new usr/src/ cnd/ rmvol mgr/ r nm_common. ¢ 1

R R R R

33462 Thu Jun 19 12: 36:21 2014
new usr/src/ cnd/ rmvol ngr/ rmm_conmmon. ¢
4845 rm(u) nount don’t always print nount/unnount errors

R R R R R R R

1/*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
20 *
21 *
20 */
21 | *
22 * Copyright 2009 Sun Mcrosystens, Inc. Al rights reserved.
23 * Use is subject to |license terns.

*

25 * Copyright 2014 Andrew Stornont.
26 #endif /* | codereview */
27 */

29 #include <stdio. h>

30 #i nclude <errno. h>

31 #include <string.h>

32 #include <strings. h>
33 #include <stdarg. h>

34 #include <fcntl. h>

35 #include <libintl.h>
36 #include <stdlib.h>

37 #include <unistd. h>

38 #include <ctype. h>

39 #include <sys/param h>
40 #incl ude <sys/types. h>
41 #include <sys/stat.h>
42 #include <sys/mttab. h>

44 #incl ude <dbus/dbus. h>

45 #i ncl ude <dbus/ dbus-glib. h>

46 #i ncl ude <dbus/dbus-glib-1ow evel. h>
47 #include <libhal . h>

48 #include <libhal -storage. h>

50 #i nclude "rnmm comon. h"

52 #define RMM PRI NT_DEVI CE_ WDTH 20

54 extern int rnm.debug;

56 static const char *action_strings[] = {
57 "eject"”,

58 "mount ",
59 "remount"”,

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

60 "unnount ",

61 "cl ear _nmounts",
62 "cl osetray"

63 }.

66 Li bHal Context *

67 rmm_hal _i ni t (Li bHal Devi ceAdded devadd_cb, LibHal Devi ceRenbved devrem cb,

=3))¢

-1));

68 Li bHal Devi cePropertyMdi fied propnod_chb, LibHal Devi ceCondition cond_ch,
69 DBusError *error, rmmerror_t *rmmerror)

70 {

71 DBusConnecti on *dbus_conn;

72 Li bHal Cont ext *ctx;

73 char **devi ces;

74 int nr;

76 dbus_error_init(error);

78 /*

79 * setup D-Bus connection

80 *

81 if (!(dbus_conn = dbus_bus_get (DBUS_BUS_SYSTEM error))) {
82 dprintf("cannot get system bus: %\n", rmmstrerror(error,
83 *rmmerror = RVMM EDBUS CONNECT;

84 return (NULL);

85

86 rmm dbus_error_free(error);

88 dbus_connecti on_setup_wi t h_g_nai n(dbus_conn, NULL);

89 dbus_connecti on_set _exit_on_di sconnect (dbus_conn, B_TRUE);
91 if ((ctx = libhal _ctx_new()) == NULL) {

92 dprintf("libhal _ctx_new failed");

93 *rmmerror = RVM EHAL_CONNECT;

94 return (NULL);

95 1

97 I'i bhal _ctx_set _dbus_connection(ctx, dbus_conn);

99 /*
100 * register callbacks
101 */
102 if (devadd_cb !'= NULL) {
103 i bhal _ct x_set _devi ce_added(ct x, devadd_cb);
104 }
105 if (devremcb !'= NULL) {
106 i bhal _ctx_set_devi ce_renpved(ctx, devremch);
107 1
108 if (propmod_cb !'= NULL) {
109 |i bhal _ctx_set_devi ce_property_nodified(ctx, propnod_cb);
110 if (!libhal _device_property_watch_all(ctx, error)) {
111 dprintf("property_watch_all failed %",
112 rmmstrerror(error, -1));
113 l'i bhal _ctx_free(ctx);
114 *rmmerror = RVM EHAL_CONNECT;
115 return (NULL);
116 }
117 1
118 if (cond_cb !'= NULL)
119 I'i bhal _ct x_set _devi ce_condi tion(ctx, cond_cb);
120 1
122 if (!libhal _ctx_init(ctx, error)) {
123 dprintf("libhal _ctx_init failed: %", rnmstrerror(error,
124 I'1 bhal _ctx_free(ctx);
125 *rommerror = RVM EHAL_CONNECT;

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

126 return (NULL);

127

128 rmm dbus_error_free(error);

130 /*

131 * The above functions do not guarantee that HAL is actually running.
132 * Check by invoking a nethod.

133 *

134 if (!(devices = libhal _get_all_devices(ctx, &r, error))) {

135 dprintf("HAL is not running: %", rnmstrerror(error, -1));
136 |1 bhal _ct x_shut down(ctx, NULL);

137 l'ibhal _ctx_free(ctx);

138 *rmm_error = RVM EHAL_CONNECT;

139 return (NULL);

140 } else {

141 rmm dbus_error_free(error);

142 i bhal _free_string_array(devices);

143 }

145 return (ctx);

146 }

149 voi d

150 En’m_hal _fini(Li bHal Context *hal _ctx)

151

152 DBusConnection *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
154 (voi d) dbus_connection_unref(dbus_conn);

155 (void) libhal _ctx_free(hal _ctx);

156 }

159 /*

160 * find volume fromany type of name, similar to the old nedia_findnane()
161 * returns the LibHal Drive object and a |list of LibHal Vol une objects.

162 *

163 Li bHal Drive *

164 rmm_hal _vol ume_fi nd(Li bHal Cont ext *hal _ctx, const char *nane, DBusError *error,
165 GSLi st **vol unes)

166 {

167 Li bHal Dri ve *drive;

168 char *p;

169 char | astc;

171 *vol unes = NULL;

173 /* tenporarily renmove trailing slash */

174 p = (char *)nane + strlen(nane) - 1;

175 if (*p=="1") {

176 lastc = *p;

177 *p ='\0;

178 } else {

179 p = NULL;

180 }

182 if (name[0] =="/")

183 if (((drive = rmm_hal _vol une_fi ndby(hal _ctx,

184 "info.udi", name, volunes)) != NULL) ||

185 ((drive = rmm_ hal _vol une_fi ndby(hal _ctx,

186 "bl ock. devi ce", nane, volunes)) != NULL) ||

187 ((drive = rmm hal _vol une_fi ndby(hal _ctx,

188 "bl ock. sol ari s. raw_devi ce", nane, volumes)) != NULL) ||
189 ((drive = rmm_hal _vol une_fi ndby(hal _ctx,

190 "vol ume. mount _poi nt", nane, volunes)) != NULL)) {

191 goto out;

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

192 } else {

193 goto out;

194 }

195 }

197 /* try volume |abel */

198 if ((drive = rnmhal _vol ume_findby(hal _ctx,
199 "vol une. | abel ", nane, volumes)) != NULL) {
200 goto out;

201 }

203 drive = rnm_ hal _vol une_fi ndby_ni cknane(hal _ctx, name, vol unes);
205 out:

206 if (p!= NULL) {

207 *p = lastc;

208 }

209 return (drive);

210 }

212 | *

213 * find default volune. Returns volune pointer and name in ’'nane’.
214 */

215 Li bHal Drive *

216 rmm hal _vol une_find_def aul t (Li bHal Context *hal _ctx, DBusError *error,

217 const char **nane_out, GSList **vol unes)

218 {

219 Li bHal Dri ve *drive;

220 static const char *names[] = { "floppy", "cdrom, "rndisk" };
221 int i;

223 *vol unmes = NULL;

225 for (i =0; i < NELEMnanes); i++) {

226 if ((drive = rmm hal _vol une_fi ndby_ni cknane(hal _ctx,
227 nanes[i], volumes)) != NULL) {

228 /*

229 * Skip floppy if it has no nedia.

230 * XXX might want to actually check for nedia
231 * every tine instead of relying on vol check.
232 *

233 if ((strcnp(nanmes[i], "floppy") !'=0) ||

234 I'i bhal _devi ce_get _property_bool (hal _ctx,
235 I'i bhal _drive_get_udi (drive),

236 "storage. renovabl e. nedi a_avai | abl e", NULL)) {
237 *nane_out = names[i];

238 br eak;

239 }

240

241 rnm dbus_error_free(error);

242 }

244 return (drive);

245 }

247 | *

248 * find volunme by property=val ue

249 * returns the LibHalDrive object and a |ist of LibHal Volune objects.
250 * XXX add support for multiple properties, reduce D-Bus traffic

251 */

252 LibHal Drive *

253 rmm_hal _vol ume_f i ndby(Li bHal Cont ext *hal _ctx, const char *property,

254 const char *val ue, GSList **vol unmes)
255 {

256 DBusEr r or error;

257 Li bHal Dri ve *drive = NULL;

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

property,

"vol une",

v);

"storage",

258 Li bHal Vol une *v = NULL;

259 char **udi s;

260 int num udi s;

261 int i

262 int i_drive = -1;

264 *vol umes = NULL;

266 dbus_error_init(&error);

268 /* get all devices with property=val ue */

269 if ((udis = libhal _manager_find_device_string_nmatch(hal _
270 val ue, &um.udis, &error)) == NULL)

271 rmm dbus_error_free(&error);

272 return (NULL);

273 }

275 /* find volumes and drives anong these devices */

276 for (i =0; i <numudis; i++) {

277 rmm dbus_error free(&error)

278 if (libhal _devi ce_query_capabi lity(hal _ctx, udis[i],
279 &error)) {

280 v = libhal _volune_fromudi (hal _ctx, udis[i]);
281 if (v != NOLL)

282 *vol umes = g_slist_prepend(*vol ures,
283 }

284 } else if ((*volunes == NULL) &&

285 i bhal _devi ce_query_capability(hal _ctx, udis[i],
286 &error)) {

287 i_drive =i;

288 }

289 1

291 if (*volumes !'= NULL) {

292 /* used pr epend, preserve original order */

293 *vol unes g_slist_reverse(*vol unes);

295 v = (LibHal Vol ume *)(*vol unes) - >dat a;

296 drive = |libhal _drive_fromudi (hal _ctx,

297 i bhal _vol ume_get _st orage_devi ce_udi (Vv));

298 if (drive == NULL)

299 rmm vol unes_free (*vol unmes);

300 *vol unmes = NULL;

301 }

302 } else if (i_drive >= 0) {

303 drive = libhal _drive_fromudi (hal _ctx, udis[i_drive]);
304 }

306 libhal _free_string_array(udis);

307 rnm dbus_error_free(&error);

309 return (drive);

310 }

312 static void
313 rmm pri nt _ni cknanmes_one(Li bHal Dri ve *d, LibHal Vol ume *v,

314 const char *device, char **drive_ni cknanes)

315 {

316 const char *vol ume_I| abel = NULL;

317 const char *nmount _poi nt = NULL;

318 bool ean_t comma;

319 int i;

321 (void) printf("%*s ", RVM PRI NT_DEVI CE_W DTH, device);
322 comma = B_FALSE;

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

| abel) ;

= NULL) &&

324 if (drive_nicknames != NULL) {

325 for (i = 0; drive nlcknanes[l] I:NULL i++) {
326 (v0| d) pr|ntf(%%", comma ? "," @ ""
327 drive_ni cknames[i i 1);

328 conma = B_TRUE;

329 }

330 }

332 if ((v 1= NULL)

333 (vol urme_l abel = libhal _vol ume_get _| abel (v)) != NULL) &&
334 (strlen(volume Iabel) >0)) {

335 (voi d) prl ntf(" %%", comma ? "," """, vol unme_|
336 comma = B_TRUE;

337 }

339 if ((v!= NULL) &&

340 ((rmount _poi nt = |ibhal _vol une_get_nount_point(v)) !
341 (strlen(nmount_poi nt) > 0))

342 (void) printf("%%", coma ? ", ", nount_point);
343 comma = B_TRUE;

344 }

346 (void) printf("\n");

347 }

349 [*

350 * print nicknanmes for each avail abl e vol une
351 *
352 * print_mask:

353 * RMM_PRI NT_MOUNTABLE print only nountabl
354 * RVM_PRI NT_EJECTABLE

355 */

356 void

357 rmm print_vol ume_ni cknanmes(Li bHal Cont ext *hal _ct x,
358 Int print_mask)

359 {

360 char **udi s;

361 int num udi s;

362 GSLi st *vol unes = NULL;

363 Li bHal Dri ve *d *d_t np;

364 Li bHal Vol ure

365 const char *deV| ce;

366 char **ni cknanes;

367 int i

368 GSLi st ik

369 int nprint ed;

371 dbus_error_init(error);

373 if ((udis = libhal _find_device_by_capabilit
374 &umudis, error)) == NULL) {

375 rmm dbus_error_free(error);

376 return;

377 }

379 for (i =0; i <numudis; i++) {

380 if ((d = 1libhal_drive_fromudi(hal
381 conti nue;

382 }

384 /* find volunes belonging to this d
385 if ((d_tnmp = rmm hal volumafindby(
386 "bl ock. st orage_devi ce", udis[i],

387 I'i bhal _drive_free(d_t m) ;
388 }

e vol unes

print volune-less ejectable drives

DBusError *error,

y(hal _ctx,

_ctx, udis[i]

rive */
hal _ct x,
&vol ures))

"storage",
)) == NULL)
1= NULL) {

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

390 ni cknanmes = Ilbhal devi ce_get _property_strlist(hal _ctx,
391 udi s[i], "storage.solaris.nicknames", NULL);

393 nprinted =

394 for (j -volunes j !'= NULL; j = g_slist_next(j)) {

395 v—(leHaIVqune *)(j- dat a) ;

397 if ((device = libhal _volume_get_device file(v)) ==
398 NULL) {

399 conti nue;

400 }

401 if ((print_mask & RWM PRI NT_MOUNTABLE) &&

402 (1i bhal _vol une_get _fsusage(v) !=

403 LI BHAL_VOLUVE_USAGE_MOUNTABLE_FI LESYSTEM)) {
404 conti nue;

405 }

407 rmm print_ni cknames_one(d, v, device, nicknanes);
408 nprint ed++;

409 }

411 if ((nprinted == 0) &&

412 (print_mask & RMM PRI NT_EJECTABLE) &&

413 I'ibhal _drive_requires_eject(d) &&

414 ((device = libhal _drive_get_device_file(d)) !'= NULL)) {
415 rmm print _ni cknames_one(d, NULL, device, nicknanes);
416 }

418 |I'i bhal _free_string_array(ni cknames);

419 |'i bhal _drive_free(d);

420 rmm vol unes_free(vol umas) ;

421 vol umes = NULL;

422 }

424 I'i bhal _free_string_array(udis);

425 }

427 [*

428 * find vol une by nicknane

429 * returns the LibHal Drive object and a |ist of LibHal Vol unme objects.
430 *

431 LibHal Drive *

432 rmm_hal _vol une_fi ndby_ni ckname(Li bHal Cont ext *hal _ctx, const char *nane,
433 GSLi st **vol unes)

434 {

435 DBusEr r or error;

436 Li bHal Dri ve *drive = NULL;

437 Li bHal Dri ve *drive_tnp;

438 char **udi s;

439 int num udi s;

440 char **ni cknanes;

441 int i, i

443 *vol umes = NULL;

445 dbus_error_init(&error);

447 if ((udis = libhal _find_device_by_capability(hal _ctx, "storage",
448 &umudi s, &error)) == NULL)

449 rmm dbus_error_free(&error);

450 return (NULL);

451 }

453 /* find a drive by nickname */

454 for (i =0; (i < numudis) & (drive == NULL); i++) {

455 if ((nicknames = |ibhal _device_get_property_strlist(hal _ctx,

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

456 udi s[i], "storage.solaris.nicknames", &error)) == NULL) {
457 rmm dbus_error_free(&error);

458 conti nue;

459 }

460 for (j = 0; (nicknames[j] != NULL) && (drive == NULL); j++) {
461 if (strcnp(nicknames[j], name) == 0) {

462 drive = libhal _drive_fromudi (hal _ctx, udis[i]);
463 }

464

465 I'ibhal _free_string_array(nicknanes);

466

467 libhal _free_string_array(udis);

469 if (drive !'= NULL) {

470 /* found the drive, now find its vol unes */

471 if ((drive_tnmp = rmm_hal _ voI une_f i ndby(hal _ctx,

472 "bl ock. st orage_devi ce", |ibhal _drive_get_ udi (drive),

473 vol unes)) !'= NULL)

474 I'i bhal _drive_free(drive_tnp);

475 }

476 }

478 rmm dbus_error_free(&error);

480 return (drive);

481 }

483 void

484 rnm vol unes_free(GSLi st *vol unes)

485 {

486 GSList *i;

488 (i = volumes; i !'= NULL; i = g_slist_next(i)) {

489 I'i bhal voI unme_free((Li bHal Vol ume *) (i ->data));

490 }

491 g_slist_free(vol unes);

492 }

494 [*

495 * Call HAL’s Munt () nethod on the given device

496 *

497 bool ean_t

498 rnm_hal _nount (Li bHal Cont ext *hal _ctx, const char *udi,

499 char **opts, int numopts, char *nountpoint, DBusError *error)

500

501 DBusConnecti on *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
502 DBusMessage *dmesg, *reply;

503 char *fstype;

505 dprintf("nmounting %...\n", udi);

507 if (!(dmesg = dbus_nessage_new_net hod_cal | ("org. freedesktop. Hal ", udi,
508 "org. freedeskt op. Hal . Devi ce. Vol ume", "Munt"))) {

509 dprintf(

510 "mount failed for %: cannot create dbus nessage\n", udi);
511 return (B_FALSE);

512 1

514 fstype = "";

515 if (mount p0| nt == NULL) {

516 mountpoint = "";

517 }

519 if (!dbus_nessage_append_args(dnmesg, DBUS_TYPE_STRI NG &nount poi nt,
520 DBUS_TYPE_STRI NG, &f stype,

521 DBUS_TYPE_ARRAY, DBUS TYPE STRI NG, &opts, numopts,

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

522 DBUS_TYPE_I NVALID)) {

523 dprintf("nount failed for %: cannot append args\n",

524 dbus_nessage_unr ef (dnesg) ;

525 return (B_FALSE);

526 }

528 dbus_error_i ni t(error);

529 if (I'(reply = dbus_connection_send_with_reply_and_bl ock(dbus_conn,
530 drmesg, RVMM _MOUNT_TI MEQUT, “error)))

531 dprintf("mount failed for %: %\n", udi, error->nmessage);
532 dbus_nessage_unr ef (dnesg) ;

533 return (B_FALSE);

534 }

536 dprintf("nmounted %\n", udi);

538 dbus_nessage_unr ef (dnmesg) ;

539 dbus_nessage_unref (reply);

541 rmm dbus_error_free(error);

543 return (B_TRUE);

544 }

547 | *

548 * Call HAL's Unnount() nethod on the given device
549 *
550 bool ean_t

551 rnm hal _unnount (Li bHal Cont ext *hal _ctx, const char *udi, DBusError *error)

552 {

553 DBusConnecti on *dbus_conn = |ibhal _ctx_get dbus_connecti on(hal _
554 DBusMessage *dr'resg, *reply;

555 char **opts = NUL

557 dprintf("unnounting %...\n", udi);

559 if (!(dnesg = dbus_nessage_new_net hod_cal | ("org. freedesktop. Hal ",
560 "org. freedeskt op. Hal . Devi ce. Vol ume", "Unmount"))) {

561 dprintf(

562 "unnount failed %: cannot create dbus nmessage\n",
563 return (B_FALSE);

564 }

566 if (!dbus_nessage_append_args(dnmesg, DBUS_TYPE_ARRAY, DBUS_TYPE_STRI NG,
567 &opts, 0, DBUS TYPE_|INVALID)) {

568 dpri ntf(unmount failed %: cannot append args\n",

569 dbus_nessage_unr ef (dnesg) ;

570 return (B_FALSE);

571 }

573 dbus_error_init(error);

574 if (!(reply = dbus_connection_send_with_reply_and_bl ock(dbus_conn,
575 dnesg, RVM_UNMOUNT_TI MEQUT, error)))

576 dprintf("unmount failed for %: %\n", udi, error->nmessage);
577 dbus_nessage_unr ef (dnesg) ;

578 return (B_FALSE);

579 }

581 dprintf("unnmounted %\n", udi);

583 dbus_nessage_unr ef (dnesg) ;

584 dbus_nessage_unref (reply);

586 rmm dbus_error_free(error);

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

588 return (B_TRUE);

589 }

592 /*

593 * Call HAL's Eject() nethod on the given device
594 */

595 bool ean_t

596 rnm hal _ej ect (Li bHal Context *hal _ctx, const char *udi, DBusError *error)

597 {

598 DBusConnection *dbus_conn = |ibhal _ctx_get_dbus_connecti on(hal _
599 DBusMessage *dnmesg, *reply;

600 char **options = NULL;

601 uint_t numoptions = 0;

603 dprintf("ejecting %...\n", udi);

605 if (!(dmesg = dbus_nessage_new_net hod_cal | ("org. freedeskt op. Hal ",
606 "org. freedeskt op. Hal . Devi ce. St orage", "Eject")))

607 dprintf("eject %: cannot create dbus nessage\n",

608 return (B_FALSE);

609 }

611 if (!dbus_nessage_append_args(dnesg,

612 DBUS_TYPE_ARRAY, DBUS_TYPE_STRI NG &options, numoptions,
613 DBUS_TYPE_I NVALID)) {

614 dprintf("eject %: cannot append args to dbus nessage "
615 dbus_nessage_unr ef (dnesg) ;

616 return (B_FALSE);

617 }

619 dbus_error _i ni t(error);

620 if (I(reply dbus_connecti on_send_wi th_repl y_and_bl ock(dbus_conn,
621 dnesg, RM\/I EJECT_TI MEQUT, error))) {

622 dprintf("eject %: 9%\n", udi, error->nmessage);

623 dbus_nessage_| unref(drresg)

624 return (B_FALSE);

625 }

627 dprintf("ejected %\n", udi);

629 dbus_nessage_unr ef (dnmesg) ;

630 dbus_nessage_unref (reply);

632 rmm dbus_error_free(error);

634 return (B_TRUE);

635 }

637 [*

638 * Call HAL's CloseTray() nethod on the given device
639 *
640 bool ean_t

641 rmm hal _cl osetray(Li bHal Context *hal _ctx, const char *udi, DBusError *error)

642 {

643 DBusConnection *dbus_conn = |ibhal _ctx_get_dbus_connecti on(hal _
644 DBusMessage *dnesg, *reply;

645 char **options = NULL;

646 uint_t num options = O;

648 dprintf("closing tray %...\n", udi);

650 if (!(dnesg = dbus_nessage_new_net hod_cal | ("org. freedesktop. Hal ",
651 "org. freedeskt op. Hal . Devi ce. St orage", "CloseTray"))) {

652 dprintf(

653 "closetray failed for %: cannot create dbus message\n",

10

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

654 udi);

655 return (B_FALSE);

656 }

658 if (!dbus_nessage_append_args(dnesg,

659 DBUS_TYPE_ARRAY, DBUS TYPE_STRI NG &options, numoptions,

660 DBUS_TYPE_| NVALI D))

661 dprintf("closetray %: cannot append args to dbus nessage ",
662 udi) ;

663 dbus_nessage_unr ef (dnesg) ;

664 return (B_FALSE);

665 }

667 dbus_error_init(error);

668 if (!(reply = dbus_connection_send_wi th_reply_and_bl ock(dbus_conn,
669 dmesg, RWM CLOSETRAY_TI MEQUT, error))) {

670 dprintf("closetray failed for %: %\n", udi, error->nmessage);
671 dbus_nessage_unr ef (dnesg) ;

672 return (B_FALSE);

673 }

675 dprintf("closetray ok %s\n", udi);

677 dbus_nessage_unr ef (dnesg) ;

678 dbus_nessage_unref (reply);

680 rmm dbus_error_free(error);

682 return (B_TRUE);

683 }

685 /*

686 * Call HAL's Rescan() nethod on the given device

687 */

688 bool ean_t

689 rmm hal _rescan(Li bHal Context *hal _ctx, const char *udi, DBusError *error)
690

691 DBusConnecti on *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
692 DBusMessage *dnesg, *reply;

694 dprintf("rescanning %...\n", udi);

696 if (!(dmesg = dbus_nessage_new_net hod_cal | ("org. freedesktop. Hal ", udi,
697 "org. freedeskt op. Hal . Devi ce", "Rescan"))) {

698 dprintf("rescan failed for %: cannot create dbus nessage\n",
699 udi);

700 return (B_FALSE);

701 1

703 dbus_error_init(error);

704 if (!(reply = dbus_connection_send_with_reply_and_bl ock(dbus_conn,
705 dmesg, -1, error))) {

706 dprintf("rescan failed for %: %\n", udi, error->nessage);
707 dbus_nessage_unr ef (dnesg) ;

708 return (B_FALSE);

709 }

711 dprintf("rescan ok %\n", udi);

713 dbus_nessage_unr ef (dnesg) ;

714 dbus_nessage_unref (reply);

716 rnm dbus_error_free(error);

718 return (B_TRUE);

719 }

11

new usr/src/ cnd/ rmvol ngr/ rmm_conmmon. ¢

721 bool ean_t

722 rmm_hal _cl ai m branch(Li bHal Context *hal _ctx, const char *udi)

723 {

724 DBusError error;

725 DBusConnection *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
726 DBusMessage *dnesg, *reply;

727 const char *clained_by = "rmvol ngr";

729 dprintf("claimng branch %...\n", udi);

731 if (!(dmesg = dbus_nessage_new_net hod_cal | ("org. freedeskt op. Hal ",
732 "/ orglfreedeskt op/ Hal / Manager", "org.freedesktop. Hal . Manager",
733 "dal nBranch"))) {

734 dprintf("cannot create dbus nessage\n");

735 return (B_FALSE);

736 }

738 if (!dbus_nessage_append_args(dnesg, DBUS_TYPE_STRI NG &udi,

739 DBUS_TYPE_STRING, &clai med_by, DBUS_TYPE | NVALID)) {

740 dprintf("cannot append args to dbus nessage\n");

741 dbus_nessage_unr ef (dnesg) ;

742 return (B_FALSE);

743 }

745 dbus_error_init(&error);

746 if (!(reply = dbus_connection_send_wi th_reply_and_bl ock(dbus_conn,
747 dmesg, -1, &error))) {

748 dprintf("cannot send dbus nmessage\n");

749 dbus_nessage_unr ef (dnesg) ;

750 rmm dbus_error_free(&error);

751 return (B_FALSE);

752 }

754 dprintf("claimbranch ok %\n", udi);

756 dbus_nessage_unr ef (dnesg) ;

757 dbus_nessage_unref (reply);

759 return (B_TRUE);

760 }

762 bool ean_t

763 rmm _hal _uncl ai m branch(Li bHal Cont ext *hal _ctx, const char *udi)

764 {

765 DBusError error;

766 DBusConnecti on *dbus_conn = |ibhal _ctx_get_dbus_connection(hal _ctx);
767 DBusMessage *dnmesg, *reply;

768 const char *clained_by = "rmvol ngr";

770 dprintf("unclaimng branch %...\n", udi);

772 if (!(dmesg = dbus_nessage_new_net hod_cal | ("org. freedeskt op. Hal ",
773 "/ orglfreedeskt op/ Hal / Manager", "org.freedesktop. Hal . Manager",
774 "Uncl ai nBranch"))) {

775 dprintf("cannot create dbus nessage\n");

776 return (B_FALSE);

777 }

779 if (!dbus_nessage_append_args(dnmesg, DBUS_TYPE_STRI NG &udi,

780 DBUS TYPE STRING, &clained_by, DBUS TYPE | NVALID)) {

781 dprintf("cannot append args to dbus nessage\n");

782 dbus_nessage_unr ef (dnesg) ;

783 return (B_FALSE);

784 1

12

13

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢
786 dbus_error_init(&error);
787 if (!(reply = dbus_connection_send_wi th_reply_and_bl ock(dbus_conn,
788 dmesg, -1, &error))) {
789 dpri ntf(cannot send dbus nessage\n");
790 dbus_nessage_unr ef (dnesg) ;
791 rmm _dbus_error free(&error)
792 return (B_FALSE);
793 }
795 dprintf("unclaimbranch ok %\n", udi);
797 dbus_nessage_unr ef (dnesg) ;
798 dbus_nessage_unref (reply);
800 return (B_TRUE);
801 }
803 static bool ean_t
804 rmm acti on_one(Li bHal Context *hal _ctx, const char *nane, action_t action,
805 const char *dev, const char *udi, LibHal Volume *v,
806 char **opts, int numopts, char *nountpoint)
807 {
808 char dev_str [MAXPATHLEN] ;
809 char *mount p;
810 DBusEr r or error;
811 bool ean_t ret = B_FALSE;
813 dprintf("rnmm.action_one % %\n", nane, action_strings[action]);
815 #endif /* | codereview */
816 if (strcnp(name, dev) == 0) {
817 (void) snprintf(dev_str, sizeof (dev_str), nane);
818 } else {
819 (void) snprintf(dev_str, sizeof (dev_str), "% %", nane, dev);
820 }
822 dbus_error_init(&error);
824 switch (action) {
825 case EJECT:
826 ret = rmm hal _eject(hal _ctx, udi, &error);
827 br eak;
828 case | NSERT:
829 case REMOUNT
24 if (I i bhal _vol ume_i s_nmounted(v)) {
25 goto done;
26
830 ret = rmm_hal _nmount (hal _ctx, udi,
831 opts, numopts, nountpoint, &error);
832 br eak;
833 case UNMOUNT:
31 if (!libhal _volume_is_mounted(v)) {
32 got o done;
33
834 ret = rmm_ hal _unnount (hal _ctx, udi, &error);
835 br eak;
836 case CLOSETRAY:
837 ret = rmm hal _closetray(hal _ctx, udi, &error);
838 br eak;
839 }
841 if (lret) {
842 (void) fprintf(stderr, gettext("% of % failed: %\n"),
843 action_strings[action], dev_str, rnmstrerror(&rror, -1));
844 got o done;
845 }

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866

868
869
870
871

873
874
875
876
877
878
879
880
881

883
884
885
886
887
888
889
890

892

894
895
896
897

899

901
902
903
904
905
906
907
908
909
910
911

switch (action) {
case EJECT:
(void) printf(gettext("% ejected\n"), dev_str);
br eak;
case | NSERT:
case REMOUNT:
mountp = rnm. get _mttab_nount _poi nt (dev);
if (mountp !'= NULL)
(void) printf(gettext("% nounted at %\n"),
dev_str, nountp);
free(nmount p);

break;

case UNMOUNT:
(voi d) printf(gettext("% unmounted\n"),
br eak;

case CLOSETRAY:
(void) printf(gettext("% tray closed\n"),
br eak;

dev_str);

dev_str);

done:

t
|

* Ok ok ok k k
-~

bool

rmm

rmm dbus_error_free(&error);
return (ret);

op |l evel action routine

f non-null "aa' is passed, it will be used, otherwi se a |ocal copy

will be created.

ean_t
action(Li bHal Context *hal _ctx, const char *nanme, action_t action,
struct action_arg *aap, char **opts, int numopts, char *nountpoint)

DBuUSEr r or error;

GSLi st *vol unes, *i;

Li bHal Dri ve *d;

Li bHal Vol une *v;

const char *udi, *d_udi;

const char *dev, *d_dev;

struct action_arg aa_l ocal;

bool ean_t ret = B_FALSE;

dprintf("rmmaction % 9%\n", nane, action_strings[action]);

if (aap == NULL)
bzero(&a_| ocal ,
aap = &aa_l ocal;

si zeof (aa_local));

}
dbus_error_init(&error);

/* find the drive and its volunmes */
d = rmm_hal _vol une_find(hal _ctx, nane, &error,
r rrm_dbus_er ror_free(&error);
if (d == NULL)
(void) fprintf(stderr,
return (B_FALSE);

&vol unes) ;

gettext("cannot find '%’\n"),

}

d_udi |'i bhal _drive_get _udi(d);

d_dev |'i bhal _drive_get _device file(

if ((d_udi == NULL) | (d_dev == NULL
goto out;

- d);
) o

nane) ;

14

15

v,

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

912 }

914 /*

915 * For those drives that do not require nedia eject,

916 * EJECT turns into UNMOUNT.

917 */

918 if ((action == EJECT) && !libhal _drive_requires_eject(d)) {

919 action = UNMOUNT;

920 }

922 I*

923 * Assune anyt hing other than EJECT and CLOSETRAY is a

924 * variant of nmount or unnount and requires the device

925 * to have at |east one vol ume.

926 */

927 if (volumes == NULL && (action != EJECT && action != CLOSETRAY)) {
928 (void) fprintf(stderr,

929 gettext("cannot % device '%’ with no volunes\n"),
930 action_strings[action], nane);

931 goto out;

932 }

934 #endif /* | codereview */

935 /* per drive action */

936 if ((action == EJECT) || (action == CLOSETRAY))

937 ret = rmm.action_one(hal _ctx, name, action, d_dev, d_udi, NULL,
938 opts, numopts, NULL);

940 if (!ret || (action == CLOSETRAY)) {

941 goto out;

942 }

943

945 /* per volune action */

946 for (i = volumes; i !'= NULL; i = g_slist_next(i)) {

947 v = (Li bHal Vol une *)i ->dat a;

948 udi = |ibhal _vol ume_get _udi (Vv);

949 dev = |ibhal _vol unme_get _device_file(v);

951 if ((udi == NULL) || (dev == NULL)) {

952 conti nue;

953 }

954 1f (aap == &aa_l ocal) {

955 if (!rmmvolunme_aa_fromprop(hal _ctx, udi, v, aap)) {
956 dprintf("rmm.vol ume_ aafrompropfalled %\ n",
957 udi) ;

958 conti nue;

959 }

960

961 aap->aa_action = action;

963 /* ejected above, just need postprocess */

964 if (action !'= EJECT) {

965 ret = rnm.action_one(hal _ctx, nanme, action, dev, udi,
966 opts, numopts, nountpoint);

967 }

968 if (ret)

969 (voi d) vol d_postprocess(hal _ctx, udi, aap);

970 }

972 if (aap == &aa_local) {

973 rmm vol unme_aa_free(aap);

974 }

975 }

977 out:

new usr/src/ cnd/ rmvol ngr/ rmm_conmmon. ¢

_ctx,

978 if (volumes != NULL)
979 #endif /* ! codereview */
980 rmm vol unes_free(vol unes);
981 l'i bhal _drive_free(d);
983 return (ret);
984 }
987 [*
988 * rescan by nane
989 * if name is NULL, rescan all drives
990 *
991 bool ean_t
992 rmm rescan(Li bHal Context *hal _ctx, const char *nanme, bool ean_t query)
993 {
994 DBusEr r or error;
995 GSLi st *vol unes;
996 Li bHal Dri ve *drive = NULL;
997 const char *drive_udi;
998 char **udi s;
999 int num udi s;
1000 char *ni cknane;
1001 char **ni cks = NULL;
1002 bool ean_t do_free_udis = FALSE;
1003 int i;
1004 bool ean_t ret = B _FALSE;
1006 dprintf("rmmrescan %\n", nane != NULL ? nane : "all");
1008 dbus_error_init(&error);
1010 if (name != NULL)
1011 if ((drive = rnmm_hal _vol une_find(hal _ctx, name, &error,
1012 &vol unes)) == NULL)
1013 rmm dbus error_free(&error);
1014 (voi d) fprlntf(stderr
1015 gett ext (" cannot find ' 9%\ n"), nane);
1016 return (B_FALSE);
1017 }
1018 rmm dbus_error_free(&error);
1019 g_slist_free(vol unes);
1021 drive_udi = libhal _drive_get_udi(drive);
1022 udis = (char **)&drive_udi;
1023 numudis = 1;
1024 } else {
1025 if ((udis = libhal _find_device_by_capability(hal _ctx,
1026 "storage", &umudis, &error)) == NULL) {
1027 rmm dbus_error _f ree(&error);
1028 return (B_TRUE);
1029 }
1030 rmm_dbus error. _free(&error);
1031 do_free_udis = TRUE
1032 }
1034 for (i =0; i <numudis; i++) {
1035 if (name == NULL)
1036 ni cks = libhal _device_get_property_strlist(hal
1037 udi s[i], "storage.solaris.nicknanmes", NULL);
1038 if (nicks 1= NULL) {
1039 ni ckname = ni cks[0];
1040 } else {
1041 ni cknanme = "";
1042 }
1043 }

16

new usr/src/ cnd/ rmvol mgr/ r nm_common. ¢ 17

1044 if (!(ret = rmmhal __rescan(hal _ctx, udis[i], &error))) {
1045 (voi d) fprlntf(stderr

1046 gettext("rescan of % failed: %\ n"),

1047 name ? nane : nicknane,

1048 rmmstrerror(&error, —1))

1049 I'i bhal _free_string_array(ni cks)

1050 conti nue;

1051 }

1052 if (query) {

1053 ret = |ibhal _device_get_property_bool (hal _ctx, udis[i],
1054 "storage. renovabl e. nedi a_avai | abl e", NULL);
1055 if (ret) {

1056 printf(gettext("% is available\n"),
1057 name ? nanme : ni cknane);

1058 } else {

1059 printf(gettext("% is not available\n"),
1060 name ? nane : nicknane);

1061 }

1062 }

1063 i bhal _free_string_array(nicks);

1064 }

1066 if (drive !'= NULL) {

1067 libhal _drive_free(drive);

1068 }

1069 if (do_free_udis) {

1070 libhal _free_string_array(udis);

1071 }

1073 return (ret);

1074 }

1077 /*

1078 * set action_arg from vol une properties

1079 *

1080 bool ean_t
1081 rmm.vol une_aa_from prop(Li bHal Context *hal _ctx, const char *udi _arg,

1082 Li bHal Vol ume *vol unme_arg, struct action_arg *aap)

1083 {

1084 Li bHal Vol une *vol ume = vol une_arg;

1085 const char *udi = udi_arg;

1086 const char *drive_udi;

1087 char *vol une_| abel ;

1088 char *rrount poi nt ;

1089 int I en

1090 int ret = B_FALSE;

1092 /* at |east udi or volune rrust be supplied */

1093 if ((udi == NULL) && (volume == NULL)) {

1094 return (B_FALSE);

1095 }

1096 if (volune == NULL) {

1097 if ((volume = libhal _volume_fromudi (hal _ctx, udi)) == NULL) {
1098 dprintf("cannot get volume %\n", udi);
1099 goto out;

1100 }

1101 }

1102 if (udi == NULL)

1103 if ((udi = libhal _vol une_get _udi (vol ume)) == NULL) {
1104 dpr| ntf("cannot get udi\n

1105 goto out;

1106 }

1107 }

1108 drive_udi = libhal _vol une_get _storage_devi ce_udi (vol une);

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

1110 if (!(aap->aa syrrdev | i bhal _devi ce_get _property_ stri ng(hal _ctx,
1111 drive_udi, "storage.solaris.|egacy. symiev NULL)))

1112 dpri ntf(property % not found %\n"

1113 "storage.sol aris.|egacy. syndev", “dri ve_udi);

1114 goto out;

1115

1116 if (!(aap->aa_nedia = |ibhal _device_get_property_string(hal _ctx,
1117 drive_udi, "storage.solaris.|egacy.nedia_type", NULL))) {

1118 dprintf("property % not found %\n",

1119 "storage.sol aris.|egacy. nedia_type", drive_udi);

1120 goto out;

1121 }

1123 /* nane is derived fromvolume |abel */

1124 aap->aa_nane = NULL;

1125 if ((vol une | abel (char *)libhal _devi ce_get_property_string(hal _ctx,
1126 udi, "vol une. IabeI ", NULL)) !'= NULL)

1127 if ((len = strlen(volume_|label)) > 0) {

1128 aap- >aa_nanme = rnmvol d_convert _vol une_| abel (

1129 vol une_| abel , Ten);

1130 if (strlen(aap->aa_nane) == 0) {

1131 free(aap- >aa_nane)

1132 aap->aa_nanme = NULL

1133 }

1134

1135 i bhal _free_string(vol une_| abel) ;

1136 }

1137 /* if no |abel, then unnanmed_<nedi atype> */

1138 if (aap->aa_nane == NULL)

1139 aap->aa_nanme = (char *)calloc(1l, sizeof ("unnamed_floppyNNNN'));
1140 if (aap->aa_nanme == NULL) {

1141 goto out;

1142

1143 (void) snprintf(aap->aa_nanme, sizeof ("unnamed_floppyNNNN"),
1144 "unnanmed_9%", aap->aa_nedia);

1145 1

1147 if (!(aap->aa_path = libhal _device_get_property_string(hal _ctx, udi,
1148 "bl ock. devi ce", NULL)))

1149 dprintf("property % not found %\n", "bl ock.device", udi);
1150 goto out;

1151 }

1152 1f (!(aap->aa_rawpath = |ibhal _device_get_property_string(hal _ctx, udi,
1153 "bl ock. sol ari s. raw_device", NULL)))

1154 dprintf("property % not found %\n",

1155 "bl ock. sol ari s. raw_devi ce", udi);

1156 goto out;

1157 1

1158 if (!(aap->aa_type = libhal _device_get_property_string(hal _ctx, udi,
1159 "vol une. fstype", NULL))) {

1160 dprintf("property % not found %\n", "volune.fstype", udi);
1161 goto out;

1162

1163 if (!libhal _device_get _pr opert y_bool (hal _ctx, udi,

1164 "volune.is_partition", NULL)) {

1165 aap- >aa_partnanme = MJLL

1166 } else if (!(aap->aa_partnane = |ibhal device_get property_string(
1167 hal _ctx, udi, "block.solaris.slice™, NULL))) {

1168 dpri ntf("property % not found %\n",

1169 "bl ock.sol ari s.slice", udi);

1170 goto out;

1171 }

1172 if (!'(mountpoint = |ibhal_device _get_property_string(hal _ctx, udi,
1173 "vol ume. mount _poi nt", NULL)))

1174 dpri ntf("property % not found %\n",

1175 "vol ume. nount _poi nt", udi);

18

new usr/src/ cnd/ rmvol mgr/ r nm_common. ¢ 19

1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

1189

1191
1192
1193
1194
1195
1196
1197
1198
1199

1201
1202
1203
1204

out :

}

goto out;

*

* aa_ nount poi nt can be reallocated in rnmvol ume_aa_updat e_nmount poi nt ()
* won't have to choose between free() or Tibhal free_ string() later on
*/

aap- >aa_nount poi nt = strdup(nountpoint);

l'ibhal _free_stri ng(eruntpoi nt);

if (aap- >aa nmount poi nt == NULL)
dprintf("mountpoint is NULL %\n",
goto out;

}
/

udi);

}

ret = B TRUE

if ((vol une !'= NULL) && (volune != volune_arg)) {
i bhal _vol ume_free(vol une);

}
if (‘ret) {
rnm.vol une_aa_free(aap);

return (ret);

/* ARGSUSED */

voi d

rmm vol unme_aa_updat e_nount poi nt (Li bHal Cont ext *hal _ct x,
struct action_arg *aap)

1205 {

1206
1207
1208
1209
1210

1212
1213

1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

}

voi d

const char *udi,

if (aap->aa_nountpoint != NULL) {
f r ee(aap- >aa_nount poi nt) ;

aap- >aa_nount poi nt = rnm get _mmt t ab_nount _poi nt (aap- >aa_path);

rmm vol une_aa_free(struct action_arg *aap)
1214 {

if (aap->aa_syndev != NULL) {
l'i bhal _free_string(aap->aa_syndev);
aap- >aa_syndev = NULL;

}

if (aap->aa_nanme != NULL) {
free(aap->aa_nane) ;
aap- >aa_name = NULL,

if (aap->aa_path !'= NULL)
i bhal _free_string(aap->aa_path);
aap- >aa_path = NULL;

}
if (aap- >aa _rawpat h !'= NULL)
i bhal _free_stri ng(aap >aa_r awpat h) ;
aap >aa_rawpath = NULL

i f (aap- >aa _type != NULL)
i bhal _free_string(aap->aa_type);
aap >aa_type = NULL;

}

i f (aap->aa_nedia != NULL)
i bhal _free_string(aap->aa_nedia);
aap- >aa_nedi a = NULL;

i f (aap->aa_partname != NULL)
l'i bhal _free_string(aap->aa_partnane);
aap- >aa_partname = NULL;

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

1242 }

1243 i f (aap->aa_nountpoint != NULL) {

1244 free(aap- >aa_nount poi nt)

1245 aap- >aa_nount poi nt = NULL

1246 }

1247 }

1249 /*

1250 * get device's nount point from mttab

1251 */

1252 char *

1253 EnnLget_nnttab_nDunt_point(const char *special)

1254

1255 char *nmount _poi nt = NULL

1256 FI LE *f,

1257 struct mttab mt

1258 struct mttab npref = { NULL, NULL, NULL, NULL, NULL }
1260 if ((f = fopen(MNTTAB, "r")) != NULL) {

1261 nmpref. mt_special = (char *)special

1262 if (getmtany(f, &mt, &mref) == 0)
1263 mount _poi nt = strdup(mt. mt_nount p)
1264 }

1265 fclose(f)

1266 }

1268 return (nount_point)

1269 }

1272 | *

1273 * get human readable string fromerror val ues

1274 */

1275 const char *

1276 rmm strerror (DBusError *dbus_error, int rnmerror)

1277 {

1278 const char *str;

1280 if ((dbus_error !'= NULL) && dbus_error_is_set(dbus_error)) {
1281 str = dbus_error->nessage

1282 } else {

1283 switch (rnmerror) {

1284 case RWL_ ECK

1285 str gettext("success"y

1286 bre

1287 case RWL EDBUS CONNECT:

1288 str = gettext("cannot connect to D Bus")
1289 breah

1290 case RVM EHAL_CONNECT:

1291 str = gettext("cannot connect to HAL");
1292 br eak;

1293 def aul t

1294 str = gettext("undefined error")
1295 br eak;

1296 }

1297 }

1299 return (str)

1300 }

1302 void

1303 rmm dbus_error_free(DBusError *error)

1304 {

1305 if (error !'= NULL && dbus_error_is_set(error)) {
1306 dbus_error_free(error)

1307 }

new usr/src/ cnd/ rmvol mgr/ r nm_common. ¢ 21
1308 }

1310 static int

1311 rmm.vol d_i sbadchar (i nt c)
1312 {

1313 int ret_val = 0;

1316 switch (c) {
1317 case '/’:

1318 case ';’:

1319 case '|’:

1320 ret_val =1

1321 br eak

1322 defaul t:

1323 if (iscntrli(c) || i
1324 ret_val = 1;
1325 }

1326 1

sspace(c)) {

1328 return (ret_val);
1329 }

1331 char *

1332 rmm.vol d_convert _vol une_| abel (const char *nane, size_t |en)
1333

1334 char buf [MAXNAMELEN+1] ;

1335 char *s = buf

1336 int i;

1338 if (len > MAXNAMELEN) {
1339 len = MAXNAMVELEN
1340 }

1342 for (i =0; i <len; i++) {
1343 if (name[i] == '\0") {
1344 br eak;

1345 }

1346 1f (isgraph((int)name[i])
1347 if (|supper((| nt)
1348 s++ = to
1349 } else if (rnn1vo
1350 *s++ =77
1351 } else {

1352 *s++ = npane[i];
1353 }

1354 }

1355
1356 *s =\0

1357 s = strdup(buf)

|nt§nane[l])
dchar((lnt)nanE[l])) {

—

1359 return (s)
1360 }

1362 /*

1363 * swiped fromnkdir.c

1364 */

1365 int

1366 makepat h(char *dir, node_t node)
1367 {

1368 int err;
1369 char *sl ash;

1372 if ((mkdir(dir, node) == 0) || (errno == EEXI ST)) {
1373 return (0)

new usr/src/ cnd/ rmvol ngr/rmm_conmmon. ¢

1374 }

1375 if (errno !'= ENCENT) {

1376 return (-1)

1377 }

1378 if ((slash = strrchr(dir, "/’)) == NULL) {
1379 return (-1)

1380 }

1381 *slash ='\0

1382 err = nukepath(dlr node)

1383 *slash++ = '/’

1385 if (err || (*slash == "\0")) {

1386 return (err)

1387 }

1389 return (nkdir(dir, node))

1390 }

1393 voi d

1394 dprintf(const char *fnt, ...)

1395 {

1397 va_li st ap;

1398 const char *p

1399 char nsg[BUFSI Z] ;

1400 char *errnsg = strerror(errno)
1401 char *s;

1403 if (rmm.debug == 0) {

1404 return

1405 1

1407 (void) nenset(nsg, 0, BUFSIZ);

1409 /* scan for %n and replace with errno nmsg */
1410 s = &msg[strlen(nsg)]

1411 p = fnt;

1413 while (* p 1="\0") {

1414 ((p=="%) & (*(p+l) == "'m)) {
1415 (v0|d) strcat(s, errmsg)
1416 p += 2;

1417 s += strlen(errnsg)

1418 conti nue

1419 }

1420 *S++ = *p++

1421 1

1422 *s = '\0; /* don't forget the null byte */
1424 va_start(ap, fnt);

1425 (void) vfprintf(stderr, nsg, ap)

1426 va_end(ap)

1427 }

