1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 * Copyright 2016 RackTop Systems. 28 */ 29 30 #include <sys/dmu.h> 31 #include <sys/dmu_impl.h> 32 #include <sys/dmu_tx.h> 33 #include <sys/dbuf.h> 34 #include <sys/dnode.h> 35 #include <sys/zfs_context.h> 36 #include <sys/dmu_objset.h> 37 #include <sys/dmu_traverse.h> 38 #include <sys/dsl_dataset.h> 39 #include <sys/dsl_dir.h> 40 #include <sys/dsl_prop.h> 41 #include <sys/dsl_pool.h> 42 #include <sys/dsl_synctask.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zfs_znode.h> 47 #include <zfs_fletcher.h> 48 #include <sys/avl.h> 49 #include <sys/ddt.h> 50 #include <sys/zfs_onexit.h> 51 #include <sys/dmu_send.h> 52 #include <sys/dsl_destroy.h> 53 #include <sys/blkptr.h> 54 #include <sys/dsl_bookmark.h> 55 #include <sys/zfeature.h> 56 #include <sys/bqueue.h> 57 58 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 59 int zfs_send_corrupt_data = B_FALSE; 60 int zfs_send_queue_length = 16 * 1024 * 1024; 61 int zfs_recv_queue_length = 16 * 1024 * 1024; 62 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */ 63 int zfs_send_set_freerecords_bit = B_TRUE; 64 65 static char *dmu_recv_tag = "dmu_recv_tag"; 66 const char *recv_clone_name = "%recv"; 67 68 #define BP_SPAN(datablkszsec, indblkshift, level) \ 69 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 70 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 71 72 static void byteswap_record(dmu_replay_record_t *drr); 73 74 struct send_thread_arg { 75 bqueue_t q; 76 dsl_dataset_t *ds; /* Dataset to traverse */ 77 uint64_t fromtxg; /* Traverse from this txg */ 78 int flags; /* flags to pass to traverse_dataset */ 79 int error_code; 80 boolean_t cancel; 81 zbookmark_phys_t resume; 82 }; 83 84 struct send_block_record { 85 boolean_t eos_marker; /* Marks the end of the stream */ 86 blkptr_t bp; 87 zbookmark_phys_t zb; 88 uint8_t indblkshift; 89 uint16_t datablkszsec; 90 bqueue_node_t ln; 91 }; 92 93 static int 94 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 95 { 96 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 97 ssize_t resid; /* have to get resid to get detailed errno */ 98 ASSERT0(len % 8); 99 100 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 101 (caddr_t)buf, len, 102 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 103 104 mutex_enter(&ds->ds_sendstream_lock); 105 *dsp->dsa_off += len; 106 mutex_exit(&ds->ds_sendstream_lock); 107 108 return (dsp->dsa_err); 109 } 110 111 /* 112 * For all record types except BEGIN, fill in the checksum (overlaid in 113 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 114 * up to the start of the checksum itself. 115 */ 116 static int 117 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 118 { 119 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 120 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 121 fletcher_4_incremental_native(dsp->dsa_drr, 122 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 123 &dsp->dsa_zc); 124 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 125 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 126 drr_checksum.drr_checksum)); 127 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 128 } 129 fletcher_4_incremental_native(&dsp->dsa_drr-> 130 drr_u.drr_checksum.drr_checksum, 131 sizeof (zio_cksum_t), &dsp->dsa_zc); 132 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 133 return (SET_ERROR(EINTR)); 134 if (payload_len != 0) { 135 fletcher_4_incremental_native(payload, payload_len, 136 &dsp->dsa_zc); 137 if (dump_bytes(dsp, payload, payload_len) != 0) 138 return (SET_ERROR(EINTR)); 139 } 140 return (0); 141 } 142 143 /* 144 * Fill in the drr_free struct, or perform aggregation if the previous record is 145 * also a free record, and the two are adjacent. 146 * 147 * Note that we send free records even for a full send, because we want to be 148 * able to receive a full send as a clone, which requires a list of all the free 149 * and freeobject records that were generated on the source. 150 */ 151 static int 152 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 153 uint64_t length) 154 { 155 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 156 157 /* 158 * When we receive a free record, dbuf_free_range() assumes 159 * that the receiving system doesn't have any dbufs in the range 160 * being freed. This is always true because there is a one-record 161 * constraint: we only send one WRITE record for any given 162 * object,offset. We know that the one-record constraint is 163 * true because we always send data in increasing order by 164 * object,offset. 165 * 166 * If the increasing-order constraint ever changes, we should find 167 * another way to assert that the one-record constraint is still 168 * satisfied. 169 */ 170 ASSERT(object > dsp->dsa_last_data_object || 171 (object == dsp->dsa_last_data_object && 172 offset > dsp->dsa_last_data_offset)); 173 174 if (length != -1ULL && offset + length < offset) 175 length = -1ULL; 176 177 /* 178 * If there is a pending op, but it's not PENDING_FREE, push it out, 179 * since free block aggregation can only be done for blocks of the 180 * same type (i.e., DRR_FREE records can only be aggregated with 181 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 182 * aggregated with other DRR_FREEOBJECTS records. 183 */ 184 if (dsp->dsa_pending_op != PENDING_NONE && 185 dsp->dsa_pending_op != PENDING_FREE) { 186 if (dump_record(dsp, NULL, 0) != 0) 187 return (SET_ERROR(EINTR)); 188 dsp->dsa_pending_op = PENDING_NONE; 189 } 190 191 if (dsp->dsa_pending_op == PENDING_FREE) { 192 /* 193 * There should never be a PENDING_FREE if length is -1 194 * (because dump_dnode is the only place where this 195 * function is called with a -1, and only after flushing 196 * any pending record). 197 */ 198 ASSERT(length != -1ULL); 199 /* 200 * Check to see whether this free block can be aggregated 201 * with pending one. 202 */ 203 if (drrf->drr_object == object && drrf->drr_offset + 204 drrf->drr_length == offset) { 205 drrf->drr_length += length; 206 return (0); 207 } else { 208 /* not a continuation. Push out pending record */ 209 if (dump_record(dsp, NULL, 0) != 0) 210 return (SET_ERROR(EINTR)); 211 dsp->dsa_pending_op = PENDING_NONE; 212 } 213 } 214 /* create a FREE record and make it pending */ 215 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 216 dsp->dsa_drr->drr_type = DRR_FREE; 217 drrf->drr_object = object; 218 drrf->drr_offset = offset; 219 drrf->drr_length = length; 220 drrf->drr_toguid = dsp->dsa_toguid; 221 if (length == -1ULL) { 222 if (dump_record(dsp, NULL, 0) != 0) 223 return (SET_ERROR(EINTR)); 224 } else { 225 dsp->dsa_pending_op = PENDING_FREE; 226 } 227 228 return (0); 229 } 230 231 static int 232 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 233 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 234 { 235 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 236 237 /* 238 * We send data in increasing object, offset order. 239 * See comment in dump_free() for details. 240 */ 241 ASSERT(object > dsp->dsa_last_data_object || 242 (object == dsp->dsa_last_data_object && 243 offset > dsp->dsa_last_data_offset)); 244 dsp->dsa_last_data_object = object; 245 dsp->dsa_last_data_offset = offset + blksz - 1; 246 247 /* 248 * If there is any kind of pending aggregation (currently either 249 * a grouping of free objects or free blocks), push it out to 250 * the stream, since aggregation can't be done across operations 251 * of different types. 252 */ 253 if (dsp->dsa_pending_op != PENDING_NONE) { 254 if (dump_record(dsp, NULL, 0) != 0) 255 return (SET_ERROR(EINTR)); 256 dsp->dsa_pending_op = PENDING_NONE; 257 } 258 /* write a WRITE record */ 259 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 260 dsp->dsa_drr->drr_type = DRR_WRITE; 261 drrw->drr_object = object; 262 drrw->drr_type = type; 263 drrw->drr_offset = offset; 264 drrw->drr_length = blksz; 265 drrw->drr_toguid = dsp->dsa_toguid; 266 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 267 /* 268 * There's no pre-computed checksum for partial-block 269 * writes or embedded BP's, so (like 270 * fletcher4-checkummed blocks) userland will have to 271 * compute a dedup-capable checksum itself. 272 */ 273 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 274 } else { 275 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 276 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 277 ZCHECKSUM_FLAG_DEDUP) 278 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 279 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 280 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 281 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 282 drrw->drr_key.ddk_cksum = bp->blk_cksum; 283 } 284 285 if (dump_record(dsp, data, blksz) != 0) 286 return (SET_ERROR(EINTR)); 287 return (0); 288 } 289 290 static int 291 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 292 int blksz, const blkptr_t *bp) 293 { 294 char buf[BPE_PAYLOAD_SIZE]; 295 struct drr_write_embedded *drrw = 296 &(dsp->dsa_drr->drr_u.drr_write_embedded); 297 298 if (dsp->dsa_pending_op != PENDING_NONE) { 299 if (dump_record(dsp, NULL, 0) != 0) 300 return (EINTR); 301 dsp->dsa_pending_op = PENDING_NONE; 302 } 303 304 ASSERT(BP_IS_EMBEDDED(bp)); 305 306 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 307 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 308 drrw->drr_object = object; 309 drrw->drr_offset = offset; 310 drrw->drr_length = blksz; 311 drrw->drr_toguid = dsp->dsa_toguid; 312 drrw->drr_compression = BP_GET_COMPRESS(bp); 313 drrw->drr_etype = BPE_GET_ETYPE(bp); 314 drrw->drr_lsize = BPE_GET_LSIZE(bp); 315 drrw->drr_psize = BPE_GET_PSIZE(bp); 316 317 decode_embedded_bp_compressed(bp, buf); 318 319 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 320 return (EINTR); 321 return (0); 322 } 323 324 static int 325 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 326 { 327 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 328 329 if (dsp->dsa_pending_op != PENDING_NONE) { 330 if (dump_record(dsp, NULL, 0) != 0) 331 return (SET_ERROR(EINTR)); 332 dsp->dsa_pending_op = PENDING_NONE; 333 } 334 335 /* write a SPILL record */ 336 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 337 dsp->dsa_drr->drr_type = DRR_SPILL; 338 drrs->drr_object = object; 339 drrs->drr_length = blksz; 340 drrs->drr_toguid = dsp->dsa_toguid; 341 342 if (dump_record(dsp, data, blksz) != 0) 343 return (SET_ERROR(EINTR)); 344 return (0); 345 } 346 347 static int 348 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 349 { 350 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 351 352 /* 353 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 354 * push it out, since free block aggregation can only be done for 355 * blocks of the same type (i.e., DRR_FREE records can only be 356 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 357 * can only be aggregated with other DRR_FREEOBJECTS records. 358 */ 359 if (dsp->dsa_pending_op != PENDING_NONE && 360 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 361 if (dump_record(dsp, NULL, 0) != 0) 362 return (SET_ERROR(EINTR)); 363 dsp->dsa_pending_op = PENDING_NONE; 364 } 365 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 366 /* 367 * See whether this free object array can be aggregated 368 * with pending one 369 */ 370 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 371 drrfo->drr_numobjs += numobjs; 372 return (0); 373 } else { 374 /* can't be aggregated. Push out pending record */ 375 if (dump_record(dsp, NULL, 0) != 0) 376 return (SET_ERROR(EINTR)); 377 dsp->dsa_pending_op = PENDING_NONE; 378 } 379 } 380 381 /* write a FREEOBJECTS record */ 382 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 383 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 384 drrfo->drr_firstobj = firstobj; 385 drrfo->drr_numobjs = numobjs; 386 drrfo->drr_toguid = dsp->dsa_toguid; 387 388 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 389 390 return (0); 391 } 392 393 static int 394 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 395 { 396 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 397 398 if (object < dsp->dsa_resume_object) { 399 /* 400 * Note: when resuming, we will visit all the dnodes in 401 * the block of dnodes that we are resuming from. In 402 * this case it's unnecessary to send the dnodes prior to 403 * the one we are resuming from. We should be at most one 404 * block's worth of dnodes behind the resume point. 405 */ 406 ASSERT3U(dsp->dsa_resume_object - object, <, 407 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 408 return (0); 409 } 410 411 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 412 return (dump_freeobjects(dsp, object, 1)); 413 414 if (dsp->dsa_pending_op != PENDING_NONE) { 415 if (dump_record(dsp, NULL, 0) != 0) 416 return (SET_ERROR(EINTR)); 417 dsp->dsa_pending_op = PENDING_NONE; 418 } 419 420 /* write an OBJECT record */ 421 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 422 dsp->dsa_drr->drr_type = DRR_OBJECT; 423 drro->drr_object = object; 424 drro->drr_type = dnp->dn_type; 425 drro->drr_bonustype = dnp->dn_bonustype; 426 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 427 drro->drr_bonuslen = dnp->dn_bonuslen; 428 drro->drr_checksumtype = dnp->dn_checksum; 429 drro->drr_compress = dnp->dn_compress; 430 drro->drr_toguid = dsp->dsa_toguid; 431 432 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 433 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 434 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 435 436 if (dump_record(dsp, DN_BONUS(dnp), 437 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 438 return (SET_ERROR(EINTR)); 439 } 440 441 /* Free anything past the end of the file. */ 442 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 443 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 444 return (SET_ERROR(EINTR)); 445 if (dsp->dsa_err != 0) 446 return (SET_ERROR(EINTR)); 447 return (0); 448 } 449 450 static boolean_t 451 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 452 { 453 if (!BP_IS_EMBEDDED(bp)) 454 return (B_FALSE); 455 456 /* 457 * Compression function must be legacy, or explicitly enabled. 458 */ 459 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 460 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 461 return (B_FALSE); 462 463 /* 464 * Embed type must be explicitly enabled. 465 */ 466 switch (BPE_GET_ETYPE(bp)) { 467 case BP_EMBEDDED_TYPE_DATA: 468 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 469 return (B_TRUE); 470 break; 471 default: 472 return (B_FALSE); 473 } 474 return (B_FALSE); 475 } 476 477 /* 478 * This is the callback function to traverse_dataset that acts as the worker 479 * thread for dmu_send_impl. 480 */ 481 /*ARGSUSED*/ 482 static int 483 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 484 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 485 { 486 struct send_thread_arg *sta = arg; 487 struct send_block_record *record; 488 uint64_t record_size; 489 int err = 0; 490 491 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 492 zb->zb_object >= sta->resume.zb_object); 493 494 if (sta->cancel) 495 return (SET_ERROR(EINTR)); 496 497 if (bp == NULL) { 498 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 499 return (0); 500 } else if (zb->zb_level < 0) { 501 return (0); 502 } 503 504 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 505 record->eos_marker = B_FALSE; 506 record->bp = *bp; 507 record->zb = *zb; 508 record->indblkshift = dnp->dn_indblkshift; 509 record->datablkszsec = dnp->dn_datablkszsec; 510 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 511 bqueue_enqueue(&sta->q, record, record_size); 512 513 return (err); 514 } 515 516 /* 517 * This function kicks off the traverse_dataset. It also handles setting the 518 * error code of the thread in case something goes wrong, and pushes the End of 519 * Stream record when the traverse_dataset call has finished. If there is no 520 * dataset to traverse, the thread immediately pushes End of Stream marker. 521 */ 522 static void 523 send_traverse_thread(void *arg) 524 { 525 struct send_thread_arg *st_arg = arg; 526 int err; 527 struct send_block_record *data; 528 529 if (st_arg->ds != NULL) { 530 err = traverse_dataset_resume(st_arg->ds, 531 st_arg->fromtxg, &st_arg->resume, 532 st_arg->flags, send_cb, st_arg); 533 534 if (err != EINTR) 535 st_arg->error_code = err; 536 } 537 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 538 data->eos_marker = B_TRUE; 539 bqueue_enqueue(&st_arg->q, data, 1); 540 } 541 542 /* 543 * This function actually handles figuring out what kind of record needs to be 544 * dumped, reading the data (which has hopefully been prefetched), and calling 545 * the appropriate helper function. 546 */ 547 static int 548 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 549 { 550 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 551 const blkptr_t *bp = &data->bp; 552 const zbookmark_phys_t *zb = &data->zb; 553 uint8_t indblkshift = data->indblkshift; 554 uint16_t dblkszsec = data->datablkszsec; 555 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 556 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 557 int err = 0; 558 559 ASSERT3U(zb->zb_level, >=, 0); 560 561 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 562 zb->zb_object >= dsa->dsa_resume_object); 563 564 if (zb->zb_object != DMU_META_DNODE_OBJECT && 565 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 566 return (0); 567 } else if (BP_IS_HOLE(bp) && 568 zb->zb_object == DMU_META_DNODE_OBJECT) { 569 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 570 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 571 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 572 } else if (BP_IS_HOLE(bp)) { 573 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 574 uint64_t offset = zb->zb_blkid * span; 575 err = dump_free(dsa, zb->zb_object, offset, span); 576 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 577 return (0); 578 } else if (type == DMU_OT_DNODE) { 579 int blksz = BP_GET_LSIZE(bp); 580 arc_flags_t aflags = ARC_FLAG_WAIT; 581 arc_buf_t *abuf; 582 583 ASSERT0(zb->zb_level); 584 585 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 586 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 587 &aflags, zb) != 0) 588 return (SET_ERROR(EIO)); 589 590 dnode_phys_t *blk = abuf->b_data; 591 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 592 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 593 err = dump_dnode(dsa, dnobj + i, blk + i); 594 if (err != 0) 595 break; 596 } 597 (void) arc_buf_remove_ref(abuf, &abuf); 598 } else if (type == DMU_OT_SA) { 599 arc_flags_t aflags = ARC_FLAG_WAIT; 600 arc_buf_t *abuf; 601 int blksz = BP_GET_LSIZE(bp); 602 603 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 604 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 605 &aflags, zb) != 0) 606 return (SET_ERROR(EIO)); 607 608 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 609 (void) arc_buf_remove_ref(abuf, &abuf); 610 } else if (backup_do_embed(dsa, bp)) { 611 /* it's an embedded level-0 block of a regular object */ 612 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 613 ASSERT0(zb->zb_level); 614 err = dump_write_embedded(dsa, zb->zb_object, 615 zb->zb_blkid * blksz, blksz, bp); 616 } else { 617 /* it's a level-0 block of a regular object */ 618 arc_flags_t aflags = ARC_FLAG_WAIT; 619 arc_buf_t *abuf; 620 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 621 uint64_t offset; 622 623 ASSERT0(zb->zb_level); 624 ASSERT(zb->zb_object > dsa->dsa_resume_object || 625 (zb->zb_object == dsa->dsa_resume_object && 626 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 627 628 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 629 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 630 &aflags, zb) != 0) { 631 if (zfs_send_corrupt_data) { 632 /* Send a block filled with 0x"zfs badd bloc" */ 633 abuf = arc_buf_alloc(spa, blksz, &abuf, 634 ARC_BUFC_DATA); 635 uint64_t *ptr; 636 for (ptr = abuf->b_data; 637 (char *)ptr < (char *)abuf->b_data + blksz; 638 ptr++) 639 *ptr = 0x2f5baddb10cULL; 640 } else { 641 return (SET_ERROR(EIO)); 642 } 643 } 644 645 offset = zb->zb_blkid * blksz; 646 647 if (!(dsa->dsa_featureflags & 648 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 649 blksz > SPA_OLD_MAXBLOCKSIZE) { 650 char *buf = abuf->b_data; 651 while (blksz > 0 && err == 0) { 652 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 653 err = dump_write(dsa, type, zb->zb_object, 654 offset, n, NULL, buf); 655 offset += n; 656 buf += n; 657 blksz -= n; 658 } 659 } else { 660 err = dump_write(dsa, type, zb->zb_object, 661 offset, blksz, bp, abuf->b_data); 662 } 663 (void) arc_buf_remove_ref(abuf, &abuf); 664 } 665 666 ASSERT(err == 0 || err == EINTR); 667 return (err); 668 } 669 670 /* 671 * Pop the new data off the queue, and free the old data. 672 */ 673 static struct send_block_record * 674 get_next_record(bqueue_t *bq, struct send_block_record *data) 675 { 676 struct send_block_record *tmp = bqueue_dequeue(bq); 677 kmem_free(data, sizeof (*data)); 678 return (tmp); 679 } 680 681 /* 682 * Actually do the bulk of the work in a zfs send. 683 * 684 * Note: Releases dp using the specified tag. 685 */ 686 static int 687 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 688 zfs_bookmark_phys_t *ancestor_zb, 689 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 690 uint64_t resumeobj, uint64_t resumeoff, 691 vnode_t *vp, offset_t *off) 692 { 693 objset_t *os; 694 dmu_replay_record_t *drr; 695 dmu_sendarg_t *dsp; 696 int err; 697 uint64_t fromtxg = 0; 698 uint64_t featureflags = 0; 699 struct send_thread_arg to_arg = { 0 }; 700 701 err = dmu_objset_from_ds(to_ds, &os); 702 if (err != 0) { 703 dsl_pool_rele(dp, tag); 704 return (err); 705 } 706 707 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 708 drr->drr_type = DRR_BEGIN; 709 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 710 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 711 DMU_SUBSTREAM); 712 713 #ifdef _KERNEL 714 if (dmu_objset_type(os) == DMU_OST_ZFS) { 715 uint64_t version; 716 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 717 kmem_free(drr, sizeof (dmu_replay_record_t)); 718 dsl_pool_rele(dp, tag); 719 return (SET_ERROR(EINVAL)); 720 } 721 if (version >= ZPL_VERSION_SA) { 722 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 723 } 724 } 725 #endif 726 727 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 728 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 729 if (embedok && 730 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 731 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 732 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 733 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 734 } 735 736 if (resumeobj != 0 || resumeoff != 0) { 737 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 738 } 739 740 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 741 featureflags); 742 743 drr->drr_u.drr_begin.drr_creation_time = 744 dsl_dataset_phys(to_ds)->ds_creation_time; 745 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 746 if (is_clone) 747 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 748 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 749 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 750 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 751 if (zfs_send_set_freerecords_bit) 752 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 753 754 if (ancestor_zb != NULL) { 755 drr->drr_u.drr_begin.drr_fromguid = 756 ancestor_zb->zbm_guid; 757 fromtxg = ancestor_zb->zbm_creation_txg; 758 } 759 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 760 if (!to_ds->ds_is_snapshot) { 761 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 762 sizeof (drr->drr_u.drr_begin.drr_toname)); 763 } 764 765 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 766 767 dsp->dsa_drr = drr; 768 dsp->dsa_vp = vp; 769 dsp->dsa_outfd = outfd; 770 dsp->dsa_proc = curproc; 771 dsp->dsa_os = os; 772 dsp->dsa_off = off; 773 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 774 dsp->dsa_pending_op = PENDING_NONE; 775 dsp->dsa_featureflags = featureflags; 776 dsp->dsa_resume_object = resumeobj; 777 dsp->dsa_resume_offset = resumeoff; 778 779 mutex_enter(&to_ds->ds_sendstream_lock); 780 list_insert_head(&to_ds->ds_sendstreams, dsp); 781 mutex_exit(&to_ds->ds_sendstream_lock); 782 783 dsl_dataset_long_hold(to_ds, FTAG); 784 dsl_pool_rele(dp, tag); 785 786 void *payload = NULL; 787 size_t payload_len = 0; 788 if (resumeobj != 0 || resumeoff != 0) { 789 dmu_object_info_t to_doi; 790 err = dmu_object_info(os, resumeobj, &to_doi); 791 if (err != 0) 792 goto out; 793 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 794 resumeoff / to_doi.doi_data_block_size); 795 796 nvlist_t *nvl = fnvlist_alloc(); 797 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 798 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 799 payload = fnvlist_pack(nvl, &payload_len); 800 drr->drr_payloadlen = payload_len; 801 fnvlist_free(nvl); 802 } 803 804 err = dump_record(dsp, payload, payload_len); 805 fnvlist_pack_free(payload, payload_len); 806 if (err != 0) { 807 err = dsp->dsa_err; 808 goto out; 809 } 810 811 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 812 offsetof(struct send_block_record, ln)); 813 to_arg.error_code = 0; 814 to_arg.cancel = B_FALSE; 815 to_arg.ds = to_ds; 816 to_arg.fromtxg = fromtxg; 817 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 818 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 819 TS_RUN, minclsyspri); 820 821 struct send_block_record *to_data; 822 to_data = bqueue_dequeue(&to_arg.q); 823 824 while (!to_data->eos_marker && err == 0) { 825 err = do_dump(dsp, to_data); 826 to_data = get_next_record(&to_arg.q, to_data); 827 if (issig(JUSTLOOKING) && issig(FORREAL)) 828 err = EINTR; 829 } 830 831 if (err != 0) { 832 to_arg.cancel = B_TRUE; 833 while (!to_data->eos_marker) { 834 to_data = get_next_record(&to_arg.q, to_data); 835 } 836 } 837 kmem_free(to_data, sizeof (*to_data)); 838 839 bqueue_destroy(&to_arg.q); 840 841 if (err == 0 && to_arg.error_code != 0) 842 err = to_arg.error_code; 843 844 if (err != 0) 845 goto out; 846 847 if (dsp->dsa_pending_op != PENDING_NONE) 848 if (dump_record(dsp, NULL, 0) != 0) 849 err = SET_ERROR(EINTR); 850 851 if (err != 0) { 852 if (err == EINTR && dsp->dsa_err != 0) 853 err = dsp->dsa_err; 854 goto out; 855 } 856 857 bzero(drr, sizeof (dmu_replay_record_t)); 858 drr->drr_type = DRR_END; 859 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 860 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 861 862 if (dump_record(dsp, NULL, 0) != 0) 863 err = dsp->dsa_err; 864 865 out: 866 mutex_enter(&to_ds->ds_sendstream_lock); 867 list_remove(&to_ds->ds_sendstreams, dsp); 868 mutex_exit(&to_ds->ds_sendstream_lock); 869 870 kmem_free(drr, sizeof (dmu_replay_record_t)); 871 kmem_free(dsp, sizeof (dmu_sendarg_t)); 872 873 dsl_dataset_long_rele(to_ds, FTAG); 874 875 return (err); 876 } 877 878 int 879 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 880 boolean_t embedok, boolean_t large_block_ok, 881 int outfd, vnode_t *vp, offset_t *off) 882 { 883 dsl_pool_t *dp; 884 dsl_dataset_t *ds; 885 dsl_dataset_t *fromds = NULL; 886 int err; 887 888 err = dsl_pool_hold(pool, FTAG, &dp); 889 if (err != 0) 890 return (err); 891 892 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 893 if (err != 0) { 894 dsl_pool_rele(dp, FTAG); 895 return (err); 896 } 897 898 if (fromsnap != 0) { 899 zfs_bookmark_phys_t zb; 900 boolean_t is_clone; 901 902 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 903 if (err != 0) { 904 dsl_dataset_rele(ds, FTAG); 905 dsl_pool_rele(dp, FTAG); 906 return (err); 907 } 908 if (!dsl_dataset_is_before(ds, fromds, 0)) 909 err = SET_ERROR(EXDEV); 910 zb.zbm_creation_time = 911 dsl_dataset_phys(fromds)->ds_creation_time; 912 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 913 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 914 is_clone = (fromds->ds_dir != ds->ds_dir); 915 dsl_dataset_rele(fromds, FTAG); 916 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 917 embedok, large_block_ok, outfd, 0, 0, vp, off); 918 } else { 919 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 920 embedok, large_block_ok, outfd, 0, 0, vp, off); 921 } 922 dsl_dataset_rele(ds, FTAG); 923 return (err); 924 } 925 926 int 927 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 928 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 929 vnode_t *vp, offset_t *off) 930 { 931 dsl_pool_t *dp; 932 dsl_dataset_t *ds; 933 int err; 934 boolean_t owned = B_FALSE; 935 936 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 937 return (SET_ERROR(EINVAL)); 938 939 err = dsl_pool_hold(tosnap, FTAG, &dp); 940 if (err != 0) 941 return (err); 942 943 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 944 /* 945 * We are sending a filesystem or volume. Ensure 946 * that it doesn't change by owning the dataset. 947 */ 948 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 949 owned = B_TRUE; 950 } else { 951 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 952 } 953 if (err != 0) { 954 dsl_pool_rele(dp, FTAG); 955 return (err); 956 } 957 958 if (fromsnap != NULL) { 959 zfs_bookmark_phys_t zb; 960 boolean_t is_clone = B_FALSE; 961 int fsnamelen = strchr(tosnap, '@') - tosnap; 962 963 /* 964 * If the fromsnap is in a different filesystem, then 965 * mark the send stream as a clone. 966 */ 967 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 968 (fromsnap[fsnamelen] != '@' && 969 fromsnap[fsnamelen] != '#')) { 970 is_clone = B_TRUE; 971 } 972 973 if (strchr(fromsnap, '@')) { 974 dsl_dataset_t *fromds; 975 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 976 if (err == 0) { 977 if (!dsl_dataset_is_before(ds, fromds, 0)) 978 err = SET_ERROR(EXDEV); 979 zb.zbm_creation_time = 980 dsl_dataset_phys(fromds)->ds_creation_time; 981 zb.zbm_creation_txg = 982 dsl_dataset_phys(fromds)->ds_creation_txg; 983 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 984 is_clone = (ds->ds_dir != fromds->ds_dir); 985 dsl_dataset_rele(fromds, FTAG); 986 } 987 } else { 988 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 989 } 990 if (err != 0) { 991 dsl_dataset_rele(ds, FTAG); 992 dsl_pool_rele(dp, FTAG); 993 return (err); 994 } 995 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 996 embedok, large_block_ok, 997 outfd, resumeobj, resumeoff, vp, off); 998 } else { 999 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 1000 embedok, large_block_ok, 1001 outfd, resumeobj, resumeoff, vp, off); 1002 } 1003 if (owned) 1004 dsl_dataset_disown(ds, FTAG); 1005 else 1006 dsl_dataset_rele(ds, FTAG); 1007 return (err); 1008 } 1009 1010 static int 1011 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1012 uint64_t *sizep) 1013 { 1014 int err; 1015 /* 1016 * Assume that space (both on-disk and in-stream) is dominated by 1017 * data. We will adjust for indirect blocks and the copies property, 1018 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1019 */ 1020 1021 /* 1022 * Subtract out approximate space used by indirect blocks. 1023 * Assume most space is used by data blocks (non-indirect, non-dnode). 1024 * Assume all blocks are recordsize. Assume ditto blocks and 1025 * internal fragmentation counter out compression. 1026 * 1027 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1028 * block, which we observe in practice. 1029 */ 1030 uint64_t recordsize; 1031 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1032 if (err != 0) 1033 return (err); 1034 size -= size / recordsize * sizeof (blkptr_t); 1035 1036 /* Add in the space for the record associated with each block. */ 1037 size += size / recordsize * sizeof (dmu_replay_record_t); 1038 1039 *sizep = size; 1040 1041 return (0); 1042 } 1043 1044 int 1045 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1046 { 1047 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1048 int err; 1049 uint64_t size; 1050 1051 ASSERT(dsl_pool_config_held(dp)); 1052 1053 /* tosnap must be a snapshot */ 1054 if (!ds->ds_is_snapshot) 1055 return (SET_ERROR(EINVAL)); 1056 1057 /* fromsnap, if provided, must be a snapshot */ 1058 if (fromds != NULL && !fromds->ds_is_snapshot) 1059 return (SET_ERROR(EINVAL)); 1060 1061 /* 1062 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1063 * or the origin's fs. 1064 */ 1065 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1066 return (SET_ERROR(EXDEV)); 1067 1068 /* Get uncompressed size estimate of changed data. */ 1069 if (fromds == NULL) { 1070 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1071 } else { 1072 uint64_t used, comp; 1073 err = dsl_dataset_space_written(fromds, ds, 1074 &used, &comp, &size); 1075 if (err != 0) 1076 return (err); 1077 } 1078 1079 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1080 return (err); 1081 } 1082 1083 /* 1084 * Simple callback used to traverse the blocks of a snapshot and sum their 1085 * uncompressed size 1086 */ 1087 /* ARGSUSED */ 1088 static int 1089 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1090 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1091 { 1092 uint64_t *spaceptr = arg; 1093 if (bp != NULL && !BP_IS_HOLE(bp)) { 1094 *spaceptr += BP_GET_UCSIZE(bp); 1095 } 1096 return (0); 1097 } 1098 1099 /* 1100 * Given a desination snapshot and a TXG, calculate the approximate size of a 1101 * send stream sent from that TXG. from_txg may be zero, indicating that the 1102 * whole snapshot will be sent. 1103 */ 1104 int 1105 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1106 uint64_t *sizep) 1107 { 1108 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1109 int err; 1110 uint64_t size = 0; 1111 1112 ASSERT(dsl_pool_config_held(dp)); 1113 1114 /* tosnap must be a snapshot */ 1115 if (!dsl_dataset_is_snapshot(ds)) 1116 return (SET_ERROR(EINVAL)); 1117 1118 /* verify that from_txg is before the provided snapshot was taken */ 1119 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1120 return (SET_ERROR(EXDEV)); 1121 } 1122 1123 /* 1124 * traverse the blocks of the snapshot with birth times after 1125 * from_txg, summing their uncompressed size 1126 */ 1127 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1128 dmu_calculate_send_traversal, &size); 1129 if (err) 1130 return (err); 1131 1132 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1133 return (err); 1134 } 1135 1136 typedef struct dmu_recv_begin_arg { 1137 const char *drba_origin; 1138 dmu_recv_cookie_t *drba_cookie; 1139 cred_t *drba_cred; 1140 uint64_t drba_snapobj; 1141 } dmu_recv_begin_arg_t; 1142 1143 static int 1144 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1145 uint64_t fromguid) 1146 { 1147 uint64_t val; 1148 int error; 1149 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1150 1151 /* temporary clone name must not exist */ 1152 error = zap_lookup(dp->dp_meta_objset, 1153 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1154 8, 1, &val); 1155 if (error != ENOENT) 1156 return (error == 0 ? EBUSY : error); 1157 1158 /* new snapshot name must not exist */ 1159 error = zap_lookup(dp->dp_meta_objset, 1160 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1161 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1162 if (error != ENOENT) 1163 return (error == 0 ? EEXIST : error); 1164 1165 /* 1166 * Check snapshot limit before receiving. We'll recheck again at the 1167 * end, but might as well abort before receiving if we're already over 1168 * the limit. 1169 * 1170 * Note that we do not check the file system limit with 1171 * dsl_dir_fscount_check because the temporary %clones don't count 1172 * against that limit. 1173 */ 1174 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1175 NULL, drba->drba_cred); 1176 if (error != 0) 1177 return (error); 1178 1179 if (fromguid != 0) { 1180 dsl_dataset_t *snap; 1181 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1182 1183 /* Find snapshot in this dir that matches fromguid. */ 1184 while (obj != 0) { 1185 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1186 &snap); 1187 if (error != 0) 1188 return (SET_ERROR(ENODEV)); 1189 if (snap->ds_dir != ds->ds_dir) { 1190 dsl_dataset_rele(snap, FTAG); 1191 return (SET_ERROR(ENODEV)); 1192 } 1193 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1194 break; 1195 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1196 dsl_dataset_rele(snap, FTAG); 1197 } 1198 if (obj == 0) 1199 return (SET_ERROR(ENODEV)); 1200 1201 if (drba->drba_cookie->drc_force) { 1202 drba->drba_snapobj = obj; 1203 } else { 1204 /* 1205 * If we are not forcing, there must be no 1206 * changes since fromsnap. 1207 */ 1208 if (dsl_dataset_modified_since_snap(ds, snap)) { 1209 dsl_dataset_rele(snap, FTAG); 1210 return (SET_ERROR(ETXTBSY)); 1211 } 1212 drba->drba_snapobj = ds->ds_prev->ds_object; 1213 } 1214 1215 dsl_dataset_rele(snap, FTAG); 1216 } else { 1217 /* if full, then must be forced */ 1218 if (!drba->drba_cookie->drc_force) 1219 return (SET_ERROR(EEXIST)); 1220 /* start from $ORIGIN@$ORIGIN, if supported */ 1221 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1222 dp->dp_origin_snap->ds_object : 0; 1223 } 1224 1225 return (0); 1226 1227 } 1228 1229 static int 1230 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1231 { 1232 dmu_recv_begin_arg_t *drba = arg; 1233 dsl_pool_t *dp = dmu_tx_pool(tx); 1234 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1235 uint64_t fromguid = drrb->drr_fromguid; 1236 int flags = drrb->drr_flags; 1237 int error; 1238 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1239 dsl_dataset_t *ds; 1240 const char *tofs = drba->drba_cookie->drc_tofs; 1241 1242 /* already checked */ 1243 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1244 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1245 1246 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1247 DMU_COMPOUNDSTREAM || 1248 drrb->drr_type >= DMU_OST_NUMTYPES || 1249 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1250 return (SET_ERROR(EINVAL)); 1251 1252 /* Verify pool version supports SA if SA_SPILL feature set */ 1253 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1254 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1255 return (SET_ERROR(ENOTSUP)); 1256 1257 if (drba->drba_cookie->drc_resumable && 1258 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1259 return (SET_ERROR(ENOTSUP)); 1260 1261 /* 1262 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1263 * record to a plan WRITE record, so the pool must have the 1264 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1265 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1266 */ 1267 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1268 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1269 return (SET_ERROR(ENOTSUP)); 1270 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1271 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1272 return (SET_ERROR(ENOTSUP)); 1273 1274 /* 1275 * The receiving code doesn't know how to translate large blocks 1276 * to smaller ones, so the pool must have the LARGE_BLOCKS 1277 * feature enabled if the stream has LARGE_BLOCKS. 1278 */ 1279 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1280 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1281 return (SET_ERROR(ENOTSUP)); 1282 1283 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1284 if (error == 0) { 1285 /* target fs already exists; recv into temp clone */ 1286 1287 /* Can't recv a clone into an existing fs */ 1288 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1289 dsl_dataset_rele(ds, FTAG); 1290 return (SET_ERROR(EINVAL)); 1291 } 1292 1293 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1294 dsl_dataset_rele(ds, FTAG); 1295 } else if (error == ENOENT) { 1296 /* target fs does not exist; must be a full backup or clone */ 1297 char buf[MAXNAMELEN]; 1298 1299 /* 1300 * If it's a non-clone incremental, we are missing the 1301 * target fs, so fail the recv. 1302 */ 1303 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1304 drba->drba_origin)) 1305 return (SET_ERROR(ENOENT)); 1306 1307 /* 1308 * If we're receiving a full send as a clone, and it doesn't 1309 * contain all the necessary free records and freeobject 1310 * records, reject it. 1311 */ 1312 if (fromguid == 0 && drba->drba_origin && 1313 !(flags & DRR_FLAG_FREERECORDS)) 1314 return (SET_ERROR(EINVAL)); 1315 1316 /* Open the parent of tofs */ 1317 ASSERT3U(strlen(tofs), <, MAXNAMELEN); 1318 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1319 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1320 if (error != 0) 1321 return (error); 1322 1323 /* 1324 * Check filesystem and snapshot limits before receiving. We'll 1325 * recheck snapshot limits again at the end (we create the 1326 * filesystems and increment those counts during begin_sync). 1327 */ 1328 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1329 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1330 if (error != 0) { 1331 dsl_dataset_rele(ds, FTAG); 1332 return (error); 1333 } 1334 1335 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1336 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1337 if (error != 0) { 1338 dsl_dataset_rele(ds, FTAG); 1339 return (error); 1340 } 1341 1342 if (drba->drba_origin != NULL) { 1343 dsl_dataset_t *origin; 1344 error = dsl_dataset_hold(dp, drba->drba_origin, 1345 FTAG, &origin); 1346 if (error != 0) { 1347 dsl_dataset_rele(ds, FTAG); 1348 return (error); 1349 } 1350 if (!origin->ds_is_snapshot) { 1351 dsl_dataset_rele(origin, FTAG); 1352 dsl_dataset_rele(ds, FTAG); 1353 return (SET_ERROR(EINVAL)); 1354 } 1355 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1356 fromguid != 0) { 1357 dsl_dataset_rele(origin, FTAG); 1358 dsl_dataset_rele(ds, FTAG); 1359 return (SET_ERROR(ENODEV)); 1360 } 1361 dsl_dataset_rele(origin, FTAG); 1362 } 1363 dsl_dataset_rele(ds, FTAG); 1364 error = 0; 1365 } 1366 return (error); 1367 } 1368 1369 static void 1370 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1371 { 1372 dmu_recv_begin_arg_t *drba = arg; 1373 dsl_pool_t *dp = dmu_tx_pool(tx); 1374 objset_t *mos = dp->dp_meta_objset; 1375 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1376 const char *tofs = drba->drba_cookie->drc_tofs; 1377 dsl_dataset_t *ds, *newds; 1378 uint64_t dsobj; 1379 int error; 1380 uint64_t crflags = 0; 1381 1382 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1383 crflags |= DS_FLAG_CI_DATASET; 1384 1385 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1386 if (error == 0) { 1387 /* create temporary clone */ 1388 dsl_dataset_t *snap = NULL; 1389 if (drba->drba_snapobj != 0) { 1390 VERIFY0(dsl_dataset_hold_obj(dp, 1391 drba->drba_snapobj, FTAG, &snap)); 1392 } 1393 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1394 snap, crflags, drba->drba_cred, tx); 1395 if (drba->drba_snapobj != 0) 1396 dsl_dataset_rele(snap, FTAG); 1397 dsl_dataset_rele(ds, FTAG); 1398 } else { 1399 dsl_dir_t *dd; 1400 const char *tail; 1401 dsl_dataset_t *origin = NULL; 1402 1403 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1404 1405 if (drba->drba_origin != NULL) { 1406 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1407 FTAG, &origin)); 1408 } 1409 1410 /* Create new dataset. */ 1411 dsobj = dsl_dataset_create_sync(dd, 1412 strrchr(tofs, '/') + 1, 1413 origin, crflags, drba->drba_cred, tx); 1414 if (origin != NULL) 1415 dsl_dataset_rele(origin, FTAG); 1416 dsl_dir_rele(dd, FTAG); 1417 drba->drba_cookie->drc_newfs = B_TRUE; 1418 } 1419 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1420 1421 if (drba->drba_cookie->drc_resumable) { 1422 dsl_dataset_zapify(newds, tx); 1423 if (drrb->drr_fromguid != 0) { 1424 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1425 8, 1, &drrb->drr_fromguid, tx)); 1426 } 1427 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1428 8, 1, &drrb->drr_toguid, tx)); 1429 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1430 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1431 uint64_t one = 1; 1432 uint64_t zero = 0; 1433 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1434 8, 1, &one, tx)); 1435 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1436 8, 1, &zero, tx)); 1437 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1438 8, 1, &zero, tx)); 1439 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1440 DMU_BACKUP_FEATURE_EMBED_DATA) { 1441 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1442 8, 1, &one, tx)); 1443 } 1444 } 1445 1446 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1447 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1448 1449 /* 1450 * If we actually created a non-clone, we need to create the 1451 * objset in our new dataset. 1452 */ 1453 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1454 (void) dmu_objset_create_impl(dp->dp_spa, 1455 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1456 } 1457 1458 drba->drba_cookie->drc_ds = newds; 1459 1460 spa_history_log_internal_ds(newds, "receive", tx, ""); 1461 } 1462 1463 static int 1464 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1465 { 1466 dmu_recv_begin_arg_t *drba = arg; 1467 dsl_pool_t *dp = dmu_tx_pool(tx); 1468 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1469 int error; 1470 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1471 dsl_dataset_t *ds; 1472 const char *tofs = drba->drba_cookie->drc_tofs; 1473 1474 /* already checked */ 1475 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1476 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1477 1478 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1479 DMU_COMPOUNDSTREAM || 1480 drrb->drr_type >= DMU_OST_NUMTYPES) 1481 return (SET_ERROR(EINVAL)); 1482 1483 /* Verify pool version supports SA if SA_SPILL feature set */ 1484 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1485 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1486 return (SET_ERROR(ENOTSUP)); 1487 1488 /* 1489 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1490 * record to a plain WRITE record, so the pool must have the 1491 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1492 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1493 */ 1494 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1495 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1496 return (SET_ERROR(ENOTSUP)); 1497 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1498 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1499 return (SET_ERROR(ENOTSUP)); 1500 1501 char recvname[ZFS_MAXNAMELEN]; 1502 1503 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1504 tofs, recv_clone_name); 1505 1506 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1507 /* %recv does not exist; continue in tofs */ 1508 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1509 if (error != 0) 1510 return (error); 1511 } 1512 1513 /* check that ds is marked inconsistent */ 1514 if (!DS_IS_INCONSISTENT(ds)) { 1515 dsl_dataset_rele(ds, FTAG); 1516 return (SET_ERROR(EINVAL)); 1517 } 1518 1519 /* check that there is resuming data, and that the toguid matches */ 1520 if (!dsl_dataset_is_zapified(ds)) { 1521 dsl_dataset_rele(ds, FTAG); 1522 return (SET_ERROR(EINVAL)); 1523 } 1524 uint64_t val; 1525 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1526 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1527 if (error != 0 || drrb->drr_toguid != val) { 1528 dsl_dataset_rele(ds, FTAG); 1529 return (SET_ERROR(EINVAL)); 1530 } 1531 1532 /* 1533 * Check if the receive is still running. If so, it will be owned. 1534 * Note that nothing else can own the dataset (e.g. after the receive 1535 * fails) because it will be marked inconsistent. 1536 */ 1537 if (dsl_dataset_has_owner(ds)) { 1538 dsl_dataset_rele(ds, FTAG); 1539 return (SET_ERROR(EBUSY)); 1540 } 1541 1542 /* There should not be any snapshots of this fs yet. */ 1543 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1544 dsl_dataset_rele(ds, FTAG); 1545 return (SET_ERROR(EINVAL)); 1546 } 1547 1548 /* 1549 * Note: resume point will be checked when we process the first WRITE 1550 * record. 1551 */ 1552 1553 /* check that the origin matches */ 1554 val = 0; 1555 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1556 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1557 if (drrb->drr_fromguid != val) { 1558 dsl_dataset_rele(ds, FTAG); 1559 return (SET_ERROR(EINVAL)); 1560 } 1561 1562 dsl_dataset_rele(ds, FTAG); 1563 return (0); 1564 } 1565 1566 static void 1567 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1568 { 1569 dmu_recv_begin_arg_t *drba = arg; 1570 dsl_pool_t *dp = dmu_tx_pool(tx); 1571 const char *tofs = drba->drba_cookie->drc_tofs; 1572 dsl_dataset_t *ds; 1573 uint64_t dsobj; 1574 char recvname[ZFS_MAXNAMELEN]; 1575 1576 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1577 tofs, recv_clone_name); 1578 1579 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1580 /* %recv does not exist; continue in tofs */ 1581 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1582 drba->drba_cookie->drc_newfs = B_TRUE; 1583 } 1584 1585 /* clear the inconsistent flag so that we can own it */ 1586 ASSERT(DS_IS_INCONSISTENT(ds)); 1587 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1588 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1589 dsobj = ds->ds_object; 1590 dsl_dataset_rele(ds, FTAG); 1591 1592 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1593 1594 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1595 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1596 1597 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1598 1599 drba->drba_cookie->drc_ds = ds; 1600 1601 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1602 } 1603 1604 /* 1605 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1606 * succeeds; otherwise we will leak the holds on the datasets. 1607 */ 1608 int 1609 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1610 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1611 { 1612 dmu_recv_begin_arg_t drba = { 0 }; 1613 1614 bzero(drc, sizeof (dmu_recv_cookie_t)); 1615 drc->drc_drr_begin = drr_begin; 1616 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1617 drc->drc_tosnap = tosnap; 1618 drc->drc_tofs = tofs; 1619 drc->drc_force = force; 1620 drc->drc_resumable = resumable; 1621 drc->drc_cred = CRED(); 1622 1623 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1624 drc->drc_byteswap = B_TRUE; 1625 fletcher_4_incremental_byteswap(drr_begin, 1626 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1627 byteswap_record(drr_begin); 1628 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1629 fletcher_4_incremental_native(drr_begin, 1630 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1631 } else { 1632 return (SET_ERROR(EINVAL)); 1633 } 1634 1635 drba.drba_origin = origin; 1636 drba.drba_cookie = drc; 1637 drba.drba_cred = CRED(); 1638 1639 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1640 DMU_BACKUP_FEATURE_RESUMING) { 1641 return (dsl_sync_task(tofs, 1642 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1643 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1644 } else { 1645 return (dsl_sync_task(tofs, 1646 dmu_recv_begin_check, dmu_recv_begin_sync, 1647 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1648 } 1649 } 1650 1651 struct receive_record_arg { 1652 dmu_replay_record_t header; 1653 void *payload; /* Pointer to a buffer containing the payload */ 1654 /* 1655 * If the record is a write, pointer to the arc_buf_t containing the 1656 * payload. 1657 */ 1658 arc_buf_t *write_buf; 1659 int payload_size; 1660 uint64_t bytes_read; /* bytes read from stream when record created */ 1661 boolean_t eos_marker; /* Marks the end of the stream */ 1662 bqueue_node_t node; 1663 }; 1664 1665 struct receive_writer_arg { 1666 objset_t *os; 1667 boolean_t byteswap; 1668 bqueue_t q; 1669 1670 /* 1671 * These three args are used to signal to the main thread that we're 1672 * done. 1673 */ 1674 kmutex_t mutex; 1675 kcondvar_t cv; 1676 boolean_t done; 1677 1678 int err; 1679 /* A map from guid to dataset to help handle dedup'd streams. */ 1680 avl_tree_t *guid_to_ds_map; 1681 boolean_t resumable; 1682 uint64_t last_object, last_offset; 1683 uint64_t bytes_read; /* bytes read when current record created */ 1684 }; 1685 1686 struct objlist { 1687 list_t list; /* List of struct receive_objnode. */ 1688 /* 1689 * Last object looked up. Used to assert that objects are being looked 1690 * up in ascending order. 1691 */ 1692 uint64_t last_lookup; 1693 }; 1694 1695 struct receive_objnode { 1696 list_node_t node; 1697 uint64_t object; 1698 }; 1699 1700 struct receive_arg { 1701 objset_t *os; 1702 vnode_t *vp; /* The vnode to read the stream from */ 1703 uint64_t voff; /* The current offset in the stream */ 1704 uint64_t bytes_read; 1705 /* 1706 * A record that has had its payload read in, but hasn't yet been handed 1707 * off to the worker thread. 1708 */ 1709 struct receive_record_arg *rrd; 1710 /* A record that has had its header read in, but not its payload. */ 1711 struct receive_record_arg *next_rrd; 1712 zio_cksum_t cksum; 1713 zio_cksum_t prev_cksum; 1714 int err; 1715 boolean_t byteswap; 1716 /* Sorted list of objects not to issue prefetches for. */ 1717 struct objlist ignore_objlist; 1718 }; 1719 1720 typedef struct guid_map_entry { 1721 uint64_t guid; 1722 dsl_dataset_t *gme_ds; 1723 avl_node_t avlnode; 1724 } guid_map_entry_t; 1725 1726 static int 1727 guid_compare(const void *arg1, const void *arg2) 1728 { 1729 const guid_map_entry_t *gmep1 = arg1; 1730 const guid_map_entry_t *gmep2 = arg2; 1731 1732 if (gmep1->guid < gmep2->guid) 1733 return (-1); 1734 else if (gmep1->guid > gmep2->guid) 1735 return (1); 1736 return (0); 1737 } 1738 1739 static void 1740 free_guid_map_onexit(void *arg) 1741 { 1742 avl_tree_t *ca = arg; 1743 void *cookie = NULL; 1744 guid_map_entry_t *gmep; 1745 1746 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1747 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1748 dsl_dataset_rele(gmep->gme_ds, gmep); 1749 kmem_free(gmep, sizeof (guid_map_entry_t)); 1750 } 1751 avl_destroy(ca); 1752 kmem_free(ca, sizeof (avl_tree_t)); 1753 } 1754 1755 static int 1756 receive_read(struct receive_arg *ra, int len, void *buf) 1757 { 1758 int done = 0; 1759 1760 /* some things will require 8-byte alignment, so everything must */ 1761 ASSERT0(len % 8); 1762 1763 while (done < len) { 1764 ssize_t resid; 1765 1766 ra->err = vn_rdwr(UIO_READ, ra->vp, 1767 (char *)buf + done, len - done, 1768 ra->voff, UIO_SYSSPACE, FAPPEND, 1769 RLIM64_INFINITY, CRED(), &resid); 1770 1771 if (resid == len - done) { 1772 /* 1773 * Note: ECKSUM indicates that the receive 1774 * was interrupted and can potentially be resumed. 1775 */ 1776 ra->err = SET_ERROR(ECKSUM); 1777 } 1778 ra->voff += len - done - resid; 1779 done = len - resid; 1780 if (ra->err != 0) 1781 return (ra->err); 1782 } 1783 1784 ra->bytes_read += len; 1785 1786 ASSERT3U(done, ==, len); 1787 return (0); 1788 } 1789 1790 static void 1791 byteswap_record(dmu_replay_record_t *drr) 1792 { 1793 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1794 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1795 drr->drr_type = BSWAP_32(drr->drr_type); 1796 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1797 1798 switch (drr->drr_type) { 1799 case DRR_BEGIN: 1800 DO64(drr_begin.drr_magic); 1801 DO64(drr_begin.drr_versioninfo); 1802 DO64(drr_begin.drr_creation_time); 1803 DO32(drr_begin.drr_type); 1804 DO32(drr_begin.drr_flags); 1805 DO64(drr_begin.drr_toguid); 1806 DO64(drr_begin.drr_fromguid); 1807 break; 1808 case DRR_OBJECT: 1809 DO64(drr_object.drr_object); 1810 DO32(drr_object.drr_type); 1811 DO32(drr_object.drr_bonustype); 1812 DO32(drr_object.drr_blksz); 1813 DO32(drr_object.drr_bonuslen); 1814 DO64(drr_object.drr_toguid); 1815 break; 1816 case DRR_FREEOBJECTS: 1817 DO64(drr_freeobjects.drr_firstobj); 1818 DO64(drr_freeobjects.drr_numobjs); 1819 DO64(drr_freeobjects.drr_toguid); 1820 break; 1821 case DRR_WRITE: 1822 DO64(drr_write.drr_object); 1823 DO32(drr_write.drr_type); 1824 DO64(drr_write.drr_offset); 1825 DO64(drr_write.drr_length); 1826 DO64(drr_write.drr_toguid); 1827 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1828 DO64(drr_write.drr_key.ddk_prop); 1829 break; 1830 case DRR_WRITE_BYREF: 1831 DO64(drr_write_byref.drr_object); 1832 DO64(drr_write_byref.drr_offset); 1833 DO64(drr_write_byref.drr_length); 1834 DO64(drr_write_byref.drr_toguid); 1835 DO64(drr_write_byref.drr_refguid); 1836 DO64(drr_write_byref.drr_refobject); 1837 DO64(drr_write_byref.drr_refoffset); 1838 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1839 drr_key.ddk_cksum); 1840 DO64(drr_write_byref.drr_key.ddk_prop); 1841 break; 1842 case DRR_WRITE_EMBEDDED: 1843 DO64(drr_write_embedded.drr_object); 1844 DO64(drr_write_embedded.drr_offset); 1845 DO64(drr_write_embedded.drr_length); 1846 DO64(drr_write_embedded.drr_toguid); 1847 DO32(drr_write_embedded.drr_lsize); 1848 DO32(drr_write_embedded.drr_psize); 1849 break; 1850 case DRR_FREE: 1851 DO64(drr_free.drr_object); 1852 DO64(drr_free.drr_offset); 1853 DO64(drr_free.drr_length); 1854 DO64(drr_free.drr_toguid); 1855 break; 1856 case DRR_SPILL: 1857 DO64(drr_spill.drr_object); 1858 DO64(drr_spill.drr_length); 1859 DO64(drr_spill.drr_toguid); 1860 break; 1861 case DRR_END: 1862 DO64(drr_end.drr_toguid); 1863 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1864 break; 1865 } 1866 1867 if (drr->drr_type != DRR_BEGIN) { 1868 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1869 } 1870 1871 #undef DO64 1872 #undef DO32 1873 } 1874 1875 static inline uint8_t 1876 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1877 { 1878 if (bonus_type == DMU_OT_SA) { 1879 return (1); 1880 } else { 1881 return (1 + 1882 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1883 } 1884 } 1885 1886 static void 1887 save_resume_state(struct receive_writer_arg *rwa, 1888 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1889 { 1890 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1891 1892 if (!rwa->resumable) 1893 return; 1894 1895 /* 1896 * We use ds_resume_bytes[] != 0 to indicate that we need to 1897 * update this on disk, so it must not be 0. 1898 */ 1899 ASSERT(rwa->bytes_read != 0); 1900 1901 /* 1902 * We only resume from write records, which have a valid 1903 * (non-meta-dnode) object number. 1904 */ 1905 ASSERT(object != 0); 1906 1907 /* 1908 * For resuming to work correctly, we must receive records in order, 1909 * sorted by object,offset. This is checked by the callers, but 1910 * assert it here for good measure. 1911 */ 1912 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1913 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1914 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1915 ASSERT3U(rwa->bytes_read, >=, 1916 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1917 1918 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1919 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1920 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1921 } 1922 1923 static int 1924 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1925 void *data) 1926 { 1927 dmu_object_info_t doi; 1928 dmu_tx_t *tx; 1929 uint64_t object; 1930 int err; 1931 1932 if (drro->drr_type == DMU_OT_NONE || 1933 !DMU_OT_IS_VALID(drro->drr_type) || 1934 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1935 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1936 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1937 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1938 drro->drr_blksz < SPA_MINBLOCKSIZE || 1939 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1940 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1941 return (SET_ERROR(EINVAL)); 1942 } 1943 1944 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1945 1946 if (err != 0 && err != ENOENT) 1947 return (SET_ERROR(EINVAL)); 1948 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1949 1950 /* 1951 * If we are losing blkptrs or changing the block size this must 1952 * be a new file instance. We must clear out the previous file 1953 * contents before we can change this type of metadata in the dnode. 1954 */ 1955 if (err == 0) { 1956 int nblkptr; 1957 1958 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1959 drro->drr_bonuslen); 1960 1961 if (drro->drr_blksz != doi.doi_data_block_size || 1962 nblkptr < doi.doi_nblkptr) { 1963 err = dmu_free_long_range(rwa->os, drro->drr_object, 1964 0, DMU_OBJECT_END); 1965 if (err != 0) 1966 return (SET_ERROR(EINVAL)); 1967 } 1968 } 1969 1970 tx = dmu_tx_create(rwa->os); 1971 dmu_tx_hold_bonus(tx, object); 1972 err = dmu_tx_assign(tx, TXG_WAIT); 1973 if (err != 0) { 1974 dmu_tx_abort(tx); 1975 return (err); 1976 } 1977 1978 if (object == DMU_NEW_OBJECT) { 1979 /* currently free, want to be allocated */ 1980 err = dmu_object_claim(rwa->os, drro->drr_object, 1981 drro->drr_type, drro->drr_blksz, 1982 drro->drr_bonustype, drro->drr_bonuslen, tx); 1983 } else if (drro->drr_type != doi.doi_type || 1984 drro->drr_blksz != doi.doi_data_block_size || 1985 drro->drr_bonustype != doi.doi_bonus_type || 1986 drro->drr_bonuslen != doi.doi_bonus_size) { 1987 /* currently allocated, but with different properties */ 1988 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1989 drro->drr_type, drro->drr_blksz, 1990 drro->drr_bonustype, drro->drr_bonuslen, tx); 1991 } 1992 if (err != 0) { 1993 dmu_tx_commit(tx); 1994 return (SET_ERROR(EINVAL)); 1995 } 1996 1997 dmu_object_set_checksum(rwa->os, drro->drr_object, 1998 drro->drr_checksumtype, tx); 1999 dmu_object_set_compress(rwa->os, drro->drr_object, 2000 drro->drr_compress, tx); 2001 2002 if (data != NULL) { 2003 dmu_buf_t *db; 2004 2005 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2006 dmu_buf_will_dirty(db, tx); 2007 2008 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2009 bcopy(data, db->db_data, drro->drr_bonuslen); 2010 if (rwa->byteswap) { 2011 dmu_object_byteswap_t byteswap = 2012 DMU_OT_BYTESWAP(drro->drr_bonustype); 2013 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2014 drro->drr_bonuslen); 2015 } 2016 dmu_buf_rele(db, FTAG); 2017 } 2018 dmu_tx_commit(tx); 2019 2020 return (0); 2021 } 2022 2023 /* ARGSUSED */ 2024 static int 2025 receive_freeobjects(struct receive_writer_arg *rwa, 2026 struct drr_freeobjects *drrfo) 2027 { 2028 uint64_t obj; 2029 int next_err = 0; 2030 2031 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2032 return (SET_ERROR(EINVAL)); 2033 2034 for (obj = drrfo->drr_firstobj; 2035 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2036 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2037 int err; 2038 2039 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2040 continue; 2041 2042 err = dmu_free_long_object(rwa->os, obj); 2043 if (err != 0) 2044 return (err); 2045 } 2046 if (next_err != ESRCH) 2047 return (next_err); 2048 return (0); 2049 } 2050 2051 static int 2052 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2053 arc_buf_t *abuf) 2054 { 2055 dmu_tx_t *tx; 2056 int err; 2057 2058 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2059 !DMU_OT_IS_VALID(drrw->drr_type)) 2060 return (SET_ERROR(EINVAL)); 2061 2062 /* 2063 * For resuming to work, records must be in increasing order 2064 * by (object, offset). 2065 */ 2066 if (drrw->drr_object < rwa->last_object || 2067 (drrw->drr_object == rwa->last_object && 2068 drrw->drr_offset < rwa->last_offset)) { 2069 return (SET_ERROR(EINVAL)); 2070 } 2071 rwa->last_object = drrw->drr_object; 2072 rwa->last_offset = drrw->drr_offset; 2073 2074 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2075 return (SET_ERROR(EINVAL)); 2076 2077 tx = dmu_tx_create(rwa->os); 2078 2079 dmu_tx_hold_write(tx, drrw->drr_object, 2080 drrw->drr_offset, drrw->drr_length); 2081 err = dmu_tx_assign(tx, TXG_WAIT); 2082 if (err != 0) { 2083 dmu_tx_abort(tx); 2084 return (err); 2085 } 2086 if (rwa->byteswap) { 2087 dmu_object_byteswap_t byteswap = 2088 DMU_OT_BYTESWAP(drrw->drr_type); 2089 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2090 drrw->drr_length); 2091 } 2092 2093 dmu_buf_t *bonus; 2094 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2095 return (SET_ERROR(EINVAL)); 2096 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2097 2098 /* 2099 * Note: If the receive fails, we want the resume stream to start 2100 * with the same record that we last successfully received (as opposed 2101 * to the next record), so that we can verify that we are 2102 * resuming from the correct location. 2103 */ 2104 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2105 dmu_tx_commit(tx); 2106 dmu_buf_rele(bonus, FTAG); 2107 2108 return (0); 2109 } 2110 2111 /* 2112 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2113 * streams to refer to a copy of the data that is already on the 2114 * system because it came in earlier in the stream. This function 2115 * finds the earlier copy of the data, and uses that copy instead of 2116 * data from the stream to fulfill this write. 2117 */ 2118 static int 2119 receive_write_byref(struct receive_writer_arg *rwa, 2120 struct drr_write_byref *drrwbr) 2121 { 2122 dmu_tx_t *tx; 2123 int err; 2124 guid_map_entry_t gmesrch; 2125 guid_map_entry_t *gmep; 2126 avl_index_t where; 2127 objset_t *ref_os = NULL; 2128 dmu_buf_t *dbp; 2129 2130 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2131 return (SET_ERROR(EINVAL)); 2132 2133 /* 2134 * If the GUID of the referenced dataset is different from the 2135 * GUID of the target dataset, find the referenced dataset. 2136 */ 2137 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2138 gmesrch.guid = drrwbr->drr_refguid; 2139 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2140 &where)) == NULL) { 2141 return (SET_ERROR(EINVAL)); 2142 } 2143 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2144 return (SET_ERROR(EINVAL)); 2145 } else { 2146 ref_os = rwa->os; 2147 } 2148 2149 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2150 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2151 if (err != 0) 2152 return (err); 2153 2154 tx = dmu_tx_create(rwa->os); 2155 2156 dmu_tx_hold_write(tx, drrwbr->drr_object, 2157 drrwbr->drr_offset, drrwbr->drr_length); 2158 err = dmu_tx_assign(tx, TXG_WAIT); 2159 if (err != 0) { 2160 dmu_tx_abort(tx); 2161 return (err); 2162 } 2163 dmu_write(rwa->os, drrwbr->drr_object, 2164 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2165 dmu_buf_rele(dbp, FTAG); 2166 2167 /* See comment in restore_write. */ 2168 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2169 dmu_tx_commit(tx); 2170 return (0); 2171 } 2172 2173 static int 2174 receive_write_embedded(struct receive_writer_arg *rwa, 2175 struct drr_write_embedded *drrwe, void *data) 2176 { 2177 dmu_tx_t *tx; 2178 int err; 2179 2180 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2181 return (EINVAL); 2182 2183 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2184 return (EINVAL); 2185 2186 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2187 return (EINVAL); 2188 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2189 return (EINVAL); 2190 2191 tx = dmu_tx_create(rwa->os); 2192 2193 dmu_tx_hold_write(tx, drrwe->drr_object, 2194 drrwe->drr_offset, drrwe->drr_length); 2195 err = dmu_tx_assign(tx, TXG_WAIT); 2196 if (err != 0) { 2197 dmu_tx_abort(tx); 2198 return (err); 2199 } 2200 2201 dmu_write_embedded(rwa->os, drrwe->drr_object, 2202 drrwe->drr_offset, data, drrwe->drr_etype, 2203 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2204 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2205 2206 /* See comment in restore_write. */ 2207 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2208 dmu_tx_commit(tx); 2209 return (0); 2210 } 2211 2212 static int 2213 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2214 void *data) 2215 { 2216 dmu_tx_t *tx; 2217 dmu_buf_t *db, *db_spill; 2218 int err; 2219 2220 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2221 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2222 return (SET_ERROR(EINVAL)); 2223 2224 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2225 return (SET_ERROR(EINVAL)); 2226 2227 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2228 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2229 dmu_buf_rele(db, FTAG); 2230 return (err); 2231 } 2232 2233 tx = dmu_tx_create(rwa->os); 2234 2235 dmu_tx_hold_spill(tx, db->db_object); 2236 2237 err = dmu_tx_assign(tx, TXG_WAIT); 2238 if (err != 0) { 2239 dmu_buf_rele(db, FTAG); 2240 dmu_buf_rele(db_spill, FTAG); 2241 dmu_tx_abort(tx); 2242 return (err); 2243 } 2244 dmu_buf_will_dirty(db_spill, tx); 2245 2246 if (db_spill->db_size < drrs->drr_length) 2247 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2248 drrs->drr_length, tx)); 2249 bcopy(data, db_spill->db_data, drrs->drr_length); 2250 2251 dmu_buf_rele(db, FTAG); 2252 dmu_buf_rele(db_spill, FTAG); 2253 2254 dmu_tx_commit(tx); 2255 return (0); 2256 } 2257 2258 /* ARGSUSED */ 2259 static int 2260 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2261 { 2262 int err; 2263 2264 if (drrf->drr_length != -1ULL && 2265 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2266 return (SET_ERROR(EINVAL)); 2267 2268 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2269 return (SET_ERROR(EINVAL)); 2270 2271 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2272 drrf->drr_offset, drrf->drr_length); 2273 2274 return (err); 2275 } 2276 2277 /* used to destroy the drc_ds on error */ 2278 static void 2279 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2280 { 2281 if (drc->drc_resumable) { 2282 /* wait for our resume state to be written to disk */ 2283 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2284 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2285 } else { 2286 char name[MAXNAMELEN]; 2287 dsl_dataset_name(drc->drc_ds, name); 2288 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2289 (void) dsl_destroy_head(name); 2290 } 2291 } 2292 2293 static void 2294 receive_cksum(struct receive_arg *ra, int len, void *buf) 2295 { 2296 if (ra->byteswap) { 2297 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2298 } else { 2299 fletcher_4_incremental_native(buf, len, &ra->cksum); 2300 } 2301 } 2302 2303 /* 2304 * Read the payload into a buffer of size len, and update the current record's 2305 * payload field. 2306 * Allocate ra->next_rrd and read the next record's header into 2307 * ra->next_rrd->header. 2308 * Verify checksum of payload and next record. 2309 */ 2310 static int 2311 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2312 { 2313 int err; 2314 2315 if (len != 0) { 2316 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2317 err = receive_read(ra, len, buf); 2318 if (err != 0) 2319 return (err); 2320 receive_cksum(ra, len, buf); 2321 2322 /* note: rrd is NULL when reading the begin record's payload */ 2323 if (ra->rrd != NULL) { 2324 ra->rrd->payload = buf; 2325 ra->rrd->payload_size = len; 2326 ra->rrd->bytes_read = ra->bytes_read; 2327 } 2328 } 2329 2330 ra->prev_cksum = ra->cksum; 2331 2332 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2333 err = receive_read(ra, sizeof (ra->next_rrd->header), 2334 &ra->next_rrd->header); 2335 ra->next_rrd->bytes_read = ra->bytes_read; 2336 if (err != 0) { 2337 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2338 ra->next_rrd = NULL; 2339 return (err); 2340 } 2341 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2342 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2343 ra->next_rrd = NULL; 2344 return (SET_ERROR(EINVAL)); 2345 } 2346 2347 /* 2348 * Note: checksum is of everything up to but not including the 2349 * checksum itself. 2350 */ 2351 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2352 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2353 receive_cksum(ra, 2354 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2355 &ra->next_rrd->header); 2356 2357 zio_cksum_t cksum_orig = 2358 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2359 zio_cksum_t *cksump = 2360 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2361 2362 if (ra->byteswap) 2363 byteswap_record(&ra->next_rrd->header); 2364 2365 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2366 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2367 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2368 ra->next_rrd = NULL; 2369 return (SET_ERROR(ECKSUM)); 2370 } 2371 2372 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2373 2374 return (0); 2375 } 2376 2377 static void 2378 objlist_create(struct objlist *list) 2379 { 2380 list_create(&list->list, sizeof (struct receive_objnode), 2381 offsetof(struct receive_objnode, node)); 2382 list->last_lookup = 0; 2383 } 2384 2385 static void 2386 objlist_destroy(struct objlist *list) 2387 { 2388 for (struct receive_objnode *n = list_remove_head(&list->list); 2389 n != NULL; n = list_remove_head(&list->list)) { 2390 kmem_free(n, sizeof (*n)); 2391 } 2392 list_destroy(&list->list); 2393 } 2394 2395 /* 2396 * This function looks through the objlist to see if the specified object number 2397 * is contained in the objlist. In the process, it will remove all object 2398 * numbers in the list that are smaller than the specified object number. Thus, 2399 * any lookup of an object number smaller than a previously looked up object 2400 * number will always return false; therefore, all lookups should be done in 2401 * ascending order. 2402 */ 2403 static boolean_t 2404 objlist_exists(struct objlist *list, uint64_t object) 2405 { 2406 struct receive_objnode *node = list_head(&list->list); 2407 ASSERT3U(object, >=, list->last_lookup); 2408 list->last_lookup = object; 2409 while (node != NULL && node->object < object) { 2410 VERIFY3P(node, ==, list_remove_head(&list->list)); 2411 kmem_free(node, sizeof (*node)); 2412 node = list_head(&list->list); 2413 } 2414 return (node != NULL && node->object == object); 2415 } 2416 2417 /* 2418 * The objlist is a list of object numbers stored in ascending order. However, 2419 * the insertion of new object numbers does not seek out the correct location to 2420 * store a new object number; instead, it appends it to the list for simplicity. 2421 * Thus, any users must take care to only insert new object numbers in ascending 2422 * order. 2423 */ 2424 static void 2425 objlist_insert(struct objlist *list, uint64_t object) 2426 { 2427 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2428 node->object = object; 2429 #ifdef ZFS_DEBUG 2430 struct receive_objnode *last_object = list_tail(&list->list); 2431 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2432 ASSERT3U(node->object, >, last_objnum); 2433 #endif 2434 list_insert_tail(&list->list, node); 2435 } 2436 2437 /* 2438 * Issue the prefetch reads for any necessary indirect blocks. 2439 * 2440 * We use the object ignore list to tell us whether or not to issue prefetches 2441 * for a given object. We do this for both correctness (in case the blocksize 2442 * of an object has changed) and performance (if the object doesn't exist, don't 2443 * needlessly try to issue prefetches). We also trim the list as we go through 2444 * the stream to prevent it from growing to an unbounded size. 2445 * 2446 * The object numbers within will always be in sorted order, and any write 2447 * records we see will also be in sorted order, but they're not sorted with 2448 * respect to each other (i.e. we can get several object records before 2449 * receiving each object's write records). As a result, once we've reached a 2450 * given object number, we can safely remove any reference to lower object 2451 * numbers in the ignore list. In practice, we receive up to 32 object records 2452 * before receiving write records, so the list can have up to 32 nodes in it. 2453 */ 2454 /* ARGSUSED */ 2455 static void 2456 receive_read_prefetch(struct receive_arg *ra, 2457 uint64_t object, uint64_t offset, uint64_t length) 2458 { 2459 if (!objlist_exists(&ra->ignore_objlist, object)) { 2460 dmu_prefetch(ra->os, object, 1, offset, length, 2461 ZIO_PRIORITY_SYNC_READ); 2462 } 2463 } 2464 2465 /* 2466 * Read records off the stream, issuing any necessary prefetches. 2467 */ 2468 static int 2469 receive_read_record(struct receive_arg *ra) 2470 { 2471 int err; 2472 2473 switch (ra->rrd->header.drr_type) { 2474 case DRR_OBJECT: 2475 { 2476 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2477 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2478 void *buf = kmem_zalloc(size, KM_SLEEP); 2479 dmu_object_info_t doi; 2480 err = receive_read_payload_and_next_header(ra, size, buf); 2481 if (err != 0) { 2482 kmem_free(buf, size); 2483 return (err); 2484 } 2485 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2486 /* 2487 * See receive_read_prefetch for an explanation why we're 2488 * storing this object in the ignore_obj_list. 2489 */ 2490 if (err == ENOENT || 2491 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2492 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2493 err = 0; 2494 } 2495 return (err); 2496 } 2497 case DRR_FREEOBJECTS: 2498 { 2499 err = receive_read_payload_and_next_header(ra, 0, NULL); 2500 return (err); 2501 } 2502 case DRR_WRITE: 2503 { 2504 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2505 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2506 drrw->drr_length); 2507 2508 err = receive_read_payload_and_next_header(ra, 2509 drrw->drr_length, abuf->b_data); 2510 if (err != 0) { 2511 dmu_return_arcbuf(abuf); 2512 return (err); 2513 } 2514 ra->rrd->write_buf = abuf; 2515 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2516 drrw->drr_length); 2517 return (err); 2518 } 2519 case DRR_WRITE_BYREF: 2520 { 2521 struct drr_write_byref *drrwb = 2522 &ra->rrd->header.drr_u.drr_write_byref; 2523 err = receive_read_payload_and_next_header(ra, 0, NULL); 2524 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2525 drrwb->drr_length); 2526 return (err); 2527 } 2528 case DRR_WRITE_EMBEDDED: 2529 { 2530 struct drr_write_embedded *drrwe = 2531 &ra->rrd->header.drr_u.drr_write_embedded; 2532 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2533 void *buf = kmem_zalloc(size, KM_SLEEP); 2534 2535 err = receive_read_payload_and_next_header(ra, size, buf); 2536 if (err != 0) { 2537 kmem_free(buf, size); 2538 return (err); 2539 } 2540 2541 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2542 drrwe->drr_length); 2543 return (err); 2544 } 2545 case DRR_FREE: 2546 { 2547 /* 2548 * It might be beneficial to prefetch indirect blocks here, but 2549 * we don't really have the data to decide for sure. 2550 */ 2551 err = receive_read_payload_and_next_header(ra, 0, NULL); 2552 return (err); 2553 } 2554 case DRR_END: 2555 { 2556 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2557 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2558 return (SET_ERROR(ECKSUM)); 2559 return (0); 2560 } 2561 case DRR_SPILL: 2562 { 2563 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2564 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2565 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2566 buf); 2567 if (err != 0) 2568 kmem_free(buf, drrs->drr_length); 2569 return (err); 2570 } 2571 default: 2572 return (SET_ERROR(EINVAL)); 2573 } 2574 } 2575 2576 /* 2577 * Commit the records to the pool. 2578 */ 2579 static int 2580 receive_process_record(struct receive_writer_arg *rwa, 2581 struct receive_record_arg *rrd) 2582 { 2583 int err; 2584 2585 /* Processing in order, therefore bytes_read should be increasing. */ 2586 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2587 rwa->bytes_read = rrd->bytes_read; 2588 2589 switch (rrd->header.drr_type) { 2590 case DRR_OBJECT: 2591 { 2592 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2593 err = receive_object(rwa, drro, rrd->payload); 2594 kmem_free(rrd->payload, rrd->payload_size); 2595 rrd->payload = NULL; 2596 return (err); 2597 } 2598 case DRR_FREEOBJECTS: 2599 { 2600 struct drr_freeobjects *drrfo = 2601 &rrd->header.drr_u.drr_freeobjects; 2602 return (receive_freeobjects(rwa, drrfo)); 2603 } 2604 case DRR_WRITE: 2605 { 2606 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2607 err = receive_write(rwa, drrw, rrd->write_buf); 2608 /* if receive_write() is successful, it consumes the arc_buf */ 2609 if (err != 0) 2610 dmu_return_arcbuf(rrd->write_buf); 2611 rrd->write_buf = NULL; 2612 rrd->payload = NULL; 2613 return (err); 2614 } 2615 case DRR_WRITE_BYREF: 2616 { 2617 struct drr_write_byref *drrwbr = 2618 &rrd->header.drr_u.drr_write_byref; 2619 return (receive_write_byref(rwa, drrwbr)); 2620 } 2621 case DRR_WRITE_EMBEDDED: 2622 { 2623 struct drr_write_embedded *drrwe = 2624 &rrd->header.drr_u.drr_write_embedded; 2625 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2626 kmem_free(rrd->payload, rrd->payload_size); 2627 rrd->payload = NULL; 2628 return (err); 2629 } 2630 case DRR_FREE: 2631 { 2632 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2633 return (receive_free(rwa, drrf)); 2634 } 2635 case DRR_SPILL: 2636 { 2637 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2638 err = receive_spill(rwa, drrs, rrd->payload); 2639 kmem_free(rrd->payload, rrd->payload_size); 2640 rrd->payload = NULL; 2641 return (err); 2642 } 2643 default: 2644 return (SET_ERROR(EINVAL)); 2645 } 2646 } 2647 2648 /* 2649 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2650 * receive_process_record When we're done, signal the main thread and exit. 2651 */ 2652 static void 2653 receive_writer_thread(void *arg) 2654 { 2655 struct receive_writer_arg *rwa = arg; 2656 struct receive_record_arg *rrd; 2657 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2658 rrd = bqueue_dequeue(&rwa->q)) { 2659 /* 2660 * If there's an error, the main thread will stop putting things 2661 * on the queue, but we need to clear everything in it before we 2662 * can exit. 2663 */ 2664 if (rwa->err == 0) { 2665 rwa->err = receive_process_record(rwa, rrd); 2666 } else if (rrd->write_buf != NULL) { 2667 dmu_return_arcbuf(rrd->write_buf); 2668 rrd->write_buf = NULL; 2669 rrd->payload = NULL; 2670 } else if (rrd->payload != NULL) { 2671 kmem_free(rrd->payload, rrd->payload_size); 2672 rrd->payload = NULL; 2673 } 2674 kmem_free(rrd, sizeof (*rrd)); 2675 } 2676 kmem_free(rrd, sizeof (*rrd)); 2677 mutex_enter(&rwa->mutex); 2678 rwa->done = B_TRUE; 2679 cv_signal(&rwa->cv); 2680 mutex_exit(&rwa->mutex); 2681 } 2682 2683 static int 2684 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2685 { 2686 uint64_t val; 2687 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2688 uint64_t dsobj = dmu_objset_id(ra->os); 2689 uint64_t resume_obj, resume_off; 2690 2691 if (nvlist_lookup_uint64(begin_nvl, 2692 "resume_object", &resume_obj) != 0 || 2693 nvlist_lookup_uint64(begin_nvl, 2694 "resume_offset", &resume_off) != 0) { 2695 return (SET_ERROR(EINVAL)); 2696 } 2697 VERIFY0(zap_lookup(mos, dsobj, 2698 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2699 if (resume_obj != val) 2700 return (SET_ERROR(EINVAL)); 2701 VERIFY0(zap_lookup(mos, dsobj, 2702 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2703 if (resume_off != val) 2704 return (SET_ERROR(EINVAL)); 2705 2706 return (0); 2707 } 2708 2709 /* 2710 * Read in the stream's records, one by one, and apply them to the pool. There 2711 * are two threads involved; the thread that calls this function will spin up a 2712 * worker thread, read the records off the stream one by one, and issue 2713 * prefetches for any necessary indirect blocks. It will then push the records 2714 * onto an internal blocking queue. The worker thread will pull the records off 2715 * the queue, and actually write the data into the DMU. This way, the worker 2716 * thread doesn't have to wait for reads to complete, since everything it needs 2717 * (the indirect blocks) will be prefetched. 2718 * 2719 * NB: callers *must* call dmu_recv_end() if this succeeds. 2720 */ 2721 int 2722 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2723 int cleanup_fd, uint64_t *action_handlep) 2724 { 2725 int err = 0; 2726 struct receive_arg ra = { 0 }; 2727 struct receive_writer_arg rwa = { 0 }; 2728 int featureflags; 2729 nvlist_t *begin_nvl = NULL; 2730 2731 ra.byteswap = drc->drc_byteswap; 2732 ra.cksum = drc->drc_cksum; 2733 ra.vp = vp; 2734 ra.voff = *voffp; 2735 2736 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2737 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2738 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2739 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2740 } 2741 2742 objlist_create(&ra.ignore_objlist); 2743 2744 /* these were verified in dmu_recv_begin */ 2745 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2746 DMU_SUBSTREAM); 2747 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2748 2749 /* 2750 * Open the objset we are modifying. 2751 */ 2752 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2753 2754 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2755 2756 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2757 2758 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2759 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2760 minor_t minor; 2761 2762 if (cleanup_fd == -1) { 2763 ra.err = SET_ERROR(EBADF); 2764 goto out; 2765 } 2766 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2767 if (ra.err != 0) { 2768 cleanup_fd = -1; 2769 goto out; 2770 } 2771 2772 if (*action_handlep == 0) { 2773 rwa.guid_to_ds_map = 2774 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2775 avl_create(rwa.guid_to_ds_map, guid_compare, 2776 sizeof (guid_map_entry_t), 2777 offsetof(guid_map_entry_t, avlnode)); 2778 err = zfs_onexit_add_cb(minor, 2779 free_guid_map_onexit, rwa.guid_to_ds_map, 2780 action_handlep); 2781 if (ra.err != 0) 2782 goto out; 2783 } else { 2784 err = zfs_onexit_cb_data(minor, *action_handlep, 2785 (void **)&rwa.guid_to_ds_map); 2786 if (ra.err != 0) 2787 goto out; 2788 } 2789 2790 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2791 } 2792 2793 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2794 void *payload = NULL; 2795 if (payloadlen != 0) 2796 payload = kmem_alloc(payloadlen, KM_SLEEP); 2797 2798 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2799 if (err != 0) { 2800 if (payloadlen != 0) 2801 kmem_free(payload, payloadlen); 2802 goto out; 2803 } 2804 if (payloadlen != 0) { 2805 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2806 kmem_free(payload, payloadlen); 2807 if (err != 0) 2808 goto out; 2809 } 2810 2811 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2812 err = resume_check(&ra, begin_nvl); 2813 if (err != 0) 2814 goto out; 2815 } 2816 2817 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2818 offsetof(struct receive_record_arg, node)); 2819 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2820 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2821 rwa.os = ra.os; 2822 rwa.byteswap = drc->drc_byteswap; 2823 rwa.resumable = drc->drc_resumable; 2824 2825 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2826 TS_RUN, minclsyspri); 2827 /* 2828 * We're reading rwa.err without locks, which is safe since we are the 2829 * only reader, and the worker thread is the only writer. It's ok if we 2830 * miss a write for an iteration or two of the loop, since the writer 2831 * thread will keep freeing records we send it until we send it an eos 2832 * marker. 2833 * 2834 * We can leave this loop in 3 ways: First, if rwa.err is 2835 * non-zero. In that case, the writer thread will free the rrd we just 2836 * pushed. Second, if we're interrupted; in that case, either it's the 2837 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2838 * has been handed off to the writer thread who will free it. Finally, 2839 * if receive_read_record fails or we're at the end of the stream, then 2840 * we free ra.rrd and exit. 2841 */ 2842 while (rwa.err == 0) { 2843 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2844 err = SET_ERROR(EINTR); 2845 break; 2846 } 2847 2848 ASSERT3P(ra.rrd, ==, NULL); 2849 ra.rrd = ra.next_rrd; 2850 ra.next_rrd = NULL; 2851 /* Allocates and loads header into ra.next_rrd */ 2852 err = receive_read_record(&ra); 2853 2854 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2855 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2856 ra.rrd = NULL; 2857 break; 2858 } 2859 2860 bqueue_enqueue(&rwa.q, ra.rrd, 2861 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2862 ra.rrd = NULL; 2863 } 2864 if (ra.next_rrd == NULL) 2865 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2866 ra.next_rrd->eos_marker = B_TRUE; 2867 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2868 2869 mutex_enter(&rwa.mutex); 2870 while (!rwa.done) { 2871 cv_wait(&rwa.cv, &rwa.mutex); 2872 } 2873 mutex_exit(&rwa.mutex); 2874 2875 cv_destroy(&rwa.cv); 2876 mutex_destroy(&rwa.mutex); 2877 bqueue_destroy(&rwa.q); 2878 if (err == 0) 2879 err = rwa.err; 2880 2881 out: 2882 nvlist_free(begin_nvl); 2883 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2884 zfs_onexit_fd_rele(cleanup_fd); 2885 2886 if (err != 0) { 2887 /* 2888 * Clean up references. If receive is not resumable, 2889 * destroy what we created, so we don't leave it in 2890 * the inconsistent state. 2891 */ 2892 dmu_recv_cleanup_ds(drc); 2893 } 2894 2895 *voffp = ra.voff; 2896 objlist_destroy(&ra.ignore_objlist); 2897 return (err); 2898 } 2899 2900 static int 2901 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2902 { 2903 dmu_recv_cookie_t *drc = arg; 2904 dsl_pool_t *dp = dmu_tx_pool(tx); 2905 int error; 2906 2907 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2908 2909 if (!drc->drc_newfs) { 2910 dsl_dataset_t *origin_head; 2911 2912 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2913 if (error != 0) 2914 return (error); 2915 if (drc->drc_force) { 2916 /* 2917 * We will destroy any snapshots in tofs (i.e. before 2918 * origin_head) that are after the origin (which is 2919 * the snap before drc_ds, because drc_ds can not 2920 * have any snaps of its own). 2921 */ 2922 uint64_t obj; 2923 2924 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2925 while (obj != 2926 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2927 dsl_dataset_t *snap; 2928 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2929 &snap); 2930 if (error != 0) 2931 break; 2932 if (snap->ds_dir != origin_head->ds_dir) 2933 error = SET_ERROR(EINVAL); 2934 if (error == 0) { 2935 error = dsl_destroy_snapshot_check_impl( 2936 snap, B_FALSE); 2937 } 2938 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2939 dsl_dataset_rele(snap, FTAG); 2940 if (error != 0) 2941 break; 2942 } 2943 if (error != 0) { 2944 dsl_dataset_rele(origin_head, FTAG); 2945 return (error); 2946 } 2947 } 2948 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2949 origin_head, drc->drc_force, drc->drc_owner, tx); 2950 if (error != 0) { 2951 dsl_dataset_rele(origin_head, FTAG); 2952 return (error); 2953 } 2954 error = dsl_dataset_snapshot_check_impl(origin_head, 2955 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2956 dsl_dataset_rele(origin_head, FTAG); 2957 if (error != 0) 2958 return (error); 2959 2960 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2961 } else { 2962 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2963 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2964 } 2965 return (error); 2966 } 2967 2968 static void 2969 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2970 { 2971 dmu_recv_cookie_t *drc = arg; 2972 dsl_pool_t *dp = dmu_tx_pool(tx); 2973 2974 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2975 tx, "snap=%s", drc->drc_tosnap); 2976 2977 if (!drc->drc_newfs) { 2978 dsl_dataset_t *origin_head; 2979 2980 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2981 &origin_head)); 2982 2983 if (drc->drc_force) { 2984 /* 2985 * Destroy any snapshots of drc_tofs (origin_head) 2986 * after the origin (the snap before drc_ds). 2987 */ 2988 uint64_t obj; 2989 2990 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2991 while (obj != 2992 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2993 dsl_dataset_t *snap; 2994 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2995 &snap)); 2996 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2997 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2998 dsl_destroy_snapshot_sync_impl(snap, 2999 B_FALSE, tx); 3000 dsl_dataset_rele(snap, FTAG); 3001 } 3002 } 3003 VERIFY3P(drc->drc_ds->ds_prev, ==, 3004 origin_head->ds_prev); 3005 3006 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3007 origin_head, tx); 3008 dsl_dataset_snapshot_sync_impl(origin_head, 3009 drc->drc_tosnap, tx); 3010 3011 /* set snapshot's creation time and guid */ 3012 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3013 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3014 drc->drc_drrb->drr_creation_time; 3015 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3016 drc->drc_drrb->drr_toguid; 3017 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3018 ~DS_FLAG_INCONSISTENT; 3019 3020 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3021 dsl_dataset_phys(origin_head)->ds_flags &= 3022 ~DS_FLAG_INCONSISTENT; 3023 3024 dsl_dataset_rele(origin_head, FTAG); 3025 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3026 3027 if (drc->drc_owner != NULL) 3028 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3029 } else { 3030 dsl_dataset_t *ds = drc->drc_ds; 3031 3032 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3033 3034 /* set snapshot's creation time and guid */ 3035 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3036 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3037 drc->drc_drrb->drr_creation_time; 3038 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3039 drc->drc_drrb->drr_toguid; 3040 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3041 ~DS_FLAG_INCONSISTENT; 3042 3043 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3044 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3045 if (dsl_dataset_has_resume_receive_state(ds)) { 3046 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3047 DS_FIELD_RESUME_FROMGUID, tx); 3048 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3049 DS_FIELD_RESUME_OBJECT, tx); 3050 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3051 DS_FIELD_RESUME_OFFSET, tx); 3052 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3053 DS_FIELD_RESUME_BYTES, tx); 3054 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3055 DS_FIELD_RESUME_TOGUID, tx); 3056 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3057 DS_FIELD_RESUME_TONAME, tx); 3058 } 3059 } 3060 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3061 /* 3062 * Release the hold from dmu_recv_begin. This must be done before 3063 * we return to open context, so that when we free the dataset's dnode, 3064 * we can evict its bonus buffer. 3065 */ 3066 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3067 drc->drc_ds = NULL; 3068 } 3069 3070 static int 3071 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3072 { 3073 dsl_pool_t *dp; 3074 dsl_dataset_t *snapds; 3075 guid_map_entry_t *gmep; 3076 int err; 3077 3078 ASSERT(guid_map != NULL); 3079 3080 err = dsl_pool_hold(name, FTAG, &dp); 3081 if (err != 0) 3082 return (err); 3083 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3084 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3085 if (err == 0) { 3086 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3087 gmep->gme_ds = snapds; 3088 avl_add(guid_map, gmep); 3089 dsl_dataset_long_hold(snapds, gmep); 3090 } else { 3091 kmem_free(gmep, sizeof (*gmep)); 3092 } 3093 3094 dsl_pool_rele(dp, FTAG); 3095 return (err); 3096 } 3097 3098 static int dmu_recv_end_modified_blocks = 3; 3099 3100 static int 3101 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3102 { 3103 int error; 3104 char name[MAXNAMELEN]; 3105 3106 #ifdef _KERNEL 3107 /* 3108 * We will be destroying the ds; make sure its origin is unmounted if 3109 * necessary. 3110 */ 3111 dsl_dataset_name(drc->drc_ds, name); 3112 zfs_destroy_unmount_origin(name); 3113 #endif 3114 3115 error = dsl_sync_task(drc->drc_tofs, 3116 dmu_recv_end_check, dmu_recv_end_sync, drc, 3117 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3118 3119 if (error != 0) 3120 dmu_recv_cleanup_ds(drc); 3121 return (error); 3122 } 3123 3124 static int 3125 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3126 { 3127 int error; 3128 3129 error = dsl_sync_task(drc->drc_tofs, 3130 dmu_recv_end_check, dmu_recv_end_sync, drc, 3131 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3132 3133 if (error != 0) { 3134 dmu_recv_cleanup_ds(drc); 3135 } else if (drc->drc_guid_to_ds_map != NULL) { 3136 (void) add_ds_to_guidmap(drc->drc_tofs, 3137 drc->drc_guid_to_ds_map, 3138 drc->drc_newsnapobj); 3139 } 3140 return (error); 3141 } 3142 3143 int 3144 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3145 { 3146 drc->drc_owner = owner; 3147 3148 if (drc->drc_newfs) 3149 return (dmu_recv_new_end(drc)); 3150 else 3151 return (dmu_recv_existing_end(drc)); 3152 } 3153 3154 /* 3155 * Return TRUE if this objset is currently being received into. 3156 */ 3157 boolean_t 3158 dmu_objset_is_receiving(objset_t *os) 3159 { 3160 return (os->os_dsl_dataset != NULL && 3161 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3162 }