1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
  24  * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
  25  * Copyright (c) 2014 Integros [integros.com]
  26  * Copyright 2017 RackTop Systems.
  27  */
  28 
  29 #include <sys/zfs_context.h>
  30 #include <sys/dbuf.h>
  31 #include <sys/dnode.h>
  32 #include <sys/dmu.h>
  33 #include <sys/dmu_impl.h>
  34 #include <sys/dmu_tx.h>
  35 #include <sys/dmu_objset.h>
  36 #include <sys/dsl_dir.h>
  37 #include <sys/dsl_dataset.h>
  38 #include <sys/spa.h>
  39 #include <sys/zio.h>
  40 #include <sys/dmu_zfetch.h>
  41 #include <sys/range_tree.h>
  42 
  43 static kmem_cache_t *dnode_cache;
  44 /*
  45  * Define DNODE_STATS to turn on statistic gathering. By default, it is only
  46  * turned on when DEBUG is also defined.
  47  */
  48 #ifdef  DEBUG
  49 #define DNODE_STATS
  50 #endif  /* DEBUG */
  51 
  52 #ifdef  DNODE_STATS
  53 #define DNODE_STAT_ADD(stat)                    ((stat)++)
  54 #else
  55 #define DNODE_STAT_ADD(stat)                    /* nothing */
  56 #endif  /* DNODE_STATS */
  57 
  58 static dnode_phys_t dnode_phys_zero;
  59 
  60 int zfs_default_bs = SPA_MINBLOCKSHIFT;
  61 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
  62 
  63 #ifdef  _KERNEL
  64 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
  65 #endif  /* _KERNEL */
  66 
  67 static int
  68 dbuf_compare(const void *x1, const void *x2)
  69 {
  70         const dmu_buf_impl_t *d1 = x1;
  71         const dmu_buf_impl_t *d2 = x2;
  72 
  73         if (d1->db_level < d2->db_level) {
  74                 return (-1);
  75         }
  76         if (d1->db_level > d2->db_level) {
  77                 return (1);
  78         }
  79 
  80         if (d1->db_blkid < d2->db_blkid) {
  81                 return (-1);
  82         }
  83         if (d1->db_blkid > d2->db_blkid) {
  84                 return (1);
  85         }
  86 
  87         if (d1->db_state == DB_SEARCH) {
  88                 ASSERT3S(d2->db_state, !=, DB_SEARCH);
  89                 return (-1);
  90         } else if (d2->db_state == DB_SEARCH) {
  91                 ASSERT3S(d1->db_state, !=, DB_SEARCH);
  92                 return (1);
  93         }
  94 
  95         if ((uintptr_t)d1 < (uintptr_t)d2) {
  96                 return (-1);
  97         }
  98         if ((uintptr_t)d1 > (uintptr_t)d2) {
  99                 return (1);
 100         }
 101         return (0);
 102 }
 103 
 104 /* ARGSUSED */
 105 static int
 106 dnode_cons(void *arg, void *unused, int kmflag)
 107 {
 108         dnode_t *dn = arg;
 109         int i;
 110 
 111         rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
 112         mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
 113         mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
 114         cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
 115 
 116         /*
 117          * Every dbuf has a reference, and dropping a tracked reference is
 118          * O(number of references), so don't track dn_holds.
 119          */
 120         refcount_create_untracked(&dn->dn_holds);
 121         refcount_create(&dn->dn_tx_holds);
 122         list_link_init(&dn->dn_link);
 123 
 124         bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
 125         bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
 126         bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
 127         bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
 128         bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
 129         bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
 130         bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
 131 
 132         for (i = 0; i < TXG_SIZE; i++) {
 133                 list_link_init(&dn->dn_dirty_link[i]);
 134                 dn->dn_free_ranges[i] = NULL;
 135                 list_create(&dn->dn_dirty_records[i],
 136                     sizeof (dbuf_dirty_record_t),
 137                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
 138         }
 139 
 140         dn->dn_allocated_txg = 0;
 141         dn->dn_free_txg = 0;
 142         dn->dn_assigned_txg = 0;
 143         dn->dn_dirtyctx = 0;
 144         dn->dn_dirtyctx_firstset = NULL;
 145         dn->dn_bonus = NULL;
 146         dn->dn_have_spill = B_FALSE;
 147         dn->dn_zio = NULL;
 148         dn->dn_oldused = 0;
 149         dn->dn_oldflags = 0;
 150         dn->dn_olduid = 0;
 151         dn->dn_oldgid = 0;
 152         dn->dn_newuid = 0;
 153         dn->dn_newgid = 0;
 154         dn->dn_id_flags = 0;
 155 
 156         dn->dn_dbufs_count = 0;
 157         avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
 158             offsetof(dmu_buf_impl_t, db_link));
 159 
 160         dn->dn_moved = 0;
 161         return (0);
 162 }
 163 
 164 /* ARGSUSED */
 165 static void
 166 dnode_dest(void *arg, void *unused)
 167 {
 168         int i;
 169         dnode_t *dn = arg;
 170 
 171         rw_destroy(&dn->dn_struct_rwlock);
 172         mutex_destroy(&dn->dn_mtx);
 173         mutex_destroy(&dn->dn_dbufs_mtx);
 174         cv_destroy(&dn->dn_notxholds);
 175         refcount_destroy(&dn->dn_holds);
 176         refcount_destroy(&dn->dn_tx_holds);
 177         ASSERT(!list_link_active(&dn->dn_link));
 178 
 179         for (i = 0; i < TXG_SIZE; i++) {
 180                 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
 181                 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
 182                 list_destroy(&dn->dn_dirty_records[i]);
 183                 ASSERT0(dn->dn_next_nblkptr[i]);
 184                 ASSERT0(dn->dn_next_nlevels[i]);
 185                 ASSERT0(dn->dn_next_indblkshift[i]);
 186                 ASSERT0(dn->dn_next_bonustype[i]);
 187                 ASSERT0(dn->dn_rm_spillblk[i]);
 188                 ASSERT0(dn->dn_next_bonuslen[i]);
 189                 ASSERT0(dn->dn_next_blksz[i]);
 190         }
 191 
 192         ASSERT0(dn->dn_allocated_txg);
 193         ASSERT0(dn->dn_free_txg);
 194         ASSERT0(dn->dn_assigned_txg);
 195         ASSERT0(dn->dn_dirtyctx);
 196         ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
 197         ASSERT3P(dn->dn_bonus, ==, NULL);
 198         ASSERT(!dn->dn_have_spill);
 199         ASSERT3P(dn->dn_zio, ==, NULL);
 200         ASSERT0(dn->dn_oldused);
 201         ASSERT0(dn->dn_oldflags);
 202         ASSERT0(dn->dn_olduid);
 203         ASSERT0(dn->dn_oldgid);
 204         ASSERT0(dn->dn_newuid);
 205         ASSERT0(dn->dn_newgid);
 206         ASSERT0(dn->dn_id_flags);
 207 
 208         ASSERT0(dn->dn_dbufs_count);
 209         avl_destroy(&dn->dn_dbufs);
 210 }
 211 
 212 void
 213 dnode_init(void)
 214 {
 215         ASSERT(dnode_cache == NULL);
 216         dnode_cache = kmem_cache_create("dnode_t",
 217             sizeof (dnode_t),
 218             0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
 219 #ifdef  _KERNEL
 220         kmem_cache_set_move(dnode_cache, dnode_move);
 221 #endif  /* _KERNEL */
 222 }
 223 
 224 void
 225 dnode_fini(void)
 226 {
 227         kmem_cache_destroy(dnode_cache);
 228         dnode_cache = NULL;
 229 }
 230 
 231 
 232 #ifdef ZFS_DEBUG
 233 void
 234 dnode_verify(dnode_t *dn)
 235 {
 236         int drop_struct_lock = FALSE;
 237 
 238         ASSERT(dn->dn_phys);
 239         ASSERT(dn->dn_objset);
 240         ASSERT(dn->dn_handle->dnh_dnode == dn);
 241 
 242         ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
 243 
 244         if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
 245                 return;
 246 
 247         if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
 248                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 249                 drop_struct_lock = TRUE;
 250         }
 251         if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
 252                 int i;
 253                 ASSERT3U(dn->dn_indblkshift, >=, 0);
 254                 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
 255                 if (dn->dn_datablkshift) {
 256                         ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
 257                         ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
 258                         ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
 259                 }
 260                 ASSERT3U(dn->dn_nlevels, <=, 30);
 261                 ASSERT(DMU_OT_IS_VALID(dn->dn_type));
 262                 ASSERT3U(dn->dn_nblkptr, >=, 1);
 263                 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
 264                 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
 265                 ASSERT3U(dn->dn_datablksz, ==,
 266                     dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 267                 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
 268                 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
 269                     dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
 270                 for (i = 0; i < TXG_SIZE; i++) {
 271                         ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
 272                 }
 273         }
 274         if (dn->dn_phys->dn_type != DMU_OT_NONE)
 275                 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
 276         ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
 277         if (dn->dn_dbuf != NULL) {
 278                 ASSERT3P(dn->dn_phys, ==,
 279                     (dnode_phys_t *)dn->dn_dbuf->db.db_data +
 280                     (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
 281         }
 282         if (drop_struct_lock)
 283                 rw_exit(&dn->dn_struct_rwlock);
 284 }
 285 #endif
 286 
 287 void
 288 dnode_byteswap(dnode_phys_t *dnp)
 289 {
 290         uint64_t *buf64 = (void*)&dnp->dn_blkptr;
 291         int i;
 292 
 293         if (dnp->dn_type == DMU_OT_NONE) {
 294                 bzero(dnp, sizeof (dnode_phys_t));
 295                 return;
 296         }
 297 
 298         dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
 299         dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
 300         dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
 301         dnp->dn_used = BSWAP_64(dnp->dn_used);
 302 
 303         /*
 304          * dn_nblkptr is only one byte, so it's OK to read it in either
 305          * byte order.  We can't read dn_bouslen.
 306          */
 307         ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
 308         ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
 309         for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
 310                 buf64[i] = BSWAP_64(buf64[i]);
 311 
 312         /*
 313          * OK to check dn_bonuslen for zero, because it won't matter if
 314          * we have the wrong byte order.  This is necessary because the
 315          * dnode dnode is smaller than a regular dnode.
 316          */
 317         if (dnp->dn_bonuslen != 0) {
 318                 /*
 319                  * Note that the bonus length calculated here may be
 320                  * longer than the actual bonus buffer.  This is because
 321                  * we always put the bonus buffer after the last block
 322                  * pointer (instead of packing it against the end of the
 323                  * dnode buffer).
 324                  */
 325                 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
 326                 size_t len = DN_MAX_BONUSLEN - off;
 327                 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
 328                 dmu_object_byteswap_t byteswap =
 329                     DMU_OT_BYTESWAP(dnp->dn_bonustype);
 330                 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
 331         }
 332 
 333         /* Swap SPILL block if we have one */
 334         if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
 335                 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
 336 
 337 }
 338 
 339 void
 340 dnode_buf_byteswap(void *vbuf, size_t size)
 341 {
 342         dnode_phys_t *buf = vbuf;
 343         int i;
 344 
 345         ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
 346         ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
 347 
 348         size >>= DNODE_SHIFT;
 349         for (i = 0; i < size; i++) {
 350                 dnode_byteswap(buf);
 351                 buf++;
 352         }
 353 }
 354 
 355 void
 356 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
 357 {
 358         ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
 359 
 360         dnode_setdirty(dn, tx);
 361         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 362         ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
 363             (dn->dn_nblkptr-1) * sizeof (blkptr_t));
 364         dn->dn_bonuslen = newsize;
 365         if (newsize == 0)
 366                 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
 367         else
 368                 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
 369         rw_exit(&dn->dn_struct_rwlock);
 370 }
 371 
 372 void
 373 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
 374 {
 375         ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
 376         dnode_setdirty(dn, tx);
 377         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 378         dn->dn_bonustype = newtype;
 379         dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
 380         rw_exit(&dn->dn_struct_rwlock);
 381 }
 382 
 383 void
 384 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
 385 {
 386         ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
 387         ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
 388         dnode_setdirty(dn, tx);
 389         dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
 390         dn->dn_have_spill = B_FALSE;
 391 }
 392 
 393 static void
 394 dnode_setdblksz(dnode_t *dn, int size)
 395 {
 396         ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
 397         ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
 398         ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
 399         ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
 400             1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
 401         dn->dn_datablksz = size;
 402         dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
 403         dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
 404 }
 405 
 406 static dnode_t *
 407 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
 408     uint64_t object, dnode_handle_t *dnh)
 409 {
 410         dnode_t *dn;
 411 
 412         dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
 413         ASSERT(!POINTER_IS_VALID(dn->dn_objset));
 414         dn->dn_moved = 0;
 415 
 416         /*
 417          * Defer setting dn_objset until the dnode is ready to be a candidate
 418          * for the dnode_move() callback.
 419          */
 420         dn->dn_object = object;
 421         dn->dn_dbuf = db;
 422         dn->dn_handle = dnh;
 423         dn->dn_phys = dnp;
 424 
 425         if (dnp->dn_datablkszsec) {
 426                 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
 427         } else {
 428                 dn->dn_datablksz = 0;
 429                 dn->dn_datablkszsec = 0;
 430                 dn->dn_datablkshift = 0;
 431         }
 432         dn->dn_indblkshift = dnp->dn_indblkshift;
 433         dn->dn_nlevels = dnp->dn_nlevels;
 434         dn->dn_type = dnp->dn_type;
 435         dn->dn_nblkptr = dnp->dn_nblkptr;
 436         dn->dn_checksum = dnp->dn_checksum;
 437         dn->dn_compress = dnp->dn_compress;
 438         dn->dn_bonustype = dnp->dn_bonustype;
 439         dn->dn_bonuslen = dnp->dn_bonuslen;
 440         dn->dn_maxblkid = dnp->dn_maxblkid;
 441         dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
 442         dn->dn_id_flags = 0;
 443 
 444         dmu_zfetch_init(&dn->dn_zfetch, dn);
 445 
 446         ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
 447 
 448         mutex_enter(&os->os_lock);
 449         if (dnh->dnh_dnode != NULL) {
 450                 /* Lost the allocation race. */
 451                 mutex_exit(&os->os_lock);
 452                 kmem_cache_free(dnode_cache, dn);
 453                 return (dnh->dnh_dnode);
 454         }
 455 
 456         /*
 457          * Exclude special dnodes from os_dnodes so an empty os_dnodes
 458          * signifies that the special dnodes have no references from
 459          * their children (the entries in os_dnodes).  This allows
 460          * dnode_destroy() to easily determine if the last child has
 461          * been removed and then complete eviction of the objset.
 462          */
 463         if (!DMU_OBJECT_IS_SPECIAL(object))
 464                 list_insert_head(&os->os_dnodes, dn);
 465         membar_producer();
 466 
 467         /*
 468          * Everything else must be valid before assigning dn_objset
 469          * makes the dnode eligible for dnode_move().
 470          */
 471         dn->dn_objset = os;
 472 
 473         dnh->dnh_dnode = dn;
 474         mutex_exit(&os->os_lock);
 475 
 476         arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
 477         return (dn);
 478 }
 479 
 480 /*
 481  * Caller must be holding the dnode handle, which is released upon return.
 482  */
 483 static void
 484 dnode_destroy(dnode_t *dn)
 485 {
 486         objset_t *os = dn->dn_objset;
 487         boolean_t complete_os_eviction = B_FALSE;
 488 
 489         ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
 490 
 491         mutex_enter(&os->os_lock);
 492         POINTER_INVALIDATE(&dn->dn_objset);
 493         if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
 494                 list_remove(&os->os_dnodes, dn);
 495                 complete_os_eviction =
 496                     list_is_empty(&os->os_dnodes) &&
 497                     list_link_active(&os->os_evicting_node);
 498         }
 499         mutex_exit(&os->os_lock);
 500 
 501         /* the dnode can no longer move, so we can release the handle */
 502         zrl_remove(&dn->dn_handle->dnh_zrlock);
 503 
 504         dn->dn_allocated_txg = 0;
 505         dn->dn_free_txg = 0;
 506         dn->dn_assigned_txg = 0;
 507 
 508         dn->dn_dirtyctx = 0;
 509         if (dn->dn_dirtyctx_firstset != NULL) {
 510                 kmem_free(dn->dn_dirtyctx_firstset, 1);
 511                 dn->dn_dirtyctx_firstset = NULL;
 512         }
 513         if (dn->dn_bonus != NULL) {
 514                 mutex_enter(&dn->dn_bonus->db_mtx);
 515                 dbuf_destroy(dn->dn_bonus);
 516                 dn->dn_bonus = NULL;
 517         }
 518         dn->dn_zio = NULL;
 519 
 520         dn->dn_have_spill = B_FALSE;
 521         dn->dn_oldused = 0;
 522         dn->dn_oldflags = 0;
 523         dn->dn_olduid = 0;
 524         dn->dn_oldgid = 0;
 525         dn->dn_newuid = 0;
 526         dn->dn_newgid = 0;
 527         dn->dn_id_flags = 0;
 528 
 529         dmu_zfetch_fini(&dn->dn_zfetch);
 530         kmem_cache_free(dnode_cache, dn);
 531         arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
 532 
 533         if (complete_os_eviction)
 534                 dmu_objset_evict_done(os);
 535 }
 536 
 537 void
 538 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
 539     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 540 {
 541         int i;
 542 
 543         ASSERT3U(blocksize, <=,
 544             spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
 545         if (blocksize == 0)
 546                 blocksize = 1 << zfs_default_bs;
 547         else
 548                 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
 549 
 550         if (ibs == 0)
 551                 ibs = zfs_default_ibs;
 552 
 553         ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
 554 
 555         dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
 556             dn->dn_object, tx->tx_txg, blocksize, ibs);
 557 
 558         ASSERT(dn->dn_type == DMU_OT_NONE);
 559         ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
 560         ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
 561         ASSERT(ot != DMU_OT_NONE);
 562         ASSERT(DMU_OT_IS_VALID(ot));
 563         ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
 564             (bonustype == DMU_OT_SA && bonuslen == 0) ||
 565             (bonustype != DMU_OT_NONE && bonuslen != 0));
 566         ASSERT(DMU_OT_IS_VALID(bonustype));
 567         ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
 568         ASSERT(dn->dn_type == DMU_OT_NONE);
 569         ASSERT0(dn->dn_maxblkid);
 570         ASSERT0(dn->dn_allocated_txg);
 571         ASSERT0(dn->dn_assigned_txg);
 572         ASSERT(refcount_is_zero(&dn->dn_tx_holds));
 573         ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
 574         ASSERT(avl_is_empty(&dn->dn_dbufs));
 575 
 576         for (i = 0; i < TXG_SIZE; i++) {
 577                 ASSERT0(dn->dn_next_nblkptr[i]);
 578                 ASSERT0(dn->dn_next_nlevels[i]);
 579                 ASSERT0(dn->dn_next_indblkshift[i]);
 580                 ASSERT0(dn->dn_next_bonuslen[i]);
 581                 ASSERT0(dn->dn_next_bonustype[i]);
 582                 ASSERT0(dn->dn_rm_spillblk[i]);
 583                 ASSERT0(dn->dn_next_blksz[i]);
 584                 ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
 585                 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
 586                 ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
 587         }
 588 
 589         dn->dn_type = ot;
 590         dnode_setdblksz(dn, blocksize);
 591         dn->dn_indblkshift = ibs;
 592         dn->dn_nlevels = 1;
 593         if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
 594                 dn->dn_nblkptr = 1;
 595         else
 596                 dn->dn_nblkptr = 1 +
 597                     ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
 598         dn->dn_bonustype = bonustype;
 599         dn->dn_bonuslen = bonuslen;
 600         dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
 601         dn->dn_compress = ZIO_COMPRESS_INHERIT;
 602         dn->dn_dirtyctx = 0;
 603 
 604         dn->dn_free_txg = 0;
 605         if (dn->dn_dirtyctx_firstset) {
 606                 kmem_free(dn->dn_dirtyctx_firstset, 1);
 607                 dn->dn_dirtyctx_firstset = NULL;
 608         }
 609 
 610         dn->dn_allocated_txg = tx->tx_txg;
 611         dn->dn_id_flags = 0;
 612 
 613         dnode_setdirty(dn, tx);
 614         dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
 615         dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
 616         dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
 617         dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
 618 }
 619 
 620 void
 621 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
 622     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
 623 {
 624         int nblkptr;
 625 
 626         ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
 627         ASSERT3U(blocksize, <=,
 628             spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
 629         ASSERT0(blocksize % SPA_MINBLOCKSIZE);
 630         ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
 631         ASSERT(tx->tx_txg != 0);
 632         ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
 633             (bonustype != DMU_OT_NONE && bonuslen != 0) ||
 634             (bonustype == DMU_OT_SA && bonuslen == 0));
 635         ASSERT(DMU_OT_IS_VALID(bonustype));
 636         ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
 637 
 638         /* clean up any unreferenced dbufs */
 639         dnode_evict_dbufs(dn);
 640 
 641         dn->dn_id_flags = 0;
 642 
 643         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 644         dnode_setdirty(dn, tx);
 645         if (dn->dn_datablksz != blocksize) {
 646                 /* change blocksize */
 647                 ASSERT(dn->dn_maxblkid == 0 &&
 648                     (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
 649                     dnode_block_freed(dn, 0)));
 650                 dnode_setdblksz(dn, blocksize);
 651                 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
 652         }
 653         if (dn->dn_bonuslen != bonuslen)
 654                 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
 655 
 656         if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
 657                 nblkptr = 1;
 658         else
 659                 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
 660         if (dn->dn_bonustype != bonustype)
 661                 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
 662         if (dn->dn_nblkptr != nblkptr)
 663                 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
 664         if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
 665                 dbuf_rm_spill(dn, tx);
 666                 dnode_rm_spill(dn, tx);
 667         }
 668         rw_exit(&dn->dn_struct_rwlock);
 669 
 670         /* change type */
 671         dn->dn_type = ot;
 672 
 673         /* change bonus size and type */
 674         mutex_enter(&dn->dn_mtx);
 675         dn->dn_bonustype = bonustype;
 676         dn->dn_bonuslen = bonuslen;
 677         dn->dn_nblkptr = nblkptr;
 678         dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
 679         dn->dn_compress = ZIO_COMPRESS_INHERIT;
 680         ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
 681 
 682         /* fix up the bonus db_size */
 683         if (dn->dn_bonus) {
 684                 dn->dn_bonus->db.db_size =
 685                     DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
 686                 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
 687         }
 688 
 689         dn->dn_allocated_txg = tx->tx_txg;
 690         mutex_exit(&dn->dn_mtx);
 691 }
 692 
 693 #ifdef  DNODE_STATS
 694 static struct {
 695         uint64_t dms_dnode_invalid;
 696         uint64_t dms_dnode_recheck1;
 697         uint64_t dms_dnode_recheck2;
 698         uint64_t dms_dnode_special;
 699         uint64_t dms_dnode_handle;
 700         uint64_t dms_dnode_rwlock;
 701         uint64_t dms_dnode_active;
 702 } dnode_move_stats;
 703 #endif  /* DNODE_STATS */
 704 
 705 #ifdef  _KERNEL
 706 static void
 707 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
 708 {
 709         int i;
 710 
 711         ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
 712         ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
 713         ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
 714         ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
 715 
 716         /* Copy fields. */
 717         ndn->dn_objset = odn->dn_objset;
 718         ndn->dn_object = odn->dn_object;
 719         ndn->dn_dbuf = odn->dn_dbuf;
 720         ndn->dn_handle = odn->dn_handle;
 721         ndn->dn_phys = odn->dn_phys;
 722         ndn->dn_type = odn->dn_type;
 723         ndn->dn_bonuslen = odn->dn_bonuslen;
 724         ndn->dn_bonustype = odn->dn_bonustype;
 725         ndn->dn_nblkptr = odn->dn_nblkptr;
 726         ndn->dn_checksum = odn->dn_checksum;
 727         ndn->dn_compress = odn->dn_compress;
 728         ndn->dn_nlevels = odn->dn_nlevels;
 729         ndn->dn_indblkshift = odn->dn_indblkshift;
 730         ndn->dn_datablkshift = odn->dn_datablkshift;
 731         ndn->dn_datablkszsec = odn->dn_datablkszsec;
 732         ndn->dn_datablksz = odn->dn_datablksz;
 733         ndn->dn_maxblkid = odn->dn_maxblkid;
 734         bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
 735             sizeof (odn->dn_next_nblkptr));
 736         bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
 737             sizeof (odn->dn_next_nlevels));
 738         bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
 739             sizeof (odn->dn_next_indblkshift));
 740         bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
 741             sizeof (odn->dn_next_bonustype));
 742         bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
 743             sizeof (odn->dn_rm_spillblk));
 744         bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
 745             sizeof (odn->dn_next_bonuslen));
 746         bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
 747             sizeof (odn->dn_next_blksz));
 748         for (i = 0; i < TXG_SIZE; i++) {
 749                 list_move_tail(&ndn->dn_dirty_records[i],
 750                     &odn->dn_dirty_records[i]);
 751         }
 752         bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
 753             sizeof (odn->dn_free_ranges));
 754         ndn->dn_allocated_txg = odn->dn_allocated_txg;
 755         ndn->dn_free_txg = odn->dn_free_txg;
 756         ndn->dn_assigned_txg = odn->dn_assigned_txg;
 757         ndn->dn_dirtyctx = odn->dn_dirtyctx;
 758         ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
 759         ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
 760         refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
 761         ASSERT(avl_is_empty(&ndn->dn_dbufs));
 762         avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
 763         ndn->dn_dbufs_count = odn->dn_dbufs_count;
 764         ndn->dn_bonus = odn->dn_bonus;
 765         ndn->dn_have_spill = odn->dn_have_spill;
 766         ndn->dn_zio = odn->dn_zio;
 767         ndn->dn_oldused = odn->dn_oldused;
 768         ndn->dn_oldflags = odn->dn_oldflags;
 769         ndn->dn_olduid = odn->dn_olduid;
 770         ndn->dn_oldgid = odn->dn_oldgid;
 771         ndn->dn_newuid = odn->dn_newuid;
 772         ndn->dn_newgid = odn->dn_newgid;
 773         ndn->dn_id_flags = odn->dn_id_flags;
 774         dmu_zfetch_init(&ndn->dn_zfetch, NULL);
 775         list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
 776         ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
 777 
 778         /*
 779          * Update back pointers. Updating the handle fixes the back pointer of
 780          * every descendant dbuf as well as the bonus dbuf.
 781          */
 782         ASSERT(ndn->dn_handle->dnh_dnode == odn);
 783         ndn->dn_handle->dnh_dnode = ndn;
 784         if (ndn->dn_zfetch.zf_dnode == odn) {
 785                 ndn->dn_zfetch.zf_dnode = ndn;
 786         }
 787 
 788         /*
 789          * Invalidate the original dnode by clearing all of its back pointers.
 790          */
 791         odn->dn_dbuf = NULL;
 792         odn->dn_handle = NULL;
 793         avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
 794             offsetof(dmu_buf_impl_t, db_link));
 795         odn->dn_dbufs_count = 0;
 796         odn->dn_bonus = NULL;
 797         odn->dn_zfetch.zf_dnode = NULL;
 798 
 799         /*
 800          * Set the low bit of the objset pointer to ensure that dnode_move()
 801          * recognizes the dnode as invalid in any subsequent callback.
 802          */
 803         POINTER_INVALIDATE(&odn->dn_objset);
 804 
 805         /*
 806          * Satisfy the destructor.
 807          */
 808         for (i = 0; i < TXG_SIZE; i++) {
 809                 list_create(&odn->dn_dirty_records[i],
 810                     sizeof (dbuf_dirty_record_t),
 811                     offsetof(dbuf_dirty_record_t, dr_dirty_node));
 812                 odn->dn_free_ranges[i] = NULL;
 813                 odn->dn_next_nlevels[i] = 0;
 814                 odn->dn_next_indblkshift[i] = 0;
 815                 odn->dn_next_bonustype[i] = 0;
 816                 odn->dn_rm_spillblk[i] = 0;
 817                 odn->dn_next_bonuslen[i] = 0;
 818                 odn->dn_next_blksz[i] = 0;
 819         }
 820         odn->dn_allocated_txg = 0;
 821         odn->dn_free_txg = 0;
 822         odn->dn_assigned_txg = 0;
 823         odn->dn_dirtyctx = 0;
 824         odn->dn_dirtyctx_firstset = NULL;
 825         odn->dn_have_spill = B_FALSE;
 826         odn->dn_zio = NULL;
 827         odn->dn_oldused = 0;
 828         odn->dn_oldflags = 0;
 829         odn->dn_olduid = 0;
 830         odn->dn_oldgid = 0;
 831         odn->dn_newuid = 0;
 832         odn->dn_newgid = 0;
 833         odn->dn_id_flags = 0;
 834 
 835         /*
 836          * Mark the dnode.
 837          */
 838         ndn->dn_moved = 1;
 839         odn->dn_moved = (uint8_t)-1;
 840 }
 841 
 842 /*ARGSUSED*/
 843 static kmem_cbrc_t
 844 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
 845 {
 846         dnode_t *odn = buf, *ndn = newbuf;
 847         objset_t *os;
 848         int64_t refcount;
 849         uint32_t dbufs;
 850 
 851         /*
 852          * The dnode is on the objset's list of known dnodes if the objset
 853          * pointer is valid. We set the low bit of the objset pointer when
 854          * freeing the dnode to invalidate it, and the memory patterns written
 855          * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
 856          * A newly created dnode sets the objset pointer last of all to indicate
 857          * that the dnode is known and in a valid state to be moved by this
 858          * function.
 859          */
 860         os = odn->dn_objset;
 861         if (!POINTER_IS_VALID(os)) {
 862                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
 863                 return (KMEM_CBRC_DONT_KNOW);
 864         }
 865 
 866         /*
 867          * Ensure that the objset does not go away during the move.
 868          */
 869         rw_enter(&os_lock, RW_WRITER);
 870         if (os != odn->dn_objset) {
 871                 rw_exit(&os_lock);
 872                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
 873                 return (KMEM_CBRC_DONT_KNOW);
 874         }
 875 
 876         /*
 877          * If the dnode is still valid, then so is the objset. We know that no
 878          * valid objset can be freed while we hold os_lock, so we can safely
 879          * ensure that the objset remains in use.
 880          */
 881         mutex_enter(&os->os_lock);
 882 
 883         /*
 884          * Recheck the objset pointer in case the dnode was removed just before
 885          * acquiring the lock.
 886          */
 887         if (os != odn->dn_objset) {
 888                 mutex_exit(&os->os_lock);
 889                 rw_exit(&os_lock);
 890                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
 891                 return (KMEM_CBRC_DONT_KNOW);
 892         }
 893 
 894         /*
 895          * At this point we know that as long as we hold os->os_lock, the dnode
 896          * cannot be freed and fields within the dnode can be safely accessed.
 897          * The objset listing this dnode cannot go away as long as this dnode is
 898          * on its list.
 899          */
 900         rw_exit(&os_lock);
 901         if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
 902                 mutex_exit(&os->os_lock);
 903                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
 904                 return (KMEM_CBRC_NO);
 905         }
 906         ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
 907 
 908         /*
 909          * Lock the dnode handle to prevent the dnode from obtaining any new
 910          * holds. This also prevents the descendant dbufs and the bonus dbuf
 911          * from accessing the dnode, so that we can discount their holds. The
 912          * handle is safe to access because we know that while the dnode cannot
 913          * go away, neither can its handle. Once we hold dnh_zrlock, we can
 914          * safely move any dnode referenced only by dbufs.
 915          */
 916         if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
 917                 mutex_exit(&os->os_lock);
 918                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
 919                 return (KMEM_CBRC_LATER);
 920         }
 921 
 922         /*
 923          * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
 924          * We need to guarantee that there is a hold for every dbuf in order to
 925          * determine whether the dnode is actively referenced. Falsely matching
 926          * a dbuf to an active hold would lead to an unsafe move. It's possible
 927          * that a thread already having an active dnode hold is about to add a
 928          * dbuf, and we can't compare hold and dbuf counts while the add is in
 929          * progress.
 930          */
 931         if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
 932                 zrl_exit(&odn->dn_handle->dnh_zrlock);
 933                 mutex_exit(&os->os_lock);
 934                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
 935                 return (KMEM_CBRC_LATER);
 936         }
 937 
 938         /*
 939          * A dbuf may be removed (evicted) without an active dnode hold. In that
 940          * case, the dbuf count is decremented under the handle lock before the
 941          * dbuf's hold is released. This order ensures that if we count the hold
 942          * after the dbuf is removed but before its hold is released, we will
 943          * treat the unmatched hold as active and exit safely. If we count the
 944          * hold before the dbuf is removed, the hold is discounted, and the
 945          * removal is blocked until the move completes.
 946          */
 947         refcount = refcount_count(&odn->dn_holds);
 948         ASSERT(refcount >= 0);
 949         dbufs = odn->dn_dbufs_count;
 950 
 951         /* We can't have more dbufs than dnode holds. */
 952         ASSERT3U(dbufs, <=, refcount);
 953         DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
 954             uint32_t, dbufs);
 955 
 956         if (refcount > dbufs) {
 957                 rw_exit(&odn->dn_struct_rwlock);
 958                 zrl_exit(&odn->dn_handle->dnh_zrlock);
 959                 mutex_exit(&os->os_lock);
 960                 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
 961                 return (KMEM_CBRC_LATER);
 962         }
 963 
 964         rw_exit(&odn->dn_struct_rwlock);
 965 
 966         /*
 967          * At this point we know that anyone with a hold on the dnode is not
 968          * actively referencing it. The dnode is known and in a valid state to
 969          * move. We're holding the locks needed to execute the critical section.
 970          */
 971         dnode_move_impl(odn, ndn);
 972 
 973         list_link_replace(&odn->dn_link, &ndn->dn_link);
 974         /* If the dnode was safe to move, the refcount cannot have changed. */
 975         ASSERT(refcount == refcount_count(&ndn->dn_holds));
 976         ASSERT(dbufs == ndn->dn_dbufs_count);
 977         zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
 978         mutex_exit(&os->os_lock);
 979 
 980         return (KMEM_CBRC_YES);
 981 }
 982 #endif  /* _KERNEL */
 983 
 984 void
 985 dnode_special_close(dnode_handle_t *dnh)
 986 {
 987         dnode_t *dn = dnh->dnh_dnode;
 988 
 989         /*
 990          * Wait for final references to the dnode to clear.  This can
 991          * only happen if the arc is asyncronously evicting state that
 992          * has a hold on this dnode while we are trying to evict this
 993          * dnode.
 994          */
 995         while (refcount_count(&dn->dn_holds) > 0)
 996                 delay(1);
 997         ASSERT(dn->dn_dbuf == NULL ||
 998             dmu_buf_get_user(&dn->dn_dbuf->db) == NULL);
 999         zrl_add(&dnh->dnh_zrlock);
1000         dnode_destroy(dn); /* implicit zrl_remove() */
1001         zrl_destroy(&dnh->dnh_zrlock);
1002         dnh->dnh_dnode = NULL;
1003 }
1004 
1005 void
1006 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
1007     dnode_handle_t *dnh)
1008 {
1009         dnode_t *dn;
1010 
1011         dn = dnode_create(os, dnp, NULL, object, dnh);
1012         zrl_init(&dnh->dnh_zrlock);
1013         DNODE_VERIFY(dn);
1014 }
1015 
1016 static void
1017 dnode_buf_evict_async(void *dbu)
1018 {
1019         dnode_children_t *children_dnodes = dbu;
1020         int i;
1021 
1022         for (i = 0; i < children_dnodes->dnc_count; i++) {
1023                 dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
1024                 dnode_t *dn;
1025 
1026                 /*
1027                  * The dnode handle lock guards against the dnode moving to
1028                  * another valid address, so there is no need here to guard
1029                  * against changes to or from NULL.
1030                  */
1031                 if (dnh->dnh_dnode == NULL) {
1032                         zrl_destroy(&dnh->dnh_zrlock);
1033                         continue;
1034                 }
1035 
1036                 zrl_add(&dnh->dnh_zrlock);
1037                 dn = dnh->dnh_dnode;
1038                 /*
1039                  * If there are holds on this dnode, then there should
1040                  * be holds on the dnode's containing dbuf as well; thus
1041                  * it wouldn't be eligible for eviction and this function
1042                  * would not have been called.
1043                  */
1044                 ASSERT(refcount_is_zero(&dn->dn_holds));
1045                 ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1046 
1047                 dnode_destroy(dn); /* implicit zrl_remove() */
1048                 zrl_destroy(&dnh->dnh_zrlock);
1049                 dnh->dnh_dnode = NULL;
1050         }
1051         kmem_free(children_dnodes, sizeof (dnode_children_t) +
1052             children_dnodes->dnc_count * sizeof (dnode_handle_t));
1053 }
1054 
1055 /*
1056  * errors:
1057  * EINVAL - invalid object number.
1058  * EIO - i/o error.
1059  * succeeds even for free dnodes.
1060  */
1061 int
1062 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1063     void *tag, dnode_t **dnp)
1064 {
1065         int epb, idx, err;
1066         int drop_struct_lock = FALSE;
1067         int type;
1068         uint64_t blk;
1069         dnode_t *mdn, *dn;
1070         dmu_buf_impl_t *db;
1071         dnode_children_t *children_dnodes;
1072         dnode_handle_t *dnh;
1073 
1074         /*
1075          * If you are holding the spa config lock as writer, you shouldn't
1076          * be asking the DMU to do *anything* unless it's the root pool
1077          * which may require us to read from the root filesystem while
1078          * holding some (not all) of the locks as writer.
1079          */
1080         ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1081             (spa_is_root(os->os_spa) &&
1082             spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1083 
1084         if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1085                 dn = (object == DMU_USERUSED_OBJECT) ?
1086                     DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1087                 if (dn == NULL)
1088                         return (SET_ERROR(ENOENT));
1089                 type = dn->dn_type;
1090                 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1091                         return (SET_ERROR(ENOENT));
1092                 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1093                         return (SET_ERROR(EEXIST));
1094                 DNODE_VERIFY(dn);
1095                 (void) refcount_add(&dn->dn_holds, tag);
1096                 *dnp = dn;
1097                 return (0);
1098         }
1099 
1100         if (object == 0 || object >= DN_MAX_OBJECT)
1101                 return (SET_ERROR(EINVAL));
1102 
1103         mdn = DMU_META_DNODE(os);
1104         ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1105 
1106         DNODE_VERIFY(mdn);
1107 
1108         if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1109                 rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1110                 drop_struct_lock = TRUE;
1111         }
1112 
1113         blk = dbuf_whichblock(mdn, 0, object * sizeof (dnode_phys_t));
1114 
1115         db = dbuf_hold(mdn, blk, FTAG);
1116         if (drop_struct_lock)
1117                 rw_exit(&mdn->dn_struct_rwlock);
1118         if (db == NULL)
1119                 return (SET_ERROR(EIO));
1120         err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1121         if (err) {
1122                 dbuf_rele(db, FTAG);
1123                 return (err);
1124         }
1125 
1126         ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1127         epb = db->db.db_size >> DNODE_SHIFT;
1128 
1129         idx = object & (epb-1);
1130 
1131         ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1132         children_dnodes = dmu_buf_get_user(&db->db);
1133         if (children_dnodes == NULL) {
1134                 int i;
1135                 dnode_children_t *winner;
1136                 children_dnodes = kmem_zalloc(sizeof (dnode_children_t) +
1137                     epb * sizeof (dnode_handle_t), KM_SLEEP);
1138                 children_dnodes->dnc_count = epb;
1139                 dnh = &children_dnodes->dnc_children[0];
1140                 for (i = 0; i < epb; i++) {
1141                         zrl_init(&dnh[i].dnh_zrlock);
1142                 }
1143                 dmu_buf_init_user(&children_dnodes->dnc_dbu, NULL,
1144                     dnode_buf_evict_async, NULL);
1145                 winner = dmu_buf_set_user(&db->db, &children_dnodes->dnc_dbu);
1146                 if (winner != NULL) {
1147 
1148                         for (i = 0; i < epb; i++) {
1149                                 zrl_destroy(&dnh[i].dnh_zrlock);
1150                         }
1151 
1152                         kmem_free(children_dnodes, sizeof (dnode_children_t) +
1153                             epb * sizeof (dnode_handle_t));
1154                         children_dnodes = winner;
1155                 }
1156         }
1157         ASSERT(children_dnodes->dnc_count == epb);
1158 
1159         dnh = &children_dnodes->dnc_children[idx];
1160         zrl_add(&dnh->dnh_zrlock);
1161         dn = dnh->dnh_dnode;
1162         if (dn == NULL) {
1163                 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1164 
1165                 dn = dnode_create(os, phys, db, object, dnh);
1166         }
1167 
1168         mutex_enter(&dn->dn_mtx);
1169         type = dn->dn_type;
1170         if (dn->dn_free_txg ||
1171             ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1172             ((flag & DNODE_MUST_BE_FREE) &&
1173             (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1174                 mutex_exit(&dn->dn_mtx);
1175                 zrl_remove(&dnh->dnh_zrlock);
1176                 dbuf_rele(db, FTAG);
1177                 return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1178         }
1179         if (refcount_add(&dn->dn_holds, tag) == 1)
1180                 dbuf_add_ref(db, dnh);
1181         mutex_exit(&dn->dn_mtx);
1182 
1183         /* Now we can rely on the hold to prevent the dnode from moving. */
1184         zrl_remove(&dnh->dnh_zrlock);
1185 
1186         DNODE_VERIFY(dn);
1187         ASSERT3P(dn->dn_dbuf, ==, db);
1188         ASSERT3U(dn->dn_object, ==, object);
1189         dbuf_rele(db, FTAG);
1190 
1191         *dnp = dn;
1192         return (0);
1193 }
1194 
1195 /*
1196  * Return held dnode if the object is allocated, NULL if not.
1197  */
1198 int
1199 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1200 {
1201         return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1202 }
1203 
1204 /*
1205  * Can only add a reference if there is already at least one
1206  * reference on the dnode.  Returns FALSE if unable to add a
1207  * new reference.
1208  */
1209 boolean_t
1210 dnode_add_ref(dnode_t *dn, void *tag)
1211 {
1212         mutex_enter(&dn->dn_mtx);
1213         if (refcount_is_zero(&dn->dn_holds)) {
1214                 mutex_exit(&dn->dn_mtx);
1215                 return (FALSE);
1216         }
1217         VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1218         mutex_exit(&dn->dn_mtx);
1219         return (TRUE);
1220 }
1221 
1222 void
1223 dnode_rele(dnode_t *dn, void *tag)
1224 {
1225         mutex_enter(&dn->dn_mtx);
1226         dnode_rele_and_unlock(dn, tag);
1227 }
1228 
1229 void
1230 dnode_rele_and_unlock(dnode_t *dn, void *tag)
1231 {
1232         uint64_t refs;
1233         /* Get while the hold prevents the dnode from moving. */
1234         dmu_buf_impl_t *db = dn->dn_dbuf;
1235         dnode_handle_t *dnh = dn->dn_handle;
1236 
1237         refs = refcount_remove(&dn->dn_holds, tag);
1238         mutex_exit(&dn->dn_mtx);
1239 
1240         /*
1241          * It's unsafe to release the last hold on a dnode by dnode_rele() or
1242          * indirectly by dbuf_rele() while relying on the dnode handle to
1243          * prevent the dnode from moving, since releasing the last hold could
1244          * result in the dnode's parent dbuf evicting its dnode handles. For
1245          * that reason anyone calling dnode_rele() or dbuf_rele() without some
1246          * other direct or indirect hold on the dnode must first drop the dnode
1247          * handle.
1248          */
1249         ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1250 
1251         /* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1252         if (refs == 0 && db != NULL) {
1253                 /*
1254                  * Another thread could add a hold to the dnode handle in
1255                  * dnode_hold_impl() while holding the parent dbuf. Since the
1256                  * hold on the parent dbuf prevents the handle from being
1257                  * destroyed, the hold on the handle is OK. We can't yet assert
1258                  * that the handle has zero references, but that will be
1259                  * asserted anyway when the handle gets destroyed.
1260                  */
1261                 dbuf_rele(db, dnh);
1262         }
1263 }
1264 
1265 void
1266 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1267 {
1268         objset_t *os = dn->dn_objset;
1269         uint64_t txg = tx->tx_txg;
1270 
1271         if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1272                 dsl_dataset_dirty(os->os_dsl_dataset, tx);
1273                 return;
1274         }
1275 
1276         DNODE_VERIFY(dn);
1277 
1278 #ifdef ZFS_DEBUG
1279         mutex_enter(&dn->dn_mtx);
1280         ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1281         ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1282         mutex_exit(&dn->dn_mtx);
1283 #endif
1284 
1285         /*
1286          * Determine old uid/gid when necessary
1287          */
1288         dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1289 
1290         multilist_t *dirtylist = os->os_dirty_dnodes[txg & TXG_MASK];
1291         multilist_sublist_t *mls = multilist_sublist_lock_obj(dirtylist, dn);
1292 
1293         /*
1294          * If we are already marked dirty, we're done.
1295          */
1296         if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1297                 multilist_sublist_unlock(mls);
1298                 return;
1299         }
1300 
1301         ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1302             !avl_is_empty(&dn->dn_dbufs));
1303         ASSERT(dn->dn_datablksz != 0);
1304         ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1305         ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1306         ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1307 
1308         dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1309             dn->dn_object, txg);
1310 
1311         multilist_sublist_insert_head(mls, dn);
1312 
1313         multilist_sublist_unlock(mls);
1314 
1315         /*
1316          * The dnode maintains a hold on its containing dbuf as
1317          * long as there are holds on it.  Each instantiated child
1318          * dbuf maintains a hold on the dnode.  When the last child
1319          * drops its hold, the dnode will drop its hold on the
1320          * containing dbuf. We add a "dirty hold" here so that the
1321          * dnode will hang around after we finish processing its
1322          * children.
1323          */
1324         VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1325 
1326         (void) dbuf_dirty(dn->dn_dbuf, tx);
1327 
1328         dsl_dataset_dirty(os->os_dsl_dataset, tx);
1329 }
1330 
1331 void
1332 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1333 {
1334         mutex_enter(&dn->dn_mtx);
1335         if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1336                 mutex_exit(&dn->dn_mtx);
1337                 return;
1338         }
1339         dn->dn_free_txg = tx->tx_txg;
1340         mutex_exit(&dn->dn_mtx);
1341 
1342         dnode_setdirty(dn, tx);
1343 }
1344 
1345 /*
1346  * Try to change the block size for the indicated dnode.  This can only
1347  * succeed if there are no blocks allocated or dirty beyond first block
1348  */
1349 int
1350 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1351 {
1352         dmu_buf_impl_t *db;
1353         int err;
1354 
1355         ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1356         if (size == 0)
1357                 size = SPA_MINBLOCKSIZE;
1358         else
1359                 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1360 
1361         if (ibs == dn->dn_indblkshift)
1362                 ibs = 0;
1363 
1364         if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1365                 return (0);
1366 
1367         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1368 
1369         /* Check for any allocated blocks beyond the first */
1370         if (dn->dn_maxblkid != 0)
1371                 goto fail;
1372 
1373         mutex_enter(&dn->dn_dbufs_mtx);
1374         for (db = avl_first(&dn->dn_dbufs); db != NULL;
1375             db = AVL_NEXT(&dn->dn_dbufs, db)) {
1376                 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1377                     db->db_blkid != DMU_SPILL_BLKID) {
1378                         mutex_exit(&dn->dn_dbufs_mtx);
1379                         goto fail;
1380                 }
1381         }
1382         mutex_exit(&dn->dn_dbufs_mtx);
1383 
1384         if (ibs && dn->dn_nlevels != 1)
1385                 goto fail;
1386 
1387         /* resize the old block */
1388         err = dbuf_hold_impl(dn, 0, 0, TRUE, FALSE, FTAG, &db);
1389         if (err == 0)
1390                 dbuf_new_size(db, size, tx);
1391         else if (err != ENOENT)
1392                 goto fail;
1393 
1394         dnode_setdblksz(dn, size);
1395         dnode_setdirty(dn, tx);
1396         dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1397         if (ibs) {
1398                 dn->dn_indblkshift = ibs;
1399                 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1400         }
1401         /* rele after we have fixed the blocksize in the dnode */
1402         if (db)
1403                 dbuf_rele(db, FTAG);
1404 
1405         rw_exit(&dn->dn_struct_rwlock);
1406         return (0);
1407 
1408 fail:
1409         rw_exit(&dn->dn_struct_rwlock);
1410         return (SET_ERROR(ENOTSUP));
1411 }
1412 
1413 /* read-holding callers must not rely on the lock being continuously held */
1414 void
1415 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1416 {
1417         uint64_t txgoff = tx->tx_txg & TXG_MASK;
1418         int epbs, new_nlevels;
1419         uint64_t sz;
1420 
1421         ASSERT(blkid != DMU_BONUS_BLKID);
1422 
1423         ASSERT(have_read ?
1424             RW_READ_HELD(&dn->dn_struct_rwlock) :
1425             RW_WRITE_HELD(&dn->dn_struct_rwlock));
1426 
1427         /*
1428          * if we have a read-lock, check to see if we need to do any work
1429          * before upgrading to a write-lock.
1430          */
1431         if (have_read) {
1432                 if (blkid <= dn->dn_maxblkid)
1433                         return;
1434 
1435                 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1436                         rw_exit(&dn->dn_struct_rwlock);
1437                         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1438                 }
1439         }
1440 
1441         if (blkid <= dn->dn_maxblkid)
1442                 goto out;
1443 
1444         dn->dn_maxblkid = blkid;
1445 
1446         /*
1447          * Compute the number of levels necessary to support the new maxblkid.
1448          */
1449         new_nlevels = 1;
1450         epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1451         for (sz = dn->dn_nblkptr;
1452             sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1453                 new_nlevels++;
1454 
1455         if (new_nlevels > dn->dn_nlevels) {
1456                 int old_nlevels = dn->dn_nlevels;
1457                 dmu_buf_impl_t *db;
1458                 list_t *list;
1459                 dbuf_dirty_record_t *new, *dr, *dr_next;
1460 
1461                 dn->dn_nlevels = new_nlevels;
1462 
1463                 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1464                 dn->dn_next_nlevels[txgoff] = new_nlevels;
1465 
1466                 /* dirty the left indirects */
1467                 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1468                 ASSERT(db != NULL);
1469                 new = dbuf_dirty(db, tx);
1470                 dbuf_rele(db, FTAG);
1471 
1472                 /* transfer the dirty records to the new indirect */
1473                 mutex_enter(&dn->dn_mtx);
1474                 mutex_enter(&new->dt.di.dr_mtx);
1475                 list = &dn->dn_dirty_records[txgoff];
1476                 for (dr = list_head(list); dr; dr = dr_next) {
1477                         dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1478                         if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1479                             dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1480                             dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1481                                 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1482                                 list_remove(&dn->dn_dirty_records[txgoff], dr);
1483                                 list_insert_tail(&new->dt.di.dr_children, dr);
1484                                 dr->dr_parent = new;
1485                         }
1486                 }
1487                 mutex_exit(&new->dt.di.dr_mtx);
1488                 mutex_exit(&dn->dn_mtx);
1489         }
1490 
1491 out:
1492         if (have_read)
1493                 rw_downgrade(&dn->dn_struct_rwlock);
1494 }
1495 
1496 static void
1497 dnode_dirty_l1(dnode_t *dn, uint64_t l1blkid, dmu_tx_t *tx)
1498 {
1499         dmu_buf_impl_t *db = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1500         if (db != NULL) {
1501                 dmu_buf_will_dirty(&db->db, tx);
1502                 dbuf_rele(db, FTAG);
1503         }
1504 }
1505 
1506 void
1507 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1508 {
1509         dmu_buf_impl_t *db;
1510         uint64_t blkoff, blkid, nblks;
1511         int blksz, blkshift, head, tail;
1512         int trunc = FALSE;
1513         int epbs;
1514 
1515         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1516         blksz = dn->dn_datablksz;
1517         blkshift = dn->dn_datablkshift;
1518         epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1519 
1520         if (len == DMU_OBJECT_END) {
1521                 len = UINT64_MAX - off;
1522                 trunc = TRUE;
1523         }
1524 
1525         /*
1526          * First, block align the region to free:
1527          */
1528         if (ISP2(blksz)) {
1529                 head = P2NPHASE(off, blksz);
1530                 blkoff = P2PHASE(off, blksz);
1531                 if ((off >> blkshift) > dn->dn_maxblkid)
1532                         goto out;
1533         } else {
1534                 ASSERT(dn->dn_maxblkid == 0);
1535                 if (off == 0 && len >= blksz) {
1536                         /*
1537                          * Freeing the whole block; fast-track this request.
1538                          * Note that we won't dirty any indirect blocks,
1539                          * which is fine because we will be freeing the entire
1540                          * file and thus all indirect blocks will be freed
1541                          * by free_children().
1542                          */
1543                         blkid = 0;
1544                         nblks = 1;
1545                         goto done;
1546                 } else if (off >= blksz) {
1547                         /* Freeing past end-of-data */
1548                         goto out;
1549                 } else {
1550                         /* Freeing part of the block. */
1551                         head = blksz - off;
1552                         ASSERT3U(head, >, 0);
1553                 }
1554                 blkoff = off;
1555         }
1556         /* zero out any partial block data at the start of the range */
1557         if (head) {
1558                 ASSERT3U(blkoff + head, ==, blksz);
1559                 if (len < head)
1560                         head = len;
1561                 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off),
1562                     TRUE, FALSE, FTAG, &db) == 0) {
1563                         caddr_t data;
1564 
1565                         /* don't dirty if it isn't on disk and isn't dirty */
1566                         if (db->db_last_dirty ||
1567                             (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1568                                 rw_exit(&dn->dn_struct_rwlock);
1569                                 dmu_buf_will_dirty(&db->db, tx);
1570                                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1571                                 data = db->db.db_data;
1572                                 bzero(data + blkoff, head);
1573                         }
1574                         dbuf_rele(db, FTAG);
1575                 }
1576                 off += head;
1577                 len -= head;
1578         }
1579 
1580         /* If the range was less than one block, we're done */
1581         if (len == 0)
1582                 goto out;
1583 
1584         /* If the remaining range is past end of file, we're done */
1585         if ((off >> blkshift) > dn->dn_maxblkid)
1586                 goto out;
1587 
1588         ASSERT(ISP2(blksz));
1589         if (trunc)
1590                 tail = 0;
1591         else
1592                 tail = P2PHASE(len, blksz);
1593 
1594         ASSERT0(P2PHASE(off, blksz));
1595         /* zero out any partial block data at the end of the range */
1596         if (tail) {
1597                 if (len < tail)
1598                         tail = len;
1599                 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, 0, off+len),
1600                     TRUE, FALSE, FTAG, &db) == 0) {
1601                         /* don't dirty if not on disk and not dirty */
1602                         if (db->db_last_dirty ||
1603                             (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1604                                 rw_exit(&dn->dn_struct_rwlock);
1605                                 dmu_buf_will_dirty(&db->db, tx);
1606                                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1607                                 bzero(db->db.db_data, tail);
1608                         }
1609                         dbuf_rele(db, FTAG);
1610                 }
1611                 len -= tail;
1612         }
1613 
1614         /* If the range did not include a full block, we are done */
1615         if (len == 0)
1616                 goto out;
1617 
1618         ASSERT(IS_P2ALIGNED(off, blksz));
1619         ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1620         blkid = off >> blkshift;
1621         nblks = len >> blkshift;
1622         if (trunc)
1623                 nblks += 1;
1624 
1625         /*
1626          * Dirty all the indirect blocks in this range.  Note that only
1627          * the first and last indirect blocks can actually be written
1628          * (if they were partially freed) -- they must be dirtied, even if
1629          * they do not exist on disk yet.  The interior blocks will
1630          * be freed by free_children(), so they will not actually be written.
1631          * Even though these interior blocks will not be written, we
1632          * dirty them for two reasons:
1633          *
1634          *  - It ensures that the indirect blocks remain in memory until
1635          *    syncing context.  (They have already been prefetched by
1636          *    dmu_tx_hold_free(), so we don't have to worry about reading
1637          *    them serially here.)
1638          *
1639          *  - The dirty space accounting will put pressure on the txg sync
1640          *    mechanism to begin syncing, and to delay transactions if there
1641          *    is a large amount of freeing.  Even though these indirect
1642          *    blocks will not be written, we could need to write the same
1643          *    amount of space if we copy the freed BPs into deadlists.
1644          */
1645         if (dn->dn_nlevels > 1) {
1646                 uint64_t first, last;
1647 
1648                 first = blkid >> epbs;
1649                 dnode_dirty_l1(dn, first, tx);
1650                 if (trunc)
1651                         last = dn->dn_maxblkid >> epbs;
1652                 else
1653                         last = (blkid + nblks - 1) >> epbs;
1654                 if (last != first)
1655                         dnode_dirty_l1(dn, last, tx);
1656 
1657                 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
1658                     SPA_BLKPTRSHIFT;
1659                 for (uint64_t i = first + 1; i < last; i++) {
1660                         /*
1661                          * Set i to the blockid of the next non-hole
1662                          * level-1 indirect block at or after i.  Note
1663                          * that dnode_next_offset() operates in terms of
1664                          * level-0-equivalent bytes.
1665                          */
1666                         uint64_t ibyte = i << shift;
1667                         int err = dnode_next_offset(dn, DNODE_FIND_HAVELOCK,
1668                             &ibyte, 2, 1, 0);
1669                         i = ibyte >> shift;
1670                         if (i >= last)
1671                                 break;
1672 
1673                         /*
1674                          * Normally we should not see an error, either
1675                          * from dnode_next_offset() or dbuf_hold_level()
1676                          * (except for ESRCH from dnode_next_offset).
1677                          * If there is an i/o error, then when we read
1678                          * this block in syncing context, it will use
1679                          * ZIO_FLAG_MUSTSUCCEED, and thus hang/panic according
1680                          * to the "failmode" property.  dnode_next_offset()
1681                          * doesn't have a flag to indicate MUSTSUCCEED.
1682                          */
1683                         if (err != 0)
1684                                 break;
1685 
1686                         dnode_dirty_l1(dn, i, tx);
1687                 }
1688         }
1689 
1690 done:
1691         /*
1692          * Add this range to the dnode range list.
1693          * We will finish up this free operation in the syncing phase.
1694          */
1695         mutex_enter(&dn->dn_mtx);
1696         int txgoff = tx->tx_txg & TXG_MASK;
1697         if (dn->dn_free_ranges[txgoff] == NULL) {
1698                 dn->dn_free_ranges[txgoff] =
1699                     range_tree_create(NULL, NULL, &dn->dn_mtx);
1700         }
1701         range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1702         range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1703         dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1704             blkid, nblks, tx->tx_txg);
1705         mutex_exit(&dn->dn_mtx);
1706 
1707         dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1708         dnode_setdirty(dn, tx);
1709 out:
1710 
1711         rw_exit(&dn->dn_struct_rwlock);
1712 }
1713 
1714 static boolean_t
1715 dnode_spill_freed(dnode_t *dn)
1716 {
1717         int i;
1718 
1719         mutex_enter(&dn->dn_mtx);
1720         for (i = 0; i < TXG_SIZE; i++) {
1721                 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1722                         break;
1723         }
1724         mutex_exit(&dn->dn_mtx);
1725         return (i < TXG_SIZE);
1726 }
1727 
1728 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1729 uint64_t
1730 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1731 {
1732         void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1733         int i;
1734 
1735         if (blkid == DMU_BONUS_BLKID)
1736                 return (FALSE);
1737 
1738         /*
1739          * If we're in the process of opening the pool, dp will not be
1740          * set yet, but there shouldn't be anything dirty.
1741          */
1742         if (dp == NULL)
1743                 return (FALSE);
1744 
1745         if (dn->dn_free_txg)
1746                 return (TRUE);
1747 
1748         if (blkid == DMU_SPILL_BLKID)
1749                 return (dnode_spill_freed(dn));
1750 
1751         mutex_enter(&dn->dn_mtx);
1752         for (i = 0; i < TXG_SIZE; i++) {
1753                 if (dn->dn_free_ranges[i] != NULL &&
1754                     range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1755                         break;
1756         }
1757         mutex_exit(&dn->dn_mtx);
1758         return (i < TXG_SIZE);
1759 }
1760 
1761 /* call from syncing context when we actually write/free space for this dnode */
1762 void
1763 dnode_diduse_space(dnode_t *dn, int64_t delta)
1764 {
1765         uint64_t space;
1766         dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1767             dn, dn->dn_phys,
1768             (u_longlong_t)dn->dn_phys->dn_used,
1769             (longlong_t)delta);
1770 
1771         mutex_enter(&dn->dn_mtx);
1772         space = DN_USED_BYTES(dn->dn_phys);
1773         if (delta > 0) {
1774                 ASSERT3U(space + delta, >=, space); /* no overflow */
1775         } else {
1776                 ASSERT3U(space, >=, -delta); /* no underflow */
1777         }
1778         space += delta;
1779         if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1780                 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1781                 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1782                 dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1783         } else {
1784                 dn->dn_phys->dn_used = space;
1785                 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1786         }
1787         mutex_exit(&dn->dn_mtx);
1788 }
1789 
1790 /*
1791  * Scans a block at the indicated "level" looking for a hole or data,
1792  * depending on 'flags'.
1793  *
1794  * If level > 0, then we are scanning an indirect block looking at its
1795  * pointers.  If level == 0, then we are looking at a block of dnodes.
1796  *
1797  * If we don't find what we are looking for in the block, we return ESRCH.
1798  * Otherwise, return with *offset pointing to the beginning (if searching
1799  * forwards) or end (if searching backwards) of the range covered by the
1800  * block pointer we matched on (or dnode).
1801  *
1802  * The basic search algorithm used below by dnode_next_offset() is to
1803  * use this function to search up the block tree (widen the search) until
1804  * we find something (i.e., we don't return ESRCH) and then search back
1805  * down the tree (narrow the search) until we reach our original search
1806  * level.
1807  */
1808 static int
1809 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1810     int lvl, uint64_t blkfill, uint64_t txg)
1811 {
1812         dmu_buf_impl_t *db = NULL;
1813         void *data = NULL;
1814         uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1815         uint64_t epb = 1ULL << epbs;
1816         uint64_t minfill, maxfill;
1817         boolean_t hole;
1818         int i, inc, error, span;
1819 
1820         dprintf("probing object %llu offset %llx level %d of %u\n",
1821             dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1822 
1823         hole = ((flags & DNODE_FIND_HOLE) != 0);
1824         inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1825         ASSERT(txg == 0 || !hole);
1826 
1827         if (lvl == dn->dn_phys->dn_nlevels) {
1828                 error = 0;
1829                 epb = dn->dn_phys->dn_nblkptr;
1830                 data = dn->dn_phys->dn_blkptr;
1831         } else {
1832                 uint64_t blkid = dbuf_whichblock(dn, lvl, *offset);
1833                 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FALSE, FTAG, &db);
1834                 if (error) {
1835                         if (error != ENOENT)
1836                                 return (error);
1837                         if (hole)
1838                                 return (0);
1839                         /*
1840                          * This can only happen when we are searching up
1841                          * the block tree for data.  We don't really need to
1842                          * adjust the offset, as we will just end up looking
1843                          * at the pointer to this block in its parent, and its
1844                          * going to be unallocated, so we will skip over it.
1845                          */
1846                         return (SET_ERROR(ESRCH));
1847                 }
1848                 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1849                 if (error) {
1850                         dbuf_rele(db, FTAG);
1851                         return (error);
1852                 }
1853                 data = db->db.db_data;
1854         }
1855 
1856 
1857         if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1858             db->db_blkptr->blk_birth <= txg ||
1859             BP_IS_HOLE(db->db_blkptr))) {
1860                 /*
1861                  * This can only happen when we are searching up the tree
1862                  * and these conditions mean that we need to keep climbing.
1863                  */
1864                 error = SET_ERROR(ESRCH);
1865         } else if (lvl == 0) {
1866                 dnode_phys_t *dnp = data;
1867                 span = DNODE_SHIFT;
1868                 ASSERT(dn->dn_type == DMU_OT_DNODE);
1869 
1870                 for (i = (*offset >> span) & (blkfill - 1);
1871                     i >= 0 && i < blkfill; i += inc) {
1872                         if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1873                                 break;
1874                         *offset += (1ULL << span) * inc;
1875                 }
1876                 if (i < 0 || i == blkfill)
1877                         error = SET_ERROR(ESRCH);
1878         } else {
1879                 blkptr_t *bp = data;
1880                 uint64_t start = *offset;
1881                 span = (lvl - 1) * epbs + dn->dn_datablkshift;
1882                 minfill = 0;
1883                 maxfill = blkfill << ((lvl - 1) * epbs);
1884 
1885                 if (hole)
1886                         maxfill--;
1887                 else
1888                         minfill++;
1889 
1890                 *offset = *offset >> span;
1891                 for (i = BF64_GET(*offset, 0, epbs);
1892                     i >= 0 && i < epb; i += inc) {
1893                         if (BP_GET_FILL(&bp[i]) >= minfill &&
1894                             BP_GET_FILL(&bp[i]) <= maxfill &&
1895                             (hole || bp[i].blk_birth > txg))
1896                                 break;
1897                         if (inc > 0 || *offset > 0)
1898                                 *offset += inc;
1899                 }
1900                 *offset = *offset << span;
1901                 if (inc < 0) {
1902                         /* traversing backwards; position offset at the end */
1903                         ASSERT3U(*offset, <=, start);
1904                         *offset = MIN(*offset + (1ULL << span) - 1, start);
1905                 } else if (*offset < start) {
1906                         *offset = start;
1907                 }
1908                 if (i < 0 || i >= epb)
1909                         error = SET_ERROR(ESRCH);
1910         }
1911 
1912         if (db)
1913                 dbuf_rele(db, FTAG);
1914 
1915         return (error);
1916 }
1917 
1918 /*
1919  * Find the next hole, data, or sparse region at or after *offset.
1920  * The value 'blkfill' tells us how many items we expect to find
1921  * in an L0 data block; this value is 1 for normal objects,
1922  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1923  * DNODES_PER_BLOCK when searching for sparse regions thereof.
1924  *
1925  * Examples:
1926  *
1927  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1928  *      Finds the next/previous hole/data in a file.
1929  *      Used in dmu_offset_next().
1930  *
1931  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1932  *      Finds the next free/allocated dnode an objset's meta-dnode.
1933  *      Only finds objects that have new contents since txg (ie.
1934  *      bonus buffer changes and content removal are ignored).
1935  *      Used in dmu_object_next().
1936  *
1937  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1938  *      Finds the next L2 meta-dnode bp that's at most 1/4 full.
1939  *      Used in dmu_object_alloc().
1940  */
1941 int
1942 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1943     int minlvl, uint64_t blkfill, uint64_t txg)
1944 {
1945         uint64_t initial_offset = *offset;
1946         int lvl, maxlvl;
1947         int error = 0;
1948 
1949         if (!(flags & DNODE_FIND_HAVELOCK))
1950                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1951 
1952         if (dn->dn_phys->dn_nlevels == 0) {
1953                 error = SET_ERROR(ESRCH);
1954                 goto out;
1955         }
1956 
1957         if (dn->dn_datablkshift == 0) {
1958                 if (*offset < dn->dn_datablksz) {
1959                         if (flags & DNODE_FIND_HOLE)
1960                                 *offset = dn->dn_datablksz;
1961                 } else {
1962                         error = SET_ERROR(ESRCH);
1963                 }
1964                 goto out;
1965         }
1966 
1967         maxlvl = dn->dn_phys->dn_nlevels;
1968 
1969         for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1970                 error = dnode_next_offset_level(dn,
1971                     flags, offset, lvl, blkfill, txg);
1972                 if (error != ESRCH)
1973                         break;
1974         }
1975 
1976         while (error == 0 && --lvl >= minlvl) {
1977                 error = dnode_next_offset_level(dn,
1978                     flags, offset, lvl, blkfill, txg);
1979         }
1980 
1981         /*
1982          * There's always a "virtual hole" at the end of the object, even
1983          * if all BP's which physically exist are non-holes.
1984          */
1985         if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
1986             minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
1987                 error = 0;
1988         }
1989 
1990         if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1991             initial_offset < *offset : initial_offset > *offset))
1992                 error = SET_ERROR(ESRCH);
1993 out:
1994         if (!(flags & DNODE_FIND_HAVELOCK))
1995                 rw_exit(&dn->dn_struct_rwlock);
1996 
1997         return (error);
1998 }