1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* 27 * Kstat.xs is a Perl XS (eXStension module) that makes the Solaris 28 * kstat(3KSTAT) facility available to Perl scripts. Kstat is a general-purpose 29 * mechanism for providing kernel statistics to users. The Solaris API is 30 * function-based (see the manpage for details), but for ease of use in Perl 31 * scripts this module presents the information as a nested hash data structure. 32 * It would be too inefficient to read every kstat in the system, so this module 33 * uses the Perl TIEHASH mechanism to implement a read-on-demand semantic, which 34 * only reads and updates kstats as and when they are actually accessed. 35 */ 36 37 /* 38 * Ignored raw kstats. 39 * 40 * Some raw kstats are ignored by this module, these are listed below. The 41 * most common reason is that the kstats are stored as arrays and the ks_ndata 42 * and/or ks_data_size fields are invalid. In this case it is impossible to 43 * know how many records are in the array, so they can't be read. 44 * 45 * unix:*:sfmmu_percpu_stat 46 * This is stored as an array with one entry per cpu. Each element is of type 47 * struct sfmmu_percpu_stat. The ks_ndata and ks_data_size fields are bogus. 48 * 49 * ufs directio:*:UFS DirectIO Stats 50 * The structure definition used for these kstats (ufs_directio_kstats) is in a 51 * C file (uts/common/fs/ufs/ufs_directio.c) rather than a header file, so it 52 * isn't accessible. 53 * 54 * qlc:*:statistics 55 * This is a third-party driver for which we don't have source. 56 * 57 * mm:*:phys_installed 58 * This is stored as an array of uint64_t, with each pair of values being the 59 * (address, size) of a memory segment. The ks_ndata and ks_data_size fields 60 * are both zero. 61 * 62 * sockfs:*:sock_unix_list 63 * This is stored as an array with one entry per active socket. Each element 64 * is of type struct k_sockinfo. The ks_ndata and ks_data_size fields are both 65 * zero. 66 * 67 * Note that the ks_ndata and ks_data_size of many non-array raw kstats are 68 * also incorrect. The relevant assertions are therefore commented out in the 69 * appropriate raw kstat read routines. 70 */ 71 72 /* Kstat related includes */ 73 #include <libgen.h> 74 #include <kstat.h> 75 #include <sys/var.h> 76 #include <sys/utsname.h> 77 #include <sys/sysinfo.h> 78 #include <sys/flock.h> 79 #include <sys/dnlc.h> 80 #include <nfs/nfs.h> 81 #include <nfs/nfs_clnt.h> 82 83 /* Ultra-specific kstat includes */ 84 #ifdef __sparc 85 #include <vm/hat_sfmmu.h> /* from /usr/platform/sun4u/include */ 86 #include <sys/simmstat.h> /* from /usr/platform/sun4u/include */ 87 #include <sys/sysctrl.h> /* from /usr/platform/sun4u/include */ 88 #include <sys/fhc.h> /* from /usr/include */ 89 #endif 90 91 /* 92 * Solaris #defines SP, which conflicts with the perl definition of SP 93 * We don't need the Solaris one, so get rid of it to avoid warnings 94 */ 95 #undef SP 96 97 /* Perl XS includes */ 98 #include "EXTERN.h" 99 #include "perl.h" 100 #include "XSUB.h" 101 102 /* Debug macros */ 103 #define DEBUG_ID "Sun::Solaris::Kstat" 104 #ifdef KSTAT_DEBUG 105 #define PERL_ASSERT(EXP) \ 106 ((void)((EXP) || (croak("%s: assertion failed at %s:%d: %s", \ 107 DEBUG_ID, __FILE__, __LINE__, #EXP), 0), 0)) 108 #define PERL_ASSERTMSG(EXP, MSG) \ 109 ((void)((EXP) || (croak(DEBUG_ID ": " MSG), 0), 0)) 110 #else 111 #define PERL_ASSERT(EXP) ((void)0) 112 #define PERL_ASSERTMSG(EXP, MSG) ((void)0) 113 #endif 114 115 /* Macros for saving the contents of KSTAT_RAW structures */ 116 #if defined(HAS_QUAD) && defined(USE_64_BIT_INT) 117 #define NEW_IV(V) \ 118 (newSViv((IVTYPE) V)) 119 #define NEW_UV(V) \ 120 (newSVuv((UVTYPE) V)) 121 #else 122 #define NEW_IV(V) \ 123 (V >= IV_MIN && V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V)) 124 #if defined(UVTYPE) 125 #define NEW_UV(V) \ 126 (V <= UV_MAX ? newSVuv((UVTYPE) V) : newSVnv((NVTYPE) V)) 127 # else 128 #define NEW_UV(V) \ 129 (V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V)) 130 #endif 131 #endif 132 #define NEW_HRTIME(V) \ 133 newSVnv((NVTYPE) (V / 1000000000.0)) 134 135 #define SAVE_FNP(H, F, K) \ 136 hv_store(H, K, sizeof (K) - 1, newSViv((IVTYPE)(uintptr_t)&F), 0) 137 #define SAVE_STRING(H, S, K, SS) \ 138 hv_store(H, #K, sizeof (#K) - 1, \ 139 newSVpvn(S->K, SS ? strlen(S->K) : sizeof(S->K)), 0) 140 #define SAVE_INT32(H, S, K) \ 141 hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0) 142 #define SAVE_UINT32(H, S, K) \ 143 hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0) 144 #define SAVE_INT64(H, S, K) \ 145 hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0) 146 #define SAVE_UINT64(H, S, K) \ 147 hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0) 148 #define SAVE_HRTIME(H, S, K) \ 149 hv_store(H, #K, sizeof (#K) - 1, NEW_HRTIME(S->K), 0) 150 151 /* Private structure used for saving kstat info in the tied hashes */ 152 typedef struct { 153 char read; /* Kstat block has been read before */ 154 char valid; /* Kstat still exists in kstat chain */ 155 char strip_str; /* Strip KSTAT_DATA_CHAR fields */ 156 kstat_ctl_t *kstat_ctl; /* Handle returned by kstat_open */ 157 kstat_t *kstat; /* Handle used by kstat_read */ 158 } KstatInfo_t; 159 160 /* typedef for apply_to_ties callback functions */ 161 typedef int (*ATTCb_t)(HV *, void *); 162 163 /* typedef for raw kstat reader functions */ 164 typedef void (*kstat_raw_reader_t)(HV *, kstat_t *, int); 165 166 /* Hash of "module:name" to KSTAT_RAW read functions */ 167 static HV *raw_kstat_lookup; 168 169 /* 170 * Kstats come in two flavours, named and raw. Raw kstats are just C structs, 171 * so we need a function per raw kstat to convert the C struct into the 172 * corresponding perl hash. All such conversion functions are in the following 173 * section. 174 */ 175 176 /* 177 * Definitions in /usr/include/sys/cpuvar.h and /usr/include/sys/sysinfo.h 178 */ 179 180 static void 181 save_cpu_stat(HV *self, kstat_t *kp, int strip_str) 182 { 183 cpu_stat_t *statp; 184 cpu_sysinfo_t *sysinfop; 185 cpu_syswait_t *syswaitp; 186 cpu_vminfo_t *vminfop; 187 188 /* PERL_ASSERT(kp->ks_ndata == 1); */ 189 PERL_ASSERT(kp->ks_data_size == sizeof (cpu_stat_t)); 190 statp = (cpu_stat_t *)(kp->ks_data); 191 sysinfop = &statp->cpu_sysinfo; 192 syswaitp = &statp->cpu_syswait; 193 vminfop = &statp->cpu_vminfo; 194 195 hv_store(self, "idle", 4, NEW_UV(sysinfop->cpu[CPU_IDLE]), 0); 196 hv_store(self, "user", 4, NEW_UV(sysinfop->cpu[CPU_USER]), 0); 197 hv_store(self, "kernel", 6, NEW_UV(sysinfop->cpu[CPU_KERNEL]), 0); 198 hv_store(self, "wait", 4, NEW_UV(sysinfop->cpu[CPU_WAIT]), 0); 199 hv_store(self, "wait_io", 7, NEW_UV(sysinfop->wait[W_IO]), 0); 200 hv_store(self, "wait_swap", 9, NEW_UV(sysinfop->wait[W_SWAP]), 0); 201 hv_store(self, "wait_pio", 8, NEW_UV(sysinfop->wait[W_PIO]), 0); 202 SAVE_UINT32(self, sysinfop, bread); 203 SAVE_UINT32(self, sysinfop, bwrite); 204 SAVE_UINT32(self, sysinfop, lread); 205 SAVE_UINT32(self, sysinfop, lwrite); 206 SAVE_UINT32(self, sysinfop, phread); 207 SAVE_UINT32(self, sysinfop, phwrite); 208 SAVE_UINT32(self, sysinfop, pswitch); 209 SAVE_UINT32(self, sysinfop, trap); 210 SAVE_UINT32(self, sysinfop, intr); 211 SAVE_UINT32(self, sysinfop, syscall); 212 SAVE_UINT32(self, sysinfop, sysread); 213 SAVE_UINT32(self, sysinfop, syswrite); 214 SAVE_UINT32(self, sysinfop, sysfork); 215 SAVE_UINT32(self, sysinfop, sysvfork); 216 SAVE_UINT32(self, sysinfop, sysexec); 217 SAVE_UINT32(self, sysinfop, readch); 218 SAVE_UINT32(self, sysinfop, writech); 219 SAVE_UINT32(self, sysinfop, rcvint); 220 SAVE_UINT32(self, sysinfop, xmtint); 221 SAVE_UINT32(self, sysinfop, mdmint); 222 SAVE_UINT32(self, sysinfop, rawch); 223 SAVE_UINT32(self, sysinfop, canch); 224 SAVE_UINT32(self, sysinfop, outch); 225 SAVE_UINT32(self, sysinfop, msg); 226 SAVE_UINT32(self, sysinfop, sema); 227 SAVE_UINT32(self, sysinfop, namei); 228 SAVE_UINT32(self, sysinfop, ufsiget); 229 SAVE_UINT32(self, sysinfop, ufsdirblk); 230 SAVE_UINT32(self, sysinfop, ufsipage); 231 SAVE_UINT32(self, sysinfop, ufsinopage); 232 SAVE_UINT32(self, sysinfop, inodeovf); 233 SAVE_UINT32(self, sysinfop, fileovf); 234 SAVE_UINT32(self, sysinfop, procovf); 235 SAVE_UINT32(self, sysinfop, intrthread); 236 SAVE_UINT32(self, sysinfop, intrblk); 237 SAVE_UINT32(self, sysinfop, idlethread); 238 SAVE_UINT32(self, sysinfop, inv_swtch); 239 SAVE_UINT32(self, sysinfop, nthreads); 240 SAVE_UINT32(self, sysinfop, cpumigrate); 241 SAVE_UINT32(self, sysinfop, xcalls); 242 SAVE_UINT32(self, sysinfop, mutex_adenters); 243 SAVE_UINT32(self, sysinfop, rw_rdfails); 244 SAVE_UINT32(self, sysinfop, rw_wrfails); 245 SAVE_UINT32(self, sysinfop, modload); 246 SAVE_UINT32(self, sysinfop, modunload); 247 SAVE_UINT32(self, sysinfop, bawrite); 248 #ifdef STATISTICS /* see header file */ 249 SAVE_UINT32(self, sysinfop, rw_enters); 250 SAVE_UINT32(self, sysinfop, win_uo_cnt); 251 SAVE_UINT32(self, sysinfop, win_uu_cnt); 252 SAVE_UINT32(self, sysinfop, win_so_cnt); 253 SAVE_UINT32(self, sysinfop, win_su_cnt); 254 SAVE_UINT32(self, sysinfop, win_suo_cnt); 255 #endif 256 257 SAVE_INT32(self, syswaitp, iowait); 258 SAVE_INT32(self, syswaitp, swap); 259 SAVE_INT32(self, syswaitp, physio); 260 261 SAVE_UINT32(self, vminfop, pgrec); 262 SAVE_UINT32(self, vminfop, pgfrec); 263 SAVE_UINT32(self, vminfop, pgin); 264 SAVE_UINT32(self, vminfop, pgpgin); 265 SAVE_UINT32(self, vminfop, pgout); 266 SAVE_UINT32(self, vminfop, pgpgout); 267 SAVE_UINT32(self, vminfop, swapin); 268 SAVE_UINT32(self, vminfop, pgswapin); 269 SAVE_UINT32(self, vminfop, swapout); 270 SAVE_UINT32(self, vminfop, pgswapout); 271 SAVE_UINT32(self, vminfop, zfod); 272 SAVE_UINT32(self, vminfop, dfree); 273 SAVE_UINT32(self, vminfop, scan); 274 SAVE_UINT32(self, vminfop, rev); 275 SAVE_UINT32(self, vminfop, hat_fault); 276 SAVE_UINT32(self, vminfop, as_fault); 277 SAVE_UINT32(self, vminfop, maj_fault); 278 SAVE_UINT32(self, vminfop, cow_fault); 279 SAVE_UINT32(self, vminfop, prot_fault); 280 SAVE_UINT32(self, vminfop, softlock); 281 SAVE_UINT32(self, vminfop, kernel_asflt); 282 SAVE_UINT32(self, vminfop, pgrrun); 283 SAVE_UINT32(self, vminfop, execpgin); 284 SAVE_UINT32(self, vminfop, execpgout); 285 SAVE_UINT32(self, vminfop, execfree); 286 SAVE_UINT32(self, vminfop, anonpgin); 287 SAVE_UINT32(self, vminfop, anonpgout); 288 SAVE_UINT32(self, vminfop, anonfree); 289 SAVE_UINT32(self, vminfop, fspgin); 290 SAVE_UINT32(self, vminfop, fspgout); 291 SAVE_UINT32(self, vminfop, fsfree); 292 } 293 294 /* 295 * Definitions in /usr/include/sys/var.h 296 */ 297 298 static void 299 save_var(HV *self, kstat_t *kp, int strip_str) 300 { 301 struct var *varp; 302 303 /* PERL_ASSERT(kp->ks_ndata == 1); */ 304 PERL_ASSERT(kp->ks_data_size == sizeof (struct var)); 305 varp = (struct var *)(kp->ks_data); 306 307 SAVE_INT32(self, varp, v_buf); 308 SAVE_INT32(self, varp, v_call); 309 SAVE_INT32(self, varp, v_proc); 310 SAVE_INT32(self, varp, v_maxupttl); 311 SAVE_INT32(self, varp, v_nglobpris); 312 SAVE_INT32(self, varp, v_maxsyspri); 313 SAVE_INT32(self, varp, v_clist); 314 SAVE_INT32(self, varp, v_maxup); 315 SAVE_INT32(self, varp, v_hbuf); 316 SAVE_INT32(self, varp, v_hmask); 317 SAVE_INT32(self, varp, v_pbuf); 318 SAVE_INT32(self, varp, v_sptmap); 319 SAVE_INT32(self, varp, v_maxpmem); 320 SAVE_INT32(self, varp, v_autoup); 321 SAVE_INT32(self, varp, v_bufhwm); 322 } 323 324 /* 325 * Definition in /usr/include/sys/dnlc.h 326 */ 327 328 static void 329 save_ncstats(HV *self, kstat_t *kp, int strip_str) 330 { 331 struct ncstats *ncstatsp; 332 333 /* PERL_ASSERT(kp->ks_ndata == 1); */ 334 PERL_ASSERT(kp->ks_data_size == sizeof (struct ncstats)); 335 ncstatsp = (struct ncstats *)(kp->ks_data); 336 337 SAVE_INT32(self, ncstatsp, hits); 338 SAVE_INT32(self, ncstatsp, misses); 339 SAVE_INT32(self, ncstatsp, enters); 340 SAVE_INT32(self, ncstatsp, dbl_enters); 341 SAVE_INT32(self, ncstatsp, long_enter); 342 SAVE_INT32(self, ncstatsp, long_look); 343 SAVE_INT32(self, ncstatsp, move_to_front); 344 SAVE_INT32(self, ncstatsp, purges); 345 } 346 347 /* 348 * Definition in /usr/include/sys/sysinfo.h 349 */ 350 351 static void 352 save_sysinfo(HV *self, kstat_t *kp, int strip_str) 353 { 354 sysinfo_t *sysinfop; 355 356 /* PERL_ASSERT(kp->ks_ndata == 1); */ 357 PERL_ASSERT(kp->ks_data_size == sizeof (sysinfo_t)); 358 sysinfop = (sysinfo_t *)(kp->ks_data); 359 360 SAVE_UINT32(self, sysinfop, updates); 361 SAVE_UINT32(self, sysinfop, runque); 362 SAVE_UINT32(self, sysinfop, runocc); 363 SAVE_UINT32(self, sysinfop, swpque); 364 SAVE_UINT32(self, sysinfop, swpocc); 365 SAVE_UINT32(self, sysinfop, waiting); 366 } 367 368 /* 369 * Definition in /usr/include/sys/sysinfo.h 370 */ 371 372 static void 373 save_vminfo(HV *self, kstat_t *kp, int strip_str) 374 { 375 vminfo_t *vminfop; 376 377 /* PERL_ASSERT(kp->ks_ndata == 1); */ 378 PERL_ASSERT(kp->ks_data_size == sizeof (vminfo_t)); 379 vminfop = (vminfo_t *)(kp->ks_data); 380 381 SAVE_UINT64(self, vminfop, freemem); 382 SAVE_UINT64(self, vminfop, swap_resv); 383 SAVE_UINT64(self, vminfop, swap_alloc); 384 SAVE_UINT64(self, vminfop, swap_avail); 385 SAVE_UINT64(self, vminfop, swap_free); 386 SAVE_UINT64(self, vminfop, updates); 387 } 388 389 /* 390 * Definition in /usr/include/nfs/nfs_clnt.h 391 */ 392 393 static void 394 save_nfs(HV *self, kstat_t *kp, int strip_str) 395 { 396 struct mntinfo_kstat *mntinfop; 397 398 /* PERL_ASSERT(kp->ks_ndata == 1); */ 399 PERL_ASSERT(kp->ks_data_size == sizeof (struct mntinfo_kstat)); 400 mntinfop = (struct mntinfo_kstat *)(kp->ks_data); 401 402 SAVE_STRING(self, mntinfop, mik_proto, strip_str); 403 SAVE_UINT32(self, mntinfop, mik_vers); 404 SAVE_UINT32(self, mntinfop, mik_flags); 405 SAVE_UINT32(self, mntinfop, mik_secmod); 406 SAVE_UINT32(self, mntinfop, mik_curread); 407 SAVE_UINT32(self, mntinfop, mik_curwrite); 408 SAVE_INT32(self, mntinfop, mik_timeo); 409 SAVE_INT32(self, mntinfop, mik_retrans); 410 SAVE_UINT32(self, mntinfop, mik_acregmin); 411 SAVE_UINT32(self, mntinfop, mik_acregmax); 412 SAVE_UINT32(self, mntinfop, mik_acdirmin); 413 SAVE_UINT32(self, mntinfop, mik_acdirmax); 414 hv_store(self, "lookup_srtt", 11, 415 NEW_UV(mntinfop->mik_timers[0].srtt), 0); 416 hv_store(self, "lookup_deviate", 14, 417 NEW_UV(mntinfop->mik_timers[0].deviate), 0); 418 hv_store(self, "lookup_rtxcur", 13, 419 NEW_UV(mntinfop->mik_timers[0].rtxcur), 0); 420 hv_store(self, "read_srtt", 9, 421 NEW_UV(mntinfop->mik_timers[1].srtt), 0); 422 hv_store(self, "read_deviate", 12, 423 NEW_UV(mntinfop->mik_timers[1].deviate), 0); 424 hv_store(self, "read_rtxcur", 11, 425 NEW_UV(mntinfop->mik_timers[1].rtxcur), 0); 426 hv_store(self, "write_srtt", 10, 427 NEW_UV(mntinfop->mik_timers[2].srtt), 0); 428 hv_store(self, "write_deviate", 13, 429 NEW_UV(mntinfop->mik_timers[2].deviate), 0); 430 hv_store(self, "write_rtxcur", 12, 431 NEW_UV(mntinfop->mik_timers[2].rtxcur), 0); 432 SAVE_UINT32(self, mntinfop, mik_noresponse); 433 SAVE_UINT32(self, mntinfop, mik_failover); 434 SAVE_UINT32(self, mntinfop, mik_remap); 435 SAVE_STRING(self, mntinfop, mik_curserver, strip_str); 436 } 437 438 /* 439 * The following struct => hash functions are all only present on the sparc 440 * platform, so they are all conditionally compiled depending on __sparc 441 */ 442 443 /* 444 * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h 445 */ 446 447 #ifdef __sparc 448 static void 449 save_sfmmu_global_stat(HV *self, kstat_t *kp, int strip_str) 450 { 451 struct sfmmu_global_stat *sfmmugp; 452 453 /* PERL_ASSERT(kp->ks_ndata == 1); */ 454 PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_global_stat)); 455 sfmmugp = (struct sfmmu_global_stat *)(kp->ks_data); 456 457 SAVE_INT32(self, sfmmugp, sf_tsb_exceptions); 458 SAVE_INT32(self, sfmmugp, sf_tsb_raise_exception); 459 SAVE_INT32(self, sfmmugp, sf_pagefaults); 460 SAVE_INT32(self, sfmmugp, sf_uhash_searches); 461 SAVE_INT32(self, sfmmugp, sf_uhash_links); 462 SAVE_INT32(self, sfmmugp, sf_khash_searches); 463 SAVE_INT32(self, sfmmugp, sf_khash_links); 464 SAVE_INT32(self, sfmmugp, sf_swapout); 465 SAVE_INT32(self, sfmmugp, sf_tsb_alloc); 466 SAVE_INT32(self, sfmmugp, sf_tsb_allocfail); 467 SAVE_INT32(self, sfmmugp, sf_tsb_sectsb_create); 468 SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_alloc); 469 SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_alloc); 470 SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_allocfail); 471 SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_allocfail); 472 SAVE_INT32(self, sfmmugp, sf_tteload8k); 473 SAVE_INT32(self, sfmmugp, sf_tteload64k); 474 SAVE_INT32(self, sfmmugp, sf_tteload512k); 475 SAVE_INT32(self, sfmmugp, sf_tteload4m); 476 SAVE_INT32(self, sfmmugp, sf_tteload32m); 477 SAVE_INT32(self, sfmmugp, sf_tteload256m); 478 SAVE_INT32(self, sfmmugp, sf_tsb_load8k); 479 SAVE_INT32(self, sfmmugp, sf_tsb_load4m); 480 SAVE_INT32(self, sfmmugp, sf_hblk_hit); 481 SAVE_INT32(self, sfmmugp, sf_hblk8_ncreate); 482 SAVE_INT32(self, sfmmugp, sf_hblk8_nalloc); 483 SAVE_INT32(self, sfmmugp, sf_hblk1_ncreate); 484 SAVE_INT32(self, sfmmugp, sf_hblk1_nalloc); 485 SAVE_INT32(self, sfmmugp, sf_hblk_slab_cnt); 486 SAVE_INT32(self, sfmmugp, sf_hblk_reserve_cnt); 487 SAVE_INT32(self, sfmmugp, sf_hblk_recurse_cnt); 488 SAVE_INT32(self, sfmmugp, sf_hblk_reserve_hit); 489 SAVE_INT32(self, sfmmugp, sf_get_free_success); 490 SAVE_INT32(self, sfmmugp, sf_get_free_throttle); 491 SAVE_INT32(self, sfmmugp, sf_get_free_fail); 492 SAVE_INT32(self, sfmmugp, sf_put_free_success); 493 SAVE_INT32(self, sfmmugp, sf_put_free_fail); 494 SAVE_INT32(self, sfmmugp, sf_pgcolor_conflict); 495 SAVE_INT32(self, sfmmugp, sf_uncache_conflict); 496 SAVE_INT32(self, sfmmugp, sf_unload_conflict); 497 SAVE_INT32(self, sfmmugp, sf_ism_uncache); 498 SAVE_INT32(self, sfmmugp, sf_ism_recache); 499 SAVE_INT32(self, sfmmugp, sf_recache); 500 SAVE_INT32(self, sfmmugp, sf_steal_count); 501 SAVE_INT32(self, sfmmugp, sf_pagesync); 502 SAVE_INT32(self, sfmmugp, sf_clrwrt); 503 SAVE_INT32(self, sfmmugp, sf_pagesync_invalid); 504 SAVE_INT32(self, sfmmugp, sf_kernel_xcalls); 505 SAVE_INT32(self, sfmmugp, sf_user_xcalls); 506 SAVE_INT32(self, sfmmugp, sf_tsb_grow); 507 SAVE_INT32(self, sfmmugp, sf_tsb_shrink); 508 SAVE_INT32(self, sfmmugp, sf_tsb_resize_failures); 509 SAVE_INT32(self, sfmmugp, sf_tsb_reloc); 510 SAVE_INT32(self, sfmmugp, sf_user_vtop); 511 SAVE_INT32(self, sfmmugp, sf_ctx_inv); 512 SAVE_INT32(self, sfmmugp, sf_tlb_reprog_pgsz); 513 SAVE_INT32(self, sfmmugp, sf_region_remap_demap); 514 SAVE_INT32(self, sfmmugp, sf_create_scd); 515 SAVE_INT32(self, sfmmugp, sf_join_scd); 516 SAVE_INT32(self, sfmmugp, sf_leave_scd); 517 SAVE_INT32(self, sfmmugp, sf_destroy_scd); 518 } 519 #endif 520 521 /* 522 * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h 523 */ 524 525 #ifdef __sparc 526 static void 527 save_sfmmu_tsbsize_stat(HV *self, kstat_t *kp, int strip_str) 528 { 529 struct sfmmu_tsbsize_stat *sfmmutp; 530 531 /* PERL_ASSERT(kp->ks_ndata == 1); */ 532 PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat)); 533 sfmmutp = (struct sfmmu_tsbsize_stat *)(kp->ks_data); 534 535 SAVE_INT32(self, sfmmutp, sf_tsbsz_8k); 536 SAVE_INT32(self, sfmmutp, sf_tsbsz_16k); 537 SAVE_INT32(self, sfmmutp, sf_tsbsz_32k); 538 SAVE_INT32(self, sfmmutp, sf_tsbsz_64k); 539 SAVE_INT32(self, sfmmutp, sf_tsbsz_128k); 540 SAVE_INT32(self, sfmmutp, sf_tsbsz_256k); 541 SAVE_INT32(self, sfmmutp, sf_tsbsz_512k); 542 SAVE_INT32(self, sfmmutp, sf_tsbsz_1m); 543 SAVE_INT32(self, sfmmutp, sf_tsbsz_2m); 544 SAVE_INT32(self, sfmmutp, sf_tsbsz_4m); 545 } 546 #endif 547 548 /* 549 * Definition in /usr/platform/sun4u/include/sys/simmstat.h 550 */ 551 552 #ifdef __sparc 553 static void 554 save_simmstat(HV *self, kstat_t *kp, int strip_str) 555 { 556 uchar_t *simmstatp; 557 SV *list; 558 int i; 559 560 /* PERL_ASSERT(kp->ks_ndata == 1); */ 561 PERL_ASSERT(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT); 562 563 list = newSVpv("", 0); 564 for (i = 0, simmstatp = (uchar_t *)(kp->ks_data); 565 i < SIMM_COUNT - 1; i++, simmstatp++) { 566 sv_catpvf(list, "%d,", *simmstatp); 567 } 568 sv_catpvf(list, "%d", *simmstatp); 569 hv_store(self, "status", 6, list, 0); 570 } 571 #endif 572 573 /* 574 * Used by save_temperature to make CSV lists from arrays of 575 * short temperature values 576 */ 577 578 #ifdef __sparc 579 static SV * 580 short_array_to_SV(short *shortp, int len) 581 { 582 SV *list; 583 584 list = newSVpv("", 0); 585 for (; len > 1; len--, shortp++) { 586 sv_catpvf(list, "%d,", *shortp); 587 } 588 sv_catpvf(list, "%d", *shortp); 589 return (list); 590 } 591 592 /* 593 * Definition in /usr/platform/sun4u/include/sys/fhc.h 594 */ 595 596 static void 597 save_temperature(HV *self, kstat_t *kp, int strip_str) 598 { 599 struct temp_stats *tempsp; 600 601 /* PERL_ASSERT(kp->ks_ndata == 1); */ 602 PERL_ASSERT(kp->ks_data_size == sizeof (struct temp_stats)); 603 tempsp = (struct temp_stats *)(kp->ks_data); 604 605 SAVE_UINT32(self, tempsp, index); 606 hv_store(self, "l1", 2, short_array_to_SV(tempsp->l1, L1_SZ), 0); 607 hv_store(self, "l2", 2, short_array_to_SV(tempsp->l2, L2_SZ), 0); 608 hv_store(self, "l3", 2, short_array_to_SV(tempsp->l3, L3_SZ), 0); 609 hv_store(self, "l4", 2, short_array_to_SV(tempsp->l4, L4_SZ), 0); 610 hv_store(self, "l5", 2, short_array_to_SV(tempsp->l5, L5_SZ), 0); 611 SAVE_INT32(self, tempsp, max); 612 SAVE_INT32(self, tempsp, min); 613 SAVE_INT32(self, tempsp, state); 614 SAVE_INT32(self, tempsp, temp_cnt); 615 SAVE_INT32(self, tempsp, shutdown_cnt); 616 SAVE_INT32(self, tempsp, version); 617 SAVE_INT32(self, tempsp, trend); 618 SAVE_INT32(self, tempsp, override); 619 } 620 #endif 621 622 /* 623 * Not actually defined anywhere - just a short. Yuck. 624 */ 625 626 #ifdef __sparc 627 static void 628 save_temp_over(HV *self, kstat_t *kp, int strip_str) 629 { 630 short *shortp; 631 632 /* PERL_ASSERT(kp->ks_ndata == 1); */ 633 PERL_ASSERT(kp->ks_data_size == sizeof (short)); 634 635 shortp = (short *)(kp->ks_data); 636 hv_store(self, "override", 8, newSViv(*shortp), 0); 637 } 638 #endif 639 640 /* 641 * Defined in /usr/platform/sun4u/include/sys/sysctrl.h 642 * (Well, sort of. Actually there's no structure, just a list of #defines 643 * enumerating *some* of the array indexes.) 644 */ 645 646 #ifdef __sparc 647 static void 648 save_ps_shadow(HV *self, kstat_t *kp, int strip_str) 649 { 650 uchar_t *ucharp; 651 652 /* PERL_ASSERT(kp->ks_ndata == 1); */ 653 PERL_ASSERT(kp->ks_data_size == SYS_PS_COUNT); 654 655 ucharp = (uchar_t *)(kp->ks_data); 656 hv_store(self, "core_0", 6, newSViv(*ucharp++), 0); 657 hv_store(self, "core_1", 6, newSViv(*ucharp++), 0); 658 hv_store(self, "core_2", 6, newSViv(*ucharp++), 0); 659 hv_store(self, "core_3", 6, newSViv(*ucharp++), 0); 660 hv_store(self, "core_4", 6, newSViv(*ucharp++), 0); 661 hv_store(self, "core_5", 6, newSViv(*ucharp++), 0); 662 hv_store(self, "core_6", 6, newSViv(*ucharp++), 0); 663 hv_store(self, "core_7", 6, newSViv(*ucharp++), 0); 664 hv_store(self, "pps_0", 5, newSViv(*ucharp++), 0); 665 hv_store(self, "clk_33", 6, newSViv(*ucharp++), 0); 666 hv_store(self, "clk_50", 6, newSViv(*ucharp++), 0); 667 hv_store(self, "v5_p", 4, newSViv(*ucharp++), 0); 668 hv_store(self, "v12_p", 5, newSViv(*ucharp++), 0); 669 hv_store(self, "v5_aux", 6, newSViv(*ucharp++), 0); 670 hv_store(self, "v5_p_pch", 8, newSViv(*ucharp++), 0); 671 hv_store(self, "v12_p_pch", 9, newSViv(*ucharp++), 0); 672 hv_store(self, "v3_pch", 6, newSViv(*ucharp++), 0); 673 hv_store(self, "v5_pch", 6, newSViv(*ucharp++), 0); 674 hv_store(self, "p_fan", 5, newSViv(*ucharp++), 0); 675 } 676 #endif 677 678 /* 679 * Definition in /usr/platform/sun4u/include/sys/fhc.h 680 */ 681 682 #ifdef __sparc 683 static void 684 save_fault_list(HV *self, kstat_t *kp, int strip_str) 685 { 686 struct ft_list *faultp; 687 int i; 688 char name[KSTAT_STRLEN + 7]; /* room for 999999 faults */ 689 690 /* PERL_ASSERT(kp->ks_ndata == 1); */ 691 /* PERL_ASSERT(kp->ks_data_size == sizeof (struct ft_list)); */ 692 693 for (i = 1, faultp = (struct ft_list *)(kp->ks_data); 694 i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list); 695 i++, faultp++) { 696 (void) snprintf(name, sizeof (name), "unit_%d", i); 697 hv_store(self, name, strlen(name), newSViv(faultp->unit), 0); 698 (void) snprintf(name, sizeof (name), "type_%d", i); 699 hv_store(self, name, strlen(name), newSViv(faultp->type), 0); 700 (void) snprintf(name, sizeof (name), "fclass_%d", i); 701 hv_store(self, name, strlen(name), newSViv(faultp->fclass), 0); 702 (void) snprintf(name, sizeof (name), "create_time_%d", i); 703 hv_store(self, name, strlen(name), 704 NEW_UV(faultp->create_time), 0); 705 (void) snprintf(name, sizeof (name), "msg_%d", i); 706 hv_store(self, name, strlen(name), newSVpv(faultp->msg, 0), 0); 707 } 708 } 709 #endif 710 711 /* 712 * We need to be able to find the function corresponding to a particular raw 713 * kstat. To do this we ignore the instance and glue the module and name 714 * together to form a composite key. We can then use the data in the kstat 715 * structure to find the appropriate function. We use a perl hash to manage the 716 * lookup, where the key is "module:name" and the value is a pointer to the 717 * appropriate C function. 718 * 719 * Note that some kstats include the instance number as part of the module 720 * and/or name. This could be construed as a bug. However, to work around this 721 * we omit any digits from the module and name as we build the table in 722 * build_raw_kstat_loopup(), and we remove any digits from the module and name 723 * when we look up the functions in lookup_raw_kstat_fn() 724 */ 725 726 /* 727 * This function is called when the XS is first dlopen()ed, and builds the 728 * lookup table as described above. 729 */ 730 731 static void 732 build_raw_kstat_lookup() 733 { 734 /* Create new hash */ 735 raw_kstat_lookup = newHV(); 736 737 SAVE_FNP(raw_kstat_lookup, save_cpu_stat, "cpu_stat:cpu_stat"); 738 SAVE_FNP(raw_kstat_lookup, save_var, "unix:var"); 739 SAVE_FNP(raw_kstat_lookup, save_ncstats, "unix:ncstats"); 740 SAVE_FNP(raw_kstat_lookup, save_sysinfo, "unix:sysinfo"); 741 SAVE_FNP(raw_kstat_lookup, save_vminfo, "unix:vminfo"); 742 SAVE_FNP(raw_kstat_lookup, save_nfs, "nfs:mntinfo"); 743 #ifdef __sparc 744 SAVE_FNP(raw_kstat_lookup, save_sfmmu_global_stat, 745 "unix:sfmmu_global_stat"); 746 SAVE_FNP(raw_kstat_lookup, save_sfmmu_tsbsize_stat, 747 "unix:sfmmu_tsbsize_stat"); 748 SAVE_FNP(raw_kstat_lookup, save_simmstat, "unix:simm-status"); 749 SAVE_FNP(raw_kstat_lookup, save_temperature, "unix:temperature"); 750 SAVE_FNP(raw_kstat_lookup, save_temp_over, "unix:temperature override"); 751 SAVE_FNP(raw_kstat_lookup, save_ps_shadow, "unix:ps_shadow"); 752 SAVE_FNP(raw_kstat_lookup, save_fault_list, "unix:fault_list"); 753 #endif 754 } 755 756 /* 757 * This finds and returns the raw kstat reader function corresponding to the 758 * supplied module and name. If no matching function exists, 0 is returned. 759 */ 760 761 static kstat_raw_reader_t lookup_raw_kstat_fn(char *module, char *name) 762 { 763 char key[KSTAT_STRLEN * 2]; 764 register char *f, *t; 765 SV **entry; 766 kstat_raw_reader_t fnp; 767 768 /* Copy across module & name, removing any digits - see comment above */ 769 for (f = module, t = key; *f != '\0'; f++, t++) { 770 while (*f != '\0' && isdigit(*f)) { f++; } 771 *t = *f; 772 } 773 *t++ = ':'; 774 for (f = name; *f != '\0'; f++, t++) { 775 while (*f != '\0' && isdigit(*f)) { 776 f++; 777 } 778 *t = *f; 779 } 780 *t = '\0'; 781 782 /* look up & return the function, or teturn 0 if not found */ 783 if ((entry = hv_fetch(raw_kstat_lookup, key, strlen(key), FALSE)) == 0) 784 { 785 fnp = 0; 786 } else { 787 fnp = (kstat_raw_reader_t)(uintptr_t)SvIV(*entry); 788 } 789 return (fnp); 790 } 791 792 /* 793 * This module converts the flat list returned by kstat_read() into a perl hash 794 * tree keyed on module, instance, name and statistic. The following functions 795 * provide code to create the nested hashes, and to iterate over them. 796 */ 797 798 /* 799 * Given module, instance and name keys return a pointer to the hash tied to 800 * the bottommost hash. If the hash already exists, we just return a pointer 801 * to it, otherwise we create the hash and any others also required above it in 802 * the hierarchy. The returned tiehash is blessed into the 803 * Sun::Solaris::Kstat::_Stat class, so that the appropriate TIEHASH methods are 804 * called when the bottommost hash is accessed. If the is_new parameter is 805 * non-null it will be set to TRUE if a new tie has been created, and FALSE if 806 * the tie already existed. 807 */ 808 809 static HV * 810 get_tie(SV *self, char *module, int instance, char *name, int *is_new) 811 { 812 char str_inst[11]; /* big enough for up to 10^10 instances */ 813 char *key[3]; /* 3 part key: module, instance, name */ 814 int k; 815 int new; 816 HV *hash; 817 HV *tie; 818 819 /* Create the keys */ 820 (void) snprintf(str_inst, sizeof (str_inst), "%d", instance); 821 key[0] = module; 822 key[1] = str_inst; 823 key[2] = name; 824 825 /* Iteratively descend the tree, creating new hashes as required */ 826 hash = (HV *)SvRV(self); 827 for (k = 0; k < 3; k++) { 828 SV **entry; 829 830 SvREADONLY_off(hash); 831 entry = hv_fetch(hash, key[k], strlen(key[k]), TRUE); 832 833 /* If the entry doesn't exist, create it */ 834 if (! SvOK(*entry)) { 835 HV *newhash; 836 SV *rv; 837 838 newhash = newHV(); 839 rv = newRV_noinc((SV *)newhash); 840 sv_setsv(*entry, rv); 841 SvREFCNT_dec(rv); 842 if (k < 2) { 843 SvREADONLY_on(newhash); 844 } 845 SvREADONLY_on(*entry); 846 SvREADONLY_on(hash); 847 hash = newhash; 848 new = 1; 849 850 /* Otherwise it already existed */ 851 } else { 852 SvREADONLY_on(hash); 853 hash = (HV *)SvRV(*entry); 854 new = 0; 855 } 856 } 857 858 /* Create and bless a hash for the tie, if necessary */ 859 if (new) { 860 SV *tieref; 861 HV *stash; 862 863 tie = newHV(); 864 tieref = newRV_noinc((SV *)tie); 865 stash = gv_stashpv("Sun::Solaris::Kstat::_Stat", TRUE); 866 sv_bless(tieref, stash); 867 868 /* Add TIEHASH magic */ 869 hv_magic(hash, (GV *)tieref, 'P'); 870 SvREADONLY_on(hash); 871 872 /* Otherwise, just find the existing tied hash */ 873 } else { 874 MAGIC *mg; 875 876 mg = mg_find((SV *)hash, 'P'); 877 PERL_ASSERTMSG(mg != 0, "get_tie: lost P magic"); 878 tie = (HV *)SvRV(mg->mg_obj); 879 } 880 if (is_new) { 881 *is_new = new; 882 } 883 return (tie); 884 } 885 886 /* 887 * This is an iterator function used to traverse the hash hierarchy and apply 888 * the passed function to the tied hashes at the bottom of the hierarchy. If 889 * any of the callback functions return 0, 0 is returned, otherwise 1 890 */ 891 892 static int 893 apply_to_ties(SV *self, ATTCb_t cb, void *arg) 894 { 895 HV *hash1; 896 HE *entry1; 897 long s; 898 int ret; 899 900 hash1 = (HV *)SvRV(self); 901 hv_iterinit(hash1); 902 ret = 1; 903 904 /* Iterate over each module */ 905 while (entry1 = hv_iternext(hash1)) { 906 HV *hash2; 907 HE *entry2; 908 909 hash2 = (HV *)SvRV(hv_iterval(hash1, entry1)); 910 hv_iterinit(hash2); 911 912 /* Iterate over each module:instance */ 913 while (entry2 = hv_iternext(hash2)) { 914 HV *hash3; 915 HE *entry3; 916 917 hash3 = (HV *)SvRV(hv_iterval(hash2, entry2)); 918 hv_iterinit(hash3); 919 920 /* Iterate over each module:instance:name */ 921 while (entry3 = hv_iternext(hash3)) { 922 HV *hash4; 923 MAGIC *mg; 924 HV *tie; 925 926 /* Get the tie */ 927 hash4 = (HV *)SvRV(hv_iterval(hash3, entry3)); 928 mg = mg_find((SV *)hash4, 'P'); 929 PERL_ASSERTMSG(mg != 0, 930 "apply_to_ties: lost P magic"); 931 932 /* Apply the callback */ 933 if (! cb((HV *)SvRV(mg->mg_obj), arg)) { 934 ret = 0; 935 } 936 } 937 } 938 } 939 return (ret); 940 } 941 942 /* 943 * Mark this HV as valid - used by update() when pruning deleted kstat nodes 944 */ 945 946 static int 947 set_valid(HV *self, void *arg) 948 { 949 MAGIC *mg; 950 951 mg = mg_find((SV *)self, '~'); 952 PERL_ASSERTMSG(mg != 0, "set_valid: lost ~ magic"); 953 ((KstatInfo_t *)SvPVX(mg->mg_obj))->valid = (int)(intptr_t)arg; 954 return (1); 955 } 956 957 /* 958 * Prune invalid kstat nodes. This is called when kstat_chain_update() detects 959 * that the kstat chain has been updated. This removes any hash tree entries 960 * that no longer have a corresponding kstat. If del is non-null it will be 961 * set to the keys of the deleted kstat nodes, if any. If any entries are 962 * deleted 1 will be retured, otherwise 0 963 */ 964 965 static int 966 prune_invalid(SV *self, AV *del) 967 { 968 HV *hash1; 969 HE *entry1; 970 STRLEN klen; 971 char *module, *instance, *name, *key; 972 int ret; 973 974 hash1 = (HV *)SvRV(self); 975 hv_iterinit(hash1); 976 ret = 0; 977 978 /* Iterate over each module */ 979 while (entry1 = hv_iternext(hash1)) { 980 HV *hash2; 981 HE *entry2; 982 983 module = HePV(entry1, PL_na); 984 hash2 = (HV *)SvRV(hv_iterval(hash1, entry1)); 985 hv_iterinit(hash2); 986 987 /* Iterate over each module:instance */ 988 while (entry2 = hv_iternext(hash2)) { 989 HV *hash3; 990 HE *entry3; 991 992 instance = HePV(entry2, PL_na); 993 hash3 = (HV *)SvRV(hv_iterval(hash2, entry2)); 994 hv_iterinit(hash3); 995 996 /* Iterate over each module:instance:name */ 997 while (entry3 = hv_iternext(hash3)) { 998 HV *hash4; 999 MAGIC *mg; 1000 HV *tie; 1001 1002 name = HePV(entry3, PL_na); 1003 hash4 = (HV *)SvRV(hv_iterval(hash3, entry3)); 1004 mg = mg_find((SV *)hash4, 'P'); 1005 PERL_ASSERTMSG(mg != 0, 1006 "prune_invalid: lost P magic"); 1007 tie = (HV *)SvRV(mg->mg_obj); 1008 mg = mg_find((SV *)tie, '~'); 1009 PERL_ASSERTMSG(mg != 0, 1010 "prune_invalid: lost ~ magic"); 1011 1012 /* If this is marked as invalid, prune it */ 1013 if (((KstatInfo_t *)SvPVX( 1014 (SV *)mg->mg_obj))->valid == FALSE) { 1015 SvREADONLY_off(hash3); 1016 key = HePV(entry3, klen); 1017 hv_delete(hash3, key, klen, G_DISCARD); 1018 SvREADONLY_on(hash3); 1019 if (del) { 1020 av_push(del, 1021 newSVpvf("%s:%s:%s", 1022 module, instance, name)); 1023 } 1024 ret = 1; 1025 } 1026 } 1027 1028 /* If the module:instance:name hash is empty prune it */ 1029 if (HvKEYS(hash3) == 0) { 1030 SvREADONLY_off(hash2); 1031 key = HePV(entry2, klen); 1032 hv_delete(hash2, key, klen, G_DISCARD); 1033 SvREADONLY_on(hash2); 1034 } 1035 } 1036 /* If the module:instance hash is empty prune it */ 1037 if (HvKEYS(hash2) == 0) { 1038 SvREADONLY_off(hash1); 1039 key = HePV(entry1, klen); 1040 hv_delete(hash1, key, klen, G_DISCARD); 1041 SvREADONLY_on(hash1); 1042 } 1043 } 1044 return (ret); 1045 } 1046 1047 /* 1048 * Named kstats are returned as a list of key/values. This function converts 1049 * such a list into the equivalent perl datatypes, and stores them in the passed 1050 * hash. 1051 */ 1052 1053 static void 1054 save_named(HV *self, kstat_t *kp, int strip_str) 1055 { 1056 kstat_named_t *knp; 1057 int n; 1058 SV* value; 1059 1060 for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) { 1061 switch (knp->data_type) { 1062 case KSTAT_DATA_CHAR: 1063 value = newSVpv(knp->value.c, strip_str ? 1064 strlen(knp->value.c) : sizeof (knp->value.c)); 1065 break; 1066 case KSTAT_DATA_INT32: 1067 value = newSViv(knp->value.i32); 1068 break; 1069 case KSTAT_DATA_UINT32: 1070 value = NEW_UV(knp->value.ui32); 1071 break; 1072 case KSTAT_DATA_INT64: 1073 value = NEW_UV(knp->value.i64); 1074 break; 1075 case KSTAT_DATA_UINT64: 1076 value = NEW_UV(knp->value.ui64); 1077 break; 1078 case KSTAT_DATA_STRING: 1079 if (KSTAT_NAMED_STR_PTR(knp) == NULL) 1080 value = newSVpv("null", sizeof ("null") - 1); 1081 else 1082 value = newSVpv(KSTAT_NAMED_STR_PTR(knp), 1083 KSTAT_NAMED_STR_BUFLEN(knp) -1); 1084 break; 1085 default: 1086 PERL_ASSERTMSG(0, "kstat_read: invalid data type"); 1087 break; 1088 } 1089 hv_store(self, knp->name, strlen(knp->name), value, 0); 1090 } 1091 } 1092 1093 /* 1094 * Save kstat interrupt statistics 1095 */ 1096 1097 static void 1098 save_intr(HV *self, kstat_t *kp, int strip_str) 1099 { 1100 kstat_intr_t *kintrp; 1101 int i; 1102 static char *intr_names[] = 1103 { "hard", "soft", "watchdog", "spurious", "multiple_service" }; 1104 1105 PERL_ASSERT(kp->ks_ndata == 1); 1106 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_intr_t)); 1107 kintrp = KSTAT_INTR_PTR(kp); 1108 1109 for (i = 0; i < KSTAT_NUM_INTRS; i++) { 1110 hv_store(self, intr_names[i], strlen(intr_names[i]), 1111 NEW_UV(kintrp->intrs[i]), 0); 1112 } 1113 } 1114 1115 /* 1116 * Save IO statistics 1117 */ 1118 1119 static void 1120 save_io(HV *self, kstat_t *kp, int strip_str) 1121 { 1122 kstat_io_t *kiop; 1123 1124 PERL_ASSERT(kp->ks_ndata == 1); 1125 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_io_t)); 1126 kiop = KSTAT_IO_PTR(kp); 1127 SAVE_UINT64(self, kiop, nread); 1128 SAVE_UINT64(self, kiop, nwritten); 1129 SAVE_UINT32(self, kiop, reads); 1130 SAVE_UINT32(self, kiop, writes); 1131 SAVE_HRTIME(self, kiop, wtime); 1132 SAVE_HRTIME(self, kiop, wlentime); 1133 SAVE_HRTIME(self, kiop, wlastupdate); 1134 SAVE_HRTIME(self, kiop, rtime); 1135 SAVE_HRTIME(self, kiop, rlentime); 1136 SAVE_HRTIME(self, kiop, rlastupdate); 1137 SAVE_UINT32(self, kiop, wcnt); 1138 SAVE_UINT32(self, kiop, rcnt); 1139 } 1140 1141 /* 1142 * Save timer statistics 1143 */ 1144 1145 static void 1146 save_timer(HV *self, kstat_t *kp, int strip_str) 1147 { 1148 kstat_timer_t *ktimerp; 1149 1150 PERL_ASSERT(kp->ks_ndata == 1); 1151 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_timer_t)); 1152 ktimerp = KSTAT_TIMER_PTR(kp); 1153 SAVE_STRING(self, ktimerp, name, strip_str); 1154 SAVE_UINT64(self, ktimerp, num_events); 1155 SAVE_HRTIME(self, ktimerp, elapsed_time); 1156 SAVE_HRTIME(self, ktimerp, min_time); 1157 SAVE_HRTIME(self, ktimerp, max_time); 1158 SAVE_HRTIME(self, ktimerp, start_time); 1159 SAVE_HRTIME(self, ktimerp, stop_time); 1160 } 1161 1162 /* 1163 * Read kstats and copy into the supplied perl hash structure. If refresh is 1164 * true, this function is being called as part of the update() method. In this 1165 * case it is only necessary to read the kstats if they have previously been 1166 * accessed (kip->read == TRUE). If refresh is false, this function is being 1167 * called prior to returning a value to the caller. In this case, it is only 1168 * necessary to read the kstats if they have not previously been read. If the 1169 * kstat_read() fails, 0 is returned, otherwise 1 1170 */ 1171 1172 static int 1173 read_kstats(HV *self, int refresh) 1174 { 1175 MAGIC *mg; 1176 KstatInfo_t *kip; 1177 kstat_raw_reader_t fnp; 1178 1179 /* Find the MAGIC KstatInfo_t data structure */ 1180 mg = mg_find((SV *)self, '~'); 1181 PERL_ASSERTMSG(mg != 0, "read_kstats: lost ~ magic"); 1182 kip = (KstatInfo_t *)SvPVX(mg->mg_obj); 1183 1184 /* Return early if we don't need to actually read the kstats */ 1185 if ((refresh && ! kip->read) || (! refresh && kip->read)) { 1186 return (1); 1187 } 1188 1189 /* Read the kstats and return 0 if this fails */ 1190 if (kstat_read(kip->kstat_ctl, kip->kstat, NULL) < 0) { 1191 return (0); 1192 } 1193 1194 /* Save the read data */ 1195 hv_store(self, "snaptime", 8, NEW_HRTIME(kip->kstat->ks_snaptime), 0); 1196 switch (kip->kstat->ks_type) { 1197 case KSTAT_TYPE_RAW: 1198 if ((fnp = lookup_raw_kstat_fn(kip->kstat->ks_module, 1199 kip->kstat->ks_name)) != 0) { 1200 fnp(self, kip->kstat, kip->strip_str); 1201 } 1202 break; 1203 case KSTAT_TYPE_NAMED: 1204 save_named(self, kip->kstat, kip->strip_str); 1205 break; 1206 case KSTAT_TYPE_INTR: 1207 save_intr(self, kip->kstat, kip->strip_str); 1208 break; 1209 case KSTAT_TYPE_IO: 1210 save_io(self, kip->kstat, kip->strip_str); 1211 break; 1212 case KSTAT_TYPE_TIMER: 1213 save_timer(self, kip->kstat, kip->strip_str); 1214 break; 1215 default: 1216 PERL_ASSERTMSG(0, "read_kstats: illegal kstat type"); 1217 break; 1218 } 1219 kip->read = TRUE; 1220 return (1); 1221 } 1222 1223 /* 1224 * The XS code exported to perl is below here. Note that the XS preprocessor 1225 * has its own commenting syntax, so all comments from this point on are in 1226 * that form. 1227 */ 1228 1229 /* The following XS methods are the ABI of the Sun::Solaris::Kstat package */ 1230 1231 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat 1232 PROTOTYPES: ENABLE 1233 1234 # Create the raw kstat to store function lookup table on load 1235 BOOT: 1236 build_raw_kstat_lookup(); 1237 1238 # 1239 # The Sun::Solaris::Kstat constructor. This builds the nested 1240 # name::instance::module hash structure, but doesn't actually read the 1241 # underlying kstats. This is done on demand by the TIEHASH methods in 1242 # Sun::Solaris::Kstat::_Stat 1243 # 1244 1245 SV* 1246 new(class, ...) 1247 char *class; 1248 PREINIT: 1249 HV *stash; 1250 kstat_ctl_t *kc; 1251 SV *kcsv; 1252 kstat_t *kp; 1253 KstatInfo_t kstatinfo; 1254 int sp, strip_str; 1255 CODE: 1256 /* Check we have an even number of arguments, excluding the class */ 1257 sp = 1; 1258 if (((items - sp) % 2) != 0) { 1259 croak(DEBUG_ID ": new: invalid number of arguments"); 1260 } 1261 1262 /* Process any (name => value) arguments */ 1263 strip_str = 0; 1264 while (sp < items) { 1265 SV *name, *value; 1266 1267 name = ST(sp); 1268 sp++; 1269 value = ST(sp); 1270 sp++; 1271 if (strcmp(SvPVX(name), "strip_strings") == 0) { 1272 strip_str = SvTRUE(value); 1273 } else { 1274 croak(DEBUG_ID ": new: invalid parameter name '%s'", 1275 SvPVX(name)); 1276 } 1277 } 1278 1279 /* Open the kstats handle */ 1280 if ((kc = kstat_open()) == 0) { 1281 XSRETURN_UNDEF; 1282 } 1283 1284 /* Create a blessed hash ref */ 1285 RETVAL = (SV *)newRV_noinc((SV *)newHV()); 1286 stash = gv_stashpv(class, TRUE); 1287 sv_bless(RETVAL, stash); 1288 1289 /* Create a place to save the KstatInfo_t structure */ 1290 kcsv = newSVpv((char *)&kc, sizeof (kc)); 1291 sv_magic(SvRV(RETVAL), kcsv, '~', 0, 0); 1292 SvREFCNT_dec(kcsv); 1293 1294 /* Initialise the KstatsInfo_t structure */ 1295 kstatinfo.read = FALSE; 1296 kstatinfo.valid = TRUE; 1297 kstatinfo.strip_str = strip_str; 1298 kstatinfo.kstat_ctl = kc; 1299 1300 /* Scan the kstat chain, building hash entries for the kstats */ 1301 for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) { 1302 HV *tie; 1303 SV *kstatsv; 1304 1305 /* Don't bother storing the kstat headers */ 1306 if (strncmp(kp->ks_name, "kstat_", 6) == 0) { 1307 continue; 1308 } 1309 1310 /* Don't bother storing raw stats we don't understand */ 1311 if (kp->ks_type == KSTAT_TYPE_RAW && 1312 lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) == 0) { 1313 #ifdef REPORT_UNKNOWN 1314 (void) fprintf(stderr, 1315 "Unknown kstat type %s:%d:%s - %d of size %d\n", 1316 kp->ks_module, kp->ks_instance, kp->ks_name, 1317 kp->ks_ndata, kp->ks_data_size); 1318 #endif 1319 continue; 1320 } 1321 1322 /* Create a 3-layer hash hierarchy - module.instance.name */ 1323 tie = get_tie(RETVAL, kp->ks_module, kp->ks_instance, 1324 kp->ks_name, 0); 1325 1326 /* Save the data necessary to read the kstat info on demand */ 1327 hv_store(tie, "class", 5, newSVpv(kp->ks_class, 0), 0); 1328 hv_store(tie, "crtime", 6, NEW_HRTIME(kp->ks_crtime), 0); 1329 kstatinfo.kstat = kp; 1330 kstatsv = newSVpv((char *)&kstatinfo, sizeof (kstatinfo)); 1331 sv_magic((SV *)tie, kstatsv, '~', 0, 0); 1332 SvREFCNT_dec(kstatsv); 1333 } 1334 SvREADONLY_on(SvRV(RETVAL)); 1335 /* SvREADONLY_on(RETVAL); */ 1336 OUTPUT: 1337 RETVAL 1338 1339 # 1340 # Update the perl hash structure so that it is in line with the kernel kstats 1341 # data. Only kstats athat have previously been accessed are read, 1342 # 1343 1344 # Scalar context: true/false 1345 # Array context: (\@added, \@deleted) 1346 void 1347 update(self) 1348 SV* self; 1349 PREINIT: 1350 MAGIC *mg; 1351 kstat_ctl_t *kc; 1352 kstat_t *kp; 1353 int ret; 1354 AV *add, *del; 1355 PPCODE: 1356 /* Find the hidden KstatInfo_t structure */ 1357 mg = mg_find(SvRV(self), '~'); 1358 PERL_ASSERTMSG(mg != 0, "update: lost ~ magic"); 1359 kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj); 1360 1361 /* Update the kstat chain, and return immediately on error. */ 1362 if ((ret = kstat_chain_update(kc)) == -1) { 1363 if (GIMME_V == G_ARRAY) { 1364 EXTEND(SP, 2); 1365 PUSHs(sv_newmortal()); 1366 PUSHs(sv_newmortal()); 1367 } else { 1368 EXTEND(SP, 1); 1369 PUSHs(sv_2mortal(newSViv(ret))); 1370 } 1371 } 1372 1373 /* Create the arrays to be returned if in an array context */ 1374 if (GIMME_V == G_ARRAY) { 1375 add = newAV(); 1376 del = newAV(); 1377 } else { 1378 add = 0; 1379 del = 0; 1380 } 1381 1382 /* 1383 * If the kstat chain hasn't changed we can just reread any stats 1384 * that have already been read 1385 */ 1386 if (ret == 0) { 1387 if (! apply_to_ties(self, (ATTCb_t)read_kstats, (void *)TRUE)) { 1388 if (GIMME_V == G_ARRAY) { 1389 EXTEND(SP, 2); 1390 PUSHs(sv_2mortal(newRV_noinc((SV *)add))); 1391 PUSHs(sv_2mortal(newRV_noinc((SV *)del))); 1392 } else { 1393 EXTEND(SP, 1); 1394 PUSHs(sv_2mortal(newSViv(-1))); 1395 } 1396 } 1397 1398 /* 1399 * Otherwise we have to update the Perl structure so that it is in 1400 * agreement with the new kstat chain. We do this in such a way as to 1401 * retain all the existing structures, just adding or deleting the 1402 * bare minimum. 1403 */ 1404 } else { 1405 KstatInfo_t kstatinfo; 1406 1407 /* 1408 * Step 1: set the 'invalid' flag on each entry 1409 */ 1410 apply_to_ties(self, &set_valid, (void *)FALSE); 1411 1412 /* 1413 * Step 2: Set the 'valid' flag on all entries still in the 1414 * kernel kstat chain 1415 */ 1416 kstatinfo.read = FALSE; 1417 kstatinfo.valid = TRUE; 1418 kstatinfo.kstat_ctl = kc; 1419 for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) { 1420 int new; 1421 HV *tie; 1422 1423 /* Don't bother storing the kstat headers or types */ 1424 if (strncmp(kp->ks_name, "kstat_", 6) == 0) { 1425 continue; 1426 } 1427 1428 /* Don't bother storing raw stats we don't understand */ 1429 if (kp->ks_type == KSTAT_TYPE_RAW && 1430 lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) 1431 == 0) { 1432 #ifdef REPORT_UNKNOWN 1433 (void) printf("Unknown kstat type %s:%d:%s " 1434 "- %d of size %d\n", kp->ks_module, 1435 kp->ks_instance, kp->ks_name, 1436 kp->ks_ndata, kp->ks_data_size); 1437 #endif 1438 continue; 1439 } 1440 1441 /* Find the tied hash associated with the kstat entry */ 1442 tie = get_tie(self, kp->ks_module, kp->ks_instance, 1443 kp->ks_name, &new); 1444 1445 /* If newly created store the associated kstat info */ 1446 if (new) { 1447 SV *kstatsv; 1448 1449 /* 1450 * Save the data necessary to read the kstat 1451 * info on demand 1452 */ 1453 hv_store(tie, "class", 5, 1454 newSVpv(kp->ks_class, 0), 0); 1455 hv_store(tie, "crtime", 6, 1456 NEW_HRTIME(kp->ks_crtime), 0); 1457 kstatinfo.kstat = kp; 1458 kstatsv = newSVpv((char *)&kstatinfo, 1459 sizeof (kstatinfo)); 1460 sv_magic((SV *)tie, kstatsv, '~', 0, 0); 1461 SvREFCNT_dec(kstatsv); 1462 1463 /* Save the key on the add list, if required */ 1464 if (GIMME_V == G_ARRAY) { 1465 av_push(add, newSVpvf("%s:%d:%s", 1466 kp->ks_module, kp->ks_instance, 1467 kp->ks_name)); 1468 } 1469 1470 /* If the stats already exist, just update them */ 1471 } else { 1472 MAGIC *mg; 1473 KstatInfo_t *kip; 1474 1475 /* Find the hidden KstatInfo_t */ 1476 mg = mg_find((SV *)tie, '~'); 1477 PERL_ASSERTMSG(mg != 0, "update: lost ~ magic"); 1478 kip = (KstatInfo_t *)SvPVX(mg->mg_obj); 1479 1480 /* Mark the tie as valid */ 1481 kip->valid = TRUE; 1482 1483 /* Re-save the kstat_t pointer. If the kstat 1484 * has been deleted and re-added since the last 1485 * update, the address of the kstat structure 1486 * will have changed, even though the kstat will 1487 * still live at the same place in the perl 1488 * hash tree structure. 1489 */ 1490 kip->kstat = kp; 1491 1492 /* Reread the stats, if read previously */ 1493 read_kstats(tie, TRUE); 1494 } 1495 } 1496 1497 /* 1498 *Step 3: Delete any entries still marked as 'invalid' 1499 */ 1500 ret = prune_invalid(self, del); 1501 1502 } 1503 if (GIMME_V == G_ARRAY) { 1504 EXTEND(SP, 2); 1505 PUSHs(sv_2mortal(newRV_noinc((SV *)add))); 1506 PUSHs(sv_2mortal(newRV_noinc((SV *)del))); 1507 } else { 1508 EXTEND(SP, 1); 1509 PUSHs(sv_2mortal(newSViv(ret))); 1510 } 1511 1512 1513 # 1514 # Destructor. Closes the kstat connection 1515 # 1516 1517 void 1518 DESTROY(self) 1519 SV *self; 1520 PREINIT: 1521 MAGIC *mg; 1522 kstat_ctl_t *kc; 1523 CODE: 1524 mg = mg_find(SvRV(self), '~'); 1525 PERL_ASSERTMSG(mg != 0, "DESTROY: lost ~ magic"); 1526 kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj); 1527 if (kstat_close(kc) != 0) { 1528 croak(DEBUG_ID ": kstat_close: failed"); 1529 } 1530 1531 # 1532 # The following XS methods implement the TIEHASH mechanism used to update the 1533 # kstats hash structure. These are blessed into a package that isn't 1534 # visible to callers of the Sun::Solaris::Kstat module 1535 # 1536 1537 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat::_Stat 1538 PROTOTYPES: ENABLE 1539 1540 # 1541 # If a value has already been read, return it. Otherwise read the appropriate 1542 # kstat and then return the value 1543 # 1544 1545 SV* 1546 FETCH(self, key) 1547 SV* self; 1548 SV* key; 1549 PREINIT: 1550 char *k; 1551 STRLEN klen; 1552 SV **value; 1553 CODE: 1554 self = SvRV(self); 1555 k = SvPV(key, klen); 1556 if (strNE(k, "class") && strNE(k, "crtime")) { 1557 read_kstats((HV *)self, FALSE); 1558 } 1559 value = hv_fetch((HV *)self, k, klen, FALSE); 1560 if (value) { 1561 RETVAL = *value; SvREFCNT_inc(RETVAL); 1562 } else { 1563 RETVAL = &PL_sv_undef; 1564 } 1565 OUTPUT: 1566 RETVAL 1567 1568 # 1569 # Save the passed value into the kstat hash. Read the appropriate kstat first, 1570 # if necessary. Note that this DOES NOT update the underlying kernel kstat 1571 # structure. 1572 # 1573 1574 SV* 1575 STORE(self, key, value) 1576 SV* self; 1577 SV* key; 1578 SV* value; 1579 PREINIT: 1580 char *k; 1581 STRLEN klen; 1582 CODE: 1583 self = SvRV(self); 1584 k = SvPV(key, klen); 1585 if (strNE(k, "class") && strNE(k, "crtime")) { 1586 read_kstats((HV *)self, FALSE); 1587 } 1588 SvREFCNT_inc(value); 1589 RETVAL = *(hv_store((HV *)self, k, klen, value, 0)); 1590 SvREFCNT_inc(RETVAL); 1591 OUTPUT: 1592 RETVAL 1593 1594 # 1595 # Check for the existence of the passed key. Read the kstat first if necessary 1596 # 1597 1598 bool 1599 EXISTS(self, key) 1600 SV* self; 1601 SV* key; 1602 PREINIT: 1603 char *k; 1604 CODE: 1605 self = SvRV(self); 1606 k = SvPV(key, PL_na); 1607 if (strNE(k, "class") && strNE(k, "crtime")) { 1608 read_kstats((HV *)self, FALSE); 1609 } 1610 RETVAL = hv_exists_ent((HV *)self, key, 0); 1611 OUTPUT: 1612 RETVAL 1613 1614 1615 # 1616 # Hash iterator initialisation. Read the kstats if necessary. 1617 # 1618 1619 SV* 1620 FIRSTKEY(self) 1621 SV* self; 1622 PREINIT: 1623 HE *he; 1624 PPCODE: 1625 self = SvRV(self); 1626 read_kstats((HV *)self, FALSE); 1627 hv_iterinit((HV *)self); 1628 if (he = hv_iternext((HV *)self)) { 1629 EXTEND(SP, 1); 1630 PUSHs(hv_iterkeysv(he)); 1631 } 1632 1633 # 1634 # Return hash iterator next value. Read the kstats if necessary. 1635 # 1636 1637 SV* 1638 NEXTKEY(self, lastkey) 1639 SV* self; 1640 SV* lastkey; 1641 PREINIT: 1642 HE *he; 1643 PPCODE: 1644 self = SvRV(self); 1645 if (he = hv_iternext((HV *)self)) { 1646 EXTEND(SP, 1); 1647 PUSHs(hv_iterkeysv(he)); 1648 } 1649 1650 1651 # 1652 # Delete the specified hash entry. 1653 # 1654 1655 SV* 1656 DELETE(self, key) 1657 SV *self; 1658 SV *key; 1659 CODE: 1660 self = SvRV(self); 1661 RETVAL = hv_delete_ent((HV *)self, key, 0, 0); 1662 if (RETVAL) { 1663 SvREFCNT_inc(RETVAL); 1664 } else { 1665 RETVAL = &PL_sv_undef; 1666 } 1667 OUTPUT: 1668 RETVAL 1669 1670 # 1671 # Clear the entire hash. This will stop any update() calls rereading this 1672 # kstat until it is accessed again. 1673 # 1674 1675 void 1676 CLEAR(self) 1677 SV* self; 1678 PREINIT: 1679 MAGIC *mg; 1680 KstatInfo_t *kip; 1681 CODE: 1682 self = SvRV(self); 1683 hv_clear((HV *)self); 1684 mg = mg_find(self, '~'); 1685 PERL_ASSERTMSG(mg != 0, "CLEAR: lost ~ magic"); 1686 kip = (KstatInfo_t *)SvPVX(mg->mg_obj); 1687 kip->read = FALSE; 1688 kip->valid = TRUE; 1689 hv_store((HV *)self, "class", 5, newSVpv(kip->kstat->ks_class, 0), 0); 1690 hv_store((HV *)self, "crtime", 6, NEW_HRTIME(kip->kstat->ks_crtime), 0);