1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright 2015 RackTop Systems.
28 */
29
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dbuf.h>
34 #include <sys/dnode.h>
35 #include <sys/zfs_context.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dmu_traverse.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dsl_prop.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_synctask.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zfs_znode.h>
47 #include <zfs_fletcher.h>
48 #include <sys/avl.h>
49 #include <sys/ddt.h>
50 #include <sys/zfs_onexit.h>
51 #include <sys/dmu_send.h>
52 #include <sys/dsl_destroy.h>
53 #include <sys/blkptr.h>
54 #include <sys/dsl_bookmark.h>
55 #include <sys/zfeature.h>
56 #include <sys/bqueue.h>
57
58 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
59 int zfs_send_corrupt_data = B_FALSE;
60 int zfs_send_queue_length = 16 * 1024 * 1024;
61 int zfs_recv_queue_length = 16 * 1024 * 1024;
62
63 static char *dmu_recv_tag = "dmu_recv_tag";
64 const char *recv_clone_name = "%recv";
65
66 #define BP_SPAN(datablkszsec, indblkshift, level) \
67 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
68 (level) * (indblkshift - SPA_BLKPTRSHIFT)))
69
70 static void byteswap_record(dmu_replay_record_t *drr);
71
72 struct send_thread_arg {
73 bqueue_t q;
74 dsl_dataset_t *ds; /* Dataset to traverse */
75 uint64_t fromtxg; /* Traverse from this txg */
76 int flags; /* flags to pass to traverse_dataset */
77 int error_code;
78 boolean_t cancel;
79 zbookmark_phys_t resume;
80 };
81
82 struct send_block_record {
83 boolean_t eos_marker; /* Marks the end of the stream */
84 blkptr_t bp;
85 zbookmark_phys_t zb;
86 uint8_t indblkshift;
87 uint16_t datablkszsec;
88 bqueue_node_t ln;
89 };
90
91 static int
92 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
93 {
94 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
95 ssize_t resid; /* have to get resid to get detailed errno */
96 ASSERT0(len % 8);
97
98 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
99 (caddr_t)buf, len,
100 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
101
102 mutex_enter(&ds->ds_sendstream_lock);
103 *dsp->dsa_off += len;
104 mutex_exit(&ds->ds_sendstream_lock);
105
106 return (dsp->dsa_err);
107 }
108
109 /*
110 * For all record types except BEGIN, fill in the checksum (overlaid in
111 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
112 * up to the start of the checksum itself.
113 */
114 static int
115 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
116 {
117 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
118 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
119 fletcher_4_incremental_native(dsp->dsa_drr,
120 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
121 &dsp->dsa_zc);
122 if (dsp->dsa_drr->drr_type != DRR_BEGIN) {
123 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
124 drr_checksum.drr_checksum));
125 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
126 }
127 fletcher_4_incremental_native(&dsp->dsa_drr->
128 drr_u.drr_checksum.drr_checksum,
129 sizeof (zio_cksum_t), &dsp->dsa_zc);
130 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
131 return (SET_ERROR(EINTR));
132 if (payload_len != 0) {
133 fletcher_4_incremental_native(payload, payload_len,
134 &dsp->dsa_zc);
135 if (dump_bytes(dsp, payload, payload_len) != 0)
136 return (SET_ERROR(EINTR));
137 }
138 return (0);
139 }
140
141 /*
142 * Fill in the drr_free struct, or perform aggregation if the previous record is
143 * also a free record, and the two are adjacent.
144 *
145 * Note that we send free records even for a full send, because we want to be
146 * able to receive a full send as a clone, which requires a list of all the free
147 * and freeobject records that were generated on the source.
148 */
149 static int
150 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
151 uint64_t length)
152 {
153 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
154
155 /*
156 * Skip free records if asked not to send them. The resulting
157 * stream cannot be received as a clone.
158 */
159 if (dsp->dsa_skip_free)
160 return (0);
161
162 /*
163 * When we receive a free record, dbuf_free_range() assumes
164 * that the receiving system doesn't have any dbufs in the range
165 * being freed. This is always true because there is a one-record
166 * constraint: we only send one WRITE record for any given
167 * object,offset. We know that the one-record constraint is
168 * true because we always send data in increasing order by
169 * object,offset.
170 *
171 * If the increasing-order constraint ever changes, we should find
172 * another way to assert that the one-record constraint is still
173 * satisfied.
174 */
175 ASSERT(object > dsp->dsa_last_data_object ||
176 (object == dsp->dsa_last_data_object &&
177 offset > dsp->dsa_last_data_offset));
178
179 if (length != -1ULL && offset + length < offset)
180 length = -1ULL;
181
182 /*
183 * If there is a pending op, but it's not PENDING_FREE, push it out,
184 * since free block aggregation can only be done for blocks of the
185 * same type (i.e., DRR_FREE records can only be aggregated with
186 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
187 * aggregated with other DRR_FREEOBJECTS records.
188 */
189 if (dsp->dsa_pending_op != PENDING_NONE &&
190 dsp->dsa_pending_op != PENDING_FREE) {
191 if (dump_record(dsp, NULL, 0) != 0)
192 return (SET_ERROR(EINTR));
193 dsp->dsa_pending_op = PENDING_NONE;
194 }
195
196 if (dsp->dsa_pending_op == PENDING_FREE) {
197 /*
198 * There should never be a PENDING_FREE if length is -1
199 * (because dump_dnode is the only place where this
200 * function is called with a -1, and only after flushing
201 * any pending record).
202 */
203 ASSERT(length != -1ULL);
204 /*
205 * Check to see whether this free block can be aggregated
206 * with pending one.
207 */
208 if (drrf->drr_object == object && drrf->drr_offset +
209 drrf->drr_length == offset) {
210 drrf->drr_length += length;
211 return (0);
212 } else {
213 /* not a continuation. Push out pending record */
214 if (dump_record(dsp, NULL, 0) != 0)
215 return (SET_ERROR(EINTR));
216 dsp->dsa_pending_op = PENDING_NONE;
217 }
218 }
219 /* create a FREE record and make it pending */
220 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
221 dsp->dsa_drr->drr_type = DRR_FREE;
222 drrf->drr_object = object;
223 drrf->drr_offset = offset;
224 drrf->drr_length = length;
225 drrf->drr_toguid = dsp->dsa_toguid;
226 if (length == -1ULL) {
227 if (dump_record(dsp, NULL, 0) != 0)
228 return (SET_ERROR(EINTR));
229 } else {
230 dsp->dsa_pending_op = PENDING_FREE;
231 }
232
233 return (0);
234 }
235
236 static int
237 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
238 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
239 {
240 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
241
242 /*
243 * We send data in increasing object, offset order.
244 * See comment in dump_free() for details.
245 */
246 ASSERT(object > dsp->dsa_last_data_object ||
247 (object == dsp->dsa_last_data_object &&
248 offset > dsp->dsa_last_data_offset));
249 dsp->dsa_last_data_object = object;
250 dsp->dsa_last_data_offset = offset + blksz - 1;
251
252 /*
253 * If there is any kind of pending aggregation (currently either
254 * a grouping of free objects or free blocks), push it out to
255 * the stream, since aggregation can't be done across operations
256 * of different types.
257 */
258 if (dsp->dsa_pending_op != PENDING_NONE) {
259 if (dump_record(dsp, NULL, 0) != 0)
260 return (SET_ERROR(EINTR));
261 dsp->dsa_pending_op = PENDING_NONE;
262 }
263 /* write a WRITE record */
264 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
265 dsp->dsa_drr->drr_type = DRR_WRITE;
266 drrw->drr_object = object;
267 drrw->drr_type = type;
268 drrw->drr_offset = offset;
269 drrw->drr_length = blksz;
270 drrw->drr_toguid = dsp->dsa_toguid;
271 if (bp == NULL || BP_IS_EMBEDDED(bp)) {
272 /*
273 * There's no pre-computed checksum for partial-block
274 * writes or embedded BP's, so (like
275 * fletcher4-checkummed blocks) userland will have to
276 * compute a dedup-capable checksum itself.
277 */
278 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
279 } else {
280 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
281 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
282 ZCHECKSUM_FLAG_DEDUP)
283 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
284 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
285 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
286 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
287 drrw->drr_key.ddk_cksum = bp->blk_cksum;
288 }
289
290 if (dump_record(dsp, data, blksz) != 0)
291 return (SET_ERROR(EINTR));
292 return (0);
293 }
294
295 static int
296 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
297 int blksz, const blkptr_t *bp)
298 {
299 char buf[BPE_PAYLOAD_SIZE];
300 struct drr_write_embedded *drrw =
301 &(dsp->dsa_drr->drr_u.drr_write_embedded);
302
303 if (dsp->dsa_pending_op != PENDING_NONE) {
304 if (dump_record(dsp, NULL, 0) != 0)
305 return (EINTR);
306 dsp->dsa_pending_op = PENDING_NONE;
307 }
308
309 ASSERT(BP_IS_EMBEDDED(bp));
310
311 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
312 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
313 drrw->drr_object = object;
314 drrw->drr_offset = offset;
315 drrw->drr_length = blksz;
316 drrw->drr_toguid = dsp->dsa_toguid;
317 drrw->drr_compression = BP_GET_COMPRESS(bp);
318 drrw->drr_etype = BPE_GET_ETYPE(bp);
319 drrw->drr_lsize = BPE_GET_LSIZE(bp);
320 drrw->drr_psize = BPE_GET_PSIZE(bp);
321
322 decode_embedded_bp_compressed(bp, buf);
323
324 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
325 return (EINTR);
326 return (0);
327 }
328
329 static int
330 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
331 {
332 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
333
334 if (dsp->dsa_pending_op != PENDING_NONE) {
335 if (dump_record(dsp, NULL, 0) != 0)
336 return (SET_ERROR(EINTR));
337 dsp->dsa_pending_op = PENDING_NONE;
338 }
339
340 /* write a SPILL record */
341 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
342 dsp->dsa_drr->drr_type = DRR_SPILL;
343 drrs->drr_object = object;
344 drrs->drr_length = blksz;
345 drrs->drr_toguid = dsp->dsa_toguid;
346
347 if (dump_record(dsp, data, blksz) != 0)
348 return (SET_ERROR(EINTR));
349 return (0);
350 }
351
352 static int
353 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
354 {
355 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
356
357 /* See comment in dump_free(). */
358 if (dsp->dsa_skip_free)
359 return (0);
360
361 /*
362 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
363 * push it out, since free block aggregation can only be done for
364 * blocks of the same type (i.e., DRR_FREE records can only be
365 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
366 * can only be aggregated with other DRR_FREEOBJECTS records.
367 */
368 if (dsp->dsa_pending_op != PENDING_NONE &&
369 dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
370 if (dump_record(dsp, NULL, 0) != 0)
371 return (SET_ERROR(EINTR));
372 dsp->dsa_pending_op = PENDING_NONE;
373 }
374 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
375 /*
376 * See whether this free object array can be aggregated
377 * with pending one
378 */
379 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
380 drrfo->drr_numobjs += numobjs;
381 return (0);
382 } else {
383 /* can't be aggregated. Push out pending record */
384 if (dump_record(dsp, NULL, 0) != 0)
385 return (SET_ERROR(EINTR));
386 dsp->dsa_pending_op = PENDING_NONE;
387 }
388 }
389
390 /* write a FREEOBJECTS record */
391 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
392 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
393 drrfo->drr_firstobj = firstobj;
394 drrfo->drr_numobjs = numobjs;
395 drrfo->drr_toguid = dsp->dsa_toguid;
396
397 dsp->dsa_pending_op = PENDING_FREEOBJECTS;
398
399 return (0);
400 }
401
402 static int
403 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
404 {
405 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
406
407 if (object < dsp->dsa_resume_object) {
408 /*
409 * Note: when resuming, we will visit all the dnodes in
410 * the block of dnodes that we are resuming from. In
411 * this case it's unnecessary to send the dnodes prior to
412 * the one we are resuming from. We should be at most one
413 * block's worth of dnodes behind the resume point.
414 */
415 ASSERT3U(dsp->dsa_resume_object - object, <,
416 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
417 return (0);
418 }
419
420 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
421 return (dump_freeobjects(dsp, object, 1));
422
423 if (dsp->dsa_pending_op != PENDING_NONE) {
424 if (dump_record(dsp, NULL, 0) != 0)
425 return (SET_ERROR(EINTR));
426 dsp->dsa_pending_op = PENDING_NONE;
427 }
428
429 /* write an OBJECT record */
430 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
431 dsp->dsa_drr->drr_type = DRR_OBJECT;
432 drro->drr_object = object;
433 drro->drr_type = dnp->dn_type;
434 drro->drr_bonustype = dnp->dn_bonustype;
435 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
436 drro->drr_bonuslen = dnp->dn_bonuslen;
437 drro->drr_checksumtype = dnp->dn_checksum;
438 drro->drr_compress = dnp->dn_compress;
439 drro->drr_toguid = dsp->dsa_toguid;
440
441 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
442 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
443 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
444
445 if (dump_record(dsp, DN_BONUS(dnp),
446 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
447 return (SET_ERROR(EINTR));
448 }
449
450 /* Free anything past the end of the file. */
451 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
452 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
453 return (SET_ERROR(EINTR));
454 if (dsp->dsa_err != 0)
455 return (SET_ERROR(EINTR));
456 return (0);
457 }
458
459 static boolean_t
460 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
461 {
462 if (!BP_IS_EMBEDDED(bp))
463 return (B_FALSE);
464
465 /*
466 * Compression function must be legacy, or explicitly enabled.
467 */
468 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
469 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
470 return (B_FALSE);
471
472 /*
473 * Embed type must be explicitly enabled.
474 */
475 switch (BPE_GET_ETYPE(bp)) {
476 case BP_EMBEDDED_TYPE_DATA:
477 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
478 return (B_TRUE);
479 break;
480 default:
481 return (B_FALSE);
482 }
483 return (B_FALSE);
484 }
485
486 /*
487 * This is the callback function to traverse_dataset that acts as the worker
488 * thread for dmu_send_impl.
489 */
490 /*ARGSUSED*/
491 static int
492 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
493 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
494 {
495 struct send_thread_arg *sta = arg;
496 struct send_block_record *record;
497 uint64_t record_size;
498 int err = 0;
499
500 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
501 zb->zb_object >= sta->resume.zb_object);
502
503 if (sta->cancel)
504 return (SET_ERROR(EINTR));
505
506 if (bp == NULL) {
507 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
508 return (0);
509 } else if (zb->zb_level < 0) {
510 return (0);
511 }
512
513 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
514 record->eos_marker = B_FALSE;
515 record->bp = *bp;
516 record->zb = *zb;
517 record->indblkshift = dnp->dn_indblkshift;
518 record->datablkszsec = dnp->dn_datablkszsec;
519 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
520 bqueue_enqueue(&sta->q, record, record_size);
521
522 return (err);
523 }
524
525 /*
526 * This function kicks off the traverse_dataset. It also handles setting the
527 * error code of the thread in case something goes wrong, and pushes the End of
528 * Stream record when the traverse_dataset call has finished. If there is no
529 * dataset to traverse, the thread immediately pushes End of Stream marker.
530 */
531 static void
532 send_traverse_thread(void *arg)
533 {
534 struct send_thread_arg *st_arg = arg;
535 int err;
536 struct send_block_record *data;
537
538 if (st_arg->ds != NULL) {
539 err = traverse_dataset_resume(st_arg->ds,
540 st_arg->fromtxg, &st_arg->resume,
541 st_arg->flags, send_cb, st_arg);
542
543 if (err != EINTR)
544 st_arg->error_code = err;
545 }
546 data = kmem_zalloc(sizeof (*data), KM_SLEEP);
547 data->eos_marker = B_TRUE;
548 bqueue_enqueue(&st_arg->q, data, 1);
549 }
550
551 /*
552 * This function actually handles figuring out what kind of record needs to be
553 * dumped, reading the data (which has hopefully been prefetched), and calling
554 * the appropriate helper function.
555 */
556 static int
557 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
558 {
559 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
560 const blkptr_t *bp = &data->bp;
561 const zbookmark_phys_t *zb = &data->zb;
562 uint8_t indblkshift = data->indblkshift;
563 uint16_t dblkszsec = data->datablkszsec;
564 spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
565 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
566 int err = 0;
567
568 ASSERT3U(zb->zb_level, >=, 0);
569
570 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
571 zb->zb_object >= dsa->dsa_resume_object);
572
573 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
574 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
575 return (0);
576 } else if (BP_IS_HOLE(bp) &&
577 zb->zb_object == DMU_META_DNODE_OBJECT) {
578 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
579 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
580 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
581 } else if (BP_IS_HOLE(bp)) {
582 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
583 uint64_t offset = zb->zb_blkid * span;
584 err = dump_free(dsa, zb->zb_object, offset, span);
585 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
586 return (0);
587 } else if (type == DMU_OT_DNODE) {
588 int blksz = BP_GET_LSIZE(bp);
589 arc_flags_t aflags = ARC_FLAG_WAIT;
590 arc_buf_t *abuf;
591
592 ASSERT0(zb->zb_level);
593
594 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
595 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
596 &aflags, zb) != 0)
597 return (SET_ERROR(EIO));
598
599 dnode_phys_t *blk = abuf->b_data;
600 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
601 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
602 err = dump_dnode(dsa, dnobj + i, blk + i);
603 if (err != 0)
604 break;
605 }
606 (void) arc_buf_remove_ref(abuf, &abuf);
607 } else if (type == DMU_OT_SA) {
608 arc_flags_t aflags = ARC_FLAG_WAIT;
609 arc_buf_t *abuf;
610 int blksz = BP_GET_LSIZE(bp);
611
612 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
613 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
614 &aflags, zb) != 0)
615 return (SET_ERROR(EIO));
616
617 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
618 (void) arc_buf_remove_ref(abuf, &abuf);
619 } else if (backup_do_embed(dsa, bp)) {
620 /* it's an embedded level-0 block of a regular object */
621 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
622 ASSERT0(zb->zb_level);
623 err = dump_write_embedded(dsa, zb->zb_object,
624 zb->zb_blkid * blksz, blksz, bp);
625 } else {
626 /* it's a level-0 block of a regular object */
627 arc_flags_t aflags = ARC_FLAG_WAIT;
628 arc_buf_t *abuf;
629 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
630 uint64_t offset;
631
632 ASSERT0(zb->zb_level);
633 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
634 (zb->zb_object == dsa->dsa_resume_object &&
635 zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
636
637 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
638 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
639 &aflags, zb) != 0) {
640 if (zfs_send_corrupt_data) {
641 /* Send a block filled with 0x"zfs badd bloc" */
642 abuf = arc_buf_alloc(spa, blksz, &abuf,
643 ARC_BUFC_DATA);
644 uint64_t *ptr;
645 for (ptr = abuf->b_data;
646 (char *)ptr < (char *)abuf->b_data + blksz;
647 ptr++)
648 *ptr = 0x2f5baddb10cULL;
649 } else {
650 return (SET_ERROR(EIO));
651 }
652 }
653
654 offset = zb->zb_blkid * blksz;
655
656 if (!(dsa->dsa_featureflags &
657 DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
658 blksz > SPA_OLD_MAXBLOCKSIZE) {
659 char *buf = abuf->b_data;
660 while (blksz > 0 && err == 0) {
661 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
662 err = dump_write(dsa, type, zb->zb_object,
663 offset, n, NULL, buf);
664 offset += n;
665 buf += n;
666 blksz -= n;
667 }
668 } else {
669 err = dump_write(dsa, type, zb->zb_object,
670 offset, blksz, bp, abuf->b_data);
671 }
672 (void) arc_buf_remove_ref(abuf, &abuf);
673 }
674
675 ASSERT(err == 0 || err == EINTR);
676 return (err);
677 }
678
679 /*
680 * Pop the new data off the queue, and free the old data.
681 */
682 static struct send_block_record *
683 get_next_record(bqueue_t *bq, struct send_block_record *data)
684 {
685 struct send_block_record *tmp = bqueue_dequeue(bq);
686 kmem_free(data, sizeof (*data));
687 return (tmp);
688 }
689
690 /*
691 * Actually do the bulk of the work in a zfs send.
692 *
693 * Note: Releases dp using the specified tag.
694 */
695 static int
696 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
697 zfs_bookmark_phys_t *ancestor_zb,
698 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
699 uint64_t resumeobj, uint64_t resumeoff, boolean_t skip_free,
700 vnode_t *vp, offset_t *off)
701 {
702 objset_t *os;
703 dmu_replay_record_t *drr;
704 dmu_sendarg_t *dsp;
705 int err;
706 uint64_t fromtxg = 0;
707 uint64_t featureflags = 0;
708 struct send_thread_arg to_arg = { 0 };
709
710 err = dmu_objset_from_ds(to_ds, &os);
711 if (err != 0) {
712 dsl_pool_rele(dp, tag);
713 return (err);
714 }
715
716 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
717 drr->drr_type = DRR_BEGIN;
718 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
719 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
720 DMU_SUBSTREAM);
721
722 #ifdef _KERNEL
723 if (dmu_objset_type(os) == DMU_OST_ZFS) {
724 uint64_t version;
725 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
726 kmem_free(drr, sizeof (dmu_replay_record_t));
727 dsl_pool_rele(dp, tag);
728 return (SET_ERROR(EINVAL));
729 }
730 if (version >= ZPL_VERSION_SA) {
731 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
732 }
733 }
734 #endif
735
736 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
737 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
738 if (embedok &&
739 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
740 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
741 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
742 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
743 }
744
745 if (resumeobj != 0 || resumeoff != 0) {
746 featureflags |= DMU_BACKUP_FEATURE_RESUMING;
747 }
748
749 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
750 featureflags);
751
752 drr->drr_u.drr_begin.drr_creation_time =
753 dsl_dataset_phys(to_ds)->ds_creation_time;
754 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
755 if (is_clone)
756 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
757 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
758 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
759 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
760 if (!skip_free)
761 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
762
763 if (ancestor_zb != NULL) {
764 drr->drr_u.drr_begin.drr_fromguid =
765 ancestor_zb->zbm_guid;
766 fromtxg = ancestor_zb->zbm_creation_txg;
767 }
768 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
769 if (!to_ds->ds_is_snapshot) {
770 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
771 sizeof (drr->drr_u.drr_begin.drr_toname));
772 }
773
774 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
775
776 dsp->dsa_drr = drr;
777 dsp->dsa_vp = vp;
778 dsp->dsa_outfd = outfd;
779 dsp->dsa_proc = curproc;
780 dsp->dsa_os = os;
781 dsp->dsa_off = off;
782 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
783 dsp->dsa_pending_op = PENDING_NONE;
784 dsp->dsa_featureflags = featureflags;
785 dsp->dsa_resume_object = resumeobj;
786 dsp->dsa_resume_offset = resumeoff;
787 dsp->dsa_skip_free = skip_free;
788
789 mutex_enter(&to_ds->ds_sendstream_lock);
790 list_insert_head(&to_ds->ds_sendstreams, dsp);
791 mutex_exit(&to_ds->ds_sendstream_lock);
792
793 dsl_dataset_long_hold(to_ds, FTAG);
794 dsl_pool_rele(dp, tag);
795
796 void *payload = NULL;
797 size_t payload_len = 0;
798 if (resumeobj != 0 || resumeoff != 0) {
799 dmu_object_info_t to_doi;
800 err = dmu_object_info(os, resumeobj, &to_doi);
801 if (err != 0)
802 goto out;
803 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
804 resumeoff / to_doi.doi_data_block_size);
805
806 nvlist_t *nvl = fnvlist_alloc();
807 fnvlist_add_uint64(nvl, "resume_object", resumeobj);
808 fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
809 payload = fnvlist_pack(nvl, &payload_len);
810 drr->drr_payloadlen = payload_len;
811 fnvlist_free(nvl);
812 }
813
814 err = dump_record(dsp, payload, payload_len);
815 fnvlist_pack_free(payload, payload_len);
816 if (err != 0) {
817 err = dsp->dsa_err;
818 goto out;
819 }
820
821 err = bqueue_init(&to_arg.q, zfs_send_queue_length,
822 offsetof(struct send_block_record, ln));
823 to_arg.error_code = 0;
824 to_arg.cancel = B_FALSE;
825 to_arg.ds = to_ds;
826 to_arg.fromtxg = fromtxg;
827 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
828 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
829 TS_RUN, minclsyspri);
830
831 struct send_block_record *to_data;
832 to_data = bqueue_dequeue(&to_arg.q);
833
834 while (!to_data->eos_marker && err == 0) {
835 err = do_dump(dsp, to_data);
836 to_data = get_next_record(&to_arg.q, to_data);
837 if (issig(JUSTLOOKING) && issig(FORREAL))
838 err = EINTR;
839 }
840
841 if (err != 0) {
842 to_arg.cancel = B_TRUE;
843 while (!to_data->eos_marker) {
844 to_data = get_next_record(&to_arg.q, to_data);
845 }
846 }
847 kmem_free(to_data, sizeof (*to_data));
848
849 bqueue_destroy(&to_arg.q);
850
851 if (err == 0 && to_arg.error_code != 0)
852 err = to_arg.error_code;
853
854 if (err != 0)
855 goto out;
856
857 if (dsp->dsa_pending_op != PENDING_NONE)
858 if (dump_record(dsp, NULL, 0) != 0)
859 err = SET_ERROR(EINTR);
860
861 if (err != 0) {
862 if (err == EINTR && dsp->dsa_err != 0)
863 err = dsp->dsa_err;
864 goto out;
865 }
866
867 bzero(drr, sizeof (dmu_replay_record_t));
868 drr->drr_type = DRR_END;
869 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
870 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
871
872 if (dump_record(dsp, NULL, 0) != 0)
873 err = dsp->dsa_err;
874
875 out:
876 mutex_enter(&to_ds->ds_sendstream_lock);
877 list_remove(&to_ds->ds_sendstreams, dsp);
878 mutex_exit(&to_ds->ds_sendstream_lock);
879
880 kmem_free(drr, sizeof (dmu_replay_record_t));
881 kmem_free(dsp, sizeof (dmu_sendarg_t));
882
883 dsl_dataset_long_rele(to_ds, FTAG);
884
885 return (err);
886 }
887
888 int
889 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
890 boolean_t embedok, boolean_t large_block_ok,
891 int outfd, boolean_t skip_free, vnode_t *vp, offset_t *off)
892 {
893 dsl_pool_t *dp;
894 dsl_dataset_t *ds;
895 dsl_dataset_t *fromds = NULL;
896 int err;
897
898 err = dsl_pool_hold(pool, FTAG, &dp);
899 if (err != 0)
900 return (err);
901
902 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
903 if (err != 0) {
904 dsl_pool_rele(dp, FTAG);
905 return (err);
906 }
907
908 if (fromsnap != 0) {
909 zfs_bookmark_phys_t zb;
910 boolean_t is_clone;
911
912 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
913 if (err != 0) {
914 dsl_dataset_rele(ds, FTAG);
915 dsl_pool_rele(dp, FTAG);
916 return (err);
917 }
918 if (!dsl_dataset_is_before(ds, fromds, 0))
919 err = SET_ERROR(EXDEV);
920 zb.zbm_creation_time =
921 dsl_dataset_phys(fromds)->ds_creation_time;
922 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
923 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
924 is_clone = (fromds->ds_dir != ds->ds_dir);
925 dsl_dataset_rele(fromds, FTAG);
926 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
927 embedok, large_block_ok, outfd, 0, 0, skip_free, vp, off);
928 } else {
929 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
930 embedok, large_block_ok, outfd, 0, 0, skip_free, vp, off);
931 }
932 dsl_dataset_rele(ds, FTAG);
933 return (err);
934 }
935
936 int
937 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
938 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
939 boolean_t skip_free, vnode_t *vp, offset_t *off)
940 {
941 dsl_pool_t *dp;
942 dsl_dataset_t *ds;
943 int err;
944 boolean_t owned = B_FALSE;
945
946 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
947 return (SET_ERROR(EINVAL));
948
949 err = dsl_pool_hold(tosnap, FTAG, &dp);
950 if (err != 0)
951 return (err);
952
953 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
954 /*
955 * We are sending a filesystem or volume. Ensure
956 * that it doesn't change by owning the dataset.
957 */
958 err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
959 owned = B_TRUE;
960 } else {
961 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
962 }
963 if (err != 0) {
964 dsl_pool_rele(dp, FTAG);
965 return (err);
966 }
967
968 if (fromsnap != NULL) {
969 zfs_bookmark_phys_t zb;
970 boolean_t is_clone = B_FALSE;
971 int fsnamelen = strchr(tosnap, '@') - tosnap;
972
973 /*
974 * If the fromsnap is in a different filesystem, then
975 * mark the send stream as a clone.
976 */
977 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
978 (fromsnap[fsnamelen] != '@' &&
979 fromsnap[fsnamelen] != '#')) {
980 is_clone = B_TRUE;
981 }
982
983 if (strchr(fromsnap, '@')) {
984 dsl_dataset_t *fromds;
985 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
986 if (err == 0) {
987 if (!dsl_dataset_is_before(ds, fromds, 0))
988 err = SET_ERROR(EXDEV);
989 zb.zbm_creation_time =
990 dsl_dataset_phys(fromds)->ds_creation_time;
991 zb.zbm_creation_txg =
992 dsl_dataset_phys(fromds)->ds_creation_txg;
993 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
994 is_clone = (ds->ds_dir != fromds->ds_dir);
995 dsl_dataset_rele(fromds, FTAG);
996 }
997 } else {
998 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
999 }
1000 if (err != 0) {
1001 dsl_dataset_rele(ds, FTAG);
1002 dsl_pool_rele(dp, FTAG);
1003 return (err);
1004 }
1005 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
1006 embedok, large_block_ok,
1007 outfd, resumeobj, resumeoff, skip_free, vp, off);
1008 } else {
1009 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1010 embedok, large_block_ok,
1011 outfd, resumeobj, resumeoff, skip_free, vp, off);
1012 }
1013 if (owned)
1014 dsl_dataset_disown(ds, FTAG);
1015 else
1016 dsl_dataset_rele(ds, FTAG);
1017 return (err);
1018 }
1019
1020 static int
1021 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1022 uint64_t *sizep)
1023 {
1024 int err;
1025 /*
1026 * Assume that space (both on-disk and in-stream) is dominated by
1027 * data. We will adjust for indirect blocks and the copies property,
1028 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1029 */
1030
1031 /*
1032 * Subtract out approximate space used by indirect blocks.
1033 * Assume most space is used by data blocks (non-indirect, non-dnode).
1034 * Assume all blocks are recordsize. Assume ditto blocks and
1035 * internal fragmentation counter out compression.
1036 *
1037 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1038 * block, which we observe in practice.
1039 */
1040 uint64_t recordsize;
1041 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1042 if (err != 0)
1043 return (err);
1044 size -= size / recordsize * sizeof (blkptr_t);
1045
1046 /* Add in the space for the record associated with each block. */
1047 size += size / recordsize * sizeof (dmu_replay_record_t);
1048
1049 *sizep = size;
1050
1051 return (0);
1052 }
1053
1054 int
1055 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1056 {
1057 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1058 int err;
1059 uint64_t size;
1060
1061 ASSERT(dsl_pool_config_held(dp));
1062
1063 /* tosnap must be a snapshot */
1064 if (!ds->ds_is_snapshot)
1065 return (SET_ERROR(EINVAL));
1066
1067 /* fromsnap, if provided, must be a snapshot */
1068 if (fromds != NULL && !fromds->ds_is_snapshot)
1069 return (SET_ERROR(EINVAL));
1070
1071 /*
1072 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1073 * or the origin's fs.
1074 */
1075 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1076 return (SET_ERROR(EXDEV));
1077
1078 /* Get uncompressed size estimate of changed data. */
1079 if (fromds == NULL) {
1080 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1081 } else {
1082 uint64_t used, comp;
1083 err = dsl_dataset_space_written(fromds, ds,
1084 &used, &comp, &size);
1085 if (err != 0)
1086 return (err);
1087 }
1088
1089 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1090 return (err);
1091 }
1092
1093 /*
1094 * Simple callback used to traverse the blocks of a snapshot and sum their
1095 * uncompressed size
1096 */
1097 /* ARGSUSED */
1098 static int
1099 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1100 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1101 {
1102 uint64_t *spaceptr = arg;
1103 if (bp != NULL && !BP_IS_HOLE(bp)) {
1104 *spaceptr += BP_GET_UCSIZE(bp);
1105 }
1106 return (0);
1107 }
1108
1109 /*
1110 * Given a desination snapshot and a TXG, calculate the approximate size of a
1111 * send stream sent from that TXG. from_txg may be zero, indicating that the
1112 * whole snapshot will be sent.
1113 */
1114 int
1115 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1116 uint64_t *sizep)
1117 {
1118 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1119 int err;
1120 uint64_t size = 0;
1121
1122 ASSERT(dsl_pool_config_held(dp));
1123
1124 /* tosnap must be a snapshot */
1125 if (!dsl_dataset_is_snapshot(ds))
1126 return (SET_ERROR(EINVAL));
1127
1128 /* verify that from_txg is before the provided snapshot was taken */
1129 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1130 return (SET_ERROR(EXDEV));
1131 }
1132
1133 /*
1134 * traverse the blocks of the snapshot with birth times after
1135 * from_txg, summing their uncompressed size
1136 */
1137 err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1138 dmu_calculate_send_traversal, &size);
1139 if (err)
1140 return (err);
1141
1142 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1143 return (err);
1144 }
1145
1146 typedef struct dmu_recv_begin_arg {
1147 const char *drba_origin;
1148 dmu_recv_cookie_t *drba_cookie;
1149 cred_t *drba_cred;
1150 uint64_t drba_snapobj;
1151 } dmu_recv_begin_arg_t;
1152
1153 static int
1154 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1155 uint64_t fromguid)
1156 {
1157 uint64_t val;
1158 int error;
1159 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1160
1161 /* temporary clone name must not exist */
1162 error = zap_lookup(dp->dp_meta_objset,
1163 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1164 8, 1, &val);
1165 if (error != ENOENT)
1166 return (error == 0 ? EBUSY : error);
1167
1168 /* new snapshot name must not exist */
1169 error = zap_lookup(dp->dp_meta_objset,
1170 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1171 drba->drba_cookie->drc_tosnap, 8, 1, &val);
1172 if (error != ENOENT)
1173 return (error == 0 ? EEXIST : error);
1174
1175 /*
1176 * Check snapshot limit before receiving. We'll recheck again at the
1177 * end, but might as well abort before receiving if we're already over
1178 * the limit.
1179 *
1180 * Note that we do not check the file system limit with
1181 * dsl_dir_fscount_check because the temporary %clones don't count
1182 * against that limit.
1183 */
1184 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1185 NULL, drba->drba_cred);
1186 if (error != 0)
1187 return (error);
1188
1189 if (fromguid != 0) {
1190 dsl_dataset_t *snap;
1191 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1192
1193 /* Find snapshot in this dir that matches fromguid. */
1194 while (obj != 0) {
1195 error = dsl_dataset_hold_obj(dp, obj, FTAG,
1196 &snap);
1197 if (error != 0)
1198 return (SET_ERROR(ENODEV));
1199 if (snap->ds_dir != ds->ds_dir) {
1200 dsl_dataset_rele(snap, FTAG);
1201 return (SET_ERROR(ENODEV));
1202 }
1203 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1204 break;
1205 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1206 dsl_dataset_rele(snap, FTAG);
1207 }
1208 if (obj == 0)
1209 return (SET_ERROR(ENODEV));
1210
1211 if (drba->drba_cookie->drc_force) {
1212 drba->drba_snapobj = obj;
1213 } else {
1214 /*
1215 * If we are not forcing, there must be no
1216 * changes since fromsnap.
1217 */
1218 if (dsl_dataset_modified_since_snap(ds, snap)) {
1219 dsl_dataset_rele(snap, FTAG);
1220 return (SET_ERROR(ETXTBSY));
1221 }
1222 drba->drba_snapobj = ds->ds_prev->ds_object;
1223 }
1224
1225 dsl_dataset_rele(snap, FTAG);
1226 } else {
1227 /* if full, then must be forced */
1228 if (!drba->drba_cookie->drc_force)
1229 return (SET_ERROR(EEXIST));
1230 /* start from $ORIGIN@$ORIGIN, if supported */
1231 drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1232 dp->dp_origin_snap->ds_object : 0;
1233 }
1234
1235 return (0);
1236
1237 }
1238
1239 static int
1240 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1241 {
1242 dmu_recv_begin_arg_t *drba = arg;
1243 dsl_pool_t *dp = dmu_tx_pool(tx);
1244 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1245 uint64_t fromguid = drrb->drr_fromguid;
1246 int flags = drrb->drr_flags;
1247 int error;
1248 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1249 dsl_dataset_t *ds;
1250 const char *tofs = drba->drba_cookie->drc_tofs;
1251
1252 /* already checked */
1253 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1254 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1255
1256 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1257 DMU_COMPOUNDSTREAM ||
1258 drrb->drr_type >= DMU_OST_NUMTYPES ||
1259 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1260 return (SET_ERROR(EINVAL));
1261
1262 /* Verify pool version supports SA if SA_SPILL feature set */
1263 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1264 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1265 return (SET_ERROR(ENOTSUP));
1266
1267 if (drba->drba_cookie->drc_resumable &&
1268 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1269 return (SET_ERROR(ENOTSUP));
1270
1271 /*
1272 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1273 * record to a plan WRITE record, so the pool must have the
1274 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1275 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1276 */
1277 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1278 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1279 return (SET_ERROR(ENOTSUP));
1280 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1281 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1282 return (SET_ERROR(ENOTSUP));
1283
1284 /*
1285 * The receiving code doesn't know how to translate large blocks
1286 * to smaller ones, so the pool must have the LARGE_BLOCKS
1287 * feature enabled if the stream has LARGE_BLOCKS.
1288 */
1289 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1290 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1291 return (SET_ERROR(ENOTSUP));
1292
1293 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1294 if (error == 0) {
1295 /* target fs already exists; recv into temp clone */
1296
1297 /* Can't recv a clone into an existing fs */
1298 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1299 dsl_dataset_rele(ds, FTAG);
1300 return (SET_ERROR(EINVAL));
1301 }
1302
1303 error = recv_begin_check_existing_impl(drba, ds, fromguid);
1304 dsl_dataset_rele(ds, FTAG);
1305 } else if (error == ENOENT) {
1306 /* target fs does not exist; must be a full backup or clone */
1307 char buf[MAXNAMELEN];
1308
1309 /*
1310 * If it's a non-clone incremental, we are missing the
1311 * target fs, so fail the recv.
1312 */
1313 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1314 drba->drba_origin))
1315 return (SET_ERROR(ENOENT));
1316
1317 /*
1318 * If we're receiving a full send as a clone, and it doesn't
1319 * contain all the necessary free records and freeobject
1320 * records, reject it.
1321 */
1322 if (fromguid == 0 && drba->drba_origin &&
1323 !(flags & DRR_FLAG_FREERECORDS))
1324 return (SET_ERROR(EINVAL));
1325
1326 /* Open the parent of tofs */
1327 ASSERT3U(strlen(tofs), <, MAXNAMELEN);
1328 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1329 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1330 if (error != 0)
1331 return (error);
1332
1333 /*
1334 * Check filesystem and snapshot limits before receiving. We'll
1335 * recheck snapshot limits again at the end (we create the
1336 * filesystems and increment those counts during begin_sync).
1337 */
1338 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1339 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1340 if (error != 0) {
1341 dsl_dataset_rele(ds, FTAG);
1342 return (error);
1343 }
1344
1345 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1346 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1347 if (error != 0) {
1348 dsl_dataset_rele(ds, FTAG);
1349 return (error);
1350 }
1351
1352 if (drba->drba_origin != NULL) {
1353 dsl_dataset_t *origin;
1354 error = dsl_dataset_hold(dp, drba->drba_origin,
1355 FTAG, &origin);
1356 if (error != 0) {
1357 dsl_dataset_rele(ds, FTAG);
1358 return (error);
1359 }
1360 if (!origin->ds_is_snapshot) {
1361 dsl_dataset_rele(origin, FTAG);
1362 dsl_dataset_rele(ds, FTAG);
1363 return (SET_ERROR(EINVAL));
1364 }
1365 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1366 fromguid != 0) {
1367 dsl_dataset_rele(origin, FTAG);
1368 dsl_dataset_rele(ds, FTAG);
1369 return (SET_ERROR(ENODEV));
1370 }
1371 dsl_dataset_rele(origin, FTAG);
1372 }
1373 dsl_dataset_rele(ds, FTAG);
1374 error = 0;
1375 }
1376 return (error);
1377 }
1378
1379 static void
1380 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1381 {
1382 dmu_recv_begin_arg_t *drba = arg;
1383 dsl_pool_t *dp = dmu_tx_pool(tx);
1384 objset_t *mos = dp->dp_meta_objset;
1385 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1386 const char *tofs = drba->drba_cookie->drc_tofs;
1387 dsl_dataset_t *ds, *newds;
1388 uint64_t dsobj;
1389 int error;
1390 uint64_t crflags = 0;
1391
1392 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1393 crflags |= DS_FLAG_CI_DATASET;
1394
1395 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1396 if (error == 0) {
1397 /* create temporary clone */
1398 dsl_dataset_t *snap = NULL;
1399 if (drba->drba_snapobj != 0) {
1400 VERIFY0(dsl_dataset_hold_obj(dp,
1401 drba->drba_snapobj, FTAG, &snap));
1402 }
1403 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1404 snap, crflags, drba->drba_cred, tx);
1405 if (drba->drba_snapobj != 0)
1406 dsl_dataset_rele(snap, FTAG);
1407 dsl_dataset_rele(ds, FTAG);
1408 } else {
1409 dsl_dir_t *dd;
1410 const char *tail;
1411 dsl_dataset_t *origin = NULL;
1412
1413 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1414
1415 if (drba->drba_origin != NULL) {
1416 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1417 FTAG, &origin));
1418 }
1419
1420 /* Create new dataset. */
1421 dsobj = dsl_dataset_create_sync(dd,
1422 strrchr(tofs, '/') + 1,
1423 origin, crflags, drba->drba_cred, tx);
1424 if (origin != NULL)
1425 dsl_dataset_rele(origin, FTAG);
1426 dsl_dir_rele(dd, FTAG);
1427 drba->drba_cookie->drc_newfs = B_TRUE;
1428 }
1429 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1430
1431 if (drba->drba_cookie->drc_resumable) {
1432 dsl_dataset_zapify(newds, tx);
1433 if (drrb->drr_fromguid != 0) {
1434 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1435 8, 1, &drrb->drr_fromguid, tx));
1436 }
1437 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1438 8, 1, &drrb->drr_toguid, tx));
1439 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1440 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1441 uint64_t one = 1;
1442 uint64_t zero = 0;
1443 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1444 8, 1, &one, tx));
1445 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1446 8, 1, &zero, tx));
1447 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1448 8, 1, &zero, tx));
1449 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1450 DMU_BACKUP_FEATURE_EMBED_DATA) {
1451 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1452 8, 1, &one, tx));
1453 }
1454 }
1455
1456 dmu_buf_will_dirty(newds->ds_dbuf, tx);
1457 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1458
1459 /*
1460 * If we actually created a non-clone, we need to create the
1461 * objset in our new dataset.
1462 */
1463 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1464 (void) dmu_objset_create_impl(dp->dp_spa,
1465 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1466 }
1467
1468 drba->drba_cookie->drc_ds = newds;
1469
1470 spa_history_log_internal_ds(newds, "receive", tx, "");
1471 }
1472
1473 static int
1474 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1475 {
1476 dmu_recv_begin_arg_t *drba = arg;
1477 dsl_pool_t *dp = dmu_tx_pool(tx);
1478 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1479 int error;
1480 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1481 dsl_dataset_t *ds;
1482 const char *tofs = drba->drba_cookie->drc_tofs;
1483
1484 /* already checked */
1485 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1486 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1487
1488 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1489 DMU_COMPOUNDSTREAM ||
1490 drrb->drr_type >= DMU_OST_NUMTYPES)
1491 return (SET_ERROR(EINVAL));
1492
1493 /* Verify pool version supports SA if SA_SPILL feature set */
1494 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1495 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1496 return (SET_ERROR(ENOTSUP));
1497
1498 /*
1499 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1500 * record to a plain WRITE record, so the pool must have the
1501 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1502 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1503 */
1504 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1505 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1506 return (SET_ERROR(ENOTSUP));
1507 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1508 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1509 return (SET_ERROR(ENOTSUP));
1510
1511 char recvname[ZFS_MAXNAMELEN];
1512
1513 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1514 tofs, recv_clone_name);
1515
1516 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1517 /* %recv does not exist; continue in tofs */
1518 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1519 if (error != 0)
1520 return (error);
1521 }
1522
1523 /* check that ds is marked inconsistent */
1524 if (!DS_IS_INCONSISTENT(ds)) {
1525 dsl_dataset_rele(ds, FTAG);
1526 return (SET_ERROR(EINVAL));
1527 }
1528
1529 /* check that there is resuming data, and that the toguid matches */
1530 if (!dsl_dataset_is_zapified(ds)) {
1531 dsl_dataset_rele(ds, FTAG);
1532 return (SET_ERROR(EINVAL));
1533 }
1534 uint64_t val;
1535 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1536 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1537 if (error != 0 || drrb->drr_toguid != val) {
1538 dsl_dataset_rele(ds, FTAG);
1539 return (SET_ERROR(EINVAL));
1540 }
1541
1542 /*
1543 * Check if the receive is still running. If so, it will be owned.
1544 * Note that nothing else can own the dataset (e.g. after the receive
1545 * fails) because it will be marked inconsistent.
1546 */
1547 if (dsl_dataset_has_owner(ds)) {
1548 dsl_dataset_rele(ds, FTAG);
1549 return (SET_ERROR(EBUSY));
1550 }
1551
1552 /* There should not be any snapshots of this fs yet. */
1553 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1554 dsl_dataset_rele(ds, FTAG);
1555 return (SET_ERROR(EINVAL));
1556 }
1557
1558 /*
1559 * Note: resume point will be checked when we process the first WRITE
1560 * record.
1561 */
1562
1563 /* check that the origin matches */
1564 val = 0;
1565 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1566 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1567 if (drrb->drr_fromguid != val) {
1568 dsl_dataset_rele(ds, FTAG);
1569 return (SET_ERROR(EINVAL));
1570 }
1571
1572 dsl_dataset_rele(ds, FTAG);
1573 return (0);
1574 }
1575
1576 static void
1577 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1578 {
1579 dmu_recv_begin_arg_t *drba = arg;
1580 dsl_pool_t *dp = dmu_tx_pool(tx);
1581 const char *tofs = drba->drba_cookie->drc_tofs;
1582 dsl_dataset_t *ds;
1583 uint64_t dsobj;
1584 char recvname[ZFS_MAXNAMELEN];
1585
1586 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1587 tofs, recv_clone_name);
1588
1589 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1590 /* %recv does not exist; continue in tofs */
1591 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1592 drba->drba_cookie->drc_newfs = B_TRUE;
1593 }
1594
1595 /* clear the inconsistent flag so that we can own it */
1596 ASSERT(DS_IS_INCONSISTENT(ds));
1597 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1598 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1599 dsobj = ds->ds_object;
1600 dsl_dataset_rele(ds, FTAG);
1601
1602 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1603
1604 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1605 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1606
1607 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1608
1609 drba->drba_cookie->drc_ds = ds;
1610
1611 spa_history_log_internal_ds(ds, "resume receive", tx, "");
1612 }
1613
1614 /*
1615 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1616 * succeeds; otherwise we will leak the holds on the datasets.
1617 */
1618 int
1619 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1620 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1621 {
1622 dmu_recv_begin_arg_t drba = { 0 };
1623
1624 bzero(drc, sizeof (dmu_recv_cookie_t));
1625 drc->drc_drr_begin = drr_begin;
1626 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1627 drc->drc_tosnap = tosnap;
1628 drc->drc_tofs = tofs;
1629 drc->drc_force = force;
1630 drc->drc_resumable = resumable;
1631 drc->drc_cred = CRED();
1632
1633 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1634 drc->drc_byteswap = B_TRUE;
1635 fletcher_4_incremental_byteswap(drr_begin,
1636 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1637 byteswap_record(drr_begin);
1638 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1639 fletcher_4_incremental_native(drr_begin,
1640 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1641 } else {
1642 return (SET_ERROR(EINVAL));
1643 }
1644
1645 drba.drba_origin = origin;
1646 drba.drba_cookie = drc;
1647 drba.drba_cred = CRED();
1648
1649 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1650 DMU_BACKUP_FEATURE_RESUMING) {
1651 return (dsl_sync_task(tofs,
1652 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1653 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1654 } else {
1655 return (dsl_sync_task(tofs,
1656 dmu_recv_begin_check, dmu_recv_begin_sync,
1657 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1658 }
1659 }
1660
1661 struct receive_record_arg {
1662 dmu_replay_record_t header;
1663 void *payload; /* Pointer to a buffer containing the payload */
1664 /*
1665 * If the record is a write, pointer to the arc_buf_t containing the
1666 * payload.
1667 */
1668 arc_buf_t *write_buf;
1669 int payload_size;
1670 uint64_t bytes_read; /* bytes read from stream when record created */
1671 boolean_t eos_marker; /* Marks the end of the stream */
1672 bqueue_node_t node;
1673 };
1674
1675 struct receive_writer_arg {
1676 objset_t *os;
1677 boolean_t byteswap;
1678 bqueue_t q;
1679
1680 /*
1681 * These three args are used to signal to the main thread that we're
1682 * done.
1683 */
1684 kmutex_t mutex;
1685 kcondvar_t cv;
1686 boolean_t done;
1687
1688 int err;
1689 /* A map from guid to dataset to help handle dedup'd streams. */
1690 avl_tree_t *guid_to_ds_map;
1691 boolean_t resumable;
1692 uint64_t last_object, last_offset;
1693 uint64_t bytes_read; /* bytes read when current record created */
1694 };
1695
1696 struct objlist {
1697 list_t list; /* List of struct receive_objnode. */
1698 /*
1699 * Last object looked up. Used to assert that objects are being looked
1700 * up in ascending order.
1701 */
1702 uint64_t last_lookup;
1703 };
1704
1705 struct receive_objnode {
1706 list_node_t node;
1707 uint64_t object;
1708 };
1709
1710 struct receive_arg {
1711 objset_t *os;
1712 vnode_t *vp; /* The vnode to read the stream from */
1713 uint64_t voff; /* The current offset in the stream */
1714 uint64_t bytes_read;
1715 /*
1716 * A record that has had its payload read in, but hasn't yet been handed
1717 * off to the worker thread.
1718 */
1719 struct receive_record_arg *rrd;
1720 /* A record that has had its header read in, but not its payload. */
1721 struct receive_record_arg *next_rrd;
1722 zio_cksum_t cksum;
1723 zio_cksum_t prev_cksum;
1724 int err;
1725 boolean_t byteswap;
1726 /* Sorted list of objects not to issue prefetches for. */
1727 struct objlist ignore_objlist;
1728 };
1729
1730 typedef struct guid_map_entry {
1731 uint64_t guid;
1732 dsl_dataset_t *gme_ds;
1733 avl_node_t avlnode;
1734 } guid_map_entry_t;
1735
1736 static int
1737 guid_compare(const void *arg1, const void *arg2)
1738 {
1739 const guid_map_entry_t *gmep1 = arg1;
1740 const guid_map_entry_t *gmep2 = arg2;
1741
1742 if (gmep1->guid < gmep2->guid)
1743 return (-1);
1744 else if (gmep1->guid > gmep2->guid)
1745 return (1);
1746 return (0);
1747 }
1748
1749 static void
1750 free_guid_map_onexit(void *arg)
1751 {
1752 avl_tree_t *ca = arg;
1753 void *cookie = NULL;
1754 guid_map_entry_t *gmep;
1755
1756 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1757 dsl_dataset_long_rele(gmep->gme_ds, gmep);
1758 dsl_dataset_rele(gmep->gme_ds, gmep);
1759 kmem_free(gmep, sizeof (guid_map_entry_t));
1760 }
1761 avl_destroy(ca);
1762 kmem_free(ca, sizeof (avl_tree_t));
1763 }
1764
1765 static int
1766 receive_read(struct receive_arg *ra, int len, void *buf)
1767 {
1768 int done = 0;
1769
1770 /* some things will require 8-byte alignment, so everything must */
1771 ASSERT0(len % 8);
1772
1773 while (done < len) {
1774 ssize_t resid;
1775
1776 ra->err = vn_rdwr(UIO_READ, ra->vp,
1777 (char *)buf + done, len - done,
1778 ra->voff, UIO_SYSSPACE, FAPPEND,
1779 RLIM64_INFINITY, CRED(), &resid);
1780
1781 if (resid == len - done) {
1782 /*
1783 * Note: ECKSUM indicates that the receive
1784 * was interrupted and can potentially be resumed.
1785 */
1786 ra->err = SET_ERROR(ECKSUM);
1787 }
1788 ra->voff += len - done - resid;
1789 done = len - resid;
1790 if (ra->err != 0)
1791 return (ra->err);
1792 }
1793
1794 ra->bytes_read += len;
1795
1796 ASSERT3U(done, ==, len);
1797 return (0);
1798 }
1799
1800 static void
1801 byteswap_record(dmu_replay_record_t *drr)
1802 {
1803 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1804 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1805 drr->drr_type = BSWAP_32(drr->drr_type);
1806 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1807
1808 switch (drr->drr_type) {
1809 case DRR_BEGIN:
1810 DO64(drr_begin.drr_magic);
1811 DO64(drr_begin.drr_versioninfo);
1812 DO64(drr_begin.drr_creation_time);
1813 DO32(drr_begin.drr_type);
1814 DO32(drr_begin.drr_flags);
1815 DO64(drr_begin.drr_toguid);
1816 DO64(drr_begin.drr_fromguid);
1817 break;
1818 case DRR_OBJECT:
1819 DO64(drr_object.drr_object);
1820 DO32(drr_object.drr_type);
1821 DO32(drr_object.drr_bonustype);
1822 DO32(drr_object.drr_blksz);
1823 DO32(drr_object.drr_bonuslen);
1824 DO64(drr_object.drr_toguid);
1825 break;
1826 case DRR_FREEOBJECTS:
1827 DO64(drr_freeobjects.drr_firstobj);
1828 DO64(drr_freeobjects.drr_numobjs);
1829 DO64(drr_freeobjects.drr_toguid);
1830 break;
1831 case DRR_WRITE:
1832 DO64(drr_write.drr_object);
1833 DO32(drr_write.drr_type);
1834 DO64(drr_write.drr_offset);
1835 DO64(drr_write.drr_length);
1836 DO64(drr_write.drr_toguid);
1837 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1838 DO64(drr_write.drr_key.ddk_prop);
1839 break;
1840 case DRR_WRITE_BYREF:
1841 DO64(drr_write_byref.drr_object);
1842 DO64(drr_write_byref.drr_offset);
1843 DO64(drr_write_byref.drr_length);
1844 DO64(drr_write_byref.drr_toguid);
1845 DO64(drr_write_byref.drr_refguid);
1846 DO64(drr_write_byref.drr_refobject);
1847 DO64(drr_write_byref.drr_refoffset);
1848 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1849 drr_key.ddk_cksum);
1850 DO64(drr_write_byref.drr_key.ddk_prop);
1851 break;
1852 case DRR_WRITE_EMBEDDED:
1853 DO64(drr_write_embedded.drr_object);
1854 DO64(drr_write_embedded.drr_offset);
1855 DO64(drr_write_embedded.drr_length);
1856 DO64(drr_write_embedded.drr_toguid);
1857 DO32(drr_write_embedded.drr_lsize);
1858 DO32(drr_write_embedded.drr_psize);
1859 break;
1860 case DRR_FREE:
1861 DO64(drr_free.drr_object);
1862 DO64(drr_free.drr_offset);
1863 DO64(drr_free.drr_length);
1864 DO64(drr_free.drr_toguid);
1865 break;
1866 case DRR_SPILL:
1867 DO64(drr_spill.drr_object);
1868 DO64(drr_spill.drr_length);
1869 DO64(drr_spill.drr_toguid);
1870 break;
1871 case DRR_END:
1872 DO64(drr_end.drr_toguid);
1873 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1874 break;
1875 }
1876
1877 if (drr->drr_type != DRR_BEGIN) {
1878 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1879 }
1880
1881 #undef DO64
1882 #undef DO32
1883 }
1884
1885 static inline uint8_t
1886 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1887 {
1888 if (bonus_type == DMU_OT_SA) {
1889 return (1);
1890 } else {
1891 return (1 +
1892 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1893 }
1894 }
1895
1896 static void
1897 save_resume_state(struct receive_writer_arg *rwa,
1898 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1899 {
1900 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1901
1902 if (!rwa->resumable)
1903 return;
1904
1905 /*
1906 * We use ds_resume_bytes[] != 0 to indicate that we need to
1907 * update this on disk, so it must not be 0.
1908 */
1909 ASSERT(rwa->bytes_read != 0);
1910
1911 /*
1912 * We only resume from write records, which have a valid
1913 * (non-meta-dnode) object number.
1914 */
1915 ASSERT(object != 0);
1916
1917 /*
1918 * For resuming to work correctly, we must receive records in order,
1919 * sorted by object,offset. This is checked by the callers, but
1920 * assert it here for good measure.
1921 */
1922 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1923 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1924 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1925 ASSERT3U(rwa->bytes_read, >=,
1926 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1927
1928 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1929 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1930 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1931 }
1932
1933 static int
1934 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1935 void *data)
1936 {
1937 dmu_object_info_t doi;
1938 dmu_tx_t *tx;
1939 uint64_t object;
1940 int err;
1941
1942 if (drro->drr_type == DMU_OT_NONE ||
1943 !DMU_OT_IS_VALID(drro->drr_type) ||
1944 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1945 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1946 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1947 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1948 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1949 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1950 drro->drr_bonuslen > DN_MAX_BONUSLEN) {
1951 return (SET_ERROR(EINVAL));
1952 }
1953
1954 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1955
1956 if (err != 0 && err != ENOENT)
1957 return (SET_ERROR(EINVAL));
1958 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
1959
1960 /*
1961 * If we are losing blkptrs or changing the block size this must
1962 * be a new file instance. We must clear out the previous file
1963 * contents before we can change this type of metadata in the dnode.
1964 */
1965 if (err == 0) {
1966 int nblkptr;
1967
1968 nblkptr = deduce_nblkptr(drro->drr_bonustype,
1969 drro->drr_bonuslen);
1970
1971 if (drro->drr_blksz != doi.doi_data_block_size ||
1972 nblkptr < doi.doi_nblkptr) {
1973 err = dmu_free_long_range(rwa->os, drro->drr_object,
1974 0, DMU_OBJECT_END);
1975 if (err != 0)
1976 return (SET_ERROR(EINVAL));
1977 }
1978 }
1979
1980 tx = dmu_tx_create(rwa->os);
1981 dmu_tx_hold_bonus(tx, object);
1982 err = dmu_tx_assign(tx, TXG_WAIT);
1983 if (err != 0) {
1984 dmu_tx_abort(tx);
1985 return (err);
1986 }
1987
1988 if (object == DMU_NEW_OBJECT) {
1989 /* currently free, want to be allocated */
1990 err = dmu_object_claim(rwa->os, drro->drr_object,
1991 drro->drr_type, drro->drr_blksz,
1992 drro->drr_bonustype, drro->drr_bonuslen, tx);
1993 } else if (drro->drr_type != doi.doi_type ||
1994 drro->drr_blksz != doi.doi_data_block_size ||
1995 drro->drr_bonustype != doi.doi_bonus_type ||
1996 drro->drr_bonuslen != doi.doi_bonus_size) {
1997 /* currently allocated, but with different properties */
1998 err = dmu_object_reclaim(rwa->os, drro->drr_object,
1999 drro->drr_type, drro->drr_blksz,
2000 drro->drr_bonustype, drro->drr_bonuslen, tx);
2001 }
2002 if (err != 0) {
2003 dmu_tx_commit(tx);
2004 return (SET_ERROR(EINVAL));
2005 }
2006
2007 dmu_object_set_checksum(rwa->os, drro->drr_object,
2008 drro->drr_checksumtype, tx);
2009 dmu_object_set_compress(rwa->os, drro->drr_object,
2010 drro->drr_compress, tx);
2011
2012 if (data != NULL) {
2013 dmu_buf_t *db;
2014
2015 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2016 dmu_buf_will_dirty(db, tx);
2017
2018 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2019 bcopy(data, db->db_data, drro->drr_bonuslen);
2020 if (rwa->byteswap) {
2021 dmu_object_byteswap_t byteswap =
2022 DMU_OT_BYTESWAP(drro->drr_bonustype);
2023 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2024 drro->drr_bonuslen);
2025 }
2026 dmu_buf_rele(db, FTAG);
2027 }
2028 dmu_tx_commit(tx);
2029
2030 return (0);
2031 }
2032
2033 /* ARGSUSED */
2034 static int
2035 receive_freeobjects(struct receive_writer_arg *rwa,
2036 struct drr_freeobjects *drrfo)
2037 {
2038 uint64_t obj;
2039 int next_err = 0;
2040
2041 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2042 return (SET_ERROR(EINVAL));
2043
2044 for (obj = drrfo->drr_firstobj;
2045 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2046 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2047 int err;
2048
2049 if (dmu_object_info(rwa->os, obj, NULL) != 0)
2050 continue;
2051
2052 err = dmu_free_long_object(rwa->os, obj);
2053 if (err != 0)
2054 return (err);
2055 }
2056 if (next_err != ESRCH)
2057 return (next_err);
2058 return (0);
2059 }
2060
2061 static int
2062 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2063 arc_buf_t *abuf)
2064 {
2065 dmu_tx_t *tx;
2066 int err;
2067
2068 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2069 !DMU_OT_IS_VALID(drrw->drr_type))
2070 return (SET_ERROR(EINVAL));
2071
2072 /*
2073 * For resuming to work, records must be in increasing order
2074 * by (object, offset).
2075 */
2076 if (drrw->drr_object < rwa->last_object ||
2077 (drrw->drr_object == rwa->last_object &&
2078 drrw->drr_offset < rwa->last_offset)) {
2079 return (SET_ERROR(EINVAL));
2080 }
2081 rwa->last_object = drrw->drr_object;
2082 rwa->last_offset = drrw->drr_offset;
2083
2084 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2085 return (SET_ERROR(EINVAL));
2086
2087 tx = dmu_tx_create(rwa->os);
2088
2089 dmu_tx_hold_write(tx, drrw->drr_object,
2090 drrw->drr_offset, drrw->drr_length);
2091 err = dmu_tx_assign(tx, TXG_WAIT);
2092 if (err != 0) {
2093 dmu_tx_abort(tx);
2094 return (err);
2095 }
2096 if (rwa->byteswap) {
2097 dmu_object_byteswap_t byteswap =
2098 DMU_OT_BYTESWAP(drrw->drr_type);
2099 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2100 drrw->drr_length);
2101 }
2102
2103 dmu_buf_t *bonus;
2104 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2105 return (SET_ERROR(EINVAL));
2106 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2107
2108 /*
2109 * Note: If the receive fails, we want the resume stream to start
2110 * with the same record that we last successfully received (as opposed
2111 * to the next record), so that we can verify that we are
2112 * resuming from the correct location.
2113 */
2114 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2115 dmu_tx_commit(tx);
2116 dmu_buf_rele(bonus, FTAG);
2117
2118 return (0);
2119 }
2120
2121 /*
2122 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
2123 * streams to refer to a copy of the data that is already on the
2124 * system because it came in earlier in the stream. This function
2125 * finds the earlier copy of the data, and uses that copy instead of
2126 * data from the stream to fulfill this write.
2127 */
2128 static int
2129 receive_write_byref(struct receive_writer_arg *rwa,
2130 struct drr_write_byref *drrwbr)
2131 {
2132 dmu_tx_t *tx;
2133 int err;
2134 guid_map_entry_t gmesrch;
2135 guid_map_entry_t *gmep;
2136 avl_index_t where;
2137 objset_t *ref_os = NULL;
2138 dmu_buf_t *dbp;
2139
2140 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2141 return (SET_ERROR(EINVAL));
2142
2143 /*
2144 * If the GUID of the referenced dataset is different from the
2145 * GUID of the target dataset, find the referenced dataset.
2146 */
2147 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2148 gmesrch.guid = drrwbr->drr_refguid;
2149 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2150 &where)) == NULL) {
2151 return (SET_ERROR(EINVAL));
2152 }
2153 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2154 return (SET_ERROR(EINVAL));
2155 } else {
2156 ref_os = rwa->os;
2157 }
2158
2159 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2160 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2161 if (err != 0)
2162 return (err);
2163
2164 tx = dmu_tx_create(rwa->os);
2165
2166 dmu_tx_hold_write(tx, drrwbr->drr_object,
2167 drrwbr->drr_offset, drrwbr->drr_length);
2168 err = dmu_tx_assign(tx, TXG_WAIT);
2169 if (err != 0) {
2170 dmu_tx_abort(tx);
2171 return (err);
2172 }
2173 dmu_write(rwa->os, drrwbr->drr_object,
2174 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2175 dmu_buf_rele(dbp, FTAG);
2176
2177 /* See comment in restore_write. */
2178 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2179 dmu_tx_commit(tx);
2180 return (0);
2181 }
2182
2183 static int
2184 receive_write_embedded(struct receive_writer_arg *rwa,
2185 struct drr_write_embedded *drrwe, void *data)
2186 {
2187 dmu_tx_t *tx;
2188 int err;
2189
2190 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2191 return (EINVAL);
2192
2193 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2194 return (EINVAL);
2195
2196 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2197 return (EINVAL);
2198 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2199 return (EINVAL);
2200
2201 tx = dmu_tx_create(rwa->os);
2202
2203 dmu_tx_hold_write(tx, drrwe->drr_object,
2204 drrwe->drr_offset, drrwe->drr_length);
2205 err = dmu_tx_assign(tx, TXG_WAIT);
2206 if (err != 0) {
2207 dmu_tx_abort(tx);
2208 return (err);
2209 }
2210
2211 dmu_write_embedded(rwa->os, drrwe->drr_object,
2212 drrwe->drr_offset, data, drrwe->drr_etype,
2213 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2214 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2215
2216 /* See comment in restore_write. */
2217 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2218 dmu_tx_commit(tx);
2219 return (0);
2220 }
2221
2222 static int
2223 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2224 void *data)
2225 {
2226 dmu_tx_t *tx;
2227 dmu_buf_t *db, *db_spill;
2228 int err;
2229
2230 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2231 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2232 return (SET_ERROR(EINVAL));
2233
2234 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2235 return (SET_ERROR(EINVAL));
2236
2237 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2238 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2239 dmu_buf_rele(db, FTAG);
2240 return (err);
2241 }
2242
2243 tx = dmu_tx_create(rwa->os);
2244
2245 dmu_tx_hold_spill(tx, db->db_object);
2246
2247 err = dmu_tx_assign(tx, TXG_WAIT);
2248 if (err != 0) {
2249 dmu_buf_rele(db, FTAG);
2250 dmu_buf_rele(db_spill, FTAG);
2251 dmu_tx_abort(tx);
2252 return (err);
2253 }
2254 dmu_buf_will_dirty(db_spill, tx);
2255
2256 if (db_spill->db_size < drrs->drr_length)
2257 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2258 drrs->drr_length, tx));
2259 bcopy(data, db_spill->db_data, drrs->drr_length);
2260
2261 dmu_buf_rele(db, FTAG);
2262 dmu_buf_rele(db_spill, FTAG);
2263
2264 dmu_tx_commit(tx);
2265 return (0);
2266 }
2267
2268 /* ARGSUSED */
2269 static int
2270 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2271 {
2272 int err;
2273
2274 if (drrf->drr_length != -1ULL &&
2275 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2276 return (SET_ERROR(EINVAL));
2277
2278 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2279 return (SET_ERROR(EINVAL));
2280
2281 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2282 drrf->drr_offset, drrf->drr_length);
2283
2284 return (err);
2285 }
2286
2287 /* used to destroy the drc_ds on error */
2288 static void
2289 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2290 {
2291 if (drc->drc_resumable) {
2292 /* wait for our resume state to be written to disk */
2293 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2294 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2295 } else {
2296 char name[MAXNAMELEN];
2297 dsl_dataset_name(drc->drc_ds, name);
2298 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2299 (void) dsl_destroy_head(name);
2300 }
2301 }
2302
2303 static void
2304 receive_cksum(struct receive_arg *ra, int len, void *buf)
2305 {
2306 if (ra->byteswap) {
2307 fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2308 } else {
2309 fletcher_4_incremental_native(buf, len, &ra->cksum);
2310 }
2311 }
2312
2313 /*
2314 * Read the payload into a buffer of size len, and update the current record's
2315 * payload field.
2316 * Allocate ra->next_rrd and read the next record's header into
2317 * ra->next_rrd->header.
2318 * Verify checksum of payload and next record.
2319 */
2320 static int
2321 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2322 {
2323 int err;
2324
2325 if (len != 0) {
2326 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2327 err = receive_read(ra, len, buf);
2328 if (err != 0)
2329 return (err);
2330 receive_cksum(ra, len, buf);
2331
2332 /* note: rrd is NULL when reading the begin record's payload */
2333 if (ra->rrd != NULL) {
2334 ra->rrd->payload = buf;
2335 ra->rrd->payload_size = len;
2336 ra->rrd->bytes_read = ra->bytes_read;
2337 }
2338 }
2339
2340 ra->prev_cksum = ra->cksum;
2341
2342 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2343 err = receive_read(ra, sizeof (ra->next_rrd->header),
2344 &ra->next_rrd->header);
2345 ra->next_rrd->bytes_read = ra->bytes_read;
2346 if (err != 0) {
2347 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2348 ra->next_rrd = NULL;
2349 return (err);
2350 }
2351 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2352 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2353 ra->next_rrd = NULL;
2354 return (SET_ERROR(EINVAL));
2355 }
2356
2357 /*
2358 * Note: checksum is of everything up to but not including the
2359 * checksum itself.
2360 */
2361 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2362 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2363 receive_cksum(ra,
2364 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2365 &ra->next_rrd->header);
2366
2367 zio_cksum_t cksum_orig =
2368 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2369 zio_cksum_t *cksump =
2370 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2371
2372 if (ra->byteswap)
2373 byteswap_record(&ra->next_rrd->header);
2374
2375 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2376 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2377 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2378 ra->next_rrd = NULL;
2379 return (SET_ERROR(ECKSUM));
2380 }
2381
2382 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2383
2384 return (0);
2385 }
2386
2387 static void
2388 objlist_create(struct objlist *list)
2389 {
2390 list_create(&list->list, sizeof (struct receive_objnode),
2391 offsetof(struct receive_objnode, node));
2392 list->last_lookup = 0;
2393 }
2394
2395 static void
2396 objlist_destroy(struct objlist *list)
2397 {
2398 for (struct receive_objnode *n = list_remove_head(&list->list);
2399 n != NULL; n = list_remove_head(&list->list)) {
2400 kmem_free(n, sizeof (*n));
2401 }
2402 list_destroy(&list->list);
2403 }
2404
2405 /*
2406 * This function looks through the objlist to see if the specified object number
2407 * is contained in the objlist. In the process, it will remove all object
2408 * numbers in the list that are smaller than the specified object number. Thus,
2409 * any lookup of an object number smaller than a previously looked up object
2410 * number will always return false; therefore, all lookups should be done in
2411 * ascending order.
2412 */
2413 static boolean_t
2414 objlist_exists(struct objlist *list, uint64_t object)
2415 {
2416 struct receive_objnode *node = list_head(&list->list);
2417 ASSERT3U(object, >=, list->last_lookup);
2418 list->last_lookup = object;
2419 while (node != NULL && node->object < object) {
2420 VERIFY3P(node, ==, list_remove_head(&list->list));
2421 kmem_free(node, sizeof (*node));
2422 node = list_head(&list->list);
2423 }
2424 return (node != NULL && node->object == object);
2425 }
2426
2427 /*
2428 * The objlist is a list of object numbers stored in ascending order. However,
2429 * the insertion of new object numbers does not seek out the correct location to
2430 * store a new object number; instead, it appends it to the list for simplicity.
2431 * Thus, any users must take care to only insert new object numbers in ascending
2432 * order.
2433 */
2434 static void
2435 objlist_insert(struct objlist *list, uint64_t object)
2436 {
2437 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2438 node->object = object;
2439 #ifdef ZFS_DEBUG
2440 struct receive_objnode *last_object = list_tail(&list->list);
2441 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2442 ASSERT3U(node->object, >, last_objnum);
2443 #endif
2444 list_insert_tail(&list->list, node);
2445 }
2446
2447 /*
2448 * Issue the prefetch reads for any necessary indirect blocks.
2449 *
2450 * We use the object ignore list to tell us whether or not to issue prefetches
2451 * for a given object. We do this for both correctness (in case the blocksize
2452 * of an object has changed) and performance (if the object doesn't exist, don't
2453 * needlessly try to issue prefetches). We also trim the list as we go through
2454 * the stream to prevent it from growing to an unbounded size.
2455 *
2456 * The object numbers within will always be in sorted order, and any write
2457 * records we see will also be in sorted order, but they're not sorted with
2458 * respect to each other (i.e. we can get several object records before
2459 * receiving each object's write records). As a result, once we've reached a
2460 * given object number, we can safely remove any reference to lower object
2461 * numbers in the ignore list. In practice, we receive up to 32 object records
2462 * before receiving write records, so the list can have up to 32 nodes in it.
2463 */
2464 /* ARGSUSED */
2465 static void
2466 receive_read_prefetch(struct receive_arg *ra,
2467 uint64_t object, uint64_t offset, uint64_t length)
2468 {
2469 if (!objlist_exists(&ra->ignore_objlist, object)) {
2470 dmu_prefetch(ra->os, object, 1, offset, length,
2471 ZIO_PRIORITY_SYNC_READ);
2472 }
2473 }
2474
2475 /*
2476 * Read records off the stream, issuing any necessary prefetches.
2477 */
2478 static int
2479 receive_read_record(struct receive_arg *ra)
2480 {
2481 int err;
2482
2483 switch (ra->rrd->header.drr_type) {
2484 case DRR_OBJECT:
2485 {
2486 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2487 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2488 void *buf = kmem_zalloc(size, KM_SLEEP);
2489 dmu_object_info_t doi;
2490 err = receive_read_payload_and_next_header(ra, size, buf);
2491 if (err != 0) {
2492 kmem_free(buf, size);
2493 return (err);
2494 }
2495 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2496 /*
2497 * See receive_read_prefetch for an explanation why we're
2498 * storing this object in the ignore_obj_list.
2499 */
2500 if (err == ENOENT ||
2501 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2502 objlist_insert(&ra->ignore_objlist, drro->drr_object);
2503 err = 0;
2504 }
2505 return (err);
2506 }
2507 case DRR_FREEOBJECTS:
2508 {
2509 err = receive_read_payload_and_next_header(ra, 0, NULL);
2510 return (err);
2511 }
2512 case DRR_WRITE:
2513 {
2514 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2515 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2516 drrw->drr_length);
2517
2518 err = receive_read_payload_and_next_header(ra,
2519 drrw->drr_length, abuf->b_data);
2520 if (err != 0) {
2521 dmu_return_arcbuf(abuf);
2522 return (err);
2523 }
2524 ra->rrd->write_buf = abuf;
2525 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2526 drrw->drr_length);
2527 return (err);
2528 }
2529 case DRR_WRITE_BYREF:
2530 {
2531 struct drr_write_byref *drrwb =
2532 &ra->rrd->header.drr_u.drr_write_byref;
2533 err = receive_read_payload_and_next_header(ra, 0, NULL);
2534 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2535 drrwb->drr_length);
2536 return (err);
2537 }
2538 case DRR_WRITE_EMBEDDED:
2539 {
2540 struct drr_write_embedded *drrwe =
2541 &ra->rrd->header.drr_u.drr_write_embedded;
2542 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2543 void *buf = kmem_zalloc(size, KM_SLEEP);
2544
2545 err = receive_read_payload_and_next_header(ra, size, buf);
2546 if (err != 0) {
2547 kmem_free(buf, size);
2548 return (err);
2549 }
2550
2551 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2552 drrwe->drr_length);
2553 return (err);
2554 }
2555 case DRR_FREE:
2556 {
2557 /*
2558 * It might be beneficial to prefetch indirect blocks here, but
2559 * we don't really have the data to decide for sure.
2560 */
2561 err = receive_read_payload_and_next_header(ra, 0, NULL);
2562 return (err);
2563 }
2564 case DRR_END:
2565 {
2566 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2567 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2568 return (SET_ERROR(ECKSUM));
2569 return (0);
2570 }
2571 case DRR_SPILL:
2572 {
2573 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2574 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2575 err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2576 buf);
2577 if (err != 0)
2578 kmem_free(buf, drrs->drr_length);
2579 return (err);
2580 }
2581 default:
2582 return (SET_ERROR(EINVAL));
2583 }
2584 }
2585
2586 /*
2587 * Commit the records to the pool.
2588 */
2589 static int
2590 receive_process_record(struct receive_writer_arg *rwa,
2591 struct receive_record_arg *rrd)
2592 {
2593 int err;
2594
2595 /* Processing in order, therefore bytes_read should be increasing. */
2596 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2597 rwa->bytes_read = rrd->bytes_read;
2598
2599 switch (rrd->header.drr_type) {
2600 case DRR_OBJECT:
2601 {
2602 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2603 err = receive_object(rwa, drro, rrd->payload);
2604 kmem_free(rrd->payload, rrd->payload_size);
2605 rrd->payload = NULL;
2606 return (err);
2607 }
2608 case DRR_FREEOBJECTS:
2609 {
2610 struct drr_freeobjects *drrfo =
2611 &rrd->header.drr_u.drr_freeobjects;
2612 return (receive_freeobjects(rwa, drrfo));
2613 }
2614 case DRR_WRITE:
2615 {
2616 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2617 err = receive_write(rwa, drrw, rrd->write_buf);
2618 /* if receive_write() is successful, it consumes the arc_buf */
2619 if (err != 0)
2620 dmu_return_arcbuf(rrd->write_buf);
2621 rrd->write_buf = NULL;
2622 rrd->payload = NULL;
2623 return (err);
2624 }
2625 case DRR_WRITE_BYREF:
2626 {
2627 struct drr_write_byref *drrwbr =
2628 &rrd->header.drr_u.drr_write_byref;
2629 return (receive_write_byref(rwa, drrwbr));
2630 }
2631 case DRR_WRITE_EMBEDDED:
2632 {
2633 struct drr_write_embedded *drrwe =
2634 &rrd->header.drr_u.drr_write_embedded;
2635 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2636 kmem_free(rrd->payload, rrd->payload_size);
2637 rrd->payload = NULL;
2638 return (err);
2639 }
2640 case DRR_FREE:
2641 {
2642 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2643 return (receive_free(rwa, drrf));
2644 }
2645 case DRR_SPILL:
2646 {
2647 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2648 err = receive_spill(rwa, drrs, rrd->payload);
2649 kmem_free(rrd->payload, rrd->payload_size);
2650 rrd->payload = NULL;
2651 return (err);
2652 }
2653 default:
2654 return (SET_ERROR(EINVAL));
2655 }
2656 }
2657
2658 /*
2659 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2660 * receive_process_record When we're done, signal the main thread and exit.
2661 */
2662 static void
2663 receive_writer_thread(void *arg)
2664 {
2665 struct receive_writer_arg *rwa = arg;
2666 struct receive_record_arg *rrd;
2667 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2668 rrd = bqueue_dequeue(&rwa->q)) {
2669 /*
2670 * If there's an error, the main thread will stop putting things
2671 * on the queue, but we need to clear everything in it before we
2672 * can exit.
2673 */
2674 if (rwa->err == 0) {
2675 rwa->err = receive_process_record(rwa, rrd);
2676 } else if (rrd->write_buf != NULL) {
2677 dmu_return_arcbuf(rrd->write_buf);
2678 rrd->write_buf = NULL;
2679 rrd->payload = NULL;
2680 } else if (rrd->payload != NULL) {
2681 kmem_free(rrd->payload, rrd->payload_size);
2682 rrd->payload = NULL;
2683 }
2684 kmem_free(rrd, sizeof (*rrd));
2685 }
2686 kmem_free(rrd, sizeof (*rrd));
2687 mutex_enter(&rwa->mutex);
2688 rwa->done = B_TRUE;
2689 cv_signal(&rwa->cv);
2690 mutex_exit(&rwa->mutex);
2691 }
2692
2693 static int
2694 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2695 {
2696 uint64_t val;
2697 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2698 uint64_t dsobj = dmu_objset_id(ra->os);
2699 uint64_t resume_obj, resume_off;
2700
2701 if (nvlist_lookup_uint64(begin_nvl,
2702 "resume_object", &resume_obj) != 0 ||
2703 nvlist_lookup_uint64(begin_nvl,
2704 "resume_offset", &resume_off) != 0) {
2705 return (SET_ERROR(EINVAL));
2706 }
2707 VERIFY0(zap_lookup(mos, dsobj,
2708 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2709 if (resume_obj != val)
2710 return (SET_ERROR(EINVAL));
2711 VERIFY0(zap_lookup(mos, dsobj,
2712 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2713 if (resume_off != val)
2714 return (SET_ERROR(EINVAL));
2715
2716 return (0);
2717 }
2718
2719 /*
2720 * Read in the stream's records, one by one, and apply them to the pool. There
2721 * are two threads involved; the thread that calls this function will spin up a
2722 * worker thread, read the records off the stream one by one, and issue
2723 * prefetches for any necessary indirect blocks. It will then push the records
2724 * onto an internal blocking queue. The worker thread will pull the records off
2725 * the queue, and actually write the data into the DMU. This way, the worker
2726 * thread doesn't have to wait for reads to complete, since everything it needs
2727 * (the indirect blocks) will be prefetched.
2728 *
2729 * NB: callers *must* call dmu_recv_end() if this succeeds.
2730 */
2731 int
2732 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2733 int cleanup_fd, uint64_t *action_handlep)
2734 {
2735 int err = 0;
2736 struct receive_arg ra = { 0 };
2737 struct receive_writer_arg rwa = { 0 };
2738 int featureflags;
2739 nvlist_t *begin_nvl = NULL;
2740
2741 ra.byteswap = drc->drc_byteswap;
2742 ra.cksum = drc->drc_cksum;
2743 ra.vp = vp;
2744 ra.voff = *voffp;
2745
2746 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2747 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2748 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2749 sizeof (ra.bytes_read), 1, &ra.bytes_read);
2750 }
2751
2752 objlist_create(&ra.ignore_objlist);
2753
2754 /* these were verified in dmu_recv_begin */
2755 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2756 DMU_SUBSTREAM);
2757 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2758
2759 /*
2760 * Open the objset we are modifying.
2761 */
2762 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2763
2764 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2765
2766 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2767
2768 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2769 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2770 minor_t minor;
2771
2772 if (cleanup_fd == -1) {
2773 ra.err = SET_ERROR(EBADF);
2774 goto out;
2775 }
2776 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2777 if (ra.err != 0) {
2778 cleanup_fd = -1;
2779 goto out;
2780 }
2781
2782 if (*action_handlep == 0) {
2783 rwa.guid_to_ds_map =
2784 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2785 avl_create(rwa.guid_to_ds_map, guid_compare,
2786 sizeof (guid_map_entry_t),
2787 offsetof(guid_map_entry_t, avlnode));
2788 err = zfs_onexit_add_cb(minor,
2789 free_guid_map_onexit, rwa.guid_to_ds_map,
2790 action_handlep);
2791 if (ra.err != 0)
2792 goto out;
2793 } else {
2794 err = zfs_onexit_cb_data(minor, *action_handlep,
2795 (void **)&rwa.guid_to_ds_map);
2796 if (ra.err != 0)
2797 goto out;
2798 }
2799
2800 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2801 }
2802
2803 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2804 void *payload = NULL;
2805 if (payloadlen != 0)
2806 payload = kmem_alloc(payloadlen, KM_SLEEP);
2807
2808 err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2809 if (err != 0) {
2810 if (payloadlen != 0)
2811 kmem_free(payload, payloadlen);
2812 goto out;
2813 }
2814 if (payloadlen != 0) {
2815 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2816 kmem_free(payload, payloadlen);
2817 if (err != 0)
2818 goto out;
2819 }
2820
2821 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2822 err = resume_check(&ra, begin_nvl);
2823 if (err != 0)
2824 goto out;
2825 }
2826
2827 (void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2828 offsetof(struct receive_record_arg, node));
2829 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2830 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2831 rwa.os = ra.os;
2832 rwa.byteswap = drc->drc_byteswap;
2833 rwa.resumable = drc->drc_resumable;
2834
2835 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2836 TS_RUN, minclsyspri);
2837 /*
2838 * We're reading rwa.err without locks, which is safe since we are the
2839 * only reader, and the worker thread is the only writer. It's ok if we
2840 * miss a write for an iteration or two of the loop, since the writer
2841 * thread will keep freeing records we send it until we send it an eos
2842 * marker.
2843 *
2844 * We can leave this loop in 3 ways: First, if rwa.err is
2845 * non-zero. In that case, the writer thread will free the rrd we just
2846 * pushed. Second, if we're interrupted; in that case, either it's the
2847 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2848 * has been handed off to the writer thread who will free it. Finally,
2849 * if receive_read_record fails or we're at the end of the stream, then
2850 * we free ra.rrd and exit.
2851 */
2852 while (rwa.err == 0) {
2853 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2854 err = SET_ERROR(EINTR);
2855 break;
2856 }
2857
2858 ASSERT3P(ra.rrd, ==, NULL);
2859 ra.rrd = ra.next_rrd;
2860 ra.next_rrd = NULL;
2861 /* Allocates and loads header into ra.next_rrd */
2862 err = receive_read_record(&ra);
2863
2864 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2865 kmem_free(ra.rrd, sizeof (*ra.rrd));
2866 ra.rrd = NULL;
2867 break;
2868 }
2869
2870 bqueue_enqueue(&rwa.q, ra.rrd,
2871 sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2872 ra.rrd = NULL;
2873 }
2874 if (ra.next_rrd == NULL)
2875 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2876 ra.next_rrd->eos_marker = B_TRUE;
2877 bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2878
2879 mutex_enter(&rwa.mutex);
2880 while (!rwa.done) {
2881 cv_wait(&rwa.cv, &rwa.mutex);
2882 }
2883 mutex_exit(&rwa.mutex);
2884
2885 cv_destroy(&rwa.cv);
2886 mutex_destroy(&rwa.mutex);
2887 bqueue_destroy(&rwa.q);
2888 if (err == 0)
2889 err = rwa.err;
2890
2891 out:
2892 nvlist_free(begin_nvl);
2893 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2894 zfs_onexit_fd_rele(cleanup_fd);
2895
2896 if (err != 0) {
2897 /*
2898 * Clean up references. If receive is not resumable,
2899 * destroy what we created, so we don't leave it in
2900 * the inconsistent state.
2901 */
2902 dmu_recv_cleanup_ds(drc);
2903 }
2904
2905 *voffp = ra.voff;
2906 objlist_destroy(&ra.ignore_objlist);
2907 return (err);
2908 }
2909
2910 static int
2911 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2912 {
2913 dmu_recv_cookie_t *drc = arg;
2914 dsl_pool_t *dp = dmu_tx_pool(tx);
2915 int error;
2916
2917 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2918
2919 if (!drc->drc_newfs) {
2920 dsl_dataset_t *origin_head;
2921
2922 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2923 if (error != 0)
2924 return (error);
2925 if (drc->drc_force) {
2926 /*
2927 * We will destroy any snapshots in tofs (i.e. before
2928 * origin_head) that are after the origin (which is
2929 * the snap before drc_ds, because drc_ds can not
2930 * have any snaps of its own).
2931 */
2932 uint64_t obj;
2933
2934 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2935 while (obj !=
2936 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2937 dsl_dataset_t *snap;
2938 error = dsl_dataset_hold_obj(dp, obj, FTAG,
2939 &snap);
2940 if (error != 0)
2941 break;
2942 if (snap->ds_dir != origin_head->ds_dir)
2943 error = SET_ERROR(EINVAL);
2944 if (error == 0) {
2945 error = dsl_destroy_snapshot_check_impl(
2946 snap, B_FALSE);
2947 }
2948 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2949 dsl_dataset_rele(snap, FTAG);
2950 if (error != 0)
2951 break;
2952 }
2953 if (error != 0) {
2954 dsl_dataset_rele(origin_head, FTAG);
2955 return (error);
2956 }
2957 }
2958 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2959 origin_head, drc->drc_force, drc->drc_owner, tx);
2960 if (error != 0) {
2961 dsl_dataset_rele(origin_head, FTAG);
2962 return (error);
2963 }
2964 error = dsl_dataset_snapshot_check_impl(origin_head,
2965 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2966 dsl_dataset_rele(origin_head, FTAG);
2967 if (error != 0)
2968 return (error);
2969
2970 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2971 } else {
2972 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2973 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2974 }
2975 return (error);
2976 }
2977
2978 static void
2979 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2980 {
2981 dmu_recv_cookie_t *drc = arg;
2982 dsl_pool_t *dp = dmu_tx_pool(tx);
2983
2984 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2985 tx, "snap=%s", drc->drc_tosnap);
2986
2987 if (!drc->drc_newfs) {
2988 dsl_dataset_t *origin_head;
2989
2990 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2991 &origin_head));
2992
2993 if (drc->drc_force) {
2994 /*
2995 * Destroy any snapshots of drc_tofs (origin_head)
2996 * after the origin (the snap before drc_ds).
2997 */
2998 uint64_t obj;
2999
3000 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
3001 while (obj !=
3002 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
3003 dsl_dataset_t *snap;
3004 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
3005 &snap));
3006 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
3007 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
3008 dsl_destroy_snapshot_sync_impl(snap,
3009 B_FALSE, tx);
3010 dsl_dataset_rele(snap, FTAG);
3011 }
3012 }
3013 VERIFY3P(drc->drc_ds->ds_prev, ==,
3014 origin_head->ds_prev);
3015
3016 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3017 origin_head, tx);
3018 dsl_dataset_snapshot_sync_impl(origin_head,
3019 drc->drc_tosnap, tx);
3020
3021 /* set snapshot's creation time and guid */
3022 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3023 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3024 drc->drc_drrb->drr_creation_time;
3025 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3026 drc->drc_drrb->drr_toguid;
3027 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3028 ~DS_FLAG_INCONSISTENT;
3029
3030 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3031 dsl_dataset_phys(origin_head)->ds_flags &=
3032 ~DS_FLAG_INCONSISTENT;
3033
3034 dsl_dataset_rele(origin_head, FTAG);
3035 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3036
3037 if (drc->drc_owner != NULL)
3038 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3039 } else {
3040 dsl_dataset_t *ds = drc->drc_ds;
3041
3042 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3043
3044 /* set snapshot's creation time and guid */
3045 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3046 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3047 drc->drc_drrb->drr_creation_time;
3048 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3049 drc->drc_drrb->drr_toguid;
3050 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3051 ~DS_FLAG_INCONSISTENT;
3052
3053 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3054 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3055 if (dsl_dataset_has_resume_receive_state(ds)) {
3056 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3057 DS_FIELD_RESUME_FROMGUID, tx);
3058 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3059 DS_FIELD_RESUME_OBJECT, tx);
3060 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3061 DS_FIELD_RESUME_OFFSET, tx);
3062 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3063 DS_FIELD_RESUME_BYTES, tx);
3064 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3065 DS_FIELD_RESUME_TOGUID, tx);
3066 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3067 DS_FIELD_RESUME_TONAME, tx);
3068 }
3069 }
3070 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3071 /*
3072 * Release the hold from dmu_recv_begin. This must be done before
3073 * we return to open context, so that when we free the dataset's dnode,
3074 * we can evict its bonus buffer.
3075 */
3076 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3077 drc->drc_ds = NULL;
3078 }
3079
3080 static int
3081 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3082 {
3083 dsl_pool_t *dp;
3084 dsl_dataset_t *snapds;
3085 guid_map_entry_t *gmep;
3086 int err;
3087
3088 ASSERT(guid_map != NULL);
3089
3090 err = dsl_pool_hold(name, FTAG, &dp);
3091 if (err != 0)
3092 return (err);
3093 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3094 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3095 if (err == 0) {
3096 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3097 gmep->gme_ds = snapds;
3098 avl_add(guid_map, gmep);
3099 dsl_dataset_long_hold(snapds, gmep);
3100 } else {
3101 kmem_free(gmep, sizeof (*gmep));
3102 }
3103
3104 dsl_pool_rele(dp, FTAG);
3105 return (err);
3106 }
3107
3108 static int dmu_recv_end_modified_blocks = 3;
3109
3110 static int
3111 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3112 {
3113 int error;
3114 char name[MAXNAMELEN];
3115
3116 #ifdef _KERNEL
3117 /*
3118 * We will be destroying the ds; make sure its origin is unmounted if
3119 * necessary.
3120 */
3121 dsl_dataset_name(drc->drc_ds, name);
3122 zfs_destroy_unmount_origin(name);
3123 #endif
3124
3125 error = dsl_sync_task(drc->drc_tofs,
3126 dmu_recv_end_check, dmu_recv_end_sync, drc,
3127 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3128
3129 if (error != 0)
3130 dmu_recv_cleanup_ds(drc);
3131 return (error);
3132 }
3133
3134 static int
3135 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3136 {
3137 int error;
3138
3139 error = dsl_sync_task(drc->drc_tofs,
3140 dmu_recv_end_check, dmu_recv_end_sync, drc,
3141 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3142
3143 if (error != 0) {
3144 dmu_recv_cleanup_ds(drc);
3145 } else if (drc->drc_guid_to_ds_map != NULL) {
3146 (void) add_ds_to_guidmap(drc->drc_tofs,
3147 drc->drc_guid_to_ds_map,
3148 drc->drc_newsnapobj);
3149 }
3150 return (error);
3151 }
3152
3153 int
3154 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3155 {
3156 drc->drc_owner = owner;
3157
3158 if (drc->drc_newfs)
3159 return (dmu_recv_new_end(drc));
3160 else
3161 return (dmu_recv_existing_end(drc));
3162 }
3163
3164 /*
3165 * Return TRUE if this objset is currently being received into.
3166 */
3167 boolean_t
3168 dmu_objset_is_receiving(objset_t *os)
3169 {
3170 return (os->os_dsl_dataset != NULL &&
3171 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3172 }