1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 25 * Copyright (c) 2014, 2017 by Delphix. All rights reserved. 26 * Copyright 2016 Igor Kozhukhov <ikozhukhov@gmail.com> 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* 32 * Routines to manage ZFS mounts. We separate all the nasty routines that have 33 * to deal with the OS. The following functions are the main entry points -- 34 * they are used by mount and unmount and when changing a filesystem's 35 * mountpoint. 36 * 37 * zfs_is_mounted() 38 * zfs_mount() 39 * zfs_unmount() 40 * zfs_unmountall() 41 * 42 * This file also contains the functions used to manage sharing filesystems via 43 * NFS and iSCSI: 44 * 45 * zfs_is_shared() 46 * zfs_share() 47 * zfs_unshare() 48 * 49 * zfs_is_shared_nfs() 50 * zfs_is_shared_smb() 51 * zfs_share_proto() 52 * zfs_shareall(); 53 * zfs_unshare_nfs() 54 * zfs_unshare_smb() 55 * zfs_unshareall_nfs() 56 * zfs_unshareall_smb() 57 * zfs_unshareall() 58 * zfs_unshareall_bypath() 59 * 60 * The following functions are available for pool consumers, and will 61 * mount/unmount and share/unshare all datasets within pool: 62 * 63 * zpool_enable_datasets() 64 * zpool_disable_datasets() 65 */ 66 67 #include <dirent.h> 68 #include <dlfcn.h> 69 #include <errno.h> 70 #include <fcntl.h> 71 #include <libgen.h> 72 #include <libintl.h> 73 #include <stdio.h> 74 #include <stdlib.h> 75 #include <strings.h> 76 #include <unistd.h> 77 #include <zone.h> 78 #include <sys/mntent.h> 79 #include <sys/mount.h> 80 #include <sys/stat.h> 81 #include <sys/statvfs.h> 82 #include <sys/taskq.h> 83 84 #include <libzfs.h> 85 86 #include "libzfs_impl.h" 87 88 #include <libshare.h> 89 #include <sys/systeminfo.h> 90 #define MAXISALEN 257 /* based on sysinfo(2) man page */ 91 92 static int mount_tq_nthr = 512; /* taskq threads for multi-threaded mounting */ 93 94 static void zfs_mount_task(void *); 95 static int zfs_share_proto(zfs_handle_t *, zfs_share_proto_t *); 96 zfs_share_type_t zfs_is_shared_proto(zfs_handle_t *, char **, 97 zfs_share_proto_t); 98 99 /* 100 * The share protocols table must be in the same order as the zfs_share_proto_t 101 * enum in libzfs_impl.h 102 */ 103 typedef struct { 104 zfs_prop_t p_prop; 105 char *p_name; 106 int p_share_err; 107 int p_unshare_err; 108 } proto_table_t; 109 110 proto_table_t proto_table[PROTO_END] = { 111 {ZFS_PROP_SHARENFS, "nfs", EZFS_SHARENFSFAILED, EZFS_UNSHARENFSFAILED}, 112 {ZFS_PROP_SHARESMB, "smb", EZFS_SHARESMBFAILED, EZFS_UNSHARESMBFAILED}, 113 }; 114 115 zfs_share_proto_t nfs_only[] = { 116 PROTO_NFS, 117 PROTO_END 118 }; 119 120 zfs_share_proto_t smb_only[] = { 121 PROTO_SMB, 122 PROTO_END 123 }; 124 zfs_share_proto_t share_all_proto[] = { 125 PROTO_NFS, 126 PROTO_SMB, 127 PROTO_END 128 }; 129 130 /* 131 * Search the sharetab for the given mountpoint and protocol, returning 132 * a zfs_share_type_t value. 133 */ 134 static zfs_share_type_t 135 is_shared(libzfs_handle_t *hdl, const char *mountpoint, zfs_share_proto_t proto) 136 { 137 char buf[MAXPATHLEN], *tab; 138 char *ptr; 139 140 if (hdl->libzfs_sharetab == NULL) 141 return (SHARED_NOT_SHARED); 142 143 (void) fseek(hdl->libzfs_sharetab, 0, SEEK_SET); 144 145 while (fgets(buf, sizeof (buf), hdl->libzfs_sharetab) != NULL) { 146 147 /* the mountpoint is the first entry on each line */ 148 if ((tab = strchr(buf, '\t')) == NULL) 149 continue; 150 151 *tab = '\0'; 152 if (strcmp(buf, mountpoint) == 0) { 153 /* 154 * the protocol field is the third field 155 * skip over second field 156 */ 157 ptr = ++tab; 158 if ((tab = strchr(ptr, '\t')) == NULL) 159 continue; 160 ptr = ++tab; 161 if ((tab = strchr(ptr, '\t')) == NULL) 162 continue; 163 *tab = '\0'; 164 if (strcmp(ptr, 165 proto_table[proto].p_name) == 0) { 166 switch (proto) { 167 case PROTO_NFS: 168 return (SHARED_NFS); 169 case PROTO_SMB: 170 return (SHARED_SMB); 171 default: 172 return (0); 173 } 174 } 175 } 176 } 177 178 return (SHARED_NOT_SHARED); 179 } 180 181 static boolean_t 182 dir_is_empty_stat(const char *dirname) 183 { 184 struct stat st; 185 186 /* 187 * We only want to return false if the given path is a non empty 188 * directory, all other errors are handled elsewhere. 189 */ 190 if (stat(dirname, &st) < 0 || !S_ISDIR(st.st_mode)) { 191 return (B_TRUE); 192 } 193 194 /* 195 * An empty directory will still have two entries in it, one 196 * entry for each of "." and "..". 197 */ 198 if (st.st_size > 2) { 199 return (B_FALSE); 200 } 201 202 return (B_TRUE); 203 } 204 205 static boolean_t 206 dir_is_empty_readdir(const char *dirname) 207 { 208 DIR *dirp; 209 struct dirent64 *dp; 210 int dirfd; 211 212 if ((dirfd = openat(AT_FDCWD, dirname, 213 O_RDONLY | O_NDELAY | O_LARGEFILE | O_CLOEXEC, 0)) < 0) { 214 return (B_TRUE); 215 } 216 217 if ((dirp = fdopendir(dirfd)) == NULL) { 218 (void) close(dirfd); 219 return (B_TRUE); 220 } 221 222 while ((dp = readdir64(dirp)) != NULL) { 223 224 if (strcmp(dp->d_name, ".") == 0 || 225 strcmp(dp->d_name, "..") == 0) 226 continue; 227 228 (void) closedir(dirp); 229 return (B_FALSE); 230 } 231 232 (void) closedir(dirp); 233 return (B_TRUE); 234 } 235 236 /* 237 * Returns true if the specified directory is empty. If we can't open the 238 * directory at all, return true so that the mount can fail with a more 239 * informative error message. 240 */ 241 static boolean_t 242 dir_is_empty(const char *dirname) 243 { 244 struct statvfs64 st; 245 246 /* 247 * If the statvfs call fails or the filesystem is not a ZFS 248 * filesystem, fall back to the slow path which uses readdir. 249 */ 250 if ((statvfs64(dirname, &st) != 0) || 251 (strcmp(st.f_basetype, "zfs") != 0)) { 252 return (dir_is_empty_readdir(dirname)); 253 } 254 255 /* 256 * At this point, we know the provided path is on a ZFS 257 * filesystem, so we can use stat instead of readdir to 258 * determine if the directory is empty or not. We try to avoid 259 * using readdir because that requires opening "dirname"; this 260 * open file descriptor can potentially end up in a child 261 * process if there's a concurrent fork, thus preventing the 262 * zfs_mount() from otherwise succeeding (the open file 263 * descriptor inherited by the child process will cause the 264 * parent's mount to fail with EBUSY). The performance 265 * implications of replacing the open, read, and close with a 266 * single stat is nice; but is not the main motivation for the 267 * added complexity. 268 */ 269 return (dir_is_empty_stat(dirname)); 270 } 271 272 /* 273 * Checks to see if the mount is active. If the filesystem is mounted, we fill 274 * in 'where' with the current mountpoint, and return 1. Otherwise, we return 275 * 0. 276 */ 277 boolean_t 278 is_mounted(libzfs_handle_t *zfs_hdl, const char *special, char **where) 279 { 280 struct mnttab entry; 281 282 if (libzfs_mnttab_find(zfs_hdl, special, &entry) != 0) 283 return (B_FALSE); 284 285 if (where != NULL) 286 *where = zfs_strdup(zfs_hdl, entry.mnt_mountp); 287 288 return (B_TRUE); 289 } 290 291 boolean_t 292 zfs_is_mounted(zfs_handle_t *zhp, char **where) 293 { 294 return (is_mounted(zhp->zfs_hdl, zfs_get_name(zhp), where)); 295 } 296 297 /* 298 * Returns true if the given dataset is mountable, false otherwise. Returns the 299 * mountpoint in 'buf'. 300 */ 301 static boolean_t 302 zfs_is_mountable(zfs_handle_t *zhp, char *buf, size_t buflen, 303 zprop_source_t *source) 304 { 305 char sourceloc[MAXNAMELEN]; 306 zprop_source_t sourcetype; 307 308 if (!zfs_prop_valid_for_type(ZFS_PROP_MOUNTPOINT, zhp->zfs_type)) 309 return (B_FALSE); 310 311 verify(zfs_prop_get(zhp, ZFS_PROP_MOUNTPOINT, buf, buflen, 312 &sourcetype, sourceloc, sizeof (sourceloc), B_FALSE) == 0); 313 314 if (strcmp(buf, ZFS_MOUNTPOINT_NONE) == 0 || 315 strcmp(buf, ZFS_MOUNTPOINT_LEGACY) == 0) 316 return (B_FALSE); 317 318 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_OFF) 319 return (B_FALSE); 320 321 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED) && 322 getzoneid() == GLOBAL_ZONEID) 323 return (B_FALSE); 324 325 if (source) 326 *source = sourcetype; 327 328 return (B_TRUE); 329 } 330 331 /* 332 * Mount the given filesystem. 333 */ 334 int 335 zfs_mount(zfs_handle_t *zhp, const char *options, int flags) 336 { 337 struct stat buf; 338 char mountpoint[ZFS_MAXPROPLEN]; 339 char mntopts[MNT_LINE_MAX]; 340 libzfs_handle_t *hdl = zhp->zfs_hdl; 341 342 if (options == NULL) 343 mntopts[0] = '\0'; 344 else 345 (void) strlcpy(mntopts, options, sizeof (mntopts)); 346 347 /* 348 * If the pool is imported read-only then all mounts must be read-only 349 */ 350 if (zpool_get_prop_int(zhp->zpool_hdl, ZPOOL_PROP_READONLY, NULL)) 351 flags |= MS_RDONLY; 352 353 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 354 return (0); 355 356 /* Create the directory if it doesn't already exist */ 357 if (lstat(mountpoint, &buf) != 0) { 358 if (mkdirp(mountpoint, 0755) != 0) { 359 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 360 "failed to create mountpoint")); 361 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 362 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 363 mountpoint)); 364 } 365 } 366 367 /* 368 * Determine if the mountpoint is empty. If so, refuse to perform the 369 * mount. We don't perform this check if MS_OVERLAY is specified, which 370 * would defeat the point. We also avoid this check if 'remount' is 371 * specified. 372 */ 373 if ((flags & MS_OVERLAY) == 0 && 374 strstr(mntopts, MNTOPT_REMOUNT) == NULL && 375 !dir_is_empty(mountpoint)) { 376 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 377 "directory is not empty")); 378 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 379 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), mountpoint)); 380 } 381 382 /* perform the mount */ 383 if (mount(zfs_get_name(zhp), mountpoint, MS_OPTIONSTR | flags, 384 MNTTYPE_ZFS, NULL, 0, mntopts, sizeof (mntopts)) != 0) { 385 /* 386 * Generic errors are nasty, but there are just way too many 387 * from mount(), and they're well-understood. We pick a few 388 * common ones to improve upon. 389 */ 390 if (errno == EBUSY) { 391 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 392 "mountpoint or dataset is busy")); 393 } else if (errno == EPERM) { 394 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, 395 "Insufficient privileges")); 396 } else if (errno == ENOTSUP) { 397 char buf[256]; 398 int spa_version; 399 400 VERIFY(zfs_spa_version(zhp, &spa_version) == 0); 401 (void) snprintf(buf, sizeof (buf), 402 dgettext(TEXT_DOMAIN, "Can't mount a version %lld " 403 "file system on a version %d pool. Pool must be" 404 " upgraded to mount this file system."), 405 (u_longlong_t)zfs_prop_get_int(zhp, 406 ZFS_PROP_VERSION), spa_version); 407 zfs_error_aux(hdl, dgettext(TEXT_DOMAIN, buf)); 408 } else { 409 zfs_error_aux(hdl, strerror(errno)); 410 } 411 return (zfs_error_fmt(hdl, EZFS_MOUNTFAILED, 412 dgettext(TEXT_DOMAIN, "cannot mount '%s'"), 413 zhp->zfs_name)); 414 } 415 416 /* add the mounted entry into our cache */ 417 libzfs_mnttab_add(hdl, zfs_get_name(zhp), mountpoint, 418 mntopts); 419 return (0); 420 } 421 422 /* 423 * Unmount a single filesystem. 424 */ 425 static int 426 unmount_one(libzfs_handle_t *hdl, const char *mountpoint, int flags) 427 { 428 if (umount2(mountpoint, flags) != 0) { 429 zfs_error_aux(hdl, strerror(errno)); 430 return (zfs_error_fmt(hdl, EZFS_UMOUNTFAILED, 431 dgettext(TEXT_DOMAIN, "cannot unmount '%s'"), 432 mountpoint)); 433 } 434 435 return (0); 436 } 437 438 /* 439 * Unmount the given filesystem. 440 */ 441 int 442 zfs_unmount(zfs_handle_t *zhp, const char *mountpoint, int flags) 443 { 444 libzfs_handle_t *hdl = zhp->zfs_hdl; 445 struct mnttab entry; 446 char *mntpt = NULL; 447 448 /* check to see if we need to unmount the filesystem */ 449 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 450 libzfs_mnttab_find(hdl, zhp->zfs_name, &entry) == 0)) { 451 /* 452 * mountpoint may have come from a call to 453 * getmnt/getmntany if it isn't NULL. If it is NULL, 454 * we know it comes from libzfs_mnttab_find which can 455 * then get freed later. We strdup it to play it safe. 456 */ 457 if (mountpoint == NULL) 458 mntpt = zfs_strdup(hdl, entry.mnt_mountp); 459 else 460 mntpt = zfs_strdup(hdl, mountpoint); 461 462 /* 463 * Unshare and unmount the filesystem 464 */ 465 if (zfs_unshare_proto(zhp, mntpt, share_all_proto) != 0) 466 return (-1); 467 468 if (unmount_one(hdl, mntpt, flags) != 0) { 469 free(mntpt); 470 (void) zfs_shareall(zhp); 471 return (-1); 472 } 473 libzfs_mnttab_remove(hdl, zhp->zfs_name); 474 free(mntpt); 475 } 476 477 return (0); 478 } 479 480 /* 481 * Unmount this filesystem and any children inheriting the mountpoint property. 482 * To do this, just act like we're changing the mountpoint property, but don't 483 * remount the filesystems afterwards. 484 */ 485 int 486 zfs_unmountall(zfs_handle_t *zhp, int flags) 487 { 488 prop_changelist_t *clp; 489 int ret; 490 491 clp = changelist_gather(zhp, ZFS_PROP_MOUNTPOINT, 0, flags); 492 if (clp == NULL) 493 return (-1); 494 495 ret = changelist_prefix(clp); 496 changelist_free(clp); 497 498 return (ret); 499 } 500 501 boolean_t 502 zfs_is_shared(zfs_handle_t *zhp) 503 { 504 zfs_share_type_t rc = 0; 505 zfs_share_proto_t *curr_proto; 506 507 if (ZFS_IS_VOLUME(zhp)) 508 return (B_FALSE); 509 510 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 511 curr_proto++) 512 rc |= zfs_is_shared_proto(zhp, NULL, *curr_proto); 513 514 return (rc ? B_TRUE : B_FALSE); 515 } 516 517 int 518 zfs_share(zfs_handle_t *zhp) 519 { 520 assert(!ZFS_IS_VOLUME(zhp)); 521 return (zfs_share_proto(zhp, share_all_proto)); 522 } 523 524 int 525 zfs_unshare(zfs_handle_t *zhp) 526 { 527 assert(!ZFS_IS_VOLUME(zhp)); 528 return (zfs_unshareall(zhp)); 529 } 530 531 /* 532 * Check to see if the filesystem is currently shared. 533 */ 534 zfs_share_type_t 535 zfs_is_shared_proto(zfs_handle_t *zhp, char **where, zfs_share_proto_t proto) 536 { 537 char *mountpoint; 538 zfs_share_type_t rc; 539 540 if (!zfs_is_mounted(zhp, &mountpoint)) 541 return (SHARED_NOT_SHARED); 542 543 if ((rc = is_shared(zhp->zfs_hdl, mountpoint, proto)) 544 != SHARED_NOT_SHARED) { 545 if (where != NULL) 546 *where = mountpoint; 547 else 548 free(mountpoint); 549 return (rc); 550 } else { 551 free(mountpoint); 552 return (SHARED_NOT_SHARED); 553 } 554 } 555 556 boolean_t 557 zfs_is_shared_nfs(zfs_handle_t *zhp, char **where) 558 { 559 return (zfs_is_shared_proto(zhp, where, 560 PROTO_NFS) != SHARED_NOT_SHARED); 561 } 562 563 boolean_t 564 zfs_is_shared_smb(zfs_handle_t *zhp, char **where) 565 { 566 return (zfs_is_shared_proto(zhp, where, 567 PROTO_SMB) != SHARED_NOT_SHARED); 568 } 569 570 /* 571 * Make sure things will work if libshare isn't installed by using 572 * wrapper functions that check to see that the pointers to functions 573 * initialized in _zfs_init_libshare() are actually present. 574 */ 575 576 static sa_handle_t (*_sa_init)(int); 577 static sa_handle_t (*_sa_init_arg)(int, void *); 578 static void (*_sa_fini)(sa_handle_t); 579 static sa_share_t (*_sa_find_share)(sa_handle_t, char *); 580 static int (*_sa_enable_share)(sa_share_t, char *); 581 static int (*_sa_disable_share)(sa_share_t, char *); 582 static char *(*_sa_errorstr)(int); 583 static int (*_sa_parse_legacy_options)(sa_group_t, char *, char *); 584 static boolean_t (*_sa_needs_refresh)(sa_handle_t *); 585 static libzfs_handle_t *(*_sa_get_zfs_handle)(sa_handle_t); 586 static int (*_sa_zfs_process_share)(sa_handle_t, sa_group_t, sa_share_t, 587 char *, char *, zprop_source_t, char *, char *, char *); 588 static void (*_sa_update_sharetab_ts)(sa_handle_t); 589 590 /* 591 * _zfs_init_libshare() 592 * 593 * Find the libshare.so.1 entry points that we use here and save the 594 * values to be used later. This is triggered by the runtime loader. 595 * Make sure the correct ISA version is loaded. 596 */ 597 598 #pragma init(_zfs_init_libshare) 599 static void 600 _zfs_init_libshare(void) 601 { 602 void *libshare; 603 char path[MAXPATHLEN]; 604 char isa[MAXISALEN]; 605 606 #if defined(_LP64) 607 if (sysinfo(SI_ARCHITECTURE_64, isa, MAXISALEN) == -1) 608 isa[0] = '\0'; 609 #else 610 isa[0] = '\0'; 611 #endif 612 (void) snprintf(path, MAXPATHLEN, 613 "/usr/lib/%s/libshare.so.1", isa); 614 615 if ((libshare = dlopen(path, RTLD_LAZY | RTLD_GLOBAL)) != NULL) { 616 _sa_init = (sa_handle_t (*)(int))dlsym(libshare, "sa_init"); 617 _sa_init_arg = (sa_handle_t (*)(int, void *))dlsym(libshare, 618 "sa_init_arg"); 619 _sa_fini = (void (*)(sa_handle_t))dlsym(libshare, "sa_fini"); 620 _sa_find_share = (sa_share_t (*)(sa_handle_t, char *)) 621 dlsym(libshare, "sa_find_share"); 622 _sa_enable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 623 "sa_enable_share"); 624 _sa_disable_share = (int (*)(sa_share_t, char *))dlsym(libshare, 625 "sa_disable_share"); 626 _sa_errorstr = (char *(*)(int))dlsym(libshare, "sa_errorstr"); 627 _sa_parse_legacy_options = (int (*)(sa_group_t, char *, char *)) 628 dlsym(libshare, "sa_parse_legacy_options"); 629 _sa_needs_refresh = (boolean_t (*)(sa_handle_t *)) 630 dlsym(libshare, "sa_needs_refresh"); 631 _sa_get_zfs_handle = (libzfs_handle_t *(*)(sa_handle_t)) 632 dlsym(libshare, "sa_get_zfs_handle"); 633 _sa_zfs_process_share = (int (*)(sa_handle_t, sa_group_t, 634 sa_share_t, char *, char *, zprop_source_t, char *, 635 char *, char *))dlsym(libshare, "sa_zfs_process_share"); 636 _sa_update_sharetab_ts = (void (*)(sa_handle_t)) 637 dlsym(libshare, "sa_update_sharetab_ts"); 638 if (_sa_init == NULL || _sa_init_arg == NULL || 639 _sa_fini == NULL || _sa_find_share == NULL || 640 _sa_enable_share == NULL || _sa_disable_share == NULL || 641 _sa_errorstr == NULL || _sa_parse_legacy_options == NULL || 642 _sa_needs_refresh == NULL || _sa_get_zfs_handle == NULL || 643 _sa_zfs_process_share == NULL || 644 _sa_update_sharetab_ts == NULL) { 645 _sa_init = NULL; 646 _sa_init_arg = NULL; 647 _sa_fini = NULL; 648 _sa_disable_share = NULL; 649 _sa_enable_share = NULL; 650 _sa_errorstr = NULL; 651 _sa_parse_legacy_options = NULL; 652 (void) dlclose(libshare); 653 _sa_needs_refresh = NULL; 654 _sa_get_zfs_handle = NULL; 655 _sa_zfs_process_share = NULL; 656 _sa_update_sharetab_ts = NULL; 657 } 658 } 659 } 660 661 /* 662 * zfs_init_libshare(zhandle, service) 663 * 664 * Initialize the libshare API if it hasn't already been initialized. 665 * In all cases it returns 0 if it succeeded and an error if not. The 666 * service value is which part(s) of the API to initialize and is a 667 * direct map to the libshare sa_init(service) interface. 668 */ 669 static int 670 zfs_init_libshare_impl(libzfs_handle_t *zhandle, int service, void *arg) 671 { 672 /* 673 * libshare is either not installed or we're in a branded zone. The 674 * rest of the wrapper functions around the libshare calls already 675 * handle NULL function pointers, but we don't want the callers of 676 * zfs_init_libshare() to fail prematurely if libshare is not available. 677 */ 678 if (_sa_init == NULL) 679 return (SA_OK); 680 681 /* 682 * Attempt to refresh libshare. This is necessary if there was a cache 683 * miss for a new ZFS dataset that was just created, or if state of the 684 * sharetab file has changed since libshare was last initialized. We 685 * want to make sure so check timestamps to see if a different process 686 * has updated any of the configuration. If there was some non-ZFS 687 * change, we need to re-initialize the internal cache. 688 */ 689 if (_sa_needs_refresh != NULL && 690 _sa_needs_refresh(zhandle->libzfs_sharehdl)) { 691 zfs_uninit_libshare(zhandle); 692 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 693 } 694 695 if (zhandle && zhandle->libzfs_sharehdl == NULL) 696 zhandle->libzfs_sharehdl = _sa_init_arg(service, arg); 697 698 if (zhandle->libzfs_sharehdl == NULL) 699 return (SA_NO_MEMORY); 700 701 return (SA_OK); 702 } 703 int 704 zfs_init_libshare(libzfs_handle_t *zhandle, int service) 705 { 706 return (zfs_init_libshare_impl(zhandle, service, NULL)); 707 } 708 709 int 710 zfs_init_libshare_arg(libzfs_handle_t *zhandle, int service, void *arg) 711 { 712 return (zfs_init_libshare_impl(zhandle, service, arg)); 713 } 714 715 716 /* 717 * zfs_uninit_libshare(zhandle) 718 * 719 * Uninitialize the libshare API if it hasn't already been 720 * uninitialized. It is OK to call multiple times. 721 */ 722 void 723 zfs_uninit_libshare(libzfs_handle_t *zhandle) 724 { 725 if (zhandle != NULL && zhandle->libzfs_sharehdl != NULL) { 726 if (_sa_fini != NULL) 727 _sa_fini(zhandle->libzfs_sharehdl); 728 zhandle->libzfs_sharehdl = NULL; 729 } 730 } 731 732 /* 733 * zfs_parse_options(options, proto) 734 * 735 * Call the legacy parse interface to get the protocol specific 736 * options using the NULL arg to indicate that this is a "parse" only. 737 */ 738 int 739 zfs_parse_options(char *options, zfs_share_proto_t proto) 740 { 741 if (_sa_parse_legacy_options != NULL) { 742 return (_sa_parse_legacy_options(NULL, options, 743 proto_table[proto].p_name)); 744 } 745 return (SA_CONFIG_ERR); 746 } 747 748 /* 749 * zfs_sa_find_share(handle, path) 750 * 751 * wrapper around sa_find_share to find a share path in the 752 * configuration. 753 */ 754 static sa_share_t 755 zfs_sa_find_share(sa_handle_t handle, char *path) 756 { 757 if (_sa_find_share != NULL) 758 return (_sa_find_share(handle, path)); 759 return (NULL); 760 } 761 762 /* 763 * zfs_sa_enable_share(share, proto) 764 * 765 * Wrapper for sa_enable_share which enables a share for a specified 766 * protocol. 767 */ 768 static int 769 zfs_sa_enable_share(sa_share_t share, char *proto) 770 { 771 if (_sa_enable_share != NULL) 772 return (_sa_enable_share(share, proto)); 773 return (SA_CONFIG_ERR); 774 } 775 776 /* 777 * zfs_sa_disable_share(share, proto) 778 * 779 * Wrapper for sa_enable_share which disables a share for a specified 780 * protocol. 781 */ 782 static int 783 zfs_sa_disable_share(sa_share_t share, char *proto) 784 { 785 if (_sa_disable_share != NULL) 786 return (_sa_disable_share(share, proto)); 787 return (SA_CONFIG_ERR); 788 } 789 790 /* 791 * Share the given filesystem according to the options in the specified 792 * protocol specific properties (sharenfs, sharesmb). We rely 793 * on "libshare" to the dirty work for us. 794 */ 795 static int 796 zfs_share_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 797 { 798 char mountpoint[ZFS_MAXPROPLEN]; 799 char shareopts[ZFS_MAXPROPLEN]; 800 char sourcestr[ZFS_MAXPROPLEN]; 801 libzfs_handle_t *hdl = zhp->zfs_hdl; 802 sa_share_t share; 803 zfs_share_proto_t *curr_proto; 804 zprop_source_t sourcetype; 805 int ret; 806 807 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), NULL)) 808 return (0); 809 810 for (curr_proto = proto; *curr_proto != PROTO_END; curr_proto++) { 811 /* 812 * Return success if there are no share options. 813 */ 814 if (zfs_prop_get(zhp, proto_table[*curr_proto].p_prop, 815 shareopts, sizeof (shareopts), &sourcetype, sourcestr, 816 ZFS_MAXPROPLEN, B_FALSE) != 0 || 817 strcmp(shareopts, "off") == 0) 818 continue; 819 ret = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_HANDLE, 820 zhp); 821 if (ret != SA_OK) { 822 (void) zfs_error_fmt(hdl, EZFS_SHARENFSFAILED, 823 dgettext(TEXT_DOMAIN, "cannot share '%s': %s"), 824 zfs_get_name(zhp), _sa_errorstr != NULL ? 825 _sa_errorstr(ret) : ""); 826 return (-1); 827 } 828 829 /* 830 * If the 'zoned' property is set, then zfs_is_mountable() 831 * will have already bailed out if we are in the global zone. 832 * But local zones cannot be NFS servers, so we ignore it for 833 * local zones as well. 834 */ 835 if (zfs_prop_get_int(zhp, ZFS_PROP_ZONED)) 836 continue; 837 838 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mountpoint); 839 if (share == NULL) { 840 /* 841 * This may be a new file system that was just 842 * created so isn't in the internal cache 843 * (second time through). Rather than 844 * reloading the entire configuration, we can 845 * assume ZFS has done the checking and it is 846 * safe to add this to the internal 847 * configuration. 848 */ 849 if (_sa_zfs_process_share(hdl->libzfs_sharehdl, 850 NULL, NULL, mountpoint, 851 proto_table[*curr_proto].p_name, sourcetype, 852 shareopts, sourcestr, zhp->zfs_name) != SA_OK) { 853 (void) zfs_error_fmt(hdl, 854 proto_table[*curr_proto].p_share_err, 855 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 856 zfs_get_name(zhp)); 857 return (-1); 858 } 859 share = zfs_sa_find_share(hdl->libzfs_sharehdl, 860 mountpoint); 861 } 862 if (share != NULL) { 863 int err; 864 err = zfs_sa_enable_share(share, 865 proto_table[*curr_proto].p_name); 866 if (err != SA_OK) { 867 (void) zfs_error_fmt(hdl, 868 proto_table[*curr_proto].p_share_err, 869 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 870 zfs_get_name(zhp)); 871 return (-1); 872 } 873 } else { 874 (void) zfs_error_fmt(hdl, 875 proto_table[*curr_proto].p_share_err, 876 dgettext(TEXT_DOMAIN, "cannot share '%s'"), 877 zfs_get_name(zhp)); 878 return (-1); 879 } 880 881 } 882 return (0); 883 } 884 885 886 int 887 zfs_share_nfs(zfs_handle_t *zhp) 888 { 889 return (zfs_share_proto(zhp, nfs_only)); 890 } 891 892 int 893 zfs_share_smb(zfs_handle_t *zhp) 894 { 895 return (zfs_share_proto(zhp, smb_only)); 896 } 897 898 int 899 zfs_shareall(zfs_handle_t *zhp) 900 { 901 return (zfs_share_proto(zhp, share_all_proto)); 902 } 903 904 /* 905 * Unshare a filesystem by mountpoint. 906 */ 907 static int 908 unshare_one(libzfs_handle_t *hdl, const char *name, const char *mountpoint, 909 zfs_share_proto_t proto) 910 { 911 sa_share_t share; 912 int err; 913 char *mntpt; 914 915 /* 916 * Mountpoint could get trashed if libshare calls getmntany 917 * which it does during API initialization, so strdup the 918 * value. 919 */ 920 mntpt = zfs_strdup(hdl, mountpoint); 921 922 /* 923 * make sure libshare initialized, initialize everything because we 924 * don't know what other unsharing may happen later. Functions up the 925 * stack are allowed to initialize instead a subset of shares at the 926 * time the set is known. 927 */ 928 if ((err = zfs_init_libshare_arg(hdl, SA_INIT_ONE_SHARE_FROM_NAME, 929 (void *)name)) != SA_OK) { 930 free(mntpt); /* don't need the copy anymore */ 931 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 932 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 933 name, _sa_errorstr(err))); 934 } 935 936 share = zfs_sa_find_share(hdl->libzfs_sharehdl, mntpt); 937 free(mntpt); /* don't need the copy anymore */ 938 939 if (share != NULL) { 940 err = zfs_sa_disable_share(share, proto_table[proto].p_name); 941 if (err != SA_OK) { 942 return (zfs_error_fmt(hdl, 943 proto_table[proto].p_unshare_err, 944 dgettext(TEXT_DOMAIN, "cannot unshare '%s': %s"), 945 name, _sa_errorstr(err))); 946 } 947 } else { 948 return (zfs_error_fmt(hdl, proto_table[proto].p_unshare_err, 949 dgettext(TEXT_DOMAIN, "cannot unshare '%s': not found"), 950 name)); 951 } 952 return (0); 953 } 954 955 /* 956 * Unshare the given filesystem. 957 */ 958 int 959 zfs_unshare_proto(zfs_handle_t *zhp, const char *mountpoint, 960 zfs_share_proto_t *proto) 961 { 962 libzfs_handle_t *hdl = zhp->zfs_hdl; 963 struct mnttab entry; 964 char *mntpt = NULL; 965 966 /* check to see if need to unmount the filesystem */ 967 rewind(zhp->zfs_hdl->libzfs_mnttab); 968 if (mountpoint != NULL) 969 mountpoint = mntpt = zfs_strdup(hdl, mountpoint); 970 971 if (mountpoint != NULL || ((zfs_get_type(zhp) == ZFS_TYPE_FILESYSTEM) && 972 libzfs_mnttab_find(hdl, zfs_get_name(zhp), &entry) == 0)) { 973 zfs_share_proto_t *curr_proto; 974 975 if (mountpoint == NULL) 976 mntpt = zfs_strdup(zhp->zfs_hdl, entry.mnt_mountp); 977 978 for (curr_proto = proto; *curr_proto != PROTO_END; 979 curr_proto++) { 980 981 if (is_shared(hdl, mntpt, *curr_proto) && 982 unshare_one(hdl, zhp->zfs_name, 983 mntpt, *curr_proto) != 0) { 984 if (mntpt != NULL) 985 free(mntpt); 986 return (-1); 987 } 988 } 989 } 990 if (mntpt != NULL) 991 free(mntpt); 992 993 return (0); 994 } 995 996 int 997 zfs_unshare_nfs(zfs_handle_t *zhp, const char *mountpoint) 998 { 999 return (zfs_unshare_proto(zhp, mountpoint, nfs_only)); 1000 } 1001 1002 int 1003 zfs_unshare_smb(zfs_handle_t *zhp, const char *mountpoint) 1004 { 1005 return (zfs_unshare_proto(zhp, mountpoint, smb_only)); 1006 } 1007 1008 /* 1009 * Same as zfs_unmountall(), but for NFS and SMB unshares. 1010 */ 1011 int 1012 zfs_unshareall_proto(zfs_handle_t *zhp, zfs_share_proto_t *proto) 1013 { 1014 prop_changelist_t *clp; 1015 int ret; 1016 1017 clp = changelist_gather(zhp, ZFS_PROP_SHARENFS, 0, 0); 1018 if (clp == NULL) 1019 return (-1); 1020 1021 ret = changelist_unshare(clp, proto); 1022 changelist_free(clp); 1023 1024 return (ret); 1025 } 1026 1027 int 1028 zfs_unshareall_nfs(zfs_handle_t *zhp) 1029 { 1030 return (zfs_unshareall_proto(zhp, nfs_only)); 1031 } 1032 1033 int 1034 zfs_unshareall_smb(zfs_handle_t *zhp) 1035 { 1036 return (zfs_unshareall_proto(zhp, smb_only)); 1037 } 1038 1039 int 1040 zfs_unshareall(zfs_handle_t *zhp) 1041 { 1042 return (zfs_unshareall_proto(zhp, share_all_proto)); 1043 } 1044 1045 int 1046 zfs_unshareall_bypath(zfs_handle_t *zhp, const char *mountpoint) 1047 { 1048 return (zfs_unshare_proto(zhp, mountpoint, share_all_proto)); 1049 } 1050 1051 /* 1052 * Remove the mountpoint associated with the current dataset, if necessary. 1053 * We only remove the underlying directory if: 1054 * 1055 * - The mountpoint is not 'none' or 'legacy' 1056 * - The mountpoint is non-empty 1057 * - The mountpoint is the default or inherited 1058 * - The 'zoned' property is set, or we're in a local zone 1059 * 1060 * Any other directories we leave alone. 1061 */ 1062 void 1063 remove_mountpoint(zfs_handle_t *zhp) 1064 { 1065 char mountpoint[ZFS_MAXPROPLEN]; 1066 zprop_source_t source; 1067 1068 if (!zfs_is_mountable(zhp, mountpoint, sizeof (mountpoint), 1069 &source)) 1070 return; 1071 1072 if (source == ZPROP_SRC_DEFAULT || 1073 source == ZPROP_SRC_INHERITED) { 1074 /* 1075 * Try to remove the directory, silently ignoring any errors. 1076 * The filesystem may have since been removed or moved around, 1077 * and this error isn't really useful to the administrator in 1078 * any way. 1079 */ 1080 (void) rmdir(mountpoint); 1081 } 1082 } 1083 1084 /* 1085 * Add the given zfs handle to the cb_handles array, dynamically reallocating 1086 * the array if it is out of space. 1087 */ 1088 void 1089 libzfs_add_handle(get_all_cb_t *cbp, zfs_handle_t *zhp) 1090 { 1091 if (cbp->cb_alloc == cbp->cb_used) { 1092 size_t newsz; 1093 zfs_handle_t **newhandles; 1094 1095 newsz = cbp->cb_alloc != 0 ? cbp->cb_alloc * 2 : 64; 1096 newhandles = zfs_realloc(zhp->zfs_hdl, 1097 cbp->cb_handles, cbp->cb_alloc * sizeof (zfs_handle_t *), 1098 newsz * sizeof (zfs_handle_t *)); 1099 cbp->cb_handles = newhandles; 1100 cbp->cb_alloc = newsz; 1101 } 1102 cbp->cb_handles[cbp->cb_used++] = zhp; 1103 } 1104 1105 /* 1106 * Recursive helper function used during file system enumeration 1107 */ 1108 static int 1109 zfs_iter_cb(zfs_handle_t *zhp, void *data) 1110 { 1111 get_all_cb_t *cbp = data; 1112 1113 if (!(zfs_get_type(zhp) & ZFS_TYPE_FILESYSTEM)) { 1114 zfs_close(zhp); 1115 return (0); 1116 } 1117 1118 if (zfs_prop_get_int(zhp, ZFS_PROP_CANMOUNT) == ZFS_CANMOUNT_NOAUTO) { 1119 zfs_close(zhp); 1120 return (0); 1121 } 1122 1123 /* 1124 * If this filesystem is inconsistent and has a receive resume 1125 * token, we can not mount it. 1126 */ 1127 if (zfs_prop_get_int(zhp, ZFS_PROP_INCONSISTENT) && 1128 zfs_prop_get(zhp, ZFS_PROP_RECEIVE_RESUME_TOKEN, 1129 NULL, 0, NULL, NULL, 0, B_TRUE) == 0) { 1130 zfs_close(zhp); 1131 return (0); 1132 } 1133 1134 libzfs_add_handle(cbp, zhp); 1135 if (zfs_iter_filesystems(zhp, zfs_iter_cb, cbp) != 0) { 1136 zfs_close(zhp); 1137 return (-1); 1138 } 1139 return (0); 1140 } 1141 1142 /* 1143 * Sort comparator that compares two mountpoint paths. We sort these paths so 1144 * that subdirectories immediately follow their parents. This means that we 1145 * effectively treat the '/' character as the lowest value non-nul char. An 1146 * example sorted list using this comparator would look like: 1147 * 1148 * /foo 1149 * /foo/bar 1150 * /foo/bar/baz 1151 * /foo/baz 1152 * /foo.bar 1153 * 1154 * The mounting code depends on this ordering to deterministically iterate 1155 * over filesystems in order to spawn parallel mount tasks. 1156 */ 1157 int 1158 mountpoint_cmp(const void *arga, const void *argb) 1159 { 1160 zfs_handle_t *const *zap = arga; 1161 zfs_handle_t *za = *zap; 1162 zfs_handle_t *const *zbp = argb; 1163 zfs_handle_t *zb = *zbp; 1164 char mounta[MAXPATHLEN]; 1165 char mountb[MAXPATHLEN]; 1166 const char *a = mounta; 1167 const char *b = mountb; 1168 boolean_t gota, gotb; 1169 1170 gota = (zfs_get_type(za) == ZFS_TYPE_FILESYSTEM); 1171 if (gota) { 1172 verify(zfs_prop_get(za, ZFS_PROP_MOUNTPOINT, mounta, 1173 sizeof (mounta), NULL, NULL, 0, B_FALSE) == 0); 1174 } 1175 gotb = (zfs_get_type(zb) == ZFS_TYPE_FILESYSTEM); 1176 if (gotb) { 1177 verify(zfs_prop_get(zb, ZFS_PROP_MOUNTPOINT, mountb, 1178 sizeof (mountb), NULL, NULL, 0, B_FALSE) == 0); 1179 } 1180 1181 if (gota && gotb) { 1182 while (*a != '\0' && (*a == *b)) { 1183 a++; 1184 b++; 1185 } 1186 if (*a == *b) 1187 return (0); 1188 if (*a == '\0') 1189 return (-1); 1190 if (*b == '\0') 1191 return (1); 1192 if (*a == '/') 1193 return (-1); 1194 if (*b == '/') 1195 return (1); 1196 return (*a < *b ? -1 : *a > *b); 1197 } 1198 1199 if (gota) 1200 return (-1); 1201 if (gotb) 1202 return (1); 1203 1204 /* 1205 * If neither filesystem has a mountpoint, revert to sorting by 1206 * dataset name. 1207 */ 1208 return (strcmp(zfs_get_name(za), zfs_get_name(zb))); 1209 } 1210 1211 /* 1212 * Return true if path2 is a child of path1. 1213 */ 1214 static boolean_t 1215 libzfs_path_contains(const char *path1, const char *path2) 1216 { 1217 return (strstr(path2, path1) == path2 && path2[strlen(path1)] == '/'); 1218 } 1219 1220 /* 1221 * Given a mountpoint specified by idx in the handles array, find the first 1222 * non-descendent of that mountpoint and return its index. Descendant paths 1223 * start with the parent's path. This function relies on the ordering 1224 * enforced by mountpoint_cmp(). 1225 */ 1226 static int 1227 non_descendant_idx(zfs_handle_t **handles, size_t num_handles, int idx) 1228 { 1229 char parent[ZFS_MAXPROPLEN]; 1230 char child[ZFS_MAXPROPLEN]; 1231 int i; 1232 1233 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, parent, 1234 sizeof (parent), NULL, NULL, 0, B_FALSE) == 0); 1235 1236 for (i = idx + 1; i < num_handles; i++) { 1237 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, child, 1238 sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1239 if (!libzfs_path_contains(parent, child)) 1240 break; 1241 } 1242 return (i); 1243 } 1244 1245 typedef struct mnt_param { 1246 libzfs_handle_t *mnt_hdl; 1247 taskq_t *mnt_tq; 1248 zfs_handle_t **mnt_zhps; /* filesystems to mount */ 1249 size_t mnt_num_handles; 1250 int mnt_idx; /* Index of selected entry to mount */ 1251 zfs_iter_f mnt_func; 1252 void *mnt_data; 1253 } mnt_param_t; 1254 1255 /* 1256 * Allocate and populate the parameter struct for mount function, and 1257 * schedule mounting of the entry selected by idx. 1258 */ 1259 static void 1260 zfs_dispatch_mount(libzfs_handle_t *hdl, zfs_handle_t **handles, 1261 size_t num_handles, int idx, zfs_iter_f func, void *data, taskq_t *tq) 1262 { 1263 mnt_param_t *mnt_param = zfs_alloc(hdl, sizeof (mnt_param_t)); 1264 1265 mnt_param->mnt_hdl = hdl; 1266 mnt_param->mnt_tq = tq; 1267 mnt_param->mnt_zhps = handles; 1268 mnt_param->mnt_num_handles = num_handles; 1269 mnt_param->mnt_idx = idx; 1270 mnt_param->mnt_func = func; 1271 mnt_param->mnt_data = data; 1272 1273 (void) taskq_dispatch(tq, zfs_mount_task, (void*)mnt_param, TQ_SLEEP); 1274 } 1275 1276 /* 1277 * This is the structure used to keep state of mounting or sharing operations 1278 * during a call to zpool_enable_datasets(). 1279 */ 1280 typedef struct mount_state { 1281 /* 1282 * ms_mntstatus is set to -1 if any mount fails. While multiple threads 1283 * could update this variable concurrently, no synchronization is 1284 * needed as it's only ever set to -1. 1285 */ 1286 int ms_mntstatus; 1287 int ms_mntflags; 1288 const char *ms_mntopts; 1289 } mount_state_t; 1290 1291 static int 1292 zfs_mount_one(zfs_handle_t *zhp, void *arg) 1293 { 1294 mount_state_t *ms = arg; 1295 int ret = 0; 1296 1297 if (zfs_mount(zhp, ms->ms_mntopts, ms->ms_mntflags) != 0) 1298 ret = ms->ms_mntstatus = -1; 1299 return (ret); 1300 } 1301 1302 static int 1303 zfs_share_one(zfs_handle_t *zhp, void *arg) 1304 { 1305 mount_state_t *ms = arg; 1306 int ret = 0; 1307 1308 if (zfs_share(zhp) != 0) 1309 ret = ms->ms_mntstatus = -1; 1310 return (ret); 1311 } 1312 1313 /* 1314 * Task queue function to mount one file system. On completion, it finds and 1315 * schedules its children to be mounted. This depends on the sorting done in 1316 * zfs_foreach_mountpoint(). Note that the degenerate case (chain of entries 1317 * each descending from the previous) will have no parallelism since we always 1318 * have to wait for the parent to finish mounting before we can schedule 1319 * its children. 1320 */ 1321 static void 1322 zfs_mount_task(void *arg) 1323 { 1324 mnt_param_t *mp = arg; 1325 int idx = mp->mnt_idx; 1326 zfs_handle_t **handles = mp->mnt_zhps; 1327 size_t num_handles = mp->mnt_num_handles; 1328 char mountpoint[ZFS_MAXPROPLEN]; 1329 1330 verify(zfs_prop_get(handles[idx], ZFS_PROP_MOUNTPOINT, mountpoint, 1331 sizeof (mountpoint), NULL, NULL, 0, B_FALSE) == 0); 1332 1333 if (mp->mnt_func(handles[idx], mp->mnt_data) != 0) 1334 return; 1335 1336 /* 1337 * We dispatch tasks to mount filesystems with mountpoints underneath 1338 * this one. We do this by dispatching the next filesystem with a 1339 * descendant mountpoint of the one we just mounted, then skip all of 1340 * its descendants, dispatch the next descendant mountpoint, and so on. 1341 * The non_descendant_idx() function skips over filesystems that are 1342 * descendants of the filesystem we just dispatched. 1343 */ 1344 for (int i = idx + 1; i < num_handles; 1345 i = non_descendant_idx(handles, num_handles, i)) { 1346 char child[ZFS_MAXPROPLEN]; 1347 verify(zfs_prop_get(handles[i], ZFS_PROP_MOUNTPOINT, 1348 child, sizeof (child), NULL, NULL, 0, B_FALSE) == 0); 1349 1350 if (!libzfs_path_contains(mountpoint, child)) 1351 break; /* not a descendant, return */ 1352 zfs_dispatch_mount(mp->mnt_hdl, handles, num_handles, i, 1353 mp->mnt_func, mp->mnt_data, mp->mnt_tq); 1354 } 1355 free(mp); 1356 } 1357 1358 /* 1359 * Issue the func callback for each ZFS handle contained in the handles 1360 * array. This function is used to mount all datasets, and so this function 1361 * guarantees that filesystems for parent mountpoints are called before their 1362 * children. As such, before issuing any callbacks, we first sort the array 1363 * of handles by mountpoint. 1364 * 1365 * Callbacks are issued in one of two ways: 1366 * 1367 * 1. Sequentially: If the parallel argument is B_FALSE or the ZFS_SERIAL_MOUNT 1368 * environment variable is set, then we issue callbacks sequentially. 1369 * 1370 * 2. In parallel: If the parallel argument is B_TRUE and the ZFS_SERIAL_MOUNT 1371 * environment variable is not set, then we use a taskq to dispatch threads 1372 * to mount filesystems is parallel. This function dispatches tasks to mount 1373 * the filesystems at the top-level mountpoints, and these tasks in turn 1374 * are responsible for recursively mounting filesystems in their children 1375 * mountpoints. 1376 */ 1377 void 1378 zfs_foreach_mountpoint(libzfs_handle_t *hdl, zfs_handle_t **handles, 1379 size_t num_handles, zfs_iter_f func, void *data, boolean_t parallel) 1380 { 1381 /* 1382 * The ZFS_SERIAL_MOUNT environment variable is an undocumented 1383 * variable that can be used as a convenience to do a/b comparison 1384 * of serial vs. parallel mounting. 1385 */ 1386 boolean_t serial_mount = !parallel || 1387 (getenv("ZFS_SERIAL_MOUNT") != NULL); 1388 1389 /* 1390 * Sort the datasets by mountpoint. See mountpoint_cmp for details 1391 * of how these are sorted. 1392 */ 1393 qsort(handles, num_handles, sizeof (zfs_handle_t *), mountpoint_cmp); 1394 1395 if (serial_mount) { 1396 for (int i = 0; i < num_handles; i++) { 1397 func(handles[i], data); 1398 } 1399 return; 1400 } 1401 1402 /* 1403 * Issue the callback function for each dataset using a parallel 1404 * algorithm that uses a taskq to manage threads. 1405 */ 1406 taskq_t *tq = taskq_create("mount_taskq", mount_tq_nthr, 0, 1407 mount_tq_nthr, mount_tq_nthr, TASKQ_DYNAMIC | TASKQ_PREPOPULATE); 1408 1409 /* 1410 * There may be multiple "top level" mountpoints outside of the pool's 1411 * root mountpoint, e.g.: /foo /bar. Dispatch a mount task for each of 1412 * these. 1413 */ 1414 for (int i = 0; i < num_handles; 1415 i = non_descendant_idx(handles, num_handles, i)) { 1416 zfs_dispatch_mount(hdl, handles, num_handles, i, func, data, 1417 tq); 1418 } 1419 1420 taskq_wait(tq); /* wait for all scheduled mounts to complete */ 1421 taskq_destroy(tq); 1422 } 1423 1424 /* 1425 * Mount and share all datasets within the given pool. This assumes that no 1426 * datasets within the pool are currently mounted. 1427 */ 1428 #pragma weak zpool_mount_datasets = zpool_enable_datasets 1429 int 1430 zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags) 1431 { 1432 get_all_cb_t cb = { 0 }; 1433 mount_state_t ms = { 0 }; 1434 zfs_handle_t *zfsp; 1435 sa_init_selective_arg_t sharearg; 1436 int ret = 0; 1437 1438 if ((zfsp = zfs_open(zhp->zpool_hdl, zhp->zpool_name, 1439 ZFS_TYPE_DATASET)) == NULL) 1440 goto out; 1441 1442 1443 /* 1444 * Gather all non-snapshot datasets within the pool. Start by adding 1445 * the root filesystem for this pool to the list, and then iterate 1446 * over all child filesystems. 1447 */ 1448 libzfs_add_handle(&cb, zfsp); 1449 if (zfs_iter_filesystems(zfsp, zfs_iter_cb, &cb) != 0) 1450 goto out; 1451 1452 ms.ms_mntopts = mntopts; 1453 ms.ms_mntflags = flags; 1454 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1455 zfs_mount_one, &ms, B_TRUE); 1456 if (ms.ms_mntstatus != 0) 1457 ret = ms.ms_mntstatus; 1458 1459 /* 1460 * Share all filesystems that need to be shared. This needs to be 1461 * a separate pass because libshare is not mt-safe, and so we need 1462 * to share serially. 1463 */ 1464 sharearg.zhandle_arr = cb.cb_handles; 1465 sharearg.zhandle_len = cb.cb_used; 1466 if ((ret = zfs_init_libshare_arg(zhp->zpool_hdl, 1467 SA_INIT_SHARE_API_SELECTIVE, &sharearg)) != 0) 1468 goto out; 1469 1470 ms.ms_mntstatus = 0; 1471 zfs_foreach_mountpoint(zhp->zpool_hdl, cb.cb_handles, cb.cb_used, 1472 zfs_share_one, &ms, B_FALSE); 1473 if (ms.ms_mntstatus != 0) 1474 ret = ms.ms_mntstatus; 1475 1476 out: 1477 for (int i = 0; i < cb.cb_used; i++) 1478 zfs_close(cb.cb_handles[i]); 1479 free(cb.cb_handles); 1480 1481 return (ret); 1482 } 1483 1484 static int 1485 mountpoint_compare(const void *a, const void *b) 1486 { 1487 const char *mounta = *((char **)a); 1488 const char *mountb = *((char **)b); 1489 1490 return (strcmp(mountb, mounta)); 1491 } 1492 1493 /* alias for 2002/240 */ 1494 #pragma weak zpool_unmount_datasets = zpool_disable_datasets 1495 /* 1496 * Unshare and unmount all datasets within the given pool. We don't want to 1497 * rely on traversing the DSL to discover the filesystems within the pool, 1498 * because this may be expensive (if not all of them are mounted), and can fail 1499 * arbitrarily (on I/O error, for example). Instead, we walk /etc/mnttab and 1500 * gather all the filesystems that are currently mounted. 1501 */ 1502 int 1503 zpool_disable_datasets(zpool_handle_t *zhp, boolean_t force) 1504 { 1505 int used, alloc; 1506 struct mnttab entry; 1507 size_t namelen; 1508 char **mountpoints = NULL; 1509 zfs_handle_t **datasets = NULL; 1510 libzfs_handle_t *hdl = zhp->zpool_hdl; 1511 int i; 1512 int ret = -1; 1513 int flags = (force ? MS_FORCE : 0); 1514 sa_init_selective_arg_t sharearg; 1515 1516 namelen = strlen(zhp->zpool_name); 1517 1518 rewind(hdl->libzfs_mnttab); 1519 used = alloc = 0; 1520 while (getmntent(hdl->libzfs_mnttab, &entry) == 0) { 1521 /* 1522 * Ignore non-ZFS entries. 1523 */ 1524 if (entry.mnt_fstype == NULL || 1525 strcmp(entry.mnt_fstype, MNTTYPE_ZFS) != 0) 1526 continue; 1527 1528 /* 1529 * Ignore filesystems not within this pool. 1530 */ 1531 if (entry.mnt_mountp == NULL || 1532 strncmp(entry.mnt_special, zhp->zpool_name, namelen) != 0 || 1533 (entry.mnt_special[namelen] != '/' && 1534 entry.mnt_special[namelen] != '\0')) 1535 continue; 1536 1537 /* 1538 * At this point we've found a filesystem within our pool. Add 1539 * it to our growing list. 1540 */ 1541 if (used == alloc) { 1542 if (alloc == 0) { 1543 if ((mountpoints = zfs_alloc(hdl, 1544 8 * sizeof (void *))) == NULL) 1545 goto out; 1546 1547 if ((datasets = zfs_alloc(hdl, 1548 8 * sizeof (void *))) == NULL) 1549 goto out; 1550 1551 alloc = 8; 1552 } else { 1553 void *ptr; 1554 1555 if ((ptr = zfs_realloc(hdl, mountpoints, 1556 alloc * sizeof (void *), 1557 alloc * 2 * sizeof (void *))) == NULL) 1558 goto out; 1559 mountpoints = ptr; 1560 1561 if ((ptr = zfs_realloc(hdl, datasets, 1562 alloc * sizeof (void *), 1563 alloc * 2 * sizeof (void *))) == NULL) 1564 goto out; 1565 datasets = ptr; 1566 1567 alloc *= 2; 1568 } 1569 } 1570 1571 if ((mountpoints[used] = zfs_strdup(hdl, 1572 entry.mnt_mountp)) == NULL) 1573 goto out; 1574 1575 /* 1576 * This is allowed to fail, in case there is some I/O error. It 1577 * is only used to determine if we need to remove the underlying 1578 * mountpoint, so failure is not fatal. 1579 */ 1580 datasets[used] = make_dataset_handle(hdl, entry.mnt_special); 1581 1582 used++; 1583 } 1584 1585 /* 1586 * At this point, we have the entire list of filesystems, so sort it by 1587 * mountpoint. 1588 */ 1589 sharearg.zhandle_arr = datasets; 1590 sharearg.zhandle_len = used; 1591 ret = zfs_init_libshare_arg(hdl, SA_INIT_SHARE_API_SELECTIVE, 1592 &sharearg); 1593 if (ret != 0) 1594 goto out; 1595 qsort(mountpoints, used, sizeof (char *), mountpoint_compare); 1596 1597 /* 1598 * Walk through and first unshare everything. 1599 */ 1600 for (i = 0; i < used; i++) { 1601 zfs_share_proto_t *curr_proto; 1602 for (curr_proto = share_all_proto; *curr_proto != PROTO_END; 1603 curr_proto++) { 1604 if (is_shared(hdl, mountpoints[i], *curr_proto) && 1605 unshare_one(hdl, mountpoints[i], 1606 mountpoints[i], *curr_proto) != 0) 1607 goto out; 1608 } 1609 } 1610 1611 /* 1612 * Now unmount everything, removing the underlying directories as 1613 * appropriate. 1614 */ 1615 for (i = 0; i < used; i++) { 1616 if (unmount_one(hdl, mountpoints[i], flags) != 0) 1617 goto out; 1618 } 1619 1620 for (i = 0; i < used; i++) { 1621 if (datasets[i]) 1622 remove_mountpoint(datasets[i]); 1623 } 1624 1625 ret = 0; 1626 out: 1627 for (i = 0; i < used; i++) { 1628 if (datasets[i]) 1629 zfs_close(datasets[i]); 1630 free(mountpoints[i]); 1631 } 1632 free(datasets); 1633 free(mountpoints); 1634 1635 return (ret); 1636 }