1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 
  22 /*
  23  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
  24  * Copyright 2016 Joyent, Inc.
  25  * Copyright 2016 Toomas Soome <tsoome@me.com>
  26  * Copyright (c) 2016 by Delphix. All rights reserved.
  27  * Copyright 2016 Nexenta Systems, Inc.
  28  * Copyright 2017 RackTop Systems.
  29  */
  30 
  31 /*      Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
  32 /*        All Rights Reserved   */
  33 
  34 /*
  35  * University Copyright- Copyright (c) 1982, 1986, 1988
  36  * The Regents of the University of California
  37  * All Rights Reserved
  38  *
  39  * University Acknowledgment- Portions of this document are derived from
  40  * software developed by the University of California, Berkeley, and its
  41  * contributors.
  42  */
  43 
  44 #include <sys/types.h>
  45 #include <sys/t_lock.h>
  46 #include <sys/param.h>
  47 #include <sys/errno.h>
  48 #include <sys/user.h>
  49 #include <sys/fstyp.h>
  50 #include <sys/kmem.h>
  51 #include <sys/systm.h>
  52 #include <sys/proc.h>
  53 #include <sys/mount.h>
  54 #include <sys/vfs.h>
  55 #include <sys/vfs_opreg.h>
  56 #include <sys/fem.h>
  57 #include <sys/mntent.h>
  58 #include <sys/stat.h>
  59 #include <sys/statvfs.h>
  60 #include <sys/statfs.h>
  61 #include <sys/cred.h>
  62 #include <sys/vnode.h>
  63 #include <sys/rwstlock.h>
  64 #include <sys/dnlc.h>
  65 #include <sys/file.h>
  66 #include <sys/time.h>
  67 #include <sys/atomic.h>
  68 #include <sys/cmn_err.h>
  69 #include <sys/buf.h>
  70 #include <sys/swap.h>
  71 #include <sys/debug.h>
  72 #include <sys/vnode.h>
  73 #include <sys/modctl.h>
  74 #include <sys/ddi.h>
  75 #include <sys/pathname.h>
  76 #include <sys/bootconf.h>
  77 #include <sys/dumphdr.h>
  78 #include <sys/dc_ki.h>
  79 #include <sys/poll.h>
  80 #include <sys/sunddi.h>
  81 #include <sys/sysmacros.h>
  82 #include <sys/zone.h>
  83 #include <sys/policy.h>
  84 #include <sys/ctfs.h>
  85 #include <sys/objfs.h>
  86 #include <sys/console.h>
  87 #include <sys/reboot.h>
  88 #include <sys/attr.h>
  89 #include <sys/zio.h>
  90 #include <sys/spa.h>
  91 #include <sys/lofi.h>
  92 #include <sys/bootprops.h>
  93 
  94 #include <vm/page.h>
  95 
  96 #include <fs/fs_subr.h>
  97 /* Private interfaces to create vopstats-related data structures */
  98 extern void             initialize_vopstats(vopstats_t *);
  99 extern vopstats_t       *get_fstype_vopstats(struct vfs *, struct vfssw *);
 100 extern vsk_anchor_t     *get_vskstat_anchor(struct vfs *);
 101 
 102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
 103 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
 104     const char *, int, int);
 105 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
 106 static void vfs_freemnttab(struct vfs *);
 107 static void vfs_freeopt(mntopt_t *);
 108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
 109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
 110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
 111 static void vfs_createopttbl_extend(mntopts_t *, const char *,
 112     const mntopts_t *);
 113 static char **vfs_copycancelopt_extend(char **const, int);
 114 static void vfs_freecancelopt(char **);
 115 static void getrootfs(char **, char **);
 116 static int getmacpath(dev_info_t *, void *);
 117 static void vfs_mnttabvp_setup(void);
 118 
 119 struct ipmnt {
 120         struct ipmnt    *mip_next;
 121         dev_t           mip_dev;
 122         struct vfs      *mip_vfsp;
 123 };
 124 
 125 static kmutex_t         vfs_miplist_mutex;
 126 static struct ipmnt     *vfs_miplist = NULL;
 127 static struct ipmnt     *vfs_miplist_end = NULL;
 128 
 129 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
 130 
 131 /*
 132  * VFS global data.
 133  */
 134 vnode_t *rootdir;               /* pointer to root inode vnode. */
 135 vnode_t *devicesdir;            /* pointer to inode of devices root */
 136 vnode_t *devdir;                /* pointer to inode of dev root */
 137 
 138 char *server_rootpath;          /* root path for diskless clients */
 139 char *server_hostname;          /* hostname of diskless server */
 140 
 141 static struct vfs root;
 142 static struct vfs devices;
 143 static struct vfs dev;
 144 struct vfs *rootvfs = &root;        /* pointer to root vfs; head of VFS list. */
 145 rvfs_t *rvfs_list;              /* array of vfs ptrs for vfs hash list */
 146 int vfshsz = 512;               /* # of heads/locks in vfs hash arrays */
 147                                 /* must be power of 2!  */
 148 timespec_t vfs_mnttab_ctime;    /* mnttab created time */
 149 timespec_t vfs_mnttab_mtime;    /* mnttab last modified time */
 150 char *vfs_dummyfstype = "\0";
 151 struct pollhead vfs_pollhd;     /* for mnttab pollers */
 152 struct vnode *vfs_mntdummyvp;   /* to fake mnttab read/write for file events */
 153 int     mntfstype;              /* will be set once mnt fs is mounted */
 154 
 155 /*
 156  * Table for generic options recognized in the VFS layer and acted
 157  * on at this level before parsing file system specific options.
 158  * The nosuid option is stronger than any of the devices and setuid
 159  * options, so those are canceled when nosuid is seen.
 160  *
 161  * All options which are added here need to be added to the
 162  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
 163  */
 164 /*
 165  * VFS Mount options table
 166  */
 167 static char *ro_cancel[] = { MNTOPT_RW, NULL };
 168 static char *rw_cancel[] = { MNTOPT_RO, NULL };
 169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
 170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
 171     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
 172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
 173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
 174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
 175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
 176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
 177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
 178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
 179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
 180 
 181 static const mntopt_t mntopts[] = {
 182 /*
 183  *      option name             cancel options          default arg     flags
 184  */
 185         { MNTOPT_REMOUNT,       NULL,                   NULL,
 186                 MO_NODISPLAY, (void *)0 },
 187         { MNTOPT_RO,            ro_cancel,              NULL,           0,
 188                 (void *)0 },
 189         { MNTOPT_RW,            rw_cancel,              NULL,           0,
 190                 (void *)0 },
 191         { MNTOPT_SUID,          suid_cancel,            NULL,           0,
 192                 (void *)0 },
 193         { MNTOPT_NOSUID,        nosuid_cancel,          NULL,           0,
 194                 (void *)0 },
 195         { MNTOPT_DEVICES,       devices_cancel,         NULL,           0,
 196                 (void *)0 },
 197         { MNTOPT_NODEVICES,     nodevices_cancel,       NULL,           0,
 198                 (void *)0 },
 199         { MNTOPT_SETUID,        setuid_cancel,          NULL,           0,
 200                 (void *)0 },
 201         { MNTOPT_NOSETUID,      nosetuid_cancel,        NULL,           0,
 202                 (void *)0 },
 203         { MNTOPT_NBMAND,        nbmand_cancel,          NULL,           0,
 204                 (void *)0 },
 205         { MNTOPT_NONBMAND,      nonbmand_cancel,        NULL,           0,
 206                 (void *)0 },
 207         { MNTOPT_EXEC,          exec_cancel,            NULL,           0,
 208                 (void *)0 },
 209         { MNTOPT_NOEXEC,        noexec_cancel,          NULL,           0,
 210                 (void *)0 },
 211 };
 212 
 213 const mntopts_t vfs_mntopts = {
 214         sizeof (mntopts) / sizeof (mntopt_t),
 215         (mntopt_t *)&mntopts[0]
 216 };
 217 
 218 /*
 219  * File system operation dispatch functions.
 220  */
 221 
 222 int
 223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
 224 {
 225         return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
 226 }
 227 
 228 int
 229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
 230 {
 231         return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
 232 }
 233 
 234 int
 235 fsop_root(vfs_t *vfsp, vnode_t **vpp)
 236 {
 237         refstr_t *mntpt;
 238         int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
 239         /*
 240          * Make sure this root has a path.  With lofs, it is possible to have
 241          * a NULL mountpoint.
 242          */
 243         if (ret == 0 && vfsp->vfs_mntpt != NULL &&
 244             (*vpp)->v_path == vn_vpath_empty) {
 245                 const char *path;
 246 
 247                 mntpt = vfs_getmntpoint(vfsp);
 248                 path = refstr_value(mntpt);
 249                 vn_setpath_str(*vpp, path, strlen(path));
 250                 refstr_rele(mntpt);
 251         }
 252 
 253         return (ret);
 254 }
 255 
 256 int
 257 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
 258 {
 259         return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
 260 }
 261 
 262 int
 263 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
 264 {
 265         return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
 266 }
 267 
 268 int
 269 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
 270 {
 271         /*
 272          * In order to handle system attribute fids in a manner
 273          * transparent to the underlying fs, we embed the fid for
 274          * the sysattr parent object in the sysattr fid and tack on
 275          * some extra bytes that only the sysattr layer knows about.
 276          *
 277          * This guarantees that sysattr fids are larger than other fids
 278          * for this vfs. If the vfs supports the sysattr view interface
 279          * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
 280          * collision with XATTR_FIDSZ.
 281          */
 282         if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
 283             fidp->fid_len == XATTR_FIDSZ)
 284                 return (xattr_dir_vget(vfsp, vpp, fidp));
 285 
 286         return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
 287 }
 288 
 289 int
 290 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
 291 {
 292         return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
 293 }
 294 
 295 void
 296 fsop_freefs(vfs_t *vfsp)
 297 {
 298         (*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
 299 }
 300 
 301 int
 302 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
 303 {
 304         return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
 305 }
 306 
 307 int
 308 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
 309 {
 310         ASSERT((fstype >= 0) && (fstype < nfstype));
 311 
 312         if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
 313                 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
 314         else
 315                 return (ENOTSUP);
 316 }
 317 
 318 /*
 319  * File system initialization.  vfs_setfsops() must be called from a file
 320  * system's init routine.
 321  */
 322 
 323 static int
 324 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
 325     int *unused_ops)
 326 {
 327         static const fs_operation_trans_def_t vfs_ops_table[] = {
 328                 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
 329                         fs_nosys, fs_nosys,
 330 
 331                 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
 332                         fs_nosys, fs_nosys,
 333 
 334                 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
 335                         fs_nosys, fs_nosys,
 336 
 337                 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
 338                         fs_nosys, fs_nosys,
 339 
 340                 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
 341                         (fs_generic_func_p) fs_sync,
 342                         (fs_generic_func_p) fs_sync,    /* No errors allowed */
 343 
 344                 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
 345                         fs_nosys, fs_nosys,
 346 
 347                 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
 348                         fs_nosys, fs_nosys,
 349 
 350                 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
 351                         (fs_generic_func_p)fs_freevfs,
 352                         (fs_generic_func_p)fs_freevfs,  /* Shouldn't fail */
 353 
 354                 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
 355                         (fs_generic_func_p)fs_nosys,
 356                         (fs_generic_func_p)fs_nosys,
 357 
 358                 NULL, 0, NULL, NULL
 359         };
 360 
 361         return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
 362 }
 363 
 364 void
 365 zfs_boot_init(void)
 366 {
 367         if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
 368                 spa_boot_init();
 369 }
 370 
 371 int
 372 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
 373 {
 374         int error;
 375         int unused_ops;
 376 
 377         /*
 378          * Verify that fstype refers to a valid fs.  Note that
 379          * 0 is valid since it's used to set "stray" ops.
 380          */
 381         if ((fstype < 0) || (fstype >= nfstype))
 382                 return (EINVAL);
 383 
 384         if (!ALLOCATED_VFSSW(&vfssw[fstype]))
 385                 return (EINVAL);
 386 
 387         /* Set up the operations vector. */
 388 
 389         error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
 390 
 391         if (error != 0)
 392                 return (error);
 393 
 394         vfssw[fstype].vsw_flag |= VSW_INSTALLED;
 395 
 396         if (actual != NULL)
 397                 *actual = &vfssw[fstype].vsw_vfsops;
 398 
 399 #if DEBUG
 400         if (unused_ops != 0)
 401                 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
 402                     "but not used", vfssw[fstype].vsw_name, unused_ops);
 403 #endif
 404 
 405         return (0);
 406 }
 407 
 408 int
 409 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
 410 {
 411         int error;
 412         int unused_ops;
 413 
 414         *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
 415 
 416         error = fs_copyfsops(template, *actual, &unused_ops);
 417         if (error != 0) {
 418                 kmem_free(*actual, sizeof (vfsops_t));
 419                 *actual = NULL;
 420                 return (error);
 421         }
 422 
 423         return (0);
 424 }
 425 
 426 /*
 427  * Free a vfsops structure created as a result of vfs_makefsops().
 428  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
 429  * vfs_freevfsops_by_type().
 430  */
 431 void
 432 vfs_freevfsops(vfsops_t *vfsops)
 433 {
 434         kmem_free(vfsops, sizeof (vfsops_t));
 435 }
 436 
 437 /*
 438  * Since the vfsops structure is part of the vfssw table and wasn't
 439  * really allocated, we're not really freeing anything.  We keep
 440  * the name for consistency with vfs_freevfsops().  We do, however,
 441  * need to take care of a little bookkeeping.
 442  * NOTE: For a vfsops structure created by vfs_setfsops(), use
 443  * vfs_freevfsops_by_type().
 444  */
 445 int
 446 vfs_freevfsops_by_type(int fstype)
 447 {
 448 
 449         /* Verify that fstype refers to a loaded fs (and not fsid 0). */
 450         if ((fstype <= 0) || (fstype >= nfstype))
 451                 return (EINVAL);
 452 
 453         WLOCK_VFSSW();
 454         if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
 455                 WUNLOCK_VFSSW();
 456                 return (EINVAL);
 457         }
 458 
 459         vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
 460         WUNLOCK_VFSSW();
 461 
 462         return (0);
 463 }
 464 
 465 /* Support routines used to reference vfs_op */
 466 
 467 /* Set the operations vector for a vfs */
 468 void
 469 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
 470 {
 471         vfsops_t        *op;
 472 
 473         ASSERT(vfsp != NULL);
 474         ASSERT(vfsops != NULL);
 475 
 476         op = vfsp->vfs_op;
 477         membar_consumer();
 478         if (vfsp->vfs_femhead == NULL &&
 479             atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
 480                 return;
 481         }
 482         fsem_setvfsops(vfsp, vfsops);
 483 }
 484 
 485 /* Retrieve the operations vector for a vfs */
 486 vfsops_t *
 487 vfs_getops(vfs_t *vfsp)
 488 {
 489         vfsops_t        *op;
 490 
 491         ASSERT(vfsp != NULL);
 492 
 493         op = vfsp->vfs_op;
 494         membar_consumer();
 495         if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
 496                 return (op);
 497         } else {
 498                 return (fsem_getvfsops(vfsp));
 499         }
 500 }
 501 
 502 /*
 503  * Returns non-zero (1) if the vfsops matches that of the vfs.
 504  * Returns zero (0) if not.
 505  */
 506 int
 507 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
 508 {
 509         return (vfs_getops(vfsp) == vfsops);
 510 }
 511 
 512 /*
 513  * Returns non-zero (1) if the file system has installed a non-default,
 514  * non-error vfs_sync routine.  Returns zero (0) otherwise.
 515  */
 516 int
 517 vfs_can_sync(vfs_t *vfsp)
 518 {
 519         /* vfs_sync() routine is not the default/error function */
 520         return (vfs_getops(vfsp)->vfs_sync != fs_sync);
 521 }
 522 
 523 /*
 524  * Initialize a vfs structure.
 525  */
 526 void
 527 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
 528 {
 529         /* Other initialization has been moved to vfs_alloc() */
 530         vfsp->vfs_count = 0;
 531         vfsp->vfs_next = vfsp;
 532         vfsp->vfs_prev = vfsp;
 533         vfsp->vfs_zone_next = vfsp;
 534         vfsp->vfs_zone_prev = vfsp;
 535         vfsp->vfs_lofi_id = 0;
 536         sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
 537         vfsimpl_setup(vfsp);
 538         vfsp->vfs_data = (data);
 539         vfs_setops((vfsp), (op));
 540 }
 541 
 542 /*
 543  * Allocate and initialize the vfs implementation private data
 544  * structure, vfs_impl_t.
 545  */
 546 void
 547 vfsimpl_setup(vfs_t *vfsp)
 548 {
 549         int i;
 550 
 551         if (vfsp->vfs_implp != NULL) {
 552                 return;
 553         }
 554 
 555         vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
 556         /* Note that these are #define'd in vfs.h */
 557         vfsp->vfs_vskap = NULL;
 558         vfsp->vfs_fstypevsp = NULL;
 559 
 560         /* Set size of counted array, then zero the array */
 561         vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
 562         for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
 563                 vfsp->vfs_featureset[i] = 0;
 564         }
 565 }
 566 
 567 /*
 568  * Release the vfs_impl_t structure, if it exists. Some unbundled
 569  * filesystems may not use the newer version of vfs and thus
 570  * would not contain this implementation private data structure.
 571  */
 572 void
 573 vfsimpl_teardown(vfs_t *vfsp)
 574 {
 575         vfs_impl_t      *vip = vfsp->vfs_implp;
 576 
 577         if (vip == NULL)
 578                 return;
 579 
 580         kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
 581         vfsp->vfs_implp = NULL;
 582 }
 583 
 584 /*
 585  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
 586  * fstatvfs, and sysfs moved to common/syscall.
 587  */
 588 
 589 /*
 590  * Update every mounted file system.  We call the vfs_sync operation of
 591  * each file system type, passing it a NULL vfsp to indicate that all
 592  * mounted file systems of that type should be updated.
 593  */
 594 void
 595 vfs_sync(int flag)
 596 {
 597         struct vfssw *vswp;
 598         RLOCK_VFSSW();
 599         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
 600                 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
 601                         vfs_refvfssw(vswp);
 602                         RUNLOCK_VFSSW();
 603                         (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
 604                             CRED());
 605                         vfs_unrefvfssw(vswp);
 606                         RLOCK_VFSSW();
 607                 }
 608         }
 609         RUNLOCK_VFSSW();
 610 }
 611 
 612 void
 613 sync(void)
 614 {
 615         vfs_sync(0);
 616 }
 617 
 618 /*
 619  * External routines.
 620  */
 621 
 622 krwlock_t vfssw_lock;   /* lock accesses to vfssw */
 623 
 624 /*
 625  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
 626  * but otherwise should be accessed only via vfs_list_lock() and
 627  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
 628  */
 629 static krwlock_t vfslist;
 630 
 631 /*
 632  * Mount devfs on /devices. This is done right after root is mounted
 633  * to provide device access support for the system
 634  */
 635 static void
 636 vfs_mountdevices(void)
 637 {
 638         struct vfssw *vsw;
 639         struct vnode *mvp;
 640         struct mounta mounta = {        /* fake mounta for devfs_mount() */
 641                 NULL,
 642                 NULL,
 643                 MS_SYSSPACE,
 644                 NULL,
 645                 NULL,
 646                 0,
 647                 NULL,
 648                 0
 649         };
 650 
 651         /*
 652          * _init devfs module to fill in the vfssw
 653          */
 654         if (modload("fs", "devfs") == -1)
 655                 panic("Cannot _init devfs module");
 656 
 657         /*
 658          * Hold vfs
 659          */
 660         RLOCK_VFSSW();
 661         vsw = vfs_getvfsswbyname("devfs");
 662         VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
 663         VFS_HOLD(&devices);
 664 
 665         /*
 666          * Locate mount point
 667          */
 668         if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
 669                 panic("Cannot find /devices");
 670 
 671         /*
 672          * Perform the mount of /devices
 673          */
 674         if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
 675                 panic("Cannot mount /devices");
 676 
 677         RUNLOCK_VFSSW();
 678 
 679         /*
 680          * Set appropriate members and add to vfs list for mnttab display
 681          */
 682         vfs_setresource(&devices, "/devices", 0);
 683         vfs_setmntpoint(&devices, "/devices", 0);
 684 
 685         /*
 686          * Hold the root of /devices so it won't go away
 687          */
 688         if (VFS_ROOT(&devices, &devicesdir))
 689                 panic("vfs_mountdevices: not devices root");
 690 
 691         if (vfs_lock(&devices) != 0) {
 692                 VN_RELE(devicesdir);
 693                 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
 694                 return;
 695         }
 696 
 697         if (vn_vfswlock(mvp) != 0) {
 698                 vfs_unlock(&devices);
 699                 VN_RELE(devicesdir);
 700                 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
 701                 return;
 702         }
 703 
 704         vfs_add(mvp, &devices, 0);
 705         vn_vfsunlock(mvp);
 706         vfs_unlock(&devices);
 707         VN_RELE(devicesdir);
 708 }
 709 
 710 /*
 711  * mount the first instance of /dev  to root and remain mounted
 712  */
 713 static void
 714 vfs_mountdev1(void)
 715 {
 716         struct vfssw *vsw;
 717         struct vnode *mvp;
 718         struct mounta mounta = {        /* fake mounta for sdev_mount() */
 719                 NULL,
 720                 NULL,
 721                 MS_SYSSPACE | MS_OVERLAY,
 722                 NULL,
 723                 NULL,
 724                 0,
 725                 NULL,
 726                 0
 727         };
 728 
 729         /*
 730          * _init dev module to fill in the vfssw
 731          */
 732         if (modload("fs", "dev") == -1)
 733                 cmn_err(CE_PANIC, "Cannot _init dev module\n");
 734 
 735         /*
 736          * Hold vfs
 737          */
 738         RLOCK_VFSSW();
 739         vsw = vfs_getvfsswbyname("dev");
 740         VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
 741         VFS_HOLD(&dev);
 742 
 743         /*
 744          * Locate mount point
 745          */
 746         if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
 747                 cmn_err(CE_PANIC, "Cannot find /dev\n");
 748 
 749         /*
 750          * Perform the mount of /dev
 751          */
 752         if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
 753                 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
 754 
 755         RUNLOCK_VFSSW();
 756 
 757         /*
 758          * Set appropriate members and add to vfs list for mnttab display
 759          */
 760         vfs_setresource(&dev, "/dev", 0);
 761         vfs_setmntpoint(&dev, "/dev", 0);
 762 
 763         /*
 764          * Hold the root of /dev so it won't go away
 765          */
 766         if (VFS_ROOT(&dev, &devdir))
 767                 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
 768 
 769         if (vfs_lock(&dev) != 0) {
 770                 VN_RELE(devdir);
 771                 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
 772                 return;
 773         }
 774 
 775         if (vn_vfswlock(mvp) != 0) {
 776                 vfs_unlock(&dev);
 777                 VN_RELE(devdir);
 778                 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
 779                 return;
 780         }
 781 
 782         vfs_add(mvp, &dev, 0);
 783         vn_vfsunlock(mvp);
 784         vfs_unlock(&dev);
 785         VN_RELE(devdir);
 786 }
 787 
 788 /*
 789  * Mount required filesystem. This is done right after root is mounted.
 790  */
 791 static void
 792 vfs_mountfs(char *module, char *spec, char *path)
 793 {
 794         struct vnode *mvp;
 795         struct mounta mounta;
 796         vfs_t *vfsp;
 797 
 798         bzero(&mounta, sizeof (mounta));
 799         mounta.flags = MS_SYSSPACE | MS_DATA;
 800         mounta.fstype = module;
 801         mounta.spec = spec;
 802         mounta.dir = path;
 803         if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
 804                 cmn_err(CE_WARN, "Cannot find %s", path);
 805                 return;
 806         }
 807         if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
 808                 cmn_err(CE_WARN, "Cannot mount %s", path);
 809         else
 810                 VFS_RELE(vfsp);
 811         VN_RELE(mvp);
 812 }
 813 
 814 /*
 815  * vfs_mountroot is called by main() to mount the root filesystem.
 816  */
 817 void
 818 vfs_mountroot(void)
 819 {
 820         struct vnode    *rvp = NULL;
 821         char            *path;
 822         size_t          plen;
 823         struct vfssw    *vswp;
 824         proc_t          *p;
 825 
 826         rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
 827         rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
 828 
 829         /*
 830          * Alloc the vfs hash bucket array and locks
 831          */
 832         rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
 833 
 834         /*
 835          * Call machine-dependent routine "rootconf" to choose a root
 836          * file system type.
 837          */
 838         if (rootconf())
 839                 panic("vfs_mountroot: cannot mount root");
 840         /*
 841          * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
 842          * to point to it.  These are used by lookuppn() so that it
 843          * knows where to start from ('/' or '.').
 844          */
 845         vfs_setmntpoint(rootvfs, "/", 0);
 846         if (VFS_ROOT(rootvfs, &rootdir))
 847                 panic("vfs_mountroot: no root vnode");
 848 
 849         /*
 850          * At this point, the process tree consists of p0 and possibly some
 851          * direct children of p0.  (i.e. there are no grandchildren)
 852          *
 853          * Walk through them all, setting their current directory.
 854          */
 855         mutex_enter(&pidlock);
 856         for (p = practive; p != NULL; p = p->p_next) {
 857                 ASSERT(p == &p0 || p->p_parent == &p0);
 858 
 859                 PTOU(p)->u_cdir = rootdir;
 860                 VN_HOLD(PTOU(p)->u_cdir);
 861                 PTOU(p)->u_rdir = NULL;
 862         }
 863         mutex_exit(&pidlock);
 864 
 865         /*
 866          * Setup the global zone's rootvp, now that it exists.
 867          */
 868         global_zone->zone_rootvp = rootdir;
 869         VN_HOLD(global_zone->zone_rootvp);
 870 
 871         /*
 872          * Notify the module code that it can begin using the
 873          * root filesystem instead of the boot program's services.
 874          */
 875         modrootloaded = 1;
 876 
 877         /*
 878          * Special handling for a ZFS root file system.
 879          */
 880         zfs_boot_init();
 881 
 882         /*
 883          * Set up mnttab information for root
 884          */
 885         vfs_setresource(rootvfs, rootfs.bo_name, 0);
 886 
 887         /*
 888          * Notify cluster software that the root filesystem is available.
 889          */
 890         clboot_mountroot();
 891 
 892         /* Now that we're all done with the root FS, set up its vopstats */
 893         if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
 894                 /* Set flag for statistics collection */
 895                 if (vswp->vsw_flag & VSW_STATS) {
 896                         initialize_vopstats(&rootvfs->vfs_vopstats);
 897                         rootvfs->vfs_flag |= VFS_STATS;
 898                         rootvfs->vfs_fstypevsp =
 899                             get_fstype_vopstats(rootvfs, vswp);
 900                         rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
 901                 }
 902                 vfs_unrefvfssw(vswp);
 903         }
 904 
 905         /*
 906          * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
 907          * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
 908          */
 909         vfs_mountdevices();
 910         vfs_mountdev1();
 911 
 912         vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
 913         vfs_mountfs("proc", "/proc", "/proc");
 914         vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
 915         vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
 916         vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
 917         vfs_mountfs("bootfs", "bootfs", "/system/boot");
 918 
 919         if (getzoneid() == GLOBAL_ZONEID) {
 920                 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
 921         }
 922 
 923         if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
 924                 /*
 925                  * Look up the root device via devfs so that a dv_node is
 926                  * created for it. The vnode is never VN_RELE()ed.
 927                  * We allocate more than MAXPATHLEN so that the
 928                  * buffer passed to i_ddi_prompath_to_devfspath() is
 929                  * exactly MAXPATHLEN (the function expects a buffer
 930                  * of that length).
 931                  */
 932                 plen = strlen("/devices");
 933                 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
 934                 (void) strcpy(path, "/devices");
 935 
 936                 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
 937                     != DDI_SUCCESS ||
 938                     lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
 939 
 940                         /* NUL terminate in case "path" has garbage */
 941                         path[plen + MAXPATHLEN - 1] = '\0';
 942 #ifdef  DEBUG
 943                         cmn_err(CE_WARN, "!Cannot lookup root device: %s",
 944                             path);
 945 #endif
 946                 }
 947                 kmem_free(path, plen + MAXPATHLEN);
 948         }
 949 
 950         vfs_mnttabvp_setup();
 951 }
 952 
 953 /*
 954  * Check to see if our "block device" is actually a file.  If so,
 955  * automatically add a lofi device, and keep track of this fact.
 956  */
 957 static int
 958 lofi_add(const char *fsname, struct vfs *vfsp,
 959     mntopts_t *mntopts, struct mounta *uap)
 960 {
 961         int fromspace = (uap->flags & MS_SYSSPACE) ?
 962             UIO_SYSSPACE : UIO_USERSPACE;
 963         struct lofi_ioctl *li = NULL;
 964         struct vnode *vp = NULL;
 965         struct pathname pn = { NULL };
 966         ldi_ident_t ldi_id;
 967         ldi_handle_t ldi_hdl;
 968         vfssw_t *vfssw;
 969         int id;
 970         int err = 0;
 971 
 972         if ((vfssw = vfs_getvfssw(fsname)) == NULL)
 973                 return (0);
 974 
 975         if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
 976                 vfs_unrefvfssw(vfssw);
 977                 return (0);
 978         }
 979 
 980         vfs_unrefvfssw(vfssw);
 981         vfssw = NULL;
 982 
 983         if (pn_get(uap->spec, fromspace, &pn) != 0)
 984                 return (0);
 985 
 986         if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
 987                 goto out;
 988 
 989         if (vp->v_type != VREG)
 990                 goto out;
 991 
 992         /* OK, this is a lofi mount. */
 993 
 994         if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
 995             vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
 996             vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
 997             vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
 998                 err = EINVAL;
 999                 goto out;
1000         }
1001 
1002         ldi_id = ldi_ident_from_anon();
1003         li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1004         (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1005 
1006         err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1007             &ldi_hdl, ldi_id);
1008 
1009         if (err)
1010                 goto out2;
1011 
1012         err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1013             FREAD | FWRITE | FKIOCTL, kcred, &id);
1014 
1015         (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1016 
1017         if (!err)
1018                 vfsp->vfs_lofi_id = id;
1019 
1020 out2:
1021         ldi_ident_release(ldi_id);
1022 out:
1023         if (li != NULL)
1024                 kmem_free(li, sizeof (*li));
1025         if (vp != NULL)
1026                 VN_RELE(vp);
1027         pn_free(&pn);
1028         return (err);
1029 }
1030 
1031 static void
1032 lofi_remove(struct vfs *vfsp)
1033 {
1034         struct lofi_ioctl *li = NULL;
1035         ldi_ident_t ldi_id;
1036         ldi_handle_t ldi_hdl;
1037         int err;
1038 
1039         if (vfsp->vfs_lofi_id == 0)
1040                 return;
1041 
1042         ldi_id = ldi_ident_from_anon();
1043 
1044         li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1045         li->li_id = vfsp->vfs_lofi_id;
1046         li->li_cleanup = B_TRUE;
1047 
1048         err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1049             &ldi_hdl, ldi_id);
1050 
1051         if (err)
1052                 goto out;
1053 
1054         err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1055             FREAD | FWRITE | FKIOCTL, kcred, NULL);
1056 
1057         (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1058 
1059         if (!err)
1060                 vfsp->vfs_lofi_id = 0;
1061 
1062 out:
1063         ldi_ident_release(ldi_id);
1064         if (li != NULL)
1065                 kmem_free(li, sizeof (*li));
1066 }
1067 
1068 /*
1069  * Common mount code.  Called from the system call entry point, from autofs,
1070  * nfsv4 trigger mounts, and from pxfs.
1071  *
1072  * Takes the effective file system type, mount arguments, the mount point
1073  * vnode, flags specifying whether the mount is a remount and whether it
1074  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1075  * parameter with the mounted file system instance's vfs.
1076  *
1077  * Note that the effective file system type is specified as a string.  It may
1078  * be null, in which case it's determined from the mount arguments, and may
1079  * differ from the type specified in the mount arguments; this is a hook to
1080  * allow interposition when instantiating file system instances.
1081  *
1082  * The caller is responsible for releasing its own hold on the mount point
1083  * vp (this routine does its own hold when necessary).
1084  * Also note that for remounts, the mount point vp should be the vnode for
1085  * the root of the file system rather than the vnode that the file system
1086  * is mounted on top of.
1087  */
1088 int
1089 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1090     struct vfs **vfspp)
1091 {
1092         struct vfssw    *vswp;
1093         vfsops_t        *vfsops;
1094         struct vfs      *vfsp;
1095         struct vnode    *bvp;
1096         dev_t           bdev = 0;
1097         mntopts_t       mnt_mntopts;
1098         int             error = 0;
1099         int             copyout_error = 0;
1100         int             ovflags;
1101         char            *opts = uap->optptr;
1102         char            *inargs = opts;
1103         int             optlen = uap->optlen;
1104         int             remount;
1105         int             rdonly;
1106         int             nbmand = 0;
1107         int             delmip = 0;
1108         int             addmip = 0;
1109         int             splice = ((uap->flags & MS_NOSPLICE) == 0);
1110         int             fromspace = (uap->flags & MS_SYSSPACE) ?
1111             UIO_SYSSPACE : UIO_USERSPACE;
1112         char            *resource = NULL, *mountpt = NULL;
1113         refstr_t        *oldresource, *oldmntpt;
1114         struct pathname pn, rpn;
1115         vsk_anchor_t    *vskap;
1116         char fstname[FSTYPSZ];
1117         zone_t          *zone;
1118 
1119         /*
1120          * The v_flag value for the mount point vp is permanently set
1121          * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1122          * for mount point locking.
1123          */
1124         mutex_enter(&vp->v_lock);
1125         vp->v_flag |= VVFSLOCK;
1126         mutex_exit(&vp->v_lock);
1127 
1128         mnt_mntopts.mo_count = 0;
1129         /*
1130          * Find the ops vector to use to invoke the file system-specific mount
1131          * method.  If the fsname argument is non-NULL, use it directly.
1132          * Otherwise, dig the file system type information out of the mount
1133          * arguments.
1134          *
1135          * A side effect is to hold the vfssw entry.
1136          *
1137          * Mount arguments can be specified in several ways, which are
1138          * distinguished by flag bit settings.  The preferred way is to set
1139          * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1140          * type supplied as a character string and the last two arguments
1141          * being a pointer to a character buffer and the size of the buffer.
1142          * On entry, the buffer holds a null terminated list of options; on
1143          * return, the string is the list of options the file system
1144          * recognized. If MS_DATA is set arguments five and six point to a
1145          * block of binary data which the file system interprets.
1146          * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1147          * consistently with these conventions.  To handle them, we check to
1148          * see whether the pointer to the file system name has a numeric value
1149          * less than 256.  If so, we treat it as an index.
1150          */
1151         if (fsname != NULL) {
1152                 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1153                         return (EINVAL);
1154                 }
1155         } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1156                 size_t n;
1157                 uint_t fstype;
1158 
1159                 fsname = fstname;
1160 
1161                 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1162                         RLOCK_VFSSW();
1163                         if (fstype == 0 || fstype >= nfstype ||
1164                             !ALLOCATED_VFSSW(&vfssw[fstype])) {
1165                                 RUNLOCK_VFSSW();
1166                                 return (EINVAL);
1167                         }
1168                         (void) strcpy(fsname, vfssw[fstype].vsw_name);
1169                         RUNLOCK_VFSSW();
1170                         if ((vswp = vfs_getvfssw(fsname)) == NULL)
1171                                 return (EINVAL);
1172                 } else {
1173                         /*
1174                          * Handle either kernel or user address space.
1175                          */
1176                         if (uap->flags & MS_SYSSPACE) {
1177                                 error = copystr(uap->fstype, fsname,
1178                                     FSTYPSZ, &n);
1179                         } else {
1180                                 error = copyinstr(uap->fstype, fsname,
1181                                     FSTYPSZ, &n);
1182                         }
1183                         if (error) {
1184                                 if (error == ENAMETOOLONG)
1185                                         return (EINVAL);
1186                                 return (error);
1187                         }
1188                         if ((vswp = vfs_getvfssw(fsname)) == NULL)
1189                                 return (EINVAL);
1190                 }
1191         } else {
1192                 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1193                         return (EINVAL);
1194                 fsname = vswp->vsw_name;
1195         }
1196         if (!VFS_INSTALLED(vswp))
1197                 return (EINVAL);
1198 
1199         if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1200                 vfs_unrefvfssw(vswp);
1201                 return (error);
1202         }
1203 
1204         vfsops = &vswp->vsw_vfsops;
1205 
1206         vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1207         /*
1208          * Fetch mount options and parse them for generic vfs options
1209          */
1210         if (uap->flags & MS_OPTIONSTR) {
1211                 /*
1212                  * Limit the buffer size
1213                  */
1214                 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1215                         error = EINVAL;
1216                         goto errout;
1217                 }
1218                 if ((uap->flags & MS_SYSSPACE) == 0) {
1219                         inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1220                         inargs[0] = '\0';
1221                         if (optlen) {
1222                                 error = copyinstr(opts, inargs, (size_t)optlen,
1223                                     NULL);
1224                                 if (error) {
1225                                         goto errout;
1226                                 }
1227                         }
1228                 }
1229                 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1230         }
1231         /*
1232          * Flag bits override the options string.
1233          */
1234         if (uap->flags & MS_REMOUNT)
1235                 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1236         if (uap->flags & MS_RDONLY)
1237                 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1238         if (uap->flags & MS_NOSUID)
1239                 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1240 
1241         /*
1242          * Check if this is a remount; must be set in the option string and
1243          * the file system must support a remount option.
1244          */
1245         if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1246             MNTOPT_REMOUNT, NULL)) {
1247                 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1248                         error = ENOTSUP;
1249                         goto errout;
1250                 }
1251                 uap->flags |= MS_REMOUNT;
1252         }
1253 
1254         /*
1255          * uap->flags and vfs_optionisset() should agree.
1256          */
1257         if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1258                 uap->flags |= MS_RDONLY;
1259         }
1260         if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1261                 uap->flags |= MS_NOSUID;
1262         }
1263         nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1264         ASSERT(splice || !remount);
1265         /*
1266          * If we are splicing the fs into the namespace,
1267          * perform mount point checks.
1268          *
1269          * We want to resolve the path for the mount point to eliminate
1270          * '.' and ".." and symlinks in mount points; we can't do the
1271          * same for the resource string, since it would turn
1272          * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1273          * this before grabbing vn_vfswlock(), because otherwise we
1274          * would deadlock with lookuppn().
1275          */
1276         if (splice) {
1277                 ASSERT(vp->v_count > 0);
1278 
1279                 /*
1280                  * Pick up mount point and device from appropriate space.
1281                  */
1282                 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1283                         resource = kmem_alloc(pn.pn_pathlen + 1,
1284                             KM_SLEEP);
1285                         (void) strcpy(resource, pn.pn_path);
1286                         pn_free(&pn);
1287                 }
1288                 /*
1289                  * Do a lookupname prior to taking the
1290                  * writelock. Mark this as completed if
1291                  * successful for later cleanup and addition to
1292                  * the mount in progress table.
1293                  */
1294                 if ((uap->flags & MS_GLOBAL) == 0 &&
1295                     lookupname(uap->spec, fromspace,
1296                     FOLLOW, NULL, &bvp) == 0) {
1297                         addmip = 1;
1298                 }
1299 
1300                 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1301                         pathname_t *pnp;
1302 
1303                         if (*pn.pn_path != '/') {
1304                                 error = EINVAL;
1305                                 pn_free(&pn);
1306                                 goto errout;
1307                         }
1308                         pn_alloc(&rpn);
1309                         /*
1310                          * Kludge to prevent autofs from deadlocking with
1311                          * itself when it calls domount().
1312                          *
1313                          * If autofs is calling, it is because it is doing
1314                          * (autofs) mounts in the process of an NFS mount.  A
1315                          * lookuppn() here would cause us to block waiting for
1316                          * said NFS mount to complete, which can't since this
1317                          * is the thread that was supposed to doing it.
1318                          */
1319                         if (fromspace == UIO_USERSPACE) {
1320                                 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1321                                     NULL)) == 0) {
1322                                         pnp = &rpn;
1323                                 } else {
1324                                         /*
1325                                          * The file disappeared or otherwise
1326                                          * became inaccessible since we opened
1327                                          * it; might as well fail the mount
1328                                          * since the mount point is no longer
1329                                          * accessible.
1330                                          */
1331                                         pn_free(&rpn);
1332                                         pn_free(&pn);
1333                                         goto errout;
1334                                 }
1335                         } else {
1336                                 pnp = &pn;
1337                         }
1338                         mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1339                         (void) strcpy(mountpt, pnp->pn_path);
1340 
1341                         /*
1342                          * If the addition of the zone's rootpath
1343                          * would push us over a total path length
1344                          * of MAXPATHLEN, we fail the mount with
1345                          * ENAMETOOLONG, which is what we would have
1346                          * gotten if we were trying to perform the same
1347                          * mount in the global zone.
1348                          *
1349                          * strlen() doesn't count the trailing
1350                          * '\0', but zone_rootpathlen counts both a
1351                          * trailing '/' and the terminating '\0'.
1352                          */
1353                         if ((curproc->p_zone->zone_rootpathlen - 1 +
1354                             strlen(mountpt)) > MAXPATHLEN ||
1355                             (resource != NULL &&
1356                             (curproc->p_zone->zone_rootpathlen - 1 +
1357                             strlen(resource)) > MAXPATHLEN)) {
1358                                 error = ENAMETOOLONG;
1359                         }
1360 
1361                         pn_free(&rpn);
1362                         pn_free(&pn);
1363                 }
1364 
1365                 if (error)
1366                         goto errout;
1367 
1368                 /*
1369                  * Prevent path name resolution from proceeding past
1370                  * the mount point.
1371                  */
1372                 if (vn_vfswlock(vp) != 0) {
1373                         error = EBUSY;
1374                         goto errout;
1375                 }
1376 
1377                 /*
1378                  * Verify that it's legitimate to establish a mount on
1379                  * the prospective mount point.
1380                  */
1381                 if (vn_mountedvfs(vp) != NULL) {
1382                         /*
1383                          * The mount point lock was obtained after some
1384                          * other thread raced through and established a mount.
1385                          */
1386                         vn_vfsunlock(vp);
1387                         error = EBUSY;
1388                         goto errout;
1389                 }
1390                 if (vp->v_flag & VNOMOUNT) {
1391                         vn_vfsunlock(vp);
1392                         error = EINVAL;
1393                         goto errout;
1394                 }
1395         }
1396         if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1397                 uap->dataptr = NULL;
1398                 uap->datalen = 0;
1399         }
1400 
1401         /*
1402          * If this is a remount, we don't want to create a new VFS.
1403          * Instead, we pass the existing one with a remount flag.
1404          */
1405         if (remount) {
1406                 /*
1407                  * Confirm that the mount point is the root vnode of the
1408                  * file system that is being remounted.
1409                  * This can happen if the user specifies a different
1410                  * mount point directory pathname in the (re)mount command.
1411                  *
1412                  * Code below can only be reached if splice is true, so it's
1413                  * safe to do vn_vfsunlock() here.
1414                  */
1415                 if ((vp->v_flag & VROOT) == 0) {
1416                         vn_vfsunlock(vp);
1417                         error = ENOENT;
1418                         goto errout;
1419                 }
1420                 /*
1421                  * Disallow making file systems read-only unless file system
1422                  * explicitly allows it in its vfssw.  Ignore other flags.
1423                  */
1424                 if (rdonly && vn_is_readonly(vp) == 0 &&
1425                     (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1426                         vn_vfsunlock(vp);
1427                         error = EINVAL;
1428                         goto errout;
1429                 }
1430                 /*
1431                  * Disallow changing the NBMAND disposition of the file
1432                  * system on remounts.
1433                  */
1434                 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1435                     (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1436                         vn_vfsunlock(vp);
1437                         error = EINVAL;
1438                         goto errout;
1439                 }
1440                 vfsp = vp->v_vfsp;
1441                 ovflags = vfsp->vfs_flag;
1442                 vfsp->vfs_flag |= VFS_REMOUNT;
1443                 vfsp->vfs_flag &= ~VFS_RDONLY;
1444         } else {
1445                 vfsp = vfs_alloc(KM_SLEEP);
1446                 VFS_INIT(vfsp, vfsops, NULL);
1447         }
1448 
1449         VFS_HOLD(vfsp);
1450 
1451         if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1452                 if (!remount) {
1453                         if (splice)
1454                                 vn_vfsunlock(vp);
1455                         vfs_free(vfsp);
1456                 } else {
1457                         vn_vfsunlock(vp);
1458                         VFS_RELE(vfsp);
1459                 }
1460                 goto errout;
1461         }
1462 
1463         /*
1464          * PRIV_SYS_MOUNT doesn't mean you can become root.
1465          */
1466         if (vfsp->vfs_lofi_id != 0) {
1467                 uap->flags |= MS_NOSUID;
1468                 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1469         }
1470 
1471         /*
1472          * The vfs_reflock is not used anymore the code below explicitly
1473          * holds it preventing others accesing it directly.
1474          */
1475         if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1476             !(vfsp->vfs_flag & VFS_REMOUNT))
1477                 cmn_err(CE_WARN,
1478                     "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1479 
1480         /*
1481          * Lock the vfs. If this is a remount we want to avoid spurious umount
1482          * failures that happen as a side-effect of fsflush() and other mount
1483          * and unmount operations that might be going on simultaneously and
1484          * may have locked the vfs currently. To not return EBUSY immediately
1485          * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1486          */
1487         if (!remount) {
1488                 if (error = vfs_lock(vfsp)) {
1489                         vfsp->vfs_flag = ovflags;
1490 
1491                         lofi_remove(vfsp);
1492 
1493                         if (splice)
1494                                 vn_vfsunlock(vp);
1495                         vfs_free(vfsp);
1496                         goto errout;
1497                 }
1498         } else {
1499                 vfs_lock_wait(vfsp);
1500         }
1501 
1502         /*
1503          * Add device to mount in progress table, global mounts require special
1504          * handling. It is possible that we have already done the lookupname
1505          * on a spliced, non-global fs. If so, we don't want to do it again
1506          * since we cannot do a lookupname after taking the
1507          * wlock above. This case is for a non-spliced, non-global filesystem.
1508          */
1509         if (!addmip) {
1510                 if ((uap->flags & MS_GLOBAL) == 0 &&
1511                     lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1512                         addmip = 1;
1513                 }
1514         }
1515 
1516         if (addmip) {
1517                 vnode_t *lvp = NULL;
1518 
1519                 error = vfs_get_lofi(vfsp, &lvp);
1520                 if (error > 0) {
1521                         lofi_remove(vfsp);
1522 
1523                         if (splice)
1524                                 vn_vfsunlock(vp);
1525                         vfs_unlock(vfsp);
1526 
1527                         if (remount) {
1528                                 VFS_RELE(vfsp);
1529                         } else {
1530                                 vfs_free(vfsp);
1531                         }
1532 
1533                         goto errout;
1534                 } else if (error == -1) {
1535                         bdev = bvp->v_rdev;
1536                         VN_RELE(bvp);
1537                 } else {
1538                         bdev = lvp->v_rdev;
1539                         VN_RELE(lvp);
1540                         VN_RELE(bvp);
1541                 }
1542 
1543                 vfs_addmip(bdev, vfsp);
1544                 addmip = 0;
1545                 delmip = 1;
1546         }
1547         /*
1548          * Invalidate cached entry for the mount point.
1549          */
1550         if (splice)
1551                 dnlc_purge_vp(vp);
1552 
1553         /*
1554          * If have an option string but the filesystem doesn't supply a
1555          * prototype options table, create a table with the global
1556          * options and sufficient room to accept all the options in the
1557          * string.  Then parse the passed in option string
1558          * accepting all the options in the string.  This gives us an
1559          * option table with all the proper cancel properties for the
1560          * global options.
1561          *
1562          * Filesystems that supply a prototype options table are handled
1563          * earlier in this function.
1564          */
1565         if (uap->flags & MS_OPTIONSTR) {
1566                 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1567                         mntopts_t tmp_mntopts;
1568 
1569                         tmp_mntopts.mo_count = 0;
1570                         vfs_createopttbl_extend(&tmp_mntopts, inargs,
1571                             &mnt_mntopts);
1572                         vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1573                         vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1574                         vfs_freeopttbl(&tmp_mntopts);
1575                 }
1576         }
1577 
1578         /*
1579          * Serialize with zone state transitions.
1580          * See vfs_list_add; zone mounted into is:
1581          *      zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1582          * not the zone doing the mount (curproc->p_zone), but if we're already
1583          * inside a NGZ, then we know what zone we are.
1584          */
1585         if (INGLOBALZONE(curproc)) {
1586                 zone = zone_find_by_path(mountpt);
1587                 ASSERT(zone != NULL);
1588         } else {
1589                 zone = curproc->p_zone;
1590                 /*
1591                  * zone_find_by_path does a hold, so do one here too so that
1592                  * we can do a zone_rele after mount_completed.
1593                  */
1594                 zone_hold(zone);
1595         }
1596         mount_in_progress(zone);
1597         /*
1598          * Instantiate (or reinstantiate) the file system.  If appropriate,
1599          * splice it into the file system name space.
1600          *
1601          * We want VFS_MOUNT() to be able to override the vfs_resource
1602          * string if necessary (ie, mntfs), and also for a remount to
1603          * change the same (necessary when remounting '/' during boot).
1604          * So we set up vfs_mntpt and vfs_resource to what we think they
1605          * should be, then hand off control to VFS_MOUNT() which can
1606          * override this.
1607          *
1608          * For safety's sake, when changing vfs_resource or vfs_mntpt of
1609          * a vfs which is on the vfs list (i.e. during a remount), we must
1610          * never set those fields to NULL. Several bits of code make
1611          * assumptions that the fields are always valid.
1612          */
1613         vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1614         if (remount) {
1615                 if ((oldresource = vfsp->vfs_resource) != NULL)
1616                         refstr_hold(oldresource);
1617                 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1618                         refstr_hold(oldmntpt);
1619         }
1620         vfs_setresource(vfsp, resource, 0);
1621         vfs_setmntpoint(vfsp, mountpt, 0);
1622 
1623         /*
1624          * going to mount on this vnode, so notify.
1625          */
1626         vnevent_mountedover(vp, NULL);
1627         error = VFS_MOUNT(vfsp, vp, uap, credp);
1628 
1629         if (uap->flags & MS_RDONLY)
1630                 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1631         if (uap->flags & MS_NOSUID)
1632                 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1633         if (uap->flags & MS_GLOBAL)
1634                 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1635 
1636         if (error) {
1637                 lofi_remove(vfsp);
1638 
1639                 if (remount) {
1640                         /* put back pre-remount options */
1641                         vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1642                         vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1643                             VFSSP_VERBATIM);
1644                         if (oldmntpt)
1645                                 refstr_rele(oldmntpt);
1646                         vfs_setresource(vfsp, refstr_value(oldresource),
1647                             VFSSP_VERBATIM);
1648                         if (oldresource)
1649                                 refstr_rele(oldresource);
1650                         vfsp->vfs_flag = ovflags;
1651                         vfs_unlock(vfsp);
1652                         VFS_RELE(vfsp);
1653                 } else {
1654                         vfs_unlock(vfsp);
1655                         vfs_freemnttab(vfsp);
1656                         vfs_free(vfsp);
1657                 }
1658         } else {
1659                 /*
1660                  * Set the mount time to now
1661                  */
1662                 vfsp->vfs_mtime = ddi_get_time();
1663                 if (remount) {
1664                         vfsp->vfs_flag &= ~VFS_REMOUNT;
1665                         if (oldresource)
1666                                 refstr_rele(oldresource);
1667                         if (oldmntpt)
1668                                 refstr_rele(oldmntpt);
1669                 } else if (splice) {
1670                         /*
1671                          * Link vfsp into the name space at the mount
1672                          * point. Vfs_add() is responsible for
1673                          * holding the mount point which will be
1674                          * released when vfs_remove() is called.
1675                          */
1676                         vfs_add(vp, vfsp, uap->flags);
1677                 } else {
1678                         /*
1679                          * Hold the reference to file system which is
1680                          * not linked into the name space.
1681                          */
1682                         vfsp->vfs_zone = NULL;
1683                         VFS_HOLD(vfsp);
1684                         vfsp->vfs_vnodecovered = NULL;
1685                 }
1686                 /*
1687                  * Set flags for global options encountered
1688                  */
1689                 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1690                         vfsp->vfs_flag |= VFS_RDONLY;
1691                 else
1692                         vfsp->vfs_flag &= ~VFS_RDONLY;
1693                 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1694                         vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1695                 } else {
1696                         if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1697                                 vfsp->vfs_flag |= VFS_NODEVICES;
1698                         else
1699                                 vfsp->vfs_flag &= ~VFS_NODEVICES;
1700                         if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1701                                 vfsp->vfs_flag |= VFS_NOSETUID;
1702                         else
1703                                 vfsp->vfs_flag &= ~VFS_NOSETUID;
1704                 }
1705                 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1706                         vfsp->vfs_flag |= VFS_NBMAND;
1707                 else
1708                         vfsp->vfs_flag &= ~VFS_NBMAND;
1709 
1710                 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1711                         vfsp->vfs_flag |= VFS_XATTR;
1712                 else
1713                         vfsp->vfs_flag &= ~VFS_XATTR;
1714 
1715                 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1716                         vfsp->vfs_flag |= VFS_NOEXEC;
1717                 else
1718                         vfsp->vfs_flag &= ~VFS_NOEXEC;
1719 
1720                 /*
1721                  * Now construct the output option string of options
1722                  * we recognized.
1723                  */
1724                 if (uap->flags & MS_OPTIONSTR) {
1725                         vfs_list_read_lock();
1726                         copyout_error = vfs_buildoptionstr(
1727                             &vfsp->vfs_mntopts, inargs, optlen);
1728                         vfs_list_unlock();
1729                         if (copyout_error == 0 &&
1730                             (uap->flags & MS_SYSSPACE) == 0) {
1731                                 copyout_error = copyoutstr(inargs, opts,
1732                                     optlen, NULL);
1733                         }
1734                 }
1735 
1736                 /*
1737                  * If this isn't a remount, set up the vopstats before
1738                  * anyone can touch this. We only allow spliced file
1739                  * systems (file systems which are in the namespace) to
1740                  * have the VFS_STATS flag set.
1741                  * NOTE: PxFS mounts the underlying file system with
1742                  * MS_NOSPLICE set and copies those vfs_flags to its private
1743                  * vfs structure. As a result, PxFS should never have
1744                  * the VFS_STATS flag or else we might access the vfs
1745                  * statistics-related fields prior to them being
1746                  * properly initialized.
1747                  */
1748                 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1749                         initialize_vopstats(&vfsp->vfs_vopstats);
1750                         /*
1751                          * We need to set vfs_vskap to NULL because there's
1752                          * a chance it won't be set below.  This is checked
1753                          * in teardown_vopstats() so we can't have garbage.
1754                          */
1755                         vfsp->vfs_vskap = NULL;
1756                         vfsp->vfs_flag |= VFS_STATS;
1757                         vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1758                 }
1759 
1760                 if (vswp->vsw_flag & VSW_XID)
1761                         vfsp->vfs_flag |= VFS_XID;
1762 
1763                 vfs_unlock(vfsp);
1764         }
1765         mount_completed(zone);
1766         zone_rele(zone);
1767         if (splice)
1768                 vn_vfsunlock(vp);
1769 
1770         if ((error == 0) && (copyout_error == 0)) {
1771                 if (!remount) {
1772                         /*
1773                          * Don't call get_vskstat_anchor() while holding
1774                          * locks since it allocates memory and calls
1775                          * VFS_STATVFS().  For NFS, the latter can generate
1776                          * an over-the-wire call.
1777                          */
1778                         vskap = get_vskstat_anchor(vfsp);
1779                         /* Only take the lock if we have something to do */
1780                         if (vskap != NULL) {
1781                                 vfs_lock_wait(vfsp);
1782                                 if (vfsp->vfs_flag & VFS_STATS) {
1783                                         vfsp->vfs_vskap = vskap;
1784                                 }
1785                                 vfs_unlock(vfsp);
1786                         }
1787                 }
1788                 /* Return vfsp to caller. */
1789                 *vfspp = vfsp;
1790         }
1791 errout:
1792         vfs_freeopttbl(&mnt_mntopts);
1793         if (resource != NULL)
1794                 kmem_free(resource, strlen(resource) + 1);
1795         if (mountpt != NULL)
1796                 kmem_free(mountpt, strlen(mountpt) + 1);
1797         /*
1798          * It is possible we errored prior to adding to mount in progress
1799          * table. Must free vnode we acquired with successful lookupname.
1800          */
1801         if (addmip)
1802                 VN_RELE(bvp);
1803         if (delmip)
1804                 vfs_delmip(vfsp);
1805         ASSERT(vswp != NULL);
1806         vfs_unrefvfssw(vswp);
1807         if (inargs != opts)
1808                 kmem_free(inargs, MAX_MNTOPT_STR);
1809         if (copyout_error) {
1810                 lofi_remove(vfsp);
1811                 VFS_RELE(vfsp);
1812                 error = copyout_error;
1813         }
1814         return (error);
1815 }
1816 
1817 static void
1818 vfs_setpath(
1819     struct vfs *vfsp,           /* vfs being updated */
1820     refstr_t **refp,            /* Ref-count string to contain the new path */
1821     const char *newpath,        /* Path to add to refp (above) */
1822     uint32_t flag)              /* flag */
1823 {
1824         size_t len;
1825         refstr_t *ref;
1826         zone_t *zone = curproc->p_zone;
1827         char *sp;
1828         int have_list_lock = 0;
1829 
1830         ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1831 
1832         /*
1833          * New path must be less than MAXPATHLEN because mntfs
1834          * will only display up to MAXPATHLEN bytes. This is currently
1835          * safe, because domount() uses pn_get(), and other callers
1836          * similarly cap the size to fewer than MAXPATHLEN bytes.
1837          */
1838 
1839         ASSERT(strlen(newpath) < MAXPATHLEN);
1840 
1841         /* mntfs requires consistency while vfs list lock is held */
1842 
1843         if (VFS_ON_LIST(vfsp)) {
1844                 have_list_lock = 1;
1845                 vfs_list_lock();
1846         }
1847 
1848         if (*refp != NULL)
1849                 refstr_rele(*refp);
1850 
1851         /*
1852          * If we are in a non-global zone then we prefix the supplied path,
1853          * newpath, with the zone's root path, with two exceptions. The first
1854          * is where we have been explicitly directed to avoid doing so; this
1855          * will be the case following a failed remount, where the path supplied
1856          * will be a saved version which must now be restored. The second
1857          * exception is where newpath is not a pathname but a descriptive name,
1858          * e.g. "procfs".
1859          */
1860         if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1861                 ref = refstr_alloc(newpath);
1862                 goto out;
1863         }
1864 
1865         /*
1866          * Truncate the trailing '/' in the zoneroot, and merge
1867          * in the zone's rootpath with the "newpath" (resource
1868          * or mountpoint) passed in.
1869          *
1870          * The size of the required buffer is thus the size of
1871          * the buffer required for the passed-in newpath
1872          * (strlen(newpath) + 1), plus the size of the buffer
1873          * required to hold zone_rootpath (zone_rootpathlen)
1874          * minus one for one of the now-superfluous NUL
1875          * terminations, minus one for the trailing '/'.
1876          *
1877          * That gives us:
1878          *
1879          * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1880          *
1881          * Which is what we have below.
1882          */
1883 
1884         len = strlen(newpath) + zone->zone_rootpathlen - 1;
1885         sp = kmem_alloc(len, KM_SLEEP);
1886 
1887         /*
1888          * Copy everything including the trailing slash, which
1889          * we then overwrite with the NUL character.
1890          */
1891 
1892         (void) strcpy(sp, zone->zone_rootpath);
1893         sp[zone->zone_rootpathlen - 2] = '\0';
1894         (void) strcat(sp, newpath);
1895 
1896         ref = refstr_alloc(sp);
1897         kmem_free(sp, len);
1898 out:
1899         *refp = ref;
1900 
1901         if (have_list_lock) {
1902                 vfs_mnttab_modtimeupd();
1903                 vfs_list_unlock();
1904         }
1905 }
1906 
1907 /*
1908  * Record a mounted resource name in a vfs structure.
1909  * If vfsp is already mounted, caller must hold the vfs lock.
1910  */
1911 void
1912 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1913 {
1914         if (resource == NULL || resource[0] == '\0')
1915                 resource = VFS_NORESOURCE;
1916         vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1917 }
1918 
1919 /*
1920  * Record a mount point name in a vfs structure.
1921  * If vfsp is already mounted, caller must hold the vfs lock.
1922  */
1923 void
1924 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1925 {
1926         if (mntpt == NULL || mntpt[0] == '\0')
1927                 mntpt = VFS_NOMNTPT;
1928         vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1929 }
1930 
1931 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1932 
1933 refstr_t *
1934 vfs_getresource(const struct vfs *vfsp)
1935 {
1936         refstr_t *resource;
1937 
1938         vfs_list_read_lock();
1939         resource = vfsp->vfs_resource;
1940         refstr_hold(resource);
1941         vfs_list_unlock();
1942 
1943         return (resource);
1944 }
1945 
1946 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1947 
1948 refstr_t *
1949 vfs_getmntpoint(const struct vfs *vfsp)
1950 {
1951         refstr_t *mntpt;
1952 
1953         vfs_list_read_lock();
1954         mntpt = vfsp->vfs_mntpt;
1955         refstr_hold(mntpt);
1956         vfs_list_unlock();
1957 
1958         return (mntpt);
1959 }
1960 
1961 /*
1962  * Create an empty options table with enough empty slots to hold all
1963  * The options in the options string passed as an argument.
1964  * Potentially prepend another options table.
1965  *
1966  * Note: caller is responsible for locking the vfs list, if needed,
1967  *       to protect mops.
1968  */
1969 static void
1970 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1971     const mntopts_t *mtmpl)
1972 {
1973         const char *s = opts;
1974         uint_t count;
1975 
1976         if (opts == NULL || *opts == '\0') {
1977                 count = 0;
1978         } else {
1979                 count = 1;
1980 
1981                 /*
1982                  * Count number of options in the string
1983                  */
1984                 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
1985                         count++;
1986                         s++;
1987                 }
1988         }
1989         vfs_copyopttbl_extend(mtmpl, mops, count);
1990 }
1991 
1992 /*
1993  * Create an empty options table with enough empty slots to hold all
1994  * The options in the options string passed as an argument.
1995  *
1996  * This function is *not* for general use by filesystems.
1997  *
1998  * Note: caller is responsible for locking the vfs list, if needed,
1999  *       to protect mops.
2000  */
2001 void
2002 vfs_createopttbl(mntopts_t *mops, const char *opts)
2003 {
2004         vfs_createopttbl_extend(mops, opts, NULL);
2005 }
2006 
2007 
2008 /*
2009  * Swap two mount options tables
2010  */
2011 static void
2012 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2013 {
2014         uint_t tmpcnt;
2015         mntopt_t *tmplist;
2016 
2017         tmpcnt = optbl2->mo_count;
2018         tmplist = optbl2->mo_list;
2019         optbl2->mo_count = optbl1->mo_count;
2020         optbl2->mo_list = optbl1->mo_list;
2021         optbl1->mo_count = tmpcnt;
2022         optbl1->mo_list = tmplist;
2023 }
2024 
2025 static void
2026 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2027 {
2028         vfs_list_lock();
2029         vfs_swapopttbl_nolock(optbl1, optbl2);
2030         vfs_mnttab_modtimeupd();
2031         vfs_list_unlock();
2032 }
2033 
2034 static char **
2035 vfs_copycancelopt_extend(char **const moc, int extend)
2036 {
2037         int i = 0;
2038         int j;
2039         char **result;
2040 
2041         if (moc != NULL) {
2042                 for (; moc[i] != NULL; i++)
2043                         /* count number of options to cancel */;
2044         }
2045 
2046         if (i + extend == 0)
2047                 return (NULL);
2048 
2049         result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2050 
2051         for (j = 0; j < i; j++) {
2052                 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2053                 (void) strcpy(result[j], moc[j]);
2054         }
2055         for (; j <= i + extend; j++)
2056                 result[j] = NULL;
2057 
2058         return (result);
2059 }
2060 
2061 static void
2062 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2063 {
2064         char *sp, *dp;
2065 
2066         d->mo_flags = s->mo_flags;
2067         d->mo_data = s->mo_data;
2068         sp = s->mo_name;
2069         if (sp != NULL) {
2070                 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2071                 (void) strcpy(dp, sp);
2072                 d->mo_name = dp;
2073         } else {
2074                 d->mo_name = NULL; /* should never happen */
2075         }
2076 
2077         d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2078 
2079         sp = s->mo_arg;
2080         if (sp != NULL) {
2081                 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2082                 (void) strcpy(dp, sp);
2083                 d->mo_arg = dp;
2084         } else {
2085                 d->mo_arg = NULL;
2086         }
2087 }
2088 
2089 /*
2090  * Copy a mount options table, possibly allocating some spare
2091  * slots at the end.  It is permissible to copy_extend the NULL table.
2092  */
2093 static void
2094 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2095 {
2096         uint_t i, count;
2097         mntopt_t *motbl;
2098 
2099         /*
2100          * Clear out any existing stuff in the options table being initialized
2101          */
2102         vfs_freeopttbl(dmo);
2103         count = (smo == NULL) ? 0 : smo->mo_count;
2104         if ((count + extra) == 0)       /* nothing to do */
2105                 return;
2106         dmo->mo_count = count + extra;
2107         motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2108         dmo->mo_list = motbl;
2109         for (i = 0; i < count; i++) {
2110                 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2111         }
2112         for (i = count; i < count + extra; i++) {
2113                 motbl[i].mo_flags = MO_EMPTY;
2114         }
2115 }
2116 
2117 /*
2118  * Copy a mount options table.
2119  *
2120  * This function is *not* for general use by filesystems.
2121  *
2122  * Note: caller is responsible for locking the vfs list, if needed,
2123  *       to protect smo and dmo.
2124  */
2125 void
2126 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2127 {
2128         vfs_copyopttbl_extend(smo, dmo, 0);
2129 }
2130 
2131 static char **
2132 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2133 {
2134         int c1 = 0;
2135         int c2 = 0;
2136         char **result;
2137         char **sp1, **sp2, **dp;
2138 
2139         /*
2140          * First we count both lists of cancel options.
2141          * If either is NULL or has no elements, we return a copy of
2142          * the other.
2143          */
2144         if (mop1->mo_cancel != NULL) {
2145                 for (; mop1->mo_cancel[c1] != NULL; c1++)
2146                         /* count cancel options in mop1 */;
2147         }
2148 
2149         if (c1 == 0)
2150                 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2151 
2152         if (mop2->mo_cancel != NULL) {
2153                 for (; mop2->mo_cancel[c2] != NULL; c2++)
2154                         /* count cancel options in mop2 */;
2155         }
2156 
2157         result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2158 
2159         if (c2 == 0)
2160                 return (result);
2161 
2162         /*
2163          * When we get here, we've got two sets of cancel options;
2164          * we need to merge the two sets.  We know that the result
2165          * array has "c1+c2+1" entries and in the end we might shrink
2166          * it.
2167          * Result now has a copy of the c1 entries from mop1; we'll
2168          * now lookup all the entries of mop2 in mop1 and copy it if
2169          * it is unique.
2170          * This operation is O(n^2) but it's only called once per
2171          * filesystem per duplicate option.  This is a situation
2172          * which doesn't arise with the filesystems in ON and
2173          * n is generally 1.
2174          */
2175 
2176         dp = &result[c1];
2177         for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2178                 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2179                         if (strcmp(*sp1, *sp2) == 0)
2180                                 break;
2181                 }
2182                 if (*sp1 == NULL) {
2183                         /*
2184                          * Option *sp2 not found in mop1, so copy it.
2185                          * The calls to vfs_copycancelopt_extend()
2186                          * guarantee that there's enough room.
2187                          */
2188                         *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2189                         (void) strcpy(*dp++, *sp2);
2190                 }
2191         }
2192         if (dp != &result[c1+c2]) {
2193                 size_t bytes = (dp - result + 1) * sizeof (char *);
2194                 char **nres = kmem_alloc(bytes, KM_SLEEP);
2195 
2196                 bcopy(result, nres, bytes);
2197                 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2198                 result = nres;
2199         }
2200         return (result);
2201 }
2202 
2203 /*
2204  * Merge two mount option tables (outer and inner) into one.  This is very
2205  * similar to "merging" global variables and automatic variables in C.
2206  *
2207  * This isn't (and doesn't have to be) fast.
2208  *
2209  * This function is *not* for general use by filesystems.
2210  *
2211  * Note: caller is responsible for locking the vfs list, if needed,
2212  *       to protect omo, imo & dmo.
2213  */
2214 void
2215 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2216 {
2217         uint_t i, count;
2218         mntopt_t *mop, *motbl;
2219         uint_t freeidx;
2220 
2221         /*
2222          * First determine how much space we need to allocate.
2223          */
2224         count = omo->mo_count;
2225         for (i = 0; i < imo->mo_count; i++) {
2226                 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2227                         continue;
2228                 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2229                         count++;
2230         }
2231         ASSERT(count >= omo->mo_count &&
2232             count <= omo->mo_count + imo->mo_count);
2233         motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2234         for (i = 0; i < omo->mo_count; i++)
2235                 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2236         freeidx = omo->mo_count;
2237         for (i = 0; i < imo->mo_count; i++) {
2238                 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2239                         continue;
2240                 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2241                         char **newcanp;
2242                         uint_t index = mop - omo->mo_list;
2243 
2244                         newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2245 
2246                         vfs_freeopt(&motbl[index]);
2247                         vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2248 
2249                         vfs_freecancelopt(motbl[index].mo_cancel);
2250                         motbl[index].mo_cancel = newcanp;
2251                 } else {
2252                         /*
2253                          * If it's a new option, just copy it over to the first
2254                          * free location.
2255                          */
2256                         vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2257                 }
2258         }
2259         dmo->mo_count = count;
2260         dmo->mo_list = motbl;
2261 }
2262 
2263 /*
2264  * Functions to set and clear mount options in a mount options table.
2265  */
2266 
2267 /*
2268  * Clear a mount option, if it exists.
2269  *
2270  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2271  * the vfs list.
2272  */
2273 static void
2274 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2275 {
2276         struct mntopt *mop;
2277         uint_t i, count;
2278 
2279         ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2280 
2281         count = mops->mo_count;
2282         for (i = 0; i < count; i++) {
2283                 mop = &mops->mo_list[i];
2284 
2285                 if (mop->mo_flags & MO_EMPTY)
2286                         continue;
2287                 if (strcmp(opt, mop->mo_name))
2288                         continue;
2289                 mop->mo_flags &= ~MO_SET;
2290                 if (mop->mo_arg != NULL) {
2291                         kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2292                 }
2293                 mop->mo_arg = NULL;
2294                 if (update_mnttab)
2295                         vfs_mnttab_modtimeupd();
2296                 break;
2297         }
2298 }
2299 
2300 void
2301 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2302 {
2303         int gotlock = 0;
2304 
2305         if (VFS_ON_LIST(vfsp)) {
2306                 gotlock = 1;
2307                 vfs_list_lock();
2308         }
2309         vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2310         if (gotlock)
2311                 vfs_list_unlock();
2312 }
2313 
2314 
2315 /*
2316  * Set a mount option on.  If it's not found in the table, it's silently
2317  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2318  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2319  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2320  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2321  * MO_EMPTY set is created as the option passed in.
2322  *
2323  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2324  * the vfs list.
2325  */
2326 static void
2327 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2328     const char *arg, int flags, int update_mnttab)
2329 {
2330         mntopt_t *mop;
2331         uint_t i, count;
2332         char *sp;
2333 
2334         ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2335 
2336         if (flags & VFS_CREATEOPT) {
2337                 if (vfs_hasopt(mops, opt) != NULL) {
2338                         flags &= ~VFS_CREATEOPT;
2339                 }
2340         }
2341         count = mops->mo_count;
2342         for (i = 0; i < count; i++) {
2343                 mop = &mops->mo_list[i];
2344 
2345                 if (mop->mo_flags & MO_EMPTY) {
2346                         if ((flags & VFS_CREATEOPT) == 0)
2347                                 continue;
2348                         sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2349                         (void) strcpy(sp, opt);
2350                         mop->mo_name = sp;
2351                         if (arg != NULL)
2352                                 mop->mo_flags = MO_HASVALUE;
2353                         else
2354                                 mop->mo_flags = 0;
2355                 } else if (strcmp(opt, mop->mo_name)) {
2356                         continue;
2357                 }
2358                 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2359                         break;
2360                 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2361                         sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2362                         (void) strcpy(sp, arg);
2363                 } else {
2364                         sp = NULL;
2365                 }
2366                 if (mop->mo_arg != NULL)
2367                         kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2368                 mop->mo_arg = sp;
2369                 if (flags & VFS_DISPLAY)
2370                         mop->mo_flags &= ~MO_NODISPLAY;
2371                 if (flags & VFS_NODISPLAY)
2372                         mop->mo_flags |= MO_NODISPLAY;
2373                 mop->mo_flags |= MO_SET;
2374                 if (mop->mo_cancel != NULL) {
2375                         char **cp;
2376 
2377                         for (cp = mop->mo_cancel; *cp != NULL; cp++)
2378                                 vfs_clearmntopt_nolock(mops, *cp, 0);
2379                 }
2380                 if (update_mnttab)
2381                         vfs_mnttab_modtimeupd();
2382                 break;
2383         }
2384 }
2385 
2386 void
2387 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2388 {
2389         int gotlock = 0;
2390 
2391         if (VFS_ON_LIST(vfsp)) {
2392                 gotlock = 1;
2393                 vfs_list_lock();
2394         }
2395         vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2396         if (gotlock)
2397                 vfs_list_unlock();
2398 }
2399 
2400 
2401 /*
2402  * Add a "tag" option to a mounted file system's options list.
2403  *
2404  * Note: caller is responsible for locking the vfs list, if needed,
2405  *       to protect mops.
2406  */
2407 static mntopt_t *
2408 vfs_addtag(mntopts_t *mops, const char *tag)
2409 {
2410         uint_t count;
2411         mntopt_t *mop, *motbl;
2412 
2413         count = mops->mo_count + 1;
2414         motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2415         if (mops->mo_count) {
2416                 size_t len = (count - 1) * sizeof (mntopt_t);
2417 
2418                 bcopy(mops->mo_list, motbl, len);
2419                 kmem_free(mops->mo_list, len);
2420         }
2421         mops->mo_count = count;
2422         mops->mo_list = motbl;
2423         mop = &motbl[count - 1];
2424         mop->mo_flags = MO_TAG;
2425         mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2426         (void) strcpy(mop->mo_name, tag);
2427         return (mop);
2428 }
2429 
2430 /*
2431  * Allow users to set arbitrary "tags" in a vfs's mount options.
2432  * Broader use within the kernel is discouraged.
2433  */
2434 int
2435 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2436     cred_t *cr)
2437 {
2438         vfs_t *vfsp;
2439         mntopts_t *mops;
2440         mntopt_t *mop;
2441         int found = 0;
2442         dev_t dev = makedevice(major, minor);
2443         int err = 0;
2444         char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2445 
2446         /*
2447          * Find the desired mounted file system
2448          */
2449         vfs_list_lock();
2450         vfsp = rootvfs;
2451         do {
2452                 if (vfsp->vfs_dev == dev &&
2453                     strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2454                         found = 1;
2455                         break;
2456                 }
2457                 vfsp = vfsp->vfs_next;
2458         } while (vfsp != rootvfs);
2459 
2460         if (!found) {
2461                 err = EINVAL;
2462                 goto out;
2463         }
2464         err = secpolicy_fs_config(cr, vfsp);
2465         if (err != 0)
2466                 goto out;
2467 
2468         mops = &vfsp->vfs_mntopts;
2469         /*
2470          * Add tag if it doesn't already exist
2471          */
2472         if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2473                 int len;
2474 
2475                 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2476                 len = strlen(buf);
2477                 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2478                         err = ENAMETOOLONG;
2479                         goto out;
2480                 }
2481                 mop = vfs_addtag(mops, tag);
2482         }
2483         if ((mop->mo_flags & MO_TAG) == 0) {
2484                 err = EINVAL;
2485                 goto out;
2486         }
2487         vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2488 out:
2489         vfs_list_unlock();
2490         kmem_free(buf, MAX_MNTOPT_STR);
2491         return (err);
2492 }
2493 
2494 /*
2495  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2496  * Broader use within the kernel is discouraged.
2497  */
2498 int
2499 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2500     cred_t *cr)
2501 {
2502         vfs_t *vfsp;
2503         mntopt_t *mop;
2504         int found = 0;
2505         dev_t dev = makedevice(major, minor);
2506         int err = 0;
2507 
2508         /*
2509          * Find the desired mounted file system
2510          */
2511         vfs_list_lock();
2512         vfsp = rootvfs;
2513         do {
2514                 if (vfsp->vfs_dev == dev &&
2515                     strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2516                         found = 1;
2517                         break;
2518                 }
2519                 vfsp = vfsp->vfs_next;
2520         } while (vfsp != rootvfs);
2521 
2522         if (!found) {
2523                 err = EINVAL;
2524                 goto out;
2525         }
2526         err = secpolicy_fs_config(cr, vfsp);
2527         if (err != 0)
2528                 goto out;
2529 
2530         if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2531                 err = EINVAL;
2532                 goto out;
2533         }
2534         if ((mop->mo_flags & MO_TAG) == 0) {
2535                 err = EINVAL;
2536                 goto out;
2537         }
2538         vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2539 out:
2540         vfs_list_unlock();
2541         return (err);
2542 }
2543 
2544 /*
2545  * Function to parse an option string and fill in a mount options table.
2546  * Unknown options are silently ignored.  The input option string is modified
2547  * by replacing separators with nulls.  If the create flag is set, options
2548  * not found in the table are just added on the fly.  The table must have
2549  * an option slot marked MO_EMPTY to add an option on the fly.
2550  *
2551  * This function is *not* for general use by filesystems.
2552  *
2553  * Note: caller is responsible for locking the vfs list, if needed,
2554  *       to protect mops..
2555  */
2556 void
2557 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2558 {
2559         char *s = osp, *p, *nextop, *valp, *cp, *ep;
2560         int setflg = VFS_NOFORCEOPT;
2561 
2562         if (osp == NULL)
2563                 return;
2564         while (*s != '\0') {
2565                 p = strchr(s, ',');     /* find next option */
2566                 if (p == NULL) {
2567                         cp = NULL;
2568                         p = s + strlen(s);
2569                 } else {
2570                         cp = p;         /* save location of comma */
2571                         *p++ = '\0';    /* mark end and point to next option */
2572                 }
2573                 nextop = p;
2574                 p = strchr(s, '=');     /* look for value */
2575                 if (p == NULL) {
2576                         valp = NULL;    /* no value supplied */
2577                 } else {
2578                         ep = p;         /* save location of equals */
2579                         *p++ = '\0';    /* end option and point to value */
2580                         valp = p;
2581                 }
2582                 /*
2583                  * set option into options table
2584                  */
2585                 if (create)
2586                         setflg |= VFS_CREATEOPT;
2587                 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2588                 if (cp != NULL)
2589                         *cp = ',';      /* restore the comma */
2590                 if (valp != NULL)
2591                         *ep = '=';      /* restore the equals */
2592                 s = nextop;
2593         }
2594 }
2595 
2596 /*
2597  * Function to inquire if an option exists in a mount options table.
2598  * Returns a pointer to the option if it exists, else NULL.
2599  *
2600  * This function is *not* for general use by filesystems.
2601  *
2602  * Note: caller is responsible for locking the vfs list, if needed,
2603  *       to protect mops.
2604  */
2605 struct mntopt *
2606 vfs_hasopt(const mntopts_t *mops, const char *opt)
2607 {
2608         struct mntopt *mop;
2609         uint_t i, count;
2610 
2611         count = mops->mo_count;
2612         for (i = 0; i < count; i++) {
2613                 mop = &mops->mo_list[i];
2614 
2615                 if (mop->mo_flags & MO_EMPTY)
2616                         continue;
2617                 if (strcmp(opt, mop->mo_name) == 0)
2618                         return (mop);
2619         }
2620         return (NULL);
2621 }
2622 
2623 /*
2624  * Function to inquire if an option is set in a mount options table.
2625  * Returns non-zero if set and fills in the arg pointer with a pointer to
2626  * the argument string or NULL if there is no argument string.
2627  */
2628 static int
2629 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2630 {
2631         struct mntopt *mop;
2632         uint_t i, count;
2633 
2634         count = mops->mo_count;
2635         for (i = 0; i < count; i++) {
2636                 mop = &mops->mo_list[i];
2637 
2638                 if (mop->mo_flags & MO_EMPTY)
2639                         continue;
2640                 if (strcmp(opt, mop->mo_name))
2641                         continue;
2642                 if ((mop->mo_flags & MO_SET) == 0)
2643                         return (0);
2644                 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2645                         *argp = mop->mo_arg;
2646                 return (1);
2647         }
2648         return (0);
2649 }
2650 
2651 
2652 int
2653 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2654 {
2655         int ret;
2656 
2657         vfs_list_read_lock();
2658         ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2659         vfs_list_unlock();
2660         return (ret);
2661 }
2662 
2663 
2664 /*
2665  * Construct a comma separated string of the options set in the given
2666  * mount table, return the string in the given buffer.  Return non-zero if
2667  * the buffer would overflow.
2668  *
2669  * This function is *not* for general use by filesystems.
2670  *
2671  * Note: caller is responsible for locking the vfs list, if needed,
2672  *       to protect mp.
2673  */
2674 int
2675 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2676 {
2677         char *cp;
2678         uint_t i;
2679 
2680         buf[0] = '\0';
2681         cp = buf;
2682         for (i = 0; i < mp->mo_count; i++) {
2683                 struct mntopt *mop;
2684 
2685                 mop = &mp->mo_list[i];
2686                 if (mop->mo_flags & MO_SET) {
2687                         int optlen, comma = 0;
2688 
2689                         if (buf[0] != '\0')
2690                                 comma = 1;
2691                         optlen = strlen(mop->mo_name);
2692                         if (strlen(buf) + comma + optlen + 1 > len)
2693                                 goto err;
2694                         if (comma)
2695                                 *cp++ = ',';
2696                         (void) strcpy(cp, mop->mo_name);
2697                         cp += optlen;
2698                         /*
2699                          * Append option value if there is one
2700                          */
2701                         if (mop->mo_arg != NULL) {
2702                                 int arglen;
2703 
2704                                 arglen = strlen(mop->mo_arg);
2705                                 if (strlen(buf) + arglen + 2 > len)
2706                                         goto err;
2707                                 *cp++ = '=';
2708                                 (void) strcpy(cp, mop->mo_arg);
2709                                 cp += arglen;
2710                         }
2711                 }
2712         }
2713         return (0);
2714 err:
2715         return (EOVERFLOW);
2716 }
2717 
2718 static void
2719 vfs_freecancelopt(char **moc)
2720 {
2721         if (moc != NULL) {
2722                 int ccnt = 0;
2723                 char **cp;
2724 
2725                 for (cp = moc; *cp != NULL; cp++) {
2726                         kmem_free(*cp, strlen(*cp) + 1);
2727                         ccnt++;
2728                 }
2729                 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2730         }
2731 }
2732 
2733 static void
2734 vfs_freeopt(mntopt_t *mop)
2735 {
2736         if (mop->mo_name != NULL)
2737                 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2738 
2739         vfs_freecancelopt(mop->mo_cancel);
2740 
2741         if (mop->mo_arg != NULL)
2742                 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2743 }
2744 
2745 /*
2746  * Free a mount options table
2747  *
2748  * This function is *not* for general use by filesystems.
2749  *
2750  * Note: caller is responsible for locking the vfs list, if needed,
2751  *       to protect mp.
2752  */
2753 void
2754 vfs_freeopttbl(mntopts_t *mp)
2755 {
2756         uint_t i, count;
2757 
2758         count = mp->mo_count;
2759         for (i = 0; i < count; i++) {
2760                 vfs_freeopt(&mp->mo_list[i]);
2761         }
2762         if (count) {
2763                 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2764                 mp->mo_count = 0;
2765                 mp->mo_list = NULL;
2766         }
2767 }
2768 
2769 
2770 /* ARGSUSED */
2771 static int
2772 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2773     caller_context_t *ct)
2774 {
2775         return (0);
2776 }
2777 
2778 /* ARGSUSED */
2779 static int
2780 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2781     caller_context_t *ct)
2782 {
2783         return (0);
2784 }
2785 
2786 /*
2787  * The dummy vnode is currently used only by file events notification
2788  * module which is just interested in the timestamps.
2789  */
2790 /* ARGSUSED */
2791 static int
2792 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2793     caller_context_t *ct)
2794 {
2795         bzero(vap, sizeof (vattr_t));
2796         vap->va_type = VREG;
2797         vap->va_nlink = 1;
2798         vap->va_ctime = vfs_mnttab_ctime;
2799         /*
2800          * it is ok to just copy mtime as the time will be monotonically
2801          * increasing.
2802          */
2803         vap->va_mtime = vfs_mnttab_mtime;
2804         vap->va_atime = vap->va_mtime;
2805         return (0);
2806 }
2807 
2808 static void
2809 vfs_mnttabvp_setup(void)
2810 {
2811         vnode_t *tvp;
2812         vnodeops_t *vfs_mntdummyvnops;
2813         const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2814                 VOPNAME_READ,           { .vop_read = vfs_mntdummyread },
2815                 VOPNAME_WRITE,          { .vop_write = vfs_mntdummywrite },
2816                 VOPNAME_GETATTR,        { .vop_getattr = vfs_mntdummygetattr },
2817                 VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
2818                 NULL,                   NULL
2819         };
2820 
2821         if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2822             &vfs_mntdummyvnops) != 0) {
2823                 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2824                 /* Shouldn't happen, but not bad enough to panic */
2825                 return;
2826         }
2827 
2828         /*
2829          * A global dummy vnode is allocated to represent mntfs files.
2830          * The mntfs file (/etc/mnttab) can be monitored for file events
2831          * and receive an event when mnttab changes. Dummy VOP calls
2832          * will be made on this vnode. The file events notification module
2833          * intercepts this vnode and delivers relevant events.
2834          */
2835         tvp = vn_alloc(KM_SLEEP);
2836         tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2837         vn_setops(tvp, vfs_mntdummyvnops);
2838         tvp->v_type = VREG;
2839         /*
2840          * The mnt dummy ops do not reference v_data.
2841          * No other module intercepting this vnode should either.
2842          * Just set it to point to itself.
2843          */
2844         tvp->v_data = (caddr_t)tvp;
2845         tvp->v_vfsp = rootvfs;
2846         vfs_mntdummyvp = tvp;
2847 }
2848 
2849 /*
2850  * performs fake read/write ops
2851  */
2852 static void
2853 vfs_mnttab_rwop(int rw)
2854 {
2855         struct uio      uio;
2856         struct iovec    iov;
2857         char    buf[1];
2858 
2859         if (vfs_mntdummyvp == NULL)
2860                 return;
2861 
2862         bzero(&uio, sizeof (uio));
2863         bzero(&iov, sizeof (iov));
2864         iov.iov_base = buf;
2865         iov.iov_len = 0;
2866         uio.uio_iov = &iov;
2867         uio.uio_iovcnt = 1;
2868         uio.uio_loffset = 0;
2869         uio.uio_segflg = UIO_SYSSPACE;
2870         uio.uio_resid = 0;
2871         if (rw) {
2872                 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2873         } else {
2874                 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2875         }
2876 }
2877 
2878 /*
2879  * Generate a write operation.
2880  */
2881 void
2882 vfs_mnttab_writeop(void)
2883 {
2884         vfs_mnttab_rwop(1);
2885 }
2886 
2887 /*
2888  * Generate a read operation.
2889  */
2890 void
2891 vfs_mnttab_readop(void)
2892 {
2893         vfs_mnttab_rwop(0);
2894 }
2895 
2896 /*
2897  * Free any mnttab information recorded in the vfs struct.
2898  * The vfs must not be on the vfs list.
2899  */
2900 static void
2901 vfs_freemnttab(struct vfs *vfsp)
2902 {
2903         ASSERT(!VFS_ON_LIST(vfsp));
2904 
2905         /*
2906          * Free device and mount point information
2907          */
2908         if (vfsp->vfs_mntpt != NULL) {
2909                 refstr_rele(vfsp->vfs_mntpt);
2910                 vfsp->vfs_mntpt = NULL;
2911         }
2912         if (vfsp->vfs_resource != NULL) {
2913                 refstr_rele(vfsp->vfs_resource);
2914                 vfsp->vfs_resource = NULL;
2915         }
2916         /*
2917          * Now free mount options information
2918          */
2919         vfs_freeopttbl(&vfsp->vfs_mntopts);
2920 }
2921 
2922 /*
2923  * Return the last mnttab modification time
2924  */
2925 void
2926 vfs_mnttab_modtime(timespec_t *ts)
2927 {
2928         ASSERT(RW_LOCK_HELD(&vfslist));
2929         *ts = vfs_mnttab_mtime;
2930 }
2931 
2932 /*
2933  * See if mnttab is changed
2934  */
2935 void
2936 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2937 {
2938         int changed;
2939 
2940         *phpp = (struct pollhead *)NULL;
2941 
2942         /*
2943          * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2944          * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2945          * to not grab the vfs list lock because tv_sec is monotonically
2946          * increasing.
2947          */
2948 
2949         changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2950             (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2951         if (!changed) {
2952                 *phpp = &vfs_pollhd;
2953         }
2954 }
2955 
2956 /* Provide a unique and monotonically-increasing timestamp. */
2957 void
2958 vfs_mono_time(timespec_t *ts)
2959 {
2960         static volatile hrtime_t hrt;           /* The saved time. */
2961         hrtime_t        newhrt, oldhrt;         /* For effecting the CAS. */
2962         timespec_t      newts;
2963 
2964         /*
2965          * Try gethrestime() first, but be prepared to fabricate a sensible
2966          * answer at the first sign of any trouble.
2967          */
2968         gethrestime(&newts);
2969         newhrt = ts2hrt(&newts);
2970         for (;;) {
2971                 oldhrt = hrt;
2972                 if (newhrt <= hrt)
2973                         newhrt = hrt + 1;
2974                 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2975                         break;
2976         }
2977         hrt2ts(newhrt, ts);
2978 }
2979 
2980 /*
2981  * Update the mnttab modification time and wake up any waiters for
2982  * mnttab changes
2983  */
2984 void
2985 vfs_mnttab_modtimeupd()
2986 {
2987         hrtime_t oldhrt, newhrt;
2988 
2989         ASSERT(RW_WRITE_HELD(&vfslist));
2990         oldhrt = ts2hrt(&vfs_mnttab_mtime);
2991         gethrestime(&vfs_mnttab_mtime);
2992         newhrt = ts2hrt(&vfs_mnttab_mtime);
2993         if (oldhrt == (hrtime_t)0)
2994                 vfs_mnttab_ctime = vfs_mnttab_mtime;
2995         /*
2996          * Attempt to provide unique mtime (like uniqtime but not).
2997          */
2998         if (newhrt == oldhrt) {
2999                 newhrt++;
3000                 hrt2ts(newhrt, &vfs_mnttab_mtime);
3001         }
3002         pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3003         vfs_mnttab_writeop();
3004 }
3005 
3006 int
3007 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3008 {
3009         vnode_t *coveredvp;
3010         int error;
3011         extern void teardown_vopstats(vfs_t *);
3012 
3013         /*
3014          * Get covered vnode. This will be NULL if the vfs is not linked
3015          * into the file system name space (i.e., domount() with MNT_NOSPICE).
3016          */
3017         coveredvp = vfsp->vfs_vnodecovered;
3018         ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3019 
3020         /*
3021          * Purge all dnlc entries for this vfs.
3022          */
3023         (void) dnlc_purge_vfsp(vfsp, 0);
3024 
3025         /* For forcible umount, skip VFS_SYNC() since it may hang */
3026         if ((flag & MS_FORCE) == 0)
3027                 (void) VFS_SYNC(vfsp, 0, cr);
3028 
3029         /*
3030          * Lock the vfs to maintain fs status quo during unmount.  This
3031          * has to be done after the sync because ufs_update tries to acquire
3032          * the vfs_reflock.
3033          */
3034         vfs_lock_wait(vfsp);
3035 
3036         if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3037                 vfs_unlock(vfsp);
3038                 if (coveredvp != NULL)
3039                         vn_vfsunlock(coveredvp);
3040         } else if (coveredvp != NULL) {
3041                 teardown_vopstats(vfsp);
3042                 /*
3043                  * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3044                  * when it frees vfsp so we do a VN_HOLD() so we can
3045                  * continue to use coveredvp afterwards.
3046                  */
3047                 VN_HOLD(coveredvp);
3048                 vfs_remove(vfsp);
3049                 vn_vfsunlock(coveredvp);
3050                 VN_RELE(coveredvp);
3051         } else {
3052                 teardown_vopstats(vfsp);
3053                 /*
3054                  * Release the reference to vfs that is not linked
3055                  * into the name space.
3056                  */
3057                 vfs_unlock(vfsp);
3058                 VFS_RELE(vfsp);
3059         }
3060         return (error);
3061 }
3062 
3063 
3064 /*
3065  * Vfs_unmountall() is called by uadmin() to unmount all
3066  * mounted file systems (except the root file system) during shutdown.
3067  * It follows the existing locking protocol when traversing the vfs list
3068  * to sync and unmount vfses. Even though there should be no
3069  * other thread running while the system is shutting down, it is prudent
3070  * to still follow the locking protocol.
3071  */
3072 void
3073 vfs_unmountall(void)
3074 {
3075         struct vfs *vfsp;
3076         struct vfs *prev_vfsp = NULL;
3077         int error;
3078 
3079         /*
3080          * Toss all dnlc entries now so that the per-vfs sync
3081          * and unmount operations don't have to slog through
3082          * a bunch of uninteresting vnodes over and over again.
3083          */
3084         dnlc_purge();
3085 
3086         vfs_list_lock();
3087         for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3088                 prev_vfsp = vfsp->vfs_prev;
3089 
3090                 if (vfs_lock(vfsp) != 0)
3091                         continue;
3092                 error = vn_vfswlock(vfsp->vfs_vnodecovered);
3093                 vfs_unlock(vfsp);
3094                 if (error)
3095                         continue;
3096 
3097                 vfs_list_unlock();
3098 
3099                 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3100                 (void) dounmount(vfsp, 0, CRED());
3101 
3102                 /*
3103                  * Since we dropped the vfslist lock above we must
3104                  * verify that next_vfsp still exists, else start over.
3105                  */
3106                 vfs_list_lock();
3107                 for (vfsp = rootvfs->vfs_prev;
3108                     vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3109                         if (vfsp == prev_vfsp)
3110                                 break;
3111                 if (vfsp == rootvfs && prev_vfsp != rootvfs)
3112                         prev_vfsp = rootvfs->vfs_prev;
3113         }
3114         vfs_list_unlock();
3115 }
3116 
3117 /*
3118  * Called to add an entry to the end of the vfs mount in progress list
3119  */
3120 void
3121 vfs_addmip(dev_t dev, struct vfs *vfsp)
3122 {
3123         struct ipmnt *mipp;
3124 
3125         mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3126         mipp->mip_next = NULL;
3127         mipp->mip_dev = dev;
3128         mipp->mip_vfsp = vfsp;
3129         mutex_enter(&vfs_miplist_mutex);
3130         if (vfs_miplist_end != NULL)
3131                 vfs_miplist_end->mip_next = mipp;
3132         else
3133                 vfs_miplist = mipp;
3134         vfs_miplist_end = mipp;
3135         mutex_exit(&vfs_miplist_mutex);
3136 }
3137 
3138 /*
3139  * Called to remove an entry from the mount in progress list
3140  * Either because the mount completed or it failed.
3141  */
3142 void
3143 vfs_delmip(struct vfs *vfsp)
3144 {
3145         struct ipmnt *mipp, *mipprev;
3146 
3147         mutex_enter(&vfs_miplist_mutex);
3148         mipprev = NULL;
3149         for (mipp = vfs_miplist;
3150             mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3151                 mipprev = mipp;
3152         }
3153         if (mipp == NULL)
3154                 return; /* shouldn't happen */
3155         if (mipp == vfs_miplist_end)
3156                 vfs_miplist_end = mipprev;
3157         if (mipprev == NULL)
3158                 vfs_miplist = mipp->mip_next;
3159         else
3160                 mipprev->mip_next = mipp->mip_next;
3161         mutex_exit(&vfs_miplist_mutex);
3162         kmem_free(mipp, sizeof (struct ipmnt));
3163 }
3164 
3165 /*
3166  * vfs_add is called by a specific filesystem's mount routine to add
3167  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3168  * The vfs should already have been locked by the caller.
3169  *
3170  * coveredvp is NULL if this is the root.
3171  */
3172 void
3173 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3174 {
3175         int newflag;
3176 
3177         ASSERT(vfs_lock_held(vfsp));
3178         VFS_HOLD(vfsp);
3179         newflag = vfsp->vfs_flag;
3180         if (mflag & MS_RDONLY)
3181                 newflag |= VFS_RDONLY;
3182         else
3183                 newflag &= ~VFS_RDONLY;
3184         if (mflag & MS_NOSUID)
3185                 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3186         else
3187                 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3188         if (mflag & MS_NOMNTTAB)
3189                 newflag |= VFS_NOMNTTAB;
3190         else
3191                 newflag &= ~VFS_NOMNTTAB;
3192 
3193         if (coveredvp != NULL) {
3194                 ASSERT(vn_vfswlock_held(coveredvp));
3195                 coveredvp->v_vfsmountedhere = vfsp;
3196                 VN_HOLD(coveredvp);
3197         }
3198         vfsp->vfs_vnodecovered = coveredvp;
3199         vfsp->vfs_flag = newflag;
3200 
3201         vfs_list_add(vfsp);
3202 }
3203 
3204 /*
3205  * Remove a vfs from the vfs list, null out the pointer from the
3206  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3207  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3208  * reference to the vfs and to the covered vnode.
3209  *
3210  * Called from dounmount after it's confirmed with the file system
3211  * that the unmount is legal.
3212  */
3213 void
3214 vfs_remove(struct vfs *vfsp)
3215 {
3216         vnode_t *vp;
3217 
3218         ASSERT(vfs_lock_held(vfsp));
3219 
3220         /*
3221          * Can't unmount root.  Should never happen because fs will
3222          * be busy.
3223          */
3224         if (vfsp == rootvfs)
3225                 panic("vfs_remove: unmounting root");
3226 
3227         vfs_list_remove(vfsp);
3228 
3229         /*
3230          * Unhook from the file system name space.
3231          */
3232         vp = vfsp->vfs_vnodecovered;
3233         ASSERT(vn_vfswlock_held(vp));
3234         vp->v_vfsmountedhere = NULL;
3235         vfsp->vfs_vnodecovered = NULL;
3236         VN_RELE(vp);
3237 
3238         /*
3239          * Release lock and wakeup anybody waiting.
3240          */
3241         vfs_unlock(vfsp);
3242         VFS_RELE(vfsp);
3243 }
3244 
3245 /*
3246  * Lock a filesystem to prevent access to it while mounting,
3247  * unmounting and syncing.  Return EBUSY immediately if lock
3248  * can't be acquired.
3249  */
3250 int
3251 vfs_lock(vfs_t *vfsp)
3252 {
3253         vn_vfslocks_entry_t *vpvfsentry;
3254 
3255         vpvfsentry = vn_vfslocks_getlock(vfsp);
3256         if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3257                 return (0);
3258 
3259         vn_vfslocks_rele(vpvfsentry);
3260         return (EBUSY);
3261 }
3262 
3263 int
3264 vfs_rlock(vfs_t *vfsp)
3265 {
3266         vn_vfslocks_entry_t *vpvfsentry;
3267 
3268         vpvfsentry = vn_vfslocks_getlock(vfsp);
3269 
3270         if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3271                 return (0);
3272 
3273         vn_vfslocks_rele(vpvfsentry);
3274         return (EBUSY);
3275 }
3276 
3277 void
3278 vfs_lock_wait(vfs_t *vfsp)
3279 {
3280         vn_vfslocks_entry_t *vpvfsentry;
3281 
3282         vpvfsentry = vn_vfslocks_getlock(vfsp);
3283         rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3284 }
3285 
3286 void
3287 vfs_rlock_wait(vfs_t *vfsp)
3288 {
3289         vn_vfslocks_entry_t *vpvfsentry;
3290 
3291         vpvfsentry = vn_vfslocks_getlock(vfsp);
3292         rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3293 }
3294 
3295 /*
3296  * Unlock a locked filesystem.
3297  */
3298 void
3299 vfs_unlock(vfs_t *vfsp)
3300 {
3301         vn_vfslocks_entry_t *vpvfsentry;
3302 
3303         /*
3304          * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3305          * And these changes should remain for the patch changes as it is.
3306          */
3307         if (panicstr)
3308                 return;
3309 
3310         /*
3311          * ve_refcount needs to be dropped twice here.
3312          * 1. To release refernce after a call to vfs_locks_getlock()
3313          * 2. To release the reference from the locking routines like
3314          *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3315          */
3316 
3317         vpvfsentry = vn_vfslocks_getlock(vfsp);
3318         vn_vfslocks_rele(vpvfsentry);
3319 
3320         rwst_exit(&vpvfsentry->ve_lock);
3321         vn_vfslocks_rele(vpvfsentry);
3322 }
3323 
3324 /*
3325  * Utility routine that allows a filesystem to construct its
3326  * fsid in "the usual way" - by munging some underlying dev_t and
3327  * the filesystem type number into the 64-bit fsid.  Note that
3328  * this implicitly relies on dev_t persistence to make filesystem
3329  * id's persistent.
3330  *
3331  * There's nothing to prevent an individual fs from constructing its
3332  * fsid in a different way, and indeed they should.
3333  *
3334  * Since we want fsids to be 32-bit quantities (so that they can be
3335  * exported identically by either 32-bit or 64-bit APIs, as well as
3336  * the fact that fsid's are "known" to NFS), we compress the device
3337  * number given down to 32-bits, and panic if that isn't possible.
3338  */
3339 void
3340 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3341 {
3342         if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3343                 panic("device number too big for fsid!");
3344         fsi->val[1] = val;
3345 }
3346 
3347 int
3348 vfs_lock_held(vfs_t *vfsp)
3349 {
3350         int held;
3351         vn_vfslocks_entry_t *vpvfsentry;
3352 
3353         /*
3354          * vfs_lock_held will mimic sema_held behaviour
3355          * if panicstr is set. And these changes should remain
3356          * for the patch changes as it is.
3357          */
3358         if (panicstr)
3359                 return (1);
3360 
3361         vpvfsentry = vn_vfslocks_getlock(vfsp);
3362         held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3363 
3364         vn_vfslocks_rele(vpvfsentry);
3365         return (held);
3366 }
3367 
3368 struct _kthread *
3369 vfs_lock_owner(vfs_t *vfsp)
3370 {
3371         struct _kthread *owner;
3372         vn_vfslocks_entry_t *vpvfsentry;
3373 
3374         /*
3375          * vfs_wlock_held will mimic sema_held behaviour
3376          * if panicstr is set. And these changes should remain
3377          * for the patch changes as it is.
3378          */
3379         if (panicstr)
3380                 return (NULL);
3381 
3382         vpvfsentry = vn_vfslocks_getlock(vfsp);
3383         owner = rwst_owner(&vpvfsentry->ve_lock);
3384 
3385         vn_vfslocks_rele(vpvfsentry);
3386         return (owner);
3387 }
3388 
3389 /*
3390  * vfs list locking.
3391  *
3392  * Rather than manipulate the vfslist lock directly, we abstract into lock
3393  * and unlock routines to allow the locking implementation to be changed for
3394  * clustering.
3395  *
3396  * Whenever the vfs list is modified through its hash links, the overall list
3397  * lock must be obtained before locking the relevant hash bucket.  But to see
3398  * whether a given vfs is on the list, it suffices to obtain the lock for the
3399  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3400  */
3401 
3402 void
3403 vfs_list_lock()
3404 {
3405         rw_enter(&vfslist, RW_WRITER);
3406 }
3407 
3408 void
3409 vfs_list_read_lock()
3410 {
3411         rw_enter(&vfslist, RW_READER);
3412 }
3413 
3414 void
3415 vfs_list_unlock()
3416 {
3417         rw_exit(&vfslist);
3418 }
3419 
3420 /*
3421  * Low level worker routines for adding entries to and removing entries from
3422  * the vfs list.
3423  */
3424 
3425 static void
3426 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3427 {
3428         int vhno;
3429         struct vfs **hp;
3430         dev_t dev;
3431 
3432         ASSERT(RW_WRITE_HELD(&vfslist));
3433 
3434         dev = expldev(vfsp->vfs_fsid.val[0]);
3435         vhno = VFSHASH(getmajor(dev), getminor(dev));
3436 
3437         mutex_enter(&rvfs_list[vhno].rvfs_lock);
3438 
3439         /*
3440          * Link into the hash table, inserting it at the end, so that LOFS
3441          * with the same fsid as UFS (or other) file systems will not hide the
3442          * UFS.
3443          */
3444         if (insert_at_head) {
3445                 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3446                 rvfs_list[vhno].rvfs_head = vfsp;
3447         } else {
3448                 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3449                     hp = &(*hp)->vfs_hash)
3450                         continue;
3451                 /*
3452                  * hp now contains the address of the pointer to update
3453                  * to effect the insertion.
3454                  */
3455                 vfsp->vfs_hash = NULL;
3456                 *hp = vfsp;
3457         }
3458 
3459         rvfs_list[vhno].rvfs_len++;
3460         mutex_exit(&rvfs_list[vhno].rvfs_lock);
3461 }
3462 
3463 
3464 static void
3465 vfs_hash_remove(struct vfs *vfsp)
3466 {
3467         int vhno;
3468         struct vfs *tvfsp;
3469         dev_t dev;
3470 
3471         ASSERT(RW_WRITE_HELD(&vfslist));
3472 
3473         dev = expldev(vfsp->vfs_fsid.val[0]);
3474         vhno = VFSHASH(getmajor(dev), getminor(dev));
3475 
3476         mutex_enter(&rvfs_list[vhno].rvfs_lock);
3477 
3478         /*
3479          * Remove from hash.
3480          */
3481         if (rvfs_list[vhno].rvfs_head == vfsp) {
3482                 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3483                 rvfs_list[vhno].rvfs_len--;
3484                 goto foundit;
3485         }
3486         for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3487             tvfsp = tvfsp->vfs_hash) {
3488                 if (tvfsp->vfs_hash == vfsp) {
3489                         tvfsp->vfs_hash = vfsp->vfs_hash;
3490                         rvfs_list[vhno].rvfs_len--;
3491                         goto foundit;
3492                 }
3493         }
3494         cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3495 
3496 foundit:
3497 
3498         mutex_exit(&rvfs_list[vhno].rvfs_lock);
3499 }
3500 
3501 
3502 void
3503 vfs_list_add(struct vfs *vfsp)
3504 {
3505         zone_t *zone;
3506 
3507         /*
3508          * Typically, the vfs_t will have been created on behalf of the file
3509          * system in vfs_init, where it will have been provided with a
3510          * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3511          * by an unbundled file system. We therefore check for such an example
3512          * before stamping the vfs_t with its creation time for the benefit of
3513          * mntfs.
3514          */
3515         if (vfsp->vfs_implp == NULL)
3516                 vfsimpl_setup(vfsp);
3517         vfs_mono_time(&vfsp->vfs_hrctime);
3518 
3519         /*
3520          * The zone that owns the mount is the one that performed the mount.
3521          * Note that this isn't necessarily the same as the zone mounted into.
3522          * The corresponding zone_rele_ref() will be done when the vfs_t
3523          * is being free'd.
3524          */
3525         vfsp->vfs_zone = curproc->p_zone;
3526         zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3527         zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3528             ZONE_REF_VFS);
3529 
3530         /*
3531          * Find the zone mounted into, and put this mount on its vfs list.
3532          */
3533         zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3534         ASSERT(zone != NULL);
3535         /*
3536          * Special casing for the root vfs.  This structure is allocated
3537          * statically and hooked onto rootvfs at link time.  During the
3538          * vfs_mountroot call at system startup time, the root file system's
3539          * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3540          * as argument.  The code below must detect and handle this special
3541          * case.  The only apparent justification for this special casing is
3542          * to ensure that the root file system appears at the head of the
3543          * list.
3544          *
3545          * XXX: I'm assuming that it's ok to do normal list locking when
3546          *      adding the entry for the root file system (this used to be
3547          *      done with no locks held).
3548          */
3549         vfs_list_lock();
3550         /*
3551          * Link into the vfs list proper.
3552          */
3553         if (vfsp == &root) {
3554                 /*
3555                  * Assert: This vfs is already on the list as its first entry.
3556                  * Thus, there's nothing to do.
3557                  */
3558                 ASSERT(rootvfs == vfsp);
3559                 /*
3560                  * Add it to the head of the global zone's vfslist.
3561                  */
3562                 ASSERT(zone == global_zone);
3563                 ASSERT(zone->zone_vfslist == NULL);
3564                 zone->zone_vfslist = vfsp;
3565         } else {
3566                 /*
3567                  * Link to end of list using vfs_prev (as rootvfs is now a
3568                  * doubly linked circular list) so list is in mount order for
3569                  * mnttab use.
3570                  */
3571                 rootvfs->vfs_prev->vfs_next = vfsp;
3572                 vfsp->vfs_prev = rootvfs->vfs_prev;
3573                 rootvfs->vfs_prev = vfsp;
3574                 vfsp->vfs_next = rootvfs;
3575 
3576                 /*
3577                  * Do it again for the zone-private list (which may be NULL).
3578                  */
3579                 if (zone->zone_vfslist == NULL) {
3580                         ASSERT(zone != global_zone);
3581                         zone->zone_vfslist = vfsp;
3582                 } else {
3583                         zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3584                         vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3585                         zone->zone_vfslist->vfs_zone_prev = vfsp;
3586                         vfsp->vfs_zone_next = zone->zone_vfslist;
3587                 }
3588         }
3589 
3590         /*
3591          * Link into the hash table, inserting it at the end, so that LOFS
3592          * with the same fsid as UFS (or other) file systems will not hide
3593          * the UFS.
3594          */
3595         vfs_hash_add(vfsp, 0);
3596 
3597         /*
3598          * update the mnttab modification time
3599          */
3600         vfs_mnttab_modtimeupd();
3601         vfs_list_unlock();
3602         zone_rele(zone);
3603 }
3604 
3605 void
3606 vfs_list_remove(struct vfs *vfsp)
3607 {
3608         zone_t *zone;
3609 
3610         zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3611         ASSERT(zone != NULL);
3612         /*
3613          * Callers are responsible for preventing attempts to unmount the
3614          * root.
3615          */
3616         ASSERT(vfsp != rootvfs);
3617 
3618         vfs_list_lock();
3619 
3620         /*
3621          * Remove from hash.
3622          */
3623         vfs_hash_remove(vfsp);
3624 
3625         /*
3626          * Remove from vfs list.
3627          */
3628         vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3629         vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3630         vfsp->vfs_next = vfsp->vfs_prev = NULL;
3631 
3632         /*
3633          * Remove from zone-specific vfs list.
3634          */
3635         if (zone->zone_vfslist == vfsp)
3636                 zone->zone_vfslist = vfsp->vfs_zone_next;
3637 
3638         if (vfsp->vfs_zone_next == vfsp) {
3639                 ASSERT(vfsp->vfs_zone_prev == vfsp);
3640                 ASSERT(zone->zone_vfslist == vfsp);
3641                 zone->zone_vfslist = NULL;
3642         }
3643 
3644         vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3645         vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3646         vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3647 
3648         /*
3649          * update the mnttab modification time
3650          */
3651         vfs_mnttab_modtimeupd();
3652         vfs_list_unlock();
3653         zone_rele(zone);
3654 }
3655 
3656 struct vfs *
3657 getvfs(fsid_t *fsid)
3658 {
3659         struct vfs *vfsp;
3660         int val0 = fsid->val[0];
3661         int val1 = fsid->val[1];
3662         dev_t dev = expldev(val0);
3663         int vhno = VFSHASH(getmajor(dev), getminor(dev));
3664         kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3665 
3666         mutex_enter(hmp);
3667         for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3668                 if (vfsp->vfs_fsid.val[0] == val0 &&
3669                     vfsp->vfs_fsid.val[1] == val1) {
3670                         VFS_HOLD(vfsp);
3671                         mutex_exit(hmp);
3672                         return (vfsp);
3673                 }
3674         }
3675         mutex_exit(hmp);
3676         return (NULL);
3677 }
3678 
3679 /*
3680  * Search the vfs mount in progress list for a specified device/vfs entry.
3681  * Returns 0 if the first entry in the list that the device matches has the
3682  * given vfs pointer as well.  If the device matches but a different vfs
3683  * pointer is encountered in the list before the given vfs pointer then
3684  * a 1 is returned.
3685  */
3686 
3687 int
3688 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3689 {
3690         int retval = 0;
3691         struct ipmnt *mipp;
3692 
3693         mutex_enter(&vfs_miplist_mutex);
3694         for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3695                 if (mipp->mip_dev == dev) {
3696                         if (mipp->mip_vfsp != vfsp)
3697                                 retval = 1;
3698                         break;
3699                 }
3700         }
3701         mutex_exit(&vfs_miplist_mutex);
3702         return (retval);
3703 }
3704 
3705 /*
3706  * Search the vfs list for a specified device.  Returns 1, if entry is found
3707  * or 0 if no suitable entry is found.
3708  */
3709 
3710 int
3711 vfs_devismounted(dev_t dev)
3712 {
3713         struct vfs *vfsp;
3714         int found;
3715 
3716         vfs_list_read_lock();
3717         vfsp = rootvfs;
3718         found = 0;
3719         do {
3720                 if (vfsp->vfs_dev == dev) {
3721                         found = 1;
3722                         break;
3723                 }
3724                 vfsp = vfsp->vfs_next;
3725         } while (vfsp != rootvfs);
3726 
3727         vfs_list_unlock();
3728         return (found);
3729 }
3730 
3731 /*
3732  * Search the vfs list for a specified device.  Returns a pointer to it
3733  * or NULL if no suitable entry is found. The caller of this routine
3734  * is responsible for releasing the returned vfs pointer.
3735  */
3736 struct vfs *
3737 vfs_dev2vfsp(dev_t dev)
3738 {
3739         struct vfs *vfsp;
3740         int found;
3741 
3742         vfs_list_read_lock();
3743         vfsp = rootvfs;
3744         found = 0;
3745         do {
3746                 /*
3747                  * The following could be made more efficient by making
3748                  * the entire loop use vfs_zone_next if the call is from
3749                  * a zone.  The only callers, however, ustat(2) and
3750                  * umount2(2), don't seem to justify the added
3751                  * complexity at present.
3752                  */
3753                 if (vfsp->vfs_dev == dev &&
3754                     ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3755                     curproc->p_zone)) {
3756                         VFS_HOLD(vfsp);
3757                         found = 1;
3758                         break;
3759                 }
3760                 vfsp = vfsp->vfs_next;
3761         } while (vfsp != rootvfs);
3762         vfs_list_unlock();
3763         return (found ? vfsp: NULL);
3764 }
3765 
3766 /*
3767  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3768  * or NULL if no suitable entry is found. The caller of this routine
3769  * is responsible for releasing the returned vfs pointer.
3770  *
3771  * Note that if multiple mntpoints match, the last one matching is
3772  * returned in an attempt to return the "top" mount when overlay
3773  * mounts are covering the same mount point.  This is accomplished by starting
3774  * at the end of the list and working our way backwards, stopping at the first
3775  * matching mount.
3776  */
3777 struct vfs *
3778 vfs_mntpoint2vfsp(const char *mp)
3779 {
3780         struct vfs *vfsp;
3781         struct vfs *retvfsp = NULL;
3782         zone_t *zone = curproc->p_zone;
3783         struct vfs *list;
3784 
3785         vfs_list_read_lock();
3786         if (getzoneid() == GLOBAL_ZONEID) {
3787                 /*
3788                  * The global zone may see filesystems in any zone.
3789                  */
3790                 vfsp = rootvfs->vfs_prev;
3791                 do {
3792                         if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3793                                 retvfsp = vfsp;
3794                                 break;
3795                         }
3796                         vfsp = vfsp->vfs_prev;
3797                 } while (vfsp != rootvfs->vfs_prev);
3798         } else if ((list = zone->zone_vfslist) != NULL) {
3799                 const char *mntpt;
3800 
3801                 vfsp = list->vfs_zone_prev;
3802                 do {
3803                         mntpt = refstr_value(vfsp->vfs_mntpt);
3804                         mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3805                         if (strcmp(mntpt, mp) == 0) {
3806                                 retvfsp = vfsp;
3807                                 break;
3808                         }
3809                         vfsp = vfsp->vfs_zone_prev;
3810                 } while (vfsp != list->vfs_zone_prev);
3811         }
3812         if (retvfsp)
3813                 VFS_HOLD(retvfsp);
3814         vfs_list_unlock();
3815         return (retvfsp);
3816 }
3817 
3818 /*
3819  * Search the vfs list for a specified vfsops.
3820  * if vfs entry is found then return 1, else 0.
3821  */
3822 int
3823 vfs_opsinuse(vfsops_t *ops)
3824 {
3825         struct vfs *vfsp;
3826         int found;
3827 
3828         vfs_list_read_lock();
3829         vfsp = rootvfs;
3830         found = 0;
3831         do {
3832                 if (vfs_getops(vfsp) == ops) {
3833                         found = 1;
3834                         break;
3835                 }
3836                 vfsp = vfsp->vfs_next;
3837         } while (vfsp != rootvfs);
3838         vfs_list_unlock();
3839         return (found);
3840 }
3841 
3842 /*
3843  * Allocate an entry in vfssw for a file system type
3844  */
3845 struct vfssw *
3846 allocate_vfssw(const char *type)
3847 {
3848         struct vfssw *vswp;
3849 
3850         if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3851                 /*
3852                  * The vfssw table uses the empty string to identify an
3853                  * available entry; we cannot add any type which has
3854                  * a leading NUL. The string length is limited to
3855                  * the size of the st_fstype array in struct stat.
3856                  */
3857                 return (NULL);
3858         }
3859 
3860         ASSERT(VFSSW_WRITE_LOCKED());
3861         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3862                 if (!ALLOCATED_VFSSW(vswp)) {
3863                         vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3864                         (void) strcpy(vswp->vsw_name, type);
3865                         ASSERT(vswp->vsw_count == 0);
3866                         vswp->vsw_count = 1;
3867                         mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3868                         return (vswp);
3869                 }
3870         return (NULL);
3871 }
3872 
3873 /*
3874  * Impose additional layer of translation between vfstype names
3875  * and module names in the filesystem.
3876  */
3877 static const char *
3878 vfs_to_modname(const char *vfstype)
3879 {
3880         if (strcmp(vfstype, "proc") == 0) {
3881                 vfstype = "procfs";
3882         } else if (strcmp(vfstype, "fd") == 0) {
3883                 vfstype = "fdfs";
3884         } else if (strncmp(vfstype, "nfs", 3) == 0) {
3885                 vfstype = "nfs";
3886         }
3887 
3888         return (vfstype);
3889 }
3890 
3891 /*
3892  * Find a vfssw entry given a file system type name.
3893  * Try to autoload the filesystem if it's not found.
3894  * If it's installed, return the vfssw locked to prevent unloading.
3895  */
3896 struct vfssw *
3897 vfs_getvfssw(const char *type)
3898 {
3899         struct vfssw *vswp;
3900         const char *modname;
3901 
3902         RLOCK_VFSSW();
3903         vswp = vfs_getvfsswbyname(type);
3904         modname = vfs_to_modname(type);
3905 
3906         if (rootdir == NULL) {
3907                 /*
3908                  * If we haven't yet loaded the root file system, then our
3909                  * _init won't be called until later. Allocate vfssw entry,
3910                  * because mod_installfs won't be called.
3911                  */
3912                 if (vswp == NULL) {
3913                         RUNLOCK_VFSSW();
3914                         WLOCK_VFSSW();
3915                         if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3916                                 if ((vswp = allocate_vfssw(type)) == NULL) {
3917                                         WUNLOCK_VFSSW();
3918                                         return (NULL);
3919                                 }
3920                         }
3921                         WUNLOCK_VFSSW();
3922                         RLOCK_VFSSW();
3923                 }
3924                 if (!VFS_INSTALLED(vswp)) {
3925                         RUNLOCK_VFSSW();
3926                         (void) modloadonly("fs", modname);
3927                 } else
3928                         RUNLOCK_VFSSW();
3929                 return (vswp);
3930         }
3931 
3932         /*
3933          * Try to load the filesystem.  Before calling modload(), we drop
3934          * our lock on the VFS switch table, and pick it up after the
3935          * module is loaded.  However, there is a potential race:  the
3936          * module could be unloaded after the call to modload() completes
3937          * but before we pick up the lock and drive on.  Therefore,
3938          * we keep reloading the module until we've loaded the module
3939          * _and_ we have the lock on the VFS switch table.
3940          */
3941         while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3942                 RUNLOCK_VFSSW();
3943                 if (modload("fs", modname) == -1)
3944                         return (NULL);
3945                 RLOCK_VFSSW();
3946                 if (vswp == NULL)
3947                         if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3948                                 break;
3949         }
3950         RUNLOCK_VFSSW();
3951 
3952         return (vswp);
3953 }
3954 
3955 /*
3956  * Find a vfssw entry given a file system type name.
3957  */
3958 struct vfssw *
3959 vfs_getvfsswbyname(const char *type)
3960 {
3961         struct vfssw *vswp;
3962 
3963         ASSERT(VFSSW_LOCKED());
3964         if (type == NULL || *type == '\0')
3965                 return (NULL);
3966 
3967         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3968                 if (strcmp(type, vswp->vsw_name) == 0) {
3969                         vfs_refvfssw(vswp);
3970                         return (vswp);
3971                 }
3972         }
3973 
3974         return (NULL);
3975 }
3976 
3977 /*
3978  * Find a vfssw entry given a set of vfsops.
3979  */
3980 struct vfssw *
3981 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3982 {
3983         struct vfssw *vswp;
3984 
3985         RLOCK_VFSSW();
3986         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3987                 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
3988                         vfs_refvfssw(vswp);
3989                         RUNLOCK_VFSSW();
3990                         return (vswp);
3991                 }
3992         }
3993         RUNLOCK_VFSSW();
3994 
3995         return (NULL);
3996 }
3997 
3998 /*
3999  * Reference a vfssw entry.
4000  */
4001 void
4002 vfs_refvfssw(struct vfssw *vswp)
4003 {
4004 
4005         mutex_enter(&vswp->vsw_lock);
4006         vswp->vsw_count++;
4007         mutex_exit(&vswp->vsw_lock);
4008 }
4009 
4010 /*
4011  * Unreference a vfssw entry.
4012  */
4013 void
4014 vfs_unrefvfssw(struct vfssw *vswp)
4015 {
4016 
4017         mutex_enter(&vswp->vsw_lock);
4018         vswp->vsw_count--;
4019         mutex_exit(&vswp->vsw_lock);
4020 }
4021 
4022 static int sync_retries = 20;   /* number of retries when not making progress */
4023 static int sync_triesleft;      /* portion of sync_retries remaining */
4024 
4025 static pgcnt_t old_pgcnt, new_pgcnt;
4026 static int new_bufcnt, old_bufcnt;
4027 
4028 /*
4029  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4030  * complete.  We wait by counting the number of dirty pages and buffers,
4031  * pushing them out using bio_busy() and page_busy(), and then counting again.
4032  * This routine is used during the uadmin A_SHUTDOWN code.  It should only
4033  * be used after some higher-level mechanism has quiesced the system so that
4034  * new writes are not being initiated while we are waiting for completion.
4035  *
4036  * To ensure finite running time, our algorithm uses sync_triesleft (a progress
4037  * counter used by the vfs_syncall() loop below). It is declared above so
4038  * it can be found easily in the debugger.
4039  *
4040  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4041  * sync_retries consecutive calls to bio_busy() and page_busy() without
4042  * decreasing either the number of dirty buffers or dirty pages below the
4043  * lowest count we have seen so far, we give up and return from vfs_syncall().
4044  *
4045  * Each loop iteration ends with a call to delay() one second to allow time for
4046  * i/o completion and to permit the user time to read our progress messages.
4047  */
4048 void
4049 vfs_syncall(void)
4050 {
4051         if (rootdir == NULL && !modrootloaded)
4052                 return; /* no filesystems have been loaded yet */
4053 
4054         printf("syncing file systems...");
4055         sync();
4056 
4057         sync_triesleft = sync_retries;
4058 
4059         old_bufcnt = new_bufcnt = INT_MAX;
4060         old_pgcnt = new_pgcnt = ULONG_MAX;
4061 
4062         while (sync_triesleft > 0) {
4063                 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4064                 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4065 
4066                 new_bufcnt = bio_busy(B_TRUE);
4067                 new_pgcnt = page_busy(B_TRUE);
4068 
4069                 if (new_bufcnt == 0 && new_pgcnt == 0)
4070                         break;
4071 
4072                 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4073                         sync_triesleft = sync_retries;
4074                 else
4075                         sync_triesleft--;
4076 
4077                 if (new_bufcnt)
4078                         printf(" [%d]", new_bufcnt);
4079                 if (new_pgcnt)
4080                         printf(" %lu", new_pgcnt);
4081 
4082                 delay(hz);
4083         }
4084 
4085         if (new_bufcnt != 0 || new_pgcnt != 0)
4086                 printf(" done (not all i/o completed)\n");
4087         else
4088                 printf(" done\n");
4089 
4090         delay(hz);
4091 }
4092 
4093 /*
4094  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4095  * flags at all.
4096  */
4097 uint_t
4098 vf_to_stf(uint_t vf)
4099 {
4100         uint_t stf = 0;
4101 
4102         if (vf & VFS_RDONLY)
4103                 stf |= ST_RDONLY;
4104         if (vf & VFS_NOSETUID)
4105                 stf |= ST_NOSUID;
4106         if (vf & VFS_NOTRUNC)
4107                 stf |= ST_NOTRUNC;
4108 
4109         return (stf);
4110 }
4111 
4112 /*
4113  * Entries for (illegal) fstype 0.
4114  */
4115 /* ARGSUSED */
4116 int
4117 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4118 {
4119         cmn_err(CE_PANIC, "stray vfs operation");
4120         return (0);
4121 }
4122 
4123 /*
4124  * Entries for (illegal) fstype 0.
4125  */
4126 int
4127 vfsstray(void)
4128 {
4129         cmn_err(CE_PANIC, "stray vfs operation");
4130         return (0);
4131 }
4132 
4133 /*
4134  * Support for dealing with forced UFS unmount and its interaction with
4135  * LOFS. Could be used by any filesystem.
4136  * See bug 1203132.
4137  */
4138 int
4139 vfs_EIO(void)
4140 {
4141         return (EIO);
4142 }
4143 
4144 /*
4145  * We've gotta define the op for sync separately, since the compiler gets
4146  * confused if we mix and match ANSI and normal style prototypes when
4147  * a "short" argument is present and spits out a warning.
4148  */
4149 /*ARGSUSED*/
4150 int
4151 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4152 {
4153         return (EIO);
4154 }
4155 
4156 vfs_t EIO_vfs;
4157 vfsops_t *EIO_vfsops;
4158 
4159 /*
4160  * Called from startup() to initialize all loaded vfs's
4161  */
4162 void
4163 vfsinit(void)
4164 {
4165         struct vfssw *vswp;
4166         int error;
4167         extern int vopstats_enabled;
4168         extern void vopstats_startup();
4169 
4170         static const fs_operation_def_t EIO_vfsops_template[] = {
4171                 VFSNAME_MOUNT,          { .error = vfs_EIO },
4172                 VFSNAME_UNMOUNT,        { .error = vfs_EIO },
4173                 VFSNAME_ROOT,           { .error = vfs_EIO },
4174                 VFSNAME_STATVFS,        { .error = vfs_EIO },
4175                 VFSNAME_SYNC,           { .vfs_sync = vfs_EIO_sync },
4176                 VFSNAME_VGET,           { .error = vfs_EIO },
4177                 VFSNAME_MOUNTROOT,      { .error = vfs_EIO },
4178                 VFSNAME_FREEVFS,        { .error = vfs_EIO },
4179                 VFSNAME_VNSTATE,        { .error = vfs_EIO },
4180                 NULL, NULL
4181         };
4182 
4183         static const fs_operation_def_t stray_vfsops_template[] = {
4184                 VFSNAME_MOUNT,          { .error = vfsstray },
4185                 VFSNAME_UNMOUNT,        { .error = vfsstray },
4186                 VFSNAME_ROOT,           { .error = vfsstray },
4187                 VFSNAME_STATVFS,        { .error = vfsstray },
4188                 VFSNAME_SYNC,           { .vfs_sync = vfsstray_sync },
4189                 VFSNAME_VGET,           { .error = vfsstray },
4190                 VFSNAME_MOUNTROOT,      { .error = vfsstray },
4191                 VFSNAME_FREEVFS,        { .error = vfsstray },
4192                 VFSNAME_VNSTATE,        { .error = vfsstray },
4193                 NULL, NULL
4194         };
4195 
4196         /* Create vfs cache */
4197         vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4198             sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4199 
4200         /* Initialize the vnode cache (file systems may use it during init). */
4201         vn_create_cache();
4202 
4203         /* Setup event monitor framework */
4204         fem_init();
4205 
4206         /* Initialize the dummy stray file system type. */
4207         error = vfs_setfsops(0, stray_vfsops_template, NULL);
4208 
4209         /* Initialize the dummy EIO file system. */
4210         error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4211         if (error != 0) {
4212                 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4213                 /* Shouldn't happen, but not bad enough to panic */
4214         }
4215 
4216         VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4217 
4218         /*
4219          * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4220          * on this vfs can immediately notice it's invalid.
4221          */
4222         EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4223 
4224         /*
4225          * Call the init routines of non-loadable filesystems only.
4226          * Filesystems which are loaded as separate modules will be
4227          * initialized by the module loading code instead.
4228          */
4229 
4230         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4231                 RLOCK_VFSSW();
4232                 if (vswp->vsw_init != NULL)
4233                         (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4234                 RUNLOCK_VFSSW();
4235         }
4236 
4237         vopstats_startup();
4238 
4239         if (vopstats_enabled) {
4240                 /* EIO_vfs can collect stats, but we don't retrieve them */
4241                 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4242                 EIO_vfs.vfs_fstypevsp = NULL;
4243                 EIO_vfs.vfs_vskap = NULL;
4244                 EIO_vfs.vfs_flag |= VFS_STATS;
4245         }
4246 
4247         xattr_init();
4248 
4249         reparse_point_init();
4250 }
4251 
4252 vfs_t *
4253 vfs_alloc(int kmflag)
4254 {
4255         vfs_t *vfsp;
4256 
4257         vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4258 
4259         /*
4260          * Do the simplest initialization here.
4261          * Everything else gets done in vfs_init()
4262          */
4263         bzero(vfsp, sizeof (vfs_t));
4264         return (vfsp);
4265 }
4266 
4267 void
4268 vfs_free(vfs_t *vfsp)
4269 {
4270         /*
4271          * One would be tempted to assert that "vfsp->vfs_count == 0".
4272          * The problem is that this gets called out of domount() with
4273          * a partially initialized vfs and a vfs_count of 1.  This is
4274          * also called from vfs_rele() with a vfs_count of 0.  We can't
4275          * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4276          * returned.  This is because VFS_MOUNT() fully initializes the
4277          * vfs structure and its associated data.  VFS_RELE() will call
4278          * VFS_FREEVFS() which may panic the system if the data structures
4279          * aren't fully initialized from a successful VFS_MOUNT()).
4280          */
4281 
4282         /* If FEM was in use, make sure everything gets cleaned up */
4283         if (vfsp->vfs_femhead) {
4284                 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4285                 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4286                 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4287                 vfsp->vfs_femhead = NULL;
4288         }
4289 
4290         if (vfsp->vfs_implp)
4291                 vfsimpl_teardown(vfsp);
4292         sema_destroy(&vfsp->vfs_reflock);
4293         kmem_cache_free(vfs_cache, vfsp);
4294 }
4295 
4296 /*
4297  * Increments the vfs reference count by one atomically.
4298  */
4299 void
4300 vfs_hold(vfs_t *vfsp)
4301 {
4302         atomic_inc_32(&vfsp->vfs_count);
4303         ASSERT(vfsp->vfs_count != 0);
4304 }
4305 
4306 /*
4307  * Decrements the vfs reference count by one atomically. When
4308  * vfs reference count becomes zero, it calls the file system
4309  * specific vfs_freevfs() to free up the resources.
4310  */
4311 void
4312 vfs_rele(vfs_t *vfsp)
4313 {
4314         ASSERT(vfsp->vfs_count != 0);
4315         if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4316                 VFS_FREEVFS(vfsp);
4317                 lofi_remove(vfsp);
4318                 if (vfsp->vfs_zone)
4319                         zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4320                             ZONE_REF_VFS);
4321                 vfs_freemnttab(vfsp);
4322                 vfs_free(vfsp);
4323         }
4324 }
4325 
4326 /*
4327  * Generic operations vector support.
4328  *
4329  * This is used to build operations vectors for both the vfs and vnode.
4330  * It's normally called only when a file system is loaded.
4331  *
4332  * There are many possible algorithms for this, including the following:
4333  *
4334  *   (1) scan the list of known operations; for each, see if the file system
4335  *       includes an entry for it, and fill it in as appropriate.
4336  *
4337  *   (2) set up defaults for all known operations.  scan the list of ops
4338  *       supplied by the file system; for each which is both supplied and
4339  *       known, fill it in.
4340  *
4341  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4342  *       in entries as we go.
4343  *
4344  * we choose (1) for simplicity, and because performance isn't critical here.
4345  * note that (2) could be sped up using a precomputed hash table on known ops.
4346  * (3) could be faster than either, but only if the lists were very large or
4347  * supplied in sorted order.
4348  *
4349  */
4350 
4351 int
4352 fs_build_vector(void *vector, int *unused_ops,
4353     const fs_operation_trans_def_t *translation,
4354     const fs_operation_def_t *operations)
4355 {
4356         int i, num_trans, num_ops, used;
4357 
4358         /*
4359          * Count the number of translations and the number of supplied
4360          * operations.
4361          */
4362 
4363         {
4364                 const fs_operation_trans_def_t *p;
4365 
4366                 for (num_trans = 0, p = translation;
4367                     p->name != NULL;
4368                     num_trans++, p++)
4369                         ;
4370         }
4371 
4372         {
4373                 const fs_operation_def_t *p;
4374 
4375                 for (num_ops = 0, p = operations;
4376                     p->name != NULL;
4377                     num_ops++, p++)
4378                         ;
4379         }
4380 
4381         /* Walk through each operation known to our caller.  There will be */
4382         /* one entry in the supplied "translation table" for each. */
4383 
4384         used = 0;
4385 
4386         for (i = 0; i < num_trans; i++) {
4387                 int j, found;
4388                 char *curname;
4389                 fs_generic_func_p result;
4390                 fs_generic_func_p *location;
4391 
4392                 curname = translation[i].name;
4393 
4394                 /* Look for a matching operation in the list supplied by the */
4395                 /* file system. */
4396 
4397                 found = 0;
4398 
4399                 for (j = 0; j < num_ops; j++) {
4400                         if (strcmp(operations[j].name, curname) == 0) {
4401                                 used++;
4402                                 found = 1;
4403                                 break;
4404                         }
4405                 }
4406 
4407                 /*
4408                  * If the file system is using a "placeholder" for default
4409                  * or error functions, grab the appropriate function out of
4410                  * the translation table.  If the file system didn't supply
4411                  * this operation at all, use the default function.
4412                  */
4413 
4414                 if (found) {
4415                         result = operations[j].func.fs_generic;
4416                         if (result == fs_default) {
4417                                 result = translation[i].defaultFunc;
4418                         } else if (result == fs_error) {
4419                                 result = translation[i].errorFunc;
4420                         } else if (result == NULL) {
4421                                 /* Null values are PROHIBITED */
4422                                 return (EINVAL);
4423                         }
4424                 } else {
4425                         result = translation[i].defaultFunc;
4426                 }
4427 
4428                 /* Now store the function into the operations vector. */
4429 
4430                 location = (fs_generic_func_p *)
4431                     (((char *)vector) + translation[i].offset);
4432 
4433                 *location = result;
4434         }
4435 
4436         *unused_ops = num_ops - used;
4437 
4438         return (0);
4439 }
4440 
4441 /* Placeholder functions, should never be called. */
4442 
4443 int
4444 fs_error(void)
4445 {
4446         cmn_err(CE_PANIC, "fs_error called");
4447         return (0);
4448 }
4449 
4450 int
4451 fs_default(void)
4452 {
4453         cmn_err(CE_PANIC, "fs_default called");
4454         return (0);
4455 }
4456 
4457 #ifdef __sparc
4458 
4459 /*
4460  * Part of the implementation of booting off a mirrored root
4461  * involves a change of dev_t for the root device.  To
4462  * accomplish this, first remove the existing hash table
4463  * entry for the root device, convert to the new dev_t,
4464  * then re-insert in the hash table at the head of the list.
4465  */
4466 void
4467 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4468 {
4469         vfs_list_lock();
4470 
4471         vfs_hash_remove(vfsp);
4472 
4473         vfsp->vfs_dev = ndev;
4474         vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4475 
4476         vfs_hash_add(vfsp, 1);
4477 
4478         vfs_list_unlock();
4479 }
4480 
4481 #else /* x86 NEWBOOT */
4482 
4483 #if defined(__x86)
4484 extern int hvmboot_rootconf();
4485 #endif /* __x86 */
4486 
4487 extern ib_boot_prop_t *iscsiboot_prop;
4488 
4489 int
4490 rootconf()
4491 {
4492         int error;
4493         struct vfssw *vsw;
4494         extern void pm_init();
4495         char *fstyp, *fsmod;
4496         int ret = -1;
4497 
4498         getrootfs(&fstyp, &fsmod);
4499 
4500 #if defined(__x86)
4501         /*
4502          * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4503          * which lives in /platform/i86hvm, and hence is only available when
4504          * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4505          * is not available then the modstub for this function will return 0.
4506          * If the hvm_bootstrap misc module is available it will be loaded
4507          * and hvmboot_rootconf() will be invoked.
4508          */
4509         if (error = hvmboot_rootconf())
4510                 return (error);
4511 #endif /* __x86 */
4512 
4513         if (error = clboot_rootconf())
4514                 return (error);
4515 
4516         if (modload("fs", fsmod) == -1)
4517                 panic("Cannot _init %s module", fsmod);
4518 
4519         RLOCK_VFSSW();
4520         vsw = vfs_getvfsswbyname(fstyp);
4521         RUNLOCK_VFSSW();
4522         if (vsw == NULL) {
4523                 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4524                 return (ENXIO);
4525         }
4526         VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4527         VFS_HOLD(rootvfs);
4528 
4529         /* always mount readonly first */
4530         rootvfs->vfs_flag |= VFS_RDONLY;
4531 
4532         pm_init();
4533 
4534         if (netboot && iscsiboot_prop) {
4535                 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4536                     " shouldn't happen in the same time");
4537                 return (EINVAL);
4538         }
4539 
4540         if (netboot || iscsiboot_prop) {
4541                 ret = strplumb();
4542                 if (ret != 0) {
4543                         cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4544                         return (EFAULT);
4545                 }
4546         }
4547 
4548         if ((ret == 0) && iscsiboot_prop) {
4549                 ret = modload("drv", "iscsi");
4550                 /* -1 indicates fail */
4551                 if (ret == -1) {
4552                         cmn_err(CE_WARN, "Failed to load iscsi module");
4553                         iscsi_boot_prop_free();
4554                         return (EINVAL);
4555                 } else {
4556                         if (!i_ddi_attach_pseudo_node("iscsi")) {
4557                                 cmn_err(CE_WARN,
4558                                     "Failed to attach iscsi driver");
4559                                 iscsi_boot_prop_free();
4560                                 return (ENODEV);
4561                         }
4562                 }
4563         }
4564 
4565         error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4566         vfs_unrefvfssw(vsw);
4567         rootdev = rootvfs->vfs_dev;
4568 
4569         if (error)
4570                 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4571                     rootfs.bo_name, fstyp);
4572         else
4573                 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4574                     rootfs.bo_name, fstyp);
4575         return (error);
4576 }
4577 
4578 /*
4579  * XXX this is called by nfs only and should probably be removed
4580  * If booted with ASKNAME, prompt on the console for a filesystem
4581  * name and return it.
4582  */
4583 void
4584 getfsname(char *askfor, char *name, size_t namelen)
4585 {
4586         if (boothowto & RB_ASKNAME) {
4587                 printf("%s name: ", askfor);
4588                 console_gets(name, namelen);
4589         }
4590 }
4591 
4592 /*
4593  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4594  * property.
4595  *
4596  * Filesystem types starting with the prefix "nfs" are diskless clients;
4597  * init the root filename name (rootfs.bo_name), too.
4598  *
4599  * If we are booting via NFS we currently have these options:
4600  *      nfs -   dynamically choose NFS V2, V3, or V4 (default)
4601  *      nfs2 -  force NFS V2
4602  *      nfs3 -  force NFS V3
4603  *      nfs4 -  force NFS V4
4604  * Because we need to maintain backward compatibility with the naming
4605  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4606  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4607  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4608  * This is only for root filesystems, all other uses will expect
4609  * that "nfs" == NFS V2.
4610  */
4611 static void
4612 getrootfs(char **fstypp, char **fsmodp)
4613 {
4614         char *propstr = NULL;
4615 
4616         /*
4617          * Check fstype property; for diskless it should be one of "nfs",
4618          * "nfs2", "nfs3" or "nfs4".
4619          */
4620         if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4621             DDI_PROP_DONTPASS, "fstype", &propstr)
4622             == DDI_SUCCESS) {
4623                 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4624                 ddi_prop_free(propstr);
4625 
4626         /*
4627          * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4628          * assume the type of this root filesystem is 'zfs'.
4629          */
4630         } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4631             DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4632             == DDI_SUCCESS) {
4633                 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4634                 ddi_prop_free(propstr);
4635         }
4636 
4637         if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4638                 *fstypp = *fsmodp = rootfs.bo_fstype;
4639                 return;
4640         }
4641 
4642         ++netboot;
4643 
4644         if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4645                 (void) strcpy(rootfs.bo_fstype, "nfs");
4646         else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4647                 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4648 
4649         /*
4650          * check if path to network interface is specified in bootpath
4651          * or by a hypervisor domain configuration file.
4652          * XXPV - enable strlumb_get_netdev_path()
4653          */
4654         if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4655             "xpv-nfsroot")) {
4656                 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4657         } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4658             DDI_PROP_DONTPASS, "bootpath", &propstr)
4659             == DDI_SUCCESS) {
4660                 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4661                 ddi_prop_free(propstr);
4662         } else {
4663                 rootfs.bo_name[0] = '\0';
4664         }
4665         *fstypp = rootfs.bo_fstype;
4666         *fsmodp = "nfs";
4667 }
4668 #endif
4669 
4670 /*
4671  * VFS feature routines
4672  */
4673 
4674 #define VFTINDEX(feature)       (((feature) >> 32) & 0xFFFFFFFF)
4675 #define VFTBITS(feature)        ((feature) & 0xFFFFFFFFLL)
4676 
4677 /* Register a feature in the vfs */
4678 void
4679 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4680 {
4681         /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4682         if (vfsp->vfs_implp == NULL)
4683                 return;
4684 
4685         vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4686 }
4687 
4688 void
4689 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4690 {
4691         /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4692         if (vfsp->vfs_implp == NULL)
4693                 return;
4694         vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4695 }
4696 
4697 /*
4698  * Query a vfs for a feature.
4699  * Returns 1 if feature is present, 0 if not
4700  */
4701 int
4702 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4703 {
4704         int     ret = 0;
4705 
4706         /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4707         if (vfsp->vfs_implp == NULL)
4708                 return (ret);
4709 
4710         if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4711                 ret = 1;
4712 
4713         return (ret);
4714 }
4715 
4716 /*
4717  * Propagate feature set from one vfs to another
4718  */
4719 void
4720 vfs_propagate_features(vfs_t *from, vfs_t *to)
4721 {
4722         int i;
4723 
4724         if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4725                 return;
4726 
4727         for (i = 1; i <= to->vfs_featureset[0]; i++) {
4728                 to->vfs_featureset[i] = from->vfs_featureset[i];
4729         }
4730 }
4731 
4732 #define LOFINODE_PATH "/dev/lofi/%d"
4733 
4734 /*
4735  * Return the vnode for the lofi node if there's a lofi mount in place.
4736  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4737  * failure.
4738  */
4739 int
4740 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4741 {
4742         char *path = NULL;
4743         int strsize;
4744         int err;
4745 
4746         if (vfsp->vfs_lofi_id == 0) {
4747                 *vpp = NULL;
4748                 return (-1);
4749         }
4750 
4751         strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id);
4752         path = kmem_alloc(strsize + 1, KM_SLEEP);
4753         (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id);
4754 
4755         /*
4756          * We may be inside a zone, so we need to use the /dev path, but
4757          * it's created asynchronously, so we wait here.
4758          */
4759         for (;;) {
4760                 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4761 
4762                 if (err != ENOENT)
4763                         break;
4764 
4765                 if ((err = delay_sig(hz / 8)) == EINTR)
4766                         break;
4767         }
4768 
4769         if (err)
4770                 *vpp = NULL;
4771 
4772         kmem_free(path, strsize + 1);
4773         return (err);
4774 }