1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright (c) 2014, Joyent, Inc. All rights reserved. 26 * Copyright 2014 HybridCluster. All rights reserved. 27 */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_prop.h> 40 #include <sys/dsl_pool.h> 41 #include <sys/dsl_synctask.h> 42 #include <sys/zfs_ioctl.h> 43 #include <sys/zap.h> 44 #include <sys/zio_checksum.h> 45 #include <sys/zfs_znode.h> 46 #include <zfs_fletcher.h> 47 #include <sys/avl.h> 48 #include <sys/ddt.h> 49 #include <sys/zfs_onexit.h> 50 #include <sys/dmu_send.h> 51 #include <sys/dsl_destroy.h> 52 #include <sys/blkptr.h> 53 #include <sys/dsl_bookmark.h> 54 #include <sys/zfeature.h> 55 #include <sys/bqueue.h> 56 57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */ 58 int zfs_send_corrupt_data = B_FALSE; 59 int zfs_send_queue_length = 16 * 1024 * 1024; 60 int zfs_recv_queue_length = 16 * 1024 * 1024; 61 62 static char *dmu_recv_tag = "dmu_recv_tag"; 63 const char *recv_clone_name = "%recv"; 64 65 #define BP_SPAN(datablkszsec, indblkshift, level) \ 66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \ 67 (level) * (indblkshift - SPA_BLKPTRSHIFT))) 68 69 static void byteswap_record(dmu_replay_record_t *drr); 70 71 struct send_thread_arg { 72 bqueue_t q; 73 dsl_dataset_t *ds; /* Dataset to traverse */ 74 uint64_t fromtxg; /* Traverse from this txg */ 75 int flags; /* flags to pass to traverse_dataset */ 76 int error_code; 77 boolean_t cancel; 78 zbookmark_phys_t resume; 79 }; 80 81 struct send_block_record { 82 boolean_t eos_marker; /* Marks the end of the stream */ 83 blkptr_t bp; 84 zbookmark_phys_t zb; 85 uint8_t indblkshift; 86 uint16_t datablkszsec; 87 bqueue_node_t ln; 88 }; 89 90 static int 91 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len) 92 { 93 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os); 94 ssize_t resid; /* have to get resid to get detailed errno */ 95 ASSERT0(len % 8); 96 97 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp, 98 (caddr_t)buf, len, 99 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid); 100 101 mutex_enter(&ds->ds_sendstream_lock); 102 *dsp->dsa_off += len; 103 mutex_exit(&ds->ds_sendstream_lock); 104 105 return (dsp->dsa_err); 106 } 107 108 /* 109 * For all record types except BEGIN, fill in the checksum (overlaid in 110 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything 111 * up to the start of the checksum itself. 112 */ 113 static int 114 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len) 115 { 116 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 117 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 118 fletcher_4_incremental_native(dsp->dsa_drr, 119 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 120 &dsp->dsa_zc); 121 if (dsp->dsa_drr->drr_type != DRR_BEGIN) { 122 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u. 123 drr_checksum.drr_checksum)); 124 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc; 125 } 126 fletcher_4_incremental_native(&dsp->dsa_drr-> 127 drr_u.drr_checksum.drr_checksum, 128 sizeof (zio_cksum_t), &dsp->dsa_zc); 129 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0) 130 return (SET_ERROR(EINTR)); 131 if (payload_len != 0) { 132 fletcher_4_incremental_native(payload, payload_len, 133 &dsp->dsa_zc); 134 if (dump_bytes(dsp, payload, payload_len) != 0) 135 return (SET_ERROR(EINTR)); 136 } 137 return (0); 138 } 139 140 /* 141 * Fill in the drr_free struct, or perform aggregation if the previous record is 142 * also a free record, and the two are adjacent. 143 * 144 * Note that we send free records even for a full send, because we want to be 145 * able to receive a full send as a clone, which requires a list of all the free 146 * and freeobject records that were generated on the source. 147 */ 148 static int 149 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 150 uint64_t length) 151 { 152 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free); 153 154 /* 155 * When we receive a free record, dbuf_free_range() assumes 156 * that the receiving system doesn't have any dbufs in the range 157 * being freed. This is always true because there is a one-record 158 * constraint: we only send one WRITE record for any given 159 * object,offset. We know that the one-record constraint is 160 * true because we always send data in increasing order by 161 * object,offset. 162 * 163 * If the increasing-order constraint ever changes, we should find 164 * another way to assert that the one-record constraint is still 165 * satisfied. 166 */ 167 ASSERT(object > dsp->dsa_last_data_object || 168 (object == dsp->dsa_last_data_object && 169 offset > dsp->dsa_last_data_offset)); 170 171 if (length != -1ULL && offset + length < offset) 172 length = -1ULL; 173 174 /* 175 * If there is a pending op, but it's not PENDING_FREE, push it out, 176 * since free block aggregation can only be done for blocks of the 177 * same type (i.e., DRR_FREE records can only be aggregated with 178 * other DRR_FREE records. DRR_FREEOBJECTS records can only be 179 * aggregated with other DRR_FREEOBJECTS records. 180 */ 181 if (dsp->dsa_pending_op != PENDING_NONE && 182 dsp->dsa_pending_op != PENDING_FREE) { 183 if (dump_record(dsp, NULL, 0) != 0) 184 return (SET_ERROR(EINTR)); 185 dsp->dsa_pending_op = PENDING_NONE; 186 } 187 188 if (dsp->dsa_pending_op == PENDING_FREE) { 189 /* 190 * There should never be a PENDING_FREE if length is -1 191 * (because dump_dnode is the only place where this 192 * function is called with a -1, and only after flushing 193 * any pending record). 194 */ 195 ASSERT(length != -1ULL); 196 /* 197 * Check to see whether this free block can be aggregated 198 * with pending one. 199 */ 200 if (drrf->drr_object == object && drrf->drr_offset + 201 drrf->drr_length == offset) { 202 drrf->drr_length += length; 203 return (0); 204 } else { 205 /* not a continuation. Push out pending record */ 206 if (dump_record(dsp, NULL, 0) != 0) 207 return (SET_ERROR(EINTR)); 208 dsp->dsa_pending_op = PENDING_NONE; 209 } 210 } 211 /* create a FREE record and make it pending */ 212 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 213 dsp->dsa_drr->drr_type = DRR_FREE; 214 drrf->drr_object = object; 215 drrf->drr_offset = offset; 216 drrf->drr_length = length; 217 drrf->drr_toguid = dsp->dsa_toguid; 218 if (length == -1ULL) { 219 if (dump_record(dsp, NULL, 0) != 0) 220 return (SET_ERROR(EINTR)); 221 } else { 222 dsp->dsa_pending_op = PENDING_FREE; 223 } 224 225 return (0); 226 } 227 228 static int 229 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type, 230 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data) 231 { 232 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write); 233 234 /* 235 * We send data in increasing object, offset order. 236 * See comment in dump_free() for details. 237 */ 238 ASSERT(object > dsp->dsa_last_data_object || 239 (object == dsp->dsa_last_data_object && 240 offset > dsp->dsa_last_data_offset)); 241 dsp->dsa_last_data_object = object; 242 dsp->dsa_last_data_offset = offset + blksz - 1; 243 244 /* 245 * If there is any kind of pending aggregation (currently either 246 * a grouping of free objects or free blocks), push it out to 247 * the stream, since aggregation can't be done across operations 248 * of different types. 249 */ 250 if (dsp->dsa_pending_op != PENDING_NONE) { 251 if (dump_record(dsp, NULL, 0) != 0) 252 return (SET_ERROR(EINTR)); 253 dsp->dsa_pending_op = PENDING_NONE; 254 } 255 /* write a WRITE record */ 256 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 257 dsp->dsa_drr->drr_type = DRR_WRITE; 258 drrw->drr_object = object; 259 drrw->drr_type = type; 260 drrw->drr_offset = offset; 261 drrw->drr_length = blksz; 262 drrw->drr_toguid = dsp->dsa_toguid; 263 if (bp == NULL || BP_IS_EMBEDDED(bp)) { 264 /* 265 * There's no pre-computed checksum for partial-block 266 * writes or embedded BP's, so (like 267 * fletcher4-checkummed blocks) userland will have to 268 * compute a dedup-capable checksum itself. 269 */ 270 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF; 271 } else { 272 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp); 273 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags & 274 ZCHECKSUM_FLAG_DEDUP) 275 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP; 276 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp)); 277 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp)); 278 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp)); 279 drrw->drr_key.ddk_cksum = bp->blk_cksum; 280 } 281 282 if (dump_record(dsp, data, blksz) != 0) 283 return (SET_ERROR(EINTR)); 284 return (0); 285 } 286 287 static int 288 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset, 289 int blksz, const blkptr_t *bp) 290 { 291 char buf[BPE_PAYLOAD_SIZE]; 292 struct drr_write_embedded *drrw = 293 &(dsp->dsa_drr->drr_u.drr_write_embedded); 294 295 if (dsp->dsa_pending_op != PENDING_NONE) { 296 if (dump_record(dsp, NULL, 0) != 0) 297 return (EINTR); 298 dsp->dsa_pending_op = PENDING_NONE; 299 } 300 301 ASSERT(BP_IS_EMBEDDED(bp)); 302 303 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 304 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED; 305 drrw->drr_object = object; 306 drrw->drr_offset = offset; 307 drrw->drr_length = blksz; 308 drrw->drr_toguid = dsp->dsa_toguid; 309 drrw->drr_compression = BP_GET_COMPRESS(bp); 310 drrw->drr_etype = BPE_GET_ETYPE(bp); 311 drrw->drr_lsize = BPE_GET_LSIZE(bp); 312 drrw->drr_psize = BPE_GET_PSIZE(bp); 313 314 decode_embedded_bp_compressed(bp, buf); 315 316 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0) 317 return (EINTR); 318 return (0); 319 } 320 321 static int 322 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data) 323 { 324 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill); 325 326 if (dsp->dsa_pending_op != PENDING_NONE) { 327 if (dump_record(dsp, NULL, 0) != 0) 328 return (SET_ERROR(EINTR)); 329 dsp->dsa_pending_op = PENDING_NONE; 330 } 331 332 /* write a SPILL record */ 333 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 334 dsp->dsa_drr->drr_type = DRR_SPILL; 335 drrs->drr_object = object; 336 drrs->drr_length = blksz; 337 drrs->drr_toguid = dsp->dsa_toguid; 338 339 if (dump_record(dsp, data, blksz) != 0) 340 return (SET_ERROR(EINTR)); 341 return (0); 342 } 343 344 static int 345 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs) 346 { 347 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects); 348 349 /* 350 * If there is a pending op, but it's not PENDING_FREEOBJECTS, 351 * push it out, since free block aggregation can only be done for 352 * blocks of the same type (i.e., DRR_FREE records can only be 353 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records 354 * can only be aggregated with other DRR_FREEOBJECTS records. 355 */ 356 if (dsp->dsa_pending_op != PENDING_NONE && 357 dsp->dsa_pending_op != PENDING_FREEOBJECTS) { 358 if (dump_record(dsp, NULL, 0) != 0) 359 return (SET_ERROR(EINTR)); 360 dsp->dsa_pending_op = PENDING_NONE; 361 } 362 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) { 363 /* 364 * See whether this free object array can be aggregated 365 * with pending one 366 */ 367 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) { 368 drrfo->drr_numobjs += numobjs; 369 return (0); 370 } else { 371 /* can't be aggregated. Push out pending record */ 372 if (dump_record(dsp, NULL, 0) != 0) 373 return (SET_ERROR(EINTR)); 374 dsp->dsa_pending_op = PENDING_NONE; 375 } 376 } 377 378 /* write a FREEOBJECTS record */ 379 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 380 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS; 381 drrfo->drr_firstobj = firstobj; 382 drrfo->drr_numobjs = numobjs; 383 drrfo->drr_toguid = dsp->dsa_toguid; 384 385 dsp->dsa_pending_op = PENDING_FREEOBJECTS; 386 387 return (0); 388 } 389 390 static int 391 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp) 392 { 393 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object); 394 395 if (object < dsp->dsa_resume_object) { 396 /* 397 * Note: when resuming, we will visit all the dnodes in 398 * the block of dnodes that we are resuming from. In 399 * this case it's unnecessary to send the dnodes prior to 400 * the one we are resuming from. We should be at most one 401 * block's worth of dnodes behind the resume point. 402 */ 403 ASSERT3U(dsp->dsa_resume_object - object, <, 404 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT)); 405 return (0); 406 } 407 408 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE) 409 return (dump_freeobjects(dsp, object, 1)); 410 411 if (dsp->dsa_pending_op != PENDING_NONE) { 412 if (dump_record(dsp, NULL, 0) != 0) 413 return (SET_ERROR(EINTR)); 414 dsp->dsa_pending_op = PENDING_NONE; 415 } 416 417 /* write an OBJECT record */ 418 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t)); 419 dsp->dsa_drr->drr_type = DRR_OBJECT; 420 drro->drr_object = object; 421 drro->drr_type = dnp->dn_type; 422 drro->drr_bonustype = dnp->dn_bonustype; 423 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 424 drro->drr_bonuslen = dnp->dn_bonuslen; 425 drro->drr_checksumtype = dnp->dn_checksum; 426 drro->drr_compress = dnp->dn_compress; 427 drro->drr_toguid = dsp->dsa_toguid; 428 429 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 430 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE) 431 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE; 432 433 if (dump_record(dsp, DN_BONUS(dnp), 434 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) { 435 return (SET_ERROR(EINTR)); 436 } 437 438 /* Free anything past the end of the file. */ 439 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) * 440 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0) 441 return (SET_ERROR(EINTR)); 442 if (dsp->dsa_err != 0) 443 return (SET_ERROR(EINTR)); 444 return (0); 445 } 446 447 static boolean_t 448 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp) 449 { 450 if (!BP_IS_EMBEDDED(bp)) 451 return (B_FALSE); 452 453 /* 454 * Compression function must be legacy, or explicitly enabled. 455 */ 456 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS && 457 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4))) 458 return (B_FALSE); 459 460 /* 461 * Embed type must be explicitly enabled. 462 */ 463 switch (BPE_GET_ETYPE(bp)) { 464 case BP_EMBEDDED_TYPE_DATA: 465 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) 466 return (B_TRUE); 467 break; 468 default: 469 return (B_FALSE); 470 } 471 return (B_FALSE); 472 } 473 474 /* 475 * This is the callback function to traverse_dataset that acts as the worker 476 * thread for dmu_send_impl. 477 */ 478 /*ARGSUSED*/ 479 static int 480 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 481 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg) 482 { 483 struct send_thread_arg *sta = arg; 484 struct send_block_record *record; 485 uint64_t record_size; 486 int err = 0; 487 488 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 489 zb->zb_object >= sta->resume.zb_object); 490 491 if (sta->cancel) 492 return (SET_ERROR(EINTR)); 493 494 if (bp == NULL) { 495 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL); 496 return (0); 497 } else if (zb->zb_level < 0) { 498 return (0); 499 } 500 501 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP); 502 record->eos_marker = B_FALSE; 503 record->bp = *bp; 504 record->zb = *zb; 505 record->indblkshift = dnp->dn_indblkshift; 506 record->datablkszsec = dnp->dn_datablkszsec; 507 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT; 508 bqueue_enqueue(&sta->q, record, record_size); 509 510 return (err); 511 } 512 513 /* 514 * This function kicks off the traverse_dataset. It also handles setting the 515 * error code of the thread in case something goes wrong, and pushes the End of 516 * Stream record when the traverse_dataset call has finished. If there is no 517 * dataset to traverse, the thread immediately pushes End of Stream marker. 518 */ 519 static void 520 send_traverse_thread(void *arg) 521 { 522 struct send_thread_arg *st_arg = arg; 523 int err; 524 struct send_block_record *data; 525 526 if (st_arg->ds != NULL) { 527 err = traverse_dataset_resume(st_arg->ds, 528 st_arg->fromtxg, &st_arg->resume, 529 st_arg->flags, send_cb, st_arg); 530 531 if (err != EINTR) 532 st_arg->error_code = err; 533 } 534 data = kmem_zalloc(sizeof (*data), KM_SLEEP); 535 data->eos_marker = B_TRUE; 536 bqueue_enqueue(&st_arg->q, data, 1); 537 } 538 539 /* 540 * This function actually handles figuring out what kind of record needs to be 541 * dumped, reading the data (which has hopefully been prefetched), and calling 542 * the appropriate helper function. 543 */ 544 static int 545 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data) 546 { 547 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os); 548 const blkptr_t *bp = &data->bp; 549 const zbookmark_phys_t *zb = &data->zb; 550 uint8_t indblkshift = data->indblkshift; 551 uint16_t dblkszsec = data->datablkszsec; 552 spa_t *spa = ds->ds_dir->dd_pool->dp_spa; 553 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE; 554 int err = 0; 555 556 ASSERT3U(zb->zb_level, >=, 0); 557 558 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT || 559 zb->zb_object >= dsa->dsa_resume_object); 560 561 if (zb->zb_object != DMU_META_DNODE_OBJECT && 562 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) { 563 return (0); 564 } else if (BP_IS_HOLE(bp) && 565 zb->zb_object == DMU_META_DNODE_OBJECT) { 566 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 567 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT; 568 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT); 569 } else if (BP_IS_HOLE(bp)) { 570 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level); 571 uint64_t offset = zb->zb_blkid * span; 572 err = dump_free(dsa, zb->zb_object, offset, span); 573 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) { 574 return (0); 575 } else if (type == DMU_OT_DNODE) { 576 int blksz = BP_GET_LSIZE(bp); 577 arc_flags_t aflags = ARC_FLAG_WAIT; 578 arc_buf_t *abuf; 579 580 ASSERT0(zb->zb_level); 581 582 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 583 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 584 &aflags, zb) != 0) 585 return (SET_ERROR(EIO)); 586 587 dnode_phys_t *blk = abuf->b_data; 588 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT); 589 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) { 590 err = dump_dnode(dsa, dnobj + i, blk + i); 591 if (err != 0) 592 break; 593 } 594 (void) arc_buf_remove_ref(abuf, &abuf); 595 } else if (type == DMU_OT_SA) { 596 arc_flags_t aflags = ARC_FLAG_WAIT; 597 arc_buf_t *abuf; 598 int blksz = BP_GET_LSIZE(bp); 599 600 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 601 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 602 &aflags, zb) != 0) 603 return (SET_ERROR(EIO)); 604 605 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data); 606 (void) arc_buf_remove_ref(abuf, &abuf); 607 } else if (backup_do_embed(dsa, bp)) { 608 /* it's an embedded level-0 block of a regular object */ 609 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 610 ASSERT0(zb->zb_level); 611 err = dump_write_embedded(dsa, zb->zb_object, 612 zb->zb_blkid * blksz, blksz, bp); 613 } else { 614 /* it's a level-0 block of a regular object */ 615 arc_flags_t aflags = ARC_FLAG_WAIT; 616 arc_buf_t *abuf; 617 int blksz = dblkszsec << SPA_MINBLOCKSHIFT; 618 uint64_t offset; 619 620 ASSERT0(zb->zb_level); 621 ASSERT(zb->zb_object > dsa->dsa_resume_object || 622 (zb->zb_object == dsa->dsa_resume_object && 623 zb->zb_blkid * blksz >= dsa->dsa_resume_offset)); 624 625 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf, 626 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL, 627 &aflags, zb) != 0) { 628 if (zfs_send_corrupt_data) { 629 /* Send a block filled with 0x"zfs badd bloc" */ 630 abuf = arc_buf_alloc(spa, blksz, &abuf, 631 ARC_BUFC_DATA); 632 uint64_t *ptr; 633 for (ptr = abuf->b_data; 634 (char *)ptr < (char *)abuf->b_data + blksz; 635 ptr++) 636 *ptr = 0x2f5baddb10cULL; 637 } else { 638 return (SET_ERROR(EIO)); 639 } 640 } 641 642 offset = zb->zb_blkid * blksz; 643 644 if (!(dsa->dsa_featureflags & 645 DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 646 blksz > SPA_OLD_MAXBLOCKSIZE) { 647 char *buf = abuf->b_data; 648 while (blksz > 0 && err == 0) { 649 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE); 650 err = dump_write(dsa, type, zb->zb_object, 651 offset, n, NULL, buf); 652 offset += n; 653 buf += n; 654 blksz -= n; 655 } 656 } else { 657 err = dump_write(dsa, type, zb->zb_object, 658 offset, blksz, bp, abuf->b_data); 659 } 660 (void) arc_buf_remove_ref(abuf, &abuf); 661 } 662 663 ASSERT(err == 0 || err == EINTR); 664 return (err); 665 } 666 667 /* 668 * Pop the new data off the queue, and free the old data. 669 */ 670 static struct send_block_record * 671 get_next_record(bqueue_t *bq, struct send_block_record *data) 672 { 673 struct send_block_record *tmp = bqueue_dequeue(bq); 674 kmem_free(data, sizeof (*data)); 675 return (tmp); 676 } 677 678 /* 679 * Actually do the bulk of the work in a zfs send. 680 * 681 * Note: Releases dp using the specified tag. 682 */ 683 static int 684 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds, 685 zfs_bookmark_phys_t *ancestor_zb, 686 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd, 687 uint64_t resumeobj, uint64_t resumeoff, 688 vnode_t *vp, offset_t *off) 689 { 690 objset_t *os; 691 dmu_replay_record_t *drr; 692 dmu_sendarg_t *dsp; 693 int err; 694 uint64_t fromtxg = 0; 695 uint64_t featureflags = 0; 696 struct send_thread_arg to_arg = { 0 }; 697 698 err = dmu_objset_from_ds(to_ds, &os); 699 if (err != 0) { 700 dsl_pool_rele(dp, tag); 701 return (err); 702 } 703 704 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP); 705 drr->drr_type = DRR_BEGIN; 706 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC; 707 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo, 708 DMU_SUBSTREAM); 709 710 #ifdef _KERNEL 711 if (dmu_objset_type(os) == DMU_OST_ZFS) { 712 uint64_t version; 713 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) { 714 kmem_free(drr, sizeof (dmu_replay_record_t)); 715 dsl_pool_rele(dp, tag); 716 return (SET_ERROR(EINVAL)); 717 } 718 if (version >= ZPL_VERSION_SA) { 719 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL; 720 } 721 } 722 #endif 723 724 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS]) 725 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS; 726 if (embedok && 727 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) { 728 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA; 729 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 730 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4; 731 } 732 733 if (resumeobj != 0 || resumeoff != 0) { 734 featureflags |= DMU_BACKUP_FEATURE_RESUMING; 735 } 736 737 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo, 738 featureflags); 739 740 drr->drr_u.drr_begin.drr_creation_time = 741 dsl_dataset_phys(to_ds)->ds_creation_time; 742 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os); 743 if (is_clone) 744 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE; 745 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid; 746 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET) 747 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA; 748 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS; 749 750 if (ancestor_zb != NULL) { 751 drr->drr_u.drr_begin.drr_fromguid = 752 ancestor_zb->zbm_guid; 753 fromtxg = ancestor_zb->zbm_creation_txg; 754 } 755 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname); 756 if (!to_ds->ds_is_snapshot) { 757 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--", 758 sizeof (drr->drr_u.drr_begin.drr_toname)); 759 } 760 761 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP); 762 763 dsp->dsa_drr = drr; 764 dsp->dsa_vp = vp; 765 dsp->dsa_outfd = outfd; 766 dsp->dsa_proc = curproc; 767 dsp->dsa_os = os; 768 dsp->dsa_off = off; 769 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid; 770 dsp->dsa_pending_op = PENDING_NONE; 771 dsp->dsa_featureflags = featureflags; 772 dsp->dsa_resume_object = resumeobj; 773 dsp->dsa_resume_offset = resumeoff; 774 775 mutex_enter(&to_ds->ds_sendstream_lock); 776 list_insert_head(&to_ds->ds_sendstreams, dsp); 777 mutex_exit(&to_ds->ds_sendstream_lock); 778 779 dsl_dataset_long_hold(to_ds, FTAG); 780 dsl_pool_rele(dp, tag); 781 782 void *payload = NULL; 783 size_t payload_len = 0; 784 if (resumeobj != 0 || resumeoff != 0) { 785 dmu_object_info_t to_doi; 786 err = dmu_object_info(os, resumeobj, &to_doi); 787 if (err != 0) 788 goto out; 789 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0, 790 resumeoff / to_doi.doi_data_block_size); 791 792 nvlist_t *nvl = fnvlist_alloc(); 793 fnvlist_add_uint64(nvl, "resume_object", resumeobj); 794 fnvlist_add_uint64(nvl, "resume_offset", resumeoff); 795 payload = fnvlist_pack(nvl, &payload_len); 796 drr->drr_payloadlen = payload_len; 797 fnvlist_free(nvl); 798 } 799 800 err = dump_record(dsp, payload, payload_len); 801 fnvlist_pack_free(payload, payload_len); 802 if (err != 0) { 803 err = dsp->dsa_err; 804 goto out; 805 } 806 807 err = bqueue_init(&to_arg.q, zfs_send_queue_length, 808 offsetof(struct send_block_record, ln)); 809 to_arg.error_code = 0; 810 to_arg.cancel = B_FALSE; 811 to_arg.ds = to_ds; 812 to_arg.fromtxg = fromtxg; 813 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH; 814 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc, 815 TS_RUN, minclsyspri); 816 817 struct send_block_record *to_data; 818 to_data = bqueue_dequeue(&to_arg.q); 819 820 while (!to_data->eos_marker && err == 0) { 821 err = do_dump(dsp, to_data); 822 to_data = get_next_record(&to_arg.q, to_data); 823 if (issig(JUSTLOOKING) && issig(FORREAL)) 824 err = EINTR; 825 } 826 827 if (err != 0) { 828 to_arg.cancel = B_TRUE; 829 while (!to_data->eos_marker) { 830 to_data = get_next_record(&to_arg.q, to_data); 831 } 832 } 833 kmem_free(to_data, sizeof (*to_data)); 834 835 bqueue_destroy(&to_arg.q); 836 837 if (err == 0 && to_arg.error_code != 0) 838 err = to_arg.error_code; 839 840 if (err != 0) 841 goto out; 842 843 if (dsp->dsa_pending_op != PENDING_NONE) 844 if (dump_record(dsp, NULL, 0) != 0) 845 err = SET_ERROR(EINTR); 846 847 if (err != 0) { 848 if (err == EINTR && dsp->dsa_err != 0) 849 err = dsp->dsa_err; 850 goto out; 851 } 852 853 bzero(drr, sizeof (dmu_replay_record_t)); 854 drr->drr_type = DRR_END; 855 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc; 856 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid; 857 858 if (dump_record(dsp, NULL, 0) != 0) 859 err = dsp->dsa_err; 860 861 out: 862 mutex_enter(&to_ds->ds_sendstream_lock); 863 list_remove(&to_ds->ds_sendstreams, dsp); 864 mutex_exit(&to_ds->ds_sendstream_lock); 865 866 kmem_free(drr, sizeof (dmu_replay_record_t)); 867 kmem_free(dsp, sizeof (dmu_sendarg_t)); 868 869 dsl_dataset_long_rele(to_ds, FTAG); 870 871 return (err); 872 } 873 874 int 875 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap, 876 boolean_t embedok, boolean_t large_block_ok, 877 int outfd, vnode_t *vp, offset_t *off) 878 { 879 dsl_pool_t *dp; 880 dsl_dataset_t *ds; 881 dsl_dataset_t *fromds = NULL; 882 int err; 883 884 err = dsl_pool_hold(pool, FTAG, &dp); 885 if (err != 0) 886 return (err); 887 888 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds); 889 if (err != 0) { 890 dsl_pool_rele(dp, FTAG); 891 return (err); 892 } 893 894 if (fromsnap != 0) { 895 zfs_bookmark_phys_t zb; 896 boolean_t is_clone; 897 898 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds); 899 if (err != 0) { 900 dsl_dataset_rele(ds, FTAG); 901 dsl_pool_rele(dp, FTAG); 902 return (err); 903 } 904 if (!dsl_dataset_is_before(ds, fromds, 0)) 905 err = SET_ERROR(EXDEV); 906 zb.zbm_creation_time = 907 dsl_dataset_phys(fromds)->ds_creation_time; 908 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg; 909 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 910 is_clone = (fromds->ds_dir != ds->ds_dir); 911 dsl_dataset_rele(fromds, FTAG); 912 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 913 embedok, large_block_ok, outfd, 0, 0, vp, off); 914 } else { 915 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 916 embedok, large_block_ok, outfd, 0, 0, vp, off); 917 } 918 dsl_dataset_rele(ds, FTAG); 919 return (err); 920 } 921 922 int 923 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok, 924 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff, 925 vnode_t *vp, offset_t *off) 926 { 927 dsl_pool_t *dp; 928 dsl_dataset_t *ds; 929 int err; 930 boolean_t owned = B_FALSE; 931 932 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL) 933 return (SET_ERROR(EINVAL)); 934 935 err = dsl_pool_hold(tosnap, FTAG, &dp); 936 if (err != 0) 937 return (err); 938 939 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) { 940 /* 941 * We are sending a filesystem or volume. Ensure 942 * that it doesn't change by owning the dataset. 943 */ 944 err = dsl_dataset_own(dp, tosnap, FTAG, &ds); 945 owned = B_TRUE; 946 } else { 947 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds); 948 } 949 if (err != 0) { 950 dsl_pool_rele(dp, FTAG); 951 return (err); 952 } 953 954 if (fromsnap != NULL) { 955 zfs_bookmark_phys_t zb; 956 boolean_t is_clone = B_FALSE; 957 int fsnamelen = strchr(tosnap, '@') - tosnap; 958 959 /* 960 * If the fromsnap is in a different filesystem, then 961 * mark the send stream as a clone. 962 */ 963 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 || 964 (fromsnap[fsnamelen] != '@' && 965 fromsnap[fsnamelen] != '#')) { 966 is_clone = B_TRUE; 967 } 968 969 if (strchr(fromsnap, '@')) { 970 dsl_dataset_t *fromds; 971 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds); 972 if (err == 0) { 973 if (!dsl_dataset_is_before(ds, fromds, 0)) 974 err = SET_ERROR(EXDEV); 975 zb.zbm_creation_time = 976 dsl_dataset_phys(fromds)->ds_creation_time; 977 zb.zbm_creation_txg = 978 dsl_dataset_phys(fromds)->ds_creation_txg; 979 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid; 980 is_clone = (ds->ds_dir != fromds->ds_dir); 981 dsl_dataset_rele(fromds, FTAG); 982 } 983 } else { 984 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb); 985 } 986 if (err != 0) { 987 dsl_dataset_rele(ds, FTAG); 988 dsl_pool_rele(dp, FTAG); 989 return (err); 990 } 991 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone, 992 embedok, large_block_ok, 993 outfd, resumeobj, resumeoff, vp, off); 994 } else { 995 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE, 996 embedok, large_block_ok, 997 outfd, resumeobj, resumeoff, vp, off); 998 } 999 if (owned) 1000 dsl_dataset_disown(ds, FTAG); 1001 else 1002 dsl_dataset_rele(ds, FTAG); 1003 return (err); 1004 } 1005 1006 static int 1007 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size, 1008 uint64_t *sizep) 1009 { 1010 int err; 1011 /* 1012 * Assume that space (both on-disk and in-stream) is dominated by 1013 * data. We will adjust for indirect blocks and the copies property, 1014 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records). 1015 */ 1016 1017 /* 1018 * Subtract out approximate space used by indirect blocks. 1019 * Assume most space is used by data blocks (non-indirect, non-dnode). 1020 * Assume all blocks are recordsize. Assume ditto blocks and 1021 * internal fragmentation counter out compression. 1022 * 1023 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per 1024 * block, which we observe in practice. 1025 */ 1026 uint64_t recordsize; 1027 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize); 1028 if (err != 0) 1029 return (err); 1030 size -= size / recordsize * sizeof (blkptr_t); 1031 1032 /* Add in the space for the record associated with each block. */ 1033 size += size / recordsize * sizeof (dmu_replay_record_t); 1034 1035 *sizep = size; 1036 1037 return (0); 1038 } 1039 1040 int 1041 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep) 1042 { 1043 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1044 int err; 1045 uint64_t size; 1046 1047 ASSERT(dsl_pool_config_held(dp)); 1048 1049 /* tosnap must be a snapshot */ 1050 if (!ds->ds_is_snapshot) 1051 return (SET_ERROR(EINVAL)); 1052 1053 /* fromsnap, if provided, must be a snapshot */ 1054 if (fromds != NULL && !fromds->ds_is_snapshot) 1055 return (SET_ERROR(EINVAL)); 1056 1057 /* 1058 * fromsnap must be an earlier snapshot from the same fs as tosnap, 1059 * or the origin's fs. 1060 */ 1061 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0)) 1062 return (SET_ERROR(EXDEV)); 1063 1064 /* Get uncompressed size estimate of changed data. */ 1065 if (fromds == NULL) { 1066 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes; 1067 } else { 1068 uint64_t used, comp; 1069 err = dsl_dataset_space_written(fromds, ds, 1070 &used, &comp, &size); 1071 if (err != 0) 1072 return (err); 1073 } 1074 1075 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1076 return (err); 1077 } 1078 1079 /* 1080 * Simple callback used to traverse the blocks of a snapshot and sum their 1081 * uncompressed size 1082 */ 1083 /* ARGSUSED */ 1084 static int 1085 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1086 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1087 { 1088 uint64_t *spaceptr = arg; 1089 if (bp != NULL && !BP_IS_HOLE(bp)) { 1090 *spaceptr += BP_GET_UCSIZE(bp); 1091 } 1092 return (0); 1093 } 1094 1095 /* 1096 * Given a desination snapshot and a TXG, calculate the approximate size of a 1097 * send stream sent from that TXG. from_txg may be zero, indicating that the 1098 * whole snapshot will be sent. 1099 */ 1100 int 1101 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg, 1102 uint64_t *sizep) 1103 { 1104 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1105 int err; 1106 uint64_t size = 0; 1107 1108 ASSERT(dsl_pool_config_held(dp)); 1109 1110 /* tosnap must be a snapshot */ 1111 if (!dsl_dataset_is_snapshot(ds)) 1112 return (SET_ERROR(EINVAL)); 1113 1114 /* verify that from_txg is before the provided snapshot was taken */ 1115 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) { 1116 return (SET_ERROR(EXDEV)); 1117 } 1118 1119 /* 1120 * traverse the blocks of the snapshot with birth times after 1121 * from_txg, summing their uncompressed size 1122 */ 1123 err = traverse_dataset(ds, from_txg, TRAVERSE_POST, 1124 dmu_calculate_send_traversal, &size); 1125 if (err) 1126 return (err); 1127 1128 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep); 1129 return (err); 1130 } 1131 1132 typedef struct dmu_recv_begin_arg { 1133 const char *drba_origin; 1134 dmu_recv_cookie_t *drba_cookie; 1135 cred_t *drba_cred; 1136 uint64_t drba_snapobj; 1137 } dmu_recv_begin_arg_t; 1138 1139 static int 1140 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds, 1141 uint64_t fromguid) 1142 { 1143 uint64_t val; 1144 int error; 1145 dsl_pool_t *dp = ds->ds_dir->dd_pool; 1146 1147 /* temporary clone name must not exist */ 1148 error = zap_lookup(dp->dp_meta_objset, 1149 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name, 1150 8, 1, &val); 1151 if (error != ENOENT) 1152 return (error == 0 ? EBUSY : error); 1153 1154 /* new snapshot name must not exist */ 1155 error = zap_lookup(dp->dp_meta_objset, 1156 dsl_dataset_phys(ds)->ds_snapnames_zapobj, 1157 drba->drba_cookie->drc_tosnap, 8, 1, &val); 1158 if (error != ENOENT) 1159 return (error == 0 ? EEXIST : error); 1160 1161 /* 1162 * Check snapshot limit before receiving. We'll recheck again at the 1163 * end, but might as well abort before receiving if we're already over 1164 * the limit. 1165 * 1166 * Note that we do not check the file system limit with 1167 * dsl_dir_fscount_check because the temporary %clones don't count 1168 * against that limit. 1169 */ 1170 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT, 1171 NULL, drba->drba_cred); 1172 if (error != 0) 1173 return (error); 1174 1175 if (fromguid != 0) { 1176 dsl_dataset_t *snap; 1177 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj; 1178 1179 /* Find snapshot in this dir that matches fromguid. */ 1180 while (obj != 0) { 1181 error = dsl_dataset_hold_obj(dp, obj, FTAG, 1182 &snap); 1183 if (error != 0) 1184 return (SET_ERROR(ENODEV)); 1185 if (snap->ds_dir != ds->ds_dir) { 1186 dsl_dataset_rele(snap, FTAG); 1187 return (SET_ERROR(ENODEV)); 1188 } 1189 if (dsl_dataset_phys(snap)->ds_guid == fromguid) 1190 break; 1191 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 1192 dsl_dataset_rele(snap, FTAG); 1193 } 1194 if (obj == 0) 1195 return (SET_ERROR(ENODEV)); 1196 1197 if (drba->drba_cookie->drc_force) { 1198 drba->drba_snapobj = obj; 1199 } else { 1200 /* 1201 * If we are not forcing, there must be no 1202 * changes since fromsnap. 1203 */ 1204 if (dsl_dataset_modified_since_snap(ds, snap)) { 1205 dsl_dataset_rele(snap, FTAG); 1206 return (SET_ERROR(ETXTBSY)); 1207 } 1208 drba->drba_snapobj = ds->ds_prev->ds_object; 1209 } 1210 1211 dsl_dataset_rele(snap, FTAG); 1212 } else { 1213 /* if full, then must be forced */ 1214 if (!drba->drba_cookie->drc_force) 1215 return (SET_ERROR(EEXIST)); 1216 /* start from $ORIGIN@$ORIGIN, if supported */ 1217 drba->drba_snapobj = dp->dp_origin_snap != NULL ? 1218 dp->dp_origin_snap->ds_object : 0; 1219 } 1220 1221 return (0); 1222 1223 } 1224 1225 static int 1226 dmu_recv_begin_check(void *arg, dmu_tx_t *tx) 1227 { 1228 dmu_recv_begin_arg_t *drba = arg; 1229 dsl_pool_t *dp = dmu_tx_pool(tx); 1230 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1231 uint64_t fromguid = drrb->drr_fromguid; 1232 int flags = drrb->drr_flags; 1233 int error; 1234 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1235 dsl_dataset_t *ds; 1236 const char *tofs = drba->drba_cookie->drc_tofs; 1237 1238 /* already checked */ 1239 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1240 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING)); 1241 1242 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1243 DMU_COMPOUNDSTREAM || 1244 drrb->drr_type >= DMU_OST_NUMTYPES || 1245 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL)) 1246 return (SET_ERROR(EINVAL)); 1247 1248 /* Verify pool version supports SA if SA_SPILL feature set */ 1249 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1250 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1251 return (SET_ERROR(ENOTSUP)); 1252 1253 if (drba->drba_cookie->drc_resumable && 1254 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET)) 1255 return (SET_ERROR(ENOTSUP)); 1256 1257 /* 1258 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1259 * record to a plan WRITE record, so the pool must have the 1260 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1261 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1262 */ 1263 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1264 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1265 return (SET_ERROR(ENOTSUP)); 1266 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1267 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1268 return (SET_ERROR(ENOTSUP)); 1269 1270 /* 1271 * The receiving code doesn't know how to translate large blocks 1272 * to smaller ones, so the pool must have the LARGE_BLOCKS 1273 * feature enabled if the stream has LARGE_BLOCKS. 1274 */ 1275 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) && 1276 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS)) 1277 return (SET_ERROR(ENOTSUP)); 1278 1279 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1280 if (error == 0) { 1281 /* target fs already exists; recv into temp clone */ 1282 1283 /* Can't recv a clone into an existing fs */ 1284 if (flags & DRR_FLAG_CLONE || drba->drba_origin) { 1285 dsl_dataset_rele(ds, FTAG); 1286 return (SET_ERROR(EINVAL)); 1287 } 1288 1289 error = recv_begin_check_existing_impl(drba, ds, fromguid); 1290 dsl_dataset_rele(ds, FTAG); 1291 } else if (error == ENOENT) { 1292 /* target fs does not exist; must be a full backup or clone */ 1293 char buf[MAXNAMELEN]; 1294 1295 /* 1296 * If it's a non-clone incremental, we are missing the 1297 * target fs, so fail the recv. 1298 */ 1299 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE || 1300 drba->drba_origin)) 1301 return (SET_ERROR(ENOENT)); 1302 1303 /* 1304 * If we're receiving a full send as a clone, and it doesn't 1305 * contain all the necessary free records and freeobject 1306 * records, reject it. 1307 */ 1308 if (fromguid == 0 && drba->drba_origin && 1309 !(flags & DRR_FLAG_FREERECORDS)) 1310 return (SET_ERROR(EINVAL)); 1311 1312 /* Open the parent of tofs */ 1313 ASSERT3U(strlen(tofs), <, MAXNAMELEN); 1314 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1); 1315 error = dsl_dataset_hold(dp, buf, FTAG, &ds); 1316 if (error != 0) 1317 return (error); 1318 1319 /* 1320 * Check filesystem and snapshot limits before receiving. We'll 1321 * recheck snapshot limits again at the end (we create the 1322 * filesystems and increment those counts during begin_sync). 1323 */ 1324 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1325 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred); 1326 if (error != 0) { 1327 dsl_dataset_rele(ds, FTAG); 1328 return (error); 1329 } 1330 1331 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, 1332 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred); 1333 if (error != 0) { 1334 dsl_dataset_rele(ds, FTAG); 1335 return (error); 1336 } 1337 1338 if (drba->drba_origin != NULL) { 1339 dsl_dataset_t *origin; 1340 error = dsl_dataset_hold(dp, drba->drba_origin, 1341 FTAG, &origin); 1342 if (error != 0) { 1343 dsl_dataset_rele(ds, FTAG); 1344 return (error); 1345 } 1346 if (!origin->ds_is_snapshot) { 1347 dsl_dataset_rele(origin, FTAG); 1348 dsl_dataset_rele(ds, FTAG); 1349 return (SET_ERROR(EINVAL)); 1350 } 1351 if (dsl_dataset_phys(origin)->ds_guid != fromguid && 1352 fromguid != 0) { 1353 dsl_dataset_rele(origin, FTAG); 1354 dsl_dataset_rele(ds, FTAG); 1355 return (SET_ERROR(ENODEV)); 1356 } 1357 dsl_dataset_rele(origin, FTAG); 1358 } 1359 dsl_dataset_rele(ds, FTAG); 1360 error = 0; 1361 } 1362 return (error); 1363 } 1364 1365 static void 1366 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx) 1367 { 1368 dmu_recv_begin_arg_t *drba = arg; 1369 dsl_pool_t *dp = dmu_tx_pool(tx); 1370 objset_t *mos = dp->dp_meta_objset; 1371 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1372 const char *tofs = drba->drba_cookie->drc_tofs; 1373 dsl_dataset_t *ds, *newds; 1374 uint64_t dsobj; 1375 int error; 1376 uint64_t crflags = 0; 1377 1378 if (drrb->drr_flags & DRR_FLAG_CI_DATA) 1379 crflags |= DS_FLAG_CI_DATASET; 1380 1381 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1382 if (error == 0) { 1383 /* create temporary clone */ 1384 dsl_dataset_t *snap = NULL; 1385 if (drba->drba_snapobj != 0) { 1386 VERIFY0(dsl_dataset_hold_obj(dp, 1387 drba->drba_snapobj, FTAG, &snap)); 1388 } 1389 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name, 1390 snap, crflags, drba->drba_cred, tx); 1391 if (drba->drba_snapobj != 0) 1392 dsl_dataset_rele(snap, FTAG); 1393 dsl_dataset_rele(ds, FTAG); 1394 } else { 1395 dsl_dir_t *dd; 1396 const char *tail; 1397 dsl_dataset_t *origin = NULL; 1398 1399 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail)); 1400 1401 if (drba->drba_origin != NULL) { 1402 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin, 1403 FTAG, &origin)); 1404 } 1405 1406 /* Create new dataset. */ 1407 dsobj = dsl_dataset_create_sync(dd, 1408 strrchr(tofs, '/') + 1, 1409 origin, crflags, drba->drba_cred, tx); 1410 if (origin != NULL) 1411 dsl_dataset_rele(origin, FTAG); 1412 dsl_dir_rele(dd, FTAG); 1413 drba->drba_cookie->drc_newfs = B_TRUE; 1414 } 1415 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds)); 1416 1417 if (drba->drba_cookie->drc_resumable) { 1418 dsl_dataset_zapify(newds, tx); 1419 if (drrb->drr_fromguid != 0) { 1420 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID, 1421 8, 1, &drrb->drr_fromguid, tx)); 1422 } 1423 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID, 1424 8, 1, &drrb->drr_toguid, tx)); 1425 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME, 1426 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx)); 1427 uint64_t one = 1; 1428 uint64_t zero = 0; 1429 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT, 1430 8, 1, &one, tx)); 1431 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET, 1432 8, 1, &zero, tx)); 1433 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES, 1434 8, 1, &zero, tx)); 1435 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) & 1436 DMU_BACKUP_FEATURE_EMBED_DATA) { 1437 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK, 1438 8, 1, &one, tx)); 1439 } 1440 } 1441 1442 dmu_buf_will_dirty(newds->ds_dbuf, tx); 1443 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT; 1444 1445 /* 1446 * If we actually created a non-clone, we need to create the 1447 * objset in our new dataset. 1448 */ 1449 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) { 1450 (void) dmu_objset_create_impl(dp->dp_spa, 1451 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx); 1452 } 1453 1454 drba->drba_cookie->drc_ds = newds; 1455 1456 spa_history_log_internal_ds(newds, "receive", tx, ""); 1457 } 1458 1459 static int 1460 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx) 1461 { 1462 dmu_recv_begin_arg_t *drba = arg; 1463 dsl_pool_t *dp = dmu_tx_pool(tx); 1464 struct drr_begin *drrb = drba->drba_cookie->drc_drrb; 1465 int error; 1466 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo); 1467 dsl_dataset_t *ds; 1468 const char *tofs = drba->drba_cookie->drc_tofs; 1469 1470 /* already checked */ 1471 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC); 1472 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING); 1473 1474 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) == 1475 DMU_COMPOUNDSTREAM || 1476 drrb->drr_type >= DMU_OST_NUMTYPES) 1477 return (SET_ERROR(EINVAL)); 1478 1479 /* Verify pool version supports SA if SA_SPILL feature set */ 1480 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) && 1481 spa_version(dp->dp_spa) < SPA_VERSION_SA) 1482 return (SET_ERROR(ENOTSUP)); 1483 1484 /* 1485 * The receiving code doesn't know how to translate a WRITE_EMBEDDED 1486 * record to a plain WRITE record, so the pool must have the 1487 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED 1488 * records. Same with WRITE_EMBEDDED records that use LZ4 compression. 1489 */ 1490 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) && 1491 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) 1492 return (SET_ERROR(ENOTSUP)); 1493 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) && 1494 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS)) 1495 return (SET_ERROR(ENOTSUP)); 1496 1497 char recvname[ZFS_MAXNAMELEN]; 1498 1499 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1500 tofs, recv_clone_name); 1501 1502 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1503 /* %recv does not exist; continue in tofs */ 1504 error = dsl_dataset_hold(dp, tofs, FTAG, &ds); 1505 if (error != 0) 1506 return (error); 1507 } 1508 1509 /* check that ds is marked inconsistent */ 1510 if (!DS_IS_INCONSISTENT(ds)) { 1511 dsl_dataset_rele(ds, FTAG); 1512 return (SET_ERROR(EINVAL)); 1513 } 1514 1515 /* check that there is resuming data, and that the toguid matches */ 1516 if (!dsl_dataset_is_zapified(ds)) { 1517 dsl_dataset_rele(ds, FTAG); 1518 return (SET_ERROR(EINVAL)); 1519 } 1520 uint64_t val; 1521 error = zap_lookup(dp->dp_meta_objset, ds->ds_object, 1522 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val); 1523 if (error != 0 || drrb->drr_toguid != val) { 1524 dsl_dataset_rele(ds, FTAG); 1525 return (SET_ERROR(EINVAL)); 1526 } 1527 1528 /* 1529 * Check if the receive is still running. If so, it will be owned. 1530 * Note that nothing else can own the dataset (e.g. after the receive 1531 * fails) because it will be marked inconsistent. 1532 */ 1533 if (dsl_dataset_has_owner(ds)) { 1534 dsl_dataset_rele(ds, FTAG); 1535 return (SET_ERROR(EBUSY)); 1536 } 1537 1538 /* There should not be any snapshots of this fs yet. */ 1539 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) { 1540 dsl_dataset_rele(ds, FTAG); 1541 return (SET_ERROR(EINVAL)); 1542 } 1543 1544 /* 1545 * Note: resume point will be checked when we process the first WRITE 1546 * record. 1547 */ 1548 1549 /* check that the origin matches */ 1550 val = 0; 1551 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object, 1552 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val); 1553 if (drrb->drr_fromguid != val) { 1554 dsl_dataset_rele(ds, FTAG); 1555 return (SET_ERROR(EINVAL)); 1556 } 1557 1558 dsl_dataset_rele(ds, FTAG); 1559 return (0); 1560 } 1561 1562 static void 1563 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx) 1564 { 1565 dmu_recv_begin_arg_t *drba = arg; 1566 dsl_pool_t *dp = dmu_tx_pool(tx); 1567 const char *tofs = drba->drba_cookie->drc_tofs; 1568 dsl_dataset_t *ds; 1569 uint64_t dsobj; 1570 char recvname[ZFS_MAXNAMELEN]; 1571 1572 (void) snprintf(recvname, sizeof (recvname), "%s/%s", 1573 tofs, recv_clone_name); 1574 1575 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) { 1576 /* %recv does not exist; continue in tofs */ 1577 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds)); 1578 drba->drba_cookie->drc_newfs = B_TRUE; 1579 } 1580 1581 /* clear the inconsistent flag so that we can own it */ 1582 ASSERT(DS_IS_INCONSISTENT(ds)); 1583 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1584 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 1585 dsobj = ds->ds_object; 1586 dsl_dataset_rele(ds, FTAG); 1587 1588 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds)); 1589 1590 dmu_buf_will_dirty(ds->ds_dbuf, tx); 1591 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT; 1592 1593 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds))); 1594 1595 drba->drba_cookie->drc_ds = ds; 1596 1597 spa_history_log_internal_ds(ds, "resume receive", tx, ""); 1598 } 1599 1600 /* 1601 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin() 1602 * succeeds; otherwise we will leak the holds on the datasets. 1603 */ 1604 int 1605 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin, 1606 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc) 1607 { 1608 dmu_recv_begin_arg_t drba = { 0 }; 1609 1610 bzero(drc, sizeof (dmu_recv_cookie_t)); 1611 drc->drc_drr_begin = drr_begin; 1612 drc->drc_drrb = &drr_begin->drr_u.drr_begin; 1613 drc->drc_tosnap = tosnap; 1614 drc->drc_tofs = tofs; 1615 drc->drc_force = force; 1616 drc->drc_resumable = resumable; 1617 drc->drc_cred = CRED(); 1618 1619 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) { 1620 drc->drc_byteswap = B_TRUE; 1621 fletcher_4_incremental_byteswap(drr_begin, 1622 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1623 byteswap_record(drr_begin); 1624 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) { 1625 fletcher_4_incremental_native(drr_begin, 1626 sizeof (dmu_replay_record_t), &drc->drc_cksum); 1627 } else { 1628 return (SET_ERROR(EINVAL)); 1629 } 1630 1631 drba.drba_origin = origin; 1632 drba.drba_cookie = drc; 1633 drba.drba_cred = CRED(); 1634 1635 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) & 1636 DMU_BACKUP_FEATURE_RESUMING) { 1637 return (dsl_sync_task(tofs, 1638 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync, 1639 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1640 } else { 1641 return (dsl_sync_task(tofs, 1642 dmu_recv_begin_check, dmu_recv_begin_sync, 1643 &drba, 5, ZFS_SPACE_CHECK_NORMAL)); 1644 } 1645 } 1646 1647 struct receive_record_arg { 1648 dmu_replay_record_t header; 1649 void *payload; /* Pointer to a buffer containing the payload */ 1650 /* 1651 * If the record is a write, pointer to the arc_buf_t containing the 1652 * payload. 1653 */ 1654 arc_buf_t *write_buf; 1655 int payload_size; 1656 uint64_t bytes_read; /* bytes read from stream when record created */ 1657 boolean_t eos_marker; /* Marks the end of the stream */ 1658 bqueue_node_t node; 1659 }; 1660 1661 struct receive_writer_arg { 1662 objset_t *os; 1663 boolean_t byteswap; 1664 bqueue_t q; 1665 1666 /* 1667 * These three args are used to signal to the main thread that we're 1668 * done. 1669 */ 1670 kmutex_t mutex; 1671 kcondvar_t cv; 1672 boolean_t done; 1673 1674 int err; 1675 /* A map from guid to dataset to help handle dedup'd streams. */ 1676 avl_tree_t *guid_to_ds_map; 1677 boolean_t resumable; 1678 uint64_t last_object, last_offset; 1679 uint64_t bytes_read; /* bytes read when current record created */ 1680 }; 1681 1682 struct objlist { 1683 list_t list; /* List of struct receive_objnode. */ 1684 /* 1685 * Last object looked up. Used to assert that objects are being looked 1686 * up in ascending order. 1687 */ 1688 uint64_t last_lookup; 1689 }; 1690 1691 struct receive_objnode { 1692 list_node_t node; 1693 uint64_t object; 1694 }; 1695 1696 struct receive_arg { 1697 objset_t *os; 1698 vnode_t *vp; /* The vnode to read the stream from */ 1699 uint64_t voff; /* The current offset in the stream */ 1700 uint64_t bytes_read; 1701 /* 1702 * A record that has had its payload read in, but hasn't yet been handed 1703 * off to the worker thread. 1704 */ 1705 struct receive_record_arg *rrd; 1706 /* A record that has had its header read in, but not its payload. */ 1707 struct receive_record_arg *next_rrd; 1708 zio_cksum_t cksum; 1709 zio_cksum_t prev_cksum; 1710 int err; 1711 boolean_t byteswap; 1712 /* Sorted list of objects not to issue prefetches for. */ 1713 struct objlist ignore_objlist; 1714 }; 1715 1716 typedef struct guid_map_entry { 1717 uint64_t guid; 1718 dsl_dataset_t *gme_ds; 1719 avl_node_t avlnode; 1720 } guid_map_entry_t; 1721 1722 static int 1723 guid_compare(const void *arg1, const void *arg2) 1724 { 1725 const guid_map_entry_t *gmep1 = arg1; 1726 const guid_map_entry_t *gmep2 = arg2; 1727 1728 if (gmep1->guid < gmep2->guid) 1729 return (-1); 1730 else if (gmep1->guid > gmep2->guid) 1731 return (1); 1732 return (0); 1733 } 1734 1735 static void 1736 free_guid_map_onexit(void *arg) 1737 { 1738 avl_tree_t *ca = arg; 1739 void *cookie = NULL; 1740 guid_map_entry_t *gmep; 1741 1742 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) { 1743 dsl_dataset_long_rele(gmep->gme_ds, gmep); 1744 dsl_dataset_rele(gmep->gme_ds, gmep); 1745 kmem_free(gmep, sizeof (guid_map_entry_t)); 1746 } 1747 avl_destroy(ca); 1748 kmem_free(ca, sizeof (avl_tree_t)); 1749 } 1750 1751 static int 1752 receive_read(struct receive_arg *ra, int len, void *buf) 1753 { 1754 int done = 0; 1755 1756 /* some things will require 8-byte alignment, so everything must */ 1757 ASSERT0(len % 8); 1758 1759 while (done < len) { 1760 ssize_t resid; 1761 1762 ra->err = vn_rdwr(UIO_READ, ra->vp, 1763 (char *)buf + done, len - done, 1764 ra->voff, UIO_SYSSPACE, FAPPEND, 1765 RLIM64_INFINITY, CRED(), &resid); 1766 1767 if (resid == len - done) { 1768 /* 1769 * Note: ECKSUM indicates that the receive 1770 * was interrupted and can potentially be resumed. 1771 */ 1772 ra->err = SET_ERROR(ECKSUM); 1773 } 1774 ra->voff += len - done - resid; 1775 done = len - resid; 1776 if (ra->err != 0) 1777 return (ra->err); 1778 } 1779 1780 ra->bytes_read += len; 1781 1782 ASSERT3U(done, ==, len); 1783 return (0); 1784 } 1785 1786 static void 1787 byteswap_record(dmu_replay_record_t *drr) 1788 { 1789 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X)) 1790 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X)) 1791 drr->drr_type = BSWAP_32(drr->drr_type); 1792 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen); 1793 1794 switch (drr->drr_type) { 1795 case DRR_BEGIN: 1796 DO64(drr_begin.drr_magic); 1797 DO64(drr_begin.drr_versioninfo); 1798 DO64(drr_begin.drr_creation_time); 1799 DO32(drr_begin.drr_type); 1800 DO32(drr_begin.drr_flags); 1801 DO64(drr_begin.drr_toguid); 1802 DO64(drr_begin.drr_fromguid); 1803 break; 1804 case DRR_OBJECT: 1805 DO64(drr_object.drr_object); 1806 DO32(drr_object.drr_type); 1807 DO32(drr_object.drr_bonustype); 1808 DO32(drr_object.drr_blksz); 1809 DO32(drr_object.drr_bonuslen); 1810 DO64(drr_object.drr_toguid); 1811 break; 1812 case DRR_FREEOBJECTS: 1813 DO64(drr_freeobjects.drr_firstobj); 1814 DO64(drr_freeobjects.drr_numobjs); 1815 DO64(drr_freeobjects.drr_toguid); 1816 break; 1817 case DRR_WRITE: 1818 DO64(drr_write.drr_object); 1819 DO32(drr_write.drr_type); 1820 DO64(drr_write.drr_offset); 1821 DO64(drr_write.drr_length); 1822 DO64(drr_write.drr_toguid); 1823 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum); 1824 DO64(drr_write.drr_key.ddk_prop); 1825 break; 1826 case DRR_WRITE_BYREF: 1827 DO64(drr_write_byref.drr_object); 1828 DO64(drr_write_byref.drr_offset); 1829 DO64(drr_write_byref.drr_length); 1830 DO64(drr_write_byref.drr_toguid); 1831 DO64(drr_write_byref.drr_refguid); 1832 DO64(drr_write_byref.drr_refobject); 1833 DO64(drr_write_byref.drr_refoffset); 1834 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref. 1835 drr_key.ddk_cksum); 1836 DO64(drr_write_byref.drr_key.ddk_prop); 1837 break; 1838 case DRR_WRITE_EMBEDDED: 1839 DO64(drr_write_embedded.drr_object); 1840 DO64(drr_write_embedded.drr_offset); 1841 DO64(drr_write_embedded.drr_length); 1842 DO64(drr_write_embedded.drr_toguid); 1843 DO32(drr_write_embedded.drr_lsize); 1844 DO32(drr_write_embedded.drr_psize); 1845 break; 1846 case DRR_FREE: 1847 DO64(drr_free.drr_object); 1848 DO64(drr_free.drr_offset); 1849 DO64(drr_free.drr_length); 1850 DO64(drr_free.drr_toguid); 1851 break; 1852 case DRR_SPILL: 1853 DO64(drr_spill.drr_object); 1854 DO64(drr_spill.drr_length); 1855 DO64(drr_spill.drr_toguid); 1856 break; 1857 case DRR_END: 1858 DO64(drr_end.drr_toguid); 1859 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum); 1860 break; 1861 } 1862 1863 if (drr->drr_type != DRR_BEGIN) { 1864 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum); 1865 } 1866 1867 #undef DO64 1868 #undef DO32 1869 } 1870 1871 static inline uint8_t 1872 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size) 1873 { 1874 if (bonus_type == DMU_OT_SA) { 1875 return (1); 1876 } else { 1877 return (1 + 1878 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT)); 1879 } 1880 } 1881 1882 static void 1883 save_resume_state(struct receive_writer_arg *rwa, 1884 uint64_t object, uint64_t offset, dmu_tx_t *tx) 1885 { 1886 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK; 1887 1888 if (!rwa->resumable) 1889 return; 1890 1891 /* 1892 * We use ds_resume_bytes[] != 0 to indicate that we need to 1893 * update this on disk, so it must not be 0. 1894 */ 1895 ASSERT(rwa->bytes_read != 0); 1896 1897 /* 1898 * We only resume from write records, which have a valid 1899 * (non-meta-dnode) object number. 1900 */ 1901 ASSERT(object != 0); 1902 1903 /* 1904 * For resuming to work correctly, we must receive records in order, 1905 * sorted by object,offset. This is checked by the callers, but 1906 * assert it here for good measure. 1907 */ 1908 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]); 1909 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] || 1910 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]); 1911 ASSERT3U(rwa->bytes_read, >=, 1912 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]); 1913 1914 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object; 1915 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset; 1916 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read; 1917 } 1918 1919 static int 1920 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro, 1921 void *data) 1922 { 1923 dmu_object_info_t doi; 1924 dmu_tx_t *tx; 1925 uint64_t object; 1926 int err; 1927 1928 if (drro->drr_type == DMU_OT_NONE || 1929 !DMU_OT_IS_VALID(drro->drr_type) || 1930 !DMU_OT_IS_VALID(drro->drr_bonustype) || 1931 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS || 1932 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS || 1933 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) || 1934 drro->drr_blksz < SPA_MINBLOCKSIZE || 1935 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) || 1936 drro->drr_bonuslen > DN_MAX_BONUSLEN) { 1937 return (SET_ERROR(EINVAL)); 1938 } 1939 1940 err = dmu_object_info(rwa->os, drro->drr_object, &doi); 1941 1942 if (err != 0 && err != ENOENT) 1943 return (SET_ERROR(EINVAL)); 1944 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT; 1945 1946 /* 1947 * If we are losing blkptrs or changing the block size this must 1948 * be a new file instance. We must clear out the previous file 1949 * contents before we can change this type of metadata in the dnode. 1950 */ 1951 if (err == 0) { 1952 int nblkptr; 1953 1954 nblkptr = deduce_nblkptr(drro->drr_bonustype, 1955 drro->drr_bonuslen); 1956 1957 if (drro->drr_blksz != doi.doi_data_block_size || 1958 nblkptr < doi.doi_nblkptr) { 1959 err = dmu_free_long_range(rwa->os, drro->drr_object, 1960 0, DMU_OBJECT_END); 1961 if (err != 0) 1962 return (SET_ERROR(EINVAL)); 1963 } 1964 } 1965 1966 tx = dmu_tx_create(rwa->os); 1967 dmu_tx_hold_bonus(tx, object); 1968 err = dmu_tx_assign(tx, TXG_WAIT); 1969 if (err != 0) { 1970 dmu_tx_abort(tx); 1971 return (err); 1972 } 1973 1974 if (object == DMU_NEW_OBJECT) { 1975 /* currently free, want to be allocated */ 1976 err = dmu_object_claim(rwa->os, drro->drr_object, 1977 drro->drr_type, drro->drr_blksz, 1978 drro->drr_bonustype, drro->drr_bonuslen, tx); 1979 } else if (drro->drr_type != doi.doi_type || 1980 drro->drr_blksz != doi.doi_data_block_size || 1981 drro->drr_bonustype != doi.doi_bonus_type || 1982 drro->drr_bonuslen != doi.doi_bonus_size) { 1983 /* currently allocated, but with different properties */ 1984 err = dmu_object_reclaim(rwa->os, drro->drr_object, 1985 drro->drr_type, drro->drr_blksz, 1986 drro->drr_bonustype, drro->drr_bonuslen, tx); 1987 } 1988 if (err != 0) { 1989 dmu_tx_commit(tx); 1990 return (SET_ERROR(EINVAL)); 1991 } 1992 1993 dmu_object_set_checksum(rwa->os, drro->drr_object, 1994 drro->drr_checksumtype, tx); 1995 dmu_object_set_compress(rwa->os, drro->drr_object, 1996 drro->drr_compress, tx); 1997 1998 if (data != NULL) { 1999 dmu_buf_t *db; 2000 2001 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db)); 2002 dmu_buf_will_dirty(db, tx); 2003 2004 ASSERT3U(db->db_size, >=, drro->drr_bonuslen); 2005 bcopy(data, db->db_data, drro->drr_bonuslen); 2006 if (rwa->byteswap) { 2007 dmu_object_byteswap_t byteswap = 2008 DMU_OT_BYTESWAP(drro->drr_bonustype); 2009 dmu_ot_byteswap[byteswap].ob_func(db->db_data, 2010 drro->drr_bonuslen); 2011 } 2012 dmu_buf_rele(db, FTAG); 2013 } 2014 dmu_tx_commit(tx); 2015 2016 return (0); 2017 } 2018 2019 /* ARGSUSED */ 2020 static int 2021 receive_freeobjects(struct receive_writer_arg *rwa, 2022 struct drr_freeobjects *drrfo) 2023 { 2024 uint64_t obj; 2025 int next_err = 0; 2026 2027 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj) 2028 return (SET_ERROR(EINVAL)); 2029 2030 for (obj = drrfo->drr_firstobj; 2031 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0; 2032 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) { 2033 int err; 2034 2035 if (dmu_object_info(rwa->os, obj, NULL) != 0) 2036 continue; 2037 2038 err = dmu_free_long_object(rwa->os, obj); 2039 if (err != 0) 2040 return (err); 2041 } 2042 if (next_err != ESRCH) 2043 return (next_err); 2044 return (0); 2045 } 2046 2047 static int 2048 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw, 2049 arc_buf_t *abuf) 2050 { 2051 dmu_tx_t *tx; 2052 int err; 2053 2054 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset || 2055 !DMU_OT_IS_VALID(drrw->drr_type)) 2056 return (SET_ERROR(EINVAL)); 2057 2058 /* 2059 * For resuming to work, records must be in increasing order 2060 * by (object, offset). 2061 */ 2062 if (drrw->drr_object < rwa->last_object || 2063 (drrw->drr_object == rwa->last_object && 2064 drrw->drr_offset < rwa->last_offset)) { 2065 return (SET_ERROR(EINVAL)); 2066 } 2067 rwa->last_object = drrw->drr_object; 2068 rwa->last_offset = drrw->drr_offset; 2069 2070 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0) 2071 return (SET_ERROR(EINVAL)); 2072 2073 tx = dmu_tx_create(rwa->os); 2074 2075 dmu_tx_hold_write(tx, drrw->drr_object, 2076 drrw->drr_offset, drrw->drr_length); 2077 err = dmu_tx_assign(tx, TXG_WAIT); 2078 if (err != 0) { 2079 dmu_tx_abort(tx); 2080 return (err); 2081 } 2082 if (rwa->byteswap) { 2083 dmu_object_byteswap_t byteswap = 2084 DMU_OT_BYTESWAP(drrw->drr_type); 2085 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data, 2086 drrw->drr_length); 2087 } 2088 2089 dmu_buf_t *bonus; 2090 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0) 2091 return (SET_ERROR(EINVAL)); 2092 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx); 2093 2094 /* 2095 * Note: If the receive fails, we want the resume stream to start 2096 * with the same record that we last successfully received (as opposed 2097 * to the next record), so that we can verify that we are 2098 * resuming from the correct location. 2099 */ 2100 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx); 2101 dmu_tx_commit(tx); 2102 dmu_buf_rele(bonus, FTAG); 2103 2104 return (0); 2105 } 2106 2107 /* 2108 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed 2109 * streams to refer to a copy of the data that is already on the 2110 * system because it came in earlier in the stream. This function 2111 * finds the earlier copy of the data, and uses that copy instead of 2112 * data from the stream to fulfill this write. 2113 */ 2114 static int 2115 receive_write_byref(struct receive_writer_arg *rwa, 2116 struct drr_write_byref *drrwbr) 2117 { 2118 dmu_tx_t *tx; 2119 int err; 2120 guid_map_entry_t gmesrch; 2121 guid_map_entry_t *gmep; 2122 avl_index_t where; 2123 objset_t *ref_os = NULL; 2124 dmu_buf_t *dbp; 2125 2126 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset) 2127 return (SET_ERROR(EINVAL)); 2128 2129 /* 2130 * If the GUID of the referenced dataset is different from the 2131 * GUID of the target dataset, find the referenced dataset. 2132 */ 2133 if (drrwbr->drr_toguid != drrwbr->drr_refguid) { 2134 gmesrch.guid = drrwbr->drr_refguid; 2135 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch, 2136 &where)) == NULL) { 2137 return (SET_ERROR(EINVAL)); 2138 } 2139 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os)) 2140 return (SET_ERROR(EINVAL)); 2141 } else { 2142 ref_os = rwa->os; 2143 } 2144 2145 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject, 2146 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH); 2147 if (err != 0) 2148 return (err); 2149 2150 tx = dmu_tx_create(rwa->os); 2151 2152 dmu_tx_hold_write(tx, drrwbr->drr_object, 2153 drrwbr->drr_offset, drrwbr->drr_length); 2154 err = dmu_tx_assign(tx, TXG_WAIT); 2155 if (err != 0) { 2156 dmu_tx_abort(tx); 2157 return (err); 2158 } 2159 dmu_write(rwa->os, drrwbr->drr_object, 2160 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx); 2161 dmu_buf_rele(dbp, FTAG); 2162 2163 /* See comment in restore_write. */ 2164 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx); 2165 dmu_tx_commit(tx); 2166 return (0); 2167 } 2168 2169 static int 2170 receive_write_embedded(struct receive_writer_arg *rwa, 2171 struct drr_write_embedded *drrwe, void *data) 2172 { 2173 dmu_tx_t *tx; 2174 int err; 2175 2176 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset) 2177 return (EINVAL); 2178 2179 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE) 2180 return (EINVAL); 2181 2182 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES) 2183 return (EINVAL); 2184 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS) 2185 return (EINVAL); 2186 2187 tx = dmu_tx_create(rwa->os); 2188 2189 dmu_tx_hold_write(tx, drrwe->drr_object, 2190 drrwe->drr_offset, drrwe->drr_length); 2191 err = dmu_tx_assign(tx, TXG_WAIT); 2192 if (err != 0) { 2193 dmu_tx_abort(tx); 2194 return (err); 2195 } 2196 2197 dmu_write_embedded(rwa->os, drrwe->drr_object, 2198 drrwe->drr_offset, data, drrwe->drr_etype, 2199 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize, 2200 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx); 2201 2202 /* See comment in restore_write. */ 2203 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx); 2204 dmu_tx_commit(tx); 2205 return (0); 2206 } 2207 2208 static int 2209 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs, 2210 void *data) 2211 { 2212 dmu_tx_t *tx; 2213 dmu_buf_t *db, *db_spill; 2214 int err; 2215 2216 if (drrs->drr_length < SPA_MINBLOCKSIZE || 2217 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os))) 2218 return (SET_ERROR(EINVAL)); 2219 2220 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0) 2221 return (SET_ERROR(EINVAL)); 2222 2223 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db)); 2224 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) { 2225 dmu_buf_rele(db, FTAG); 2226 return (err); 2227 } 2228 2229 tx = dmu_tx_create(rwa->os); 2230 2231 dmu_tx_hold_spill(tx, db->db_object); 2232 2233 err = dmu_tx_assign(tx, TXG_WAIT); 2234 if (err != 0) { 2235 dmu_buf_rele(db, FTAG); 2236 dmu_buf_rele(db_spill, FTAG); 2237 dmu_tx_abort(tx); 2238 return (err); 2239 } 2240 dmu_buf_will_dirty(db_spill, tx); 2241 2242 if (db_spill->db_size < drrs->drr_length) 2243 VERIFY(0 == dbuf_spill_set_blksz(db_spill, 2244 drrs->drr_length, tx)); 2245 bcopy(data, db_spill->db_data, drrs->drr_length); 2246 2247 dmu_buf_rele(db, FTAG); 2248 dmu_buf_rele(db_spill, FTAG); 2249 2250 dmu_tx_commit(tx); 2251 return (0); 2252 } 2253 2254 /* ARGSUSED */ 2255 static int 2256 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf) 2257 { 2258 int err; 2259 2260 if (drrf->drr_length != -1ULL && 2261 drrf->drr_offset + drrf->drr_length < drrf->drr_offset) 2262 return (SET_ERROR(EINVAL)); 2263 2264 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0) 2265 return (SET_ERROR(EINVAL)); 2266 2267 err = dmu_free_long_range(rwa->os, drrf->drr_object, 2268 drrf->drr_offset, drrf->drr_length); 2269 2270 return (err); 2271 } 2272 2273 /* used to destroy the drc_ds on error */ 2274 static void 2275 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc) 2276 { 2277 if (drc->drc_resumable) { 2278 /* wait for our resume state to be written to disk */ 2279 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0); 2280 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2281 } else { 2282 char name[MAXNAMELEN]; 2283 dsl_dataset_name(drc->drc_ds, name); 2284 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 2285 (void) dsl_destroy_head(name); 2286 } 2287 } 2288 2289 static void 2290 receive_cksum(struct receive_arg *ra, int len, void *buf) 2291 { 2292 if (ra->byteswap) { 2293 fletcher_4_incremental_byteswap(buf, len, &ra->cksum); 2294 } else { 2295 fletcher_4_incremental_native(buf, len, &ra->cksum); 2296 } 2297 } 2298 2299 /* 2300 * Read the payload into a buffer of size len, and update the current record's 2301 * payload field. 2302 * Allocate ra->next_rrd and read the next record's header into 2303 * ra->next_rrd->header. 2304 * Verify checksum of payload and next record. 2305 */ 2306 static int 2307 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf) 2308 { 2309 int err; 2310 2311 if (len != 0) { 2312 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE); 2313 err = receive_read(ra, len, buf); 2314 if (err != 0) 2315 return (err); 2316 receive_cksum(ra, len, buf); 2317 2318 /* note: rrd is NULL when reading the begin record's payload */ 2319 if (ra->rrd != NULL) { 2320 ra->rrd->payload = buf; 2321 ra->rrd->payload_size = len; 2322 ra->rrd->bytes_read = ra->bytes_read; 2323 } 2324 } 2325 2326 ra->prev_cksum = ra->cksum; 2327 2328 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP); 2329 err = receive_read(ra, sizeof (ra->next_rrd->header), 2330 &ra->next_rrd->header); 2331 ra->next_rrd->bytes_read = ra->bytes_read; 2332 if (err != 0) { 2333 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2334 ra->next_rrd = NULL; 2335 return (err); 2336 } 2337 if (ra->next_rrd->header.drr_type == DRR_BEGIN) { 2338 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2339 ra->next_rrd = NULL; 2340 return (SET_ERROR(EINVAL)); 2341 } 2342 2343 /* 2344 * Note: checksum is of everything up to but not including the 2345 * checksum itself. 2346 */ 2347 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2348 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t)); 2349 receive_cksum(ra, 2350 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum), 2351 &ra->next_rrd->header); 2352 2353 zio_cksum_t cksum_orig = 2354 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2355 zio_cksum_t *cksump = 2356 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum; 2357 2358 if (ra->byteswap) 2359 byteswap_record(&ra->next_rrd->header); 2360 2361 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) && 2362 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) { 2363 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd)); 2364 ra->next_rrd = NULL; 2365 return (SET_ERROR(ECKSUM)); 2366 } 2367 2368 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig); 2369 2370 return (0); 2371 } 2372 2373 static void 2374 objlist_create(struct objlist *list) 2375 { 2376 list_create(&list->list, sizeof (struct receive_objnode), 2377 offsetof(struct receive_objnode, node)); 2378 list->last_lookup = 0; 2379 } 2380 2381 static void 2382 objlist_destroy(struct objlist *list) 2383 { 2384 for (struct receive_objnode *n = list_remove_head(&list->list); 2385 n != NULL; n = list_remove_head(&list->list)) { 2386 kmem_free(n, sizeof (*n)); 2387 } 2388 list_destroy(&list->list); 2389 } 2390 2391 /* 2392 * This function looks through the objlist to see if the specified object number 2393 * is contained in the objlist. In the process, it will remove all object 2394 * numbers in the list that are smaller than the specified object number. Thus, 2395 * any lookup of an object number smaller than a previously looked up object 2396 * number will always return false; therefore, all lookups should be done in 2397 * ascending order. 2398 */ 2399 static boolean_t 2400 objlist_exists(struct objlist *list, uint64_t object) 2401 { 2402 struct receive_objnode *node = list_head(&list->list); 2403 ASSERT3U(object, >=, list->last_lookup); 2404 list->last_lookup = object; 2405 while (node != NULL && node->object < object) { 2406 VERIFY3P(node, ==, list_remove_head(&list->list)); 2407 kmem_free(node, sizeof (*node)); 2408 node = list_head(&list->list); 2409 } 2410 return (node != NULL && node->object == object); 2411 } 2412 2413 /* 2414 * The objlist is a list of object numbers stored in ascending order. However, 2415 * the insertion of new object numbers does not seek out the correct location to 2416 * store a new object number; instead, it appends it to the list for simplicity. 2417 * Thus, any users must take care to only insert new object numbers in ascending 2418 * order. 2419 */ 2420 static void 2421 objlist_insert(struct objlist *list, uint64_t object) 2422 { 2423 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP); 2424 node->object = object; 2425 #ifdef ZFS_DEBUG 2426 struct receive_objnode *last_object = list_tail(&list->list); 2427 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0); 2428 ASSERT3U(node->object, >, last_objnum); 2429 #endif 2430 list_insert_tail(&list->list, node); 2431 } 2432 2433 /* 2434 * Issue the prefetch reads for any necessary indirect blocks. 2435 * 2436 * We use the object ignore list to tell us whether or not to issue prefetches 2437 * for a given object. We do this for both correctness (in case the blocksize 2438 * of an object has changed) and performance (if the object doesn't exist, don't 2439 * needlessly try to issue prefetches). We also trim the list as we go through 2440 * the stream to prevent it from growing to an unbounded size. 2441 * 2442 * The object numbers within will always be in sorted order, and any write 2443 * records we see will also be in sorted order, but they're not sorted with 2444 * respect to each other (i.e. we can get several object records before 2445 * receiving each object's write records). As a result, once we've reached a 2446 * given object number, we can safely remove any reference to lower object 2447 * numbers in the ignore list. In practice, we receive up to 32 object records 2448 * before receiving write records, so the list can have up to 32 nodes in it. 2449 */ 2450 /* ARGSUSED */ 2451 static void 2452 receive_read_prefetch(struct receive_arg *ra, 2453 uint64_t object, uint64_t offset, uint64_t length) 2454 { 2455 if (!objlist_exists(&ra->ignore_objlist, object)) { 2456 dmu_prefetch(ra->os, object, 1, offset, length, 2457 ZIO_PRIORITY_SYNC_READ); 2458 } 2459 } 2460 2461 /* 2462 * Read records off the stream, issuing any necessary prefetches. 2463 */ 2464 static int 2465 receive_read_record(struct receive_arg *ra) 2466 { 2467 int err; 2468 2469 switch (ra->rrd->header.drr_type) { 2470 case DRR_OBJECT: 2471 { 2472 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object; 2473 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8); 2474 void *buf = kmem_zalloc(size, KM_SLEEP); 2475 dmu_object_info_t doi; 2476 err = receive_read_payload_and_next_header(ra, size, buf); 2477 if (err != 0) { 2478 kmem_free(buf, size); 2479 return (err); 2480 } 2481 err = dmu_object_info(ra->os, drro->drr_object, &doi); 2482 /* 2483 * See receive_read_prefetch for an explanation why we're 2484 * storing this object in the ignore_obj_list. 2485 */ 2486 if (err == ENOENT || 2487 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) { 2488 objlist_insert(&ra->ignore_objlist, drro->drr_object); 2489 err = 0; 2490 } 2491 return (err); 2492 } 2493 case DRR_FREEOBJECTS: 2494 { 2495 err = receive_read_payload_and_next_header(ra, 0, NULL); 2496 return (err); 2497 } 2498 case DRR_WRITE: 2499 { 2500 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write; 2501 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os), 2502 drrw->drr_length); 2503 2504 err = receive_read_payload_and_next_header(ra, 2505 drrw->drr_length, abuf->b_data); 2506 if (err != 0) { 2507 dmu_return_arcbuf(abuf); 2508 return (err); 2509 } 2510 ra->rrd->write_buf = abuf; 2511 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset, 2512 drrw->drr_length); 2513 return (err); 2514 } 2515 case DRR_WRITE_BYREF: 2516 { 2517 struct drr_write_byref *drrwb = 2518 &ra->rrd->header.drr_u.drr_write_byref; 2519 err = receive_read_payload_and_next_header(ra, 0, NULL); 2520 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset, 2521 drrwb->drr_length); 2522 return (err); 2523 } 2524 case DRR_WRITE_EMBEDDED: 2525 { 2526 struct drr_write_embedded *drrwe = 2527 &ra->rrd->header.drr_u.drr_write_embedded; 2528 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8); 2529 void *buf = kmem_zalloc(size, KM_SLEEP); 2530 2531 err = receive_read_payload_and_next_header(ra, size, buf); 2532 if (err != 0) { 2533 kmem_free(buf, size); 2534 return (err); 2535 } 2536 2537 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset, 2538 drrwe->drr_length); 2539 return (err); 2540 } 2541 case DRR_FREE: 2542 { 2543 /* 2544 * It might be beneficial to prefetch indirect blocks here, but 2545 * we don't really have the data to decide for sure. 2546 */ 2547 err = receive_read_payload_and_next_header(ra, 0, NULL); 2548 return (err); 2549 } 2550 case DRR_END: 2551 { 2552 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end; 2553 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum)) 2554 return (SET_ERROR(ECKSUM)); 2555 return (0); 2556 } 2557 case DRR_SPILL: 2558 { 2559 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill; 2560 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP); 2561 err = receive_read_payload_and_next_header(ra, drrs->drr_length, 2562 buf); 2563 if (err != 0) 2564 kmem_free(buf, drrs->drr_length); 2565 return (err); 2566 } 2567 default: 2568 return (SET_ERROR(EINVAL)); 2569 } 2570 } 2571 2572 /* 2573 * Commit the records to the pool. 2574 */ 2575 static int 2576 receive_process_record(struct receive_writer_arg *rwa, 2577 struct receive_record_arg *rrd) 2578 { 2579 int err; 2580 2581 /* Processing in order, therefore bytes_read should be increasing. */ 2582 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read); 2583 rwa->bytes_read = rrd->bytes_read; 2584 2585 switch (rrd->header.drr_type) { 2586 case DRR_OBJECT: 2587 { 2588 struct drr_object *drro = &rrd->header.drr_u.drr_object; 2589 err = receive_object(rwa, drro, rrd->payload); 2590 kmem_free(rrd->payload, rrd->payload_size); 2591 rrd->payload = NULL; 2592 return (err); 2593 } 2594 case DRR_FREEOBJECTS: 2595 { 2596 struct drr_freeobjects *drrfo = 2597 &rrd->header.drr_u.drr_freeobjects; 2598 return (receive_freeobjects(rwa, drrfo)); 2599 } 2600 case DRR_WRITE: 2601 { 2602 struct drr_write *drrw = &rrd->header.drr_u.drr_write; 2603 err = receive_write(rwa, drrw, rrd->write_buf); 2604 /* if receive_write() is successful, it consumes the arc_buf */ 2605 if (err != 0) 2606 dmu_return_arcbuf(rrd->write_buf); 2607 rrd->write_buf = NULL; 2608 rrd->payload = NULL; 2609 return (err); 2610 } 2611 case DRR_WRITE_BYREF: 2612 { 2613 struct drr_write_byref *drrwbr = 2614 &rrd->header.drr_u.drr_write_byref; 2615 return (receive_write_byref(rwa, drrwbr)); 2616 } 2617 case DRR_WRITE_EMBEDDED: 2618 { 2619 struct drr_write_embedded *drrwe = 2620 &rrd->header.drr_u.drr_write_embedded; 2621 err = receive_write_embedded(rwa, drrwe, rrd->payload); 2622 kmem_free(rrd->payload, rrd->payload_size); 2623 rrd->payload = NULL; 2624 return (err); 2625 } 2626 case DRR_FREE: 2627 { 2628 struct drr_free *drrf = &rrd->header.drr_u.drr_free; 2629 return (receive_free(rwa, drrf)); 2630 } 2631 case DRR_SPILL: 2632 { 2633 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill; 2634 err = receive_spill(rwa, drrs, rrd->payload); 2635 kmem_free(rrd->payload, rrd->payload_size); 2636 rrd->payload = NULL; 2637 return (err); 2638 } 2639 default: 2640 return (SET_ERROR(EINVAL)); 2641 } 2642 } 2643 2644 /* 2645 * dmu_recv_stream's worker thread; pull records off the queue, and then call 2646 * receive_process_record When we're done, signal the main thread and exit. 2647 */ 2648 static void 2649 receive_writer_thread(void *arg) 2650 { 2651 struct receive_writer_arg *rwa = arg; 2652 struct receive_record_arg *rrd; 2653 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker; 2654 rrd = bqueue_dequeue(&rwa->q)) { 2655 /* 2656 * If there's an error, the main thread will stop putting things 2657 * on the queue, but we need to clear everything in it before we 2658 * can exit. 2659 */ 2660 if (rwa->err == 0) { 2661 rwa->err = receive_process_record(rwa, rrd); 2662 } else if (rrd->write_buf != NULL) { 2663 dmu_return_arcbuf(rrd->write_buf); 2664 rrd->write_buf = NULL; 2665 rrd->payload = NULL; 2666 } else if (rrd->payload != NULL) { 2667 kmem_free(rrd->payload, rrd->payload_size); 2668 rrd->payload = NULL; 2669 } 2670 kmem_free(rrd, sizeof (*rrd)); 2671 } 2672 kmem_free(rrd, sizeof (*rrd)); 2673 mutex_enter(&rwa->mutex); 2674 rwa->done = B_TRUE; 2675 cv_signal(&rwa->cv); 2676 mutex_exit(&rwa->mutex); 2677 } 2678 2679 static int 2680 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl) 2681 { 2682 uint64_t val; 2683 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset; 2684 uint64_t dsobj = dmu_objset_id(ra->os); 2685 uint64_t resume_obj, resume_off; 2686 2687 if (nvlist_lookup_uint64(begin_nvl, 2688 "resume_object", &resume_obj) != 0 || 2689 nvlist_lookup_uint64(begin_nvl, 2690 "resume_offset", &resume_off) != 0) { 2691 return (SET_ERROR(EINVAL)); 2692 } 2693 VERIFY0(zap_lookup(mos, dsobj, 2694 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val)); 2695 if (resume_obj != val) 2696 return (SET_ERROR(EINVAL)); 2697 VERIFY0(zap_lookup(mos, dsobj, 2698 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val)); 2699 if (resume_off != val) 2700 return (SET_ERROR(EINVAL)); 2701 2702 return (0); 2703 } 2704 2705 /* 2706 * Read in the stream's records, one by one, and apply them to the pool. There 2707 * are two threads involved; the thread that calls this function will spin up a 2708 * worker thread, read the records off the stream one by one, and issue 2709 * prefetches for any necessary indirect blocks. It will then push the records 2710 * onto an internal blocking queue. The worker thread will pull the records off 2711 * the queue, and actually write the data into the DMU. This way, the worker 2712 * thread doesn't have to wait for reads to complete, since everything it needs 2713 * (the indirect blocks) will be prefetched. 2714 * 2715 * NB: callers *must* call dmu_recv_end() if this succeeds. 2716 */ 2717 int 2718 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp, 2719 int cleanup_fd, uint64_t *action_handlep) 2720 { 2721 int err = 0; 2722 struct receive_arg ra = { 0 }; 2723 struct receive_writer_arg rwa = { 0 }; 2724 int featureflags; 2725 nvlist_t *begin_nvl = NULL; 2726 2727 ra.byteswap = drc->drc_byteswap; 2728 ra.cksum = drc->drc_cksum; 2729 ra.vp = vp; 2730 ra.voff = *voffp; 2731 2732 if (dsl_dataset_is_zapified(drc->drc_ds)) { 2733 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset, 2734 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES, 2735 sizeof (ra.bytes_read), 1, &ra.bytes_read); 2736 } 2737 2738 objlist_create(&ra.ignore_objlist); 2739 2740 /* these were verified in dmu_recv_begin */ 2741 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==, 2742 DMU_SUBSTREAM); 2743 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES); 2744 2745 /* 2746 * Open the objset we are modifying. 2747 */ 2748 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os)); 2749 2750 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT); 2751 2752 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo); 2753 2754 /* if this stream is dedup'ed, set up the avl tree for guid mapping */ 2755 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) { 2756 minor_t minor; 2757 2758 if (cleanup_fd == -1) { 2759 ra.err = SET_ERROR(EBADF); 2760 goto out; 2761 } 2762 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor); 2763 if (ra.err != 0) { 2764 cleanup_fd = -1; 2765 goto out; 2766 } 2767 2768 if (*action_handlep == 0) { 2769 rwa.guid_to_ds_map = 2770 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP); 2771 avl_create(rwa.guid_to_ds_map, guid_compare, 2772 sizeof (guid_map_entry_t), 2773 offsetof(guid_map_entry_t, avlnode)); 2774 err = zfs_onexit_add_cb(minor, 2775 free_guid_map_onexit, rwa.guid_to_ds_map, 2776 action_handlep); 2777 if (ra.err != 0) 2778 goto out; 2779 } else { 2780 err = zfs_onexit_cb_data(minor, *action_handlep, 2781 (void **)&rwa.guid_to_ds_map); 2782 if (ra.err != 0) 2783 goto out; 2784 } 2785 2786 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map; 2787 } 2788 2789 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen; 2790 void *payload = NULL; 2791 if (payloadlen != 0) 2792 payload = kmem_alloc(payloadlen, KM_SLEEP); 2793 2794 err = receive_read_payload_and_next_header(&ra, payloadlen, payload); 2795 if (err != 0) { 2796 if (payloadlen != 0) 2797 kmem_free(payload, payloadlen); 2798 goto out; 2799 } 2800 if (payloadlen != 0) { 2801 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP); 2802 kmem_free(payload, payloadlen); 2803 if (err != 0) 2804 goto out; 2805 } 2806 2807 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) { 2808 err = resume_check(&ra, begin_nvl); 2809 if (err != 0) 2810 goto out; 2811 } 2812 2813 (void) bqueue_init(&rwa.q, zfs_recv_queue_length, 2814 offsetof(struct receive_record_arg, node)); 2815 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL); 2816 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL); 2817 rwa.os = ra.os; 2818 rwa.byteswap = drc->drc_byteswap; 2819 rwa.resumable = drc->drc_resumable; 2820 2821 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc, 2822 TS_RUN, minclsyspri); 2823 /* 2824 * We're reading rwa.err without locks, which is safe since we are the 2825 * only reader, and the worker thread is the only writer. It's ok if we 2826 * miss a write for an iteration or two of the loop, since the writer 2827 * thread will keep freeing records we send it until we send it an eos 2828 * marker. 2829 * 2830 * We can leave this loop in 3 ways: First, if rwa.err is 2831 * non-zero. In that case, the writer thread will free the rrd we just 2832 * pushed. Second, if we're interrupted; in that case, either it's the 2833 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd 2834 * has been handed off to the writer thread who will free it. Finally, 2835 * if receive_read_record fails or we're at the end of the stream, then 2836 * we free ra.rrd and exit. 2837 */ 2838 while (rwa.err == 0) { 2839 if (issig(JUSTLOOKING) && issig(FORREAL)) { 2840 err = SET_ERROR(EINTR); 2841 break; 2842 } 2843 2844 ASSERT3P(ra.rrd, ==, NULL); 2845 ra.rrd = ra.next_rrd; 2846 ra.next_rrd = NULL; 2847 /* Allocates and loads header into ra.next_rrd */ 2848 err = receive_read_record(&ra); 2849 2850 if (ra.rrd->header.drr_type == DRR_END || err != 0) { 2851 kmem_free(ra.rrd, sizeof (*ra.rrd)); 2852 ra.rrd = NULL; 2853 break; 2854 } 2855 2856 bqueue_enqueue(&rwa.q, ra.rrd, 2857 sizeof (struct receive_record_arg) + ra.rrd->payload_size); 2858 ra.rrd = NULL; 2859 } 2860 if (ra.next_rrd == NULL) 2861 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP); 2862 ra.next_rrd->eos_marker = B_TRUE; 2863 bqueue_enqueue(&rwa.q, ra.next_rrd, 1); 2864 2865 mutex_enter(&rwa.mutex); 2866 while (!rwa.done) { 2867 cv_wait(&rwa.cv, &rwa.mutex); 2868 } 2869 mutex_exit(&rwa.mutex); 2870 2871 cv_destroy(&rwa.cv); 2872 mutex_destroy(&rwa.mutex); 2873 bqueue_destroy(&rwa.q); 2874 if (err == 0) 2875 err = rwa.err; 2876 2877 out: 2878 nvlist_free(begin_nvl); 2879 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1)) 2880 zfs_onexit_fd_rele(cleanup_fd); 2881 2882 if (err != 0) { 2883 /* 2884 * Clean up references. If receive is not resumable, 2885 * destroy what we created, so we don't leave it in 2886 * the inconsistent state. 2887 */ 2888 dmu_recv_cleanup_ds(drc); 2889 } 2890 2891 *voffp = ra.voff; 2892 objlist_destroy(&ra.ignore_objlist); 2893 return (err); 2894 } 2895 2896 static int 2897 dmu_recv_end_check(void *arg, dmu_tx_t *tx) 2898 { 2899 dmu_recv_cookie_t *drc = arg; 2900 dsl_pool_t *dp = dmu_tx_pool(tx); 2901 int error; 2902 2903 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag); 2904 2905 if (!drc->drc_newfs) { 2906 dsl_dataset_t *origin_head; 2907 2908 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head); 2909 if (error != 0) 2910 return (error); 2911 if (drc->drc_force) { 2912 /* 2913 * We will destroy any snapshots in tofs (i.e. before 2914 * origin_head) that are after the origin (which is 2915 * the snap before drc_ds, because drc_ds can not 2916 * have any snaps of its own). 2917 */ 2918 uint64_t obj; 2919 2920 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2921 while (obj != 2922 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2923 dsl_dataset_t *snap; 2924 error = dsl_dataset_hold_obj(dp, obj, FTAG, 2925 &snap); 2926 if (error != 0) 2927 break; 2928 if (snap->ds_dir != origin_head->ds_dir) 2929 error = SET_ERROR(EINVAL); 2930 if (error == 0) { 2931 error = dsl_destroy_snapshot_check_impl( 2932 snap, B_FALSE); 2933 } 2934 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2935 dsl_dataset_rele(snap, FTAG); 2936 if (error != 0) 2937 break; 2938 } 2939 if (error != 0) { 2940 dsl_dataset_rele(origin_head, FTAG); 2941 return (error); 2942 } 2943 } 2944 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds, 2945 origin_head, drc->drc_force, drc->drc_owner, tx); 2946 if (error != 0) { 2947 dsl_dataset_rele(origin_head, FTAG); 2948 return (error); 2949 } 2950 error = dsl_dataset_snapshot_check_impl(origin_head, 2951 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2952 dsl_dataset_rele(origin_head, FTAG); 2953 if (error != 0) 2954 return (error); 2955 2956 error = dsl_destroy_head_check_impl(drc->drc_ds, 1); 2957 } else { 2958 error = dsl_dataset_snapshot_check_impl(drc->drc_ds, 2959 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred); 2960 } 2961 return (error); 2962 } 2963 2964 static void 2965 dmu_recv_end_sync(void *arg, dmu_tx_t *tx) 2966 { 2967 dmu_recv_cookie_t *drc = arg; 2968 dsl_pool_t *dp = dmu_tx_pool(tx); 2969 2970 spa_history_log_internal_ds(drc->drc_ds, "finish receiving", 2971 tx, "snap=%s", drc->drc_tosnap); 2972 2973 if (!drc->drc_newfs) { 2974 dsl_dataset_t *origin_head; 2975 2976 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG, 2977 &origin_head)); 2978 2979 if (drc->drc_force) { 2980 /* 2981 * Destroy any snapshots of drc_tofs (origin_head) 2982 * after the origin (the snap before drc_ds). 2983 */ 2984 uint64_t obj; 2985 2986 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj; 2987 while (obj != 2988 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) { 2989 dsl_dataset_t *snap; 2990 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, 2991 &snap)); 2992 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir); 2993 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj; 2994 dsl_destroy_snapshot_sync_impl(snap, 2995 B_FALSE, tx); 2996 dsl_dataset_rele(snap, FTAG); 2997 } 2998 } 2999 VERIFY3P(drc->drc_ds->ds_prev, ==, 3000 origin_head->ds_prev); 3001 3002 dsl_dataset_clone_swap_sync_impl(drc->drc_ds, 3003 origin_head, tx); 3004 dsl_dataset_snapshot_sync_impl(origin_head, 3005 drc->drc_tosnap, tx); 3006 3007 /* set snapshot's creation time and guid */ 3008 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx); 3009 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time = 3010 drc->drc_drrb->drr_creation_time; 3011 dsl_dataset_phys(origin_head->ds_prev)->ds_guid = 3012 drc->drc_drrb->drr_toguid; 3013 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &= 3014 ~DS_FLAG_INCONSISTENT; 3015 3016 dmu_buf_will_dirty(origin_head->ds_dbuf, tx); 3017 dsl_dataset_phys(origin_head)->ds_flags &= 3018 ~DS_FLAG_INCONSISTENT; 3019 3020 dsl_dataset_rele(origin_head, FTAG); 3021 dsl_destroy_head_sync_impl(drc->drc_ds, tx); 3022 3023 if (drc->drc_owner != NULL) 3024 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner); 3025 } else { 3026 dsl_dataset_t *ds = drc->drc_ds; 3027 3028 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx); 3029 3030 /* set snapshot's creation time and guid */ 3031 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx); 3032 dsl_dataset_phys(ds->ds_prev)->ds_creation_time = 3033 drc->drc_drrb->drr_creation_time; 3034 dsl_dataset_phys(ds->ds_prev)->ds_guid = 3035 drc->drc_drrb->drr_toguid; 3036 dsl_dataset_phys(ds->ds_prev)->ds_flags &= 3037 ~DS_FLAG_INCONSISTENT; 3038 3039 dmu_buf_will_dirty(ds->ds_dbuf, tx); 3040 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT; 3041 if (dsl_dataset_has_resume_receive_state(ds)) { 3042 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3043 DS_FIELD_RESUME_FROMGUID, tx); 3044 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3045 DS_FIELD_RESUME_OBJECT, tx); 3046 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3047 DS_FIELD_RESUME_OFFSET, tx); 3048 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3049 DS_FIELD_RESUME_BYTES, tx); 3050 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3051 DS_FIELD_RESUME_TOGUID, tx); 3052 (void) zap_remove(dp->dp_meta_objset, ds->ds_object, 3053 DS_FIELD_RESUME_TONAME, tx); 3054 } 3055 } 3056 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj; 3057 /* 3058 * Release the hold from dmu_recv_begin. This must be done before 3059 * we return to open context, so that when we free the dataset's dnode, 3060 * we can evict its bonus buffer. 3061 */ 3062 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag); 3063 drc->drc_ds = NULL; 3064 } 3065 3066 static int 3067 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj) 3068 { 3069 dsl_pool_t *dp; 3070 dsl_dataset_t *snapds; 3071 guid_map_entry_t *gmep; 3072 int err; 3073 3074 ASSERT(guid_map != NULL); 3075 3076 err = dsl_pool_hold(name, FTAG, &dp); 3077 if (err != 0) 3078 return (err); 3079 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP); 3080 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds); 3081 if (err == 0) { 3082 gmep->guid = dsl_dataset_phys(snapds)->ds_guid; 3083 gmep->gme_ds = snapds; 3084 avl_add(guid_map, gmep); 3085 dsl_dataset_long_hold(snapds, gmep); 3086 } else { 3087 kmem_free(gmep, sizeof (*gmep)); 3088 } 3089 3090 dsl_pool_rele(dp, FTAG); 3091 return (err); 3092 } 3093 3094 static int dmu_recv_end_modified_blocks = 3; 3095 3096 static int 3097 dmu_recv_existing_end(dmu_recv_cookie_t *drc) 3098 { 3099 int error; 3100 char name[MAXNAMELEN]; 3101 3102 #ifdef _KERNEL 3103 /* 3104 * We will be destroying the ds; make sure its origin is unmounted if 3105 * necessary. 3106 */ 3107 dsl_dataset_name(drc->drc_ds, name); 3108 zfs_destroy_unmount_origin(name); 3109 #endif 3110 3111 error = dsl_sync_task(drc->drc_tofs, 3112 dmu_recv_end_check, dmu_recv_end_sync, drc, 3113 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3114 3115 if (error != 0) 3116 dmu_recv_cleanup_ds(drc); 3117 return (error); 3118 } 3119 3120 static int 3121 dmu_recv_new_end(dmu_recv_cookie_t *drc) 3122 { 3123 int error; 3124 3125 error = dsl_sync_task(drc->drc_tofs, 3126 dmu_recv_end_check, dmu_recv_end_sync, drc, 3127 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL); 3128 3129 if (error != 0) { 3130 dmu_recv_cleanup_ds(drc); 3131 } else if (drc->drc_guid_to_ds_map != NULL) { 3132 (void) add_ds_to_guidmap(drc->drc_tofs, 3133 drc->drc_guid_to_ds_map, 3134 drc->drc_newsnapobj); 3135 } 3136 return (error); 3137 } 3138 3139 int 3140 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner) 3141 { 3142 drc->drc_owner = owner; 3143 3144 if (drc->drc_newfs) 3145 return (dmu_recv_new_end(drc)); 3146 else 3147 return (dmu_recv_existing_end(drc)); 3148 } 3149 3150 /* 3151 * Return TRUE if this objset is currently being received into. 3152 */ 3153 boolean_t 3154 dmu_objset_is_receiving(objset_t *os) 3155 { 3156 return (os->os_dsl_dataset != NULL && 3157 os->os_dsl_dataset->ds_owner == dmu_recv_tag); 3158 }