1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2017 by Delphix. All rights reserved. 24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved. 25 * Copyright (c) 2014 Integros [integros.com] 26 * Copyright 2017 RackTop Systems. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/dbuf.h> 31 #include <sys/dnode.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_impl.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dsl_dir.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/spa.h> 39 #include <sys/zio.h> 40 #include <sys/dmu_zfetch.h> 41 #include <sys/range_tree.h> 42 43 static kmem_cache_t *dnode_cache; 44 /* 45 * Define DNODE_STATS to turn on statistic gathering. By default, it is only 46 * turned on when DEBUG is also defined. 47 */ 48 #ifdef DEBUG 49 #define DNODE_STATS 50 #endif /* DEBUG */ 51 52 #ifdef DNODE_STATS 53 #define DNODE_STAT_ADD(stat) ((stat)++) 54 #else 55 #define DNODE_STAT_ADD(stat) /* nothing */ 56 #endif /* DNODE_STATS */ 57 58 static dnode_phys_t dnode_phys_zero; 59 60 int zfs_default_bs = SPA_MINBLOCKSHIFT; 61 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 62 63 #ifdef _KERNEL 64 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 65 #endif /* _KERNEL */ 66 67 static int 68 dbuf_compare(const void *x1, const void *x2) 69 { 70 const dmu_buf_impl_t *d1 = x1; 71 const dmu_buf_impl_t *d2 = x2; 72 73 if (d1->db_level < d2->db_level) { 74 return (-1); 75 } 76 if (d1->db_level > d2->db_level) { 77 return (1); 78 } 79 80 if (d1->db_blkid < d2->db_blkid) { 81 return (-1); 82 } 83 if (d1->db_blkid > d2->db_blkid) { 84 return (1); 85 } 86 87 if (d1->db_state == DB_SEARCH) { 88 ASSERT3S(d2->db_state, !=, DB_SEARCH); 89 return (-1); 90 } else if (d2->db_state == DB_SEARCH) { 91 ASSERT3S(d1->db_state, !=, DB_SEARCH); 92 return (1); 93 } 94 95 if ((uintptr_t)d1 < (uintptr_t)d2) { 96 return (-1); 97 } 98 if ((uintptr_t)d1 > (uintptr_t)d2) { 99 return (1); 100 } 101 return (0); 102 } 103 104 /* ARGSUSED */ 105 static int 106 dnode_cons(void *arg, void *unused, int kmflag) 107 { 108 dnode_t *dn = arg; 109 int i; 110 111 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 112 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 113 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 114 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 115 116 /* 117 * Every dbuf has a reference, and dropping a tracked reference is 118 * O(number of references), so don't track dn_holds. 119 */ 120 refcount_create_untracked(&dn->dn_holds); 121 refcount_create(&dn->dn_tx_holds); 122 list_link_init(&dn->dn_link); 123 124 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 125 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 126 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 127 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 128 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 129 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 130 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 131 132 for (i = 0; i < TXG_SIZE; i++) { 133 list_link_init(&dn->dn_dirty_link[i]); 134 dn->dn_free_ranges[i] = NULL; 135 list_create(&dn->dn_dirty_records[i], 136 sizeof (dbuf_dirty_record_t), 137 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 138 } 139 140 dn->dn_allocated_txg = 0; 141 dn->dn_free_txg = 0; 142 dn->dn_assigned_txg = 0; 143 dn->dn_dirtyctx = 0; 144 dn->dn_dirtyctx_firstset = NULL; 145 dn->dn_bonus = NULL; 146 dn->dn_have_spill = B_FALSE; 147 dn->dn_zio = NULL; 148 dn->dn_oldused = 0; 149 dn->dn_oldflags = 0; 150 dn->dn_olduid = 0; 151 dn->dn_oldgid = 0; 152 dn->dn_newuid = 0; 153 dn->dn_newgid = 0; 154 dn->dn_id_flags = 0; 155 156 dn->dn_dbufs_count = 0; 157 avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 158 offsetof(dmu_buf_impl_t, db_link)); 159 160 dn->dn_moved = 0; 161 return (0); 162 } 163 164 /* ARGSUSED */ 165 static void 166 dnode_dest(void *arg, void *unused) 167 { 168 int i; 169 dnode_t *dn = arg; 170 171 rw_destroy(&dn->dn_struct_rwlock); 172 mutex_destroy(&dn->dn_mtx); 173 mutex_destroy(&dn->dn_dbufs_mtx); 174 cv_destroy(&dn->dn_notxholds); 175 refcount_destroy(&dn->dn_holds); 176 refcount_destroy(&dn->dn_tx_holds); 177 ASSERT(!list_link_active(&dn->dn_link)); 178 179 for (i = 0; i < TXG_SIZE; i++) { 180 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 181 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 182 list_destroy(&dn->dn_dirty_records[i]); 183 ASSERT0(dn->dn_next_nblkptr[i]); 184 ASSERT0(dn->dn_next_nlevels[i]); 185 ASSERT0(dn->dn_next_indblkshift[i]); 186 ASSERT0(dn->dn_next_bonustype[i]); 187 ASSERT0(dn->dn_rm_spillblk[i]); 188 ASSERT0(dn->dn_next_bonuslen[i]); 189 ASSERT0(dn->dn_next_blksz[i]); 190 } 191 192 ASSERT0(dn->dn_allocated_txg); 193 ASSERT0(dn->dn_free_txg); 194 ASSERT0(dn->dn_assigned_txg); 195 ASSERT0(dn->dn_dirtyctx); 196 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 197 ASSERT3P(dn->dn_bonus, ==, NULL); 198 ASSERT(!dn->dn_have_spill); 199 ASSERT3P(dn->dn_zio, ==, NULL); 200 ASSERT0(dn->dn_oldused); 201 ASSERT0(dn->dn_oldflags); 202 ASSERT0(dn->dn_olduid); 203 ASSERT0(dn->dn_oldgid); 204 ASSERT0(dn->dn_newuid); 205 ASSERT0(dn->dn_newgid); 206 ASSERT0(dn->dn_id_flags); 207 208 ASSERT0(dn->dn_dbufs_count); 209 avl_destroy(&dn->dn_dbufs); 210 } 211 212 void 213 dnode_init(void) 214 { 215 ASSERT(dnode_cache == NULL); 216 dnode_cache = kmem_cache_create("dnode_t", 217 sizeof (dnode_t), 218 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 219 #ifdef _KERNEL 220 kmem_cache_set_move(dnode_cache, dnode_move); 221 #endif /* _KERNEL */ 222 } 223 224 void 225 dnode_fini(void) 226 { 227 kmem_cache_destroy(dnode_cache); 228 dnode_cache = NULL; 229 } 230 231 232 #ifdef ZFS_DEBUG 233 void 234 dnode_verify(dnode_t *dn) 235 { 236 int drop_struct_lock = FALSE; 237 238 ASSERT(dn->dn_phys); 239 ASSERT(dn->dn_objset); 240 ASSERT(dn->dn_handle->dnh_dnode == dn); 241 242 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 243 244 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 245 return; 246 247 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 248 rw_enter(&dn->dn_struct_rwlock, RW_READER); 249 drop_struct_lock = TRUE; 250 } 251 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 252 int i; 253 ASSERT3U(dn->dn_indblkshift, >=, 0); 254 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 255 if (dn->dn_datablkshift) { 256 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 257 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 258 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 259 } 260 ASSERT3U(dn->dn_nlevels, <=, 30); 261 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 262 ASSERT3U(dn->dn_nblkptr, >=, 1); 263 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 264 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 265 ASSERT3U(dn->dn_datablksz, ==, 266 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 267 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 268 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 269 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 270 for (i = 0; i < TXG_SIZE; i++) { 271 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 272 } 273 } 274 if (dn->dn_phys->dn_type != DMU_OT_NONE) 275 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 276 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 277 if (dn->dn_dbuf != NULL) { 278 ASSERT3P(dn->dn_phys, ==, 279 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 280 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 281 } 282 if (drop_struct_lock) 283 rw_exit(&dn->dn_struct_rwlock); 284 } 285 #endif 286 287 void 288 dnode_byteswap(dnode_phys_t *dnp) 289 { 290 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 291 int i; 292 293 if (dnp->dn_type == DMU_OT_NONE) { 294 bzero(dnp, sizeof (dnode_phys_t)); 295 return; 296 } 297 298 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 299 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 300 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 301 dnp->dn_used = BSWAP_64(dnp->dn_used); 302 303 /* 304 * dn_nblkptr is only one byte, so it's OK to read it in either 305 * byte order. We can't read dn_bouslen. 306 */ 307 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 308 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 309 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 310 buf64[i] = BSWAP_64(buf64[i]); 311 312 /* 313 * OK to check dn_bonuslen for zero, because it won't matter if 314 * we have the wrong byte order. This is necessary because the 315 * dnode dnode is smaller than a regular dnode. 316 */ 317 if (dnp->dn_bonuslen != 0) { 318 /* 319 * Note that the bonus length calculated here may be 320 * longer than the actual bonus buffer. This is because 321 * we always put the bonus buffer after the last block 322 * pointer (instead of packing it against the end of the 323 * dnode buffer). 324 */ 325 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 326 size_t len = DN_MAX_BONUSLEN - off; 327 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 328 dmu_object_byteswap_t byteswap = 329 DMU_OT_BYTESWAP(dnp->dn_bonustype); 330 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 331 } 332 333 /* Swap SPILL block if we have one */ 334 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 335 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); 336 337 } 338 339 void 340 dnode_buf_byteswap(void *vbuf, size_t size) 341 { 342 dnode_phys_t *buf = vbuf; 343 int i; 344 345 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 346 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 347 348 size >>= DNODE_SHIFT; 349 for (i = 0; i < size; i++) { 350 dnode_byteswap(buf); 351 buf++; 352 } 353 } 354 355 void 356 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 357 { 358 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 359 360 dnode_setdirty(dn, tx); 361 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 362 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 363 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 364 dn->dn_bonuslen = newsize; 365 if (newsize == 0) 366 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 367 else 368 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 369 rw_exit(&dn->dn_struct_rwlock); 370 } 371 372 void 373 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 374 { 375 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 376 dnode_setdirty(dn, tx); 377 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 378 dn->dn_bonustype = newtype; 379 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 380 rw_exit(&dn->dn_struct_rwlock); 381 } 382 383 void 384 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 385 { 386 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 387 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 388 dnode_setdirty(dn, tx); 389 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 390 dn->dn_have_spill = B_FALSE; 391 } 392 393 static void 394 dnode_setdblksz(dnode_t *dn, int size) 395 { 396 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 397 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 398 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 399 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 400 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 401 dn->dn_datablksz = size; 402 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 403 dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0; 404 } 405 406 static dnode_t * 407 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 408 uint64_t object, dnode_handle_t *dnh) 409 { 410 dnode_t *dn; 411 412 dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 413 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 414 dn->dn_moved = 0; 415 416 /* 417 * Defer setting dn_objset until the dnode is ready to be a candidate 418 * for the dnode_move() callback. 419 */ 420 dn->dn_object = object; 421 dn->dn_dbuf = db; 422 dn->dn_handle = dnh; 423 dn->dn_phys = dnp; 424 425 if (dnp->dn_datablkszsec) { 426 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 427 } else { 428 dn->dn_datablksz = 0; 429 dn->dn_datablkszsec = 0; 430 dn->dn_datablkshift = 0; 431 } 432 dn->dn_indblkshift = dnp->dn_indblkshift; 433 dn->dn_nlevels = dnp->dn_nlevels; 434 dn->dn_type = dnp->dn_type; 435 dn->dn_nblkptr = dnp->dn_nblkptr; 436 dn->dn_checksum = dnp->dn_checksum; 437 dn->dn_compress = dnp->dn_compress; 438 dn->dn_bonustype = dnp->dn_bonustype; 439 dn->dn_bonuslen = dnp->dn_bonuslen; 440 dn->dn_maxblkid = dnp->dn_maxblkid; 441 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 442 dn->dn_id_flags = 0; 443 444 dmu_zfetch_init(&dn->dn_zfetch, dn); 445 446 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 447 448 mutex_enter(&os->os_lock); 449 if (dnh->dnh_dnode != NULL) { 450 /* Lost the allocation race. */ 451 mutex_exit(&os->os_lock); 452 kmem_cache_free(dnode_cache, dn); 453 return (dnh->dnh_dnode); 454 } 455 456 /* 457 * Exclude special dnodes from os_dnodes so an empty os_dnodes 458 * signifies that the special dnodes have no references from 459 * their children (the entries in os_dnodes). This allows 460 * dnode_destroy() to easily determine if the last child has 461 * been removed and then complete eviction of the objset. 462 */ 463 if (!DMU_OBJECT_IS_SPECIAL(object)) 464 list_insert_head(&os->os_dnodes, dn); 465 membar_producer(); 466 467 /* 468 * Everything else must be valid before assigning dn_objset 469 * makes the dnode eligible for dnode_move(). 470 */ 471 dn->dn_objset = os; 472 473 dnh->dnh_dnode = dn; 474 mutex_exit(&os->os_lock); 475 476 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 477 return (dn); 478 } 479 480 /* 481 * Caller must be holding the dnode handle, which is released upon return. 482 */ 483 static void 484 dnode_destroy(dnode_t *dn) 485 { 486 objset_t *os = dn->dn_objset; 487 boolean_t complete_os_eviction = B_FALSE; 488 489 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 490 491 mutex_enter(&os->os_lock); 492 POINTER_INVALIDATE(&dn->dn_objset); 493 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 494 list_remove(&os->os_dnodes, dn); 495 complete_os_eviction = 496 list_is_empty(&os->os_dnodes) && 497 list_link_active(&os->os_evicting_node); 498 } 499 mutex_exit(&os->os_lock); 500 501 /* the dnode can no longer move, so we can release the handle */ 502 zrl_remove(&dn->dn_handle->dnh_zrlock); 503 504 dn->dn_allocated_txg = 0; 505 dn->dn_free_txg = 0; 506 dn->dn_assigned_txg = 0; 507 508 dn->dn_dirtyctx = 0; 509 if (dn->dn_dirtyctx_firstset != NULL) { 510 kmem_free(dn->dn_dirtyctx_firstset, 1); 511 dn->dn_dirtyctx_firstset = NULL; 512 } 513 if (dn->dn_bonus != NULL) { 514 mutex_enter(&dn->dn_bonus->db_mtx); 515 dbuf_destroy(dn->dn_bonus); 516 dn->dn_bonus = NULL; 517 } 518 dn->dn_zio = NULL; 519 520 dn->dn_have_spill = B_FALSE; 521 dn->dn_oldused = 0; 522 dn->dn_oldflags = 0; 523 dn->dn_olduid = 0; 524 dn->dn_oldgid = 0; 525 dn->dn_newuid = 0; 526 dn->dn_newgid = 0; 527 dn->dn_id_flags = 0; 528 529 dmu_zfetch_fini(&dn->dn_zfetch); 530 kmem_cache_free(dnode_cache, dn); 531 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 532 533 if (complete_os_eviction) 534 dmu_objset_evict_done(os); 535 } 536 537 void 538 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 539 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 540 { 541 int i; 542 543 ASSERT3U(blocksize, <=, 544 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 545 if (blocksize == 0) 546 blocksize = 1 << zfs_default_bs; 547 else 548 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 549 550 if (ibs == 0) 551 ibs = zfs_default_ibs; 552 553 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 554 555 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 556 dn->dn_object, tx->tx_txg, blocksize, ibs); 557 558 ASSERT(dn->dn_type == DMU_OT_NONE); 559 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 560 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 561 ASSERT(ot != DMU_OT_NONE); 562 ASSERT(DMU_OT_IS_VALID(ot)); 563 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 564 (bonustype == DMU_OT_SA && bonuslen == 0) || 565 (bonustype != DMU_OT_NONE && bonuslen != 0)); 566 ASSERT(DMU_OT_IS_VALID(bonustype)); 567 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 568 ASSERT(dn->dn_type == DMU_OT_NONE); 569 ASSERT0(dn->dn_maxblkid); 570 ASSERT0(dn->dn_allocated_txg); 571 ASSERT0(dn->dn_assigned_txg); 572 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 573 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 574 ASSERT(avl_is_empty(&dn->dn_dbufs)); 575 576 for (i = 0; i < TXG_SIZE; i++) { 577 ASSERT0(dn->dn_next_nblkptr[i]); 578 ASSERT0(dn->dn_next_nlevels[i]); 579 ASSERT0(dn->dn_next_indblkshift[i]); 580 ASSERT0(dn->dn_next_bonuslen[i]); 581 ASSERT0(dn->dn_next_bonustype[i]); 582 ASSERT0(dn->dn_rm_spillblk[i]); 583 ASSERT0(dn->dn_next_blksz[i]); 584 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 585 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 586 ASSERT3P(dn->dn_free_ranges[i], ==, NULL); 587 } 588 589 dn->dn_type = ot; 590 dnode_setdblksz(dn, blocksize); 591 dn->dn_indblkshift = ibs; 592 dn->dn_nlevels = 1; 593 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 594 dn->dn_nblkptr = 1; 595 else 596 dn->dn_nblkptr = 1 + 597 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 598 dn->dn_bonustype = bonustype; 599 dn->dn_bonuslen = bonuslen; 600 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 601 dn->dn_compress = ZIO_COMPRESS_INHERIT; 602 dn->dn_dirtyctx = 0; 603 604 dn->dn_free_txg = 0; 605 if (dn->dn_dirtyctx_firstset) { 606 kmem_free(dn->dn_dirtyctx_firstset, 1); 607 dn->dn_dirtyctx_firstset = NULL; 608 } 609 610 dn->dn_allocated_txg = tx->tx_txg; 611 dn->dn_id_flags = 0; 612 613 dnode_setdirty(dn, tx); 614 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 615 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 616 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 617 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 618 } 619 620 void 621 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 622 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 623 { 624 int nblkptr; 625 626 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 627 ASSERT3U(blocksize, <=, 628 spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 629 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 630 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 631 ASSERT(tx->tx_txg != 0); 632 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 633 (bonustype != DMU_OT_NONE && bonuslen != 0) || 634 (bonustype == DMU_OT_SA && bonuslen == 0)); 635 ASSERT(DMU_OT_IS_VALID(bonustype)); 636 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 637 638 /* clean up any unreferenced dbufs */ 639 dnode_evict_dbufs(dn); 640 641 dn->dn_id_flags = 0; 642 643 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 644 dnode_setdirty(dn, tx); 645 if (dn->dn_datablksz != blocksize) { 646 /* change blocksize */ 647 ASSERT(dn->dn_maxblkid == 0 && 648 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 649 dnode_block_freed(dn, 0))); 650 dnode_setdblksz(dn, blocksize); 651 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 652 } 653 if (dn->dn_bonuslen != bonuslen) 654 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 655 656 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 657 nblkptr = 1; 658 else 659 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 660 if (dn->dn_bonustype != bonustype) 661 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 662 if (dn->dn_nblkptr != nblkptr) 663 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 664 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 665 dbuf_rm_spill(dn, tx); 666 dnode_rm_spill(dn, tx); 667 } 668 rw_exit(&dn->dn_struct_rwlock); 669 670 /* change type */ 671 dn->dn_type = ot; 672 673 /* change bonus size and type */ 674 mutex_enter(&dn->dn_mtx); 675 dn->dn_bonustype = bonustype; 676 dn->dn_bonuslen = bonuslen; 677 dn->dn_nblkptr = nblkptr; 678 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 679 dn->dn_compress = ZIO_COMPRESS_INHERIT; 680 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 681 682 /* fix up the bonus db_size */ 683 if (dn->dn_bonus) { 684 dn->dn_bonus->db.db_size = 685 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 686 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 687 } 688 689 dn->dn_allocated_txg = tx->tx_txg; 690 mutex_exit(&dn->dn_mtx); 691 } 692 693 #ifdef DNODE_STATS 694 static struct { 695 uint64_t dms_dnode_invalid; 696 uint64_t dms_dnode_recheck1; 697 uint64_t dms_dnode_recheck2; 698 uint64_t dms_dnode_special; 699 uint64_t dms_dnode_handle; 700 uint64_t dms_dnode_rwlock; 701 uint64_t dms_dnode_active; 702 } dnode_move_stats; 703 #endif /* DNODE_STATS */ 704 705 #ifdef _KERNEL 706 static void 707 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 708 { 709 int i; 710 711 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 712 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 713 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 714 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 715 716 /* Copy fields. */ 717 ndn->dn_objset = odn->dn_objset; 718 ndn->dn_object = odn->dn_object; 719 ndn->dn_dbuf = odn->dn_dbuf; 720 ndn->dn_handle = odn->dn_handle; 721 ndn->dn_phys = odn->dn_phys; 722 ndn->dn_type = odn->dn_type; 723 ndn->dn_bonuslen = odn->dn_bonuslen; 724 ndn->dn_bonustype = odn->dn_bonustype; 725 ndn->dn_nblkptr = odn->dn_nblkptr; 726 ndn->dn_checksum = odn->dn_checksum; 727 ndn->dn_compress = odn->dn_compress; 728 ndn->dn_nlevels = odn->dn_nlevels; 729 ndn->dn_indblkshift = odn->dn_indblkshift; 730 ndn->dn_datablkshift = odn->dn_datablkshift; 731 ndn->dn_datablkszsec = odn->dn_datablkszsec; 732 ndn->dn_datablksz = odn->dn_datablksz; 733 ndn->dn_maxblkid = odn->dn_maxblkid; 734 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 735 sizeof (odn->dn_next_nblkptr)); 736 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 737 sizeof (odn->dn_next_nlevels)); 738 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 739 sizeof (odn->dn_next_indblkshift)); 740 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 741 sizeof (odn->dn_next_bonustype)); 742 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 743 sizeof (odn->dn_rm_spillblk)); 744 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 745 sizeof (odn->dn_next_bonuslen)); 746 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 747 sizeof (odn->dn_next_blksz)); 748 for (i = 0; i < TXG_SIZE; i++) { 749 list_move_tail(&ndn->dn_dirty_records[i], 750 &odn->dn_dirty_records[i]); 751 } 752 bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0], 753 sizeof (odn->dn_free_ranges)); 754 ndn->dn_allocated_txg = odn->dn_allocated_txg; 755 ndn->dn_free_txg = odn->dn_free_txg; 756 ndn->dn_assigned_txg = odn->dn_assigned_txg; 757 ndn->dn_dirtyctx = odn->dn_dirtyctx; 758 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 759 ASSERT(refcount_count(&odn->dn_tx_holds) == 0); 760 refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 761 ASSERT(avl_is_empty(&ndn->dn_dbufs)); 762 avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs); 763 ndn->dn_dbufs_count = odn->dn_dbufs_count; 764 ndn->dn_bonus = odn->dn_bonus; 765 ndn->dn_have_spill = odn->dn_have_spill; 766 ndn->dn_zio = odn->dn_zio; 767 ndn->dn_oldused = odn->dn_oldused; 768 ndn->dn_oldflags = odn->dn_oldflags; 769 ndn->dn_olduid = odn->dn_olduid; 770 ndn->dn_oldgid = odn->dn_oldgid; 771 ndn->dn_newuid = odn->dn_newuid; 772 ndn->dn_newgid = odn->dn_newgid; 773 ndn->dn_id_flags = odn->dn_id_flags; 774 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 775 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 776 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 777 778 /* 779 * Update back pointers. Updating the handle fixes the back pointer of 780 * every descendant dbuf as well as the bonus dbuf. 781 */ 782 ASSERT(ndn->dn_handle->dnh_dnode == odn); 783 ndn->dn_handle->dnh_dnode = ndn; 784 if (ndn->dn_zfetch.zf_dnode == odn) { 785 ndn->dn_zfetch.zf_dnode = ndn; 786 } 787 788 /* 789 * Invalidate the original dnode by clearing all of its back pointers. 790 */ 791 odn->dn_dbuf = NULL; 792 odn->dn_handle = NULL; 793 avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t), 794 offsetof(dmu_buf_impl_t, db_link)); 795 odn->dn_dbufs_count = 0; 796 odn->dn_bonus = NULL; 797 odn->dn_zfetch.zf_dnode = NULL; 798 799 /* 800 * Set the low bit of the objset pointer to ensure that dnode_move() 801 * recognizes the dnode as invalid in any subsequent callback. 802 */ 803 POINTER_INVALIDATE(&odn->dn_objset); 804 805 /* 806 * Satisfy the destructor. 807 */ 808 for (i = 0; i < TXG_SIZE; i++) { 809 list_create(&odn->dn_dirty_records[i], 810 sizeof (dbuf_dirty_record_t), 811 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 812 odn->dn_free_ranges[i] = NULL; 813 odn->dn_next_nlevels[i] = 0; 814 odn->dn_next_indblkshift[i] = 0; 815 odn->dn_next_bonustype[i] = 0; 816 odn->dn_rm_spillblk[i] = 0; 817 odn->dn_next_bonuslen[i] = 0; 818 odn->dn_next_blksz[i] = 0; 819 } 820 odn->dn_allocated_txg = 0; 821 odn->dn_free_txg = 0; 822 odn->dn_assigned_txg = 0; 823 odn->dn_dirtyctx = 0; 824 odn->dn_dirtyctx_firstset = NULL; 825 odn->dn_have_spill = B_FALSE; 826 odn->dn_zio = NULL; 827 odn->dn_oldused = 0; 828 odn->dn_oldflags = 0; 829 odn->dn_olduid = 0; 830 odn->dn_oldgid = 0; 831 odn->dn_newuid = 0; 832 odn->dn_newgid = 0; 833 odn->dn_id_flags = 0; 834 835 /* 836 * Mark the dnode. 837 */ 838 ndn->dn_moved = 1; 839 odn->dn_moved = (uint8_t)-1; 840 } 841 842 /*ARGSUSED*/ 843 static kmem_cbrc_t 844 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 845 { 846 dnode_t *odn = buf, *ndn = newbuf; 847 objset_t *os; 848 int64_t refcount; 849 uint32_t dbufs; 850 851 /* 852 * The dnode is on the objset's list of known dnodes if the objset 853 * pointer is valid. We set the low bit of the objset pointer when 854 * freeing the dnode to invalidate it, and the memory patterns written 855 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 856 * A newly created dnode sets the objset pointer last of all to indicate 857 * that the dnode is known and in a valid state to be moved by this 858 * function. 859 */ 860 os = odn->dn_objset; 861 if (!POINTER_IS_VALID(os)) { 862 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid); 863 return (KMEM_CBRC_DONT_KNOW); 864 } 865 866 /* 867 * Ensure that the objset does not go away during the move. 868 */ 869 rw_enter(&os_lock, RW_WRITER); 870 if (os != odn->dn_objset) { 871 rw_exit(&os_lock); 872 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1); 873 return (KMEM_CBRC_DONT_KNOW); 874 } 875 876 /* 877 * If the dnode is still valid, then so is the objset. We know that no 878 * valid objset can be freed while we hold os_lock, so we can safely 879 * ensure that the objset remains in use. 880 */ 881 mutex_enter(&os->os_lock); 882 883 /* 884 * Recheck the objset pointer in case the dnode was removed just before 885 * acquiring the lock. 886 */ 887 if (os != odn->dn_objset) { 888 mutex_exit(&os->os_lock); 889 rw_exit(&os_lock); 890 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2); 891 return (KMEM_CBRC_DONT_KNOW); 892 } 893 894 /* 895 * At this point we know that as long as we hold os->os_lock, the dnode 896 * cannot be freed and fields within the dnode can be safely accessed. 897 * The objset listing this dnode cannot go away as long as this dnode is 898 * on its list. 899 */ 900 rw_exit(&os_lock); 901 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 902 mutex_exit(&os->os_lock); 903 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special); 904 return (KMEM_CBRC_NO); 905 } 906 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 907 908 /* 909 * Lock the dnode handle to prevent the dnode from obtaining any new 910 * holds. This also prevents the descendant dbufs and the bonus dbuf 911 * from accessing the dnode, so that we can discount their holds. The 912 * handle is safe to access because we know that while the dnode cannot 913 * go away, neither can its handle. Once we hold dnh_zrlock, we can 914 * safely move any dnode referenced only by dbufs. 915 */ 916 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 917 mutex_exit(&os->os_lock); 918 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle); 919 return (KMEM_CBRC_LATER); 920 } 921 922 /* 923 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 924 * We need to guarantee that there is a hold for every dbuf in order to 925 * determine whether the dnode is actively referenced. Falsely matching 926 * a dbuf to an active hold would lead to an unsafe move. It's possible 927 * that a thread already having an active dnode hold is about to add a 928 * dbuf, and we can't compare hold and dbuf counts while the add is in 929 * progress. 930 */ 931 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 932 zrl_exit(&odn->dn_handle->dnh_zrlock); 933 mutex_exit(&os->os_lock); 934 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock); 935 return (KMEM_CBRC_LATER); 936 } 937 938 /* 939 * A dbuf may be removed (evicted) without an active dnode hold. In that 940 * case, the dbuf count is decremented under the handle lock before the 941 * dbuf's hold is released. This order ensures that if we count the hold 942 * after the dbuf is removed but before its hold is released, we will 943 * treat the unmatched hold as active and exit safely. If we count the 944 * hold before the dbuf is removed, the hold is discounted, and the 945 * removal is blocked until the move completes. 946 */ 947 refcount = refcount_count(&odn->dn_holds); 948 ASSERT(refcount >= 0); 949 dbufs = odn->dn_dbufs_count; 950 951 /* We can't have more dbufs than dnode holds. */ 952 ASSERT3U(dbufs, <=, refcount); 953 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 954 uint32_t, dbufs); 955 956 if (refcount > dbufs) { 957 rw_exit(&odn->dn_struct_rwlock); 958 zrl_exit(&odn->dn_handle->dnh_zrlock); 959 mutex_exit(&os->os_lock); 960 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active); 961 return (KMEM_CBRC_LATER); 962 } 963 964 rw_exit(&odn->dn_struct_rwlock); 965 966 /* 967 * At this point we know that anyone with a hold on the dnode is not 968 * actively referencing it. The dnode is known and in a valid state to 969 * move. We're holding the locks needed to execute the critical section. 970 */ 971 dnode_move_impl(odn, ndn); 972 973 list_link_replace(&odn->dn_link, &ndn->dn_link); 974 /* If the dnode was safe to move, the refcount cannot have changed. */ 975 ASSERT(refcount == refcount_count(&ndn->dn_holds)); 976 ASSERT(dbufs == ndn->dn_dbufs_count); 977 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 978 mutex_exit(&os->os_lock); 979 980 return (KMEM_CBRC_YES); 981 } 982 #endif /* _KERNEL */ 983 984 void 985 dnode_special_close(dnode_handle_t *dnh) 986 { 987 dnode_t *dn = dnh->dnh_dnode; 988 989 /* 990 * Wait for final references to the dnode to clear. This can 991 * only happen if the arc is asyncronously evicting state that 992 * has a hold on this dnode while we are trying to evict this 993 * dnode. 994 */ 995 while (refcount_count(&dn->dn_holds) > 0) 996 delay(1); 997 ASSERT(dn->dn_dbuf == NULL || 998 dmu_buf_get_user(&dn->dn_dbuf->db) == NULL); 999 zrl_add(&dnh->dnh_zrlock); 1000 dnode_destroy(dn); /* implicit zrl_remove() */ 1001 zrl_destroy(&dnh->dnh_zrlock); 1002 dnh->dnh_dnode = NULL; 1003 } 1004 1005 void 1006 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 1007 dnode_handle_t *dnh) 1008 { 1009 dnode_t *dn; 1010 1011 dn = dnode_create(os, dnp, NULL, object, dnh); 1012 zrl_init(&dnh->dnh_zrlock); 1013 DNODE_VERIFY(dn); 1014 } 1015 1016 static void 1017 dnode_buf_evict_async(void *dbu) 1018 { 1019 dnode_children_t *children_dnodes = dbu; 1020 int i; 1021 1022 for (i = 0; i < children_dnodes->dnc_count; i++) { 1023 dnode_handle_t *dnh = &children_dnodes->dnc_children[i]; 1024 dnode_t *dn; 1025 1026 /* 1027 * The dnode handle lock guards against the dnode moving to 1028 * another valid address, so there is no need here to guard 1029 * against changes to or from NULL. 1030 */ 1031 if (dnh->dnh_dnode == NULL) { 1032 zrl_destroy(&dnh->dnh_zrlock); 1033 continue; 1034 } 1035 1036 zrl_add(&dnh->dnh_zrlock); 1037 dn = dnh->dnh_dnode; 1038 /* 1039 * If there are holds on this dnode, then there should 1040 * be holds on the dnode's containing dbuf as well; thus 1041 * it wouldn't be eligible for eviction and this function 1042 * would not have been called. 1043 */ 1044 ASSERT(refcount_is_zero(&dn->dn_holds)); 1045 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 1046 1047 dnode_destroy(dn); /* implicit zrl_remove() */ 1048 zrl_destroy(&dnh->dnh_zrlock); 1049 dnh->dnh_dnode = NULL; 1050 } 1051 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1052 children_dnodes->dnc_count * sizeof (dnode_handle_t)); 1053 } 1054 1055 /* 1056 * errors: 1057 * EINVAL - invalid object number. 1058 * EIO - i/o error. 1059 * succeeds even for free dnodes. 1060 */ 1061 int 1062 dnode_hold_impl(objset_t *os, uint64_t object, int flag, 1063 void *tag, dnode_t **dnp) 1064 { 1065 int epb, idx, err; 1066 int drop_struct_lock = FALSE; 1067 int type; 1068 uint64_t blk; 1069 dnode_t *mdn, *dn; 1070 dmu_buf_impl_t *db; 1071 dnode_children_t *children_dnodes; 1072 dnode_handle_t *dnh; 1073 1074 /* 1075 * If you are holding the spa config lock as writer, you shouldn't 1076 * be asking the DMU to do *anything* unless it's the root pool 1077 * which may require us to read from the root filesystem while 1078 * holding some (not all) of the locks as writer. 1079 */ 1080 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 1081 (spa_is_root(os->os_spa) && 1082 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 1083 1084 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 1085 dn = (object == DMU_USERUSED_OBJECT) ? 1086 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); 1087 if (dn == NULL) 1088 return (SET_ERROR(ENOENT)); 1089 type = dn->dn_type; 1090 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 1091 return (SET_ERROR(ENOENT)); 1092 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 1093 return (SET_ERROR(EEXIST)); 1094 DNODE_VERIFY(dn); 1095 (void) refcount_add(&dn->dn_holds, tag); 1096 *dnp = dn; 1097 return (0); 1098 } 1099 1100 if (object == 0 || object >= DN_MAX_OBJECT) 1101 return (SET_ERROR(EINVAL)); 1102 1103 mdn = DMU_META_DNODE(os); 1104 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 1105 1106 DNODE_VERIFY(mdn); 1107 1108 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 1109 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 1110 drop_struct_lock = TRUE; 1111 } 1112 1113 blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t)); 1114 1115 db = dbuf_hold(mdn, blk, FTAG); 1116 if (drop_struct_lock) 1117 rw_exit(&mdn->dn_struct_rwlock); 1118 if (db == NULL) 1119 return (SET_ERROR(EIO)); 1120 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 1121 if (err) { 1122 dbuf_rele(db, FTAG); 1123 return (err); 1124 } 1125 1126 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 1127 epb = db->db.db_size >> DNODE_SHIFT; 1128 1129 idx = object & (epb-1); 1130 1131 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 1132 children_dnodes = dmu_buf_get_user(&db->db); 1133 if (children_dnodes == NULL) { 1134 int i; 1135 dnode_children_t *winner; 1136 children_dnodes = kmem_zalloc(sizeof (dnode_children_t) + 1137 epb * sizeof (dnode_handle_t), KM_SLEEP); 1138 children_dnodes->dnc_count = epb; 1139 dnh = &children_dnodes->dnc_children[0]; 1140 for (i = 0; i < epb; i++) { 1141 zrl_init(&dnh[i].dnh_zrlock); 1142 } 1143 dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL, 1144 dnode_buf_evict_async, NULL); 1145 winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu); 1146 if (winner != NULL) { 1147 1148 for (i = 0; i < epb; i++) { 1149 zrl_destroy(&dnh[i].dnh_zrlock); 1150 } 1151 1152 kmem_free(children_dnodes, sizeof (dnode_children_t) + 1153 epb * sizeof (dnode_handle_t)); 1154 children_dnodes = winner; 1155 } 1156 } 1157 ASSERT(children_dnodes->dnc_count == epb); 1158 1159 dnh = &children_dnodes->dnc_children[idx]; 1160 zrl_add(&dnh->dnh_zrlock); 1161 dn = dnh->dnh_dnode; 1162 if (dn == NULL) { 1163 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx; 1164 1165 dn = dnode_create(os, phys, db, object, dnh); 1166 } 1167 1168 mutex_enter(&dn->dn_mtx); 1169 type = dn->dn_type; 1170 if (dn->dn_free_txg || 1171 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 1172 ((flag & DNODE_MUST_BE_FREE) && 1173 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) { 1174 mutex_exit(&dn->dn_mtx); 1175 zrl_remove(&dnh->dnh_zrlock); 1176 dbuf_rele(db, FTAG); 1177 return (type == DMU_OT_NONE ? ENOENT : EEXIST); 1178 } 1179 if (refcount_add(&dn->dn_holds, tag) == 1) 1180 dbuf_add_ref(db, dnh); 1181 mutex_exit(&dn->dn_mtx); 1182 1183 /* Now we can rely on the hold to prevent the dnode from moving. */ 1184 zrl_remove(&dnh->dnh_zrlock); 1185 1186 DNODE_VERIFY(dn); 1187 ASSERT3P(dn->dn_dbuf, ==, db); 1188 ASSERT3U(dn->dn_object, ==, object); 1189 dbuf_rele(db, FTAG); 1190 1191 *dnp = dn; 1192 return (0); 1193 } 1194 1195 /* 1196 * Return held dnode if the object is allocated, NULL if not. 1197 */ 1198 int 1199 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 1200 { 1201 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 1202 } 1203 1204 /* 1205 * Can only add a reference if there is already at least one 1206 * reference on the dnode. Returns FALSE if unable to add a 1207 * new reference. 1208 */ 1209 boolean_t 1210 dnode_add_ref(dnode_t *dn, void *tag) 1211 { 1212 mutex_enter(&dn->dn_mtx); 1213 if (refcount_is_zero(&dn->dn_holds)) { 1214 mutex_exit(&dn->dn_mtx); 1215 return (FALSE); 1216 } 1217 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 1218 mutex_exit(&dn->dn_mtx); 1219 return (TRUE); 1220 } 1221 1222 void 1223 dnode_rele(dnode_t *dn, void *tag) 1224 { 1225 mutex_enter(&dn->dn_mtx); 1226 dnode_rele_and_unlock(dn, tag); 1227 } 1228 1229 void 1230 dnode_rele_and_unlock(dnode_t *dn, void *tag) 1231 { 1232 uint64_t refs; 1233 /* Get while the hold prevents the dnode from moving. */ 1234 dmu_buf_impl_t *db = dn->dn_dbuf; 1235 dnode_handle_t *dnh = dn->dn_handle; 1236 1237 refs = refcount_remove(&dn->dn_holds, tag); 1238 mutex_exit(&dn->dn_mtx); 1239 1240 /* 1241 * It's unsafe to release the last hold on a dnode by dnode_rele() or 1242 * indirectly by dbuf_rele() while relying on the dnode handle to 1243 * prevent the dnode from moving, since releasing the last hold could 1244 * result in the dnode's parent dbuf evicting its dnode handles. For 1245 * that reason anyone calling dnode_rele() or dbuf_rele() without some 1246 * other direct or indirect hold on the dnode must first drop the dnode 1247 * handle. 1248 */ 1249 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 1250 1251 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 1252 if (refs == 0 && db != NULL) { 1253 /* 1254 * Another thread could add a hold to the dnode handle in 1255 * dnode_hold_impl() while holding the parent dbuf. Since the 1256 * hold on the parent dbuf prevents the handle from being 1257 * destroyed, the hold on the handle is OK. We can't yet assert 1258 * that the handle has zero references, but that will be 1259 * asserted anyway when the handle gets destroyed. 1260 */ 1261 dbuf_rele(db, dnh); 1262 } 1263 } 1264 1265 void 1266 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 1267 { 1268 objset_t *os = dn->dn_objset; 1269 uint64_t txg = tx->tx_txg; 1270 1271 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 1272 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1273 return; 1274 } 1275 1276 DNODE_VERIFY(dn); 1277 1278 #ifdef ZFS_DEBUG 1279 mutex_enter(&dn->dn_mtx); 1280 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 1281 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 1282 mutex_exit(&dn->dn_mtx); 1283 #endif 1284 1285 /* 1286 * Determine old uid/gid when necessary 1287 */ 1288 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 1289 1290 multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK]; 1291 multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn); 1292 1293 /* 1294 * If we are already marked dirty, we're done. 1295 */ 1296 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 1297 multilist_sublist_unlock(mls); 1298 return; 1299 } 1300 1301 ASSERT(!refcount_is_zero(&dn->dn_holds) || 1302 !avl_is_empty(&dn->dn_dbufs)); 1303 ASSERT(dn->dn_datablksz != 0); 1304 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 1305 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 1306 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 1307 1308 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 1309 dn->dn_object, txg); 1310 1311 multilist_sublist_insert_head(mls, dn); 1312 1313 multilist_sublist_unlock(mls); 1314 1315 /* 1316 * The dnode maintains a hold on its containing dbuf as 1317 * long as there are holds on it. Each instantiated child 1318 * dbuf maintains a hold on the dnode. When the last child 1319 * drops its hold, the dnode will drop its hold on the 1320 * containing dbuf. We add a "dirty hold" here so that the 1321 * dnode will hang around after we finish processing its 1322 * children. 1323 */ 1324 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 1325 1326 (void) dbuf_dirty(dn->dn_dbuf, tx); 1327 1328 dsl_dataset_dirty(os->os_dsl_dataset, tx); 1329 } 1330 1331 void 1332 dnode_free(dnode_t *dn, dmu_tx_t *tx) 1333 { 1334 mutex_enter(&dn->dn_mtx); 1335 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 1336 mutex_exit(&dn->dn_mtx); 1337 return; 1338 } 1339 dn->dn_free_txg = tx->tx_txg; 1340 mutex_exit(&dn->dn_mtx); 1341 1342 dnode_setdirty(dn, tx); 1343 } 1344 1345 /* 1346 * Try to change the block size for the indicated dnode. This can only 1347 * succeed if there are no blocks allocated or dirty beyond first block 1348 */ 1349 int 1350 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 1351 { 1352 dmu_buf_impl_t *db; 1353 int err; 1354 1355 ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset))); 1356 if (size == 0) 1357 size = SPA_MINBLOCKSIZE; 1358 else 1359 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 1360 1361 if (ibs == dn->dn_indblkshift) 1362 ibs = 0; 1363 1364 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 1365 return (0); 1366 1367 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1368 1369 /* Check for any allocated blocks beyond the first */ 1370 if (dn->dn_maxblkid != 0) 1371 goto fail; 1372 1373 mutex_enter(&dn->dn_dbufs_mtx); 1374 for (db = avl_first(&dn->dn_dbufs); db != NULL; 1375 db = AVL_NEXT(&dn->dn_dbufs, db)) { 1376 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 1377 db->db_blkid != DMU_SPILL_BLKID) { 1378 mutex_exit(&dn->dn_dbufs_mtx); 1379 goto fail; 1380 } 1381 } 1382 mutex_exit(&dn->dn_dbufs_mtx); 1383 1384 if (ibs && dn->dn_nlevels != 1) 1385 goto fail; 1386 1387 /* resize the old block */ 1388 err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db); 1389 if (err == 0) 1390 dbuf_new_size(db, size, tx); 1391 else if (err != ENOENT) 1392 goto fail; 1393 1394 dnode_setdblksz(dn, size); 1395 dnode_setdirty(dn, tx); 1396 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 1397 if (ibs) { 1398 dn->dn_indblkshift = ibs; 1399 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 1400 } 1401 /* rele after we have fixed the blocksize in the dnode */ 1402 if (db) 1403 dbuf_rele(db, FTAG); 1404 1405 rw_exit(&dn->dn_struct_rwlock); 1406 return (0); 1407 1408 fail: 1409 rw_exit(&dn->dn_struct_rwlock); 1410 return (SET_ERROR(ENOTSUP)); 1411 } 1412 1413 /* read-holding callers must not rely on the lock being continuously held */ 1414 void 1415 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 1416 { 1417 uint64_t txgoff = tx->tx_txg & TXG_MASK; 1418 int epbs, new_nlevels; 1419 uint64_t sz; 1420 1421 ASSERT(blkid != DMU_BONUS_BLKID); 1422 1423 ASSERT(have_read ? 1424 RW_READ_HELD(&dn->dn_struct_rwlock) : 1425 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 1426 1427 /* 1428 * if we have a read-lock, check to see if we need to do any work 1429 * before upgrading to a write-lock. 1430 */ 1431 if (have_read) { 1432 if (blkid <= dn->dn_maxblkid) 1433 return; 1434 1435 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 1436 rw_exit(&dn->dn_struct_rwlock); 1437 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1438 } 1439 } 1440 1441 if (blkid <= dn->dn_maxblkid) 1442 goto out; 1443 1444 dn->dn_maxblkid = blkid; 1445 1446 /* 1447 * Compute the number of levels necessary to support the new maxblkid. 1448 */ 1449 new_nlevels = 1; 1450 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1451 for (sz = dn->dn_nblkptr; 1452 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 1453 new_nlevels++; 1454 1455 if (new_nlevels > dn->dn_nlevels) { 1456 int old_nlevels = dn->dn_nlevels; 1457 dmu_buf_impl_t *db; 1458 list_t *list; 1459 dbuf_dirty_record_t *new, *dr, *dr_next; 1460 1461 dn->dn_nlevels = new_nlevels; 1462 1463 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 1464 dn->dn_next_nlevels[txgoff] = new_nlevels; 1465 1466 /* dirty the left indirects */ 1467 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 1468 ASSERT(db != NULL); 1469 new = dbuf_dirty(db, tx); 1470 dbuf_rele(db, FTAG); 1471 1472 /* transfer the dirty records to the new indirect */ 1473 mutex_enter(&dn->dn_mtx); 1474 mutex_enter(&new->dt.di.dr_mtx); 1475 list = &dn->dn_dirty_records[txgoff]; 1476 for (dr = list_head(list); dr; dr = dr_next) { 1477 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 1478 if (dr->dr_dbuf->db_level != new_nlevels-1 && 1479 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 1480 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 1481 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 1482 list_remove(&dn->dn_dirty_records[txgoff], dr); 1483 list_insert_tail(&new->dt.di.dr_children, dr); 1484 dr->dr_parent = new; 1485 } 1486 } 1487 mutex_exit(&new->dt.di.dr_mtx); 1488 mutex_exit(&dn->dn_mtx); 1489 } 1490 1491 out: 1492 if (have_read) 1493 rw_downgrade(&dn->dn_struct_rwlock); 1494 } 1495 1496 static void 1497 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx) 1498 { 1499 dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG); 1500 if (db != NULL) { 1501 dmu_buf_will_dirty(&db->db, tx); 1502 dbuf_rele(db, FTAG); 1503 } 1504 } 1505 1506 void 1507 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 1508 { 1509 dmu_buf_impl_t *db; 1510 uint64_t blkoff, blkid, nblks; 1511 int blksz, blkshift, head, tail; 1512 int trunc = FALSE; 1513 int epbs; 1514 1515 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1516 blksz = dn->dn_datablksz; 1517 blkshift = dn->dn_datablkshift; 1518 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 1519 1520 if (len == DMU_OBJECT_END) { 1521 len = UINT64_MAX - off; 1522 trunc = TRUE; 1523 } 1524 1525 /* 1526 * First, block align the region to free: 1527 */ 1528 if (ISP2(blksz)) { 1529 head = P2NPHASE(off, blksz); 1530 blkoff = P2PHASE(off, blksz); 1531 if ((off >> blkshift) > dn->dn_maxblkid) 1532 goto out; 1533 } else { 1534 ASSERT(dn->dn_maxblkid == 0); 1535 if (off == 0 && len >= blksz) { 1536 /* 1537 * Freeing the whole block; fast-track this request. 1538 * Note that we won't dirty any indirect blocks, 1539 * which is fine because we will be freeing the entire 1540 * file and thus all indirect blocks will be freed 1541 * by free_children(). 1542 */ 1543 blkid = 0; 1544 nblks = 1; 1545 goto done; 1546 } else if (off >= blksz) { 1547 /* Freeing past end-of-data */ 1548 goto out; 1549 } else { 1550 /* Freeing part of the block. */ 1551 head = blksz - off; 1552 ASSERT3U(head, >, 0); 1553 } 1554 blkoff = off; 1555 } 1556 /* zero out any partial block data at the start of the range */ 1557 if (head) { 1558 ASSERT3U(blkoff + head, ==, blksz); 1559 if (len < head) 1560 head = len; 1561 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off), 1562 TRUE, FALSE, FTAG, &db) == 0) { 1563 caddr_t data; 1564 1565 /* don't dirty if it isn't on disk and isn't dirty */ 1566 if (db->db_last_dirty || 1567 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1568 rw_exit(&dn->dn_struct_rwlock); 1569 dmu_buf_will_dirty(&db->db, tx); 1570 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1571 data = db->db.db_data; 1572 bzero(data + blkoff, head); 1573 } 1574 dbuf_rele(db, FTAG); 1575 } 1576 off += head; 1577 len -= head; 1578 } 1579 1580 /* If the range was less than one block, we're done */ 1581 if (len == 0) 1582 goto out; 1583 1584 /* If the remaining range is past end of file, we're done */ 1585 if ((off >> blkshift) > dn->dn_maxblkid) 1586 goto out; 1587 1588 ASSERT(ISP2(blksz)); 1589 if (trunc) 1590 tail = 0; 1591 else 1592 tail = P2PHASE(len, blksz); 1593 1594 ASSERT0(P2PHASE(off, blksz)); 1595 /* zero out any partial block data at the end of the range */ 1596 if (tail) { 1597 if (len < tail) 1598 tail = len; 1599 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len), 1600 TRUE, FALSE, FTAG, &db) == 0) { 1601 /* don't dirty if not on disk and not dirty */ 1602 if (db->db_last_dirty || 1603 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 1604 rw_exit(&dn->dn_struct_rwlock); 1605 dmu_buf_will_dirty(&db->db, tx); 1606 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 1607 bzero(db->db.db_data, tail); 1608 } 1609 dbuf_rele(db, FTAG); 1610 } 1611 len -= tail; 1612 } 1613 1614 /* If the range did not include a full block, we are done */ 1615 if (len == 0) 1616 goto out; 1617 1618 ASSERT(IS_P2ALIGNED(off, blksz)); 1619 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 1620 blkid = off >> blkshift; 1621 nblks = len >> blkshift; 1622 if (trunc) 1623 nblks += 1; 1624 1625 /* 1626 * Dirty all the indirect blocks in this range. Note that only 1627 * the first and last indirect blocks can actually be written 1628 * (if they were partially freed) -- they must be dirtied, even if 1629 * they do not exist on disk yet. The interior blocks will 1630 * be freed by free_children(), so they will not actually be written. 1631 * Even though these interior blocks will not be written, we 1632 * dirty them for two reasons: 1633 * 1634 * - It ensures that the indirect blocks remain in memory until 1635 * syncing context. (They have already been prefetched by 1636 * dmu_tx_hold_free(), so we don't have to worry about reading 1637 * them serially here.) 1638 * 1639 * - The dirty space accounting will put pressure on the txg sync 1640 * mechanism to begin syncing, and to delay transactions if there 1641 * is a large amount of freeing. Even though these indirect 1642 * blocks will not be written, we could need to write the same 1643 * amount of space if we copy the freed BPs into deadlists. 1644 */ 1645 if (dn->dn_nlevels > 1) { 1646 uint64_t first, last; 1647 1648 first = blkid >> epbs; 1649 dnode_dirty_l1(dn, first, tx); 1650 if (trunc) 1651 last = dn->dn_maxblkid >> epbs; 1652 else 1653 last = (blkid + nblks - 1) >> epbs; 1654 if (last != first) 1655 dnode_dirty_l1(dn, last, tx); 1656 1657 int shift = dn->dn_datablkshift + dn->dn_indblkshift - 1658 SPA_BLKPTRSHIFT; 1659 for (uint64_t i = first + 1; i < last; i++) { 1660 /* 1661 * Set i to the blockid of the next non-hole 1662 * level-1 indirect block at or after i. Note 1663 * that dnode_next_offset() operates in terms of 1664 * level-0-equivalent bytes. 1665 */ 1666 uint64_t ibyte = i << shift; 1667 int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK, 1668 &ibyte, 2, 1, 0); 1669 i = ibyte >> shift; 1670 if (i >= last) 1671 break; 1672 1673 /* 1674 * Normally we should not see an error, either 1675 * from dnode_next_offset() or dbuf_hold_level() 1676 * (except for ESRCH from dnode_next_offset). 1677 * If there is an i/o error, then when we read 1678 * this block in syncing context, it will use 1679 * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according 1680 * to the "failmode" property. dnode_next_offset() 1681 * doesn't have a flag to indicate MUSTSUCCEED. 1682 */ 1683 if (err != 0) 1684 break; 1685 1686 dnode_dirty_l1(dn, i, tx); 1687 } 1688 } 1689 1690 done: 1691 /* 1692 * Add this range to the dnode range list. 1693 * We will finish up this free operation in the syncing phase. 1694 */ 1695 mutex_enter(&dn->dn_mtx); 1696 int txgoff = tx->tx_txg & TXG_MASK; 1697 if (dn->dn_free_ranges[txgoff] == NULL) { 1698 dn->dn_free_ranges[txgoff] = 1699 range_tree_create(NULL, NULL, &dn->dn_mtx); 1700 } 1701 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks); 1702 range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks); 1703 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 1704 blkid, nblks, tx->tx_txg); 1705 mutex_exit(&dn->dn_mtx); 1706 1707 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 1708 dnode_setdirty(dn, tx); 1709 out: 1710 1711 rw_exit(&dn->dn_struct_rwlock); 1712 } 1713 1714 static boolean_t 1715 dnode_spill_freed(dnode_t *dn) 1716 { 1717 int i; 1718 1719 mutex_enter(&dn->dn_mtx); 1720 for (i = 0; i < TXG_SIZE; i++) { 1721 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 1722 break; 1723 } 1724 mutex_exit(&dn->dn_mtx); 1725 return (i < TXG_SIZE); 1726 } 1727 1728 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */ 1729 uint64_t 1730 dnode_block_freed(dnode_t *dn, uint64_t blkid) 1731 { 1732 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 1733 int i; 1734 1735 if (blkid == DMU_BONUS_BLKID) 1736 return (FALSE); 1737 1738 /* 1739 * If we're in the process of opening the pool, dp will not be 1740 * set yet, but there shouldn't be anything dirty. 1741 */ 1742 if (dp == NULL) 1743 return (FALSE); 1744 1745 if (dn->dn_free_txg) 1746 return (TRUE); 1747 1748 if (blkid == DMU_SPILL_BLKID) 1749 return (dnode_spill_freed(dn)); 1750 1751 mutex_enter(&dn->dn_mtx); 1752 for (i = 0; i < TXG_SIZE; i++) { 1753 if (dn->dn_free_ranges[i] != NULL && 1754 range_tree_contains(dn->dn_free_ranges[i], blkid, 1)) 1755 break; 1756 } 1757 mutex_exit(&dn->dn_mtx); 1758 return (i < TXG_SIZE); 1759 } 1760 1761 /* call from syncing context when we actually write/free space for this dnode */ 1762 void 1763 dnode_diduse_space(dnode_t *dn, int64_t delta) 1764 { 1765 uint64_t space; 1766 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 1767 dn, dn->dn_phys, 1768 (u_longlong_t)dn->dn_phys->dn_used, 1769 (longlong_t)delta); 1770 1771 mutex_enter(&dn->dn_mtx); 1772 space = DN_USED_BYTES(dn->dn_phys); 1773 if (delta > 0) { 1774 ASSERT3U(space + delta, >=, space); /* no overflow */ 1775 } else { 1776 ASSERT3U(space, >=, -delta); /* no underflow */ 1777 } 1778 space += delta; 1779 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 1780 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 1781 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 1782 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 1783 } else { 1784 dn->dn_phys->dn_used = space; 1785 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 1786 } 1787 mutex_exit(&dn->dn_mtx); 1788 } 1789 1790 /* 1791 * Scans a block at the indicated "level" looking for a hole or data, 1792 * depending on 'flags'. 1793 * 1794 * If level > 0, then we are scanning an indirect block looking at its 1795 * pointers. If level == 0, then we are looking at a block of dnodes. 1796 * 1797 * If we don't find what we are looking for in the block, we return ESRCH. 1798 * Otherwise, return with *offset pointing to the beginning (if searching 1799 * forwards) or end (if searching backwards) of the range covered by the 1800 * block pointer we matched on (or dnode). 1801 * 1802 * The basic search algorithm used below by dnode_next_offset() is to 1803 * use this function to search up the block tree (widen the search) until 1804 * we find something (i.e., we don't return ESRCH) and then search back 1805 * down the tree (narrow the search) until we reach our original search 1806 * level. 1807 */ 1808 static int 1809 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 1810 int lvl, uint64_t blkfill, uint64_t txg) 1811 { 1812 dmu_buf_impl_t *db = NULL; 1813 void *data = NULL; 1814 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 1815 uint64_t epb = 1ULL << epbs; 1816 uint64_t minfill, maxfill; 1817 boolean_t hole; 1818 int i, inc, error, span; 1819 1820 dprintf("probing object %llu offset %llx level %d of %u\n", 1821 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 1822 1823 hole = ((flags & DNODE_FIND_HOLE) != 0); 1824 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 1825 ASSERT(txg == 0 || !hole); 1826 1827 if (lvl == dn->dn_phys->dn_nlevels) { 1828 error = 0; 1829 epb = dn->dn_phys->dn_nblkptr; 1830 data = dn->dn_phys->dn_blkptr; 1831 } else { 1832 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset); 1833 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db); 1834 if (error) { 1835 if (error != ENOENT) 1836 return (error); 1837 if (hole) 1838 return (0); 1839 /* 1840 * This can only happen when we are searching up 1841 * the block tree for data. We don't really need to 1842 * adjust the offset, as we will just end up looking 1843 * at the pointer to this block in its parent, and its 1844 * going to be unallocated, so we will skip over it. 1845 */ 1846 return (SET_ERROR(ESRCH)); 1847 } 1848 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 1849 if (error) { 1850 dbuf_rele(db, FTAG); 1851 return (error); 1852 } 1853 data = db->db.db_data; 1854 } 1855 1856 1857 if (db != NULL && txg != 0 && (db->db_blkptr == NULL || 1858 db->db_blkptr->blk_birth <= txg || 1859 BP_IS_HOLE(db->db_blkptr))) { 1860 /* 1861 * This can only happen when we are searching up the tree 1862 * and these conditions mean that we need to keep climbing. 1863 */ 1864 error = SET_ERROR(ESRCH); 1865 } else if (lvl == 0) { 1866 dnode_phys_t *dnp = data; 1867 span = DNODE_SHIFT; 1868 ASSERT(dn->dn_type == DMU_OT_DNODE); 1869 1870 for (i = (*offset >> span) & (blkfill - 1); 1871 i >= 0 && i < blkfill; i += inc) { 1872 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 1873 break; 1874 *offset += (1ULL << span) * inc; 1875 } 1876 if (i < 0 || i == blkfill) 1877 error = SET_ERROR(ESRCH); 1878 } else { 1879 blkptr_t *bp = data; 1880 uint64_t start = *offset; 1881 span = (lvl - 1) * epbs + dn->dn_datablkshift; 1882 minfill = 0; 1883 maxfill = blkfill << ((lvl - 1) * epbs); 1884 1885 if (hole) 1886 maxfill--; 1887 else 1888 minfill++; 1889 1890 *offset = *offset >> span; 1891 for (i = BF64_GET(*offset, 0, epbs); 1892 i >= 0 && i < epb; i += inc) { 1893 if (BP_GET_FILL(&bp[i]) >= minfill && 1894 BP_GET_FILL(&bp[i]) <= maxfill && 1895 (hole || bp[i].blk_birth > txg)) 1896 break; 1897 if (inc > 0 || *offset > 0) 1898 *offset += inc; 1899 } 1900 *offset = *offset << span; 1901 if (inc < 0) { 1902 /* traversing backwards; position offset at the end */ 1903 ASSERT3U(*offset, <=, start); 1904 *offset = MIN(*offset + (1ULL << span) - 1, start); 1905 } else if (*offset < start) { 1906 *offset = start; 1907 } 1908 if (i < 0 || i >= epb) 1909 error = SET_ERROR(ESRCH); 1910 } 1911 1912 if (db) 1913 dbuf_rele(db, FTAG); 1914 1915 return (error); 1916 } 1917 1918 /* 1919 * Find the next hole, data, or sparse region at or after *offset. 1920 * The value 'blkfill' tells us how many items we expect to find 1921 * in an L0 data block; this value is 1 for normal objects, 1922 * DNODES_PER_BLOCK for the meta dnode, and some fraction of 1923 * DNODES_PER_BLOCK when searching for sparse regions thereof. 1924 * 1925 * Examples: 1926 * 1927 * dnode_next_offset(dn, flags, offset, 1, 1, 0); 1928 * Finds the next/previous hole/data in a file. 1929 * Used in dmu_offset_next(). 1930 * 1931 * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg); 1932 * Finds the next free/allocated dnode an objset's meta-dnode. 1933 * Only finds objects that have new contents since txg (ie. 1934 * bonus buffer changes and content removal are ignored). 1935 * Used in dmu_object_next(). 1936 * 1937 * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0); 1938 * Finds the next L2 meta-dnode bp that's at most 1/4 full. 1939 * Used in dmu_object_alloc(). 1940 */ 1941 int 1942 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 1943 int minlvl, uint64_t blkfill, uint64_t txg) 1944 { 1945 uint64_t initial_offset = *offset; 1946 int lvl, maxlvl; 1947 int error = 0; 1948 1949 if (!(flags & DNODE_FIND_HAVELOCK)) 1950 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1951 1952 if (dn->dn_phys->dn_nlevels == 0) { 1953 error = SET_ERROR(ESRCH); 1954 goto out; 1955 } 1956 1957 if (dn->dn_datablkshift == 0) { 1958 if (*offset < dn->dn_datablksz) { 1959 if (flags & DNODE_FIND_HOLE) 1960 *offset = dn->dn_datablksz; 1961 } else { 1962 error = SET_ERROR(ESRCH); 1963 } 1964 goto out; 1965 } 1966 1967 maxlvl = dn->dn_phys->dn_nlevels; 1968 1969 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 1970 error = dnode_next_offset_level(dn, 1971 flags, offset, lvl, blkfill, txg); 1972 if (error != ESRCH) 1973 break; 1974 } 1975 1976 while (error == 0 && --lvl >= minlvl) { 1977 error = dnode_next_offset_level(dn, 1978 flags, offset, lvl, blkfill, txg); 1979 } 1980 1981 /* 1982 * There's always a "virtual hole" at the end of the object, even 1983 * if all BP's which physically exist are non-holes. 1984 */ 1985 if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 && 1986 minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) { 1987 error = 0; 1988 } 1989 1990 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 1991 initial_offset < *offset : initial_offset > *offset)) 1992 error = SET_ERROR(ESRCH); 1993 out: 1994 if (!(flags & DNODE_FIND_HAVELOCK)) 1995 rw_exit(&dn->dn_struct_rwlock); 1996 1997 return (error); 1998 }