1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 25 * Copyright 2016 Toomas Soome <tsoome@me.com> 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright 2016 Nexenta Systems, Inc. 28 * Copyright 2017 RackTop Systems. 29 */ 30 31 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 32 /* All Rights Reserved */ 33 34 /* 35 * University Copyright- Copyright (c) 1982, 1986, 1988 36 * The Regents of the University of California 37 * All Rights Reserved 38 * 39 * University Acknowledgment- Portions of this document are derived from 40 * software developed by the University of California, Berkeley, and its 41 * contributors. 42 */ 43 44 #include <sys/types.h> 45 #include <sys/t_lock.h> 46 #include <sys/param.h> 47 #include <sys/errno.h> 48 #include <sys/user.h> 49 #include <sys/fstyp.h> 50 #include <sys/kmem.h> 51 #include <sys/systm.h> 52 #include <sys/proc.h> 53 #include <sys/mount.h> 54 #include <sys/vfs.h> 55 #include <sys/vfs_opreg.h> 56 #include <sys/fem.h> 57 #include <sys/mntent.h> 58 #include <sys/stat.h> 59 #include <sys/statvfs.h> 60 #include <sys/statfs.h> 61 #include <sys/cred.h> 62 #include <sys/vnode.h> 63 #include <sys/rwstlock.h> 64 #include <sys/dnlc.h> 65 #include <sys/file.h> 66 #include <sys/time.h> 67 #include <sys/atomic.h> 68 #include <sys/cmn_err.h> 69 #include <sys/buf.h> 70 #include <sys/swap.h> 71 #include <sys/debug.h> 72 #include <sys/vnode.h> 73 #include <sys/modctl.h> 74 #include <sys/ddi.h> 75 #include <sys/pathname.h> 76 #include <sys/bootconf.h> 77 #include <sys/dumphdr.h> 78 #include <sys/dc_ki.h> 79 #include <sys/poll.h> 80 #include <sys/sunddi.h> 81 #include <sys/sysmacros.h> 82 #include <sys/zone.h> 83 #include <sys/policy.h> 84 #include <sys/ctfs.h> 85 #include <sys/objfs.h> 86 #include <sys/console.h> 87 #include <sys/reboot.h> 88 #include <sys/attr.h> 89 #include <sys/zio.h> 90 #include <sys/spa.h> 91 #include <sys/lofi.h> 92 #include <sys/bootprops.h> 93 94 #include <vm/page.h> 95 96 #include <fs/fs_subr.h> 97 /* Private interfaces to create vopstats-related data structures */ 98 extern void initialize_vopstats(vopstats_t *); 99 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 100 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 101 102 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 103 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 104 const char *, int, int); 105 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 106 static void vfs_freemnttab(struct vfs *); 107 static void vfs_freeopt(mntopt_t *); 108 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 109 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 110 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 111 static void vfs_createopttbl_extend(mntopts_t *, const char *, 112 const mntopts_t *); 113 static char **vfs_copycancelopt_extend(char **const, int); 114 static void vfs_freecancelopt(char **); 115 static void getrootfs(char **, char **); 116 static int getmacpath(dev_info_t *, void *); 117 static void vfs_mnttabvp_setup(void); 118 119 struct ipmnt { 120 struct ipmnt *mip_next; 121 dev_t mip_dev; 122 struct vfs *mip_vfsp; 123 }; 124 125 static kmutex_t vfs_miplist_mutex; 126 static struct ipmnt *vfs_miplist = NULL; 127 static struct ipmnt *vfs_miplist_end = NULL; 128 129 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 130 131 /* 132 * VFS global data. 133 */ 134 vnode_t *rootdir; /* pointer to root inode vnode. */ 135 vnode_t *devicesdir; /* pointer to inode of devices root */ 136 vnode_t *devdir; /* pointer to inode of dev root */ 137 138 char *server_rootpath; /* root path for diskless clients */ 139 char *server_hostname; /* hostname of diskless server */ 140 141 static struct vfs root; 142 static struct vfs devices; 143 static struct vfs dev; 144 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 145 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 146 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 147 /* must be power of 2! */ 148 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 149 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 150 char *vfs_dummyfstype = "\0"; 151 struct pollhead vfs_pollhd; /* for mnttab pollers */ 152 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 153 int mntfstype; /* will be set once mnt fs is mounted */ 154 155 /* 156 * Table for generic options recognized in the VFS layer and acted 157 * on at this level before parsing file system specific options. 158 * The nosuid option is stronger than any of the devices and setuid 159 * options, so those are canceled when nosuid is seen. 160 * 161 * All options which are added here need to be added to the 162 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 163 */ 164 /* 165 * VFS Mount options table 166 */ 167 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 168 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 169 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 170 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 171 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 172 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 173 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 174 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 175 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 176 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 177 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 178 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 179 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 180 181 static const mntopt_t mntopts[] = { 182 /* 183 * option name cancel options default arg flags 184 */ 185 { MNTOPT_REMOUNT, NULL, NULL, 186 MO_NODISPLAY, (void *)0 }, 187 { MNTOPT_RO, ro_cancel, NULL, 0, 188 (void *)0 }, 189 { MNTOPT_RW, rw_cancel, NULL, 0, 190 (void *)0 }, 191 { MNTOPT_SUID, suid_cancel, NULL, 0, 192 (void *)0 }, 193 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 194 (void *)0 }, 195 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 196 (void *)0 }, 197 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 198 (void *)0 }, 199 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 200 (void *)0 }, 201 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 202 (void *)0 }, 203 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 204 (void *)0 }, 205 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 206 (void *)0 }, 207 { MNTOPT_EXEC, exec_cancel, NULL, 0, 208 (void *)0 }, 209 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 210 (void *)0 }, 211 }; 212 213 const mntopts_t vfs_mntopts = { 214 sizeof (mntopts) / sizeof (mntopt_t), 215 (mntopt_t *)&mntopts[0] 216 }; 217 218 /* 219 * File system operation dispatch functions. 220 */ 221 222 int 223 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 224 { 225 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 226 } 227 228 int 229 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 230 { 231 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 232 } 233 234 int 235 fsop_root(vfs_t *vfsp, vnode_t **vpp) 236 { 237 refstr_t *mntpt; 238 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 239 /* 240 * Make sure this root has a path. With lofs, it is possible to have 241 * a NULL mountpoint. 242 */ 243 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 244 mntpt = vfs_getmntpoint(vfsp); 245 vn_setpath_str(*vpp, refstr_value(mntpt), 246 strlen(refstr_value(mntpt))); 247 refstr_rele(mntpt); 248 } 249 250 return (ret); 251 } 252 253 int 254 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 255 { 256 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 257 } 258 259 int 260 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 261 { 262 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 263 } 264 265 int 266 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 267 { 268 /* 269 * In order to handle system attribute fids in a manner 270 * transparent to the underlying fs, we embed the fid for 271 * the sysattr parent object in the sysattr fid and tack on 272 * some extra bytes that only the sysattr layer knows about. 273 * 274 * This guarantees that sysattr fids are larger than other fids 275 * for this vfs. If the vfs supports the sysattr view interface 276 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 277 * collision with XATTR_FIDSZ. 278 */ 279 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 280 fidp->fid_len == XATTR_FIDSZ) 281 return (xattr_dir_vget(vfsp, vpp, fidp)); 282 283 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 284 } 285 286 int 287 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 288 { 289 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 290 } 291 292 void 293 fsop_freefs(vfs_t *vfsp) 294 { 295 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 296 } 297 298 int 299 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 300 { 301 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 302 } 303 304 int 305 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 306 { 307 ASSERT((fstype >= 0) && (fstype < nfstype)); 308 309 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 310 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 311 else 312 return (ENOTSUP); 313 } 314 315 /* 316 * File system initialization. vfs_setfsops() must be called from a file 317 * system's init routine. 318 */ 319 320 static int 321 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 322 int *unused_ops) 323 { 324 static const fs_operation_trans_def_t vfs_ops_table[] = { 325 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 326 fs_nosys, fs_nosys, 327 328 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 329 fs_nosys, fs_nosys, 330 331 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 332 fs_nosys, fs_nosys, 333 334 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 335 fs_nosys, fs_nosys, 336 337 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 338 (fs_generic_func_p) fs_sync, 339 (fs_generic_func_p) fs_sync, /* No errors allowed */ 340 341 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 342 fs_nosys, fs_nosys, 343 344 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 345 fs_nosys, fs_nosys, 346 347 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 348 (fs_generic_func_p)fs_freevfs, 349 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 350 351 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 352 (fs_generic_func_p)fs_nosys, 353 (fs_generic_func_p)fs_nosys, 354 355 NULL, 0, NULL, NULL 356 }; 357 358 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 359 } 360 361 void 362 zfs_boot_init(void) 363 { 364 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 365 spa_boot_init(); 366 } 367 368 int 369 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 370 { 371 int error; 372 int unused_ops; 373 374 /* 375 * Verify that fstype refers to a valid fs. Note that 376 * 0 is valid since it's used to set "stray" ops. 377 */ 378 if ((fstype < 0) || (fstype >= nfstype)) 379 return (EINVAL); 380 381 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 382 return (EINVAL); 383 384 /* Set up the operations vector. */ 385 386 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 387 388 if (error != 0) 389 return (error); 390 391 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 392 393 if (actual != NULL) 394 *actual = &vfssw[fstype].vsw_vfsops; 395 396 #if DEBUG 397 if (unused_ops != 0) 398 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 399 "but not used", vfssw[fstype].vsw_name, unused_ops); 400 #endif 401 402 return (0); 403 } 404 405 int 406 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 407 { 408 int error; 409 int unused_ops; 410 411 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 412 413 error = fs_copyfsops(template, *actual, &unused_ops); 414 if (error != 0) { 415 kmem_free(*actual, sizeof (vfsops_t)); 416 *actual = NULL; 417 return (error); 418 } 419 420 return (0); 421 } 422 423 /* 424 * Free a vfsops structure created as a result of vfs_makefsops(). 425 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 426 * vfs_freevfsops_by_type(). 427 */ 428 void 429 vfs_freevfsops(vfsops_t *vfsops) 430 { 431 kmem_free(vfsops, sizeof (vfsops_t)); 432 } 433 434 /* 435 * Since the vfsops structure is part of the vfssw table and wasn't 436 * really allocated, we're not really freeing anything. We keep 437 * the name for consistency with vfs_freevfsops(). We do, however, 438 * need to take care of a little bookkeeping. 439 * NOTE: For a vfsops structure created by vfs_setfsops(), use 440 * vfs_freevfsops_by_type(). 441 */ 442 int 443 vfs_freevfsops_by_type(int fstype) 444 { 445 446 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 447 if ((fstype <= 0) || (fstype >= nfstype)) 448 return (EINVAL); 449 450 WLOCK_VFSSW(); 451 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 452 WUNLOCK_VFSSW(); 453 return (EINVAL); 454 } 455 456 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 457 WUNLOCK_VFSSW(); 458 459 return (0); 460 } 461 462 /* Support routines used to reference vfs_op */ 463 464 /* Set the operations vector for a vfs */ 465 void 466 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 467 { 468 vfsops_t *op; 469 470 ASSERT(vfsp != NULL); 471 ASSERT(vfsops != NULL); 472 473 op = vfsp->vfs_op; 474 membar_consumer(); 475 if (vfsp->vfs_femhead == NULL && 476 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 477 return; 478 } 479 fsem_setvfsops(vfsp, vfsops); 480 } 481 482 /* Retrieve the operations vector for a vfs */ 483 vfsops_t * 484 vfs_getops(vfs_t *vfsp) 485 { 486 vfsops_t *op; 487 488 ASSERT(vfsp != NULL); 489 490 op = vfsp->vfs_op; 491 membar_consumer(); 492 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 493 return (op); 494 } else { 495 return (fsem_getvfsops(vfsp)); 496 } 497 } 498 499 /* 500 * Returns non-zero (1) if the vfsops matches that of the vfs. 501 * Returns zero (0) if not. 502 */ 503 int 504 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 505 { 506 return (vfs_getops(vfsp) == vfsops); 507 } 508 509 /* 510 * Returns non-zero (1) if the file system has installed a non-default, 511 * non-error vfs_sync routine. Returns zero (0) otherwise. 512 */ 513 int 514 vfs_can_sync(vfs_t *vfsp) 515 { 516 /* vfs_sync() routine is not the default/error function */ 517 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 518 } 519 520 /* 521 * Initialize a vfs structure. 522 */ 523 void 524 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 525 { 526 /* Other initialization has been moved to vfs_alloc() */ 527 vfsp->vfs_count = 0; 528 vfsp->vfs_next = vfsp; 529 vfsp->vfs_prev = vfsp; 530 vfsp->vfs_zone_next = vfsp; 531 vfsp->vfs_zone_prev = vfsp; 532 vfsp->vfs_lofi_id = 0; 533 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 534 vfsimpl_setup(vfsp); 535 vfsp->vfs_data = (data); 536 vfs_setops((vfsp), (op)); 537 } 538 539 /* 540 * Allocate and initialize the vfs implementation private data 541 * structure, vfs_impl_t. 542 */ 543 void 544 vfsimpl_setup(vfs_t *vfsp) 545 { 546 int i; 547 548 if (vfsp->vfs_implp != NULL) { 549 return; 550 } 551 552 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 553 /* Note that these are #define'd in vfs.h */ 554 vfsp->vfs_vskap = NULL; 555 vfsp->vfs_fstypevsp = NULL; 556 557 /* Set size of counted array, then zero the array */ 558 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 559 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 560 vfsp->vfs_featureset[i] = 0; 561 } 562 } 563 564 /* 565 * Release the vfs_impl_t structure, if it exists. Some unbundled 566 * filesystems may not use the newer version of vfs and thus 567 * would not contain this implementation private data structure. 568 */ 569 void 570 vfsimpl_teardown(vfs_t *vfsp) 571 { 572 vfs_impl_t *vip = vfsp->vfs_implp; 573 574 if (vip == NULL) 575 return; 576 577 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 578 vfsp->vfs_implp = NULL; 579 } 580 581 /* 582 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 583 * fstatvfs, and sysfs moved to common/syscall. 584 */ 585 586 /* 587 * Update every mounted file system. We call the vfs_sync operation of 588 * each file system type, passing it a NULL vfsp to indicate that all 589 * mounted file systems of that type should be updated. 590 */ 591 void 592 vfs_sync(int flag) 593 { 594 struct vfssw *vswp; 595 RLOCK_VFSSW(); 596 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 597 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 598 vfs_refvfssw(vswp); 599 RUNLOCK_VFSSW(); 600 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 601 CRED()); 602 vfs_unrefvfssw(vswp); 603 RLOCK_VFSSW(); 604 } 605 } 606 RUNLOCK_VFSSW(); 607 } 608 609 void 610 sync(void) 611 { 612 vfs_sync(0); 613 } 614 615 /* 616 * External routines. 617 */ 618 619 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 620 621 /* 622 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 623 * but otherwise should be accessed only via vfs_list_lock() and 624 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 625 */ 626 static krwlock_t vfslist; 627 628 /* 629 * Mount devfs on /devices. This is done right after root is mounted 630 * to provide device access support for the system 631 */ 632 static void 633 vfs_mountdevices(void) 634 { 635 struct vfssw *vsw; 636 struct vnode *mvp; 637 struct mounta mounta = { /* fake mounta for devfs_mount() */ 638 NULL, 639 NULL, 640 MS_SYSSPACE, 641 NULL, 642 NULL, 643 0, 644 NULL, 645 0 646 }; 647 648 /* 649 * _init devfs module to fill in the vfssw 650 */ 651 if (modload("fs", "devfs") == -1) 652 panic("Cannot _init devfs module"); 653 654 /* 655 * Hold vfs 656 */ 657 RLOCK_VFSSW(); 658 vsw = vfs_getvfsswbyname("devfs"); 659 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 660 VFS_HOLD(&devices); 661 662 /* 663 * Locate mount point 664 */ 665 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 666 panic("Cannot find /devices"); 667 668 /* 669 * Perform the mount of /devices 670 */ 671 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 672 panic("Cannot mount /devices"); 673 674 RUNLOCK_VFSSW(); 675 676 /* 677 * Set appropriate members and add to vfs list for mnttab display 678 */ 679 vfs_setresource(&devices, "/devices", 0); 680 vfs_setmntpoint(&devices, "/devices", 0); 681 682 /* 683 * Hold the root of /devices so it won't go away 684 */ 685 if (VFS_ROOT(&devices, &devicesdir)) 686 panic("vfs_mountdevices: not devices root"); 687 688 if (vfs_lock(&devices) != 0) { 689 VN_RELE(devicesdir); 690 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 691 return; 692 } 693 694 if (vn_vfswlock(mvp) != 0) { 695 vfs_unlock(&devices); 696 VN_RELE(devicesdir); 697 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 698 return; 699 } 700 701 vfs_add(mvp, &devices, 0); 702 vn_vfsunlock(mvp); 703 vfs_unlock(&devices); 704 VN_RELE(devicesdir); 705 } 706 707 /* 708 * mount the first instance of /dev to root and remain mounted 709 */ 710 static void 711 vfs_mountdev1(void) 712 { 713 struct vfssw *vsw; 714 struct vnode *mvp; 715 struct mounta mounta = { /* fake mounta for sdev_mount() */ 716 NULL, 717 NULL, 718 MS_SYSSPACE | MS_OVERLAY, 719 NULL, 720 NULL, 721 0, 722 NULL, 723 0 724 }; 725 726 /* 727 * _init dev module to fill in the vfssw 728 */ 729 if (modload("fs", "dev") == -1) 730 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 731 732 /* 733 * Hold vfs 734 */ 735 RLOCK_VFSSW(); 736 vsw = vfs_getvfsswbyname("dev"); 737 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 738 VFS_HOLD(&dev); 739 740 /* 741 * Locate mount point 742 */ 743 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 744 cmn_err(CE_PANIC, "Cannot find /dev\n"); 745 746 /* 747 * Perform the mount of /dev 748 */ 749 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 750 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 751 752 RUNLOCK_VFSSW(); 753 754 /* 755 * Set appropriate members and add to vfs list for mnttab display 756 */ 757 vfs_setresource(&dev, "/dev", 0); 758 vfs_setmntpoint(&dev, "/dev", 0); 759 760 /* 761 * Hold the root of /dev so it won't go away 762 */ 763 if (VFS_ROOT(&dev, &devdir)) 764 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 765 766 if (vfs_lock(&dev) != 0) { 767 VN_RELE(devdir); 768 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 769 return; 770 } 771 772 if (vn_vfswlock(mvp) != 0) { 773 vfs_unlock(&dev); 774 VN_RELE(devdir); 775 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 776 return; 777 } 778 779 vfs_add(mvp, &dev, 0); 780 vn_vfsunlock(mvp); 781 vfs_unlock(&dev); 782 VN_RELE(devdir); 783 } 784 785 /* 786 * Mount required filesystem. This is done right after root is mounted. 787 */ 788 static void 789 vfs_mountfs(char *module, char *spec, char *path) 790 { 791 struct vnode *mvp; 792 struct mounta mounta; 793 vfs_t *vfsp; 794 795 bzero(&mounta, sizeof (mounta)); 796 mounta.flags = MS_SYSSPACE | MS_DATA; 797 mounta.fstype = module; 798 mounta.spec = spec; 799 mounta.dir = path; 800 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 801 cmn_err(CE_WARN, "Cannot find %s", path); 802 return; 803 } 804 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 805 cmn_err(CE_WARN, "Cannot mount %s", path); 806 else 807 VFS_RELE(vfsp); 808 VN_RELE(mvp); 809 } 810 811 /* 812 * vfs_mountroot is called by main() to mount the root filesystem. 813 */ 814 void 815 vfs_mountroot(void) 816 { 817 struct vnode *rvp = NULL; 818 char *path; 819 size_t plen; 820 struct vfssw *vswp; 821 proc_t *p; 822 823 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 824 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 825 826 /* 827 * Alloc the vfs hash bucket array and locks 828 */ 829 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 830 831 /* 832 * Call machine-dependent routine "rootconf" to choose a root 833 * file system type. 834 */ 835 if (rootconf()) 836 panic("vfs_mountroot: cannot mount root"); 837 /* 838 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 839 * to point to it. These are used by lookuppn() so that it 840 * knows where to start from ('/' or '.'). 841 */ 842 vfs_setmntpoint(rootvfs, "/", 0); 843 if (VFS_ROOT(rootvfs, &rootdir)) 844 panic("vfs_mountroot: no root vnode"); 845 846 /* 847 * At this point, the process tree consists of p0 and possibly some 848 * direct children of p0. (i.e. there are no grandchildren) 849 * 850 * Walk through them all, setting their current directory. 851 */ 852 mutex_enter(&pidlock); 853 for (p = practive; p != NULL; p = p->p_next) { 854 ASSERT(p == &p0 || p->p_parent == &p0); 855 856 PTOU(p)->u_cdir = rootdir; 857 VN_HOLD(PTOU(p)->u_cdir); 858 PTOU(p)->u_rdir = NULL; 859 } 860 mutex_exit(&pidlock); 861 862 /* 863 * Setup the global zone's rootvp, now that it exists. 864 */ 865 global_zone->zone_rootvp = rootdir; 866 VN_HOLD(global_zone->zone_rootvp); 867 868 /* 869 * Notify the module code that it can begin using the 870 * root filesystem instead of the boot program's services. 871 */ 872 modrootloaded = 1; 873 874 /* 875 * Special handling for a ZFS root file system. 876 */ 877 zfs_boot_init(); 878 879 /* 880 * Set up mnttab information for root 881 */ 882 vfs_setresource(rootvfs, rootfs.bo_name, 0); 883 884 /* 885 * Notify cluster software that the root filesystem is available. 886 */ 887 clboot_mountroot(); 888 889 /* Now that we're all done with the root FS, set up its vopstats */ 890 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 891 /* Set flag for statistics collection */ 892 if (vswp->vsw_flag & VSW_STATS) { 893 initialize_vopstats(&rootvfs->vfs_vopstats); 894 rootvfs->vfs_flag |= VFS_STATS; 895 rootvfs->vfs_fstypevsp = 896 get_fstype_vopstats(rootvfs, vswp); 897 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 898 } 899 vfs_unrefvfssw(vswp); 900 } 901 902 /* 903 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 904 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 905 */ 906 vfs_mountdevices(); 907 vfs_mountdev1(); 908 909 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 910 vfs_mountfs("proc", "/proc", "/proc"); 911 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 912 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 913 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 914 vfs_mountfs("bootfs", "bootfs", "/system/boot"); 915 916 if (getzoneid() == GLOBAL_ZONEID) { 917 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 918 } 919 920 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 921 /* 922 * Look up the root device via devfs so that a dv_node is 923 * created for it. The vnode is never VN_RELE()ed. 924 * We allocate more than MAXPATHLEN so that the 925 * buffer passed to i_ddi_prompath_to_devfspath() is 926 * exactly MAXPATHLEN (the function expects a buffer 927 * of that length). 928 */ 929 plen = strlen("/devices"); 930 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 931 (void) strcpy(path, "/devices"); 932 933 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 934 != DDI_SUCCESS || 935 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 936 937 /* NUL terminate in case "path" has garbage */ 938 path[plen + MAXPATHLEN - 1] = '\0'; 939 #ifdef DEBUG 940 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 941 path); 942 #endif 943 } 944 kmem_free(path, plen + MAXPATHLEN); 945 } 946 947 vfs_mnttabvp_setup(); 948 } 949 950 /* 951 * Check to see if our "block device" is actually a file. If so, 952 * automatically add a lofi device, and keep track of this fact. 953 */ 954 static int 955 lofi_add(const char *fsname, struct vfs *vfsp, 956 mntopts_t *mntopts, struct mounta *uap) 957 { 958 int fromspace = (uap->flags & MS_SYSSPACE) ? 959 UIO_SYSSPACE : UIO_USERSPACE; 960 struct lofi_ioctl *li = NULL; 961 struct vnode *vp = NULL; 962 struct pathname pn = { NULL }; 963 ldi_ident_t ldi_id; 964 ldi_handle_t ldi_hdl; 965 vfssw_t *vfssw; 966 int id; 967 int err = 0; 968 969 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 970 return (0); 971 972 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 973 vfs_unrefvfssw(vfssw); 974 return (0); 975 } 976 977 vfs_unrefvfssw(vfssw); 978 vfssw = NULL; 979 980 if (pn_get(uap->spec, fromspace, &pn) != 0) 981 return (0); 982 983 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 984 goto out; 985 986 if (vp->v_type != VREG) 987 goto out; 988 989 /* OK, this is a lofi mount. */ 990 991 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 992 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 993 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 994 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 995 err = EINVAL; 996 goto out; 997 } 998 999 ldi_id = ldi_ident_from_anon(); 1000 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1001 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1002 1003 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1004 &ldi_hdl, ldi_id); 1005 1006 if (err) 1007 goto out2; 1008 1009 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1010 FREAD | FWRITE | FKIOCTL, kcred, &id); 1011 1012 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1013 1014 if (!err) 1015 vfsp->vfs_lofi_id = id; 1016 1017 out2: 1018 ldi_ident_release(ldi_id); 1019 out: 1020 if (li != NULL) 1021 kmem_free(li, sizeof (*li)); 1022 if (vp != NULL) 1023 VN_RELE(vp); 1024 pn_free(&pn); 1025 return (err); 1026 } 1027 1028 static void 1029 lofi_remove(struct vfs *vfsp) 1030 { 1031 struct lofi_ioctl *li = NULL; 1032 ldi_ident_t ldi_id; 1033 ldi_handle_t ldi_hdl; 1034 int err; 1035 1036 if (vfsp->vfs_lofi_id == 0) 1037 return; 1038 1039 ldi_id = ldi_ident_from_anon(); 1040 1041 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1042 li->li_id = vfsp->vfs_lofi_id; 1043 li->li_cleanup = B_TRUE; 1044 1045 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1046 &ldi_hdl, ldi_id); 1047 1048 if (err) 1049 goto out; 1050 1051 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1052 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1053 1054 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1055 1056 if (!err) 1057 vfsp->vfs_lofi_id = 0; 1058 1059 out: 1060 ldi_ident_release(ldi_id); 1061 if (li != NULL) 1062 kmem_free(li, sizeof (*li)); 1063 } 1064 1065 /* 1066 * Common mount code. Called from the system call entry point, from autofs, 1067 * nfsv4 trigger mounts, and from pxfs. 1068 * 1069 * Takes the effective file system type, mount arguments, the mount point 1070 * vnode, flags specifying whether the mount is a remount and whether it 1071 * should be entered into the vfs list, and credentials. Fills in its vfspp 1072 * parameter with the mounted file system instance's vfs. 1073 * 1074 * Note that the effective file system type is specified as a string. It may 1075 * be null, in which case it's determined from the mount arguments, and may 1076 * differ from the type specified in the mount arguments; this is a hook to 1077 * allow interposition when instantiating file system instances. 1078 * 1079 * The caller is responsible for releasing its own hold on the mount point 1080 * vp (this routine does its own hold when necessary). 1081 * Also note that for remounts, the mount point vp should be the vnode for 1082 * the root of the file system rather than the vnode that the file system 1083 * is mounted on top of. 1084 */ 1085 int 1086 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1087 struct vfs **vfspp) 1088 { 1089 struct vfssw *vswp; 1090 vfsops_t *vfsops; 1091 struct vfs *vfsp; 1092 struct vnode *bvp; 1093 dev_t bdev = 0; 1094 mntopts_t mnt_mntopts; 1095 int error = 0; 1096 int copyout_error = 0; 1097 int ovflags; 1098 char *opts = uap->optptr; 1099 char *inargs = opts; 1100 int optlen = uap->optlen; 1101 int remount; 1102 int rdonly; 1103 int nbmand = 0; 1104 int delmip = 0; 1105 int addmip = 0; 1106 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1107 int fromspace = (uap->flags & MS_SYSSPACE) ? 1108 UIO_SYSSPACE : UIO_USERSPACE; 1109 char *resource = NULL, *mountpt = NULL; 1110 refstr_t *oldresource, *oldmntpt; 1111 struct pathname pn, rpn; 1112 vsk_anchor_t *vskap; 1113 char fstname[FSTYPSZ]; 1114 zone_t *zone; 1115 1116 /* 1117 * The v_flag value for the mount point vp is permanently set 1118 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1119 * for mount point locking. 1120 */ 1121 mutex_enter(&vp->v_lock); 1122 vp->v_flag |= VVFSLOCK; 1123 mutex_exit(&vp->v_lock); 1124 1125 mnt_mntopts.mo_count = 0; 1126 /* 1127 * Find the ops vector to use to invoke the file system-specific mount 1128 * method. If the fsname argument is non-NULL, use it directly. 1129 * Otherwise, dig the file system type information out of the mount 1130 * arguments. 1131 * 1132 * A side effect is to hold the vfssw entry. 1133 * 1134 * Mount arguments can be specified in several ways, which are 1135 * distinguished by flag bit settings. The preferred way is to set 1136 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1137 * type supplied as a character string and the last two arguments 1138 * being a pointer to a character buffer and the size of the buffer. 1139 * On entry, the buffer holds a null terminated list of options; on 1140 * return, the string is the list of options the file system 1141 * recognized. If MS_DATA is set arguments five and six point to a 1142 * block of binary data which the file system interprets. 1143 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1144 * consistently with these conventions. To handle them, we check to 1145 * see whether the pointer to the file system name has a numeric value 1146 * less than 256. If so, we treat it as an index. 1147 */ 1148 if (fsname != NULL) { 1149 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1150 return (EINVAL); 1151 } 1152 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1153 size_t n; 1154 uint_t fstype; 1155 1156 fsname = fstname; 1157 1158 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1159 RLOCK_VFSSW(); 1160 if (fstype == 0 || fstype >= nfstype || 1161 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1162 RUNLOCK_VFSSW(); 1163 return (EINVAL); 1164 } 1165 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1166 RUNLOCK_VFSSW(); 1167 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1168 return (EINVAL); 1169 } else { 1170 /* 1171 * Handle either kernel or user address space. 1172 */ 1173 if (uap->flags & MS_SYSSPACE) { 1174 error = copystr(uap->fstype, fsname, 1175 FSTYPSZ, &n); 1176 } else { 1177 error = copyinstr(uap->fstype, fsname, 1178 FSTYPSZ, &n); 1179 } 1180 if (error) { 1181 if (error == ENAMETOOLONG) 1182 return (EINVAL); 1183 return (error); 1184 } 1185 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1186 return (EINVAL); 1187 } 1188 } else { 1189 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1190 return (EINVAL); 1191 fsname = vswp->vsw_name; 1192 } 1193 if (!VFS_INSTALLED(vswp)) 1194 return (EINVAL); 1195 1196 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1197 vfs_unrefvfssw(vswp); 1198 return (error); 1199 } 1200 1201 vfsops = &vswp->vsw_vfsops; 1202 1203 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1204 /* 1205 * Fetch mount options and parse them for generic vfs options 1206 */ 1207 if (uap->flags & MS_OPTIONSTR) { 1208 /* 1209 * Limit the buffer size 1210 */ 1211 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1212 error = EINVAL; 1213 goto errout; 1214 } 1215 if ((uap->flags & MS_SYSSPACE) == 0) { 1216 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1217 inargs[0] = '\0'; 1218 if (optlen) { 1219 error = copyinstr(opts, inargs, (size_t)optlen, 1220 NULL); 1221 if (error) { 1222 goto errout; 1223 } 1224 } 1225 } 1226 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1227 } 1228 /* 1229 * Flag bits override the options string. 1230 */ 1231 if (uap->flags & MS_REMOUNT) 1232 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1233 if (uap->flags & MS_RDONLY) 1234 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1235 if (uap->flags & MS_NOSUID) 1236 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1237 1238 /* 1239 * Check if this is a remount; must be set in the option string and 1240 * the file system must support a remount option. 1241 */ 1242 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1243 MNTOPT_REMOUNT, NULL)) { 1244 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1245 error = ENOTSUP; 1246 goto errout; 1247 } 1248 uap->flags |= MS_REMOUNT; 1249 } 1250 1251 /* 1252 * uap->flags and vfs_optionisset() should agree. 1253 */ 1254 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1255 uap->flags |= MS_RDONLY; 1256 } 1257 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1258 uap->flags |= MS_NOSUID; 1259 } 1260 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1261 ASSERT(splice || !remount); 1262 /* 1263 * If we are splicing the fs into the namespace, 1264 * perform mount point checks. 1265 * 1266 * We want to resolve the path for the mount point to eliminate 1267 * '.' and ".." and symlinks in mount points; we can't do the 1268 * same for the resource string, since it would turn 1269 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1270 * this before grabbing vn_vfswlock(), because otherwise we 1271 * would deadlock with lookuppn(). 1272 */ 1273 if (splice) { 1274 ASSERT(vp->v_count > 0); 1275 1276 /* 1277 * Pick up mount point and device from appropriate space. 1278 */ 1279 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1280 resource = kmem_alloc(pn.pn_pathlen + 1, 1281 KM_SLEEP); 1282 (void) strcpy(resource, pn.pn_path); 1283 pn_free(&pn); 1284 } 1285 /* 1286 * Do a lookupname prior to taking the 1287 * writelock. Mark this as completed if 1288 * successful for later cleanup and addition to 1289 * the mount in progress table. 1290 */ 1291 if ((uap->flags & MS_GLOBAL) == 0 && 1292 lookupname(uap->spec, fromspace, 1293 FOLLOW, NULL, &bvp) == 0) { 1294 addmip = 1; 1295 } 1296 1297 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1298 pathname_t *pnp; 1299 1300 if (*pn.pn_path != '/') { 1301 error = EINVAL; 1302 pn_free(&pn); 1303 goto errout; 1304 } 1305 pn_alloc(&rpn); 1306 /* 1307 * Kludge to prevent autofs from deadlocking with 1308 * itself when it calls domount(). 1309 * 1310 * If autofs is calling, it is because it is doing 1311 * (autofs) mounts in the process of an NFS mount. A 1312 * lookuppn() here would cause us to block waiting for 1313 * said NFS mount to complete, which can't since this 1314 * is the thread that was supposed to doing it. 1315 */ 1316 if (fromspace == UIO_USERSPACE) { 1317 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1318 NULL)) == 0) { 1319 pnp = &rpn; 1320 } else { 1321 /* 1322 * The file disappeared or otherwise 1323 * became inaccessible since we opened 1324 * it; might as well fail the mount 1325 * since the mount point is no longer 1326 * accessible. 1327 */ 1328 pn_free(&rpn); 1329 pn_free(&pn); 1330 goto errout; 1331 } 1332 } else { 1333 pnp = &pn; 1334 } 1335 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1336 (void) strcpy(mountpt, pnp->pn_path); 1337 1338 /* 1339 * If the addition of the zone's rootpath 1340 * would push us over a total path length 1341 * of MAXPATHLEN, we fail the mount with 1342 * ENAMETOOLONG, which is what we would have 1343 * gotten if we were trying to perform the same 1344 * mount in the global zone. 1345 * 1346 * strlen() doesn't count the trailing 1347 * '\0', but zone_rootpathlen counts both a 1348 * trailing '/' and the terminating '\0'. 1349 */ 1350 if ((curproc->p_zone->zone_rootpathlen - 1 + 1351 strlen(mountpt)) > MAXPATHLEN || 1352 (resource != NULL && 1353 (curproc->p_zone->zone_rootpathlen - 1 + 1354 strlen(resource)) > MAXPATHLEN)) { 1355 error = ENAMETOOLONG; 1356 } 1357 1358 pn_free(&rpn); 1359 pn_free(&pn); 1360 } 1361 1362 if (error) 1363 goto errout; 1364 1365 /* 1366 * Prevent path name resolution from proceeding past 1367 * the mount point. 1368 */ 1369 if (vn_vfswlock(vp) != 0) { 1370 error = EBUSY; 1371 goto errout; 1372 } 1373 1374 /* 1375 * Verify that it's legitimate to establish a mount on 1376 * the prospective mount point. 1377 */ 1378 if (vn_mountedvfs(vp) != NULL) { 1379 /* 1380 * The mount point lock was obtained after some 1381 * other thread raced through and established a mount. 1382 */ 1383 vn_vfsunlock(vp); 1384 error = EBUSY; 1385 goto errout; 1386 } 1387 if (vp->v_flag & VNOMOUNT) { 1388 vn_vfsunlock(vp); 1389 error = EINVAL; 1390 goto errout; 1391 } 1392 } 1393 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1394 uap->dataptr = NULL; 1395 uap->datalen = 0; 1396 } 1397 1398 /* 1399 * If this is a remount, we don't want to create a new VFS. 1400 * Instead, we pass the existing one with a remount flag. 1401 */ 1402 if (remount) { 1403 /* 1404 * Confirm that the mount point is the root vnode of the 1405 * file system that is being remounted. 1406 * This can happen if the user specifies a different 1407 * mount point directory pathname in the (re)mount command. 1408 * 1409 * Code below can only be reached if splice is true, so it's 1410 * safe to do vn_vfsunlock() here. 1411 */ 1412 if ((vp->v_flag & VROOT) == 0) { 1413 vn_vfsunlock(vp); 1414 error = ENOENT; 1415 goto errout; 1416 } 1417 /* 1418 * Disallow making file systems read-only unless file system 1419 * explicitly allows it in its vfssw. Ignore other flags. 1420 */ 1421 if (rdonly && vn_is_readonly(vp) == 0 && 1422 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1423 vn_vfsunlock(vp); 1424 error = EINVAL; 1425 goto errout; 1426 } 1427 /* 1428 * Disallow changing the NBMAND disposition of the file 1429 * system on remounts. 1430 */ 1431 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1432 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1433 vn_vfsunlock(vp); 1434 error = EINVAL; 1435 goto errout; 1436 } 1437 vfsp = vp->v_vfsp; 1438 ovflags = vfsp->vfs_flag; 1439 vfsp->vfs_flag |= VFS_REMOUNT; 1440 vfsp->vfs_flag &= ~VFS_RDONLY; 1441 } else { 1442 vfsp = vfs_alloc(KM_SLEEP); 1443 VFS_INIT(vfsp, vfsops, NULL); 1444 } 1445 1446 VFS_HOLD(vfsp); 1447 1448 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1449 if (!remount) { 1450 if (splice) 1451 vn_vfsunlock(vp); 1452 vfs_free(vfsp); 1453 } else { 1454 vn_vfsunlock(vp); 1455 VFS_RELE(vfsp); 1456 } 1457 goto errout; 1458 } 1459 1460 /* 1461 * PRIV_SYS_MOUNT doesn't mean you can become root. 1462 */ 1463 if (vfsp->vfs_lofi_id != 0) { 1464 uap->flags |= MS_NOSUID; 1465 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1466 } 1467 1468 /* 1469 * The vfs_reflock is not used anymore the code below explicitly 1470 * holds it preventing others accesing it directly. 1471 */ 1472 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1473 !(vfsp->vfs_flag & VFS_REMOUNT)) 1474 cmn_err(CE_WARN, 1475 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1476 1477 /* 1478 * Lock the vfs. If this is a remount we want to avoid spurious umount 1479 * failures that happen as a side-effect of fsflush() and other mount 1480 * and unmount operations that might be going on simultaneously and 1481 * may have locked the vfs currently. To not return EBUSY immediately 1482 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1483 */ 1484 if (!remount) { 1485 if (error = vfs_lock(vfsp)) { 1486 vfsp->vfs_flag = ovflags; 1487 1488 lofi_remove(vfsp); 1489 1490 if (splice) 1491 vn_vfsunlock(vp); 1492 vfs_free(vfsp); 1493 goto errout; 1494 } 1495 } else { 1496 vfs_lock_wait(vfsp); 1497 } 1498 1499 /* 1500 * Add device to mount in progress table, global mounts require special 1501 * handling. It is possible that we have already done the lookupname 1502 * on a spliced, non-global fs. If so, we don't want to do it again 1503 * since we cannot do a lookupname after taking the 1504 * wlock above. This case is for a non-spliced, non-global filesystem. 1505 */ 1506 if (!addmip) { 1507 if ((uap->flags & MS_GLOBAL) == 0 && 1508 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1509 addmip = 1; 1510 } 1511 } 1512 1513 if (addmip) { 1514 vnode_t *lvp = NULL; 1515 1516 error = vfs_get_lofi(vfsp, &lvp); 1517 if (error > 0) { 1518 lofi_remove(vfsp); 1519 1520 if (splice) 1521 vn_vfsunlock(vp); 1522 vfs_unlock(vfsp); 1523 1524 if (remount) { 1525 VFS_RELE(vfsp); 1526 } else { 1527 vfs_free(vfsp); 1528 } 1529 1530 goto errout; 1531 } else if (error == -1) { 1532 bdev = bvp->v_rdev; 1533 VN_RELE(bvp); 1534 } else { 1535 bdev = lvp->v_rdev; 1536 VN_RELE(lvp); 1537 VN_RELE(bvp); 1538 } 1539 1540 vfs_addmip(bdev, vfsp); 1541 addmip = 0; 1542 delmip = 1; 1543 } 1544 /* 1545 * Invalidate cached entry for the mount point. 1546 */ 1547 if (splice) 1548 dnlc_purge_vp(vp); 1549 1550 /* 1551 * If have an option string but the filesystem doesn't supply a 1552 * prototype options table, create a table with the global 1553 * options and sufficient room to accept all the options in the 1554 * string. Then parse the passed in option string 1555 * accepting all the options in the string. This gives us an 1556 * option table with all the proper cancel properties for the 1557 * global options. 1558 * 1559 * Filesystems that supply a prototype options table are handled 1560 * earlier in this function. 1561 */ 1562 if (uap->flags & MS_OPTIONSTR) { 1563 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1564 mntopts_t tmp_mntopts; 1565 1566 tmp_mntopts.mo_count = 0; 1567 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1568 &mnt_mntopts); 1569 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1570 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1571 vfs_freeopttbl(&tmp_mntopts); 1572 } 1573 } 1574 1575 /* 1576 * Serialize with zone state transitions. 1577 * See vfs_list_add; zone mounted into is: 1578 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1579 * not the zone doing the mount (curproc->p_zone), but if we're already 1580 * inside a NGZ, then we know what zone we are. 1581 */ 1582 if (INGLOBALZONE(curproc)) { 1583 zone = zone_find_by_path(mountpt); 1584 ASSERT(zone != NULL); 1585 } else { 1586 zone = curproc->p_zone; 1587 /* 1588 * zone_find_by_path does a hold, so do one here too so that 1589 * we can do a zone_rele after mount_completed. 1590 */ 1591 zone_hold(zone); 1592 } 1593 mount_in_progress(zone); 1594 /* 1595 * Instantiate (or reinstantiate) the file system. If appropriate, 1596 * splice it into the file system name space. 1597 * 1598 * We want VFS_MOUNT() to be able to override the vfs_resource 1599 * string if necessary (ie, mntfs), and also for a remount to 1600 * change the same (necessary when remounting '/' during boot). 1601 * So we set up vfs_mntpt and vfs_resource to what we think they 1602 * should be, then hand off control to VFS_MOUNT() which can 1603 * override this. 1604 * 1605 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1606 * a vfs which is on the vfs list (i.e. during a remount), we must 1607 * never set those fields to NULL. Several bits of code make 1608 * assumptions that the fields are always valid. 1609 */ 1610 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1611 if (remount) { 1612 if ((oldresource = vfsp->vfs_resource) != NULL) 1613 refstr_hold(oldresource); 1614 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1615 refstr_hold(oldmntpt); 1616 } 1617 vfs_setresource(vfsp, resource, 0); 1618 vfs_setmntpoint(vfsp, mountpt, 0); 1619 1620 /* 1621 * going to mount on this vnode, so notify. 1622 */ 1623 vnevent_mountedover(vp, NULL); 1624 error = VFS_MOUNT(vfsp, vp, uap, credp); 1625 1626 if (uap->flags & MS_RDONLY) 1627 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1628 if (uap->flags & MS_NOSUID) 1629 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1630 if (uap->flags & MS_GLOBAL) 1631 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1632 1633 if (error) { 1634 lofi_remove(vfsp); 1635 1636 if (remount) { 1637 /* put back pre-remount options */ 1638 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1639 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1640 VFSSP_VERBATIM); 1641 if (oldmntpt) 1642 refstr_rele(oldmntpt); 1643 vfs_setresource(vfsp, refstr_value(oldresource), 1644 VFSSP_VERBATIM); 1645 if (oldresource) 1646 refstr_rele(oldresource); 1647 vfsp->vfs_flag = ovflags; 1648 vfs_unlock(vfsp); 1649 VFS_RELE(vfsp); 1650 } else { 1651 vfs_unlock(vfsp); 1652 vfs_freemnttab(vfsp); 1653 vfs_free(vfsp); 1654 } 1655 } else { 1656 /* 1657 * Set the mount time to now 1658 */ 1659 vfsp->vfs_mtime = ddi_get_time(); 1660 if (remount) { 1661 vfsp->vfs_flag &= ~VFS_REMOUNT; 1662 if (oldresource) 1663 refstr_rele(oldresource); 1664 if (oldmntpt) 1665 refstr_rele(oldmntpt); 1666 } else if (splice) { 1667 /* 1668 * Link vfsp into the name space at the mount 1669 * point. Vfs_add() is responsible for 1670 * holding the mount point which will be 1671 * released when vfs_remove() is called. 1672 */ 1673 vfs_add(vp, vfsp, uap->flags); 1674 } else { 1675 /* 1676 * Hold the reference to file system which is 1677 * not linked into the name space. 1678 */ 1679 vfsp->vfs_zone = NULL; 1680 VFS_HOLD(vfsp); 1681 vfsp->vfs_vnodecovered = NULL; 1682 } 1683 /* 1684 * Set flags for global options encountered 1685 */ 1686 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1687 vfsp->vfs_flag |= VFS_RDONLY; 1688 else 1689 vfsp->vfs_flag &= ~VFS_RDONLY; 1690 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1691 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1692 } else { 1693 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1694 vfsp->vfs_flag |= VFS_NODEVICES; 1695 else 1696 vfsp->vfs_flag &= ~VFS_NODEVICES; 1697 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1698 vfsp->vfs_flag |= VFS_NOSETUID; 1699 else 1700 vfsp->vfs_flag &= ~VFS_NOSETUID; 1701 } 1702 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1703 vfsp->vfs_flag |= VFS_NBMAND; 1704 else 1705 vfsp->vfs_flag &= ~VFS_NBMAND; 1706 1707 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1708 vfsp->vfs_flag |= VFS_XATTR; 1709 else 1710 vfsp->vfs_flag &= ~VFS_XATTR; 1711 1712 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1713 vfsp->vfs_flag |= VFS_NOEXEC; 1714 else 1715 vfsp->vfs_flag &= ~VFS_NOEXEC; 1716 1717 /* 1718 * Now construct the output option string of options 1719 * we recognized. 1720 */ 1721 if (uap->flags & MS_OPTIONSTR) { 1722 vfs_list_read_lock(); 1723 copyout_error = vfs_buildoptionstr( 1724 &vfsp->vfs_mntopts, inargs, optlen); 1725 vfs_list_unlock(); 1726 if (copyout_error == 0 && 1727 (uap->flags & MS_SYSSPACE) == 0) { 1728 copyout_error = copyoutstr(inargs, opts, 1729 optlen, NULL); 1730 } 1731 } 1732 1733 /* 1734 * If this isn't a remount, set up the vopstats before 1735 * anyone can touch this. We only allow spliced file 1736 * systems (file systems which are in the namespace) to 1737 * have the VFS_STATS flag set. 1738 * NOTE: PxFS mounts the underlying file system with 1739 * MS_NOSPLICE set and copies those vfs_flags to its private 1740 * vfs structure. As a result, PxFS should never have 1741 * the VFS_STATS flag or else we might access the vfs 1742 * statistics-related fields prior to them being 1743 * properly initialized. 1744 */ 1745 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1746 initialize_vopstats(&vfsp->vfs_vopstats); 1747 /* 1748 * We need to set vfs_vskap to NULL because there's 1749 * a chance it won't be set below. This is checked 1750 * in teardown_vopstats() so we can't have garbage. 1751 */ 1752 vfsp->vfs_vskap = NULL; 1753 vfsp->vfs_flag |= VFS_STATS; 1754 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1755 } 1756 1757 if (vswp->vsw_flag & VSW_XID) 1758 vfsp->vfs_flag |= VFS_XID; 1759 1760 vfs_unlock(vfsp); 1761 } 1762 mount_completed(zone); 1763 zone_rele(zone); 1764 if (splice) 1765 vn_vfsunlock(vp); 1766 1767 if ((error == 0) && (copyout_error == 0)) { 1768 if (!remount) { 1769 /* 1770 * Don't call get_vskstat_anchor() while holding 1771 * locks since it allocates memory and calls 1772 * VFS_STATVFS(). For NFS, the latter can generate 1773 * an over-the-wire call. 1774 */ 1775 vskap = get_vskstat_anchor(vfsp); 1776 /* Only take the lock if we have something to do */ 1777 if (vskap != NULL) { 1778 vfs_lock_wait(vfsp); 1779 if (vfsp->vfs_flag & VFS_STATS) { 1780 vfsp->vfs_vskap = vskap; 1781 } 1782 vfs_unlock(vfsp); 1783 } 1784 } 1785 /* Return vfsp to caller. */ 1786 *vfspp = vfsp; 1787 } 1788 errout: 1789 vfs_freeopttbl(&mnt_mntopts); 1790 if (resource != NULL) 1791 kmem_free(resource, strlen(resource) + 1); 1792 if (mountpt != NULL) 1793 kmem_free(mountpt, strlen(mountpt) + 1); 1794 /* 1795 * It is possible we errored prior to adding to mount in progress 1796 * table. Must free vnode we acquired with successful lookupname. 1797 */ 1798 if (addmip) 1799 VN_RELE(bvp); 1800 if (delmip) 1801 vfs_delmip(vfsp); 1802 ASSERT(vswp != NULL); 1803 vfs_unrefvfssw(vswp); 1804 if (inargs != opts) 1805 kmem_free(inargs, MAX_MNTOPT_STR); 1806 if (copyout_error) { 1807 lofi_remove(vfsp); 1808 VFS_RELE(vfsp); 1809 error = copyout_error; 1810 } 1811 return (error); 1812 } 1813 1814 static void 1815 vfs_setpath( 1816 struct vfs *vfsp, /* vfs being updated */ 1817 refstr_t **refp, /* Ref-count string to contain the new path */ 1818 const char *newpath, /* Path to add to refp (above) */ 1819 uint32_t flag) /* flag */ 1820 { 1821 size_t len; 1822 refstr_t *ref; 1823 zone_t *zone = curproc->p_zone; 1824 char *sp; 1825 int have_list_lock = 0; 1826 1827 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1828 1829 /* 1830 * New path must be less than MAXPATHLEN because mntfs 1831 * will only display up to MAXPATHLEN bytes. This is currently 1832 * safe, because domount() uses pn_get(), and other callers 1833 * similarly cap the size to fewer than MAXPATHLEN bytes. 1834 */ 1835 1836 ASSERT(strlen(newpath) < MAXPATHLEN); 1837 1838 /* mntfs requires consistency while vfs list lock is held */ 1839 1840 if (VFS_ON_LIST(vfsp)) { 1841 have_list_lock = 1; 1842 vfs_list_lock(); 1843 } 1844 1845 if (*refp != NULL) 1846 refstr_rele(*refp); 1847 1848 /* 1849 * If we are in a non-global zone then we prefix the supplied path, 1850 * newpath, with the zone's root path, with two exceptions. The first 1851 * is where we have been explicitly directed to avoid doing so; this 1852 * will be the case following a failed remount, where the path supplied 1853 * will be a saved version which must now be restored. The second 1854 * exception is where newpath is not a pathname but a descriptive name, 1855 * e.g. "procfs". 1856 */ 1857 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1858 ref = refstr_alloc(newpath); 1859 goto out; 1860 } 1861 1862 /* 1863 * Truncate the trailing '/' in the zoneroot, and merge 1864 * in the zone's rootpath with the "newpath" (resource 1865 * or mountpoint) passed in. 1866 * 1867 * The size of the required buffer is thus the size of 1868 * the buffer required for the passed-in newpath 1869 * (strlen(newpath) + 1), plus the size of the buffer 1870 * required to hold zone_rootpath (zone_rootpathlen) 1871 * minus one for one of the now-superfluous NUL 1872 * terminations, minus one for the trailing '/'. 1873 * 1874 * That gives us: 1875 * 1876 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1877 * 1878 * Which is what we have below. 1879 */ 1880 1881 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1882 sp = kmem_alloc(len, KM_SLEEP); 1883 1884 /* 1885 * Copy everything including the trailing slash, which 1886 * we then overwrite with the NUL character. 1887 */ 1888 1889 (void) strcpy(sp, zone->zone_rootpath); 1890 sp[zone->zone_rootpathlen - 2] = '\0'; 1891 (void) strcat(sp, newpath); 1892 1893 ref = refstr_alloc(sp); 1894 kmem_free(sp, len); 1895 out: 1896 *refp = ref; 1897 1898 if (have_list_lock) { 1899 vfs_mnttab_modtimeupd(); 1900 vfs_list_unlock(); 1901 } 1902 } 1903 1904 /* 1905 * Record a mounted resource name in a vfs structure. 1906 * If vfsp is already mounted, caller must hold the vfs lock. 1907 */ 1908 void 1909 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1910 { 1911 if (resource == NULL || resource[0] == '\0') 1912 resource = VFS_NORESOURCE; 1913 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1914 } 1915 1916 /* 1917 * Record a mount point name in a vfs structure. 1918 * If vfsp is already mounted, caller must hold the vfs lock. 1919 */ 1920 void 1921 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1922 { 1923 if (mntpt == NULL || mntpt[0] == '\0') 1924 mntpt = VFS_NOMNTPT; 1925 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1926 } 1927 1928 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1929 1930 refstr_t * 1931 vfs_getresource(const struct vfs *vfsp) 1932 { 1933 refstr_t *resource; 1934 1935 vfs_list_read_lock(); 1936 resource = vfsp->vfs_resource; 1937 refstr_hold(resource); 1938 vfs_list_unlock(); 1939 1940 return (resource); 1941 } 1942 1943 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1944 1945 refstr_t * 1946 vfs_getmntpoint(const struct vfs *vfsp) 1947 { 1948 refstr_t *mntpt; 1949 1950 vfs_list_read_lock(); 1951 mntpt = vfsp->vfs_mntpt; 1952 refstr_hold(mntpt); 1953 vfs_list_unlock(); 1954 1955 return (mntpt); 1956 } 1957 1958 /* 1959 * Create an empty options table with enough empty slots to hold all 1960 * The options in the options string passed as an argument. 1961 * Potentially prepend another options table. 1962 * 1963 * Note: caller is responsible for locking the vfs list, if needed, 1964 * to protect mops. 1965 */ 1966 static void 1967 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1968 const mntopts_t *mtmpl) 1969 { 1970 const char *s = opts; 1971 uint_t count; 1972 1973 if (opts == NULL || *opts == '\0') { 1974 count = 0; 1975 } else { 1976 count = 1; 1977 1978 /* 1979 * Count number of options in the string 1980 */ 1981 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1982 count++; 1983 s++; 1984 } 1985 } 1986 vfs_copyopttbl_extend(mtmpl, mops, count); 1987 } 1988 1989 /* 1990 * Create an empty options table with enough empty slots to hold all 1991 * The options in the options string passed as an argument. 1992 * 1993 * This function is *not* for general use by filesystems. 1994 * 1995 * Note: caller is responsible for locking the vfs list, if needed, 1996 * to protect mops. 1997 */ 1998 void 1999 vfs_createopttbl(mntopts_t *mops, const char *opts) 2000 { 2001 vfs_createopttbl_extend(mops, opts, NULL); 2002 } 2003 2004 2005 /* 2006 * Swap two mount options tables 2007 */ 2008 static void 2009 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2010 { 2011 uint_t tmpcnt; 2012 mntopt_t *tmplist; 2013 2014 tmpcnt = optbl2->mo_count; 2015 tmplist = optbl2->mo_list; 2016 optbl2->mo_count = optbl1->mo_count; 2017 optbl2->mo_list = optbl1->mo_list; 2018 optbl1->mo_count = tmpcnt; 2019 optbl1->mo_list = tmplist; 2020 } 2021 2022 static void 2023 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2024 { 2025 vfs_list_lock(); 2026 vfs_swapopttbl_nolock(optbl1, optbl2); 2027 vfs_mnttab_modtimeupd(); 2028 vfs_list_unlock(); 2029 } 2030 2031 static char ** 2032 vfs_copycancelopt_extend(char **const moc, int extend) 2033 { 2034 int i = 0; 2035 int j; 2036 char **result; 2037 2038 if (moc != NULL) { 2039 for (; moc[i] != NULL; i++) 2040 /* count number of options to cancel */; 2041 } 2042 2043 if (i + extend == 0) 2044 return (NULL); 2045 2046 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2047 2048 for (j = 0; j < i; j++) { 2049 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2050 (void) strcpy(result[j], moc[j]); 2051 } 2052 for (; j <= i + extend; j++) 2053 result[j] = NULL; 2054 2055 return (result); 2056 } 2057 2058 static void 2059 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2060 { 2061 char *sp, *dp; 2062 2063 d->mo_flags = s->mo_flags; 2064 d->mo_data = s->mo_data; 2065 sp = s->mo_name; 2066 if (sp != NULL) { 2067 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2068 (void) strcpy(dp, sp); 2069 d->mo_name = dp; 2070 } else { 2071 d->mo_name = NULL; /* should never happen */ 2072 } 2073 2074 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2075 2076 sp = s->mo_arg; 2077 if (sp != NULL) { 2078 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2079 (void) strcpy(dp, sp); 2080 d->mo_arg = dp; 2081 } else { 2082 d->mo_arg = NULL; 2083 } 2084 } 2085 2086 /* 2087 * Copy a mount options table, possibly allocating some spare 2088 * slots at the end. It is permissible to copy_extend the NULL table. 2089 */ 2090 static void 2091 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2092 { 2093 uint_t i, count; 2094 mntopt_t *motbl; 2095 2096 /* 2097 * Clear out any existing stuff in the options table being initialized 2098 */ 2099 vfs_freeopttbl(dmo); 2100 count = (smo == NULL) ? 0 : smo->mo_count; 2101 if ((count + extra) == 0) /* nothing to do */ 2102 return; 2103 dmo->mo_count = count + extra; 2104 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2105 dmo->mo_list = motbl; 2106 for (i = 0; i < count; i++) { 2107 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2108 } 2109 for (i = count; i < count + extra; i++) { 2110 motbl[i].mo_flags = MO_EMPTY; 2111 } 2112 } 2113 2114 /* 2115 * Copy a mount options table. 2116 * 2117 * This function is *not* for general use by filesystems. 2118 * 2119 * Note: caller is responsible for locking the vfs list, if needed, 2120 * to protect smo and dmo. 2121 */ 2122 void 2123 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2124 { 2125 vfs_copyopttbl_extend(smo, dmo, 0); 2126 } 2127 2128 static char ** 2129 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2130 { 2131 int c1 = 0; 2132 int c2 = 0; 2133 char **result; 2134 char **sp1, **sp2, **dp; 2135 2136 /* 2137 * First we count both lists of cancel options. 2138 * If either is NULL or has no elements, we return a copy of 2139 * the other. 2140 */ 2141 if (mop1->mo_cancel != NULL) { 2142 for (; mop1->mo_cancel[c1] != NULL; c1++) 2143 /* count cancel options in mop1 */; 2144 } 2145 2146 if (c1 == 0) 2147 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2148 2149 if (mop2->mo_cancel != NULL) { 2150 for (; mop2->mo_cancel[c2] != NULL; c2++) 2151 /* count cancel options in mop2 */; 2152 } 2153 2154 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2155 2156 if (c2 == 0) 2157 return (result); 2158 2159 /* 2160 * When we get here, we've got two sets of cancel options; 2161 * we need to merge the two sets. We know that the result 2162 * array has "c1+c2+1" entries and in the end we might shrink 2163 * it. 2164 * Result now has a copy of the c1 entries from mop1; we'll 2165 * now lookup all the entries of mop2 in mop1 and copy it if 2166 * it is unique. 2167 * This operation is O(n^2) but it's only called once per 2168 * filesystem per duplicate option. This is a situation 2169 * which doesn't arise with the filesystems in ON and 2170 * n is generally 1. 2171 */ 2172 2173 dp = &result[c1]; 2174 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2175 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2176 if (strcmp(*sp1, *sp2) == 0) 2177 break; 2178 } 2179 if (*sp1 == NULL) { 2180 /* 2181 * Option *sp2 not found in mop1, so copy it. 2182 * The calls to vfs_copycancelopt_extend() 2183 * guarantee that there's enough room. 2184 */ 2185 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2186 (void) strcpy(*dp++, *sp2); 2187 } 2188 } 2189 if (dp != &result[c1+c2]) { 2190 size_t bytes = (dp - result + 1) * sizeof (char *); 2191 char **nres = kmem_alloc(bytes, KM_SLEEP); 2192 2193 bcopy(result, nres, bytes); 2194 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2195 result = nres; 2196 } 2197 return (result); 2198 } 2199 2200 /* 2201 * Merge two mount option tables (outer and inner) into one. This is very 2202 * similar to "merging" global variables and automatic variables in C. 2203 * 2204 * This isn't (and doesn't have to be) fast. 2205 * 2206 * This function is *not* for general use by filesystems. 2207 * 2208 * Note: caller is responsible for locking the vfs list, if needed, 2209 * to protect omo, imo & dmo. 2210 */ 2211 void 2212 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2213 { 2214 uint_t i, count; 2215 mntopt_t *mop, *motbl; 2216 uint_t freeidx; 2217 2218 /* 2219 * First determine how much space we need to allocate. 2220 */ 2221 count = omo->mo_count; 2222 for (i = 0; i < imo->mo_count; i++) { 2223 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2224 continue; 2225 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2226 count++; 2227 } 2228 ASSERT(count >= omo->mo_count && 2229 count <= omo->mo_count + imo->mo_count); 2230 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2231 for (i = 0; i < omo->mo_count; i++) 2232 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2233 freeidx = omo->mo_count; 2234 for (i = 0; i < imo->mo_count; i++) { 2235 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2236 continue; 2237 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2238 char **newcanp; 2239 uint_t index = mop - omo->mo_list; 2240 2241 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2242 2243 vfs_freeopt(&motbl[index]); 2244 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2245 2246 vfs_freecancelopt(motbl[index].mo_cancel); 2247 motbl[index].mo_cancel = newcanp; 2248 } else { 2249 /* 2250 * If it's a new option, just copy it over to the first 2251 * free location. 2252 */ 2253 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2254 } 2255 } 2256 dmo->mo_count = count; 2257 dmo->mo_list = motbl; 2258 } 2259 2260 /* 2261 * Functions to set and clear mount options in a mount options table. 2262 */ 2263 2264 /* 2265 * Clear a mount option, if it exists. 2266 * 2267 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2268 * the vfs list. 2269 */ 2270 static void 2271 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2272 { 2273 struct mntopt *mop; 2274 uint_t i, count; 2275 2276 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2277 2278 count = mops->mo_count; 2279 for (i = 0; i < count; i++) { 2280 mop = &mops->mo_list[i]; 2281 2282 if (mop->mo_flags & MO_EMPTY) 2283 continue; 2284 if (strcmp(opt, mop->mo_name)) 2285 continue; 2286 mop->mo_flags &= ~MO_SET; 2287 if (mop->mo_arg != NULL) { 2288 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2289 } 2290 mop->mo_arg = NULL; 2291 if (update_mnttab) 2292 vfs_mnttab_modtimeupd(); 2293 break; 2294 } 2295 } 2296 2297 void 2298 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2299 { 2300 int gotlock = 0; 2301 2302 if (VFS_ON_LIST(vfsp)) { 2303 gotlock = 1; 2304 vfs_list_lock(); 2305 } 2306 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2307 if (gotlock) 2308 vfs_list_unlock(); 2309 } 2310 2311 2312 /* 2313 * Set a mount option on. If it's not found in the table, it's silently 2314 * ignored. If the option has MO_IGNORE set, it is still set unless the 2315 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2316 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2317 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2318 * MO_EMPTY set is created as the option passed in. 2319 * 2320 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2321 * the vfs list. 2322 */ 2323 static void 2324 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2325 const char *arg, int flags, int update_mnttab) 2326 { 2327 mntopt_t *mop; 2328 uint_t i, count; 2329 char *sp; 2330 2331 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2332 2333 if (flags & VFS_CREATEOPT) { 2334 if (vfs_hasopt(mops, opt) != NULL) { 2335 flags &= ~VFS_CREATEOPT; 2336 } 2337 } 2338 count = mops->mo_count; 2339 for (i = 0; i < count; i++) { 2340 mop = &mops->mo_list[i]; 2341 2342 if (mop->mo_flags & MO_EMPTY) { 2343 if ((flags & VFS_CREATEOPT) == 0) 2344 continue; 2345 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2346 (void) strcpy(sp, opt); 2347 mop->mo_name = sp; 2348 if (arg != NULL) 2349 mop->mo_flags = MO_HASVALUE; 2350 else 2351 mop->mo_flags = 0; 2352 } else if (strcmp(opt, mop->mo_name)) { 2353 continue; 2354 } 2355 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2356 break; 2357 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2358 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2359 (void) strcpy(sp, arg); 2360 } else { 2361 sp = NULL; 2362 } 2363 if (mop->mo_arg != NULL) 2364 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2365 mop->mo_arg = sp; 2366 if (flags & VFS_DISPLAY) 2367 mop->mo_flags &= ~MO_NODISPLAY; 2368 if (flags & VFS_NODISPLAY) 2369 mop->mo_flags |= MO_NODISPLAY; 2370 mop->mo_flags |= MO_SET; 2371 if (mop->mo_cancel != NULL) { 2372 char **cp; 2373 2374 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2375 vfs_clearmntopt_nolock(mops, *cp, 0); 2376 } 2377 if (update_mnttab) 2378 vfs_mnttab_modtimeupd(); 2379 break; 2380 } 2381 } 2382 2383 void 2384 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2385 { 2386 int gotlock = 0; 2387 2388 if (VFS_ON_LIST(vfsp)) { 2389 gotlock = 1; 2390 vfs_list_lock(); 2391 } 2392 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2393 if (gotlock) 2394 vfs_list_unlock(); 2395 } 2396 2397 2398 /* 2399 * Add a "tag" option to a mounted file system's options list. 2400 * 2401 * Note: caller is responsible for locking the vfs list, if needed, 2402 * to protect mops. 2403 */ 2404 static mntopt_t * 2405 vfs_addtag(mntopts_t *mops, const char *tag) 2406 { 2407 uint_t count; 2408 mntopt_t *mop, *motbl; 2409 2410 count = mops->mo_count + 1; 2411 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2412 if (mops->mo_count) { 2413 size_t len = (count - 1) * sizeof (mntopt_t); 2414 2415 bcopy(mops->mo_list, motbl, len); 2416 kmem_free(mops->mo_list, len); 2417 } 2418 mops->mo_count = count; 2419 mops->mo_list = motbl; 2420 mop = &motbl[count - 1]; 2421 mop->mo_flags = MO_TAG; 2422 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2423 (void) strcpy(mop->mo_name, tag); 2424 return (mop); 2425 } 2426 2427 /* 2428 * Allow users to set arbitrary "tags" in a vfs's mount options. 2429 * Broader use within the kernel is discouraged. 2430 */ 2431 int 2432 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2433 cred_t *cr) 2434 { 2435 vfs_t *vfsp; 2436 mntopts_t *mops; 2437 mntopt_t *mop; 2438 int found = 0; 2439 dev_t dev = makedevice(major, minor); 2440 int err = 0; 2441 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2442 2443 /* 2444 * Find the desired mounted file system 2445 */ 2446 vfs_list_lock(); 2447 vfsp = rootvfs; 2448 do { 2449 if (vfsp->vfs_dev == dev && 2450 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2451 found = 1; 2452 break; 2453 } 2454 vfsp = vfsp->vfs_next; 2455 } while (vfsp != rootvfs); 2456 2457 if (!found) { 2458 err = EINVAL; 2459 goto out; 2460 } 2461 err = secpolicy_fs_config(cr, vfsp); 2462 if (err != 0) 2463 goto out; 2464 2465 mops = &vfsp->vfs_mntopts; 2466 /* 2467 * Add tag if it doesn't already exist 2468 */ 2469 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2470 int len; 2471 2472 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2473 len = strlen(buf); 2474 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2475 err = ENAMETOOLONG; 2476 goto out; 2477 } 2478 mop = vfs_addtag(mops, tag); 2479 } 2480 if ((mop->mo_flags & MO_TAG) == 0) { 2481 err = EINVAL; 2482 goto out; 2483 } 2484 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2485 out: 2486 vfs_list_unlock(); 2487 kmem_free(buf, MAX_MNTOPT_STR); 2488 return (err); 2489 } 2490 2491 /* 2492 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2493 * Broader use within the kernel is discouraged. 2494 */ 2495 int 2496 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2497 cred_t *cr) 2498 { 2499 vfs_t *vfsp; 2500 mntopt_t *mop; 2501 int found = 0; 2502 dev_t dev = makedevice(major, minor); 2503 int err = 0; 2504 2505 /* 2506 * Find the desired mounted file system 2507 */ 2508 vfs_list_lock(); 2509 vfsp = rootvfs; 2510 do { 2511 if (vfsp->vfs_dev == dev && 2512 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2513 found = 1; 2514 break; 2515 } 2516 vfsp = vfsp->vfs_next; 2517 } while (vfsp != rootvfs); 2518 2519 if (!found) { 2520 err = EINVAL; 2521 goto out; 2522 } 2523 err = secpolicy_fs_config(cr, vfsp); 2524 if (err != 0) 2525 goto out; 2526 2527 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2528 err = EINVAL; 2529 goto out; 2530 } 2531 if ((mop->mo_flags & MO_TAG) == 0) { 2532 err = EINVAL; 2533 goto out; 2534 } 2535 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2536 out: 2537 vfs_list_unlock(); 2538 return (err); 2539 } 2540 2541 /* 2542 * Function to parse an option string and fill in a mount options table. 2543 * Unknown options are silently ignored. The input option string is modified 2544 * by replacing separators with nulls. If the create flag is set, options 2545 * not found in the table are just added on the fly. The table must have 2546 * an option slot marked MO_EMPTY to add an option on the fly. 2547 * 2548 * This function is *not* for general use by filesystems. 2549 * 2550 * Note: caller is responsible for locking the vfs list, if needed, 2551 * to protect mops.. 2552 */ 2553 void 2554 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2555 { 2556 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2557 int setflg = VFS_NOFORCEOPT; 2558 2559 if (osp == NULL) 2560 return; 2561 while (*s != '\0') { 2562 p = strchr(s, ','); /* find next option */ 2563 if (p == NULL) { 2564 cp = NULL; 2565 p = s + strlen(s); 2566 } else { 2567 cp = p; /* save location of comma */ 2568 *p++ = '\0'; /* mark end and point to next option */ 2569 } 2570 nextop = p; 2571 p = strchr(s, '='); /* look for value */ 2572 if (p == NULL) { 2573 valp = NULL; /* no value supplied */ 2574 } else { 2575 ep = p; /* save location of equals */ 2576 *p++ = '\0'; /* end option and point to value */ 2577 valp = p; 2578 } 2579 /* 2580 * set option into options table 2581 */ 2582 if (create) 2583 setflg |= VFS_CREATEOPT; 2584 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2585 if (cp != NULL) 2586 *cp = ','; /* restore the comma */ 2587 if (valp != NULL) 2588 *ep = '='; /* restore the equals */ 2589 s = nextop; 2590 } 2591 } 2592 2593 /* 2594 * Function to inquire if an option exists in a mount options table. 2595 * Returns a pointer to the option if it exists, else NULL. 2596 * 2597 * This function is *not* for general use by filesystems. 2598 * 2599 * Note: caller is responsible for locking the vfs list, if needed, 2600 * to protect mops. 2601 */ 2602 struct mntopt * 2603 vfs_hasopt(const mntopts_t *mops, const char *opt) 2604 { 2605 struct mntopt *mop; 2606 uint_t i, count; 2607 2608 count = mops->mo_count; 2609 for (i = 0; i < count; i++) { 2610 mop = &mops->mo_list[i]; 2611 2612 if (mop->mo_flags & MO_EMPTY) 2613 continue; 2614 if (strcmp(opt, mop->mo_name) == 0) 2615 return (mop); 2616 } 2617 return (NULL); 2618 } 2619 2620 /* 2621 * Function to inquire if an option is set in a mount options table. 2622 * Returns non-zero if set and fills in the arg pointer with a pointer to 2623 * the argument string or NULL if there is no argument string. 2624 */ 2625 static int 2626 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2627 { 2628 struct mntopt *mop; 2629 uint_t i, count; 2630 2631 count = mops->mo_count; 2632 for (i = 0; i < count; i++) { 2633 mop = &mops->mo_list[i]; 2634 2635 if (mop->mo_flags & MO_EMPTY) 2636 continue; 2637 if (strcmp(opt, mop->mo_name)) 2638 continue; 2639 if ((mop->mo_flags & MO_SET) == 0) 2640 return (0); 2641 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2642 *argp = mop->mo_arg; 2643 return (1); 2644 } 2645 return (0); 2646 } 2647 2648 2649 int 2650 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2651 { 2652 int ret; 2653 2654 vfs_list_read_lock(); 2655 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2656 vfs_list_unlock(); 2657 return (ret); 2658 } 2659 2660 2661 /* 2662 * Construct a comma separated string of the options set in the given 2663 * mount table, return the string in the given buffer. Return non-zero if 2664 * the buffer would overflow. 2665 * 2666 * This function is *not* for general use by filesystems. 2667 * 2668 * Note: caller is responsible for locking the vfs list, if needed, 2669 * to protect mp. 2670 */ 2671 int 2672 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2673 { 2674 char *cp; 2675 uint_t i; 2676 2677 buf[0] = '\0'; 2678 cp = buf; 2679 for (i = 0; i < mp->mo_count; i++) { 2680 struct mntopt *mop; 2681 2682 mop = &mp->mo_list[i]; 2683 if (mop->mo_flags & MO_SET) { 2684 int optlen, comma = 0; 2685 2686 if (buf[0] != '\0') 2687 comma = 1; 2688 optlen = strlen(mop->mo_name); 2689 if (strlen(buf) + comma + optlen + 1 > len) 2690 goto err; 2691 if (comma) 2692 *cp++ = ','; 2693 (void) strcpy(cp, mop->mo_name); 2694 cp += optlen; 2695 /* 2696 * Append option value if there is one 2697 */ 2698 if (mop->mo_arg != NULL) { 2699 int arglen; 2700 2701 arglen = strlen(mop->mo_arg); 2702 if (strlen(buf) + arglen + 2 > len) 2703 goto err; 2704 *cp++ = '='; 2705 (void) strcpy(cp, mop->mo_arg); 2706 cp += arglen; 2707 } 2708 } 2709 } 2710 return (0); 2711 err: 2712 return (EOVERFLOW); 2713 } 2714 2715 static void 2716 vfs_freecancelopt(char **moc) 2717 { 2718 if (moc != NULL) { 2719 int ccnt = 0; 2720 char **cp; 2721 2722 for (cp = moc; *cp != NULL; cp++) { 2723 kmem_free(*cp, strlen(*cp) + 1); 2724 ccnt++; 2725 } 2726 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2727 } 2728 } 2729 2730 static void 2731 vfs_freeopt(mntopt_t *mop) 2732 { 2733 if (mop->mo_name != NULL) 2734 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2735 2736 vfs_freecancelopt(mop->mo_cancel); 2737 2738 if (mop->mo_arg != NULL) 2739 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2740 } 2741 2742 /* 2743 * Free a mount options table 2744 * 2745 * This function is *not* for general use by filesystems. 2746 * 2747 * Note: caller is responsible for locking the vfs list, if needed, 2748 * to protect mp. 2749 */ 2750 void 2751 vfs_freeopttbl(mntopts_t *mp) 2752 { 2753 uint_t i, count; 2754 2755 count = mp->mo_count; 2756 for (i = 0; i < count; i++) { 2757 vfs_freeopt(&mp->mo_list[i]); 2758 } 2759 if (count) { 2760 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2761 mp->mo_count = 0; 2762 mp->mo_list = NULL; 2763 } 2764 } 2765 2766 2767 /* ARGSUSED */ 2768 static int 2769 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2770 caller_context_t *ct) 2771 { 2772 return (0); 2773 } 2774 2775 /* ARGSUSED */ 2776 static int 2777 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2778 caller_context_t *ct) 2779 { 2780 return (0); 2781 } 2782 2783 /* 2784 * The dummy vnode is currently used only by file events notification 2785 * module which is just interested in the timestamps. 2786 */ 2787 /* ARGSUSED */ 2788 static int 2789 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2790 caller_context_t *ct) 2791 { 2792 bzero(vap, sizeof (vattr_t)); 2793 vap->va_type = VREG; 2794 vap->va_nlink = 1; 2795 vap->va_ctime = vfs_mnttab_ctime; 2796 /* 2797 * it is ok to just copy mtime as the time will be monotonically 2798 * increasing. 2799 */ 2800 vap->va_mtime = vfs_mnttab_mtime; 2801 vap->va_atime = vap->va_mtime; 2802 return (0); 2803 } 2804 2805 static void 2806 vfs_mnttabvp_setup(void) 2807 { 2808 vnode_t *tvp; 2809 vnodeops_t *vfs_mntdummyvnops; 2810 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2811 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2812 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2813 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2814 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2815 NULL, NULL 2816 }; 2817 2818 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2819 &vfs_mntdummyvnops) != 0) { 2820 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2821 /* Shouldn't happen, but not bad enough to panic */ 2822 return; 2823 } 2824 2825 /* 2826 * A global dummy vnode is allocated to represent mntfs files. 2827 * The mntfs file (/etc/mnttab) can be monitored for file events 2828 * and receive an event when mnttab changes. Dummy VOP calls 2829 * will be made on this vnode. The file events notification module 2830 * intercepts this vnode and delivers relevant events. 2831 */ 2832 tvp = vn_alloc(KM_SLEEP); 2833 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2834 vn_setops(tvp, vfs_mntdummyvnops); 2835 tvp->v_type = VREG; 2836 /* 2837 * The mnt dummy ops do not reference v_data. 2838 * No other module intercepting this vnode should either. 2839 * Just set it to point to itself. 2840 */ 2841 tvp->v_data = (caddr_t)tvp; 2842 tvp->v_vfsp = rootvfs; 2843 vfs_mntdummyvp = tvp; 2844 } 2845 2846 /* 2847 * performs fake read/write ops 2848 */ 2849 static void 2850 vfs_mnttab_rwop(int rw) 2851 { 2852 struct uio uio; 2853 struct iovec iov; 2854 char buf[1]; 2855 2856 if (vfs_mntdummyvp == NULL) 2857 return; 2858 2859 bzero(&uio, sizeof (uio)); 2860 bzero(&iov, sizeof (iov)); 2861 iov.iov_base = buf; 2862 iov.iov_len = 0; 2863 uio.uio_iov = &iov; 2864 uio.uio_iovcnt = 1; 2865 uio.uio_loffset = 0; 2866 uio.uio_segflg = UIO_SYSSPACE; 2867 uio.uio_resid = 0; 2868 if (rw) { 2869 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2870 } else { 2871 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2872 } 2873 } 2874 2875 /* 2876 * Generate a write operation. 2877 */ 2878 void 2879 vfs_mnttab_writeop(void) 2880 { 2881 vfs_mnttab_rwop(1); 2882 } 2883 2884 /* 2885 * Generate a read operation. 2886 */ 2887 void 2888 vfs_mnttab_readop(void) 2889 { 2890 vfs_mnttab_rwop(0); 2891 } 2892 2893 /* 2894 * Free any mnttab information recorded in the vfs struct. 2895 * The vfs must not be on the vfs list. 2896 */ 2897 static void 2898 vfs_freemnttab(struct vfs *vfsp) 2899 { 2900 ASSERT(!VFS_ON_LIST(vfsp)); 2901 2902 /* 2903 * Free device and mount point information 2904 */ 2905 if (vfsp->vfs_mntpt != NULL) { 2906 refstr_rele(vfsp->vfs_mntpt); 2907 vfsp->vfs_mntpt = NULL; 2908 } 2909 if (vfsp->vfs_resource != NULL) { 2910 refstr_rele(vfsp->vfs_resource); 2911 vfsp->vfs_resource = NULL; 2912 } 2913 /* 2914 * Now free mount options information 2915 */ 2916 vfs_freeopttbl(&vfsp->vfs_mntopts); 2917 } 2918 2919 /* 2920 * Return the last mnttab modification time 2921 */ 2922 void 2923 vfs_mnttab_modtime(timespec_t *ts) 2924 { 2925 ASSERT(RW_LOCK_HELD(&vfslist)); 2926 *ts = vfs_mnttab_mtime; 2927 } 2928 2929 /* 2930 * See if mnttab is changed 2931 */ 2932 void 2933 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2934 { 2935 int changed; 2936 2937 *phpp = (struct pollhead *)NULL; 2938 2939 /* 2940 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2941 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2942 * to not grab the vfs list lock because tv_sec is monotonically 2943 * increasing. 2944 */ 2945 2946 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2947 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2948 if (!changed) { 2949 *phpp = &vfs_pollhd; 2950 } 2951 } 2952 2953 /* Provide a unique and monotonically-increasing timestamp. */ 2954 void 2955 vfs_mono_time(timespec_t *ts) 2956 { 2957 static volatile hrtime_t hrt; /* The saved time. */ 2958 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2959 timespec_t newts; 2960 2961 /* 2962 * Try gethrestime() first, but be prepared to fabricate a sensible 2963 * answer at the first sign of any trouble. 2964 */ 2965 gethrestime(&newts); 2966 newhrt = ts2hrt(&newts); 2967 for (;;) { 2968 oldhrt = hrt; 2969 if (newhrt <= hrt) 2970 newhrt = hrt + 1; 2971 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2972 break; 2973 } 2974 hrt2ts(newhrt, ts); 2975 } 2976 2977 /* 2978 * Update the mnttab modification time and wake up any waiters for 2979 * mnttab changes 2980 */ 2981 void 2982 vfs_mnttab_modtimeupd() 2983 { 2984 hrtime_t oldhrt, newhrt; 2985 2986 ASSERT(RW_WRITE_HELD(&vfslist)); 2987 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2988 gethrestime(&vfs_mnttab_mtime); 2989 newhrt = ts2hrt(&vfs_mnttab_mtime); 2990 if (oldhrt == (hrtime_t)0) 2991 vfs_mnttab_ctime = vfs_mnttab_mtime; 2992 /* 2993 * Attempt to provide unique mtime (like uniqtime but not). 2994 */ 2995 if (newhrt == oldhrt) { 2996 newhrt++; 2997 hrt2ts(newhrt, &vfs_mnttab_mtime); 2998 } 2999 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 3000 vfs_mnttab_writeop(); 3001 } 3002 3003 int 3004 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3005 { 3006 vnode_t *coveredvp; 3007 int error; 3008 extern void teardown_vopstats(vfs_t *); 3009 3010 /* 3011 * Get covered vnode. This will be NULL if the vfs is not linked 3012 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3013 */ 3014 coveredvp = vfsp->vfs_vnodecovered; 3015 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3016 3017 /* 3018 * Purge all dnlc entries for this vfs. 3019 */ 3020 (void) dnlc_purge_vfsp(vfsp, 0); 3021 3022 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3023 if ((flag & MS_FORCE) == 0) 3024 (void) VFS_SYNC(vfsp, 0, cr); 3025 3026 /* 3027 * Lock the vfs to maintain fs status quo during unmount. This 3028 * has to be done after the sync because ufs_update tries to acquire 3029 * the vfs_reflock. 3030 */ 3031 vfs_lock_wait(vfsp); 3032 3033 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3034 vfs_unlock(vfsp); 3035 if (coveredvp != NULL) 3036 vn_vfsunlock(coveredvp); 3037 } else if (coveredvp != NULL) { 3038 teardown_vopstats(vfsp); 3039 /* 3040 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3041 * when it frees vfsp so we do a VN_HOLD() so we can 3042 * continue to use coveredvp afterwards. 3043 */ 3044 VN_HOLD(coveredvp); 3045 vfs_remove(vfsp); 3046 vn_vfsunlock(coveredvp); 3047 VN_RELE(coveredvp); 3048 } else { 3049 teardown_vopstats(vfsp); 3050 /* 3051 * Release the reference to vfs that is not linked 3052 * into the name space. 3053 */ 3054 vfs_unlock(vfsp); 3055 VFS_RELE(vfsp); 3056 } 3057 return (error); 3058 } 3059 3060 3061 /* 3062 * Vfs_unmountall() is called by uadmin() to unmount all 3063 * mounted file systems (except the root file system) during shutdown. 3064 * It follows the existing locking protocol when traversing the vfs list 3065 * to sync and unmount vfses. Even though there should be no 3066 * other thread running while the system is shutting down, it is prudent 3067 * to still follow the locking protocol. 3068 */ 3069 void 3070 vfs_unmountall(void) 3071 { 3072 struct vfs *vfsp; 3073 struct vfs *prev_vfsp = NULL; 3074 int error; 3075 3076 /* 3077 * Toss all dnlc entries now so that the per-vfs sync 3078 * and unmount operations don't have to slog through 3079 * a bunch of uninteresting vnodes over and over again. 3080 */ 3081 dnlc_purge(); 3082 3083 vfs_list_lock(); 3084 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3085 prev_vfsp = vfsp->vfs_prev; 3086 3087 if (vfs_lock(vfsp) != 0) 3088 continue; 3089 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3090 vfs_unlock(vfsp); 3091 if (error) 3092 continue; 3093 3094 vfs_list_unlock(); 3095 3096 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3097 (void) dounmount(vfsp, 0, CRED()); 3098 3099 /* 3100 * Since we dropped the vfslist lock above we must 3101 * verify that next_vfsp still exists, else start over. 3102 */ 3103 vfs_list_lock(); 3104 for (vfsp = rootvfs->vfs_prev; 3105 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3106 if (vfsp == prev_vfsp) 3107 break; 3108 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3109 prev_vfsp = rootvfs->vfs_prev; 3110 } 3111 vfs_list_unlock(); 3112 } 3113 3114 /* 3115 * Called to add an entry to the end of the vfs mount in progress list 3116 */ 3117 void 3118 vfs_addmip(dev_t dev, struct vfs *vfsp) 3119 { 3120 struct ipmnt *mipp; 3121 3122 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3123 mipp->mip_next = NULL; 3124 mipp->mip_dev = dev; 3125 mipp->mip_vfsp = vfsp; 3126 mutex_enter(&vfs_miplist_mutex); 3127 if (vfs_miplist_end != NULL) 3128 vfs_miplist_end->mip_next = mipp; 3129 else 3130 vfs_miplist = mipp; 3131 vfs_miplist_end = mipp; 3132 mutex_exit(&vfs_miplist_mutex); 3133 } 3134 3135 /* 3136 * Called to remove an entry from the mount in progress list 3137 * Either because the mount completed or it failed. 3138 */ 3139 void 3140 vfs_delmip(struct vfs *vfsp) 3141 { 3142 struct ipmnt *mipp, *mipprev; 3143 3144 mutex_enter(&vfs_miplist_mutex); 3145 mipprev = NULL; 3146 for (mipp = vfs_miplist; 3147 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3148 mipprev = mipp; 3149 } 3150 if (mipp == NULL) 3151 return; /* shouldn't happen */ 3152 if (mipp == vfs_miplist_end) 3153 vfs_miplist_end = mipprev; 3154 if (mipprev == NULL) 3155 vfs_miplist = mipp->mip_next; 3156 else 3157 mipprev->mip_next = mipp->mip_next; 3158 mutex_exit(&vfs_miplist_mutex); 3159 kmem_free(mipp, sizeof (struct ipmnt)); 3160 } 3161 3162 /* 3163 * vfs_add is called by a specific filesystem's mount routine to add 3164 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3165 * The vfs should already have been locked by the caller. 3166 * 3167 * coveredvp is NULL if this is the root. 3168 */ 3169 void 3170 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3171 { 3172 int newflag; 3173 3174 ASSERT(vfs_lock_held(vfsp)); 3175 VFS_HOLD(vfsp); 3176 newflag = vfsp->vfs_flag; 3177 if (mflag & MS_RDONLY) 3178 newflag |= VFS_RDONLY; 3179 else 3180 newflag &= ~VFS_RDONLY; 3181 if (mflag & MS_NOSUID) 3182 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3183 else 3184 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3185 if (mflag & MS_NOMNTTAB) 3186 newflag |= VFS_NOMNTTAB; 3187 else 3188 newflag &= ~VFS_NOMNTTAB; 3189 3190 if (coveredvp != NULL) { 3191 ASSERT(vn_vfswlock_held(coveredvp)); 3192 coveredvp->v_vfsmountedhere = vfsp; 3193 VN_HOLD(coveredvp); 3194 } 3195 vfsp->vfs_vnodecovered = coveredvp; 3196 vfsp->vfs_flag = newflag; 3197 3198 vfs_list_add(vfsp); 3199 } 3200 3201 /* 3202 * Remove a vfs from the vfs list, null out the pointer from the 3203 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3204 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3205 * reference to the vfs and to the covered vnode. 3206 * 3207 * Called from dounmount after it's confirmed with the file system 3208 * that the unmount is legal. 3209 */ 3210 void 3211 vfs_remove(struct vfs *vfsp) 3212 { 3213 vnode_t *vp; 3214 3215 ASSERT(vfs_lock_held(vfsp)); 3216 3217 /* 3218 * Can't unmount root. Should never happen because fs will 3219 * be busy. 3220 */ 3221 if (vfsp == rootvfs) 3222 panic("vfs_remove: unmounting root"); 3223 3224 vfs_list_remove(vfsp); 3225 3226 /* 3227 * Unhook from the file system name space. 3228 */ 3229 vp = vfsp->vfs_vnodecovered; 3230 ASSERT(vn_vfswlock_held(vp)); 3231 vp->v_vfsmountedhere = NULL; 3232 vfsp->vfs_vnodecovered = NULL; 3233 VN_RELE(vp); 3234 3235 /* 3236 * Release lock and wakeup anybody waiting. 3237 */ 3238 vfs_unlock(vfsp); 3239 VFS_RELE(vfsp); 3240 } 3241 3242 /* 3243 * Lock a filesystem to prevent access to it while mounting, 3244 * unmounting and syncing. Return EBUSY immediately if lock 3245 * can't be acquired. 3246 */ 3247 int 3248 vfs_lock(vfs_t *vfsp) 3249 { 3250 vn_vfslocks_entry_t *vpvfsentry; 3251 3252 vpvfsentry = vn_vfslocks_getlock(vfsp); 3253 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3254 return (0); 3255 3256 vn_vfslocks_rele(vpvfsentry); 3257 return (EBUSY); 3258 } 3259 3260 int 3261 vfs_rlock(vfs_t *vfsp) 3262 { 3263 vn_vfslocks_entry_t *vpvfsentry; 3264 3265 vpvfsentry = vn_vfslocks_getlock(vfsp); 3266 3267 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3268 return (0); 3269 3270 vn_vfslocks_rele(vpvfsentry); 3271 return (EBUSY); 3272 } 3273 3274 void 3275 vfs_lock_wait(vfs_t *vfsp) 3276 { 3277 vn_vfslocks_entry_t *vpvfsentry; 3278 3279 vpvfsentry = vn_vfslocks_getlock(vfsp); 3280 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3281 } 3282 3283 void 3284 vfs_rlock_wait(vfs_t *vfsp) 3285 { 3286 vn_vfslocks_entry_t *vpvfsentry; 3287 3288 vpvfsentry = vn_vfslocks_getlock(vfsp); 3289 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3290 } 3291 3292 /* 3293 * Unlock a locked filesystem. 3294 */ 3295 void 3296 vfs_unlock(vfs_t *vfsp) 3297 { 3298 vn_vfslocks_entry_t *vpvfsentry; 3299 3300 /* 3301 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3302 * And these changes should remain for the patch changes as it is. 3303 */ 3304 if (panicstr) 3305 return; 3306 3307 /* 3308 * ve_refcount needs to be dropped twice here. 3309 * 1. To release refernce after a call to vfs_locks_getlock() 3310 * 2. To release the reference from the locking routines like 3311 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3312 */ 3313 3314 vpvfsentry = vn_vfslocks_getlock(vfsp); 3315 vn_vfslocks_rele(vpvfsentry); 3316 3317 rwst_exit(&vpvfsentry->ve_lock); 3318 vn_vfslocks_rele(vpvfsentry); 3319 } 3320 3321 /* 3322 * Utility routine that allows a filesystem to construct its 3323 * fsid in "the usual way" - by munging some underlying dev_t and 3324 * the filesystem type number into the 64-bit fsid. Note that 3325 * this implicitly relies on dev_t persistence to make filesystem 3326 * id's persistent. 3327 * 3328 * There's nothing to prevent an individual fs from constructing its 3329 * fsid in a different way, and indeed they should. 3330 * 3331 * Since we want fsids to be 32-bit quantities (so that they can be 3332 * exported identically by either 32-bit or 64-bit APIs, as well as 3333 * the fact that fsid's are "known" to NFS), we compress the device 3334 * number given down to 32-bits, and panic if that isn't possible. 3335 */ 3336 void 3337 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3338 { 3339 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3340 panic("device number too big for fsid!"); 3341 fsi->val[1] = val; 3342 } 3343 3344 int 3345 vfs_lock_held(vfs_t *vfsp) 3346 { 3347 int held; 3348 vn_vfslocks_entry_t *vpvfsentry; 3349 3350 /* 3351 * vfs_lock_held will mimic sema_held behaviour 3352 * if panicstr is set. And these changes should remain 3353 * for the patch changes as it is. 3354 */ 3355 if (panicstr) 3356 return (1); 3357 3358 vpvfsentry = vn_vfslocks_getlock(vfsp); 3359 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3360 3361 vn_vfslocks_rele(vpvfsentry); 3362 return (held); 3363 } 3364 3365 struct _kthread * 3366 vfs_lock_owner(vfs_t *vfsp) 3367 { 3368 struct _kthread *owner; 3369 vn_vfslocks_entry_t *vpvfsentry; 3370 3371 /* 3372 * vfs_wlock_held will mimic sema_held behaviour 3373 * if panicstr is set. And these changes should remain 3374 * for the patch changes as it is. 3375 */ 3376 if (panicstr) 3377 return (NULL); 3378 3379 vpvfsentry = vn_vfslocks_getlock(vfsp); 3380 owner = rwst_owner(&vpvfsentry->ve_lock); 3381 3382 vn_vfslocks_rele(vpvfsentry); 3383 return (owner); 3384 } 3385 3386 /* 3387 * vfs list locking. 3388 * 3389 * Rather than manipulate the vfslist lock directly, we abstract into lock 3390 * and unlock routines to allow the locking implementation to be changed for 3391 * clustering. 3392 * 3393 * Whenever the vfs list is modified through its hash links, the overall list 3394 * lock must be obtained before locking the relevant hash bucket. But to see 3395 * whether a given vfs is on the list, it suffices to obtain the lock for the 3396 * hash bucket without getting the overall list lock. (See getvfs() below.) 3397 */ 3398 3399 void 3400 vfs_list_lock() 3401 { 3402 rw_enter(&vfslist, RW_WRITER); 3403 } 3404 3405 void 3406 vfs_list_read_lock() 3407 { 3408 rw_enter(&vfslist, RW_READER); 3409 } 3410 3411 void 3412 vfs_list_unlock() 3413 { 3414 rw_exit(&vfslist); 3415 } 3416 3417 /* 3418 * Low level worker routines for adding entries to and removing entries from 3419 * the vfs list. 3420 */ 3421 3422 static void 3423 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3424 { 3425 int vhno; 3426 struct vfs **hp; 3427 dev_t dev; 3428 3429 ASSERT(RW_WRITE_HELD(&vfslist)); 3430 3431 dev = expldev(vfsp->vfs_fsid.val[0]); 3432 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3433 3434 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3435 3436 /* 3437 * Link into the hash table, inserting it at the end, so that LOFS 3438 * with the same fsid as UFS (or other) file systems will not hide the 3439 * UFS. 3440 */ 3441 if (insert_at_head) { 3442 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3443 rvfs_list[vhno].rvfs_head = vfsp; 3444 } else { 3445 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3446 hp = &(*hp)->vfs_hash) 3447 continue; 3448 /* 3449 * hp now contains the address of the pointer to update 3450 * to effect the insertion. 3451 */ 3452 vfsp->vfs_hash = NULL; 3453 *hp = vfsp; 3454 } 3455 3456 rvfs_list[vhno].rvfs_len++; 3457 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3458 } 3459 3460 3461 static void 3462 vfs_hash_remove(struct vfs *vfsp) 3463 { 3464 int vhno; 3465 struct vfs *tvfsp; 3466 dev_t dev; 3467 3468 ASSERT(RW_WRITE_HELD(&vfslist)); 3469 3470 dev = expldev(vfsp->vfs_fsid.val[0]); 3471 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3472 3473 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3474 3475 /* 3476 * Remove from hash. 3477 */ 3478 if (rvfs_list[vhno].rvfs_head == vfsp) { 3479 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3480 rvfs_list[vhno].rvfs_len--; 3481 goto foundit; 3482 } 3483 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3484 tvfsp = tvfsp->vfs_hash) { 3485 if (tvfsp->vfs_hash == vfsp) { 3486 tvfsp->vfs_hash = vfsp->vfs_hash; 3487 rvfs_list[vhno].rvfs_len--; 3488 goto foundit; 3489 } 3490 } 3491 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3492 3493 foundit: 3494 3495 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3496 } 3497 3498 3499 void 3500 vfs_list_add(struct vfs *vfsp) 3501 { 3502 zone_t *zone; 3503 3504 /* 3505 * Typically, the vfs_t will have been created on behalf of the file 3506 * system in vfs_init, where it will have been provided with a 3507 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3508 * by an unbundled file system. We therefore check for such an example 3509 * before stamping the vfs_t with its creation time for the benefit of 3510 * mntfs. 3511 */ 3512 if (vfsp->vfs_implp == NULL) 3513 vfsimpl_setup(vfsp); 3514 vfs_mono_time(&vfsp->vfs_hrctime); 3515 3516 /* 3517 * The zone that owns the mount is the one that performed the mount. 3518 * Note that this isn't necessarily the same as the zone mounted into. 3519 * The corresponding zone_rele_ref() will be done when the vfs_t 3520 * is being free'd. 3521 */ 3522 vfsp->vfs_zone = curproc->p_zone; 3523 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3524 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3525 ZONE_REF_VFS); 3526 3527 /* 3528 * Find the zone mounted into, and put this mount on its vfs list. 3529 */ 3530 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3531 ASSERT(zone != NULL); 3532 /* 3533 * Special casing for the root vfs. This structure is allocated 3534 * statically and hooked onto rootvfs at link time. During the 3535 * vfs_mountroot call at system startup time, the root file system's 3536 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3537 * as argument. The code below must detect and handle this special 3538 * case. The only apparent justification for this special casing is 3539 * to ensure that the root file system appears at the head of the 3540 * list. 3541 * 3542 * XXX: I'm assuming that it's ok to do normal list locking when 3543 * adding the entry for the root file system (this used to be 3544 * done with no locks held). 3545 */ 3546 vfs_list_lock(); 3547 /* 3548 * Link into the vfs list proper. 3549 */ 3550 if (vfsp == &root) { 3551 /* 3552 * Assert: This vfs is already on the list as its first entry. 3553 * Thus, there's nothing to do. 3554 */ 3555 ASSERT(rootvfs == vfsp); 3556 /* 3557 * Add it to the head of the global zone's vfslist. 3558 */ 3559 ASSERT(zone == global_zone); 3560 ASSERT(zone->zone_vfslist == NULL); 3561 zone->zone_vfslist = vfsp; 3562 } else { 3563 /* 3564 * Link to end of list using vfs_prev (as rootvfs is now a 3565 * doubly linked circular list) so list is in mount order for 3566 * mnttab use. 3567 */ 3568 rootvfs->vfs_prev->vfs_next = vfsp; 3569 vfsp->vfs_prev = rootvfs->vfs_prev; 3570 rootvfs->vfs_prev = vfsp; 3571 vfsp->vfs_next = rootvfs; 3572 3573 /* 3574 * Do it again for the zone-private list (which may be NULL). 3575 */ 3576 if (zone->zone_vfslist == NULL) { 3577 ASSERT(zone != global_zone); 3578 zone->zone_vfslist = vfsp; 3579 } else { 3580 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3581 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3582 zone->zone_vfslist->vfs_zone_prev = vfsp; 3583 vfsp->vfs_zone_next = zone->zone_vfslist; 3584 } 3585 } 3586 3587 /* 3588 * Link into the hash table, inserting it at the end, so that LOFS 3589 * with the same fsid as UFS (or other) file systems will not hide 3590 * the UFS. 3591 */ 3592 vfs_hash_add(vfsp, 0); 3593 3594 /* 3595 * update the mnttab modification time 3596 */ 3597 vfs_mnttab_modtimeupd(); 3598 vfs_list_unlock(); 3599 zone_rele(zone); 3600 } 3601 3602 void 3603 vfs_list_remove(struct vfs *vfsp) 3604 { 3605 zone_t *zone; 3606 3607 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3608 ASSERT(zone != NULL); 3609 /* 3610 * Callers are responsible for preventing attempts to unmount the 3611 * root. 3612 */ 3613 ASSERT(vfsp != rootvfs); 3614 3615 vfs_list_lock(); 3616 3617 /* 3618 * Remove from hash. 3619 */ 3620 vfs_hash_remove(vfsp); 3621 3622 /* 3623 * Remove from vfs list. 3624 */ 3625 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3626 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3627 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3628 3629 /* 3630 * Remove from zone-specific vfs list. 3631 */ 3632 if (zone->zone_vfslist == vfsp) 3633 zone->zone_vfslist = vfsp->vfs_zone_next; 3634 3635 if (vfsp->vfs_zone_next == vfsp) { 3636 ASSERT(vfsp->vfs_zone_prev == vfsp); 3637 ASSERT(zone->zone_vfslist == vfsp); 3638 zone->zone_vfslist = NULL; 3639 } 3640 3641 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3642 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3643 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3644 3645 /* 3646 * update the mnttab modification time 3647 */ 3648 vfs_mnttab_modtimeupd(); 3649 vfs_list_unlock(); 3650 zone_rele(zone); 3651 } 3652 3653 struct vfs * 3654 getvfs(fsid_t *fsid) 3655 { 3656 struct vfs *vfsp; 3657 int val0 = fsid->val[0]; 3658 int val1 = fsid->val[1]; 3659 dev_t dev = expldev(val0); 3660 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3661 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3662 3663 mutex_enter(hmp); 3664 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3665 if (vfsp->vfs_fsid.val[0] == val0 && 3666 vfsp->vfs_fsid.val[1] == val1) { 3667 VFS_HOLD(vfsp); 3668 mutex_exit(hmp); 3669 return (vfsp); 3670 } 3671 } 3672 mutex_exit(hmp); 3673 return (NULL); 3674 } 3675 3676 /* 3677 * Search the vfs mount in progress list for a specified device/vfs entry. 3678 * Returns 0 if the first entry in the list that the device matches has the 3679 * given vfs pointer as well. If the device matches but a different vfs 3680 * pointer is encountered in the list before the given vfs pointer then 3681 * a 1 is returned. 3682 */ 3683 3684 int 3685 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3686 { 3687 int retval = 0; 3688 struct ipmnt *mipp; 3689 3690 mutex_enter(&vfs_miplist_mutex); 3691 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3692 if (mipp->mip_dev == dev) { 3693 if (mipp->mip_vfsp != vfsp) 3694 retval = 1; 3695 break; 3696 } 3697 } 3698 mutex_exit(&vfs_miplist_mutex); 3699 return (retval); 3700 } 3701 3702 /* 3703 * Search the vfs list for a specified device. Returns 1, if entry is found 3704 * or 0 if no suitable entry is found. 3705 */ 3706 3707 int 3708 vfs_devismounted(dev_t dev) 3709 { 3710 struct vfs *vfsp; 3711 int found; 3712 3713 vfs_list_read_lock(); 3714 vfsp = rootvfs; 3715 found = 0; 3716 do { 3717 if (vfsp->vfs_dev == dev) { 3718 found = 1; 3719 break; 3720 } 3721 vfsp = vfsp->vfs_next; 3722 } while (vfsp != rootvfs); 3723 3724 vfs_list_unlock(); 3725 return (found); 3726 } 3727 3728 /* 3729 * Search the vfs list for a specified device. Returns a pointer to it 3730 * or NULL if no suitable entry is found. The caller of this routine 3731 * is responsible for releasing the returned vfs pointer. 3732 */ 3733 struct vfs * 3734 vfs_dev2vfsp(dev_t dev) 3735 { 3736 struct vfs *vfsp; 3737 int found; 3738 3739 vfs_list_read_lock(); 3740 vfsp = rootvfs; 3741 found = 0; 3742 do { 3743 /* 3744 * The following could be made more efficient by making 3745 * the entire loop use vfs_zone_next if the call is from 3746 * a zone. The only callers, however, ustat(2) and 3747 * umount2(2), don't seem to justify the added 3748 * complexity at present. 3749 */ 3750 if (vfsp->vfs_dev == dev && 3751 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3752 curproc->p_zone)) { 3753 VFS_HOLD(vfsp); 3754 found = 1; 3755 break; 3756 } 3757 vfsp = vfsp->vfs_next; 3758 } while (vfsp != rootvfs); 3759 vfs_list_unlock(); 3760 return (found ? vfsp: NULL); 3761 } 3762 3763 /* 3764 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3765 * or NULL if no suitable entry is found. The caller of this routine 3766 * is responsible for releasing the returned vfs pointer. 3767 * 3768 * Note that if multiple mntpoints match, the last one matching is 3769 * returned in an attempt to return the "top" mount when overlay 3770 * mounts are covering the same mount point. This is accomplished by starting 3771 * at the end of the list and working our way backwards, stopping at the first 3772 * matching mount. 3773 */ 3774 struct vfs * 3775 vfs_mntpoint2vfsp(const char *mp) 3776 { 3777 struct vfs *vfsp; 3778 struct vfs *retvfsp = NULL; 3779 zone_t *zone = curproc->p_zone; 3780 struct vfs *list; 3781 3782 vfs_list_read_lock(); 3783 if (getzoneid() == GLOBAL_ZONEID) { 3784 /* 3785 * The global zone may see filesystems in any zone. 3786 */ 3787 vfsp = rootvfs->vfs_prev; 3788 do { 3789 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3790 retvfsp = vfsp; 3791 break; 3792 } 3793 vfsp = vfsp->vfs_prev; 3794 } while (vfsp != rootvfs->vfs_prev); 3795 } else if ((list = zone->zone_vfslist) != NULL) { 3796 const char *mntpt; 3797 3798 vfsp = list->vfs_zone_prev; 3799 do { 3800 mntpt = refstr_value(vfsp->vfs_mntpt); 3801 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3802 if (strcmp(mntpt, mp) == 0) { 3803 retvfsp = vfsp; 3804 break; 3805 } 3806 vfsp = vfsp->vfs_zone_prev; 3807 } while (vfsp != list->vfs_zone_prev); 3808 } 3809 if (retvfsp) 3810 VFS_HOLD(retvfsp); 3811 vfs_list_unlock(); 3812 return (retvfsp); 3813 } 3814 3815 /* 3816 * Search the vfs list for a specified vfsops. 3817 * if vfs entry is found then return 1, else 0. 3818 */ 3819 int 3820 vfs_opsinuse(vfsops_t *ops) 3821 { 3822 struct vfs *vfsp; 3823 int found; 3824 3825 vfs_list_read_lock(); 3826 vfsp = rootvfs; 3827 found = 0; 3828 do { 3829 if (vfs_getops(vfsp) == ops) { 3830 found = 1; 3831 break; 3832 } 3833 vfsp = vfsp->vfs_next; 3834 } while (vfsp != rootvfs); 3835 vfs_list_unlock(); 3836 return (found); 3837 } 3838 3839 /* 3840 * Allocate an entry in vfssw for a file system type 3841 */ 3842 struct vfssw * 3843 allocate_vfssw(const char *type) 3844 { 3845 struct vfssw *vswp; 3846 3847 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3848 /* 3849 * The vfssw table uses the empty string to identify an 3850 * available entry; we cannot add any type which has 3851 * a leading NUL. The string length is limited to 3852 * the size of the st_fstype array in struct stat. 3853 */ 3854 return (NULL); 3855 } 3856 3857 ASSERT(VFSSW_WRITE_LOCKED()); 3858 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3859 if (!ALLOCATED_VFSSW(vswp)) { 3860 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3861 (void) strcpy(vswp->vsw_name, type); 3862 ASSERT(vswp->vsw_count == 0); 3863 vswp->vsw_count = 1; 3864 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3865 return (vswp); 3866 } 3867 return (NULL); 3868 } 3869 3870 /* 3871 * Impose additional layer of translation between vfstype names 3872 * and module names in the filesystem. 3873 */ 3874 static const char * 3875 vfs_to_modname(const char *vfstype) 3876 { 3877 if (strcmp(vfstype, "proc") == 0) { 3878 vfstype = "procfs"; 3879 } else if (strcmp(vfstype, "fd") == 0) { 3880 vfstype = "fdfs"; 3881 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3882 vfstype = "nfs"; 3883 } 3884 3885 return (vfstype); 3886 } 3887 3888 /* 3889 * Find a vfssw entry given a file system type name. 3890 * Try to autoload the filesystem if it's not found. 3891 * If it's installed, return the vfssw locked to prevent unloading. 3892 */ 3893 struct vfssw * 3894 vfs_getvfssw(const char *type) 3895 { 3896 struct vfssw *vswp; 3897 const char *modname; 3898 3899 RLOCK_VFSSW(); 3900 vswp = vfs_getvfsswbyname(type); 3901 modname = vfs_to_modname(type); 3902 3903 if (rootdir == NULL) { 3904 /* 3905 * If we haven't yet loaded the root file system, then our 3906 * _init won't be called until later. Allocate vfssw entry, 3907 * because mod_installfs won't be called. 3908 */ 3909 if (vswp == NULL) { 3910 RUNLOCK_VFSSW(); 3911 WLOCK_VFSSW(); 3912 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3913 if ((vswp = allocate_vfssw(type)) == NULL) { 3914 WUNLOCK_VFSSW(); 3915 return (NULL); 3916 } 3917 } 3918 WUNLOCK_VFSSW(); 3919 RLOCK_VFSSW(); 3920 } 3921 if (!VFS_INSTALLED(vswp)) { 3922 RUNLOCK_VFSSW(); 3923 (void) modloadonly("fs", modname); 3924 } else 3925 RUNLOCK_VFSSW(); 3926 return (vswp); 3927 } 3928 3929 /* 3930 * Try to load the filesystem. Before calling modload(), we drop 3931 * our lock on the VFS switch table, and pick it up after the 3932 * module is loaded. However, there is a potential race: the 3933 * module could be unloaded after the call to modload() completes 3934 * but before we pick up the lock and drive on. Therefore, 3935 * we keep reloading the module until we've loaded the module 3936 * _and_ we have the lock on the VFS switch table. 3937 */ 3938 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3939 RUNLOCK_VFSSW(); 3940 if (modload("fs", modname) == -1) 3941 return (NULL); 3942 RLOCK_VFSSW(); 3943 if (vswp == NULL) 3944 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3945 break; 3946 } 3947 RUNLOCK_VFSSW(); 3948 3949 return (vswp); 3950 } 3951 3952 /* 3953 * Find a vfssw entry given a file system type name. 3954 */ 3955 struct vfssw * 3956 vfs_getvfsswbyname(const char *type) 3957 { 3958 struct vfssw *vswp; 3959 3960 ASSERT(VFSSW_LOCKED()); 3961 if (type == NULL || *type == '\0') 3962 return (NULL); 3963 3964 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3965 if (strcmp(type, vswp->vsw_name) == 0) { 3966 vfs_refvfssw(vswp); 3967 return (vswp); 3968 } 3969 } 3970 3971 return (NULL); 3972 } 3973 3974 /* 3975 * Find a vfssw entry given a set of vfsops. 3976 */ 3977 struct vfssw * 3978 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3979 { 3980 struct vfssw *vswp; 3981 3982 RLOCK_VFSSW(); 3983 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3984 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3985 vfs_refvfssw(vswp); 3986 RUNLOCK_VFSSW(); 3987 return (vswp); 3988 } 3989 } 3990 RUNLOCK_VFSSW(); 3991 3992 return (NULL); 3993 } 3994 3995 /* 3996 * Reference a vfssw entry. 3997 */ 3998 void 3999 vfs_refvfssw(struct vfssw *vswp) 4000 { 4001 4002 mutex_enter(&vswp->vsw_lock); 4003 vswp->vsw_count++; 4004 mutex_exit(&vswp->vsw_lock); 4005 } 4006 4007 /* 4008 * Unreference a vfssw entry. 4009 */ 4010 void 4011 vfs_unrefvfssw(struct vfssw *vswp) 4012 { 4013 4014 mutex_enter(&vswp->vsw_lock); 4015 vswp->vsw_count--; 4016 mutex_exit(&vswp->vsw_lock); 4017 } 4018 4019 static int sync_retries = 20; /* number of retries when not making progress */ 4020 static int sync_triesleft; /* portion of sync_retries remaining */ 4021 4022 static pgcnt_t old_pgcnt, new_pgcnt; 4023 static int new_bufcnt, old_bufcnt; 4024 4025 /* 4026 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4027 * complete. We wait by counting the number of dirty pages and buffers, 4028 * pushing them out using bio_busy() and page_busy(), and then counting again. 4029 * This routine is used during the uadmin A_SHUTDOWN code. It should only 4030 * be used after some higher-level mechanism has quiesced the system so that 4031 * new writes are not being initiated while we are waiting for completion. 4032 * 4033 * To ensure finite running time, our algorithm uses sync_triesleft (a progress 4034 * counter used by the vfs_syncall() loop below). It is declared above so 4035 * it can be found easily in the debugger. 4036 * 4037 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4038 * sync_retries consecutive calls to bio_busy() and page_busy() without 4039 * decreasing either the number of dirty buffers or dirty pages below the 4040 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4041 * 4042 * Each loop iteration ends with a call to delay() one second to allow time for 4043 * i/o completion and to permit the user time to read our progress messages. 4044 */ 4045 void 4046 vfs_syncall(void) 4047 { 4048 if (rootdir == NULL && !modrootloaded) 4049 return; /* no filesystems have been loaded yet */ 4050 4051 printf("syncing file systems..."); 4052 sync(); 4053 4054 sync_triesleft = sync_retries; 4055 4056 old_bufcnt = new_bufcnt = INT_MAX; 4057 old_pgcnt = new_pgcnt = ULONG_MAX; 4058 4059 while (sync_triesleft > 0) { 4060 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4061 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4062 4063 new_bufcnt = bio_busy(B_TRUE); 4064 new_pgcnt = page_busy(B_TRUE); 4065 4066 if (new_bufcnt == 0 && new_pgcnt == 0) 4067 break; 4068 4069 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4070 sync_triesleft = sync_retries; 4071 else 4072 sync_triesleft--; 4073 4074 if (new_bufcnt) 4075 printf(" [%d]", new_bufcnt); 4076 if (new_pgcnt) 4077 printf(" %lu", new_pgcnt); 4078 4079 delay(hz); 4080 } 4081 4082 if (new_bufcnt != 0 || new_pgcnt != 0) 4083 printf(" done (not all i/o completed)\n"); 4084 else 4085 printf(" done\n"); 4086 4087 delay(hz); 4088 } 4089 4090 /* 4091 * Map VFS flags to statvfs flags. These shouldn't really be separate 4092 * flags at all. 4093 */ 4094 uint_t 4095 vf_to_stf(uint_t vf) 4096 { 4097 uint_t stf = 0; 4098 4099 if (vf & VFS_RDONLY) 4100 stf |= ST_RDONLY; 4101 if (vf & VFS_NOSETUID) 4102 stf |= ST_NOSUID; 4103 if (vf & VFS_NOTRUNC) 4104 stf |= ST_NOTRUNC; 4105 4106 return (stf); 4107 } 4108 4109 /* 4110 * Entries for (illegal) fstype 0. 4111 */ 4112 /* ARGSUSED */ 4113 int 4114 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4115 { 4116 cmn_err(CE_PANIC, "stray vfs operation"); 4117 return (0); 4118 } 4119 4120 /* 4121 * Entries for (illegal) fstype 0. 4122 */ 4123 int 4124 vfsstray(void) 4125 { 4126 cmn_err(CE_PANIC, "stray vfs operation"); 4127 return (0); 4128 } 4129 4130 /* 4131 * Support for dealing with forced UFS unmount and its interaction with 4132 * LOFS. Could be used by any filesystem. 4133 * See bug 1203132. 4134 */ 4135 int 4136 vfs_EIO(void) 4137 { 4138 return (EIO); 4139 } 4140 4141 /* 4142 * We've gotta define the op for sync separately, since the compiler gets 4143 * confused if we mix and match ANSI and normal style prototypes when 4144 * a "short" argument is present and spits out a warning. 4145 */ 4146 /*ARGSUSED*/ 4147 int 4148 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4149 { 4150 return (EIO); 4151 } 4152 4153 vfs_t EIO_vfs; 4154 vfsops_t *EIO_vfsops; 4155 4156 /* 4157 * Called from startup() to initialize all loaded vfs's 4158 */ 4159 void 4160 vfsinit(void) 4161 { 4162 struct vfssw *vswp; 4163 int error; 4164 extern int vopstats_enabled; 4165 extern void vopstats_startup(); 4166 4167 static const fs_operation_def_t EIO_vfsops_template[] = { 4168 VFSNAME_MOUNT, { .error = vfs_EIO }, 4169 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4170 VFSNAME_ROOT, { .error = vfs_EIO }, 4171 VFSNAME_STATVFS, { .error = vfs_EIO }, 4172 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4173 VFSNAME_VGET, { .error = vfs_EIO }, 4174 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4175 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4176 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4177 NULL, NULL 4178 }; 4179 4180 static const fs_operation_def_t stray_vfsops_template[] = { 4181 VFSNAME_MOUNT, { .error = vfsstray }, 4182 VFSNAME_UNMOUNT, { .error = vfsstray }, 4183 VFSNAME_ROOT, { .error = vfsstray }, 4184 VFSNAME_STATVFS, { .error = vfsstray }, 4185 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4186 VFSNAME_VGET, { .error = vfsstray }, 4187 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4188 VFSNAME_FREEVFS, { .error = vfsstray }, 4189 VFSNAME_VNSTATE, { .error = vfsstray }, 4190 NULL, NULL 4191 }; 4192 4193 /* Create vfs cache */ 4194 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4195 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4196 4197 /* Initialize the vnode cache (file systems may use it during init). */ 4198 vn_create_cache(); 4199 4200 /* Setup event monitor framework */ 4201 fem_init(); 4202 4203 /* Initialize the dummy stray file system type. */ 4204 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4205 4206 /* Initialize the dummy EIO file system. */ 4207 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4208 if (error != 0) { 4209 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4210 /* Shouldn't happen, but not bad enough to panic */ 4211 } 4212 4213 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4214 4215 /* 4216 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4217 * on this vfs can immediately notice it's invalid. 4218 */ 4219 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4220 4221 /* 4222 * Call the init routines of non-loadable filesystems only. 4223 * Filesystems which are loaded as separate modules will be 4224 * initialized by the module loading code instead. 4225 */ 4226 4227 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4228 RLOCK_VFSSW(); 4229 if (vswp->vsw_init != NULL) 4230 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4231 RUNLOCK_VFSSW(); 4232 } 4233 4234 vopstats_startup(); 4235 4236 if (vopstats_enabled) { 4237 /* EIO_vfs can collect stats, but we don't retrieve them */ 4238 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4239 EIO_vfs.vfs_fstypevsp = NULL; 4240 EIO_vfs.vfs_vskap = NULL; 4241 EIO_vfs.vfs_flag |= VFS_STATS; 4242 } 4243 4244 xattr_init(); 4245 4246 reparse_point_init(); 4247 } 4248 4249 vfs_t * 4250 vfs_alloc(int kmflag) 4251 { 4252 vfs_t *vfsp; 4253 4254 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4255 4256 /* 4257 * Do the simplest initialization here. 4258 * Everything else gets done in vfs_init() 4259 */ 4260 bzero(vfsp, sizeof (vfs_t)); 4261 return (vfsp); 4262 } 4263 4264 void 4265 vfs_free(vfs_t *vfsp) 4266 { 4267 /* 4268 * One would be tempted to assert that "vfsp->vfs_count == 0". 4269 * The problem is that this gets called out of domount() with 4270 * a partially initialized vfs and a vfs_count of 1. This is 4271 * also called from vfs_rele() with a vfs_count of 0. We can't 4272 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4273 * returned. This is because VFS_MOUNT() fully initializes the 4274 * vfs structure and its associated data. VFS_RELE() will call 4275 * VFS_FREEVFS() which may panic the system if the data structures 4276 * aren't fully initialized from a successful VFS_MOUNT()). 4277 */ 4278 4279 /* If FEM was in use, make sure everything gets cleaned up */ 4280 if (vfsp->vfs_femhead) { 4281 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4282 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4283 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4284 vfsp->vfs_femhead = NULL; 4285 } 4286 4287 if (vfsp->vfs_implp) 4288 vfsimpl_teardown(vfsp); 4289 sema_destroy(&vfsp->vfs_reflock); 4290 kmem_cache_free(vfs_cache, vfsp); 4291 } 4292 4293 /* 4294 * Increments the vfs reference count by one atomically. 4295 */ 4296 void 4297 vfs_hold(vfs_t *vfsp) 4298 { 4299 atomic_inc_32(&vfsp->vfs_count); 4300 ASSERT(vfsp->vfs_count != 0); 4301 } 4302 4303 /* 4304 * Decrements the vfs reference count by one atomically. When 4305 * vfs reference count becomes zero, it calls the file system 4306 * specific vfs_freevfs() to free up the resources. 4307 */ 4308 void 4309 vfs_rele(vfs_t *vfsp) 4310 { 4311 ASSERT(vfsp->vfs_count != 0); 4312 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4313 VFS_FREEVFS(vfsp); 4314 lofi_remove(vfsp); 4315 if (vfsp->vfs_zone) 4316 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4317 ZONE_REF_VFS); 4318 vfs_freemnttab(vfsp); 4319 vfs_free(vfsp); 4320 } 4321 } 4322 4323 /* 4324 * Generic operations vector support. 4325 * 4326 * This is used to build operations vectors for both the vfs and vnode. 4327 * It's normally called only when a file system is loaded. 4328 * 4329 * There are many possible algorithms for this, including the following: 4330 * 4331 * (1) scan the list of known operations; for each, see if the file system 4332 * includes an entry for it, and fill it in as appropriate. 4333 * 4334 * (2) set up defaults for all known operations. scan the list of ops 4335 * supplied by the file system; for each which is both supplied and 4336 * known, fill it in. 4337 * 4338 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4339 * in entries as we go. 4340 * 4341 * we choose (1) for simplicity, and because performance isn't critical here. 4342 * note that (2) could be sped up using a precomputed hash table on known ops. 4343 * (3) could be faster than either, but only if the lists were very large or 4344 * supplied in sorted order. 4345 * 4346 */ 4347 4348 int 4349 fs_build_vector(void *vector, int *unused_ops, 4350 const fs_operation_trans_def_t *translation, 4351 const fs_operation_def_t *operations) 4352 { 4353 int i, num_trans, num_ops, used; 4354 4355 /* 4356 * Count the number of translations and the number of supplied 4357 * operations. 4358 */ 4359 4360 { 4361 const fs_operation_trans_def_t *p; 4362 4363 for (num_trans = 0, p = translation; 4364 p->name != NULL; 4365 num_trans++, p++) 4366 ; 4367 } 4368 4369 { 4370 const fs_operation_def_t *p; 4371 4372 for (num_ops = 0, p = operations; 4373 p->name != NULL; 4374 num_ops++, p++) 4375 ; 4376 } 4377 4378 /* Walk through each operation known to our caller. There will be */ 4379 /* one entry in the supplied "translation table" for each. */ 4380 4381 used = 0; 4382 4383 for (i = 0; i < num_trans; i++) { 4384 int j, found; 4385 char *curname; 4386 fs_generic_func_p result; 4387 fs_generic_func_p *location; 4388 4389 curname = translation[i].name; 4390 4391 /* Look for a matching operation in the list supplied by the */ 4392 /* file system. */ 4393 4394 found = 0; 4395 4396 for (j = 0; j < num_ops; j++) { 4397 if (strcmp(operations[j].name, curname) == 0) { 4398 used++; 4399 found = 1; 4400 break; 4401 } 4402 } 4403 4404 /* 4405 * If the file system is using a "placeholder" for default 4406 * or error functions, grab the appropriate function out of 4407 * the translation table. If the file system didn't supply 4408 * this operation at all, use the default function. 4409 */ 4410 4411 if (found) { 4412 result = operations[j].func.fs_generic; 4413 if (result == fs_default) { 4414 result = translation[i].defaultFunc; 4415 } else if (result == fs_error) { 4416 result = translation[i].errorFunc; 4417 } else if (result == NULL) { 4418 /* Null values are PROHIBITED */ 4419 return (EINVAL); 4420 } 4421 } else { 4422 result = translation[i].defaultFunc; 4423 } 4424 4425 /* Now store the function into the operations vector. */ 4426 4427 location = (fs_generic_func_p *) 4428 (((char *)vector) + translation[i].offset); 4429 4430 *location = result; 4431 } 4432 4433 *unused_ops = num_ops - used; 4434 4435 return (0); 4436 } 4437 4438 /* Placeholder functions, should never be called. */ 4439 4440 int 4441 fs_error(void) 4442 { 4443 cmn_err(CE_PANIC, "fs_error called"); 4444 return (0); 4445 } 4446 4447 int 4448 fs_default(void) 4449 { 4450 cmn_err(CE_PANIC, "fs_default called"); 4451 return (0); 4452 } 4453 4454 #ifdef __sparc 4455 4456 /* 4457 * Part of the implementation of booting off a mirrored root 4458 * involves a change of dev_t for the root device. To 4459 * accomplish this, first remove the existing hash table 4460 * entry for the root device, convert to the new dev_t, 4461 * then re-insert in the hash table at the head of the list. 4462 */ 4463 void 4464 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4465 { 4466 vfs_list_lock(); 4467 4468 vfs_hash_remove(vfsp); 4469 4470 vfsp->vfs_dev = ndev; 4471 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4472 4473 vfs_hash_add(vfsp, 1); 4474 4475 vfs_list_unlock(); 4476 } 4477 4478 #else /* x86 NEWBOOT */ 4479 4480 #if defined(__x86) 4481 extern int hvmboot_rootconf(); 4482 #endif /* __x86 */ 4483 4484 extern ib_boot_prop_t *iscsiboot_prop; 4485 4486 int 4487 rootconf() 4488 { 4489 int error; 4490 struct vfssw *vsw; 4491 extern void pm_init(); 4492 char *fstyp, *fsmod; 4493 int ret = -1; 4494 4495 getrootfs(&fstyp, &fsmod); 4496 4497 #if defined(__x86) 4498 /* 4499 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4500 * which lives in /platform/i86hvm, and hence is only available when 4501 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4502 * is not available then the modstub for this function will return 0. 4503 * If the hvm_bootstrap misc module is available it will be loaded 4504 * and hvmboot_rootconf() will be invoked. 4505 */ 4506 if (error = hvmboot_rootconf()) 4507 return (error); 4508 #endif /* __x86 */ 4509 4510 if (error = clboot_rootconf()) 4511 return (error); 4512 4513 if (modload("fs", fsmod) == -1) 4514 panic("Cannot _init %s module", fsmod); 4515 4516 RLOCK_VFSSW(); 4517 vsw = vfs_getvfsswbyname(fstyp); 4518 RUNLOCK_VFSSW(); 4519 if (vsw == NULL) { 4520 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4521 return (ENXIO); 4522 } 4523 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4524 VFS_HOLD(rootvfs); 4525 4526 /* always mount readonly first */ 4527 rootvfs->vfs_flag |= VFS_RDONLY; 4528 4529 pm_init(); 4530 4531 if (netboot && iscsiboot_prop) { 4532 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4533 " shouldn't happen in the same time"); 4534 return (EINVAL); 4535 } 4536 4537 if (netboot || iscsiboot_prop) { 4538 ret = strplumb(); 4539 if (ret != 0) { 4540 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4541 return (EFAULT); 4542 } 4543 } 4544 4545 if ((ret == 0) && iscsiboot_prop) { 4546 ret = modload("drv", "iscsi"); 4547 /* -1 indicates fail */ 4548 if (ret == -1) { 4549 cmn_err(CE_WARN, "Failed to load iscsi module"); 4550 iscsi_boot_prop_free(); 4551 return (EINVAL); 4552 } else { 4553 if (!i_ddi_attach_pseudo_node("iscsi")) { 4554 cmn_err(CE_WARN, 4555 "Failed to attach iscsi driver"); 4556 iscsi_boot_prop_free(); 4557 return (ENODEV); 4558 } 4559 } 4560 } 4561 4562 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4563 vfs_unrefvfssw(vsw); 4564 rootdev = rootvfs->vfs_dev; 4565 4566 if (error) 4567 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4568 rootfs.bo_name, fstyp); 4569 else 4570 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4571 rootfs.bo_name, fstyp); 4572 return (error); 4573 } 4574 4575 /* 4576 * XXX this is called by nfs only and should probably be removed 4577 * If booted with ASKNAME, prompt on the console for a filesystem 4578 * name and return it. 4579 */ 4580 void 4581 getfsname(char *askfor, char *name, size_t namelen) 4582 { 4583 if (boothowto & RB_ASKNAME) { 4584 printf("%s name: ", askfor); 4585 console_gets(name, namelen); 4586 } 4587 } 4588 4589 /* 4590 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4591 * property. 4592 * 4593 * Filesystem types starting with the prefix "nfs" are diskless clients; 4594 * init the root filename name (rootfs.bo_name), too. 4595 * 4596 * If we are booting via NFS we currently have these options: 4597 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4598 * nfs2 - force NFS V2 4599 * nfs3 - force NFS V3 4600 * nfs4 - force NFS V4 4601 * Because we need to maintain backward compatibility with the naming 4602 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4603 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4604 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4605 * This is only for root filesystems, all other uses will expect 4606 * that "nfs" == NFS V2. 4607 */ 4608 static void 4609 getrootfs(char **fstypp, char **fsmodp) 4610 { 4611 char *propstr = NULL; 4612 4613 /* 4614 * Check fstype property; for diskless it should be one of "nfs", 4615 * "nfs2", "nfs3" or "nfs4". 4616 */ 4617 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4618 DDI_PROP_DONTPASS, "fstype", &propstr) 4619 == DDI_SUCCESS) { 4620 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4621 ddi_prop_free(propstr); 4622 4623 /* 4624 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4625 * assume the type of this root filesystem is 'zfs'. 4626 */ 4627 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4628 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4629 == DDI_SUCCESS) { 4630 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4631 ddi_prop_free(propstr); 4632 } 4633 4634 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4635 *fstypp = *fsmodp = rootfs.bo_fstype; 4636 return; 4637 } 4638 4639 ++netboot; 4640 4641 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4642 (void) strcpy(rootfs.bo_fstype, "nfs"); 4643 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4644 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4645 4646 /* 4647 * check if path to network interface is specified in bootpath 4648 * or by a hypervisor domain configuration file. 4649 * XXPV - enable strlumb_get_netdev_path() 4650 */ 4651 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4652 "xpv-nfsroot")) { 4653 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4654 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4655 DDI_PROP_DONTPASS, "bootpath", &propstr) 4656 == DDI_SUCCESS) { 4657 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4658 ddi_prop_free(propstr); 4659 } else { 4660 rootfs.bo_name[0] = '\0'; 4661 } 4662 *fstypp = rootfs.bo_fstype; 4663 *fsmodp = "nfs"; 4664 } 4665 #endif 4666 4667 /* 4668 * VFS feature routines 4669 */ 4670 4671 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4672 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4673 4674 /* Register a feature in the vfs */ 4675 void 4676 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4677 { 4678 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4679 if (vfsp->vfs_implp == NULL) 4680 return; 4681 4682 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4683 } 4684 4685 void 4686 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4687 { 4688 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4689 if (vfsp->vfs_implp == NULL) 4690 return; 4691 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4692 } 4693 4694 /* 4695 * Query a vfs for a feature. 4696 * Returns 1 if feature is present, 0 if not 4697 */ 4698 int 4699 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4700 { 4701 int ret = 0; 4702 4703 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4704 if (vfsp->vfs_implp == NULL) 4705 return (ret); 4706 4707 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4708 ret = 1; 4709 4710 return (ret); 4711 } 4712 4713 /* 4714 * Propagate feature set from one vfs to another 4715 */ 4716 void 4717 vfs_propagate_features(vfs_t *from, vfs_t *to) 4718 { 4719 int i; 4720 4721 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4722 return; 4723 4724 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4725 to->vfs_featureset[i] = from->vfs_featureset[i]; 4726 } 4727 } 4728 4729 #define LOFINODE_PATH "/dev/lofi/%d" 4730 4731 /* 4732 * Return the vnode for the lofi node if there's a lofi mount in place. 4733 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4734 * failure. 4735 */ 4736 int 4737 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4738 { 4739 char *path = NULL; 4740 int strsize; 4741 int err; 4742 4743 if (vfsp->vfs_lofi_id == 0) { 4744 *vpp = NULL; 4745 return (-1); 4746 } 4747 4748 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id); 4749 path = kmem_alloc(strsize + 1, KM_SLEEP); 4750 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id); 4751 4752 /* 4753 * We may be inside a zone, so we need to use the /dev path, but 4754 * it's created asynchronously, so we wait here. 4755 */ 4756 for (;;) { 4757 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4758 4759 if (err != ENOENT) 4760 break; 4761 4762 if ((err = delay_sig(hz / 8)) == EINTR) 4763 break; 4764 } 4765 4766 if (err) 4767 *vpp = NULL; 4768 4769 kmem_free(path, strsize + 1); 4770 return (err); 4771 }