16371 struct smp_device smp_sd; 16372 16373 /* XXX An HBA driver should not be allocating an smp_device. */ 16374 bzero(&smp_sd, sizeof (struct smp_device)); 16375 smp_sd.smp_sd_address.smp_a_hba_tran = mpt->m_smptran; 16376 bcopy(&wwn, smp_sd.smp_sd_address.smp_a_wwn, SAS_WWN_BYTE_SIZE); 16377 16378 if (smp_probe(&smp_sd) != DDI_PROBE_SUCCESS) 16379 return (NDI_FAILURE); 16380 return (NDI_SUCCESS); 16381 } 16382 16383 static int 16384 mptsas_config_smp(dev_info_t *pdip, uint64_t sas_wwn, dev_info_t **smp_dip) 16385 { 16386 mptsas_t *mpt = DIP2MPT(pdip); 16387 mptsas_smp_t *psmp = NULL; 16388 int rval; 16389 int phymask; 16390 16391 /* 16392 * Get the physical port associated to the iport 16393 * PHYMASK TODO 16394 */ 16395 phymask = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 0, 16396 "phymask", 0); 16397 /* 16398 * Find the smp node in hash table with specified sas address and 16399 * physical port 16400 */ 16401 psmp = mptsas_wwid_to_psmp(mpt, phymask, sas_wwn); 16402 if (psmp == NULL) { 16403 return (DDI_FAILURE); 16404 } 16405 16406 rval = mptsas_online_smp(pdip, psmp, smp_dip); 16407 16408 return (rval); 16409 } 16410 16411 static int 16412 mptsas_online_smp(dev_info_t *pdip, mptsas_smp_t *smp_node, 16413 dev_info_t **smp_dip) 16414 { 16415 char wwn_str[MPTSAS_WWN_STRLEN]; 16416 char attached_wwn_str[MPTSAS_WWN_STRLEN]; 16417 int ndi_rtn = NDI_FAILURE; 16418 int rval = 0; 16419 mptsas_smp_t dev_info; 16420 uint32_t page_address; 16421 mptsas_t *mpt = DIP2MPT(pdip); 16422 uint16_t dev_hdl; 16423 uint64_t sas_wwn; 16424 uint64_t smp_sas_wwn; 16425 uint8_t physport; 16426 uint8_t phy_id; 16427 uint16_t pdev_hdl; 16428 uint8_t numphys = 0; 16429 uint16_t i = 0; 16430 char phymask[MPTSAS_MAX_PHYS]; 16431 char *iport = NULL; 16432 mptsas_phymask_t phy_mask = 0; 16433 uint16_t attached_devhdl; 16434 uint16_t bay_num, enclosure, io_flags; 16435 16436 (void) sprintf(wwn_str, "%"PRIx64, smp_node->m_addr.mta_wwn); 16437 16438 /* 16439 * Probe smp device, prevent the node of removed device from being 16440 * configured succesfully 16441 */ 16442 if (mptsas_probe_smp(pdip, smp_node->m_addr.mta_wwn) != NDI_SUCCESS) { 16443 return (DDI_FAILURE); 16444 } 16445 16446 if ((*smp_dip = mptsas_find_smp_child(pdip, wwn_str)) != NULL) { 16447 return (DDI_SUCCESS); 16448 } 16449 16450 ndi_rtn = ndi_devi_alloc(pdip, "smp", DEVI_SID_NODEID, smp_dip); 16451 16452 /* 16453 * if lun alloc success, set props 16454 */ 16455 if (ndi_rtn == NDI_SUCCESS) { 16456 /* 16457 * Set the flavor of the child to be SMP flavored 16458 */ 16459 ndi_flavor_set(*smp_dip, SCSA_FLAVOR_SMP); 16460 16461 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16462 *smp_dip, SMP_WWN, wwn_str) != 16463 DDI_PROP_SUCCESS) { 16464 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16465 "property for smp device %s (sas_wwn)", 16466 wwn_str); 16467 ndi_rtn = NDI_FAILURE; 16468 goto smp_create_done; 16469 } 16470 (void) sprintf(wwn_str, "w%"PRIx64, smp_node->m_addr.mta_wwn); 16471 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16472 *smp_dip, SCSI_ADDR_PROP_TARGET_PORT, wwn_str) != 16473 DDI_PROP_SUCCESS) { 16474 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16475 "property for iport target-port %s (sas_wwn)", 16476 wwn_str); 16477 ndi_rtn = NDI_FAILURE; 16478 goto smp_create_done; 16479 } 16480 16481 mutex_enter(&mpt->m_mutex); 16482 16483 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_HNDL & 16484 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | smp_node->m_devhdl; 16485 rval = mptsas_get_sas_expander_page0(mpt, page_address, 16486 &dev_info); 16487 if (rval != DDI_SUCCESS) { 16488 mutex_exit(&mpt->m_mutex); 16489 mptsas_log(mpt, CE_WARN, 16490 "mptsas unable to get expander " 16491 "parent device info for %x", page_address); 16492 ndi_rtn = NDI_FAILURE; 16493 goto smp_create_done; 16494 } 16495 16496 smp_node->m_pdevhdl = dev_info.m_pdevhdl; 16497 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 16498 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 16499 (uint32_t)dev_info.m_pdevhdl; 16500 rval = mptsas_get_sas_device_page0(mpt, page_address, 16501 &dev_hdl, &sas_wwn, &smp_node->m_pdevinfo, &physport, 16502 &phy_id, &pdev_hdl, &bay_num, &enclosure, &io_flags); 16503 if (rval != DDI_SUCCESS) { 16504 mutex_exit(&mpt->m_mutex); 16505 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 16506 "device info for %x", page_address); 16507 ndi_rtn = NDI_FAILURE; 16508 goto smp_create_done; 16509 } 16510 16511 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_HANDLE & 16512 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | 16513 (uint32_t)dev_info.m_devhdl; 16514 rval = mptsas_get_sas_device_page0(mpt, page_address, 16515 &dev_hdl, &smp_sas_wwn, &smp_node->m_deviceinfo, 16516 &physport, &phy_id, &pdev_hdl, &bay_num, &enclosure, 16517 &io_flags); 16518 if (rval != DDI_SUCCESS) { 16519 mutex_exit(&mpt->m_mutex); 16520 mptsas_log(mpt, CE_WARN, "mptsas unable to get " 16521 "device info for %x", page_address); 16522 ndi_rtn = NDI_FAILURE; 16523 goto smp_create_done; 16524 } 16525 mutex_exit(&mpt->m_mutex); 16526 16527 /* 16528 * If this smp direct attached to the controller 16529 * set the attached-port to the base wwid 16530 */ 16531 if ((smp_node->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 16532 != DEVINFO_DIRECT_ATTACHED) { 16533 (void) sprintf(attached_wwn_str, "w%016"PRIx64, 16534 sas_wwn); 16535 } else { 16536 (void) sprintf(attached_wwn_str, "w%016"PRIx64, 16537 mpt->un.m_base_wwid); 16538 } 16539 16540 if (ndi_prop_update_string(DDI_DEV_T_NONE, 16541 *smp_dip, SCSI_ADDR_PROP_ATTACHED_PORT, attached_wwn_str) != 16542 DDI_PROP_SUCCESS) { 16543 mptsas_log(mpt, CE_WARN, "mptsas unable to create " 16544 "property for smp attached-port %s (sas_wwn)", 16545 attached_wwn_str); 16546 ndi_rtn = NDI_FAILURE; 16547 goto smp_create_done; 16548 } 16549 16550 if (ndi_prop_create_boolean(DDI_DEV_T_NONE, 16551 *smp_dip, SMP_PROP) != DDI_PROP_SUCCESS) { 16552 mptsas_log(mpt, CE_WARN, "mptsas unable to " 16553 "create property for SMP %s (SMP_PROP) ", 16554 wwn_str); 16555 ndi_rtn = NDI_FAILURE; 16556 goto smp_create_done; 16557 } 16558 16559 /* 16560 * check the smp to see whether it direct 16561 * attached to the controller 16562 */ 16563 if ((smp_node->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) 16564 != DEVINFO_DIRECT_ATTACHED) { 16565 goto smp_create_done; 16566 } 16567 numphys = ddi_prop_get_int(DDI_DEV_T_ANY, pdip, 16568 DDI_PROP_DONTPASS, MPTSAS_NUM_PHYS, -1); 16569 if (numphys > 0) { 16570 goto smp_create_done; 16571 } 16572 /* 16573 * this iport is an old iport, we need to 16574 * reconfig the props for it. 16575 */ 16576 if (ddi_prop_update_int(DDI_DEV_T_NONE, pdip, 16577 MPTSAS_VIRTUAL_PORT, 0) != 16578 DDI_PROP_SUCCESS) { 16579 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 16580 MPTSAS_VIRTUAL_PORT); 16581 mptsas_log(mpt, CE_WARN, "mptsas virtual port " 16582 "prop update failed"); 16583 goto smp_create_done; 16584 } 16585 16586 mutex_enter(&mpt->m_mutex); 16587 numphys = 0; 16588 iport = ddi_get_name_addr(pdip); 16589 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 16590 bzero(phymask, sizeof (phymask)); 16591 (void) sprintf(phymask, 16592 "%x", mpt->m_phy_info[i].phy_mask); 16593 if (strcmp(phymask, iport) == 0) { 16594 phy_mask = mpt->m_phy_info[i].phy_mask; 16595 break; 16596 } 16597 } 16598 16599 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 16600 if ((phy_mask >> i) & 0x01) { 16601 numphys++; 16602 } 16603 } 16604 /* 16605 * Update PHY info for smhba 16606 */ 16607 if (mptsas_smhba_phy_init(mpt)) { 16608 mutex_exit(&mpt->m_mutex); 16609 mptsas_log(mpt, CE_WARN, "mptsas phy update " 16610 "failed"); 16611 goto smp_create_done; 16612 } 16613 mutex_exit(&mpt->m_mutex); 16614 16615 mptsas_smhba_set_all_phy_props(mpt, pdip, numphys, phy_mask, 16616 &attached_devhdl); 16617 16618 if (ddi_prop_update_int(DDI_DEV_T_NONE, pdip, 16619 MPTSAS_NUM_PHYS, numphys) != 16620 DDI_PROP_SUCCESS) { 16621 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 16622 MPTSAS_NUM_PHYS); 16623 mptsas_log(mpt, CE_WARN, "mptsas update " 16624 "num phys props failed"); 16625 goto smp_create_done; 16626 } 16627 /* 16628 * Add parent's props for SMHBA support 16629 */ 16630 if (ddi_prop_update_string(DDI_DEV_T_NONE, pdip, 16631 SCSI_ADDR_PROP_ATTACHED_PORT, wwn_str) != 16632 DDI_PROP_SUCCESS) { 16633 (void) ddi_prop_remove(DDI_DEV_T_NONE, pdip, 16634 SCSI_ADDR_PROP_ATTACHED_PORT); 16635 mptsas_log(mpt, CE_WARN, "mptsas update iport" 16636 "attached-port failed"); 16637 goto smp_create_done; 16638 } 16639 16640 smp_create_done: 16641 /* 16642 * If props were setup ok, online the lun 16643 */ 16644 if (ndi_rtn == NDI_SUCCESS) { 16645 /* 16646 * Try to online the new node 16647 */ 16648 ndi_rtn = ndi_devi_online(*smp_dip, NDI_ONLINE_ATTACH); 16649 } 16650 16651 /* 16652 * If success set rtn flag, else unwire alloc'd lun 16653 */ 16654 if (ndi_rtn != NDI_SUCCESS) { 16655 NDBG12(("mptsas unable to online " 16656 "SMP target %s", wwn_str)); 16657 ndi_prop_remove_all(*smp_dip); 16658 (void) ndi_devi_free(*smp_dip); 16659 } 16660 } 16661 16662 return ((ndi_rtn == NDI_SUCCESS) ? DDI_SUCCESS : DDI_FAILURE); 16663 } 16664 16665 /* smp transport routine */ 16666 static int mptsas_smp_start(struct smp_pkt *smp_pkt) 16667 { 16668 uint64_t wwn; 16669 Mpi2SmpPassthroughRequest_t req; 16670 Mpi2SmpPassthroughReply_t rep; 16671 uint8_t direction = 0; 16672 mptsas_t *mpt; 16673 int ret; 16674 uint64_t tmp64; 16675 16676 mpt = (mptsas_t *)smp_pkt->smp_pkt_address-> 16677 smp_a_hba_tran->smp_tran_hba_private; 16678 16679 bcopy(smp_pkt->smp_pkt_address->smp_a_wwn, &wwn, SAS_WWN_BYTE_SIZE); 16680 /* 16681 * Need to compose a SMP request message 16682 * and call mptsas_do_passthru() function 16683 */ 16684 bzero(&req, sizeof (req)); 16685 bzero(&rep, sizeof (rep)); 16686 req.PassthroughFlags = 0; 16687 req.PhysicalPort = 0xff; 16688 req.ChainOffset = 0; 16689 req.Function = MPI2_FUNCTION_SMP_PASSTHROUGH; 16690 16691 if ((smp_pkt->smp_pkt_reqsize & 0xffff0000ul) != 0) { 16692 smp_pkt->smp_pkt_reason = ERANGE; 16693 return (DDI_FAILURE); 16694 } 16695 req.RequestDataLength = LE_16((uint16_t)(smp_pkt->smp_pkt_reqsize - 4)); 16696 16697 req.MsgFlags = 0; 16698 tmp64 = LE_64(wwn); 16699 bcopy(&tmp64, &req.SASAddress, SAS_WWN_BYTE_SIZE); 16700 if (smp_pkt->smp_pkt_rspsize > 0) { 16701 direction |= MPTSAS_PASS_THRU_DIRECTION_READ; 16702 } 16703 if (smp_pkt->smp_pkt_reqsize > 0) { 16704 direction |= MPTSAS_PASS_THRU_DIRECTION_WRITE; 16705 } 16706 16707 mutex_enter(&mpt->m_mutex); 16708 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, 16709 (uint8_t *)smp_pkt->smp_pkt_rsp, 16710 offsetof(Mpi2SmpPassthroughRequest_t, SGL), sizeof (rep), 16711 smp_pkt->smp_pkt_rspsize - 4, direction, 16712 (uint8_t *)smp_pkt->smp_pkt_req, smp_pkt->smp_pkt_reqsize - 4, 16713 smp_pkt->smp_pkt_timeout, FKIOCTL); 16714 mutex_exit(&mpt->m_mutex); 16715 if (ret != 0) { 16716 cmn_err(CE_WARN, "smp_start do passthru error %d", ret); 16717 smp_pkt->smp_pkt_reason = (uchar_t)(ret); 16718 return (DDI_FAILURE); 16719 } 16720 /* do passthrough success, check the smp status */ 16721 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 16722 switch (LE_16(rep.IOCStatus)) { 16723 case MPI2_IOCSTATUS_SCSI_DEVICE_NOT_THERE: 16724 smp_pkt->smp_pkt_reason = ENODEV; 16725 break; 16726 case MPI2_IOCSTATUS_SAS_SMP_DATA_OVERRUN: 16727 smp_pkt->smp_pkt_reason = EOVERFLOW; 16728 break; 16729 case MPI2_IOCSTATUS_SAS_SMP_REQUEST_FAILED: 16730 smp_pkt->smp_pkt_reason = EIO; 16731 break; 16732 default: 16733 mptsas_log(mpt, CE_NOTE, "smp_start: get unknown ioc" 16734 "status:%x", LE_16(rep.IOCStatus)); 16735 smp_pkt->smp_pkt_reason = EIO; 16736 break; 16737 } 16738 return (DDI_FAILURE); 16739 } 16740 if (rep.SASStatus != MPI2_SASSTATUS_SUCCESS) { 16741 mptsas_log(mpt, CE_NOTE, "smp_start: get error SAS status:%x", 16742 rep.SASStatus); 16743 smp_pkt->smp_pkt_reason = EIO; 16744 return (DDI_FAILURE); 16745 } 16746 16747 return (DDI_SUCCESS); 16748 } 16749 16750 /* 16751 * If we didn't get a match, we need to get sas page0 for each device, and 16752 * untill we get a match. If failed, return NULL 16753 */ 16754 static mptsas_target_t * 16755 mptsas_phy_to_tgt(mptsas_t *mpt, mptsas_phymask_t phymask, uint8_t phy) 16756 { 16757 int i, j = 0; 16758 int rval = 0; 16759 uint16_t cur_handle; 16760 uint32_t page_address; 16761 mptsas_target_t *ptgt = NULL; 16762 16763 /* 16764 * PHY named device must be direct attached and attaches to 16765 * narrow port, if the iport is not parent of the device which 16766 * we are looking for. 16767 */ 16768 for (i = 0; i < MPTSAS_MAX_PHYS; i++) { 16769 if ((1 << i) & phymask) 16770 j++; 16771 } 16772 16773 if (j > 1) 16774 return (NULL); 16775 16776 /* 16777 * Must be a narrow port and single device attached to the narrow port 16778 * So the physical port num of device which is equal to the iport's 16779 * port num is the device what we are looking for. 16780 */ 16781 16782 if (mpt->m_phy_info[phy].phy_mask != phymask) 16783 return (NULL); 16784 16785 mutex_enter(&mpt->m_mutex); 16786 16787 ptgt = refhash_linear_search(mpt->m_targets, mptsas_target_eval_nowwn, 16788 &phy); 16789 if (ptgt != NULL) { 16790 mutex_exit(&mpt->m_mutex); 16791 return (ptgt); 16792 } 16793 16794 if (mpt->m_done_traverse_dev) { 16795 mutex_exit(&mpt->m_mutex); 16796 return (NULL); 16797 } 16798 16799 /* If didn't get a match, come here */ 16800 cur_handle = mpt->m_dev_handle; 16801 for (; ; ) { 16802 ptgt = NULL; 16803 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 16804 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | (uint32_t)cur_handle; 16805 rval = mptsas_get_target_device_info(mpt, page_address, 16806 &cur_handle, &ptgt); 16807 if ((rval == DEV_INFO_FAIL_PAGE0) || 16808 (rval == DEV_INFO_FAIL_ALLOC)) { 16809 break; 16810 } 16811 if ((rval == DEV_INFO_WRONG_DEVICE_TYPE) || 16812 (rval == DEV_INFO_PHYS_DISK)) { 16813 continue; 16814 } 16815 mpt->m_dev_handle = cur_handle; 16816 16817 if ((ptgt->m_addr.mta_wwn == 0) && (ptgt->m_phynum == phy)) { 16818 break; 16819 } 16820 } 16821 16822 mutex_exit(&mpt->m_mutex); 16823 return (ptgt); 16824 } 16825 16826 /* 16827 * The ptgt->m_addr.mta_wwn contains the wwid for each disk. 16828 * For Raid volumes, we need to check m_raidvol[x].m_raidwwid 16829 * If we didn't get a match, we need to get sas page0 for each device, and 16830 * untill we get a match 16831 * If failed, return NULL 16832 */ 16833 static mptsas_target_t * 16834 mptsas_wwid_to_ptgt(mptsas_t *mpt, mptsas_phymask_t phymask, uint64_t wwid) 16835 { 16836 int rval = 0; 16837 uint16_t cur_handle; 16838 uint32_t page_address; 16839 mptsas_target_t *tmp_tgt = NULL; 16840 mptsas_target_addr_t addr; 16841 16842 addr.mta_wwn = wwid; 16843 addr.mta_phymask = phymask; 16844 mutex_enter(&mpt->m_mutex); 16845 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16846 if (tmp_tgt != NULL) { 16847 mutex_exit(&mpt->m_mutex); 16848 return (tmp_tgt); 16849 } 16850 16851 if (phymask == 0) { 16852 /* 16853 * It's IR volume 16854 */ 16855 rval = mptsas_get_raid_info(mpt); 16856 if (rval) { 16857 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16858 } 16859 mutex_exit(&mpt->m_mutex); 16860 return (tmp_tgt); 16861 } 16862 16863 if (mpt->m_done_traverse_dev) { 16864 mutex_exit(&mpt->m_mutex); 16865 return (NULL); 16866 } 16867 16868 /* If didn't get a match, come here */ 16869 cur_handle = mpt->m_dev_handle; 16870 for (;;) { 16871 tmp_tgt = NULL; 16872 page_address = (MPI2_SAS_DEVICE_PGAD_FORM_GET_NEXT_HANDLE & 16873 MPI2_SAS_DEVICE_PGAD_FORM_MASK) | cur_handle; 16874 rval = mptsas_get_target_device_info(mpt, page_address, 16875 &cur_handle, &tmp_tgt); 16876 if ((rval == DEV_INFO_FAIL_PAGE0) || 16877 (rval == DEV_INFO_FAIL_ALLOC)) { 16878 tmp_tgt = NULL; 16879 break; 16880 } 16881 if ((rval == DEV_INFO_WRONG_DEVICE_TYPE) || 16882 (rval == DEV_INFO_PHYS_DISK)) { 16883 continue; 16884 } 16885 mpt->m_dev_handle = cur_handle; 16886 if ((tmp_tgt->m_addr.mta_wwn) && 16887 (tmp_tgt->m_addr.mta_wwn == wwid) && 16888 (tmp_tgt->m_addr.mta_phymask == phymask)) { 16889 break; 16890 } 16891 } 16892 16893 mutex_exit(&mpt->m_mutex); 16894 return (tmp_tgt); 16895 } 16896 16897 static mptsas_smp_t * 16898 mptsas_wwid_to_psmp(mptsas_t *mpt, mptsas_phymask_t phymask, uint64_t wwid) 16899 { 16900 int rval = 0; 16901 uint16_t cur_handle; 16902 uint32_t page_address; 16903 mptsas_smp_t smp_node, *psmp = NULL; 16904 mptsas_target_addr_t addr; 16905 16906 addr.mta_wwn = wwid; 16907 addr.mta_phymask = phymask; 16908 mutex_enter(&mpt->m_mutex); 16909 psmp = refhash_lookup(mpt->m_smp_targets, &addr); 16910 if (psmp != NULL) { 16911 mutex_exit(&mpt->m_mutex); 16912 return (psmp); 16913 } 16914 16915 if (mpt->m_done_traverse_smp) { 16916 mutex_exit(&mpt->m_mutex); 16917 return (NULL); 16918 } 16919 16920 /* If didn't get a match, come here */ 16921 cur_handle = mpt->m_smp_devhdl; 16922 for (;;) { 16923 psmp = NULL; 16924 page_address = (MPI2_SAS_EXPAND_PGAD_FORM_GET_NEXT_HNDL & 16925 MPI2_SAS_EXPAND_PGAD_FORM_MASK) | (uint32_t)cur_handle; 16926 rval = mptsas_get_sas_expander_page0(mpt, page_address, 16927 &smp_node); 16928 if (rval != DDI_SUCCESS) { 16929 break; 16930 } 16931 mpt->m_smp_devhdl = cur_handle = smp_node.m_devhdl; 16932 psmp = mptsas_smp_alloc(mpt, &smp_node); 16933 ASSERT(psmp); 16934 if ((psmp->m_addr.mta_wwn) && (psmp->m_addr.mta_wwn == wwid) && 16935 (psmp->m_addr.mta_phymask == phymask)) { 16936 break; 16937 } 16938 } 16939 16940 mutex_exit(&mpt->m_mutex); 16941 return (psmp); 16942 } 16943 16944 mptsas_target_t * 16945 mptsas_tgt_alloc(mptsas_t *mpt, uint16_t devhdl, uint64_t wwid, 16946 uint32_t devinfo, mptsas_phymask_t phymask, uint8_t phynum) 16947 { 16948 mptsas_target_t *tmp_tgt = NULL; 16949 mptsas_target_addr_t addr; 16950 16951 addr.mta_wwn = wwid; 16952 addr.mta_phymask = phymask; 16953 tmp_tgt = refhash_lookup(mpt->m_targets, &addr); 16954 if (tmp_tgt != NULL) { 16955 NDBG20(("Hash item already exist")); 16956 tmp_tgt->m_deviceinfo = devinfo; 16957 tmp_tgt->m_devhdl = devhdl; /* XXX - duplicate? */ 16958 return (tmp_tgt); 16959 } 16960 tmp_tgt = kmem_zalloc(sizeof (struct mptsas_target), KM_SLEEP); 16961 if (tmp_tgt == NULL) { 16962 cmn_err(CE_WARN, "Fatal, allocated tgt failed"); 16963 return (NULL); 16964 } 16965 tmp_tgt->m_devhdl = devhdl; 16966 tmp_tgt->m_addr.mta_wwn = wwid; 16967 tmp_tgt->m_deviceinfo = devinfo; 16968 tmp_tgt->m_addr.mta_phymask = phymask; 16969 tmp_tgt->m_phynum = phynum; 16970 /* Initialized the tgt structure */ 16971 tmp_tgt->m_qfull_retries = QFULL_RETRIES; 16972 tmp_tgt->m_qfull_retry_interval = 16973 drv_usectohz(QFULL_RETRY_INTERVAL * 1000); 16974 tmp_tgt->m_t_throttle = MAX_THROTTLE; 16975 mutex_init(&tmp_tgt->m_t_mutex, NULL, MUTEX_DRIVER, NULL); 16976 TAILQ_INIT(&tmp_tgt->m_active_cmdq); 16977 16978 refhash_insert(mpt->m_targets, tmp_tgt); 16979 16980 return (tmp_tgt); 16981 } 16982 16983 static void 16984 mptsas_smp_target_copy(mptsas_smp_t *src, mptsas_smp_t *dst) 16985 { 16986 dst->m_devhdl = src->m_devhdl; 16987 dst->m_deviceinfo = src->m_deviceinfo; 16988 dst->m_pdevhdl = src->m_pdevhdl; 16989 dst->m_pdevinfo = src->m_pdevinfo; 16990 } 16991 16992 static mptsas_smp_t * 16993 mptsas_smp_alloc(mptsas_t *mpt, mptsas_smp_t *data) 16994 { 16995 mptsas_target_addr_t addr; 16996 mptsas_smp_t *ret_data; 16997 16998 addr.mta_wwn = data->m_addr.mta_wwn; 16999 addr.mta_phymask = data->m_addr.mta_phymask; 17000 ret_data = refhash_lookup(mpt->m_smp_targets, &addr); 17001 /* 17002 * If there's already a matching SMP target, update its fields 17003 * in place. Since the address is not changing, it's safe to do 17004 * this. We cannot just bcopy() here because the structure we've 17005 * been given has invalid hash links. 17006 */ 17007 if (ret_data != NULL) { 17008 mptsas_smp_target_copy(data, ret_data); 17009 return (ret_data); 17010 } 17011 17012 ret_data = kmem_alloc(sizeof (mptsas_smp_t), KM_SLEEP); 17013 bcopy(data, ret_data, sizeof (mptsas_smp_t)); 17014 refhash_insert(mpt->m_smp_targets, ret_data); 17015 return (ret_data); 17016 } 17017 17018 /* 17019 * Functions for SGPIO LED support 17020 */ 17021 static dev_info_t * 17022 mptsas_get_dip_from_dev(dev_t dev, mptsas_phymask_t *phymask) 17023 { 17024 dev_info_t *dip; 17025 int prop; 17026 dip = e_ddi_hold_devi_by_dev(dev, 0); 17027 if (dip == NULL) 17028 return (dip); 17029 prop = ddi_prop_get_int(DDI_DEV_T_ANY, dip, 0, 17030 "phymask", 0); 17031 *phymask = (mptsas_phymask_t)prop; 17032 ddi_release_devi(dip); 17033 return (dip); 17034 } 17035 static mptsas_target_t * 17036 mptsas_addr_to_ptgt(mptsas_t *mpt, char *addr, mptsas_phymask_t phymask) 17037 { 17038 uint8_t phynum; 17039 uint64_t wwn; 17040 int lun; 17041 mptsas_target_t *ptgt = NULL; 17042 17043 if (mptsas_parse_address(addr, &wwn, &phynum, &lun) != DDI_SUCCESS) { 17044 return (NULL); 17045 } 17046 if (addr[0] == 'w') { 17047 ptgt = mptsas_wwid_to_ptgt(mpt, (int)phymask, wwn); 17048 } else { 17049 ptgt = mptsas_phy_to_tgt(mpt, (int)phymask, phynum); 17050 } 17051 return (ptgt); 17052 } 17053 17054 static int 17055 mptsas_flush_led_status(mptsas_t *mpt, mptsas_target_t *ptgt) 17056 { 17057 uint32_t slotstatus = 0; 17058 17059 /* Build an MPI2 Slot Status based on our view of the world */ 17060 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_IDENT - 1))) 17061 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_IDENTIFY_REQUEST; 17062 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_FAIL - 1))) 17063 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_PREDICTED_FAULT; 17064 if (ptgt->m_led_status & (1 << (MPTSAS_LEDCTL_LED_OK2RM - 1))) 17065 slotstatus |= MPI2_SEP_REQ_SLOTSTATUS_REQUEST_REMOVE; 17066 17067 /* Write it to the controller */ 17068 NDBG14(("mptsas_ioctl: set LED status %x for slot %x", 17069 slotstatus, ptgt->m_slot_num)); 17070 return (mptsas_send_sep(mpt, ptgt, &slotstatus, 17071 MPI2_SEP_REQ_ACTION_WRITE_STATUS)); 17072 } 17073 17074 /* 17075 * send sep request, use enclosure/slot addressing 17076 */ 17077 static int 17078 mptsas_send_sep(mptsas_t *mpt, mptsas_target_t *ptgt, 17079 uint32_t *status, uint8_t act) 17080 { 17081 Mpi2SepRequest_t req; 17082 Mpi2SepReply_t rep; 17083 int ret; 17084 17085 ASSERT(mutex_owned(&mpt->m_mutex)); 17086 17087 /* 17088 * We only support SEP control of directly-attached targets, in which 17089 * case the "SEP" we're talking to is a virtual one contained within 17090 * the HBA itself. This is necessary because DA targets typically have 17091 * no other mechanism for LED control. Targets for which a separate 17092 * enclosure service processor exists should be controlled via ses(7d) 17093 * or sgen(7d). Furthermore, since such requests can time out, they 17094 * should be made in user context rather than in response to 17095 * asynchronous fabric changes. 17096 * 17097 * In addition, we do not support this operation for RAID volumes, 17098 * since there is no slot associated with them. 17099 */ 17100 if (!(ptgt->m_deviceinfo & DEVINFO_DIRECT_ATTACHED) || 17101 ptgt->m_addr.mta_phymask == 0) { 17102 return (ENOTTY); 17103 } 17104 17105 bzero(&req, sizeof (req)); 17106 bzero(&rep, sizeof (rep)); 17107 17108 req.Function = MPI2_FUNCTION_SCSI_ENCLOSURE_PROCESSOR; 17109 req.Action = act; 17110 req.Flags = MPI2_SEP_REQ_FLAGS_ENCLOSURE_SLOT_ADDRESS; 17111 req.EnclosureHandle = LE_16(ptgt->m_enclosure); 17112 req.Slot = LE_16(ptgt->m_slot_num); 17113 if (act == MPI2_SEP_REQ_ACTION_WRITE_STATUS) { 17114 req.SlotStatus = LE_32(*status); 17115 } 17116 ret = mptsas_do_passthru(mpt, (uint8_t *)&req, (uint8_t *)&rep, NULL, 17117 sizeof (req), sizeof (rep), NULL, 0, NULL, 0, 60, FKIOCTL); 17118 if (ret != 0) { 17119 mptsas_log(mpt, CE_NOTE, "mptsas_send_sep: passthru SEP " 17120 "Processor Request message error %d", ret); 17121 return (ret); 17122 } 17123 /* do passthrough success, check the ioc status */ 17124 if (LE_16(rep.IOCStatus) != MPI2_IOCSTATUS_SUCCESS) { 17125 mptsas_log(mpt, CE_NOTE, "send_sep act %x: ioc " 17126 "status:%x loginfo %x", act, LE_16(rep.IOCStatus), 17127 LE_32(rep.IOCLogInfo)); 17128 switch (LE_16(rep.IOCStatus) & MPI2_IOCSTATUS_MASK) { 17129 case MPI2_IOCSTATUS_INVALID_FUNCTION: 17130 case MPI2_IOCSTATUS_INVALID_VPID: 17131 case MPI2_IOCSTATUS_INVALID_FIELD: 17132 case MPI2_IOCSTATUS_INVALID_STATE: 17133 case MPI2_IOCSTATUS_OP_STATE_NOT_SUPPORTED: 17134 case MPI2_IOCSTATUS_CONFIG_INVALID_ACTION: 17135 case MPI2_IOCSTATUS_CONFIG_INVALID_TYPE: 17136 case MPI2_IOCSTATUS_CONFIG_INVALID_PAGE: 17137 case MPI2_IOCSTATUS_CONFIG_INVALID_DATA: 17138 case MPI2_IOCSTATUS_CONFIG_NO_DEFAULTS: 17139 return (EINVAL); 17140 case MPI2_IOCSTATUS_BUSY: 17141 return (EBUSY); 17142 case MPI2_IOCSTATUS_INSUFFICIENT_RESOURCES: 17143 return (EAGAIN); 17144 case MPI2_IOCSTATUS_INVALID_SGL: 17145 case MPI2_IOCSTATUS_INTERNAL_ERROR: 17146 case MPI2_IOCSTATUS_CONFIG_CANT_COMMIT: 17147 default: 17148 return (EIO); 17149 } 17150 } 17151 if (act != MPI2_SEP_REQ_ACTION_WRITE_STATUS) { 17152 *status = LE_32(rep.SlotStatus); 17153 } 17154 17155 return (0); 17156 } 17157 17158 int 17159 mptsas_dma_addr_create(mptsas_t *mpt, ddi_dma_attr_t dma_attr, 17160 ddi_dma_handle_t *dma_hdp, ddi_acc_handle_t *acc_hdp, caddr_t *dma_memp, 17161 uint32_t alloc_size, ddi_dma_cookie_t *cookiep) 17162 { 17163 ddi_dma_cookie_t new_cookie; 17164 size_t alloc_len; 17165 uint_t ncookie; 17166 17167 if (cookiep == NULL) 17168 cookiep = &new_cookie; 17169 17170 if (ddi_dma_alloc_handle(mpt->m_dip, &dma_attr, DDI_DMA_SLEEP, 17171 NULL, dma_hdp) != DDI_SUCCESS) { 17172 return (FALSE); 17173 } 17174 17175 if (ddi_dma_mem_alloc(*dma_hdp, alloc_size, &mpt->m_dev_acc_attr, 17176 DDI_DMA_CONSISTENT, DDI_DMA_SLEEP, NULL, dma_memp, &alloc_len, 17177 acc_hdp) != DDI_SUCCESS) { 17178 ddi_dma_free_handle(dma_hdp); 17179 return (FALSE); 17180 } 17181 17182 if (ddi_dma_addr_bind_handle(*dma_hdp, NULL, *dma_memp, alloc_len, 17183 (DDI_DMA_RDWR | DDI_DMA_CONSISTENT), DDI_DMA_SLEEP, NULL, 17184 cookiep, &ncookie) != DDI_DMA_MAPPED) { 17185 (void) ddi_dma_mem_free(acc_hdp); 17186 ddi_dma_free_handle(dma_hdp); 17187 return (FALSE); 17188 } 17189 17190 return (TRUE); 17191 } 17192 17193 void 17194 mptsas_dma_addr_destroy(ddi_dma_handle_t *dma_hdp, ddi_acc_handle_t *acc_hdp) 17195 { 17196 if (*dma_hdp == NULL) 17197 return; 17198 17199 (void) ddi_dma_unbind_handle(*dma_hdp); 17200 (void) ddi_dma_mem_free(acc_hdp); 17201 ddi_dma_free_handle(dma_hdp); 17202 }