1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 25 * Copyright 2016 Toomas Soome <tsoome@me.com> 26 * Copyright (c) 2016 by Delphix. All rights reserved. 27 * Copyright 2016 Nexenta Systems, Inc. 28 */ 29 30 /* Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */ 31 /* All Rights Reserved */ 32 33 /* 34 * University Copyright- Copyright (c) 1982, 1986, 1988 35 * The Regents of the University of California 36 * All Rights Reserved 37 * 38 * University Acknowledgment- Portions of this document are derived from 39 * software developed by the University of California, Berkeley, and its 40 * contributors. 41 */ 42 43 #include <sys/types.h> 44 #include <sys/t_lock.h> 45 #include <sys/param.h> 46 #include <sys/errno.h> 47 #include <sys/user.h> 48 #include <sys/fstyp.h> 49 #include <sys/kmem.h> 50 #include <sys/systm.h> 51 #include <sys/proc.h> 52 #include <sys/mount.h> 53 #include <sys/vfs.h> 54 #include <sys/vfs_opreg.h> 55 #include <sys/fem.h> 56 #include <sys/mntent.h> 57 #include <sys/stat.h> 58 #include <sys/statvfs.h> 59 #include <sys/statfs.h> 60 #include <sys/cred.h> 61 #include <sys/vnode.h> 62 #include <sys/rwstlock.h> 63 #include <sys/dnlc.h> 64 #include <sys/file.h> 65 #include <sys/time.h> 66 #include <sys/atomic.h> 67 #include <sys/cmn_err.h> 68 #include <sys/buf.h> 69 #include <sys/swap.h> 70 #include <sys/debug.h> 71 #include <sys/vnode.h> 72 #include <sys/modctl.h> 73 #include <sys/ddi.h> 74 #include <sys/pathname.h> 75 #include <sys/bootconf.h> 76 #include <sys/dumphdr.h> 77 #include <sys/dc_ki.h> 78 #include <sys/poll.h> 79 #include <sys/sunddi.h> 80 #include <sys/sysmacros.h> 81 #include <sys/zone.h> 82 #include <sys/policy.h> 83 #include <sys/ctfs.h> 84 #include <sys/objfs.h> 85 #include <sys/console.h> 86 #include <sys/reboot.h> 87 #include <sys/attr.h> 88 #include <sys/zio.h> 89 #include <sys/spa.h> 90 #include <sys/lofi.h> 91 #include <sys/bootprops.h> 92 93 #include <vm/page.h> 94 95 #include <fs/fs_subr.h> 96 /* Private interfaces to create vopstats-related data structures */ 97 extern void initialize_vopstats(vopstats_t *); 98 extern vopstats_t *get_fstype_vopstats(struct vfs *, struct vfssw *); 99 extern vsk_anchor_t *get_vskstat_anchor(struct vfs *); 100 101 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int); 102 static void vfs_setmntopt_nolock(mntopts_t *, const char *, 103 const char *, int, int); 104 static int vfs_optionisset_nolock(const mntopts_t *, const char *, char **); 105 static void vfs_freemnttab(struct vfs *); 106 static void vfs_freeopt(mntopt_t *); 107 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *); 108 static void vfs_swapopttbl(mntopts_t *, mntopts_t *); 109 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int); 110 static void vfs_createopttbl_extend(mntopts_t *, const char *, 111 const mntopts_t *); 112 static char **vfs_copycancelopt_extend(char **const, int); 113 static void vfs_freecancelopt(char **); 114 static void getrootfs(char **, char **); 115 static int getmacpath(dev_info_t *, void *); 116 static void vfs_mnttabvp_setup(void); 117 118 struct ipmnt { 119 struct ipmnt *mip_next; 120 dev_t mip_dev; 121 struct vfs *mip_vfsp; 122 }; 123 124 static kmutex_t vfs_miplist_mutex; 125 static struct ipmnt *vfs_miplist = NULL; 126 static struct ipmnt *vfs_miplist_end = NULL; 127 128 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */ 129 130 /* 131 * VFS global data. 132 */ 133 vnode_t *rootdir; /* pointer to root inode vnode. */ 134 vnode_t *devicesdir; /* pointer to inode of devices root */ 135 vnode_t *devdir; /* pointer to inode of dev root */ 136 137 char *server_rootpath; /* root path for diskless clients */ 138 char *server_hostname; /* hostname of diskless server */ 139 140 static struct vfs root; 141 static struct vfs devices; 142 static struct vfs dev; 143 struct vfs *rootvfs = &root; /* pointer to root vfs; head of VFS list. */ 144 rvfs_t *rvfs_list; /* array of vfs ptrs for vfs hash list */ 145 int vfshsz = 512; /* # of heads/locks in vfs hash arrays */ 146 /* must be power of 2! */ 147 timespec_t vfs_mnttab_ctime; /* mnttab created time */ 148 timespec_t vfs_mnttab_mtime; /* mnttab last modified time */ 149 char *vfs_dummyfstype = "\0"; 150 struct pollhead vfs_pollhd; /* for mnttab pollers */ 151 struct vnode *vfs_mntdummyvp; /* to fake mnttab read/write for file events */ 152 int mntfstype; /* will be set once mnt fs is mounted */ 153 154 /* 155 * Table for generic options recognized in the VFS layer and acted 156 * on at this level before parsing file system specific options. 157 * The nosuid option is stronger than any of the devices and setuid 158 * options, so those are canceled when nosuid is seen. 159 * 160 * All options which are added here need to be added to the 161 * list of standard options in usr/src/cmd/fs.d/fslib.c as well. 162 */ 163 /* 164 * VFS Mount options table 165 */ 166 static char *ro_cancel[] = { MNTOPT_RW, NULL }; 167 static char *rw_cancel[] = { MNTOPT_RO, NULL }; 168 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL }; 169 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES, 170 MNTOPT_NOSETUID, MNTOPT_SETUID, NULL }; 171 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL }; 172 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL }; 173 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL }; 174 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL }; 175 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL }; 176 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL }; 177 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL }; 178 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL }; 179 180 static const mntopt_t mntopts[] = { 181 /* 182 * option name cancel options default arg flags 183 */ 184 { MNTOPT_REMOUNT, NULL, NULL, 185 MO_NODISPLAY, (void *)0 }, 186 { MNTOPT_RO, ro_cancel, NULL, 0, 187 (void *)0 }, 188 { MNTOPT_RW, rw_cancel, NULL, 0, 189 (void *)0 }, 190 { MNTOPT_SUID, suid_cancel, NULL, 0, 191 (void *)0 }, 192 { MNTOPT_NOSUID, nosuid_cancel, NULL, 0, 193 (void *)0 }, 194 { MNTOPT_DEVICES, devices_cancel, NULL, 0, 195 (void *)0 }, 196 { MNTOPT_NODEVICES, nodevices_cancel, NULL, 0, 197 (void *)0 }, 198 { MNTOPT_SETUID, setuid_cancel, NULL, 0, 199 (void *)0 }, 200 { MNTOPT_NOSETUID, nosetuid_cancel, NULL, 0, 201 (void *)0 }, 202 { MNTOPT_NBMAND, nbmand_cancel, NULL, 0, 203 (void *)0 }, 204 { MNTOPT_NONBMAND, nonbmand_cancel, NULL, 0, 205 (void *)0 }, 206 { MNTOPT_EXEC, exec_cancel, NULL, 0, 207 (void *)0 }, 208 { MNTOPT_NOEXEC, noexec_cancel, NULL, 0, 209 (void *)0 }, 210 }; 211 212 const mntopts_t vfs_mntopts = { 213 sizeof (mntopts) / sizeof (mntopt_t), 214 (mntopt_t *)&mntopts[0] 215 }; 216 217 /* 218 * File system operation dispatch functions. 219 */ 220 221 int 222 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 223 { 224 return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr); 225 } 226 227 int 228 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr) 229 { 230 return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr); 231 } 232 233 int 234 fsop_root(vfs_t *vfsp, vnode_t **vpp) 235 { 236 refstr_t *mntpt; 237 int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp); 238 /* 239 * Make sure this root has a path. With lofs, it is possible to have 240 * a NULL mountpoint. 241 */ 242 if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) { 243 mntpt = vfs_getmntpoint(vfsp); 244 vn_setpath_str(*vpp, refstr_value(mntpt), 245 strlen(refstr_value(mntpt))); 246 refstr_rele(mntpt); 247 } 248 249 return (ret); 250 } 251 252 int 253 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp) 254 { 255 return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp); 256 } 257 258 int 259 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr) 260 { 261 return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr); 262 } 263 264 int 265 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 266 { 267 /* 268 * In order to handle system attribute fids in a manner 269 * transparent to the underlying fs, we embed the fid for 270 * the sysattr parent object in the sysattr fid and tack on 271 * some extra bytes that only the sysattr layer knows about. 272 * 273 * This guarantees that sysattr fids are larger than other fids 274 * for this vfs. If the vfs supports the sysattr view interface 275 * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size 276 * collision with XATTR_FIDSZ. 277 */ 278 if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) && 279 fidp->fid_len == XATTR_FIDSZ) 280 return (xattr_dir_vget(vfsp, vpp, fidp)); 281 282 return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp); 283 } 284 285 int 286 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason) 287 { 288 return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason); 289 } 290 291 void 292 fsop_freefs(vfs_t *vfsp) 293 { 294 (*(vfsp)->vfs_op->vfs_freevfs)(vfsp); 295 } 296 297 int 298 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate) 299 { 300 return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate)); 301 } 302 303 int 304 fsop_sync_by_kind(int fstype, short flag, cred_t *cr) 305 { 306 ASSERT((fstype >= 0) && (fstype < nfstype)); 307 308 if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype])) 309 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr); 310 else 311 return (ENOTSUP); 312 } 313 314 /* 315 * File system initialization. vfs_setfsops() must be called from a file 316 * system's init routine. 317 */ 318 319 static int 320 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual, 321 int *unused_ops) 322 { 323 static const fs_operation_trans_def_t vfs_ops_table[] = { 324 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount), 325 fs_nosys, fs_nosys, 326 327 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount), 328 fs_nosys, fs_nosys, 329 330 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root), 331 fs_nosys, fs_nosys, 332 333 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs), 334 fs_nosys, fs_nosys, 335 336 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync), 337 (fs_generic_func_p) fs_sync, 338 (fs_generic_func_p) fs_sync, /* No errors allowed */ 339 340 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget), 341 fs_nosys, fs_nosys, 342 343 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot), 344 fs_nosys, fs_nosys, 345 346 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs), 347 (fs_generic_func_p)fs_freevfs, 348 (fs_generic_func_p)fs_freevfs, /* Shouldn't fail */ 349 350 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate), 351 (fs_generic_func_p)fs_nosys, 352 (fs_generic_func_p)fs_nosys, 353 354 NULL, 0, NULL, NULL 355 }; 356 357 return (fs_build_vector(actual, unused_ops, vfs_ops_table, template)); 358 } 359 360 void 361 zfs_boot_init(void) 362 { 363 if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0) 364 spa_boot_init(); 365 } 366 367 int 368 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual) 369 { 370 int error; 371 int unused_ops; 372 373 /* 374 * Verify that fstype refers to a valid fs. Note that 375 * 0 is valid since it's used to set "stray" ops. 376 */ 377 if ((fstype < 0) || (fstype >= nfstype)) 378 return (EINVAL); 379 380 if (!ALLOCATED_VFSSW(&vfssw[fstype])) 381 return (EINVAL); 382 383 /* Set up the operations vector. */ 384 385 error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops); 386 387 if (error != 0) 388 return (error); 389 390 vfssw[fstype].vsw_flag |= VSW_INSTALLED; 391 392 if (actual != NULL) 393 *actual = &vfssw[fstype].vsw_vfsops; 394 395 #if DEBUG 396 if (unused_ops != 0) 397 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied " 398 "but not used", vfssw[fstype].vsw_name, unused_ops); 399 #endif 400 401 return (0); 402 } 403 404 int 405 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual) 406 { 407 int error; 408 int unused_ops; 409 410 *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP); 411 412 error = fs_copyfsops(template, *actual, &unused_ops); 413 if (error != 0) { 414 kmem_free(*actual, sizeof (vfsops_t)); 415 *actual = NULL; 416 return (error); 417 } 418 419 return (0); 420 } 421 422 /* 423 * Free a vfsops structure created as a result of vfs_makefsops(). 424 * NOTE: For a vfsops structure initialized by vfs_setfsops(), use 425 * vfs_freevfsops_by_type(). 426 */ 427 void 428 vfs_freevfsops(vfsops_t *vfsops) 429 { 430 kmem_free(vfsops, sizeof (vfsops_t)); 431 } 432 433 /* 434 * Since the vfsops structure is part of the vfssw table and wasn't 435 * really allocated, we're not really freeing anything. We keep 436 * the name for consistency with vfs_freevfsops(). We do, however, 437 * need to take care of a little bookkeeping. 438 * NOTE: For a vfsops structure created by vfs_setfsops(), use 439 * vfs_freevfsops_by_type(). 440 */ 441 int 442 vfs_freevfsops_by_type(int fstype) 443 { 444 445 /* Verify that fstype refers to a loaded fs (and not fsid 0). */ 446 if ((fstype <= 0) || (fstype >= nfstype)) 447 return (EINVAL); 448 449 WLOCK_VFSSW(); 450 if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) { 451 WUNLOCK_VFSSW(); 452 return (EINVAL); 453 } 454 455 vfssw[fstype].vsw_flag &= ~VSW_INSTALLED; 456 WUNLOCK_VFSSW(); 457 458 return (0); 459 } 460 461 /* Support routines used to reference vfs_op */ 462 463 /* Set the operations vector for a vfs */ 464 void 465 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops) 466 { 467 vfsops_t *op; 468 469 ASSERT(vfsp != NULL); 470 ASSERT(vfsops != NULL); 471 472 op = vfsp->vfs_op; 473 membar_consumer(); 474 if (vfsp->vfs_femhead == NULL && 475 atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) { 476 return; 477 } 478 fsem_setvfsops(vfsp, vfsops); 479 } 480 481 /* Retrieve the operations vector for a vfs */ 482 vfsops_t * 483 vfs_getops(vfs_t *vfsp) 484 { 485 vfsops_t *op; 486 487 ASSERT(vfsp != NULL); 488 489 op = vfsp->vfs_op; 490 membar_consumer(); 491 if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) { 492 return (op); 493 } else { 494 return (fsem_getvfsops(vfsp)); 495 } 496 } 497 498 /* 499 * Returns non-zero (1) if the vfsops matches that of the vfs. 500 * Returns zero (0) if not. 501 */ 502 int 503 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops) 504 { 505 return (vfs_getops(vfsp) == vfsops); 506 } 507 508 /* 509 * Returns non-zero (1) if the file system has installed a non-default, 510 * non-error vfs_sync routine. Returns zero (0) otherwise. 511 */ 512 int 513 vfs_can_sync(vfs_t *vfsp) 514 { 515 /* vfs_sync() routine is not the default/error function */ 516 return (vfs_getops(vfsp)->vfs_sync != fs_sync); 517 } 518 519 /* 520 * Initialize a vfs structure. 521 */ 522 void 523 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data) 524 { 525 /* Other initialization has been moved to vfs_alloc() */ 526 vfsp->vfs_count = 0; 527 vfsp->vfs_next = vfsp; 528 vfsp->vfs_prev = vfsp; 529 vfsp->vfs_zone_next = vfsp; 530 vfsp->vfs_zone_prev = vfsp; 531 vfsp->vfs_lofi_id = 0; 532 sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL); 533 vfsimpl_setup(vfsp); 534 vfsp->vfs_data = (data); 535 vfs_setops((vfsp), (op)); 536 } 537 538 /* 539 * Allocate and initialize the vfs implementation private data 540 * structure, vfs_impl_t. 541 */ 542 void 543 vfsimpl_setup(vfs_t *vfsp) 544 { 545 int i; 546 547 if (vfsp->vfs_implp != NULL) { 548 return; 549 } 550 551 vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP); 552 /* Note that these are #define'd in vfs.h */ 553 vfsp->vfs_vskap = NULL; 554 vfsp->vfs_fstypevsp = NULL; 555 556 /* Set size of counted array, then zero the array */ 557 vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1; 558 for (i = 1; i < VFS_FEATURE_MAXSZ; i++) { 559 vfsp->vfs_featureset[i] = 0; 560 } 561 } 562 563 /* 564 * Release the vfs_impl_t structure, if it exists. Some unbundled 565 * filesystems may not use the newer version of vfs and thus 566 * would not contain this implementation private data structure. 567 */ 568 void 569 vfsimpl_teardown(vfs_t *vfsp) 570 { 571 vfs_impl_t *vip = vfsp->vfs_implp; 572 573 if (vip == NULL) 574 return; 575 576 kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t)); 577 vfsp->vfs_implp = NULL; 578 } 579 580 /* 581 * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs, 582 * fstatvfs, and sysfs moved to common/syscall. 583 */ 584 585 /* 586 * Update every mounted file system. We call the vfs_sync operation of 587 * each file system type, passing it a NULL vfsp to indicate that all 588 * mounted file systems of that type should be updated. 589 */ 590 void 591 vfs_sync(int flag) 592 { 593 struct vfssw *vswp; 594 RLOCK_VFSSW(); 595 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 596 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) { 597 vfs_refvfssw(vswp); 598 RUNLOCK_VFSSW(); 599 (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag, 600 CRED()); 601 vfs_unrefvfssw(vswp); 602 RLOCK_VFSSW(); 603 } 604 } 605 RUNLOCK_VFSSW(); 606 } 607 608 void 609 sync(void) 610 { 611 vfs_sync(0); 612 } 613 614 /* 615 * External routines. 616 */ 617 618 krwlock_t vfssw_lock; /* lock accesses to vfssw */ 619 620 /* 621 * Lock for accessing the vfs linked list. Initialized in vfs_mountroot(), 622 * but otherwise should be accessed only via vfs_list_lock() and 623 * vfs_list_unlock(). Also used to protect the timestamp for mods to the list. 624 */ 625 static krwlock_t vfslist; 626 627 /* 628 * Mount devfs on /devices. This is done right after root is mounted 629 * to provide device access support for the system 630 */ 631 static void 632 vfs_mountdevices(void) 633 { 634 struct vfssw *vsw; 635 struct vnode *mvp; 636 struct mounta mounta = { /* fake mounta for devfs_mount() */ 637 NULL, 638 NULL, 639 MS_SYSSPACE, 640 NULL, 641 NULL, 642 0, 643 NULL, 644 0 645 }; 646 647 /* 648 * _init devfs module to fill in the vfssw 649 */ 650 if (modload("fs", "devfs") == -1) 651 panic("Cannot _init devfs module"); 652 653 /* 654 * Hold vfs 655 */ 656 RLOCK_VFSSW(); 657 vsw = vfs_getvfsswbyname("devfs"); 658 VFS_INIT(&devices, &vsw->vsw_vfsops, NULL); 659 VFS_HOLD(&devices); 660 661 /* 662 * Locate mount point 663 */ 664 if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 665 panic("Cannot find /devices"); 666 667 /* 668 * Perform the mount of /devices 669 */ 670 if (VFS_MOUNT(&devices, mvp, &mounta, CRED())) 671 panic("Cannot mount /devices"); 672 673 RUNLOCK_VFSSW(); 674 675 /* 676 * Set appropriate members and add to vfs list for mnttab display 677 */ 678 vfs_setresource(&devices, "/devices", 0); 679 vfs_setmntpoint(&devices, "/devices", 0); 680 681 /* 682 * Hold the root of /devices so it won't go away 683 */ 684 if (VFS_ROOT(&devices, &devicesdir)) 685 panic("vfs_mountdevices: not devices root"); 686 687 if (vfs_lock(&devices) != 0) { 688 VN_RELE(devicesdir); 689 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices"); 690 return; 691 } 692 693 if (vn_vfswlock(mvp) != 0) { 694 vfs_unlock(&devices); 695 VN_RELE(devicesdir); 696 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices"); 697 return; 698 } 699 700 vfs_add(mvp, &devices, 0); 701 vn_vfsunlock(mvp); 702 vfs_unlock(&devices); 703 VN_RELE(devicesdir); 704 } 705 706 /* 707 * mount the first instance of /dev to root and remain mounted 708 */ 709 static void 710 vfs_mountdev1(void) 711 { 712 struct vfssw *vsw; 713 struct vnode *mvp; 714 struct mounta mounta = { /* fake mounta for sdev_mount() */ 715 NULL, 716 NULL, 717 MS_SYSSPACE | MS_OVERLAY, 718 NULL, 719 NULL, 720 0, 721 NULL, 722 0 723 }; 724 725 /* 726 * _init dev module to fill in the vfssw 727 */ 728 if (modload("fs", "dev") == -1) 729 cmn_err(CE_PANIC, "Cannot _init dev module\n"); 730 731 /* 732 * Hold vfs 733 */ 734 RLOCK_VFSSW(); 735 vsw = vfs_getvfsswbyname("dev"); 736 VFS_INIT(&dev, &vsw->vsw_vfsops, NULL); 737 VFS_HOLD(&dev); 738 739 /* 740 * Locate mount point 741 */ 742 if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) 743 cmn_err(CE_PANIC, "Cannot find /dev\n"); 744 745 /* 746 * Perform the mount of /dev 747 */ 748 if (VFS_MOUNT(&dev, mvp, &mounta, CRED())) 749 cmn_err(CE_PANIC, "Cannot mount /dev 1\n"); 750 751 RUNLOCK_VFSSW(); 752 753 /* 754 * Set appropriate members and add to vfs list for mnttab display 755 */ 756 vfs_setresource(&dev, "/dev", 0); 757 vfs_setmntpoint(&dev, "/dev", 0); 758 759 /* 760 * Hold the root of /dev so it won't go away 761 */ 762 if (VFS_ROOT(&dev, &devdir)) 763 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root"); 764 765 if (vfs_lock(&dev) != 0) { 766 VN_RELE(devdir); 767 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev"); 768 return; 769 } 770 771 if (vn_vfswlock(mvp) != 0) { 772 vfs_unlock(&dev); 773 VN_RELE(devdir); 774 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev"); 775 return; 776 } 777 778 vfs_add(mvp, &dev, 0); 779 vn_vfsunlock(mvp); 780 vfs_unlock(&dev); 781 VN_RELE(devdir); 782 } 783 784 /* 785 * Mount required filesystem. This is done right after root is mounted. 786 */ 787 static void 788 vfs_mountfs(char *module, char *spec, char *path) 789 { 790 struct vnode *mvp; 791 struct mounta mounta; 792 vfs_t *vfsp; 793 794 mounta.flags = MS_SYSSPACE | MS_DATA; 795 mounta.fstype = module; 796 mounta.spec = spec; 797 mounta.dir = path; 798 if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) { 799 cmn_err(CE_WARN, "Cannot find %s", path); 800 return; 801 } 802 if (domount(NULL, &mounta, mvp, CRED(), &vfsp)) 803 cmn_err(CE_WARN, "Cannot mount %s", path); 804 else 805 VFS_RELE(vfsp); 806 VN_RELE(mvp); 807 } 808 809 /* 810 * vfs_mountroot is called by main() to mount the root filesystem. 811 */ 812 void 813 vfs_mountroot(void) 814 { 815 struct vnode *rvp = NULL; 816 char *path; 817 size_t plen; 818 struct vfssw *vswp; 819 proc_t *p; 820 821 rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL); 822 rw_init(&vfslist, NULL, RW_DEFAULT, NULL); 823 824 /* 825 * Alloc the vfs hash bucket array and locks 826 */ 827 rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP); 828 829 /* 830 * Call machine-dependent routine "rootconf" to choose a root 831 * file system type. 832 */ 833 if (rootconf()) 834 panic("vfs_mountroot: cannot mount root"); 835 /* 836 * Get vnode for '/'. Set up rootdir, u.u_rdir and u.u_cdir 837 * to point to it. These are used by lookuppn() so that it 838 * knows where to start from ('/' or '.'). 839 */ 840 vfs_setmntpoint(rootvfs, "/", 0); 841 if (VFS_ROOT(rootvfs, &rootdir)) 842 panic("vfs_mountroot: no root vnode"); 843 844 /* 845 * At this point, the process tree consists of p0 and possibly some 846 * direct children of p0. (i.e. there are no grandchildren) 847 * 848 * Walk through them all, setting their current directory. 849 */ 850 mutex_enter(&pidlock); 851 for (p = practive; p != NULL; p = p->p_next) { 852 ASSERT(p == &p0 || p->p_parent == &p0); 853 854 PTOU(p)->u_cdir = rootdir; 855 VN_HOLD(PTOU(p)->u_cdir); 856 PTOU(p)->u_rdir = NULL; 857 } 858 mutex_exit(&pidlock); 859 860 /* 861 * Setup the global zone's rootvp, now that it exists. 862 */ 863 global_zone->zone_rootvp = rootdir; 864 VN_HOLD(global_zone->zone_rootvp); 865 866 /* 867 * Notify the module code that it can begin using the 868 * root filesystem instead of the boot program's services. 869 */ 870 modrootloaded = 1; 871 872 /* 873 * Special handling for a ZFS root file system. 874 */ 875 zfs_boot_init(); 876 877 /* 878 * Set up mnttab information for root 879 */ 880 vfs_setresource(rootvfs, rootfs.bo_name, 0); 881 882 /* 883 * Notify cluster software that the root filesystem is available. 884 */ 885 clboot_mountroot(); 886 887 /* Now that we're all done with the root FS, set up its vopstats */ 888 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) { 889 /* Set flag for statistics collection */ 890 if (vswp->vsw_flag & VSW_STATS) { 891 initialize_vopstats(&rootvfs->vfs_vopstats); 892 rootvfs->vfs_flag |= VFS_STATS; 893 rootvfs->vfs_fstypevsp = 894 get_fstype_vopstats(rootvfs, vswp); 895 rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs); 896 } 897 vfs_unrefvfssw(vswp); 898 } 899 900 /* 901 * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab, 902 * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc. 903 */ 904 vfs_mountdevices(); 905 vfs_mountdev1(); 906 907 vfs_mountfs("ctfs", "ctfs", CTFS_ROOT); 908 vfs_mountfs("proc", "/proc", "/proc"); 909 vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab"); 910 vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile"); 911 vfs_mountfs("objfs", "objfs", OBJFS_ROOT); 912 vfs_mountfs("bootfs", "bootfs", "/system/boot"); 913 914 if (getzoneid() == GLOBAL_ZONEID) { 915 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab"); 916 } 917 918 if (strcmp(rootfs.bo_fstype, "zfs") != 0) { 919 /* 920 * Look up the root device via devfs so that a dv_node is 921 * created for it. The vnode is never VN_RELE()ed. 922 * We allocate more than MAXPATHLEN so that the 923 * buffer passed to i_ddi_prompath_to_devfspath() is 924 * exactly MAXPATHLEN (the function expects a buffer 925 * of that length). 926 */ 927 plen = strlen("/devices"); 928 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP); 929 (void) strcpy(path, "/devices"); 930 931 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen) 932 != DDI_SUCCESS || 933 lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) { 934 935 /* NUL terminate in case "path" has garbage */ 936 path[plen + MAXPATHLEN - 1] = '\0'; 937 #ifdef DEBUG 938 cmn_err(CE_WARN, "!Cannot lookup root device: %s", 939 path); 940 #endif 941 } 942 kmem_free(path, plen + MAXPATHLEN); 943 } 944 945 vfs_mnttabvp_setup(); 946 } 947 948 /* 949 * Check to see if our "block device" is actually a file. If so, 950 * automatically add a lofi device, and keep track of this fact. 951 */ 952 static int 953 lofi_add(const char *fsname, struct vfs *vfsp, 954 mntopts_t *mntopts, struct mounta *uap) 955 { 956 int fromspace = (uap->flags & MS_SYSSPACE) ? 957 UIO_SYSSPACE : UIO_USERSPACE; 958 struct lofi_ioctl *li = NULL; 959 struct vnode *vp = NULL; 960 struct pathname pn = { NULL }; 961 ldi_ident_t ldi_id; 962 ldi_handle_t ldi_hdl; 963 vfssw_t *vfssw; 964 int id; 965 int err = 0; 966 967 if ((vfssw = vfs_getvfssw(fsname)) == NULL) 968 return (0); 969 970 if (!(vfssw->vsw_flag & VSW_CANLOFI)) { 971 vfs_unrefvfssw(vfssw); 972 return (0); 973 } 974 975 vfs_unrefvfssw(vfssw); 976 vfssw = NULL; 977 978 if (pn_get(uap->spec, fromspace, &pn) != 0) 979 return (0); 980 981 if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0) 982 goto out; 983 984 if (vp->v_type != VREG) 985 goto out; 986 987 /* OK, this is a lofi mount. */ 988 989 if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) || 990 vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) || 991 vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) || 992 vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) { 993 err = EINVAL; 994 goto out; 995 } 996 997 ldi_id = ldi_ident_from_anon(); 998 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 999 (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN); 1000 1001 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1002 &ldi_hdl, ldi_id); 1003 1004 if (err) 1005 goto out2; 1006 1007 err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li, 1008 FREAD | FWRITE | FKIOCTL, kcred, &id); 1009 1010 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1011 1012 if (!err) 1013 vfsp->vfs_lofi_id = id; 1014 1015 out2: 1016 ldi_ident_release(ldi_id); 1017 out: 1018 if (li != NULL) 1019 kmem_free(li, sizeof (*li)); 1020 if (vp != NULL) 1021 VN_RELE(vp); 1022 pn_free(&pn); 1023 return (err); 1024 } 1025 1026 static void 1027 lofi_remove(struct vfs *vfsp) 1028 { 1029 struct lofi_ioctl *li = NULL; 1030 ldi_ident_t ldi_id; 1031 ldi_handle_t ldi_hdl; 1032 int err; 1033 1034 if (vfsp->vfs_lofi_id == 0) 1035 return; 1036 1037 ldi_id = ldi_ident_from_anon(); 1038 1039 li = kmem_zalloc(sizeof (*li), KM_SLEEP); 1040 li->li_id = vfsp->vfs_lofi_id; 1041 li->li_cleanup = B_TRUE; 1042 1043 err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred, 1044 &ldi_hdl, ldi_id); 1045 1046 if (err) 1047 goto out; 1048 1049 err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li, 1050 FREAD | FWRITE | FKIOCTL, kcred, NULL); 1051 1052 (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred); 1053 1054 if (!err) 1055 vfsp->vfs_lofi_id = 0; 1056 1057 out: 1058 ldi_ident_release(ldi_id); 1059 if (li != NULL) 1060 kmem_free(li, sizeof (*li)); 1061 } 1062 1063 /* 1064 * Common mount code. Called from the system call entry point, from autofs, 1065 * nfsv4 trigger mounts, and from pxfs. 1066 * 1067 * Takes the effective file system type, mount arguments, the mount point 1068 * vnode, flags specifying whether the mount is a remount and whether it 1069 * should be entered into the vfs list, and credentials. Fills in its vfspp 1070 * parameter with the mounted file system instance's vfs. 1071 * 1072 * Note that the effective file system type is specified as a string. It may 1073 * be null, in which case it's determined from the mount arguments, and may 1074 * differ from the type specified in the mount arguments; this is a hook to 1075 * allow interposition when instantiating file system instances. 1076 * 1077 * The caller is responsible for releasing its own hold on the mount point 1078 * vp (this routine does its own hold when necessary). 1079 * Also note that for remounts, the mount point vp should be the vnode for 1080 * the root of the file system rather than the vnode that the file system 1081 * is mounted on top of. 1082 */ 1083 int 1084 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp, 1085 struct vfs **vfspp) 1086 { 1087 struct vfssw *vswp; 1088 vfsops_t *vfsops; 1089 struct vfs *vfsp; 1090 struct vnode *bvp; 1091 dev_t bdev = 0; 1092 mntopts_t mnt_mntopts; 1093 int error = 0; 1094 int copyout_error = 0; 1095 int ovflags; 1096 char *opts = uap->optptr; 1097 char *inargs = opts; 1098 int optlen = uap->optlen; 1099 int remount; 1100 int rdonly; 1101 int nbmand = 0; 1102 int delmip = 0; 1103 int addmip = 0; 1104 int splice = ((uap->flags & MS_NOSPLICE) == 0); 1105 int fromspace = (uap->flags & MS_SYSSPACE) ? 1106 UIO_SYSSPACE : UIO_USERSPACE; 1107 char *resource = NULL, *mountpt = NULL; 1108 refstr_t *oldresource, *oldmntpt; 1109 struct pathname pn, rpn; 1110 vsk_anchor_t *vskap; 1111 char fstname[FSTYPSZ]; 1112 zone_t *zone; 1113 1114 /* 1115 * The v_flag value for the mount point vp is permanently set 1116 * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine 1117 * for mount point locking. 1118 */ 1119 mutex_enter(&vp->v_lock); 1120 vp->v_flag |= VVFSLOCK; 1121 mutex_exit(&vp->v_lock); 1122 1123 mnt_mntopts.mo_count = 0; 1124 /* 1125 * Find the ops vector to use to invoke the file system-specific mount 1126 * method. If the fsname argument is non-NULL, use it directly. 1127 * Otherwise, dig the file system type information out of the mount 1128 * arguments. 1129 * 1130 * A side effect is to hold the vfssw entry. 1131 * 1132 * Mount arguments can be specified in several ways, which are 1133 * distinguished by flag bit settings. The preferred way is to set 1134 * MS_OPTIONSTR, indicating an 8 argument mount with the file system 1135 * type supplied as a character string and the last two arguments 1136 * being a pointer to a character buffer and the size of the buffer. 1137 * On entry, the buffer holds a null terminated list of options; on 1138 * return, the string is the list of options the file system 1139 * recognized. If MS_DATA is set arguments five and six point to a 1140 * block of binary data which the file system interprets. 1141 * A further wrinkle is that some callers don't set MS_FSS and MS_DATA 1142 * consistently with these conventions. To handle them, we check to 1143 * see whether the pointer to the file system name has a numeric value 1144 * less than 256. If so, we treat it as an index. 1145 */ 1146 if (fsname != NULL) { 1147 if ((vswp = vfs_getvfssw(fsname)) == NULL) { 1148 return (EINVAL); 1149 } 1150 } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) { 1151 size_t n; 1152 uint_t fstype; 1153 1154 fsname = fstname; 1155 1156 if ((fstype = (uintptr_t)uap->fstype) < 256) { 1157 RLOCK_VFSSW(); 1158 if (fstype == 0 || fstype >= nfstype || 1159 !ALLOCATED_VFSSW(&vfssw[fstype])) { 1160 RUNLOCK_VFSSW(); 1161 return (EINVAL); 1162 } 1163 (void) strcpy(fsname, vfssw[fstype].vsw_name); 1164 RUNLOCK_VFSSW(); 1165 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1166 return (EINVAL); 1167 } else { 1168 /* 1169 * Handle either kernel or user address space. 1170 */ 1171 if (uap->flags & MS_SYSSPACE) { 1172 error = copystr(uap->fstype, fsname, 1173 FSTYPSZ, &n); 1174 } else { 1175 error = copyinstr(uap->fstype, fsname, 1176 FSTYPSZ, &n); 1177 } 1178 if (error) { 1179 if (error == ENAMETOOLONG) 1180 return (EINVAL); 1181 return (error); 1182 } 1183 if ((vswp = vfs_getvfssw(fsname)) == NULL) 1184 return (EINVAL); 1185 } 1186 } else { 1187 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL) 1188 return (EINVAL); 1189 fsname = vswp->vsw_name; 1190 } 1191 if (!VFS_INSTALLED(vswp)) 1192 return (EINVAL); 1193 1194 if ((error = secpolicy_fs_allowed_mount(fsname)) != 0) { 1195 vfs_unrefvfssw(vswp); 1196 return (error); 1197 } 1198 1199 vfsops = &vswp->vsw_vfsops; 1200 1201 vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts); 1202 /* 1203 * Fetch mount options and parse them for generic vfs options 1204 */ 1205 if (uap->flags & MS_OPTIONSTR) { 1206 /* 1207 * Limit the buffer size 1208 */ 1209 if (optlen < 0 || optlen > MAX_MNTOPT_STR) { 1210 error = EINVAL; 1211 goto errout; 1212 } 1213 if ((uap->flags & MS_SYSSPACE) == 0) { 1214 inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 1215 inargs[0] = '\0'; 1216 if (optlen) { 1217 error = copyinstr(opts, inargs, (size_t)optlen, 1218 NULL); 1219 if (error) { 1220 goto errout; 1221 } 1222 } 1223 } 1224 vfs_parsemntopts(&mnt_mntopts, inargs, 0); 1225 } 1226 /* 1227 * Flag bits override the options string. 1228 */ 1229 if (uap->flags & MS_REMOUNT) 1230 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0); 1231 if (uap->flags & MS_RDONLY) 1232 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0); 1233 if (uap->flags & MS_NOSUID) 1234 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1235 1236 /* 1237 * Check if this is a remount; must be set in the option string and 1238 * the file system must support a remount option. 1239 */ 1240 if (remount = vfs_optionisset_nolock(&mnt_mntopts, 1241 MNTOPT_REMOUNT, NULL)) { 1242 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) { 1243 error = ENOTSUP; 1244 goto errout; 1245 } 1246 uap->flags |= MS_REMOUNT; 1247 } 1248 1249 /* 1250 * uap->flags and vfs_optionisset() should agree. 1251 */ 1252 if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) { 1253 uap->flags |= MS_RDONLY; 1254 } 1255 if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) { 1256 uap->flags |= MS_NOSUID; 1257 } 1258 nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL); 1259 ASSERT(splice || !remount); 1260 /* 1261 * If we are splicing the fs into the namespace, 1262 * perform mount point checks. 1263 * 1264 * We want to resolve the path for the mount point to eliminate 1265 * '.' and ".." and symlinks in mount points; we can't do the 1266 * same for the resource string, since it would turn 1267 * "/dev/dsk/c0t0d0s0" into "/devices/pci@...". We need to do 1268 * this before grabbing vn_vfswlock(), because otherwise we 1269 * would deadlock with lookuppn(). 1270 */ 1271 if (splice) { 1272 ASSERT(vp->v_count > 0); 1273 1274 /* 1275 * Pick up mount point and device from appropriate space. 1276 */ 1277 if (pn_get(uap->spec, fromspace, &pn) == 0) { 1278 resource = kmem_alloc(pn.pn_pathlen + 1, 1279 KM_SLEEP); 1280 (void) strcpy(resource, pn.pn_path); 1281 pn_free(&pn); 1282 } 1283 /* 1284 * Do a lookupname prior to taking the 1285 * writelock. Mark this as completed if 1286 * successful for later cleanup and addition to 1287 * the mount in progress table. 1288 */ 1289 if ((uap->flags & MS_GLOBAL) == 0 && 1290 lookupname(uap->spec, fromspace, 1291 FOLLOW, NULL, &bvp) == 0) { 1292 addmip = 1; 1293 } 1294 1295 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) { 1296 pathname_t *pnp; 1297 1298 if (*pn.pn_path != '/') { 1299 error = EINVAL; 1300 pn_free(&pn); 1301 goto errout; 1302 } 1303 pn_alloc(&rpn); 1304 /* 1305 * Kludge to prevent autofs from deadlocking with 1306 * itself when it calls domount(). 1307 * 1308 * If autofs is calling, it is because it is doing 1309 * (autofs) mounts in the process of an NFS mount. A 1310 * lookuppn() here would cause us to block waiting for 1311 * said NFS mount to complete, which can't since this 1312 * is the thread that was supposed to doing it. 1313 */ 1314 if (fromspace == UIO_USERSPACE) { 1315 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL, 1316 NULL)) == 0) { 1317 pnp = &rpn; 1318 } else { 1319 /* 1320 * The file disappeared or otherwise 1321 * became inaccessible since we opened 1322 * it; might as well fail the mount 1323 * since the mount point is no longer 1324 * accessible. 1325 */ 1326 pn_free(&rpn); 1327 pn_free(&pn); 1328 goto errout; 1329 } 1330 } else { 1331 pnp = &pn; 1332 } 1333 mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP); 1334 (void) strcpy(mountpt, pnp->pn_path); 1335 1336 /* 1337 * If the addition of the zone's rootpath 1338 * would push us over a total path length 1339 * of MAXPATHLEN, we fail the mount with 1340 * ENAMETOOLONG, which is what we would have 1341 * gotten if we were trying to perform the same 1342 * mount in the global zone. 1343 * 1344 * strlen() doesn't count the trailing 1345 * '\0', but zone_rootpathlen counts both a 1346 * trailing '/' and the terminating '\0'. 1347 */ 1348 if ((curproc->p_zone->zone_rootpathlen - 1 + 1349 strlen(mountpt)) > MAXPATHLEN || 1350 (resource != NULL && 1351 (curproc->p_zone->zone_rootpathlen - 1 + 1352 strlen(resource)) > MAXPATHLEN)) { 1353 error = ENAMETOOLONG; 1354 } 1355 1356 pn_free(&rpn); 1357 pn_free(&pn); 1358 } 1359 1360 if (error) 1361 goto errout; 1362 1363 /* 1364 * Prevent path name resolution from proceeding past 1365 * the mount point. 1366 */ 1367 if (vn_vfswlock(vp) != 0) { 1368 error = EBUSY; 1369 goto errout; 1370 } 1371 1372 /* 1373 * Verify that it's legitimate to establish a mount on 1374 * the prospective mount point. 1375 */ 1376 if (vn_mountedvfs(vp) != NULL) { 1377 /* 1378 * The mount point lock was obtained after some 1379 * other thread raced through and established a mount. 1380 */ 1381 vn_vfsunlock(vp); 1382 error = EBUSY; 1383 goto errout; 1384 } 1385 if (vp->v_flag & VNOMOUNT) { 1386 vn_vfsunlock(vp); 1387 error = EINVAL; 1388 goto errout; 1389 } 1390 } 1391 if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) { 1392 uap->dataptr = NULL; 1393 uap->datalen = 0; 1394 } 1395 1396 /* 1397 * If this is a remount, we don't want to create a new VFS. 1398 * Instead, we pass the existing one with a remount flag. 1399 */ 1400 if (remount) { 1401 /* 1402 * Confirm that the mount point is the root vnode of the 1403 * file system that is being remounted. 1404 * This can happen if the user specifies a different 1405 * mount point directory pathname in the (re)mount command. 1406 * 1407 * Code below can only be reached if splice is true, so it's 1408 * safe to do vn_vfsunlock() here. 1409 */ 1410 if ((vp->v_flag & VROOT) == 0) { 1411 vn_vfsunlock(vp); 1412 error = ENOENT; 1413 goto errout; 1414 } 1415 /* 1416 * Disallow making file systems read-only unless file system 1417 * explicitly allows it in its vfssw. Ignore other flags. 1418 */ 1419 if (rdonly && vn_is_readonly(vp) == 0 && 1420 (vswp->vsw_flag & VSW_CANRWRO) == 0) { 1421 vn_vfsunlock(vp); 1422 error = EINVAL; 1423 goto errout; 1424 } 1425 /* 1426 * Disallow changing the NBMAND disposition of the file 1427 * system on remounts. 1428 */ 1429 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) || 1430 (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) { 1431 vn_vfsunlock(vp); 1432 error = EINVAL; 1433 goto errout; 1434 } 1435 vfsp = vp->v_vfsp; 1436 ovflags = vfsp->vfs_flag; 1437 vfsp->vfs_flag |= VFS_REMOUNT; 1438 vfsp->vfs_flag &= ~VFS_RDONLY; 1439 } else { 1440 vfsp = vfs_alloc(KM_SLEEP); 1441 VFS_INIT(vfsp, vfsops, NULL); 1442 } 1443 1444 VFS_HOLD(vfsp); 1445 1446 if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) { 1447 if (!remount) { 1448 if (splice) 1449 vn_vfsunlock(vp); 1450 vfs_free(vfsp); 1451 } else { 1452 vn_vfsunlock(vp); 1453 VFS_RELE(vfsp); 1454 } 1455 goto errout; 1456 } 1457 1458 /* 1459 * PRIV_SYS_MOUNT doesn't mean you can become root. 1460 */ 1461 if (vfsp->vfs_lofi_id != 0) { 1462 uap->flags |= MS_NOSUID; 1463 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0); 1464 } 1465 1466 /* 1467 * The vfs_reflock is not used anymore the code below explicitly 1468 * holds it preventing others accesing it directly. 1469 */ 1470 if ((sema_tryp(&vfsp->vfs_reflock) == 0) && 1471 !(vfsp->vfs_flag & VFS_REMOUNT)) 1472 cmn_err(CE_WARN, 1473 "mount type %s couldn't get vfs_reflock", vswp->vsw_name); 1474 1475 /* 1476 * Lock the vfs. If this is a remount we want to avoid spurious umount 1477 * failures that happen as a side-effect of fsflush() and other mount 1478 * and unmount operations that might be going on simultaneously and 1479 * may have locked the vfs currently. To not return EBUSY immediately 1480 * here we use vfs_lock_wait() instead vfs_lock() for the remount case. 1481 */ 1482 if (!remount) { 1483 if (error = vfs_lock(vfsp)) { 1484 vfsp->vfs_flag = ovflags; 1485 1486 lofi_remove(vfsp); 1487 1488 if (splice) 1489 vn_vfsunlock(vp); 1490 vfs_free(vfsp); 1491 goto errout; 1492 } 1493 } else { 1494 vfs_lock_wait(vfsp); 1495 } 1496 1497 /* 1498 * Add device to mount in progress table, global mounts require special 1499 * handling. It is possible that we have already done the lookupname 1500 * on a spliced, non-global fs. If so, we don't want to do it again 1501 * since we cannot do a lookupname after taking the 1502 * wlock above. This case is for a non-spliced, non-global filesystem. 1503 */ 1504 if (!addmip) { 1505 if ((uap->flags & MS_GLOBAL) == 0 && 1506 lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) { 1507 addmip = 1; 1508 } 1509 } 1510 1511 if (addmip) { 1512 vnode_t *lvp = NULL; 1513 1514 error = vfs_get_lofi(vfsp, &lvp); 1515 if (error > 0) { 1516 lofi_remove(vfsp); 1517 1518 if (splice) 1519 vn_vfsunlock(vp); 1520 vfs_unlock(vfsp); 1521 1522 if (remount) { 1523 VFS_RELE(vfsp); 1524 } else { 1525 vfs_free(vfsp); 1526 } 1527 1528 goto errout; 1529 } else if (error == -1) { 1530 bdev = bvp->v_rdev; 1531 VN_RELE(bvp); 1532 } else { 1533 bdev = lvp->v_rdev; 1534 VN_RELE(lvp); 1535 VN_RELE(bvp); 1536 } 1537 1538 vfs_addmip(bdev, vfsp); 1539 addmip = 0; 1540 delmip = 1; 1541 } 1542 /* 1543 * Invalidate cached entry for the mount point. 1544 */ 1545 if (splice) 1546 dnlc_purge_vp(vp); 1547 1548 /* 1549 * If have an option string but the filesystem doesn't supply a 1550 * prototype options table, create a table with the global 1551 * options and sufficient room to accept all the options in the 1552 * string. Then parse the passed in option string 1553 * accepting all the options in the string. This gives us an 1554 * option table with all the proper cancel properties for the 1555 * global options. 1556 * 1557 * Filesystems that supply a prototype options table are handled 1558 * earlier in this function. 1559 */ 1560 if (uap->flags & MS_OPTIONSTR) { 1561 if (!(vswp->vsw_flag & VSW_HASPROTO)) { 1562 mntopts_t tmp_mntopts; 1563 1564 tmp_mntopts.mo_count = 0; 1565 vfs_createopttbl_extend(&tmp_mntopts, inargs, 1566 &mnt_mntopts); 1567 vfs_parsemntopts(&tmp_mntopts, inargs, 1); 1568 vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts); 1569 vfs_freeopttbl(&tmp_mntopts); 1570 } 1571 } 1572 1573 /* 1574 * Serialize with zone state transitions. 1575 * See vfs_list_add; zone mounted into is: 1576 * zone_find_by_path(refstr_value(vfsp->vfs_mntpt)) 1577 * not the zone doing the mount (curproc->p_zone), but if we're already 1578 * inside a NGZ, then we know what zone we are. 1579 */ 1580 if (INGLOBALZONE(curproc)) { 1581 zone = zone_find_by_path(mountpt); 1582 ASSERT(zone != NULL); 1583 } else { 1584 zone = curproc->p_zone; 1585 /* 1586 * zone_find_by_path does a hold, so do one here too so that 1587 * we can do a zone_rele after mount_completed. 1588 */ 1589 zone_hold(zone); 1590 } 1591 mount_in_progress(zone); 1592 /* 1593 * Instantiate (or reinstantiate) the file system. If appropriate, 1594 * splice it into the file system name space. 1595 * 1596 * We want VFS_MOUNT() to be able to override the vfs_resource 1597 * string if necessary (ie, mntfs), and also for a remount to 1598 * change the same (necessary when remounting '/' during boot). 1599 * So we set up vfs_mntpt and vfs_resource to what we think they 1600 * should be, then hand off control to VFS_MOUNT() which can 1601 * override this. 1602 * 1603 * For safety's sake, when changing vfs_resource or vfs_mntpt of 1604 * a vfs which is on the vfs list (i.e. during a remount), we must 1605 * never set those fields to NULL. Several bits of code make 1606 * assumptions that the fields are always valid. 1607 */ 1608 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1609 if (remount) { 1610 if ((oldresource = vfsp->vfs_resource) != NULL) 1611 refstr_hold(oldresource); 1612 if ((oldmntpt = vfsp->vfs_mntpt) != NULL) 1613 refstr_hold(oldmntpt); 1614 } 1615 vfs_setresource(vfsp, resource, 0); 1616 vfs_setmntpoint(vfsp, mountpt, 0); 1617 1618 /* 1619 * going to mount on this vnode, so notify. 1620 */ 1621 vnevent_mountedover(vp, NULL); 1622 error = VFS_MOUNT(vfsp, vp, uap, credp); 1623 1624 if (uap->flags & MS_RDONLY) 1625 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1626 if (uap->flags & MS_NOSUID) 1627 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0); 1628 if (uap->flags & MS_GLOBAL) 1629 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0); 1630 1631 if (error) { 1632 lofi_remove(vfsp); 1633 1634 if (remount) { 1635 /* put back pre-remount options */ 1636 vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts); 1637 vfs_setmntpoint(vfsp, refstr_value(oldmntpt), 1638 VFSSP_VERBATIM); 1639 if (oldmntpt) 1640 refstr_rele(oldmntpt); 1641 vfs_setresource(vfsp, refstr_value(oldresource), 1642 VFSSP_VERBATIM); 1643 if (oldresource) 1644 refstr_rele(oldresource); 1645 vfsp->vfs_flag = ovflags; 1646 vfs_unlock(vfsp); 1647 VFS_RELE(vfsp); 1648 } else { 1649 vfs_unlock(vfsp); 1650 vfs_freemnttab(vfsp); 1651 vfs_free(vfsp); 1652 } 1653 } else { 1654 /* 1655 * Set the mount time to now 1656 */ 1657 vfsp->vfs_mtime = ddi_get_time(); 1658 if (remount) { 1659 vfsp->vfs_flag &= ~VFS_REMOUNT; 1660 if (oldresource) 1661 refstr_rele(oldresource); 1662 if (oldmntpt) 1663 refstr_rele(oldmntpt); 1664 } else if (splice) { 1665 /* 1666 * Link vfsp into the name space at the mount 1667 * point. Vfs_add() is responsible for 1668 * holding the mount point which will be 1669 * released when vfs_remove() is called. 1670 */ 1671 vfs_add(vp, vfsp, uap->flags); 1672 } else { 1673 /* 1674 * Hold the reference to file system which is 1675 * not linked into the name space. 1676 */ 1677 vfsp->vfs_zone = NULL; 1678 VFS_HOLD(vfsp); 1679 vfsp->vfs_vnodecovered = NULL; 1680 } 1681 /* 1682 * Set flags for global options encountered 1683 */ 1684 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) 1685 vfsp->vfs_flag |= VFS_RDONLY; 1686 else 1687 vfsp->vfs_flag &= ~VFS_RDONLY; 1688 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 1689 vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES); 1690 } else { 1691 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) 1692 vfsp->vfs_flag |= VFS_NODEVICES; 1693 else 1694 vfsp->vfs_flag &= ~VFS_NODEVICES; 1695 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) 1696 vfsp->vfs_flag |= VFS_NOSETUID; 1697 else 1698 vfsp->vfs_flag &= ~VFS_NOSETUID; 1699 } 1700 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) 1701 vfsp->vfs_flag |= VFS_NBMAND; 1702 else 1703 vfsp->vfs_flag &= ~VFS_NBMAND; 1704 1705 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) 1706 vfsp->vfs_flag |= VFS_XATTR; 1707 else 1708 vfsp->vfs_flag &= ~VFS_XATTR; 1709 1710 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) 1711 vfsp->vfs_flag |= VFS_NOEXEC; 1712 else 1713 vfsp->vfs_flag &= ~VFS_NOEXEC; 1714 1715 /* 1716 * Now construct the output option string of options 1717 * we recognized. 1718 */ 1719 if (uap->flags & MS_OPTIONSTR) { 1720 vfs_list_read_lock(); 1721 copyout_error = vfs_buildoptionstr( 1722 &vfsp->vfs_mntopts, inargs, optlen); 1723 vfs_list_unlock(); 1724 if (copyout_error == 0 && 1725 (uap->flags & MS_SYSSPACE) == 0) { 1726 copyout_error = copyoutstr(inargs, opts, 1727 optlen, NULL); 1728 } 1729 } 1730 1731 /* 1732 * If this isn't a remount, set up the vopstats before 1733 * anyone can touch this. We only allow spliced file 1734 * systems (file systems which are in the namespace) to 1735 * have the VFS_STATS flag set. 1736 * NOTE: PxFS mounts the underlying file system with 1737 * MS_NOSPLICE set and copies those vfs_flags to its private 1738 * vfs structure. As a result, PxFS should never have 1739 * the VFS_STATS flag or else we might access the vfs 1740 * statistics-related fields prior to them being 1741 * properly initialized. 1742 */ 1743 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) { 1744 initialize_vopstats(&vfsp->vfs_vopstats); 1745 /* 1746 * We need to set vfs_vskap to NULL because there's 1747 * a chance it won't be set below. This is checked 1748 * in teardown_vopstats() so we can't have garbage. 1749 */ 1750 vfsp->vfs_vskap = NULL; 1751 vfsp->vfs_flag |= VFS_STATS; 1752 vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp); 1753 } 1754 1755 if (vswp->vsw_flag & VSW_XID) 1756 vfsp->vfs_flag |= VFS_XID; 1757 1758 vfs_unlock(vfsp); 1759 } 1760 mount_completed(zone); 1761 zone_rele(zone); 1762 if (splice) 1763 vn_vfsunlock(vp); 1764 1765 if ((error == 0) && (copyout_error == 0)) { 1766 if (!remount) { 1767 /* 1768 * Don't call get_vskstat_anchor() while holding 1769 * locks since it allocates memory and calls 1770 * VFS_STATVFS(). For NFS, the latter can generate 1771 * an over-the-wire call. 1772 */ 1773 vskap = get_vskstat_anchor(vfsp); 1774 /* Only take the lock if we have something to do */ 1775 if (vskap != NULL) { 1776 vfs_lock_wait(vfsp); 1777 if (vfsp->vfs_flag & VFS_STATS) { 1778 vfsp->vfs_vskap = vskap; 1779 } 1780 vfs_unlock(vfsp); 1781 } 1782 } 1783 /* Return vfsp to caller. */ 1784 *vfspp = vfsp; 1785 } 1786 errout: 1787 vfs_freeopttbl(&mnt_mntopts); 1788 if (resource != NULL) 1789 kmem_free(resource, strlen(resource) + 1); 1790 if (mountpt != NULL) 1791 kmem_free(mountpt, strlen(mountpt) + 1); 1792 /* 1793 * It is possible we errored prior to adding to mount in progress 1794 * table. Must free vnode we acquired with successful lookupname. 1795 */ 1796 if (addmip) 1797 VN_RELE(bvp); 1798 if (delmip) 1799 vfs_delmip(vfsp); 1800 ASSERT(vswp != NULL); 1801 vfs_unrefvfssw(vswp); 1802 if (inargs != opts) 1803 kmem_free(inargs, MAX_MNTOPT_STR); 1804 if (copyout_error) { 1805 lofi_remove(vfsp); 1806 VFS_RELE(vfsp); 1807 error = copyout_error; 1808 } 1809 return (error); 1810 } 1811 1812 static void 1813 vfs_setpath( 1814 struct vfs *vfsp, /* vfs being updated */ 1815 refstr_t **refp, /* Ref-count string to contain the new path */ 1816 const char *newpath, /* Path to add to refp (above) */ 1817 uint32_t flag) /* flag */ 1818 { 1819 size_t len; 1820 refstr_t *ref; 1821 zone_t *zone = curproc->p_zone; 1822 char *sp; 1823 int have_list_lock = 0; 1824 1825 ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp)); 1826 1827 /* 1828 * New path must be less than MAXPATHLEN because mntfs 1829 * will only display up to MAXPATHLEN bytes. This is currently 1830 * safe, because domount() uses pn_get(), and other callers 1831 * similarly cap the size to fewer than MAXPATHLEN bytes. 1832 */ 1833 1834 ASSERT(strlen(newpath) < MAXPATHLEN); 1835 1836 /* mntfs requires consistency while vfs list lock is held */ 1837 1838 if (VFS_ON_LIST(vfsp)) { 1839 have_list_lock = 1; 1840 vfs_list_lock(); 1841 } 1842 1843 if (*refp != NULL) 1844 refstr_rele(*refp); 1845 1846 /* 1847 * If we are in a non-global zone then we prefix the supplied path, 1848 * newpath, with the zone's root path, with two exceptions. The first 1849 * is where we have been explicitly directed to avoid doing so; this 1850 * will be the case following a failed remount, where the path supplied 1851 * will be a saved version which must now be restored. The second 1852 * exception is where newpath is not a pathname but a descriptive name, 1853 * e.g. "procfs". 1854 */ 1855 if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') { 1856 ref = refstr_alloc(newpath); 1857 goto out; 1858 } 1859 1860 /* 1861 * Truncate the trailing '/' in the zoneroot, and merge 1862 * in the zone's rootpath with the "newpath" (resource 1863 * or mountpoint) passed in. 1864 * 1865 * The size of the required buffer is thus the size of 1866 * the buffer required for the passed-in newpath 1867 * (strlen(newpath) + 1), plus the size of the buffer 1868 * required to hold zone_rootpath (zone_rootpathlen) 1869 * minus one for one of the now-superfluous NUL 1870 * terminations, minus one for the trailing '/'. 1871 * 1872 * That gives us: 1873 * 1874 * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1 1875 * 1876 * Which is what we have below. 1877 */ 1878 1879 len = strlen(newpath) + zone->zone_rootpathlen - 1; 1880 sp = kmem_alloc(len, KM_SLEEP); 1881 1882 /* 1883 * Copy everything including the trailing slash, which 1884 * we then overwrite with the NUL character. 1885 */ 1886 1887 (void) strcpy(sp, zone->zone_rootpath); 1888 sp[zone->zone_rootpathlen - 2] = '\0'; 1889 (void) strcat(sp, newpath); 1890 1891 ref = refstr_alloc(sp); 1892 kmem_free(sp, len); 1893 out: 1894 *refp = ref; 1895 1896 if (have_list_lock) { 1897 vfs_mnttab_modtimeupd(); 1898 vfs_list_unlock(); 1899 } 1900 } 1901 1902 /* 1903 * Record a mounted resource name in a vfs structure. 1904 * If vfsp is already mounted, caller must hold the vfs lock. 1905 */ 1906 void 1907 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag) 1908 { 1909 if (resource == NULL || resource[0] == '\0') 1910 resource = VFS_NORESOURCE; 1911 vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag); 1912 } 1913 1914 /* 1915 * Record a mount point name in a vfs structure. 1916 * If vfsp is already mounted, caller must hold the vfs lock. 1917 */ 1918 void 1919 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag) 1920 { 1921 if (mntpt == NULL || mntpt[0] == '\0') 1922 mntpt = VFS_NOMNTPT; 1923 vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag); 1924 } 1925 1926 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */ 1927 1928 refstr_t * 1929 vfs_getresource(const struct vfs *vfsp) 1930 { 1931 refstr_t *resource; 1932 1933 vfs_list_read_lock(); 1934 resource = vfsp->vfs_resource; 1935 refstr_hold(resource); 1936 vfs_list_unlock(); 1937 1938 return (resource); 1939 } 1940 1941 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */ 1942 1943 refstr_t * 1944 vfs_getmntpoint(const struct vfs *vfsp) 1945 { 1946 refstr_t *mntpt; 1947 1948 vfs_list_read_lock(); 1949 mntpt = vfsp->vfs_mntpt; 1950 refstr_hold(mntpt); 1951 vfs_list_unlock(); 1952 1953 return (mntpt); 1954 } 1955 1956 /* 1957 * Create an empty options table with enough empty slots to hold all 1958 * The options in the options string passed as an argument. 1959 * Potentially prepend another options table. 1960 * 1961 * Note: caller is responsible for locking the vfs list, if needed, 1962 * to protect mops. 1963 */ 1964 static void 1965 vfs_createopttbl_extend(mntopts_t *mops, const char *opts, 1966 const mntopts_t *mtmpl) 1967 { 1968 const char *s = opts; 1969 uint_t count; 1970 1971 if (opts == NULL || *opts == '\0') { 1972 count = 0; 1973 } else { 1974 count = 1; 1975 1976 /* 1977 * Count number of options in the string 1978 */ 1979 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) { 1980 count++; 1981 s++; 1982 } 1983 } 1984 vfs_copyopttbl_extend(mtmpl, mops, count); 1985 } 1986 1987 /* 1988 * Create an empty options table with enough empty slots to hold all 1989 * The options in the options string passed as an argument. 1990 * 1991 * This function is *not* for general use by filesystems. 1992 * 1993 * Note: caller is responsible for locking the vfs list, if needed, 1994 * to protect mops. 1995 */ 1996 void 1997 vfs_createopttbl(mntopts_t *mops, const char *opts) 1998 { 1999 vfs_createopttbl_extend(mops, opts, NULL); 2000 } 2001 2002 2003 /* 2004 * Swap two mount options tables 2005 */ 2006 static void 2007 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2) 2008 { 2009 uint_t tmpcnt; 2010 mntopt_t *tmplist; 2011 2012 tmpcnt = optbl2->mo_count; 2013 tmplist = optbl2->mo_list; 2014 optbl2->mo_count = optbl1->mo_count; 2015 optbl2->mo_list = optbl1->mo_list; 2016 optbl1->mo_count = tmpcnt; 2017 optbl1->mo_list = tmplist; 2018 } 2019 2020 static void 2021 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2) 2022 { 2023 vfs_list_lock(); 2024 vfs_swapopttbl_nolock(optbl1, optbl2); 2025 vfs_mnttab_modtimeupd(); 2026 vfs_list_unlock(); 2027 } 2028 2029 static char ** 2030 vfs_copycancelopt_extend(char **const moc, int extend) 2031 { 2032 int i = 0; 2033 int j; 2034 char **result; 2035 2036 if (moc != NULL) { 2037 for (; moc[i] != NULL; i++) 2038 /* count number of options to cancel */; 2039 } 2040 2041 if (i + extend == 0) 2042 return (NULL); 2043 2044 result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP); 2045 2046 for (j = 0; j < i; j++) { 2047 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP); 2048 (void) strcpy(result[j], moc[j]); 2049 } 2050 for (; j <= i + extend; j++) 2051 result[j] = NULL; 2052 2053 return (result); 2054 } 2055 2056 static void 2057 vfs_copyopt(const mntopt_t *s, mntopt_t *d) 2058 { 2059 char *sp, *dp; 2060 2061 d->mo_flags = s->mo_flags; 2062 d->mo_data = s->mo_data; 2063 sp = s->mo_name; 2064 if (sp != NULL) { 2065 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2066 (void) strcpy(dp, sp); 2067 d->mo_name = dp; 2068 } else { 2069 d->mo_name = NULL; /* should never happen */ 2070 } 2071 2072 d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0); 2073 2074 sp = s->mo_arg; 2075 if (sp != NULL) { 2076 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP); 2077 (void) strcpy(dp, sp); 2078 d->mo_arg = dp; 2079 } else { 2080 d->mo_arg = NULL; 2081 } 2082 } 2083 2084 /* 2085 * Copy a mount options table, possibly allocating some spare 2086 * slots at the end. It is permissible to copy_extend the NULL table. 2087 */ 2088 static void 2089 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra) 2090 { 2091 uint_t i, count; 2092 mntopt_t *motbl; 2093 2094 /* 2095 * Clear out any existing stuff in the options table being initialized 2096 */ 2097 vfs_freeopttbl(dmo); 2098 count = (smo == NULL) ? 0 : smo->mo_count; 2099 if ((count + extra) == 0) /* nothing to do */ 2100 return; 2101 dmo->mo_count = count + extra; 2102 motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP); 2103 dmo->mo_list = motbl; 2104 for (i = 0; i < count; i++) { 2105 vfs_copyopt(&smo->mo_list[i], &motbl[i]); 2106 } 2107 for (i = count; i < count + extra; i++) { 2108 motbl[i].mo_flags = MO_EMPTY; 2109 } 2110 } 2111 2112 /* 2113 * Copy a mount options table. 2114 * 2115 * This function is *not* for general use by filesystems. 2116 * 2117 * Note: caller is responsible for locking the vfs list, if needed, 2118 * to protect smo and dmo. 2119 */ 2120 void 2121 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo) 2122 { 2123 vfs_copyopttbl_extend(smo, dmo, 0); 2124 } 2125 2126 static char ** 2127 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2) 2128 { 2129 int c1 = 0; 2130 int c2 = 0; 2131 char **result; 2132 char **sp1, **sp2, **dp; 2133 2134 /* 2135 * First we count both lists of cancel options. 2136 * If either is NULL or has no elements, we return a copy of 2137 * the other. 2138 */ 2139 if (mop1->mo_cancel != NULL) { 2140 for (; mop1->mo_cancel[c1] != NULL; c1++) 2141 /* count cancel options in mop1 */; 2142 } 2143 2144 if (c1 == 0) 2145 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0)); 2146 2147 if (mop2->mo_cancel != NULL) { 2148 for (; mop2->mo_cancel[c2] != NULL; c2++) 2149 /* count cancel options in mop2 */; 2150 } 2151 2152 result = vfs_copycancelopt_extend(mop1->mo_cancel, c2); 2153 2154 if (c2 == 0) 2155 return (result); 2156 2157 /* 2158 * When we get here, we've got two sets of cancel options; 2159 * we need to merge the two sets. We know that the result 2160 * array has "c1+c2+1" entries and in the end we might shrink 2161 * it. 2162 * Result now has a copy of the c1 entries from mop1; we'll 2163 * now lookup all the entries of mop2 in mop1 and copy it if 2164 * it is unique. 2165 * This operation is O(n^2) but it's only called once per 2166 * filesystem per duplicate option. This is a situation 2167 * which doesn't arise with the filesystems in ON and 2168 * n is generally 1. 2169 */ 2170 2171 dp = &result[c1]; 2172 for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) { 2173 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) { 2174 if (strcmp(*sp1, *sp2) == 0) 2175 break; 2176 } 2177 if (*sp1 == NULL) { 2178 /* 2179 * Option *sp2 not found in mop1, so copy it. 2180 * The calls to vfs_copycancelopt_extend() 2181 * guarantee that there's enough room. 2182 */ 2183 *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP); 2184 (void) strcpy(*dp++, *sp2); 2185 } 2186 } 2187 if (dp != &result[c1+c2]) { 2188 size_t bytes = (dp - result + 1) * sizeof (char *); 2189 char **nres = kmem_alloc(bytes, KM_SLEEP); 2190 2191 bcopy(result, nres, bytes); 2192 kmem_free(result, (c1 + c2 + 1) * sizeof (char *)); 2193 result = nres; 2194 } 2195 return (result); 2196 } 2197 2198 /* 2199 * Merge two mount option tables (outer and inner) into one. This is very 2200 * similar to "merging" global variables and automatic variables in C. 2201 * 2202 * This isn't (and doesn't have to be) fast. 2203 * 2204 * This function is *not* for general use by filesystems. 2205 * 2206 * Note: caller is responsible for locking the vfs list, if needed, 2207 * to protect omo, imo & dmo. 2208 */ 2209 void 2210 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo) 2211 { 2212 uint_t i, count; 2213 mntopt_t *mop, *motbl; 2214 uint_t freeidx; 2215 2216 /* 2217 * First determine how much space we need to allocate. 2218 */ 2219 count = omo->mo_count; 2220 for (i = 0; i < imo->mo_count; i++) { 2221 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2222 continue; 2223 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL) 2224 count++; 2225 } 2226 ASSERT(count >= omo->mo_count && 2227 count <= omo->mo_count + imo->mo_count); 2228 motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP); 2229 for (i = 0; i < omo->mo_count; i++) 2230 vfs_copyopt(&omo->mo_list[i], &motbl[i]); 2231 freeidx = omo->mo_count; 2232 for (i = 0; i < imo->mo_count; i++) { 2233 if (imo->mo_list[i].mo_flags & MO_EMPTY) 2234 continue; 2235 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) { 2236 char **newcanp; 2237 uint_t index = mop - omo->mo_list; 2238 2239 newcanp = vfs_mergecancelopts(mop, &motbl[index]); 2240 2241 vfs_freeopt(&motbl[index]); 2242 vfs_copyopt(&imo->mo_list[i], &motbl[index]); 2243 2244 vfs_freecancelopt(motbl[index].mo_cancel); 2245 motbl[index].mo_cancel = newcanp; 2246 } else { 2247 /* 2248 * If it's a new option, just copy it over to the first 2249 * free location. 2250 */ 2251 vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]); 2252 } 2253 } 2254 dmo->mo_count = count; 2255 dmo->mo_list = motbl; 2256 } 2257 2258 /* 2259 * Functions to set and clear mount options in a mount options table. 2260 */ 2261 2262 /* 2263 * Clear a mount option, if it exists. 2264 * 2265 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2266 * the vfs list. 2267 */ 2268 static void 2269 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab) 2270 { 2271 struct mntopt *mop; 2272 uint_t i, count; 2273 2274 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2275 2276 count = mops->mo_count; 2277 for (i = 0; i < count; i++) { 2278 mop = &mops->mo_list[i]; 2279 2280 if (mop->mo_flags & MO_EMPTY) 2281 continue; 2282 if (strcmp(opt, mop->mo_name)) 2283 continue; 2284 mop->mo_flags &= ~MO_SET; 2285 if (mop->mo_arg != NULL) { 2286 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2287 } 2288 mop->mo_arg = NULL; 2289 if (update_mnttab) 2290 vfs_mnttab_modtimeupd(); 2291 break; 2292 } 2293 } 2294 2295 void 2296 vfs_clearmntopt(struct vfs *vfsp, const char *opt) 2297 { 2298 int gotlock = 0; 2299 2300 if (VFS_ON_LIST(vfsp)) { 2301 gotlock = 1; 2302 vfs_list_lock(); 2303 } 2304 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock); 2305 if (gotlock) 2306 vfs_list_unlock(); 2307 } 2308 2309 2310 /* 2311 * Set a mount option on. If it's not found in the table, it's silently 2312 * ignored. If the option has MO_IGNORE set, it is still set unless the 2313 * VFS_NOFORCEOPT bit is set in the flags. Also, VFS_DISPLAY/VFS_NODISPLAY flag 2314 * bits can be used to toggle the MO_NODISPLAY bit for the option. 2315 * If the VFS_CREATEOPT flag bit is set then the first option slot with 2316 * MO_EMPTY set is created as the option passed in. 2317 * 2318 * The update_mnttab arg indicates whether mops is part of a vfs that is on 2319 * the vfs list. 2320 */ 2321 static void 2322 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt, 2323 const char *arg, int flags, int update_mnttab) 2324 { 2325 mntopt_t *mop; 2326 uint_t i, count; 2327 char *sp; 2328 2329 ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist)); 2330 2331 if (flags & VFS_CREATEOPT) { 2332 if (vfs_hasopt(mops, opt) != NULL) { 2333 flags &= ~VFS_CREATEOPT; 2334 } 2335 } 2336 count = mops->mo_count; 2337 for (i = 0; i < count; i++) { 2338 mop = &mops->mo_list[i]; 2339 2340 if (mop->mo_flags & MO_EMPTY) { 2341 if ((flags & VFS_CREATEOPT) == 0) 2342 continue; 2343 sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP); 2344 (void) strcpy(sp, opt); 2345 mop->mo_name = sp; 2346 if (arg != NULL) 2347 mop->mo_flags = MO_HASVALUE; 2348 else 2349 mop->mo_flags = 0; 2350 } else if (strcmp(opt, mop->mo_name)) { 2351 continue; 2352 } 2353 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT)) 2354 break; 2355 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) { 2356 sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP); 2357 (void) strcpy(sp, arg); 2358 } else { 2359 sp = NULL; 2360 } 2361 if (mop->mo_arg != NULL) 2362 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2363 mop->mo_arg = sp; 2364 if (flags & VFS_DISPLAY) 2365 mop->mo_flags &= ~MO_NODISPLAY; 2366 if (flags & VFS_NODISPLAY) 2367 mop->mo_flags |= MO_NODISPLAY; 2368 mop->mo_flags |= MO_SET; 2369 if (mop->mo_cancel != NULL) { 2370 char **cp; 2371 2372 for (cp = mop->mo_cancel; *cp != NULL; cp++) 2373 vfs_clearmntopt_nolock(mops, *cp, 0); 2374 } 2375 if (update_mnttab) 2376 vfs_mnttab_modtimeupd(); 2377 break; 2378 } 2379 } 2380 2381 void 2382 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags) 2383 { 2384 int gotlock = 0; 2385 2386 if (VFS_ON_LIST(vfsp)) { 2387 gotlock = 1; 2388 vfs_list_lock(); 2389 } 2390 vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock); 2391 if (gotlock) 2392 vfs_list_unlock(); 2393 } 2394 2395 2396 /* 2397 * Add a "tag" option to a mounted file system's options list. 2398 * 2399 * Note: caller is responsible for locking the vfs list, if needed, 2400 * to protect mops. 2401 */ 2402 static mntopt_t * 2403 vfs_addtag(mntopts_t *mops, const char *tag) 2404 { 2405 uint_t count; 2406 mntopt_t *mop, *motbl; 2407 2408 count = mops->mo_count + 1; 2409 motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP); 2410 if (mops->mo_count) { 2411 size_t len = (count - 1) * sizeof (mntopt_t); 2412 2413 bcopy(mops->mo_list, motbl, len); 2414 kmem_free(mops->mo_list, len); 2415 } 2416 mops->mo_count = count; 2417 mops->mo_list = motbl; 2418 mop = &motbl[count - 1]; 2419 mop->mo_flags = MO_TAG; 2420 mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP); 2421 (void) strcpy(mop->mo_name, tag); 2422 return (mop); 2423 } 2424 2425 /* 2426 * Allow users to set arbitrary "tags" in a vfs's mount options. 2427 * Broader use within the kernel is discouraged. 2428 */ 2429 int 2430 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2431 cred_t *cr) 2432 { 2433 vfs_t *vfsp; 2434 mntopts_t *mops; 2435 mntopt_t *mop; 2436 int found = 0; 2437 dev_t dev = makedevice(major, minor); 2438 int err = 0; 2439 char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP); 2440 2441 /* 2442 * Find the desired mounted file system 2443 */ 2444 vfs_list_lock(); 2445 vfsp = rootvfs; 2446 do { 2447 if (vfsp->vfs_dev == dev && 2448 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2449 found = 1; 2450 break; 2451 } 2452 vfsp = vfsp->vfs_next; 2453 } while (vfsp != rootvfs); 2454 2455 if (!found) { 2456 err = EINVAL; 2457 goto out; 2458 } 2459 err = secpolicy_fs_config(cr, vfsp); 2460 if (err != 0) 2461 goto out; 2462 2463 mops = &vfsp->vfs_mntopts; 2464 /* 2465 * Add tag if it doesn't already exist 2466 */ 2467 if ((mop = vfs_hasopt(mops, tag)) == NULL) { 2468 int len; 2469 2470 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR); 2471 len = strlen(buf); 2472 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) { 2473 err = ENAMETOOLONG; 2474 goto out; 2475 } 2476 mop = vfs_addtag(mops, tag); 2477 } 2478 if ((mop->mo_flags & MO_TAG) == 0) { 2479 err = EINVAL; 2480 goto out; 2481 } 2482 vfs_setmntopt_nolock(mops, tag, NULL, 0, 1); 2483 out: 2484 vfs_list_unlock(); 2485 kmem_free(buf, MAX_MNTOPT_STR); 2486 return (err); 2487 } 2488 2489 /* 2490 * Allow users to remove arbitrary "tags" in a vfs's mount options. 2491 * Broader use within the kernel is discouraged. 2492 */ 2493 int 2494 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag, 2495 cred_t *cr) 2496 { 2497 vfs_t *vfsp; 2498 mntopt_t *mop; 2499 int found = 0; 2500 dev_t dev = makedevice(major, minor); 2501 int err = 0; 2502 2503 /* 2504 * Find the desired mounted file system 2505 */ 2506 vfs_list_lock(); 2507 vfsp = rootvfs; 2508 do { 2509 if (vfsp->vfs_dev == dev && 2510 strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) { 2511 found = 1; 2512 break; 2513 } 2514 vfsp = vfsp->vfs_next; 2515 } while (vfsp != rootvfs); 2516 2517 if (!found) { 2518 err = EINVAL; 2519 goto out; 2520 } 2521 err = secpolicy_fs_config(cr, vfsp); 2522 if (err != 0) 2523 goto out; 2524 2525 if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) { 2526 err = EINVAL; 2527 goto out; 2528 } 2529 if ((mop->mo_flags & MO_TAG) == 0) { 2530 err = EINVAL; 2531 goto out; 2532 } 2533 vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1); 2534 out: 2535 vfs_list_unlock(); 2536 return (err); 2537 } 2538 2539 /* 2540 * Function to parse an option string and fill in a mount options table. 2541 * Unknown options are silently ignored. The input option string is modified 2542 * by replacing separators with nulls. If the create flag is set, options 2543 * not found in the table are just added on the fly. The table must have 2544 * an option slot marked MO_EMPTY to add an option on the fly. 2545 * 2546 * This function is *not* for general use by filesystems. 2547 * 2548 * Note: caller is responsible for locking the vfs list, if needed, 2549 * to protect mops.. 2550 */ 2551 void 2552 vfs_parsemntopts(mntopts_t *mops, char *osp, int create) 2553 { 2554 char *s = osp, *p, *nextop, *valp, *cp, *ep; 2555 int setflg = VFS_NOFORCEOPT; 2556 2557 if (osp == NULL) 2558 return; 2559 while (*s != '\0') { 2560 p = strchr(s, ','); /* find next option */ 2561 if (p == NULL) { 2562 cp = NULL; 2563 p = s + strlen(s); 2564 } else { 2565 cp = p; /* save location of comma */ 2566 *p++ = '\0'; /* mark end and point to next option */ 2567 } 2568 nextop = p; 2569 p = strchr(s, '='); /* look for value */ 2570 if (p == NULL) { 2571 valp = NULL; /* no value supplied */ 2572 } else { 2573 ep = p; /* save location of equals */ 2574 *p++ = '\0'; /* end option and point to value */ 2575 valp = p; 2576 } 2577 /* 2578 * set option into options table 2579 */ 2580 if (create) 2581 setflg |= VFS_CREATEOPT; 2582 vfs_setmntopt_nolock(mops, s, valp, setflg, 0); 2583 if (cp != NULL) 2584 *cp = ','; /* restore the comma */ 2585 if (valp != NULL) 2586 *ep = '='; /* restore the equals */ 2587 s = nextop; 2588 } 2589 } 2590 2591 /* 2592 * Function to inquire if an option exists in a mount options table. 2593 * Returns a pointer to the option if it exists, else NULL. 2594 * 2595 * This function is *not* for general use by filesystems. 2596 * 2597 * Note: caller is responsible for locking the vfs list, if needed, 2598 * to protect mops. 2599 */ 2600 struct mntopt * 2601 vfs_hasopt(const mntopts_t *mops, const char *opt) 2602 { 2603 struct mntopt *mop; 2604 uint_t i, count; 2605 2606 count = mops->mo_count; 2607 for (i = 0; i < count; i++) { 2608 mop = &mops->mo_list[i]; 2609 2610 if (mop->mo_flags & MO_EMPTY) 2611 continue; 2612 if (strcmp(opt, mop->mo_name) == 0) 2613 return (mop); 2614 } 2615 return (NULL); 2616 } 2617 2618 /* 2619 * Function to inquire if an option is set in a mount options table. 2620 * Returns non-zero if set and fills in the arg pointer with a pointer to 2621 * the argument string or NULL if there is no argument string. 2622 */ 2623 static int 2624 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp) 2625 { 2626 struct mntopt *mop; 2627 uint_t i, count; 2628 2629 count = mops->mo_count; 2630 for (i = 0; i < count; i++) { 2631 mop = &mops->mo_list[i]; 2632 2633 if (mop->mo_flags & MO_EMPTY) 2634 continue; 2635 if (strcmp(opt, mop->mo_name)) 2636 continue; 2637 if ((mop->mo_flags & MO_SET) == 0) 2638 return (0); 2639 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0) 2640 *argp = mop->mo_arg; 2641 return (1); 2642 } 2643 return (0); 2644 } 2645 2646 2647 int 2648 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp) 2649 { 2650 int ret; 2651 2652 vfs_list_read_lock(); 2653 ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp); 2654 vfs_list_unlock(); 2655 return (ret); 2656 } 2657 2658 2659 /* 2660 * Construct a comma separated string of the options set in the given 2661 * mount table, return the string in the given buffer. Return non-zero if 2662 * the buffer would overflow. 2663 * 2664 * This function is *not* for general use by filesystems. 2665 * 2666 * Note: caller is responsible for locking the vfs list, if needed, 2667 * to protect mp. 2668 */ 2669 int 2670 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len) 2671 { 2672 char *cp; 2673 uint_t i; 2674 2675 buf[0] = '\0'; 2676 cp = buf; 2677 for (i = 0; i < mp->mo_count; i++) { 2678 struct mntopt *mop; 2679 2680 mop = &mp->mo_list[i]; 2681 if (mop->mo_flags & MO_SET) { 2682 int optlen, comma = 0; 2683 2684 if (buf[0] != '\0') 2685 comma = 1; 2686 optlen = strlen(mop->mo_name); 2687 if (strlen(buf) + comma + optlen + 1 > len) 2688 goto err; 2689 if (comma) 2690 *cp++ = ','; 2691 (void) strcpy(cp, mop->mo_name); 2692 cp += optlen; 2693 /* 2694 * Append option value if there is one 2695 */ 2696 if (mop->mo_arg != NULL) { 2697 int arglen; 2698 2699 arglen = strlen(mop->mo_arg); 2700 if (strlen(buf) + arglen + 2 > len) 2701 goto err; 2702 *cp++ = '='; 2703 (void) strcpy(cp, mop->mo_arg); 2704 cp += arglen; 2705 } 2706 } 2707 } 2708 return (0); 2709 err: 2710 return (EOVERFLOW); 2711 } 2712 2713 static void 2714 vfs_freecancelopt(char **moc) 2715 { 2716 if (moc != NULL) { 2717 int ccnt = 0; 2718 char **cp; 2719 2720 for (cp = moc; *cp != NULL; cp++) { 2721 kmem_free(*cp, strlen(*cp) + 1); 2722 ccnt++; 2723 } 2724 kmem_free(moc, (ccnt + 1) * sizeof (char *)); 2725 } 2726 } 2727 2728 static void 2729 vfs_freeopt(mntopt_t *mop) 2730 { 2731 if (mop->mo_name != NULL) 2732 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1); 2733 2734 vfs_freecancelopt(mop->mo_cancel); 2735 2736 if (mop->mo_arg != NULL) 2737 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1); 2738 } 2739 2740 /* 2741 * Free a mount options table 2742 * 2743 * This function is *not* for general use by filesystems. 2744 * 2745 * Note: caller is responsible for locking the vfs list, if needed, 2746 * to protect mp. 2747 */ 2748 void 2749 vfs_freeopttbl(mntopts_t *mp) 2750 { 2751 uint_t i, count; 2752 2753 count = mp->mo_count; 2754 for (i = 0; i < count; i++) { 2755 vfs_freeopt(&mp->mo_list[i]); 2756 } 2757 if (count) { 2758 kmem_free(mp->mo_list, sizeof (mntopt_t) * count); 2759 mp->mo_count = 0; 2760 mp->mo_list = NULL; 2761 } 2762 } 2763 2764 2765 /* ARGSUSED */ 2766 static int 2767 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2768 caller_context_t *ct) 2769 { 2770 return (0); 2771 } 2772 2773 /* ARGSUSED */ 2774 static int 2775 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred, 2776 caller_context_t *ct) 2777 { 2778 return (0); 2779 } 2780 2781 /* 2782 * The dummy vnode is currently used only by file events notification 2783 * module which is just interested in the timestamps. 2784 */ 2785 /* ARGSUSED */ 2786 static int 2787 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2788 caller_context_t *ct) 2789 { 2790 bzero(vap, sizeof (vattr_t)); 2791 vap->va_type = VREG; 2792 vap->va_nlink = 1; 2793 vap->va_ctime = vfs_mnttab_ctime; 2794 /* 2795 * it is ok to just copy mtime as the time will be monotonically 2796 * increasing. 2797 */ 2798 vap->va_mtime = vfs_mnttab_mtime; 2799 vap->va_atime = vap->va_mtime; 2800 return (0); 2801 } 2802 2803 static void 2804 vfs_mnttabvp_setup(void) 2805 { 2806 vnode_t *tvp; 2807 vnodeops_t *vfs_mntdummyvnops; 2808 const fs_operation_def_t mnt_dummyvnodeops_template[] = { 2809 VOPNAME_READ, { .vop_read = vfs_mntdummyread }, 2810 VOPNAME_WRITE, { .vop_write = vfs_mntdummywrite }, 2811 VOPNAME_GETATTR, { .vop_getattr = vfs_mntdummygetattr }, 2812 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 2813 NULL, NULL 2814 }; 2815 2816 if (vn_make_ops("mnttab", mnt_dummyvnodeops_template, 2817 &vfs_mntdummyvnops) != 0) { 2818 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed"); 2819 /* Shouldn't happen, but not bad enough to panic */ 2820 return; 2821 } 2822 2823 /* 2824 * A global dummy vnode is allocated to represent mntfs files. 2825 * The mntfs file (/etc/mnttab) can be monitored for file events 2826 * and receive an event when mnttab changes. Dummy VOP calls 2827 * will be made on this vnode. The file events notification module 2828 * intercepts this vnode and delivers relevant events. 2829 */ 2830 tvp = vn_alloc(KM_SLEEP); 2831 tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE; 2832 vn_setops(tvp, vfs_mntdummyvnops); 2833 tvp->v_type = VREG; 2834 /* 2835 * The mnt dummy ops do not reference v_data. 2836 * No other module intercepting this vnode should either. 2837 * Just set it to point to itself. 2838 */ 2839 tvp->v_data = (caddr_t)tvp; 2840 tvp->v_vfsp = rootvfs; 2841 vfs_mntdummyvp = tvp; 2842 } 2843 2844 /* 2845 * performs fake read/write ops 2846 */ 2847 static void 2848 vfs_mnttab_rwop(int rw) 2849 { 2850 struct uio uio; 2851 struct iovec iov; 2852 char buf[1]; 2853 2854 if (vfs_mntdummyvp == NULL) 2855 return; 2856 2857 bzero(&uio, sizeof (uio)); 2858 bzero(&iov, sizeof (iov)); 2859 iov.iov_base = buf; 2860 iov.iov_len = 0; 2861 uio.uio_iov = &iov; 2862 uio.uio_iovcnt = 1; 2863 uio.uio_loffset = 0; 2864 uio.uio_segflg = UIO_SYSSPACE; 2865 uio.uio_resid = 0; 2866 if (rw) { 2867 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2868 } else { 2869 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL); 2870 } 2871 } 2872 2873 /* 2874 * Generate a write operation. 2875 */ 2876 void 2877 vfs_mnttab_writeop(void) 2878 { 2879 vfs_mnttab_rwop(1); 2880 } 2881 2882 /* 2883 * Generate a read operation. 2884 */ 2885 void 2886 vfs_mnttab_readop(void) 2887 { 2888 vfs_mnttab_rwop(0); 2889 } 2890 2891 /* 2892 * Free any mnttab information recorded in the vfs struct. 2893 * The vfs must not be on the vfs list. 2894 */ 2895 static void 2896 vfs_freemnttab(struct vfs *vfsp) 2897 { 2898 ASSERT(!VFS_ON_LIST(vfsp)); 2899 2900 /* 2901 * Free device and mount point information 2902 */ 2903 if (vfsp->vfs_mntpt != NULL) { 2904 refstr_rele(vfsp->vfs_mntpt); 2905 vfsp->vfs_mntpt = NULL; 2906 } 2907 if (vfsp->vfs_resource != NULL) { 2908 refstr_rele(vfsp->vfs_resource); 2909 vfsp->vfs_resource = NULL; 2910 } 2911 /* 2912 * Now free mount options information 2913 */ 2914 vfs_freeopttbl(&vfsp->vfs_mntopts); 2915 } 2916 2917 /* 2918 * Return the last mnttab modification time 2919 */ 2920 void 2921 vfs_mnttab_modtime(timespec_t *ts) 2922 { 2923 ASSERT(RW_LOCK_HELD(&vfslist)); 2924 *ts = vfs_mnttab_mtime; 2925 } 2926 2927 /* 2928 * See if mnttab is changed 2929 */ 2930 void 2931 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp) 2932 { 2933 int changed; 2934 2935 *phpp = (struct pollhead *)NULL; 2936 2937 /* 2938 * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime. 2939 * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe 2940 * to not grab the vfs list lock because tv_sec is monotonically 2941 * increasing. 2942 */ 2943 2944 changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) || 2945 (old->tv_sec != vfs_mnttab_mtime.tv_sec); 2946 if (!changed) { 2947 *phpp = &vfs_pollhd; 2948 } 2949 } 2950 2951 /* Provide a unique and monotonically-increasing timestamp. */ 2952 void 2953 vfs_mono_time(timespec_t *ts) 2954 { 2955 static volatile hrtime_t hrt; /* The saved time. */ 2956 hrtime_t newhrt, oldhrt; /* For effecting the CAS. */ 2957 timespec_t newts; 2958 2959 /* 2960 * Try gethrestime() first, but be prepared to fabricate a sensible 2961 * answer at the first sign of any trouble. 2962 */ 2963 gethrestime(&newts); 2964 newhrt = ts2hrt(&newts); 2965 for (;;) { 2966 oldhrt = hrt; 2967 if (newhrt <= hrt) 2968 newhrt = hrt + 1; 2969 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt) 2970 break; 2971 } 2972 hrt2ts(newhrt, ts); 2973 } 2974 2975 /* 2976 * Update the mnttab modification time and wake up any waiters for 2977 * mnttab changes 2978 */ 2979 void 2980 vfs_mnttab_modtimeupd() 2981 { 2982 hrtime_t oldhrt, newhrt; 2983 2984 ASSERT(RW_WRITE_HELD(&vfslist)); 2985 oldhrt = ts2hrt(&vfs_mnttab_mtime); 2986 gethrestime(&vfs_mnttab_mtime); 2987 newhrt = ts2hrt(&vfs_mnttab_mtime); 2988 if (oldhrt == (hrtime_t)0) 2989 vfs_mnttab_ctime = vfs_mnttab_mtime; 2990 /* 2991 * Attempt to provide unique mtime (like uniqtime but not). 2992 */ 2993 if (newhrt == oldhrt) { 2994 newhrt++; 2995 hrt2ts(newhrt, &vfs_mnttab_mtime); 2996 } 2997 pollwakeup(&vfs_pollhd, (short)POLLRDBAND); 2998 vfs_mnttab_writeop(); 2999 } 3000 3001 int 3002 dounmount(struct vfs *vfsp, int flag, cred_t *cr) 3003 { 3004 vnode_t *coveredvp; 3005 int error; 3006 extern void teardown_vopstats(vfs_t *); 3007 3008 /* 3009 * Get covered vnode. This will be NULL if the vfs is not linked 3010 * into the file system name space (i.e., domount() with MNT_NOSPICE). 3011 */ 3012 coveredvp = vfsp->vfs_vnodecovered; 3013 ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp)); 3014 3015 /* 3016 * Purge all dnlc entries for this vfs. 3017 */ 3018 (void) dnlc_purge_vfsp(vfsp, 0); 3019 3020 /* For forcible umount, skip VFS_SYNC() since it may hang */ 3021 if ((flag & MS_FORCE) == 0) 3022 (void) VFS_SYNC(vfsp, 0, cr); 3023 3024 /* 3025 * Lock the vfs to maintain fs status quo during unmount. This 3026 * has to be done after the sync because ufs_update tries to acquire 3027 * the vfs_reflock. 3028 */ 3029 vfs_lock_wait(vfsp); 3030 3031 if (error = VFS_UNMOUNT(vfsp, flag, cr)) { 3032 vfs_unlock(vfsp); 3033 if (coveredvp != NULL) 3034 vn_vfsunlock(coveredvp); 3035 } else if (coveredvp != NULL) { 3036 teardown_vopstats(vfsp); 3037 /* 3038 * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered) 3039 * when it frees vfsp so we do a VN_HOLD() so we can 3040 * continue to use coveredvp afterwards. 3041 */ 3042 VN_HOLD(coveredvp); 3043 vfs_remove(vfsp); 3044 vn_vfsunlock(coveredvp); 3045 VN_RELE(coveredvp); 3046 } else { 3047 teardown_vopstats(vfsp); 3048 /* 3049 * Release the reference to vfs that is not linked 3050 * into the name space. 3051 */ 3052 vfs_unlock(vfsp); 3053 VFS_RELE(vfsp); 3054 } 3055 return (error); 3056 } 3057 3058 3059 /* 3060 * Vfs_unmountall() is called by uadmin() to unmount all 3061 * mounted file systems (except the root file system) during shutdown. 3062 * It follows the existing locking protocol when traversing the vfs list 3063 * to sync and unmount vfses. Even though there should be no 3064 * other thread running while the system is shutting down, it is prudent 3065 * to still follow the locking protocol. 3066 */ 3067 void 3068 vfs_unmountall(void) 3069 { 3070 struct vfs *vfsp; 3071 struct vfs *prev_vfsp = NULL; 3072 int error; 3073 3074 /* 3075 * Toss all dnlc entries now so that the per-vfs sync 3076 * and unmount operations don't have to slog through 3077 * a bunch of uninteresting vnodes over and over again. 3078 */ 3079 dnlc_purge(); 3080 3081 vfs_list_lock(); 3082 for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) { 3083 prev_vfsp = vfsp->vfs_prev; 3084 3085 if (vfs_lock(vfsp) != 0) 3086 continue; 3087 error = vn_vfswlock(vfsp->vfs_vnodecovered); 3088 vfs_unlock(vfsp); 3089 if (error) 3090 continue; 3091 3092 vfs_list_unlock(); 3093 3094 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED()); 3095 (void) dounmount(vfsp, 0, CRED()); 3096 3097 /* 3098 * Since we dropped the vfslist lock above we must 3099 * verify that next_vfsp still exists, else start over. 3100 */ 3101 vfs_list_lock(); 3102 for (vfsp = rootvfs->vfs_prev; 3103 vfsp != rootvfs; vfsp = vfsp->vfs_prev) 3104 if (vfsp == prev_vfsp) 3105 break; 3106 if (vfsp == rootvfs && prev_vfsp != rootvfs) 3107 prev_vfsp = rootvfs->vfs_prev; 3108 } 3109 vfs_list_unlock(); 3110 } 3111 3112 /* 3113 * Called to add an entry to the end of the vfs mount in progress list 3114 */ 3115 void 3116 vfs_addmip(dev_t dev, struct vfs *vfsp) 3117 { 3118 struct ipmnt *mipp; 3119 3120 mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP); 3121 mipp->mip_next = NULL; 3122 mipp->mip_dev = dev; 3123 mipp->mip_vfsp = vfsp; 3124 mutex_enter(&vfs_miplist_mutex); 3125 if (vfs_miplist_end != NULL) 3126 vfs_miplist_end->mip_next = mipp; 3127 else 3128 vfs_miplist = mipp; 3129 vfs_miplist_end = mipp; 3130 mutex_exit(&vfs_miplist_mutex); 3131 } 3132 3133 /* 3134 * Called to remove an entry from the mount in progress list 3135 * Either because the mount completed or it failed. 3136 */ 3137 void 3138 vfs_delmip(struct vfs *vfsp) 3139 { 3140 struct ipmnt *mipp, *mipprev; 3141 3142 mutex_enter(&vfs_miplist_mutex); 3143 mipprev = NULL; 3144 for (mipp = vfs_miplist; 3145 mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) { 3146 mipprev = mipp; 3147 } 3148 if (mipp == NULL) 3149 return; /* shouldn't happen */ 3150 if (mipp == vfs_miplist_end) 3151 vfs_miplist_end = mipprev; 3152 if (mipprev == NULL) 3153 vfs_miplist = mipp->mip_next; 3154 else 3155 mipprev->mip_next = mipp->mip_next; 3156 mutex_exit(&vfs_miplist_mutex); 3157 kmem_free(mipp, sizeof (struct ipmnt)); 3158 } 3159 3160 /* 3161 * vfs_add is called by a specific filesystem's mount routine to add 3162 * the new vfs into the vfs list/hash and to cover the mounted-on vnode. 3163 * The vfs should already have been locked by the caller. 3164 * 3165 * coveredvp is NULL if this is the root. 3166 */ 3167 void 3168 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag) 3169 { 3170 int newflag; 3171 3172 ASSERT(vfs_lock_held(vfsp)); 3173 VFS_HOLD(vfsp); 3174 newflag = vfsp->vfs_flag; 3175 if (mflag & MS_RDONLY) 3176 newflag |= VFS_RDONLY; 3177 else 3178 newflag &= ~VFS_RDONLY; 3179 if (mflag & MS_NOSUID) 3180 newflag |= (VFS_NOSETUID|VFS_NODEVICES); 3181 else 3182 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES); 3183 if (mflag & MS_NOMNTTAB) 3184 newflag |= VFS_NOMNTTAB; 3185 else 3186 newflag &= ~VFS_NOMNTTAB; 3187 3188 if (coveredvp != NULL) { 3189 ASSERT(vn_vfswlock_held(coveredvp)); 3190 coveredvp->v_vfsmountedhere = vfsp; 3191 VN_HOLD(coveredvp); 3192 } 3193 vfsp->vfs_vnodecovered = coveredvp; 3194 vfsp->vfs_flag = newflag; 3195 3196 vfs_list_add(vfsp); 3197 } 3198 3199 /* 3200 * Remove a vfs from the vfs list, null out the pointer from the 3201 * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer 3202 * from the vfs to the covered vnode (vfs_vnodecovered). Release the 3203 * reference to the vfs and to the covered vnode. 3204 * 3205 * Called from dounmount after it's confirmed with the file system 3206 * that the unmount is legal. 3207 */ 3208 void 3209 vfs_remove(struct vfs *vfsp) 3210 { 3211 vnode_t *vp; 3212 3213 ASSERT(vfs_lock_held(vfsp)); 3214 3215 /* 3216 * Can't unmount root. Should never happen because fs will 3217 * be busy. 3218 */ 3219 if (vfsp == rootvfs) 3220 panic("vfs_remove: unmounting root"); 3221 3222 vfs_list_remove(vfsp); 3223 3224 /* 3225 * Unhook from the file system name space. 3226 */ 3227 vp = vfsp->vfs_vnodecovered; 3228 ASSERT(vn_vfswlock_held(vp)); 3229 vp->v_vfsmountedhere = NULL; 3230 vfsp->vfs_vnodecovered = NULL; 3231 VN_RELE(vp); 3232 3233 /* 3234 * Release lock and wakeup anybody waiting. 3235 */ 3236 vfs_unlock(vfsp); 3237 VFS_RELE(vfsp); 3238 } 3239 3240 /* 3241 * Lock a filesystem to prevent access to it while mounting, 3242 * unmounting and syncing. Return EBUSY immediately if lock 3243 * can't be acquired. 3244 */ 3245 int 3246 vfs_lock(vfs_t *vfsp) 3247 { 3248 vn_vfslocks_entry_t *vpvfsentry; 3249 3250 vpvfsentry = vn_vfslocks_getlock(vfsp); 3251 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER)) 3252 return (0); 3253 3254 vn_vfslocks_rele(vpvfsentry); 3255 return (EBUSY); 3256 } 3257 3258 int 3259 vfs_rlock(vfs_t *vfsp) 3260 { 3261 vn_vfslocks_entry_t *vpvfsentry; 3262 3263 vpvfsentry = vn_vfslocks_getlock(vfsp); 3264 3265 if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER)) 3266 return (0); 3267 3268 vn_vfslocks_rele(vpvfsentry); 3269 return (EBUSY); 3270 } 3271 3272 void 3273 vfs_lock_wait(vfs_t *vfsp) 3274 { 3275 vn_vfslocks_entry_t *vpvfsentry; 3276 3277 vpvfsentry = vn_vfslocks_getlock(vfsp); 3278 rwst_enter(&vpvfsentry->ve_lock, RW_WRITER); 3279 } 3280 3281 void 3282 vfs_rlock_wait(vfs_t *vfsp) 3283 { 3284 vn_vfslocks_entry_t *vpvfsentry; 3285 3286 vpvfsentry = vn_vfslocks_getlock(vfsp); 3287 rwst_enter(&vpvfsentry->ve_lock, RW_READER); 3288 } 3289 3290 /* 3291 * Unlock a locked filesystem. 3292 */ 3293 void 3294 vfs_unlock(vfs_t *vfsp) 3295 { 3296 vn_vfslocks_entry_t *vpvfsentry; 3297 3298 /* 3299 * vfs_unlock will mimic sema_v behaviour to fix 4748018. 3300 * And these changes should remain for the patch changes as it is. 3301 */ 3302 if (panicstr) 3303 return; 3304 3305 /* 3306 * ve_refcount needs to be dropped twice here. 3307 * 1. To release refernce after a call to vfs_locks_getlock() 3308 * 2. To release the reference from the locking routines like 3309 * vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,. 3310 */ 3311 3312 vpvfsentry = vn_vfslocks_getlock(vfsp); 3313 vn_vfslocks_rele(vpvfsentry); 3314 3315 rwst_exit(&vpvfsentry->ve_lock); 3316 vn_vfslocks_rele(vpvfsentry); 3317 } 3318 3319 /* 3320 * Utility routine that allows a filesystem to construct its 3321 * fsid in "the usual way" - by munging some underlying dev_t and 3322 * the filesystem type number into the 64-bit fsid. Note that 3323 * this implicitly relies on dev_t persistence to make filesystem 3324 * id's persistent. 3325 * 3326 * There's nothing to prevent an individual fs from constructing its 3327 * fsid in a different way, and indeed they should. 3328 * 3329 * Since we want fsids to be 32-bit quantities (so that they can be 3330 * exported identically by either 32-bit or 64-bit APIs, as well as 3331 * the fact that fsid's are "known" to NFS), we compress the device 3332 * number given down to 32-bits, and panic if that isn't possible. 3333 */ 3334 void 3335 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val) 3336 { 3337 if (!cmpldev((dev32_t *)&fsi->val[0], dev)) 3338 panic("device number too big for fsid!"); 3339 fsi->val[1] = val; 3340 } 3341 3342 int 3343 vfs_lock_held(vfs_t *vfsp) 3344 { 3345 int held; 3346 vn_vfslocks_entry_t *vpvfsentry; 3347 3348 /* 3349 * vfs_lock_held will mimic sema_held behaviour 3350 * if panicstr is set. And these changes should remain 3351 * for the patch changes as it is. 3352 */ 3353 if (panicstr) 3354 return (1); 3355 3356 vpvfsentry = vn_vfslocks_getlock(vfsp); 3357 held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER); 3358 3359 vn_vfslocks_rele(vpvfsentry); 3360 return (held); 3361 } 3362 3363 struct _kthread * 3364 vfs_lock_owner(vfs_t *vfsp) 3365 { 3366 struct _kthread *owner; 3367 vn_vfslocks_entry_t *vpvfsentry; 3368 3369 /* 3370 * vfs_wlock_held will mimic sema_held behaviour 3371 * if panicstr is set. And these changes should remain 3372 * for the patch changes as it is. 3373 */ 3374 if (panicstr) 3375 return (NULL); 3376 3377 vpvfsentry = vn_vfslocks_getlock(vfsp); 3378 owner = rwst_owner(&vpvfsentry->ve_lock); 3379 3380 vn_vfslocks_rele(vpvfsentry); 3381 return (owner); 3382 } 3383 3384 /* 3385 * vfs list locking. 3386 * 3387 * Rather than manipulate the vfslist lock directly, we abstract into lock 3388 * and unlock routines to allow the locking implementation to be changed for 3389 * clustering. 3390 * 3391 * Whenever the vfs list is modified through its hash links, the overall list 3392 * lock must be obtained before locking the relevant hash bucket. But to see 3393 * whether a given vfs is on the list, it suffices to obtain the lock for the 3394 * hash bucket without getting the overall list lock. (See getvfs() below.) 3395 */ 3396 3397 void 3398 vfs_list_lock() 3399 { 3400 rw_enter(&vfslist, RW_WRITER); 3401 } 3402 3403 void 3404 vfs_list_read_lock() 3405 { 3406 rw_enter(&vfslist, RW_READER); 3407 } 3408 3409 void 3410 vfs_list_unlock() 3411 { 3412 rw_exit(&vfslist); 3413 } 3414 3415 /* 3416 * Low level worker routines for adding entries to and removing entries from 3417 * the vfs list. 3418 */ 3419 3420 static void 3421 vfs_hash_add(struct vfs *vfsp, int insert_at_head) 3422 { 3423 int vhno; 3424 struct vfs **hp; 3425 dev_t dev; 3426 3427 ASSERT(RW_WRITE_HELD(&vfslist)); 3428 3429 dev = expldev(vfsp->vfs_fsid.val[0]); 3430 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3431 3432 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3433 3434 /* 3435 * Link into the hash table, inserting it at the end, so that LOFS 3436 * with the same fsid as UFS (or other) file systems will not hide the 3437 * UFS. 3438 */ 3439 if (insert_at_head) { 3440 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head; 3441 rvfs_list[vhno].rvfs_head = vfsp; 3442 } else { 3443 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL; 3444 hp = &(*hp)->vfs_hash) 3445 continue; 3446 /* 3447 * hp now contains the address of the pointer to update 3448 * to effect the insertion. 3449 */ 3450 vfsp->vfs_hash = NULL; 3451 *hp = vfsp; 3452 } 3453 3454 rvfs_list[vhno].rvfs_len++; 3455 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3456 } 3457 3458 3459 static void 3460 vfs_hash_remove(struct vfs *vfsp) 3461 { 3462 int vhno; 3463 struct vfs *tvfsp; 3464 dev_t dev; 3465 3466 ASSERT(RW_WRITE_HELD(&vfslist)); 3467 3468 dev = expldev(vfsp->vfs_fsid.val[0]); 3469 vhno = VFSHASH(getmajor(dev), getminor(dev)); 3470 3471 mutex_enter(&rvfs_list[vhno].rvfs_lock); 3472 3473 /* 3474 * Remove from hash. 3475 */ 3476 if (rvfs_list[vhno].rvfs_head == vfsp) { 3477 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash; 3478 rvfs_list[vhno].rvfs_len--; 3479 goto foundit; 3480 } 3481 for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL; 3482 tvfsp = tvfsp->vfs_hash) { 3483 if (tvfsp->vfs_hash == vfsp) { 3484 tvfsp->vfs_hash = vfsp->vfs_hash; 3485 rvfs_list[vhno].rvfs_len--; 3486 goto foundit; 3487 } 3488 } 3489 cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash"); 3490 3491 foundit: 3492 3493 mutex_exit(&rvfs_list[vhno].rvfs_lock); 3494 } 3495 3496 3497 void 3498 vfs_list_add(struct vfs *vfsp) 3499 { 3500 zone_t *zone; 3501 3502 /* 3503 * Typically, the vfs_t will have been created on behalf of the file 3504 * system in vfs_init, where it will have been provided with a 3505 * vfs_impl_t. This, however, might be lacking if the vfs_t was created 3506 * by an unbundled file system. We therefore check for such an example 3507 * before stamping the vfs_t with its creation time for the benefit of 3508 * mntfs. 3509 */ 3510 if (vfsp->vfs_implp == NULL) 3511 vfsimpl_setup(vfsp); 3512 vfs_mono_time(&vfsp->vfs_hrctime); 3513 3514 /* 3515 * The zone that owns the mount is the one that performed the mount. 3516 * Note that this isn't necessarily the same as the zone mounted into. 3517 * The corresponding zone_rele_ref() will be done when the vfs_t 3518 * is being free'd. 3519 */ 3520 vfsp->vfs_zone = curproc->p_zone; 3521 zone_init_ref(&vfsp->vfs_implp->vi_zone_ref); 3522 zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref, 3523 ZONE_REF_VFS); 3524 3525 /* 3526 * Find the zone mounted into, and put this mount on its vfs list. 3527 */ 3528 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3529 ASSERT(zone != NULL); 3530 /* 3531 * Special casing for the root vfs. This structure is allocated 3532 * statically and hooked onto rootvfs at link time. During the 3533 * vfs_mountroot call at system startup time, the root file system's 3534 * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct 3535 * as argument. The code below must detect and handle this special 3536 * case. The only apparent justification for this special casing is 3537 * to ensure that the root file system appears at the head of the 3538 * list. 3539 * 3540 * XXX: I'm assuming that it's ok to do normal list locking when 3541 * adding the entry for the root file system (this used to be 3542 * done with no locks held). 3543 */ 3544 vfs_list_lock(); 3545 /* 3546 * Link into the vfs list proper. 3547 */ 3548 if (vfsp == &root) { 3549 /* 3550 * Assert: This vfs is already on the list as its first entry. 3551 * Thus, there's nothing to do. 3552 */ 3553 ASSERT(rootvfs == vfsp); 3554 /* 3555 * Add it to the head of the global zone's vfslist. 3556 */ 3557 ASSERT(zone == global_zone); 3558 ASSERT(zone->zone_vfslist == NULL); 3559 zone->zone_vfslist = vfsp; 3560 } else { 3561 /* 3562 * Link to end of list using vfs_prev (as rootvfs is now a 3563 * doubly linked circular list) so list is in mount order for 3564 * mnttab use. 3565 */ 3566 rootvfs->vfs_prev->vfs_next = vfsp; 3567 vfsp->vfs_prev = rootvfs->vfs_prev; 3568 rootvfs->vfs_prev = vfsp; 3569 vfsp->vfs_next = rootvfs; 3570 3571 /* 3572 * Do it again for the zone-private list (which may be NULL). 3573 */ 3574 if (zone->zone_vfslist == NULL) { 3575 ASSERT(zone != global_zone); 3576 zone->zone_vfslist = vfsp; 3577 } else { 3578 zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp; 3579 vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev; 3580 zone->zone_vfslist->vfs_zone_prev = vfsp; 3581 vfsp->vfs_zone_next = zone->zone_vfslist; 3582 } 3583 } 3584 3585 /* 3586 * Link into the hash table, inserting it at the end, so that LOFS 3587 * with the same fsid as UFS (or other) file systems will not hide 3588 * the UFS. 3589 */ 3590 vfs_hash_add(vfsp, 0); 3591 3592 /* 3593 * update the mnttab modification time 3594 */ 3595 vfs_mnttab_modtimeupd(); 3596 vfs_list_unlock(); 3597 zone_rele(zone); 3598 } 3599 3600 void 3601 vfs_list_remove(struct vfs *vfsp) 3602 { 3603 zone_t *zone; 3604 3605 zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt)); 3606 ASSERT(zone != NULL); 3607 /* 3608 * Callers are responsible for preventing attempts to unmount the 3609 * root. 3610 */ 3611 ASSERT(vfsp != rootvfs); 3612 3613 vfs_list_lock(); 3614 3615 /* 3616 * Remove from hash. 3617 */ 3618 vfs_hash_remove(vfsp); 3619 3620 /* 3621 * Remove from vfs list. 3622 */ 3623 vfsp->vfs_prev->vfs_next = vfsp->vfs_next; 3624 vfsp->vfs_next->vfs_prev = vfsp->vfs_prev; 3625 vfsp->vfs_next = vfsp->vfs_prev = NULL; 3626 3627 /* 3628 * Remove from zone-specific vfs list. 3629 */ 3630 if (zone->zone_vfslist == vfsp) 3631 zone->zone_vfslist = vfsp->vfs_zone_next; 3632 3633 if (vfsp->vfs_zone_next == vfsp) { 3634 ASSERT(vfsp->vfs_zone_prev == vfsp); 3635 ASSERT(zone->zone_vfslist == vfsp); 3636 zone->zone_vfslist = NULL; 3637 } 3638 3639 vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next; 3640 vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev; 3641 vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL; 3642 3643 /* 3644 * update the mnttab modification time 3645 */ 3646 vfs_mnttab_modtimeupd(); 3647 vfs_list_unlock(); 3648 zone_rele(zone); 3649 } 3650 3651 struct vfs * 3652 getvfs(fsid_t *fsid) 3653 { 3654 struct vfs *vfsp; 3655 int val0 = fsid->val[0]; 3656 int val1 = fsid->val[1]; 3657 dev_t dev = expldev(val0); 3658 int vhno = VFSHASH(getmajor(dev), getminor(dev)); 3659 kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock; 3660 3661 mutex_enter(hmp); 3662 for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) { 3663 if (vfsp->vfs_fsid.val[0] == val0 && 3664 vfsp->vfs_fsid.val[1] == val1) { 3665 VFS_HOLD(vfsp); 3666 mutex_exit(hmp); 3667 return (vfsp); 3668 } 3669 } 3670 mutex_exit(hmp); 3671 return (NULL); 3672 } 3673 3674 /* 3675 * Search the vfs mount in progress list for a specified device/vfs entry. 3676 * Returns 0 if the first entry in the list that the device matches has the 3677 * given vfs pointer as well. If the device matches but a different vfs 3678 * pointer is encountered in the list before the given vfs pointer then 3679 * a 1 is returned. 3680 */ 3681 3682 int 3683 vfs_devmounting(dev_t dev, struct vfs *vfsp) 3684 { 3685 int retval = 0; 3686 struct ipmnt *mipp; 3687 3688 mutex_enter(&vfs_miplist_mutex); 3689 for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) { 3690 if (mipp->mip_dev == dev) { 3691 if (mipp->mip_vfsp != vfsp) 3692 retval = 1; 3693 break; 3694 } 3695 } 3696 mutex_exit(&vfs_miplist_mutex); 3697 return (retval); 3698 } 3699 3700 /* 3701 * Search the vfs list for a specified device. Returns 1, if entry is found 3702 * or 0 if no suitable entry is found. 3703 */ 3704 3705 int 3706 vfs_devismounted(dev_t dev) 3707 { 3708 struct vfs *vfsp; 3709 int found; 3710 3711 vfs_list_read_lock(); 3712 vfsp = rootvfs; 3713 found = 0; 3714 do { 3715 if (vfsp->vfs_dev == dev) { 3716 found = 1; 3717 break; 3718 } 3719 vfsp = vfsp->vfs_next; 3720 } while (vfsp != rootvfs); 3721 3722 vfs_list_unlock(); 3723 return (found); 3724 } 3725 3726 /* 3727 * Search the vfs list for a specified device. Returns a pointer to it 3728 * or NULL if no suitable entry is found. The caller of this routine 3729 * is responsible for releasing the returned vfs pointer. 3730 */ 3731 struct vfs * 3732 vfs_dev2vfsp(dev_t dev) 3733 { 3734 struct vfs *vfsp; 3735 int found; 3736 3737 vfs_list_read_lock(); 3738 vfsp = rootvfs; 3739 found = 0; 3740 do { 3741 /* 3742 * The following could be made more efficient by making 3743 * the entire loop use vfs_zone_next if the call is from 3744 * a zone. The only callers, however, ustat(2) and 3745 * umount2(2), don't seem to justify the added 3746 * complexity at present. 3747 */ 3748 if (vfsp->vfs_dev == dev && 3749 ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt), 3750 curproc->p_zone)) { 3751 VFS_HOLD(vfsp); 3752 found = 1; 3753 break; 3754 } 3755 vfsp = vfsp->vfs_next; 3756 } while (vfsp != rootvfs); 3757 vfs_list_unlock(); 3758 return (found ? vfsp: NULL); 3759 } 3760 3761 /* 3762 * Search the vfs list for a specified mntpoint. Returns a pointer to it 3763 * or NULL if no suitable entry is found. The caller of this routine 3764 * is responsible for releasing the returned vfs pointer. 3765 * 3766 * Note that if multiple mntpoints match, the last one matching is 3767 * returned in an attempt to return the "top" mount when overlay 3768 * mounts are covering the same mount point. This is accomplished by starting 3769 * at the end of the list and working our way backwards, stopping at the first 3770 * matching mount. 3771 */ 3772 struct vfs * 3773 vfs_mntpoint2vfsp(const char *mp) 3774 { 3775 struct vfs *vfsp; 3776 struct vfs *retvfsp = NULL; 3777 zone_t *zone = curproc->p_zone; 3778 struct vfs *list; 3779 3780 vfs_list_read_lock(); 3781 if (getzoneid() == GLOBAL_ZONEID) { 3782 /* 3783 * The global zone may see filesystems in any zone. 3784 */ 3785 vfsp = rootvfs->vfs_prev; 3786 do { 3787 if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) { 3788 retvfsp = vfsp; 3789 break; 3790 } 3791 vfsp = vfsp->vfs_prev; 3792 } while (vfsp != rootvfs->vfs_prev); 3793 } else if ((list = zone->zone_vfslist) != NULL) { 3794 const char *mntpt; 3795 3796 vfsp = list->vfs_zone_prev; 3797 do { 3798 mntpt = refstr_value(vfsp->vfs_mntpt); 3799 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone); 3800 if (strcmp(mntpt, mp) == 0) { 3801 retvfsp = vfsp; 3802 break; 3803 } 3804 vfsp = vfsp->vfs_zone_prev; 3805 } while (vfsp != list->vfs_zone_prev); 3806 } 3807 if (retvfsp) 3808 VFS_HOLD(retvfsp); 3809 vfs_list_unlock(); 3810 return (retvfsp); 3811 } 3812 3813 /* 3814 * Search the vfs list for a specified vfsops. 3815 * if vfs entry is found then return 1, else 0. 3816 */ 3817 int 3818 vfs_opsinuse(vfsops_t *ops) 3819 { 3820 struct vfs *vfsp; 3821 int found; 3822 3823 vfs_list_read_lock(); 3824 vfsp = rootvfs; 3825 found = 0; 3826 do { 3827 if (vfs_getops(vfsp) == ops) { 3828 found = 1; 3829 break; 3830 } 3831 vfsp = vfsp->vfs_next; 3832 } while (vfsp != rootvfs); 3833 vfs_list_unlock(); 3834 return (found); 3835 } 3836 3837 /* 3838 * Allocate an entry in vfssw for a file system type 3839 */ 3840 struct vfssw * 3841 allocate_vfssw(const char *type) 3842 { 3843 struct vfssw *vswp; 3844 3845 if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) { 3846 /* 3847 * The vfssw table uses the empty string to identify an 3848 * available entry; we cannot add any type which has 3849 * a leading NUL. The string length is limited to 3850 * the size of the st_fstype array in struct stat. 3851 */ 3852 return (NULL); 3853 } 3854 3855 ASSERT(VFSSW_WRITE_LOCKED()); 3856 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) 3857 if (!ALLOCATED_VFSSW(vswp)) { 3858 vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP); 3859 (void) strcpy(vswp->vsw_name, type); 3860 ASSERT(vswp->vsw_count == 0); 3861 vswp->vsw_count = 1; 3862 mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL); 3863 return (vswp); 3864 } 3865 return (NULL); 3866 } 3867 3868 /* 3869 * Impose additional layer of translation between vfstype names 3870 * and module names in the filesystem. 3871 */ 3872 static const char * 3873 vfs_to_modname(const char *vfstype) 3874 { 3875 if (strcmp(vfstype, "proc") == 0) { 3876 vfstype = "procfs"; 3877 } else if (strcmp(vfstype, "fd") == 0) { 3878 vfstype = "fdfs"; 3879 } else if (strncmp(vfstype, "nfs", 3) == 0) { 3880 vfstype = "nfs"; 3881 } 3882 3883 return (vfstype); 3884 } 3885 3886 /* 3887 * Find a vfssw entry given a file system type name. 3888 * Try to autoload the filesystem if it's not found. 3889 * If it's installed, return the vfssw locked to prevent unloading. 3890 */ 3891 struct vfssw * 3892 vfs_getvfssw(const char *type) 3893 { 3894 struct vfssw *vswp; 3895 const char *modname; 3896 3897 RLOCK_VFSSW(); 3898 vswp = vfs_getvfsswbyname(type); 3899 modname = vfs_to_modname(type); 3900 3901 if (rootdir == NULL) { 3902 /* 3903 * If we haven't yet loaded the root file system, then our 3904 * _init won't be called until later. Allocate vfssw entry, 3905 * because mod_installfs won't be called. 3906 */ 3907 if (vswp == NULL) { 3908 RUNLOCK_VFSSW(); 3909 WLOCK_VFSSW(); 3910 if ((vswp = vfs_getvfsswbyname(type)) == NULL) { 3911 if ((vswp = allocate_vfssw(type)) == NULL) { 3912 WUNLOCK_VFSSW(); 3913 return (NULL); 3914 } 3915 } 3916 WUNLOCK_VFSSW(); 3917 RLOCK_VFSSW(); 3918 } 3919 if (!VFS_INSTALLED(vswp)) { 3920 RUNLOCK_VFSSW(); 3921 (void) modloadonly("fs", modname); 3922 } else 3923 RUNLOCK_VFSSW(); 3924 return (vswp); 3925 } 3926 3927 /* 3928 * Try to load the filesystem. Before calling modload(), we drop 3929 * our lock on the VFS switch table, and pick it up after the 3930 * module is loaded. However, there is a potential race: the 3931 * module could be unloaded after the call to modload() completes 3932 * but before we pick up the lock and drive on. Therefore, 3933 * we keep reloading the module until we've loaded the module 3934 * _and_ we have the lock on the VFS switch table. 3935 */ 3936 while (vswp == NULL || !VFS_INSTALLED(vswp)) { 3937 RUNLOCK_VFSSW(); 3938 if (modload("fs", modname) == -1) 3939 return (NULL); 3940 RLOCK_VFSSW(); 3941 if (vswp == NULL) 3942 if ((vswp = vfs_getvfsswbyname(type)) == NULL) 3943 break; 3944 } 3945 RUNLOCK_VFSSW(); 3946 3947 return (vswp); 3948 } 3949 3950 /* 3951 * Find a vfssw entry given a file system type name. 3952 */ 3953 struct vfssw * 3954 vfs_getvfsswbyname(const char *type) 3955 { 3956 struct vfssw *vswp; 3957 3958 ASSERT(VFSSW_LOCKED()); 3959 if (type == NULL || *type == '\0') 3960 return (NULL); 3961 3962 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3963 if (strcmp(type, vswp->vsw_name) == 0) { 3964 vfs_refvfssw(vswp); 3965 return (vswp); 3966 } 3967 } 3968 3969 return (NULL); 3970 } 3971 3972 /* 3973 * Find a vfssw entry given a set of vfsops. 3974 */ 3975 struct vfssw * 3976 vfs_getvfsswbyvfsops(vfsops_t *vfsops) 3977 { 3978 struct vfssw *vswp; 3979 3980 RLOCK_VFSSW(); 3981 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 3982 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) { 3983 vfs_refvfssw(vswp); 3984 RUNLOCK_VFSSW(); 3985 return (vswp); 3986 } 3987 } 3988 RUNLOCK_VFSSW(); 3989 3990 return (NULL); 3991 } 3992 3993 /* 3994 * Reference a vfssw entry. 3995 */ 3996 void 3997 vfs_refvfssw(struct vfssw *vswp) 3998 { 3999 4000 mutex_enter(&vswp->vsw_lock); 4001 vswp->vsw_count++; 4002 mutex_exit(&vswp->vsw_lock); 4003 } 4004 4005 /* 4006 * Unreference a vfssw entry. 4007 */ 4008 void 4009 vfs_unrefvfssw(struct vfssw *vswp) 4010 { 4011 4012 mutex_enter(&vswp->vsw_lock); 4013 vswp->vsw_count--; 4014 mutex_exit(&vswp->vsw_lock); 4015 } 4016 4017 static int sync_retries = 20; /* number of retries when not making progress */ 4018 static int sync_triesleft; /* portion of sync_retries remaining */ 4019 4020 static pgcnt_t old_pgcnt, new_pgcnt; 4021 static int new_bufcnt, old_bufcnt; 4022 4023 /* 4024 * Sync all of the mounted filesystems, and then wait for the actual i/o to 4025 * complete. We wait by counting the number of dirty pages and buffers, 4026 * pushing them out using bio_busy() and page_busy(), and then counting again. 4027 * This routine is used during the uadmin A_SHUTDOWN code. It should only 4028 * be used after some higher-level mechanism has quiesced the system so that 4029 * new writes are not being initiated while we are waiting for completion. 4030 * 4031 * To ensure finite running time, our algorithm uses sync_triesleft (a progress 4032 * counter used by the vfs_syncall() loop below). It is declared above so 4033 * it can be found easily in the debugger. 4034 * 4035 * The sync_triesleft counter is updated by vfs_syncall() itself. If we make 4036 * sync_retries consecutive calls to bio_busy() and page_busy() without 4037 * decreasing either the number of dirty buffers or dirty pages below the 4038 * lowest count we have seen so far, we give up and return from vfs_syncall(). 4039 * 4040 * Each loop iteration ends with a call to delay() one second to allow time for 4041 * i/o completion and to permit the user time to read our progress messages. 4042 */ 4043 void 4044 vfs_syncall(void) 4045 { 4046 if (rootdir == NULL && !modrootloaded) 4047 return; /* no filesystems have been loaded yet */ 4048 4049 printf("syncing file systems..."); 4050 sync(); 4051 4052 sync_triesleft = sync_retries; 4053 4054 old_bufcnt = new_bufcnt = INT_MAX; 4055 old_pgcnt = new_pgcnt = ULONG_MAX; 4056 4057 while (sync_triesleft > 0) { 4058 old_bufcnt = MIN(old_bufcnt, new_bufcnt); 4059 old_pgcnt = MIN(old_pgcnt, new_pgcnt); 4060 4061 new_bufcnt = bio_busy(B_TRUE); 4062 new_pgcnt = page_busy(B_TRUE); 4063 4064 if (new_bufcnt == 0 && new_pgcnt == 0) 4065 break; 4066 4067 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt) 4068 sync_triesleft = sync_retries; 4069 else 4070 sync_triesleft--; 4071 4072 if (new_bufcnt) 4073 printf(" [%d]", new_bufcnt); 4074 if (new_pgcnt) 4075 printf(" %lu", new_pgcnt); 4076 4077 delay(hz); 4078 } 4079 4080 if (new_bufcnt != 0 || new_pgcnt != 0) 4081 printf(" done (not all i/o completed)\n"); 4082 else 4083 printf(" done\n"); 4084 4085 delay(hz); 4086 } 4087 4088 /* 4089 * Map VFS flags to statvfs flags. These shouldn't really be separate 4090 * flags at all. 4091 */ 4092 uint_t 4093 vf_to_stf(uint_t vf) 4094 { 4095 uint_t stf = 0; 4096 4097 if (vf & VFS_RDONLY) 4098 stf |= ST_RDONLY; 4099 if (vf & VFS_NOSETUID) 4100 stf |= ST_NOSUID; 4101 if (vf & VFS_NOTRUNC) 4102 stf |= ST_NOTRUNC; 4103 4104 return (stf); 4105 } 4106 4107 /* 4108 * Entries for (illegal) fstype 0. 4109 */ 4110 /* ARGSUSED */ 4111 int 4112 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr) 4113 { 4114 cmn_err(CE_PANIC, "stray vfs operation"); 4115 return (0); 4116 } 4117 4118 /* 4119 * Entries for (illegal) fstype 0. 4120 */ 4121 int 4122 vfsstray(void) 4123 { 4124 cmn_err(CE_PANIC, "stray vfs operation"); 4125 return (0); 4126 } 4127 4128 /* 4129 * Support for dealing with forced UFS unmount and its interaction with 4130 * LOFS. Could be used by any filesystem. 4131 * See bug 1203132. 4132 */ 4133 int 4134 vfs_EIO(void) 4135 { 4136 return (EIO); 4137 } 4138 4139 /* 4140 * We've gotta define the op for sync separately, since the compiler gets 4141 * confused if we mix and match ANSI and normal style prototypes when 4142 * a "short" argument is present and spits out a warning. 4143 */ 4144 /*ARGSUSED*/ 4145 int 4146 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr) 4147 { 4148 return (EIO); 4149 } 4150 4151 vfs_t EIO_vfs; 4152 vfsops_t *EIO_vfsops; 4153 4154 /* 4155 * Called from startup() to initialize all loaded vfs's 4156 */ 4157 void 4158 vfsinit(void) 4159 { 4160 struct vfssw *vswp; 4161 int error; 4162 extern int vopstats_enabled; 4163 extern void vopstats_startup(); 4164 4165 static const fs_operation_def_t EIO_vfsops_template[] = { 4166 VFSNAME_MOUNT, { .error = vfs_EIO }, 4167 VFSNAME_UNMOUNT, { .error = vfs_EIO }, 4168 VFSNAME_ROOT, { .error = vfs_EIO }, 4169 VFSNAME_STATVFS, { .error = vfs_EIO }, 4170 VFSNAME_SYNC, { .vfs_sync = vfs_EIO_sync }, 4171 VFSNAME_VGET, { .error = vfs_EIO }, 4172 VFSNAME_MOUNTROOT, { .error = vfs_EIO }, 4173 VFSNAME_FREEVFS, { .error = vfs_EIO }, 4174 VFSNAME_VNSTATE, { .error = vfs_EIO }, 4175 NULL, NULL 4176 }; 4177 4178 static const fs_operation_def_t stray_vfsops_template[] = { 4179 VFSNAME_MOUNT, { .error = vfsstray }, 4180 VFSNAME_UNMOUNT, { .error = vfsstray }, 4181 VFSNAME_ROOT, { .error = vfsstray }, 4182 VFSNAME_STATVFS, { .error = vfsstray }, 4183 VFSNAME_SYNC, { .vfs_sync = vfsstray_sync }, 4184 VFSNAME_VGET, { .error = vfsstray }, 4185 VFSNAME_MOUNTROOT, { .error = vfsstray }, 4186 VFSNAME_FREEVFS, { .error = vfsstray }, 4187 VFSNAME_VNSTATE, { .error = vfsstray }, 4188 NULL, NULL 4189 }; 4190 4191 /* Create vfs cache */ 4192 vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs), 4193 sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0); 4194 4195 /* Initialize the vnode cache (file systems may use it during init). */ 4196 vn_create_cache(); 4197 4198 /* Setup event monitor framework */ 4199 fem_init(); 4200 4201 /* Initialize the dummy stray file system type. */ 4202 error = vfs_setfsops(0, stray_vfsops_template, NULL); 4203 4204 /* Initialize the dummy EIO file system. */ 4205 error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops); 4206 if (error != 0) { 4207 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template"); 4208 /* Shouldn't happen, but not bad enough to panic */ 4209 } 4210 4211 VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL); 4212 4213 /* 4214 * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup 4215 * on this vfs can immediately notice it's invalid. 4216 */ 4217 EIO_vfs.vfs_flag |= VFS_UNMOUNTED; 4218 4219 /* 4220 * Call the init routines of non-loadable filesystems only. 4221 * Filesystems which are loaded as separate modules will be 4222 * initialized by the module loading code instead. 4223 */ 4224 4225 for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) { 4226 RLOCK_VFSSW(); 4227 if (vswp->vsw_init != NULL) 4228 (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name); 4229 RUNLOCK_VFSSW(); 4230 } 4231 4232 vopstats_startup(); 4233 4234 if (vopstats_enabled) { 4235 /* EIO_vfs can collect stats, but we don't retrieve them */ 4236 initialize_vopstats(&EIO_vfs.vfs_vopstats); 4237 EIO_vfs.vfs_fstypevsp = NULL; 4238 EIO_vfs.vfs_vskap = NULL; 4239 EIO_vfs.vfs_flag |= VFS_STATS; 4240 } 4241 4242 xattr_init(); 4243 4244 reparse_point_init(); 4245 } 4246 4247 vfs_t * 4248 vfs_alloc(int kmflag) 4249 { 4250 vfs_t *vfsp; 4251 4252 vfsp = kmem_cache_alloc(vfs_cache, kmflag); 4253 4254 /* 4255 * Do the simplest initialization here. 4256 * Everything else gets done in vfs_init() 4257 */ 4258 bzero(vfsp, sizeof (vfs_t)); 4259 return (vfsp); 4260 } 4261 4262 void 4263 vfs_free(vfs_t *vfsp) 4264 { 4265 /* 4266 * One would be tempted to assert that "vfsp->vfs_count == 0". 4267 * The problem is that this gets called out of domount() with 4268 * a partially initialized vfs and a vfs_count of 1. This is 4269 * also called from vfs_rele() with a vfs_count of 0. We can't 4270 * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully 4271 * returned. This is because VFS_MOUNT() fully initializes the 4272 * vfs structure and its associated data. VFS_RELE() will call 4273 * VFS_FREEVFS() which may panic the system if the data structures 4274 * aren't fully initialized from a successful VFS_MOUNT()). 4275 */ 4276 4277 /* If FEM was in use, make sure everything gets cleaned up */ 4278 if (vfsp->vfs_femhead) { 4279 ASSERT(vfsp->vfs_femhead->femh_list == NULL); 4280 mutex_destroy(&vfsp->vfs_femhead->femh_lock); 4281 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead))); 4282 vfsp->vfs_femhead = NULL; 4283 } 4284 4285 if (vfsp->vfs_implp) 4286 vfsimpl_teardown(vfsp); 4287 sema_destroy(&vfsp->vfs_reflock); 4288 kmem_cache_free(vfs_cache, vfsp); 4289 } 4290 4291 /* 4292 * Increments the vfs reference count by one atomically. 4293 */ 4294 void 4295 vfs_hold(vfs_t *vfsp) 4296 { 4297 atomic_inc_32(&vfsp->vfs_count); 4298 ASSERT(vfsp->vfs_count != 0); 4299 } 4300 4301 /* 4302 * Decrements the vfs reference count by one atomically. When 4303 * vfs reference count becomes zero, it calls the file system 4304 * specific vfs_freevfs() to free up the resources. 4305 */ 4306 void 4307 vfs_rele(vfs_t *vfsp) 4308 { 4309 ASSERT(vfsp->vfs_count != 0); 4310 if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) { 4311 VFS_FREEVFS(vfsp); 4312 lofi_remove(vfsp); 4313 if (vfsp->vfs_zone) 4314 zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref, 4315 ZONE_REF_VFS); 4316 vfs_freemnttab(vfsp); 4317 vfs_free(vfsp); 4318 } 4319 } 4320 4321 /* 4322 * Generic operations vector support. 4323 * 4324 * This is used to build operations vectors for both the vfs and vnode. 4325 * It's normally called only when a file system is loaded. 4326 * 4327 * There are many possible algorithms for this, including the following: 4328 * 4329 * (1) scan the list of known operations; for each, see if the file system 4330 * includes an entry for it, and fill it in as appropriate. 4331 * 4332 * (2) set up defaults for all known operations. scan the list of ops 4333 * supplied by the file system; for each which is both supplied and 4334 * known, fill it in. 4335 * 4336 * (3) sort the lists of known ops & supplied ops; scan the list, filling 4337 * in entries as we go. 4338 * 4339 * we choose (1) for simplicity, and because performance isn't critical here. 4340 * note that (2) could be sped up using a precomputed hash table on known ops. 4341 * (3) could be faster than either, but only if the lists were very large or 4342 * supplied in sorted order. 4343 * 4344 */ 4345 4346 int 4347 fs_build_vector(void *vector, int *unused_ops, 4348 const fs_operation_trans_def_t *translation, 4349 const fs_operation_def_t *operations) 4350 { 4351 int i, num_trans, num_ops, used; 4352 4353 /* 4354 * Count the number of translations and the number of supplied 4355 * operations. 4356 */ 4357 4358 { 4359 const fs_operation_trans_def_t *p; 4360 4361 for (num_trans = 0, p = translation; 4362 p->name != NULL; 4363 num_trans++, p++) 4364 ; 4365 } 4366 4367 { 4368 const fs_operation_def_t *p; 4369 4370 for (num_ops = 0, p = operations; 4371 p->name != NULL; 4372 num_ops++, p++) 4373 ; 4374 } 4375 4376 /* Walk through each operation known to our caller. There will be */ 4377 /* one entry in the supplied "translation table" for each. */ 4378 4379 used = 0; 4380 4381 for (i = 0; i < num_trans; i++) { 4382 int j, found; 4383 char *curname; 4384 fs_generic_func_p result; 4385 fs_generic_func_p *location; 4386 4387 curname = translation[i].name; 4388 4389 /* Look for a matching operation in the list supplied by the */ 4390 /* file system. */ 4391 4392 found = 0; 4393 4394 for (j = 0; j < num_ops; j++) { 4395 if (strcmp(operations[j].name, curname) == 0) { 4396 used++; 4397 found = 1; 4398 break; 4399 } 4400 } 4401 4402 /* 4403 * If the file system is using a "placeholder" for default 4404 * or error functions, grab the appropriate function out of 4405 * the translation table. If the file system didn't supply 4406 * this operation at all, use the default function. 4407 */ 4408 4409 if (found) { 4410 result = operations[j].func.fs_generic; 4411 if (result == fs_default) { 4412 result = translation[i].defaultFunc; 4413 } else if (result == fs_error) { 4414 result = translation[i].errorFunc; 4415 } else if (result == NULL) { 4416 /* Null values are PROHIBITED */ 4417 return (EINVAL); 4418 } 4419 } else { 4420 result = translation[i].defaultFunc; 4421 } 4422 4423 /* Now store the function into the operations vector. */ 4424 4425 location = (fs_generic_func_p *) 4426 (((char *)vector) + translation[i].offset); 4427 4428 *location = result; 4429 } 4430 4431 *unused_ops = num_ops - used; 4432 4433 return (0); 4434 } 4435 4436 /* Placeholder functions, should never be called. */ 4437 4438 int 4439 fs_error(void) 4440 { 4441 cmn_err(CE_PANIC, "fs_error called"); 4442 return (0); 4443 } 4444 4445 int 4446 fs_default(void) 4447 { 4448 cmn_err(CE_PANIC, "fs_default called"); 4449 return (0); 4450 } 4451 4452 #ifdef __sparc 4453 4454 /* 4455 * Part of the implementation of booting off a mirrored root 4456 * involves a change of dev_t for the root device. To 4457 * accomplish this, first remove the existing hash table 4458 * entry for the root device, convert to the new dev_t, 4459 * then re-insert in the hash table at the head of the list. 4460 */ 4461 void 4462 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype) 4463 { 4464 vfs_list_lock(); 4465 4466 vfs_hash_remove(vfsp); 4467 4468 vfsp->vfs_dev = ndev; 4469 vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype); 4470 4471 vfs_hash_add(vfsp, 1); 4472 4473 vfs_list_unlock(); 4474 } 4475 4476 #else /* x86 NEWBOOT */ 4477 4478 #if defined(__x86) 4479 extern int hvmboot_rootconf(); 4480 #endif /* __x86 */ 4481 4482 extern ib_boot_prop_t *iscsiboot_prop; 4483 4484 int 4485 rootconf() 4486 { 4487 int error; 4488 struct vfssw *vsw; 4489 extern void pm_init(); 4490 char *fstyp, *fsmod; 4491 int ret = -1; 4492 4493 getrootfs(&fstyp, &fsmod); 4494 4495 #if defined(__x86) 4496 /* 4497 * hvmboot_rootconf() is defined in the hvm_bootstrap misc module, 4498 * which lives in /platform/i86hvm, and hence is only available when 4499 * booted in an x86 hvm environment. If the hvm_bootstrap misc module 4500 * is not available then the modstub for this function will return 0. 4501 * If the hvm_bootstrap misc module is available it will be loaded 4502 * and hvmboot_rootconf() will be invoked. 4503 */ 4504 if (error = hvmboot_rootconf()) 4505 return (error); 4506 #endif /* __x86 */ 4507 4508 if (error = clboot_rootconf()) 4509 return (error); 4510 4511 if (modload("fs", fsmod) == -1) 4512 panic("Cannot _init %s module", fsmod); 4513 4514 RLOCK_VFSSW(); 4515 vsw = vfs_getvfsswbyname(fstyp); 4516 RUNLOCK_VFSSW(); 4517 if (vsw == NULL) { 4518 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp); 4519 return (ENXIO); 4520 } 4521 VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0); 4522 VFS_HOLD(rootvfs); 4523 4524 /* always mount readonly first */ 4525 rootvfs->vfs_flag |= VFS_RDONLY; 4526 4527 pm_init(); 4528 4529 if (netboot && iscsiboot_prop) { 4530 cmn_err(CE_WARN, "NFS boot and iSCSI boot" 4531 " shouldn't happen in the same time"); 4532 return (EINVAL); 4533 } 4534 4535 if (netboot || iscsiboot_prop) { 4536 ret = strplumb(); 4537 if (ret != 0) { 4538 cmn_err(CE_WARN, "Cannot plumb network device %d", ret); 4539 return (EFAULT); 4540 } 4541 } 4542 4543 if ((ret == 0) && iscsiboot_prop) { 4544 ret = modload("drv", "iscsi"); 4545 /* -1 indicates fail */ 4546 if (ret == -1) { 4547 cmn_err(CE_WARN, "Failed to load iscsi module"); 4548 iscsi_boot_prop_free(); 4549 return (EINVAL); 4550 } else { 4551 if (!i_ddi_attach_pseudo_node("iscsi")) { 4552 cmn_err(CE_WARN, 4553 "Failed to attach iscsi driver"); 4554 iscsi_boot_prop_free(); 4555 return (ENODEV); 4556 } 4557 } 4558 } 4559 4560 error = VFS_MOUNTROOT(rootvfs, ROOT_INIT); 4561 vfs_unrefvfssw(vsw); 4562 rootdev = rootvfs->vfs_dev; 4563 4564 if (error) 4565 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n", 4566 rootfs.bo_name, fstyp); 4567 else 4568 cmn_err(CE_CONT, "?root on %s fstype %s\n", 4569 rootfs.bo_name, fstyp); 4570 return (error); 4571 } 4572 4573 /* 4574 * XXX this is called by nfs only and should probably be removed 4575 * If booted with ASKNAME, prompt on the console for a filesystem 4576 * name and return it. 4577 */ 4578 void 4579 getfsname(char *askfor, char *name, size_t namelen) 4580 { 4581 if (boothowto & RB_ASKNAME) { 4582 printf("%s name: ", askfor); 4583 console_gets(name, namelen); 4584 } 4585 } 4586 4587 /* 4588 * Init the root filesystem type (rootfs.bo_fstype) from the "fstype" 4589 * property. 4590 * 4591 * Filesystem types starting with the prefix "nfs" are diskless clients; 4592 * init the root filename name (rootfs.bo_name), too. 4593 * 4594 * If we are booting via NFS we currently have these options: 4595 * nfs - dynamically choose NFS V2, V3, or V4 (default) 4596 * nfs2 - force NFS V2 4597 * nfs3 - force NFS V3 4598 * nfs4 - force NFS V4 4599 * Because we need to maintain backward compatibility with the naming 4600 * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c) 4601 * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs". The dynamic 4602 * nfs module will map the type back to either "nfs", "nfs3", or "nfs4". 4603 * This is only for root filesystems, all other uses will expect 4604 * that "nfs" == NFS V2. 4605 */ 4606 static void 4607 getrootfs(char **fstypp, char **fsmodp) 4608 { 4609 char *propstr = NULL; 4610 4611 /* 4612 * Check fstype property; for diskless it should be one of "nfs", 4613 * "nfs2", "nfs3" or "nfs4". 4614 */ 4615 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4616 DDI_PROP_DONTPASS, "fstype", &propstr) 4617 == DDI_SUCCESS) { 4618 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME); 4619 ddi_prop_free(propstr); 4620 4621 /* 4622 * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set, 4623 * assume the type of this root filesystem is 'zfs'. 4624 */ 4625 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4626 DDI_PROP_DONTPASS, "zfs-bootfs", &propstr) 4627 == DDI_SUCCESS) { 4628 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME); 4629 ddi_prop_free(propstr); 4630 } 4631 4632 if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) { 4633 *fstypp = *fsmodp = rootfs.bo_fstype; 4634 return; 4635 } 4636 4637 ++netboot; 4638 4639 if (strcmp(rootfs.bo_fstype, "nfs2") == 0) 4640 (void) strcpy(rootfs.bo_fstype, "nfs"); 4641 else if (strcmp(rootfs.bo_fstype, "nfs") == 0) 4642 (void) strcpy(rootfs.bo_fstype, "nfsdyn"); 4643 4644 /* 4645 * check if path to network interface is specified in bootpath 4646 * or by a hypervisor domain configuration file. 4647 * XXPV - enable strlumb_get_netdev_path() 4648 */ 4649 if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS, 4650 "xpv-nfsroot")) { 4651 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0"); 4652 } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(), 4653 DDI_PROP_DONTPASS, "bootpath", &propstr) 4654 == DDI_SUCCESS) { 4655 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME); 4656 ddi_prop_free(propstr); 4657 } else { 4658 rootfs.bo_name[0] = '\0'; 4659 } 4660 *fstypp = rootfs.bo_fstype; 4661 *fsmodp = "nfs"; 4662 } 4663 #endif 4664 4665 /* 4666 * VFS feature routines 4667 */ 4668 4669 #define VFTINDEX(feature) (((feature) >> 32) & 0xFFFFFFFF) 4670 #define VFTBITS(feature) ((feature) & 0xFFFFFFFFLL) 4671 4672 /* Register a feature in the vfs */ 4673 void 4674 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature) 4675 { 4676 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4677 if (vfsp->vfs_implp == NULL) 4678 return; 4679 4680 vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature); 4681 } 4682 4683 void 4684 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature) 4685 { 4686 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4687 if (vfsp->vfs_implp == NULL) 4688 return; 4689 vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature); 4690 } 4691 4692 /* 4693 * Query a vfs for a feature. 4694 * Returns 1 if feature is present, 0 if not 4695 */ 4696 int 4697 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature) 4698 { 4699 int ret = 0; 4700 4701 /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */ 4702 if (vfsp->vfs_implp == NULL) 4703 return (ret); 4704 4705 if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature)) 4706 ret = 1; 4707 4708 return (ret); 4709 } 4710 4711 /* 4712 * Propagate feature set from one vfs to another 4713 */ 4714 void 4715 vfs_propagate_features(vfs_t *from, vfs_t *to) 4716 { 4717 int i; 4718 4719 if (to->vfs_implp == NULL || from->vfs_implp == NULL) 4720 return; 4721 4722 for (i = 1; i <= to->vfs_featureset[0]; i++) { 4723 to->vfs_featureset[i] = from->vfs_featureset[i]; 4724 } 4725 } 4726 4727 #define LOFINODE_PATH "/dev/lofi/%d" 4728 4729 /* 4730 * Return the vnode for the lofi node if there's a lofi mount in place. 4731 * Returns -1 when there's no lofi node, 0 on success, and > 0 on 4732 * failure. 4733 */ 4734 int 4735 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp) 4736 { 4737 char *path = NULL; 4738 int strsize; 4739 int err; 4740 4741 if (vfsp->vfs_lofi_id == 0) { 4742 *vpp = NULL; 4743 return (-1); 4744 } 4745 4746 strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_id); 4747 path = kmem_alloc(strsize + 1, KM_SLEEP); 4748 (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_id); 4749 4750 /* 4751 * We may be inside a zone, so we need to use the /dev path, but 4752 * it's created asynchronously, so we wait here. 4753 */ 4754 for (;;) { 4755 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp); 4756 4757 if (err != ENOENT) 4758 break; 4759 4760 if ((err = delay_sig(hz / 8)) == EINTR) 4761 break; 4762 } 4763 4764 if (err) 4765 *vpp = NULL; 4766 4767 kmem_free(path, strsize + 1); 4768 return (err); 4769 }