
new/usr/src/head/uuid/uuid.h 1

**
 2790 Wed Apr 9 02:10:57 2014
new/usr/src/head/uuid/uuid.h
4118 libuuid should provide uuid_unparse_{upper,lower} functions
Reviewed by: Serghei Samsi <sscdvp@gmail.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Garrett D’Amore <garrett@damore.org>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License, Version 1.0 only
6 * (the "License"). You may not use this file except in compliance
7 * with the License.
8 *
9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 * or http://www.opensolaris.org/os/licensing.
11 * See the License for the specific language governing permissions
12 * and limitations under the License.
13 *
14 * When distributing Covered Code, include this CDDL HEADER in each
15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 * If applicable, add the following below this CDDL HEADER, with the
17 * fields enclosed by brackets "[]" replaced with your own identifying
18 * information: Portions Copyright [yyyy] [name of copyright owner]
19 *
20 * CDDL HEADER END
21 */
22 /*
23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 /*
28 * Copyright 2014 Andrew Stormont.
29 */

31 #endif /* ! codereview */
32 #ifndef _UUID_H
33 #define _UUID_H

27 #pragma ident "%Z%%M% %I% %E% SMI"

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 /*
40 * The copyright in this file is taken from the original Leach & Salz
41 * UUID specification, from which this implementation is derived.
42 */

44 /*
45 * Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc.
46 * Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. &
47 * Digital Equipment Corporation, Maynard, Mass. Copyright (c) 1998
48 * Microsoft. To anyone who acknowledges that this file is provided
49 * "AS IS" without any express or implied warranty: permission to use,
50 * copy, modify, and distribute this file for any purpose is hereby
51 * granted without fee, provided that the above copyright notices and
52 * this notice appears in all source code copies, and that none of the
53 * names of Open Software Foundation, Inc., Hewlett-Packard Company,
54 * or Digital Equipment Corporation be used in advertising or
55 * publicity pertaining to distribution of the software without

new/usr/src/head/uuid/uuid.h 2

56 * specific, written prior permission. Neither Open Software
57 * Foundation, Inc., Hewlett-Packard Company, Microsoft, nor Digital
58 * Equipment Corporation makes any representations about the
59 * suitability of this software for any purpose.
60 */

62 #include <sys/types.h>
63 #include <sys/uuid.h>

65 extern void uuid_generate(uuid_t);
66 extern void uuid_generate_random(uuid_t);
67 extern void uuid_generate_time(uuid_t);
68 extern void uuid_copy(uuid_t, uuid_t);
69 extern void uuid_clear(uuid_t);
70 extern void uuid_unparse(uuid_t, char *);
71 extern void uuid_unparse_lower(uuid_t, char *);
72 extern void uuid_unparse_upper(uuid_t, char *);
73 #endif /* ! codereview */
74 extern int uuid_compare(uuid_t, uuid_t);
75 extern int uuid_is_null(uuid_t);
76 extern int uuid_parse(char *, uuid_t);
77 extern time_t uuid_time(uuid_t, struct timeval *);

79 #ifdef __cplusplus
80 }
81 #endif

83 #endif /* _UUID_H */

new/usr/src/lib/libuuid/common/mapfile-vers 1

**
 1660 Wed Apr 9 02:10:57 2014
new/usr/src/lib/libuuid/common/mapfile-vers
4118 libuuid should provide uuid_unparse_{upper,lower} functions
Reviewed by: Serghei Samsi <sscdvp@gmail.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Garrett D’Amore <garrett@damore.org>
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2014 Andrew Stormont.
24 #endif /* ! codereview */
25 #

27 #
28 # MAPFILE HEADER START
29 #
30 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
31 # Object versioning must comply with the rules detailed in
32 #
33 # usr/src/lib/README.mapfiles
34 #
35 # You should not be making modifications here until you’ve read the most current
36 # copy of that file. If you need help, contact a gatekeeper for guidance.
37 #
38 # MAPFILE HEADER END
39 #

41 $mapfile_version 2

43 SYMBOL_VERSION ILLUMOS_0.1 {
44 global:
45 uuid_unparse_lower;
46 uuid_unparse_upper;
47 } SUNW_1.1;

49 #endif /* ! codereview */
50 SYMBOL_VERSION SUNW_1.1 {
51 global:
52 uuid_clear;
53 uuid_compare;
54 uuid_copy;
55 uuid_generate;
56 uuid_generate_random;
57 uuid_generate_time;

new/usr/src/lib/libuuid/common/mapfile-vers 2

58 uuid_is_null;
59 uuid_parse;
60 uuid_time;
61 uuid_unparse;
62 };

64 SYMBOL_VERSION SUNWprivate_1.1 {
65 global:
66 SUNWprivate_1.1;
67 local:
68 *;
69 };

new/usr/src/lib/libuuid/common/uuid.c 1

**
 17134 Wed Apr 9 02:10:57 2014
new/usr/src/lib/libuuid/common/uuid.c
4118 libuuid should provide uuid_unparse_{upper,lower} functions
Reviewed by: Serghei Samsi <sscdvp@gmail.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Garrett D’Amore <garrett@damore.org>
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 * Copyright 2012 Milan Jurik. All rights reserved.
25 * Copyright 2013 Joyent, Inc. All rights reserved.
26 * Copyright 2014 Andrew Stormont.
27 #endif /* ! codereview */
28 */

30 /*
31 * The copyright in this file is taken from the original Leach & Salz
32 * UUID specification, from which this implementation is derived.
33 */

35 /*
36 * Copyright (c) 1990- 1993, 1996 Open Software Foundation, Inc.
37 * Copyright (c) 1989 by Hewlett-Packard Company, Palo Alto, Ca. &
38 * Digital Equipment Corporation, Maynard, Mass. Copyright (c) 1998
39 * Microsoft. To anyone who acknowledges that this file is provided
40 * "AS IS" without any express or implied warranty: permission to use,
41 * copy, modify, and distribute this file for any purpose is hereby
42 * granted without fee, provided that the above copyright notices and
43 * this notice appears in all source code copies, and that none of the
44 * names of Open Software Foundation, Inc., Hewlett-Packard Company,
45 * or Digital Equipment Corporation be used in advertising or
46 * publicity pertaining to distribution of the software without
47 * specific, written prior permission. Neither Open Software
48 * Foundation, Inc., Hewlett-Packard Company, Microsoft, nor Digital
49 * Equipment Corporation makes any representations about the
50 * suitability of this software for any purpose.
51 */

53 /*
54 * This module is the workhorse for generating abstract
55 * UUIDs. It delegates system-specific tasks (such
56 * as obtaining the node identifier or system time)
57 * to the sysdep module.

new/usr/src/lib/libuuid/common/uuid.c 2

58 */

60 #include <ctype.h>
61 #include <sys/param.h>
62 #include <sys/stat.h>
63 #include <errno.h>
64 #include <stdio.h>
65 #include <stdlib.h>
66 #include <strings.h>
67 #include <fcntl.h>
68 #include <unistd.h>
69 #include <synch.h>
70 #include <sys/mman.h>
71 #include "uuid_misc.h"

73 shared_buffer_t *data;

75 static uuid_node_t node_id_cache;
76 static int node_init;
77 static int file_type;
78 static int fd;

80 /*
81 * The urandmtx mutex prevents multiple opens of /dev/urandom and protects the
82 * cache.
83 */
84 #define RCACHE_SIZE 65535
85 static mutex_t urandmtx;
86 static int fd_urand = -1;
87 static char rcache[RCACHE_SIZE];
88 static char *rcachep = rcache;

90 /*
91 * misc routines
92 */
93 uint16_t get_random(void);
94 void get_current_time(uuid_time_t *);

96 void struct_to_string(uuid_t, struct uuid *);
97 void string_to_struct(struct uuid *, uuid_t);
98 int get_ethernet_address(uuid_node_t *);

100 /*
101 * local functions
102 */
103 static int map_state();
104 static void format_uuid(struct uuid *, uint16_t, uuid_time_t,
105 uuid_node_t);
106 static void fill_random_bytes(uchar_t *, int);
107 static int uuid_create(struct uuid *);
108 static void gen_ethernet_address(uuid_node_t *);
109 static void revalidate_data(uuid_node_t *);

111 /*
112 * Generates a uuid based on version 1 format.
113 * Returns 0 on success and -1 on failure.
114 */
115 static int
116 uuid_create(struct uuid *uuid)
117 {
118 uuid_time_t timestamp;
119 uuid_node_t system_node;
120 int ret, non_unique = 0;

122 /*
123 * Get the system MAC address and/or cache it

new/usr/src/lib/libuuid/common/uuid.c 3

124 */
125 if (node_init) {
126 bcopy(&node_id_cache, &system_node, sizeof (uuid_node_t));
127 } else {
128 gen_ethernet_address(&system_node);
129 bcopy(&system_node, &node_id_cache, sizeof (uuid_node_t));
130 node_init = 1;
131 }

133 /*
134 * Access the state file, mmap it and initialize the shared lock.
135 * file_type tells us whether we had access to the state file or
136 * created a temporary one.
137 */
138 if (map_state() == -1)
139 return (-1);

141 /*
142 * Acquire the lock
143 */
144 for (;;) {
145 if ((ret = mutex_lock(&data->lock)) == 0)
146 break;
147 else
148 switch (ret) {
149 case EOWNERDEAD:
150 revalidate_data(&system_node);
151 (void) mutex_consistent(&data->lock);
152 (void) mutex_unlock(&data->lock);
153 break;
154 case ENOTRECOVERABLE:
155 return (ret);
156 }
157 }

159 /* State file is either new or is temporary, get a random clock seq */
160 if (data->state.clock == 0) {
161 data->state.clock = get_random();
162 non_unique++;
163 }

165 if (memcmp(&system_node, &data->state.node, sizeof (uuid_node_t)) != 0)
166 data->state.clock++;

168 get_current_time(×tamp);

170 /*
171 * If timestamp is not set or is not in the past, bump
172 * data->state.clock
173 */
174 if ((data->state.ts == 0) || (data->state.ts >= timestamp)) {
175 data->state.clock++;
176 data->state.ts = timestamp;
177 }

179 if (non_unique)
180 system_node.nodeID[0] |= 0x80;

182 /* Stuff fields into the UUID struct */
183 format_uuid(uuid, data->state.clock, timestamp, system_node);

185 (void) mutex_unlock(&data->lock);

187 return (0);
188 }

new/usr/src/lib/libuuid/common/uuid.c 4

190 /*
191 * Fills system_node with Ethernet address if available,
192 * else fills random numbers
193 */
194 static void
195 gen_ethernet_address(uuid_node_t *system_node)
196 {
197 uchar_t node[6];

199 if (get_ethernet_address(system_node) != 0) {
200 fill_random_bytes(node, 6);
201 (void) memcpy(system_node->nodeID, node, 6);
202 /*
203 * use 8:0:20 with the multicast bit set
204 * to avoid namespace collisions.
205 */
206 system_node->nodeID[0] = 0x88;
207 system_node->nodeID[1] = 0x00;
208 system_node->nodeID[2] = 0x20;
209 }
210 }

212 /*
213 * Formats a UUID, given the clock_seq timestamp, and node address.
214 * Fills in passed-in pointer with the resulting uuid.
215 */
216 static void
217 format_uuid(struct uuid *uuid, uint16_t clock_seq,
218 uuid_time_t timestamp, uuid_node_t node)
219 {

221 /*
222 * First set up the first 60 bits from the timestamp
223 */
224 uuid->time_low = (uint32_t)(timestamp & 0xFFFFFFFF);
225 uuid->time_mid = (uint16_t)((timestamp >> 32) & 0xFFFF);
226 uuid->time_hi_and_version = (uint16_t)((timestamp >> 48) & 0x0FFF);

228 /*
229 * This is version 1, so say so in the UUID version field (4 bits)
230 */
231 uuid->time_hi_and_version |= (1 << 12);

233 /*
234 * Now do the clock sequence
235 */
236 uuid->clock_seq_low = clock_seq & 0xFF;

238 /*
239 * We must save the most-significant 2 bits for the reserved field
240 */
241 uuid->clock_seq_hi_and_reserved = (clock_seq & 0x3F00) >> 8;

243 /*
244 * The variant for this format is the 2 high bits set to 10,
245 * so here it is
246 */
247 uuid->clock_seq_hi_and_reserved |= 0x80;

249 /*
250 * write result to passed-in pointer
251 */
252 (void) memcpy(&uuid->node_addr, &node, sizeof (uuid->node_addr));
253 }

255 /*

new/usr/src/lib/libuuid/common/uuid.c 5

256 * Opens/creates the state file, falling back to a tmp
257 */
258 static int
259 map_state()
260 {
261 FILE *tmp;

263 /* If file’s mapped, return */
264 if (file_type != 0)
265 return (1);

267 if ((fd = open(STATE_LOCATION, O_RDWR)) < 0) {
268 file_type = TEMP_FILE;

270 if ((tmp = tmpfile()) == NULL)
271 return (-1);
272 else
273 fd = fileno(tmp);
274 } else {
275 file_type = STATE_FILE;
276 }

278 (void) ftruncate(fd, (off_t)sizeof (shared_buffer_t));

280 /* LINTED - alignment */
281 data = (shared_buffer_t *)mmap(NULL, sizeof (shared_buffer_t),
282 PROT_READ|PROT_WRITE, MAP_SHARED, fd, 0);

284 if (data == MAP_FAILED)
285 return (-1);

287 (void) mutex_init(&data->lock, USYNC_PROCESS|LOCK_ROBUST, 0);

289 (void) close(fd);

291 return (1);
292 }

294 static void
295 revalidate_data(uuid_node_t *node)
296 {
297 int i;

299 data->state.ts = 0;

301 for (i = 0; i < sizeof (data->state.node.nodeID); i++)
302 data->state.node.nodeID[i] = 0;

304 data->state.clock = 0;

306 gen_ethernet_address(node);
307 bcopy(node, &node_id_cache, sizeof (uuid_node_t));
308 node_init = 1;
309 }

311 /*
312 * Prints a nicely-formatted uuid to stdout.
313 */
314 void
315 uuid_print(struct uuid u)
316 {
317 int i;

319 (void) printf("%8.8x-%4.4x-%4.4x-%2.2x%2.2x-", u.time_low, u.time_mid,
320 u.time_hi_and_version, u.clock_seq_hi_and_reserved,
321 u.clock_seq_low);

new/usr/src/lib/libuuid/common/uuid.c 6

322 for (i = 0; i < 6; i++)
323 (void) printf("%2.2x", u.node_addr[i]);
324 (void) printf("\n");
325 }

327 /*
328 * Only called with urandmtx held.
329 * Fills/refills the cache of randomness. We know that our allocations of
330 * randomness are always much less than the total size of the cache.
331 * Tries to use /dev/urandom random number generator - if that fails for some
332 * reason, it retries MAX_RETRY times then sets rcachep to NULL so we no
333 * longer use the cache.
334 */
335 static void
336 load_cache()
337 {
338 int i, retries = 0;
339 int nbytes = RCACHE_SIZE;
340 char *buf = rcache;

342 while (nbytes > 0) {
343 i = read(fd_urand, buf, nbytes);
344 if ((i < 0) && (errno == EINTR)) {
345 continue;
346 }
347 if (i <= 0) {
348 if (retries++ == MAX_RETRY)
349 break;
350 continue;
351 }
352 nbytes -= i;
353 buf += i;
354 retries = 0;
355 }
356 if (nbytes == 0)
357 rcachep = rcache;
358 else
359 rcachep = NULL;
360 }

362 /*
363 * Fills buf with random numbers - nbytes is the number of bytes
364 * to fill-in. Tries to use cached data from the /dev/urandom random number
365 * generator - if that fails for some reason, it uses srand48(3C)
366 */
367 static void
368 fill_random_bytes(uchar_t *buf, int nbytes)
369 {
370 int i;

372 if (fd_urand == -1) {
373 (void) mutex_lock(&urandmtx);
374 /* check again now that we have the mutex */
375 if (fd_urand == -1) {
376 if ((fd_urand = open(URANDOM_PATH, O_RDONLY)) >= 0)
377 load_cache();
378 }
379 (void) mutex_unlock(&urandmtx);
380 }
381 if (fd_urand >= 0 && rcachep != NULL) {
382 int cnt;

384 (void) mutex_lock(&urandmtx);
385 if (rcachep != NULL &&
386 (rcachep + nbytes) >= (rcache + RCACHE_SIZE))
387 load_cache();

new/usr/src/lib/libuuid/common/uuid.c 7

389 if (rcachep != NULL) {
390 for (cnt = 0; cnt < nbytes; cnt++)
391 *buf++ = *rcachep++;
392 (void) mutex_unlock(&urandmtx);
393 return;
394 }
395 (void) mutex_unlock(&urandmtx);
396 }
397 for (i = 0; i < nbytes; i++) {
398 *buf++ = get_random() & 0xFF;
399 }
400 }

402 /*
403 * Unpacks the structure members in "struct uuid" to a char string "uuid_t".
404 */
405 void
406 struct_to_string(uuid_t ptr, struct uuid *uu)
407 {
408 uint_t tmp;
409 uchar_t *out = ptr;

411 tmp = uu->time_low;
412 out[3] = (uchar_t)tmp;
413 tmp >>= 8;
414 out[2] = (uchar_t)tmp;
415 tmp >>= 8;
416 out[1] = (uchar_t)tmp;
417 tmp >>= 8;
418 out[0] = (uchar_t)tmp;

420 tmp = uu->time_mid;
421 out[5] = (uchar_t)tmp;
422 tmp >>= 8;
423 out[4] = (uchar_t)tmp;

425 tmp = uu->time_hi_and_version;
426 out[7] = (uchar_t)tmp;
427 tmp >>= 8;
428 out[6] = (uchar_t)tmp;

430 tmp = uu->clock_seq_hi_and_reserved;
431 out[8] = (uchar_t)tmp;
432 tmp = uu->clock_seq_low;
433 out[9] = (uchar_t)tmp;

435 (void) memcpy(out+10, uu->node_addr, 6);

437 }

439 /*
440 * Packs the values in the "uuid_t" string into "struct uuid".
441 */
442 void
443 string_to_struct(struct uuid *uuid, uuid_t in)
444 {
445 uchar_t *ptr;
446 uint_t tmp;

448 ptr = in;

450 tmp = *ptr++;
451 tmp = (tmp << 8) | *ptr++;
452 tmp = (tmp << 8) | *ptr++;
453 tmp = (tmp << 8) | *ptr++;

new/usr/src/lib/libuuid/common/uuid.c 8

454 uuid->time_low = tmp;

456 tmp = *ptr++;
457 tmp = (tmp << 8) | *ptr++;
458 uuid->time_mid = tmp;

460 tmp = *ptr++;
461 tmp = (tmp << 8) | *ptr++;
462 uuid->time_hi_and_version = tmp;

464 tmp = *ptr++;
465 uuid->clock_seq_hi_and_reserved = tmp;

467 tmp = *ptr++;
468 uuid->clock_seq_low = tmp;

470 (void) memcpy(uuid->node_addr, ptr, 6);

472 }

474 /*
475 * Generates UUID based on DCE Version 4
476 */
477 void
478 uuid_generate_random(uuid_t uu)
479 {
480 struct uuid uuid;

482 if (uu == NULL)
483 return;

485 (void) memset(uu, 0, sizeof (uuid_t));
486 (void) memset(&uuid, 0, sizeof (struct uuid));

488 fill_random_bytes(uu, sizeof (uuid_t));
489 string_to_struct(&uuid, uu);
490 /*
491 * This is version 4, so say so in the UUID version field (4 bits)
492 */
493 uuid.time_hi_and_version |= (1 << 14);
494 /*
495 * we don’t want the bit 1 to be set also which is for version 1
496 */
497 uuid.time_hi_and_version &= VER1_MASK;

499 /*
500 * The variant for this format is the 2 high bits set to 10,
501 * so here it is
502 */
503 uuid.clock_seq_hi_and_reserved |= 0x80;

505 /*
506 * Set MSB of Ethernet address to 1 to indicate that it was generated
507 * randomly
508 */
509 uuid.node_addr[0] |= 0x80;
510 struct_to_string(uu, &uuid);
511 }

513 /*
514 * Generates UUID based on DCE Version 1.
515 */
516 void
517 uuid_generate_time(uuid_t uu)
518 {
519 struct uuid uuid;

new/usr/src/lib/libuuid/common/uuid.c 9

521 if (uu == NULL)
522 return;

524 if (uuid_create(&uuid) < 0) {
525 uuid_generate_random(uu);
526 return;
527 }

529 struct_to_string(uu, &uuid);
530 }

532 /*
533 * Creates a new UUID. The uuid will be generated based on high-quality
534 * randomness from /dev/urandom, if available by calling uuid_generate_random.
535 * If it failed to generate UUID then uuid_generate will call
536 * uuid_generate_time.
537 */
538 void
539 uuid_generate(uuid_t uu)
540 {
541 if (uu == NULL) {
542 return;
543 }
544 if (fd_urand == -1) {
545 (void) mutex_lock(&urandmtx);
546 /* check again now that we have the mutex */
547 if (fd_urand == -1) {
548 if ((fd_urand = open(URANDOM_PATH, O_RDONLY)) >= 0)
549 load_cache();
550 }
551 (void) mutex_unlock(&urandmtx);
552 }
553 if (fd_urand >= 0) {
554 uuid_generate_random(uu);
555 } else {
556 (void) uuid_generate_time(uu);
557 }
558 }

560 /*
561 * Copies the UUID variable src to dst.
562 */
563 void
564 uuid_copy(uuid_t dst, uuid_t src)
565 {
566 (void) memcpy(dst, src, UUID_LEN);
567 }

569 /*
570 * Sets the value of the supplied uuid variable uu, to the NULL value.
571 */
572 void
573 uuid_clear(uuid_t uu)
574 {
575 (void) memset(uu, 0, UUID_LEN);
576 }

578 /*
579 * This function converts the supplied UUID uu from the internal
580 * binary format into a 36-byte string (plus trailing null char)
581 * and stores this value in the character string pointed to by out.
582 */
583 static void
584 uuid_unparse_common(uuid_t uu, char *out, boolean_t upper)
26 void

new/usr/src/lib/libuuid/common/uuid.c 10

27 uuid_unparse(uuid_t uu, char *out)
585 {
586 struct uuid uuid;
587 uint16_t clock_seq;
588 char etheraddr[13];
589 int index = 0, i;

591 /* basic sanity checking */
592 if (uu == NULL) {
593 return;
594 }

39 /* XXX user should have allocated enough memory */
40 /*
41 * if (strlen(out) < UUID_PRINTABLE_STRING_LENGTH) {
42 * return;
43 * }
44 */
596 string_to_struct(&uuid, uu);
597 clock_seq = uuid.clock_seq_hi_and_reserved;
598 clock_seq = (clock_seq << 8) | uuid.clock_seq_low;
599 for (i = 0; i < 6; i++) {
600 (void) sprintf(ðeraddr[index++], upper ? "%.2X" : "%.2x",
601 uuid.node_addr[i]);
49 (void) sprintf(ðeraddr[index++], "%.2x", uuid.node_addr[i]);
602 index++;
603 }
604 etheraddr[index] = ’\0’;

606 (void) snprintf(out, 25,
607 upper ? "%08X-%04X-%04X-%04X-" : "%08x-%04x-%04x-%04x-",
54 (void) snprintf(out, 25, "%08x-%04x-%04x-%04x-",
608 uuid.time_low, uuid.time_mid, uuid.time_hi_and_version, clock_seq);
609 (void) strlcat(out, etheraddr, UUID_PRINTABLE_STRING_LENGTH);
610 }

612 void
613 uuid_unparse_upper(uuid_t uu, char *out)
614 {
615 uuid_unparse_common(uu, out, B_TRUE);
616 }

618 void
619 uuid_unparse_lower(uuid_t uu, char *out)
620 {
621 uuid_unparse_common(uu, out, B_FALSE);
622 }

624 void
625 uuid_unparse(uuid_t uu, char *out)
626 {
627 /*
628 * Historically uuid_unparse on Solaris returns lower case,
629 * for compatibility we preserve this behaviour.
630 */
631 uuid_unparse_common(uu, out, B_FALSE);
632 }

634 #endif /* ! codereview */
635 /*
636 * The uuid_is_null function compares the value of the supplied
637 * UUID variable uu to the NULL value. If the value is equal
638 * to the NULL UUID, 1 is returned, otherwise 0 is returned.
639 */
640 int
641 uuid_is_null(uuid_t uu)

new/usr/src/lib/libuuid/common/uuid.c 11

642 {
643 int i;
644 uuid_t null_uu;

646 (void) memset(null_uu, 0, sizeof (uuid_t));
647 i = memcmp(uu, null_uu, sizeof (uuid_t));
648 if (i == 0) {
649 /* uu is NULL uuid */
650 return (1);
651 } else {
652 return (0);
653 }
654 }

656 /*
657 * uuid_parse converts the UUID string given by ’in’ into the
658 * internal uuid_t format. The input UUID is a string of the form
659 * cefa7a9c-1dd2-11b2-8350-880020adbeef in printf(3C) format.
660 * Upon successfully parsing the input string, UUID is stored
661 * in the location pointed to by uu
662 */
663 int
664 uuid_parse(char *in, uuid_t uu)
665 {

667 char *ptr, buf[3];
668 int i;
669 struct uuid uuid;
670 uint16_t clock_seq;

672 /* do some sanity checking */
673 if ((strlen(in) != 36) || (uu == NULL) || (in[36] != ’\0’)) {
674 return (-1);
675 }

677 ptr = in;
678 for (i = 0; i < 36; i++, ptr++) {
679 if ((i == 8) || (i == 13) || (i == 18) || (i == 23)) {
680 if (*ptr != ’-’) {
681 return (-1);
682 }
683 } else {
684 if (!isxdigit(*ptr)) {
685 return (-1);
686 }
687 }
688 }

690 uuid.time_low = strtoul(in, NULL, 16);
691 uuid.time_mid = strtoul(in+9, NULL, 16);
692 uuid.time_hi_and_version = strtoul(in+14, NULL, 16);
693 clock_seq = strtoul(in+19, NULL, 16);
694 uuid.clock_seq_hi_and_reserved = (clock_seq & 0xFF00) >> 8;
695 uuid.clock_seq_low = (clock_seq & 0xFF);

697 ptr = in+24;
698 buf[2] = ’\0’;
699 for (i = 0; i < 6; i++) {
700 buf[0] = *ptr++;
701 buf[1] = *ptr++;
702 uuid.node_addr[i] = strtoul(buf, NULL, 16);
703 }
704 struct_to_string(uu, &uuid);
705 return (0);
706 }

new/usr/src/lib/libuuid/common/uuid.c 12

708 /*
709 * uuid_time extracts the time at which the supplied UUID uu
710 * was created. This function can only extract the creation
711 * time for UUIDs created with the uuid_generate_time function.
712 * The time at which the UUID was created, in seconds and
713 * microseconds since the epoch is stored in the location
714 * pointed to by ret_tv.
715 */
716 time_t
717 uuid_time(uuid_t uu, struct timeval *ret_tv)
718 {
719 struct uuid uuid;
720 uint_t high;
721 struct timeval tv;
722 u_longlong_t clock_reg;
723 uint_t tmp;
724 uint8_t clk;

726 string_to_struct(&uuid, uu);
727 tmp = (uuid.time_hi_and_version & 0xF000) >> 12;
728 clk = uuid.clock_seq_hi_and_reserved;

730 /* check if uu is NULL, Version = 1 of DCE and Variant = 0b10x */
731 if ((uu == NULL) || ((tmp & 0x01) != 0x01) || ((clk & 0x80) != 0x80)) {
732 return (-1);
733 }
734 high = uuid.time_mid | ((uuid.time_hi_and_version & 0xFFF) << 16);
735 clock_reg = uuid.time_low | ((u_longlong_t)high << 32);

737 clock_reg -= (((u_longlong_t)0x01B21DD2) << 32) + 0x13814000;
738 tv.tv_sec = clock_reg / 10000000;
739 tv.tv_usec = (clock_reg % 10000000) / 10;

741 if (ret_tv) {
742 *ret_tv = tv;
743 }

745 return (tv.tv_sec);
746 }

new/usr/src/man/man3uuid/Makefile 1

**
 1557 Wed Apr 9 02:10:57 2014
new/usr/src/man/man3uuid/Makefile
4118 libuuid should provide uuid_unparse_{upper,lower} functions
Reviewed by: Serghei Samsi <sscdvp@gmail.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Garrett D’Amore <garrett@damore.org>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011, Richard Lowe
14 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
15 # Copyright 2014 Andrew Stormont.
16 #endif /* ! codereview */
17 #

19 include $(SRC)/Makefile.master

21 MANSECT= 3uuid

23 MANFILES= uuid_clear.3uuid

25 MANLINKS= uuid_compare.3uuid \
26 uuid_copy.3uuid \
27 uuid_generate.3uuid \
28 uuid_generate_random.3uuid \
29 uuid_generate_time.3uuid \
30 uuid_is_null.3uuid \
31 uuid_parse.3uuid \
32 uuid_time.3uuid \
33 uuid_unparse.3uuid \
34 uuid_unparse_lower.3uuid \
35 uuid_unparse_upper.3uuid
15 uuid_unparse.3uuid

37 uuid_compare.3uuid := LINKSRC = uuid_clear.3uuid
38 uuid_copy.3uuid := LINKSRC = uuid_clear.3uuid
39 uuid_generate.3uuid := LINKSRC = uuid_clear.3uuid
40 uuid_generate_random.3uuid := LINKSRC = uuid_clear.3uuid
41 uuid_generate_time.3uuid := LINKSRC = uuid_clear.3uuid
42 uuid_is_null.3uuid := LINKSRC = uuid_clear.3uuid
43 uuid_parse.3uuid := LINKSRC = uuid_clear.3uuid
44 uuid_time.3uuid := LINKSRC = uuid_clear.3uuid
45 uuid_unparse.3uuid := LINKSRC = uuid_clear.3uuid
46 uuid_unparse_lower.3uuid := LINKSRC = uuid_clear.3uuid
47 uuid_unparse_upper.3uuid := LINKSRC = uuid_clear.3uuid
48 #endif /* ! codereview */

50 .KEEP_STATE:

52 include $(SRC)/man/Makefile.man

54 install: $(ROOTMANFILES) $(ROOTMANLINKS)

new/usr/src/man/man3uuid/uuid_clear.3uuid 1

**
 6061 Wed Apr 9 02:10:57 2014
new/usr/src/man/man3uuid/uuid_clear.3uuid
4118 libuuid should provide uuid_unparse_{upper,lower} functions
Reviewed by: Serghei Samsi <sscdvp@gmail.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Garrett D’Amore <garrett@damore.org>
**

1 ’\" te
2 .\" Copyright (c) 2006, Sun Microsystems, Inc. All Rights Reserved.
3 .\" Copyright 2014 Andrew Stormont.
4 #endif /* ! codereview */
5 .\" The contents of this file are subject to the terms of the Common Development
6 .\" You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE or http:
7 .\" When distributing Covered Code, include this CDDL HEADER in each file and in
8 .TH UUID_CLEAR 3UUID "Apr 9, 2014"
3 .TH UUID_CLEAR 3UUID "Jan 16, 2006"
9 .SH NAME

10 uuid_clear, uuid_compare, uuid_copy, uuid_generate, uuid_generate_random,
11 uuid_generate_time, uuid_is_null, uuid_parse, uuid_time, uuid_unparse,
12 uuid_unparse_lower, uuid_unparse_upper \- universally unique identifier (UUID)
13 operations
6 uuid_generate_time, uuid_is_null, uuid_parse, uuid_time, uuid_unparse \-
7 universally unique identifier (UUID) operations
14 .SH SYNOPSIS
15 .LP
16 .nf
17 cc [\fIflag \&.\|.\|.\fR] \fIfile\fR\&.\|.\|. \fB-luuid\fR [\fIlibrary \&.\|.
18 #include <uuid/uuid.h>

20 \fBvoid\fR \fBuuid_clear\fR(\fBuuid_t\fR \fIuu\fR);
21 .fi

23 .LP
24 .nf
25 \fBint\fR \fBuuid_compare\fR(\fBuuid_t\fR \fIuu1\fR, \fBuuid_t\fR \fIuu2\fR);
26 .fi

28 .LP
29 .nf
30 \fBvoid\fR \fBuuid_copy\fR(\fBuuid_t\fR \fIdst\fR, \fBuuid_t\fR \fIsrc\fR);
31 .fi

33 .LP
34 .nf
35 \fBvoid\fR \fBuuid_generate\fR(\fBuuid_t\fR \fIout\fR);
36 .fi

38 .LP
39 .nf
40 \fBvoid\fR \fBuuid_generate_random\fR(\fBuuid_t\fR \fIout\fR);
41 .fi

43 .LP
44 .nf
45 \fBvoid\fR \fBuuid_generate_time\fR(\fBuuid_t\fR \fIout\fR);
46 .fi

48 .LP
49 .nf
50 \fBint\fR \fBuuid_is_null\fR(\fBuuid_t\fR \fIuu\fR);
51 .fi

53 .LP
54 .nf

new/usr/src/man/man3uuid/uuid_clear.3uuid 2

55 \fBint\fR \fBuuid_parse\fR(\fBchar *\fR\fIin\fR, \fBuuid_t\fR \fIuu\fR);
56 .fi

58 .LP
59 .nf
60 \fBtime_t\fR \fBuuid_time\fR(\fBuuid_t\fR \fIuu\fR, \fBstruct timeval *\fR\fIret
61 .fi

63 .LP
64 .nf
65 \fBvoid\fR \fBuuid_unparse\fR(\fBuuid_t\fR \fIuu\fR, \fBchar *\fR\fIout\fR);
66 .fi

68 .LP
69 .nf
70 \fBvoid\fR \fBuuid_unparse_lower\fR(\fBuuid_t\fR \fIuu\fR, \fBchar *\fR\fIout\fR
71 .fi

73 .LP
74 .nf
75 \fBvoid\fR \fBuuid_unparse_upper\fR(\fBuuid_t\fR \fIuu\fR, \fBchar *\fR\fIout\fR
76 .fi

78 #endif /* ! codereview */
79 .SH DESCRIPTION
80 .sp
81 .LP
82 The \fBuuid_clear()\fR function sets the value of the specified universally
83 unique identifier (UUID) variable \fIuu\fR to the \fINULL\fR value.
84 .sp
85 .LP
86 The \fBuuid_compare()\fR function compares the two specified UUID variables
87 \fIuu1\fR and \fIuu2\fR to each other. It returns an integer less than, equal
88 to, or greater than zero if \fIuu1\fR is found to be, respectively,
89 lexicographically less than, equal, or greater than \fIuu2\fR.
90 .sp
91 .LP
92 The \fBuuid_copy()\fR function copies the UUID variable \fIsrc\fR to \fIdst\fR.
93 .sp
94 .LP
95 The \fBuuid_generate()\fR function creates a new UUID that is generated based
96 on high-quality randomness from \fB/dev/urandom\fR, if available. If
97 \fB/dev/urandom\fR is not available, \fBuuid_generate()\fR calls
98 \fBuuid_generate_time()\fR. Because the use of this algorithm provides
99 information about when and where the UUID was generated, it could cause privacy
100 problems for some applications.
101 .sp
102 .LP
103 The \fBuuid_generate_random()\fR function produces a UUID with a random or
104 pseudo-randomly generated time and Ethernet MAC address that corresponds to a
105 DCE version 4 UUID.
106 .sp
107 .LP
108 The \fBuuid_generate_time()\fR function uses the current time and the local
109 Ethernet MAC address (if available, otherwise a MAC address is fabricated) that
110 corresponds to a DCE version 1 UUID. If the UUID is not guaranteed to be
111 unique, the multicast bit is set (the high-order bit of octet number 10).
112 .sp
113 .LP
114 The \fBuuid_is_null()\fR function compares the value of the specified UUID
115 variable \fIuu\fR to the \fINULL\fR value. If the value is equal to the
116 \fINULL\fR UUID, 1 is returned. Otherwise 0 is returned.
117 .sp
118 .LP
119 The \fBuuid_parse()\fR function converts the UUID string specified by \fIin\fR
120 to the internal \fBuuid_t\fR format. The input UUID is a string of the form

new/usr/src/man/man3uuid/uuid_clear.3uuid 3

121 \fBcefa7a9c-1dd2-11b2-8350-880020adbeef\fR. In \fBprintf\fR(3C) format, the
122 string is "\fB%08x-%04x-%04x-%04x-%012x\fR", 36 bytes plus the trailing null
123 character. If the input string is parsed successfully, \fB0\fR is returned and
124 the UUID is stored in the location pointed to by \fIuu\fR. Otherwise \fB-1\fR
125 is returned.
126 .sp
127 .LP
128 The \fBuuid_time()\fR function extracts the time at which the specified UUID
129 \fIuu\fR was created. Since the UUID creation time is encoded within the UUID,
130 this function can reasonably be expected to extract the creation time only for
131 UUIDs created with the \fBuuid_generate_time()\fR function. The time at which
132 the UUID was created, in seconds since January 1, 1970 GMT (the epoch), is
133 returned (see \fBtime\fR(2)). The time at which the UUID was created, in
134 seconds and microseconds since the epoch is also stored in the location pointed
135 to by \fBret_tv\fR (see \fBgettimeofday\fR(3C)).
136 .sp
137 .LP
138 The \fBuuid_unparse()\fR and \fBuuid_unparse_lower()\fR functions convert the
139 specified UUID \fIuu\fR from the internal binary format to a lower case string
140 of the length defined in the \fBuuid.h\fR macro,
141 \fBUUID_PRINTABLE_STRING_LENGTH\fR, which includes the trailing null character.
142 The resulting value is stored in the character string pointed to by \fIout\fR.
143 .sp
144 .LP
145 The \fBuuid_unparse_upper()\fR function converts the specified UUID \fIuu\fR
146 from the internal binary format to a upper case string of the length defined in
147 the \fBuuid.h\fR macro, \fBUUID_PRINTABLE_STRING_LENGTH\fR, which includes the
148 trailing null character. The resulting value is stored in the character string
149 pointed to by \fIout\fR.
62 The \fBuuid_unparse()\fR function converts the specified UUID \fIuu\fR from the
63 internal binary format to a string of the length defined in the \fBuuid.h\fR
64 macro, \fBUUID_PRINTABLE_STRING_LENGTH\fR, which includes the trailing null
65 character. The resulting value is stored in the character string pointed to by
66 \fIout\fR.
150 .SH ATTRIBUTES
151 .sp
152 .LP
153 See \fBattributes\fR(5) for descriptions of the following attributes:
154 .sp

156 .sp
157 .TS
158 box;
159 c | c
160 l | l .
161 ATTRIBUTE TYPE ATTRIBUTE VALUE
162 _
163 Interface Stability Evolving
164 _
165 MT-Level Safe
166 .TE

168 .SH SEE ALSO
169 .sp
170 .LP
171 \fBinetd\fR(1M), \fBtime\fR(2), \fBgettimeofday\fR(3C), \fBlibuuid\fR(3LIB),
172 \fBprintf\fR(3C), \fBattributes\fR(5)

new/usr/src/pkg/manifests/system-library.man3uuid.inc 1

**
 1462 Wed Apr 9 02:10:58 2014
new/usr/src/pkg/manifests/system-library.man3uuid.inc
4118 libuuid should provide uuid_unparse_{upper,lower} functions
Reviewed by: Serghei Samsi <sscdvp@gmail.com>
Reviewed by: Josef ’Jeff’ Sipek <jeffpc@josefsipek.net>
Reviewed by: Robert Mustacchi <rm@joyent.com>
Reviewed by: Garrett D’Amore <garrett@damore.org>
**

1 #
2 # This file and its contents are supplied under the terms of the
3 # Common Development and Distribution License ("CDDL"), version 1.0.
4 # You may only use this file in accordance with the terms of version
5 # 1.0 of the CDDL.
6 #
7 # A full copy of the text of the CDDL should have accompanied this
8 # source. A copy of the CDDL is also available via the Internet
9 # at http://www.illumos.org/license/CDDL.

10 #

12 #
13 # Copyright 2011, Richard Lowe
14 # Copyright 2012 Nexenta Systems, Inc. All rights reserved.
15 # Copyright 2014 Andrew Stormont.
16 #endif /* ! codereview */
17 #

19 file path=usr/share/man/man3uuid/uuid_clear.3uuid
20 link path=usr/share/man/man3uuid/uuid_compare.3uuid target=uuid_clear.3uuid
21 link path=usr/share/man/man3uuid/uuid_copy.3uuid target=uuid_clear.3uuid
22 link path=usr/share/man/man3uuid/uuid_generate.3uuid target=uuid_clear.3uuid
23 link path=usr/share/man/man3uuid/uuid_generate_random.3uuid \
24 target=uuid_clear.3uuid
25 link path=usr/share/man/man3uuid/uuid_generate_time.3uuid \
26 target=uuid_clear.3uuid
27 link path=usr/share/man/man3uuid/uuid_is_null.3uuid target=uuid_clear.3uuid
28 link path=usr/share/man/man3uuid/uuid_parse.3uuid target=uuid_clear.3uuid
29 link path=usr/share/man/man3uuid/uuid_time.3uuid target=uuid_clear.3uuid
30 link path=usr/share/man/man3uuid/uuid_unparse.3uuid target=uuid_clear.3uuid
31 link path=usr/share/man/man3uuid/uuid_unparse_lower.3uuid \
32 target=uuid_clear.3uuid
33 link path=usr/share/man/man3uuid/uuid_unparse_upper.3uuid \
34 target=uuid_clear.3uuid
35 #endif /* ! codereview */

