1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012 by Delphix. All rights reserved. 24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved. 25 * Copyright 2014 RackTop Systems. 26 */ 27 28 /* 29 * Pool import support functions. 30 * 31 * To import a pool, we rely on reading the configuration information from the 32 * ZFS label of each device. If we successfully read the label, then we 33 * organize the configuration information in the following hierarchy: 34 * 35 * pool guid -> toplevel vdev guid -> label txg 36 * 37 * Duplicate entries matching this same tuple will be discarded. Once we have 38 * examined every device, we pick the best label txg config for each toplevel 39 * vdev. We then arrange these toplevel vdevs into a complete pool config, and 40 * update any paths that have changed. Finally, we attempt to import the pool 41 * using our derived config, and record the results. 42 */ 43 44 #include <ctype.h> 45 #include <devid.h> 46 #include <dirent.h> 47 #include <errno.h> 48 #include <libintl.h> 49 #include <stddef.h> 50 #include <stdlib.h> 51 #include <string.h> 52 #include <sys/stat.h> 53 #include <unistd.h> 54 #include <fcntl.h> 55 #include <sys/vtoc.h> 56 #include <sys/dktp/fdisk.h> 57 #include <sys/efi_partition.h> 58 #include <thread_pool.h> 59 60 #include <sys/vdev_impl.h> 61 62 #include "libzfs.h" 63 #include "libzfs_impl.h" 64 65 /* 66 * Intermediate structures used to gather configuration information. 67 */ 68 typedef struct config_entry { 69 uint64_t ce_txg; 70 nvlist_t *ce_config; 71 struct config_entry *ce_next; 72 } config_entry_t; 73 74 typedef struct vdev_entry { 75 uint64_t ve_guid; 76 config_entry_t *ve_configs; 77 struct vdev_entry *ve_next; 78 } vdev_entry_t; 79 80 typedef struct pool_entry { 81 uint64_t pe_guid; 82 vdev_entry_t *pe_vdevs; 83 struct pool_entry *pe_next; 84 } pool_entry_t; 85 86 typedef struct name_entry { 87 char *ne_name; 88 uint64_t ne_guid; 89 struct name_entry *ne_next; 90 } name_entry_t; 91 92 typedef struct pool_list { 93 pool_entry_t *pools; 94 name_entry_t *names; 95 } pool_list_t; 96 97 static char * 98 get_devid(const char *path) 99 { 100 int fd; 101 ddi_devid_t devid; 102 char *minor, *ret; 103 104 if ((fd = open(path, O_RDONLY)) < 0) 105 return (NULL); 106 107 minor = NULL; 108 ret = NULL; 109 if (devid_get(fd, &devid) == 0) { 110 if (devid_get_minor_name(fd, &minor) == 0) 111 ret = devid_str_encode(devid, minor); 112 if (minor != NULL) 113 devid_str_free(minor); 114 devid_free(devid); 115 } 116 (void) close(fd); 117 118 return (ret); 119 } 120 121 122 /* 123 * Go through and fix up any path and/or devid information for the given vdev 124 * configuration. 125 */ 126 static int 127 fix_paths(nvlist_t *nv, name_entry_t *names) 128 { 129 nvlist_t **child; 130 uint_t c, children; 131 uint64_t guid; 132 name_entry_t *ne, *best; 133 char *path, *devid; 134 int matched; 135 136 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 137 &child, &children) == 0) { 138 for (c = 0; c < children; c++) 139 if (fix_paths(child[c], names) != 0) 140 return (-1); 141 return (0); 142 } 143 144 /* 145 * This is a leaf (file or disk) vdev. In either case, go through 146 * the name list and see if we find a matching guid. If so, replace 147 * the path and see if we can calculate a new devid. 148 * 149 * There may be multiple names associated with a particular guid, in 150 * which case we have overlapping slices or multiple paths to the same 151 * disk. If this is the case, then we want to pick the path that is 152 * the most similar to the original, where "most similar" is the number 153 * of matching characters starting from the end of the path. This will 154 * preserve slice numbers even if the disks have been reorganized, and 155 * will also catch preferred disk names if multiple paths exist. 156 */ 157 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0); 158 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0) 159 path = NULL; 160 161 matched = 0; 162 best = NULL; 163 for (ne = names; ne != NULL; ne = ne->ne_next) { 164 if (ne->ne_guid == guid) { 165 const char *src, *dst; 166 int count; 167 168 if (path == NULL) { 169 best = ne; 170 break; 171 } 172 173 src = ne->ne_name + strlen(ne->ne_name) - 1; 174 dst = path + strlen(path) - 1; 175 for (count = 0; src >= ne->ne_name && dst >= path; 176 src--, dst--, count++) 177 if (*src != *dst) 178 break; 179 180 /* 181 * At this point, 'count' is the number of characters 182 * matched from the end. 183 */ 184 if (count > matched || best == NULL) { 185 best = ne; 186 matched = count; 187 } 188 } 189 } 190 191 if (best == NULL) 192 return (0); 193 194 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0) 195 return (-1); 196 197 if ((devid = get_devid(best->ne_name)) == NULL) { 198 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID); 199 } else { 200 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0) 201 return (-1); 202 devid_str_free(devid); 203 } 204 205 return (0); 206 } 207 208 /* 209 * Add the given configuration to the list of known devices. 210 */ 211 static int 212 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path, 213 nvlist_t *config) 214 { 215 uint64_t pool_guid, vdev_guid, top_guid, txg, state; 216 pool_entry_t *pe; 217 vdev_entry_t *ve; 218 config_entry_t *ce; 219 name_entry_t *ne; 220 221 /* 222 * If this is a hot spare not currently in use or level 2 cache 223 * device, add it to the list of names to translate, but don't do 224 * anything else. 225 */ 226 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 227 &state) == 0 && 228 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) && 229 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) { 230 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 231 return (-1); 232 233 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 234 free(ne); 235 return (-1); 236 } 237 ne->ne_guid = vdev_guid; 238 ne->ne_next = pl->names; 239 pl->names = ne; 240 return (0); 241 } 242 243 /* 244 * If we have a valid config but cannot read any of these fields, then 245 * it means we have a half-initialized label. In vdev_label_init() 246 * we write a label with txg == 0 so that we can identify the device 247 * in case the user refers to the same disk later on. If we fail to 248 * create the pool, we'll be left with a label in this state 249 * which should not be considered part of a valid pool. 250 */ 251 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 252 &pool_guid) != 0 || 253 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 254 &vdev_guid) != 0 || 255 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID, 256 &top_guid) != 0 || 257 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 258 &txg) != 0 || txg == 0) { 259 nvlist_free(config); 260 return (0); 261 } 262 263 /* 264 * First, see if we know about this pool. If not, then add it to the 265 * list of known pools. 266 */ 267 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 268 if (pe->pe_guid == pool_guid) 269 break; 270 } 271 272 if (pe == NULL) { 273 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) { 274 nvlist_free(config); 275 return (-1); 276 } 277 pe->pe_guid = pool_guid; 278 pe->pe_next = pl->pools; 279 pl->pools = pe; 280 } 281 282 /* 283 * Second, see if we know about this toplevel vdev. Add it if its 284 * missing. 285 */ 286 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 287 if (ve->ve_guid == top_guid) 288 break; 289 } 290 291 if (ve == NULL) { 292 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) { 293 nvlist_free(config); 294 return (-1); 295 } 296 ve->ve_guid = top_guid; 297 ve->ve_next = pe->pe_vdevs; 298 pe->pe_vdevs = ve; 299 } 300 301 /* 302 * Third, see if we have a config with a matching transaction group. If 303 * so, then we do nothing. Otherwise, add it to the list of known 304 * configs. 305 */ 306 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) { 307 if (ce->ce_txg == txg) 308 break; 309 } 310 311 if (ce == NULL) { 312 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) { 313 nvlist_free(config); 314 return (-1); 315 } 316 ce->ce_txg = txg; 317 ce->ce_config = config; 318 ce->ce_next = ve->ve_configs; 319 ve->ve_configs = ce; 320 } else { 321 nvlist_free(config); 322 } 323 324 /* 325 * At this point we've successfully added our config to the list of 326 * known configs. The last thing to do is add the vdev guid -> path 327 * mappings so that we can fix up the configuration as necessary before 328 * doing the import. 329 */ 330 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL) 331 return (-1); 332 333 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) { 334 free(ne); 335 return (-1); 336 } 337 338 ne->ne_guid = vdev_guid; 339 ne->ne_next = pl->names; 340 pl->names = ne; 341 342 return (0); 343 } 344 345 /* 346 * Returns true if the named pool matches the given GUID. 347 */ 348 static int 349 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid, 350 boolean_t *isactive) 351 { 352 zpool_handle_t *zhp; 353 uint64_t theguid; 354 355 if (zpool_open_silent(hdl, name, &zhp) != 0) 356 return (-1); 357 358 if (zhp == NULL) { 359 *isactive = B_FALSE; 360 return (0); 361 } 362 363 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID, 364 &theguid) == 0); 365 366 zpool_close(zhp); 367 368 *isactive = (theguid == guid); 369 return (0); 370 } 371 372 static nvlist_t * 373 refresh_config(libzfs_handle_t *hdl, nvlist_t *config) 374 { 375 nvlist_t *nvl; 376 zfs_cmd_t zc = { 0 }; 377 int err; 378 379 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0) 380 return (NULL); 381 382 if (zcmd_alloc_dst_nvlist(hdl, &zc, 383 zc.zc_nvlist_conf_size * 2) != 0) { 384 zcmd_free_nvlists(&zc); 385 return (NULL); 386 } 387 388 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT, 389 &zc)) != 0 && errno == ENOMEM) { 390 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) { 391 zcmd_free_nvlists(&zc); 392 return (NULL); 393 } 394 } 395 396 if (err) { 397 zcmd_free_nvlists(&zc); 398 return (NULL); 399 } 400 401 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) { 402 zcmd_free_nvlists(&zc); 403 return (NULL); 404 } 405 406 zcmd_free_nvlists(&zc); 407 return (nvl); 408 } 409 410 /* 411 * Determine if the vdev id is a hole in the namespace. 412 */ 413 boolean_t 414 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id) 415 { 416 for (int c = 0; c < holes; c++) { 417 418 /* Top-level is a hole */ 419 if (hole_array[c] == id) 420 return (B_TRUE); 421 } 422 return (B_FALSE); 423 } 424 425 /* 426 * Convert our list of pools into the definitive set of configurations. We 427 * start by picking the best config for each toplevel vdev. Once that's done, 428 * we assemble the toplevel vdevs into a full config for the pool. We make a 429 * pass to fix up any incorrect paths, and then add it to the main list to 430 * return to the user. 431 */ 432 static nvlist_t * 433 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok) 434 { 435 pool_entry_t *pe; 436 vdev_entry_t *ve; 437 config_entry_t *ce; 438 nvlist_t *ret = NULL, *config = NULL, *tmp = NULL, *nvtop, *nvroot; 439 nvlist_t **spares, **l2cache; 440 uint_t i, nspares, nl2cache; 441 boolean_t config_seen; 442 uint64_t best_txg; 443 char *name, *hostname = NULL; 444 uint64_t guid; 445 uint_t children = 0; 446 nvlist_t **child = NULL; 447 uint_t holes; 448 uint64_t *hole_array, max_id; 449 uint_t c; 450 boolean_t isactive; 451 uint64_t hostid; 452 nvlist_t *nvl; 453 boolean_t found_one = B_FALSE; 454 boolean_t valid_top_config = B_FALSE; 455 456 if (nvlist_alloc(&ret, 0, 0) != 0) 457 goto nomem; 458 459 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) { 460 uint64_t id, max_txg = 0; 461 462 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0) 463 goto nomem; 464 config_seen = B_FALSE; 465 466 /* 467 * Iterate over all toplevel vdevs. Grab the pool configuration 468 * from the first one we find, and then go through the rest and 469 * add them as necessary to the 'vdevs' member of the config. 470 */ 471 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) { 472 473 /* 474 * Determine the best configuration for this vdev by 475 * selecting the config with the latest transaction 476 * group. 477 */ 478 best_txg = 0; 479 for (ce = ve->ve_configs; ce != NULL; 480 ce = ce->ce_next) { 481 482 if (ce->ce_txg > best_txg) { 483 tmp = ce->ce_config; 484 best_txg = ce->ce_txg; 485 } 486 } 487 488 /* 489 * We rely on the fact that the max txg for the 490 * pool will contain the most up-to-date information 491 * about the valid top-levels in the vdev namespace. 492 */ 493 if (best_txg > max_txg) { 494 (void) nvlist_remove(config, 495 ZPOOL_CONFIG_VDEV_CHILDREN, 496 DATA_TYPE_UINT64); 497 (void) nvlist_remove(config, 498 ZPOOL_CONFIG_HOLE_ARRAY, 499 DATA_TYPE_UINT64_ARRAY); 500 501 max_txg = best_txg; 502 hole_array = NULL; 503 holes = 0; 504 max_id = 0; 505 valid_top_config = B_FALSE; 506 507 if (nvlist_lookup_uint64(tmp, 508 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) { 509 verify(nvlist_add_uint64(config, 510 ZPOOL_CONFIG_VDEV_CHILDREN, 511 max_id) == 0); 512 valid_top_config = B_TRUE; 513 } 514 515 if (nvlist_lookup_uint64_array(tmp, 516 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array, 517 &holes) == 0) { 518 verify(nvlist_add_uint64_array(config, 519 ZPOOL_CONFIG_HOLE_ARRAY, 520 hole_array, holes) == 0); 521 } 522 } 523 524 if (!config_seen) { 525 /* 526 * Copy the relevant pieces of data to the pool 527 * configuration: 528 * 529 * version 530 * pool guid 531 * name 532 * comment (if available) 533 * pool state 534 * hostid (if available) 535 * hostname (if available) 536 */ 537 uint64_t state, version; 538 char *comment = NULL; 539 540 version = fnvlist_lookup_uint64(tmp, 541 ZPOOL_CONFIG_VERSION); 542 fnvlist_add_uint64(config, 543 ZPOOL_CONFIG_VERSION, version); 544 guid = fnvlist_lookup_uint64(tmp, 545 ZPOOL_CONFIG_POOL_GUID); 546 fnvlist_add_uint64(config, 547 ZPOOL_CONFIG_POOL_GUID, guid); 548 name = fnvlist_lookup_string(tmp, 549 ZPOOL_CONFIG_POOL_NAME); 550 fnvlist_add_string(config, 551 ZPOOL_CONFIG_POOL_NAME, name); 552 553 if (nvlist_lookup_string(tmp, 554 ZPOOL_CONFIG_COMMENT, &comment) == 0) 555 fnvlist_add_string(config, 556 ZPOOL_CONFIG_COMMENT, comment); 557 558 state = fnvlist_lookup_uint64(tmp, 559 ZPOOL_CONFIG_POOL_STATE); 560 fnvlist_add_uint64(config, 561 ZPOOL_CONFIG_POOL_STATE, state); 562 563 hostid = 0; 564 if (nvlist_lookup_uint64(tmp, 565 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 566 fnvlist_add_uint64(config, 567 ZPOOL_CONFIG_HOSTID, hostid); 568 hostname = fnvlist_lookup_string(tmp, 569 ZPOOL_CONFIG_HOSTNAME); 570 fnvlist_add_string(config, 571 ZPOOL_CONFIG_HOSTNAME, hostname); 572 } 573 574 config_seen = B_TRUE; 575 } 576 577 /* 578 * Add this top-level vdev to the child array. 579 */ 580 verify(nvlist_lookup_nvlist(tmp, 581 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0); 582 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID, 583 &id) == 0); 584 585 if (id >= children) { 586 nvlist_t **newchild; 587 588 newchild = zfs_alloc(hdl, (id + 1) * 589 sizeof (nvlist_t *)); 590 if (newchild == NULL) 591 goto nomem; 592 593 for (c = 0; c < children; c++) 594 newchild[c] = child[c]; 595 596 free(child); 597 child = newchild; 598 children = id + 1; 599 } 600 if (nvlist_dup(nvtop, &child[id], 0) != 0) 601 goto nomem; 602 603 } 604 605 /* 606 * If we have information about all the top-levels then 607 * clean up the nvlist which we've constructed. This 608 * means removing any extraneous devices that are 609 * beyond the valid range or adding devices to the end 610 * of our array which appear to be missing. 611 */ 612 if (valid_top_config) { 613 if (max_id < children) { 614 for (c = max_id; c < children; c++) 615 nvlist_free(child[c]); 616 children = max_id; 617 } else if (max_id > children) { 618 nvlist_t **newchild; 619 620 newchild = zfs_alloc(hdl, (max_id) * 621 sizeof (nvlist_t *)); 622 if (newchild == NULL) 623 goto nomem; 624 625 for (c = 0; c < children; c++) 626 newchild[c] = child[c]; 627 628 free(child); 629 child = newchild; 630 children = max_id; 631 } 632 } 633 634 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 635 &guid) == 0); 636 637 /* 638 * The vdev namespace may contain holes as a result of 639 * device removal. We must add them back into the vdev 640 * tree before we process any missing devices. 641 */ 642 if (holes > 0) { 643 ASSERT(valid_top_config); 644 645 for (c = 0; c < children; c++) { 646 nvlist_t *holey; 647 648 if (child[c] != NULL || 649 !vdev_is_hole(hole_array, holes, c)) 650 continue; 651 652 if (nvlist_alloc(&holey, NV_UNIQUE_NAME, 653 0) != 0) 654 goto nomem; 655 656 /* 657 * Holes in the namespace are treated as 658 * "hole" top-level vdevs and have a 659 * special flag set on them. 660 */ 661 if (nvlist_add_string(holey, 662 ZPOOL_CONFIG_TYPE, 663 VDEV_TYPE_HOLE) != 0 || 664 nvlist_add_uint64(holey, 665 ZPOOL_CONFIG_ID, c) != 0 || 666 nvlist_add_uint64(holey, 667 ZPOOL_CONFIG_GUID, 0ULL) != 0) 668 goto nomem; 669 child[c] = holey; 670 } 671 } 672 673 /* 674 * Look for any missing top-level vdevs. If this is the case, 675 * create a faked up 'missing' vdev as a placeholder. We cannot 676 * simply compress the child array, because the kernel performs 677 * certain checks to make sure the vdev IDs match their location 678 * in the configuration. 679 */ 680 for (c = 0; c < children; c++) { 681 if (child[c] == NULL) { 682 nvlist_t *missing; 683 if (nvlist_alloc(&missing, NV_UNIQUE_NAME, 684 0) != 0) 685 goto nomem; 686 if (nvlist_add_string(missing, 687 ZPOOL_CONFIG_TYPE, 688 VDEV_TYPE_MISSING) != 0 || 689 nvlist_add_uint64(missing, 690 ZPOOL_CONFIG_ID, c) != 0 || 691 nvlist_add_uint64(missing, 692 ZPOOL_CONFIG_GUID, 0ULL) != 0) { 693 nvlist_free(missing); 694 goto nomem; 695 } 696 child[c] = missing; 697 } 698 } 699 700 /* 701 * Put all of this pool's top-level vdevs into a root vdev. 702 */ 703 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) 704 goto nomem; 705 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 706 VDEV_TYPE_ROOT) != 0 || 707 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 || 708 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 || 709 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 710 child, children) != 0) { 711 nvlist_free(nvroot); 712 goto nomem; 713 } 714 715 for (c = 0; c < children; c++) 716 nvlist_free(child[c]); 717 free(child); 718 children = 0; 719 child = NULL; 720 721 /* 722 * Go through and fix up any paths and/or devids based on our 723 * known list of vdev GUID -> path mappings. 724 */ 725 if (fix_paths(nvroot, pl->names) != 0) { 726 nvlist_free(nvroot); 727 goto nomem; 728 } 729 730 /* 731 * Add the root vdev to this pool's configuration. 732 */ 733 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 734 nvroot) != 0) { 735 nvlist_free(nvroot); 736 goto nomem; 737 } 738 nvlist_free(nvroot); 739 740 /* 741 * zdb uses this path to report on active pools that were 742 * imported or created using -R. 743 */ 744 if (active_ok) 745 goto add_pool; 746 747 /* 748 * Determine if this pool is currently active, in which case we 749 * can't actually import it. 750 */ 751 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 752 &name) == 0); 753 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 754 &guid) == 0); 755 756 if (pool_active(hdl, name, guid, &isactive) != 0) 757 goto error; 758 759 if (isactive) { 760 nvlist_free(config); 761 config = NULL; 762 continue; 763 } 764 765 if ((nvl = refresh_config(hdl, config)) == NULL) { 766 nvlist_free(config); 767 config = NULL; 768 continue; 769 } 770 771 nvlist_free(config); 772 config = nvl; 773 774 /* 775 * Go through and update the paths for spares, now that we have 776 * them. 777 */ 778 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 779 &nvroot) == 0); 780 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 781 &spares, &nspares) == 0) { 782 for (i = 0; i < nspares; i++) { 783 if (fix_paths(spares[i], pl->names) != 0) 784 goto nomem; 785 } 786 } 787 788 /* 789 * Update the paths for l2cache devices. 790 */ 791 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 792 &l2cache, &nl2cache) == 0) { 793 for (i = 0; i < nl2cache; i++) { 794 if (fix_paths(l2cache[i], pl->names) != 0) 795 goto nomem; 796 } 797 } 798 799 /* 800 * Restore the original information read from the actual label. 801 */ 802 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID, 803 DATA_TYPE_UINT64); 804 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME, 805 DATA_TYPE_STRING); 806 if (hostid != 0) { 807 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID, 808 hostid) == 0); 809 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME, 810 hostname) == 0); 811 } 812 813 add_pool: 814 /* 815 * Add this pool to the list of configs. 816 */ 817 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 818 &name) == 0); 819 if (nvlist_add_nvlist(ret, name, config) != 0) 820 goto nomem; 821 822 found_one = B_TRUE; 823 nvlist_free(config); 824 config = NULL; 825 } 826 827 if (!found_one) { 828 nvlist_free(ret); 829 ret = NULL; 830 } 831 832 return (ret); 833 834 nomem: 835 (void) no_memory(hdl); 836 error: 837 nvlist_free(config); 838 nvlist_free(ret); 839 for (c = 0; c < children; c++) 840 nvlist_free(child[c]); 841 free(child); 842 843 return (NULL); 844 } 845 846 /* 847 * Return the offset of the given label. 848 */ 849 static uint64_t 850 label_offset(uint64_t size, int l) 851 { 852 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0); 853 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 854 0 : size - VDEV_LABELS * sizeof (vdev_label_t))); 855 } 856 857 /* 858 * Given a file descriptor, read the label information and return an nvlist 859 * describing the configuration, if there is one. 860 */ 861 int 862 zpool_read_label(int fd, nvlist_t **config) 863 { 864 struct stat64 statbuf; 865 int l; 866 vdev_label_t *label; 867 uint64_t state, txg, size; 868 869 *config = NULL; 870 871 if (fstat64(fd, &statbuf) == -1) 872 return (0); 873 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 874 875 if ((label = malloc(sizeof (vdev_label_t))) == NULL) 876 return (-1); 877 878 for (l = 0; l < VDEV_LABELS; l++) { 879 if (pread64(fd, label, sizeof (vdev_label_t), 880 label_offset(size, l)) != sizeof (vdev_label_t)) 881 continue; 882 883 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 884 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) 885 continue; 886 887 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 888 &state) != 0 || state > POOL_STATE_L2CACHE) { 889 nvlist_free(*config); 890 continue; 891 } 892 893 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 894 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 895 &txg) != 0 || txg == 0)) { 896 nvlist_free(*config); 897 continue; 898 } 899 900 free(label); 901 return (0); 902 } 903 904 free(label); 905 *config = NULL; 906 return (0); 907 } 908 909 typedef struct slice_node { 910 char *sn_name; 911 nvlist_t *sn_config; 912 boolean_t sn_nozpool; 913 int sn_partno; 914 struct disk_node *sn_disk; 915 struct slice_node *sn_next; 916 } slice_node_t; 917 918 typedef struct disk_node { 919 char *dn_name; 920 int dn_dfd; 921 libzfs_handle_t *dn_hdl; 922 nvlist_t *dn_config; 923 struct slice_node *dn_slices; 924 struct disk_node *dn_next; 925 } disk_node_t; 926 927 #ifdef sparc 928 #define WHOLE_DISK "s2" 929 #else 930 #define WHOLE_DISK "p0" 931 #endif 932 933 /* 934 * This function splits the slice from the device name. Currently it supports 935 * VTOC slices (s[0-16]) and DOS/FDISK partitions (p[0-4]). If this function 936 * is updated to support other slice types then the check_slices function will 937 * also need to be updated. 938 */ 939 static boolean_t 940 get_disk_slice(libzfs_handle_t *hdl, char *disk, char **slice, int *partno) 941 { 942 char *p; 943 944 if ((p = strrchr(disk, 's')) == NULL && 945 (p = strrchr(disk, 'p')) == NULL) 946 return (B_FALSE); 947 948 if (!isdigit(p[1])) 949 return (B_FALSE); 950 951 *slice = zfs_strdup(hdl, p); 952 *partno = atoi(p + 1); 953 954 p = '\0'; 955 return (B_TRUE); 956 } 957 958 static void 959 check_one_slice(slice_node_t *slice, diskaddr_t size, uint_t blksz) 960 { 961 /* 962 * protect against division by zero for disk labels that 963 * contain a bogus sector size 964 */ 965 if (blksz == 0) 966 blksz = DEV_BSIZE; 967 /* too small to contain a zpool? */ 968 if (size < (SPA_MINDEVSIZE / blksz)) 969 slice->sn_nozpool = B_TRUE; 970 } 971 972 static void 973 check_slices(slice_node_t *slices, int fd) 974 { 975 struct extvtoc vtoc; 976 struct dk_gpt *gpt; 977 slice_node_t *slice; 978 diskaddr_t size; 979 980 if (read_extvtoc(fd, &vtoc) >= 0) { 981 for (slice = slices; slice; slice = slice->sn_next) { 982 if (slice->sn_name[0] == 'p') 983 continue; 984 size = vtoc.v_part[slice->sn_partno].p_size; 985 check_one_slice(slice, size, vtoc.v_sectorsz); 986 } 987 } else if (efi_alloc_and_read(fd, &gpt) >= 0) { 988 for (slice = slices; slice; slice = slice->sn_next) { 989 /* nodes p[1-4] are never used with EFI labels */ 990 if (slice->sn_name[0] == 'p') { 991 if (slice->sn_partno > 0) 992 slice->sn_nozpool = B_TRUE; 993 continue; 994 } 995 size = gpt->efi_parts[slice->sn_partno].p_size; 996 check_one_slice(slice, size, gpt->efi_lbasize); 997 } 998 efi_free(gpt); 999 } 1000 } 1001 1002 static void 1003 zpool_open_func(void *arg) 1004 { 1005 disk_node_t *disk = arg; 1006 struct stat64 statbuf; 1007 slice_node_t *slice; 1008 nvlist_t *config; 1009 char *devname; 1010 int fd; 1011 1012 /* 1013 * If the disk has no slices we open it directly, otherwise we try 1014 * to open the whole disk slice. 1015 */ 1016 if (disk->dn_slices == NULL) 1017 devname = strdup(disk->dn_name); 1018 else 1019 (void) asprintf(&devname, "%s" WHOLE_DISK, disk->dn_name); 1020 1021 if (devname == NULL) { 1022 (void) no_memory(disk->dn_hdl); 1023 return; 1024 } 1025 1026 if ((fd = openat64(disk->dn_dfd, devname, O_RDONLY)) < 0) { 1027 free(devname); 1028 return; 1029 } 1030 /* 1031 * Ignore failed stats. We only want regular 1032 * files, character devs and block devs. 1033 */ 1034 if (fstat64(fd, &statbuf) != 0 || 1035 (!S_ISREG(statbuf.st_mode) && 1036 !S_ISCHR(statbuf.st_mode) && 1037 !S_ISBLK(statbuf.st_mode))) { 1038 (void) close(fd); 1039 free(devname); 1040 return; 1041 } 1042 /* this file is too small to hold a zpool */ 1043 if (S_ISREG(statbuf.st_mode) && statbuf.st_size < SPA_MINDEVSIZE) { 1044 (void) close(fd); 1045 free(devname); 1046 return; 1047 } else if (!S_ISREG(statbuf.st_mode) && disk->dn_slices != NULL) { 1048 /* 1049 * Try to read the disk label first so we don't have to 1050 * open a bunch of minor nodes that can't have a zpool. 1051 */ 1052 check_slices(disk->dn_slices, fd); 1053 } 1054 1055 /* 1056 * If we're working with the device directly (it has no slices) 1057 * then we can just read the config and we're done. 1058 */ 1059 if (disk->dn_slices == NULL) { 1060 if (zpool_read_label(fd, &config) != 0) { 1061 (void) no_memory(disk->dn_hdl); 1062 (void) close(fd); 1063 free(devname); 1064 return; 1065 } 1066 disk->dn_config = config; 1067 (void) close(fd); 1068 free(devname); 1069 return; 1070 } 1071 1072 (void) close(fd); 1073 free(devname); 1074 1075 /* 1076 * Go through and read the label off each slice. The check_slices 1077 * function has already performed some basic checks and set the 1078 * sn_nozpool flag on any slices which just can't contain a zpool. 1079 */ 1080 for (slice = disk->dn_slices; slice; slice = slice->sn_next) { 1081 if (slice->sn_nozpool == B_TRUE) 1082 continue; 1083 1084 (void) asprintf(&devname, "%s%s", disk->dn_name, 1085 slice->sn_name); 1086 1087 if (devname == NULL) { 1088 (void) no_memory(disk->dn_hdl); 1089 free(devname); 1090 return; 1091 } 1092 1093 if ((fd = openat64(disk->dn_dfd, devname, O_RDONLY)) < 0) { 1094 free(devname); 1095 continue; 1096 } 1097 1098 if ((zpool_read_label(fd, &config)) != 0) { 1099 (void) no_memory(disk->dn_hdl); 1100 (void) close(fd); 1101 free(devname); 1102 return; 1103 } 1104 1105 slice->sn_config = config; 1106 (void) close(fd); 1107 free(devname); 1108 } 1109 } 1110 1111 /* 1112 * Given a file descriptor, clear (zero) the label information. This function 1113 * is currently only used in the appliance stack as part of the ZFS sysevent 1114 * module. 1115 */ 1116 int 1117 zpool_clear_label(int fd) 1118 { 1119 struct stat64 statbuf; 1120 int l; 1121 vdev_label_t *label; 1122 uint64_t size; 1123 1124 if (fstat64(fd, &statbuf) == -1) 1125 return (0); 1126 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t); 1127 1128 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL) 1129 return (-1); 1130 1131 for (l = 0; l < VDEV_LABELS; l++) { 1132 if (pwrite64(fd, label, sizeof (vdev_label_t), 1133 label_offset(size, l)) != sizeof (vdev_label_t)) 1134 return (-1); 1135 } 1136 1137 free(label); 1138 return (0); 1139 } 1140 1141 /* 1142 * Given a list of directories to search, find all pools stored on disk. This 1143 * includes partial pools which are not available to import. If no args are 1144 * given (argc is 0), then the default directory (/dev/dsk) is searched. 1145 * poolname or guid (but not both) are provided by the caller when trying 1146 * to import a specific pool. 1147 */ 1148 static nvlist_t * 1149 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg) 1150 { 1151 int i, dirs = iarg->paths; 1152 DIR *dirp = NULL; 1153 struct dirent64 *dp; 1154 char path[MAXPATHLEN]; 1155 char *end, **dir = iarg->path; 1156 size_t pathleft; 1157 nvlist_t *ret = NULL; 1158 static char *default_dir = "/dev/dsk"; 1159 pool_list_t pools = { 0 }; 1160 pool_entry_t *pe, *penext; 1161 vdev_entry_t *ve, *venext; 1162 config_entry_t *ce, *cenext; 1163 name_entry_t *ne, *nenext; 1164 void *cookie; 1165 1166 if (dirs == 0) { 1167 dirs = 1; 1168 dir = &default_dir; 1169 } 1170 1171 /* 1172 * Go through and read the label configuration information from every 1173 * possible device, organizing the information according to pool GUID 1174 * and toplevel GUID. 1175 */ 1176 for (i = 0; i < dirs; i++) { 1177 tpool_t *t; 1178 char *rdsk; 1179 int dfd; 1180 disk_node_t *disks = NULL, *curdisk = NULL; 1181 slice_node_t *curslice = NULL; 1182 1183 /* use realpath to normalize the path */ 1184 if (realpath(dir[i], path) == 0) { 1185 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1186 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]); 1187 goto error; 1188 } 1189 end = &path[strlen(path)]; 1190 *end++ = '/'; 1191 *end = 0; 1192 pathleft = &path[sizeof (path)] - end; 1193 1194 /* 1195 * Using raw devices instead of block devices when we're 1196 * reading the labels skips a bunch of slow operations during 1197 * close(2) processing, so we replace /dev/dsk with /dev/rdsk. 1198 */ 1199 if (strcmp(path, "/dev/dsk/") == 0) 1200 rdsk = "/dev/rdsk/"; 1201 else 1202 rdsk = path; 1203 1204 if ((dfd = open64(rdsk, O_RDONLY)) < 0 || 1205 (dirp = fdopendir(dfd)) == NULL) { 1206 zfs_error_aux(hdl, strerror(errno)); 1207 (void) zfs_error_fmt(hdl, EZFS_BADPATH, 1208 dgettext(TEXT_DOMAIN, "cannot open '%s'"), 1209 rdsk); 1210 goto error; 1211 } 1212 1213 /* 1214 * This is not MT-safe, but we have no MT consumers of libzfs 1215 */ 1216 while ((dp = readdir64(dirp)) != NULL) { 1217 boolean_t isslice; 1218 char *name, *sname; 1219 int partno; 1220 1221 if (dp->d_name[0] == '.' && (dp->d_name[1] == '\0' || 1222 (dp->d_name[1] == '.' && dp->d_name[2] == '\0'))) 1223 continue; 1224 1225 name = zfs_strdup(hdl, dp->d_name); 1226 1227 /* 1228 * We create a new disk node every time we encounter 1229 * a disk with no slices or the disk name changes. 1230 */ 1231 isslice = get_disk_slice(hdl, name, &sname, &partno); 1232 if (isslice == B_FALSE || curdisk == NULL || 1233 strcmp(curdisk->dn_name, name) != 0) { 1234 disk_node_t *newdisk; 1235 1236 newdisk = zfs_alloc(hdl, sizeof (disk_node_t)); 1237 newdisk->dn_name = name; 1238 newdisk->dn_dfd = dfd; 1239 newdisk->dn_hdl = hdl; 1240 1241 if (curdisk != NULL) 1242 curdisk->dn_next = newdisk; 1243 else 1244 disks = newdisk; 1245 1246 curdisk = newdisk; 1247 curslice = NULL; 1248 } 1249 1250 assert(curdisk != NULL); 1251 1252 /* 1253 * Add a new slice node to the current disk node. 1254 * We do this for all slices including zero slices. 1255 */ 1256 if (isslice == B_TRUE) { 1257 slice_node_t *newslice; 1258 1259 newslice = zfs_alloc(hdl, 1260 sizeof (slice_node_t)); 1261 newslice->sn_name = sname; 1262 newslice->sn_partno = partno; 1263 newslice->sn_disk = curdisk; 1264 1265 if (curslice != NULL) 1266 curslice->sn_next = newslice; 1267 else 1268 curdisk->dn_slices = newslice; 1269 1270 curslice = newslice; 1271 } 1272 } 1273 /* 1274 * create a thread pool to do all of this in parallel; 1275 * choose double the number of processors; we hold a lot 1276 * of locks in the kernel, so going beyond this doesn't 1277 * buy us much. Each disk (and any slices it might have) 1278 * is handled inside a single thread. 1279 */ 1280 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN), 1281 0, NULL); 1282 for (curdisk = disks; curdisk; curdisk = curdisk->dn_next) 1283 (void) tpool_dispatch(t, zpool_open_func, curdisk); 1284 tpool_wait(t); 1285 tpool_destroy(t); 1286 1287 curdisk = disks; 1288 while (curdisk != NULL) { 1289 nvlist_t *config; 1290 disk_node_t *prevdisk; 1291 1292 /* 1293 * If the device has slices we examine the config on 1294 * each of those. If not we use the config directly 1295 * from the device instead. 1296 */ 1297 curslice = curdisk->dn_slices; 1298 1299 if (curslice != NULL) 1300 config = curslice->sn_config; 1301 else 1302 config = curdisk->dn_config; 1303 1304 do { 1305 boolean_t matched = B_TRUE; 1306 1307 if (config == NULL) 1308 goto next; 1309 1310 if (iarg->poolname != NULL) { 1311 char *pname; 1312 1313 matched = nvlist_lookup_string(config, 1314 ZPOOL_CONFIG_POOL_NAME, 1315 &pname) == 0 && 1316 strcmp(iarg->poolname, pname) == 0; 1317 } else if (iarg->guid != 0) { 1318 uint64_t this_guid; 1319 1320 matched = nvlist_lookup_uint64(config, 1321 ZPOOL_CONFIG_POOL_GUID, 1322 &this_guid) == 0 && 1323 iarg->guid == this_guid; 1324 } 1325 1326 if (!matched) { 1327 nvlist_free(config); 1328 goto next; 1329 } 1330 1331 /* use the non-raw path for the config */ 1332 if (curslice != NULL) 1333 (void) snprintf(end, pathleft, "%s%s", 1334 curdisk->dn_name, 1335 curslice->sn_name); 1336 else 1337 (void) strlcpy(end, curdisk->dn_name, 1338 pathleft); 1339 if (add_config(hdl, &pools, path, config) != 0) 1340 goto error; 1341 1342 next: 1343 /* 1344 * If we're looking at slices free this one 1345 * and go move onto the next. 1346 */ 1347 if (curslice != NULL) { 1348 slice_node_t *prevslice; 1349 1350 prevslice = curslice; 1351 curslice = curslice->sn_next; 1352 1353 free(prevslice->sn_name); 1354 free(prevslice); 1355 1356 if (curslice != NULL) { 1357 config = curslice->sn_config; 1358 } 1359 } 1360 } while (curslice != NULL); 1361 1362 /* 1363 * Free this disk and move onto the next one. 1364 */ 1365 prevdisk = curdisk; 1366 curdisk = curdisk->dn_next; 1367 1368 free(prevdisk->dn_name); 1369 free(prevdisk); 1370 } 1371 1372 (void) closedir(dirp); 1373 dirp = NULL; 1374 } 1375 1376 ret = get_configs(hdl, &pools, iarg->can_be_active); 1377 1378 error: 1379 for (pe = pools.pools; pe != NULL; pe = penext) { 1380 penext = pe->pe_next; 1381 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) { 1382 venext = ve->ve_next; 1383 for (ce = ve->ve_configs; ce != NULL; ce = cenext) { 1384 cenext = ce->ce_next; 1385 if (ce->ce_config) 1386 nvlist_free(ce->ce_config); 1387 free(ce); 1388 } 1389 free(ve); 1390 } 1391 free(pe); 1392 } 1393 1394 for (ne = pools.names; ne != NULL; ne = nenext) { 1395 nenext = ne->ne_next; 1396 if (ne->ne_name) 1397 free(ne->ne_name); 1398 free(ne); 1399 } 1400 1401 if (dirp) 1402 (void) closedir(dirp); 1403 1404 return (ret); 1405 } 1406 1407 nvlist_t * 1408 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv) 1409 { 1410 importargs_t iarg = { 0 }; 1411 1412 iarg.paths = argc; 1413 iarg.path = argv; 1414 1415 return (zpool_find_import_impl(hdl, &iarg)); 1416 } 1417 1418 /* 1419 * Given a cache file, return the contents as a list of importable pools. 1420 * poolname or guid (but not both) are provided by the caller when trying 1421 * to import a specific pool. 1422 */ 1423 nvlist_t * 1424 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile, 1425 char *poolname, uint64_t guid) 1426 { 1427 char *buf; 1428 int fd; 1429 struct stat64 statbuf; 1430 nvlist_t *raw, *src, *dst; 1431 nvlist_t *pools; 1432 nvpair_t *elem; 1433 char *name; 1434 uint64_t this_guid; 1435 boolean_t active; 1436 1437 verify(poolname == NULL || guid == 0); 1438 1439 if ((fd = open(cachefile, O_RDONLY)) < 0) { 1440 zfs_error_aux(hdl, "%s", strerror(errno)); 1441 (void) zfs_error(hdl, EZFS_BADCACHE, 1442 dgettext(TEXT_DOMAIN, "failed to open cache file")); 1443 return (NULL); 1444 } 1445 1446 if (fstat64(fd, &statbuf) != 0) { 1447 zfs_error_aux(hdl, "%s", strerror(errno)); 1448 (void) close(fd); 1449 (void) zfs_error(hdl, EZFS_BADCACHE, 1450 dgettext(TEXT_DOMAIN, "failed to get size of cache file")); 1451 return (NULL); 1452 } 1453 1454 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) { 1455 (void) close(fd); 1456 return (NULL); 1457 } 1458 1459 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) { 1460 (void) close(fd); 1461 free(buf); 1462 (void) zfs_error(hdl, EZFS_BADCACHE, 1463 dgettext(TEXT_DOMAIN, 1464 "failed to read cache file contents")); 1465 return (NULL); 1466 } 1467 1468 (void) close(fd); 1469 1470 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) { 1471 free(buf); 1472 (void) zfs_error(hdl, EZFS_BADCACHE, 1473 dgettext(TEXT_DOMAIN, 1474 "invalid or corrupt cache file contents")); 1475 return (NULL); 1476 } 1477 1478 free(buf); 1479 1480 /* 1481 * Go through and get the current state of the pools and refresh their 1482 * state. 1483 */ 1484 if (nvlist_alloc(&pools, 0, 0) != 0) { 1485 (void) no_memory(hdl); 1486 nvlist_free(raw); 1487 return (NULL); 1488 } 1489 1490 elem = NULL; 1491 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) { 1492 verify(nvpair_value_nvlist(elem, &src) == 0); 1493 1494 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME, 1495 &name) == 0); 1496 if (poolname != NULL && strcmp(poolname, name) != 0) 1497 continue; 1498 1499 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1500 &this_guid) == 0); 1501 if (guid != 0) { 1502 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID, 1503 &this_guid) == 0); 1504 if (guid != this_guid) 1505 continue; 1506 } 1507 1508 if (pool_active(hdl, name, this_guid, &active) != 0) { 1509 nvlist_free(raw); 1510 nvlist_free(pools); 1511 return (NULL); 1512 } 1513 1514 if (active) 1515 continue; 1516 1517 if ((dst = refresh_config(hdl, src)) == NULL) { 1518 nvlist_free(raw); 1519 nvlist_free(pools); 1520 return (NULL); 1521 } 1522 1523 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) { 1524 (void) no_memory(hdl); 1525 nvlist_free(dst); 1526 nvlist_free(raw); 1527 nvlist_free(pools); 1528 return (NULL); 1529 } 1530 nvlist_free(dst); 1531 } 1532 1533 nvlist_free(raw); 1534 return (pools); 1535 } 1536 1537 static int 1538 name_or_guid_exists(zpool_handle_t *zhp, void *data) 1539 { 1540 importargs_t *import = data; 1541 int found = 0; 1542 1543 if (import->poolname != NULL) { 1544 char *pool_name; 1545 1546 verify(nvlist_lookup_string(zhp->zpool_config, 1547 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0); 1548 if (strcmp(pool_name, import->poolname) == 0) 1549 found = 1; 1550 } else { 1551 uint64_t pool_guid; 1552 1553 verify(nvlist_lookup_uint64(zhp->zpool_config, 1554 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0); 1555 if (pool_guid == import->guid) 1556 found = 1; 1557 } 1558 1559 zpool_close(zhp); 1560 return (found); 1561 } 1562 1563 nvlist_t * 1564 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import) 1565 { 1566 verify(import->poolname == NULL || import->guid == 0); 1567 1568 if (import->unique) 1569 import->exists = zpool_iter(hdl, name_or_guid_exists, import); 1570 1571 if (import->cachefile != NULL) 1572 return (zpool_find_import_cached(hdl, import->cachefile, 1573 import->poolname, import->guid)); 1574 1575 return (zpool_find_import_impl(hdl, import)); 1576 } 1577 1578 boolean_t 1579 find_guid(nvlist_t *nv, uint64_t guid) 1580 { 1581 uint64_t tmp; 1582 nvlist_t **child; 1583 uint_t c, children; 1584 1585 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0); 1586 if (tmp == guid) 1587 return (B_TRUE); 1588 1589 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1590 &child, &children) == 0) { 1591 for (c = 0; c < children; c++) 1592 if (find_guid(child[c], guid)) 1593 return (B_TRUE); 1594 } 1595 1596 return (B_FALSE); 1597 } 1598 1599 typedef struct aux_cbdata { 1600 const char *cb_type; 1601 uint64_t cb_guid; 1602 zpool_handle_t *cb_zhp; 1603 } aux_cbdata_t; 1604 1605 static int 1606 find_aux(zpool_handle_t *zhp, void *data) 1607 { 1608 aux_cbdata_t *cbp = data; 1609 nvlist_t **list; 1610 uint_t i, count; 1611 uint64_t guid; 1612 nvlist_t *nvroot; 1613 1614 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE, 1615 &nvroot) == 0); 1616 1617 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type, 1618 &list, &count) == 0) { 1619 for (i = 0; i < count; i++) { 1620 verify(nvlist_lookup_uint64(list[i], 1621 ZPOOL_CONFIG_GUID, &guid) == 0); 1622 if (guid == cbp->cb_guid) { 1623 cbp->cb_zhp = zhp; 1624 return (1); 1625 } 1626 } 1627 } 1628 1629 zpool_close(zhp); 1630 return (0); 1631 } 1632 1633 /* 1634 * Determines if the pool is in use. If so, it returns true and the state of 1635 * the pool as well as the name of the pool. Both strings are allocated and 1636 * must be freed by the caller. 1637 */ 1638 int 1639 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr, 1640 boolean_t *inuse) 1641 { 1642 nvlist_t *config; 1643 char *name; 1644 boolean_t ret; 1645 uint64_t guid, vdev_guid; 1646 zpool_handle_t *zhp; 1647 nvlist_t *pool_config; 1648 uint64_t stateval, isspare; 1649 aux_cbdata_t cb = { 0 }; 1650 boolean_t isactive; 1651 1652 *inuse = B_FALSE; 1653 1654 if (zpool_read_label(fd, &config) != 0) { 1655 (void) no_memory(hdl); 1656 return (-1); 1657 } 1658 1659 if (config == NULL) 1660 return (0); 1661 1662 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1663 &stateval) == 0); 1664 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, 1665 &vdev_guid) == 0); 1666 1667 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) { 1668 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 1669 &name) == 0); 1670 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 1671 &guid) == 0); 1672 } 1673 1674 switch (stateval) { 1675 case POOL_STATE_EXPORTED: 1676 /* 1677 * A pool with an exported state may in fact be imported 1678 * read-only, so check the in-core state to see if it's 1679 * active and imported read-only. If it is, set 1680 * its state to active. 1681 */ 1682 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive && 1683 (zhp = zpool_open_canfail(hdl, name)) != NULL) { 1684 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL)) 1685 stateval = POOL_STATE_ACTIVE; 1686 1687 /* 1688 * All we needed the zpool handle for is the 1689 * readonly prop check. 1690 */ 1691 zpool_close(zhp); 1692 } 1693 1694 ret = B_TRUE; 1695 break; 1696 1697 case POOL_STATE_ACTIVE: 1698 /* 1699 * For an active pool, we have to determine if it's really part 1700 * of a currently active pool (in which case the pool will exist 1701 * and the guid will be the same), or whether it's part of an 1702 * active pool that was disconnected without being explicitly 1703 * exported. 1704 */ 1705 if (pool_active(hdl, name, guid, &isactive) != 0) { 1706 nvlist_free(config); 1707 return (-1); 1708 } 1709 1710 if (isactive) { 1711 /* 1712 * Because the device may have been removed while 1713 * offlined, we only report it as active if the vdev is 1714 * still present in the config. Otherwise, pretend like 1715 * it's not in use. 1716 */ 1717 if ((zhp = zpool_open_canfail(hdl, name)) != NULL && 1718 (pool_config = zpool_get_config(zhp, NULL)) 1719 != NULL) { 1720 nvlist_t *nvroot; 1721 1722 verify(nvlist_lookup_nvlist(pool_config, 1723 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1724 ret = find_guid(nvroot, vdev_guid); 1725 } else { 1726 ret = B_FALSE; 1727 } 1728 1729 /* 1730 * If this is an active spare within another pool, we 1731 * treat it like an unused hot spare. This allows the 1732 * user to create a pool with a hot spare that currently 1733 * in use within another pool. Since we return B_TRUE, 1734 * libdiskmgt will continue to prevent generic consumers 1735 * from using the device. 1736 */ 1737 if (ret && nvlist_lookup_uint64(config, 1738 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare) 1739 stateval = POOL_STATE_SPARE; 1740 1741 if (zhp != NULL) 1742 zpool_close(zhp); 1743 } else { 1744 stateval = POOL_STATE_POTENTIALLY_ACTIVE; 1745 ret = B_TRUE; 1746 } 1747 break; 1748 1749 case POOL_STATE_SPARE: 1750 /* 1751 * For a hot spare, it can be either definitively in use, or 1752 * potentially active. To determine if it's in use, we iterate 1753 * over all pools in the system and search for one with a spare 1754 * with a matching guid. 1755 * 1756 * Due to the shared nature of spares, we don't actually report 1757 * the potentially active case as in use. This means the user 1758 * can freely create pools on the hot spares of exported pools, 1759 * but to do otherwise makes the resulting code complicated, and 1760 * we end up having to deal with this case anyway. 1761 */ 1762 cb.cb_zhp = NULL; 1763 cb.cb_guid = vdev_guid; 1764 cb.cb_type = ZPOOL_CONFIG_SPARES; 1765 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1766 name = (char *)zpool_get_name(cb.cb_zhp); 1767 ret = TRUE; 1768 } else { 1769 ret = FALSE; 1770 } 1771 break; 1772 1773 case POOL_STATE_L2CACHE: 1774 1775 /* 1776 * Check if any pool is currently using this l2cache device. 1777 */ 1778 cb.cb_zhp = NULL; 1779 cb.cb_guid = vdev_guid; 1780 cb.cb_type = ZPOOL_CONFIG_L2CACHE; 1781 if (zpool_iter(hdl, find_aux, &cb) == 1) { 1782 name = (char *)zpool_get_name(cb.cb_zhp); 1783 ret = TRUE; 1784 } else { 1785 ret = FALSE; 1786 } 1787 break; 1788 1789 default: 1790 ret = B_FALSE; 1791 } 1792 1793 1794 if (ret) { 1795 if ((*namestr = zfs_strdup(hdl, name)) == NULL) { 1796 if (cb.cb_zhp) 1797 zpool_close(cb.cb_zhp); 1798 nvlist_free(config); 1799 return (-1); 1800 } 1801 *state = (pool_state_t)stateval; 1802 } 1803 1804 if (cb.cb_zhp) 1805 zpool_close(cb.cb_zhp); 1806 1807 nvlist_free(config); 1808 *inuse = ret; 1809 return (0); 1810 }