1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 */
26
27 /*
28 * Pool import support functions.
29 *
30 * To import a pool, we rely on reading the configuration information from the
31 * ZFS label of each device. If we successfully read the label, then we
32 * organize the configuration information in the following hierarchy:
33 *
34 * pool guid -> toplevel vdev guid -> label txg
35 *
36 * Duplicate entries matching this same tuple will be discarded. Once we have
37 * examined every device, we pick the best label txg config for each toplevel
38 * vdev. We then arrange these toplevel vdevs into a complete pool config, and
39 * update any paths that have changed. Finally, we attempt to import the pool
40 * using our derived config, and record the results.
41 */
42
43 #include <ctype.h>
44 #include <devid.h>
45 #include <dirent.h>
46 #include <errno.h>
47 #include <libintl.h>
48 #include <stddef.h>
49 #include <stdlib.h>
50 #include <string.h>
51 #include <sys/stat.h>
52 #include <unistd.h>
53 #include <fcntl.h>
54 #include <sys/vtoc.h>
55 #include <sys/dktp/fdisk.h>
56 #include <sys/efi_partition.h>
57 #include <thread_pool.h>
58
59 #include <sys/vdev_impl.h>
60
61 #include "libzfs.h"
62 #include "libzfs_impl.h"
63
64 /*
65 * Intermediate structures used to gather configuration information.
66 */
67 typedef struct config_entry {
68 uint64_t ce_txg;
69 nvlist_t *ce_config;
70 struct config_entry *ce_next;
71 } config_entry_t;
72
73 typedef struct vdev_entry {
74 uint64_t ve_guid;
75 config_entry_t *ve_configs;
76 struct vdev_entry *ve_next;
77 } vdev_entry_t;
78
79 typedef struct pool_entry {
80 uint64_t pe_guid;
81 vdev_entry_t *pe_vdevs;
82 struct pool_entry *pe_next;
83 } pool_entry_t;
84
85 typedef struct name_entry {
86 char *ne_name;
87 uint64_t ne_guid;
88 struct name_entry *ne_next;
89 } name_entry_t;
90
91 typedef struct pool_list {
92 pool_entry_t *pools;
93 name_entry_t *names;
94 } pool_list_t;
95
96 static char *
97 get_devid(const char *path)
98 {
99 int fd;
100 ddi_devid_t devid;
101 char *minor, *ret;
102
103 if ((fd = open(path, O_RDONLY)) < 0)
104 return (NULL);
105
106 minor = NULL;
107 ret = NULL;
108 if (devid_get(fd, &devid) == 0) {
109 if (devid_get_minor_name(fd, &minor) == 0)
110 ret = devid_str_encode(devid, minor);
111 if (minor != NULL)
112 devid_str_free(minor);
113 devid_free(devid);
114 }
115 (void) close(fd);
116
117 return (ret);
118 }
119
120
121 /*
122 * Go through and fix up any path and/or devid information for the given vdev
123 * configuration.
124 */
125 static int
126 fix_paths(nvlist_t *nv, name_entry_t *names)
127 {
128 nvlist_t **child;
129 uint_t c, children;
130 uint64_t guid;
131 name_entry_t *ne, *best;
132 char *path, *devid;
133 int matched;
134
135 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
136 &child, &children) == 0) {
137 for (c = 0; c < children; c++)
138 if (fix_paths(child[c], names) != 0)
139 return (-1);
140 return (0);
141 }
142
143 /*
144 * This is a leaf (file or disk) vdev. In either case, go through
145 * the name list and see if we find a matching guid. If so, replace
146 * the path and see if we can calculate a new devid.
147 *
148 * There may be multiple names associated with a particular guid, in
149 * which case we have overlapping slices or multiple paths to the same
150 * disk. If this is the case, then we want to pick the path that is
151 * the most similar to the original, where "most similar" is the number
152 * of matching characters starting from the end of the path. This will
153 * preserve slice numbers even if the disks have been reorganized, and
154 * will also catch preferred disk names if multiple paths exist.
155 */
156 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) == 0);
157 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &path) != 0)
158 path = NULL;
159
160 matched = 0;
161 best = NULL;
162 for (ne = names; ne != NULL; ne = ne->ne_next) {
163 if (ne->ne_guid == guid) {
164 const char *src, *dst;
165 int count;
166
167 if (path == NULL) {
168 best = ne;
169 break;
170 }
171
172 src = ne->ne_name + strlen(ne->ne_name) - 1;
173 dst = path + strlen(path) - 1;
174 for (count = 0; src >= ne->ne_name && dst >= path;
175 src--, dst--, count++)
176 if (*src != *dst)
177 break;
178
179 /*
180 * At this point, 'count' is the number of characters
181 * matched from the end.
182 */
183 if (count > matched || best == NULL) {
184 best = ne;
185 matched = count;
186 }
187 }
188 }
189
190 if (best == NULL)
191 return (0);
192
193 if (nvlist_add_string(nv, ZPOOL_CONFIG_PATH, best->ne_name) != 0)
194 return (-1);
195
196 if ((devid = get_devid(best->ne_name)) == NULL) {
197 (void) nvlist_remove_all(nv, ZPOOL_CONFIG_DEVID);
198 } else {
199 if (nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, devid) != 0)
200 return (-1);
201 devid_str_free(devid);
202 }
203
204 return (0);
205 }
206
207 /*
208 * Add the given configuration to the list of known devices.
209 */
210 static int
211 add_config(libzfs_handle_t *hdl, pool_list_t *pl, const char *path,
212 nvlist_t *config)
213 {
214 uint64_t pool_guid, vdev_guid, top_guid, txg, state;
215 pool_entry_t *pe;
216 vdev_entry_t *ve;
217 config_entry_t *ce;
218 name_entry_t *ne;
219
220 /*
221 * If this is a hot spare not currently in use or level 2 cache
222 * device, add it to the list of names to translate, but don't do
223 * anything else.
224 */
225 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
226 &state) == 0 &&
227 (state == POOL_STATE_SPARE || state == POOL_STATE_L2CACHE) &&
228 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, &vdev_guid) == 0) {
229 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
230 return (-1);
231
232 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
233 free(ne);
234 return (-1);
235 }
236 ne->ne_guid = vdev_guid;
237 ne->ne_next = pl->names;
238 pl->names = ne;
239 return (0);
240 }
241
242 /*
243 * If we have a valid config but cannot read any of these fields, then
244 * it means we have a half-initialized label. In vdev_label_init()
245 * we write a label with txg == 0 so that we can identify the device
246 * in case the user refers to the same disk later on. If we fail to
247 * create the pool, we'll be left with a label in this state
248 * which should not be considered part of a valid pool.
249 */
250 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
251 &pool_guid) != 0 ||
252 nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
253 &vdev_guid) != 0 ||
254 nvlist_lookup_uint64(config, ZPOOL_CONFIG_TOP_GUID,
255 &top_guid) != 0 ||
256 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
257 &txg) != 0 || txg == 0) {
258 nvlist_free(config);
259 return (0);
260 }
261
262 /*
263 * First, see if we know about this pool. If not, then add it to the
264 * list of known pools.
265 */
266 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
267 if (pe->pe_guid == pool_guid)
268 break;
269 }
270
271 if (pe == NULL) {
272 if ((pe = zfs_alloc(hdl, sizeof (pool_entry_t))) == NULL) {
273 nvlist_free(config);
274 return (-1);
275 }
276 pe->pe_guid = pool_guid;
277 pe->pe_next = pl->pools;
278 pl->pools = pe;
279 }
280
281 /*
282 * Second, see if we know about this toplevel vdev. Add it if its
283 * missing.
284 */
285 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
286 if (ve->ve_guid == top_guid)
287 break;
288 }
289
290 if (ve == NULL) {
291 if ((ve = zfs_alloc(hdl, sizeof (vdev_entry_t))) == NULL) {
292 nvlist_free(config);
293 return (-1);
294 }
295 ve->ve_guid = top_guid;
296 ve->ve_next = pe->pe_vdevs;
297 pe->pe_vdevs = ve;
298 }
299
300 /*
301 * Third, see if we have a config with a matching transaction group. If
302 * so, then we do nothing. Otherwise, add it to the list of known
303 * configs.
304 */
305 for (ce = ve->ve_configs; ce != NULL; ce = ce->ce_next) {
306 if (ce->ce_txg == txg)
307 break;
308 }
309
310 if (ce == NULL) {
311 if ((ce = zfs_alloc(hdl, sizeof (config_entry_t))) == NULL) {
312 nvlist_free(config);
313 return (-1);
314 }
315 ce->ce_txg = txg;
316 ce->ce_config = config;
317 ce->ce_next = ve->ve_configs;
318 ve->ve_configs = ce;
319 } else {
320 nvlist_free(config);
321 }
322
323 /*
324 * At this point we've successfully added our config to the list of
325 * known configs. The last thing to do is add the vdev guid -> path
326 * mappings so that we can fix up the configuration as necessary before
327 * doing the import.
328 */
329 if ((ne = zfs_alloc(hdl, sizeof (name_entry_t))) == NULL)
330 return (-1);
331
332 if ((ne->ne_name = zfs_strdup(hdl, path)) == NULL) {
333 free(ne);
334 return (-1);
335 }
336
337 ne->ne_guid = vdev_guid;
338 ne->ne_next = pl->names;
339 pl->names = ne;
340
341 return (0);
342 }
343
344 /*
345 * Returns true if the named pool matches the given GUID.
346 */
347 static int
348 pool_active(libzfs_handle_t *hdl, const char *name, uint64_t guid,
349 boolean_t *isactive)
350 {
351 zpool_handle_t *zhp;
352 uint64_t theguid;
353
354 if (zpool_open_silent(hdl, name, &zhp) != 0)
355 return (-1);
356
357 if (zhp == NULL) {
358 *isactive = B_FALSE;
359 return (0);
360 }
361
362 verify(nvlist_lookup_uint64(zhp->zpool_config, ZPOOL_CONFIG_POOL_GUID,
363 &theguid) == 0);
364
365 zpool_close(zhp);
366
367 *isactive = (theguid == guid);
368 return (0);
369 }
370
371 static nvlist_t *
372 refresh_config(libzfs_handle_t *hdl, nvlist_t *config)
373 {
374 nvlist_t *nvl;
375 zfs_cmd_t zc = { 0 };
376 int err;
377
378 if (zcmd_write_conf_nvlist(hdl, &zc, config) != 0)
379 return (NULL);
380
381 if (zcmd_alloc_dst_nvlist(hdl, &zc,
382 zc.zc_nvlist_conf_size * 2) != 0) {
383 zcmd_free_nvlists(&zc);
384 return (NULL);
385 }
386
387 while ((err = ioctl(hdl->libzfs_fd, ZFS_IOC_POOL_TRYIMPORT,
388 &zc)) != 0 && errno == ENOMEM) {
389 if (zcmd_expand_dst_nvlist(hdl, &zc) != 0) {
390 zcmd_free_nvlists(&zc);
391 return (NULL);
392 }
393 }
394
395 if (err) {
396 zcmd_free_nvlists(&zc);
397 return (NULL);
398 }
399
400 if (zcmd_read_dst_nvlist(hdl, &zc, &nvl) != 0) {
401 zcmd_free_nvlists(&zc);
402 return (NULL);
403 }
404
405 zcmd_free_nvlists(&zc);
406 return (nvl);
407 }
408
409 /*
410 * Determine if the vdev id is a hole in the namespace.
411 */
412 boolean_t
413 vdev_is_hole(uint64_t *hole_array, uint_t holes, uint_t id)
414 {
415 for (int c = 0; c < holes; c++) {
416
417 /* Top-level is a hole */
418 if (hole_array[c] == id)
419 return (B_TRUE);
420 }
421 return (B_FALSE);
422 }
423
424 /*
425 * Convert our list of pools into the definitive set of configurations. We
426 * start by picking the best config for each toplevel vdev. Once that's done,
427 * we assemble the toplevel vdevs into a full config for the pool. We make a
428 * pass to fix up any incorrect paths, and then add it to the main list to
429 * return to the user.
430 */
431 static nvlist_t *
432 get_configs(libzfs_handle_t *hdl, pool_list_t *pl, boolean_t active_ok)
433 {
434 pool_entry_t *pe;
435 vdev_entry_t *ve;
436 config_entry_t *ce;
437 nvlist_t *ret = NULL, *config = NULL, *tmp, *nvtop, *nvroot;
438 nvlist_t **spares, **l2cache;
439 uint_t i, nspares, nl2cache;
440 boolean_t config_seen;
441 uint64_t best_txg;
442 char *name, *hostname;
443 uint64_t guid;
444 uint_t children = 0;
445 nvlist_t **child = NULL;
446 uint_t holes;
447 uint64_t *hole_array, max_id;
448 uint_t c;
449 boolean_t isactive;
450 uint64_t hostid;
451 nvlist_t *nvl;
452 boolean_t found_one = B_FALSE;
453 boolean_t valid_top_config = B_FALSE;
454
455 if (nvlist_alloc(&ret, 0, 0) != 0)
456 goto nomem;
457
458 for (pe = pl->pools; pe != NULL; pe = pe->pe_next) {
459 uint64_t id, max_txg = 0;
460
461 if (nvlist_alloc(&config, NV_UNIQUE_NAME, 0) != 0)
462 goto nomem;
463 config_seen = B_FALSE;
464
465 /*
466 * Iterate over all toplevel vdevs. Grab the pool configuration
467 * from the first one we find, and then go through the rest and
468 * add them as necessary to the 'vdevs' member of the config.
469 */
470 for (ve = pe->pe_vdevs; ve != NULL; ve = ve->ve_next) {
471
472 /*
473 * Determine the best configuration for this vdev by
474 * selecting the config with the latest transaction
475 * group.
476 */
477 best_txg = 0;
478 for (ce = ve->ve_configs; ce != NULL;
479 ce = ce->ce_next) {
480
481 if (ce->ce_txg > best_txg) {
482 tmp = ce->ce_config;
483 best_txg = ce->ce_txg;
484 }
485 }
486
487 /*
488 * We rely on the fact that the max txg for the
489 * pool will contain the most up-to-date information
490 * about the valid top-levels in the vdev namespace.
491 */
492 if (best_txg > max_txg) {
493 (void) nvlist_remove(config,
494 ZPOOL_CONFIG_VDEV_CHILDREN,
495 DATA_TYPE_UINT64);
496 (void) nvlist_remove(config,
497 ZPOOL_CONFIG_HOLE_ARRAY,
498 DATA_TYPE_UINT64_ARRAY);
499
500 max_txg = best_txg;
501 hole_array = NULL;
502 holes = 0;
503 max_id = 0;
504 valid_top_config = B_FALSE;
505
506 if (nvlist_lookup_uint64(tmp,
507 ZPOOL_CONFIG_VDEV_CHILDREN, &max_id) == 0) {
508 verify(nvlist_add_uint64(config,
509 ZPOOL_CONFIG_VDEV_CHILDREN,
510 max_id) == 0);
511 valid_top_config = B_TRUE;
512 }
513
514 if (nvlist_lookup_uint64_array(tmp,
515 ZPOOL_CONFIG_HOLE_ARRAY, &hole_array,
516 &holes) == 0) {
517 verify(nvlist_add_uint64_array(config,
518 ZPOOL_CONFIG_HOLE_ARRAY,
519 hole_array, holes) == 0);
520 }
521 }
522
523 if (!config_seen) {
524 /*
525 * Copy the relevant pieces of data to the pool
526 * configuration:
527 *
528 * version
529 * pool guid
530 * name
531 * comment (if available)
532 * pool state
533 * hostid (if available)
534 * hostname (if available)
535 */
536 uint64_t state, version;
537 char *comment = NULL;
538
539 version = fnvlist_lookup_uint64(tmp,
540 ZPOOL_CONFIG_VERSION);
541 fnvlist_add_uint64(config,
542 ZPOOL_CONFIG_VERSION, version);
543 guid = fnvlist_lookup_uint64(tmp,
544 ZPOOL_CONFIG_POOL_GUID);
545 fnvlist_add_uint64(config,
546 ZPOOL_CONFIG_POOL_GUID, guid);
547 name = fnvlist_lookup_string(tmp,
548 ZPOOL_CONFIG_POOL_NAME);
549 fnvlist_add_string(config,
550 ZPOOL_CONFIG_POOL_NAME, name);
551
552 if (nvlist_lookup_string(tmp,
553 ZPOOL_CONFIG_COMMENT, &comment) == 0)
554 fnvlist_add_string(config,
555 ZPOOL_CONFIG_COMMENT, comment);
556
557 state = fnvlist_lookup_uint64(tmp,
558 ZPOOL_CONFIG_POOL_STATE);
559 fnvlist_add_uint64(config,
560 ZPOOL_CONFIG_POOL_STATE, state);
561
562 hostid = 0;
563 if (nvlist_lookup_uint64(tmp,
564 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
565 fnvlist_add_uint64(config,
566 ZPOOL_CONFIG_HOSTID, hostid);
567 hostname = fnvlist_lookup_string(tmp,
568 ZPOOL_CONFIG_HOSTNAME);
569 fnvlist_add_string(config,
570 ZPOOL_CONFIG_HOSTNAME, hostname);
571 }
572
573 config_seen = B_TRUE;
574 }
575
576 /*
577 * Add this top-level vdev to the child array.
578 */
579 verify(nvlist_lookup_nvlist(tmp,
580 ZPOOL_CONFIG_VDEV_TREE, &nvtop) == 0);
581 verify(nvlist_lookup_uint64(nvtop, ZPOOL_CONFIG_ID,
582 &id) == 0);
583
584 if (id >= children) {
585 nvlist_t **newchild;
586
587 newchild = zfs_alloc(hdl, (id + 1) *
588 sizeof (nvlist_t *));
589 if (newchild == NULL)
590 goto nomem;
591
592 for (c = 0; c < children; c++)
593 newchild[c] = child[c];
594
595 free(child);
596 child = newchild;
597 children = id + 1;
598 }
599 if (nvlist_dup(nvtop, &child[id], 0) != 0)
600 goto nomem;
601
602 }
603
604 /*
605 * If we have information about all the top-levels then
606 * clean up the nvlist which we've constructed. This
607 * means removing any extraneous devices that are
608 * beyond the valid range or adding devices to the end
609 * of our array which appear to be missing.
610 */
611 if (valid_top_config) {
612 if (max_id < children) {
613 for (c = max_id; c < children; c++)
614 nvlist_free(child[c]);
615 children = max_id;
616 } else if (max_id > children) {
617 nvlist_t **newchild;
618
619 newchild = zfs_alloc(hdl, (max_id) *
620 sizeof (nvlist_t *));
621 if (newchild == NULL)
622 goto nomem;
623
624 for (c = 0; c < children; c++)
625 newchild[c] = child[c];
626
627 free(child);
628 child = newchild;
629 children = max_id;
630 }
631 }
632
633 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
634 &guid) == 0);
635
636 /*
637 * The vdev namespace may contain holes as a result of
638 * device removal. We must add them back into the vdev
639 * tree before we process any missing devices.
640 */
641 if (holes > 0) {
642 ASSERT(valid_top_config);
643
644 for (c = 0; c < children; c++) {
645 nvlist_t *holey;
646
647 if (child[c] != NULL ||
648 !vdev_is_hole(hole_array, holes, c))
649 continue;
650
651 if (nvlist_alloc(&holey, NV_UNIQUE_NAME,
652 0) != 0)
653 goto nomem;
654
655 /*
656 * Holes in the namespace are treated as
657 * "hole" top-level vdevs and have a
658 * special flag set on them.
659 */
660 if (nvlist_add_string(holey,
661 ZPOOL_CONFIG_TYPE,
662 VDEV_TYPE_HOLE) != 0 ||
663 nvlist_add_uint64(holey,
664 ZPOOL_CONFIG_ID, c) != 0 ||
665 nvlist_add_uint64(holey,
666 ZPOOL_CONFIG_GUID, 0ULL) != 0)
667 goto nomem;
668 child[c] = holey;
669 }
670 }
671
672 /*
673 * Look for any missing top-level vdevs. If this is the case,
674 * create a faked up 'missing' vdev as a placeholder. We cannot
675 * simply compress the child array, because the kernel performs
676 * certain checks to make sure the vdev IDs match their location
677 * in the configuration.
678 */
679 for (c = 0; c < children; c++) {
680 if (child[c] == NULL) {
681 nvlist_t *missing;
682 if (nvlist_alloc(&missing, NV_UNIQUE_NAME,
683 0) != 0)
684 goto nomem;
685 if (nvlist_add_string(missing,
686 ZPOOL_CONFIG_TYPE,
687 VDEV_TYPE_MISSING) != 0 ||
688 nvlist_add_uint64(missing,
689 ZPOOL_CONFIG_ID, c) != 0 ||
690 nvlist_add_uint64(missing,
691 ZPOOL_CONFIG_GUID, 0ULL) != 0) {
692 nvlist_free(missing);
693 goto nomem;
694 }
695 child[c] = missing;
696 }
697 }
698
699 /*
700 * Put all of this pool's top-level vdevs into a root vdev.
701 */
702 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0)
703 goto nomem;
704 if (nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
705 VDEV_TYPE_ROOT) != 0 ||
706 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) != 0 ||
707 nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, guid) != 0 ||
708 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
709 child, children) != 0) {
710 nvlist_free(nvroot);
711 goto nomem;
712 }
713
714 for (c = 0; c < children; c++)
715 nvlist_free(child[c]);
716 free(child);
717 children = 0;
718 child = NULL;
719
720 /*
721 * Go through and fix up any paths and/or devids based on our
722 * known list of vdev GUID -> path mappings.
723 */
724 if (fix_paths(nvroot, pl->names) != 0) {
725 nvlist_free(nvroot);
726 goto nomem;
727 }
728
729 /*
730 * Add the root vdev to this pool's configuration.
731 */
732 if (nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
733 nvroot) != 0) {
734 nvlist_free(nvroot);
735 goto nomem;
736 }
737 nvlist_free(nvroot);
738
739 /*
740 * zdb uses this path to report on active pools that were
741 * imported or created using -R.
742 */
743 if (active_ok)
744 goto add_pool;
745
746 /*
747 * Determine if this pool is currently active, in which case we
748 * can't actually import it.
749 */
750 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
751 &name) == 0);
752 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
753 &guid) == 0);
754
755 if (pool_active(hdl, name, guid, &isactive) != 0)
756 goto error;
757
758 if (isactive) {
759 nvlist_free(config);
760 config = NULL;
761 continue;
762 }
763
764 if ((nvl = refresh_config(hdl, config)) == NULL) {
765 nvlist_free(config);
766 config = NULL;
767 continue;
768 }
769
770 nvlist_free(config);
771 config = nvl;
772
773 /*
774 * Go through and update the paths for spares, now that we have
775 * them.
776 */
777 verify(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
778 &nvroot) == 0);
779 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
780 &spares, &nspares) == 0) {
781 for (i = 0; i < nspares; i++) {
782 if (fix_paths(spares[i], pl->names) != 0)
783 goto nomem;
784 }
785 }
786
787 /*
788 * Update the paths for l2cache devices.
789 */
790 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
791 &l2cache, &nl2cache) == 0) {
792 for (i = 0; i < nl2cache; i++) {
793 if (fix_paths(l2cache[i], pl->names) != 0)
794 goto nomem;
795 }
796 }
797
798 /*
799 * Restore the original information read from the actual label.
800 */
801 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTID,
802 DATA_TYPE_UINT64);
803 (void) nvlist_remove(config, ZPOOL_CONFIG_HOSTNAME,
804 DATA_TYPE_STRING);
805 if (hostid != 0) {
806 verify(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
807 hostid) == 0);
808 verify(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
809 hostname) == 0);
810 }
811
812 add_pool:
813 /*
814 * Add this pool to the list of configs.
815 */
816 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
817 &name) == 0);
818 if (nvlist_add_nvlist(ret, name, config) != 0)
819 goto nomem;
820
821 found_one = B_TRUE;
822 nvlist_free(config);
823 config = NULL;
824 }
825
826 if (!found_one) {
827 nvlist_free(ret);
828 ret = NULL;
829 }
830
831 return (ret);
832
833 nomem:
834 (void) no_memory(hdl);
835 error:
836 nvlist_free(config);
837 nvlist_free(ret);
838 for (c = 0; c < children; c++)
839 nvlist_free(child[c]);
840 free(child);
841
842 return (NULL);
843 }
844
845 /*
846 * Return the offset of the given label.
847 */
848 static uint64_t
849 label_offset(uint64_t size, int l)
850 {
851 ASSERT(P2PHASE_TYPED(size, sizeof (vdev_label_t), uint64_t) == 0);
852 return (l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
853 0 : size - VDEV_LABELS * sizeof (vdev_label_t)));
854 }
855
856 /*
857 * Given a file descriptor, read the label information and return an nvlist
858 * describing the configuration, if there is one.
859 */
860 int
861 zpool_read_label(int fd, nvlist_t **config)
862 {
863 struct stat64 statbuf;
864 int l;
865 vdev_label_t *label;
866 uint64_t state, txg, size;
867
868 *config = NULL;
869
870 if (fstat64(fd, &statbuf) == -1)
871 return (0);
872 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
873
874 if ((label = malloc(sizeof (vdev_label_t))) == NULL)
875 return (-1);
876
877 for (l = 0; l < VDEV_LABELS; l++) {
878 if (pread64(fd, label, sizeof (vdev_label_t),
879 label_offset(size, l)) != sizeof (vdev_label_t))
880 continue;
881
882 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist,
883 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0)
884 continue;
885
886 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE,
887 &state) != 0 || state > POOL_STATE_L2CACHE) {
888 nvlist_free(*config);
889 continue;
890 }
891
892 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
893 (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG,
894 &txg) != 0 || txg == 0)) {
895 nvlist_free(*config);
896 continue;
897 }
898
899 free(label);
900 return (0);
901 }
902
903 free(label);
904 *config = NULL;
905 return (0);
906 }
907
908 typedef struct rdsk_node {
909 char *rn_name;
910 int rn_dfd;
911 libzfs_handle_t *rn_hdl;
912 nvlist_t *rn_config;
913 avl_tree_t *rn_avl;
914 avl_node_t rn_node;
915 boolean_t rn_nozpool;
916 } rdsk_node_t;
917
918 static int
919 slice_cache_compare(const void *arg1, const void *arg2)
920 {
921 const char *nm1 = ((rdsk_node_t *)arg1)->rn_name;
922 const char *nm2 = ((rdsk_node_t *)arg2)->rn_name;
923 char *nm1slice, *nm2slice;
924 int rv;
925
926 /*
927 * slices zero and two are the most likely to provide results,
928 * so put those first
929 */
930 nm1slice = strstr(nm1, "s0");
931 nm2slice = strstr(nm2, "s0");
932 if (nm1slice && !nm2slice) {
933 return (-1);
934 }
935 if (!nm1slice && nm2slice) {
936 return (1);
937 }
938 nm1slice = strstr(nm1, "s2");
939 nm2slice = strstr(nm2, "s2");
940 if (nm1slice && !nm2slice) {
941 return (-1);
942 }
943 if (!nm1slice && nm2slice) {
944 return (1);
945 }
946
947 rv = strcmp(nm1, nm2);
948 if (rv == 0)
949 return (0);
950 return (rv > 0 ? 1 : -1);
951 }
952
953 static void
954 check_one_slice(avl_tree_t *r, char *diskname, uint_t partno,
955 diskaddr_t size, uint_t blksz)
956 {
957 rdsk_node_t tmpnode;
958 rdsk_node_t *node;
959 char sname[MAXNAMELEN];
960
961 tmpnode.rn_name = &sname[0];
962 (void) snprintf(tmpnode.rn_name, MAXNAMELEN, "%s%u",
963 diskname, partno);
964 /*
965 * protect against division by zero for disk labels that
966 * contain a bogus sector size
967 */
968 if (blksz == 0)
969 blksz = DEV_BSIZE;
970 /* too small to contain a zpool? */
971 if ((size < (SPA_MINDEVSIZE / blksz)) &&
972 (node = avl_find(r, &tmpnode, NULL)))
973 node->rn_nozpool = B_TRUE;
974 }
975
976 static void
977 nozpool_all_slices(avl_tree_t *r, const char *sname)
978 {
979 char diskname[MAXNAMELEN];
980 char *ptr;
981 int i;
982
983 (void) strncpy(diskname, sname, MAXNAMELEN);
984 if (((ptr = strrchr(diskname, 's')) == NULL) &&
985 ((ptr = strrchr(diskname, 'p')) == NULL))
986 return;
987 ptr[0] = 's';
988 ptr[1] = '\0';
989 for (i = 0; i < NDKMAP; i++)
990 check_one_slice(r, diskname, i, 0, 1);
991 ptr[0] = 'p';
992 for (i = 0; i <= FD_NUMPART; i++)
993 check_one_slice(r, diskname, i, 0, 1);
994 }
995
996 static void
997 check_slices(avl_tree_t *r, int fd, const char *sname)
998 {
999 struct extvtoc vtoc;
1000 struct dk_gpt *gpt;
1001 char diskname[MAXNAMELEN];
1002 char *ptr;
1003 int i;
1004
1005 (void) strncpy(diskname, sname, MAXNAMELEN);
1006 if ((ptr = strrchr(diskname, 's')) == NULL || !isdigit(ptr[1]))
1007 return;
1008 ptr[1] = '\0';
1009
1010 if (read_extvtoc(fd, &vtoc) >= 0) {
1011 for (i = 0; i < NDKMAP; i++)
1012 check_one_slice(r, diskname, i,
1013 vtoc.v_part[i].p_size, vtoc.v_sectorsz);
1014 } else if (efi_alloc_and_read(fd, &gpt) >= 0) {
1015 /*
1016 * on x86 we'll still have leftover links that point
1017 * to slices s[9-15], so use NDKMAP instead
1018 */
1019 for (i = 0; i < NDKMAP; i++)
1020 check_one_slice(r, diskname, i,
1021 gpt->efi_parts[i].p_size, gpt->efi_lbasize);
1022 /* nodes p[1-4] are never used with EFI labels */
1023 ptr[0] = 'p';
1024 for (i = 1; i <= FD_NUMPART; i++)
1025 check_one_slice(r, diskname, i, 0, 1);
1026 efi_free(gpt);
1027 }
1028 }
1029
1030 static void
1031 zpool_open_func(void *arg)
1032 {
1033 rdsk_node_t *rn = arg;
1034 struct stat64 statbuf;
1035 nvlist_t *config;
1036 int fd;
1037
1038 if (rn->rn_nozpool)
1039 return;
1040 if ((fd = openat64(rn->rn_dfd, rn->rn_name, O_RDONLY)) < 0) {
1041 /* symlink to a device that's no longer there */
1042 if (errno == ENOENT)
1043 nozpool_all_slices(rn->rn_avl, rn->rn_name);
1044 return;
1045 }
1046 /*
1047 * Ignore failed stats. We only want regular
1048 * files, character devs and block devs.
1049 */
1050 if (fstat64(fd, &statbuf) != 0 ||
1051 (!S_ISREG(statbuf.st_mode) &&
1052 !S_ISCHR(statbuf.st_mode) &&
1053 !S_ISBLK(statbuf.st_mode))) {
1054 (void) close(fd);
1055 return;
1056 }
1057 /* this file is too small to hold a zpool */
1058 if (S_ISREG(statbuf.st_mode) &&
1059 statbuf.st_size < SPA_MINDEVSIZE) {
1060 (void) close(fd);
1061 return;
1062 } else if (!S_ISREG(statbuf.st_mode)) {
1063 /*
1064 * Try to read the disk label first so we don't have to
1065 * open a bunch of minor nodes that can't have a zpool.
1066 */
1067 check_slices(rn->rn_avl, fd, rn->rn_name);
1068 }
1069
1070 if ((zpool_read_label(fd, &config)) != 0) {
1071 (void) close(fd);
1072 (void) no_memory(rn->rn_hdl);
1073 return;
1074 }
1075 (void) close(fd);
1076
1077
1078 rn->rn_config = config;
1079 if (config != NULL) {
1080 assert(rn->rn_nozpool == B_FALSE);
1081 }
1082 }
1083
1084 /*
1085 * Given a file descriptor, clear (zero) the label information. This function
1086 * is currently only used in the appliance stack as part of the ZFS sysevent
1087 * module.
1088 */
1089 int
1090 zpool_clear_label(int fd)
1091 {
1092 struct stat64 statbuf;
1093 int l;
1094 vdev_label_t *label;
1095 uint64_t size;
1096
1097 if (fstat64(fd, &statbuf) == -1)
1098 return (0);
1099 size = P2ALIGN_TYPED(statbuf.st_size, sizeof (vdev_label_t), uint64_t);
1100
1101 if ((label = calloc(sizeof (vdev_label_t), 1)) == NULL)
1102 return (-1);
1103
1104 for (l = 0; l < VDEV_LABELS; l++) {
1105 if (pwrite64(fd, label, sizeof (vdev_label_t),
1106 label_offset(size, l)) != sizeof (vdev_label_t))
1107 return (-1);
1108 }
1109
1110 free(label);
1111 return (0);
1112 }
1113
1114 /*
1115 * Given a list of directories to search, find all pools stored on disk. This
1116 * includes partial pools which are not available to import. If no args are
1117 * given (argc is 0), then the default directory (/dev/dsk) is searched.
1118 * poolname or guid (but not both) are provided by the caller when trying
1119 * to import a specific pool.
1120 */
1121 static nvlist_t *
1122 zpool_find_import_impl(libzfs_handle_t *hdl, importargs_t *iarg)
1123 {
1124 int i, dirs = iarg->paths;
1125 DIR *dirp = NULL;
1126 struct dirent64 *dp;
1127 char path[MAXPATHLEN];
1128 char *end, **dir = iarg->path;
1129 size_t pathleft;
1130 nvlist_t *ret = NULL;
1131 static char *default_dir = "/dev/dsk";
1132 pool_list_t pools = { 0 };
1133 pool_entry_t *pe, *penext;
1134 vdev_entry_t *ve, *venext;
1135 config_entry_t *ce, *cenext;
1136 name_entry_t *ne, *nenext;
1137 avl_tree_t slice_cache;
1138 rdsk_node_t *slice;
1139 void *cookie;
1140
1141 if (dirs == 0) {
1142 dirs = 1;
1143 dir = &default_dir;
1144 }
1145
1146 /*
1147 * Go through and read the label configuration information from every
1148 * possible device, organizing the information according to pool GUID
1149 * and toplevel GUID.
1150 */
1151 for (i = 0; i < dirs; i++) {
1152 tpool_t *t;
1153 char *rdsk;
1154 int dfd;
1155
1156 /* use realpath to normalize the path */
1157 if (realpath(dir[i], path) == 0) {
1158 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1159 dgettext(TEXT_DOMAIN, "cannot open '%s'"), dir[i]);
1160 goto error;
1161 }
1162 end = &path[strlen(path)];
1163 *end++ = '/';
1164 *end = 0;
1165 pathleft = &path[sizeof (path)] - end;
1166
1167 /*
1168 * Using raw devices instead of block devices when we're
1169 * reading the labels skips a bunch of slow operations during
1170 * close(2) processing, so we replace /dev/dsk with /dev/rdsk.
1171 */
1172 if (strcmp(path, "/dev/dsk/") == 0)
1173 rdsk = "/dev/rdsk/";
1174 else
1175 rdsk = path;
1176
1177 if ((dfd = open64(rdsk, O_RDONLY)) < 0 ||
1178 (dirp = fdopendir(dfd)) == NULL) {
1179 zfs_error_aux(hdl, strerror(errno));
1180 (void) zfs_error_fmt(hdl, EZFS_BADPATH,
1181 dgettext(TEXT_DOMAIN, "cannot open '%s'"),
1182 rdsk);
1183 goto error;
1184 }
1185
1186 avl_create(&slice_cache, slice_cache_compare,
1187 sizeof (rdsk_node_t), offsetof(rdsk_node_t, rn_node));
1188 /*
1189 * This is not MT-safe, but we have no MT consumers of libzfs
1190 */
1191 while ((dp = readdir64(dirp)) != NULL) {
1192 const char *name = dp->d_name;
1193 if (name[0] == '.' &&
1194 (name[1] == 0 || (name[1] == '.' && name[2] == 0)))
1195 continue;
1196
1197 slice = zfs_alloc(hdl, sizeof (rdsk_node_t));
1198 slice->rn_name = zfs_strdup(hdl, name);
1199 slice->rn_avl = &slice_cache;
1200 slice->rn_dfd = dfd;
1201 slice->rn_hdl = hdl;
1202 slice->rn_nozpool = B_FALSE;
1203 avl_add(&slice_cache, slice);
1204 }
1205 /*
1206 * create a thread pool to do all of this in parallel;
1207 * rn_nozpool is not protected, so this is racy in that
1208 * multiple tasks could decide that the same slice can
1209 * not hold a zpool, which is benign. Also choose
1210 * double the number of processors; we hold a lot of
1211 * locks in the kernel, so going beyond this doesn't
1212 * buy us much.
1213 */
1214 t = tpool_create(1, 2 * sysconf(_SC_NPROCESSORS_ONLN),
1215 0, NULL);
1216 for (slice = avl_first(&slice_cache); slice;
1217 (slice = avl_walk(&slice_cache, slice,
1218 AVL_AFTER)))
1219 (void) tpool_dispatch(t, zpool_open_func, slice);
1220 tpool_wait(t);
1221 tpool_destroy(t);
1222
1223 cookie = NULL;
1224 while ((slice = avl_destroy_nodes(&slice_cache,
1225 &cookie)) != NULL) {
1226 if (slice->rn_config != NULL) {
1227 nvlist_t *config = slice->rn_config;
1228 boolean_t matched = B_TRUE;
1229
1230 if (iarg->poolname != NULL) {
1231 char *pname;
1232
1233 matched = nvlist_lookup_string(config,
1234 ZPOOL_CONFIG_POOL_NAME,
1235 &pname) == 0 &&
1236 strcmp(iarg->poolname, pname) == 0;
1237 } else if (iarg->guid != 0) {
1238 uint64_t this_guid;
1239
1240 matched = nvlist_lookup_uint64(config,
1241 ZPOOL_CONFIG_POOL_GUID,
1242 &this_guid) == 0 &&
1243 iarg->guid == this_guid;
1244 }
1245 if (!matched) {
1246 nvlist_free(config);
1247 config = NULL;
1248 continue;
1249 }
1250 /* use the non-raw path for the config */
1251 (void) strlcpy(end, slice->rn_name, pathleft);
1252 if (add_config(hdl, &pools, path, config) != 0)
1253 goto error;
1254 }
1255 free(slice->rn_name);
1256 free(slice);
1257 }
1258 avl_destroy(&slice_cache);
1259
1260 (void) closedir(dirp);
1261 dirp = NULL;
1262 }
1263
1264 ret = get_configs(hdl, &pools, iarg->can_be_active);
1265
1266 error:
1267 for (pe = pools.pools; pe != NULL; pe = penext) {
1268 penext = pe->pe_next;
1269 for (ve = pe->pe_vdevs; ve != NULL; ve = venext) {
1270 venext = ve->ve_next;
1271 for (ce = ve->ve_configs; ce != NULL; ce = cenext) {
1272 cenext = ce->ce_next;
1273 if (ce->ce_config)
1274 nvlist_free(ce->ce_config);
1275 free(ce);
1276 }
1277 free(ve);
1278 }
1279 free(pe);
1280 }
1281
1282 for (ne = pools.names; ne != NULL; ne = nenext) {
1283 nenext = ne->ne_next;
1284 if (ne->ne_name)
1285 free(ne->ne_name);
1286 free(ne);
1287 }
1288
1289 if (dirp)
1290 (void) closedir(dirp);
1291
1292 return (ret);
1293 }
1294
1295 nvlist_t *
1296 zpool_find_import(libzfs_handle_t *hdl, int argc, char **argv)
1297 {
1298 importargs_t iarg = { 0 };
1299
1300 iarg.paths = argc;
1301 iarg.path = argv;
1302
1303 return (zpool_find_import_impl(hdl, &iarg));
1304 }
1305
1306 /*
1307 * Given a cache file, return the contents as a list of importable pools.
1308 * poolname or guid (but not both) are provided by the caller when trying
1309 * to import a specific pool.
1310 */
1311 nvlist_t *
1312 zpool_find_import_cached(libzfs_handle_t *hdl, const char *cachefile,
1313 char *poolname, uint64_t guid)
1314 {
1315 char *buf;
1316 int fd;
1317 struct stat64 statbuf;
1318 nvlist_t *raw, *src, *dst;
1319 nvlist_t *pools;
1320 nvpair_t *elem;
1321 char *name;
1322 uint64_t this_guid;
1323 boolean_t active;
1324
1325 verify(poolname == NULL || guid == 0);
1326
1327 if ((fd = open(cachefile, O_RDONLY)) < 0) {
1328 zfs_error_aux(hdl, "%s", strerror(errno));
1329 (void) zfs_error(hdl, EZFS_BADCACHE,
1330 dgettext(TEXT_DOMAIN, "failed to open cache file"));
1331 return (NULL);
1332 }
1333
1334 if (fstat64(fd, &statbuf) != 0) {
1335 zfs_error_aux(hdl, "%s", strerror(errno));
1336 (void) close(fd);
1337 (void) zfs_error(hdl, EZFS_BADCACHE,
1338 dgettext(TEXT_DOMAIN, "failed to get size of cache file"));
1339 return (NULL);
1340 }
1341
1342 if ((buf = zfs_alloc(hdl, statbuf.st_size)) == NULL) {
1343 (void) close(fd);
1344 return (NULL);
1345 }
1346
1347 if (read(fd, buf, statbuf.st_size) != statbuf.st_size) {
1348 (void) close(fd);
1349 free(buf);
1350 (void) zfs_error(hdl, EZFS_BADCACHE,
1351 dgettext(TEXT_DOMAIN,
1352 "failed to read cache file contents"));
1353 return (NULL);
1354 }
1355
1356 (void) close(fd);
1357
1358 if (nvlist_unpack(buf, statbuf.st_size, &raw, 0) != 0) {
1359 free(buf);
1360 (void) zfs_error(hdl, EZFS_BADCACHE,
1361 dgettext(TEXT_DOMAIN,
1362 "invalid or corrupt cache file contents"));
1363 return (NULL);
1364 }
1365
1366 free(buf);
1367
1368 /*
1369 * Go through and get the current state of the pools and refresh their
1370 * state.
1371 */
1372 if (nvlist_alloc(&pools, 0, 0) != 0) {
1373 (void) no_memory(hdl);
1374 nvlist_free(raw);
1375 return (NULL);
1376 }
1377
1378 elem = NULL;
1379 while ((elem = nvlist_next_nvpair(raw, elem)) != NULL) {
1380 verify(nvpair_value_nvlist(elem, &src) == 0);
1381
1382 verify(nvlist_lookup_string(src, ZPOOL_CONFIG_POOL_NAME,
1383 &name) == 0);
1384 if (poolname != NULL && strcmp(poolname, name) != 0)
1385 continue;
1386
1387 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1388 &this_guid) == 0);
1389 if (guid != 0) {
1390 verify(nvlist_lookup_uint64(src, ZPOOL_CONFIG_POOL_GUID,
1391 &this_guid) == 0);
1392 if (guid != this_guid)
1393 continue;
1394 }
1395
1396 if (pool_active(hdl, name, this_guid, &active) != 0) {
1397 nvlist_free(raw);
1398 nvlist_free(pools);
1399 return (NULL);
1400 }
1401
1402 if (active)
1403 continue;
1404
1405 if ((dst = refresh_config(hdl, src)) == NULL) {
1406 nvlist_free(raw);
1407 nvlist_free(pools);
1408 return (NULL);
1409 }
1410
1411 if (nvlist_add_nvlist(pools, nvpair_name(elem), dst) != 0) {
1412 (void) no_memory(hdl);
1413 nvlist_free(dst);
1414 nvlist_free(raw);
1415 nvlist_free(pools);
1416 return (NULL);
1417 }
1418 nvlist_free(dst);
1419 }
1420
1421 nvlist_free(raw);
1422 return (pools);
1423 }
1424
1425 static int
1426 name_or_guid_exists(zpool_handle_t *zhp, void *data)
1427 {
1428 importargs_t *import = data;
1429 int found = 0;
1430
1431 if (import->poolname != NULL) {
1432 char *pool_name;
1433
1434 verify(nvlist_lookup_string(zhp->zpool_config,
1435 ZPOOL_CONFIG_POOL_NAME, &pool_name) == 0);
1436 if (strcmp(pool_name, import->poolname) == 0)
1437 found = 1;
1438 } else {
1439 uint64_t pool_guid;
1440
1441 verify(nvlist_lookup_uint64(zhp->zpool_config,
1442 ZPOOL_CONFIG_POOL_GUID, &pool_guid) == 0);
1443 if (pool_guid == import->guid)
1444 found = 1;
1445 }
1446
1447 zpool_close(zhp);
1448 return (found);
1449 }
1450
1451 nvlist_t *
1452 zpool_search_import(libzfs_handle_t *hdl, importargs_t *import)
1453 {
1454 verify(import->poolname == NULL || import->guid == 0);
1455
1456 if (import->unique)
1457 import->exists = zpool_iter(hdl, name_or_guid_exists, import);
1458
1459 if (import->cachefile != NULL)
1460 return (zpool_find_import_cached(hdl, import->cachefile,
1461 import->poolname, import->guid));
1462
1463 return (zpool_find_import_impl(hdl, import));
1464 }
1465
1466 boolean_t
1467 find_guid(nvlist_t *nv, uint64_t guid)
1468 {
1469 uint64_t tmp;
1470 nvlist_t **child;
1471 uint_t c, children;
1472
1473 verify(nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &tmp) == 0);
1474 if (tmp == guid)
1475 return (B_TRUE);
1476
1477 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1478 &child, &children) == 0) {
1479 for (c = 0; c < children; c++)
1480 if (find_guid(child[c], guid))
1481 return (B_TRUE);
1482 }
1483
1484 return (B_FALSE);
1485 }
1486
1487 typedef struct aux_cbdata {
1488 const char *cb_type;
1489 uint64_t cb_guid;
1490 zpool_handle_t *cb_zhp;
1491 } aux_cbdata_t;
1492
1493 static int
1494 find_aux(zpool_handle_t *zhp, void *data)
1495 {
1496 aux_cbdata_t *cbp = data;
1497 nvlist_t **list;
1498 uint_t i, count;
1499 uint64_t guid;
1500 nvlist_t *nvroot;
1501
1502 verify(nvlist_lookup_nvlist(zhp->zpool_config, ZPOOL_CONFIG_VDEV_TREE,
1503 &nvroot) == 0);
1504
1505 if (nvlist_lookup_nvlist_array(nvroot, cbp->cb_type,
1506 &list, &count) == 0) {
1507 for (i = 0; i < count; i++) {
1508 verify(nvlist_lookup_uint64(list[i],
1509 ZPOOL_CONFIG_GUID, &guid) == 0);
1510 if (guid == cbp->cb_guid) {
1511 cbp->cb_zhp = zhp;
1512 return (1);
1513 }
1514 }
1515 }
1516
1517 zpool_close(zhp);
1518 return (0);
1519 }
1520
1521 /*
1522 * Determines if the pool is in use. If so, it returns true and the state of
1523 * the pool as well as the name of the pool. Both strings are allocated and
1524 * must be freed by the caller.
1525 */
1526 int
1527 zpool_in_use(libzfs_handle_t *hdl, int fd, pool_state_t *state, char **namestr,
1528 boolean_t *inuse)
1529 {
1530 nvlist_t *config;
1531 char *name;
1532 boolean_t ret;
1533 uint64_t guid, vdev_guid;
1534 zpool_handle_t *zhp;
1535 nvlist_t *pool_config;
1536 uint64_t stateval, isspare;
1537 aux_cbdata_t cb = { 0 };
1538 boolean_t isactive;
1539
1540 *inuse = B_FALSE;
1541
1542 if (zpool_read_label(fd, &config) != 0) {
1543 (void) no_memory(hdl);
1544 return (-1);
1545 }
1546
1547 if (config == NULL)
1548 return (0);
1549
1550 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1551 &stateval) == 0);
1552 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID,
1553 &vdev_guid) == 0);
1554
1555 if (stateval != POOL_STATE_SPARE && stateval != POOL_STATE_L2CACHE) {
1556 verify(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
1557 &name) == 0);
1558 verify(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
1559 &guid) == 0);
1560 }
1561
1562 switch (stateval) {
1563 case POOL_STATE_EXPORTED:
1564 /*
1565 * A pool with an exported state may in fact be imported
1566 * read-only, so check the in-core state to see if it's
1567 * active and imported read-only. If it is, set
1568 * its state to active.
1569 */
1570 if (pool_active(hdl, name, guid, &isactive) == 0 && isactive &&
1571 (zhp = zpool_open_canfail(hdl, name)) != NULL) {
1572 if (zpool_get_prop_int(zhp, ZPOOL_PROP_READONLY, NULL))
1573 stateval = POOL_STATE_ACTIVE;
1574
1575 /*
1576 * All we needed the zpool handle for is the
1577 * readonly prop check.
1578 */
1579 zpool_close(zhp);
1580 }
1581
1582 ret = B_TRUE;
1583 break;
1584
1585 case POOL_STATE_ACTIVE:
1586 /*
1587 * For an active pool, we have to determine if it's really part
1588 * of a currently active pool (in which case the pool will exist
1589 * and the guid will be the same), or whether it's part of an
1590 * active pool that was disconnected without being explicitly
1591 * exported.
1592 */
1593 if (pool_active(hdl, name, guid, &isactive) != 0) {
1594 nvlist_free(config);
1595 return (-1);
1596 }
1597
1598 if (isactive) {
1599 /*
1600 * Because the device may have been removed while
1601 * offlined, we only report it as active if the vdev is
1602 * still present in the config. Otherwise, pretend like
1603 * it's not in use.
1604 */
1605 if ((zhp = zpool_open_canfail(hdl, name)) != NULL &&
1606 (pool_config = zpool_get_config(zhp, NULL))
1607 != NULL) {
1608 nvlist_t *nvroot;
1609
1610 verify(nvlist_lookup_nvlist(pool_config,
1611 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1612 ret = find_guid(nvroot, vdev_guid);
1613 } else {
1614 ret = B_FALSE;
1615 }
1616
1617 /*
1618 * If this is an active spare within another pool, we
1619 * treat it like an unused hot spare. This allows the
1620 * user to create a pool with a hot spare that currently
1621 * in use within another pool. Since we return B_TRUE,
1622 * libdiskmgt will continue to prevent generic consumers
1623 * from using the device.
1624 */
1625 if (ret && nvlist_lookup_uint64(config,
1626 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
1627 stateval = POOL_STATE_SPARE;
1628
1629 if (zhp != NULL)
1630 zpool_close(zhp);
1631 } else {
1632 stateval = POOL_STATE_POTENTIALLY_ACTIVE;
1633 ret = B_TRUE;
1634 }
1635 break;
1636
1637 case POOL_STATE_SPARE:
1638 /*
1639 * For a hot spare, it can be either definitively in use, or
1640 * potentially active. To determine if it's in use, we iterate
1641 * over all pools in the system and search for one with a spare
1642 * with a matching guid.
1643 *
1644 * Due to the shared nature of spares, we don't actually report
1645 * the potentially active case as in use. This means the user
1646 * can freely create pools on the hot spares of exported pools,
1647 * but to do otherwise makes the resulting code complicated, and
1648 * we end up having to deal with this case anyway.
1649 */
1650 cb.cb_zhp = NULL;
1651 cb.cb_guid = vdev_guid;
1652 cb.cb_type = ZPOOL_CONFIG_SPARES;
1653 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1654 name = (char *)zpool_get_name(cb.cb_zhp);
1655 ret = TRUE;
1656 } else {
1657 ret = FALSE;
1658 }
1659 break;
1660
1661 case POOL_STATE_L2CACHE:
1662
1663 /*
1664 * Check if any pool is currently using this l2cache device.
1665 */
1666 cb.cb_zhp = NULL;
1667 cb.cb_guid = vdev_guid;
1668 cb.cb_type = ZPOOL_CONFIG_L2CACHE;
1669 if (zpool_iter(hdl, find_aux, &cb) == 1) {
1670 name = (char *)zpool_get_name(cb.cb_zhp);
1671 ret = TRUE;
1672 } else {
1673 ret = FALSE;
1674 }
1675 break;
1676
1677 default:
1678 ret = B_FALSE;
1679 }
1680
1681
1682 if (ret) {
1683 if ((*namestr = zfs_strdup(hdl, name)) == NULL) {
1684 if (cb.cb_zhp)
1685 zpool_close(cb.cb_zhp);
1686 nvlist_free(config);
1687 return (-1);
1688 }
1689 *state = (pool_state_t)stateval;
1690 }
1691
1692 if (cb.cb_zhp)
1693 zpool_close(cb.cb_zhp);
1694
1695 nvlist_free(config);
1696 *inuse = ret;
1697 return (0);
1698 }