1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1990, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2011, Joyent, Inc. All rights reserved. 24 * Copyright 2016 RackTop Systems. 25 */ 26 27 #include <sys/types.h> 28 #include <sys/param.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/time.h> 32 #include <sys/pathname.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/vnode.h> 36 #include <sys/stat.h> 37 #include <sys/uio.h> 38 #include <sys/stat.h> 39 #include <sys/errno.h> 40 #include <sys/cmn_err.h> 41 #include <sys/cred.h> 42 #include <sys/statvfs.h> 43 #include <sys/mount.h> 44 #include <sys/debug.h> 45 #include <sys/systm.h> 46 #include <sys/mntent.h> 47 #include <fs/fs_subr.h> 48 #include <vm/page.h> 49 #include <vm/anon.h> 50 #include <sys/model.h> 51 #include <sys/policy.h> 52 53 #include <sys/fs/swapnode.h> 54 #include <sys/fs/tmp.h> 55 #include <sys/fs/tmpnode.h> 56 57 static int tmpfsfstype; 58 59 /* 60 * tmpfs vfs operations. 61 */ 62 static int tmpfsinit(int, char *); 63 static int tmp_mount(struct vfs *, struct vnode *, 64 struct mounta *, struct cred *); 65 static int tmp_unmount(struct vfs *, int, struct cred *); 66 static int tmp_root(struct vfs *, struct vnode **); 67 static int tmp_statvfs(struct vfs *, struct statvfs64 *); 68 static int tmp_vget(struct vfs *, struct vnode **, struct fid *); 69 70 /* 71 * Loadable module wrapper 72 */ 73 #include <sys/modctl.h> 74 75 static mntopts_t tmpfs_proto_opttbl; 76 77 static vfsdef_t vfw = { 78 VFSDEF_VERSION, 79 "tmpfs", 80 tmpfsinit, 81 VSW_HASPROTO|VSW_CANREMOUNT|VSW_STATS|VSW_ZMOUNT, 82 &tmpfs_proto_opttbl 83 }; 84 85 /* 86 * in-kernel mnttab options 87 */ 88 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 89 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 90 91 static mntopt_t tmpfs_options[] = { 92 /* Option name Cancel Opt Arg Flags Data */ 93 { MNTOPT_XATTR, xattr_cancel, NULL, MO_DEFAULT, NULL}, 94 { MNTOPT_NOXATTR, noxattr_cancel, NULL, NULL, NULL}, 95 { "size", NULL, "0", MO_HASVALUE, NULL} 96 }; 97 98 99 static mntopts_t tmpfs_proto_opttbl = { 100 sizeof (tmpfs_options) / sizeof (mntopt_t), 101 tmpfs_options 102 }; 103 104 /* 105 * Module linkage information 106 */ 107 static struct modlfs modlfs = { 108 &mod_fsops, "filesystem for tmpfs", &vfw 109 }; 110 111 static struct modlinkage modlinkage = { 112 MODREV_1, &modlfs, NULL 113 }; 114 115 int 116 _init() 117 { 118 return (mod_install(&modlinkage)); 119 } 120 121 int 122 _fini() 123 { 124 int error; 125 126 error = mod_remove(&modlinkage); 127 if (error) 128 return (error); 129 /* 130 * Tear down the operations vectors 131 */ 132 (void) vfs_freevfsops_by_type(tmpfsfstype); 133 vn_freevnodeops(tmp_vnodeops); 134 return (0); 135 } 136 137 int 138 _info(struct modinfo *modinfop) 139 { 140 return (mod_info(&modlinkage, modinfop)); 141 } 142 143 /* 144 * The following are patchable variables limiting the amount of system 145 * resources tmpfs can use. 146 * 147 * tmpfs_maxkmem limits the amount of kernel kmem_alloc memory 148 * tmpfs can use for it's data structures (e.g. tmpnodes, directory entries) 149 * It is not determined by setting a hard limit but rather as a percentage of 150 * physical memory which is determined when tmpfs is first used in the system. 151 * 152 * tmpfs_minfree is the minimum amount of swap space that tmpfs leaves for 153 * the rest of the system. In other words, if the amount of free swap space 154 * in the system (i.e. anoninfo.ani_free) drops below tmpfs_minfree, tmpfs 155 * anon allocations will fail. 156 * 157 * There is also a per mount limit on the amount of swap space 158 * (tmount.tm_anonmax) settable via a mount option. 159 */ 160 size_t tmpfs_maxkmem = 0; 161 size_t tmpfs_minfree = 0; 162 size_t tmp_kmemspace; /* bytes of kernel heap used by all tmpfs */ 163 164 static major_t tmpfs_major; 165 static minor_t tmpfs_minor; 166 static kmutex_t tmpfs_minor_lock; 167 168 /* 169 * initialize global tmpfs locks and such 170 * called when loading tmpfs module 171 */ 172 static int 173 tmpfsinit(int fstype, char *name) 174 { 175 static const fs_operation_def_t tmp_vfsops_template[] = { 176 VFSNAME_MOUNT, { .vfs_mount = tmp_mount }, 177 VFSNAME_UNMOUNT, { .vfs_unmount = tmp_unmount }, 178 VFSNAME_ROOT, { .vfs_root = tmp_root }, 179 VFSNAME_STATVFS, { .vfs_statvfs = tmp_statvfs }, 180 VFSNAME_VGET, { .vfs_vget = tmp_vget }, 181 NULL, NULL 182 }; 183 int error; 184 extern void tmpfs_hash_init(); 185 186 tmpfs_hash_init(); 187 tmpfsfstype = fstype; 188 ASSERT(tmpfsfstype != 0); 189 190 error = vfs_setfsops(fstype, tmp_vfsops_template, NULL); 191 if (error != 0) { 192 cmn_err(CE_WARN, "tmpfsinit: bad vfs ops template"); 193 return (error); 194 } 195 196 error = vn_make_ops(name, tmp_vnodeops_template, &tmp_vnodeops); 197 if (error != 0) { 198 (void) vfs_freevfsops_by_type(fstype); 199 cmn_err(CE_WARN, "tmpfsinit: bad vnode ops template"); 200 return (error); 201 } 202 203 /* 204 * tmpfs_minfree doesn't need to be some function of configured 205 * swap space since it really is an absolute limit of swap space 206 * which still allows other processes to execute. 207 */ 208 if (tmpfs_minfree == 0) { 209 /* 210 * Set if not patched 211 */ 212 tmpfs_minfree = btopr(TMPMINFREE); 213 } 214 215 /* 216 * The maximum amount of space tmpfs can allocate is 217 * TMPMAXPROCKMEM percent of kernel memory 218 */ 219 if (tmpfs_maxkmem == 0) 220 tmpfs_maxkmem = MAX(PAGESIZE, kmem_maxavail() / TMPMAXFRACKMEM); 221 222 if ((tmpfs_major = getudev()) == (major_t)-1) { 223 cmn_err(CE_WARN, "tmpfsinit: Can't get unique device number."); 224 tmpfs_major = 0; 225 } 226 mutex_init(&tmpfs_minor_lock, NULL, MUTEX_DEFAULT, NULL); 227 return (0); 228 } 229 230 static int 231 tmp_mount( 232 struct vfs *vfsp, 233 struct vnode *mvp, 234 struct mounta *uap, 235 struct cred *cr) 236 { 237 struct tmount *tm = NULL; 238 struct tmpnode *tp; 239 struct pathname dpn; 240 int error; 241 pgcnt_t anonmax; 242 struct vattr rattr; 243 int got_attrs; 244 245 char *sizestr; 246 247 if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0) 248 return (error); 249 250 if (mvp->v_type != VDIR) 251 return (ENOTDIR); 252 253 mutex_enter(&mvp->v_lock); 254 if ((uap->flags & MS_REMOUNT) == 0 && (uap->flags & MS_OVERLAY) == 0 && 255 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 256 mutex_exit(&mvp->v_lock); 257 return (EBUSY); 258 } 259 mutex_exit(&mvp->v_lock); 260 261 /* 262 * Having the resource be anything but "swap" doesn't make sense. 263 */ 264 vfs_setresource(vfsp, "swap", 0); 265 266 /* 267 * now look for options we understand... 268 */ 269 270 /* tmpfs doesn't support read-only mounts */ 271 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 272 error = EINVAL; 273 goto out; 274 } 275 276 /* 277 * tm_anonmax is set according to the mount arguments 278 * if any. Otherwise, it is set to a maximum value. 279 */ 280 if (vfs_optionisset(vfsp, "size", &sizestr)) { 281 if ((error = tmp_convnum(sizestr, &anonmax)) != 0) 282 goto out; 283 } else { 284 anonmax = ULONG_MAX; 285 } 286 287 if (error = pn_get(uap->dir, 288 (uap->flags & MS_SYSSPACE) ? UIO_SYSSPACE : UIO_USERSPACE, &dpn)) 289 goto out; 290 291 if (uap->flags & MS_REMOUNT) { 292 tm = (struct tmount *)VFSTOTM(vfsp); 293 294 /* 295 * If we change the size so its less than what is currently 296 * being used, we allow that. The file system will simply be 297 * full until enough files have been removed to get below the 298 * new max. 299 */ 300 mutex_enter(&tm->tm_contents); 301 tm->tm_anonmax = anonmax; 302 mutex_exit(&tm->tm_contents); 303 goto out; 304 } 305 306 if ((tm = tmp_memalloc(sizeof (struct tmount), 0)) == NULL) { 307 pn_free(&dpn); 308 error = ENOMEM; 309 goto out; 310 } 311 312 /* 313 * find an available minor device number for this mount 314 */ 315 mutex_enter(&tmpfs_minor_lock); 316 do { 317 tmpfs_minor = (tmpfs_minor + 1) & L_MAXMIN32; 318 tm->tm_dev = makedevice(tmpfs_major, tmpfs_minor); 319 } while (vfs_devismounted(tm->tm_dev)); 320 mutex_exit(&tmpfs_minor_lock); 321 322 /* 323 * Set but don't bother entering the mutex 324 * (tmount not on mount list yet) 325 */ 326 mutex_init(&tm->tm_contents, NULL, MUTEX_DEFAULT, NULL); 327 mutex_init(&tm->tm_renamelck, NULL, MUTEX_DEFAULT, NULL); 328 329 tm->tm_vfsp = vfsp; 330 tm->tm_anonmax = anonmax; 331 332 vfsp->vfs_data = (caddr_t)tm; 333 vfsp->vfs_fstype = tmpfsfstype; 334 vfsp->vfs_dev = tm->tm_dev; 335 vfsp->vfs_bsize = PAGESIZE; 336 vfsp->vfs_flag |= VFS_NOTRUNC; 337 vfs_make_fsid(&vfsp->vfs_fsid, tm->tm_dev, tmpfsfstype); 338 tm->tm_mntpath = tmp_memalloc(dpn.pn_pathlen + 1, TMP_MUSTHAVE); 339 (void) strcpy(tm->tm_mntpath, dpn.pn_path); 340 341 /* 342 * allocate and initialize root tmpnode structure 343 */ 344 bzero(&rattr, sizeof (struct vattr)); 345 rattr.va_mode = (mode_t)(S_IFDIR | 0777); /* XXX modes */ 346 rattr.va_type = VDIR; 347 rattr.va_rdev = 0; 348 tp = tmp_memalloc(sizeof (struct tmpnode), TMP_MUSTHAVE); 349 tmpnode_init(tm, tp, &rattr, cr); 350 351 /* 352 * Get the mode, uid, and gid from the underlying mount point. 353 */ 354 rattr.va_mask = AT_MODE|AT_UID|AT_GID; /* Hint to getattr */ 355 got_attrs = VOP_GETATTR(mvp, &rattr, 0, cr, NULL); 356 357 rw_enter(&tp->tn_rwlock, RW_WRITER); 358 TNTOV(tp)->v_flag |= VROOT; 359 360 /* 361 * If the getattr succeeded, use its results. Otherwise allow 362 * the previously set hardwired defaults to prevail. 363 */ 364 if (got_attrs == 0) { 365 tp->tn_mode = rattr.va_mode; 366 tp->tn_uid = rattr.va_uid; 367 tp->tn_gid = rattr.va_gid; 368 } 369 370 /* 371 * initialize linked list of tmpnodes so that the back pointer of 372 * the root tmpnode always points to the last one on the list 373 * and the forward pointer of the last node is null 374 */ 375 tp->tn_back = tp; 376 tp->tn_forw = NULL; 377 tp->tn_nlink = 0; 378 tm->tm_rootnode = tp; 379 380 tdirinit(tp, tp); 381 382 rw_exit(&tp->tn_rwlock); 383 384 pn_free(&dpn); 385 error = 0; 386 387 out: 388 if (error == 0) 389 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 390 391 return (error); 392 } 393 394 static int 395 tmp_unmount(struct vfs *vfsp, int flag, struct cred *cr) 396 { 397 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 398 struct tmpnode *tnp, *cancel; 399 struct vnode *vp; 400 int error; 401 402 if ((error = secpolicy_fs_unmount(cr, vfsp)) != 0) 403 return (error); 404 405 /* 406 * forced unmount is not supported by this file system 407 * and thus, ENOTSUP, is being returned. 408 */ 409 if (flag & MS_FORCE) 410 return (ENOTSUP); 411 412 mutex_enter(&tm->tm_contents); 413 414 /* 415 * If there are no open files, only the root node should have 416 * a reference count. 417 * With tm_contents held, nothing can be added or removed. 418 * There may be some dirty pages. To prevent fsflush from 419 * disrupting the unmount, put a hold on each node while scanning. 420 * If we find a previously referenced node, undo the holds we have 421 * placed and fail EBUSY. 422 */ 423 tnp = tm->tm_rootnode; 424 if (TNTOV(tnp)->v_count > 1) { 425 mutex_exit(&tm->tm_contents); 426 return (EBUSY); 427 } 428 429 for (tnp = tnp->tn_forw; tnp; tnp = tnp->tn_forw) { 430 if ((vp = TNTOV(tnp))->v_count > 0) { 431 cancel = tm->tm_rootnode->tn_forw; 432 while (cancel != tnp) { 433 vp = TNTOV(cancel); 434 ASSERT(vp->v_count > 0); 435 VN_RELE(vp); 436 cancel = cancel->tn_forw; 437 } 438 mutex_exit(&tm->tm_contents); 439 return (EBUSY); 440 } 441 VN_HOLD(vp); 442 } 443 444 /* 445 * We can drop the mutex now because no one can find this mount 446 */ 447 mutex_exit(&tm->tm_contents); 448 449 /* 450 * Free all kmemalloc'd and anonalloc'd memory associated with 451 * this filesystem. To do this, we go through the file list twice, 452 * once to remove all the directory entries, and then to remove 453 * all the files. We do this because there is useful code in 454 * tmpnode_free which assumes that the directory entry has been 455 * removed before the file. 456 */ 457 /* 458 * Remove all directory entries 459 */ 460 for (tnp = tm->tm_rootnode; tnp; tnp = tnp->tn_forw) { 461 rw_enter(&tnp->tn_rwlock, RW_WRITER); 462 if (tnp->tn_type == VDIR) 463 tdirtrunc(tnp); 464 if (tnp->tn_vnode->v_flag & V_XATTRDIR) { 465 /* 466 * Account for implicit attrdir reference. 467 */ 468 ASSERT(tnp->tn_nlink > 0); 469 DECR_COUNT(&tnp->tn_nlink, &tnp->tn_tlock); 470 } 471 rw_exit(&tnp->tn_rwlock); 472 } 473 474 ASSERT(tm->tm_rootnode); 475 476 /* 477 * All links are gone, v_count is keeping nodes in place. 478 * VN_RELE should make the node disappear, unless somebody 479 * is holding pages against it. Nap and retry until it disappears. 480 * 481 * We re-acquire the lock to prevent others who have a HOLD on 482 * a tmpnode via its pages or anon slots from blowing it away 483 * (in tmp_inactive) while we're trying to get to it here. Once 484 * we have a HOLD on it we know it'll stick around. 485 * 486 */ 487 mutex_enter(&tm->tm_contents); 488 /* 489 * Remove all the files (except the rootnode) backwards. 490 */ 491 while ((tnp = tm->tm_rootnode->tn_back) != tm->tm_rootnode) { 492 mutex_exit(&tm->tm_contents); 493 /* 494 * Inhibit tmp_inactive from touching attribute directory 495 * as all nodes will be released here. 496 * Note we handled the link count in pass 2 above. 497 */ 498 rw_enter(&tnp->tn_rwlock, RW_WRITER); 499 tnp->tn_xattrdp = NULL; 500 rw_exit(&tnp->tn_rwlock); 501 vp = TNTOV(tnp); 502 VN_RELE(vp); 503 mutex_enter(&tm->tm_contents); 504 /* 505 * It's still there after the RELE. Someone else like pageout 506 * has a hold on it so wait a bit and then try again - we know 507 * they'll give it up soon. 508 */ 509 if (tnp == tm->tm_rootnode->tn_back) { 510 VN_HOLD(vp); 511 mutex_exit(&tm->tm_contents); 512 delay(hz / 4); 513 mutex_enter(&tm->tm_contents); 514 } 515 } 516 mutex_exit(&tm->tm_contents); 517 518 tm->tm_rootnode->tn_xattrdp = NULL; 519 VN_RELE(TNTOV(tm->tm_rootnode)); 520 521 ASSERT(tm->tm_mntpath); 522 523 tmp_memfree(tm->tm_mntpath, strlen(tm->tm_mntpath) + 1); 524 525 ASSERT(tm->tm_anonmem == 0); 526 527 mutex_destroy(&tm->tm_contents); 528 mutex_destroy(&tm->tm_renamelck); 529 tmp_memfree(tm, sizeof (struct tmount)); 530 531 return (0); 532 } 533 534 /* 535 * return root tmpnode for given vnode 536 */ 537 static int 538 tmp_root(struct vfs *vfsp, struct vnode **vpp) 539 { 540 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 541 struct tmpnode *tp = tm->tm_rootnode; 542 struct vnode *vp; 543 544 ASSERT(tp); 545 546 vp = TNTOV(tp); 547 VN_HOLD(vp); 548 *vpp = vp; 549 return (0); 550 } 551 552 static int 553 tmp_statvfs(struct vfs *vfsp, struct statvfs64 *sbp) 554 { 555 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 556 ulong_t blocks; 557 dev32_t d32; 558 zoneid_t eff_zid; 559 struct zone *zp; 560 561 /* 562 * The file system may have been mounted by the global zone on 563 * behalf of the non-global zone. In that case, the tmount zone_id 564 * will be the global zone. We still want to show the swap cap inside 565 * the zone in this case, even though the file system was mounted by 566 * the global zone. 567 */ 568 if (curproc->p_zone->zone_id != GLOBAL_ZONEUNIQID) 569 zp = curproc->p_zone; 570 else 571 zp = tm->tm_vfsp->vfs_zone; 572 573 if (zp == NULL) 574 eff_zid = GLOBAL_ZONEUNIQID; 575 else 576 eff_zid = zp->zone_id; 577 578 sbp->f_bsize = PAGESIZE; 579 sbp->f_frsize = PAGESIZE; 580 581 /* 582 * Find the amount of available physical and memory swap 583 */ 584 mutex_enter(&anoninfo_lock); 585 ASSERT(k_anoninfo.ani_max >= k_anoninfo.ani_phys_resv); 586 blocks = (ulong_t)CURRENT_TOTAL_AVAILABLE_SWAP; 587 mutex_exit(&anoninfo_lock); 588 589 /* 590 * Compare the amount of space that should be free to this mount 591 * (which may be limited by tm_anonmax) with the amount of space 592 * that's actually free to all tmpfs and use the lowest value. 593 */ 594 if (blocks > tmpfs_minfree && tm->tm_anonmax > tm->tm_anonmem) 595 sbp->f_bfree = MIN(blocks - tmpfs_minfree, 596 tm->tm_anonmax - tm->tm_anonmem); 597 else 598 sbp->f_bfree = 0; 599 600 sbp->f_bavail = sbp->f_bfree; 601 602 /* 603 * Total number of blocks is what's available plus what's been used 604 */ 605 sbp->f_blocks = (fsblkcnt64_t)(sbp->f_bfree + tm->tm_anonmem); 606 607 if (eff_zid != GLOBAL_ZONEUNIQID && 608 zp->zone_max_swap_ctl != UINT64_MAX) { 609 /* 610 * If the fs is used by a non-global zone with a swap cap, 611 * then report the capped size. 612 */ 613 rctl_qty_t cap, used; 614 pgcnt_t pgcap, pgused; 615 616 mutex_enter(&zp->zone_mem_lock); 617 cap = zp->zone_max_swap_ctl; 618 used = zp->zone_max_swap; 619 mutex_exit(&zp->zone_mem_lock); 620 621 pgcap = btop(cap); 622 pgused = btop(used); 623 624 sbp->f_bfree = MIN(pgcap - pgused, sbp->f_bfree); 625 sbp->f_bavail = sbp->f_bfree; 626 sbp->f_blocks = MIN(pgcap, sbp->f_blocks); 627 } 628 629 /* 630 * The maximum number of files available is approximately the number 631 * of tmpnodes we can allocate from the number of blocks available 632 * to this mount. This is fairly inaccurate since it doesn't take 633 * into account the names stored in the directory entries. 634 */ 635 sbp->f_ffree = sbp->f_bfree == 0 ? 0 : ptob(sbp->f_bfree) / 636 (sizeof (struct tmpnode) + sizeof (struct tdirent)); 637 sbp->f_files = sbp->f_blocks == 0 ? 0 : ptob(sbp->f_blocks) / 638 (sizeof (struct tmpnode) + sizeof (struct tdirent)); 639 sbp->f_favail = (fsfilcnt64_t)(sbp->f_ffree); 640 (void) cmpldev(&d32, vfsp->vfs_dev); 641 sbp->f_fsid = d32; 642 (void) strcpy(sbp->f_basetype, vfssw[tmpfsfstype].vsw_name); 643 (void) strncpy(sbp->f_fstr, tm->tm_mntpath, sizeof (sbp->f_fstr)); 644 /* 645 * ensure null termination 646 */ 647 sbp->f_fstr[sizeof (sbp->f_fstr) - 1] = '\0'; 648 sbp->f_flag = vf_to_stf(vfsp->vfs_flag); 649 sbp->f_namemax = MAXNAMELEN - 1; 650 return (0); 651 } 652 653 static int 654 tmp_vget(struct vfs *vfsp, struct vnode **vpp, struct fid *fidp) 655 { 656 struct tfid *tfid; 657 struct tmount *tm = (struct tmount *)VFSTOTM(vfsp); 658 struct tmpnode *tp = NULL; 659 660 tfid = (struct tfid *)fidp; 661 *vpp = NULL; 662 663 mutex_enter(&tm->tm_contents); 664 for (tp = tm->tm_rootnode; tp; tp = tp->tn_forw) { 665 mutex_enter(&tp->tn_tlock); 666 if (tp->tn_nodeid == tfid->tfid_ino) { 667 /* 668 * If the gen numbers don't match we know the 669 * file won't be found since only one tmpnode 670 * can have this number at a time. 671 */ 672 if (tp->tn_gen != tfid->tfid_gen || tp->tn_nlink == 0) { 673 mutex_exit(&tp->tn_tlock); 674 mutex_exit(&tm->tm_contents); 675 return (0); 676 } 677 *vpp = (struct vnode *)TNTOV(tp); 678 679 VN_HOLD(*vpp); 680 681 if ((tp->tn_mode & S_ISVTX) && 682 !(tp->tn_mode & (S_IXUSR | S_IFDIR))) { 683 mutex_enter(&(*vpp)->v_lock); 684 (*vpp)->v_flag |= VISSWAP; 685 mutex_exit(&(*vpp)->v_lock); 686 } 687 mutex_exit(&tp->tn_tlock); 688 mutex_exit(&tm->tm_contents); 689 return (0); 690 } 691 mutex_exit(&tp->tn_tlock); 692 } 693 mutex_exit(&tm->tm_contents); 694 return (0); 695 }