
new/usr/src/cmd/rmvolmgr/rmm_common.c 1

**
 33462 Thu Jun 19 12:36:21 2014
new/usr/src/cmd/rmvolmgr/rmm_common.c
4845 rm(u)mount don’t always print mount/unmount errors
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 *
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 *
25 * Copyright 2014 Andrew Stormont.
26 #endif /* ! codereview */
27 */

29 #include <stdio.h>
30 #include <errno.h>
31 #include <string.h>
32 #include <strings.h>
33 #include <stdarg.h>
34 #include <fcntl.h>
35 #include <libintl.h>
36 #include <stdlib.h>
37 #include <unistd.h>
38 #include <ctype.h>
39 #include <sys/param.h>
40 #include <sys/types.h>
41 #include <sys/stat.h>
42 #include <sys/mnttab.h>

44 #include <dbus/dbus.h>
45 #include <dbus/dbus-glib.h>
46 #include <dbus/dbus-glib-lowlevel.h>
47 #include <libhal.h>
48 #include <libhal-storage.h>

50 #include "rmm_common.h"

52 #define RMM_PRINT_DEVICE_WIDTH 20

54 extern int rmm_debug;

56 static const char *action_strings[] = {
57 "eject",
58 "mount",
59 "remount",

new/usr/src/cmd/rmvolmgr/rmm_common.c 2

60 "unmount",
61 "clear_mounts",
62 "closetray"
63 };

66 LibHalContext *
67 rmm_hal_init(LibHalDeviceAdded devadd_cb, LibHalDeviceRemoved devrem_cb,
68 LibHalDevicePropertyModified propmod_cb, LibHalDeviceCondition cond_cb,
69 DBusError *error, rmm_error_t *rmm_error)
70 {
71 DBusConnection *dbus_conn;
72 LibHalContext *ctx;
73 char **devices;
74 int nr;

76 dbus_error_init(error);

78 /*
79 * setup D-Bus connection
80 */
81 if (!(dbus_conn = dbus_bus_get(DBUS_BUS_SYSTEM, error))) {
82 dprintf("cannot get system bus: %s\n", rmm_strerror(error, -1));
83 *rmm_error = RMM_EDBUS_CONNECT;
84 return (NULL);
85 }
86 rmm_dbus_error_free(error);

88 dbus_connection_setup_with_g_main(dbus_conn, NULL);
89 dbus_connection_set_exit_on_disconnect(dbus_conn, B_TRUE);

91 if ((ctx = libhal_ctx_new()) == NULL) {
92 dprintf("libhal_ctx_new failed");
93 *rmm_error = RMM_EHAL_CONNECT;
94 return (NULL);
95 }

97 libhal_ctx_set_dbus_connection(ctx, dbus_conn);

99 /*
100 * register callbacks
101 */
102 if (devadd_cb != NULL) {
103 libhal_ctx_set_device_added(ctx, devadd_cb);
104 }
105 if (devrem_cb != NULL) {
106 libhal_ctx_set_device_removed(ctx, devrem_cb);
107 }
108 if (propmod_cb != NULL) {
109 libhal_ctx_set_device_property_modified(ctx, propmod_cb);
110 if (!libhal_device_property_watch_all(ctx, error)) {
111 dprintf("property_watch_all failed %s",
112 rmm_strerror(error, -1));
113 libhal_ctx_free(ctx);
114 *rmm_error = RMM_EHAL_CONNECT;
115 return (NULL);
116 }
117 }
118 if (cond_cb != NULL) {
119 libhal_ctx_set_device_condition(ctx, cond_cb);
120 }

122 if (!libhal_ctx_init(ctx, error)) {
123 dprintf("libhal_ctx_init failed: %s", rmm_strerror(error, -1));
124 libhal_ctx_free(ctx);
125 *rmm_error = RMM_EHAL_CONNECT;

new/usr/src/cmd/rmvolmgr/rmm_common.c 3

126 return (NULL);
127 }
128 rmm_dbus_error_free(error);

130 /*
131 * The above functions do not guarantee that HAL is actually running.
132 * Check by invoking a method.
133 */
134 if (!(devices = libhal_get_all_devices(ctx, &nr, error))) {
135 dprintf("HAL is not running: %s", rmm_strerror(error, -1));
136 libhal_ctx_shutdown(ctx, NULL);
137 libhal_ctx_free(ctx);
138 *rmm_error = RMM_EHAL_CONNECT;
139 return (NULL);
140 } else {
141 rmm_dbus_error_free(error);
142 libhal_free_string_array(devices);
143 }

145 return (ctx);
146 }

149 void
150 rmm_hal_fini(LibHalContext *hal_ctx)
151 {
152 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);

154 (void) dbus_connection_unref(dbus_conn);
155 (void) libhal_ctx_free(hal_ctx);
156 }

159 /*
160 * find volume from any type of name, similar to the old media_findname()
161 * returns the LibHalDrive object and a list of LibHalVolume objects.
162 */
163 LibHalDrive *
164 rmm_hal_volume_find(LibHalContext *hal_ctx, const char *name, DBusError *error,
165 GSList **volumes)
166 {
167 LibHalDrive *drive;
168 char *p;
169 char lastc;

171 *volumes = NULL;

173 /* temporarily remove trailing slash */
174 p = (char *)name + strlen(name) - 1;
175 if (*p == ’/’) {
176 lastc = *p;
177 *p = ’\0’;
178 } else {
179 p = NULL;
180 }

182 if (name[0] == ’/’) {
183 if (((drive = rmm_hal_volume_findby(hal_ctx,
184 "info.udi", name, volumes)) != NULL) ||
185 ((drive = rmm_hal_volume_findby(hal_ctx,
186 "block.device", name, volumes)) != NULL) ||
187 ((drive = rmm_hal_volume_findby(hal_ctx,
188 "block.solaris.raw_device", name, volumes)) != NULL) ||
189 ((drive = rmm_hal_volume_findby(hal_ctx,
190 "volume.mount_point", name, volumes)) != NULL)) {
191 goto out;

new/usr/src/cmd/rmvolmgr/rmm_common.c 4

192 } else {
193 goto out;
194 }
195 }

197 /* try volume label */
198 if ((drive = rmm_hal_volume_findby(hal_ctx,
199 "volume.label", name, volumes)) != NULL) {
200 goto out;
201 }

203 drive = rmm_hal_volume_findby_nickname(hal_ctx, name, volumes);

205 out:
206 if (p != NULL) {
207 *p = lastc;
208 }
209 return (drive);
210 }

212 /*
213 * find default volume. Returns volume pointer and name in ’name’.
214 */
215 LibHalDrive *
216 rmm_hal_volume_find_default(LibHalContext *hal_ctx, DBusError *error,
217 const char **name_out, GSList **volumes)
218 {
219 LibHalDrive *drive;
220 static const char *names[] = { "floppy", "cdrom", "rmdisk" };
221 int i;

223 *volumes = NULL;

225 for (i = 0; i < NELEM(names); i++) {
226 if ((drive = rmm_hal_volume_findby_nickname(hal_ctx,
227 names[i], volumes)) != NULL) {
228 /*
229 * Skip floppy if it has no media.
230 * XXX might want to actually check for media
231 * every time instead of relying on volcheck.
232 */
233 if ((strcmp(names[i], "floppy") != 0) ||
234 libhal_device_get_property_bool(hal_ctx,
235 libhal_drive_get_udi(drive),
236 "storage.removable.media_available", NULL)) {
237 *name_out = names[i];
238 break;
239 }
240 }
241 rmm_dbus_error_free(error);
242 }

244 return (drive);
245 }

247 /*
248 * find volume by property=value
249 * returns the LibHalDrive object and a list of LibHalVolume objects.
250 * XXX add support for multiple properties, reduce D-Bus traffic
251 */
252 LibHalDrive *
253 rmm_hal_volume_findby(LibHalContext *hal_ctx, const char *property,
254 const char *value, GSList **volumes)
255 {
256 DBusError error;
257 LibHalDrive *drive = NULL;

new/usr/src/cmd/rmvolmgr/rmm_common.c 5

258 LibHalVolume *v = NULL;
259 char **udis;
260 int num_udis;
261 int i;
262 int i_drive = -1;

264 *volumes = NULL;

266 dbus_error_init(&error);

268 /* get all devices with property=value */
269 if ((udis = libhal_manager_find_device_string_match(hal_ctx, property,
270 value, &num_udis, &error)) == NULL) {
271 rmm_dbus_error_free(&error);
272 return (NULL);
273 }

275 /* find volumes and drives among these devices */
276 for (i = 0; i < num_udis; i++) {
277 rmm_dbus_error_free(&error);
278 if (libhal_device_query_capability(hal_ctx, udis[i], "volume",
279 &error)) {
280 v = libhal_volume_from_udi(hal_ctx, udis[i]);
281 if (v != NULL) {
282 *volumes = g_slist_prepend(*volumes, v);
283 }
284 } else if ((*volumes == NULL) &&
285 libhal_device_query_capability(hal_ctx, udis[i], "storage",
286 &error)) {
287 i_drive = i;
288 }
289 }

291 if (*volumes != NULL) {
292 /* used prepend, preserve original order */
293 *volumes = g_slist_reverse(*volumes);

295 v = (LibHalVolume *)(*volumes)->data;
296 drive = libhal_drive_from_udi(hal_ctx,
297 libhal_volume_get_storage_device_udi(v));
298 if (drive == NULL) {
299 rmm_volumes_free (*volumes);
300 *volumes = NULL;
301 }
302 } else if (i_drive >= 0) {
303 drive = libhal_drive_from_udi(hal_ctx, udis[i_drive]);
304 }

306 libhal_free_string_array(udis);
307 rmm_dbus_error_free(&error);

309 return (drive);
310 }

312 static void
313 rmm_print_nicknames_one(LibHalDrive *d, LibHalVolume *v,
314 const char *device, char **drive_nicknames)
315 {
316 const char *volume_label = NULL;
317 const char *mount_point = NULL;
318 boolean_t comma;
319 int i;

321 (void) printf("%-*s ", RMM_PRINT_DEVICE_WIDTH, device);
322 comma = B_FALSE;

new/usr/src/cmd/rmvolmgr/rmm_common.c 6

324 if (drive_nicknames != NULL) {
325 for (i = 0; drive_nicknames[i] != NULL; i++) {
326 (void) printf("%s%s", comma ? "," : "",
327 drive_nicknames[i]);
328 comma = B_TRUE;
329 }
330 }

332 if ((v != NULL) &&
333 ((volume_label = libhal_volume_get_label(v)) != NULL) &&
334 (strlen(volume_label) > 0)) {
335 (void) printf("%s%s", comma ? "," : "", volume_label);
336 comma = B_TRUE;
337 }

339 if ((v != NULL) &&
340 ((mount_point = libhal_volume_get_mount_point(v)) != NULL) &&
341 (strlen(mount_point) > 0)) {
342 (void) printf("%s%s", comma ? "," : "", mount_point);
343 comma = B_TRUE;
344 }

346 (void) printf("\n");
347 }

349 /*
350 * print nicknames for each available volume
351 *
352 * print_mask:
353 * RMM_PRINT_MOUNTABLE print only mountable volumes
354 * RMM_PRINT_EJECTABLE print volume-less ejectable drives
355 */
356 void
357 rmm_print_volume_nicknames(LibHalContext *hal_ctx, DBusError *error,
358 int print_mask)
359 {
360 char **udis;
361 int num_udis;
362 GSList *volumes = NULL;
363 LibHalDrive *d, *d_tmp;
364 LibHalVolume *v;
365 const char *device;
366 char **nicknames;
367 int i;
368 GSList *j;
369 int nprinted;

371 dbus_error_init(error);

373 if ((udis = libhal_find_device_by_capability(hal_ctx, "storage",
374 &num_udis, error)) == NULL) {
375 rmm_dbus_error_free(error);
376 return;
377 }

379 for (i = 0; i < num_udis; i++) {
380 if ((d = libhal_drive_from_udi(hal_ctx, udis[i])) == NULL) {
381 continue;
382 }

384 /* find volumes belonging to this drive */
385 if ((d_tmp = rmm_hal_volume_findby(hal_ctx,
386 "block.storage_device", udis[i], &volumes)) != NULL) {
387 libhal_drive_free(d_tmp);
388 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 7

390 nicknames = libhal_device_get_property_strlist(hal_ctx,
391 udis[i], "storage.solaris.nicknames", NULL);

393 nprinted = 0;
394 for (j = volumes; j != NULL; j = g_slist_next(j)) {
395 v = (LibHalVolume *)(j->data);

397 if ((device = libhal_volume_get_device_file(v)) ==
398 NULL) {
399 continue;
400 }
401 if ((print_mask & RMM_PRINT_MOUNTABLE) &&
402 (libhal_volume_get_fsusage(v) !=
403 LIBHAL_VOLUME_USAGE_MOUNTABLE_FILESYSTEM)) {
404 continue;
405 }

407 rmm_print_nicknames_one(d, v, device, nicknames);
408 nprinted++;
409 }

411 if ((nprinted == 0) &&
412 (print_mask & RMM_PRINT_EJECTABLE) &&
413 libhal_drive_requires_eject(d) &&
414 ((device = libhal_drive_get_device_file(d)) != NULL)) {
415 rmm_print_nicknames_one(d, NULL, device, nicknames);
416 }

418 libhal_free_string_array(nicknames);
419 libhal_drive_free(d);
420 rmm_volumes_free(volumes);
421 volumes = NULL;
422 }

424 libhal_free_string_array(udis);
425 }

427 /*
428 * find volume by nickname
429 * returns the LibHalDrive object and a list of LibHalVolume objects.
430 */
431 LibHalDrive *
432 rmm_hal_volume_findby_nickname(LibHalContext *hal_ctx, const char *name,
433 GSList **volumes)
434 {
435 DBusError error;
436 LibHalDrive *drive = NULL;
437 LibHalDrive *drive_tmp;
438 char **udis;
439 int num_udis;
440 char **nicknames;
441 int i, j;

443 *volumes = NULL;

445 dbus_error_init(&error);

447 if ((udis = libhal_find_device_by_capability(hal_ctx, "storage",
448 &num_udis, &error)) == NULL) {
449 rmm_dbus_error_free(&error);
450 return (NULL);
451 }

453 /* find a drive by nickname */
454 for (i = 0; (i < num_udis) && (drive == NULL); i++) {
455 if ((nicknames = libhal_device_get_property_strlist(hal_ctx,

new/usr/src/cmd/rmvolmgr/rmm_common.c 8

456 udis[i], "storage.solaris.nicknames", &error)) == NULL) {
457 rmm_dbus_error_free(&error);
458 continue;
459 }
460 for (j = 0; (nicknames[j] != NULL) && (drive == NULL); j++) {
461 if (strcmp(nicknames[j], name) == 0) {
462 drive = libhal_drive_from_udi(hal_ctx, udis[i]);
463 }
464 }
465 libhal_free_string_array(nicknames);
466 }
467 libhal_free_string_array(udis);

469 if (drive != NULL) {
470 /* found the drive, now find its volumes */
471 if ((drive_tmp = rmm_hal_volume_findby(hal_ctx,
472 "block.storage_device", libhal_drive_get_udi(drive),
473 volumes)) != NULL) {
474 libhal_drive_free(drive_tmp);
475 }
476 }

478 rmm_dbus_error_free(&error);

480 return (drive);
481 }

483 void
484 rmm_volumes_free(GSList *volumes)
485 {
486 GSList *i;

488 for (i = volumes; i != NULL; i = g_slist_next(i)) {
489 libhal_volume_free((LibHalVolume *)(i->data));
490 }
491 g_slist_free(volumes);
492 }

494 /*
495 * Call HAL’s Mount() method on the given device
496 */
497 boolean_t
498 rmm_hal_mount(LibHalContext *hal_ctx, const char *udi,
499 char **opts, int num_opts, char *mountpoint, DBusError *error)
500 {
501 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
502 DBusMessage *dmesg, *reply;
503 char *fstype;

505 dprintf("mounting %s...\n", udi);

507 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
508 "org.freedesktop.Hal.Device.Volume", "Mount"))) {
509 dprintf(
510 "mount failed for %s: cannot create dbus message\n", udi);
511 return (B_FALSE);
512 }

514 fstype = "";
515 if (mountpoint == NULL) {
516 mountpoint = "";
517 }

519 if (!dbus_message_append_args(dmesg, DBUS_TYPE_STRING, &mountpoint,
520 DBUS_TYPE_STRING, &fstype,
521 DBUS_TYPE_ARRAY, DBUS_TYPE_STRING, &opts, num_opts,

new/usr/src/cmd/rmvolmgr/rmm_common.c 9

522 DBUS_TYPE_INVALID)) {
523 dprintf("mount failed for %s: cannot append args\n", udi);
524 dbus_message_unref(dmesg);
525 return (B_FALSE);
526 }

528 dbus_error_init(error);
529 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
530 dmesg, RMM_MOUNT_TIMEOUT, error))) {
531 dprintf("mount failed for %s: %s\n", udi, error->message);
532 dbus_message_unref(dmesg);
533 return (B_FALSE);
534 }

536 dprintf("mounted %s\n", udi);

538 dbus_message_unref(dmesg);
539 dbus_message_unref(reply);

541 rmm_dbus_error_free(error);

543 return (B_TRUE);
544 }

547 /*
548 * Call HAL’s Unmount() method on the given device
549 */
550 boolean_t
551 rmm_hal_unmount(LibHalContext *hal_ctx, const char *udi, DBusError *error)
552 {
553 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
554 DBusMessage *dmesg, *reply;
555 char **opts = NULL;

557 dprintf("unmounting %s...\n", udi);

559 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
560 "org.freedesktop.Hal.Device.Volume", "Unmount"))) {
561 dprintf(
562 "unmount failed %s: cannot create dbus message\n", udi);
563 return (B_FALSE);
564 }

566 if (!dbus_message_append_args(dmesg, DBUS_TYPE_ARRAY, DBUS_TYPE_STRING,
567 &opts, 0, DBUS_TYPE_INVALID)) {
568 dprintf("unmount failed %s: cannot append args\n", udi);
569 dbus_message_unref(dmesg);
570 return (B_FALSE);
571 }

573 dbus_error_init(error);
574 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
575 dmesg, RMM_UNMOUNT_TIMEOUT, error))) {
576 dprintf("unmount failed for %s: %s\n", udi, error->message);
577 dbus_message_unref(dmesg);
578 return (B_FALSE);
579 }

581 dprintf("unmounted %s\n", udi);

583 dbus_message_unref(dmesg);
584 dbus_message_unref(reply);

586 rmm_dbus_error_free(error);

new/usr/src/cmd/rmvolmgr/rmm_common.c 10

588 return (B_TRUE);
589 }

592 /*
593 * Call HAL’s Eject() method on the given device
594 */
595 boolean_t
596 rmm_hal_eject(LibHalContext *hal_ctx, const char *udi, DBusError *error)
597 {
598 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
599 DBusMessage *dmesg, *reply;
600 char **options = NULL;
601 uint_t num_options = 0;

603 dprintf("ejecting %s...\n", udi);

605 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
606 "org.freedesktop.Hal.Device.Storage", "Eject"))) {
607 dprintf("eject %s: cannot create dbus message\n", udi);
608 return (B_FALSE);
609 }

611 if (!dbus_message_append_args(dmesg,
612 DBUS_TYPE_ARRAY, DBUS_TYPE_STRING, &options, num_options,
613 DBUS_TYPE_INVALID)) {
614 dprintf("eject %s: cannot append args to dbus message ", udi);
615 dbus_message_unref(dmesg);
616 return (B_FALSE);
617 }

619 dbus_error_init(error);
620 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
621 dmesg, RMM_EJECT_TIMEOUT, error))) {
622 dprintf("eject %s: %s\n", udi, error->message);
623 dbus_message_unref(dmesg);
624 return (B_FALSE);
625 }

627 dprintf("ejected %s\n", udi);

629 dbus_message_unref(dmesg);
630 dbus_message_unref(reply);

632 rmm_dbus_error_free(error);

634 return (B_TRUE);
635 }

637 /*
638 * Call HAL’s CloseTray() method on the given device
639 */
640 boolean_t
641 rmm_hal_closetray(LibHalContext *hal_ctx, const char *udi, DBusError *error)
642 {
643 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
644 DBusMessage *dmesg, *reply;
645 char **options = NULL;
646 uint_t num_options = 0;

648 dprintf("closing tray %s...\n", udi);

650 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
651 "org.freedesktop.Hal.Device.Storage", "CloseTray"))) {
652 dprintf(
653 "closetray failed for %s: cannot create dbus message\n",

new/usr/src/cmd/rmvolmgr/rmm_common.c 11

654 udi);
655 return (B_FALSE);
656 }

658 if (!dbus_message_append_args(dmesg,
659 DBUS_TYPE_ARRAY, DBUS_TYPE_STRING, &options, num_options,
660 DBUS_TYPE_INVALID)) {
661 dprintf("closetray %s: cannot append args to dbus message ",
662 udi);
663 dbus_message_unref(dmesg);
664 return (B_FALSE);
665 }

667 dbus_error_init(error);
668 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
669 dmesg, RMM_CLOSETRAY_TIMEOUT, error))) {
670 dprintf("closetray failed for %s: %s\n", udi, error->message);
671 dbus_message_unref(dmesg);
672 return (B_FALSE);
673 }

675 dprintf("closetray ok %s\n", udi);

677 dbus_message_unref(dmesg);
678 dbus_message_unref(reply);

680 rmm_dbus_error_free(error);

682 return (B_TRUE);
683 }

685 /*
686 * Call HAL’s Rescan() method on the given device
687 */
688 boolean_t
689 rmm_hal_rescan(LibHalContext *hal_ctx, const char *udi, DBusError *error)
690 {
691 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
692 DBusMessage *dmesg, *reply;

694 dprintf("rescanning %s...\n", udi);

696 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal", udi,
697 "org.freedesktop.Hal.Device", "Rescan"))) {
698 dprintf("rescan failed for %s: cannot create dbus message\n",
699 udi);
700 return (B_FALSE);
701 }

703 dbus_error_init(error);
704 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
705 dmesg, -1, error))) {
706 dprintf("rescan failed for %s: %s\n", udi, error->message);
707 dbus_message_unref(dmesg);
708 return (B_FALSE);
709 }

711 dprintf("rescan ok %s\n", udi);

713 dbus_message_unref(dmesg);
714 dbus_message_unref(reply);

716 rmm_dbus_error_free(error);

718 return (B_TRUE);
719 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 12

721 boolean_t
722 rmm_hal_claim_branch(LibHalContext *hal_ctx, const char *udi)
723 {
724 DBusError error;
725 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
726 DBusMessage *dmesg, *reply;
727 const char *claimed_by = "rmvolmgr";

729 dprintf("claiming branch %s...\n", udi);

731 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal",
732 "/org/freedesktop/Hal/Manager", "org.freedesktop.Hal.Manager",
733 "ClaimBranch"))) {
734 dprintf("cannot create dbus message\n");
735 return (B_FALSE);
736 }

738 if (!dbus_message_append_args(dmesg, DBUS_TYPE_STRING, &udi,
739 DBUS_TYPE_STRING, &claimed_by, DBUS_TYPE_INVALID)) {
740 dprintf("cannot append args to dbus message\n");
741 dbus_message_unref(dmesg);
742 return (B_FALSE);
743 }

745 dbus_error_init(&error);
746 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
747 dmesg, -1, &error))) {
748 dprintf("cannot send dbus message\n");
749 dbus_message_unref(dmesg);
750 rmm_dbus_error_free(&error);
751 return (B_FALSE);
752 }

754 dprintf("claim branch ok %s\n", udi);

756 dbus_message_unref(dmesg);
757 dbus_message_unref(reply);

759 return (B_TRUE);
760 }

762 boolean_t
763 rmm_hal_unclaim_branch(LibHalContext *hal_ctx, const char *udi)
764 {
765 DBusError error;
766 DBusConnection *dbus_conn = libhal_ctx_get_dbus_connection(hal_ctx);
767 DBusMessage *dmesg, *reply;
768 const char *claimed_by = "rmvolmgr";

770 dprintf("unclaiming branch %s...\n", udi);

772 if (!(dmesg = dbus_message_new_method_call("org.freedesktop.Hal",
773 "/org/freedesktop/Hal/Manager", "org.freedesktop.Hal.Manager",
774 "UnclaimBranch"))) {
775 dprintf("cannot create dbus message\n");
776 return (B_FALSE);
777 }

779 if (!dbus_message_append_args(dmesg, DBUS_TYPE_STRING, &udi,
780 DBUS_TYPE_STRING, &claimed_by, DBUS_TYPE_INVALID)) {
781 dprintf("cannot append args to dbus message\n");
782 dbus_message_unref(dmesg);
783 return (B_FALSE);
784 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 13

786 dbus_error_init(&error);
787 if (!(reply = dbus_connection_send_with_reply_and_block(dbus_conn,
788 dmesg, -1, &error))) {
789 dprintf("cannot send dbus message\n");
790 dbus_message_unref(dmesg);
791 rmm_dbus_error_free(&error);
792 return (B_FALSE);
793 }

795 dprintf("unclaim branch ok %s\n", udi);

797 dbus_message_unref(dmesg);
798 dbus_message_unref(reply);

800 return (B_TRUE);
801 }

803 static boolean_t
804 rmm_action_one(LibHalContext *hal_ctx, const char *name, action_t action,
805 const char *dev, const char *udi, LibHalVolume *v,
806 char **opts, int num_opts, char *mountpoint)
807 {
808 char dev_str[MAXPATHLEN];
809 char *mountp;
810 DBusError error;
811 boolean_t ret = B_FALSE;

813 dprintf("rmm_action_one %s %s\n", name, action_strings[action]);

815 #endif /* ! codereview */
816 if (strcmp(name, dev) == 0) {
817 (void) snprintf(dev_str, sizeof (dev_str), name);
818 } else {
819 (void) snprintf(dev_str, sizeof (dev_str), "%s %s", name, dev);
820 }

822 dbus_error_init(&error);

824 switch (action) {
825 case EJECT:
826 ret = rmm_hal_eject(hal_ctx, udi, &error);
827 break;
828 case INSERT:
829 case REMOUNT:
24 if (libhal_volume_is_mounted(v)) {
25 goto done;
26 }
830 ret = rmm_hal_mount(hal_ctx, udi,
831 opts, num_opts, mountpoint, &error);
832 break;
833 case UNMOUNT:
31 if (!libhal_volume_is_mounted(v)) {
32 goto done;
33 }
834 ret = rmm_hal_unmount(hal_ctx, udi, &error);
835 break;
836 case CLOSETRAY:
837 ret = rmm_hal_closetray(hal_ctx, udi, &error);
838 break;
839 }

841 if (!ret) {
842 (void) fprintf(stderr, gettext("%s of %s failed: %s\n"),
843 action_strings[action], dev_str, rmm_strerror(&error, -1));
844 goto done;
845 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 14

847 switch (action) {
848 case EJECT:
849 (void) printf(gettext("%s ejected\n"), dev_str);
850 break;
851 case INSERT:
852 case REMOUNT:
853 mountp = rmm_get_mnttab_mount_point(dev);
854 if (mountp != NULL) {
855 (void) printf(gettext("%s mounted at %s\n"),
856 dev_str, mountp);
857 free(mountp);
858 }
859 break;
860 case UNMOUNT:
861 (void) printf(gettext("%s unmounted\n"), dev_str);
862 break;
863 case CLOSETRAY:
864 (void) printf(gettext("%s tray closed\n"), dev_str);
865 break;
866 }

868 done:
869 rmm_dbus_error_free(&error);
870 return (ret);
871 }

873 /*
874 * top level action routine
875 *
876 * If non-null ’aa’ is passed, it will be used, otherwise a local copy
877 * will be created.
878 */
879 boolean_t
880 rmm_action(LibHalContext *hal_ctx, const char *name, action_t action,
881 struct action_arg *aap, char **opts, int num_opts, char *mountpoint)
882 {
883 DBusError error;
884 GSList *volumes, *i;
885 LibHalDrive *d;
886 LibHalVolume *v;
887 const char *udi, *d_udi;
888 const char *dev, *d_dev;
889 struct action_arg aa_local;
890 boolean_t ret = B_FALSE;

892 dprintf("rmm_action %s %s\n", name, action_strings[action]);

894 if (aap == NULL) {
895 bzero(&aa_local, sizeof (aa_local));
896 aap = &aa_local;
897 }

899 dbus_error_init(&error);

901 /* find the drive and its volumes */
902 d = rmm_hal_volume_find(hal_ctx, name, &error, &volumes);
903 rmm_dbus_error_free(&error);
904 if (d == NULL) {
905 (void) fprintf(stderr, gettext("cannot find ’%s’\n"), name);
906 return (B_FALSE);
907 }
908 d_udi = libhal_drive_get_udi(d);
909 d_dev = libhal_drive_get_device_file(d);
910 if ((d_udi == NULL) || (d_dev == NULL)) {
911 goto out;

new/usr/src/cmd/rmvolmgr/rmm_common.c 15

912 }

914 /*
915 * For those drives that do not require media eject,
916 * EJECT turns into UNMOUNT.
917 */
918 if ((action == EJECT) && !libhal_drive_requires_eject(d)) {
919 action = UNMOUNT;
920 }

922 /*
923 * Assume anything other than EJECT and CLOSETRAY is a
924 * variant of mount or unmount and requires the device
925 * to have at least one volume.
926 */
927 if (volumes == NULL && (action != EJECT && action != CLOSETRAY)) {
928 (void) fprintf(stderr,
929 gettext("cannot %s device ’%s’ with no volumes\n"),
930 action_strings[action], name);
931 goto out;
932 }

934 #endif /* ! codereview */
935 /* per drive action */
936 if ((action == EJECT) || (action == CLOSETRAY)) {
937 ret = rmm_action_one(hal_ctx, name, action, d_dev, d_udi, NULL,
938 opts, num_opts, NULL);

940 if (!ret || (action == CLOSETRAY)) {
941 goto out;
942 }
943 }

945 /* per volume action */
946 for (i = volumes; i != NULL; i = g_slist_next(i)) {
947 v = (LibHalVolume *)i->data;
948 udi = libhal_volume_get_udi(v);
949 dev = libhal_volume_get_device_file(v);

951 if ((udi == NULL) || (dev == NULL)) {
952 continue;
953 }
954 if (aap == &aa_local) {
955 if (!rmm_volume_aa_from_prop(hal_ctx, udi, v, aap)) {
956 dprintf("rmm_volume_aa_from_prop failed %s\n",
957 udi);
958 continue;
959 }
960 }
961 aap->aa_action = action;

963 /* ejected above, just need postprocess */
964 if (action != EJECT) {
965 ret = rmm_action_one(hal_ctx, name, action, dev, udi, v,
966 opts, num_opts, mountpoint);
967 }
968 if (ret) {
969 (void) vold_postprocess(hal_ctx, udi, aap);
970 }

972 if (aap == &aa_local) {
973 rmm_volume_aa_free(aap);
974 }
975 }

977 out:

new/usr/src/cmd/rmvolmgr/rmm_common.c 16

978 if (volumes != NULL)
979 #endif /* ! codereview */
980 rmm_volumes_free(volumes);
981 libhal_drive_free(d);

983 return (ret);
984 }

987 /*
988 * rescan by name
989 * if name is NULL, rescan all drives
990 */
991 boolean_t
992 rmm_rescan(LibHalContext *hal_ctx, const char *name, boolean_t query)
993 {
994 DBusError error;
995 GSList *volumes;
996 LibHalDrive *drive = NULL;
997 const char *drive_udi;
998 char **udis;
999 int num_udis;

1000 char *nickname;
1001 char **nicks = NULL;
1002 boolean_t do_free_udis = FALSE;
1003 int i;
1004 boolean_t ret = B_FALSE;

1006 dprintf("rmm_rescan %s\n", name != NULL ? name : "all");

1008 dbus_error_init(&error);

1010 if (name != NULL) {
1011 if ((drive = rmm_hal_volume_find(hal_ctx, name, &error,
1012 &volumes)) == NULL) {
1013 rmm_dbus_error_free(&error);
1014 (void) fprintf(stderr,
1015 gettext("cannot find ’%s’\n"), name);
1016 return (B_FALSE);
1017 }
1018 rmm_dbus_error_free(&error);
1019 g_slist_free(volumes);

1021 drive_udi = libhal_drive_get_udi(drive);
1022 udis = (char **)&drive_udi;
1023 num_udis = 1;
1024 } else {
1025 if ((udis = libhal_find_device_by_capability(hal_ctx,
1026 "storage", &num_udis, &error)) == NULL) {
1027 rmm_dbus_error_free(&error);
1028 return (B_TRUE);
1029 }
1030 rmm_dbus_error_free(&error);
1031 do_free_udis = TRUE;
1032 }

1034 for (i = 0; i < num_udis; i++) {
1035 if (name == NULL) {
1036 nicks = libhal_device_get_property_strlist(hal_ctx,
1037 udis[i], "storage.solaris.nicknames", NULL);
1038 if (nicks != NULL) {
1039 nickname = nicks[0];
1040 } else {
1041 nickname = "";
1042 }
1043 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 17

1044 if (!(ret = rmm_hal_rescan(hal_ctx, udis[i], &error))) {
1045 (void) fprintf(stderr,
1046 gettext("rescan of %s failed: %s\n"),
1047 name ? name : nickname,
1048 rmm_strerror(&error, -1));
1049 libhal_free_string_array(nicks);
1050 continue;
1051 }
1052 if (query) {
1053 ret = libhal_device_get_property_bool(hal_ctx, udis[i],
1054 "storage.removable.media_available", NULL);
1055 if (ret) {
1056 printf(gettext("%s is available\n"),
1057 name ? name : nickname);
1058 } else {
1059 printf(gettext("%s is not available\n"),
1060 name ? name : nickname);
1061 }
1062 }
1063 libhal_free_string_array(nicks);
1064 }

1066 if (drive != NULL) {
1067 libhal_drive_free(drive);
1068 }
1069 if (do_free_udis) {
1070 libhal_free_string_array(udis);
1071 }

1073 return (ret);
1074 }

1077 /*
1078 * set action_arg from volume properties
1079 */
1080 boolean_t
1081 rmm_volume_aa_from_prop(LibHalContext *hal_ctx, const char *udi_arg,
1082 LibHalVolume *volume_arg, struct action_arg *aap)
1083 {
1084 LibHalVolume *volume = volume_arg;
1085 const char *udi = udi_arg;
1086 const char *drive_udi;
1087 char *volume_label;
1088 char *mountpoint;
1089 int len;
1090 int ret = B_FALSE;

1092 /* at least udi or volume must be supplied */
1093 if ((udi == NULL) && (volume == NULL)) {
1094 return (B_FALSE);
1095 }
1096 if (volume == NULL) {
1097 if ((volume = libhal_volume_from_udi(hal_ctx, udi)) == NULL) {
1098 dprintf("cannot get volume %s\n", udi);
1099 goto out;
1100 }
1101 }
1102 if (udi == NULL) {
1103 if ((udi = libhal_volume_get_udi(volume)) == NULL) {
1104 dprintf("cannot get udi\n");
1105 goto out;
1106 }
1107 }
1108 drive_udi = libhal_volume_get_storage_device_udi(volume);

new/usr/src/cmd/rmvolmgr/rmm_common.c 18

1110 if (!(aap->aa_symdev = libhal_device_get_property_string(hal_ctx,
1111 drive_udi, "storage.solaris.legacy.symdev", NULL))) {
1112 dprintf("property %s not found %s\n",
1113 "storage.solaris.legacy.symdev", drive_udi);
1114 goto out;
1115 }
1116 if (!(aap->aa_media = libhal_device_get_property_string(hal_ctx,
1117 drive_udi, "storage.solaris.legacy.media_type", NULL))) {
1118 dprintf("property %s not found %s\n",
1119 "storage.solaris.legacy.media_type", drive_udi);
1120 goto out;
1121 }

1123 /* name is derived from volume label */
1124 aap->aa_name = NULL;
1125 if ((volume_label = (char *)libhal_device_get_property_string(hal_ctx,
1126 udi, "volume.label", NULL)) != NULL) {
1127 if ((len = strlen(volume_label)) > 0) {
1128 aap->aa_name = rmm_vold_convert_volume_label(
1129 volume_label, len);
1130 if (strlen(aap->aa_name) == 0) {
1131 free(aap->aa_name);
1132 aap->aa_name = NULL;
1133 }
1134 }
1135 libhal_free_string(volume_label);
1136 }
1137 /* if no label, then unnamed_<mediatype> */
1138 if (aap->aa_name == NULL) {
1139 aap->aa_name = (char *)calloc(1, sizeof ("unnamed_floppyNNNN"));
1140 if (aap->aa_name == NULL) {
1141 goto out;
1142 }
1143 (void) snprintf(aap->aa_name, sizeof ("unnamed_floppyNNNN"),
1144 "unnamed_%s", aap->aa_media);
1145 }

1147 if (!(aap->aa_path = libhal_device_get_property_string(hal_ctx, udi,
1148 "block.device", NULL))) {
1149 dprintf("property %s not found %s\n", "block.device", udi);
1150 goto out;
1151 }
1152 if (!(aap->aa_rawpath = libhal_device_get_property_string(hal_ctx, udi,
1153 "block.solaris.raw_device", NULL))) {
1154 dprintf("property %s not found %s\n",
1155 "block.solaris.raw_device", udi);
1156 goto out;
1157 }
1158 if (!(aap->aa_type = libhal_device_get_property_string(hal_ctx, udi,
1159 "volume.fstype", NULL))) {
1160 dprintf("property %s not found %s\n", "volume.fstype", udi);
1161 goto out;
1162 }
1163 if (!libhal_device_get_property_bool(hal_ctx, udi,
1164 "volume.is_partition", NULL)) {
1165 aap->aa_partname = NULL;
1166 } else if (!(aap->aa_partname = libhal_device_get_property_string(
1167 hal_ctx, udi, "block.solaris.slice", NULL))) {
1168 dprintf("property %s not found %s\n",
1169 "block.solaris.slice", udi);
1170 goto out;
1171 }
1172 if (!(mountpoint = libhal_device_get_property_string(hal_ctx, udi,
1173 "volume.mount_point", NULL))) {
1174 dprintf("property %s not found %s\n",
1175 "volume.mount_point", udi);

new/usr/src/cmd/rmvolmgr/rmm_common.c 19

1176 goto out;
1177 }
1178 /*
1179 * aa_mountpoint can be reallocated in rmm_volume_aa_update_mountpoint()
1180 * won’t have to choose between free() or libhal_free_string() later on
1181 */
1182 aap->aa_mountpoint = strdup(mountpoint);
1183 libhal_free_string(mountpoint);
1184 if (aap->aa_mountpoint == NULL) {
1185 dprintf("mountpoint is NULL %s\n", udi);
1186 goto out;
1187 }

1189 ret = B_TRUE;

1191 out:
1192 if ((volume != NULL) && (volume != volume_arg)) {
1193 libhal_volume_free(volume);
1194 }
1195 if (!ret) {
1196 rmm_volume_aa_free(aap);
1197 }
1198 return (ret);
1199 }

1201 /* ARGSUSED */
1202 void
1203 rmm_volume_aa_update_mountpoint(LibHalContext *hal_ctx, const char *udi,
1204 struct action_arg *aap)
1205 {
1206 if (aap->aa_mountpoint != NULL) {
1207 free(aap->aa_mountpoint);
1208 }
1209 aap->aa_mountpoint = rmm_get_mnttab_mount_point(aap->aa_path);
1210 }

1212 void
1213 rmm_volume_aa_free(struct action_arg *aap)
1214 {
1215 if (aap->aa_symdev != NULL) {
1216 libhal_free_string(aap->aa_symdev);
1217 aap->aa_symdev = NULL;
1218 }
1219 if (aap->aa_name != NULL) {
1220 free(aap->aa_name);
1221 aap->aa_name = NULL;
1222 }
1223 if (aap->aa_path != NULL) {
1224 libhal_free_string(aap->aa_path);
1225 aap->aa_path = NULL;
1226 }
1227 if (aap->aa_rawpath != NULL) {
1228 libhal_free_string(aap->aa_rawpath);
1229 aap->aa_rawpath = NULL;
1230 }
1231 if (aap->aa_type != NULL) {
1232 libhal_free_string(aap->aa_type);
1233 aap->aa_type = NULL;
1234 }
1235 if (aap->aa_media != NULL) {
1236 libhal_free_string(aap->aa_media);
1237 aap->aa_media = NULL;
1238 }
1239 if (aap->aa_partname != NULL) {
1240 libhal_free_string(aap->aa_partname);
1241 aap->aa_partname = NULL;

new/usr/src/cmd/rmvolmgr/rmm_common.c 20

1242 }
1243 if (aap->aa_mountpoint != NULL) {
1244 free(aap->aa_mountpoint);
1245 aap->aa_mountpoint = NULL;
1246 }
1247 }

1249 /*
1250 * get device’s mount point from mnttab
1251 */
1252 char *
1253 rmm_get_mnttab_mount_point(const char *special)
1254 {
1255 char *mount_point = NULL;
1256 FILE *f;
1257 struct mnttab mnt;
1258 struct mnttab mpref = { NULL, NULL, NULL, NULL, NULL };

1260 if ((f = fopen(MNTTAB, "r")) != NULL) {
1261 mpref.mnt_special = (char *)special;
1262 if (getmntany(f, &mnt, &mpref) == 0) {
1263 mount_point = strdup(mnt.mnt_mountp);
1264 }
1265 fclose(f);
1266 }

1268 return (mount_point);
1269 }

1272 /*
1273 * get human readable string from error values
1274 */
1275 const char *
1276 rmm_strerror(DBusError *dbus_error, int rmm_error)
1277 {
1278 const char *str;

1280 if ((dbus_error != NULL) && dbus_error_is_set(dbus_error)) {
1281 str = dbus_error->message;
1282 } else {
1283 switch (rmm_error) {
1284 case RMM_EOK:
1285 str = gettext("success");
1286 break;
1287 case RMM_EDBUS_CONNECT:
1288 str = gettext("cannot connect to D-Bus");
1289 break;
1290 case RMM_EHAL_CONNECT:
1291 str = gettext("cannot connect to HAL");
1292 break;
1293 default:
1294 str = gettext("undefined error");
1295 break;
1296 }
1297 }

1299 return (str);
1300 }

1302 void
1303 rmm_dbus_error_free(DBusError *error)
1304 {
1305 if (error != NULL && dbus_error_is_set(error)) {
1306 dbus_error_free(error);
1307 }

new/usr/src/cmd/rmvolmgr/rmm_common.c 21

1308 }

1310 static int
1311 rmm_vold_isbadchar(int c)
1312 {
1313 int ret_val = 0;

1316 switch (c) {
1317 case ’/’:
1318 case ’;’:
1319 case ’|’:
1320 ret_val = 1;
1321 break;
1322 default:
1323 if (iscntrl(c) || isspace(c)) {
1324 ret_val = 1;
1325 }
1326 }

1328 return (ret_val);
1329 }

1331 char *
1332 rmm_vold_convert_volume_label(const char *name, size_t len)
1333 {
1334 char buf[MAXNAMELEN+1];
1335 char *s = buf;
1336 int i;

1338 if (len > MAXNAMELEN) {
1339 len = MAXNAMELEN;
1340 }

1342 for (i = 0; i < len; i++) {
1343 if (name[i] == ’\0’) {
1344 break;
1345 }
1346 if (isgraph((int)name[i])) {
1347 if (isupper((int)name[i])) {
1348 *s++ = tolower((int)name[i]);
1349 } else if (rmm_vold_isbadchar((int)name[i])) {
1350 *s++ = ’_’;
1351 } else {
1352 *s++ = name[i];
1353 }
1354 }
1355 }
1356 *s = ’\0’;
1357 s = strdup(buf);

1359 return (s);
1360 }

1362 /*
1363 * swiped from mkdir.c
1364 */
1365 int
1366 makepath(char *dir, mode_t mode)
1367 {
1368 int err;
1369 char *slash;

1372 if ((mkdir(dir, mode) == 0) || (errno == EEXIST)) {
1373 return (0);

new/usr/src/cmd/rmvolmgr/rmm_common.c 22

1374 }
1375 if (errno != ENOENT) {
1376 return (-1);
1377 }
1378 if ((slash = strrchr(dir, ’/’)) == NULL) {
1379 return (-1);
1380 }
1381 *slash = ’\0’;
1382 err = makepath(dir, mode);
1383 *slash++ = ’/’;

1385 if (err || (*slash == ’\0’)) {
1386 return (err);
1387 }

1389 return (mkdir(dir, mode));
1390 }

1393 void
1394 dprintf(const char *fmt, ...)
1395 {

1397 va_list ap;
1398 const char *p;
1399 char msg[BUFSIZ];
1400 char *errmsg = strerror(errno);
1401 char *s;

1403 if (rmm_debug == 0) {
1404 return;
1405 }

1407 (void) memset(msg, 0, BUFSIZ);

1409 /* scan for %m and replace with errno msg */
1410 s = &msg[strlen(msg)];
1411 p = fmt;

1413 while (*p != ’\0’) {
1414 if ((*p == ’%’) && (*(p+1) == ’m’)) {
1415 (void) strcat(s, errmsg);
1416 p += 2;
1417 s += strlen(errmsg);
1418 continue;
1419 }
1420 *s++ = *p++;
1421 }
1422 *s = ’\0’; /* don’t forget the null byte */

1424 va_start(ap, fmt);
1425 (void) vfprintf(stderr, msg, ap);
1426 va_end(ap);
1427 }

