1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2016 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 */ 28 29 /* 30 * Routines to manage ZFS mounts. We separate all the nasty routines that have 31 * to deal with the OS. The following functions are the main entry points -- 32 * they are used by mount and unmount and when changing a filesystem's 33 * mountpoint. 34 * 35 * zfs_is_mounted() 36 * zfs_mount() 37 * zfs_unmount() 38 * zfs_unmountall() 39 * 40 * This file also contains the functions used to manage sharing filesystems via 41 * NFS and iSCSI: 42 * 43 * zfs_is_shared() 44 * zfs_share() 45 * zfs_unshare() 46 * 47 * zfs_is_shared_nfs() 48 * zfs_is_shared_smb() 49 * zfs_share_proto() 50 * zfs_shareall(); 51 * zfs_unshare_nfs() 52 * zfs_unshare_smb() 53 * zfs_unshareall_nfs() 54 * zfs_unshareall_smb() 55 * zfs_unshareall() 56 * zfs_unshareall_bypath() 57 * 58 * The following functions are available for pool consumers, and will 59 * mount/unmount and share/unshare all datasets within pool: 60 * 61 * zpool_enable_datasets() 62 * zpool_disable_datasets() 63 */ 64 65 #include <dirent.h> 66 #include <dlfcn.h> 67 #include <errno.h> 68 #include <fcntl.h> 69 #include <libgen.h> 70 #include <libintl.h> 71 #include <stdio.h> 72 #include <stdlib.h> 73 #include <strings.h> 74 #include <unistd.h> 75 #include <zone.h> 76 #include <sys/mntent.h> 77 #include <sys/mount.h> 78 #include <sys/stat.h> 79 #include <sys/statvfs.h> 80 81 #include <libzfs.h> 82 83 #include "libzfs_impl.h" 84 85 #include <libshare.h> 86 #include <sys/systeminfo.h> 87 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 88 89 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *); 90 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 91 zfs_share_proto_t); 92 93 /* 94 * The share protocols table must be in the same order as the zfs_share_prot_t 95 * enum in libzfs_impl.h 96 */ 97 typedef struct { 98 zfs_prop_t p_prop; 99 char *p_name; 100 int p_share_err; 101 int p_unshare_err; 102 } proto_table_t; 103 104 proto_table_t proto_table[PROTO_END] = { 105 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 106 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 107 }; 108 109 zfs_share_proto_t nfs_only[] = { 110 PROTO_NFS, 111 PROTO_END 112 }; 113 114 zfs_share_proto_t smb_only[] = { 115 PROTO_SMB, 116 PROTO_END 117 }; 118 zfs_share_proto_t share_all_proto[] = { 119 PROTO_NFS, 120 PROTO_SMB, 121 PROTO_END 122 }; 123 124 /* 125 * Search the sharetab for the given mountpoint and protocol, returning 126 * a zfs_share_type_t value. 127 */ 128 static zfs_share_type_t 129 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto) 130 { 131 char buf[MAXPATHLEN], *tab; 132 char *ptr; 133 134 if (hdl->libzfs_sharetab == NULL) 135 return (SHARED_NOT_SHARED); 136 137 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET); 138 139 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) { 140 141 /* the mountpoint is the first entry on each line */ 142 if ((tab = strchr(buf, '\t')) == NULL) 143 continue; 144 145 *tab = '\0'; 146 if (strcmp(buf, mountpoint) == 0) { 147 /* 148 * the protocol field is the third field 149 * skip over second field 150 */ 151 ptr = ++tab; 152 if ((tab = strchr(ptr, '\t')) == NULL) 153 continue; 154 ptr = ++tab; 155 if ((tab = strchr(ptr, '\t')) == NULL) 156 continue; 157 *tab = '\0'; 158 if (strcmp(ptr, 159 proto_table[proto].p_name) == 0) { 160 switch (proto) { 161 case PROTO_NFS: 162 return (SHARED_NFS); 163 case PROTO_SMB: 164 return (SHARED_SMB); 165 default: 166 return (0); 167 } 168 } 169 } 170 } 171 172 return (SHARED_NOT_SHARED); 173 } 174 175 static boolean_t 176 dir_is_empty_stat(const char *dirname) 177 { 178 struct stat st; 179 180 /* 181 * We only want to return false if the given path is a non empty 182 * directory, all other errors are handled elsewhere. 183 */ 184 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 185 return (B_TRUE); 186 } 187 188 /* 189 * An empty directory will still have two entries in it, one 190 * entry for each of "." and "..". 191 */ 192 if (st.st_size > 2) { 193 return (B_FALSE); 194 } 195 196 return (B_TRUE); 197 } 198 199 static boolean_t 200 dir_is_empty_readdir(const char *dirname) 201 { 202 DIR *dirp; 203 struct dirent64 *dp; 204 int dirfd; 205 206 if ((dirfd = openat(AT_FDCWD, dirname, 207 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 208 return (B_TRUE); 209 } 210 211 if ((dirp = fdopendir(dirfd)) == NULL) { 212 return (B_TRUE); 213 } 214 215 while ((dp = readdir64(dirp)) != NULL) { 216 217 if (strcmp(dp->d_name, ".") == 0 || 218 strcmp(dp->d_name, "..") == 0) 219 continue; 220 221 (void) closedir(dirp); 222 return (B_FALSE); 223 } 224 225 (void) closedir(dirp); 226 return (B_TRUE); 227 } 228 229 /* 230 * Returns true if the specified directory is empty. If we can't open the 231 * directory at all, return true so that the mount can fail with a more 232 * informative error message. 233 */ 234 static boolean_t 235 dir_is_empty(const char *dirname) 236 { 237 struct statvfs64 st; 238 239 /* 240 * If the statvfs call fails or the filesystem is not a ZFS 241 * filesystem, fall back to the slow path which uses readdir. 242 */ 243 if ((statvfs64(dirname, &st) != 0) || 244 (strcmp(st.f_basetype, "zfs") != 0)) { 245 return (dir_is_empty_readdir(dirname)); 246 } 247 248 /* 249 * At this point, we know the provided path is on a ZFS 250 * filesystem, so we can use stat instead of readdir to 251 * determine if the directory is empty or not. We try to avoid 252 * using readdir because that requires opening "dirname"; this 253 * open file descriptor can potentially end up in a child 254 * process if there's a concurrent fork, thus preventing the 255 * zfs_mount() from otherwise succeeding (the open file 256 * descriptor inherited by the child process will cause the 257 * parent's mount to fail with EBUSY). The performance 258 * implications of replacing the open, read, and close with a 259 * single stat is nice; but is not the main motivation for the 260 * added complexity. 261 */ 262 return (dir_is_empty_stat(dirname)); 263 } 264 265 /* 266 * Checks to see if the mount is active. If the filesystem is mounted, we fill 267 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 268 * 0. 269 */ 270 boolean_t 271 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 272 { 273 struct mnttab entry; 274 275 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 276 return (B_FALSE); 277 278 if (where != NULL) 279 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 280 281 return (B_TRUE); 282 } 283 284 boolean_t 285 zfs_is_mounted(zfs_handle_t *zhp, char **where) 286 { 287 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 288 } 289 290 /* 291 * Returns true if the given dataset is mountable, false otherwise. Returns the 292 * mountpoint in 'buf'. 293 */ 294 static boolean_t 295 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 296 zprop_source_t *source) 297 { 298 char sourceloc[MAXNAMELEN]; 299 zprop_source_t sourcetype; 300 301 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type)) 302 return (B_FALSE); 303 304 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 305 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 306 307 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 308 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 309 return (B_FALSE); 310 311 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 312 return (B_FALSE); 313 314 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 315 getzoneid() == GLOBAL_ZONEID) 316 return (B_FALSE); 317 318 if (source) 319 *source = sourcetype; 320 321 return (B_TRUE); 322 } 323 324 /* 325 * Mount the given filesystem. 326 */ 327 int 328 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 329 { 330 struct stat buf; 331 char mountpoint[ZFS_MAXPROPLEN]; 332 char mntopts[MNT_LINE_MAX]; 333 libzfs_handle_t *hdl = zhp->zfs_hdl; 334 335 if (options == NULL) 336 mntopts[0] = '\0'; 337 else 338 (void) strlcpy(mntopts, options, sizeof (mntopts)); 339 340 /* 341 * If the pool is imported read-only then all mounts must be read-only 342 */ 343 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 344 flags |= MS_RDONLY; 345 346 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 347 return (0); 348 349 /* Create the directory if it doesn't already exist */ 350 if (lstat(mountpoint, &buf) != 0) { 351 if (mkdirp(mountpoint, 0755) != 0) { 352 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 353 "failed to create mountpoint")); 354 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 355 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 356 mountpoint)); 357 } 358 } 359 360 /* 361 * Determine if the mountpoint is empty. If so, refuse to perform the 362 * mount. We don't perform this check if MS_OVERLAY is specified, which 363 * would defeat the point. We also avoid this check if 'remount' is 364 * specified. 365 */ 366 if ((flags & MS_OVERLAY) == 0 && 367 strstr(mntopts, MNTOPT_REMOUNT) == NULL && 368 !dir_is_empty(mountpoint)) { 369 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 370 "directory is not empty")); 371 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 372 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 373 } 374 375 /* perform the mount */ 376 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags, 377 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { 378 /* 379 * Generic errors are nasty, but there are just way too many 380 * from mount(), and they're well-understood. We pick a few 381 * common ones to improve upon. 382 */ 383 if (errno == EBUSY) { 384 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 385 "mountpoint or dataset is busy")); 386 } else if (errno == EPERM) { 387 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 388 "Insufficient privileges")); 389 } else if (errno == ENOTSUP) { 390 char buf[256]; 391 int spa_version; 392 393 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 394 (void) snprintf(buf, sizeof (buf), 395 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 396 "file system on a version %d pool. Pool must be" 397 " upgraded to mount this file system."), 398 (u_longlong_t)zfs_prop_get_int(zhp, 399 ZFS_PROP_VERSION), spa_version); 400 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 401 } else { 402 zfs_error_aux(hdl, strerror(errno)); 403 } 404 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 405 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 406 zhp->zfs_name)); 407 } 408 409 /* add the mounted entry into our cache */ 410 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, 411 mntopts); 412 return (0); 413 } 414 415 /* 416 * Unmount a single filesystem. 417 */ 418 static int 419 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 420 { 421 if (umount2(mountpoint, flags) != 0) { 422 zfs_error_aux(hdl, strerror(errno)); 423 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 424 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 425 mountpoint)); 426 } 427 428 return (0); 429 } 430 431 /* 432 * Unmount the given filesystem. 433 */ 434 int 435 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 436 { 437 libzfs_handle_t *hdl = zhp->zfs_hdl; 438 struct mnttab entry; 439 char *mntpt = NULL; 440 441 /* check to see if we need to unmount the filesystem */ 442 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 443 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 444 /* 445 * mountpoint may have come from a call to 446 * getmnt/getmntany if it isn't NULL. If it is NULL, 447 * we know it comes from libzfs_mnttab_find which can 448 * then get freed later. We strdup it to play it safe. 449 */ 450 if (mountpoint == NULL) 451 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 452 else 453 mntpt = zfs_strdup(hdl, mountpoint); 454 455 /* 456 * Unshare and unmount the filesystem 457 */ 458 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) 459 return (-1); 460 461 if (unmount_one(hdl, mntpt, flags) != 0) { 462 free(mntpt); 463 (void) zfs_shareall(zhp); 464 return (-1); 465 } 466 libzfs_mnttab_remove(hdl, zhp->zfs_name); 467 free(mntpt); 468 } 469 470 return (0); 471 } 472 473 /* 474 * Unmount this filesystem and any children inheriting the mountpoint property. 475 * To do this, just act like we're changing the mountpoint property, but don't 476 * remount the filesystems afterwards. 477 */ 478 int 479 zfs_unmountall(zfs_handle_t *zhp, int flags) 480 { 481 prop_changelist_t *clp; 482 int ret; 483 484 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags); 485 if (clp == NULL) 486 return (-1); 487 488 ret = changelist_prefix(clp); 489 changelist_free(clp); 490 491 return (ret); 492 } 493 494 boolean_t 495 zfs_is_shared(zfs_handle_t *zhp) 496 { 497 zfs_share_type_t rc = 0; 498 zfs_share_proto_t *curr_proto; 499 500 if (ZFS_IS_VOLUME(zhp)) 501 return (B_FALSE); 502 503 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 504 curr_proto++) 505 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 506 507 return (rc ? B_TRUE : B_FALSE); 508 } 509 510 int 511 zfs_share(zfs_handle_t *zhp) 512 { 513 assert(!ZFS_IS_VOLUME(zhp)); 514 return (zfs_share_proto(zhp, share_all_proto)); 515 } 516 517 int 518 zfs_unshare(zfs_handle_t *zhp) 519 { 520 assert(!ZFS_IS_VOLUME(zhp)); 521 return (zfs_unshareall(zhp)); 522 } 523 524 /* 525 * Check to see if the filesystem is currently shared. 526 */ 527 zfs_share_type_t 528 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 529 { 530 char *mountpoint; 531 zfs_share_type_t rc; 532 533 if (!zfs_is_mounted(zhp, &mountpoint)) 534 return (SHARED_NOT_SHARED); 535 536 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto)) 537 != SHARED_NOT_SHARED) { 538 if (where != NULL) 539 *where = mountpoint; 540 else 541 free(mountpoint); 542 return (rc); 543 } else { 544 free(mountpoint); 545 return (SHARED_NOT_SHARED); 546 } 547 } 548 549 boolean_t 550 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 551 { 552 return (zfs_is_shared_proto(zhp, where, 553 PROTO_NFS) != SHARED_NOT_SHARED); 554 } 555 556 boolean_t 557 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 558 { 559 return (zfs_is_shared_proto(zhp, where, 560 PROTO_SMB) != SHARED_NOT_SHARED); 561 } 562 563 /* 564 * Make sure things will work if libshare isn't installed by using 565 * wrapper functions that check to see that the pointers to functions 566 * initialized in _zfs_init_libshare() are actually present. 567 */ 568 569 static sa_handle_t (*_sa_init)(int); 570 static sa_handle_t (*_sa_init_arg)(int, void *); 571 static void (*_sa_fini)(sa_handle_t); 572 static sa_share_t (*_sa_find_share)(sa_handle_t, char *); 573 static int (*_sa_enable_share)(sa_share_t, char *); 574 static int (*_sa_disable_share)(sa_share_t, char *); 575 static char *(*_sa_errorstr)(int); 576 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *); 577 static boolean_t (*_sa_needs_refresh)(sa_handle_t *); 578 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t); 579 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t, 580 char *, char *, zprop_source_t, char *, char *, char *); 581 static void (*_sa_update_sharetab_ts)(sa_handle_t); 582 583 /* 584 * _zfs_init_libshare() 585 * 586 * Find the libshare.so.1 entry points that we use here and save the 587 * values to be used later. This is triggered by the runtime loader. 588 * Make sure the correct ISA version is loaded. 589 */ 590 591 #pragma init(_zfs_init_libshare) 592 static void 593 _zfs_init_libshare(void) 594 { 595 void *libshare; 596 char path[MAXPATHLEN]; 597 char isa[MAXISALEN]; 598 599 #if defined(_LP64) 600 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1) 601 isa[0] = '\0'; 602 #else 603 isa[0] = '\0'; 604 #endif 605 (void) snprintf(path, MAXPATHLEN, 606 "/usr/lib/%s/libshare.so.1", isa); 607 608 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) { 609 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init"); 610 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare, 611 "sa_init_arg"); 612 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini"); 613 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *)) 614 dlsym(libshare, "sa_find_share"); 615 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 616 "sa_enable_share"); 617 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 618 "sa_disable_share"); 619 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr"); 620 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *)) 621 dlsym(libshare, "sa_parse_legacy_options"); 622 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *)) 623 dlsym(libshare, "sa_needs_refresh"); 624 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t)) 625 dlsym(libshare, "sa_get_zfs_handle"); 626 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t, 627 sa_share_t, char *, char *, zprop_source_t, char *, 628 char *, char *))dlsym(libshare, "sa_zfs_process_share"); 629 _sa_update_sharetab_ts = (void (*)(sa_handle_t)) 630 dlsym(libshare, "sa_update_sharetab_ts"); 631 if (_sa_init == NULL || _sa_init_arg == NULL || 632 _sa_fini == NULL || _sa_find_share == NULL || 633 _sa_enable_share == NULL || _sa_disable_share == NULL || 634 _sa_errorstr == NULL || _sa_parse_legacy_options == NULL || 635 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL || 636 _sa_zfs_process_share == NULL || 637 _sa_update_sharetab_ts == NULL) { 638 _sa_init = NULL; 639 _sa_init_arg = NULL; 640 _sa_fini = NULL; 641 _sa_disable_share = NULL; 642 _sa_enable_share = NULL; 643 _sa_errorstr = NULL; 644 _sa_parse_legacy_options = NULL; 645 (void) dlclose(libshare); 646 _sa_needs_refresh = NULL; 647 _sa_get_zfs_handle = NULL; 648 _sa_zfs_process_share = NULL; 649 _sa_update_sharetab_ts = NULL; 650 } 651 } 652 } 653 654 /* 655 * zfs_init_libshare(zhandle, service) 656 * 657 * Initialize the libshare API if it hasn't already been initialized. 658 * In all cases it returns 0 if it succeeded and an error if not. The 659 * service value is which part(s) of the API to initialize and is a 660 * direct map to the libshare sa_init(service) interface. 661 */ 662 static int 663 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg) 664 { 665 if (_sa_init == NULL) 666 return (SA_CONFIG_ERR); 667 668 /* 669 * Attempt to refresh libshare. This is necessary if there was a cache 670 * miss for a new ZFS dataset that was just created, or if state of the 671 * sharetab file has changed since libshare was last initialized. We 672 * want to make sure so check timestamps to see if a different process 673 * has updated any of the configuration. If there was some non-ZFS 674 * change, we need to re-initialize the internal cache. 675 */ 676 if (_sa_needs_refresh != NULL && 677 _sa_needs_refresh(zhandle->libzfs_sharehdl)) { 678 zfs_uninit_libshare(zhandle); 679 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 680 } 681 682 if (zhandle && zhandle->libzfs_sharehdl == NULL) 683 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 684 685 if (zhandle->libzfs_sharehdl == NULL) 686 return (SA_NO_MEMORY); 687 688 return (SA_OK); 689 } 690 int 691 zfs_init_libshare(libzfs_handle_t *zhandle, int service) 692 { 693 return (zfs_init_libshare_impl(zhandle, service, NULL)); 694 } 695 696 int 697 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg) 698 { 699 return (zfs_init_libshare_impl(zhandle, service, arg)); 700 } 701 702 703 /* 704 * zfs_uninit_libshare(zhandle) 705 * 706 * Uninitialize the libshare API if it hasn't already been 707 * uninitialized. It is OK to call multiple times. 708 */ 709 void 710 zfs_uninit_libshare(libzfs_handle_t *zhandle) 711 { 712 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) { 713 if (_sa_fini != NULL) 714 _sa_fini(zhandle->libzfs_sharehdl); 715 zhandle->libzfs_sharehdl = NULL; 716 } 717 } 718 719 /* 720 * zfs_parse_options(options, proto) 721 * 722 * Call the legacy parse interface to get the protocol specific 723 * options using the NULL arg to indicate that this is a "parse" only. 724 */ 725 int 726 zfs_parse_options(char *options, zfs_share_proto_t proto) 727 { 728 if (_sa_parse_legacy_options != NULL) { 729 return (_sa_parse_legacy_options(NULL, options, 730 proto_table[proto].p_name)); 731 } 732 return (SA_CONFIG_ERR); 733 } 734 735 /* 736 * zfs_sa_find_share(handle, path) 737 * 738 * wrapper around sa_find_share to find a share path in the 739 * configuration. 740 */ 741 static sa_share_t 742 zfs_sa_find_share(sa_handle_t handle, char *path) 743 { 744 if (_sa_find_share != NULL) 745 return (_sa_find_share(handle, path)); 746 return (NULL); 747 } 748 749 /* 750 * zfs_sa_enable_share(share, proto) 751 * 752 * Wrapper for sa_enable_share which enables a share for a specified 753 * protocol. 754 */ 755 static int 756 zfs_sa_enable_share(sa_share_t share, char *proto) 757 { 758 if (_sa_enable_share != NULL) 759 return (_sa_enable_share(share, proto)); 760 return (SA_CONFIG_ERR); 761 } 762 763 /* 764 * zfs_sa_disable_share(share, proto) 765 * 766 * Wrapper for sa_enable_share which disables a share for a specified 767 * protocol. 768 */ 769 static int 770 zfs_sa_disable_share(sa_share_t share, char *proto) 771 { 772 if (_sa_disable_share != NULL) 773 return (_sa_disable_share(share, proto)); 774 return (SA_CONFIG_ERR); 775 } 776 777 /* 778 * Share the given filesystem according to the options in the specified 779 * protocol specific properties (sharenfs, sharesmb). We rely 780 * on "libshare" to the dirty work for us. 781 */ 782 static int 783 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 784 { 785 char mountpoint[ZFS_MAXPROPLEN]; 786 char shareopts[ZFS_MAXPROPLEN]; 787 char sourcestr[ZFS_MAXPROPLEN]; 788 libzfs_handle_t *hdl = zhp->zfs_hdl; 789 sa_share_t share; 790 zfs_share_proto_t *curr_proto; 791 zprop_source_t sourcetype; 792 int ret; 793 794 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 795 return (0); 796 797 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 798 /* 799 * Return success if there are no share options. 800 */ 801 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 802 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 803 ZFS_MAXPROPLEN, B_FALSE) != 0 || 804 strcmp(shareopts, "off") == 0) 805 continue; 806 ret = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_HANDLE, 807 zhp); 808 if (ret != SA_OK) { 809 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED, 810 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"), 811 zfs_get_name(zhp), _sa_errorstr != NULL ? 812 _sa_errorstr(ret) : ""); 813 return (-1); 814 } 815 816 /* 817 * If the 'zoned' property is set, then zfs_is_mountable() 818 * will have already bailed out if we are in the global zone. 819 * But local zones cannot be NFS servers, so we ignore it for 820 * local zones as well. 821 */ 822 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 823 continue; 824 825 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint); 826 if (share == NULL) { 827 /* 828 * This may be a new file system that was just 829 * created so isn't in the internal cache 830 * (second time through). Rather than 831 * reloading the entire configuration, we can 832 * assume ZFS has done the checking and it is 833 * safe to add this to the internal 834 * configuration. 835 */ 836 if (_sa_zfs_process_share(hdl->libzfs_sharehdl, 837 NULL, NULL, mountpoint, 838 proto_table[*curr_proto].p_name, sourcetype, 839 shareopts, sourcestr, zhp->zfs_name) != SA_OK) { 840 (void) zfs_error_fmt(hdl, 841 proto_table[*curr_proto].p_share_err, 842 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 843 zfs_get_name(zhp)); 844 return (-1); 845 } 846 share = zfs_sa_find_share(hdl->libzfs_sharehdl, 847 mountpoint); 848 } 849 if (share != NULL) { 850 int err; 851 err = zfs_sa_enable_share(share, 852 proto_table[*curr_proto].p_name); 853 if (err != SA_OK) { 854 (void) zfs_error_fmt(hdl, 855 proto_table[*curr_proto].p_share_err, 856 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 857 zfs_get_name(zhp)); 858 return (-1); 859 } 860 } else { 861 (void) zfs_error_fmt(hdl, 862 proto_table[*curr_proto].p_share_err, 863 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 864 zfs_get_name(zhp)); 865 return (-1); 866 } 867 868 } 869 return (0); 870 } 871 872 873 int 874 zfs_share_nfs(zfs_handle_t *zhp) 875 { 876 return (zfs_share_proto(zhp, nfs_only)); 877 } 878 879 int 880 zfs_share_smb(zfs_handle_t *zhp) 881 { 882 return (zfs_share_proto(zhp, smb_only)); 883 } 884 885 int 886 zfs_shareall(zfs_handle_t *zhp) 887 { 888 return (zfs_share_proto(zhp, share_all_proto)); 889 } 890 891 /* 892 * Unshare a filesystem by mountpoint. 893 */ 894 static int 895 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 896 zfs_share_proto_t proto) 897 { 898 sa_share_t share; 899 int err; 900 char *mntpt; 901 902 /* 903 * Mountpoint could get trashed if libshare calls getmntany 904 * which it does during API initialization, so strdup the 905 * value. 906 */ 907 mntpt = zfs_strdup(hdl, mountpoint); 908 909 /* 910 * make sure libshare initialized, initialize everything because we 911 * don't know what other unsharing may happen later. Functions up the 912 * stack are allowed to initialize instead a subset of shares at the 913 * time the set is known. 914 */ 915 if ((err = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_NAME, 916 (void *)name)) != SA_OK) { 917 free(mntpt); /* don't need the copy anymore */ 918 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 919 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 920 name, _sa_errorstr(err))); 921 } 922 923 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt); 924 free(mntpt); /* don't need the copy anymore */ 925 926 if (share != NULL) { 927 err = zfs_sa_disable_share(share, proto_table[proto].p_name); 928 if (err != SA_OK) { 929 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 930 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 931 name, _sa_errorstr(err))); 932 } 933 } else { 934 return (zfs_error_fmt(hdl, EZFS_UNSHARENFSFAILED, 935 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"), 936 name)); 937 } 938 return (0); 939 } 940 941 /* 942 * Unshare the given filesystem. 943 */ 944 int 945 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 946 zfs_share_proto_t *proto) 947 { 948 libzfs_handle_t *hdl = zhp->zfs_hdl; 949 struct mnttab entry; 950 char *mntpt = NULL; 951 952 /* check to see if need to unmount the filesystem */ 953 rewind(zhp->zfs_hdl->libzfs_mnttab); 954 if (mountpoint != NULL) 955 mountpoint = mntpt = zfs_strdup(hdl, mountpoint); 956 957 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 958 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 959 zfs_share_proto_t *curr_proto; 960 961 if (mountpoint == NULL) 962 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 963 964 for (curr_proto = proto; *curr_proto != PROTO_END; 965 curr_proto++) { 966 967 if (is_shared(hdl, mntpt, *curr_proto) && 968 unshare_one(hdl, zhp->zfs_name, 969 mntpt, *curr_proto) != 0) { 970 if (mntpt != NULL) 971 free(mntpt); 972 return (-1); 973 } 974 } 975 } 976 if (mntpt != NULL) 977 free(mntpt); 978 979 return (0); 980 } 981 982 int 983 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 984 { 985 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 986 } 987 988 int 989 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 990 { 991 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 992 } 993 994 /* 995 * Same as zfs_unmountall(), but for NFS and SMB unshares. 996 */ 997 int 998 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 999 { 1000 prop_changelist_t *clp; 1001 int ret; 1002 1003 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 1004 if (clp == NULL) 1005 return (-1); 1006 1007 ret = changelist_unshare(clp, proto); 1008 changelist_free(clp); 1009 1010 return (ret); 1011 } 1012 1013 int 1014 zfs_unshareall_nfs(zfs_handle_t *zhp) 1015 { 1016 return (zfs_unshareall_proto(zhp, nfs_only)); 1017 } 1018 1019 int 1020 zfs_unshareall_smb(zfs_handle_t *zhp) 1021 { 1022 return (zfs_unshareall_proto(zhp, smb_only)); 1023 } 1024 1025 int 1026 zfs_unshareall(zfs_handle_t *zhp) 1027 { 1028 return (zfs_unshareall_proto(zhp, share_all_proto)); 1029 } 1030 1031 int 1032 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1033 { 1034 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1035 } 1036 1037 /* 1038 * Remove the mountpoint associated with the current dataset, if necessary. 1039 * We only remove the underlying directory if: 1040 * 1041 * - The mountpoint is not 'none' or 'legacy' 1042 * - The mountpoint is non-empty 1043 * - The mountpoint is the default or inherited 1044 * - The 'zoned' property is set, or we're in a local zone 1045 * 1046 * Any other directories we leave alone. 1047 */ 1048 void 1049 remove_mountpoint(zfs_handle_t *zhp) 1050 { 1051 char mountpoint[ZFS_MAXPROPLEN]; 1052 zprop_source_t source; 1053 1054 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1055 &source)) 1056 return; 1057 1058 if (source == ZPROP_SRC_DEFAULT || 1059 source == ZPROP_SRC_INHERITED) { 1060 /* 1061 * Try to remove the directory, silently ignoring any errors. 1062 * The filesystem may have since been removed or moved around, 1063 * and this error isn't really useful to the administrator in 1064 * any way. 1065 */ 1066 (void) rmdir(mountpoint); 1067 } 1068 } 1069 1070 void 1071 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1072 { 1073 if (cbp->cb_alloc == cbp->cb_used) { 1074 size_t newsz; 1075 void *ptr; 1076 1077 newsz = cbp->cb_alloc ? cbp->cb_alloc * 2 : 64; 1078 ptr = zfs_realloc(zhp->zfs_hdl, 1079 cbp->cb_handles, cbp->cb_alloc * sizeof (void *), 1080 newsz * sizeof (void *)); 1081 cbp->cb_handles = ptr; 1082 cbp->cb_alloc = newsz; 1083 } 1084 cbp->cb_handles[cbp->cb_used++] = zhp; 1085 } 1086 1087 static int 1088 mount_cb(zfs_handle_t *zhp, void *data) 1089 { 1090 get_all_cb_t *cbp = data; 1091 1092 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1093 zfs_close(zhp); 1094 return (0); 1095 } 1096 1097 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1098 zfs_close(zhp); 1099 return (0); 1100 } 1101 1102 /* 1103 * If this filesystem is inconsistent and has a receive resume 1104 * token, we can not mount it. 1105 */ 1106 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1107 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1108 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1109 zfs_close(zhp); 1110 return (0); 1111 } 1112 1113 libzfs_add_handle(cbp, zhp); 1114 if (zfs_iter_filesystems(zhp, mount_cb, cbp) != 0) { 1115 zfs_close(zhp); 1116 return (-1); 1117 } 1118 return (0); 1119 } 1120 1121 int 1122 libzfs_dataset_cmp(const void *a, const void *b) 1123 { 1124 zfs_handle_t **za = (zfs_handle_t **)a; 1125 zfs_handle_t **zb = (zfs_handle_t **)b; 1126 char mounta[MAXPATHLEN]; 1127 char mountb[MAXPATHLEN]; 1128 boolean_t gota, gotb; 1129 1130 if ((gota = (zfs_get_type(*za) == ZFS_TYPE_FILESYSTEM)) != 0) 1131 verify(zfs_prop_get(*za, ZFS_PROP_MOUNTPOINT, mounta, 1132 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1133 if ((gotb = (zfs_get_type(*zb) == ZFS_TYPE_FILESYSTEM)) != 0) 1134 verify(zfs_prop_get(*zb, ZFS_PROP_MOUNTPOINT, mountb, 1135 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1136 1137 if (gota && gotb) 1138 return (strcmp(mounta, mountb)); 1139 1140 if (gota) 1141 return (-1); 1142 if (gotb) 1143 return (1); 1144 1145 return (strcmp(zfs_get_name(a), zfs_get_name(b))); 1146 } 1147 1148 /* 1149 * Mount and share all datasets within the given pool. This assumes that no 1150 * datasets within the pool are currently mounted. Because users can create 1151 * complicated nested hierarchies of mountpoints, we first gather all the 1152 * datasets and mountpoints within the pool, and sort them by mountpoint. Once 1153 * we have the list of all filesystems, we iterate over them in order and mount 1154 * and/or share each one. 1155 */ 1156 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1157 int 1158 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1159 { 1160 get_all_cb_t cb = { 0 }; 1161 libzfs_handle_t *hdl = zhp->zpool_hdl; 1162 zfs_handle_t *zfsp; 1163 int i, ret = -1; 1164 int *good; 1165 1166 /* 1167 * Gather all non-snap datasets within the pool. 1168 */ 1169 if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL) 1170 goto out; 1171 1172 libzfs_add_handle(&cb, zfsp); 1173 if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0) 1174 goto out; 1175 /* 1176 * Sort the datasets by mountpoint. 1177 */ 1178 qsort(cb.cb_handles, cb.cb_used, sizeof (void *), 1179 libzfs_dataset_cmp); 1180 1181 /* 1182 * And mount all the datasets, keeping track of which ones 1183 * succeeded or failed. 1184 */ 1185 if ((good = zfs_alloc(zhp->zpool_hdl, 1186 cb.cb_used * sizeof (int))) == NULL) 1187 goto out; 1188 1189 ret = 0; 1190 for (i = 0; i < cb.cb_used; i++) { 1191 if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0) 1192 ret = -1; 1193 else 1194 good[i] = 1; 1195 } 1196 1197 /* 1198 * Then share all the ones that need to be shared. This needs 1199 * to be a separate pass in order to avoid excessive reloading 1200 * of the configuration. Good should never be NULL since 1201 * zfs_alloc is supposed to exit if memory isn't available. 1202 */ 1203 for (i = 0; i < cb.cb_used; i++) { 1204 if (good[i] && zfs_share(cb.cb_handles[i]) != 0) 1205 ret = -1; 1206 } 1207 1208 free(good); 1209 1210 out: 1211 for (i = 0; i < cb.cb_used; i++) 1212 zfs_close(cb.cb_handles[i]); 1213 free(cb.cb_handles); 1214 1215 return (ret); 1216 } 1217 1218 static int 1219 mountpoint_compare(const void *a, const void *b) 1220 { 1221 const char *mounta = *((char **)a); 1222 const char *mountb = *((char **)b); 1223 1224 return (strcmp(mountb, mounta)); 1225 } 1226 1227 /* alias for 2002/240 */ 1228 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1229 /* 1230 * Unshare and unmount all datasets within the given pool. We don't want to 1231 * rely on traversing the DSL to discover the filesystems within the pool, 1232 * because this may be expensive (if not all of them are mounted), and can fail 1233 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and 1234 * gather all the filesystems that are currently mounted. 1235 */ 1236 int 1237 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1238 { 1239 int used, alloc; 1240 struct mnttab entry; 1241 size_t namelen; 1242 char **mountpoints = NULL; 1243 zfs_handle_t **datasets = NULL; 1244 libzfs_handle_t *hdl = zhp->zpool_hdl; 1245 int i; 1246 int ret = -1; 1247 int flags = (force ? MS_FORCE : 0); 1248 sa_init_selective_arg_t sharearg; 1249 1250 namelen = strlen(zhp->zpool_name); 1251 1252 rewind(hdl->libzfs_mnttab); 1253 used = alloc = 0; 1254 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1255 /* 1256 * Ignore non-ZFS entries. 1257 */ 1258 if (entry.mnt_fstype == NULL || 1259 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1260 continue; 1261 1262 /* 1263 * Ignore filesystems not within this pool. 1264 */ 1265 if (entry.mnt_mountp == NULL || 1266 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1267 (entry.mnt_special[namelen] != '/' && 1268 entry.mnt_special[namelen] != '\0')) 1269 continue; 1270 1271 /* 1272 * At this point we've found a filesystem within our pool. Add 1273 * it to our growing list. 1274 */ 1275 if (used == alloc) { 1276 if (alloc == 0) { 1277 if ((mountpoints = zfs_alloc(hdl, 1278 8 * sizeof (void *))) == NULL) 1279 goto out; 1280 1281 if ((datasets = zfs_alloc(hdl, 1282 8 * sizeof (void *))) == NULL) 1283 goto out; 1284 1285 alloc = 8; 1286 } else { 1287 void *ptr; 1288 1289 if ((ptr = zfs_realloc(hdl, mountpoints, 1290 alloc * sizeof (void *), 1291 alloc * 2 * sizeof (void *))) == NULL) 1292 goto out; 1293 mountpoints = ptr; 1294 1295 if ((ptr = zfs_realloc(hdl, datasets, 1296 alloc * sizeof (void *), 1297 alloc * 2 * sizeof (void *))) == NULL) 1298 goto out; 1299 datasets = ptr; 1300 1301 alloc *= 2; 1302 } 1303 } 1304 1305 if ((mountpoints[used] = zfs_strdup(hdl, 1306 entry.mnt_mountp)) == NULL) 1307 goto out; 1308 1309 /* 1310 * This is allowed to fail, in case there is some I/O error. It 1311 * is only used to determine if we need to remove the underlying 1312 * mountpoint, so failure is not fatal. 1313 */ 1314 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1315 1316 used++; 1317 } 1318 1319 /* 1320 * At this point, we have the entire list of filesystems, so sort it by 1321 * mountpoint. 1322 */ 1323 sharearg.zhandle_arr = datasets; 1324 sharearg.zhandle_len = used; 1325 ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE, 1326 &sharearg); 1327 if (ret != 0) 1328 goto out; 1329 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1330 1331 /* 1332 * Walk through and first unshare everything. 1333 */ 1334 for (i = 0; i < used; i++) { 1335 zfs_share_proto_t *curr_proto; 1336 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1337 curr_proto++) { 1338 if (is_shared(hdl, mountpoints[i], *curr_proto) && 1339 unshare_one(hdl, mountpoints[i], 1340 mountpoints[i], *curr_proto) != 0) 1341 goto out; 1342 } 1343 } 1344 1345 /* 1346 * Now unmount everything, removing the underlying directories as 1347 * appropriate. 1348 */ 1349 for (i = 0; i < used; i++) { 1350 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1351 goto out; 1352 } 1353 1354 for (i = 0; i < used; i++) { 1355 if (datasets[i]) 1356 remove_mountpoint(datasets[i]); 1357 } 1358 1359 ret = 0; 1360 out: 1361 for (i = 0; i < used; i++) { 1362 if (datasets[i]) 1363 zfs_close(datasets[i]); 1364 free(mountpoints[i]); 1365 } 1366 free(datasets); 1367 free(mountpoints); 1368 1369 return (ret); 1370 }