1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25 * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 */
28
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dbuf.h>
33 #include <sys/dnode.h>
34 #include <sys/zfs_context.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/dmu_traverse.h>
37 #include <sys/dsl_dataset.h>
38 #include <sys/dsl_dir.h>
39 #include <sys/dsl_prop.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/zfs_ioctl.h>
43 #include <sys/zap.h>
44 #include <sys/zio_checksum.h>
45 #include <sys/zfs_znode.h>
46 #include <zfs_fletcher.h>
47 #include <sys/avl.h>
48 #include <sys/ddt.h>
49 #include <sys/zfs_onexit.h>
50 #include <sys/dmu_send.h>
51 #include <sys/dsl_destroy.h>
52 #include <sys/blkptr.h>
53 #include <sys/dsl_bookmark.h>
54 #include <sys/zfeature.h>
55 #include <sys/bqueue.h>
56
57 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
58 int zfs_send_corrupt_data = B_FALSE;
59 int zfs_send_queue_length = 16 * 1024 * 1024;
60 int zfs_recv_queue_length = 16 * 1024 * 1024;
61
62 static char *dmu_recv_tag = "dmu_recv_tag";
63 const char *recv_clone_name = "%recv";
64
65 #define BP_SPAN(datablkszsec, indblkshift, level) \
66 (((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
67 (level) * (indblkshift - SPA_BLKPTRSHIFT)))
68
69 static void byteswap_record(dmu_replay_record_t *drr);
70
71 struct send_thread_arg {
72 bqueue_t q;
73 dsl_dataset_t *ds; /* Dataset to traverse */
74 uint64_t fromtxg; /* Traverse from this txg */
75 int flags; /* flags to pass to traverse_dataset */
76 int error_code;
77 boolean_t cancel;
78 zbookmark_phys_t resume;
79 };
80
81 struct send_block_record {
82 boolean_t eos_marker; /* Marks the end of the stream */
83 blkptr_t bp;
84 zbookmark_phys_t zb;
85 uint8_t indblkshift;
86 uint16_t datablkszsec;
87 bqueue_node_t ln;
88 };
89
90 static int
91 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
92 {
93 dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
94 ssize_t resid; /* have to get resid to get detailed errno */
95 ASSERT0(len % 8);
96
97 dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
98 (caddr_t)buf, len,
99 0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
100
101 mutex_enter(&ds->ds_sendstream_lock);
102 *dsp->dsa_off += len;
103 mutex_exit(&ds->ds_sendstream_lock);
104
105 return (dsp->dsa_err);
106 }
107
108 /*
109 * For all record types except BEGIN, fill in the checksum (overlaid in
110 * drr_u.drr_checksum.drr_checksum). The checksum verifies everything
111 * up to the start of the checksum itself.
112 */
113 static int
114 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
115 {
116 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
117 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
118 fletcher_4_incremental_native(dsp->dsa_drr,
119 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
120 &dsp->dsa_zc);
121 if (dsp->dsa_drr->drr_type != DRR_BEGIN) {
122 ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
123 drr_checksum.drr_checksum));
124 dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
125 }
126 fletcher_4_incremental_native(&dsp->dsa_drr->
127 drr_u.drr_checksum.drr_checksum,
128 sizeof (zio_cksum_t), &dsp->dsa_zc);
129 if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
130 return (SET_ERROR(EINTR));
131 if (payload_len != 0) {
132 fletcher_4_incremental_native(payload, payload_len,
133 &dsp->dsa_zc);
134 if (dump_bytes(dsp, payload, payload_len) != 0)
135 return (SET_ERROR(EINTR));
136 }
137 return (0);
138 }
139
140 /*
141 * Fill in the drr_free struct, or perform aggregation if the previous record is
142 * also a free record, and the two are adjacent.
143 *
144 * Note that we send free records even for a full send, because we want to be
145 * able to receive a full send as a clone, which requires a list of all the free
146 * and freeobject records that were generated on the source.
147 */
148 static int
149 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
150 uint64_t length)
151 {
152 struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
153
154 /*
155 * When we receive a free record, dbuf_free_range() assumes
156 * that the receiving system doesn't have any dbufs in the range
157 * being freed. This is always true because there is a one-record
158 * constraint: we only send one WRITE record for any given
159 * object,offset. We know that the one-record constraint is
160 * true because we always send data in increasing order by
161 * object,offset.
162 *
163 * If the increasing-order constraint ever changes, we should find
164 * another way to assert that the one-record constraint is still
165 * satisfied.
166 */
167 ASSERT(object > dsp->dsa_last_data_object ||
168 (object == dsp->dsa_last_data_object &&
169 offset > dsp->dsa_last_data_offset));
170
171 if (length != -1ULL && offset + length < offset)
172 length = -1ULL;
173
174 /*
175 * If there is a pending op, but it's not PENDING_FREE, push it out,
176 * since free block aggregation can only be done for blocks of the
177 * same type (i.e., DRR_FREE records can only be aggregated with
178 * other DRR_FREE records. DRR_FREEOBJECTS records can only be
179 * aggregated with other DRR_FREEOBJECTS records.
180 */
181 if (dsp->dsa_pending_op != PENDING_NONE &&
182 dsp->dsa_pending_op != PENDING_FREE) {
183 if (dump_record(dsp, NULL, 0) != 0)
184 return (SET_ERROR(EINTR));
185 dsp->dsa_pending_op = PENDING_NONE;
186 }
187
188 if (dsp->dsa_pending_op == PENDING_FREE) {
189 /*
190 * There should never be a PENDING_FREE if length is -1
191 * (because dump_dnode is the only place where this
192 * function is called with a -1, and only after flushing
193 * any pending record).
194 */
195 ASSERT(length != -1ULL);
196 /*
197 * Check to see whether this free block can be aggregated
198 * with pending one.
199 */
200 if (drrf->drr_object == object && drrf->drr_offset +
201 drrf->drr_length == offset) {
202 drrf->drr_length += length;
203 return (0);
204 } else {
205 /* not a continuation. Push out pending record */
206 if (dump_record(dsp, NULL, 0) != 0)
207 return (SET_ERROR(EINTR));
208 dsp->dsa_pending_op = PENDING_NONE;
209 }
210 }
211 /* create a FREE record and make it pending */
212 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
213 dsp->dsa_drr->drr_type = DRR_FREE;
214 drrf->drr_object = object;
215 drrf->drr_offset = offset;
216 drrf->drr_length = length;
217 drrf->drr_toguid = dsp->dsa_toguid;
218 if (length == -1ULL) {
219 if (dump_record(dsp, NULL, 0) != 0)
220 return (SET_ERROR(EINTR));
221 } else {
222 dsp->dsa_pending_op = PENDING_FREE;
223 }
224
225 return (0);
226 }
227
228 static int
229 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
230 uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
231 {
232 struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
233
234 /*
235 * We send data in increasing object, offset order.
236 * See comment in dump_free() for details.
237 */
238 ASSERT(object > dsp->dsa_last_data_object ||
239 (object == dsp->dsa_last_data_object &&
240 offset > dsp->dsa_last_data_offset));
241 dsp->dsa_last_data_object = object;
242 dsp->dsa_last_data_offset = offset + blksz - 1;
243
244 /*
245 * If there is any kind of pending aggregation (currently either
246 * a grouping of free objects or free blocks), push it out to
247 * the stream, since aggregation can't be done across operations
248 * of different types.
249 */
250 if (dsp->dsa_pending_op != PENDING_NONE) {
251 if (dump_record(dsp, NULL, 0) != 0)
252 return (SET_ERROR(EINTR));
253 dsp->dsa_pending_op = PENDING_NONE;
254 }
255 /* write a WRITE record */
256 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
257 dsp->dsa_drr->drr_type = DRR_WRITE;
258 drrw->drr_object = object;
259 drrw->drr_type = type;
260 drrw->drr_offset = offset;
261 drrw->drr_length = blksz;
262 drrw->drr_toguid = dsp->dsa_toguid;
263 if (bp == NULL || BP_IS_EMBEDDED(bp)) {
264 /*
265 * There's no pre-computed checksum for partial-block
266 * writes or embedded BP's, so (like
267 * fletcher4-checkummed blocks) userland will have to
268 * compute a dedup-capable checksum itself.
269 */
270 drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
271 } else {
272 drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
273 if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
274 ZCHECKSUM_FLAG_DEDUP)
275 drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
276 DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
277 DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
278 DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
279 drrw->drr_key.ddk_cksum = bp->blk_cksum;
280 }
281
282 if (dump_record(dsp, data, blksz) != 0)
283 return (SET_ERROR(EINTR));
284 return (0);
285 }
286
287 static int
288 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
289 int blksz, const blkptr_t *bp)
290 {
291 char buf[BPE_PAYLOAD_SIZE];
292 struct drr_write_embedded *drrw =
293 &(dsp->dsa_drr->drr_u.drr_write_embedded);
294
295 if (dsp->dsa_pending_op != PENDING_NONE) {
296 if (dump_record(dsp, NULL, 0) != 0)
297 return (EINTR);
298 dsp->dsa_pending_op = PENDING_NONE;
299 }
300
301 ASSERT(BP_IS_EMBEDDED(bp));
302
303 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
304 dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
305 drrw->drr_object = object;
306 drrw->drr_offset = offset;
307 drrw->drr_length = blksz;
308 drrw->drr_toguid = dsp->dsa_toguid;
309 drrw->drr_compression = BP_GET_COMPRESS(bp);
310 drrw->drr_etype = BPE_GET_ETYPE(bp);
311 drrw->drr_lsize = BPE_GET_LSIZE(bp);
312 drrw->drr_psize = BPE_GET_PSIZE(bp);
313
314 decode_embedded_bp_compressed(bp, buf);
315
316 if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
317 return (EINTR);
318 return (0);
319 }
320
321 static int
322 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
323 {
324 struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
325
326 if (dsp->dsa_pending_op != PENDING_NONE) {
327 if (dump_record(dsp, NULL, 0) != 0)
328 return (SET_ERROR(EINTR));
329 dsp->dsa_pending_op = PENDING_NONE;
330 }
331
332 /* write a SPILL record */
333 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
334 dsp->dsa_drr->drr_type = DRR_SPILL;
335 drrs->drr_object = object;
336 drrs->drr_length = blksz;
337 drrs->drr_toguid = dsp->dsa_toguid;
338
339 if (dump_record(dsp, data, blksz) != 0)
340 return (SET_ERROR(EINTR));
341 return (0);
342 }
343
344 static int
345 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
346 {
347 struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
348
349 /*
350 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
351 * push it out, since free block aggregation can only be done for
352 * blocks of the same type (i.e., DRR_FREE records can only be
353 * aggregated with other DRR_FREE records. DRR_FREEOBJECTS records
354 * can only be aggregated with other DRR_FREEOBJECTS records.
355 */
356 if (dsp->dsa_pending_op != PENDING_NONE &&
357 dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
358 if (dump_record(dsp, NULL, 0) != 0)
359 return (SET_ERROR(EINTR));
360 dsp->dsa_pending_op = PENDING_NONE;
361 }
362 if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
363 /*
364 * See whether this free object array can be aggregated
365 * with pending one
366 */
367 if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
368 drrfo->drr_numobjs += numobjs;
369 return (0);
370 } else {
371 /* can't be aggregated. Push out pending record */
372 if (dump_record(dsp, NULL, 0) != 0)
373 return (SET_ERROR(EINTR));
374 dsp->dsa_pending_op = PENDING_NONE;
375 }
376 }
377
378 /* write a FREEOBJECTS record */
379 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
380 dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
381 drrfo->drr_firstobj = firstobj;
382 drrfo->drr_numobjs = numobjs;
383 drrfo->drr_toguid = dsp->dsa_toguid;
384
385 dsp->dsa_pending_op = PENDING_FREEOBJECTS;
386
387 return (0);
388 }
389
390 static int
391 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
392 {
393 struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
394
395 if (object < dsp->dsa_resume_object) {
396 /*
397 * Note: when resuming, we will visit all the dnodes in
398 * the block of dnodes that we are resuming from. In
399 * this case it's unnecessary to send the dnodes prior to
400 * the one we are resuming from. We should be at most one
401 * block's worth of dnodes behind the resume point.
402 */
403 ASSERT3U(dsp->dsa_resume_object - object, <,
404 1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
405 return (0);
406 }
407
408 if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
409 return (dump_freeobjects(dsp, object, 1));
410
411 if (dsp->dsa_pending_op != PENDING_NONE) {
412 if (dump_record(dsp, NULL, 0) != 0)
413 return (SET_ERROR(EINTR));
414 dsp->dsa_pending_op = PENDING_NONE;
415 }
416
417 /* write an OBJECT record */
418 bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
419 dsp->dsa_drr->drr_type = DRR_OBJECT;
420 drro->drr_object = object;
421 drro->drr_type = dnp->dn_type;
422 drro->drr_bonustype = dnp->dn_bonustype;
423 drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
424 drro->drr_bonuslen = dnp->dn_bonuslen;
425 drro->drr_checksumtype = dnp->dn_checksum;
426 drro->drr_compress = dnp->dn_compress;
427 drro->drr_toguid = dsp->dsa_toguid;
428
429 if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
430 drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
431 drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
432
433 if (dump_record(dsp, DN_BONUS(dnp),
434 P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
435 return (SET_ERROR(EINTR));
436 }
437
438 /* Free anything past the end of the file. */
439 if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
440 (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
441 return (SET_ERROR(EINTR));
442 if (dsp->dsa_err != 0)
443 return (SET_ERROR(EINTR));
444 return (0);
445 }
446
447 static boolean_t
448 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
449 {
450 if (!BP_IS_EMBEDDED(bp))
451 return (B_FALSE);
452
453 /*
454 * Compression function must be legacy, or explicitly enabled.
455 */
456 if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
457 !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
458 return (B_FALSE);
459
460 /*
461 * Embed type must be explicitly enabled.
462 */
463 switch (BPE_GET_ETYPE(bp)) {
464 case BP_EMBEDDED_TYPE_DATA:
465 if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
466 return (B_TRUE);
467 break;
468 default:
469 return (B_FALSE);
470 }
471 return (B_FALSE);
472 }
473
474 /*
475 * This is the callback function to traverse_dataset that acts as the worker
476 * thread for dmu_send_impl.
477 */
478 /*ARGSUSED*/
479 static int
480 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
481 const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
482 {
483 struct send_thread_arg *sta = arg;
484 struct send_block_record *record;
485 uint64_t record_size;
486 int err = 0;
487
488 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
489 zb->zb_object >= sta->resume.zb_object);
490
491 if (sta->cancel)
492 return (SET_ERROR(EINTR));
493
494 if (bp == NULL) {
495 ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
496 return (0);
497 } else if (zb->zb_level < 0) {
498 return (0);
499 }
500
501 record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
502 record->eos_marker = B_FALSE;
503 record->bp = *bp;
504 record->zb = *zb;
505 record->indblkshift = dnp->dn_indblkshift;
506 record->datablkszsec = dnp->dn_datablkszsec;
507 record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
508 bqueue_enqueue(&sta->q, record, record_size);
509
510 return (err);
511 }
512
513 /*
514 * This function kicks off the traverse_dataset. It also handles setting the
515 * error code of the thread in case something goes wrong, and pushes the End of
516 * Stream record when the traverse_dataset call has finished. If there is no
517 * dataset to traverse, the thread immediately pushes End of Stream marker.
518 */
519 static void
520 send_traverse_thread(void *arg)
521 {
522 struct send_thread_arg *st_arg = arg;
523 int err;
524 struct send_block_record *data;
525
526 if (st_arg->ds != NULL) {
527 err = traverse_dataset_resume(st_arg->ds,
528 st_arg->fromtxg, &st_arg->resume,
529 st_arg->flags, send_cb, st_arg);
530
531 if (err != EINTR)
532 st_arg->error_code = err;
533 }
534 data = kmem_zalloc(sizeof (*data), KM_SLEEP);
535 data->eos_marker = B_TRUE;
536 bqueue_enqueue(&st_arg->q, data, 1);
537 }
538
539 /*
540 * This function actually handles figuring out what kind of record needs to be
541 * dumped, reading the data (which has hopefully been prefetched), and calling
542 * the appropriate helper function.
543 */
544 static int
545 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
546 {
547 dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
548 const blkptr_t *bp = &data->bp;
549 const zbookmark_phys_t *zb = &data->zb;
550 uint8_t indblkshift = data->indblkshift;
551 uint16_t dblkszsec = data->datablkszsec;
552 spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
553 dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
554 int err = 0;
555
556 ASSERT3U(zb->zb_level, >=, 0);
557
558 ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
559 zb->zb_object >= dsa->dsa_resume_object);
560
561 if (zb->zb_object != DMU_META_DNODE_OBJECT &&
562 DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
563 return (0);
564 } else if (BP_IS_HOLE(bp) &&
565 zb->zb_object == DMU_META_DNODE_OBJECT) {
566 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
567 uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
568 err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
569 } else if (BP_IS_HOLE(bp)) {
570 uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
571 uint64_t offset = zb->zb_blkid * span;
572 err = dump_free(dsa, zb->zb_object, offset, span);
573 } else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
574 return (0);
575 } else if (type == DMU_OT_DNODE) {
576 int blksz = BP_GET_LSIZE(bp);
577 arc_flags_t aflags = ARC_FLAG_WAIT;
578 arc_buf_t *abuf;
579
580 ASSERT0(zb->zb_level);
581
582 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
583 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
584 &aflags, zb) != 0)
585 return (SET_ERROR(EIO));
586
587 dnode_phys_t *blk = abuf->b_data;
588 uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
589 for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
590 err = dump_dnode(dsa, dnobj + i, blk + i);
591 if (err != 0)
592 break;
593 }
594 (void) arc_buf_remove_ref(abuf, &abuf);
595 } else if (type == DMU_OT_SA) {
596 arc_flags_t aflags = ARC_FLAG_WAIT;
597 arc_buf_t *abuf;
598 int blksz = BP_GET_LSIZE(bp);
599
600 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
601 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
602 &aflags, zb) != 0)
603 return (SET_ERROR(EIO));
604
605 err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
606 (void) arc_buf_remove_ref(abuf, &abuf);
607 } else if (backup_do_embed(dsa, bp)) {
608 /* it's an embedded level-0 block of a regular object */
609 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
610 ASSERT0(zb->zb_level);
611 err = dump_write_embedded(dsa, zb->zb_object,
612 zb->zb_blkid * blksz, blksz, bp);
613 } else {
614 /* it's a level-0 block of a regular object */
615 arc_flags_t aflags = ARC_FLAG_WAIT;
616 arc_buf_t *abuf;
617 int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
618 uint64_t offset;
619
620 ASSERT0(zb->zb_level);
621 ASSERT(zb->zb_object > dsa->dsa_resume_object ||
622 (zb->zb_object == dsa->dsa_resume_object &&
623 zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
624
625 if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
626 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
627 &aflags, zb) != 0) {
628 if (zfs_send_corrupt_data) {
629 /* Send a block filled with 0x"zfs badd bloc" */
630 abuf = arc_buf_alloc(spa, blksz, &abuf,
631 ARC_BUFC_DATA);
632 uint64_t *ptr;
633 for (ptr = abuf->b_data;
634 (char *)ptr < (char *)abuf->b_data + blksz;
635 ptr++)
636 *ptr = 0x2f5baddb10cULL;
637 } else {
638 return (SET_ERROR(EIO));
639 }
640 }
641
642 offset = zb->zb_blkid * blksz;
643
644 if (!(dsa->dsa_featureflags &
645 DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
646 blksz > SPA_OLD_MAXBLOCKSIZE) {
647 char *buf = abuf->b_data;
648 while (blksz > 0 && err == 0) {
649 int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
650 err = dump_write(dsa, type, zb->zb_object,
651 offset, n, NULL, buf);
652 offset += n;
653 buf += n;
654 blksz -= n;
655 }
656 } else {
657 err = dump_write(dsa, type, zb->zb_object,
658 offset, blksz, bp, abuf->b_data);
659 }
660 (void) arc_buf_remove_ref(abuf, &abuf);
661 }
662
663 ASSERT(err == 0 || err == EINTR);
664 return (err);
665 }
666
667 /*
668 * Pop the new data off the queue, and free the old data.
669 */
670 static struct send_block_record *
671 get_next_record(bqueue_t *bq, struct send_block_record *data)
672 {
673 struct send_block_record *tmp = bqueue_dequeue(bq);
674 kmem_free(data, sizeof (*data));
675 return (tmp);
676 }
677
678 /*
679 * Actually do the bulk of the work in a zfs send.
680 *
681 * Note: Releases dp using the specified tag.
682 */
683 static int
684 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
685 zfs_bookmark_phys_t *ancestor_zb,
686 boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
687 uint64_t resumeobj, uint64_t resumeoff,
688 vnode_t *vp, offset_t *off)
689 {
690 objset_t *os;
691 dmu_replay_record_t *drr;
692 dmu_sendarg_t *dsp;
693 int err;
694 uint64_t fromtxg = 0;
695 uint64_t featureflags = 0;
696 struct send_thread_arg to_arg = { 0 };
697
698 err = dmu_objset_from_ds(to_ds, &os);
699 if (err != 0) {
700 dsl_pool_rele(dp, tag);
701 return (err);
702 }
703
704 drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
705 drr->drr_type = DRR_BEGIN;
706 drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
707 DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
708 DMU_SUBSTREAM);
709
710 #ifdef _KERNEL
711 if (dmu_objset_type(os) == DMU_OST_ZFS) {
712 uint64_t version;
713 if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
714 kmem_free(drr, sizeof (dmu_replay_record_t));
715 dsl_pool_rele(dp, tag);
716 return (SET_ERROR(EINVAL));
717 }
718 if (version >= ZPL_VERSION_SA) {
719 featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
720 }
721 }
722 #endif
723
724 if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
725 featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
726 if (embedok &&
727 spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
728 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
729 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
730 featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
731 }
732
733 if (resumeobj != 0 || resumeoff != 0) {
734 featureflags |= DMU_BACKUP_FEATURE_RESUMING;
735 }
736
737 DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
738 featureflags);
739
740 drr->drr_u.drr_begin.drr_creation_time =
741 dsl_dataset_phys(to_ds)->ds_creation_time;
742 drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
743 if (is_clone)
744 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
745 drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
746 if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
747 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
748 drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
749
750 if (ancestor_zb != NULL) {
751 drr->drr_u.drr_begin.drr_fromguid =
752 ancestor_zb->zbm_guid;
753 fromtxg = ancestor_zb->zbm_creation_txg;
754 }
755 dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
756 if (!to_ds->ds_is_snapshot) {
757 (void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
758 sizeof (drr->drr_u.drr_begin.drr_toname));
759 }
760
761 dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
762
763 dsp->dsa_drr = drr;
764 dsp->dsa_vp = vp;
765 dsp->dsa_outfd = outfd;
766 dsp->dsa_proc = curproc;
767 dsp->dsa_os = os;
768 dsp->dsa_off = off;
769 dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
770 dsp->dsa_pending_op = PENDING_NONE;
771 dsp->dsa_featureflags = featureflags;
772 dsp->dsa_resume_object = resumeobj;
773 dsp->dsa_resume_offset = resumeoff;
774
775 mutex_enter(&to_ds->ds_sendstream_lock);
776 list_insert_head(&to_ds->ds_sendstreams, dsp);
777 mutex_exit(&to_ds->ds_sendstream_lock);
778
779 dsl_dataset_long_hold(to_ds, FTAG);
780 dsl_pool_rele(dp, tag);
781
782 void *payload = NULL;
783 size_t payload_len = 0;
784 if (resumeobj != 0 || resumeoff != 0) {
785 dmu_object_info_t to_doi;
786 err = dmu_object_info(os, resumeobj, &to_doi);
787 if (err != 0)
788 goto out;
789 SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
790 resumeoff / to_doi.doi_data_block_size);
791
792 nvlist_t *nvl = fnvlist_alloc();
793 fnvlist_add_uint64(nvl, "resume_object", resumeobj);
794 fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
795 payload = fnvlist_pack(nvl, &payload_len);
796 drr->drr_payloadlen = payload_len;
797 fnvlist_free(nvl);
798 }
799
800 err = dump_record(dsp, payload, payload_len);
801 fnvlist_pack_free(payload, payload_len);
802 if (err != 0) {
803 err = dsp->dsa_err;
804 goto out;
805 }
806
807 err = bqueue_init(&to_arg.q, zfs_send_queue_length,
808 offsetof(struct send_block_record, ln));
809 to_arg.error_code = 0;
810 to_arg.cancel = B_FALSE;
811 to_arg.ds = to_ds;
812 to_arg.fromtxg = fromtxg;
813 to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
814 (void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
815 TS_RUN, minclsyspri);
816
817 struct send_block_record *to_data;
818 to_data = bqueue_dequeue(&to_arg.q);
819
820 while (!to_data->eos_marker && err == 0) {
821 err = do_dump(dsp, to_data);
822 to_data = get_next_record(&to_arg.q, to_data);
823 if (issig(JUSTLOOKING) && issig(FORREAL))
824 err = EINTR;
825 }
826
827 if (err != 0) {
828 to_arg.cancel = B_TRUE;
829 while (!to_data->eos_marker) {
830 to_data = get_next_record(&to_arg.q, to_data);
831 }
832 }
833 kmem_free(to_data, sizeof (*to_data));
834
835 bqueue_destroy(&to_arg.q);
836
837 if (err == 0 && to_arg.error_code != 0)
838 err = to_arg.error_code;
839
840 if (err != 0)
841 goto out;
842
843 if (dsp->dsa_pending_op != PENDING_NONE)
844 if (dump_record(dsp, NULL, 0) != 0)
845 err = SET_ERROR(EINTR);
846
847 if (err != 0) {
848 if (err == EINTR && dsp->dsa_err != 0)
849 err = dsp->dsa_err;
850 goto out;
851 }
852
853 bzero(drr, sizeof (dmu_replay_record_t));
854 drr->drr_type = DRR_END;
855 drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
856 drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
857
858 if (dump_record(dsp, NULL, 0) != 0)
859 err = dsp->dsa_err;
860
861 out:
862 mutex_enter(&to_ds->ds_sendstream_lock);
863 list_remove(&to_ds->ds_sendstreams, dsp);
864 mutex_exit(&to_ds->ds_sendstream_lock);
865
866 kmem_free(drr, sizeof (dmu_replay_record_t));
867 kmem_free(dsp, sizeof (dmu_sendarg_t));
868
869 dsl_dataset_long_rele(to_ds, FTAG);
870
871 return (err);
872 }
873
874 int
875 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
876 boolean_t embedok, boolean_t large_block_ok,
877 int outfd, vnode_t *vp, offset_t *off)
878 {
879 dsl_pool_t *dp;
880 dsl_dataset_t *ds;
881 dsl_dataset_t *fromds = NULL;
882 int err;
883
884 err = dsl_pool_hold(pool, FTAG, &dp);
885 if (err != 0)
886 return (err);
887
888 err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
889 if (err != 0) {
890 dsl_pool_rele(dp, FTAG);
891 return (err);
892 }
893
894 if (fromsnap != 0) {
895 zfs_bookmark_phys_t zb;
896 boolean_t is_clone;
897
898 err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
899 if (err != 0) {
900 dsl_dataset_rele(ds, FTAG);
901 dsl_pool_rele(dp, FTAG);
902 return (err);
903 }
904 if (!dsl_dataset_is_before(ds, fromds, 0))
905 err = SET_ERROR(EXDEV);
906 zb.zbm_creation_time =
907 dsl_dataset_phys(fromds)->ds_creation_time;
908 zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
909 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
910 is_clone = (fromds->ds_dir != ds->ds_dir);
911 dsl_dataset_rele(fromds, FTAG);
912 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
913 embedok, large_block_ok, outfd, 0, 0, vp, off);
914 } else {
915 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
916 embedok, large_block_ok, outfd, 0, 0, vp, off);
917 }
918 dsl_dataset_rele(ds, FTAG);
919 return (err);
920 }
921
922 int
923 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
924 boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
925 vnode_t *vp, offset_t *off)
926 {
927 dsl_pool_t *dp;
928 dsl_dataset_t *ds;
929 int err;
930 boolean_t owned = B_FALSE;
931
932 if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
933 return (SET_ERROR(EINVAL));
934
935 err = dsl_pool_hold(tosnap, FTAG, &dp);
936 if (err != 0)
937 return (err);
938
939 if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
940 /*
941 * We are sending a filesystem or volume. Ensure
942 * that it doesn't change by owning the dataset.
943 */
944 err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
945 owned = B_TRUE;
946 } else {
947 err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
948 }
949 if (err != 0) {
950 dsl_pool_rele(dp, FTAG);
951 return (err);
952 }
953
954 if (fromsnap != NULL) {
955 zfs_bookmark_phys_t zb;
956 boolean_t is_clone = B_FALSE;
957 int fsnamelen = strchr(tosnap, '@') - tosnap;
958
959 /*
960 * If the fromsnap is in a different filesystem, then
961 * mark the send stream as a clone.
962 */
963 if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
964 (fromsnap[fsnamelen] != '@' &&
965 fromsnap[fsnamelen] != '#')) {
966 is_clone = B_TRUE;
967 }
968
969 if (strchr(fromsnap, '@')) {
970 dsl_dataset_t *fromds;
971 err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
972 if (err == 0) {
973 if (!dsl_dataset_is_before(ds, fromds, 0))
974 err = SET_ERROR(EXDEV);
975 zb.zbm_creation_time =
976 dsl_dataset_phys(fromds)->ds_creation_time;
977 zb.zbm_creation_txg =
978 dsl_dataset_phys(fromds)->ds_creation_txg;
979 zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
980 is_clone = (ds->ds_dir != fromds->ds_dir);
981 dsl_dataset_rele(fromds, FTAG);
982 }
983 } else {
984 err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
985 }
986 if (err != 0) {
987 dsl_dataset_rele(ds, FTAG);
988 dsl_pool_rele(dp, FTAG);
989 return (err);
990 }
991 err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
992 embedok, large_block_ok,
993 outfd, resumeobj, resumeoff, vp, off);
994 } else {
995 err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
996 embedok, large_block_ok,
997 outfd, resumeobj, resumeoff, vp, off);
998 }
999 if (owned)
1000 dsl_dataset_disown(ds, FTAG);
1001 else
1002 dsl_dataset_rele(ds, FTAG);
1003 return (err);
1004 }
1005
1006 static int
1007 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1008 uint64_t *sizep)
1009 {
1010 int err;
1011 /*
1012 * Assume that space (both on-disk and in-stream) is dominated by
1013 * data. We will adjust for indirect blocks and the copies property,
1014 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1015 */
1016
1017 /*
1018 * Subtract out approximate space used by indirect blocks.
1019 * Assume most space is used by data blocks (non-indirect, non-dnode).
1020 * Assume all blocks are recordsize. Assume ditto blocks and
1021 * internal fragmentation counter out compression.
1022 *
1023 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1024 * block, which we observe in practice.
1025 */
1026 uint64_t recordsize;
1027 err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1028 if (err != 0)
1029 return (err);
1030 size -= size / recordsize * sizeof (blkptr_t);
1031
1032 /* Add in the space for the record associated with each block. */
1033 size += size / recordsize * sizeof (dmu_replay_record_t);
1034
1035 *sizep = size;
1036
1037 return (0);
1038 }
1039
1040 int
1041 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1042 {
1043 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1044 int err;
1045 uint64_t size;
1046
1047 ASSERT(dsl_pool_config_held(dp));
1048
1049 /* tosnap must be a snapshot */
1050 if (!ds->ds_is_snapshot)
1051 return (SET_ERROR(EINVAL));
1052
1053 /* fromsnap, if provided, must be a snapshot */
1054 if (fromds != NULL && !fromds->ds_is_snapshot)
1055 return (SET_ERROR(EINVAL));
1056
1057 /*
1058 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1059 * or the origin's fs.
1060 */
1061 if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1062 return (SET_ERROR(EXDEV));
1063
1064 /* Get uncompressed size estimate of changed data. */
1065 if (fromds == NULL) {
1066 size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1067 } else {
1068 uint64_t used, comp;
1069 err = dsl_dataset_space_written(fromds, ds,
1070 &used, &comp, &size);
1071 if (err != 0)
1072 return (err);
1073 }
1074
1075 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1076 return (err);
1077 }
1078
1079 /*
1080 * Simple callback used to traverse the blocks of a snapshot and sum their
1081 * uncompressed size
1082 */
1083 /* ARGSUSED */
1084 static int
1085 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1086 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1087 {
1088 uint64_t *spaceptr = arg;
1089 if (bp != NULL && !BP_IS_HOLE(bp)) {
1090 *spaceptr += BP_GET_UCSIZE(bp);
1091 }
1092 return (0);
1093 }
1094
1095 /*
1096 * Given a desination snapshot and a TXG, calculate the approximate size of a
1097 * send stream sent from that TXG. from_txg may be zero, indicating that the
1098 * whole snapshot will be sent.
1099 */
1100 int
1101 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1102 uint64_t *sizep)
1103 {
1104 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1105 int err;
1106 uint64_t size = 0;
1107
1108 ASSERT(dsl_pool_config_held(dp));
1109
1110 /* tosnap must be a snapshot */
1111 if (!dsl_dataset_is_snapshot(ds))
1112 return (SET_ERROR(EINVAL));
1113
1114 /* verify that from_txg is before the provided snapshot was taken */
1115 if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1116 return (SET_ERROR(EXDEV));
1117 }
1118
1119 /*
1120 * traverse the blocks of the snapshot with birth times after
1121 * from_txg, summing their uncompressed size
1122 */
1123 err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1124 dmu_calculate_send_traversal, &size);
1125 if (err)
1126 return (err);
1127
1128 err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1129 return (err);
1130 }
1131
1132 typedef struct dmu_recv_begin_arg {
1133 const char *drba_origin;
1134 dmu_recv_cookie_t *drba_cookie;
1135 cred_t *drba_cred;
1136 uint64_t drba_snapobj;
1137 } dmu_recv_begin_arg_t;
1138
1139 static int
1140 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1141 uint64_t fromguid)
1142 {
1143 uint64_t val;
1144 int error;
1145 dsl_pool_t *dp = ds->ds_dir->dd_pool;
1146
1147 /* temporary clone name must not exist */
1148 error = zap_lookup(dp->dp_meta_objset,
1149 dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1150 8, 1, &val);
1151 if (error != ENOENT)
1152 return (error == 0 ? EBUSY : error);
1153
1154 /* new snapshot name must not exist */
1155 error = zap_lookup(dp->dp_meta_objset,
1156 dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1157 drba->drba_cookie->drc_tosnap, 8, 1, &val);
1158 if (error != ENOENT)
1159 return (error == 0 ? EEXIST : error);
1160
1161 /*
1162 * Check snapshot limit before receiving. We'll recheck again at the
1163 * end, but might as well abort before receiving if we're already over
1164 * the limit.
1165 *
1166 * Note that we do not check the file system limit with
1167 * dsl_dir_fscount_check because the temporary %clones don't count
1168 * against that limit.
1169 */
1170 error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1171 NULL, drba->drba_cred);
1172 if (error != 0)
1173 return (error);
1174
1175 if (fromguid != 0) {
1176 dsl_dataset_t *snap;
1177 uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1178
1179 /* Find snapshot in this dir that matches fromguid. */
1180 while (obj != 0) {
1181 error = dsl_dataset_hold_obj(dp, obj, FTAG,
1182 &snap);
1183 if (error != 0)
1184 return (SET_ERROR(ENODEV));
1185 if (snap->ds_dir != ds->ds_dir) {
1186 dsl_dataset_rele(snap, FTAG);
1187 return (SET_ERROR(ENODEV));
1188 }
1189 if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1190 break;
1191 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1192 dsl_dataset_rele(snap, FTAG);
1193 }
1194 if (obj == 0)
1195 return (SET_ERROR(ENODEV));
1196
1197 if (drba->drba_cookie->drc_force) {
1198 drba->drba_snapobj = obj;
1199 } else {
1200 /*
1201 * If we are not forcing, there must be no
1202 * changes since fromsnap.
1203 */
1204 if (dsl_dataset_modified_since_snap(ds, snap)) {
1205 dsl_dataset_rele(snap, FTAG);
1206 return (SET_ERROR(ETXTBSY));
1207 }
1208 drba->drba_snapobj = ds->ds_prev->ds_object;
1209 }
1210
1211 dsl_dataset_rele(snap, FTAG);
1212 } else {
1213 /* if full, then must be forced */
1214 if (!drba->drba_cookie->drc_force)
1215 return (SET_ERROR(EEXIST));
1216 /* start from $ORIGIN@$ORIGIN, if supported */
1217 drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1218 dp->dp_origin_snap->ds_object : 0;
1219 }
1220
1221 return (0);
1222
1223 }
1224
1225 static int
1226 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1227 {
1228 dmu_recv_begin_arg_t *drba = arg;
1229 dsl_pool_t *dp = dmu_tx_pool(tx);
1230 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1231 uint64_t fromguid = drrb->drr_fromguid;
1232 int flags = drrb->drr_flags;
1233 int error;
1234 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1235 dsl_dataset_t *ds;
1236 const char *tofs = drba->drba_cookie->drc_tofs;
1237
1238 /* already checked */
1239 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1240 ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1241
1242 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1243 DMU_COMPOUNDSTREAM ||
1244 drrb->drr_type >= DMU_OST_NUMTYPES ||
1245 ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1246 return (SET_ERROR(EINVAL));
1247
1248 /* Verify pool version supports SA if SA_SPILL feature set */
1249 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1250 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1251 return (SET_ERROR(ENOTSUP));
1252
1253 if (drba->drba_cookie->drc_resumable &&
1254 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1255 return (SET_ERROR(ENOTSUP));
1256
1257 /*
1258 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1259 * record to a plan WRITE record, so the pool must have the
1260 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1261 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1262 */
1263 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1264 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1265 return (SET_ERROR(ENOTSUP));
1266 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1267 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1268 return (SET_ERROR(ENOTSUP));
1269
1270 /*
1271 * The receiving code doesn't know how to translate large blocks
1272 * to smaller ones, so the pool must have the LARGE_BLOCKS
1273 * feature enabled if the stream has LARGE_BLOCKS.
1274 */
1275 if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1276 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1277 return (SET_ERROR(ENOTSUP));
1278
1279 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1280 if (error == 0) {
1281 /* target fs already exists; recv into temp clone */
1282
1283 /* Can't recv a clone into an existing fs */
1284 if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1285 dsl_dataset_rele(ds, FTAG);
1286 return (SET_ERROR(EINVAL));
1287 }
1288
1289 error = recv_begin_check_existing_impl(drba, ds, fromguid);
1290 dsl_dataset_rele(ds, FTAG);
1291 } else if (error == ENOENT) {
1292 /* target fs does not exist; must be a full backup or clone */
1293 char buf[MAXNAMELEN];
1294
1295 /*
1296 * If it's a non-clone incremental, we are missing the
1297 * target fs, so fail the recv.
1298 */
1299 if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1300 drba->drba_origin))
1301 return (SET_ERROR(ENOENT));
1302
1303 /*
1304 * If we're receiving a full send as a clone, and it doesn't
1305 * contain all the necessary free records and freeobject
1306 * records, reject it.
1307 */
1308 if (fromguid == 0 && drba->drba_origin &&
1309 !(flags & DRR_FLAG_FREERECORDS))
1310 return (SET_ERROR(EINVAL));
1311
1312 /* Open the parent of tofs */
1313 ASSERT3U(strlen(tofs), <, MAXNAMELEN);
1314 (void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1315 error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1316 if (error != 0)
1317 return (error);
1318
1319 /*
1320 * Check filesystem and snapshot limits before receiving. We'll
1321 * recheck snapshot limits again at the end (we create the
1322 * filesystems and increment those counts during begin_sync).
1323 */
1324 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1325 ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1326 if (error != 0) {
1327 dsl_dataset_rele(ds, FTAG);
1328 return (error);
1329 }
1330
1331 error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1332 ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1333 if (error != 0) {
1334 dsl_dataset_rele(ds, FTAG);
1335 return (error);
1336 }
1337
1338 if (drba->drba_origin != NULL) {
1339 dsl_dataset_t *origin;
1340 error = dsl_dataset_hold(dp, drba->drba_origin,
1341 FTAG, &origin);
1342 if (error != 0) {
1343 dsl_dataset_rele(ds, FTAG);
1344 return (error);
1345 }
1346 if (!origin->ds_is_snapshot) {
1347 dsl_dataset_rele(origin, FTAG);
1348 dsl_dataset_rele(ds, FTAG);
1349 return (SET_ERROR(EINVAL));
1350 }
1351 if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1352 fromguid != 0) {
1353 dsl_dataset_rele(origin, FTAG);
1354 dsl_dataset_rele(ds, FTAG);
1355 return (SET_ERROR(ENODEV));
1356 }
1357 dsl_dataset_rele(origin, FTAG);
1358 }
1359 dsl_dataset_rele(ds, FTAG);
1360 error = 0;
1361 }
1362 return (error);
1363 }
1364
1365 static void
1366 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1367 {
1368 dmu_recv_begin_arg_t *drba = arg;
1369 dsl_pool_t *dp = dmu_tx_pool(tx);
1370 objset_t *mos = dp->dp_meta_objset;
1371 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1372 const char *tofs = drba->drba_cookie->drc_tofs;
1373 dsl_dataset_t *ds, *newds;
1374 uint64_t dsobj;
1375 int error;
1376 uint64_t crflags = 0;
1377
1378 if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1379 crflags |= DS_FLAG_CI_DATASET;
1380
1381 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1382 if (error == 0) {
1383 /* create temporary clone */
1384 dsl_dataset_t *snap = NULL;
1385 if (drba->drba_snapobj != 0) {
1386 VERIFY0(dsl_dataset_hold_obj(dp,
1387 drba->drba_snapobj, FTAG, &snap));
1388 }
1389 dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1390 snap, crflags, drba->drba_cred, tx);
1391 if (drba->drba_snapobj != 0)
1392 dsl_dataset_rele(snap, FTAG);
1393 dsl_dataset_rele(ds, FTAG);
1394 } else {
1395 dsl_dir_t *dd;
1396 const char *tail;
1397 dsl_dataset_t *origin = NULL;
1398
1399 VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1400
1401 if (drba->drba_origin != NULL) {
1402 VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1403 FTAG, &origin));
1404 }
1405
1406 /* Create new dataset. */
1407 dsobj = dsl_dataset_create_sync(dd,
1408 strrchr(tofs, '/') + 1,
1409 origin, crflags, drba->drba_cred, tx);
1410 if (origin != NULL)
1411 dsl_dataset_rele(origin, FTAG);
1412 dsl_dir_rele(dd, FTAG);
1413 drba->drba_cookie->drc_newfs = B_TRUE;
1414 }
1415 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1416
1417 if (drba->drba_cookie->drc_resumable) {
1418 dsl_dataset_zapify(newds, tx);
1419 if (drrb->drr_fromguid != 0) {
1420 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1421 8, 1, &drrb->drr_fromguid, tx));
1422 }
1423 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1424 8, 1, &drrb->drr_toguid, tx));
1425 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1426 1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1427 uint64_t one = 1;
1428 uint64_t zero = 0;
1429 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1430 8, 1, &one, tx));
1431 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1432 8, 1, &zero, tx));
1433 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1434 8, 1, &zero, tx));
1435 if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1436 DMU_BACKUP_FEATURE_EMBED_DATA) {
1437 VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1438 8, 1, &one, tx));
1439 }
1440 }
1441
1442 dmu_buf_will_dirty(newds->ds_dbuf, tx);
1443 dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1444
1445 /*
1446 * If we actually created a non-clone, we need to create the
1447 * objset in our new dataset.
1448 */
1449 if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1450 (void) dmu_objset_create_impl(dp->dp_spa,
1451 newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1452 }
1453
1454 drba->drba_cookie->drc_ds = newds;
1455
1456 spa_history_log_internal_ds(newds, "receive", tx, "");
1457 }
1458
1459 static int
1460 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1461 {
1462 dmu_recv_begin_arg_t *drba = arg;
1463 dsl_pool_t *dp = dmu_tx_pool(tx);
1464 struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1465 int error;
1466 uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1467 dsl_dataset_t *ds;
1468 const char *tofs = drba->drba_cookie->drc_tofs;
1469
1470 /* already checked */
1471 ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1472 ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1473
1474 if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1475 DMU_COMPOUNDSTREAM ||
1476 drrb->drr_type >= DMU_OST_NUMTYPES)
1477 return (SET_ERROR(EINVAL));
1478
1479 /* Verify pool version supports SA if SA_SPILL feature set */
1480 if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1481 spa_version(dp->dp_spa) < SPA_VERSION_SA)
1482 return (SET_ERROR(ENOTSUP));
1483
1484 /*
1485 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1486 * record to a plain WRITE record, so the pool must have the
1487 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1488 * records. Same with WRITE_EMBEDDED records that use LZ4 compression.
1489 */
1490 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1491 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1492 return (SET_ERROR(ENOTSUP));
1493 if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1494 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1495 return (SET_ERROR(ENOTSUP));
1496
1497 char recvname[ZFS_MAXNAMELEN];
1498
1499 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1500 tofs, recv_clone_name);
1501
1502 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1503 /* %recv does not exist; continue in tofs */
1504 error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1505 if (error != 0)
1506 return (error);
1507 }
1508
1509 /* check that ds is marked inconsistent */
1510 if (!DS_IS_INCONSISTENT(ds)) {
1511 dsl_dataset_rele(ds, FTAG);
1512 return (SET_ERROR(EINVAL));
1513 }
1514
1515 /* check that there is resuming data, and that the toguid matches */
1516 if (!dsl_dataset_is_zapified(ds)) {
1517 dsl_dataset_rele(ds, FTAG);
1518 return (SET_ERROR(EINVAL));
1519 }
1520 uint64_t val;
1521 error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1522 DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1523 if (error != 0 || drrb->drr_toguid != val) {
1524 dsl_dataset_rele(ds, FTAG);
1525 return (SET_ERROR(EINVAL));
1526 }
1527
1528 /*
1529 * Check if the receive is still running. If so, it will be owned.
1530 * Note that nothing else can own the dataset (e.g. after the receive
1531 * fails) because it will be marked inconsistent.
1532 */
1533 if (dsl_dataset_has_owner(ds)) {
1534 dsl_dataset_rele(ds, FTAG);
1535 return (SET_ERROR(EBUSY));
1536 }
1537
1538 /* There should not be any snapshots of this fs yet. */
1539 if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1540 dsl_dataset_rele(ds, FTAG);
1541 return (SET_ERROR(EINVAL));
1542 }
1543
1544 /*
1545 * Note: resume point will be checked when we process the first WRITE
1546 * record.
1547 */
1548
1549 /* check that the origin matches */
1550 val = 0;
1551 (void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1552 DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1553 if (drrb->drr_fromguid != val) {
1554 dsl_dataset_rele(ds, FTAG);
1555 return (SET_ERROR(EINVAL));
1556 }
1557
1558 dsl_dataset_rele(ds, FTAG);
1559 return (0);
1560 }
1561
1562 static void
1563 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1564 {
1565 dmu_recv_begin_arg_t *drba = arg;
1566 dsl_pool_t *dp = dmu_tx_pool(tx);
1567 const char *tofs = drba->drba_cookie->drc_tofs;
1568 dsl_dataset_t *ds;
1569 uint64_t dsobj;
1570 char recvname[ZFS_MAXNAMELEN];
1571
1572 (void) snprintf(recvname, sizeof (recvname), "%s/%s",
1573 tofs, recv_clone_name);
1574
1575 if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1576 /* %recv does not exist; continue in tofs */
1577 VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1578 drba->drba_cookie->drc_newfs = B_TRUE;
1579 }
1580
1581 /* clear the inconsistent flag so that we can own it */
1582 ASSERT(DS_IS_INCONSISTENT(ds));
1583 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1584 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1585 dsobj = ds->ds_object;
1586 dsl_dataset_rele(ds, FTAG);
1587
1588 VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1589
1590 dmu_buf_will_dirty(ds->ds_dbuf, tx);
1591 dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1592
1593 ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1594
1595 drba->drba_cookie->drc_ds = ds;
1596
1597 spa_history_log_internal_ds(ds, "resume receive", tx, "");
1598 }
1599
1600 /*
1601 * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1602 * succeeds; otherwise we will leak the holds on the datasets.
1603 */
1604 int
1605 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1606 boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1607 {
1608 dmu_recv_begin_arg_t drba = { 0 };
1609
1610 bzero(drc, sizeof (dmu_recv_cookie_t));
1611 drc->drc_drr_begin = drr_begin;
1612 drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1613 drc->drc_tosnap = tosnap;
1614 drc->drc_tofs = tofs;
1615 drc->drc_force = force;
1616 drc->drc_resumable = resumable;
1617 drc->drc_cred = CRED();
1618
1619 if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1620 drc->drc_byteswap = B_TRUE;
1621 fletcher_4_incremental_byteswap(drr_begin,
1622 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1623 byteswap_record(drr_begin);
1624 } else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1625 fletcher_4_incremental_native(drr_begin,
1626 sizeof (dmu_replay_record_t), &drc->drc_cksum);
1627 } else {
1628 return (SET_ERROR(EINVAL));
1629 }
1630
1631 drba.drba_origin = origin;
1632 drba.drba_cookie = drc;
1633 drba.drba_cred = CRED();
1634
1635 if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1636 DMU_BACKUP_FEATURE_RESUMING) {
1637 return (dsl_sync_task(tofs,
1638 dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1639 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1640 } else {
1641 return (dsl_sync_task(tofs,
1642 dmu_recv_begin_check, dmu_recv_begin_sync,
1643 &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1644 }
1645 }
1646
1647 struct receive_record_arg {
1648 dmu_replay_record_t header;
1649 void *payload; /* Pointer to a buffer containing the payload */
1650 /*
1651 * If the record is a write, pointer to the arc_buf_t containing the
1652 * payload.
1653 */
1654 arc_buf_t *write_buf;
1655 int payload_size;
1656 uint64_t bytes_read; /* bytes read from stream when record created */
1657 boolean_t eos_marker; /* Marks the end of the stream */
1658 bqueue_node_t node;
1659 };
1660
1661 struct receive_writer_arg {
1662 objset_t *os;
1663 boolean_t byteswap;
1664 bqueue_t q;
1665
1666 /*
1667 * These three args are used to signal to the main thread that we're
1668 * done.
1669 */
1670 kmutex_t mutex;
1671 kcondvar_t cv;
1672 boolean_t done;
1673
1674 int err;
1675 /* A map from guid to dataset to help handle dedup'd streams. */
1676 avl_tree_t *guid_to_ds_map;
1677 boolean_t resumable;
1678 uint64_t last_object, last_offset;
1679 uint64_t bytes_read; /* bytes read when current record created */
1680 };
1681
1682 struct objlist {
1683 list_t list; /* List of struct receive_objnode. */
1684 /*
1685 * Last object looked up. Used to assert that objects are being looked
1686 * up in ascending order.
1687 */
1688 uint64_t last_lookup;
1689 };
1690
1691 struct receive_objnode {
1692 list_node_t node;
1693 uint64_t object;
1694 };
1695
1696 struct receive_arg {
1697 objset_t *os;
1698 vnode_t *vp; /* The vnode to read the stream from */
1699 uint64_t voff; /* The current offset in the stream */
1700 uint64_t bytes_read;
1701 /*
1702 * A record that has had its payload read in, but hasn't yet been handed
1703 * off to the worker thread.
1704 */
1705 struct receive_record_arg *rrd;
1706 /* A record that has had its header read in, but not its payload. */
1707 struct receive_record_arg *next_rrd;
1708 zio_cksum_t cksum;
1709 zio_cksum_t prev_cksum;
1710 int err;
1711 boolean_t byteswap;
1712 /* Sorted list of objects not to issue prefetches for. */
1713 struct objlist ignore_objlist;
1714 };
1715
1716 typedef struct guid_map_entry {
1717 uint64_t guid;
1718 dsl_dataset_t *gme_ds;
1719 avl_node_t avlnode;
1720 } guid_map_entry_t;
1721
1722 static int
1723 guid_compare(const void *arg1, const void *arg2)
1724 {
1725 const guid_map_entry_t *gmep1 = arg1;
1726 const guid_map_entry_t *gmep2 = arg2;
1727
1728 if (gmep1->guid < gmep2->guid)
1729 return (-1);
1730 else if (gmep1->guid > gmep2->guid)
1731 return (1);
1732 return (0);
1733 }
1734
1735 static void
1736 free_guid_map_onexit(void *arg)
1737 {
1738 avl_tree_t *ca = arg;
1739 void *cookie = NULL;
1740 guid_map_entry_t *gmep;
1741
1742 while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1743 dsl_dataset_long_rele(gmep->gme_ds, gmep);
1744 dsl_dataset_rele(gmep->gme_ds, gmep);
1745 kmem_free(gmep, sizeof (guid_map_entry_t));
1746 }
1747 avl_destroy(ca);
1748 kmem_free(ca, sizeof (avl_tree_t));
1749 }
1750
1751 static int
1752 receive_read(struct receive_arg *ra, int len, void *buf)
1753 {
1754 int done = 0;
1755
1756 /* some things will require 8-byte alignment, so everything must */
1757 ASSERT0(len % 8);
1758
1759 while (done < len) {
1760 ssize_t resid;
1761
1762 ra->err = vn_rdwr(UIO_READ, ra->vp,
1763 (char *)buf + done, len - done,
1764 ra->voff, UIO_SYSSPACE, FAPPEND,
1765 RLIM64_INFINITY, CRED(), &resid);
1766
1767 if (resid == len - done) {
1768 /*
1769 * Note: ECKSUM indicates that the receive
1770 * was interrupted and can potentially be resumed.
1771 */
1772 ra->err = SET_ERROR(ECKSUM);
1773 }
1774 ra->voff += len - done - resid;
1775 done = len - resid;
1776 if (ra->err != 0)
1777 return (ra->err);
1778 }
1779
1780 ra->bytes_read += len;
1781
1782 ASSERT3U(done, ==, len);
1783 return (0);
1784 }
1785
1786 static void
1787 byteswap_record(dmu_replay_record_t *drr)
1788 {
1789 #define DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1790 #define DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1791 drr->drr_type = BSWAP_32(drr->drr_type);
1792 drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1793
1794 switch (drr->drr_type) {
1795 case DRR_BEGIN:
1796 DO64(drr_begin.drr_magic);
1797 DO64(drr_begin.drr_versioninfo);
1798 DO64(drr_begin.drr_creation_time);
1799 DO32(drr_begin.drr_type);
1800 DO32(drr_begin.drr_flags);
1801 DO64(drr_begin.drr_toguid);
1802 DO64(drr_begin.drr_fromguid);
1803 break;
1804 case DRR_OBJECT:
1805 DO64(drr_object.drr_object);
1806 DO32(drr_object.drr_type);
1807 DO32(drr_object.drr_bonustype);
1808 DO32(drr_object.drr_blksz);
1809 DO32(drr_object.drr_bonuslen);
1810 DO64(drr_object.drr_toguid);
1811 break;
1812 case DRR_FREEOBJECTS:
1813 DO64(drr_freeobjects.drr_firstobj);
1814 DO64(drr_freeobjects.drr_numobjs);
1815 DO64(drr_freeobjects.drr_toguid);
1816 break;
1817 case DRR_WRITE:
1818 DO64(drr_write.drr_object);
1819 DO32(drr_write.drr_type);
1820 DO64(drr_write.drr_offset);
1821 DO64(drr_write.drr_length);
1822 DO64(drr_write.drr_toguid);
1823 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1824 DO64(drr_write.drr_key.ddk_prop);
1825 break;
1826 case DRR_WRITE_BYREF:
1827 DO64(drr_write_byref.drr_object);
1828 DO64(drr_write_byref.drr_offset);
1829 DO64(drr_write_byref.drr_length);
1830 DO64(drr_write_byref.drr_toguid);
1831 DO64(drr_write_byref.drr_refguid);
1832 DO64(drr_write_byref.drr_refobject);
1833 DO64(drr_write_byref.drr_refoffset);
1834 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1835 drr_key.ddk_cksum);
1836 DO64(drr_write_byref.drr_key.ddk_prop);
1837 break;
1838 case DRR_WRITE_EMBEDDED:
1839 DO64(drr_write_embedded.drr_object);
1840 DO64(drr_write_embedded.drr_offset);
1841 DO64(drr_write_embedded.drr_length);
1842 DO64(drr_write_embedded.drr_toguid);
1843 DO32(drr_write_embedded.drr_lsize);
1844 DO32(drr_write_embedded.drr_psize);
1845 break;
1846 case DRR_FREE:
1847 DO64(drr_free.drr_object);
1848 DO64(drr_free.drr_offset);
1849 DO64(drr_free.drr_length);
1850 DO64(drr_free.drr_toguid);
1851 break;
1852 case DRR_SPILL:
1853 DO64(drr_spill.drr_object);
1854 DO64(drr_spill.drr_length);
1855 DO64(drr_spill.drr_toguid);
1856 break;
1857 case DRR_END:
1858 DO64(drr_end.drr_toguid);
1859 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1860 break;
1861 }
1862
1863 if (drr->drr_type != DRR_BEGIN) {
1864 ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1865 }
1866
1867 #undef DO64
1868 #undef DO32
1869 }
1870
1871 static inline uint8_t
1872 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1873 {
1874 if (bonus_type == DMU_OT_SA) {
1875 return (1);
1876 } else {
1877 return (1 +
1878 ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1879 }
1880 }
1881
1882 static void
1883 save_resume_state(struct receive_writer_arg *rwa,
1884 uint64_t object, uint64_t offset, dmu_tx_t *tx)
1885 {
1886 int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1887
1888 if (!rwa->resumable)
1889 return;
1890
1891 /*
1892 * We use ds_resume_bytes[] != 0 to indicate that we need to
1893 * update this on disk, so it must not be 0.
1894 */
1895 ASSERT(rwa->bytes_read != 0);
1896
1897 /*
1898 * We only resume from write records, which have a valid
1899 * (non-meta-dnode) object number.
1900 */
1901 ASSERT(object != 0);
1902
1903 /*
1904 * For resuming to work correctly, we must receive records in order,
1905 * sorted by object,offset. This is checked by the callers, but
1906 * assert it here for good measure.
1907 */
1908 ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1909 ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1910 offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1911 ASSERT3U(rwa->bytes_read, >=,
1912 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1913
1914 rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1915 rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1916 rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1917 }
1918
1919 static int
1920 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1921 void *data)
1922 {
1923 dmu_object_info_t doi;
1924 dmu_tx_t *tx;
1925 uint64_t object;
1926 int err;
1927
1928 if (drro->drr_type == DMU_OT_NONE ||
1929 !DMU_OT_IS_VALID(drro->drr_type) ||
1930 !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1931 drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1932 drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1933 P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1934 drro->drr_blksz < SPA_MINBLOCKSIZE ||
1935 drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1936 drro->drr_bonuslen > DN_MAX_BONUSLEN) {
1937 return (SET_ERROR(EINVAL));
1938 }
1939
1940 err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1941
1942 if (err != 0 && err != ENOENT)
1943 return (SET_ERROR(EINVAL));
1944 object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
1945
1946 /*
1947 * If we are losing blkptrs or changing the block size this must
1948 * be a new file instance. We must clear out the previous file
1949 * contents before we can change this type of metadata in the dnode.
1950 */
1951 if (err == 0) {
1952 int nblkptr;
1953
1954 nblkptr = deduce_nblkptr(drro->drr_bonustype,
1955 drro->drr_bonuslen);
1956
1957 if (drro->drr_blksz != doi.doi_data_block_size ||
1958 nblkptr < doi.doi_nblkptr) {
1959 err = dmu_free_long_range(rwa->os, drro->drr_object,
1960 0, DMU_OBJECT_END);
1961 if (err != 0)
1962 return (SET_ERROR(EINVAL));
1963 }
1964 }
1965
1966 tx = dmu_tx_create(rwa->os);
1967 dmu_tx_hold_bonus(tx, object);
1968 err = dmu_tx_assign(tx, TXG_WAIT);
1969 if (err != 0) {
1970 dmu_tx_abort(tx);
1971 return (err);
1972 }
1973
1974 if (object == DMU_NEW_OBJECT) {
1975 /* currently free, want to be allocated */
1976 err = dmu_object_claim(rwa->os, drro->drr_object,
1977 drro->drr_type, drro->drr_blksz,
1978 drro->drr_bonustype, drro->drr_bonuslen, tx);
1979 } else if (drro->drr_type != doi.doi_type ||
1980 drro->drr_blksz != doi.doi_data_block_size ||
1981 drro->drr_bonustype != doi.doi_bonus_type ||
1982 drro->drr_bonuslen != doi.doi_bonus_size) {
1983 /* currently allocated, but with different properties */
1984 err = dmu_object_reclaim(rwa->os, drro->drr_object,
1985 drro->drr_type, drro->drr_blksz,
1986 drro->drr_bonustype, drro->drr_bonuslen, tx);
1987 }
1988 if (err != 0) {
1989 dmu_tx_commit(tx);
1990 return (SET_ERROR(EINVAL));
1991 }
1992
1993 dmu_object_set_checksum(rwa->os, drro->drr_object,
1994 drro->drr_checksumtype, tx);
1995 dmu_object_set_compress(rwa->os, drro->drr_object,
1996 drro->drr_compress, tx);
1997
1998 if (data != NULL) {
1999 dmu_buf_t *db;
2000
2001 VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2002 dmu_buf_will_dirty(db, tx);
2003
2004 ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2005 bcopy(data, db->db_data, drro->drr_bonuslen);
2006 if (rwa->byteswap) {
2007 dmu_object_byteswap_t byteswap =
2008 DMU_OT_BYTESWAP(drro->drr_bonustype);
2009 dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2010 drro->drr_bonuslen);
2011 }
2012 dmu_buf_rele(db, FTAG);
2013 }
2014 dmu_tx_commit(tx);
2015
2016 return (0);
2017 }
2018
2019 /* ARGSUSED */
2020 static int
2021 receive_freeobjects(struct receive_writer_arg *rwa,
2022 struct drr_freeobjects *drrfo)
2023 {
2024 uint64_t obj;
2025 int next_err = 0;
2026
2027 if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2028 return (SET_ERROR(EINVAL));
2029
2030 for (obj = drrfo->drr_firstobj;
2031 obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2032 next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2033 int err;
2034
2035 if (dmu_object_info(rwa->os, obj, NULL) != 0)
2036 continue;
2037
2038 err = dmu_free_long_object(rwa->os, obj);
2039 if (err != 0)
2040 return (err);
2041 }
2042 if (next_err != ESRCH)
2043 return (next_err);
2044 return (0);
2045 }
2046
2047 static int
2048 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2049 arc_buf_t *abuf)
2050 {
2051 dmu_tx_t *tx;
2052 int err;
2053
2054 if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2055 !DMU_OT_IS_VALID(drrw->drr_type))
2056 return (SET_ERROR(EINVAL));
2057
2058 /*
2059 * For resuming to work, records must be in increasing order
2060 * by (object, offset).
2061 */
2062 if (drrw->drr_object < rwa->last_object ||
2063 (drrw->drr_object == rwa->last_object &&
2064 drrw->drr_offset < rwa->last_offset)) {
2065 return (SET_ERROR(EINVAL));
2066 }
2067 rwa->last_object = drrw->drr_object;
2068 rwa->last_offset = drrw->drr_offset;
2069
2070 if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2071 return (SET_ERROR(EINVAL));
2072
2073 tx = dmu_tx_create(rwa->os);
2074
2075 dmu_tx_hold_write(tx, drrw->drr_object,
2076 drrw->drr_offset, drrw->drr_length);
2077 err = dmu_tx_assign(tx, TXG_WAIT);
2078 if (err != 0) {
2079 dmu_tx_abort(tx);
2080 return (err);
2081 }
2082 if (rwa->byteswap) {
2083 dmu_object_byteswap_t byteswap =
2084 DMU_OT_BYTESWAP(drrw->drr_type);
2085 dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2086 drrw->drr_length);
2087 }
2088
2089 dmu_buf_t *bonus;
2090 if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2091 return (SET_ERROR(EINVAL));
2092 dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2093
2094 /*
2095 * Note: If the receive fails, we want the resume stream to start
2096 * with the same record that we last successfully received (as opposed
2097 * to the next record), so that we can verify that we are
2098 * resuming from the correct location.
2099 */
2100 save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2101 dmu_tx_commit(tx);
2102 dmu_buf_rele(bonus, FTAG);
2103
2104 return (0);
2105 }
2106
2107 /*
2108 * Handle a DRR_WRITE_BYREF record. This record is used in dedup'ed
2109 * streams to refer to a copy of the data that is already on the
2110 * system because it came in earlier in the stream. This function
2111 * finds the earlier copy of the data, and uses that copy instead of
2112 * data from the stream to fulfill this write.
2113 */
2114 static int
2115 receive_write_byref(struct receive_writer_arg *rwa,
2116 struct drr_write_byref *drrwbr)
2117 {
2118 dmu_tx_t *tx;
2119 int err;
2120 guid_map_entry_t gmesrch;
2121 guid_map_entry_t *gmep;
2122 avl_index_t where;
2123 objset_t *ref_os = NULL;
2124 dmu_buf_t *dbp;
2125
2126 if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2127 return (SET_ERROR(EINVAL));
2128
2129 /*
2130 * If the GUID of the referenced dataset is different from the
2131 * GUID of the target dataset, find the referenced dataset.
2132 */
2133 if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2134 gmesrch.guid = drrwbr->drr_refguid;
2135 if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2136 &where)) == NULL) {
2137 return (SET_ERROR(EINVAL));
2138 }
2139 if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2140 return (SET_ERROR(EINVAL));
2141 } else {
2142 ref_os = rwa->os;
2143 }
2144
2145 err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2146 drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2147 if (err != 0)
2148 return (err);
2149
2150 tx = dmu_tx_create(rwa->os);
2151
2152 dmu_tx_hold_write(tx, drrwbr->drr_object,
2153 drrwbr->drr_offset, drrwbr->drr_length);
2154 err = dmu_tx_assign(tx, TXG_WAIT);
2155 if (err != 0) {
2156 dmu_tx_abort(tx);
2157 return (err);
2158 }
2159 dmu_write(rwa->os, drrwbr->drr_object,
2160 drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2161 dmu_buf_rele(dbp, FTAG);
2162
2163 /* See comment in restore_write. */
2164 save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2165 dmu_tx_commit(tx);
2166 return (0);
2167 }
2168
2169 static int
2170 receive_write_embedded(struct receive_writer_arg *rwa,
2171 struct drr_write_embedded *drrwe, void *data)
2172 {
2173 dmu_tx_t *tx;
2174 int err;
2175
2176 if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2177 return (EINVAL);
2178
2179 if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2180 return (EINVAL);
2181
2182 if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2183 return (EINVAL);
2184 if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2185 return (EINVAL);
2186
2187 tx = dmu_tx_create(rwa->os);
2188
2189 dmu_tx_hold_write(tx, drrwe->drr_object,
2190 drrwe->drr_offset, drrwe->drr_length);
2191 err = dmu_tx_assign(tx, TXG_WAIT);
2192 if (err != 0) {
2193 dmu_tx_abort(tx);
2194 return (err);
2195 }
2196
2197 dmu_write_embedded(rwa->os, drrwe->drr_object,
2198 drrwe->drr_offset, data, drrwe->drr_etype,
2199 drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2200 rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2201
2202 /* See comment in restore_write. */
2203 save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2204 dmu_tx_commit(tx);
2205 return (0);
2206 }
2207
2208 static int
2209 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2210 void *data)
2211 {
2212 dmu_tx_t *tx;
2213 dmu_buf_t *db, *db_spill;
2214 int err;
2215
2216 if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2217 drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2218 return (SET_ERROR(EINVAL));
2219
2220 if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2221 return (SET_ERROR(EINVAL));
2222
2223 VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2224 if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2225 dmu_buf_rele(db, FTAG);
2226 return (err);
2227 }
2228
2229 tx = dmu_tx_create(rwa->os);
2230
2231 dmu_tx_hold_spill(tx, db->db_object);
2232
2233 err = dmu_tx_assign(tx, TXG_WAIT);
2234 if (err != 0) {
2235 dmu_buf_rele(db, FTAG);
2236 dmu_buf_rele(db_spill, FTAG);
2237 dmu_tx_abort(tx);
2238 return (err);
2239 }
2240 dmu_buf_will_dirty(db_spill, tx);
2241
2242 if (db_spill->db_size < drrs->drr_length)
2243 VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2244 drrs->drr_length, tx));
2245 bcopy(data, db_spill->db_data, drrs->drr_length);
2246
2247 dmu_buf_rele(db, FTAG);
2248 dmu_buf_rele(db_spill, FTAG);
2249
2250 dmu_tx_commit(tx);
2251 return (0);
2252 }
2253
2254 /* ARGSUSED */
2255 static int
2256 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2257 {
2258 int err;
2259
2260 if (drrf->drr_length != -1ULL &&
2261 drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2262 return (SET_ERROR(EINVAL));
2263
2264 if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2265 return (SET_ERROR(EINVAL));
2266
2267 err = dmu_free_long_range(rwa->os, drrf->drr_object,
2268 drrf->drr_offset, drrf->drr_length);
2269
2270 return (err);
2271 }
2272
2273 /* used to destroy the drc_ds on error */
2274 static void
2275 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2276 {
2277 if (drc->drc_resumable) {
2278 /* wait for our resume state to be written to disk */
2279 txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2280 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2281 } else {
2282 char name[MAXNAMELEN];
2283 dsl_dataset_name(drc->drc_ds, name);
2284 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2285 (void) dsl_destroy_head(name);
2286 }
2287 }
2288
2289 static void
2290 receive_cksum(struct receive_arg *ra, int len, void *buf)
2291 {
2292 if (ra->byteswap) {
2293 fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2294 } else {
2295 fletcher_4_incremental_native(buf, len, &ra->cksum);
2296 }
2297 }
2298
2299 /*
2300 * Read the payload into a buffer of size len, and update the current record's
2301 * payload field.
2302 * Allocate ra->next_rrd and read the next record's header into
2303 * ra->next_rrd->header.
2304 * Verify checksum of payload and next record.
2305 */
2306 static int
2307 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2308 {
2309 int err;
2310
2311 if (len != 0) {
2312 ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2313 err = receive_read(ra, len, buf);
2314 if (err != 0)
2315 return (err);
2316 receive_cksum(ra, len, buf);
2317
2318 /* note: rrd is NULL when reading the begin record's payload */
2319 if (ra->rrd != NULL) {
2320 ra->rrd->payload = buf;
2321 ra->rrd->payload_size = len;
2322 ra->rrd->bytes_read = ra->bytes_read;
2323 }
2324 }
2325
2326 ra->prev_cksum = ra->cksum;
2327
2328 ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2329 err = receive_read(ra, sizeof (ra->next_rrd->header),
2330 &ra->next_rrd->header);
2331 ra->next_rrd->bytes_read = ra->bytes_read;
2332 if (err != 0) {
2333 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2334 ra->next_rrd = NULL;
2335 return (err);
2336 }
2337 if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2338 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2339 ra->next_rrd = NULL;
2340 return (SET_ERROR(EINVAL));
2341 }
2342
2343 /*
2344 * Note: checksum is of everything up to but not including the
2345 * checksum itself.
2346 */
2347 ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2348 ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2349 receive_cksum(ra,
2350 offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2351 &ra->next_rrd->header);
2352
2353 zio_cksum_t cksum_orig =
2354 ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2355 zio_cksum_t *cksump =
2356 &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2357
2358 if (ra->byteswap)
2359 byteswap_record(&ra->next_rrd->header);
2360
2361 if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2362 !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2363 kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2364 ra->next_rrd = NULL;
2365 return (SET_ERROR(ECKSUM));
2366 }
2367
2368 receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2369
2370 return (0);
2371 }
2372
2373 static void
2374 objlist_create(struct objlist *list)
2375 {
2376 list_create(&list->list, sizeof (struct receive_objnode),
2377 offsetof(struct receive_objnode, node));
2378 list->last_lookup = 0;
2379 }
2380
2381 static void
2382 objlist_destroy(struct objlist *list)
2383 {
2384 for (struct receive_objnode *n = list_remove_head(&list->list);
2385 n != NULL; n = list_remove_head(&list->list)) {
2386 kmem_free(n, sizeof (*n));
2387 }
2388 list_destroy(&list->list);
2389 }
2390
2391 /*
2392 * This function looks through the objlist to see if the specified object number
2393 * is contained in the objlist. In the process, it will remove all object
2394 * numbers in the list that are smaller than the specified object number. Thus,
2395 * any lookup of an object number smaller than a previously looked up object
2396 * number will always return false; therefore, all lookups should be done in
2397 * ascending order.
2398 */
2399 static boolean_t
2400 objlist_exists(struct objlist *list, uint64_t object)
2401 {
2402 struct receive_objnode *node = list_head(&list->list);
2403 ASSERT3U(object, >=, list->last_lookup);
2404 list->last_lookup = object;
2405 while (node != NULL && node->object < object) {
2406 VERIFY3P(node, ==, list_remove_head(&list->list));
2407 kmem_free(node, sizeof (*node));
2408 node = list_head(&list->list);
2409 }
2410 return (node != NULL && node->object == object);
2411 }
2412
2413 /*
2414 * The objlist is a list of object numbers stored in ascending order. However,
2415 * the insertion of new object numbers does not seek out the correct location to
2416 * store a new object number; instead, it appends it to the list for simplicity.
2417 * Thus, any users must take care to only insert new object numbers in ascending
2418 * order.
2419 */
2420 static void
2421 objlist_insert(struct objlist *list, uint64_t object)
2422 {
2423 struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2424 node->object = object;
2425 #ifdef ZFS_DEBUG
2426 struct receive_objnode *last_object = list_tail(&list->list);
2427 uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2428 ASSERT3U(node->object, >, last_objnum);
2429 #endif
2430 list_insert_tail(&list->list, node);
2431 }
2432
2433 /*
2434 * Issue the prefetch reads for any necessary indirect blocks.
2435 *
2436 * We use the object ignore list to tell us whether or not to issue prefetches
2437 * for a given object. We do this for both correctness (in case the blocksize
2438 * of an object has changed) and performance (if the object doesn't exist, don't
2439 * needlessly try to issue prefetches). We also trim the list as we go through
2440 * the stream to prevent it from growing to an unbounded size.
2441 *
2442 * The object numbers within will always be in sorted order, and any write
2443 * records we see will also be in sorted order, but they're not sorted with
2444 * respect to each other (i.e. we can get several object records before
2445 * receiving each object's write records). As a result, once we've reached a
2446 * given object number, we can safely remove any reference to lower object
2447 * numbers in the ignore list. In practice, we receive up to 32 object records
2448 * before receiving write records, so the list can have up to 32 nodes in it.
2449 */
2450 /* ARGSUSED */
2451 static void
2452 receive_read_prefetch(struct receive_arg *ra,
2453 uint64_t object, uint64_t offset, uint64_t length)
2454 {
2455 if (!objlist_exists(&ra->ignore_objlist, object)) {
2456 dmu_prefetch(ra->os, object, 1, offset, length,
2457 ZIO_PRIORITY_SYNC_READ);
2458 }
2459 }
2460
2461 /*
2462 * Read records off the stream, issuing any necessary prefetches.
2463 */
2464 static int
2465 receive_read_record(struct receive_arg *ra)
2466 {
2467 int err;
2468
2469 switch (ra->rrd->header.drr_type) {
2470 case DRR_OBJECT:
2471 {
2472 struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2473 uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2474 void *buf = kmem_zalloc(size, KM_SLEEP);
2475 dmu_object_info_t doi;
2476 err = receive_read_payload_and_next_header(ra, size, buf);
2477 if (err != 0) {
2478 kmem_free(buf, size);
2479 return (err);
2480 }
2481 err = dmu_object_info(ra->os, drro->drr_object, &doi);
2482 /*
2483 * See receive_read_prefetch for an explanation why we're
2484 * storing this object in the ignore_obj_list.
2485 */
2486 if (err == ENOENT ||
2487 (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2488 objlist_insert(&ra->ignore_objlist, drro->drr_object);
2489 err = 0;
2490 }
2491 return (err);
2492 }
2493 case DRR_FREEOBJECTS:
2494 {
2495 err = receive_read_payload_and_next_header(ra, 0, NULL);
2496 return (err);
2497 }
2498 case DRR_WRITE:
2499 {
2500 struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2501 arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2502 drrw->drr_length);
2503
2504 err = receive_read_payload_and_next_header(ra,
2505 drrw->drr_length, abuf->b_data);
2506 if (err != 0) {
2507 dmu_return_arcbuf(abuf);
2508 return (err);
2509 }
2510 ra->rrd->write_buf = abuf;
2511 receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2512 drrw->drr_length);
2513 return (err);
2514 }
2515 case DRR_WRITE_BYREF:
2516 {
2517 struct drr_write_byref *drrwb =
2518 &ra->rrd->header.drr_u.drr_write_byref;
2519 err = receive_read_payload_and_next_header(ra, 0, NULL);
2520 receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2521 drrwb->drr_length);
2522 return (err);
2523 }
2524 case DRR_WRITE_EMBEDDED:
2525 {
2526 struct drr_write_embedded *drrwe =
2527 &ra->rrd->header.drr_u.drr_write_embedded;
2528 uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2529 void *buf = kmem_zalloc(size, KM_SLEEP);
2530
2531 err = receive_read_payload_and_next_header(ra, size, buf);
2532 if (err != 0) {
2533 kmem_free(buf, size);
2534 return (err);
2535 }
2536
2537 receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2538 drrwe->drr_length);
2539 return (err);
2540 }
2541 case DRR_FREE:
2542 {
2543 /*
2544 * It might be beneficial to prefetch indirect blocks here, but
2545 * we don't really have the data to decide for sure.
2546 */
2547 err = receive_read_payload_and_next_header(ra, 0, NULL);
2548 return (err);
2549 }
2550 case DRR_END:
2551 {
2552 struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2553 if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2554 return (SET_ERROR(ECKSUM));
2555 return (0);
2556 }
2557 case DRR_SPILL:
2558 {
2559 struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2560 void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2561 err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2562 buf);
2563 if (err != 0)
2564 kmem_free(buf, drrs->drr_length);
2565 return (err);
2566 }
2567 default:
2568 return (SET_ERROR(EINVAL));
2569 }
2570 }
2571
2572 /*
2573 * Commit the records to the pool.
2574 */
2575 static int
2576 receive_process_record(struct receive_writer_arg *rwa,
2577 struct receive_record_arg *rrd)
2578 {
2579 int err;
2580
2581 /* Processing in order, therefore bytes_read should be increasing. */
2582 ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2583 rwa->bytes_read = rrd->bytes_read;
2584
2585 switch (rrd->header.drr_type) {
2586 case DRR_OBJECT:
2587 {
2588 struct drr_object *drro = &rrd->header.drr_u.drr_object;
2589 err = receive_object(rwa, drro, rrd->payload);
2590 kmem_free(rrd->payload, rrd->payload_size);
2591 rrd->payload = NULL;
2592 return (err);
2593 }
2594 case DRR_FREEOBJECTS:
2595 {
2596 struct drr_freeobjects *drrfo =
2597 &rrd->header.drr_u.drr_freeobjects;
2598 return (receive_freeobjects(rwa, drrfo));
2599 }
2600 case DRR_WRITE:
2601 {
2602 struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2603 err = receive_write(rwa, drrw, rrd->write_buf);
2604 /* if receive_write() is successful, it consumes the arc_buf */
2605 if (err != 0)
2606 dmu_return_arcbuf(rrd->write_buf);
2607 rrd->write_buf = NULL;
2608 rrd->payload = NULL;
2609 return (err);
2610 }
2611 case DRR_WRITE_BYREF:
2612 {
2613 struct drr_write_byref *drrwbr =
2614 &rrd->header.drr_u.drr_write_byref;
2615 return (receive_write_byref(rwa, drrwbr));
2616 }
2617 case DRR_WRITE_EMBEDDED:
2618 {
2619 struct drr_write_embedded *drrwe =
2620 &rrd->header.drr_u.drr_write_embedded;
2621 err = receive_write_embedded(rwa, drrwe, rrd->payload);
2622 kmem_free(rrd->payload, rrd->payload_size);
2623 rrd->payload = NULL;
2624 return (err);
2625 }
2626 case DRR_FREE:
2627 {
2628 struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2629 return (receive_free(rwa, drrf));
2630 }
2631 case DRR_SPILL:
2632 {
2633 struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2634 err = receive_spill(rwa, drrs, rrd->payload);
2635 kmem_free(rrd->payload, rrd->payload_size);
2636 rrd->payload = NULL;
2637 return (err);
2638 }
2639 default:
2640 return (SET_ERROR(EINVAL));
2641 }
2642 }
2643
2644 /*
2645 * dmu_recv_stream's worker thread; pull records off the queue, and then call
2646 * receive_process_record When we're done, signal the main thread and exit.
2647 */
2648 static void
2649 receive_writer_thread(void *arg)
2650 {
2651 struct receive_writer_arg *rwa = arg;
2652 struct receive_record_arg *rrd;
2653 for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2654 rrd = bqueue_dequeue(&rwa->q)) {
2655 /*
2656 * If there's an error, the main thread will stop putting things
2657 * on the queue, but we need to clear everything in it before we
2658 * can exit.
2659 */
2660 if (rwa->err == 0) {
2661 rwa->err = receive_process_record(rwa, rrd);
2662 } else if (rrd->write_buf != NULL) {
2663 dmu_return_arcbuf(rrd->write_buf);
2664 rrd->write_buf = NULL;
2665 rrd->payload = NULL;
2666 } else if (rrd->payload != NULL) {
2667 kmem_free(rrd->payload, rrd->payload_size);
2668 rrd->payload = NULL;
2669 }
2670 kmem_free(rrd, sizeof (*rrd));
2671 }
2672 kmem_free(rrd, sizeof (*rrd));
2673 mutex_enter(&rwa->mutex);
2674 rwa->done = B_TRUE;
2675 cv_signal(&rwa->cv);
2676 mutex_exit(&rwa->mutex);
2677 }
2678
2679 static int
2680 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2681 {
2682 uint64_t val;
2683 objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2684 uint64_t dsobj = dmu_objset_id(ra->os);
2685 uint64_t resume_obj, resume_off;
2686
2687 if (nvlist_lookup_uint64(begin_nvl,
2688 "resume_object", &resume_obj) != 0 ||
2689 nvlist_lookup_uint64(begin_nvl,
2690 "resume_offset", &resume_off) != 0) {
2691 return (SET_ERROR(EINVAL));
2692 }
2693 VERIFY0(zap_lookup(mos, dsobj,
2694 DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2695 if (resume_obj != val)
2696 return (SET_ERROR(EINVAL));
2697 VERIFY0(zap_lookup(mos, dsobj,
2698 DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2699 if (resume_off != val)
2700 return (SET_ERROR(EINVAL));
2701
2702 return (0);
2703 }
2704
2705 /*
2706 * Read in the stream's records, one by one, and apply them to the pool. There
2707 * are two threads involved; the thread that calls this function will spin up a
2708 * worker thread, read the records off the stream one by one, and issue
2709 * prefetches for any necessary indirect blocks. It will then push the records
2710 * onto an internal blocking queue. The worker thread will pull the records off
2711 * the queue, and actually write the data into the DMU. This way, the worker
2712 * thread doesn't have to wait for reads to complete, since everything it needs
2713 * (the indirect blocks) will be prefetched.
2714 *
2715 * NB: callers *must* call dmu_recv_end() if this succeeds.
2716 */
2717 int
2718 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2719 int cleanup_fd, uint64_t *action_handlep)
2720 {
2721 int err = 0;
2722 struct receive_arg ra = { 0 };
2723 struct receive_writer_arg rwa = { 0 };
2724 int featureflags;
2725 nvlist_t *begin_nvl = NULL;
2726
2727 ra.byteswap = drc->drc_byteswap;
2728 ra.cksum = drc->drc_cksum;
2729 ra.vp = vp;
2730 ra.voff = *voffp;
2731
2732 if (dsl_dataset_is_zapified(drc->drc_ds)) {
2733 (void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2734 drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2735 sizeof (ra.bytes_read), 1, &ra.bytes_read);
2736 }
2737
2738 objlist_create(&ra.ignore_objlist);
2739
2740 /* these were verified in dmu_recv_begin */
2741 ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2742 DMU_SUBSTREAM);
2743 ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2744
2745 /*
2746 * Open the objset we are modifying.
2747 */
2748 VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2749
2750 ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2751
2752 featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2753
2754 /* if this stream is dedup'ed, set up the avl tree for guid mapping */
2755 if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2756 minor_t minor;
2757
2758 if (cleanup_fd == -1) {
2759 ra.err = SET_ERROR(EBADF);
2760 goto out;
2761 }
2762 ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2763 if (ra.err != 0) {
2764 cleanup_fd = -1;
2765 goto out;
2766 }
2767
2768 if (*action_handlep == 0) {
2769 rwa.guid_to_ds_map =
2770 kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2771 avl_create(rwa.guid_to_ds_map, guid_compare,
2772 sizeof (guid_map_entry_t),
2773 offsetof(guid_map_entry_t, avlnode));
2774 err = zfs_onexit_add_cb(minor,
2775 free_guid_map_onexit, rwa.guid_to_ds_map,
2776 action_handlep);
2777 if (ra.err != 0)
2778 goto out;
2779 } else {
2780 err = zfs_onexit_cb_data(minor, *action_handlep,
2781 (void **)&rwa.guid_to_ds_map);
2782 if (ra.err != 0)
2783 goto out;
2784 }
2785
2786 drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2787 }
2788
2789 uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2790 void *payload = NULL;
2791 if (payloadlen != 0)
2792 payload = kmem_alloc(payloadlen, KM_SLEEP);
2793
2794 err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2795 if (err != 0) {
2796 if (payloadlen != 0)
2797 kmem_free(payload, payloadlen);
2798 goto out;
2799 }
2800 if (payloadlen != 0) {
2801 err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2802 kmem_free(payload, payloadlen);
2803 if (err != 0)
2804 goto out;
2805 }
2806
2807 if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2808 err = resume_check(&ra, begin_nvl);
2809 if (err != 0)
2810 goto out;
2811 }
2812
2813 (void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2814 offsetof(struct receive_record_arg, node));
2815 cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2816 mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2817 rwa.os = ra.os;
2818 rwa.byteswap = drc->drc_byteswap;
2819 rwa.resumable = drc->drc_resumable;
2820
2821 (void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2822 TS_RUN, minclsyspri);
2823 /*
2824 * We're reading rwa.err without locks, which is safe since we are the
2825 * only reader, and the worker thread is the only writer. It's ok if we
2826 * miss a write for an iteration or two of the loop, since the writer
2827 * thread will keep freeing records we send it until we send it an eos
2828 * marker.
2829 *
2830 * We can leave this loop in 3 ways: First, if rwa.err is
2831 * non-zero. In that case, the writer thread will free the rrd we just
2832 * pushed. Second, if we're interrupted; in that case, either it's the
2833 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2834 * has been handed off to the writer thread who will free it. Finally,
2835 * if receive_read_record fails or we're at the end of the stream, then
2836 * we free ra.rrd and exit.
2837 */
2838 while (rwa.err == 0) {
2839 if (issig(JUSTLOOKING) && issig(FORREAL)) {
2840 err = SET_ERROR(EINTR);
2841 break;
2842 }
2843
2844 ASSERT3P(ra.rrd, ==, NULL);
2845 ra.rrd = ra.next_rrd;
2846 ra.next_rrd = NULL;
2847 /* Allocates and loads header into ra.next_rrd */
2848 err = receive_read_record(&ra);
2849
2850 if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2851 kmem_free(ra.rrd, sizeof (*ra.rrd));
2852 ra.rrd = NULL;
2853 break;
2854 }
2855
2856 bqueue_enqueue(&rwa.q, ra.rrd,
2857 sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2858 ra.rrd = NULL;
2859 }
2860 if (ra.next_rrd == NULL)
2861 ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2862 ra.next_rrd->eos_marker = B_TRUE;
2863 bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2864
2865 mutex_enter(&rwa.mutex);
2866 while (!rwa.done) {
2867 cv_wait(&rwa.cv, &rwa.mutex);
2868 }
2869 mutex_exit(&rwa.mutex);
2870
2871 cv_destroy(&rwa.cv);
2872 mutex_destroy(&rwa.mutex);
2873 bqueue_destroy(&rwa.q);
2874 if (err == 0)
2875 err = rwa.err;
2876
2877 out:
2878 nvlist_free(begin_nvl);
2879 if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2880 zfs_onexit_fd_rele(cleanup_fd);
2881
2882 if (err != 0) {
2883 /*
2884 * Clean up references. If receive is not resumable,
2885 * destroy what we created, so we don't leave it in
2886 * the inconsistent state.
2887 */
2888 dmu_recv_cleanup_ds(drc);
2889 }
2890
2891 *voffp = ra.voff;
2892 objlist_destroy(&ra.ignore_objlist);
2893 return (err);
2894 }
2895
2896 static int
2897 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2898 {
2899 dmu_recv_cookie_t *drc = arg;
2900 dsl_pool_t *dp = dmu_tx_pool(tx);
2901 int error;
2902
2903 ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2904
2905 if (!drc->drc_newfs) {
2906 dsl_dataset_t *origin_head;
2907
2908 error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2909 if (error != 0)
2910 return (error);
2911 if (drc->drc_force) {
2912 /*
2913 * We will destroy any snapshots in tofs (i.e. before
2914 * origin_head) that are after the origin (which is
2915 * the snap before drc_ds, because drc_ds can not
2916 * have any snaps of its own).
2917 */
2918 uint64_t obj;
2919
2920 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2921 while (obj !=
2922 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2923 dsl_dataset_t *snap;
2924 error = dsl_dataset_hold_obj(dp, obj, FTAG,
2925 &snap);
2926 if (error != 0)
2927 break;
2928 if (snap->ds_dir != origin_head->ds_dir)
2929 error = SET_ERROR(EINVAL);
2930 if (error == 0) {
2931 error = dsl_destroy_snapshot_check_impl(
2932 snap, B_FALSE);
2933 }
2934 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2935 dsl_dataset_rele(snap, FTAG);
2936 if (error != 0)
2937 break;
2938 }
2939 if (error != 0) {
2940 dsl_dataset_rele(origin_head, FTAG);
2941 return (error);
2942 }
2943 }
2944 error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2945 origin_head, drc->drc_force, drc->drc_owner, tx);
2946 if (error != 0) {
2947 dsl_dataset_rele(origin_head, FTAG);
2948 return (error);
2949 }
2950 error = dsl_dataset_snapshot_check_impl(origin_head,
2951 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2952 dsl_dataset_rele(origin_head, FTAG);
2953 if (error != 0)
2954 return (error);
2955
2956 error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2957 } else {
2958 error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2959 drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2960 }
2961 return (error);
2962 }
2963
2964 static void
2965 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2966 {
2967 dmu_recv_cookie_t *drc = arg;
2968 dsl_pool_t *dp = dmu_tx_pool(tx);
2969
2970 spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2971 tx, "snap=%s", drc->drc_tosnap);
2972
2973 if (!drc->drc_newfs) {
2974 dsl_dataset_t *origin_head;
2975
2976 VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2977 &origin_head));
2978
2979 if (drc->drc_force) {
2980 /*
2981 * Destroy any snapshots of drc_tofs (origin_head)
2982 * after the origin (the snap before drc_ds).
2983 */
2984 uint64_t obj;
2985
2986 obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2987 while (obj !=
2988 dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2989 dsl_dataset_t *snap;
2990 VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
2991 &snap));
2992 ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
2993 obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2994 dsl_destroy_snapshot_sync_impl(snap,
2995 B_FALSE, tx);
2996 dsl_dataset_rele(snap, FTAG);
2997 }
2998 }
2999 VERIFY3P(drc->drc_ds->ds_prev, ==,
3000 origin_head->ds_prev);
3001
3002 dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3003 origin_head, tx);
3004 dsl_dataset_snapshot_sync_impl(origin_head,
3005 drc->drc_tosnap, tx);
3006
3007 /* set snapshot's creation time and guid */
3008 dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3009 dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3010 drc->drc_drrb->drr_creation_time;
3011 dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3012 drc->drc_drrb->drr_toguid;
3013 dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3014 ~DS_FLAG_INCONSISTENT;
3015
3016 dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3017 dsl_dataset_phys(origin_head)->ds_flags &=
3018 ~DS_FLAG_INCONSISTENT;
3019
3020 dsl_dataset_rele(origin_head, FTAG);
3021 dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3022
3023 if (drc->drc_owner != NULL)
3024 VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3025 } else {
3026 dsl_dataset_t *ds = drc->drc_ds;
3027
3028 dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3029
3030 /* set snapshot's creation time and guid */
3031 dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3032 dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3033 drc->drc_drrb->drr_creation_time;
3034 dsl_dataset_phys(ds->ds_prev)->ds_guid =
3035 drc->drc_drrb->drr_toguid;
3036 dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3037 ~DS_FLAG_INCONSISTENT;
3038
3039 dmu_buf_will_dirty(ds->ds_dbuf, tx);
3040 dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3041 if (dsl_dataset_has_resume_receive_state(ds)) {
3042 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3043 DS_FIELD_RESUME_FROMGUID, tx);
3044 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3045 DS_FIELD_RESUME_OBJECT, tx);
3046 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3047 DS_FIELD_RESUME_OFFSET, tx);
3048 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3049 DS_FIELD_RESUME_BYTES, tx);
3050 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3051 DS_FIELD_RESUME_TOGUID, tx);
3052 (void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3053 DS_FIELD_RESUME_TONAME, tx);
3054 }
3055 }
3056 drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3057 /*
3058 * Release the hold from dmu_recv_begin. This must be done before
3059 * we return to open context, so that when we free the dataset's dnode,
3060 * we can evict its bonus buffer.
3061 */
3062 dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3063 drc->drc_ds = NULL;
3064 }
3065
3066 static int
3067 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3068 {
3069 dsl_pool_t *dp;
3070 dsl_dataset_t *snapds;
3071 guid_map_entry_t *gmep;
3072 int err;
3073
3074 ASSERT(guid_map != NULL);
3075
3076 err = dsl_pool_hold(name, FTAG, &dp);
3077 if (err != 0)
3078 return (err);
3079 gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3080 err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3081 if (err == 0) {
3082 gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3083 gmep->gme_ds = snapds;
3084 avl_add(guid_map, gmep);
3085 dsl_dataset_long_hold(snapds, gmep);
3086 } else {
3087 kmem_free(gmep, sizeof (*gmep));
3088 }
3089
3090 dsl_pool_rele(dp, FTAG);
3091 return (err);
3092 }
3093
3094 static int dmu_recv_end_modified_blocks = 3;
3095
3096 static int
3097 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3098 {
3099 int error;
3100 char name[MAXNAMELEN];
3101
3102 #ifdef _KERNEL
3103 /*
3104 * We will be destroying the ds; make sure its origin is unmounted if
3105 * necessary.
3106 */
3107 dsl_dataset_name(drc->drc_ds, name);
3108 zfs_destroy_unmount_origin(name);
3109 #endif
3110
3111 error = dsl_sync_task(drc->drc_tofs,
3112 dmu_recv_end_check, dmu_recv_end_sync, drc,
3113 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3114
3115 if (error != 0)
3116 dmu_recv_cleanup_ds(drc);
3117 return (error);
3118 }
3119
3120 static int
3121 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3122 {
3123 int error;
3124
3125 error = dsl_sync_task(drc->drc_tofs,
3126 dmu_recv_end_check, dmu_recv_end_sync, drc,
3127 dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3128
3129 if (error != 0) {
3130 dmu_recv_cleanup_ds(drc);
3131 } else if (drc->drc_guid_to_ds_map != NULL) {
3132 (void) add_ds_to_guidmap(drc->drc_tofs,
3133 drc->drc_guid_to_ds_map,
3134 drc->drc_newsnapobj);
3135 }
3136 return (error);
3137 }
3138
3139 int
3140 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3141 {
3142 drc->drc_owner = owner;
3143
3144 if (drc->drc_newfs)
3145 return (dmu_recv_new_end(drc));
3146 else
3147 return (dmu_recv_existing_end(drc));
3148 }
3149
3150 /*
3151 * Return TRUE if this objset is currently being received into.
3152 */
3153 boolean_t
3154 dmu_objset_is_receiving(objset_t *os)
3155 {
3156 return (os->os_dsl_dataset != NULL &&
3157 os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3158 }