1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2013 Steven Hartland. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2017 Joyent, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* 32 * The objective of this program is to provide a DMU/ZAP/SPA stress test 33 * that runs entirely in userland, is easy to use, and easy to extend. 34 * 35 * The overall design of the ztest program is as follows: 36 * 37 * (1) For each major functional area (e.g. adding vdevs to a pool, 38 * creating and destroying datasets, reading and writing objects, etc) 39 * we have a simple routine to test that functionality. These 40 * individual routines do not have to do anything "stressful". 41 * 42 * (2) We turn these simple functionality tests into a stress test by 43 * running them all in parallel, with as many threads as desired, 44 * and spread across as many datasets, objects, and vdevs as desired. 45 * 46 * (3) While all this is happening, we inject faults into the pool to 47 * verify that self-healing data really works. 48 * 49 * (4) Every time we open a dataset, we change its checksum and compression 50 * functions. Thus even individual objects vary from block to block 51 * in which checksum they use and whether they're compressed. 52 * 53 * (5) To verify that we never lose on-disk consistency after a crash, 54 * we run the entire test in a child of the main process. 55 * At random times, the child self-immolates with a SIGKILL. 56 * This is the software equivalent of pulling the power cord. 57 * The parent then runs the test again, using the existing 58 * storage pool, as many times as desired. If backwards compatibility 59 * testing is enabled ztest will sometimes run the "older" version 60 * of ztest after a SIGKILL. 61 * 62 * (6) To verify that we don't have future leaks or temporal incursions, 63 * many of the functional tests record the transaction group number 64 * as part of their data. When reading old data, they verify that 65 * the transaction group number is less than the current, open txg. 66 * If you add a new test, please do this if applicable. 67 * 68 * When run with no arguments, ztest runs for about five minutes and 69 * produces no output if successful. To get a little bit of information, 70 * specify -V. To get more information, specify -VV, and so on. 71 * 72 * To turn this into an overnight stress test, use -T to specify run time. 73 * 74 * You can ask more more vdevs [-v], datasets [-d], or threads [-t] 75 * to increase the pool capacity, fanout, and overall stress level. 76 * 77 * Use the -k option to set the desired frequency of kills. 78 * 79 * When ztest invokes itself it passes all relevant information through a 80 * temporary file which is mmap-ed in the child process. This allows shared 81 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always 82 * stored at offset 0 of this file and contains information on the size and 83 * number of shared structures in the file. The information stored in this file 84 * must remain backwards compatible with older versions of ztest so that 85 * ztest can invoke them during backwards compatibility testing (-B). 86 */ 87 88 #include <sys/zfs_context.h> 89 #include <sys/spa.h> 90 #include <sys/dmu.h> 91 #include <sys/txg.h> 92 #include <sys/dbuf.h> 93 #include <sys/zap.h> 94 #include <sys/dmu_objset.h> 95 #include <sys/poll.h> 96 #include <sys/stat.h> 97 #include <sys/time.h> 98 #include <sys/wait.h> 99 #include <sys/mman.h> 100 #include <sys/resource.h> 101 #include <sys/zio.h> 102 #include <sys/zil.h> 103 #include <sys/zil_impl.h> 104 #include <sys/vdev_impl.h> 105 #include <sys/vdev_file.h> 106 #include <sys/spa_impl.h> 107 #include <sys/metaslab_impl.h> 108 #include <sys/dsl_prop.h> 109 #include <sys/dsl_dataset.h> 110 #include <sys/dsl_destroy.h> 111 #include <sys/dsl_scan.h> 112 #include <sys/zio_checksum.h> 113 #include <sys/refcount.h> 114 #include <sys/zfeature.h> 115 #include <sys/dsl_userhold.h> 116 #include <sys/abd.h> 117 #include <stdio.h> 118 #include <stdio_ext.h> 119 #include <stdlib.h> 120 #include <unistd.h> 121 #include <signal.h> 122 #include <umem.h> 123 #include <dlfcn.h> 124 #include <ctype.h> 125 #include <math.h> 126 #include <sys/fs/zfs.h> 127 #include <libnvpair.h> 128 #include <libcmdutils.h> 129 130 static int ztest_fd_data = -1; 131 static int ztest_fd_rand = -1; 132 133 typedef struct ztest_shared_hdr { 134 uint64_t zh_hdr_size; 135 uint64_t zh_opts_size; 136 uint64_t zh_size; 137 uint64_t zh_stats_size; 138 uint64_t zh_stats_count; 139 uint64_t zh_ds_size; 140 uint64_t zh_ds_count; 141 } ztest_shared_hdr_t; 142 143 static ztest_shared_hdr_t *ztest_shared_hdr; 144 145 typedef struct ztest_shared_opts { 146 char zo_pool[ZFS_MAX_DATASET_NAME_LEN]; 147 char zo_dir[ZFS_MAX_DATASET_NAME_LEN]; 148 char zo_alt_ztest[MAXNAMELEN]; 149 char zo_alt_libpath[MAXNAMELEN]; 150 uint64_t zo_vdevs; 151 uint64_t zo_vdevtime; 152 size_t zo_vdev_size; 153 int zo_ashift; 154 int zo_mirrors; 155 int zo_raidz; 156 int zo_raidz_parity; 157 int zo_datasets; 158 int zo_threads; 159 uint64_t zo_passtime; 160 uint64_t zo_killrate; 161 int zo_verbose; 162 int zo_init; 163 uint64_t zo_time; 164 uint64_t zo_maxloops; 165 uint64_t zo_metaslab_gang_bang; 166 } ztest_shared_opts_t; 167 168 static const ztest_shared_opts_t ztest_opts_defaults = { 169 .zo_pool = { 'z', 't', 'e', 's', 't', '\0' }, 170 .zo_dir = { '/', 't', 'm', 'p', '\0' }, 171 .zo_alt_ztest = { '\0' }, 172 .zo_alt_libpath = { '\0' }, 173 .zo_vdevs = 5, 174 .zo_ashift = SPA_MINBLOCKSHIFT, 175 .zo_mirrors = 2, 176 .zo_raidz = 4, 177 .zo_raidz_parity = 1, 178 .zo_vdev_size = SPA_MINDEVSIZE * 4, /* 256m default size */ 179 .zo_datasets = 7, 180 .zo_threads = 23, 181 .zo_passtime = 60, /* 60 seconds */ 182 .zo_killrate = 70, /* 70% kill rate */ 183 .zo_verbose = 0, 184 .zo_init = 1, 185 .zo_time = 300, /* 5 minutes */ 186 .zo_maxloops = 50, /* max loops during spa_freeze() */ 187 .zo_metaslab_gang_bang = 32 << 10 188 }; 189 190 extern uint64_t metaslab_gang_bang; 191 extern uint64_t metaslab_df_alloc_threshold; 192 extern uint64_t zfs_deadman_synctime_ms; 193 extern int metaslab_preload_limit; 194 extern boolean_t zfs_compressed_arc_enabled; 195 extern boolean_t zfs_abd_scatter_enabled; 196 197 static ztest_shared_opts_t *ztest_shared_opts; 198 static ztest_shared_opts_t ztest_opts; 199 200 typedef struct ztest_shared_ds { 201 uint64_t zd_seq; 202 } ztest_shared_ds_t; 203 204 static ztest_shared_ds_t *ztest_shared_ds; 205 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d]) 206 207 #define BT_MAGIC 0x123456789abcdefULL 208 #define MAXFAULTS() \ 209 (MAX(zs->zs_mirrors, 1) * (ztest_opts.zo_raidz_parity + 1) - 1) 210 211 enum ztest_io_type { 212 ZTEST_IO_WRITE_TAG, 213 ZTEST_IO_WRITE_PATTERN, 214 ZTEST_IO_WRITE_ZEROES, 215 ZTEST_IO_TRUNCATE, 216 ZTEST_IO_SETATTR, 217 ZTEST_IO_REWRITE, 218 ZTEST_IO_TYPES 219 }; 220 221 typedef struct ztest_block_tag { 222 uint64_t bt_magic; 223 uint64_t bt_objset; 224 uint64_t bt_object; 225 uint64_t bt_offset; 226 uint64_t bt_gen; 227 uint64_t bt_txg; 228 uint64_t bt_crtxg; 229 } ztest_block_tag_t; 230 231 typedef struct bufwad { 232 uint64_t bw_index; 233 uint64_t bw_txg; 234 uint64_t bw_data; 235 } bufwad_t; 236 237 /* 238 * XXX -- fix zfs range locks to be generic so we can use them here. 239 */ 240 typedef enum { 241 RL_READER, 242 RL_WRITER, 243 RL_APPEND 244 } rl_type_t; 245 246 typedef struct rll { 247 void *rll_writer; 248 int rll_readers; 249 kmutex_t rll_lock; 250 kcondvar_t rll_cv; 251 } rll_t; 252 253 typedef struct rl { 254 uint64_t rl_object; 255 uint64_t rl_offset; 256 uint64_t rl_size; 257 rll_t *rl_lock; 258 } rl_t; 259 260 #define ZTEST_RANGE_LOCKS 64 261 #define ZTEST_OBJECT_LOCKS 64 262 263 /* 264 * Object descriptor. Used as a template for object lookup/create/remove. 265 */ 266 typedef struct ztest_od { 267 uint64_t od_dir; 268 uint64_t od_object; 269 dmu_object_type_t od_type; 270 dmu_object_type_t od_crtype; 271 uint64_t od_blocksize; 272 uint64_t od_crblocksize; 273 uint64_t od_gen; 274 uint64_t od_crgen; 275 char od_name[ZFS_MAX_DATASET_NAME_LEN]; 276 } ztest_od_t; 277 278 /* 279 * Per-dataset state. 280 */ 281 typedef struct ztest_ds { 282 ztest_shared_ds_t *zd_shared; 283 objset_t *zd_os; 284 krwlock_t zd_zilog_lock; 285 zilog_t *zd_zilog; 286 ztest_od_t *zd_od; /* debugging aid */ 287 char zd_name[ZFS_MAX_DATASET_NAME_LEN]; 288 kmutex_t zd_dirobj_lock; 289 rll_t zd_object_lock[ZTEST_OBJECT_LOCKS]; 290 rll_t zd_range_lock[ZTEST_RANGE_LOCKS]; 291 } ztest_ds_t; 292 293 /* 294 * Per-iteration state. 295 */ 296 typedef void ztest_func_t(ztest_ds_t *zd, uint64_t id); 297 298 typedef struct ztest_info { 299 ztest_func_t *zi_func; /* test function */ 300 uint64_t zi_iters; /* iterations per execution */ 301 uint64_t *zi_interval; /* execute every <interval> seconds */ 302 } ztest_info_t; 303 304 typedef struct ztest_shared_callstate { 305 uint64_t zc_count; /* per-pass count */ 306 uint64_t zc_time; /* per-pass time */ 307 uint64_t zc_next; /* next time to call this function */ 308 } ztest_shared_callstate_t; 309 310 static ztest_shared_callstate_t *ztest_shared_callstate; 311 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c]) 312 313 /* 314 * Note: these aren't static because we want dladdr() to work. 315 */ 316 ztest_func_t ztest_dmu_read_write; 317 ztest_func_t ztest_dmu_write_parallel; 318 ztest_func_t ztest_dmu_object_alloc_free; 319 ztest_func_t ztest_dmu_commit_callbacks; 320 ztest_func_t ztest_zap; 321 ztest_func_t ztest_zap_parallel; 322 ztest_func_t ztest_zil_commit; 323 ztest_func_t ztest_zil_remount; 324 ztest_func_t ztest_dmu_read_write_zcopy; 325 ztest_func_t ztest_dmu_objset_create_destroy; 326 ztest_func_t ztest_dmu_prealloc; 327 ztest_func_t ztest_fzap; 328 ztest_func_t ztest_dmu_snapshot_create_destroy; 329 ztest_func_t ztest_dsl_prop_get_set; 330 ztest_func_t ztest_spa_prop_get_set; 331 ztest_func_t ztest_spa_create_destroy; 332 ztest_func_t ztest_fault_inject; 333 ztest_func_t ztest_ddt_repair; 334 ztest_func_t ztest_dmu_snapshot_hold; 335 ztest_func_t ztest_spa_rename; 336 ztest_func_t ztest_scrub; 337 ztest_func_t ztest_dsl_dataset_promote_busy; 338 ztest_func_t ztest_vdev_attach_detach; 339 ztest_func_t ztest_vdev_LUN_growth; 340 ztest_func_t ztest_vdev_add_remove; 341 ztest_func_t ztest_vdev_aux_add_remove; 342 ztest_func_t ztest_split_pool; 343 ztest_func_t ztest_reguid; 344 ztest_func_t ztest_spa_upgrade; 345 346 uint64_t zopt_always = 0ULL * NANOSEC; /* all the time */ 347 uint64_t zopt_incessant = 1ULL * NANOSEC / 10; /* every 1/10 second */ 348 uint64_t zopt_often = 1ULL * NANOSEC; /* every second */ 349 uint64_t zopt_sometimes = 10ULL * NANOSEC; /* every 10 seconds */ 350 uint64_t zopt_rarely = 60ULL * NANOSEC; /* every 60 seconds */ 351 352 ztest_info_t ztest_info[] = { 353 { ztest_dmu_read_write, 1, &zopt_always }, 354 { ztest_dmu_write_parallel, 10, &zopt_always }, 355 { ztest_dmu_object_alloc_free, 1, &zopt_always }, 356 { ztest_dmu_commit_callbacks, 1, &zopt_always }, 357 { ztest_zap, 30, &zopt_always }, 358 { ztest_zap_parallel, 100, &zopt_always }, 359 { ztest_split_pool, 1, &zopt_always }, 360 { ztest_zil_commit, 1, &zopt_incessant }, 361 { ztest_zil_remount, 1, &zopt_sometimes }, 362 { ztest_dmu_read_write_zcopy, 1, &zopt_often }, 363 { ztest_dmu_objset_create_destroy, 1, &zopt_often }, 364 { ztest_dsl_prop_get_set, 1, &zopt_often }, 365 { ztest_spa_prop_get_set, 1, &zopt_sometimes }, 366 #if 0 367 { ztest_dmu_prealloc, 1, &zopt_sometimes }, 368 #endif 369 { ztest_fzap, 1, &zopt_sometimes }, 370 { ztest_dmu_snapshot_create_destroy, 1, &zopt_sometimes }, 371 { ztest_spa_create_destroy, 1, &zopt_sometimes }, 372 { ztest_fault_inject, 1, &zopt_sometimes }, 373 { ztest_ddt_repair, 1, &zopt_sometimes }, 374 { ztest_dmu_snapshot_hold, 1, &zopt_sometimes }, 375 { ztest_reguid, 1, &zopt_rarely }, 376 { ztest_spa_rename, 1, &zopt_rarely }, 377 { ztest_scrub, 1, &zopt_rarely }, 378 { ztest_spa_upgrade, 1, &zopt_rarely }, 379 { ztest_dsl_dataset_promote_busy, 1, &zopt_rarely }, 380 { ztest_vdev_attach_detach, 1, &zopt_sometimes }, 381 { ztest_vdev_LUN_growth, 1, &zopt_rarely }, 382 { ztest_vdev_add_remove, 1, 383 &ztest_opts.zo_vdevtime }, 384 { ztest_vdev_aux_add_remove, 1, 385 &ztest_opts.zo_vdevtime }, 386 }; 387 388 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t)) 389 390 /* 391 * The following struct is used to hold a list of uncalled commit callbacks. 392 * The callbacks are ordered by txg number. 393 */ 394 typedef struct ztest_cb_list { 395 kmutex_t zcl_callbacks_lock; 396 list_t zcl_callbacks; 397 } ztest_cb_list_t; 398 399 /* 400 * Stuff we need to share writably between parent and child. 401 */ 402 typedef struct ztest_shared { 403 boolean_t zs_do_init; 404 hrtime_t zs_proc_start; 405 hrtime_t zs_proc_stop; 406 hrtime_t zs_thread_start; 407 hrtime_t zs_thread_stop; 408 hrtime_t zs_thread_kill; 409 uint64_t zs_enospc_count; 410 uint64_t zs_vdev_next_leaf; 411 uint64_t zs_vdev_aux; 412 uint64_t zs_alloc; 413 uint64_t zs_space; 414 uint64_t zs_splits; 415 uint64_t zs_mirrors; 416 uint64_t zs_metaslab_sz; 417 uint64_t zs_metaslab_df_alloc_threshold; 418 uint64_t zs_guid; 419 } ztest_shared_t; 420 421 #define ID_PARALLEL -1ULL 422 423 static char ztest_dev_template[] = "%s/%s.%llua"; 424 static char ztest_aux_template[] = "%s/%s.%s.%llu"; 425 ztest_shared_t *ztest_shared; 426 427 static spa_t *ztest_spa = NULL; 428 static ztest_ds_t *ztest_ds; 429 430 static kmutex_t ztest_vdev_lock; 431 432 /* 433 * The ztest_name_lock protects the pool and dataset namespace used by 434 * the individual tests. To modify the namespace, consumers must grab 435 * this lock as writer. Grabbing the lock as reader will ensure that the 436 * namespace does not change while the lock is held. 437 */ 438 static krwlock_t ztest_name_lock; 439 440 static boolean_t ztest_dump_core = B_TRUE; 441 static boolean_t ztest_exiting; 442 443 /* Global commit callback list */ 444 static ztest_cb_list_t zcl; 445 446 enum ztest_object { 447 ZTEST_META_DNODE = 0, 448 ZTEST_DIROBJ, 449 ZTEST_OBJECTS 450 }; 451 452 static void usage(boolean_t) __NORETURN; 453 454 /* 455 * These libumem hooks provide a reasonable set of defaults for the allocator's 456 * debugging facilities. 457 */ 458 const char * 459 _umem_debug_init() 460 { 461 return ("default,verbose"); /* $UMEM_DEBUG setting */ 462 } 463 464 const char * 465 _umem_logging_init(void) 466 { 467 return ("fail,contents"); /* $UMEM_LOGGING setting */ 468 } 469 470 #define FATAL_MSG_SZ 1024 471 472 char *fatal_msg; 473 474 static void 475 fatal(int do_perror, char *message, ...) 476 { 477 va_list args; 478 int save_errno = errno; 479 char buf[FATAL_MSG_SZ]; 480 481 (void) fflush(stdout); 482 483 va_start(args, message); 484 (void) sprintf(buf, "ztest: "); 485 /* LINTED */ 486 (void) vsprintf(buf + strlen(buf), message, args); 487 va_end(args); 488 if (do_perror) { 489 (void) snprintf(buf + strlen(buf), FATAL_MSG_SZ - strlen(buf), 490 ": %s", strerror(save_errno)); 491 } 492 (void) fprintf(stderr, "%s\n", buf); 493 fatal_msg = buf; /* to ease debugging */ 494 if (ztest_dump_core) 495 abort(); 496 exit(3); 497 } 498 499 static int 500 str2shift(const char *buf) 501 { 502 const char *ends = "BKMGTPEZ"; 503 int i; 504 505 if (buf[0] == '\0') 506 return (0); 507 for (i = 0; i < strlen(ends); i++) { 508 if (toupper(buf[0]) == ends[i]) 509 break; 510 } 511 if (i == strlen(ends)) { 512 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", 513 buf); 514 usage(B_FALSE); 515 } 516 if (buf[1] == '\0' || (toupper(buf[1]) == 'B' && buf[2] == '\0')) { 517 return (10*i); 518 } 519 (void) fprintf(stderr, "ztest: invalid bytes suffix: %s\n", buf); 520 usage(B_FALSE); 521 /* NOTREACHED */ 522 } 523 524 static uint64_t 525 nicenumtoull(const char *buf) 526 { 527 char *end; 528 uint64_t val; 529 530 val = strtoull(buf, &end, 0); 531 if (end == buf) { 532 (void) fprintf(stderr, "ztest: bad numeric value: %s\n", buf); 533 usage(B_FALSE); 534 } else if (end[0] == '.') { 535 double fval = strtod(buf, &end); 536 fval *= pow(2, str2shift(end)); 537 if (fval > UINT64_MAX) { 538 (void) fprintf(stderr, "ztest: value too large: %s\n", 539 buf); 540 usage(B_FALSE); 541 } 542 val = (uint64_t)fval; 543 } else { 544 int shift = str2shift(end); 545 if (shift >= 64 || (val << shift) >> shift != val) { 546 (void) fprintf(stderr, "ztest: value too large: %s\n", 547 buf); 548 usage(B_FALSE); 549 } 550 val <<= shift; 551 } 552 return (val); 553 } 554 555 static void 556 usage(boolean_t requested) 557 { 558 const ztest_shared_opts_t *zo = &ztest_opts_defaults; 559 560 char nice_vdev_size[NN_NUMBUF_SZ]; 561 char nice_gang_bang[NN_NUMBUF_SZ]; 562 FILE *fp = requested ? stdout : stderr; 563 564 nicenum(zo->zo_vdev_size, nice_vdev_size, sizeof (nice_vdev_size)); 565 nicenum(zo->zo_metaslab_gang_bang, nice_gang_bang, 566 sizeof (nice_gang_bang)); 567 568 (void) fprintf(fp, "Usage: %s\n" 569 "\t[-v vdevs (default: %llu)]\n" 570 "\t[-s size_of_each_vdev (default: %s)]\n" 571 "\t[-a alignment_shift (default: %d)] use 0 for random\n" 572 "\t[-m mirror_copies (default: %d)]\n" 573 "\t[-r raidz_disks (default: %d)]\n" 574 "\t[-R raidz_parity (default: %d)]\n" 575 "\t[-d datasets (default: %d)]\n" 576 "\t[-t threads (default: %d)]\n" 577 "\t[-g gang_block_threshold (default: %s)]\n" 578 "\t[-i init_count (default: %d)] initialize pool i times\n" 579 "\t[-k kill_percentage (default: %llu%%)]\n" 580 "\t[-p pool_name (default: %s)]\n" 581 "\t[-f dir (default: %s)] file directory for vdev files\n" 582 "\t[-V] verbose (use multiple times for ever more blather)\n" 583 "\t[-E] use existing pool instead of creating new one\n" 584 "\t[-T time (default: %llu sec)] total run time\n" 585 "\t[-F freezeloops (default: %llu)] max loops in spa_freeze()\n" 586 "\t[-P passtime (default: %llu sec)] time per pass\n" 587 "\t[-B alt_ztest (default: <none>)] alternate ztest path\n" 588 "\t[-o variable=value] ... set global variable to an unsigned\n" 589 "\t 32-bit integer value\n" 590 "\t[-h] (print help)\n" 591 "", 592 zo->zo_pool, 593 (u_longlong_t)zo->zo_vdevs, /* -v */ 594 nice_vdev_size, /* -s */ 595 zo->zo_ashift, /* -a */ 596 zo->zo_mirrors, /* -m */ 597 zo->zo_raidz, /* -r */ 598 zo->zo_raidz_parity, /* -R */ 599 zo->zo_datasets, /* -d */ 600 zo->zo_threads, /* -t */ 601 nice_gang_bang, /* -g */ 602 zo->zo_init, /* -i */ 603 (u_longlong_t)zo->zo_killrate, /* -k */ 604 zo->zo_pool, /* -p */ 605 zo->zo_dir, /* -f */ 606 (u_longlong_t)zo->zo_time, /* -T */ 607 (u_longlong_t)zo->zo_maxloops, /* -F */ 608 (u_longlong_t)zo->zo_passtime); 609 exit(requested ? 0 : 1); 610 } 611 612 static void 613 process_options(int argc, char **argv) 614 { 615 char *path; 616 ztest_shared_opts_t *zo = &ztest_opts; 617 618 int opt; 619 uint64_t value; 620 char altdir[MAXNAMELEN] = { 0 }; 621 622 bcopy(&ztest_opts_defaults, zo, sizeof (*zo)); 623 624 while ((opt = getopt(argc, argv, 625 "v:s:a:m:r:R:d:t:g:i:k:p:f:VET:P:hF:B:o:")) != EOF) { 626 value = 0; 627 switch (opt) { 628 case 'v': 629 case 's': 630 case 'a': 631 case 'm': 632 case 'r': 633 case 'R': 634 case 'd': 635 case 't': 636 case 'g': 637 case 'i': 638 case 'k': 639 case 'T': 640 case 'P': 641 case 'F': 642 value = nicenumtoull(optarg); 643 } 644 switch (opt) { 645 case 'v': 646 zo->zo_vdevs = value; 647 break; 648 case 's': 649 zo->zo_vdev_size = MAX(SPA_MINDEVSIZE, value); 650 break; 651 case 'a': 652 zo->zo_ashift = value; 653 break; 654 case 'm': 655 zo->zo_mirrors = value; 656 break; 657 case 'r': 658 zo->zo_raidz = MAX(1, value); 659 break; 660 case 'R': 661 zo->zo_raidz_parity = MIN(MAX(value, 1), 3); 662 break; 663 case 'd': 664 zo->zo_datasets = MAX(1, value); 665 break; 666 case 't': 667 zo->zo_threads = MAX(1, value); 668 break; 669 case 'g': 670 zo->zo_metaslab_gang_bang = MAX(SPA_MINBLOCKSIZE << 1, 671 value); 672 break; 673 case 'i': 674 zo->zo_init = value; 675 break; 676 case 'k': 677 zo->zo_killrate = value; 678 break; 679 case 'p': 680 (void) strlcpy(zo->zo_pool, optarg, 681 sizeof (zo->zo_pool)); 682 break; 683 case 'f': 684 path = realpath(optarg, NULL); 685 if (path == NULL) { 686 (void) fprintf(stderr, "error: %s: %s\n", 687 optarg, strerror(errno)); 688 usage(B_FALSE); 689 } else { 690 (void) strlcpy(zo->zo_dir, path, 691 sizeof (zo->zo_dir)); 692 } 693 break; 694 case 'V': 695 zo->zo_verbose++; 696 break; 697 case 'E': 698 zo->zo_init = 0; 699 break; 700 case 'T': 701 zo->zo_time = value; 702 break; 703 case 'P': 704 zo->zo_passtime = MAX(1, value); 705 break; 706 case 'F': 707 zo->zo_maxloops = MAX(1, value); 708 break; 709 case 'B': 710 (void) strlcpy(altdir, optarg, sizeof (altdir)); 711 break; 712 case 'o': 713 if (set_global_var(optarg) != 0) 714 usage(B_FALSE); 715 break; 716 case 'h': 717 usage(B_TRUE); 718 break; 719 case '?': 720 default: 721 usage(B_FALSE); 722 break; 723 } 724 } 725 726 zo->zo_raidz_parity = MIN(zo->zo_raidz_parity, zo->zo_raidz - 1); 727 728 zo->zo_vdevtime = 729 (zo->zo_vdevs > 0 ? zo->zo_time * NANOSEC / zo->zo_vdevs : 730 UINT64_MAX >> 2); 731 732 if (strlen(altdir) > 0) { 733 char *cmd; 734 char *realaltdir; 735 char *bin; 736 char *ztest; 737 char *isa; 738 int isalen; 739 740 cmd = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 741 realaltdir = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 742 743 VERIFY(NULL != realpath(getexecname(), cmd)); 744 if (0 != access(altdir, F_OK)) { 745 ztest_dump_core = B_FALSE; 746 fatal(B_TRUE, "invalid alternate ztest path: %s", 747 altdir); 748 } 749 VERIFY(NULL != realpath(altdir, realaltdir)); 750 751 /* 752 * 'cmd' should be of the form "<anything>/usr/bin/<isa>/ztest". 753 * We want to extract <isa> to determine if we should use 754 * 32 or 64 bit binaries. 755 */ 756 bin = strstr(cmd, "/usr/bin/"); 757 ztest = strstr(bin, "/ztest"); 758 isa = bin + 9; 759 isalen = ztest - isa; 760 (void) snprintf(zo->zo_alt_ztest, sizeof (zo->zo_alt_ztest), 761 "%s/usr/bin/%.*s/ztest", realaltdir, isalen, isa); 762 (void) snprintf(zo->zo_alt_libpath, sizeof (zo->zo_alt_libpath), 763 "%s/usr/lib/%.*s", realaltdir, isalen, isa); 764 765 if (0 != access(zo->zo_alt_ztest, X_OK)) { 766 ztest_dump_core = B_FALSE; 767 fatal(B_TRUE, "invalid alternate ztest: %s", 768 zo->zo_alt_ztest); 769 } else if (0 != access(zo->zo_alt_libpath, X_OK)) { 770 ztest_dump_core = B_FALSE; 771 fatal(B_TRUE, "invalid alternate lib directory %s", 772 zo->zo_alt_libpath); 773 } 774 775 umem_free(cmd, MAXPATHLEN); 776 umem_free(realaltdir, MAXPATHLEN); 777 } 778 } 779 780 static void 781 ztest_kill(ztest_shared_t *zs) 782 { 783 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(ztest_spa)); 784 zs->zs_space = metaslab_class_get_space(spa_normal_class(ztest_spa)); 785 786 /* 787 * Before we kill off ztest, make sure that the config is updated. 788 * See comment above spa_config_sync(). 789 */ 790 mutex_enter(&spa_namespace_lock); 791 spa_config_sync(ztest_spa, B_FALSE, B_FALSE); 792 mutex_exit(&spa_namespace_lock); 793 794 zfs_dbgmsg_print(FTAG); 795 (void) kill(getpid(), SIGKILL); 796 } 797 798 static uint64_t 799 ztest_random(uint64_t range) 800 { 801 uint64_t r; 802 803 ASSERT3S(ztest_fd_rand, >=, 0); 804 805 if (range == 0) 806 return (0); 807 808 if (read(ztest_fd_rand, &r, sizeof (r)) != sizeof (r)) 809 fatal(1, "short read from /dev/urandom"); 810 811 return (r % range); 812 } 813 814 /* ARGSUSED */ 815 static void 816 ztest_record_enospc(const char *s) 817 { 818 ztest_shared->zs_enospc_count++; 819 } 820 821 static uint64_t 822 ztest_get_ashift(void) 823 { 824 if (ztest_opts.zo_ashift == 0) 825 return (SPA_MINBLOCKSHIFT + ztest_random(5)); 826 return (ztest_opts.zo_ashift); 827 } 828 829 static nvlist_t * 830 make_vdev_file(char *path, char *aux, char *pool, size_t size, uint64_t ashift) 831 { 832 char pathbuf[MAXPATHLEN]; 833 uint64_t vdev; 834 nvlist_t *file; 835 836 if (ashift == 0) 837 ashift = ztest_get_ashift(); 838 839 if (path == NULL) { 840 path = pathbuf; 841 842 if (aux != NULL) { 843 vdev = ztest_shared->zs_vdev_aux; 844 (void) snprintf(path, sizeof (pathbuf), 845 ztest_aux_template, ztest_opts.zo_dir, 846 pool == NULL ? ztest_opts.zo_pool : pool, 847 aux, vdev); 848 } else { 849 vdev = ztest_shared->zs_vdev_next_leaf++; 850 (void) snprintf(path, sizeof (pathbuf), 851 ztest_dev_template, ztest_opts.zo_dir, 852 pool == NULL ? ztest_opts.zo_pool : pool, vdev); 853 } 854 } 855 856 if (size != 0) { 857 int fd = open(path, O_RDWR | O_CREAT | O_TRUNC, 0666); 858 if (fd == -1) 859 fatal(1, "can't open %s", path); 860 if (ftruncate(fd, size) != 0) 861 fatal(1, "can't ftruncate %s", path); 862 (void) close(fd); 863 } 864 865 VERIFY(nvlist_alloc(&file, NV_UNIQUE_NAME, 0) == 0); 866 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_TYPE, VDEV_TYPE_FILE) == 0); 867 VERIFY(nvlist_add_string(file, ZPOOL_CONFIG_PATH, path) == 0); 868 VERIFY(nvlist_add_uint64(file, ZPOOL_CONFIG_ASHIFT, ashift) == 0); 869 870 return (file); 871 } 872 873 static nvlist_t * 874 make_vdev_raidz(char *path, char *aux, char *pool, size_t size, 875 uint64_t ashift, int r) 876 { 877 nvlist_t *raidz, **child; 878 int c; 879 880 if (r < 2) 881 return (make_vdev_file(path, aux, pool, size, ashift)); 882 child = umem_alloc(r * sizeof (nvlist_t *), UMEM_NOFAIL); 883 884 for (c = 0; c < r; c++) 885 child[c] = make_vdev_file(path, aux, pool, size, ashift); 886 887 VERIFY(nvlist_alloc(&raidz, NV_UNIQUE_NAME, 0) == 0); 888 VERIFY(nvlist_add_string(raidz, ZPOOL_CONFIG_TYPE, 889 VDEV_TYPE_RAIDZ) == 0); 890 VERIFY(nvlist_add_uint64(raidz, ZPOOL_CONFIG_NPARITY, 891 ztest_opts.zo_raidz_parity) == 0); 892 VERIFY(nvlist_add_nvlist_array(raidz, ZPOOL_CONFIG_CHILDREN, 893 child, r) == 0); 894 895 for (c = 0; c < r; c++) 896 nvlist_free(child[c]); 897 898 umem_free(child, r * sizeof (nvlist_t *)); 899 900 return (raidz); 901 } 902 903 static nvlist_t * 904 make_vdev_mirror(char *path, char *aux, char *pool, size_t size, 905 uint64_t ashift, int r, int m) 906 { 907 nvlist_t *mirror, **child; 908 int c; 909 910 if (m < 1) 911 return (make_vdev_raidz(path, aux, pool, size, ashift, r)); 912 913 child = umem_alloc(m * sizeof (nvlist_t *), UMEM_NOFAIL); 914 915 for (c = 0; c < m; c++) 916 child[c] = make_vdev_raidz(path, aux, pool, size, ashift, r); 917 918 VERIFY(nvlist_alloc(&mirror, NV_UNIQUE_NAME, 0) == 0); 919 VERIFY(nvlist_add_string(mirror, ZPOOL_CONFIG_TYPE, 920 VDEV_TYPE_MIRROR) == 0); 921 VERIFY(nvlist_add_nvlist_array(mirror, ZPOOL_CONFIG_CHILDREN, 922 child, m) == 0); 923 924 for (c = 0; c < m; c++) 925 nvlist_free(child[c]); 926 927 umem_free(child, m * sizeof (nvlist_t *)); 928 929 return (mirror); 930 } 931 932 static nvlist_t * 933 make_vdev_root(char *path, char *aux, char *pool, size_t size, uint64_t ashift, 934 int log, int r, int m, int t) 935 { 936 nvlist_t *root, **child; 937 int c; 938 939 ASSERT(t > 0); 940 941 child = umem_alloc(t * sizeof (nvlist_t *), UMEM_NOFAIL); 942 943 for (c = 0; c < t; c++) { 944 child[c] = make_vdev_mirror(path, aux, pool, size, ashift, 945 r, m); 946 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_IS_LOG, 947 log) == 0); 948 } 949 950 VERIFY(nvlist_alloc(&root, NV_UNIQUE_NAME, 0) == 0); 951 VERIFY(nvlist_add_string(root, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) == 0); 952 VERIFY(nvlist_add_nvlist_array(root, aux ? aux : ZPOOL_CONFIG_CHILDREN, 953 child, t) == 0); 954 955 for (c = 0; c < t; c++) 956 nvlist_free(child[c]); 957 958 umem_free(child, t * sizeof (nvlist_t *)); 959 960 return (root); 961 } 962 963 /* 964 * Find a random spa version. Returns back a random spa version in the 965 * range [initial_version, SPA_VERSION_FEATURES]. 966 */ 967 static uint64_t 968 ztest_random_spa_version(uint64_t initial_version) 969 { 970 uint64_t version = initial_version; 971 972 if (version <= SPA_VERSION_BEFORE_FEATURES) { 973 version = version + 974 ztest_random(SPA_VERSION_BEFORE_FEATURES - version + 1); 975 } 976 977 if (version > SPA_VERSION_BEFORE_FEATURES) 978 version = SPA_VERSION_FEATURES; 979 980 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 981 return (version); 982 } 983 984 static int 985 ztest_random_blocksize(void) 986 { 987 uint64_t block_shift; 988 /* 989 * Choose a block size >= the ashift. 990 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks. 991 */ 992 int maxbs = SPA_OLD_MAXBLOCKSHIFT; 993 if (spa_maxblocksize(ztest_spa) == SPA_MAXBLOCKSIZE) 994 maxbs = 20; 995 block_shift = ztest_random(maxbs - ztest_spa->spa_max_ashift + 1); 996 return (1 << (SPA_MINBLOCKSHIFT + block_shift)); 997 } 998 999 static int 1000 ztest_random_ibshift(void) 1001 { 1002 return (DN_MIN_INDBLKSHIFT + 1003 ztest_random(DN_MAX_INDBLKSHIFT - DN_MIN_INDBLKSHIFT + 1)); 1004 } 1005 1006 static uint64_t 1007 ztest_random_vdev_top(spa_t *spa, boolean_t log_ok) 1008 { 1009 uint64_t top; 1010 vdev_t *rvd = spa->spa_root_vdev; 1011 vdev_t *tvd; 1012 1013 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1014 1015 do { 1016 top = ztest_random(rvd->vdev_children); 1017 tvd = rvd->vdev_child[top]; 1018 } while (tvd->vdev_ishole || (tvd->vdev_islog && !log_ok) || 1019 tvd->vdev_mg == NULL || tvd->vdev_mg->mg_class == NULL); 1020 1021 return (top); 1022 } 1023 1024 static uint64_t 1025 ztest_random_dsl_prop(zfs_prop_t prop) 1026 { 1027 uint64_t value; 1028 1029 do { 1030 value = zfs_prop_random_value(prop, ztest_random(-1ULL)); 1031 } while (prop == ZFS_PROP_CHECKSUM && value == ZIO_CHECKSUM_OFF); 1032 1033 return (value); 1034 } 1035 1036 static int 1037 ztest_dsl_prop_set_uint64(char *osname, zfs_prop_t prop, uint64_t value, 1038 boolean_t inherit) 1039 { 1040 const char *propname = zfs_prop_to_name(prop); 1041 const char *valname; 1042 char setpoint[MAXPATHLEN]; 1043 uint64_t curval; 1044 int error; 1045 1046 error = dsl_prop_set_int(osname, propname, 1047 (inherit ? ZPROP_SRC_NONE : ZPROP_SRC_LOCAL), value); 1048 1049 if (error == ENOSPC) { 1050 ztest_record_enospc(FTAG); 1051 return (error); 1052 } 1053 ASSERT0(error); 1054 1055 VERIFY0(dsl_prop_get_integer(osname, propname, &curval, setpoint)); 1056 1057 if (ztest_opts.zo_verbose >= 6) { 1058 VERIFY(zfs_prop_index_to_string(prop, curval, &valname) == 0); 1059 (void) printf("%s %s = %s at '%s'\n", 1060 osname, propname, valname, setpoint); 1061 } 1062 1063 return (error); 1064 } 1065 1066 static int 1067 ztest_spa_prop_set_uint64(zpool_prop_t prop, uint64_t value) 1068 { 1069 spa_t *spa = ztest_spa; 1070 nvlist_t *props = NULL; 1071 int error; 1072 1073 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 1074 VERIFY(nvlist_add_uint64(props, zpool_prop_to_name(prop), value) == 0); 1075 1076 error = spa_prop_set(spa, props); 1077 1078 nvlist_free(props); 1079 1080 if (error == ENOSPC) { 1081 ztest_record_enospc(FTAG); 1082 return (error); 1083 } 1084 ASSERT0(error); 1085 1086 return (error); 1087 } 1088 1089 static void 1090 ztest_rll_init(rll_t *rll) 1091 { 1092 rll->rll_writer = NULL; 1093 rll->rll_readers = 0; 1094 mutex_init(&rll->rll_lock, NULL, USYNC_THREAD, NULL); 1095 cv_init(&rll->rll_cv, NULL, USYNC_THREAD, NULL); 1096 } 1097 1098 static void 1099 ztest_rll_destroy(rll_t *rll) 1100 { 1101 ASSERT(rll->rll_writer == NULL); 1102 ASSERT(rll->rll_readers == 0); 1103 mutex_destroy(&rll->rll_lock); 1104 cv_destroy(&rll->rll_cv); 1105 } 1106 1107 static void 1108 ztest_rll_lock(rll_t *rll, rl_type_t type) 1109 { 1110 mutex_enter(&rll->rll_lock); 1111 1112 if (type == RL_READER) { 1113 while (rll->rll_writer != NULL) 1114 cv_wait(&rll->rll_cv, &rll->rll_lock); 1115 rll->rll_readers++; 1116 } else { 1117 while (rll->rll_writer != NULL || rll->rll_readers) 1118 cv_wait(&rll->rll_cv, &rll->rll_lock); 1119 rll->rll_writer = curthread; 1120 } 1121 1122 mutex_exit(&rll->rll_lock); 1123 } 1124 1125 static void 1126 ztest_rll_unlock(rll_t *rll) 1127 { 1128 mutex_enter(&rll->rll_lock); 1129 1130 if (rll->rll_writer) { 1131 ASSERT(rll->rll_readers == 0); 1132 rll->rll_writer = NULL; 1133 } else { 1134 ASSERT(rll->rll_readers != 0); 1135 ASSERT(rll->rll_writer == NULL); 1136 rll->rll_readers--; 1137 } 1138 1139 if (rll->rll_writer == NULL && rll->rll_readers == 0) 1140 cv_broadcast(&rll->rll_cv); 1141 1142 mutex_exit(&rll->rll_lock); 1143 } 1144 1145 static void 1146 ztest_object_lock(ztest_ds_t *zd, uint64_t object, rl_type_t type) 1147 { 1148 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1149 1150 ztest_rll_lock(rll, type); 1151 } 1152 1153 static void 1154 ztest_object_unlock(ztest_ds_t *zd, uint64_t object) 1155 { 1156 rll_t *rll = &zd->zd_object_lock[object & (ZTEST_OBJECT_LOCKS - 1)]; 1157 1158 ztest_rll_unlock(rll); 1159 } 1160 1161 static rl_t * 1162 ztest_range_lock(ztest_ds_t *zd, uint64_t object, uint64_t offset, 1163 uint64_t size, rl_type_t type) 1164 { 1165 uint64_t hash = object ^ (offset % (ZTEST_RANGE_LOCKS + 1)); 1166 rll_t *rll = &zd->zd_range_lock[hash & (ZTEST_RANGE_LOCKS - 1)]; 1167 rl_t *rl; 1168 1169 rl = umem_alloc(sizeof (*rl), UMEM_NOFAIL); 1170 rl->rl_object = object; 1171 rl->rl_offset = offset; 1172 rl->rl_size = size; 1173 rl->rl_lock = rll; 1174 1175 ztest_rll_lock(rll, type); 1176 1177 return (rl); 1178 } 1179 1180 static void 1181 ztest_range_unlock(rl_t *rl) 1182 { 1183 rll_t *rll = rl->rl_lock; 1184 1185 ztest_rll_unlock(rll); 1186 1187 umem_free(rl, sizeof (*rl)); 1188 } 1189 1190 static void 1191 ztest_zd_init(ztest_ds_t *zd, ztest_shared_ds_t *szd, objset_t *os) 1192 { 1193 zd->zd_os = os; 1194 zd->zd_zilog = dmu_objset_zil(os); 1195 zd->zd_shared = szd; 1196 dmu_objset_name(os, zd->zd_name); 1197 1198 if (zd->zd_shared != NULL) 1199 zd->zd_shared->zd_seq = 0; 1200 1201 rw_init(&zd->zd_zilog_lock, NULL, USYNC_THREAD, NULL); 1202 mutex_init(&zd->zd_dirobj_lock, NULL, USYNC_THREAD, NULL); 1203 1204 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1205 ztest_rll_init(&zd->zd_object_lock[l]); 1206 1207 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1208 ztest_rll_init(&zd->zd_range_lock[l]); 1209 } 1210 1211 static void 1212 ztest_zd_fini(ztest_ds_t *zd) 1213 { 1214 mutex_destroy(&zd->zd_dirobj_lock); 1215 1216 for (int l = 0; l < ZTEST_OBJECT_LOCKS; l++) 1217 ztest_rll_destroy(&zd->zd_object_lock[l]); 1218 1219 for (int l = 0; l < ZTEST_RANGE_LOCKS; l++) 1220 ztest_rll_destroy(&zd->zd_range_lock[l]); 1221 } 1222 1223 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT) 1224 1225 static uint64_t 1226 ztest_tx_assign(dmu_tx_t *tx, uint64_t txg_how, const char *tag) 1227 { 1228 uint64_t txg; 1229 int error; 1230 1231 /* 1232 * Attempt to assign tx to some transaction group. 1233 */ 1234 error = dmu_tx_assign(tx, txg_how); 1235 if (error) { 1236 if (error == ERESTART) { 1237 ASSERT(txg_how == TXG_NOWAIT); 1238 dmu_tx_wait(tx); 1239 } else { 1240 ASSERT3U(error, ==, ENOSPC); 1241 ztest_record_enospc(tag); 1242 } 1243 dmu_tx_abort(tx); 1244 return (0); 1245 } 1246 txg = dmu_tx_get_txg(tx); 1247 ASSERT(txg != 0); 1248 return (txg); 1249 } 1250 1251 static void 1252 ztest_pattern_set(void *buf, uint64_t size, uint64_t value) 1253 { 1254 uint64_t *ip = buf; 1255 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1256 1257 while (ip < ip_end) 1258 *ip++ = value; 1259 } 1260 1261 static boolean_t 1262 ztest_pattern_match(void *buf, uint64_t size, uint64_t value) 1263 { 1264 uint64_t *ip = buf; 1265 uint64_t *ip_end = (uint64_t *)((uintptr_t)buf + (uintptr_t)size); 1266 uint64_t diff = 0; 1267 1268 while (ip < ip_end) 1269 diff |= (value - *ip++); 1270 1271 return (diff == 0); 1272 } 1273 1274 static void 1275 ztest_bt_generate(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1276 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1277 { 1278 bt->bt_magic = BT_MAGIC; 1279 bt->bt_objset = dmu_objset_id(os); 1280 bt->bt_object = object; 1281 bt->bt_offset = offset; 1282 bt->bt_gen = gen; 1283 bt->bt_txg = txg; 1284 bt->bt_crtxg = crtxg; 1285 } 1286 1287 static void 1288 ztest_bt_verify(ztest_block_tag_t *bt, objset_t *os, uint64_t object, 1289 uint64_t offset, uint64_t gen, uint64_t txg, uint64_t crtxg) 1290 { 1291 ASSERT3U(bt->bt_magic, ==, BT_MAGIC); 1292 ASSERT3U(bt->bt_objset, ==, dmu_objset_id(os)); 1293 ASSERT3U(bt->bt_object, ==, object); 1294 ASSERT3U(bt->bt_offset, ==, offset); 1295 ASSERT3U(bt->bt_gen, <=, gen); 1296 ASSERT3U(bt->bt_txg, <=, txg); 1297 ASSERT3U(bt->bt_crtxg, ==, crtxg); 1298 } 1299 1300 static ztest_block_tag_t * 1301 ztest_bt_bonus(dmu_buf_t *db) 1302 { 1303 dmu_object_info_t doi; 1304 ztest_block_tag_t *bt; 1305 1306 dmu_object_info_from_db(db, &doi); 1307 ASSERT3U(doi.doi_bonus_size, <=, db->db_size); 1308 ASSERT3U(doi.doi_bonus_size, >=, sizeof (*bt)); 1309 bt = (void *)((char *)db->db_data + doi.doi_bonus_size - sizeof (*bt)); 1310 1311 return (bt); 1312 } 1313 1314 /* 1315 * ZIL logging ops 1316 */ 1317 1318 #define lrz_type lr_mode 1319 #define lrz_blocksize lr_uid 1320 #define lrz_ibshift lr_gid 1321 #define lrz_bonustype lr_rdev 1322 #define lrz_bonuslen lr_crtime[1] 1323 1324 static void 1325 ztest_log_create(ztest_ds_t *zd, dmu_tx_t *tx, lr_create_t *lr) 1326 { 1327 char *name = (void *)(lr + 1); /* name follows lr */ 1328 size_t namesize = strlen(name) + 1; 1329 itx_t *itx; 1330 1331 if (zil_replaying(zd->zd_zilog, tx)) 1332 return; 1333 1334 itx = zil_itx_create(TX_CREATE, sizeof (*lr) + namesize); 1335 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1336 sizeof (*lr) + namesize - sizeof (lr_t)); 1337 1338 zil_itx_assign(zd->zd_zilog, itx, tx); 1339 } 1340 1341 static void 1342 ztest_log_remove(ztest_ds_t *zd, dmu_tx_t *tx, lr_remove_t *lr, uint64_t object) 1343 { 1344 char *name = (void *)(lr + 1); /* name follows lr */ 1345 size_t namesize = strlen(name) + 1; 1346 itx_t *itx; 1347 1348 if (zil_replaying(zd->zd_zilog, tx)) 1349 return; 1350 1351 itx = zil_itx_create(TX_REMOVE, sizeof (*lr) + namesize); 1352 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1353 sizeof (*lr) + namesize - sizeof (lr_t)); 1354 1355 itx->itx_oid = object; 1356 zil_itx_assign(zd->zd_zilog, itx, tx); 1357 } 1358 1359 static void 1360 ztest_log_write(ztest_ds_t *zd, dmu_tx_t *tx, lr_write_t *lr) 1361 { 1362 itx_t *itx; 1363 itx_wr_state_t write_state = ztest_random(WR_NUM_STATES); 1364 1365 if (zil_replaying(zd->zd_zilog, tx)) 1366 return; 1367 1368 if (lr->lr_length > ZIL_MAX_LOG_DATA) 1369 write_state = WR_INDIRECT; 1370 1371 itx = zil_itx_create(TX_WRITE, 1372 sizeof (*lr) + (write_state == WR_COPIED ? lr->lr_length : 0)); 1373 1374 if (write_state == WR_COPIED && 1375 dmu_read(zd->zd_os, lr->lr_foid, lr->lr_offset, lr->lr_length, 1376 ((lr_write_t *)&itx->itx_lr) + 1, DMU_READ_NO_PREFETCH) != 0) { 1377 zil_itx_destroy(itx); 1378 itx = zil_itx_create(TX_WRITE, sizeof (*lr)); 1379 write_state = WR_NEED_COPY; 1380 } 1381 itx->itx_private = zd; 1382 itx->itx_wr_state = write_state; 1383 itx->itx_sync = (ztest_random(8) == 0); 1384 1385 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1386 sizeof (*lr) - sizeof (lr_t)); 1387 1388 zil_itx_assign(zd->zd_zilog, itx, tx); 1389 } 1390 1391 static void 1392 ztest_log_truncate(ztest_ds_t *zd, dmu_tx_t *tx, lr_truncate_t *lr) 1393 { 1394 itx_t *itx; 1395 1396 if (zil_replaying(zd->zd_zilog, tx)) 1397 return; 1398 1399 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr)); 1400 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1401 sizeof (*lr) - sizeof (lr_t)); 1402 1403 itx->itx_sync = B_FALSE; 1404 zil_itx_assign(zd->zd_zilog, itx, tx); 1405 } 1406 1407 static void 1408 ztest_log_setattr(ztest_ds_t *zd, dmu_tx_t *tx, lr_setattr_t *lr) 1409 { 1410 itx_t *itx; 1411 1412 if (zil_replaying(zd->zd_zilog, tx)) 1413 return; 1414 1415 itx = zil_itx_create(TX_SETATTR, sizeof (*lr)); 1416 bcopy(&lr->lr_common + 1, &itx->itx_lr + 1, 1417 sizeof (*lr) - sizeof (lr_t)); 1418 1419 itx->itx_sync = B_FALSE; 1420 zil_itx_assign(zd->zd_zilog, itx, tx); 1421 } 1422 1423 /* 1424 * ZIL replay ops 1425 */ 1426 static int 1427 ztest_replay_create(void *arg1, void *arg2, boolean_t byteswap) 1428 { 1429 ztest_ds_t *zd = arg1; 1430 lr_create_t *lr = arg2; 1431 char *name = (void *)(lr + 1); /* name follows lr */ 1432 objset_t *os = zd->zd_os; 1433 ztest_block_tag_t *bbt; 1434 dmu_buf_t *db; 1435 dmu_tx_t *tx; 1436 uint64_t txg; 1437 int error = 0; 1438 1439 if (byteswap) 1440 byteswap_uint64_array(lr, sizeof (*lr)); 1441 1442 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1443 ASSERT(name[0] != '\0'); 1444 1445 tx = dmu_tx_create(os); 1446 1447 dmu_tx_hold_zap(tx, lr->lr_doid, B_TRUE, name); 1448 1449 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1450 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL); 1451 } else { 1452 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1453 } 1454 1455 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1456 if (txg == 0) 1457 return (ENOSPC); 1458 1459 ASSERT(dmu_objset_zil(os)->zl_replay == !!lr->lr_foid); 1460 1461 if (lr->lrz_type == DMU_OT_ZAP_OTHER) { 1462 if (lr->lr_foid == 0) { 1463 lr->lr_foid = zap_create(os, 1464 lr->lrz_type, lr->lrz_bonustype, 1465 lr->lrz_bonuslen, tx); 1466 } else { 1467 error = zap_create_claim(os, lr->lr_foid, 1468 lr->lrz_type, lr->lrz_bonustype, 1469 lr->lrz_bonuslen, tx); 1470 } 1471 } else { 1472 if (lr->lr_foid == 0) { 1473 lr->lr_foid = dmu_object_alloc(os, 1474 lr->lrz_type, 0, lr->lrz_bonustype, 1475 lr->lrz_bonuslen, tx); 1476 } else { 1477 error = dmu_object_claim(os, lr->lr_foid, 1478 lr->lrz_type, 0, lr->lrz_bonustype, 1479 lr->lrz_bonuslen, tx); 1480 } 1481 } 1482 1483 if (error) { 1484 ASSERT3U(error, ==, EEXIST); 1485 ASSERT(zd->zd_zilog->zl_replay); 1486 dmu_tx_commit(tx); 1487 return (error); 1488 } 1489 1490 ASSERT(lr->lr_foid != 0); 1491 1492 if (lr->lrz_type != DMU_OT_ZAP_OTHER) 1493 VERIFY3U(0, ==, dmu_object_set_blocksize(os, lr->lr_foid, 1494 lr->lrz_blocksize, lr->lrz_ibshift, tx)); 1495 1496 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1497 bbt = ztest_bt_bonus(db); 1498 dmu_buf_will_dirty(db, tx); 1499 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_gen, txg, txg); 1500 dmu_buf_rele(db, FTAG); 1501 1502 VERIFY3U(0, ==, zap_add(os, lr->lr_doid, name, sizeof (uint64_t), 1, 1503 &lr->lr_foid, tx)); 1504 1505 (void) ztest_log_create(zd, tx, lr); 1506 1507 dmu_tx_commit(tx); 1508 1509 return (0); 1510 } 1511 1512 static int 1513 ztest_replay_remove(void *arg1, void *arg2, boolean_t byteswap) 1514 { 1515 ztest_ds_t *zd = arg1; 1516 lr_remove_t *lr = arg2; 1517 char *name = (void *)(lr + 1); /* name follows lr */ 1518 objset_t *os = zd->zd_os; 1519 dmu_object_info_t doi; 1520 dmu_tx_t *tx; 1521 uint64_t object, txg; 1522 1523 if (byteswap) 1524 byteswap_uint64_array(lr, sizeof (*lr)); 1525 1526 ASSERT(lr->lr_doid == ZTEST_DIROBJ); 1527 ASSERT(name[0] != '\0'); 1528 1529 VERIFY3U(0, ==, 1530 zap_lookup(os, lr->lr_doid, name, sizeof (object), 1, &object)); 1531 ASSERT(object != 0); 1532 1533 ztest_object_lock(zd, object, RL_WRITER); 1534 1535 VERIFY3U(0, ==, dmu_object_info(os, object, &doi)); 1536 1537 tx = dmu_tx_create(os); 1538 1539 dmu_tx_hold_zap(tx, lr->lr_doid, B_FALSE, name); 1540 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 1541 1542 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1543 if (txg == 0) { 1544 ztest_object_unlock(zd, object); 1545 return (ENOSPC); 1546 } 1547 1548 if (doi.doi_type == DMU_OT_ZAP_OTHER) { 1549 VERIFY3U(0, ==, zap_destroy(os, object, tx)); 1550 } else { 1551 VERIFY3U(0, ==, dmu_object_free(os, object, tx)); 1552 } 1553 1554 VERIFY3U(0, ==, zap_remove(os, lr->lr_doid, name, tx)); 1555 1556 (void) ztest_log_remove(zd, tx, lr, object); 1557 1558 dmu_tx_commit(tx); 1559 1560 ztest_object_unlock(zd, object); 1561 1562 return (0); 1563 } 1564 1565 static int 1566 ztest_replay_write(void *arg1, void *arg2, boolean_t byteswap) 1567 { 1568 ztest_ds_t *zd = arg1; 1569 lr_write_t *lr = arg2; 1570 objset_t *os = zd->zd_os; 1571 void *data = lr + 1; /* data follows lr */ 1572 uint64_t offset, length; 1573 ztest_block_tag_t *bt = data; 1574 ztest_block_tag_t *bbt; 1575 uint64_t gen, txg, lrtxg, crtxg; 1576 dmu_object_info_t doi; 1577 dmu_tx_t *tx; 1578 dmu_buf_t *db; 1579 arc_buf_t *abuf = NULL; 1580 rl_t *rl; 1581 1582 if (byteswap) 1583 byteswap_uint64_array(lr, sizeof (*lr)); 1584 1585 offset = lr->lr_offset; 1586 length = lr->lr_length; 1587 1588 /* If it's a dmu_sync() block, write the whole block */ 1589 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) { 1590 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr); 1591 if (length < blocksize) { 1592 offset -= offset % blocksize; 1593 length = blocksize; 1594 } 1595 } 1596 1597 if (bt->bt_magic == BSWAP_64(BT_MAGIC)) 1598 byteswap_uint64_array(bt, sizeof (*bt)); 1599 1600 if (bt->bt_magic != BT_MAGIC) 1601 bt = NULL; 1602 1603 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1604 rl = ztest_range_lock(zd, lr->lr_foid, offset, length, RL_WRITER); 1605 1606 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1607 1608 dmu_object_info_from_db(db, &doi); 1609 1610 bbt = ztest_bt_bonus(db); 1611 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1612 gen = bbt->bt_gen; 1613 crtxg = bbt->bt_crtxg; 1614 lrtxg = lr->lr_common.lrc_txg; 1615 1616 tx = dmu_tx_create(os); 1617 1618 dmu_tx_hold_write(tx, lr->lr_foid, offset, length); 1619 1620 if (ztest_random(8) == 0 && length == doi.doi_data_block_size && 1621 P2PHASE(offset, length) == 0) 1622 abuf = dmu_request_arcbuf(db, length); 1623 1624 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1625 if (txg == 0) { 1626 if (abuf != NULL) 1627 dmu_return_arcbuf(abuf); 1628 dmu_buf_rele(db, FTAG); 1629 ztest_range_unlock(rl); 1630 ztest_object_unlock(zd, lr->lr_foid); 1631 return (ENOSPC); 1632 } 1633 1634 if (bt != NULL) { 1635 /* 1636 * Usually, verify the old data before writing new data -- 1637 * but not always, because we also want to verify correct 1638 * behavior when the data was not recently read into cache. 1639 */ 1640 ASSERT(offset % doi.doi_data_block_size == 0); 1641 if (ztest_random(4) != 0) { 1642 int prefetch = ztest_random(2) ? 1643 DMU_READ_PREFETCH : DMU_READ_NO_PREFETCH; 1644 ztest_block_tag_t rbt; 1645 1646 VERIFY(dmu_read(os, lr->lr_foid, offset, 1647 sizeof (rbt), &rbt, prefetch) == 0); 1648 if (rbt.bt_magic == BT_MAGIC) { 1649 ztest_bt_verify(&rbt, os, lr->lr_foid, 1650 offset, gen, txg, crtxg); 1651 } 1652 } 1653 1654 /* 1655 * Writes can appear to be newer than the bonus buffer because 1656 * the ztest_get_data() callback does a dmu_read() of the 1657 * open-context data, which may be different than the data 1658 * as it was when the write was generated. 1659 */ 1660 if (zd->zd_zilog->zl_replay) { 1661 ztest_bt_verify(bt, os, lr->lr_foid, offset, 1662 MAX(gen, bt->bt_gen), MAX(txg, lrtxg), 1663 bt->bt_crtxg); 1664 } 1665 1666 /* 1667 * Set the bt's gen/txg to the bonus buffer's gen/txg 1668 * so that all of the usual ASSERTs will work. 1669 */ 1670 ztest_bt_generate(bt, os, lr->lr_foid, offset, gen, txg, crtxg); 1671 } 1672 1673 if (abuf == NULL) { 1674 dmu_write(os, lr->lr_foid, offset, length, data, tx); 1675 } else { 1676 bcopy(data, abuf->b_data, length); 1677 dmu_assign_arcbuf(db, offset, abuf, tx); 1678 } 1679 1680 (void) ztest_log_write(zd, tx, lr); 1681 1682 dmu_buf_rele(db, FTAG); 1683 1684 dmu_tx_commit(tx); 1685 1686 ztest_range_unlock(rl); 1687 ztest_object_unlock(zd, lr->lr_foid); 1688 1689 return (0); 1690 } 1691 1692 static int 1693 ztest_replay_truncate(void *arg1, void *arg2, boolean_t byteswap) 1694 { 1695 ztest_ds_t *zd = arg1; 1696 lr_truncate_t *lr = arg2; 1697 objset_t *os = zd->zd_os; 1698 dmu_tx_t *tx; 1699 uint64_t txg; 1700 rl_t *rl; 1701 1702 if (byteswap) 1703 byteswap_uint64_array(lr, sizeof (*lr)); 1704 1705 ztest_object_lock(zd, lr->lr_foid, RL_READER); 1706 rl = ztest_range_lock(zd, lr->lr_foid, lr->lr_offset, lr->lr_length, 1707 RL_WRITER); 1708 1709 tx = dmu_tx_create(os); 1710 1711 dmu_tx_hold_free(tx, lr->lr_foid, lr->lr_offset, lr->lr_length); 1712 1713 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1714 if (txg == 0) { 1715 ztest_range_unlock(rl); 1716 ztest_object_unlock(zd, lr->lr_foid); 1717 return (ENOSPC); 1718 } 1719 1720 VERIFY(dmu_free_range(os, lr->lr_foid, lr->lr_offset, 1721 lr->lr_length, tx) == 0); 1722 1723 (void) ztest_log_truncate(zd, tx, lr); 1724 1725 dmu_tx_commit(tx); 1726 1727 ztest_range_unlock(rl); 1728 ztest_object_unlock(zd, lr->lr_foid); 1729 1730 return (0); 1731 } 1732 1733 static int 1734 ztest_replay_setattr(void *arg1, void *arg2, boolean_t byteswap) 1735 { 1736 ztest_ds_t *zd = arg1; 1737 lr_setattr_t *lr = arg2; 1738 objset_t *os = zd->zd_os; 1739 dmu_tx_t *tx; 1740 dmu_buf_t *db; 1741 ztest_block_tag_t *bbt; 1742 uint64_t txg, lrtxg, crtxg; 1743 1744 if (byteswap) 1745 byteswap_uint64_array(lr, sizeof (*lr)); 1746 1747 ztest_object_lock(zd, lr->lr_foid, RL_WRITER); 1748 1749 VERIFY3U(0, ==, dmu_bonus_hold(os, lr->lr_foid, FTAG, &db)); 1750 1751 tx = dmu_tx_create(os); 1752 dmu_tx_hold_bonus(tx, lr->lr_foid); 1753 1754 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 1755 if (txg == 0) { 1756 dmu_buf_rele(db, FTAG); 1757 ztest_object_unlock(zd, lr->lr_foid); 1758 return (ENOSPC); 1759 } 1760 1761 bbt = ztest_bt_bonus(db); 1762 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1763 crtxg = bbt->bt_crtxg; 1764 lrtxg = lr->lr_common.lrc_txg; 1765 1766 if (zd->zd_zilog->zl_replay) { 1767 ASSERT(lr->lr_size != 0); 1768 ASSERT(lr->lr_mode != 0); 1769 ASSERT(lrtxg != 0); 1770 } else { 1771 /* 1772 * Randomly change the size and increment the generation. 1773 */ 1774 lr->lr_size = (ztest_random(db->db_size / sizeof (*bbt)) + 1) * 1775 sizeof (*bbt); 1776 lr->lr_mode = bbt->bt_gen + 1; 1777 ASSERT(lrtxg == 0); 1778 } 1779 1780 /* 1781 * Verify that the current bonus buffer is not newer than our txg. 1782 */ 1783 ztest_bt_verify(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, 1784 MAX(txg, lrtxg), crtxg); 1785 1786 dmu_buf_will_dirty(db, tx); 1787 1788 ASSERT3U(lr->lr_size, >=, sizeof (*bbt)); 1789 ASSERT3U(lr->lr_size, <=, db->db_size); 1790 VERIFY0(dmu_set_bonus(db, lr->lr_size, tx)); 1791 bbt = ztest_bt_bonus(db); 1792 1793 ztest_bt_generate(bbt, os, lr->lr_foid, -1ULL, lr->lr_mode, txg, crtxg); 1794 1795 dmu_buf_rele(db, FTAG); 1796 1797 (void) ztest_log_setattr(zd, tx, lr); 1798 1799 dmu_tx_commit(tx); 1800 1801 ztest_object_unlock(zd, lr->lr_foid); 1802 1803 return (0); 1804 } 1805 1806 zil_replay_func_t *ztest_replay_vector[TX_MAX_TYPE] = { 1807 NULL, /* 0 no such transaction type */ 1808 ztest_replay_create, /* TX_CREATE */ 1809 NULL, /* TX_MKDIR */ 1810 NULL, /* TX_MKXATTR */ 1811 NULL, /* TX_SYMLINK */ 1812 ztest_replay_remove, /* TX_REMOVE */ 1813 NULL, /* TX_RMDIR */ 1814 NULL, /* TX_LINK */ 1815 NULL, /* TX_RENAME */ 1816 ztest_replay_write, /* TX_WRITE */ 1817 ztest_replay_truncate, /* TX_TRUNCATE */ 1818 ztest_replay_setattr, /* TX_SETATTR */ 1819 NULL, /* TX_ACL */ 1820 NULL, /* TX_CREATE_ACL */ 1821 NULL, /* TX_CREATE_ATTR */ 1822 NULL, /* TX_CREATE_ACL_ATTR */ 1823 NULL, /* TX_MKDIR_ACL */ 1824 NULL, /* TX_MKDIR_ATTR */ 1825 NULL, /* TX_MKDIR_ACL_ATTR */ 1826 NULL, /* TX_WRITE2 */ 1827 }; 1828 1829 /* 1830 * ZIL get_data callbacks 1831 */ 1832 1833 static void 1834 ztest_get_done(zgd_t *zgd, int error) 1835 { 1836 ztest_ds_t *zd = zgd->zgd_private; 1837 uint64_t object = zgd->zgd_rl->rl_object; 1838 1839 if (zgd->zgd_db) 1840 dmu_buf_rele(zgd->zgd_db, zgd); 1841 1842 ztest_range_unlock(zgd->zgd_rl); 1843 ztest_object_unlock(zd, object); 1844 1845 if (error == 0 && zgd->zgd_bp) 1846 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp); 1847 1848 umem_free(zgd, sizeof (*zgd)); 1849 } 1850 1851 static int 1852 ztest_get_data(void *arg, lr_write_t *lr, char *buf, struct lwb *lwb, 1853 zio_t *zio) 1854 { 1855 ztest_ds_t *zd = arg; 1856 objset_t *os = zd->zd_os; 1857 uint64_t object = lr->lr_foid; 1858 uint64_t offset = lr->lr_offset; 1859 uint64_t size = lr->lr_length; 1860 uint64_t txg = lr->lr_common.lrc_txg; 1861 uint64_t crtxg; 1862 dmu_object_info_t doi; 1863 dmu_buf_t *db; 1864 zgd_t *zgd; 1865 int error; 1866 1867 ASSERT3P(lwb, !=, NULL); 1868 ASSERT3P(zio, !=, NULL); 1869 ASSERT3U(size, !=, 0); 1870 1871 ztest_object_lock(zd, object, RL_READER); 1872 error = dmu_bonus_hold(os, object, FTAG, &db); 1873 if (error) { 1874 ztest_object_unlock(zd, object); 1875 return (error); 1876 } 1877 1878 crtxg = ztest_bt_bonus(db)->bt_crtxg; 1879 1880 if (crtxg == 0 || crtxg > txg) { 1881 dmu_buf_rele(db, FTAG); 1882 ztest_object_unlock(zd, object); 1883 return (ENOENT); 1884 } 1885 1886 dmu_object_info_from_db(db, &doi); 1887 dmu_buf_rele(db, FTAG); 1888 db = NULL; 1889 1890 zgd = umem_zalloc(sizeof (*zgd), UMEM_NOFAIL); 1891 zgd->zgd_lwb = lwb; 1892 zgd->zgd_private = zd; 1893 1894 if (buf != NULL) { /* immediate write */ 1895 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1896 RL_READER); 1897 1898 error = dmu_read(os, object, offset, size, buf, 1899 DMU_READ_NO_PREFETCH); 1900 ASSERT(error == 0); 1901 } else { 1902 size = doi.doi_data_block_size; 1903 if (ISP2(size)) { 1904 offset = P2ALIGN(offset, size); 1905 } else { 1906 ASSERT(offset < size); 1907 offset = 0; 1908 } 1909 1910 zgd->zgd_rl = ztest_range_lock(zd, object, offset, size, 1911 RL_READER); 1912 1913 error = dmu_buf_hold(os, object, offset, zgd, &db, 1914 DMU_READ_NO_PREFETCH); 1915 1916 if (error == 0) { 1917 blkptr_t *bp = &lr->lr_blkptr; 1918 1919 zgd->zgd_db = db; 1920 zgd->zgd_bp = bp; 1921 1922 ASSERT(db->db_offset == offset); 1923 ASSERT(db->db_size == size); 1924 1925 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1926 ztest_get_done, zgd); 1927 1928 if (error == 0) 1929 return (0); 1930 } 1931 } 1932 1933 ztest_get_done(zgd, error); 1934 1935 return (error); 1936 } 1937 1938 static void * 1939 ztest_lr_alloc(size_t lrsize, char *name) 1940 { 1941 char *lr; 1942 size_t namesize = name ? strlen(name) + 1 : 0; 1943 1944 lr = umem_zalloc(lrsize + namesize, UMEM_NOFAIL); 1945 1946 if (name) 1947 bcopy(name, lr + lrsize, namesize); 1948 1949 return (lr); 1950 } 1951 1952 void 1953 ztest_lr_free(void *lr, size_t lrsize, char *name) 1954 { 1955 size_t namesize = name ? strlen(name) + 1 : 0; 1956 1957 umem_free(lr, lrsize + namesize); 1958 } 1959 1960 /* 1961 * Lookup a bunch of objects. Returns the number of objects not found. 1962 */ 1963 static int 1964 ztest_lookup(ztest_ds_t *zd, ztest_od_t *od, int count) 1965 { 1966 int missing = 0; 1967 int error; 1968 1969 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 1970 1971 for (int i = 0; i < count; i++, od++) { 1972 od->od_object = 0; 1973 error = zap_lookup(zd->zd_os, od->od_dir, od->od_name, 1974 sizeof (uint64_t), 1, &od->od_object); 1975 if (error) { 1976 ASSERT(error == ENOENT); 1977 ASSERT(od->od_object == 0); 1978 missing++; 1979 } else { 1980 dmu_buf_t *db; 1981 ztest_block_tag_t *bbt; 1982 dmu_object_info_t doi; 1983 1984 ASSERT(od->od_object != 0); 1985 ASSERT(missing == 0); /* there should be no gaps */ 1986 1987 ztest_object_lock(zd, od->od_object, RL_READER); 1988 VERIFY3U(0, ==, dmu_bonus_hold(zd->zd_os, 1989 od->od_object, FTAG, &db)); 1990 dmu_object_info_from_db(db, &doi); 1991 bbt = ztest_bt_bonus(db); 1992 ASSERT3U(bbt->bt_magic, ==, BT_MAGIC); 1993 od->od_type = doi.doi_type; 1994 od->od_blocksize = doi.doi_data_block_size; 1995 od->od_gen = bbt->bt_gen; 1996 dmu_buf_rele(db, FTAG); 1997 ztest_object_unlock(zd, od->od_object); 1998 } 1999 } 2000 2001 return (missing); 2002 } 2003 2004 static int 2005 ztest_create(ztest_ds_t *zd, ztest_od_t *od, int count) 2006 { 2007 int missing = 0; 2008 2009 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2010 2011 for (int i = 0; i < count; i++, od++) { 2012 if (missing) { 2013 od->od_object = 0; 2014 missing++; 2015 continue; 2016 } 2017 2018 lr_create_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2019 2020 lr->lr_doid = od->od_dir; 2021 lr->lr_foid = 0; /* 0 to allocate, > 0 to claim */ 2022 lr->lrz_type = od->od_crtype; 2023 lr->lrz_blocksize = od->od_crblocksize; 2024 lr->lrz_ibshift = ztest_random_ibshift(); 2025 lr->lrz_bonustype = DMU_OT_UINT64_OTHER; 2026 lr->lrz_bonuslen = dmu_bonus_max(); 2027 lr->lr_gen = od->od_crgen; 2028 lr->lr_crtime[0] = time(NULL); 2029 2030 if (ztest_replay_create(zd, lr, B_FALSE) != 0) { 2031 ASSERT(missing == 0); 2032 od->od_object = 0; 2033 missing++; 2034 } else { 2035 od->od_object = lr->lr_foid; 2036 od->od_type = od->od_crtype; 2037 od->od_blocksize = od->od_crblocksize; 2038 od->od_gen = od->od_crgen; 2039 ASSERT(od->od_object != 0); 2040 } 2041 2042 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2043 } 2044 2045 return (missing); 2046 } 2047 2048 static int 2049 ztest_remove(ztest_ds_t *zd, ztest_od_t *od, int count) 2050 { 2051 int missing = 0; 2052 int error; 2053 2054 ASSERT(MUTEX_HELD(&zd->zd_dirobj_lock)); 2055 2056 od += count - 1; 2057 2058 for (int i = count - 1; i >= 0; i--, od--) { 2059 if (missing) { 2060 missing++; 2061 continue; 2062 } 2063 2064 /* 2065 * No object was found. 2066 */ 2067 if (od->od_object == 0) 2068 continue; 2069 2070 lr_remove_t *lr = ztest_lr_alloc(sizeof (*lr), od->od_name); 2071 2072 lr->lr_doid = od->od_dir; 2073 2074 if ((error = ztest_replay_remove(zd, lr, B_FALSE)) != 0) { 2075 ASSERT3U(error, ==, ENOSPC); 2076 missing++; 2077 } else { 2078 od->od_object = 0; 2079 } 2080 ztest_lr_free(lr, sizeof (*lr), od->od_name); 2081 } 2082 2083 return (missing); 2084 } 2085 2086 static int 2087 ztest_write(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size, 2088 void *data) 2089 { 2090 lr_write_t *lr; 2091 int error; 2092 2093 lr = ztest_lr_alloc(sizeof (*lr) + size, NULL); 2094 2095 lr->lr_foid = object; 2096 lr->lr_offset = offset; 2097 lr->lr_length = size; 2098 lr->lr_blkoff = 0; 2099 BP_ZERO(&lr->lr_blkptr); 2100 2101 bcopy(data, lr + 1, size); 2102 2103 error = ztest_replay_write(zd, lr, B_FALSE); 2104 2105 ztest_lr_free(lr, sizeof (*lr) + size, NULL); 2106 2107 return (error); 2108 } 2109 2110 static int 2111 ztest_truncate(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2112 { 2113 lr_truncate_t *lr; 2114 int error; 2115 2116 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2117 2118 lr->lr_foid = object; 2119 lr->lr_offset = offset; 2120 lr->lr_length = size; 2121 2122 error = ztest_replay_truncate(zd, lr, B_FALSE); 2123 2124 ztest_lr_free(lr, sizeof (*lr), NULL); 2125 2126 return (error); 2127 } 2128 2129 static int 2130 ztest_setattr(ztest_ds_t *zd, uint64_t object) 2131 { 2132 lr_setattr_t *lr; 2133 int error; 2134 2135 lr = ztest_lr_alloc(sizeof (*lr), NULL); 2136 2137 lr->lr_foid = object; 2138 lr->lr_size = 0; 2139 lr->lr_mode = 0; 2140 2141 error = ztest_replay_setattr(zd, lr, B_FALSE); 2142 2143 ztest_lr_free(lr, sizeof (*lr), NULL); 2144 2145 return (error); 2146 } 2147 2148 static void 2149 ztest_prealloc(ztest_ds_t *zd, uint64_t object, uint64_t offset, uint64_t size) 2150 { 2151 objset_t *os = zd->zd_os; 2152 dmu_tx_t *tx; 2153 uint64_t txg; 2154 rl_t *rl; 2155 2156 txg_wait_synced(dmu_objset_pool(os), 0); 2157 2158 ztest_object_lock(zd, object, RL_READER); 2159 rl = ztest_range_lock(zd, object, offset, size, RL_WRITER); 2160 2161 tx = dmu_tx_create(os); 2162 2163 dmu_tx_hold_write(tx, object, offset, size); 2164 2165 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 2166 2167 if (txg != 0) { 2168 dmu_prealloc(os, object, offset, size, tx); 2169 dmu_tx_commit(tx); 2170 txg_wait_synced(dmu_objset_pool(os), txg); 2171 } else { 2172 (void) dmu_free_long_range(os, object, offset, size); 2173 } 2174 2175 ztest_range_unlock(rl); 2176 ztest_object_unlock(zd, object); 2177 } 2178 2179 static void 2180 ztest_io(ztest_ds_t *zd, uint64_t object, uint64_t offset) 2181 { 2182 int err; 2183 ztest_block_tag_t wbt; 2184 dmu_object_info_t doi; 2185 enum ztest_io_type io_type; 2186 uint64_t blocksize; 2187 void *data; 2188 2189 VERIFY(dmu_object_info(zd->zd_os, object, &doi) == 0); 2190 blocksize = doi.doi_data_block_size; 2191 data = umem_alloc(blocksize, UMEM_NOFAIL); 2192 2193 /* 2194 * Pick an i/o type at random, biased toward writing block tags. 2195 */ 2196 io_type = ztest_random(ZTEST_IO_TYPES); 2197 if (ztest_random(2) == 0) 2198 io_type = ZTEST_IO_WRITE_TAG; 2199 2200 rw_enter(&zd->zd_zilog_lock, RW_READER); 2201 2202 switch (io_type) { 2203 2204 case ZTEST_IO_WRITE_TAG: 2205 ztest_bt_generate(&wbt, zd->zd_os, object, offset, 0, 0, 0); 2206 (void) ztest_write(zd, object, offset, sizeof (wbt), &wbt); 2207 break; 2208 2209 case ZTEST_IO_WRITE_PATTERN: 2210 (void) memset(data, 'a' + (object + offset) % 5, blocksize); 2211 if (ztest_random(2) == 0) { 2212 /* 2213 * Induce fletcher2 collisions to ensure that 2214 * zio_ddt_collision() detects and resolves them 2215 * when using fletcher2-verify for deduplication. 2216 */ 2217 ((uint64_t *)data)[0] ^= 1ULL << 63; 2218 ((uint64_t *)data)[4] ^= 1ULL << 63; 2219 } 2220 (void) ztest_write(zd, object, offset, blocksize, data); 2221 break; 2222 2223 case ZTEST_IO_WRITE_ZEROES: 2224 bzero(data, blocksize); 2225 (void) ztest_write(zd, object, offset, blocksize, data); 2226 break; 2227 2228 case ZTEST_IO_TRUNCATE: 2229 (void) ztest_truncate(zd, object, offset, blocksize); 2230 break; 2231 2232 case ZTEST_IO_SETATTR: 2233 (void) ztest_setattr(zd, object); 2234 break; 2235 2236 case ZTEST_IO_REWRITE: 2237 rw_enter(&ztest_name_lock, RW_READER); 2238 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2239 ZFS_PROP_CHECKSUM, spa_dedup_checksum(ztest_spa), 2240 B_FALSE); 2241 VERIFY(err == 0 || err == ENOSPC); 2242 err = ztest_dsl_prop_set_uint64(zd->zd_name, 2243 ZFS_PROP_COMPRESSION, 2244 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION), 2245 B_FALSE); 2246 VERIFY(err == 0 || err == ENOSPC); 2247 rw_exit(&ztest_name_lock); 2248 2249 VERIFY0(dmu_read(zd->zd_os, object, offset, blocksize, data, 2250 DMU_READ_NO_PREFETCH)); 2251 2252 (void) ztest_write(zd, object, offset, blocksize, data); 2253 break; 2254 } 2255 2256 rw_exit(&zd->zd_zilog_lock); 2257 2258 umem_free(data, blocksize); 2259 } 2260 2261 /* 2262 * Initialize an object description template. 2263 */ 2264 static void 2265 ztest_od_init(ztest_od_t *od, uint64_t id, char *tag, uint64_t index, 2266 dmu_object_type_t type, uint64_t blocksize, uint64_t gen) 2267 { 2268 od->od_dir = ZTEST_DIROBJ; 2269 od->od_object = 0; 2270 2271 od->od_crtype = type; 2272 od->od_crblocksize = blocksize ? blocksize : ztest_random_blocksize(); 2273 od->od_crgen = gen; 2274 2275 od->od_type = DMU_OT_NONE; 2276 od->od_blocksize = 0; 2277 od->od_gen = 0; 2278 2279 (void) snprintf(od->od_name, sizeof (od->od_name), "%s(%lld)[%llu]", 2280 tag, (int64_t)id, index); 2281 } 2282 2283 /* 2284 * Lookup or create the objects for a test using the od template. 2285 * If the objects do not all exist, or if 'remove' is specified, 2286 * remove any existing objects and create new ones. Otherwise, 2287 * use the existing objects. 2288 */ 2289 static int 2290 ztest_object_init(ztest_ds_t *zd, ztest_od_t *od, size_t size, boolean_t remove) 2291 { 2292 int count = size / sizeof (*od); 2293 int rv = 0; 2294 2295 mutex_enter(&zd->zd_dirobj_lock); 2296 if ((ztest_lookup(zd, od, count) != 0 || remove) && 2297 (ztest_remove(zd, od, count) != 0 || 2298 ztest_create(zd, od, count) != 0)) 2299 rv = -1; 2300 zd->zd_od = od; 2301 mutex_exit(&zd->zd_dirobj_lock); 2302 2303 return (rv); 2304 } 2305 2306 /* ARGSUSED */ 2307 void 2308 ztest_zil_commit(ztest_ds_t *zd, uint64_t id) 2309 { 2310 zilog_t *zilog = zd->zd_zilog; 2311 2312 rw_enter(&zd->zd_zilog_lock, RW_READER); 2313 2314 zil_commit(zilog, ztest_random(ZTEST_OBJECTS)); 2315 2316 /* 2317 * Remember the committed values in zd, which is in parent/child 2318 * shared memory. If we die, the next iteration of ztest_run() 2319 * will verify that the log really does contain this record. 2320 */ 2321 mutex_enter(&zilog->zl_lock); 2322 ASSERT(zd->zd_shared != NULL); 2323 ASSERT3U(zd->zd_shared->zd_seq, <=, zilog->zl_commit_lr_seq); 2324 zd->zd_shared->zd_seq = zilog->zl_commit_lr_seq; 2325 mutex_exit(&zilog->zl_lock); 2326 2327 rw_exit(&zd->zd_zilog_lock); 2328 } 2329 2330 /* 2331 * This function is designed to simulate the operations that occur during a 2332 * mount/unmount operation. We hold the dataset across these operations in an 2333 * attempt to expose any implicit assumptions about ZIL management. 2334 */ 2335 /* ARGSUSED */ 2336 void 2337 ztest_zil_remount(ztest_ds_t *zd, uint64_t id) 2338 { 2339 objset_t *os = zd->zd_os; 2340 2341 /* 2342 * We grab the zd_dirobj_lock to ensure that no other thread is 2343 * updating the zil (i.e. adding in-memory log records) and the 2344 * zd_zilog_lock to block any I/O. 2345 */ 2346 mutex_enter(&zd->zd_dirobj_lock); 2347 rw_enter(&zd->zd_zilog_lock, RW_WRITER); 2348 2349 /* zfsvfs_teardown() */ 2350 zil_close(zd->zd_zilog); 2351 2352 /* zfsvfs_setup() */ 2353 VERIFY(zil_open(os, ztest_get_data) == zd->zd_zilog); 2354 zil_replay(os, zd, ztest_replay_vector); 2355 2356 rw_exit(&zd->zd_zilog_lock); 2357 mutex_exit(&zd->zd_dirobj_lock); 2358 } 2359 2360 /* 2361 * Verify that we can't destroy an active pool, create an existing pool, 2362 * or create a pool with a bad vdev spec. 2363 */ 2364 /* ARGSUSED */ 2365 void 2366 ztest_spa_create_destroy(ztest_ds_t *zd, uint64_t id) 2367 { 2368 ztest_shared_opts_t *zo = &ztest_opts; 2369 spa_t *spa; 2370 nvlist_t *nvroot; 2371 2372 /* 2373 * Attempt to create using a bad file. 2374 */ 2375 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2376 VERIFY3U(ENOENT, ==, 2377 spa_create("ztest_bad_file", nvroot, NULL, NULL)); 2378 nvlist_free(nvroot); 2379 2380 /* 2381 * Attempt to create using a bad mirror. 2382 */ 2383 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 2, 1); 2384 VERIFY3U(ENOENT, ==, 2385 spa_create("ztest_bad_mirror", nvroot, NULL, NULL)); 2386 nvlist_free(nvroot); 2387 2388 /* 2389 * Attempt to create an existing pool. It shouldn't matter 2390 * what's in the nvroot; we should fail with EEXIST. 2391 */ 2392 rw_enter(&ztest_name_lock, RW_READER); 2393 nvroot = make_vdev_root("/dev/bogus", NULL, NULL, 0, 0, 0, 0, 0, 1); 2394 VERIFY3U(EEXIST, ==, spa_create(zo->zo_pool, nvroot, NULL, NULL)); 2395 nvlist_free(nvroot); 2396 VERIFY3U(0, ==, spa_open(zo->zo_pool, &spa, FTAG)); 2397 VERIFY3U(EBUSY, ==, spa_destroy(zo->zo_pool)); 2398 spa_close(spa, FTAG); 2399 2400 rw_exit(&ztest_name_lock); 2401 } 2402 2403 /* ARGSUSED */ 2404 void 2405 ztest_spa_upgrade(ztest_ds_t *zd, uint64_t id) 2406 { 2407 spa_t *spa; 2408 uint64_t initial_version = SPA_VERSION_INITIAL; 2409 uint64_t version, newversion; 2410 nvlist_t *nvroot, *props; 2411 char *name; 2412 2413 mutex_enter(&ztest_vdev_lock); 2414 name = kmem_asprintf("%s_upgrade", ztest_opts.zo_pool); 2415 2416 /* 2417 * Clean up from previous runs. 2418 */ 2419 (void) spa_destroy(name); 2420 2421 nvroot = make_vdev_root(NULL, NULL, name, ztest_opts.zo_vdev_size, 0, 2422 0, ztest_opts.zo_raidz, ztest_opts.zo_mirrors, 1); 2423 2424 /* 2425 * If we're configuring a RAIDZ device then make sure that the 2426 * the initial version is capable of supporting that feature. 2427 */ 2428 switch (ztest_opts.zo_raidz_parity) { 2429 case 0: 2430 case 1: 2431 initial_version = SPA_VERSION_INITIAL; 2432 break; 2433 case 2: 2434 initial_version = SPA_VERSION_RAIDZ2; 2435 break; 2436 case 3: 2437 initial_version = SPA_VERSION_RAIDZ3; 2438 break; 2439 } 2440 2441 /* 2442 * Create a pool with a spa version that can be upgraded. Pick 2443 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES. 2444 */ 2445 do { 2446 version = ztest_random_spa_version(initial_version); 2447 } while (version > SPA_VERSION_BEFORE_FEATURES); 2448 2449 props = fnvlist_alloc(); 2450 fnvlist_add_uint64(props, 2451 zpool_prop_to_name(ZPOOL_PROP_VERSION), version); 2452 VERIFY0(spa_create(name, nvroot, props, NULL)); 2453 fnvlist_free(nvroot); 2454 fnvlist_free(props); 2455 2456 VERIFY0(spa_open(name, &spa, FTAG)); 2457 VERIFY3U(spa_version(spa), ==, version); 2458 newversion = ztest_random_spa_version(version + 1); 2459 2460 if (ztest_opts.zo_verbose >= 4) { 2461 (void) printf("upgrading spa version from %llu to %llu\n", 2462 (u_longlong_t)version, (u_longlong_t)newversion); 2463 } 2464 2465 spa_upgrade(spa, newversion); 2466 VERIFY3U(spa_version(spa), >, version); 2467 VERIFY3U(spa_version(spa), ==, fnvlist_lookup_uint64(spa->spa_config, 2468 zpool_prop_to_name(ZPOOL_PROP_VERSION))); 2469 spa_close(spa, FTAG); 2470 2471 strfree(name); 2472 mutex_exit(&ztest_vdev_lock); 2473 } 2474 2475 static vdev_t * 2476 vdev_lookup_by_path(vdev_t *vd, const char *path) 2477 { 2478 vdev_t *mvd; 2479 2480 if (vd->vdev_path != NULL && strcmp(path, vd->vdev_path) == 0) 2481 return (vd); 2482 2483 for (int c = 0; c < vd->vdev_children; c++) 2484 if ((mvd = vdev_lookup_by_path(vd->vdev_child[c], path)) != 2485 NULL) 2486 return (mvd); 2487 2488 return (NULL); 2489 } 2490 2491 /* 2492 * Find the first available hole which can be used as a top-level. 2493 */ 2494 int 2495 find_vdev_hole(spa_t *spa) 2496 { 2497 vdev_t *rvd = spa->spa_root_vdev; 2498 int c; 2499 2500 ASSERT(spa_config_held(spa, SCL_VDEV, RW_READER) == SCL_VDEV); 2501 2502 for (c = 0; c < rvd->vdev_children; c++) { 2503 vdev_t *cvd = rvd->vdev_child[c]; 2504 2505 if (cvd->vdev_ishole) 2506 break; 2507 } 2508 return (c); 2509 } 2510 2511 /* 2512 * Verify that vdev_add() works as expected. 2513 */ 2514 /* ARGSUSED */ 2515 void 2516 ztest_vdev_add_remove(ztest_ds_t *zd, uint64_t id) 2517 { 2518 ztest_shared_t *zs = ztest_shared; 2519 spa_t *spa = ztest_spa; 2520 uint64_t leaves; 2521 uint64_t guid; 2522 nvlist_t *nvroot; 2523 int error; 2524 2525 mutex_enter(&ztest_vdev_lock); 2526 leaves = MAX(zs->zs_mirrors + zs->zs_splits, 1) * ztest_opts.zo_raidz; 2527 2528 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2529 2530 ztest_shared->zs_vdev_next_leaf = find_vdev_hole(spa) * leaves; 2531 2532 /* 2533 * If we have slogs then remove them 1/4 of the time. 2534 */ 2535 if (spa_has_slogs(spa) && ztest_random(4) == 0) { 2536 /* 2537 * Grab the guid from the head of the log class rotor. 2538 */ 2539 guid = spa_log_class(spa)->mc_rotor->mg_vd->vdev_guid; 2540 2541 spa_config_exit(spa, SCL_VDEV, FTAG); 2542 2543 /* 2544 * We have to grab the zs_name_lock as writer to 2545 * prevent a race between removing a slog (dmu_objset_find) 2546 * and destroying a dataset. Removing the slog will 2547 * grab a reference on the dataset which may cause 2548 * dmu_objset_destroy() to fail with EBUSY thus 2549 * leaving the dataset in an inconsistent state. 2550 */ 2551 rw_enter(&ztest_name_lock, RW_WRITER); 2552 error = spa_vdev_remove(spa, guid, B_FALSE); 2553 rw_exit(&ztest_name_lock); 2554 2555 if (error && error != EEXIST) 2556 fatal(0, "spa_vdev_remove() = %d", error); 2557 } else { 2558 spa_config_exit(spa, SCL_VDEV, FTAG); 2559 2560 /* 2561 * Make 1/4 of the devices be log devices. 2562 */ 2563 nvroot = make_vdev_root(NULL, NULL, NULL, 2564 ztest_opts.zo_vdev_size, 0, 2565 ztest_random(4) == 0, ztest_opts.zo_raidz, 2566 zs->zs_mirrors, 1); 2567 2568 error = spa_vdev_add(spa, nvroot); 2569 nvlist_free(nvroot); 2570 2571 if (error == ENOSPC) 2572 ztest_record_enospc("spa_vdev_add"); 2573 else if (error != 0) 2574 fatal(0, "spa_vdev_add() = %d", error); 2575 } 2576 2577 mutex_exit(&ztest_vdev_lock); 2578 } 2579 2580 /* 2581 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected. 2582 */ 2583 /* ARGSUSED */ 2584 void 2585 ztest_vdev_aux_add_remove(ztest_ds_t *zd, uint64_t id) 2586 { 2587 ztest_shared_t *zs = ztest_shared; 2588 spa_t *spa = ztest_spa; 2589 vdev_t *rvd = spa->spa_root_vdev; 2590 spa_aux_vdev_t *sav; 2591 char *aux; 2592 uint64_t guid = 0; 2593 int error; 2594 2595 if (ztest_random(2) == 0) { 2596 sav = &spa->spa_spares; 2597 aux = ZPOOL_CONFIG_SPARES; 2598 } else { 2599 sav = &spa->spa_l2cache; 2600 aux = ZPOOL_CONFIG_L2CACHE; 2601 } 2602 2603 mutex_enter(&ztest_vdev_lock); 2604 2605 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2606 2607 if (sav->sav_count != 0 && ztest_random(4) == 0) { 2608 /* 2609 * Pick a random device to remove. 2610 */ 2611 guid = sav->sav_vdevs[ztest_random(sav->sav_count)]->vdev_guid; 2612 } else { 2613 /* 2614 * Find an unused device we can add. 2615 */ 2616 zs->zs_vdev_aux = 0; 2617 for (;;) { 2618 char path[MAXPATHLEN]; 2619 int c; 2620 (void) snprintf(path, sizeof (path), ztest_aux_template, 2621 ztest_opts.zo_dir, ztest_opts.zo_pool, aux, 2622 zs->zs_vdev_aux); 2623 for (c = 0; c < sav->sav_count; c++) 2624 if (strcmp(sav->sav_vdevs[c]->vdev_path, 2625 path) == 0) 2626 break; 2627 if (c == sav->sav_count && 2628 vdev_lookup_by_path(rvd, path) == NULL) 2629 break; 2630 zs->zs_vdev_aux++; 2631 } 2632 } 2633 2634 spa_config_exit(spa, SCL_VDEV, FTAG); 2635 2636 if (guid == 0) { 2637 /* 2638 * Add a new device. 2639 */ 2640 nvlist_t *nvroot = make_vdev_root(NULL, aux, NULL, 2641 (ztest_opts.zo_vdev_size * 5) / 4, 0, 0, 0, 0, 1); 2642 error = spa_vdev_add(spa, nvroot); 2643 if (error != 0) 2644 fatal(0, "spa_vdev_add(%p) = %d", nvroot, error); 2645 nvlist_free(nvroot); 2646 } else { 2647 /* 2648 * Remove an existing device. Sometimes, dirty its 2649 * vdev state first to make sure we handle removal 2650 * of devices that have pending state changes. 2651 */ 2652 if (ztest_random(2) == 0) 2653 (void) vdev_online(spa, guid, 0, NULL); 2654 2655 error = spa_vdev_remove(spa, guid, B_FALSE); 2656 if (error != 0 && error != EBUSY) 2657 fatal(0, "spa_vdev_remove(%llu) = %d", guid, error); 2658 } 2659 2660 mutex_exit(&ztest_vdev_lock); 2661 } 2662 2663 /* 2664 * split a pool if it has mirror tlvdevs 2665 */ 2666 /* ARGSUSED */ 2667 void 2668 ztest_split_pool(ztest_ds_t *zd, uint64_t id) 2669 { 2670 ztest_shared_t *zs = ztest_shared; 2671 spa_t *spa = ztest_spa; 2672 vdev_t *rvd = spa->spa_root_vdev; 2673 nvlist_t *tree, **child, *config, *split, **schild; 2674 uint_t c, children, schildren = 0, lastlogid = 0; 2675 int error = 0; 2676 2677 mutex_enter(&ztest_vdev_lock); 2678 2679 /* ensure we have a useable config; mirrors of raidz aren't supported */ 2680 if (zs->zs_mirrors < 3 || ztest_opts.zo_raidz > 1) { 2681 mutex_exit(&ztest_vdev_lock); 2682 return; 2683 } 2684 2685 /* clean up the old pool, if any */ 2686 (void) spa_destroy("splitp"); 2687 2688 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2689 2690 /* generate a config from the existing config */ 2691 mutex_enter(&spa->spa_props_lock); 2692 VERIFY(nvlist_lookup_nvlist(spa->spa_config, ZPOOL_CONFIG_VDEV_TREE, 2693 &tree) == 0); 2694 mutex_exit(&spa->spa_props_lock); 2695 2696 VERIFY(nvlist_lookup_nvlist_array(tree, ZPOOL_CONFIG_CHILDREN, &child, 2697 &children) == 0); 2698 2699 schild = malloc(rvd->vdev_children * sizeof (nvlist_t *)); 2700 for (c = 0; c < children; c++) { 2701 vdev_t *tvd = rvd->vdev_child[c]; 2702 nvlist_t **mchild; 2703 uint_t mchildren; 2704 2705 if (tvd->vdev_islog || tvd->vdev_ops == &vdev_hole_ops) { 2706 VERIFY(nvlist_alloc(&schild[schildren], NV_UNIQUE_NAME, 2707 0) == 0); 2708 VERIFY(nvlist_add_string(schild[schildren], 2709 ZPOOL_CONFIG_TYPE, VDEV_TYPE_HOLE) == 0); 2710 VERIFY(nvlist_add_uint64(schild[schildren], 2711 ZPOOL_CONFIG_IS_HOLE, 1) == 0); 2712 if (lastlogid == 0) 2713 lastlogid = schildren; 2714 ++schildren; 2715 continue; 2716 } 2717 lastlogid = 0; 2718 VERIFY(nvlist_lookup_nvlist_array(child[c], 2719 ZPOOL_CONFIG_CHILDREN, &mchild, &mchildren) == 0); 2720 VERIFY(nvlist_dup(mchild[0], &schild[schildren++], 0) == 0); 2721 } 2722 2723 /* OK, create a config that can be used to split */ 2724 VERIFY(nvlist_alloc(&split, NV_UNIQUE_NAME, 0) == 0); 2725 VERIFY(nvlist_add_string(split, ZPOOL_CONFIG_TYPE, 2726 VDEV_TYPE_ROOT) == 0); 2727 VERIFY(nvlist_add_nvlist_array(split, ZPOOL_CONFIG_CHILDREN, schild, 2728 lastlogid != 0 ? lastlogid : schildren) == 0); 2729 2730 VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, 0) == 0); 2731 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, split) == 0); 2732 2733 for (c = 0; c < schildren; c++) 2734 nvlist_free(schild[c]); 2735 free(schild); 2736 nvlist_free(split); 2737 2738 spa_config_exit(spa, SCL_VDEV, FTAG); 2739 2740 rw_enter(&ztest_name_lock, RW_WRITER); 2741 error = spa_vdev_split_mirror(spa, "splitp", config, NULL, B_FALSE); 2742 rw_exit(&ztest_name_lock); 2743 2744 nvlist_free(config); 2745 2746 if (error == 0) { 2747 (void) printf("successful split - results:\n"); 2748 mutex_enter(&spa_namespace_lock); 2749 show_pool_stats(spa); 2750 show_pool_stats(spa_lookup("splitp")); 2751 mutex_exit(&spa_namespace_lock); 2752 ++zs->zs_splits; 2753 --zs->zs_mirrors; 2754 } 2755 mutex_exit(&ztest_vdev_lock); 2756 2757 } 2758 2759 /* 2760 * Verify that we can attach and detach devices. 2761 */ 2762 /* ARGSUSED */ 2763 void 2764 ztest_vdev_attach_detach(ztest_ds_t *zd, uint64_t id) 2765 { 2766 ztest_shared_t *zs = ztest_shared; 2767 spa_t *spa = ztest_spa; 2768 spa_aux_vdev_t *sav = &spa->spa_spares; 2769 vdev_t *rvd = spa->spa_root_vdev; 2770 vdev_t *oldvd, *newvd, *pvd; 2771 nvlist_t *root; 2772 uint64_t leaves; 2773 uint64_t leaf, top; 2774 uint64_t ashift = ztest_get_ashift(); 2775 uint64_t oldguid, pguid; 2776 uint64_t oldsize, newsize; 2777 char oldpath[MAXPATHLEN], newpath[MAXPATHLEN]; 2778 int replacing; 2779 int oldvd_has_siblings = B_FALSE; 2780 int newvd_is_spare = B_FALSE; 2781 int oldvd_is_log; 2782 int error, expected_error; 2783 2784 mutex_enter(&ztest_vdev_lock); 2785 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 2786 2787 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 2788 2789 /* 2790 * Decide whether to do an attach or a replace. 2791 */ 2792 replacing = ztest_random(2); 2793 2794 /* 2795 * Pick a random top-level vdev. 2796 */ 2797 top = ztest_random_vdev_top(spa, B_TRUE); 2798 2799 /* 2800 * Pick a random leaf within it. 2801 */ 2802 leaf = ztest_random(leaves); 2803 2804 /* 2805 * Locate this vdev. 2806 */ 2807 oldvd = rvd->vdev_child[top]; 2808 if (zs->zs_mirrors >= 1) { 2809 ASSERT(oldvd->vdev_ops == &vdev_mirror_ops); 2810 ASSERT(oldvd->vdev_children >= zs->zs_mirrors); 2811 oldvd = oldvd->vdev_child[leaf / ztest_opts.zo_raidz]; 2812 } 2813 if (ztest_opts.zo_raidz > 1) { 2814 ASSERT(oldvd->vdev_ops == &vdev_raidz_ops); 2815 ASSERT(oldvd->vdev_children == ztest_opts.zo_raidz); 2816 oldvd = oldvd->vdev_child[leaf % ztest_opts.zo_raidz]; 2817 } 2818 2819 /* 2820 * If we're already doing an attach or replace, oldvd may be a 2821 * mirror vdev -- in which case, pick a random child. 2822 */ 2823 while (oldvd->vdev_children != 0) { 2824 oldvd_has_siblings = B_TRUE; 2825 ASSERT(oldvd->vdev_children >= 2); 2826 oldvd = oldvd->vdev_child[ztest_random(oldvd->vdev_children)]; 2827 } 2828 2829 oldguid = oldvd->vdev_guid; 2830 oldsize = vdev_get_min_asize(oldvd); 2831 oldvd_is_log = oldvd->vdev_top->vdev_islog; 2832 (void) strcpy(oldpath, oldvd->vdev_path); 2833 pvd = oldvd->vdev_parent; 2834 pguid = pvd->vdev_guid; 2835 2836 /* 2837 * If oldvd has siblings, then half of the time, detach it. 2838 */ 2839 if (oldvd_has_siblings && ztest_random(2) == 0) { 2840 spa_config_exit(spa, SCL_VDEV, FTAG); 2841 error = spa_vdev_detach(spa, oldguid, pguid, B_FALSE); 2842 if (error != 0 && error != ENODEV && error != EBUSY && 2843 error != ENOTSUP) 2844 fatal(0, "detach (%s) returned %d", oldpath, error); 2845 mutex_exit(&ztest_vdev_lock); 2846 return; 2847 } 2848 2849 /* 2850 * For the new vdev, choose with equal probability between the two 2851 * standard paths (ending in either 'a' or 'b') or a random hot spare. 2852 */ 2853 if (sav->sav_count != 0 && ztest_random(3) == 0) { 2854 newvd = sav->sav_vdevs[ztest_random(sav->sav_count)]; 2855 newvd_is_spare = B_TRUE; 2856 (void) strcpy(newpath, newvd->vdev_path); 2857 } else { 2858 (void) snprintf(newpath, sizeof (newpath), ztest_dev_template, 2859 ztest_opts.zo_dir, ztest_opts.zo_pool, 2860 top * leaves + leaf); 2861 if (ztest_random(2) == 0) 2862 newpath[strlen(newpath) - 1] = 'b'; 2863 newvd = vdev_lookup_by_path(rvd, newpath); 2864 } 2865 2866 if (newvd) { 2867 newsize = vdev_get_min_asize(newvd); 2868 } else { 2869 /* 2870 * Make newsize a little bigger or smaller than oldsize. 2871 * If it's smaller, the attach should fail. 2872 * If it's larger, and we're doing a replace, 2873 * we should get dynamic LUN growth when we're done. 2874 */ 2875 newsize = 10 * oldsize / (9 + ztest_random(3)); 2876 } 2877 2878 /* 2879 * If pvd is not a mirror or root, the attach should fail with ENOTSUP, 2880 * unless it's a replace; in that case any non-replacing parent is OK. 2881 * 2882 * If newvd is already part of the pool, it should fail with EBUSY. 2883 * 2884 * If newvd is too small, it should fail with EOVERFLOW. 2885 */ 2886 if (pvd->vdev_ops != &vdev_mirror_ops && 2887 pvd->vdev_ops != &vdev_root_ops && (!replacing || 2888 pvd->vdev_ops == &vdev_replacing_ops || 2889 pvd->vdev_ops == &vdev_spare_ops)) 2890 expected_error = ENOTSUP; 2891 else if (newvd_is_spare && (!replacing || oldvd_is_log)) 2892 expected_error = ENOTSUP; 2893 else if (newvd == oldvd) 2894 expected_error = replacing ? 0 : EBUSY; 2895 else if (vdev_lookup_by_path(rvd, newpath) != NULL) 2896 expected_error = EBUSY; 2897 else if (newsize < oldsize) 2898 expected_error = EOVERFLOW; 2899 else if (ashift > oldvd->vdev_top->vdev_ashift) 2900 expected_error = EDOM; 2901 else 2902 expected_error = 0; 2903 2904 spa_config_exit(spa, SCL_VDEV, FTAG); 2905 2906 /* 2907 * Build the nvlist describing newpath. 2908 */ 2909 root = make_vdev_root(newpath, NULL, NULL, newvd == NULL ? newsize : 0, 2910 ashift, 0, 0, 0, 1); 2911 2912 error = spa_vdev_attach(spa, oldguid, root, replacing); 2913 2914 nvlist_free(root); 2915 2916 /* 2917 * If our parent was the replacing vdev, but the replace completed, 2918 * then instead of failing with ENOTSUP we may either succeed, 2919 * fail with ENODEV, or fail with EOVERFLOW. 2920 */ 2921 if (expected_error == ENOTSUP && 2922 (error == 0 || error == ENODEV || error == EOVERFLOW)) 2923 expected_error = error; 2924 2925 /* 2926 * If someone grew the LUN, the replacement may be too small. 2927 */ 2928 if (error == EOVERFLOW || error == EBUSY) 2929 expected_error = error; 2930 2931 /* XXX workaround 6690467 */ 2932 if (error != expected_error && expected_error != EBUSY) { 2933 fatal(0, "attach (%s %llu, %s %llu, %d) " 2934 "returned %d, expected %d", 2935 oldpath, oldsize, newpath, 2936 newsize, replacing, error, expected_error); 2937 } 2938 2939 mutex_exit(&ztest_vdev_lock); 2940 } 2941 2942 /* 2943 * Callback function which expands the physical size of the vdev. 2944 */ 2945 vdev_t * 2946 grow_vdev(vdev_t *vd, void *arg) 2947 { 2948 spa_t *spa = vd->vdev_spa; 2949 size_t *newsize = arg; 2950 size_t fsize; 2951 int fd; 2952 2953 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2954 ASSERT(vd->vdev_ops->vdev_op_leaf); 2955 2956 if ((fd = open(vd->vdev_path, O_RDWR)) == -1) 2957 return (vd); 2958 2959 fsize = lseek(fd, 0, SEEK_END); 2960 (void) ftruncate(fd, *newsize); 2961 2962 if (ztest_opts.zo_verbose >= 6) { 2963 (void) printf("%s grew from %lu to %lu bytes\n", 2964 vd->vdev_path, (ulong_t)fsize, (ulong_t)*newsize); 2965 } 2966 (void) close(fd); 2967 return (NULL); 2968 } 2969 2970 /* 2971 * Callback function which expands a given vdev by calling vdev_online(). 2972 */ 2973 /* ARGSUSED */ 2974 vdev_t * 2975 online_vdev(vdev_t *vd, void *arg) 2976 { 2977 spa_t *spa = vd->vdev_spa; 2978 vdev_t *tvd = vd->vdev_top; 2979 uint64_t guid = vd->vdev_guid; 2980 uint64_t generation = spa->spa_config_generation + 1; 2981 vdev_state_t newstate = VDEV_STATE_UNKNOWN; 2982 int error; 2983 2984 ASSERT(spa_config_held(spa, SCL_STATE, RW_READER) == SCL_STATE); 2985 ASSERT(vd->vdev_ops->vdev_op_leaf); 2986 2987 /* Calling vdev_online will initialize the new metaslabs */ 2988 spa_config_exit(spa, SCL_STATE, spa); 2989 error = vdev_online(spa, guid, ZFS_ONLINE_EXPAND, &newstate); 2990 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 2991 2992 /* 2993 * If vdev_online returned an error or the underlying vdev_open 2994 * failed then we abort the expand. The only way to know that 2995 * vdev_open fails is by checking the returned newstate. 2996 */ 2997 if (error || newstate != VDEV_STATE_HEALTHY) { 2998 if (ztest_opts.zo_verbose >= 5) { 2999 (void) printf("Unable to expand vdev, state %llu, " 3000 "error %d\n", (u_longlong_t)newstate, error); 3001 } 3002 return (vd); 3003 } 3004 ASSERT3U(newstate, ==, VDEV_STATE_HEALTHY); 3005 3006 /* 3007 * Since we dropped the lock we need to ensure that we're 3008 * still talking to the original vdev. It's possible this 3009 * vdev may have been detached/replaced while we were 3010 * trying to online it. 3011 */ 3012 if (generation != spa->spa_config_generation) { 3013 if (ztest_opts.zo_verbose >= 5) { 3014 (void) printf("vdev configuration has changed, " 3015 "guid %llu, state %llu, expected gen %llu, " 3016 "got gen %llu\n", 3017 (u_longlong_t)guid, 3018 (u_longlong_t)tvd->vdev_state, 3019 (u_longlong_t)generation, 3020 (u_longlong_t)spa->spa_config_generation); 3021 } 3022 return (vd); 3023 } 3024 return (NULL); 3025 } 3026 3027 /* 3028 * Traverse the vdev tree calling the supplied function. 3029 * We continue to walk the tree until we either have walked all 3030 * children or we receive a non-NULL return from the callback. 3031 * If a NULL callback is passed, then we just return back the first 3032 * leaf vdev we encounter. 3033 */ 3034 vdev_t * 3035 vdev_walk_tree(vdev_t *vd, vdev_t *(*func)(vdev_t *, void *), void *arg) 3036 { 3037 if (vd->vdev_ops->vdev_op_leaf) { 3038 if (func == NULL) 3039 return (vd); 3040 else 3041 return (func(vd, arg)); 3042 } 3043 3044 for (uint_t c = 0; c < vd->vdev_children; c++) { 3045 vdev_t *cvd = vd->vdev_child[c]; 3046 if ((cvd = vdev_walk_tree(cvd, func, arg)) != NULL) 3047 return (cvd); 3048 } 3049 return (NULL); 3050 } 3051 3052 /* 3053 * Verify that dynamic LUN growth works as expected. 3054 */ 3055 /* ARGSUSED */ 3056 void 3057 ztest_vdev_LUN_growth(ztest_ds_t *zd, uint64_t id) 3058 { 3059 spa_t *spa = ztest_spa; 3060 vdev_t *vd, *tvd; 3061 metaslab_class_t *mc; 3062 metaslab_group_t *mg; 3063 size_t psize, newsize; 3064 uint64_t top; 3065 uint64_t old_class_space, new_class_space, old_ms_count, new_ms_count; 3066 3067 mutex_enter(&ztest_vdev_lock); 3068 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3069 3070 top = ztest_random_vdev_top(spa, B_TRUE); 3071 3072 tvd = spa->spa_root_vdev->vdev_child[top]; 3073 mg = tvd->vdev_mg; 3074 mc = mg->mg_class; 3075 old_ms_count = tvd->vdev_ms_count; 3076 old_class_space = metaslab_class_get_space(mc); 3077 3078 /* 3079 * Determine the size of the first leaf vdev associated with 3080 * our top-level device. 3081 */ 3082 vd = vdev_walk_tree(tvd, NULL, NULL); 3083 ASSERT3P(vd, !=, NULL); 3084 ASSERT(vd->vdev_ops->vdev_op_leaf); 3085 3086 psize = vd->vdev_psize; 3087 3088 /* 3089 * We only try to expand the vdev if it's healthy, less than 4x its 3090 * original size, and it has a valid psize. 3091 */ 3092 if (tvd->vdev_state != VDEV_STATE_HEALTHY || 3093 psize == 0 || psize >= 4 * ztest_opts.zo_vdev_size) { 3094 spa_config_exit(spa, SCL_STATE, spa); 3095 mutex_exit(&ztest_vdev_lock); 3096 return; 3097 } 3098 ASSERT(psize > 0); 3099 newsize = psize + psize / 8; 3100 ASSERT3U(newsize, >, psize); 3101 3102 if (ztest_opts.zo_verbose >= 6) { 3103 (void) printf("Expanding LUN %s from %lu to %lu\n", 3104 vd->vdev_path, (ulong_t)psize, (ulong_t)newsize); 3105 } 3106 3107 /* 3108 * Growing the vdev is a two step process: 3109 * 1). expand the physical size (i.e. relabel) 3110 * 2). online the vdev to create the new metaslabs 3111 */ 3112 if (vdev_walk_tree(tvd, grow_vdev, &newsize) != NULL || 3113 vdev_walk_tree(tvd, online_vdev, NULL) != NULL || 3114 tvd->vdev_state != VDEV_STATE_HEALTHY) { 3115 if (ztest_opts.zo_verbose >= 5) { 3116 (void) printf("Could not expand LUN because " 3117 "the vdev configuration changed.\n"); 3118 } 3119 spa_config_exit(spa, SCL_STATE, spa); 3120 mutex_exit(&ztest_vdev_lock); 3121 return; 3122 } 3123 3124 spa_config_exit(spa, SCL_STATE, spa); 3125 3126 /* 3127 * Expanding the LUN will update the config asynchronously, 3128 * thus we must wait for the async thread to complete any 3129 * pending tasks before proceeding. 3130 */ 3131 for (;;) { 3132 boolean_t done; 3133 mutex_enter(&spa->spa_async_lock); 3134 done = (spa->spa_async_thread == NULL && !spa->spa_async_tasks); 3135 mutex_exit(&spa->spa_async_lock); 3136 if (done) 3137 break; 3138 txg_wait_synced(spa_get_dsl(spa), 0); 3139 (void) poll(NULL, 0, 100); 3140 } 3141 3142 spa_config_enter(spa, SCL_STATE, spa, RW_READER); 3143 3144 tvd = spa->spa_root_vdev->vdev_child[top]; 3145 new_ms_count = tvd->vdev_ms_count; 3146 new_class_space = metaslab_class_get_space(mc); 3147 3148 if (tvd->vdev_mg != mg || mg->mg_class != mc) { 3149 if (ztest_opts.zo_verbose >= 5) { 3150 (void) printf("Could not verify LUN expansion due to " 3151 "intervening vdev offline or remove.\n"); 3152 } 3153 spa_config_exit(spa, SCL_STATE, spa); 3154 mutex_exit(&ztest_vdev_lock); 3155 return; 3156 } 3157 3158 /* 3159 * Make sure we were able to grow the vdev. 3160 */ 3161 if (new_ms_count <= old_ms_count) 3162 fatal(0, "LUN expansion failed: ms_count %llu <= %llu\n", 3163 old_ms_count, new_ms_count); 3164 3165 /* 3166 * Make sure we were able to grow the pool. 3167 */ 3168 if (new_class_space <= old_class_space) 3169 fatal(0, "LUN expansion failed: class_space %llu <= %llu\n", 3170 old_class_space, new_class_space); 3171 3172 if (ztest_opts.zo_verbose >= 5) { 3173 char oldnumbuf[NN_NUMBUF_SZ], newnumbuf[NN_NUMBUF_SZ]; 3174 3175 nicenum(old_class_space, oldnumbuf, sizeof (oldnumbuf)); 3176 nicenum(new_class_space, newnumbuf, sizeof (newnumbuf)); 3177 (void) printf("%s grew from %s to %s\n", 3178 spa->spa_name, oldnumbuf, newnumbuf); 3179 } 3180 3181 spa_config_exit(spa, SCL_STATE, spa); 3182 mutex_exit(&ztest_vdev_lock); 3183 } 3184 3185 /* 3186 * Verify that dmu_objset_{create,destroy,open,close} work as expected. 3187 */ 3188 /* ARGSUSED */ 3189 static void 3190 ztest_objset_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx) 3191 { 3192 /* 3193 * Create the objects common to all ztest datasets. 3194 */ 3195 VERIFY(zap_create_claim(os, ZTEST_DIROBJ, 3196 DMU_OT_ZAP_OTHER, DMU_OT_NONE, 0, tx) == 0); 3197 } 3198 3199 static int 3200 ztest_dataset_create(char *dsname) 3201 { 3202 uint64_t zilset = ztest_random(100); 3203 int err = dmu_objset_create(dsname, DMU_OST_OTHER, 0, 3204 ztest_objset_create_cb, NULL); 3205 3206 if (err || zilset < 80) 3207 return (err); 3208 3209 if (ztest_opts.zo_verbose >= 6) 3210 (void) printf("Setting dataset %s to sync always\n", dsname); 3211 return (ztest_dsl_prop_set_uint64(dsname, ZFS_PROP_SYNC, 3212 ZFS_SYNC_ALWAYS, B_FALSE)); 3213 } 3214 3215 /* ARGSUSED */ 3216 static int 3217 ztest_objset_destroy_cb(const char *name, void *arg) 3218 { 3219 objset_t *os; 3220 dmu_object_info_t doi; 3221 int error; 3222 3223 /* 3224 * Verify that the dataset contains a directory object. 3225 */ 3226 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, FTAG, &os)); 3227 error = dmu_object_info(os, ZTEST_DIROBJ, &doi); 3228 if (error != ENOENT) { 3229 /* We could have crashed in the middle of destroying it */ 3230 ASSERT0(error); 3231 ASSERT3U(doi.doi_type, ==, DMU_OT_ZAP_OTHER); 3232 ASSERT3S(doi.doi_physical_blocks_512, >=, 0); 3233 } 3234 dmu_objset_disown(os, FTAG); 3235 3236 /* 3237 * Destroy the dataset. 3238 */ 3239 if (strchr(name, '@') != NULL) { 3240 VERIFY0(dsl_destroy_snapshot(name, B_TRUE)); 3241 } else { 3242 error = dsl_destroy_head(name); 3243 /* There could be a hold on this dataset */ 3244 if (error != EBUSY) 3245 ASSERT0(error); 3246 } 3247 return (0); 3248 } 3249 3250 static boolean_t 3251 ztest_snapshot_create(char *osname, uint64_t id) 3252 { 3253 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3254 int error; 3255 3256 (void) snprintf(snapname, sizeof (snapname), "%llu", (u_longlong_t)id); 3257 3258 error = dmu_objset_snapshot_one(osname, snapname); 3259 if (error == ENOSPC) { 3260 ztest_record_enospc(FTAG); 3261 return (B_FALSE); 3262 } 3263 if (error != 0 && error != EEXIST) { 3264 fatal(0, "ztest_snapshot_create(%s@%s) = %d", osname, 3265 snapname, error); 3266 } 3267 return (B_TRUE); 3268 } 3269 3270 static boolean_t 3271 ztest_snapshot_destroy(char *osname, uint64_t id) 3272 { 3273 char snapname[ZFS_MAX_DATASET_NAME_LEN]; 3274 int error; 3275 3276 (void) snprintf(snapname, sizeof (snapname), "%s@%llu", osname, 3277 (u_longlong_t)id); 3278 3279 error = dsl_destroy_snapshot(snapname, B_FALSE); 3280 if (error != 0 && error != ENOENT) 3281 fatal(0, "ztest_snapshot_destroy(%s) = %d", snapname, error); 3282 return (B_TRUE); 3283 } 3284 3285 /* ARGSUSED */ 3286 void 3287 ztest_dmu_objset_create_destroy(ztest_ds_t *zd, uint64_t id) 3288 { 3289 ztest_ds_t zdtmp; 3290 int iters; 3291 int error; 3292 objset_t *os, *os2; 3293 char name[ZFS_MAX_DATASET_NAME_LEN]; 3294 zilog_t *zilog; 3295 3296 rw_enter(&ztest_name_lock, RW_READER); 3297 3298 (void) snprintf(name, sizeof (name), "%s/temp_%llu", 3299 ztest_opts.zo_pool, (u_longlong_t)id); 3300 3301 /* 3302 * If this dataset exists from a previous run, process its replay log 3303 * half of the time. If we don't replay it, then dmu_objset_destroy() 3304 * (invoked from ztest_objset_destroy_cb()) should just throw it away. 3305 */ 3306 if (ztest_random(2) == 0 && 3307 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os) == 0) { 3308 ztest_zd_init(&zdtmp, NULL, os); 3309 zil_replay(os, &zdtmp, ztest_replay_vector); 3310 ztest_zd_fini(&zdtmp); 3311 dmu_objset_disown(os, FTAG); 3312 } 3313 3314 /* 3315 * There may be an old instance of the dataset we're about to 3316 * create lying around from a previous run. If so, destroy it 3317 * and all of its snapshots. 3318 */ 3319 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 3320 DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS); 3321 3322 /* 3323 * Verify that the destroyed dataset is no longer in the namespace. 3324 */ 3325 VERIFY3U(ENOENT, ==, dmu_objset_own(name, DMU_OST_OTHER, B_TRUE, 3326 FTAG, &os)); 3327 3328 /* 3329 * Verify that we can create a new dataset. 3330 */ 3331 error = ztest_dataset_create(name); 3332 if (error) { 3333 if (error == ENOSPC) { 3334 ztest_record_enospc(FTAG); 3335 rw_exit(&ztest_name_lock); 3336 return; 3337 } 3338 fatal(0, "dmu_objset_create(%s) = %d", name, error); 3339 } 3340 3341 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os)); 3342 3343 ztest_zd_init(&zdtmp, NULL, os); 3344 3345 /* 3346 * Open the intent log for it. 3347 */ 3348 zilog = zil_open(os, ztest_get_data); 3349 3350 /* 3351 * Put some objects in there, do a little I/O to them, 3352 * and randomly take a couple of snapshots along the way. 3353 */ 3354 iters = ztest_random(5); 3355 for (int i = 0; i < iters; i++) { 3356 ztest_dmu_object_alloc_free(&zdtmp, id); 3357 if (ztest_random(iters) == 0) 3358 (void) ztest_snapshot_create(name, i); 3359 } 3360 3361 /* 3362 * Verify that we cannot create an existing dataset. 3363 */ 3364 VERIFY3U(EEXIST, ==, 3365 dmu_objset_create(name, DMU_OST_OTHER, 0, NULL, NULL)); 3366 3367 /* 3368 * Verify that we can hold an objset that is also owned. 3369 */ 3370 VERIFY3U(0, ==, dmu_objset_hold(name, FTAG, &os2)); 3371 dmu_objset_rele(os2, FTAG); 3372 3373 /* 3374 * Verify that we cannot own an objset that is already owned. 3375 */ 3376 VERIFY3U(EBUSY, ==, 3377 dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, FTAG, &os2)); 3378 3379 zil_close(zilog); 3380 dmu_objset_disown(os, FTAG); 3381 ztest_zd_fini(&zdtmp); 3382 3383 rw_exit(&ztest_name_lock); 3384 } 3385 3386 /* 3387 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected. 3388 */ 3389 void 3390 ztest_dmu_snapshot_create_destroy(ztest_ds_t *zd, uint64_t id) 3391 { 3392 rw_enter(&ztest_name_lock, RW_READER); 3393 (void) ztest_snapshot_destroy(zd->zd_name, id); 3394 (void) ztest_snapshot_create(zd->zd_name, id); 3395 rw_exit(&ztest_name_lock); 3396 } 3397 3398 /* 3399 * Cleanup non-standard snapshots and clones. 3400 */ 3401 void 3402 ztest_dsl_dataset_cleanup(char *osname, uint64_t id) 3403 { 3404 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3405 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3406 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3407 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3408 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3409 int error; 3410 3411 (void) snprintf(snap1name, sizeof (snap1name), 3412 "%s@s1_%llu", osname, id); 3413 (void) snprintf(clone1name, sizeof (clone1name), 3414 "%s/c1_%llu", osname, id); 3415 (void) snprintf(snap2name, sizeof (snap2name), 3416 "%s@s2_%llu", clone1name, id); 3417 (void) snprintf(clone2name, sizeof (clone2name), 3418 "%s/c2_%llu", osname, id); 3419 (void) snprintf(snap3name, sizeof (snap3name), 3420 "%s@s3_%llu", clone1name, id); 3421 3422 error = dsl_destroy_head(clone2name); 3423 if (error && error != ENOENT) 3424 fatal(0, "dsl_destroy_head(%s) = %d", clone2name, error); 3425 error = dsl_destroy_snapshot(snap3name, B_FALSE); 3426 if (error && error != ENOENT) 3427 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap3name, error); 3428 error = dsl_destroy_snapshot(snap2name, B_FALSE); 3429 if (error && error != ENOENT) 3430 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap2name, error); 3431 error = dsl_destroy_head(clone1name); 3432 if (error && error != ENOENT) 3433 fatal(0, "dsl_destroy_head(%s) = %d", clone1name, error); 3434 error = dsl_destroy_snapshot(snap1name, B_FALSE); 3435 if (error && error != ENOENT) 3436 fatal(0, "dsl_destroy_snapshot(%s) = %d", snap1name, error); 3437 } 3438 3439 /* 3440 * Verify dsl_dataset_promote handles EBUSY 3441 */ 3442 void 3443 ztest_dsl_dataset_promote_busy(ztest_ds_t *zd, uint64_t id) 3444 { 3445 objset_t *os; 3446 char snap1name[ZFS_MAX_DATASET_NAME_LEN]; 3447 char clone1name[ZFS_MAX_DATASET_NAME_LEN]; 3448 char snap2name[ZFS_MAX_DATASET_NAME_LEN]; 3449 char clone2name[ZFS_MAX_DATASET_NAME_LEN]; 3450 char snap3name[ZFS_MAX_DATASET_NAME_LEN]; 3451 char *osname = zd->zd_name; 3452 int error; 3453 3454 rw_enter(&ztest_name_lock, RW_READER); 3455 3456 ztest_dsl_dataset_cleanup(osname, id); 3457 3458 (void) snprintf(snap1name, sizeof (snap1name), 3459 "%s@s1_%llu", osname, id); 3460 (void) snprintf(clone1name, sizeof (clone1name), 3461 "%s/c1_%llu", osname, id); 3462 (void) snprintf(snap2name, sizeof (snap2name), 3463 "%s@s2_%llu", clone1name, id); 3464 (void) snprintf(clone2name, sizeof (clone2name), 3465 "%s/c2_%llu", osname, id); 3466 (void) snprintf(snap3name, sizeof (snap3name), 3467 "%s@s3_%llu", clone1name, id); 3468 3469 error = dmu_objset_snapshot_one(osname, strchr(snap1name, '@') + 1); 3470 if (error && error != EEXIST) { 3471 if (error == ENOSPC) { 3472 ztest_record_enospc(FTAG); 3473 goto out; 3474 } 3475 fatal(0, "dmu_take_snapshot(%s) = %d", snap1name, error); 3476 } 3477 3478 error = dmu_objset_clone(clone1name, snap1name); 3479 if (error) { 3480 if (error == ENOSPC) { 3481 ztest_record_enospc(FTAG); 3482 goto out; 3483 } 3484 fatal(0, "dmu_objset_create(%s) = %d", clone1name, error); 3485 } 3486 3487 error = dmu_objset_snapshot_one(clone1name, strchr(snap2name, '@') + 1); 3488 if (error && error != EEXIST) { 3489 if (error == ENOSPC) { 3490 ztest_record_enospc(FTAG); 3491 goto out; 3492 } 3493 fatal(0, "dmu_open_snapshot(%s) = %d", snap2name, error); 3494 } 3495 3496 error = dmu_objset_snapshot_one(clone1name, strchr(snap3name, '@') + 1); 3497 if (error && error != EEXIST) { 3498 if (error == ENOSPC) { 3499 ztest_record_enospc(FTAG); 3500 goto out; 3501 } 3502 fatal(0, "dmu_open_snapshot(%s) = %d", snap3name, error); 3503 } 3504 3505 error = dmu_objset_clone(clone2name, snap3name); 3506 if (error) { 3507 if (error == ENOSPC) { 3508 ztest_record_enospc(FTAG); 3509 goto out; 3510 } 3511 fatal(0, "dmu_objset_create(%s) = %d", clone2name, error); 3512 } 3513 3514 error = dmu_objset_own(snap2name, DMU_OST_ANY, B_TRUE, FTAG, &os); 3515 if (error) 3516 fatal(0, "dmu_objset_own(%s) = %d", snap2name, error); 3517 error = dsl_dataset_promote(clone2name, NULL); 3518 if (error == ENOSPC) { 3519 dmu_objset_disown(os, FTAG); 3520 ztest_record_enospc(FTAG); 3521 goto out; 3522 } 3523 if (error != EBUSY) 3524 fatal(0, "dsl_dataset_promote(%s), %d, not EBUSY", clone2name, 3525 error); 3526 dmu_objset_disown(os, FTAG); 3527 3528 out: 3529 ztest_dsl_dataset_cleanup(osname, id); 3530 3531 rw_exit(&ztest_name_lock); 3532 } 3533 3534 /* 3535 * Verify that dmu_object_{alloc,free} work as expected. 3536 */ 3537 void 3538 ztest_dmu_object_alloc_free(ztest_ds_t *zd, uint64_t id) 3539 { 3540 ztest_od_t od[4]; 3541 int batchsize = sizeof (od) / sizeof (od[0]); 3542 3543 for (int b = 0; b < batchsize; b++) 3544 ztest_od_init(&od[b], id, FTAG, b, DMU_OT_UINT64_OTHER, 0, 0); 3545 3546 /* 3547 * Destroy the previous batch of objects, create a new batch, 3548 * and do some I/O on the new objects. 3549 */ 3550 if (ztest_object_init(zd, od, sizeof (od), B_TRUE) != 0) 3551 return; 3552 3553 while (ztest_random(4 * batchsize) != 0) 3554 ztest_io(zd, od[ztest_random(batchsize)].od_object, 3555 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 3556 } 3557 3558 /* 3559 * Verify that dmu_{read,write} work as expected. 3560 */ 3561 void 3562 ztest_dmu_read_write(ztest_ds_t *zd, uint64_t id) 3563 { 3564 objset_t *os = zd->zd_os; 3565 ztest_od_t od[2]; 3566 dmu_tx_t *tx; 3567 int i, freeit, error; 3568 uint64_t n, s, txg; 3569 bufwad_t *packbuf, *bigbuf, *pack, *bigH, *bigT; 3570 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3571 uint64_t chunksize = (1000 + ztest_random(1000)) * sizeof (uint64_t); 3572 uint64_t regions = 997; 3573 uint64_t stride = 123456789ULL; 3574 uint64_t width = 40; 3575 int free_percent = 5; 3576 3577 /* 3578 * This test uses two objects, packobj and bigobj, that are always 3579 * updated together (i.e. in the same tx) so that their contents are 3580 * in sync and can be compared. Their contents relate to each other 3581 * in a simple way: packobj is a dense array of 'bufwad' structures, 3582 * while bigobj is a sparse array of the same bufwads. Specifically, 3583 * for any index n, there are three bufwads that should be identical: 3584 * 3585 * packobj, at offset n * sizeof (bufwad_t) 3586 * bigobj, at the head of the nth chunk 3587 * bigobj, at the tail of the nth chunk 3588 * 3589 * The chunk size is arbitrary. It doesn't have to be a power of two, 3590 * and it doesn't have any relation to the object blocksize. 3591 * The only requirement is that it can hold at least two bufwads. 3592 * 3593 * Normally, we write the bufwad to each of these locations. 3594 * However, free_percent of the time we instead write zeroes to 3595 * packobj and perform a dmu_free_range() on bigobj. By comparing 3596 * bigobj to packobj, we can verify that the DMU is correctly 3597 * tracking which parts of an object are allocated and free, 3598 * and that the contents of the allocated blocks are correct. 3599 */ 3600 3601 /* 3602 * Read the directory info. If it's the first time, set things up. 3603 */ 3604 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, chunksize); 3605 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3606 3607 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3608 return; 3609 3610 bigobj = od[0].od_object; 3611 packobj = od[1].od_object; 3612 chunksize = od[0].od_gen; 3613 ASSERT(chunksize == od[1].od_gen); 3614 3615 /* 3616 * Prefetch a random chunk of the big object. 3617 * Our aim here is to get some async reads in flight 3618 * for blocks that we may free below; the DMU should 3619 * handle this race correctly. 3620 */ 3621 n = ztest_random(regions) * stride + ztest_random(width); 3622 s = 1 + ztest_random(2 * width - 1); 3623 dmu_prefetch(os, bigobj, 0, n * chunksize, s * chunksize, 3624 ZIO_PRIORITY_SYNC_READ); 3625 3626 /* 3627 * Pick a random index and compute the offsets into packobj and bigobj. 3628 */ 3629 n = ztest_random(regions) * stride + ztest_random(width); 3630 s = 1 + ztest_random(width - 1); 3631 3632 packoff = n * sizeof (bufwad_t); 3633 packsize = s * sizeof (bufwad_t); 3634 3635 bigoff = n * chunksize; 3636 bigsize = s * chunksize; 3637 3638 packbuf = umem_alloc(packsize, UMEM_NOFAIL); 3639 bigbuf = umem_alloc(bigsize, UMEM_NOFAIL); 3640 3641 /* 3642 * free_percent of the time, free a range of bigobj rather than 3643 * overwriting it. 3644 */ 3645 freeit = (ztest_random(100) < free_percent); 3646 3647 /* 3648 * Read the current contents of our objects. 3649 */ 3650 error = dmu_read(os, packobj, packoff, packsize, packbuf, 3651 DMU_READ_PREFETCH); 3652 ASSERT0(error); 3653 error = dmu_read(os, bigobj, bigoff, bigsize, bigbuf, 3654 DMU_READ_PREFETCH); 3655 ASSERT0(error); 3656 3657 /* 3658 * Get a tx for the mods to both packobj and bigobj. 3659 */ 3660 tx = dmu_tx_create(os); 3661 3662 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3663 3664 if (freeit) 3665 dmu_tx_hold_free(tx, bigobj, bigoff, bigsize); 3666 else 3667 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3668 3669 /* This accounts for setting the checksum/compression. */ 3670 dmu_tx_hold_bonus(tx, bigobj); 3671 3672 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3673 if (txg == 0) { 3674 umem_free(packbuf, packsize); 3675 umem_free(bigbuf, bigsize); 3676 return; 3677 } 3678 3679 enum zio_checksum cksum; 3680 do { 3681 cksum = (enum zio_checksum) 3682 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM); 3683 } while (cksum >= ZIO_CHECKSUM_LEGACY_FUNCTIONS); 3684 dmu_object_set_checksum(os, bigobj, cksum, tx); 3685 3686 enum zio_compress comp; 3687 do { 3688 comp = (enum zio_compress) 3689 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION); 3690 } while (comp >= ZIO_COMPRESS_LEGACY_FUNCTIONS); 3691 dmu_object_set_compress(os, bigobj, comp, tx); 3692 3693 /* 3694 * For each index from n to n + s, verify that the existing bufwad 3695 * in packobj matches the bufwads at the head and tail of the 3696 * corresponding chunk in bigobj. Then update all three bufwads 3697 * with the new values we want to write out. 3698 */ 3699 for (i = 0; i < s; i++) { 3700 /* LINTED */ 3701 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3702 /* LINTED */ 3703 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3704 /* LINTED */ 3705 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3706 3707 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3708 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3709 3710 if (pack->bw_txg > txg) 3711 fatal(0, "future leak: got %llx, open txg is %llx", 3712 pack->bw_txg, txg); 3713 3714 if (pack->bw_data != 0 && pack->bw_index != n + i) 3715 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3716 pack->bw_index, n, i); 3717 3718 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3719 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3720 3721 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3722 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3723 3724 if (freeit) { 3725 bzero(pack, sizeof (bufwad_t)); 3726 } else { 3727 pack->bw_index = n + i; 3728 pack->bw_txg = txg; 3729 pack->bw_data = 1 + ztest_random(-2ULL); 3730 } 3731 *bigH = *pack; 3732 *bigT = *pack; 3733 } 3734 3735 /* 3736 * We've verified all the old bufwads, and made new ones. 3737 * Now write them out. 3738 */ 3739 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3740 3741 if (freeit) { 3742 if (ztest_opts.zo_verbose >= 7) { 3743 (void) printf("freeing offset %llx size %llx" 3744 " txg %llx\n", 3745 (u_longlong_t)bigoff, 3746 (u_longlong_t)bigsize, 3747 (u_longlong_t)txg); 3748 } 3749 VERIFY(0 == dmu_free_range(os, bigobj, bigoff, bigsize, tx)); 3750 } else { 3751 if (ztest_opts.zo_verbose >= 7) { 3752 (void) printf("writing offset %llx size %llx" 3753 " txg %llx\n", 3754 (u_longlong_t)bigoff, 3755 (u_longlong_t)bigsize, 3756 (u_longlong_t)txg); 3757 } 3758 dmu_write(os, bigobj, bigoff, bigsize, bigbuf, tx); 3759 } 3760 3761 dmu_tx_commit(tx); 3762 3763 /* 3764 * Sanity check the stuff we just wrote. 3765 */ 3766 { 3767 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 3768 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 3769 3770 VERIFY(0 == dmu_read(os, packobj, packoff, 3771 packsize, packcheck, DMU_READ_PREFETCH)); 3772 VERIFY(0 == dmu_read(os, bigobj, bigoff, 3773 bigsize, bigcheck, DMU_READ_PREFETCH)); 3774 3775 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 3776 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 3777 3778 umem_free(packcheck, packsize); 3779 umem_free(bigcheck, bigsize); 3780 } 3781 3782 umem_free(packbuf, packsize); 3783 umem_free(bigbuf, bigsize); 3784 } 3785 3786 void 3787 compare_and_update_pbbufs(uint64_t s, bufwad_t *packbuf, bufwad_t *bigbuf, 3788 uint64_t bigsize, uint64_t n, uint64_t chunksize, uint64_t txg) 3789 { 3790 uint64_t i; 3791 bufwad_t *pack; 3792 bufwad_t *bigH; 3793 bufwad_t *bigT; 3794 3795 /* 3796 * For each index from n to n + s, verify that the existing bufwad 3797 * in packobj matches the bufwads at the head and tail of the 3798 * corresponding chunk in bigobj. Then update all three bufwads 3799 * with the new values we want to write out. 3800 */ 3801 for (i = 0; i < s; i++) { 3802 /* LINTED */ 3803 pack = (bufwad_t *)((char *)packbuf + i * sizeof (bufwad_t)); 3804 /* LINTED */ 3805 bigH = (bufwad_t *)((char *)bigbuf + i * chunksize); 3806 /* LINTED */ 3807 bigT = (bufwad_t *)((char *)bigH + chunksize) - 1; 3808 3809 ASSERT((uintptr_t)bigH - (uintptr_t)bigbuf < bigsize); 3810 ASSERT((uintptr_t)bigT - (uintptr_t)bigbuf < bigsize); 3811 3812 if (pack->bw_txg > txg) 3813 fatal(0, "future leak: got %llx, open txg is %llx", 3814 pack->bw_txg, txg); 3815 3816 if (pack->bw_data != 0 && pack->bw_index != n + i) 3817 fatal(0, "wrong index: got %llx, wanted %llx+%llx", 3818 pack->bw_index, n, i); 3819 3820 if (bcmp(pack, bigH, sizeof (bufwad_t)) != 0) 3821 fatal(0, "pack/bigH mismatch in %p/%p", pack, bigH); 3822 3823 if (bcmp(pack, bigT, sizeof (bufwad_t)) != 0) 3824 fatal(0, "pack/bigT mismatch in %p/%p", pack, bigT); 3825 3826 pack->bw_index = n + i; 3827 pack->bw_txg = txg; 3828 pack->bw_data = 1 + ztest_random(-2ULL); 3829 3830 *bigH = *pack; 3831 *bigT = *pack; 3832 } 3833 } 3834 3835 void 3836 ztest_dmu_read_write_zcopy(ztest_ds_t *zd, uint64_t id) 3837 { 3838 objset_t *os = zd->zd_os; 3839 ztest_od_t od[2]; 3840 dmu_tx_t *tx; 3841 uint64_t i; 3842 int error; 3843 uint64_t n, s, txg; 3844 bufwad_t *packbuf, *bigbuf; 3845 uint64_t packobj, packoff, packsize, bigobj, bigoff, bigsize; 3846 uint64_t blocksize = ztest_random_blocksize(); 3847 uint64_t chunksize = blocksize; 3848 uint64_t regions = 997; 3849 uint64_t stride = 123456789ULL; 3850 uint64_t width = 9; 3851 dmu_buf_t *bonus_db; 3852 arc_buf_t **bigbuf_arcbufs; 3853 dmu_object_info_t doi; 3854 3855 /* 3856 * This test uses two objects, packobj and bigobj, that are always 3857 * updated together (i.e. in the same tx) so that their contents are 3858 * in sync and can be compared. Their contents relate to each other 3859 * in a simple way: packobj is a dense array of 'bufwad' structures, 3860 * while bigobj is a sparse array of the same bufwads. Specifically, 3861 * for any index n, there are three bufwads that should be identical: 3862 * 3863 * packobj, at offset n * sizeof (bufwad_t) 3864 * bigobj, at the head of the nth chunk 3865 * bigobj, at the tail of the nth chunk 3866 * 3867 * The chunk size is set equal to bigobj block size so that 3868 * dmu_assign_arcbuf() can be tested for object updates. 3869 */ 3870 3871 /* 3872 * Read the directory info. If it's the first time, set things up. 3873 */ 3874 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 3875 ztest_od_init(&od[1], id, FTAG, 1, DMU_OT_UINT64_OTHER, 0, chunksize); 3876 3877 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 3878 return; 3879 3880 bigobj = od[0].od_object; 3881 packobj = od[1].od_object; 3882 blocksize = od[0].od_blocksize; 3883 chunksize = blocksize; 3884 ASSERT(chunksize == od[1].od_gen); 3885 3886 VERIFY(dmu_object_info(os, bigobj, &doi) == 0); 3887 VERIFY(ISP2(doi.doi_data_block_size)); 3888 VERIFY(chunksize == doi.doi_data_block_size); 3889 VERIFY(chunksize >= 2 * sizeof (bufwad_t)); 3890 3891 /* 3892 * Pick a random index and compute the offsets into packobj and bigobj. 3893 */ 3894 n = ztest_random(regions) * stride + ztest_random(width); 3895 s = 1 + ztest_random(width - 1); 3896 3897 packoff = n * sizeof (bufwad_t); 3898 packsize = s * sizeof (bufwad_t); 3899 3900 bigoff = n * chunksize; 3901 bigsize = s * chunksize; 3902 3903 packbuf = umem_zalloc(packsize, UMEM_NOFAIL); 3904 bigbuf = umem_zalloc(bigsize, UMEM_NOFAIL); 3905 3906 VERIFY3U(0, ==, dmu_bonus_hold(os, bigobj, FTAG, &bonus_db)); 3907 3908 bigbuf_arcbufs = umem_zalloc(2 * s * sizeof (arc_buf_t *), UMEM_NOFAIL); 3909 3910 /* 3911 * Iteration 0 test zcopy for DB_UNCACHED dbufs. 3912 * Iteration 1 test zcopy to already referenced dbufs. 3913 * Iteration 2 test zcopy to dirty dbuf in the same txg. 3914 * Iteration 3 test zcopy to dbuf dirty in previous txg. 3915 * Iteration 4 test zcopy when dbuf is no longer dirty. 3916 * Iteration 5 test zcopy when it can't be done. 3917 * Iteration 6 one more zcopy write. 3918 */ 3919 for (i = 0; i < 7; i++) { 3920 uint64_t j; 3921 uint64_t off; 3922 3923 /* 3924 * In iteration 5 (i == 5) use arcbufs 3925 * that don't match bigobj blksz to test 3926 * dmu_assign_arcbuf() when it can't directly 3927 * assign an arcbuf to a dbuf. 3928 */ 3929 for (j = 0; j < s; j++) { 3930 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 3931 bigbuf_arcbufs[j] = 3932 dmu_request_arcbuf(bonus_db, chunksize); 3933 } else { 3934 bigbuf_arcbufs[2 * j] = 3935 dmu_request_arcbuf(bonus_db, chunksize / 2); 3936 bigbuf_arcbufs[2 * j + 1] = 3937 dmu_request_arcbuf(bonus_db, chunksize / 2); 3938 } 3939 } 3940 3941 /* 3942 * Get a tx for the mods to both packobj and bigobj. 3943 */ 3944 tx = dmu_tx_create(os); 3945 3946 dmu_tx_hold_write(tx, packobj, packoff, packsize); 3947 dmu_tx_hold_write(tx, bigobj, bigoff, bigsize); 3948 3949 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 3950 if (txg == 0) { 3951 umem_free(packbuf, packsize); 3952 umem_free(bigbuf, bigsize); 3953 for (j = 0; j < s; j++) { 3954 if (i != 5 || 3955 chunksize < (SPA_MINBLOCKSIZE * 2)) { 3956 dmu_return_arcbuf(bigbuf_arcbufs[j]); 3957 } else { 3958 dmu_return_arcbuf( 3959 bigbuf_arcbufs[2 * j]); 3960 dmu_return_arcbuf( 3961 bigbuf_arcbufs[2 * j + 1]); 3962 } 3963 } 3964 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 3965 dmu_buf_rele(bonus_db, FTAG); 3966 return; 3967 } 3968 3969 /* 3970 * 50% of the time don't read objects in the 1st iteration to 3971 * test dmu_assign_arcbuf() for the case when there're no 3972 * existing dbufs for the specified offsets. 3973 */ 3974 if (i != 0 || ztest_random(2) != 0) { 3975 error = dmu_read(os, packobj, packoff, 3976 packsize, packbuf, DMU_READ_PREFETCH); 3977 ASSERT0(error); 3978 error = dmu_read(os, bigobj, bigoff, bigsize, 3979 bigbuf, DMU_READ_PREFETCH); 3980 ASSERT0(error); 3981 } 3982 compare_and_update_pbbufs(s, packbuf, bigbuf, bigsize, 3983 n, chunksize, txg); 3984 3985 /* 3986 * We've verified all the old bufwads, and made new ones. 3987 * Now write them out. 3988 */ 3989 dmu_write(os, packobj, packoff, packsize, packbuf, tx); 3990 if (ztest_opts.zo_verbose >= 7) { 3991 (void) printf("writing offset %llx size %llx" 3992 " txg %llx\n", 3993 (u_longlong_t)bigoff, 3994 (u_longlong_t)bigsize, 3995 (u_longlong_t)txg); 3996 } 3997 for (off = bigoff, j = 0; j < s; j++, off += chunksize) { 3998 dmu_buf_t *dbt; 3999 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4000 bcopy((caddr_t)bigbuf + (off - bigoff), 4001 bigbuf_arcbufs[j]->b_data, chunksize); 4002 } else { 4003 bcopy((caddr_t)bigbuf + (off - bigoff), 4004 bigbuf_arcbufs[2 * j]->b_data, 4005 chunksize / 2); 4006 bcopy((caddr_t)bigbuf + (off - bigoff) + 4007 chunksize / 2, 4008 bigbuf_arcbufs[2 * j + 1]->b_data, 4009 chunksize / 2); 4010 } 4011 4012 if (i == 1) { 4013 VERIFY(dmu_buf_hold(os, bigobj, off, 4014 FTAG, &dbt, DMU_READ_NO_PREFETCH) == 0); 4015 } 4016 if (i != 5 || chunksize < (SPA_MINBLOCKSIZE * 2)) { 4017 dmu_assign_arcbuf(bonus_db, off, 4018 bigbuf_arcbufs[j], tx); 4019 } else { 4020 dmu_assign_arcbuf(bonus_db, off, 4021 bigbuf_arcbufs[2 * j], tx); 4022 dmu_assign_arcbuf(bonus_db, 4023 off + chunksize / 2, 4024 bigbuf_arcbufs[2 * j + 1], tx); 4025 } 4026 if (i == 1) { 4027 dmu_buf_rele(dbt, FTAG); 4028 } 4029 } 4030 dmu_tx_commit(tx); 4031 4032 /* 4033 * Sanity check the stuff we just wrote. 4034 */ 4035 { 4036 void *packcheck = umem_alloc(packsize, UMEM_NOFAIL); 4037 void *bigcheck = umem_alloc(bigsize, UMEM_NOFAIL); 4038 4039 VERIFY(0 == dmu_read(os, packobj, packoff, 4040 packsize, packcheck, DMU_READ_PREFETCH)); 4041 VERIFY(0 == dmu_read(os, bigobj, bigoff, 4042 bigsize, bigcheck, DMU_READ_PREFETCH)); 4043 4044 ASSERT(bcmp(packbuf, packcheck, packsize) == 0); 4045 ASSERT(bcmp(bigbuf, bigcheck, bigsize) == 0); 4046 4047 umem_free(packcheck, packsize); 4048 umem_free(bigcheck, bigsize); 4049 } 4050 if (i == 2) { 4051 txg_wait_open(dmu_objset_pool(os), 0); 4052 } else if (i == 3) { 4053 txg_wait_synced(dmu_objset_pool(os), 0); 4054 } 4055 } 4056 4057 dmu_buf_rele(bonus_db, FTAG); 4058 umem_free(packbuf, packsize); 4059 umem_free(bigbuf, bigsize); 4060 umem_free(bigbuf_arcbufs, 2 * s * sizeof (arc_buf_t *)); 4061 } 4062 4063 /* ARGSUSED */ 4064 void 4065 ztest_dmu_write_parallel(ztest_ds_t *zd, uint64_t id) 4066 { 4067 ztest_od_t od[1]; 4068 uint64_t offset = (1ULL << (ztest_random(20) + 43)) + 4069 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4070 4071 /* 4072 * Have multiple threads write to large offsets in an object 4073 * to verify that parallel writes to an object -- even to the 4074 * same blocks within the object -- doesn't cause any trouble. 4075 */ 4076 ztest_od_init(&od[0], ID_PARALLEL, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4077 4078 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4079 return; 4080 4081 while (ztest_random(10) != 0) 4082 ztest_io(zd, od[0].od_object, offset); 4083 } 4084 4085 void 4086 ztest_dmu_prealloc(ztest_ds_t *zd, uint64_t id) 4087 { 4088 ztest_od_t od[1]; 4089 uint64_t offset = (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT)) + 4090 (ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 4091 uint64_t count = ztest_random(20) + 1; 4092 uint64_t blocksize = ztest_random_blocksize(); 4093 void *data; 4094 4095 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 4096 4097 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4098 return; 4099 4100 if (ztest_truncate(zd, od[0].od_object, offset, count * blocksize) != 0) 4101 return; 4102 4103 ztest_prealloc(zd, od[0].od_object, offset, count * blocksize); 4104 4105 data = umem_zalloc(blocksize, UMEM_NOFAIL); 4106 4107 while (ztest_random(count) != 0) { 4108 uint64_t randoff = offset + (ztest_random(count) * blocksize); 4109 if (ztest_write(zd, od[0].od_object, randoff, blocksize, 4110 data) != 0) 4111 break; 4112 while (ztest_random(4) != 0) 4113 ztest_io(zd, od[0].od_object, randoff); 4114 } 4115 4116 umem_free(data, blocksize); 4117 } 4118 4119 /* 4120 * Verify that zap_{create,destroy,add,remove,update} work as expected. 4121 */ 4122 #define ZTEST_ZAP_MIN_INTS 1 4123 #define ZTEST_ZAP_MAX_INTS 4 4124 #define ZTEST_ZAP_MAX_PROPS 1000 4125 4126 void 4127 ztest_zap(ztest_ds_t *zd, uint64_t id) 4128 { 4129 objset_t *os = zd->zd_os; 4130 ztest_od_t od[1]; 4131 uint64_t object; 4132 uint64_t txg, last_txg; 4133 uint64_t value[ZTEST_ZAP_MAX_INTS]; 4134 uint64_t zl_ints, zl_intsize, prop; 4135 int i, ints; 4136 dmu_tx_t *tx; 4137 char propname[100], txgname[100]; 4138 int error; 4139 char *hc[2] = { "s.acl.h", ".s.open.h.hyLZlg" }; 4140 4141 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4142 4143 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4144 return; 4145 4146 object = od[0].od_object; 4147 4148 /* 4149 * Generate a known hash collision, and verify that 4150 * we can lookup and remove both entries. 4151 */ 4152 tx = dmu_tx_create(os); 4153 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4154 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4155 if (txg == 0) 4156 return; 4157 for (i = 0; i < 2; i++) { 4158 value[i] = i; 4159 VERIFY3U(0, ==, zap_add(os, object, hc[i], sizeof (uint64_t), 4160 1, &value[i], tx)); 4161 } 4162 for (i = 0; i < 2; i++) { 4163 VERIFY3U(EEXIST, ==, zap_add(os, object, hc[i], 4164 sizeof (uint64_t), 1, &value[i], tx)); 4165 VERIFY3U(0, ==, 4166 zap_length(os, object, hc[i], &zl_intsize, &zl_ints)); 4167 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4168 ASSERT3U(zl_ints, ==, 1); 4169 } 4170 for (i = 0; i < 2; i++) { 4171 VERIFY3U(0, ==, zap_remove(os, object, hc[i], tx)); 4172 } 4173 dmu_tx_commit(tx); 4174 4175 /* 4176 * Generate a buch of random entries. 4177 */ 4178 ints = MAX(ZTEST_ZAP_MIN_INTS, object % ZTEST_ZAP_MAX_INTS); 4179 4180 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4181 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4182 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4183 bzero(value, sizeof (value)); 4184 last_txg = 0; 4185 4186 /* 4187 * If these zap entries already exist, validate their contents. 4188 */ 4189 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4190 if (error == 0) { 4191 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4192 ASSERT3U(zl_ints, ==, 1); 4193 4194 VERIFY(zap_lookup(os, object, txgname, zl_intsize, 4195 zl_ints, &last_txg) == 0); 4196 4197 VERIFY(zap_length(os, object, propname, &zl_intsize, 4198 &zl_ints) == 0); 4199 4200 ASSERT3U(zl_intsize, ==, sizeof (uint64_t)); 4201 ASSERT3U(zl_ints, ==, ints); 4202 4203 VERIFY(zap_lookup(os, object, propname, zl_intsize, 4204 zl_ints, value) == 0); 4205 4206 for (i = 0; i < ints; i++) { 4207 ASSERT3U(value[i], ==, last_txg + object + i); 4208 } 4209 } else { 4210 ASSERT3U(error, ==, ENOENT); 4211 } 4212 4213 /* 4214 * Atomically update two entries in our zap object. 4215 * The first is named txg_%llu, and contains the txg 4216 * in which the property was last updated. The second 4217 * is named prop_%llu, and the nth element of its value 4218 * should be txg + object + n. 4219 */ 4220 tx = dmu_tx_create(os); 4221 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4222 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4223 if (txg == 0) 4224 return; 4225 4226 if (last_txg > txg) 4227 fatal(0, "zap future leak: old %llu new %llu", last_txg, txg); 4228 4229 for (i = 0; i < ints; i++) 4230 value[i] = txg + object + i; 4231 4232 VERIFY3U(0, ==, zap_update(os, object, txgname, sizeof (uint64_t), 4233 1, &txg, tx)); 4234 VERIFY3U(0, ==, zap_update(os, object, propname, sizeof (uint64_t), 4235 ints, value, tx)); 4236 4237 dmu_tx_commit(tx); 4238 4239 /* 4240 * Remove a random pair of entries. 4241 */ 4242 prop = ztest_random(ZTEST_ZAP_MAX_PROPS); 4243 (void) sprintf(propname, "prop_%llu", (u_longlong_t)prop); 4244 (void) sprintf(txgname, "txg_%llu", (u_longlong_t)prop); 4245 4246 error = zap_length(os, object, txgname, &zl_intsize, &zl_ints); 4247 4248 if (error == ENOENT) 4249 return; 4250 4251 ASSERT0(error); 4252 4253 tx = dmu_tx_create(os); 4254 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4255 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4256 if (txg == 0) 4257 return; 4258 VERIFY3U(0, ==, zap_remove(os, object, txgname, tx)); 4259 VERIFY3U(0, ==, zap_remove(os, object, propname, tx)); 4260 dmu_tx_commit(tx); 4261 } 4262 4263 /* 4264 * Testcase to test the upgrading of a microzap to fatzap. 4265 */ 4266 void 4267 ztest_fzap(ztest_ds_t *zd, uint64_t id) 4268 { 4269 objset_t *os = zd->zd_os; 4270 ztest_od_t od[1]; 4271 uint64_t object, txg; 4272 4273 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_ZAP_OTHER, 0, 0); 4274 4275 if (ztest_object_init(zd, od, sizeof (od), !ztest_random(2)) != 0) 4276 return; 4277 4278 object = od[0].od_object; 4279 4280 /* 4281 * Add entries to this ZAP and make sure it spills over 4282 * and gets upgraded to a fatzap. Also, since we are adding 4283 * 2050 entries we should see ptrtbl growth and leaf-block split. 4284 */ 4285 for (int i = 0; i < 2050; i++) { 4286 char name[ZFS_MAX_DATASET_NAME_LEN]; 4287 uint64_t value = i; 4288 dmu_tx_t *tx; 4289 int error; 4290 4291 (void) snprintf(name, sizeof (name), "fzap-%llu-%llu", 4292 id, value); 4293 4294 tx = dmu_tx_create(os); 4295 dmu_tx_hold_zap(tx, object, B_TRUE, name); 4296 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4297 if (txg == 0) 4298 return; 4299 error = zap_add(os, object, name, sizeof (uint64_t), 1, 4300 &value, tx); 4301 ASSERT(error == 0 || error == EEXIST); 4302 dmu_tx_commit(tx); 4303 } 4304 } 4305 4306 /* ARGSUSED */ 4307 void 4308 ztest_zap_parallel(ztest_ds_t *zd, uint64_t id) 4309 { 4310 objset_t *os = zd->zd_os; 4311 ztest_od_t od[1]; 4312 uint64_t txg, object, count, wsize, wc, zl_wsize, zl_wc; 4313 dmu_tx_t *tx; 4314 int i, namelen, error; 4315 int micro = ztest_random(2); 4316 char name[20], string_value[20]; 4317 void *data; 4318 4319 ztest_od_init(&od[0], ID_PARALLEL, FTAG, micro, DMU_OT_ZAP_OTHER, 0, 0); 4320 4321 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4322 return; 4323 4324 object = od[0].od_object; 4325 4326 /* 4327 * Generate a random name of the form 'xxx.....' where each 4328 * x is a random printable character and the dots are dots. 4329 * There are 94 such characters, and the name length goes from 4330 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names. 4331 */ 4332 namelen = ztest_random(sizeof (name) - 5) + 5 + 1; 4333 4334 for (i = 0; i < 3; i++) 4335 name[i] = '!' + ztest_random('~' - '!' + 1); 4336 for (; i < namelen - 1; i++) 4337 name[i] = '.'; 4338 name[i] = '\0'; 4339 4340 if ((namelen & 1) || micro) { 4341 wsize = sizeof (txg); 4342 wc = 1; 4343 data = &txg; 4344 } else { 4345 wsize = 1; 4346 wc = namelen; 4347 data = string_value; 4348 } 4349 4350 count = -1ULL; 4351 VERIFY0(zap_count(os, object, &count)); 4352 ASSERT(count != -1ULL); 4353 4354 /* 4355 * Select an operation: length, lookup, add, update, remove. 4356 */ 4357 i = ztest_random(5); 4358 4359 if (i >= 2) { 4360 tx = dmu_tx_create(os); 4361 dmu_tx_hold_zap(tx, object, B_TRUE, NULL); 4362 txg = ztest_tx_assign(tx, TXG_MIGHTWAIT, FTAG); 4363 if (txg == 0) 4364 return; 4365 bcopy(name, string_value, namelen); 4366 } else { 4367 tx = NULL; 4368 txg = 0; 4369 bzero(string_value, namelen); 4370 } 4371 4372 switch (i) { 4373 4374 case 0: 4375 error = zap_length(os, object, name, &zl_wsize, &zl_wc); 4376 if (error == 0) { 4377 ASSERT3U(wsize, ==, zl_wsize); 4378 ASSERT3U(wc, ==, zl_wc); 4379 } else { 4380 ASSERT3U(error, ==, ENOENT); 4381 } 4382 break; 4383 4384 case 1: 4385 error = zap_lookup(os, object, name, wsize, wc, data); 4386 if (error == 0) { 4387 if (data == string_value && 4388 bcmp(name, data, namelen) != 0) 4389 fatal(0, "name '%s' != val '%s' len %d", 4390 name, data, namelen); 4391 } else { 4392 ASSERT3U(error, ==, ENOENT); 4393 } 4394 break; 4395 4396 case 2: 4397 error = zap_add(os, object, name, wsize, wc, data, tx); 4398 ASSERT(error == 0 || error == EEXIST); 4399 break; 4400 4401 case 3: 4402 VERIFY(zap_update(os, object, name, wsize, wc, data, tx) == 0); 4403 break; 4404 4405 case 4: 4406 error = zap_remove(os, object, name, tx); 4407 ASSERT(error == 0 || error == ENOENT); 4408 break; 4409 } 4410 4411 if (tx != NULL) 4412 dmu_tx_commit(tx); 4413 } 4414 4415 /* 4416 * Commit callback data. 4417 */ 4418 typedef struct ztest_cb_data { 4419 list_node_t zcd_node; 4420 uint64_t zcd_txg; 4421 int zcd_expected_err; 4422 boolean_t zcd_added; 4423 boolean_t zcd_called; 4424 spa_t *zcd_spa; 4425 } ztest_cb_data_t; 4426 4427 /* This is the actual commit callback function */ 4428 static void 4429 ztest_commit_callback(void *arg, int error) 4430 { 4431 ztest_cb_data_t *data = arg; 4432 uint64_t synced_txg; 4433 4434 VERIFY(data != NULL); 4435 VERIFY3S(data->zcd_expected_err, ==, error); 4436 VERIFY(!data->zcd_called); 4437 4438 synced_txg = spa_last_synced_txg(data->zcd_spa); 4439 if (data->zcd_txg > synced_txg) 4440 fatal(0, "commit callback of txg %" PRIu64 " called prematurely" 4441 ", last synced txg = %" PRIu64 "\n", data->zcd_txg, 4442 synced_txg); 4443 4444 data->zcd_called = B_TRUE; 4445 4446 if (error == ECANCELED) { 4447 ASSERT0(data->zcd_txg); 4448 ASSERT(!data->zcd_added); 4449 4450 /* 4451 * The private callback data should be destroyed here, but 4452 * since we are going to check the zcd_called field after 4453 * dmu_tx_abort(), we will destroy it there. 4454 */ 4455 return; 4456 } 4457 4458 /* Was this callback added to the global callback list? */ 4459 if (!data->zcd_added) 4460 goto out; 4461 4462 ASSERT3U(data->zcd_txg, !=, 0); 4463 4464 /* Remove our callback from the list */ 4465 mutex_enter(&zcl.zcl_callbacks_lock); 4466 list_remove(&zcl.zcl_callbacks, data); 4467 mutex_exit(&zcl.zcl_callbacks_lock); 4468 4469 out: 4470 umem_free(data, sizeof (ztest_cb_data_t)); 4471 } 4472 4473 /* Allocate and initialize callback data structure */ 4474 static ztest_cb_data_t * 4475 ztest_create_cb_data(objset_t *os, uint64_t txg) 4476 { 4477 ztest_cb_data_t *cb_data; 4478 4479 cb_data = umem_zalloc(sizeof (ztest_cb_data_t), UMEM_NOFAIL); 4480 4481 cb_data->zcd_txg = txg; 4482 cb_data->zcd_spa = dmu_objset_spa(os); 4483 4484 return (cb_data); 4485 } 4486 4487 /* 4488 * If a number of txgs equal to this threshold have been created after a commit 4489 * callback has been registered but not called, then we assume there is an 4490 * implementation bug. 4491 */ 4492 #define ZTEST_COMMIT_CALLBACK_THRESH (TXG_CONCURRENT_STATES + 2) 4493 4494 /* 4495 * Commit callback test. 4496 */ 4497 void 4498 ztest_dmu_commit_callbacks(ztest_ds_t *zd, uint64_t id) 4499 { 4500 objset_t *os = zd->zd_os; 4501 ztest_od_t od[1]; 4502 dmu_tx_t *tx; 4503 ztest_cb_data_t *cb_data[3], *tmp_cb; 4504 uint64_t old_txg, txg; 4505 int i, error; 4506 4507 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 4508 4509 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 4510 return; 4511 4512 tx = dmu_tx_create(os); 4513 4514 cb_data[0] = ztest_create_cb_data(os, 0); 4515 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[0]); 4516 4517 dmu_tx_hold_write(tx, od[0].od_object, 0, sizeof (uint64_t)); 4518 4519 /* Every once in a while, abort the transaction on purpose */ 4520 if (ztest_random(100) == 0) 4521 error = -1; 4522 4523 if (!error) 4524 error = dmu_tx_assign(tx, TXG_NOWAIT); 4525 4526 txg = error ? 0 : dmu_tx_get_txg(tx); 4527 4528 cb_data[0]->zcd_txg = txg; 4529 cb_data[1] = ztest_create_cb_data(os, txg); 4530 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[1]); 4531 4532 if (error) { 4533 /* 4534 * It's not a strict requirement to call the registered 4535 * callbacks from inside dmu_tx_abort(), but that's what 4536 * it's supposed to happen in the current implementation 4537 * so we will check for that. 4538 */ 4539 for (i = 0; i < 2; i++) { 4540 cb_data[i]->zcd_expected_err = ECANCELED; 4541 VERIFY(!cb_data[i]->zcd_called); 4542 } 4543 4544 dmu_tx_abort(tx); 4545 4546 for (i = 0; i < 2; i++) { 4547 VERIFY(cb_data[i]->zcd_called); 4548 umem_free(cb_data[i], sizeof (ztest_cb_data_t)); 4549 } 4550 4551 return; 4552 } 4553 4554 cb_data[2] = ztest_create_cb_data(os, txg); 4555 dmu_tx_callback_register(tx, ztest_commit_callback, cb_data[2]); 4556 4557 /* 4558 * Read existing data to make sure there isn't a future leak. 4559 */ 4560 VERIFY(0 == dmu_read(os, od[0].od_object, 0, sizeof (uint64_t), 4561 &old_txg, DMU_READ_PREFETCH)); 4562 4563 if (old_txg > txg) 4564 fatal(0, "future leak: got %" PRIu64 ", open txg is %" PRIu64, 4565 old_txg, txg); 4566 4567 dmu_write(os, od[0].od_object, 0, sizeof (uint64_t), &txg, tx); 4568 4569 mutex_enter(&zcl.zcl_callbacks_lock); 4570 4571 /* 4572 * Since commit callbacks don't have any ordering requirement and since 4573 * it is theoretically possible for a commit callback to be called 4574 * after an arbitrary amount of time has elapsed since its txg has been 4575 * synced, it is difficult to reliably determine whether a commit 4576 * callback hasn't been called due to high load or due to a flawed 4577 * implementation. 4578 * 4579 * In practice, we will assume that if after a certain number of txgs a 4580 * commit callback hasn't been called, then most likely there's an 4581 * implementation bug.. 4582 */ 4583 tmp_cb = list_head(&zcl.zcl_callbacks); 4584 if (tmp_cb != NULL && 4585 (txg - ZTEST_COMMIT_CALLBACK_THRESH) > tmp_cb->zcd_txg) { 4586 fatal(0, "Commit callback threshold exceeded, oldest txg: %" 4587 PRIu64 ", open txg: %" PRIu64 "\n", tmp_cb->zcd_txg, txg); 4588 } 4589 4590 /* 4591 * Let's find the place to insert our callbacks. 4592 * 4593 * Even though the list is ordered by txg, it is possible for the 4594 * insertion point to not be the end because our txg may already be 4595 * quiescing at this point and other callbacks in the open txg 4596 * (from other objsets) may have sneaked in. 4597 */ 4598 tmp_cb = list_tail(&zcl.zcl_callbacks); 4599 while (tmp_cb != NULL && tmp_cb->zcd_txg > txg) 4600 tmp_cb = list_prev(&zcl.zcl_callbacks, tmp_cb); 4601 4602 /* Add the 3 callbacks to the list */ 4603 for (i = 0; i < 3; i++) { 4604 if (tmp_cb == NULL) 4605 list_insert_head(&zcl.zcl_callbacks, cb_data[i]); 4606 else 4607 list_insert_after(&zcl.zcl_callbacks, tmp_cb, 4608 cb_data[i]); 4609 4610 cb_data[i]->zcd_added = B_TRUE; 4611 VERIFY(!cb_data[i]->zcd_called); 4612 4613 tmp_cb = cb_data[i]; 4614 } 4615 4616 mutex_exit(&zcl.zcl_callbacks_lock); 4617 4618 dmu_tx_commit(tx); 4619 } 4620 4621 /* ARGSUSED */ 4622 void 4623 ztest_dsl_prop_get_set(ztest_ds_t *zd, uint64_t id) 4624 { 4625 zfs_prop_t proplist[] = { 4626 ZFS_PROP_CHECKSUM, 4627 ZFS_PROP_COMPRESSION, 4628 ZFS_PROP_COPIES, 4629 ZFS_PROP_DEDUP 4630 }; 4631 4632 rw_enter(&ztest_name_lock, RW_READER); 4633 4634 for (int p = 0; p < sizeof (proplist) / sizeof (proplist[0]); p++) 4635 (void) ztest_dsl_prop_set_uint64(zd->zd_name, proplist[p], 4636 ztest_random_dsl_prop(proplist[p]), (int)ztest_random(2)); 4637 4638 rw_exit(&ztest_name_lock); 4639 } 4640 4641 /* ARGSUSED */ 4642 void 4643 ztest_spa_prop_get_set(ztest_ds_t *zd, uint64_t id) 4644 { 4645 nvlist_t *props = NULL; 4646 4647 rw_enter(&ztest_name_lock, RW_READER); 4648 4649 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_DEDUPDITTO, 4650 ZIO_DEDUPDITTO_MIN + ztest_random(ZIO_DEDUPDITTO_MIN)); 4651 4652 VERIFY0(spa_prop_get(ztest_spa, &props)); 4653 4654 if (ztest_opts.zo_verbose >= 6) 4655 dump_nvlist(props, 4); 4656 4657 nvlist_free(props); 4658 4659 rw_exit(&ztest_name_lock); 4660 } 4661 4662 static int 4663 user_release_one(const char *snapname, const char *holdname) 4664 { 4665 nvlist_t *snaps, *holds; 4666 int error; 4667 4668 snaps = fnvlist_alloc(); 4669 holds = fnvlist_alloc(); 4670 fnvlist_add_boolean(holds, holdname); 4671 fnvlist_add_nvlist(snaps, snapname, holds); 4672 fnvlist_free(holds); 4673 error = dsl_dataset_user_release(snaps, NULL); 4674 fnvlist_free(snaps); 4675 return (error); 4676 } 4677 4678 /* 4679 * Test snapshot hold/release and deferred destroy. 4680 */ 4681 void 4682 ztest_dmu_snapshot_hold(ztest_ds_t *zd, uint64_t id) 4683 { 4684 int error; 4685 objset_t *os = zd->zd_os; 4686 objset_t *origin; 4687 char snapname[100]; 4688 char fullname[100]; 4689 char clonename[100]; 4690 char tag[100]; 4691 char osname[ZFS_MAX_DATASET_NAME_LEN]; 4692 nvlist_t *holds; 4693 4694 rw_enter(&ztest_name_lock, RW_READER); 4695 4696 dmu_objset_name(os, osname); 4697 4698 (void) snprintf(snapname, sizeof (snapname), "sh1_%llu", id); 4699 (void) snprintf(fullname, sizeof (fullname), "%s@%s", osname, snapname); 4700 (void) snprintf(clonename, sizeof (clonename), 4701 "%s/ch1_%llu", osname, id); 4702 (void) snprintf(tag, sizeof (tag), "tag_%llu", id); 4703 4704 /* 4705 * Clean up from any previous run. 4706 */ 4707 error = dsl_destroy_head(clonename); 4708 if (error != ENOENT) 4709 ASSERT0(error); 4710 error = user_release_one(fullname, tag); 4711 if (error != ESRCH && error != ENOENT) 4712 ASSERT0(error); 4713 error = dsl_destroy_snapshot(fullname, B_FALSE); 4714 if (error != ENOENT) 4715 ASSERT0(error); 4716 4717 /* 4718 * Create snapshot, clone it, mark snap for deferred destroy, 4719 * destroy clone, verify snap was also destroyed. 4720 */ 4721 error = dmu_objset_snapshot_one(osname, snapname); 4722 if (error) { 4723 if (error == ENOSPC) { 4724 ztest_record_enospc("dmu_objset_snapshot"); 4725 goto out; 4726 } 4727 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4728 } 4729 4730 error = dmu_objset_clone(clonename, fullname); 4731 if (error) { 4732 if (error == ENOSPC) { 4733 ztest_record_enospc("dmu_objset_clone"); 4734 goto out; 4735 } 4736 fatal(0, "dmu_objset_clone(%s) = %d", clonename, error); 4737 } 4738 4739 error = dsl_destroy_snapshot(fullname, B_TRUE); 4740 if (error) { 4741 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4742 fullname, error); 4743 } 4744 4745 error = dsl_destroy_head(clonename); 4746 if (error) 4747 fatal(0, "dsl_destroy_head(%s) = %d", clonename, error); 4748 4749 error = dmu_objset_hold(fullname, FTAG, &origin); 4750 if (error != ENOENT) 4751 fatal(0, "dmu_objset_hold(%s) = %d", fullname, error); 4752 4753 /* 4754 * Create snapshot, add temporary hold, verify that we can't 4755 * destroy a held snapshot, mark for deferred destroy, 4756 * release hold, verify snapshot was destroyed. 4757 */ 4758 error = dmu_objset_snapshot_one(osname, snapname); 4759 if (error) { 4760 if (error == ENOSPC) { 4761 ztest_record_enospc("dmu_objset_snapshot"); 4762 goto out; 4763 } 4764 fatal(0, "dmu_objset_snapshot(%s) = %d", fullname, error); 4765 } 4766 4767 holds = fnvlist_alloc(); 4768 fnvlist_add_string(holds, fullname, tag); 4769 error = dsl_dataset_user_hold(holds, 0, NULL); 4770 fnvlist_free(holds); 4771 4772 if (error == ENOSPC) { 4773 ztest_record_enospc("dsl_dataset_user_hold"); 4774 goto out; 4775 } else if (error) { 4776 fatal(0, "dsl_dataset_user_hold(%s, %s) = %u", 4777 fullname, tag, error); 4778 } 4779 4780 error = dsl_destroy_snapshot(fullname, B_FALSE); 4781 if (error != EBUSY) { 4782 fatal(0, "dsl_destroy_snapshot(%s, B_FALSE) = %d", 4783 fullname, error); 4784 } 4785 4786 error = dsl_destroy_snapshot(fullname, B_TRUE); 4787 if (error) { 4788 fatal(0, "dsl_destroy_snapshot(%s, B_TRUE) = %d", 4789 fullname, error); 4790 } 4791 4792 error = user_release_one(fullname, tag); 4793 if (error) 4794 fatal(0, "user_release_one(%s, %s) = %d", fullname, tag, error); 4795 4796 VERIFY3U(dmu_objset_hold(fullname, FTAG, &origin), ==, ENOENT); 4797 4798 out: 4799 rw_exit(&ztest_name_lock); 4800 } 4801 4802 /* 4803 * Inject random faults into the on-disk data. 4804 */ 4805 /* ARGSUSED */ 4806 void 4807 ztest_fault_inject(ztest_ds_t *zd, uint64_t id) 4808 { 4809 ztest_shared_t *zs = ztest_shared; 4810 spa_t *spa = ztest_spa; 4811 int fd; 4812 uint64_t offset; 4813 uint64_t leaves; 4814 uint64_t bad = 0x1990c0ffeedecade; 4815 uint64_t top, leaf; 4816 char path0[MAXPATHLEN]; 4817 char pathrand[MAXPATHLEN]; 4818 size_t fsize; 4819 int bshift = SPA_MAXBLOCKSHIFT + 2; 4820 int iters = 1000; 4821 int maxfaults; 4822 int mirror_save; 4823 vdev_t *vd0 = NULL; 4824 uint64_t guid0 = 0; 4825 boolean_t islog = B_FALSE; 4826 4827 mutex_enter(&ztest_vdev_lock); 4828 maxfaults = MAXFAULTS(); 4829 leaves = MAX(zs->zs_mirrors, 1) * ztest_opts.zo_raidz; 4830 mirror_save = zs->zs_mirrors; 4831 mutex_exit(&ztest_vdev_lock); 4832 4833 ASSERT(leaves >= 1); 4834 4835 /* 4836 * Grab the name lock as reader. There are some operations 4837 * which don't like to have their vdevs changed while 4838 * they are in progress (i.e. spa_change_guid). Those 4839 * operations will have grabbed the name lock as writer. 4840 */ 4841 rw_enter(&ztest_name_lock, RW_READER); 4842 4843 /* 4844 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd. 4845 */ 4846 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 4847 4848 if (ztest_random(2) == 0) { 4849 /* 4850 * Inject errors on a normal data device or slog device. 4851 */ 4852 top = ztest_random_vdev_top(spa, B_TRUE); 4853 leaf = ztest_random(leaves) + zs->zs_splits; 4854 4855 /* 4856 * Generate paths to the first leaf in this top-level vdev, 4857 * and to the random leaf we selected. We'll induce transient 4858 * write failures and random online/offline activity on leaf 0, 4859 * and we'll write random garbage to the randomly chosen leaf. 4860 */ 4861 (void) snprintf(path0, sizeof (path0), ztest_dev_template, 4862 ztest_opts.zo_dir, ztest_opts.zo_pool, 4863 top * leaves + zs->zs_splits); 4864 (void) snprintf(pathrand, sizeof (pathrand), ztest_dev_template, 4865 ztest_opts.zo_dir, ztest_opts.zo_pool, 4866 top * leaves + leaf); 4867 4868 vd0 = vdev_lookup_by_path(spa->spa_root_vdev, path0); 4869 if (vd0 != NULL && vd0->vdev_top->vdev_islog) 4870 islog = B_TRUE; 4871 4872 /* 4873 * If the top-level vdev needs to be resilvered 4874 * then we only allow faults on the device that is 4875 * resilvering. 4876 */ 4877 if (vd0 != NULL && maxfaults != 1 && 4878 (!vdev_resilver_needed(vd0->vdev_top, NULL, NULL) || 4879 vd0->vdev_resilver_txg != 0)) { 4880 /* 4881 * Make vd0 explicitly claim to be unreadable, 4882 * or unwriteable, or reach behind its back 4883 * and close the underlying fd. We can do this if 4884 * maxfaults == 0 because we'll fail and reexecute, 4885 * and we can do it if maxfaults >= 2 because we'll 4886 * have enough redundancy. If maxfaults == 1, the 4887 * combination of this with injection of random data 4888 * corruption below exceeds the pool's fault tolerance. 4889 */ 4890 vdev_file_t *vf = vd0->vdev_tsd; 4891 4892 if (vf != NULL && ztest_random(3) == 0) { 4893 (void) close(vf->vf_vnode->v_fd); 4894 vf->vf_vnode->v_fd = -1; 4895 } else if (ztest_random(2) == 0) { 4896 vd0->vdev_cant_read = B_TRUE; 4897 } else { 4898 vd0->vdev_cant_write = B_TRUE; 4899 } 4900 guid0 = vd0->vdev_guid; 4901 } 4902 } else { 4903 /* 4904 * Inject errors on an l2cache device. 4905 */ 4906 spa_aux_vdev_t *sav = &spa->spa_l2cache; 4907 4908 if (sav->sav_count == 0) { 4909 spa_config_exit(spa, SCL_STATE, FTAG); 4910 rw_exit(&ztest_name_lock); 4911 return; 4912 } 4913 vd0 = sav->sav_vdevs[ztest_random(sav->sav_count)]; 4914 guid0 = vd0->vdev_guid; 4915 (void) strcpy(path0, vd0->vdev_path); 4916 (void) strcpy(pathrand, vd0->vdev_path); 4917 4918 leaf = 0; 4919 leaves = 1; 4920 maxfaults = INT_MAX; /* no limit on cache devices */ 4921 } 4922 4923 spa_config_exit(spa, SCL_STATE, FTAG); 4924 rw_exit(&ztest_name_lock); 4925 4926 /* 4927 * If we can tolerate two or more faults, or we're dealing 4928 * with a slog, randomly online/offline vd0. 4929 */ 4930 if ((maxfaults >= 2 || islog) && guid0 != 0) { 4931 if (ztest_random(10) < 6) { 4932 int flags = (ztest_random(2) == 0 ? 4933 ZFS_OFFLINE_TEMPORARY : 0); 4934 4935 /* 4936 * We have to grab the zs_name_lock as writer to 4937 * prevent a race between offlining a slog and 4938 * destroying a dataset. Offlining the slog will 4939 * grab a reference on the dataset which may cause 4940 * dmu_objset_destroy() to fail with EBUSY thus 4941 * leaving the dataset in an inconsistent state. 4942 */ 4943 if (islog) 4944 rw_enter(&ztest_name_lock, RW_WRITER); 4945 4946 VERIFY(vdev_offline(spa, guid0, flags) != EBUSY); 4947 4948 if (islog) 4949 rw_exit(&ztest_name_lock); 4950 } else { 4951 /* 4952 * Ideally we would like to be able to randomly 4953 * call vdev_[on|off]line without holding locks 4954 * to force unpredictable failures but the side 4955 * effects of vdev_[on|off]line prevent us from 4956 * doing so. We grab the ztest_vdev_lock here to 4957 * prevent a race between injection testing and 4958 * aux_vdev removal. 4959 */ 4960 mutex_enter(&ztest_vdev_lock); 4961 (void) vdev_online(spa, guid0, 0, NULL); 4962 mutex_exit(&ztest_vdev_lock); 4963 } 4964 } 4965 4966 if (maxfaults == 0) 4967 return; 4968 4969 /* 4970 * We have at least single-fault tolerance, so inject data corruption. 4971 */ 4972 fd = open(pathrand, O_RDWR); 4973 4974 if (fd == -1) /* we hit a gap in the device namespace */ 4975 return; 4976 4977 fsize = lseek(fd, 0, SEEK_END); 4978 4979 while (--iters != 0) { 4980 /* 4981 * The offset must be chosen carefully to ensure that 4982 * we do not inject a given logical block with errors 4983 * on two different leaf devices, because ZFS can not 4984 * tolerate that (if maxfaults==1). 4985 * 4986 * We divide each leaf into chunks of size 4987 * (# leaves * SPA_MAXBLOCKSIZE * 4). Within each chunk 4988 * there is a series of ranges to which we can inject errors. 4989 * Each range can accept errors on only a single leaf vdev. 4990 * The error injection ranges are separated by ranges 4991 * which we will not inject errors on any device (DMZs). 4992 * Each DMZ must be large enough such that a single block 4993 * can not straddle it, so that a single block can not be 4994 * a target in two different injection ranges (on different 4995 * leaf vdevs). 4996 * 4997 * For example, with 3 leaves, each chunk looks like: 4998 * 0 to 32M: injection range for leaf 0 4999 * 32M to 64M: DMZ - no injection allowed 5000 * 64M to 96M: injection range for leaf 1 5001 * 96M to 128M: DMZ - no injection allowed 5002 * 128M to 160M: injection range for leaf 2 5003 * 160M to 192M: DMZ - no injection allowed 5004 */ 5005 offset = ztest_random(fsize / (leaves << bshift)) * 5006 (leaves << bshift) + (leaf << bshift) + 5007 (ztest_random(1ULL << (bshift - 1)) & -8ULL); 5008 5009 /* 5010 * Only allow damage to the labels at one end of the vdev. 5011 * 5012 * If all labels are damaged, the device will be totally 5013 * inaccessible, which will result in loss of data, 5014 * because we also damage (parts of) the other side of 5015 * the mirror/raidz. 5016 * 5017 * Additionally, we will always have both an even and an 5018 * odd label, so that we can handle crashes in the 5019 * middle of vdev_config_sync(). 5020 */ 5021 if ((leaf & 1) == 0 && offset < VDEV_LABEL_START_SIZE) 5022 continue; 5023 5024 /* 5025 * The two end labels are stored at the "end" of the disk, but 5026 * the end of the disk (vdev_psize) is aligned to 5027 * sizeof (vdev_label_t). 5028 */ 5029 uint64_t psize = P2ALIGN(fsize, sizeof (vdev_label_t)); 5030 if ((leaf & 1) == 1 && 5031 offset + sizeof (bad) > psize - VDEV_LABEL_END_SIZE) 5032 continue; 5033 5034 mutex_enter(&ztest_vdev_lock); 5035 if (mirror_save != zs->zs_mirrors) { 5036 mutex_exit(&ztest_vdev_lock); 5037 (void) close(fd); 5038 return; 5039 } 5040 5041 if (pwrite(fd, &bad, sizeof (bad), offset) != sizeof (bad)) 5042 fatal(1, "can't inject bad word at 0x%llx in %s", 5043 offset, pathrand); 5044 5045 mutex_exit(&ztest_vdev_lock); 5046 5047 if (ztest_opts.zo_verbose >= 7) 5048 (void) printf("injected bad word into %s," 5049 " offset 0x%llx\n", pathrand, (u_longlong_t)offset); 5050 } 5051 5052 (void) close(fd); 5053 } 5054 5055 /* 5056 * Verify that DDT repair works as expected. 5057 */ 5058 void 5059 ztest_ddt_repair(ztest_ds_t *zd, uint64_t id) 5060 { 5061 ztest_shared_t *zs = ztest_shared; 5062 spa_t *spa = ztest_spa; 5063 objset_t *os = zd->zd_os; 5064 ztest_od_t od[1]; 5065 uint64_t object, blocksize, txg, pattern, psize; 5066 enum zio_checksum checksum = spa_dedup_checksum(spa); 5067 dmu_buf_t *db; 5068 dmu_tx_t *tx; 5069 abd_t *abd; 5070 blkptr_t blk; 5071 int copies = 2 * ZIO_DEDUPDITTO_MIN; 5072 5073 blocksize = ztest_random_blocksize(); 5074 blocksize = MIN(blocksize, 2048); /* because we write so many */ 5075 5076 ztest_od_init(&od[0], id, FTAG, 0, DMU_OT_UINT64_OTHER, blocksize, 0); 5077 5078 if (ztest_object_init(zd, od, sizeof (od), B_FALSE) != 0) 5079 return; 5080 5081 /* 5082 * Take the name lock as writer to prevent anyone else from changing 5083 * the pool and dataset properies we need to maintain during this test. 5084 */ 5085 rw_enter(&ztest_name_lock, RW_WRITER); 5086 5087 if (ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_DEDUP, checksum, 5088 B_FALSE) != 0 || 5089 ztest_dsl_prop_set_uint64(zd->zd_name, ZFS_PROP_COPIES, 1, 5090 B_FALSE) != 0) { 5091 rw_exit(&ztest_name_lock); 5092 return; 5093 } 5094 5095 dmu_objset_stats_t dds; 5096 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5097 dmu_objset_fast_stat(os, &dds); 5098 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5099 5100 object = od[0].od_object; 5101 blocksize = od[0].od_blocksize; 5102 pattern = zs->zs_guid ^ dds.dds_guid; 5103 5104 ASSERT(object != 0); 5105 5106 tx = dmu_tx_create(os); 5107 dmu_tx_hold_write(tx, object, 0, copies * blocksize); 5108 txg = ztest_tx_assign(tx, TXG_WAIT, FTAG); 5109 if (txg == 0) { 5110 rw_exit(&ztest_name_lock); 5111 return; 5112 } 5113 5114 /* 5115 * Write all the copies of our block. 5116 */ 5117 for (int i = 0; i < copies; i++) { 5118 uint64_t offset = i * blocksize; 5119 int error = dmu_buf_hold(os, object, offset, FTAG, &db, 5120 DMU_READ_NO_PREFETCH); 5121 if (error != 0) { 5122 fatal(B_FALSE, "dmu_buf_hold(%p, %llu, %llu) = %u", 5123 os, (long long)object, (long long) offset, error); 5124 } 5125 ASSERT(db->db_offset == offset); 5126 ASSERT(db->db_size == blocksize); 5127 ASSERT(ztest_pattern_match(db->db_data, db->db_size, pattern) || 5128 ztest_pattern_match(db->db_data, db->db_size, 0ULL)); 5129 dmu_buf_will_fill(db, tx); 5130 ztest_pattern_set(db->db_data, db->db_size, pattern); 5131 dmu_buf_rele(db, FTAG); 5132 } 5133 5134 dmu_tx_commit(tx); 5135 txg_wait_synced(spa_get_dsl(spa), txg); 5136 5137 /* 5138 * Find out what block we got. 5139 */ 5140 VERIFY0(dmu_buf_hold(os, object, 0, FTAG, &db, 5141 DMU_READ_NO_PREFETCH)); 5142 blk = *((dmu_buf_impl_t *)db)->db_blkptr; 5143 dmu_buf_rele(db, FTAG); 5144 5145 /* 5146 * Damage the block. Dedup-ditto will save us when we read it later. 5147 */ 5148 psize = BP_GET_PSIZE(&blk); 5149 abd = abd_alloc_linear(psize, B_TRUE); 5150 ztest_pattern_set(abd_to_buf(abd), psize, ~pattern); 5151 5152 (void) zio_wait(zio_rewrite(NULL, spa, 0, &blk, 5153 abd, psize, NULL, NULL, ZIO_PRIORITY_SYNC_WRITE, 5154 ZIO_FLAG_CANFAIL | ZIO_FLAG_INDUCE_DAMAGE, NULL)); 5155 5156 abd_free(abd); 5157 5158 rw_exit(&ztest_name_lock); 5159 } 5160 5161 /* 5162 * Scrub the pool. 5163 */ 5164 /* ARGSUSED */ 5165 void 5166 ztest_scrub(ztest_ds_t *zd, uint64_t id) 5167 { 5168 spa_t *spa = ztest_spa; 5169 5170 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5171 (void) poll(NULL, 0, 100); /* wait a moment, then force a restart */ 5172 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5173 } 5174 5175 /* 5176 * Change the guid for the pool. 5177 */ 5178 /* ARGSUSED */ 5179 void 5180 ztest_reguid(ztest_ds_t *zd, uint64_t id) 5181 { 5182 spa_t *spa = ztest_spa; 5183 uint64_t orig, load; 5184 int error; 5185 5186 orig = spa_guid(spa); 5187 load = spa_load_guid(spa); 5188 5189 rw_enter(&ztest_name_lock, RW_WRITER); 5190 error = spa_change_guid(spa); 5191 rw_exit(&ztest_name_lock); 5192 5193 if (error != 0) 5194 return; 5195 5196 if (ztest_opts.zo_verbose >= 4) { 5197 (void) printf("Changed guid old %llu -> %llu\n", 5198 (u_longlong_t)orig, (u_longlong_t)spa_guid(spa)); 5199 } 5200 5201 VERIFY3U(orig, !=, spa_guid(spa)); 5202 VERIFY3U(load, ==, spa_load_guid(spa)); 5203 } 5204 5205 /* 5206 * Rename the pool to a different name and then rename it back. 5207 */ 5208 /* ARGSUSED */ 5209 void 5210 ztest_spa_rename(ztest_ds_t *zd, uint64_t id) 5211 { 5212 char *oldname, *newname; 5213 spa_t *spa; 5214 5215 rw_enter(&ztest_name_lock, RW_WRITER); 5216 5217 oldname = ztest_opts.zo_pool; 5218 newname = umem_alloc(strlen(oldname) + 5, UMEM_NOFAIL); 5219 (void) strcpy(newname, oldname); 5220 (void) strcat(newname, "_tmp"); 5221 5222 /* 5223 * Do the rename 5224 */ 5225 VERIFY3U(0, ==, spa_rename(oldname, newname)); 5226 5227 /* 5228 * Try to open it under the old name, which shouldn't exist 5229 */ 5230 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5231 5232 /* 5233 * Open it under the new name and make sure it's still the same spa_t. 5234 */ 5235 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5236 5237 ASSERT(spa == ztest_spa); 5238 spa_close(spa, FTAG); 5239 5240 /* 5241 * Rename it back to the original 5242 */ 5243 VERIFY3U(0, ==, spa_rename(newname, oldname)); 5244 5245 /* 5246 * Make sure it can still be opened 5247 */ 5248 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5249 5250 ASSERT(spa == ztest_spa); 5251 spa_close(spa, FTAG); 5252 5253 umem_free(newname, strlen(newname) + 1); 5254 5255 rw_exit(&ztest_name_lock); 5256 } 5257 5258 /* 5259 * Verify pool integrity by running zdb. 5260 */ 5261 static void 5262 ztest_run_zdb(char *pool) 5263 { 5264 int status; 5265 char zdb[MAXPATHLEN + MAXNAMELEN + 20]; 5266 char zbuf[1024]; 5267 char *bin; 5268 char *ztest; 5269 char *isa; 5270 int isalen; 5271 FILE *fp; 5272 5273 (void) realpath(getexecname(), zdb); 5274 5275 /* zdb lives in /usr/sbin, while ztest lives in /usr/bin */ 5276 bin = strstr(zdb, "/usr/bin/"); 5277 ztest = strstr(bin, "/ztest"); 5278 isa = bin + 8; 5279 isalen = ztest - isa; 5280 isa = strdup(isa); 5281 /* LINTED */ 5282 (void) sprintf(bin, 5283 "/usr/sbin%.*s/zdb -bcc%s%s -G -d -U %s %s", 5284 isalen, 5285 isa, 5286 ztest_opts.zo_verbose >= 3 ? "s" : "", 5287 ztest_opts.zo_verbose >= 4 ? "v" : "", 5288 spa_config_path, 5289 pool); 5290 free(isa); 5291 5292 if (ztest_opts.zo_verbose >= 5) 5293 (void) printf("Executing %s\n", strstr(zdb, "zdb ")); 5294 5295 fp = popen(zdb, "r"); 5296 5297 while (fgets(zbuf, sizeof (zbuf), fp) != NULL) 5298 if (ztest_opts.zo_verbose >= 3) 5299 (void) printf("%s", zbuf); 5300 5301 status = pclose(fp); 5302 5303 if (status == 0) 5304 return; 5305 5306 ztest_dump_core = 0; 5307 if (WIFEXITED(status)) 5308 fatal(0, "'%s' exit code %d", zdb, WEXITSTATUS(status)); 5309 else 5310 fatal(0, "'%s' died with signal %d", zdb, WTERMSIG(status)); 5311 } 5312 5313 static void 5314 ztest_walk_pool_directory(char *header) 5315 { 5316 spa_t *spa = NULL; 5317 5318 if (ztest_opts.zo_verbose >= 6) 5319 (void) printf("%s\n", header); 5320 5321 mutex_enter(&spa_namespace_lock); 5322 while ((spa = spa_next(spa)) != NULL) 5323 if (ztest_opts.zo_verbose >= 6) 5324 (void) printf("\t%s\n", spa_name(spa)); 5325 mutex_exit(&spa_namespace_lock); 5326 } 5327 5328 static void 5329 ztest_spa_import_export(char *oldname, char *newname) 5330 { 5331 nvlist_t *config, *newconfig; 5332 uint64_t pool_guid; 5333 spa_t *spa; 5334 int error; 5335 5336 if (ztest_opts.zo_verbose >= 4) { 5337 (void) printf("import/export: old = %s, new = %s\n", 5338 oldname, newname); 5339 } 5340 5341 /* 5342 * Clean up from previous runs. 5343 */ 5344 (void) spa_destroy(newname); 5345 5346 /* 5347 * Get the pool's configuration and guid. 5348 */ 5349 VERIFY3U(0, ==, spa_open(oldname, &spa, FTAG)); 5350 5351 /* 5352 * Kick off a scrub to tickle scrub/export races. 5353 */ 5354 if (ztest_random(2) == 0) 5355 (void) spa_scan(spa, POOL_SCAN_SCRUB); 5356 5357 pool_guid = spa_guid(spa); 5358 spa_close(spa, FTAG); 5359 5360 ztest_walk_pool_directory("pools before export"); 5361 5362 /* 5363 * Export it. 5364 */ 5365 VERIFY3U(0, ==, spa_export(oldname, &config, B_FALSE, B_FALSE)); 5366 5367 ztest_walk_pool_directory("pools after export"); 5368 5369 /* 5370 * Try to import it. 5371 */ 5372 newconfig = spa_tryimport(config); 5373 ASSERT(newconfig != NULL); 5374 nvlist_free(newconfig); 5375 5376 /* 5377 * Import it under the new name. 5378 */ 5379 error = spa_import(newname, config, NULL, 0); 5380 if (error != 0) { 5381 dump_nvlist(config, 0); 5382 fatal(B_FALSE, "couldn't import pool %s as %s: error %u", 5383 oldname, newname, error); 5384 } 5385 5386 ztest_walk_pool_directory("pools after import"); 5387 5388 /* 5389 * Try to import it again -- should fail with EEXIST. 5390 */ 5391 VERIFY3U(EEXIST, ==, spa_import(newname, config, NULL, 0)); 5392 5393 /* 5394 * Try to import it under a different name -- should fail with EEXIST. 5395 */ 5396 VERIFY3U(EEXIST, ==, spa_import(oldname, config, NULL, 0)); 5397 5398 /* 5399 * Verify that the pool is no longer visible under the old name. 5400 */ 5401 VERIFY3U(ENOENT, ==, spa_open(oldname, &spa, FTAG)); 5402 5403 /* 5404 * Verify that we can open and close the pool using the new name. 5405 */ 5406 VERIFY3U(0, ==, spa_open(newname, &spa, FTAG)); 5407 ASSERT(pool_guid == spa_guid(spa)); 5408 spa_close(spa, FTAG); 5409 5410 nvlist_free(config); 5411 } 5412 5413 static void 5414 ztest_resume(spa_t *spa) 5415 { 5416 if (spa_suspended(spa) && ztest_opts.zo_verbose >= 6) 5417 (void) printf("resuming from suspended state\n"); 5418 spa_vdev_state_enter(spa, SCL_NONE); 5419 vdev_clear(spa, NULL); 5420 (void) spa_vdev_state_exit(spa, NULL, 0); 5421 (void) zio_resume(spa); 5422 } 5423 5424 static void * 5425 ztest_resume_thread(void *arg) 5426 { 5427 spa_t *spa = arg; 5428 5429 while (!ztest_exiting) { 5430 if (spa_suspended(spa)) 5431 ztest_resume(spa); 5432 (void) poll(NULL, 0, 100); 5433 5434 /* 5435 * Periodically change the zfs_compressed_arc_enabled setting. 5436 */ 5437 if (ztest_random(10) == 0) 5438 zfs_compressed_arc_enabled = ztest_random(2); 5439 5440 /* 5441 * Periodically change the zfs_abd_scatter_enabled setting. 5442 */ 5443 if (ztest_random(10) == 0) 5444 zfs_abd_scatter_enabled = ztest_random(2); 5445 } 5446 return (NULL); 5447 } 5448 5449 static void * 5450 ztest_deadman_thread(void *arg) 5451 { 5452 ztest_shared_t *zs = arg; 5453 spa_t *spa = ztest_spa; 5454 hrtime_t delta, total = 0; 5455 5456 for (;;) { 5457 delta = zs->zs_thread_stop - zs->zs_thread_start + 5458 MSEC2NSEC(zfs_deadman_synctime_ms); 5459 5460 (void) poll(NULL, 0, (int)NSEC2MSEC(delta)); 5461 5462 /* 5463 * If the pool is suspended then fail immediately. Otherwise, 5464 * check to see if the pool is making any progress. If 5465 * vdev_deadman() discovers that there hasn't been any recent 5466 * I/Os then it will end up aborting the tests. 5467 */ 5468 if (spa_suspended(spa) || spa->spa_root_vdev == NULL) { 5469 fatal(0, "aborting test after %llu seconds because " 5470 "pool has transitioned to a suspended state.", 5471 zfs_deadman_synctime_ms / 1000); 5472 return (NULL); 5473 } 5474 vdev_deadman(spa->spa_root_vdev); 5475 5476 total += zfs_deadman_synctime_ms/1000; 5477 (void) printf("ztest has been running for %lld seconds\n", 5478 total); 5479 } 5480 } 5481 5482 static void 5483 ztest_execute(int test, ztest_info_t *zi, uint64_t id) 5484 { 5485 ztest_ds_t *zd = &ztest_ds[id % ztest_opts.zo_datasets]; 5486 ztest_shared_callstate_t *zc = ZTEST_GET_SHARED_CALLSTATE(test); 5487 hrtime_t functime = gethrtime(); 5488 5489 for (int i = 0; i < zi->zi_iters; i++) 5490 zi->zi_func(zd, id); 5491 5492 functime = gethrtime() - functime; 5493 5494 atomic_add_64(&zc->zc_count, 1); 5495 atomic_add_64(&zc->zc_time, functime); 5496 5497 if (ztest_opts.zo_verbose >= 4) { 5498 Dl_info dli; 5499 (void) dladdr((void *)zi->zi_func, &dli); 5500 (void) printf("%6.2f sec in %s\n", 5501 (double)functime / NANOSEC, dli.dli_sname); 5502 } 5503 } 5504 5505 static void * 5506 ztest_thread(void *arg) 5507 { 5508 int rand; 5509 uint64_t id = (uintptr_t)arg; 5510 ztest_shared_t *zs = ztest_shared; 5511 uint64_t call_next; 5512 hrtime_t now; 5513 ztest_info_t *zi; 5514 ztest_shared_callstate_t *zc; 5515 5516 while ((now = gethrtime()) < zs->zs_thread_stop) { 5517 /* 5518 * See if it's time to force a crash. 5519 */ 5520 if (now > zs->zs_thread_kill) 5521 ztest_kill(zs); 5522 5523 /* 5524 * If we're getting ENOSPC with some regularity, stop. 5525 */ 5526 if (zs->zs_enospc_count > 10) 5527 break; 5528 5529 /* 5530 * Pick a random function to execute. 5531 */ 5532 rand = ztest_random(ZTEST_FUNCS); 5533 zi = &ztest_info[rand]; 5534 zc = ZTEST_GET_SHARED_CALLSTATE(rand); 5535 call_next = zc->zc_next; 5536 5537 if (now >= call_next && 5538 atomic_cas_64(&zc->zc_next, call_next, call_next + 5539 ztest_random(2 * zi->zi_interval[0] + 1)) == call_next) { 5540 ztest_execute(rand, zi, id); 5541 } 5542 } 5543 5544 return (NULL); 5545 } 5546 5547 static void 5548 ztest_dataset_name(char *dsname, char *pool, int d) 5549 { 5550 (void) snprintf(dsname, ZFS_MAX_DATASET_NAME_LEN, "%s/ds_%d", pool, d); 5551 } 5552 5553 static void 5554 ztest_dataset_destroy(int d) 5555 { 5556 char name[ZFS_MAX_DATASET_NAME_LEN]; 5557 5558 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5559 5560 if (ztest_opts.zo_verbose >= 3) 5561 (void) printf("Destroying %s to free up space\n", name); 5562 5563 /* 5564 * Cleanup any non-standard clones and snapshots. In general, 5565 * ztest thread t operates on dataset (t % zopt_datasets), 5566 * so there may be more than one thing to clean up. 5567 */ 5568 for (int t = d; t < ztest_opts.zo_threads; 5569 t += ztest_opts.zo_datasets) { 5570 ztest_dsl_dataset_cleanup(name, t); 5571 } 5572 5573 (void) dmu_objset_find(name, ztest_objset_destroy_cb, NULL, 5574 DS_FIND_SNAPSHOTS | DS_FIND_CHILDREN); 5575 } 5576 5577 static void 5578 ztest_dataset_dirobj_verify(ztest_ds_t *zd) 5579 { 5580 uint64_t usedobjs, dirobjs, scratch; 5581 5582 /* 5583 * ZTEST_DIROBJ is the object directory for the entire dataset. 5584 * Therefore, the number of objects in use should equal the 5585 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself. 5586 * If not, we have an object leak. 5587 * 5588 * Note that we can only check this in ztest_dataset_open(), 5589 * when the open-context and syncing-context values agree. 5590 * That's because zap_count() returns the open-context value, 5591 * while dmu_objset_space() returns the rootbp fill count. 5592 */ 5593 VERIFY3U(0, ==, zap_count(zd->zd_os, ZTEST_DIROBJ, &dirobjs)); 5594 dmu_objset_space(zd->zd_os, &scratch, &scratch, &usedobjs, &scratch); 5595 ASSERT3U(dirobjs + 1, ==, usedobjs); 5596 } 5597 5598 static int 5599 ztest_dataset_open(int d) 5600 { 5601 ztest_ds_t *zd = &ztest_ds[d]; 5602 uint64_t committed_seq = ZTEST_GET_SHARED_DS(d)->zd_seq; 5603 objset_t *os; 5604 zilog_t *zilog; 5605 char name[ZFS_MAX_DATASET_NAME_LEN]; 5606 int error; 5607 5608 ztest_dataset_name(name, ztest_opts.zo_pool, d); 5609 5610 rw_enter(&ztest_name_lock, RW_READER); 5611 5612 error = ztest_dataset_create(name); 5613 if (error == ENOSPC) { 5614 rw_exit(&ztest_name_lock); 5615 ztest_record_enospc(FTAG); 5616 return (error); 5617 } 5618 ASSERT(error == 0 || error == EEXIST); 5619 5620 VERIFY0(dmu_objset_own(name, DMU_OST_OTHER, B_FALSE, zd, &os)); 5621 rw_exit(&ztest_name_lock); 5622 5623 ztest_zd_init(zd, ZTEST_GET_SHARED_DS(d), os); 5624 5625 zilog = zd->zd_zilog; 5626 5627 if (zilog->zl_header->zh_claim_lr_seq != 0 && 5628 zilog->zl_header->zh_claim_lr_seq < committed_seq) 5629 fatal(0, "missing log records: claimed %llu < committed %llu", 5630 zilog->zl_header->zh_claim_lr_seq, committed_seq); 5631 5632 ztest_dataset_dirobj_verify(zd); 5633 5634 zil_replay(os, zd, ztest_replay_vector); 5635 5636 ztest_dataset_dirobj_verify(zd); 5637 5638 if (ztest_opts.zo_verbose >= 6) 5639 (void) printf("%s replay %llu blocks, %llu records, seq %llu\n", 5640 zd->zd_name, 5641 (u_longlong_t)zilog->zl_parse_blk_count, 5642 (u_longlong_t)zilog->zl_parse_lr_count, 5643 (u_longlong_t)zilog->zl_replaying_seq); 5644 5645 zilog = zil_open(os, ztest_get_data); 5646 5647 if (zilog->zl_replaying_seq != 0 && 5648 zilog->zl_replaying_seq < committed_seq) 5649 fatal(0, "missing log records: replayed %llu < committed %llu", 5650 zilog->zl_replaying_seq, committed_seq); 5651 5652 return (0); 5653 } 5654 5655 static void 5656 ztest_dataset_close(int d) 5657 { 5658 ztest_ds_t *zd = &ztest_ds[d]; 5659 5660 zil_close(zd->zd_zilog); 5661 dmu_objset_disown(zd->zd_os, zd); 5662 5663 ztest_zd_fini(zd); 5664 } 5665 5666 /* 5667 * Kick off threads to run tests on all datasets in parallel. 5668 */ 5669 static void 5670 ztest_run(ztest_shared_t *zs) 5671 { 5672 pthread_t *tid; 5673 spa_t *spa; 5674 objset_t *os; 5675 pthread_t resume_tid; 5676 int error; 5677 5678 ztest_exiting = B_FALSE; 5679 5680 /* 5681 * Initialize parent/child shared state. 5682 */ 5683 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 5684 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 5685 5686 zs->zs_thread_start = gethrtime(); 5687 zs->zs_thread_stop = 5688 zs->zs_thread_start + ztest_opts.zo_passtime * NANOSEC; 5689 zs->zs_thread_stop = MIN(zs->zs_thread_stop, zs->zs_proc_stop); 5690 zs->zs_thread_kill = zs->zs_thread_stop; 5691 if (ztest_random(100) < ztest_opts.zo_killrate) { 5692 zs->zs_thread_kill -= 5693 ztest_random(ztest_opts.zo_passtime * NANOSEC); 5694 } 5695 5696 mutex_init(&zcl.zcl_callbacks_lock, NULL, USYNC_THREAD, NULL); 5697 5698 list_create(&zcl.zcl_callbacks, sizeof (ztest_cb_data_t), 5699 offsetof(ztest_cb_data_t, zcd_node)); 5700 5701 /* 5702 * Open our pool. 5703 */ 5704 kernel_init(FREAD | FWRITE); 5705 VERIFY0(spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5706 spa->spa_debug = B_TRUE; 5707 metaslab_preload_limit = ztest_random(20) + 1; 5708 ztest_spa = spa; 5709 5710 dmu_objset_stats_t dds; 5711 VERIFY0(dmu_objset_own(ztest_opts.zo_pool, 5712 DMU_OST_ANY, B_TRUE, FTAG, &os)); 5713 dsl_pool_config_enter(dmu_objset_pool(os), FTAG); 5714 dmu_objset_fast_stat(os, &dds); 5715 dsl_pool_config_exit(dmu_objset_pool(os), FTAG); 5716 zs->zs_guid = dds.dds_guid; 5717 dmu_objset_disown(os, FTAG); 5718 5719 spa->spa_dedup_ditto = 2 * ZIO_DEDUPDITTO_MIN; 5720 5721 /* 5722 * We don't expect the pool to suspend unless maxfaults == 0, 5723 * in which case ztest_fault_inject() temporarily takes away 5724 * the only valid replica. 5725 */ 5726 if (MAXFAULTS() == 0) 5727 spa->spa_failmode = ZIO_FAILURE_MODE_WAIT; 5728 else 5729 spa->spa_failmode = ZIO_FAILURE_MODE_PANIC; 5730 5731 /* 5732 * Create a thread to periodically resume suspended I/O. 5733 */ 5734 VERIFY(pthread_create(&resume_tid, NULL, ztest_resume_thread, 5735 spa) == 0); 5736 5737 /* 5738 * Create a deadman thread to abort() if we hang. 5739 */ 5740 VERIFY(pthread_create(&resume_tid, NULL, ztest_deadman_thread, 5741 zs) == 0); 5742 5743 /* 5744 * Verify that we can safely inquire about about any object, 5745 * whether it's allocated or not. To make it interesting, 5746 * we probe a 5-wide window around each power of two. 5747 * This hits all edge cases, including zero and the max. 5748 */ 5749 for (int t = 0; t < 64; t++) { 5750 for (int d = -5; d <= 5; d++) { 5751 error = dmu_object_info(spa->spa_meta_objset, 5752 (1ULL << t) + d, NULL); 5753 ASSERT(error == 0 || error == ENOENT || 5754 error == EINVAL); 5755 } 5756 } 5757 5758 /* 5759 * If we got any ENOSPC errors on the previous run, destroy something. 5760 */ 5761 if (zs->zs_enospc_count != 0) { 5762 int d = ztest_random(ztest_opts.zo_datasets); 5763 ztest_dataset_destroy(d); 5764 } 5765 zs->zs_enospc_count = 0; 5766 5767 tid = umem_zalloc(ztest_opts.zo_threads * sizeof (pthread_t), 5768 UMEM_NOFAIL); 5769 5770 if (ztest_opts.zo_verbose >= 4) 5771 (void) printf("starting main threads...\n"); 5772 5773 /* 5774 * Kick off all the tests that run in parallel. 5775 */ 5776 for (int t = 0; t < ztest_opts.zo_threads; t++) { 5777 if (t < ztest_opts.zo_datasets && 5778 ztest_dataset_open(t) != 0) 5779 return; 5780 VERIFY(pthread_create(&tid[t], NULL, ztest_thread, 5781 (void *)(uintptr_t)t) == 0); 5782 } 5783 5784 /* 5785 * Wait for all of the tests to complete. We go in reverse order 5786 * so we don't close datasets while threads are still using them. 5787 */ 5788 for (int t = ztest_opts.zo_threads - 1; t >= 0; t--) { 5789 VERIFY(pthread_join(tid[t], NULL) == 0); 5790 if (t < ztest_opts.zo_datasets) 5791 ztest_dataset_close(t); 5792 } 5793 5794 txg_wait_synced(spa_get_dsl(spa), 0); 5795 5796 zs->zs_alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 5797 zs->zs_space = metaslab_class_get_space(spa_normal_class(spa)); 5798 zfs_dbgmsg_print(FTAG); 5799 5800 umem_free(tid, ztest_opts.zo_threads * sizeof (pthread_t)); 5801 5802 /* Kill the resume thread */ 5803 ztest_exiting = B_TRUE; 5804 VERIFY(pthread_join(resume_tid, NULL) == 0); 5805 ztest_resume(spa); 5806 5807 /* 5808 * Right before closing the pool, kick off a bunch of async I/O; 5809 * spa_close() should wait for it to complete. 5810 */ 5811 for (uint64_t object = 1; object < 50; object++) { 5812 dmu_prefetch(spa->spa_meta_objset, object, 0, 0, 1ULL << 20, 5813 ZIO_PRIORITY_SYNC_READ); 5814 } 5815 5816 spa_close(spa, FTAG); 5817 5818 /* 5819 * Verify that we can loop over all pools. 5820 */ 5821 mutex_enter(&spa_namespace_lock); 5822 for (spa = spa_next(NULL); spa != NULL; spa = spa_next(spa)) 5823 if (ztest_opts.zo_verbose > 3) 5824 (void) printf("spa_next: found %s\n", spa_name(spa)); 5825 mutex_exit(&spa_namespace_lock); 5826 5827 /* 5828 * Verify that we can export the pool and reimport it under a 5829 * different name. 5830 */ 5831 if (ztest_random(2) == 0) { 5832 char name[ZFS_MAX_DATASET_NAME_LEN]; 5833 (void) snprintf(name, sizeof (name), "%s_import", 5834 ztest_opts.zo_pool); 5835 ztest_spa_import_export(ztest_opts.zo_pool, name); 5836 ztest_spa_import_export(name, ztest_opts.zo_pool); 5837 } 5838 5839 kernel_fini(); 5840 5841 list_destroy(&zcl.zcl_callbacks); 5842 5843 mutex_destroy(&zcl.zcl_callbacks_lock); 5844 5845 rw_destroy(&ztest_name_lock); 5846 mutex_destroy(&ztest_vdev_lock); 5847 } 5848 5849 static void 5850 ztest_freeze(void) 5851 { 5852 ztest_ds_t *zd = &ztest_ds[0]; 5853 spa_t *spa; 5854 int numloops = 0; 5855 5856 if (ztest_opts.zo_verbose >= 3) 5857 (void) printf("testing spa_freeze()...\n"); 5858 5859 kernel_init(FREAD | FWRITE); 5860 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5861 VERIFY3U(0, ==, ztest_dataset_open(0)); 5862 spa->spa_debug = B_TRUE; 5863 ztest_spa = spa; 5864 5865 /* 5866 * Force the first log block to be transactionally allocated. 5867 * We have to do this before we freeze the pool -- otherwise 5868 * the log chain won't be anchored. 5869 */ 5870 while (BP_IS_HOLE(&zd->zd_zilog->zl_header->zh_log)) { 5871 ztest_dmu_object_alloc_free(zd, 0); 5872 zil_commit(zd->zd_zilog, 0); 5873 } 5874 5875 txg_wait_synced(spa_get_dsl(spa), 0); 5876 5877 /* 5878 * Freeze the pool. This stops spa_sync() from doing anything, 5879 * so that the only way to record changes from now on is the ZIL. 5880 */ 5881 spa_freeze(spa); 5882 5883 /* 5884 * Because it is hard to predict how much space a write will actually 5885 * require beforehand, we leave ourselves some fudge space to write over 5886 * capacity. 5887 */ 5888 uint64_t capacity = metaslab_class_get_space(spa_normal_class(spa)) / 2; 5889 5890 /* 5891 * Run tests that generate log records but don't alter the pool config 5892 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc). 5893 * We do a txg_wait_synced() after each iteration to force the txg 5894 * to increase well beyond the last synced value in the uberblock. 5895 * The ZIL should be OK with that. 5896 * 5897 * Run a random number of times less than zo_maxloops and ensure we do 5898 * not run out of space on the pool. 5899 */ 5900 while (ztest_random(10) != 0 && 5901 numloops++ < ztest_opts.zo_maxloops && 5902 metaslab_class_get_alloc(spa_normal_class(spa)) < capacity) { 5903 ztest_od_t od; 5904 ztest_od_init(&od, 0, FTAG, 0, DMU_OT_UINT64_OTHER, 0, 0); 5905 VERIFY0(ztest_object_init(zd, &od, sizeof (od), B_FALSE)); 5906 ztest_io(zd, od.od_object, 5907 ztest_random(ZTEST_RANGE_LOCKS) << SPA_MAXBLOCKSHIFT); 5908 txg_wait_synced(spa_get_dsl(spa), 0); 5909 } 5910 5911 /* 5912 * Commit all of the changes we just generated. 5913 */ 5914 zil_commit(zd->zd_zilog, 0); 5915 txg_wait_synced(spa_get_dsl(spa), 0); 5916 5917 /* 5918 * Close our dataset and close the pool. 5919 */ 5920 ztest_dataset_close(0); 5921 spa_close(spa, FTAG); 5922 kernel_fini(); 5923 5924 /* 5925 * Open and close the pool and dataset to induce log replay. 5926 */ 5927 kernel_init(FREAD | FWRITE); 5928 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 5929 ASSERT(spa_freeze_txg(spa) == UINT64_MAX); 5930 VERIFY3U(0, ==, ztest_dataset_open(0)); 5931 ztest_dataset_close(0); 5932 5933 spa->spa_debug = B_TRUE; 5934 ztest_spa = spa; 5935 txg_wait_synced(spa_get_dsl(spa), 0); 5936 ztest_reguid(NULL, 0); 5937 5938 spa_close(spa, FTAG); 5939 kernel_fini(); 5940 } 5941 5942 void 5943 print_time(hrtime_t t, char *timebuf) 5944 { 5945 hrtime_t s = t / NANOSEC; 5946 hrtime_t m = s / 60; 5947 hrtime_t h = m / 60; 5948 hrtime_t d = h / 24; 5949 5950 s -= m * 60; 5951 m -= h * 60; 5952 h -= d * 24; 5953 5954 timebuf[0] = '\0'; 5955 5956 if (d) 5957 (void) sprintf(timebuf, 5958 "%llud%02lluh%02llum%02llus", d, h, m, s); 5959 else if (h) 5960 (void) sprintf(timebuf, "%lluh%02llum%02llus", h, m, s); 5961 else if (m) 5962 (void) sprintf(timebuf, "%llum%02llus", m, s); 5963 else 5964 (void) sprintf(timebuf, "%llus", s); 5965 } 5966 5967 static nvlist_t * 5968 make_random_props() 5969 { 5970 nvlist_t *props; 5971 5972 VERIFY(nvlist_alloc(&props, NV_UNIQUE_NAME, 0) == 0); 5973 if (ztest_random(2) == 0) 5974 return (props); 5975 VERIFY(nvlist_add_uint64(props, "autoreplace", 1) == 0); 5976 5977 return (props); 5978 } 5979 5980 /* 5981 * Create a storage pool with the given name and initial vdev size. 5982 * Then test spa_freeze() functionality. 5983 */ 5984 static void 5985 ztest_init(ztest_shared_t *zs) 5986 { 5987 spa_t *spa; 5988 nvlist_t *nvroot, *props; 5989 5990 mutex_init(&ztest_vdev_lock, NULL, USYNC_THREAD, NULL); 5991 rw_init(&ztest_name_lock, NULL, USYNC_THREAD, NULL); 5992 5993 kernel_init(FREAD | FWRITE); 5994 5995 /* 5996 * Create the storage pool. 5997 */ 5998 (void) spa_destroy(ztest_opts.zo_pool); 5999 ztest_shared->zs_vdev_next_leaf = 0; 6000 zs->zs_splits = 0; 6001 zs->zs_mirrors = ztest_opts.zo_mirrors; 6002 nvroot = make_vdev_root(NULL, NULL, NULL, ztest_opts.zo_vdev_size, 0, 6003 0, ztest_opts.zo_raidz, zs->zs_mirrors, 1); 6004 props = make_random_props(); 6005 for (int i = 0; i < SPA_FEATURES; i++) { 6006 char buf[1024]; 6007 (void) snprintf(buf, sizeof (buf), "feature@%s", 6008 spa_feature_table[i].fi_uname); 6009 VERIFY3U(0, ==, nvlist_add_uint64(props, buf, 0)); 6010 } 6011 VERIFY3U(0, ==, spa_create(ztest_opts.zo_pool, nvroot, props, NULL)); 6012 nvlist_free(nvroot); 6013 nvlist_free(props); 6014 6015 VERIFY3U(0, ==, spa_open(ztest_opts.zo_pool, &spa, FTAG)); 6016 zs->zs_metaslab_sz = 6017 1ULL << spa->spa_root_vdev->vdev_child[0]->vdev_ms_shift; 6018 6019 spa_close(spa, FTAG); 6020 6021 kernel_fini(); 6022 6023 ztest_run_zdb(ztest_opts.zo_pool); 6024 6025 ztest_freeze(); 6026 6027 ztest_run_zdb(ztest_opts.zo_pool); 6028 6029 rw_destroy(&ztest_name_lock); 6030 mutex_destroy(&ztest_vdev_lock); 6031 } 6032 6033 static void 6034 setup_data_fd(void) 6035 { 6036 static char ztest_name_data[] = "/tmp/ztest.data.XXXXXX"; 6037 6038 ztest_fd_data = mkstemp(ztest_name_data); 6039 ASSERT3S(ztest_fd_data, >=, 0); 6040 (void) unlink(ztest_name_data); 6041 } 6042 6043 6044 static int 6045 shared_data_size(ztest_shared_hdr_t *hdr) 6046 { 6047 int size; 6048 6049 size = hdr->zh_hdr_size; 6050 size += hdr->zh_opts_size; 6051 size += hdr->zh_size; 6052 size += hdr->zh_stats_size * hdr->zh_stats_count; 6053 size += hdr->zh_ds_size * hdr->zh_ds_count; 6054 6055 return (size); 6056 } 6057 6058 static void 6059 setup_hdr(void) 6060 { 6061 int size; 6062 ztest_shared_hdr_t *hdr; 6063 6064 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6065 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6066 ASSERT(hdr != MAP_FAILED); 6067 6068 VERIFY3U(0, ==, ftruncate(ztest_fd_data, sizeof (ztest_shared_hdr_t))); 6069 6070 hdr->zh_hdr_size = sizeof (ztest_shared_hdr_t); 6071 hdr->zh_opts_size = sizeof (ztest_shared_opts_t); 6072 hdr->zh_size = sizeof (ztest_shared_t); 6073 hdr->zh_stats_size = sizeof (ztest_shared_callstate_t); 6074 hdr->zh_stats_count = ZTEST_FUNCS; 6075 hdr->zh_ds_size = sizeof (ztest_shared_ds_t); 6076 hdr->zh_ds_count = ztest_opts.zo_datasets; 6077 6078 size = shared_data_size(hdr); 6079 VERIFY3U(0, ==, ftruncate(ztest_fd_data, size)); 6080 6081 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6082 } 6083 6084 static void 6085 setup_data(void) 6086 { 6087 int size, offset; 6088 ztest_shared_hdr_t *hdr; 6089 uint8_t *buf; 6090 6091 hdr = (void *)mmap(0, P2ROUNDUP(sizeof (*hdr), getpagesize()), 6092 PROT_READ, MAP_SHARED, ztest_fd_data, 0); 6093 ASSERT(hdr != MAP_FAILED); 6094 6095 size = shared_data_size(hdr); 6096 6097 (void) munmap((caddr_t)hdr, P2ROUNDUP(sizeof (*hdr), getpagesize())); 6098 hdr = ztest_shared_hdr = (void *)mmap(0, P2ROUNDUP(size, getpagesize()), 6099 PROT_READ | PROT_WRITE, MAP_SHARED, ztest_fd_data, 0); 6100 ASSERT(hdr != MAP_FAILED); 6101 buf = (uint8_t *)hdr; 6102 6103 offset = hdr->zh_hdr_size; 6104 ztest_shared_opts = (void *)&buf[offset]; 6105 offset += hdr->zh_opts_size; 6106 ztest_shared = (void *)&buf[offset]; 6107 offset += hdr->zh_size; 6108 ztest_shared_callstate = (void *)&buf[offset]; 6109 offset += hdr->zh_stats_size * hdr->zh_stats_count; 6110 ztest_shared_ds = (void *)&buf[offset]; 6111 } 6112 6113 static boolean_t 6114 exec_child(char *cmd, char *libpath, boolean_t ignorekill, int *statusp) 6115 { 6116 pid_t pid; 6117 int status; 6118 char *cmdbuf = NULL; 6119 6120 pid = fork(); 6121 6122 if (cmd == NULL) { 6123 cmdbuf = umem_alloc(MAXPATHLEN, UMEM_NOFAIL); 6124 (void) strlcpy(cmdbuf, getexecname(), MAXPATHLEN); 6125 cmd = cmdbuf; 6126 } 6127 6128 if (pid == -1) 6129 fatal(1, "fork failed"); 6130 6131 if (pid == 0) { /* child */ 6132 char *emptyargv[2] = { cmd, NULL }; 6133 char fd_data_str[12]; 6134 6135 struct rlimit rl = { 1024, 1024 }; 6136 (void) setrlimit(RLIMIT_NOFILE, &rl); 6137 6138 (void) close(ztest_fd_rand); 6139 VERIFY3U(11, >=, 6140 snprintf(fd_data_str, 12, "%d", ztest_fd_data)); 6141 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str, 1)); 6142 6143 (void) enable_extended_FILE_stdio(-1, -1); 6144 if (libpath != NULL) 6145 VERIFY(0 == setenv("LD_LIBRARY_PATH", libpath, 1)); 6146 (void) execv(cmd, emptyargv); 6147 ztest_dump_core = B_FALSE; 6148 fatal(B_TRUE, "exec failed: %s", cmd); 6149 } 6150 6151 if (cmdbuf != NULL) { 6152 umem_free(cmdbuf, MAXPATHLEN); 6153 cmd = NULL; 6154 } 6155 6156 while (waitpid(pid, &status, 0) != pid) 6157 continue; 6158 if (statusp != NULL) 6159 *statusp = status; 6160 6161 if (WIFEXITED(status)) { 6162 if (WEXITSTATUS(status) != 0) { 6163 (void) fprintf(stderr, "child exited with code %d\n", 6164 WEXITSTATUS(status)); 6165 exit(2); 6166 } 6167 return (B_FALSE); 6168 } else if (WIFSIGNALED(status)) { 6169 if (!ignorekill || WTERMSIG(status) != SIGKILL) { 6170 (void) fprintf(stderr, "child died with signal %d\n", 6171 WTERMSIG(status)); 6172 exit(3); 6173 } 6174 return (B_TRUE); 6175 } else { 6176 (void) fprintf(stderr, "something strange happened to child\n"); 6177 exit(4); 6178 /* NOTREACHED */ 6179 } 6180 } 6181 6182 static void 6183 ztest_run_init(void) 6184 { 6185 ztest_shared_t *zs = ztest_shared; 6186 6187 ASSERT(ztest_opts.zo_init != 0); 6188 6189 /* 6190 * Blow away any existing copy of zpool.cache 6191 */ 6192 (void) remove(spa_config_path); 6193 6194 /* 6195 * Create and initialize our storage pool. 6196 */ 6197 for (int i = 1; i <= ztest_opts.zo_init; i++) { 6198 bzero(zs, sizeof (ztest_shared_t)); 6199 if (ztest_opts.zo_verbose >= 3 && 6200 ztest_opts.zo_init != 1) { 6201 (void) printf("ztest_init(), pass %d\n", i); 6202 } 6203 ztest_init(zs); 6204 } 6205 } 6206 6207 int 6208 main(int argc, char **argv) 6209 { 6210 int kills = 0; 6211 int iters = 0; 6212 int older = 0; 6213 int newer = 0; 6214 ztest_shared_t *zs; 6215 ztest_info_t *zi; 6216 ztest_shared_callstate_t *zc; 6217 char timebuf[100]; 6218 char numbuf[NN_NUMBUF_SZ]; 6219 spa_t *spa; 6220 char *cmd; 6221 boolean_t hasalt; 6222 char *fd_data_str = getenv("ZTEST_FD_DATA"); 6223 6224 (void) setvbuf(stdout, NULL, _IOLBF, 0); 6225 6226 dprintf_setup(&argc, argv); 6227 zfs_deadman_synctime_ms = 300000; 6228 6229 ztest_fd_rand = open("/dev/urandom", O_RDONLY); 6230 ASSERT3S(ztest_fd_rand, >=, 0); 6231 6232 if (!fd_data_str) { 6233 process_options(argc, argv); 6234 6235 setup_data_fd(); 6236 setup_hdr(); 6237 setup_data(); 6238 bcopy(&ztest_opts, ztest_shared_opts, 6239 sizeof (*ztest_shared_opts)); 6240 } else { 6241 ztest_fd_data = atoi(fd_data_str); 6242 setup_data(); 6243 bcopy(ztest_shared_opts, &ztest_opts, sizeof (ztest_opts)); 6244 } 6245 ASSERT3U(ztest_opts.zo_datasets, ==, ztest_shared_hdr->zh_ds_count); 6246 6247 /* Override location of zpool.cache */ 6248 VERIFY3U(asprintf((char **)&spa_config_path, "%s/zpool.cache", 6249 ztest_opts.zo_dir), !=, -1); 6250 6251 ztest_ds = umem_alloc(ztest_opts.zo_datasets * sizeof (ztest_ds_t), 6252 UMEM_NOFAIL); 6253 zs = ztest_shared; 6254 6255 if (fd_data_str) { 6256 metaslab_gang_bang = ztest_opts.zo_metaslab_gang_bang; 6257 metaslab_df_alloc_threshold = 6258 zs->zs_metaslab_df_alloc_threshold; 6259 6260 if (zs->zs_do_init) 6261 ztest_run_init(); 6262 else 6263 ztest_run(zs); 6264 exit(0); 6265 } 6266 6267 hasalt = (strlen(ztest_opts.zo_alt_ztest) != 0); 6268 6269 if (ztest_opts.zo_verbose >= 1) { 6270 (void) printf("%llu vdevs, %d datasets, %d threads," 6271 " %llu seconds...\n", 6272 (u_longlong_t)ztest_opts.zo_vdevs, 6273 ztest_opts.zo_datasets, 6274 ztest_opts.zo_threads, 6275 (u_longlong_t)ztest_opts.zo_time); 6276 } 6277 6278 cmd = umem_alloc(MAXNAMELEN, UMEM_NOFAIL); 6279 (void) strlcpy(cmd, getexecname(), MAXNAMELEN); 6280 6281 zs->zs_do_init = B_TRUE; 6282 if (strlen(ztest_opts.zo_alt_ztest) != 0) { 6283 if (ztest_opts.zo_verbose >= 1) { 6284 (void) printf("Executing older ztest for " 6285 "initialization: %s\n", ztest_opts.zo_alt_ztest); 6286 } 6287 VERIFY(!exec_child(ztest_opts.zo_alt_ztest, 6288 ztest_opts.zo_alt_libpath, B_FALSE, NULL)); 6289 } else { 6290 VERIFY(!exec_child(NULL, NULL, B_FALSE, NULL)); 6291 } 6292 zs->zs_do_init = B_FALSE; 6293 6294 zs->zs_proc_start = gethrtime(); 6295 zs->zs_proc_stop = zs->zs_proc_start + ztest_opts.zo_time * NANOSEC; 6296 6297 for (int f = 0; f < ZTEST_FUNCS; f++) { 6298 zi = &ztest_info[f]; 6299 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6300 if (zs->zs_proc_start + zi->zi_interval[0] > zs->zs_proc_stop) 6301 zc->zc_next = UINT64_MAX; 6302 else 6303 zc->zc_next = zs->zs_proc_start + 6304 ztest_random(2 * zi->zi_interval[0] + 1); 6305 } 6306 6307 /* 6308 * Run the tests in a loop. These tests include fault injection 6309 * to verify that self-healing data works, and forced crashes 6310 * to verify that we never lose on-disk consistency. 6311 */ 6312 while (gethrtime() < zs->zs_proc_stop) { 6313 int status; 6314 boolean_t killed; 6315 6316 /* 6317 * Initialize the workload counters for each function. 6318 */ 6319 for (int f = 0; f < ZTEST_FUNCS; f++) { 6320 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6321 zc->zc_count = 0; 6322 zc->zc_time = 0; 6323 } 6324 6325 /* Set the allocation switch size */ 6326 zs->zs_metaslab_df_alloc_threshold = 6327 ztest_random(zs->zs_metaslab_sz / 4) + 1; 6328 6329 if (!hasalt || ztest_random(2) == 0) { 6330 if (hasalt && ztest_opts.zo_verbose >= 1) { 6331 (void) printf("Executing newer ztest: %s\n", 6332 cmd); 6333 } 6334 newer++; 6335 killed = exec_child(cmd, NULL, B_TRUE, &status); 6336 } else { 6337 if (hasalt && ztest_opts.zo_verbose >= 1) { 6338 (void) printf("Executing older ztest: %s\n", 6339 ztest_opts.zo_alt_ztest); 6340 } 6341 older++; 6342 killed = exec_child(ztest_opts.zo_alt_ztest, 6343 ztest_opts.zo_alt_libpath, B_TRUE, &status); 6344 } 6345 6346 if (killed) 6347 kills++; 6348 iters++; 6349 6350 if (ztest_opts.zo_verbose >= 1) { 6351 hrtime_t now = gethrtime(); 6352 6353 now = MIN(now, zs->zs_proc_stop); 6354 print_time(zs->zs_proc_stop - now, timebuf); 6355 nicenum(zs->zs_space, numbuf, sizeof (numbuf)); 6356 6357 (void) printf("Pass %3d, %8s, %3llu ENOSPC, " 6358 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n", 6359 iters, 6360 WIFEXITED(status) ? "Complete" : "SIGKILL", 6361 (u_longlong_t)zs->zs_enospc_count, 6362 100.0 * zs->zs_alloc / zs->zs_space, 6363 numbuf, 6364 100.0 * (now - zs->zs_proc_start) / 6365 (ztest_opts.zo_time * NANOSEC), timebuf); 6366 } 6367 6368 if (ztest_opts.zo_verbose >= 2) { 6369 (void) printf("\nWorkload summary:\n\n"); 6370 (void) printf("%7s %9s %s\n", 6371 "Calls", "Time", "Function"); 6372 (void) printf("%7s %9s %s\n", 6373 "-----", "----", "--------"); 6374 for (int f = 0; f < ZTEST_FUNCS; f++) { 6375 Dl_info dli; 6376 6377 zi = &ztest_info[f]; 6378 zc = ZTEST_GET_SHARED_CALLSTATE(f); 6379 print_time(zc->zc_time, timebuf); 6380 (void) dladdr((void *)zi->zi_func, &dli); 6381 (void) printf("%7llu %9s %s\n", 6382 (u_longlong_t)zc->zc_count, timebuf, 6383 dli.dli_sname); 6384 } 6385 (void) printf("\n"); 6386 } 6387 6388 /* 6389 * It's possible that we killed a child during a rename test, 6390 * in which case we'll have a 'ztest_tmp' pool lying around 6391 * instead of 'ztest'. Do a blind rename in case this happened. 6392 */ 6393 kernel_init(FREAD); 6394 if (spa_open(ztest_opts.zo_pool, &spa, FTAG) == 0) { 6395 spa_close(spa, FTAG); 6396 } else { 6397 char tmpname[ZFS_MAX_DATASET_NAME_LEN]; 6398 kernel_fini(); 6399 kernel_init(FREAD | FWRITE); 6400 (void) snprintf(tmpname, sizeof (tmpname), "%s_tmp", 6401 ztest_opts.zo_pool); 6402 (void) spa_rename(tmpname, ztest_opts.zo_pool); 6403 } 6404 kernel_fini(); 6405 6406 ztest_run_zdb(ztest_opts.zo_pool); 6407 } 6408 6409 if (ztest_opts.zo_verbose >= 1) { 6410 if (hasalt) { 6411 (void) printf("%d runs of older ztest: %s\n", older, 6412 ztest_opts.zo_alt_ztest); 6413 (void) printf("%d runs of newer ztest: %s\n", newer, 6414 cmd); 6415 } 6416 (void) printf("%d killed, %d completed, %.0f%% kill rate\n", 6417 kills, iters - kills, (100.0 * kills) / MAX(1, iters)); 6418 } 6419 6420 umem_free(cmd, MAXNAMELEN); 6421 6422 return (0); 6423 }