1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 * Copyright 2017 RackTop Systems. 28 */ 29 30 /* 31 * Routines to manage ZFS mounts. We separate all the nasty routines that have 32 * to deal with the OS. The following functions are the main entry points -- 33 * they are used by mount and unmount and when changing a filesystem's 34 * mountpoint. 35 * 36 * zfs_is_mounted() 37 * zfs_mount() 38 * zfs_unmount() 39 * zfs_unmountall() 40 * 41 * This file also contains the functions used to manage sharing filesystems via 42 * NFS and iSCSI: 43 * 44 * zfs_is_shared() 45 * zfs_share() 46 * zfs_unshare() 47 * 48 * zfs_is_shared_nfs() 49 * zfs_is_shared_smb() 50 * zfs_share_proto() 51 * zfs_shareall(); 52 * zfs_unshare_nfs() 53 * zfs_unshare_smb() 54 * zfs_unshareall_nfs() 55 * zfs_unshareall_smb() 56 * zfs_unshareall() 57 * zfs_unshareall_bypath() 58 * 59 * The following functions are available for pool consumers, and will 60 * mount/unmount and share/unshare all datasets within pool: 61 * 62 * zpool_enable_datasets() 63 * zpool_disable_datasets() 64 */ 65 66 #include <dirent.h> 67 #include <dlfcn.h> 68 #include <errno.h> 69 #include <fcntl.h> 70 #include <libgen.h> 71 #include <libintl.h> 72 #include <stdio.h> 73 #include <stdlib.h> 74 #include <strings.h> 75 #include <unistd.h> 76 #include <zone.h> 77 #include <sys/mntent.h> 78 #include <sys/mount.h> 79 #include <sys/stat.h> 80 #include <sys/statvfs.h> 81 82 #include <libzfs.h> 83 84 #include "libzfs_impl.h" 85 86 #include <libshare.h> 87 #include <sys/systeminfo.h> 88 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 89 90 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *); 91 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 92 zfs_share_proto_t); 93 94 /* 95 * The share protocols table must be in the same order as the zfs_share_proto_t 96 * enum in libzfs_impl.h 97 */ 98 typedef struct { 99 zfs_prop_t p_prop; 100 char *p_name; 101 int p_share_err; 102 int p_unshare_err; 103 } proto_table_t; 104 105 proto_table_t proto_table[PROTO_END] = { 106 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 107 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 108 }; 109 110 zfs_share_proto_t nfs_only[] = { 111 PROTO_NFS, 112 PROTO_END 113 }; 114 115 zfs_share_proto_t smb_only[] = { 116 PROTO_SMB, 117 PROTO_END 118 }; 119 zfs_share_proto_t share_all_proto[] = { 120 PROTO_NFS, 121 PROTO_SMB, 122 PROTO_END 123 }; 124 125 /* 126 * Search the sharetab for the given mountpoint and protocol, returning 127 * a zfs_share_type_t value. 128 */ 129 static zfs_share_type_t 130 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto) 131 { 132 char buf[MAXPATHLEN], *tab; 133 char *ptr; 134 135 if (hdl->libzfs_sharetab == NULL) 136 return (SHARED_NOT_SHARED); 137 138 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET); 139 140 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) { 141 142 /* the mountpoint is the first entry on each line */ 143 if ((tab = strchr(buf, '\t')) == NULL) 144 continue; 145 146 *tab = '\0'; 147 if (strcmp(buf, mountpoint) == 0) { 148 /* 149 * the protocol field is the third field 150 * skip over second field 151 */ 152 ptr = ++tab; 153 if ((tab = strchr(ptr, '\t')) == NULL) 154 continue; 155 ptr = ++tab; 156 if ((tab = strchr(ptr, '\t')) == NULL) 157 continue; 158 *tab = '\0'; 159 if (strcmp(ptr, 160 proto_table[proto].p_name) == 0) { 161 switch (proto) { 162 case PROTO_NFS: 163 return (SHARED_NFS); 164 case PROTO_SMB: 165 return (SHARED_SMB); 166 default: 167 return (0); 168 } 169 } 170 } 171 } 172 173 return (SHARED_NOT_SHARED); 174 } 175 176 static boolean_t 177 dir_is_empty_stat(const char *dirname) 178 { 179 struct stat st; 180 181 /* 182 * We only want to return false if the given path is a non empty 183 * directory, all other errors are handled elsewhere. 184 */ 185 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 186 return (B_TRUE); 187 } 188 189 /* 190 * An empty directory will still have two entries in it, one 191 * entry for each of "." and "..". 192 */ 193 if (st.st_size > 2) { 194 return (B_FALSE); 195 } 196 197 return (B_TRUE); 198 } 199 200 static boolean_t 201 dir_is_empty_readdir(const char *dirname) 202 { 203 DIR *dirp; 204 struct dirent64 *dp; 205 int dirfd; 206 207 if ((dirfd = openat(AT_FDCWD, dirname, 208 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 209 return (B_TRUE); 210 } 211 212 if ((dirp = fdopendir(dirfd)) == NULL) { 213 return (B_TRUE); 214 } 215 216 while ((dp = readdir64(dirp)) != NULL) { 217 218 if (strcmp(dp->d_name, ".") == 0 || 219 strcmp(dp->d_name, "..") == 0) 220 continue; 221 222 (void) closedir(dirp); 223 return (B_FALSE); 224 } 225 226 (void) closedir(dirp); 227 return (B_TRUE); 228 } 229 230 /* 231 * Returns true if the specified directory is empty. If we can't open the 232 * directory at all, return true so that the mount can fail with a more 233 * informative error message. 234 */ 235 static boolean_t 236 dir_is_empty(const char *dirname) 237 { 238 struct statvfs64 st; 239 240 /* 241 * If the statvfs call fails or the filesystem is not a ZFS 242 * filesystem, fall back to the slow path which uses readdir. 243 */ 244 if ((statvfs64(dirname, &st) != 0) || 245 (strcmp(st.f_basetype, "zfs") != 0)) { 246 return (dir_is_empty_readdir(dirname)); 247 } 248 249 /* 250 * At this point, we know the provided path is on a ZFS 251 * filesystem, so we can use stat instead of readdir to 252 * determine if the directory is empty or not. We try to avoid 253 * using readdir because that requires opening "dirname"; this 254 * open file descriptor can potentially end up in a child 255 * process if there's a concurrent fork, thus preventing the 256 * zfs_mount() from otherwise succeeding (the open file 257 * descriptor inherited by the child process will cause the 258 * parent's mount to fail with EBUSY). The performance 259 * implications of replacing the open, read, and close with a 260 * single stat is nice; but is not the main motivation for the 261 * added complexity. 262 */ 263 return (dir_is_empty_stat(dirname)); 264 } 265 266 /* 267 * Checks to see if the mount is active. If the filesystem is mounted, we fill 268 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 269 * 0. 270 */ 271 boolean_t 272 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 273 { 274 struct mnttab entry; 275 276 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 277 return (B_FALSE); 278 279 if (where != NULL) 280 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 281 282 return (B_TRUE); 283 } 284 285 boolean_t 286 zfs_is_mounted(zfs_handle_t *zhp, char **where) 287 { 288 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 289 } 290 291 /* 292 * Returns true if the given dataset is mountable, false otherwise. Returns the 293 * mountpoint in 'buf'. 294 */ 295 static boolean_t 296 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 297 zprop_source_t *source) 298 { 299 char sourceloc[MAXNAMELEN]; 300 zprop_source_t sourcetype; 301 302 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type)) 303 return (B_FALSE); 304 305 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 306 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 307 308 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 309 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 310 return (B_FALSE); 311 312 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 313 return (B_FALSE); 314 315 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 316 getzoneid() == GLOBAL_ZONEID) 317 return (B_FALSE); 318 319 if (source) 320 *source = sourcetype; 321 322 return (B_TRUE); 323 } 324 325 /* 326 * Mount the given filesystem. 327 */ 328 int 329 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 330 { 331 struct stat buf; 332 char mountpoint[ZFS_MAXPROPLEN]; 333 char mntopts[MNT_LINE_MAX]; 334 libzfs_handle_t *hdl = zhp->zfs_hdl; 335 336 if (options == NULL) 337 mntopts[0] = '\0'; 338 else 339 (void) strlcpy(mntopts, options, sizeof (mntopts)); 340 341 /* 342 * If the pool is imported read-only then all mounts must be read-only 343 */ 344 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 345 flags |= MS_RDONLY; 346 347 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 348 return (0); 349 350 /* Create the directory if it doesn't already exist */ 351 if (lstat(mountpoint, &buf) != 0) { 352 if (mkdirp(mountpoint, 0755) != 0) { 353 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 354 "failed to create mountpoint")); 355 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 356 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 357 mountpoint)); 358 } 359 } 360 361 /* 362 * Determine if the mountpoint is empty. If so, refuse to perform the 363 * mount. We don't perform this check if MS_OVERLAY is specified, which 364 * would defeat the point. We also avoid this check if 'remount' is 365 * specified. 366 */ 367 if ((flags & MS_OVERLAY) == 0 && 368 strstr(mntopts, MNTOPT_REMOUNT) == NULL && 369 !dir_is_empty(mountpoint)) { 370 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 371 "directory is not empty")); 372 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 373 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 374 } 375 376 /* perform the mount */ 377 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags, 378 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { 379 /* 380 * Generic errors are nasty, but there are just way too many 381 * from mount(), and they're well-understood. We pick a few 382 * common ones to improve upon. 383 */ 384 if (errno == EBUSY) { 385 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 386 "mountpoint or dataset is busy")); 387 } else if (errno == EPERM) { 388 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 389 "Insufficient privileges")); 390 } else if (errno == ENOTSUP) { 391 char buf[256]; 392 int spa_version; 393 394 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 395 (void) snprintf(buf, sizeof (buf), 396 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 397 "file system on a version %d pool. Pool must be" 398 " upgraded to mount this file system."), 399 (u_longlong_t)zfs_prop_get_int(zhp, 400 ZFS_PROP_VERSION), spa_version); 401 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 402 } else { 403 zfs_error_aux(hdl, strerror(errno)); 404 } 405 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 406 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 407 zhp->zfs_name)); 408 } 409 410 /* add the mounted entry into our cache */ 411 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, 412 mntopts); 413 return (0); 414 } 415 416 /* 417 * Unmount a single filesystem. 418 */ 419 static int 420 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 421 { 422 if (umount2(mountpoint, flags) != 0) { 423 zfs_error_aux(hdl, strerror(errno)); 424 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 425 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 426 mountpoint)); 427 } 428 429 return (0); 430 } 431 432 /* 433 * Unmount the given filesystem. 434 */ 435 int 436 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 437 { 438 libzfs_handle_t *hdl = zhp->zfs_hdl; 439 struct mnttab entry; 440 char *mntpt = NULL; 441 442 /* check to see if we need to unmount the filesystem */ 443 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 444 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 445 /* 446 * mountpoint may have come from a call to 447 * getmnt/getmntany if it isn't NULL. If it is NULL, 448 * we know it comes from libzfs_mnttab_find which can 449 * then get freed later. We strdup it to play it safe. 450 */ 451 if (mountpoint == NULL) 452 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 453 else 454 mntpt = zfs_strdup(hdl, mountpoint); 455 456 /* 457 * Unshare and unmount the filesystem 458 */ 459 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) 460 return (-1); 461 462 if (unmount_one(hdl, mntpt, flags) != 0) { 463 free(mntpt); 464 (void) zfs_shareall(zhp); 465 return (-1); 466 } 467 libzfs_mnttab_remove(hdl, zhp->zfs_name); 468 free(mntpt); 469 } 470 471 return (0); 472 } 473 474 /* 475 * Unmount this filesystem and any children inheriting the mountpoint property. 476 * To do this, just act like we're changing the mountpoint property, but don't 477 * remount the filesystems afterwards. 478 */ 479 int 480 zfs_unmountall(zfs_handle_t *zhp, int flags) 481 { 482 prop_changelist_t *clp; 483 int ret; 484 485 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags); 486 if (clp == NULL) 487 return (-1); 488 489 ret = changelist_prefix(clp); 490 changelist_free(clp); 491 492 return (ret); 493 } 494 495 boolean_t 496 zfs_is_shared(zfs_handle_t *zhp) 497 { 498 zfs_share_type_t rc = 0; 499 zfs_share_proto_t *curr_proto; 500 501 if (ZFS_IS_VOLUME(zhp)) 502 return (B_FALSE); 503 504 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 505 curr_proto++) 506 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 507 508 return (rc ? B_TRUE : B_FALSE); 509 } 510 511 int 512 zfs_share(zfs_handle_t *zhp) 513 { 514 assert(!ZFS_IS_VOLUME(zhp)); 515 return (zfs_share_proto(zhp, share_all_proto)); 516 } 517 518 int 519 zfs_unshare(zfs_handle_t *zhp) 520 { 521 assert(!ZFS_IS_VOLUME(zhp)); 522 return (zfs_unshareall(zhp)); 523 } 524 525 /* 526 * Check to see if the filesystem is currently shared. 527 */ 528 zfs_share_type_t 529 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 530 { 531 char *mountpoint; 532 zfs_share_type_t rc; 533 534 if (!zfs_is_mounted(zhp, &mountpoint)) 535 return (SHARED_NOT_SHARED); 536 537 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto)) 538 != SHARED_NOT_SHARED) { 539 if (where != NULL) 540 *where = mountpoint; 541 else 542 free(mountpoint); 543 return (rc); 544 } else { 545 free(mountpoint); 546 return (SHARED_NOT_SHARED); 547 } 548 } 549 550 boolean_t 551 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 552 { 553 return (zfs_is_shared_proto(zhp, where, 554 PROTO_NFS) != SHARED_NOT_SHARED); 555 } 556 557 boolean_t 558 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 559 { 560 return (zfs_is_shared_proto(zhp, where, 561 PROTO_SMB) != SHARED_NOT_SHARED); 562 } 563 564 /* 565 * Make sure things will work if libshare isn't installed by using 566 * wrapper functions that check to see that the pointers to functions 567 * initialized in _zfs_init_libshare() are actually present. 568 */ 569 570 static sa_handle_t (*_sa_init)(int); 571 static sa_handle_t (*_sa_init_arg)(int, void *); 572 static void (*_sa_fini)(sa_handle_t); 573 static sa_share_t (*_sa_find_share)(sa_handle_t, char *); 574 static int (*_sa_enable_share)(sa_share_t, char *); 575 static int (*_sa_disable_share)(sa_share_t, char *); 576 static char *(*_sa_errorstr)(int); 577 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *); 578 static boolean_t (*_sa_needs_refresh)(sa_handle_t *); 579 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t); 580 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t, 581 char *, char *, zprop_source_t, char *, char *, char *); 582 static void (*_sa_update_sharetab_ts)(sa_handle_t); 583 584 /* 585 * _zfs_init_libshare() 586 * 587 * Find the libshare.so.1 entry points that we use here and save the 588 * values to be used later. This is triggered by the runtime loader. 589 * Make sure the correct ISA version is loaded. 590 */ 591 592 #pragma init(_zfs_init_libshare) 593 static void 594 _zfs_init_libshare(void) 595 { 596 void *libshare; 597 char path[MAXPATHLEN]; 598 char isa[MAXISALEN]; 599 600 #if defined(_LP64) 601 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1) 602 isa[0] = '\0'; 603 #else 604 isa[0] = '\0'; 605 #endif 606 (void) snprintf(path, MAXPATHLEN, 607 "/usr/lib/%s/libshare.so.1", isa); 608 609 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) { 610 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init"); 611 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare, 612 "sa_init_arg"); 613 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini"); 614 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *)) 615 dlsym(libshare, "sa_find_share"); 616 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 617 "sa_enable_share"); 618 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 619 "sa_disable_share"); 620 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr"); 621 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *)) 622 dlsym(libshare, "sa_parse_legacy_options"); 623 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *)) 624 dlsym(libshare, "sa_needs_refresh"); 625 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t)) 626 dlsym(libshare, "sa_get_zfs_handle"); 627 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t, 628 sa_share_t, char *, char *, zprop_source_t, char *, 629 char *, char *))dlsym(libshare, "sa_zfs_process_share"); 630 _sa_update_sharetab_ts = (void (*)(sa_handle_t)) 631 dlsym(libshare, "sa_update_sharetab_ts"); 632 if (_sa_init == NULL || _sa_init_arg == NULL || 633 _sa_fini == NULL || _sa_find_share == NULL || 634 _sa_enable_share == NULL || _sa_disable_share == NULL || 635 _sa_errorstr == NULL || _sa_parse_legacy_options == NULL || 636 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL || 637 _sa_zfs_process_share == NULL || 638 _sa_update_sharetab_ts == NULL) { 639 _sa_init = NULL; 640 _sa_init_arg = NULL; 641 _sa_fini = NULL; 642 _sa_disable_share = NULL; 643 _sa_enable_share = NULL; 644 _sa_errorstr = NULL; 645 _sa_parse_legacy_options = NULL; 646 (void) dlclose(libshare); 647 _sa_needs_refresh = NULL; 648 _sa_get_zfs_handle = NULL; 649 _sa_zfs_process_share = NULL; 650 _sa_update_sharetab_ts = NULL; 651 } 652 } 653 } 654 655 /* 656 * zfs_init_libshare(zhandle, service) 657 * 658 * Initialize the libshare API if it hasn't already been initialized. 659 * In all cases it returns 0 if it succeeded and an error if not. The 660 * service value is which part(s) of the API to initialize and is a 661 * direct map to the libshare sa_init(service) interface. 662 */ 663 static int 664 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg) 665 { 666 if (_sa_init == NULL) 667 return (SA_CONFIG_ERR); 668 669 /* 670 * Attempt to refresh libshare. This is necessary if there was a cache 671 * miss for a new ZFS dataset that was just created, or if state of the 672 * sharetab file has changed since libshare was last initialized. We 673 * want to make sure so check timestamps to see if a different process 674 * has updated any of the configuration. If there was some non-ZFS 675 * change, we need to re-initialize the internal cache. 676 */ 677 if (_sa_needs_refresh != NULL && 678 _sa_needs_refresh(zhandle->libzfs_sharehdl)) { 679 zfs_uninit_libshare(zhandle); 680 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 681 } 682 683 if (zhandle && zhandle->libzfs_sharehdl == NULL) 684 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 685 686 if (zhandle->libzfs_sharehdl == NULL) 687 return (SA_NO_MEMORY); 688 689 return (SA_OK); 690 } 691 int 692 zfs_init_libshare(libzfs_handle_t *zhandle, int service) 693 { 694 return (zfs_init_libshare_impl(zhandle, service, NULL)); 695 } 696 697 int 698 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg) 699 { 700 return (zfs_init_libshare_impl(zhandle, service, arg)); 701 } 702 703 704 /* 705 * zfs_uninit_libshare(zhandle) 706 * 707 * Uninitialize the libshare API if it hasn't already been 708 * uninitialized. It is OK to call multiple times. 709 */ 710 void 711 zfs_uninit_libshare(libzfs_handle_t *zhandle) 712 { 713 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) { 714 if (_sa_fini != NULL) 715 _sa_fini(zhandle->libzfs_sharehdl); 716 zhandle->libzfs_sharehdl = NULL; 717 } 718 } 719 720 /* 721 * zfs_parse_options(options, proto) 722 * 723 * Call the legacy parse interface to get the protocol specific 724 * options using the NULL arg to indicate that this is a "parse" only. 725 */ 726 int 727 zfs_parse_options(char *options, zfs_share_proto_t proto) 728 { 729 if (_sa_parse_legacy_options != NULL) { 730 return (_sa_parse_legacy_options(NULL, options, 731 proto_table[proto].p_name)); 732 } 733 return (SA_CONFIG_ERR); 734 } 735 736 /* 737 * zfs_sa_find_share(handle, path) 738 * 739 * wrapper around sa_find_share to find a share path in the 740 * configuration. 741 */ 742 static sa_share_t 743 zfs_sa_find_share(sa_handle_t handle, char *path) 744 { 745 if (_sa_find_share != NULL) 746 return (_sa_find_share(handle, path)); 747 return (NULL); 748 } 749 750 /* 751 * zfs_sa_enable_share(share, proto) 752 * 753 * Wrapper for sa_enable_share which enables a share for a specified 754 * protocol. 755 */ 756 static int 757 zfs_sa_enable_share(sa_share_t share, char *proto) 758 { 759 if (_sa_enable_share != NULL) 760 return (_sa_enable_share(share, proto)); 761 return (SA_CONFIG_ERR); 762 } 763 764 /* 765 * zfs_sa_disable_share(share, proto) 766 * 767 * Wrapper for sa_enable_share which disables a share for a specified 768 * protocol. 769 */ 770 static int 771 zfs_sa_disable_share(sa_share_t share, char *proto) 772 { 773 if (_sa_disable_share != NULL) 774 return (_sa_disable_share(share, proto)); 775 return (SA_CONFIG_ERR); 776 } 777 778 /* 779 * Share the given filesystem according to the options in the specified 780 * protocol specific properties (sharenfs, sharesmb). We rely 781 * on "libshare" to the dirty work for us. 782 */ 783 static int 784 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 785 { 786 char mountpoint[ZFS_MAXPROPLEN]; 787 char shareopts[ZFS_MAXPROPLEN]; 788 char sourcestr[ZFS_MAXPROPLEN]; 789 libzfs_handle_t *hdl = zhp->zfs_hdl; 790 sa_share_t share; 791 zfs_share_proto_t *curr_proto; 792 zprop_source_t sourcetype; 793 int ret; 794 795 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 796 return (0); 797 798 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 799 /* 800 * Return success if there are no share options. 801 */ 802 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 803 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 804 ZFS_MAXPROPLEN, B_FALSE) != 0 || 805 strcmp(shareopts, "off") == 0) 806 continue; 807 ret = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_HANDLE, 808 zhp); 809 if (ret != SA_OK) { 810 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED, 811 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"), 812 zfs_get_name(zhp), _sa_errorstr != NULL ? 813 _sa_errorstr(ret) : ""); 814 return (-1); 815 } 816 817 /* 818 * If the 'zoned' property is set, then zfs_is_mountable() 819 * will have already bailed out if we are in the global zone. 820 * But local zones cannot be NFS servers, so we ignore it for 821 * local zones as well. 822 */ 823 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 824 continue; 825 826 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint); 827 if (share == NULL) { 828 /* 829 * This may be a new file system that was just 830 * created so isn't in the internal cache 831 * (second time through). Rather than 832 * reloading the entire configuration, we can 833 * assume ZFS has done the checking and it is 834 * safe to add this to the internal 835 * configuration. 836 */ 837 if (_sa_zfs_process_share(hdl->libzfs_sharehdl, 838 NULL, NULL, mountpoint, 839 proto_table[*curr_proto].p_name, sourcetype, 840 shareopts, sourcestr, zhp->zfs_name) != SA_OK) { 841 (void) zfs_error_fmt(hdl, 842 proto_table[*curr_proto].p_share_err, 843 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 844 zfs_get_name(zhp)); 845 return (-1); 846 } 847 share = zfs_sa_find_share(hdl->libzfs_sharehdl, 848 mountpoint); 849 } 850 if (share != NULL) { 851 int err; 852 err = zfs_sa_enable_share(share, 853 proto_table[*curr_proto].p_name); 854 if (err != SA_OK) { 855 (void) zfs_error_fmt(hdl, 856 proto_table[*curr_proto].p_share_err, 857 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 858 zfs_get_name(zhp)); 859 return (-1); 860 } 861 } else { 862 (void) zfs_error_fmt(hdl, 863 proto_table[*curr_proto].p_share_err, 864 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 865 zfs_get_name(zhp)); 866 return (-1); 867 } 868 869 } 870 return (0); 871 } 872 873 874 int 875 zfs_share_nfs(zfs_handle_t *zhp) 876 { 877 return (zfs_share_proto(zhp, nfs_only)); 878 } 879 880 int 881 zfs_share_smb(zfs_handle_t *zhp) 882 { 883 return (zfs_share_proto(zhp, smb_only)); 884 } 885 886 int 887 zfs_shareall(zfs_handle_t *zhp) 888 { 889 return (zfs_share_proto(zhp, share_all_proto)); 890 } 891 892 /* 893 * Unshare a filesystem by mountpoint. 894 */ 895 static int 896 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 897 zfs_share_proto_t proto) 898 { 899 sa_share_t share; 900 int err; 901 char *mntpt; 902 903 /* 904 * Mountpoint could get trashed if libshare calls getmntany 905 * which it does during API initialization, so strdup the 906 * value. 907 */ 908 mntpt = zfs_strdup(hdl, mountpoint); 909 910 /* 911 * make sure libshare initialized, initialize everything because we 912 * don't know what other unsharing may happen later. Functions up the 913 * stack are allowed to initialize instead a subset of shares at the 914 * time the set is known. 915 */ 916 if ((err = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_NAME, 917 (void *)name)) != SA_OK) { 918 free(mntpt); /* don't need the copy anymore */ 919 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 920 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 921 name, _sa_errorstr(err))); 922 } 923 924 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt); 925 free(mntpt); /* don't need the copy anymore */ 926 927 if (share != NULL) { 928 err = zfs_sa_disable_share(share, proto_table[proto].p_name); 929 if (err != SA_OK) { 930 return (zfs_error_fmt(hdl, 931 proto_table[proto].p_unshare_err, 932 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 933 name, _sa_errorstr(err))); 934 } 935 } else { 936 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 937 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"), 938 name)); 939 } 940 return (0); 941 } 942 943 /* 944 * Unshare the given filesystem. 945 */ 946 int 947 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 948 zfs_share_proto_t *proto) 949 { 950 libzfs_handle_t *hdl = zhp->zfs_hdl; 951 struct mnttab entry; 952 char *mntpt = NULL; 953 954 /* check to see if need to unmount the filesystem */ 955 rewind(zhp->zfs_hdl->libzfs_mnttab); 956 if (mountpoint != NULL) 957 mountpoint = mntpt = zfs_strdup(hdl, mountpoint); 958 959 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 960 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 961 zfs_share_proto_t *curr_proto; 962 963 if (mountpoint == NULL) 964 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 965 966 for (curr_proto = proto; *curr_proto != PROTO_END; 967 curr_proto++) { 968 969 if (is_shared(hdl, mntpt, *curr_proto) && 970 unshare_one(hdl, zhp->zfs_name, 971 mntpt, *curr_proto) != 0) { 972 if (mntpt != NULL) 973 free(mntpt); 974 return (-1); 975 } 976 } 977 } 978 if (mntpt != NULL) 979 free(mntpt); 980 981 return (0); 982 } 983 984 int 985 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 986 { 987 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 988 } 989 990 int 991 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 992 { 993 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 994 } 995 996 /* 997 * Same as zfs_unmountall(), but for NFS and SMB unshares. 998 */ 999 int 1000 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 1001 { 1002 prop_changelist_t *clp; 1003 int ret; 1004 1005 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 1006 if (clp == NULL) 1007 return (-1); 1008 1009 ret = changelist_unshare(clp, proto); 1010 changelist_free(clp); 1011 1012 return (ret); 1013 } 1014 1015 int 1016 zfs_unshareall_nfs(zfs_handle_t *zhp) 1017 { 1018 return (zfs_unshareall_proto(zhp, nfs_only)); 1019 } 1020 1021 int 1022 zfs_unshareall_smb(zfs_handle_t *zhp) 1023 { 1024 return (zfs_unshareall_proto(zhp, smb_only)); 1025 } 1026 1027 int 1028 zfs_unshareall(zfs_handle_t *zhp) 1029 { 1030 return (zfs_unshareall_proto(zhp, share_all_proto)); 1031 } 1032 1033 int 1034 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1035 { 1036 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1037 } 1038 1039 /* 1040 * Remove the mountpoint associated with the current dataset, if necessary. 1041 * We only remove the underlying directory if: 1042 * 1043 * - The mountpoint is not 'none' or 'legacy' 1044 * - The mountpoint is non-empty 1045 * - The mountpoint is the default or inherited 1046 * - The 'zoned' property is set, or we're in a local zone 1047 * 1048 * Any other directories we leave alone. 1049 */ 1050 void 1051 remove_mountpoint(zfs_handle_t *zhp) 1052 { 1053 char mountpoint[ZFS_MAXPROPLEN]; 1054 zprop_source_t source; 1055 1056 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1057 &source)) 1058 return; 1059 1060 if (source == ZPROP_SRC_DEFAULT || 1061 source == ZPROP_SRC_INHERITED) { 1062 /* 1063 * Try to remove the directory, silently ignoring any errors. 1064 * The filesystem may have since been removed or moved around, 1065 * and this error isn't really useful to the administrator in 1066 * any way. 1067 */ 1068 (void) rmdir(mountpoint); 1069 } 1070 } 1071 1072 void 1073 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1074 { 1075 if (cbp->cb_alloc == cbp->cb_used) { 1076 size_t newsz; 1077 void *ptr; 1078 1079 newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64; 1080 ptr = zfs_realloc(zhp->zfs_hdl, 1081 cbp->cb_handles, cbp->cb_alloc * sizeof (void *), 1082 newsz * sizeof (void *)); 1083 cbp->cb_handles = ptr; 1084 cbp->cb_alloc = newsz; 1085 } 1086 cbp->cb_handles[cbp->cb_used++] = zhp; 1087 } 1088 1089 static int 1090 mount_cb(zfs_handle_t *zhp, void *data) 1091 { 1092 get_all_cb_t *cbp = data; 1093 1094 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1095 zfs_close(zhp); 1096 return (0); 1097 } 1098 1099 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1100 zfs_close(zhp); 1101 return (0); 1102 } 1103 1104 /* 1105 * If this filesystem is inconsistent and has a receive resume 1106 * token, we can not mount it. 1107 */ 1108 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1109 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1110 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1111 zfs_close(zhp); 1112 return (0); 1113 } 1114 1115 libzfs_add_handle(cbp, zhp); 1116 if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) { 1117 zfs_close(zhp); 1118 return (-1); 1119 } 1120 return (0); 1121 } 1122 1123 int 1124 libzfs_dataset_cmp(const void *a, const void *b) 1125 { 1126 zfs_handle_t **za = (zfs_handle_t **)a; 1127 zfs_handle_t **zb = (zfs_handle_t **)b; 1128 char mounta[MAXPATHLEN]; 1129 char mountb[MAXPATHLEN]; 1130 boolean_t gota, gotb; 1131 1132 if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0) 1133 verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta, 1134 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1135 if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0) 1136 verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb, 1137 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1138 1139 if (gota && gotb) 1140 return (strcmp(mounta, mountb)); 1141 1142 if (gota) 1143 return (-1); 1144 if (gotb) 1145 return (1); 1146 1147 return (strcmp(zfs_get_name(a), zfs_get_name(b))); 1148 } 1149 1150 /* 1151 * Mount and share all datasets within the given pool. This assumes that no 1152 * datasets within the pool are currently mounted. Because users can create 1153 * complicated nested hierarchies of mountpoints, we first gather all the 1154 * datasets and mountpoints within the pool, and sort them by mountpoint. Once 1155 * we have the list of all filesystems, we iterate over them in order and mount 1156 * and/or share each one. 1157 */ 1158 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1159 int 1160 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1161 { 1162 get_all_cb_t cb = { 0 }; 1163 libzfs_handle_t *hdl = zhp->zpool_hdl; 1164 zfs_handle_t *zfsp; 1165 int i, ret = -1; 1166 int *good; 1167 1168 /* 1169 * Gather all non-snap datasets within the pool. 1170 */ 1171 if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL) 1172 goto out; 1173 1174 libzfs_add_handle(&cb, zfsp); 1175 if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0) 1176 goto out; 1177 /* 1178 * Sort the datasets by mountpoint. 1179 */ 1180 qsort(cb.cb_handles, cb.cb_used, sizeof (void *), 1181 libzfs_dataset_cmp); 1182 1183 /* 1184 * And mount all the datasets, keeping track of which ones 1185 * succeeded or failed. 1186 */ 1187 if ((good = zfs_alloc(zhp->zpool_hdl, 1188 cb.cb_used * sizeof (int))) == NULL) 1189 goto out; 1190 1191 ret = 0; 1192 for (i = 0; i < cb.cb_used; i++) { 1193 if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0) 1194 ret = -1; 1195 else 1196 good[i] = 1; 1197 } 1198 1199 /* 1200 * Then share all the ones that need to be shared. This needs 1201 * to be a separate pass in order to avoid excessive reloading 1202 * of the configuration. Good should never be NULL since 1203 * zfs_alloc is supposed to exit if memory isn't available. 1204 */ 1205 for (i = 0; i < cb.cb_used; i++) { 1206 if (good[i] && zfs_share(cb.cb_handles[i]) != 0) 1207 ret = -1; 1208 } 1209 1210 free(good); 1211 1212 out: 1213 for (i = 0; i < cb.cb_used; i++) 1214 zfs_close(cb.cb_handles[i]); 1215 free(cb.cb_handles); 1216 1217 return (ret); 1218 } 1219 1220 static int 1221 mountpoint_compare(const void *a, const void *b) 1222 { 1223 const char *mounta = *((char **)a); 1224 const char *mountb = *((char **)b); 1225 1226 return (strcmp(mountb, mounta)); 1227 } 1228 1229 /* alias for 2002/240 */ 1230 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1231 /* 1232 * Unshare and unmount all datasets within the given pool. We don't want to 1233 * rely on traversing the DSL to discover the filesystems within the pool, 1234 * because this may be expensive (if not all of them are mounted), and can fail 1235 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and 1236 * gather all the filesystems that are currently mounted. 1237 */ 1238 int 1239 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1240 { 1241 int used, alloc; 1242 struct mnttab entry; 1243 size_t namelen; 1244 char **mountpoints = NULL; 1245 zfs_handle_t **datasets = NULL; 1246 libzfs_handle_t *hdl = zhp->zpool_hdl; 1247 int i; 1248 int ret = -1; 1249 int flags = (force ? MS_FORCE : 0); 1250 sa_init_selective_arg_t sharearg; 1251 1252 namelen = strlen(zhp->zpool_name); 1253 1254 rewind(hdl->libzfs_mnttab); 1255 used = alloc = 0; 1256 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1257 /* 1258 * Ignore non-ZFS entries. 1259 */ 1260 if (entry.mnt_fstype == NULL || 1261 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1262 continue; 1263 1264 /* 1265 * Ignore filesystems not within this pool. 1266 */ 1267 if (entry.mnt_mountp == NULL || 1268 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1269 (entry.mnt_special[namelen] != '/' && 1270 entry.mnt_special[namelen] != '\0')) 1271 continue; 1272 1273 /* 1274 * At this point we've found a filesystem within our pool. Add 1275 * it to our growing list. 1276 */ 1277 if (used == alloc) { 1278 if (alloc == 0) { 1279 if ((mountpoints = zfs_alloc(hdl, 1280 8 * sizeof (void *))) == NULL) 1281 goto out; 1282 1283 if ((datasets = zfs_alloc(hdl, 1284 8 * sizeof (void *))) == NULL) 1285 goto out; 1286 1287 alloc = 8; 1288 } else { 1289 void *ptr; 1290 1291 if ((ptr = zfs_realloc(hdl, mountpoints, 1292 alloc * sizeof (void *), 1293 alloc * 2 * sizeof (void *))) == NULL) 1294 goto out; 1295 mountpoints = ptr; 1296 1297 if ((ptr = zfs_realloc(hdl, datasets, 1298 alloc * sizeof (void *), 1299 alloc * 2 * sizeof (void *))) == NULL) 1300 goto out; 1301 datasets = ptr; 1302 1303 alloc *= 2; 1304 } 1305 } 1306 1307 if ((mountpoints[used] = zfs_strdup(hdl, 1308 entry.mnt_mountp)) == NULL) 1309 goto out; 1310 1311 /* 1312 * This is allowed to fail, in case there is some I/O error. It 1313 * is only used to determine if we need to remove the underlying 1314 * mountpoint, so failure is not fatal. 1315 */ 1316 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1317 1318 used++; 1319 } 1320 1321 /* 1322 * At this point, we have the entire list of filesystems, so sort it by 1323 * mountpoint. 1324 */ 1325 sharearg.zhandle_arr = datasets; 1326 sharearg.zhandle_len = used; 1327 ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE, 1328 &sharearg); 1329 if (ret != 0) 1330 goto out; 1331 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1332 1333 /* 1334 * Walk through and first unshare everything. 1335 */ 1336 for (i = 0; i < used; i++) { 1337 zfs_share_proto_t *curr_proto; 1338 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1339 curr_proto++) { 1340 if (is_shared(hdl, mountpoints[i], *curr_proto) && 1341 unshare_one(hdl, mountpoints[i], 1342 mountpoints[i], *curr_proto) != 0) 1343 goto out; 1344 } 1345 } 1346 1347 /* 1348 * Now unmount everything, removing the underlying directories as 1349 * appropriate. 1350 */ 1351 for (i = 0; i < used; i++) { 1352 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1353 goto out; 1354 } 1355 1356 for (i = 0; i < used; i++) { 1357 if (datasets[i]) 1358 remove_mountpoint(datasets[i]); 1359 } 1360 1361 ret = 0; 1362 out: 1363 for (i = 0; i < used; i++) { 1364 if (datasets[i]) 1365 zfs_close(datasets[i]); 1366 free(mountpoints[i]); 1367 } 1368 free(datasets); 1369 free(mountpoints); 1370 1371 return (ret); 1372 }