Print this page
7178 tmpfs incorrectly calculates amount of free space
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/tmpfs/tmp_vfsops.c
+++ new/usr/src/uts/common/fs/tmpfs/tmp_vfsops.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
↓ open down ↓ |
13 lines elided |
↑ open up ↑ |
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21 /*
22 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved.
23 23 * Copyright (c) 2011, Joyent, Inc. All rights reserved.
24 + * Copyright 2016 RackTop Systems.
24 25 */
25 26
26 27 #include <sys/types.h>
27 28 #include <sys/param.h>
28 29 #include <sys/sysmacros.h>
29 30 #include <sys/kmem.h>
30 31 #include <sys/time.h>
31 32 #include <sys/pathname.h>
32 33 #include <sys/vfs.h>
33 34 #include <sys/vfs_opreg.h>
34 35 #include <sys/vnode.h>
35 36 #include <sys/stat.h>
36 37 #include <sys/uio.h>
37 38 #include <sys/stat.h>
38 39 #include <sys/errno.h>
39 40 #include <sys/cmn_err.h>
40 41 #include <sys/cred.h>
41 42 #include <sys/statvfs.h>
42 43 #include <sys/mount.h>
43 44 #include <sys/debug.h>
44 45 #include <sys/systm.h>
45 46 #include <sys/mntent.h>
46 47 #include <fs/fs_subr.h>
47 48 #include <vm/page.h>
48 49 #include <vm/anon.h>
49 50 #include <sys/model.h>
50 51 #include <sys/policy.h>
51 52
52 53 #include <sys/fs/swapnode.h>
53 54 #include <sys/fs/tmp.h>
54 55 #include <sys/fs/tmpnode.h>
55 56
56 57 static int tmpfsfstype;
57 58
58 59 /*
59 60 * tmpfs vfs operations.
60 61 */
61 62 static int tmpfsinit(int, char *);
62 63 static int tmp_mount(struct vfs *, struct vnode *,
63 64 struct mounta *, struct cred *);
64 65 static int tmp_unmount(struct vfs *, int, struct cred *);
65 66 static int tmp_root(struct vfs *, struct vnode **);
66 67 static int tmp_statvfs(struct vfs *, struct statvfs64 *);
67 68 static int tmp_vget(struct vfs *, struct vnode **, struct fid *);
68 69
69 70 /*
70 71 * Loadable module wrapper
71 72 */
72 73 #include <sys/modctl.h>
73 74
74 75 static mntopts_t tmpfs_proto_opttbl;
75 76
76 77 static vfsdef_t vfw = {
77 78 VFSDEF_VERSION,
78 79 "tmpfs",
79 80 tmpfsinit,
80 81 VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_ZMOUNT,
81 82 &tmpfs_proto_opttbl
82 83 };
83 84
84 85 /*
85 86 * in-kernel mnttab options
86 87 */
87 88 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
88 89 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
89 90
90 91 static mntopt_t tmpfs_options[] = {
91 92 /* Option name Cancel Opt Arg Flags Data */
92 93 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, NULL},
93 94 { MNTOPT_NOXATTR, noxattr_cancel, NULL, NULL, NULL},
94 95 { "size", NULL, "0", MO_HASVALUE, NULL}
95 96 };
96 97
97 98
98 99 static mntopts_t tmpfs_proto_opttbl = {
99 100 sizeof (tmpfs_options) / sizeof (mntopt_t),
100 101 tmpfs_options
101 102 };
102 103
103 104 /*
104 105 * Module linkage information
105 106 */
106 107 static struct modlfs modlfs = {
107 108 &mod_fsops, "filesystem for tmpfs", &vfw
108 109 };
109 110
110 111 static struct modlinkage modlinkage = {
111 112 MODREV_1, &modlfs, NULL
112 113 };
113 114
114 115 int
115 116 _init()
116 117 {
117 118 return (mod_install(&modlinkage));
118 119 }
119 120
120 121 int
121 122 _fini()
122 123 {
123 124 int error;
124 125
125 126 error = mod_remove(&modlinkage);
126 127 if (error)
127 128 return (error);
128 129 /*
129 130 * Tear down the operations vectors
130 131 */
131 132 (void) vfs_freevfsops_by_type(tmpfsfstype);
132 133 vn_freevnodeops(tmp_vnodeops);
133 134 return (0);
134 135 }
135 136
136 137 int
137 138 _info(struct modinfo *modinfop)
138 139 {
139 140 return (mod_info(&modlinkage, modinfop));
140 141 }
141 142
142 143 /*
143 144 * The following are patchable variables limiting the amount of system
144 145 * resources tmpfs can use.
145 146 *
146 147 * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory
147 148 * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries)
148 149 * It is not determined by setting a hard limit but rather as a percentage of
149 150 * physical memory which is determined when tmpfs is first used in the system.
150 151 *
151 152 * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for
152 153 * the rest of the system. In other words, if the amount of free swap space
153 154 * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs
154 155 * anon allocations will fail.
155 156 *
156 157 * There is also a per mount limit on the amount of swap space
157 158 * (tmount.tm_anonmax) settable via a mount option.
158 159 */
159 160 size_t tmpfs_maxkmem = 0;
160 161 size_t tmpfs_minfree = 0;
161 162 size_t tmp_kmemspace; /* bytes of kernel heap used by all tmpfs */
162 163
163 164 static major_t tmpfs_major;
164 165 static minor_t tmpfs_minor;
165 166 static kmutex_t tmpfs_minor_lock;
166 167
167 168 /*
168 169 * initialize global tmpfs locks and such
169 170 * called when loading tmpfs module
170 171 */
171 172 static int
172 173 tmpfsinit(int fstype, char *name)
173 174 {
174 175 static const fs_operation_def_t tmp_vfsops_template[] = {
175 176 VFSNAME_MOUNT, { .vfs_mount = tmp_mount },
176 177 VFSNAME_UNMOUNT, { .vfs_unmount = tmp_unmount },
177 178 VFSNAME_ROOT, { .vfs_root = tmp_root },
178 179 VFSNAME_STATVFS, { .vfs_statvfs = tmp_statvfs },
179 180 VFSNAME_VGET, { .vfs_vget = tmp_vget },
180 181 NULL, NULL
181 182 };
182 183 int error;
183 184 extern void tmpfs_hash_init();
184 185
185 186 tmpfs_hash_init();
186 187 tmpfsfstype = fstype;
187 188 ASSERT(tmpfsfstype != 0);
188 189
189 190 error = vfs_setfsops(fstype, tmp_vfsops_template, NULL);
190 191 if (error != 0) {
191 192 cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template");
192 193 return (error);
193 194 }
194 195
195 196 error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops);
196 197 if (error != 0) {
197 198 (void) vfs_freevfsops_by_type(fstype);
198 199 cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template");
199 200 return (error);
200 201 }
201 202
202 203 /*
203 204 * tmpfs_minfree doesn't need to be some function of configured
204 205 * swap space since it really is an absolute limit of swap space
205 206 * which still allows other processes to execute.
206 207 */
207 208 if (tmpfs_minfree == 0) {
208 209 /*
209 210 * Set if not patched
210 211 */
211 212 tmpfs_minfree = btopr(TMPMINFREE);
212 213 }
213 214
214 215 /*
215 216 * The maximum amount of space tmpfs can allocate is
216 217 * TMPMAXPROCKMEM percent of kernel memory
217 218 */
218 219 if (tmpfs_maxkmem == 0)
219 220 tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM);
220 221
221 222 if ((tmpfs_major = getudev()) == (major_t)-1) {
222 223 cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number.");
223 224 tmpfs_major = 0;
224 225 }
225 226 mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL);
226 227 return (0);
227 228 }
228 229
229 230 static int
230 231 tmp_mount(
231 232 struct vfs *vfsp,
232 233 struct vnode *mvp,
233 234 struct mounta *uap,
234 235 struct cred *cr)
235 236 {
236 237 struct tmount *tm = NULL;
237 238 struct tmpnode *tp;
238 239 struct pathname dpn;
239 240 int error;
240 241 pgcnt_t anonmax;
241 242 struct vattr rattr;
242 243 int got_attrs;
243 244
244 245 char *sizestr;
245 246
246 247 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
247 248 return (error);
248 249
249 250 if (mvp->v_type != VDIR)
250 251 return (ENOTDIR);
251 252
252 253 mutex_enter(&mvp->v_lock);
253 254 if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 &&
254 255 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
255 256 mutex_exit(&mvp->v_lock);
256 257 return (EBUSY);
257 258 }
258 259 mutex_exit(&mvp->v_lock);
259 260
260 261 /*
261 262 * Having the resource be anything but "swap" doesn't make sense.
262 263 */
263 264 vfs_setresource(vfsp, "swap", 0);
264 265
265 266 /*
266 267 * now look for options we understand...
267 268 */
268 269
269 270 /* tmpfs doesn't support read-only mounts */
270 271 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
271 272 error = EINVAL;
272 273 goto out;
273 274 }
274 275
275 276 /*
276 277 * tm_anonmax is set according to the mount arguments
277 278 * if any. Otherwise, it is set to a maximum value.
278 279 */
279 280 if (vfs_optionisset(vfsp, "size", &sizestr)) {
280 281 if ((error = tmp_convnum(sizestr, &anonmax)) != 0)
281 282 goto out;
282 283 } else {
283 284 anonmax = ULONG_MAX;
284 285 }
285 286
286 287 if (error = pn_get(uap->dir,
287 288 (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn))
288 289 goto out;
289 290
290 291 if (uap->flags & MS_REMOUNT) {
291 292 tm = (struct tmount *)VFSTOTM(vfsp);
292 293
293 294 /*
294 295 * If we change the size so its less than what is currently
295 296 * being used, we allow that. The file system will simply be
296 297 * full until enough files have been removed to get below the
297 298 * new max.
298 299 */
299 300 mutex_enter(&tm->tm_contents);
300 301 tm->tm_anonmax = anonmax;
301 302 mutex_exit(&tm->tm_contents);
302 303 goto out;
303 304 }
304 305
305 306 if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) {
306 307 pn_free(&dpn);
307 308 error = ENOMEM;
308 309 goto out;
309 310 }
310 311
311 312 /*
312 313 * find an available minor device number for this mount
313 314 */
314 315 mutex_enter(&tmpfs_minor_lock);
315 316 do {
316 317 tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32;
317 318 tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor);
318 319 } while (vfs_devismounted(tm->tm_dev));
319 320 mutex_exit(&tmpfs_minor_lock);
320 321
321 322 /*
322 323 * Set but don't bother entering the mutex
323 324 * (tmount not on mount list yet)
324 325 */
325 326 mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL);
326 327 mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL);
327 328
328 329 tm->tm_vfsp = vfsp;
329 330 tm->tm_anonmax = anonmax;
330 331
331 332 vfsp->vfs_data = (caddr_t)tm;
332 333 vfsp->vfs_fstype = tmpfsfstype;
333 334 vfsp->vfs_dev = tm->tm_dev;
334 335 vfsp->vfs_bsize = PAGESIZE;
335 336 vfsp->vfs_flag |= VFS_NOTRUNC;
336 337 vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype);
337 338 tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE);
338 339 (void) strcpy(tm->tm_mntpath, dpn.pn_path);
339 340
340 341 /*
341 342 * allocate and initialize root tmpnode structure
342 343 */
343 344 bzero(&rattr, sizeof (struct vattr));
344 345 rattr.va_mode = (mode_t)(S_IFDIR | 0777); /* XXX modes */
345 346 rattr.va_type = VDIR;
346 347 rattr.va_rdev = 0;
347 348 tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE);
348 349 tmpnode_init(tm, tp, &rattr, cr);
349 350
350 351 /*
351 352 * Get the mode, uid, and gid from the underlying mount point.
352 353 */
353 354 rattr.va_mask = AT_MODE|AT_UID|AT_GID; /* Hint to getattr */
354 355 got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr, NULL);
355 356
356 357 rw_enter(&tp->tn_rwlock, RW_WRITER);
357 358 TNTOV(tp)->v_flag |= VROOT;
358 359
359 360 /*
360 361 * If the getattr succeeded, use its results. Otherwise allow
361 362 * the previously set hardwired defaults to prevail.
362 363 */
363 364 if (got_attrs == 0) {
364 365 tp->tn_mode = rattr.va_mode;
365 366 tp->tn_uid = rattr.va_uid;
366 367 tp->tn_gid = rattr.va_gid;
367 368 }
368 369
369 370 /*
370 371 * initialize linked list of tmpnodes so that the back pointer of
371 372 * the root tmpnode always points to the last one on the list
372 373 * and the forward pointer of the last node is null
373 374 */
374 375 tp->tn_back = tp;
375 376 tp->tn_forw = NULL;
376 377 tp->tn_nlink = 0;
377 378 tm->tm_rootnode = tp;
378 379
379 380 tdirinit(tp, tp);
380 381
381 382 rw_exit(&tp->tn_rwlock);
382 383
383 384 pn_free(&dpn);
384 385 error = 0;
385 386
386 387 out:
387 388 if (error == 0)
388 389 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS);
389 390
390 391 return (error);
391 392 }
392 393
393 394 static int
394 395 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr)
395 396 {
396 397 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
397 398 struct tmpnode *tnp, *cancel;
398 399 struct vnode *vp;
399 400 int error;
400 401
401 402 if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0)
402 403 return (error);
403 404
404 405 /*
405 406 * forced unmount is not supported by this file system
406 407 * and thus, ENOTSUP, is being returned.
407 408 */
408 409 if (flag & MS_FORCE)
409 410 return (ENOTSUP);
410 411
411 412 mutex_enter(&tm->tm_contents);
412 413
413 414 /*
414 415 * If there are no open files, only the root node should have
415 416 * a reference count.
416 417 * With tm_contents held, nothing can be added or removed.
417 418 * There may be some dirty pages. To prevent fsflush from
418 419 * disrupting the unmount, put a hold on each node while scanning.
419 420 * If we find a previously referenced node, undo the holds we have
420 421 * placed and fail EBUSY.
421 422 */
422 423 tnp = tm->tm_rootnode;
423 424 if (TNTOV(tnp)->v_count > 1) {
424 425 mutex_exit(&tm->tm_contents);
425 426 return (EBUSY);
426 427 }
427 428
428 429 for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) {
429 430 if ((vp = TNTOV(tnp))->v_count > 0) {
430 431 cancel = tm->tm_rootnode->tn_forw;
431 432 while (cancel != tnp) {
432 433 vp = TNTOV(cancel);
433 434 ASSERT(vp->v_count > 0);
434 435 VN_RELE(vp);
435 436 cancel = cancel->tn_forw;
436 437 }
437 438 mutex_exit(&tm->tm_contents);
438 439 return (EBUSY);
439 440 }
440 441 VN_HOLD(vp);
441 442 }
442 443
443 444 /*
444 445 * We can drop the mutex now because no one can find this mount
445 446 */
446 447 mutex_exit(&tm->tm_contents);
447 448
448 449 /*
449 450 * Free all kmemalloc'd and anonalloc'd memory associated with
450 451 * this filesystem. To do this, we go through the file list twice,
451 452 * once to remove all the directory entries, and then to remove
452 453 * all the files. We do this because there is useful code in
453 454 * tmpnode_free which assumes that the directory entry has been
454 455 * removed before the file.
455 456 */
456 457 /*
457 458 * Remove all directory entries
458 459 */
459 460 for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) {
460 461 rw_enter(&tnp->tn_rwlock, RW_WRITER);
461 462 if (tnp->tn_type == VDIR)
462 463 tdirtrunc(tnp);
463 464 if (tnp->tn_vnode->v_flag & V_XATTRDIR) {
464 465 /*
465 466 * Account for implicit attrdir reference.
466 467 */
467 468 ASSERT(tnp->tn_nlink > 0);
468 469 DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock);
469 470 }
470 471 rw_exit(&tnp->tn_rwlock);
471 472 }
472 473
473 474 ASSERT(tm->tm_rootnode);
474 475
475 476 /*
476 477 * All links are gone, v_count is keeping nodes in place.
477 478 * VN_RELE should make the node disappear, unless somebody
478 479 * is holding pages against it. Nap and retry until it disappears.
479 480 *
480 481 * We re-acquire the lock to prevent others who have a HOLD on
481 482 * a tmpnode via its pages or anon slots from blowing it away
482 483 * (in tmp_inactive) while we're trying to get to it here. Once
483 484 * we have a HOLD on it we know it'll stick around.
484 485 *
485 486 */
486 487 mutex_enter(&tm->tm_contents);
487 488 /*
488 489 * Remove all the files (except the rootnode) backwards.
489 490 */
490 491 while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) {
491 492 mutex_exit(&tm->tm_contents);
492 493 /*
493 494 * Inhibit tmp_inactive from touching attribute directory
494 495 * as all nodes will be released here.
495 496 * Note we handled the link count in pass 2 above.
496 497 */
497 498 rw_enter(&tnp->tn_rwlock, RW_WRITER);
498 499 tnp->tn_xattrdp = NULL;
499 500 rw_exit(&tnp->tn_rwlock);
500 501 vp = TNTOV(tnp);
501 502 VN_RELE(vp);
502 503 mutex_enter(&tm->tm_contents);
503 504 /*
504 505 * It's still there after the RELE. Someone else like pageout
505 506 * has a hold on it so wait a bit and then try again - we know
506 507 * they'll give it up soon.
507 508 */
508 509 if (tnp == tm->tm_rootnode->tn_back) {
509 510 VN_HOLD(vp);
510 511 mutex_exit(&tm->tm_contents);
511 512 delay(hz / 4);
512 513 mutex_enter(&tm->tm_contents);
513 514 }
514 515 }
515 516 mutex_exit(&tm->tm_contents);
516 517
517 518 tm->tm_rootnode->tn_xattrdp = NULL;
518 519 VN_RELE(TNTOV(tm->tm_rootnode));
519 520
520 521 ASSERT(tm->tm_mntpath);
521 522
522 523 tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1);
523 524
524 525 ASSERT(tm->tm_anonmem == 0);
525 526
526 527 mutex_destroy(&tm->tm_contents);
527 528 mutex_destroy(&tm->tm_renamelck);
528 529 tmp_memfree(tm, sizeof (struct tmount));
529 530
530 531 return (0);
531 532 }
532 533
533 534 /*
534 535 * return root tmpnode for given vnode
535 536 */
536 537 static int
537 538 tmp_root(struct vfs *vfsp, struct vnode **vpp)
538 539 {
539 540 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
540 541 struct tmpnode *tp = tm->tm_rootnode;
541 542 struct vnode *vp;
542 543
543 544 ASSERT(tp);
544 545
545 546 vp = TNTOV(tp);
546 547 VN_HOLD(vp);
547 548 *vpp = vp;
548 549 return (0);
549 550 }
550 551
551 552 static int
552 553 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp)
553 554 {
554 555 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
555 556 ulong_t blocks;
556 557 dev32_t d32;
557 558 zoneid_t eff_zid;
558 559 struct zone *zp;
559 560
560 561 /*
561 562 * The file system may have been mounted by the global zone on
562 563 * behalf of the non-global zone. In that case, the tmount zone_id
563 564 * will be the global zone. We still want to show the swap cap inside
564 565 * the zone in this case, even though the file system was mounted by
565 566 * the global zone.
566 567 */
567 568 if (curproc->p_zone->zone_id != GLOBAL_ZONEUNIQID)
568 569 zp = curproc->p_zone;
569 570 else
570 571 zp = tm->tm_vfsp->vfs_zone;
571 572
572 573 if (zp == NULL)
573 574 eff_zid = GLOBAL_ZONEUNIQID;
574 575 else
575 576 eff_zid = zp->zone_id;
576 577
577 578 sbp->f_bsize = PAGESIZE;
578 579 sbp->f_frsize = PAGESIZE;
579 580
580 581 /*
581 582 * Find the amount of available physical and memory swap
↓ open down ↓ |
548 lines elided |
↑ open up ↑ |
582 583 */
583 584 mutex_enter(&anoninfo_lock);
584 585 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv);
585 586 blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP;
586 587 mutex_exit(&anoninfo_lock);
587 588
588 589 /*
589 590 * If tm_anonmax for this mount is less than the available swap space
590 591 * (minus the amount tmpfs can't use), use that instead
591 592 */
592 - if (blocks > tmpfs_minfree)
593 + if (blocks > tmpfs_minfree && tm->tm_anonmax > tm->tm_anonmem)
593 594 sbp->f_bfree = MIN(blocks - tmpfs_minfree,
594 595 tm->tm_anonmax - tm->tm_anonmem);
595 596 else
596 597 sbp->f_bfree = 0;
597 598
598 599 sbp->f_bavail = sbp->f_bfree;
599 600
600 601 /*
601 602 * Total number of blocks is what's available plus what's been used
602 603 */
603 604 sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem);
604 605
605 606 if (eff_zid != GLOBAL_ZONEUNIQID &&
606 607 zp->zone_max_swap_ctl != UINT64_MAX) {
607 608 /*
608 609 * If the fs is used by a non-global zone with a swap cap,
609 610 * then report the capped size.
610 611 */
611 612 rctl_qty_t cap, used;
612 613 pgcnt_t pgcap, pgused;
613 614
614 615 mutex_enter(&zp->zone_mem_lock);
615 616 cap = zp->zone_max_swap_ctl;
616 617 used = zp->zone_max_swap;
617 618 mutex_exit(&zp->zone_mem_lock);
618 619
619 620 pgcap = btop(cap);
620 621 pgused = btop(used);
621 622
622 623 sbp->f_bfree = MIN(pgcap - pgused, sbp->f_bfree);
623 624 sbp->f_bavail = sbp->f_bfree;
624 625 sbp->f_blocks = MIN(pgcap, sbp->f_blocks);
625 626 }
626 627
627 628 /*
628 629 * The maximum number of files available is approximately the number
629 630 * of tmpnodes we can allocate from the remaining kernel memory
630 631 * available to tmpfs. This is fairly inaccurate since it doesn't
631 632 * take into account the names stored in the directory entries.
632 633 */
633 634 if (tmpfs_maxkmem > tmp_kmemspace)
634 635 sbp->f_ffree = (tmpfs_maxkmem - tmp_kmemspace) /
635 636 (sizeof (struct tmpnode) + sizeof (struct tdirent));
636 637 else
637 638 sbp->f_ffree = 0;
638 639
639 640 sbp->f_files = tmpfs_maxkmem /
640 641 (sizeof (struct tmpnode) + sizeof (struct tdirent));
641 642 sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree);
642 643 (void) cmpldev(&d32, vfsp->vfs_dev);
643 644 sbp->f_fsid = d32;
644 645 (void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name);
645 646 (void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr));
646 647 /*
647 648 * ensure null termination
648 649 */
649 650 sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0';
650 651 sbp->f_flag = vf_to_stf(vfsp->vfs_flag);
651 652 sbp->f_namemax = MAXNAMELEN - 1;
652 653 return (0);
653 654 }
654 655
655 656 static int
656 657 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp)
657 658 {
658 659 struct tfid *tfid;
659 660 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp);
660 661 struct tmpnode *tp = NULL;
661 662
662 663 tfid = (struct tfid *)fidp;
663 664 *vpp = NULL;
664 665
665 666 mutex_enter(&tm->tm_contents);
666 667 for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) {
667 668 mutex_enter(&tp->tn_tlock);
668 669 if (tp->tn_nodeid == tfid->tfid_ino) {
669 670 /*
670 671 * If the gen numbers don't match we know the
671 672 * file won't be found since only one tmpnode
672 673 * can have this number at a time.
673 674 */
674 675 if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) {
675 676 mutex_exit(&tp->tn_tlock);
676 677 mutex_exit(&tm->tm_contents);
677 678 return (0);
678 679 }
679 680 *vpp = (struct vnode *)TNTOV(tp);
680 681
681 682 VN_HOLD(*vpp);
682 683
683 684 if ((tp->tn_mode & S_ISVTX) &&
684 685 !(tp->tn_mode & (S_IXUSR | S_IFDIR))) {
685 686 mutex_enter(&(*vpp)->v_lock);
686 687 (*vpp)->v_flag |= VISSWAP;
687 688 mutex_exit(&(*vpp)->v_lock);
688 689 }
689 690 mutex_exit(&tp->tn_tlock);
690 691 mutex_exit(&tm->tm_contents);
691 692 return (0);
692 693 }
693 694 mutex_exit(&tp->tn_tlock);
694 695 }
695 696 mutex_exit(&tm->tm_contents);
696 697 return (0);
697 698 }
↓ open down ↓ |
95 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX