1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 */
25
26 /*
27 * Kstat.xs is a Perl XS (eXStension module) that makes the Solaris
28 * kstat(3KSTAT) facility available to Perl scripts. Kstat is a general-purpose
29 * mechanism for providing kernel statistics to users. The Solaris API is
30 * function-based (see the manpage for details), but for ease of use in Perl
31 * scripts this module presents the information as a nested hash data structure.
32 * It would be too inefficient to read every kstat in the system, so this module
33 * uses the Perl TIEHASH mechanism to implement a read-on-demand semantic, which
34 * only reads and updates kstats as and when they are actually accessed.
35 */
36
37 /*
38 * Ignored raw kstats.
39 *
40 * Some raw kstats are ignored by this module, these are listed below. The
41 * most common reason is that the kstats are stored as arrays and the ks_ndata
42 * and/or ks_data_size fields are invalid. In this case it is impossible to
43 * know how many records are in the array, so they can't be read.
44 *
45 * unix:*:sfmmu_percpu_stat
46 * This is stored as an array with one entry per cpu. Each element is of type
47 * struct sfmmu_percpu_stat. The ks_ndata and ks_data_size fields are bogus.
48 *
49 * ufs directio:*:UFS DirectIO Stats
50 * The structure definition used for these kstats (ufs_directio_kstats) is in a
51 * C file (uts/common/fs/ufs/ufs_directio.c) rather than a header file, so it
52 * isn't accessible.
53 *
54 * qlc:*:statistics
55 * This is a third-party driver for which we don't have source.
56 *
57 * mm:*:phys_installed
58 * This is stored as an array of uint64_t, with each pair of values being the
59 * (address, size) of a memory segment. The ks_ndata and ks_data_size fields
60 * are both zero.
61 *
62 * sockfs:*:sock_unix_list
63 * This is stored as an array with one entry per active socket. Each element
64 * is of type struct k_sockinfo. The ks_ndata and ks_data_size fields are both
65 * zero.
66 *
67 * Note that the ks_ndata and ks_data_size of many non-array raw kstats are
68 * also incorrect. The relevant assertions are therefore commented out in the
69 * appropriate raw kstat read routines.
70 */
71
72 /* Kstat related includes */
73 #include <libgen.h>
74 #include <kstat.h>
75 #include <sys/var.h>
76 #include <sys/utsname.h>
77 #include <sys/sysinfo.h>
78 #include <sys/flock.h>
79 #include <sys/dnlc.h>
80 #include <nfs/nfs.h>
81 #include <nfs/nfs_clnt.h>
82
83 /* Ultra-specific kstat includes */
84 #ifdef __sparc
85 #include <vm/hat_sfmmu.h> /* from /usr/platform/sun4u/include */
86 #include <sys/simmstat.h> /* from /usr/platform/sun4u/include */
87 #include <sys/sysctrl.h> /* from /usr/platform/sun4u/include */
88 #include <sys/fhc.h> /* from /usr/include */
89 #endif
90
91 /*
92 * Solaris #defines SP, which conflicts with the perl definition of SP
93 * We don't need the Solaris one, so get rid of it to avoid warnings
94 */
95 #undef SP
96
97 /* Perl XS includes */
98 #include "EXTERN.h"
99 #include "perl.h"
100 #include "XSUB.h"
101
102 /* Debug macros */
103 #define DEBUG_ID "Sun::Solaris::Kstat"
104 #ifdef KSTAT_DEBUG
105 #define PERL_ASSERT(EXP) \
106 ((void)((EXP) || (croak("%s: assertion failed at %s:%d: %s", \
107 DEBUG_ID, __FILE__, __LINE__, #EXP), 0), 0))
108 #define PERL_ASSERTMSG(EXP, MSG) \
109 ((void)((EXP) || (croak(DEBUG_ID ": " MSG), 0), 0))
110 #else
111 #define PERL_ASSERT(EXP) ((void)0)
112 #define PERL_ASSERTMSG(EXP, MSG) ((void)0)
113 #endif
114
115 /* Macros for saving the contents of KSTAT_RAW structures */
116 #if defined(HAS_QUAD) && defined(USE_64_BIT_INT)
117 #define NEW_IV(V) \
118 (newSViv((IVTYPE) V))
119 #define NEW_UV(V) \
120 (newSVuv((UVTYPE) V))
121 #else
122 #define NEW_IV(V) \
123 (V >= IV_MIN && V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
124 #if defined(UVTYPE)
125 #define NEW_UV(V) \
126 (V <= UV_MAX ? newSVuv((UVTYPE) V) : newSVnv((NVTYPE) V))
127 # else
128 #define NEW_UV(V) \
129 (V <= IV_MAX ? newSViv((IVTYPE) V) : newSVnv((NVTYPE) V))
130 #endif
131 #endif
132 #define NEW_HRTIME(V) \
133 newSVnv((NVTYPE) (V / 1000000000.0))
134
135 #define SAVE_FNP(H, F, K) \
136 hv_store(H, K, sizeof (K) - 1, newSViv((IVTYPE)(uintptr_t)&F), 0)
137 #define SAVE_STRING(H, S, K, SS) \
138 hv_store(H, #K, sizeof (#K) - 1, \
139 newSVpvn(S->K, SS ? strlen(S->K) : sizeof(S->K)), 0)
140 #define SAVE_INT32(H, S, K) \
141 hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
142 #define SAVE_UINT32(H, S, K) \
143 hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
144 #define SAVE_INT64(H, S, K) \
145 hv_store(H, #K, sizeof (#K) - 1, NEW_IV(S->K), 0)
146 #define SAVE_UINT64(H, S, K) \
147 hv_store(H, #K, sizeof (#K) - 1, NEW_UV(S->K), 0)
148 #define SAVE_HRTIME(H, S, K) \
149 hv_store(H, #K, sizeof (#K) - 1, NEW_HRTIME(S->K), 0)
150
151 /* Private structure used for saving kstat info in the tied hashes */
152 typedef struct {
153 char read; /* Kstat block has been read before */
154 char valid; /* Kstat still exists in kstat chain */
155 char strip_str; /* Strip KSTAT_DATA_CHAR fields */
156 kstat_ctl_t *kstat_ctl; /* Handle returned by kstat_open */
157 kstat_t *kstat; /* Handle used by kstat_read */
158 } KstatInfo_t;
159
160 /* typedef for apply_to_ties callback functions */
161 typedef int (*ATTCb_t)(HV *, void *);
162
163 /* typedef for raw kstat reader functions */
164 typedef void (*kstat_raw_reader_t)(HV *, kstat_t *, int);
165
166 /* Hash of "module:name" to KSTAT_RAW read functions */
167 static HV *raw_kstat_lookup;
168
169 /*
170 * Kstats come in two flavours, named and raw. Raw kstats are just C structs,
171 * so we need a function per raw kstat to convert the C struct into the
172 * corresponding perl hash. All such conversion functions are in the following
173 * section.
174 */
175
176 /*
177 * Definitions in /usr/include/sys/cpuvar.h and /usr/include/sys/sysinfo.h
178 */
179
180 static void
181 save_cpu_stat(HV *self, kstat_t *kp, int strip_str)
182 {
183 cpu_stat_t *statp;
184 cpu_sysinfo_t *sysinfop;
185 cpu_syswait_t *syswaitp;
186 cpu_vminfo_t *vminfop;
187
188 /* PERL_ASSERT(kp->ks_ndata == 1); */
189 PERL_ASSERT(kp->ks_data_size == sizeof (cpu_stat_t));
190 statp = (cpu_stat_t *)(kp->ks_data);
191 sysinfop = &statp->cpu_sysinfo;
192 syswaitp = &statp->cpu_syswait;
193 vminfop = &statp->cpu_vminfo;
194
195 hv_store(self, "idle", 4, NEW_UV(sysinfop->cpu[CPU_IDLE]), 0);
196 hv_store(self, "user", 4, NEW_UV(sysinfop->cpu[CPU_USER]), 0);
197 hv_store(self, "kernel", 6, NEW_UV(sysinfop->cpu[CPU_KERNEL]), 0);
198 hv_store(self, "wait", 4, NEW_UV(sysinfop->cpu[CPU_WAIT]), 0);
199 hv_store(self, "wait_io", 7, NEW_UV(sysinfop->wait[W_IO]), 0);
200 hv_store(self, "wait_swap", 9, NEW_UV(sysinfop->wait[W_SWAP]), 0);
201 hv_store(self, "wait_pio", 8, NEW_UV(sysinfop->wait[W_PIO]), 0);
202 SAVE_UINT32(self, sysinfop, bread);
203 SAVE_UINT32(self, sysinfop, bwrite);
204 SAVE_UINT32(self, sysinfop, lread);
205 SAVE_UINT32(self, sysinfop, lwrite);
206 SAVE_UINT32(self, sysinfop, phread);
207 SAVE_UINT32(self, sysinfop, phwrite);
208 SAVE_UINT32(self, sysinfop, pswitch);
209 SAVE_UINT32(self, sysinfop, trap);
210 SAVE_UINT32(self, sysinfop, intr);
211 SAVE_UINT32(self, sysinfop, syscall);
212 SAVE_UINT32(self, sysinfop, sysread);
213 SAVE_UINT32(self, sysinfop, syswrite);
214 SAVE_UINT32(self, sysinfop, sysfork);
215 SAVE_UINT32(self, sysinfop, sysvfork);
216 SAVE_UINT32(self, sysinfop, sysexec);
217 SAVE_UINT32(self, sysinfop, readch);
218 SAVE_UINT32(self, sysinfop, writech);
219 SAVE_UINT32(self, sysinfop, rcvint);
220 SAVE_UINT32(self, sysinfop, xmtint);
221 SAVE_UINT32(self, sysinfop, mdmint);
222 SAVE_UINT32(self, sysinfop, rawch);
223 SAVE_UINT32(self, sysinfop, canch);
224 SAVE_UINT32(self, sysinfop, outch);
225 SAVE_UINT32(self, sysinfop, msg);
226 SAVE_UINT32(self, sysinfop, sema);
227 SAVE_UINT32(self, sysinfop, namei);
228 SAVE_UINT32(self, sysinfop, ufsiget);
229 SAVE_UINT32(self, sysinfop, ufsdirblk);
230 SAVE_UINT32(self, sysinfop, ufsipage);
231 SAVE_UINT32(self, sysinfop, ufsinopage);
232 SAVE_UINT32(self, sysinfop, inodeovf);
233 SAVE_UINT32(self, sysinfop, fileovf);
234 SAVE_UINT32(self, sysinfop, procovf);
235 SAVE_UINT32(self, sysinfop, intrthread);
236 SAVE_UINT32(self, sysinfop, intrblk);
237 SAVE_UINT32(self, sysinfop, idlethread);
238 SAVE_UINT32(self, sysinfop, inv_swtch);
239 SAVE_UINT32(self, sysinfop, nthreads);
240 SAVE_UINT32(self, sysinfop, cpumigrate);
241 SAVE_UINT32(self, sysinfop, xcalls);
242 SAVE_UINT32(self, sysinfop, mutex_adenters);
243 SAVE_UINT32(self, sysinfop, rw_rdfails);
244 SAVE_UINT32(self, sysinfop, rw_wrfails);
245 SAVE_UINT32(self, sysinfop, modload);
246 SAVE_UINT32(self, sysinfop, modunload);
247 SAVE_UINT32(self, sysinfop, bawrite);
248 #ifdef STATISTICS /* see header file */
249 SAVE_UINT32(self, sysinfop, rw_enters);
250 SAVE_UINT32(self, sysinfop, win_uo_cnt);
251 SAVE_UINT32(self, sysinfop, win_uu_cnt);
252 SAVE_UINT32(self, sysinfop, win_so_cnt);
253 SAVE_UINT32(self, sysinfop, win_su_cnt);
254 SAVE_UINT32(self, sysinfop, win_suo_cnt);
255 #endif
256
257 SAVE_INT32(self, syswaitp, iowait);
258 SAVE_INT32(self, syswaitp, swap);
259 SAVE_INT32(self, syswaitp, physio);
260
261 SAVE_UINT32(self, vminfop, pgrec);
262 SAVE_UINT32(self, vminfop, pgfrec);
263 SAVE_UINT32(self, vminfop, pgin);
264 SAVE_UINT32(self, vminfop, pgpgin);
265 SAVE_UINT32(self, vminfop, pgout);
266 SAVE_UINT32(self, vminfop, pgpgout);
267 SAVE_UINT32(self, vminfop, swapin);
268 SAVE_UINT32(self, vminfop, pgswapin);
269 SAVE_UINT32(self, vminfop, swapout);
270 SAVE_UINT32(self, vminfop, pgswapout);
271 SAVE_UINT32(self, vminfop, zfod);
272 SAVE_UINT32(self, vminfop, dfree);
273 SAVE_UINT32(self, vminfop, scan);
274 SAVE_UINT32(self, vminfop, rev);
275 SAVE_UINT32(self, vminfop, hat_fault);
276 SAVE_UINT32(self, vminfop, as_fault);
277 SAVE_UINT32(self, vminfop, maj_fault);
278 SAVE_UINT32(self, vminfop, cow_fault);
279 SAVE_UINT32(self, vminfop, prot_fault);
280 SAVE_UINT32(self, vminfop, softlock);
281 SAVE_UINT32(self, vminfop, kernel_asflt);
282 SAVE_UINT32(self, vminfop, pgrrun);
283 SAVE_UINT32(self, vminfop, execpgin);
284 SAVE_UINT32(self, vminfop, execpgout);
285 SAVE_UINT32(self, vminfop, execfree);
286 SAVE_UINT32(self, vminfop, anonpgin);
287 SAVE_UINT32(self, vminfop, anonpgout);
288 SAVE_UINT32(self, vminfop, anonfree);
289 SAVE_UINT32(self, vminfop, fspgin);
290 SAVE_UINT32(self, vminfop, fspgout);
291 SAVE_UINT32(self, vminfop, fsfree);
292 }
293
294 /*
295 * Definitions in /usr/include/sys/var.h
296 */
297
298 static void
299 save_var(HV *self, kstat_t *kp, int strip_str)
300 {
301 struct var *varp;
302
303 /* PERL_ASSERT(kp->ks_ndata == 1); */
304 PERL_ASSERT(kp->ks_data_size == sizeof (struct var));
305 varp = (struct var *)(kp->ks_data);
306
307 SAVE_INT32(self, varp, v_buf);
308 SAVE_INT32(self, varp, v_call);
309 SAVE_INT32(self, varp, v_proc);
310 SAVE_INT32(self, varp, v_maxupttl);
311 SAVE_INT32(self, varp, v_nglobpris);
312 SAVE_INT32(self, varp, v_maxsyspri);
313 SAVE_INT32(self, varp, v_clist);
314 SAVE_INT32(self, varp, v_maxup);
315 SAVE_INT32(self, varp, v_hbuf);
316 SAVE_INT32(self, varp, v_hmask);
317 SAVE_INT32(self, varp, v_pbuf);
318 SAVE_INT32(self, varp, v_sptmap);
319 SAVE_INT32(self, varp, v_maxpmem);
320 SAVE_INT32(self, varp, v_autoup);
321 SAVE_INT32(self, varp, v_bufhwm);
322 }
323
324 /*
325 * Definition in /usr/include/sys/dnlc.h
326 */
327
328 static void
329 save_ncstats(HV *self, kstat_t *kp, int strip_str)
330 {
331 struct ncstats *ncstatsp;
332
333 /* PERL_ASSERT(kp->ks_ndata == 1); */
334 PERL_ASSERT(kp->ks_data_size == sizeof (struct ncstats));
335 ncstatsp = (struct ncstats *)(kp->ks_data);
336
337 SAVE_INT32(self, ncstatsp, hits);
338 SAVE_INT32(self, ncstatsp, misses);
339 SAVE_INT32(self, ncstatsp, enters);
340 SAVE_INT32(self, ncstatsp, dbl_enters);
341 SAVE_INT32(self, ncstatsp, long_enter);
342 SAVE_INT32(self, ncstatsp, long_look);
343 SAVE_INT32(self, ncstatsp, move_to_front);
344 SAVE_INT32(self, ncstatsp, purges);
345 }
346
347 /*
348 * Definition in /usr/include/sys/sysinfo.h
349 */
350
351 static void
352 save_sysinfo(HV *self, kstat_t *kp, int strip_str)
353 {
354 sysinfo_t *sysinfop;
355
356 /* PERL_ASSERT(kp->ks_ndata == 1); */
357 PERL_ASSERT(kp->ks_data_size == sizeof (sysinfo_t));
358 sysinfop = (sysinfo_t *)(kp->ks_data);
359
360 SAVE_UINT32(self, sysinfop, updates);
361 SAVE_UINT32(self, sysinfop, runque);
362 SAVE_UINT32(self, sysinfop, runocc);
363 SAVE_UINT32(self, sysinfop, swpque);
364 SAVE_UINT32(self, sysinfop, swpocc);
365 SAVE_UINT32(self, sysinfop, waiting);
366 }
367
368 /*
369 * Definition in /usr/include/sys/sysinfo.h
370 */
371
372 static void
373 save_vminfo(HV *self, kstat_t *kp, int strip_str)
374 {
375 vminfo_t *vminfop;
376
377 /* PERL_ASSERT(kp->ks_ndata == 1); */
378 PERL_ASSERT(kp->ks_data_size == sizeof (vminfo_t));
379 vminfop = (vminfo_t *)(kp->ks_data);
380
381 SAVE_UINT64(self, vminfop, freemem);
382 SAVE_UINT64(self, vminfop, swap_resv);
383 SAVE_UINT64(self, vminfop, swap_alloc);
384 SAVE_UINT64(self, vminfop, swap_avail);
385 SAVE_UINT64(self, vminfop, swap_free);
386 SAVE_UINT64(self, vminfop, updates);
387 }
388
389 /*
390 * Definition in /usr/include/nfs/nfs_clnt.h
391 */
392
393 static void
394 save_nfs(HV *self, kstat_t *kp, int strip_str)
395 {
396 struct mntinfo_kstat *mntinfop;
397
398 /* PERL_ASSERT(kp->ks_ndata == 1); */
399 PERL_ASSERT(kp->ks_data_size == sizeof (struct mntinfo_kstat));
400 mntinfop = (struct mntinfo_kstat *)(kp->ks_data);
401
402 SAVE_STRING(self, mntinfop, mik_proto, strip_str);
403 SAVE_UINT32(self, mntinfop, mik_vers);
404 SAVE_UINT32(self, mntinfop, mik_flags);
405 SAVE_UINT32(self, mntinfop, mik_secmod);
406 SAVE_UINT32(self, mntinfop, mik_curread);
407 SAVE_UINT32(self, mntinfop, mik_curwrite);
408 SAVE_INT32(self, mntinfop, mik_timeo);
409 SAVE_INT32(self, mntinfop, mik_retrans);
410 SAVE_UINT32(self, mntinfop, mik_acregmin);
411 SAVE_UINT32(self, mntinfop, mik_acregmax);
412 SAVE_UINT32(self, mntinfop, mik_acdirmin);
413 SAVE_UINT32(self, mntinfop, mik_acdirmax);
414 hv_store(self, "lookup_srtt", 11,
415 NEW_UV(mntinfop->mik_timers[0].srtt), 0);
416 hv_store(self, "lookup_deviate", 14,
417 NEW_UV(mntinfop->mik_timers[0].deviate), 0);
418 hv_store(self, "lookup_rtxcur", 13,
419 NEW_UV(mntinfop->mik_timers[0].rtxcur), 0);
420 hv_store(self, "read_srtt", 9,
421 NEW_UV(mntinfop->mik_timers[1].srtt), 0);
422 hv_store(self, "read_deviate", 12,
423 NEW_UV(mntinfop->mik_timers[1].deviate), 0);
424 hv_store(self, "read_rtxcur", 11,
425 NEW_UV(mntinfop->mik_timers[1].rtxcur), 0);
426 hv_store(self, "write_srtt", 10,
427 NEW_UV(mntinfop->mik_timers[2].srtt), 0);
428 hv_store(self, "write_deviate", 13,
429 NEW_UV(mntinfop->mik_timers[2].deviate), 0);
430 hv_store(self, "write_rtxcur", 12,
431 NEW_UV(mntinfop->mik_timers[2].rtxcur), 0);
432 SAVE_UINT32(self, mntinfop, mik_noresponse);
433 SAVE_UINT32(self, mntinfop, mik_failover);
434 SAVE_UINT32(self, mntinfop, mik_remap);
435 SAVE_STRING(self, mntinfop, mik_curserver, strip_str);
436 }
437
438 /*
439 * The following struct => hash functions are all only present on the sparc
440 * platform, so they are all conditionally compiled depending on __sparc
441 */
442
443 /*
444 * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
445 */
446
447 #ifdef __sparc
448 static void
449 save_sfmmu_global_stat(HV *self, kstat_t *kp, int strip_str)
450 {
451 struct sfmmu_global_stat *sfmmugp;
452
453 /* PERL_ASSERT(kp->ks_ndata == 1); */
454 PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_global_stat));
455 sfmmugp = (struct sfmmu_global_stat *)(kp->ks_data);
456
457 SAVE_INT32(self, sfmmugp, sf_tsb_exceptions);
458 SAVE_INT32(self, sfmmugp, sf_tsb_raise_exception);
459 SAVE_INT32(self, sfmmugp, sf_pagefaults);
460 SAVE_INT32(self, sfmmugp, sf_uhash_searches);
461 SAVE_INT32(self, sfmmugp, sf_uhash_links);
462 SAVE_INT32(self, sfmmugp, sf_khash_searches);
463 SAVE_INT32(self, sfmmugp, sf_khash_links);
464 SAVE_INT32(self, sfmmugp, sf_swapout);
465 SAVE_INT32(self, sfmmugp, sf_tsb_alloc);
466 SAVE_INT32(self, sfmmugp, sf_tsb_allocfail);
467 SAVE_INT32(self, sfmmugp, sf_tsb_sectsb_create);
468 SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_alloc);
469 SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_alloc);
470 SAVE_INT32(self, sfmmugp, sf_scd_1sttsb_allocfail);
471 SAVE_INT32(self, sfmmugp, sf_scd_2ndtsb_allocfail);
472 SAVE_INT32(self, sfmmugp, sf_tteload8k);
473 SAVE_INT32(self, sfmmugp, sf_tteload64k);
474 SAVE_INT32(self, sfmmugp, sf_tteload512k);
475 SAVE_INT32(self, sfmmugp, sf_tteload4m);
476 SAVE_INT32(self, sfmmugp, sf_tteload32m);
477 SAVE_INT32(self, sfmmugp, sf_tteload256m);
478 SAVE_INT32(self, sfmmugp, sf_tsb_load8k);
479 SAVE_INT32(self, sfmmugp, sf_tsb_load4m);
480 SAVE_INT32(self, sfmmugp, sf_hblk_hit);
481 SAVE_INT32(self, sfmmugp, sf_hblk8_ncreate);
482 SAVE_INT32(self, sfmmugp, sf_hblk8_nalloc);
483 SAVE_INT32(self, sfmmugp, sf_hblk1_ncreate);
484 SAVE_INT32(self, sfmmugp, sf_hblk1_nalloc);
485 SAVE_INT32(self, sfmmugp, sf_hblk_slab_cnt);
486 SAVE_INT32(self, sfmmugp, sf_hblk_reserve_cnt);
487 SAVE_INT32(self, sfmmugp, sf_hblk_recurse_cnt);
488 SAVE_INT32(self, sfmmugp, sf_hblk_reserve_hit);
489 SAVE_INT32(self, sfmmugp, sf_get_free_success);
490 SAVE_INT32(self, sfmmugp, sf_get_free_throttle);
491 SAVE_INT32(self, sfmmugp, sf_get_free_fail);
492 SAVE_INT32(self, sfmmugp, sf_put_free_success);
493 SAVE_INT32(self, sfmmugp, sf_put_free_fail);
494 SAVE_INT32(self, sfmmugp, sf_pgcolor_conflict);
495 SAVE_INT32(self, sfmmugp, sf_uncache_conflict);
496 SAVE_INT32(self, sfmmugp, sf_unload_conflict);
497 SAVE_INT32(self, sfmmugp, sf_ism_uncache);
498 SAVE_INT32(self, sfmmugp, sf_ism_recache);
499 SAVE_INT32(self, sfmmugp, sf_recache);
500 SAVE_INT32(self, sfmmugp, sf_steal_count);
501 SAVE_INT32(self, sfmmugp, sf_pagesync);
502 SAVE_INT32(self, sfmmugp, sf_clrwrt);
503 SAVE_INT32(self, sfmmugp, sf_pagesync_invalid);
504 SAVE_INT32(self, sfmmugp, sf_kernel_xcalls);
505 SAVE_INT32(self, sfmmugp, sf_user_xcalls);
506 SAVE_INT32(self, sfmmugp, sf_tsb_grow);
507 SAVE_INT32(self, sfmmugp, sf_tsb_shrink);
508 SAVE_INT32(self, sfmmugp, sf_tsb_resize_failures);
509 SAVE_INT32(self, sfmmugp, sf_tsb_reloc);
510 SAVE_INT32(self, sfmmugp, sf_user_vtop);
511 SAVE_INT32(self, sfmmugp, sf_ctx_inv);
512 SAVE_INT32(self, sfmmugp, sf_tlb_reprog_pgsz);
513 SAVE_INT32(self, sfmmugp, sf_region_remap_demap);
514 SAVE_INT32(self, sfmmugp, sf_create_scd);
515 SAVE_INT32(self, sfmmugp, sf_join_scd);
516 SAVE_INT32(self, sfmmugp, sf_leave_scd);
517 SAVE_INT32(self, sfmmugp, sf_destroy_scd);
518 }
519 #endif
520
521 /*
522 * Definition in /usr/platform/sun4u/include/vm/hat_sfmmu.h
523 */
524
525 #ifdef __sparc
526 static void
527 save_sfmmu_tsbsize_stat(HV *self, kstat_t *kp, int strip_str)
528 {
529 struct sfmmu_tsbsize_stat *sfmmutp;
530
531 /* PERL_ASSERT(kp->ks_ndata == 1); */
532 PERL_ASSERT(kp->ks_data_size == sizeof (struct sfmmu_tsbsize_stat));
533 sfmmutp = (struct sfmmu_tsbsize_stat *)(kp->ks_data);
534
535 SAVE_INT32(self, sfmmutp, sf_tsbsz_8k);
536 SAVE_INT32(self, sfmmutp, sf_tsbsz_16k);
537 SAVE_INT32(self, sfmmutp, sf_tsbsz_32k);
538 SAVE_INT32(self, sfmmutp, sf_tsbsz_64k);
539 SAVE_INT32(self, sfmmutp, sf_tsbsz_128k);
540 SAVE_INT32(self, sfmmutp, sf_tsbsz_256k);
541 SAVE_INT32(self, sfmmutp, sf_tsbsz_512k);
542 SAVE_INT32(self, sfmmutp, sf_tsbsz_1m);
543 SAVE_INT32(self, sfmmutp, sf_tsbsz_2m);
544 SAVE_INT32(self, sfmmutp, sf_tsbsz_4m);
545 }
546 #endif
547
548 /*
549 * Definition in /usr/platform/sun4u/include/sys/simmstat.h
550 */
551
552 #ifdef __sparc
553 static void
554 save_simmstat(HV *self, kstat_t *kp, int strip_str)
555 {
556 uchar_t *simmstatp;
557 SV *list;
558 int i;
559
560 /* PERL_ASSERT(kp->ks_ndata == 1); */
561 PERL_ASSERT(kp->ks_data_size == sizeof (uchar_t) * SIMM_COUNT);
562
563 list = newSVpv("", 0);
564 for (i = 0, simmstatp = (uchar_t *)(kp->ks_data);
565 i < SIMM_COUNT - 1; i++, simmstatp++) {
566 sv_catpvf(list, "%d,", *simmstatp);
567 }
568 sv_catpvf(list, "%d", *simmstatp);
569 hv_store(self, "status", 6, list, 0);
570 }
571 #endif
572
573 /*
574 * Used by save_temperature to make CSV lists from arrays of
575 * short temperature values
576 */
577
578 #ifdef __sparc
579 static SV *
580 short_array_to_SV(short *shortp, int len)
581 {
582 SV *list;
583
584 list = newSVpv("", 0);
585 for (; len > 1; len--, shortp++) {
586 sv_catpvf(list, "%d,", *shortp);
587 }
588 sv_catpvf(list, "%d", *shortp);
589 return (list);
590 }
591
592 /*
593 * Definition in /usr/platform/sun4u/include/sys/fhc.h
594 */
595
596 static void
597 save_temperature(HV *self, kstat_t *kp, int strip_str)
598 {
599 struct temp_stats *tempsp;
600
601 /* PERL_ASSERT(kp->ks_ndata == 1); */
602 PERL_ASSERT(kp->ks_data_size == sizeof (struct temp_stats));
603 tempsp = (struct temp_stats *)(kp->ks_data);
604
605 SAVE_UINT32(self, tempsp, index);
606 hv_store(self, "l1", 2, short_array_to_SV(tempsp->l1, L1_SZ), 0);
607 hv_store(self, "l2", 2, short_array_to_SV(tempsp->l2, L2_SZ), 0);
608 hv_store(self, "l3", 2, short_array_to_SV(tempsp->l3, L3_SZ), 0);
609 hv_store(self, "l4", 2, short_array_to_SV(tempsp->l4, L4_SZ), 0);
610 hv_store(self, "l5", 2, short_array_to_SV(tempsp->l5, L5_SZ), 0);
611 SAVE_INT32(self, tempsp, max);
612 SAVE_INT32(self, tempsp, min);
613 SAVE_INT32(self, tempsp, state);
614 SAVE_INT32(self, tempsp, temp_cnt);
615 SAVE_INT32(self, tempsp, shutdown_cnt);
616 SAVE_INT32(self, tempsp, version);
617 SAVE_INT32(self, tempsp, trend);
618 SAVE_INT32(self, tempsp, override);
619 }
620 #endif
621
622 /*
623 * Not actually defined anywhere - just a short. Yuck.
624 */
625
626 #ifdef __sparc
627 static void
628 save_temp_over(HV *self, kstat_t *kp, int strip_str)
629 {
630 short *shortp;
631
632 /* PERL_ASSERT(kp->ks_ndata == 1); */
633 PERL_ASSERT(kp->ks_data_size == sizeof (short));
634
635 shortp = (short *)(kp->ks_data);
636 hv_store(self, "override", 8, newSViv(*shortp), 0);
637 }
638 #endif
639
640 /*
641 * Defined in /usr/platform/sun4u/include/sys/sysctrl.h
642 * (Well, sort of. Actually there's no structure, just a list of #defines
643 * enumerating *some* of the array indexes.)
644 */
645
646 #ifdef __sparc
647 static void
648 save_ps_shadow(HV *self, kstat_t *kp, int strip_str)
649 {
650 uchar_t *ucharp;
651
652 /* PERL_ASSERT(kp->ks_ndata == 1); */
653 PERL_ASSERT(kp->ks_data_size == SYS_PS_COUNT);
654
655 ucharp = (uchar_t *)(kp->ks_data);
656 hv_store(self, "core_0", 6, newSViv(*ucharp++), 0);
657 hv_store(self, "core_1", 6, newSViv(*ucharp++), 0);
658 hv_store(self, "core_2", 6, newSViv(*ucharp++), 0);
659 hv_store(self, "core_3", 6, newSViv(*ucharp++), 0);
660 hv_store(self, "core_4", 6, newSViv(*ucharp++), 0);
661 hv_store(self, "core_5", 6, newSViv(*ucharp++), 0);
662 hv_store(self, "core_6", 6, newSViv(*ucharp++), 0);
663 hv_store(self, "core_7", 6, newSViv(*ucharp++), 0);
664 hv_store(self, "pps_0", 5, newSViv(*ucharp++), 0);
665 hv_store(self, "clk_33", 6, newSViv(*ucharp++), 0);
666 hv_store(self, "clk_50", 6, newSViv(*ucharp++), 0);
667 hv_store(self, "v5_p", 4, newSViv(*ucharp++), 0);
668 hv_store(self, "v12_p", 5, newSViv(*ucharp++), 0);
669 hv_store(self, "v5_aux", 6, newSViv(*ucharp++), 0);
670 hv_store(self, "v5_p_pch", 8, newSViv(*ucharp++), 0);
671 hv_store(self, "v12_p_pch", 9, newSViv(*ucharp++), 0);
672 hv_store(self, "v3_pch", 6, newSViv(*ucharp++), 0);
673 hv_store(self, "v5_pch", 6, newSViv(*ucharp++), 0);
674 hv_store(self, "p_fan", 5, newSViv(*ucharp++), 0);
675 }
676 #endif
677
678 /*
679 * Definition in /usr/platform/sun4u/include/sys/fhc.h
680 */
681
682 #ifdef __sparc
683 static void
684 save_fault_list(HV *self, kstat_t *kp, int strip_str)
685 {
686 struct ft_list *faultp;
687 int i;
688 char name[KSTAT_STRLEN + 7]; /* room for 999999 faults */
689
690 /* PERL_ASSERT(kp->ks_ndata == 1); */
691 /* PERL_ASSERT(kp->ks_data_size == sizeof (struct ft_list)); */
692
693 for (i = 1, faultp = (struct ft_list *)(kp->ks_data);
694 i <= 999999 && i <= kp->ks_data_size / sizeof (struct ft_list);
695 i++, faultp++) {
696 (void) snprintf(name, sizeof (name), "unit_%d", i);
697 hv_store(self, name, strlen(name), newSViv(faultp->unit), 0);
698 (void) snprintf(name, sizeof (name), "type_%d", i);
699 hv_store(self, name, strlen(name), newSViv(faultp->type), 0);
700 (void) snprintf(name, sizeof (name), "fclass_%d", i);
701 hv_store(self, name, strlen(name), newSViv(faultp->fclass), 0);
702 (void) snprintf(name, sizeof (name), "create_time_%d", i);
703 hv_store(self, name, strlen(name),
704 NEW_UV(faultp->create_time), 0);
705 (void) snprintf(name, sizeof (name), "msg_%d", i);
706 hv_store(self, name, strlen(name), newSVpv(faultp->msg, 0), 0);
707 }
708 }
709 #endif
710
711 /*
712 * We need to be able to find the function corresponding to a particular raw
713 * kstat. To do this we ignore the instance and glue the module and name
714 * together to form a composite key. We can then use the data in the kstat
715 * structure to find the appropriate function. We use a perl hash to manage the
716 * lookup, where the key is "module:name" and the value is a pointer to the
717 * appropriate C function.
718 *
719 * Note that some kstats include the instance number as part of the module
720 * and/or name. This could be construed as a bug. However, to work around this
721 * we omit any digits from the module and name as we build the table in
722 * build_raw_kstat_loopup(), and we remove any digits from the module and name
723 * when we look up the functions in lookup_raw_kstat_fn()
724 */
725
726 /*
727 * This function is called when the XS is first dlopen()ed, and builds the
728 * lookup table as described above.
729 */
730
731 static void
732 build_raw_kstat_lookup()
733 {
734 /* Create new hash */
735 raw_kstat_lookup = newHV();
736
737 SAVE_FNP(raw_kstat_lookup, save_cpu_stat, "cpu_stat:cpu_stat");
738 SAVE_FNP(raw_kstat_lookup, save_var, "unix:var");
739 SAVE_FNP(raw_kstat_lookup, save_ncstats, "unix:ncstats");
740 SAVE_FNP(raw_kstat_lookup, save_sysinfo, "unix:sysinfo");
741 SAVE_FNP(raw_kstat_lookup, save_vminfo, "unix:vminfo");
742 SAVE_FNP(raw_kstat_lookup, save_nfs, "nfs:mntinfo");
743 #ifdef __sparc
744 SAVE_FNP(raw_kstat_lookup, save_sfmmu_global_stat,
745 "unix:sfmmu_global_stat");
746 SAVE_FNP(raw_kstat_lookup, save_sfmmu_tsbsize_stat,
747 "unix:sfmmu_tsbsize_stat");
748 SAVE_FNP(raw_kstat_lookup, save_simmstat, "unix:simm-status");
749 SAVE_FNP(raw_kstat_lookup, save_temperature, "unix:temperature");
750 SAVE_FNP(raw_kstat_lookup, save_temp_over, "unix:temperature override");
751 SAVE_FNP(raw_kstat_lookup, save_ps_shadow, "unix:ps_shadow");
752 SAVE_FNP(raw_kstat_lookup, save_fault_list, "unix:fault_list");
753 #endif
754 }
755
756 /*
757 * This finds and returns the raw kstat reader function corresponding to the
758 * supplied module and name. If no matching function exists, 0 is returned.
759 */
760
761 static kstat_raw_reader_t lookup_raw_kstat_fn(char *module, char *name)
762 {
763 char key[KSTAT_STRLEN * 2];
764 register char *f, *t;
765 SV **entry;
766 kstat_raw_reader_t fnp;
767
768 /* Copy across module & name, removing any digits - see comment above */
769 for (f = module, t = key; *f != '\0'; f++, t++) {
770 while (*f != '\0' && isdigit(*f)) { f++; }
771 *t = *f;
772 }
773 *t++ = ':';
774 for (f = name; *f != '\0'; f++, t++) {
775 while (*f != '\0' && isdigit(*f)) {
776 f++;
777 }
778 *t = *f;
779 }
780 *t = '\0';
781
782 /* look up & return the function, or teturn 0 if not found */
783 if ((entry = hv_fetch(raw_kstat_lookup, key, strlen(key), FALSE)) == 0)
784 {
785 fnp = 0;
786 } else {
787 fnp = (kstat_raw_reader_t)(uintptr_t)SvIV(*entry);
788 }
789 return (fnp);
790 }
791
792 /*
793 * This module converts the flat list returned by kstat_read() into a perl hash
794 * tree keyed on module, instance, name and statistic. The following functions
795 * provide code to create the nested hashes, and to iterate over them.
796 */
797
798 /*
799 * Given module, instance and name keys return a pointer to the hash tied to
800 * the bottommost hash. If the hash already exists, we just return a pointer
801 * to it, otherwise we create the hash and any others also required above it in
802 * the hierarchy. The returned tiehash is blessed into the
803 * Sun::Solaris::Kstat::_Stat class, so that the appropriate TIEHASH methods are
804 * called when the bottommost hash is accessed. If the is_new parameter is
805 * non-null it will be set to TRUE if a new tie has been created, and FALSE if
806 * the tie already existed.
807 */
808
809 static HV *
810 get_tie(SV *self, char *module, int instance, char *name, int *is_new)
811 {
812 char str_inst[11]; /* big enough for up to 10^10 instances */
813 char *key[3]; /* 3 part key: module, instance, name */
814 int k;
815 int new;
816 HV *hash;
817 HV *tie;
818
819 /* Create the keys */
820 (void) snprintf(str_inst, sizeof (str_inst), "%d", instance);
821 key[0] = module;
822 key[1] = str_inst;
823 key[2] = name;
824
825 /* Iteratively descend the tree, creating new hashes as required */
826 hash = (HV *)SvRV(self);
827 for (k = 0; k < 3; k++) {
828 SV **entry;
829
830 SvREADONLY_off(hash);
831 entry = hv_fetch(hash, key[k], strlen(key[k]), TRUE);
832
833 /* If the entry doesn't exist, create it */
834 if (! SvOK(*entry)) {
835 HV *newhash;
836 SV *rv;
837
838 newhash = newHV();
839 rv = newRV_noinc((SV *)newhash);
840 sv_setsv(*entry, rv);
841 SvREFCNT_dec(rv);
842 if (k < 2) {
843 SvREADONLY_on(newhash);
844 }
845 SvREADONLY_on(*entry);
846 SvREADONLY_on(hash);
847 hash = newhash;
848 new = 1;
849
850 /* Otherwise it already existed */
851 } else {
852 SvREADONLY_on(hash);
853 hash = (HV *)SvRV(*entry);
854 new = 0;
855 }
856 }
857
858 /* Create and bless a hash for the tie, if necessary */
859 if (new) {
860 SV *tieref;
861 HV *stash;
862
863 tie = newHV();
864 tieref = newRV_noinc((SV *)tie);
865 stash = gv_stashpv("Sun::Solaris::Kstat::_Stat", TRUE);
866 sv_bless(tieref, stash);
867
868 /* Add TIEHASH magic */
869 hv_magic(hash, (GV *)tieref, 'P');
870 SvREADONLY_on(hash);
871
872 /* Otherwise, just find the existing tied hash */
873 } else {
874 MAGIC *mg;
875
876 mg = mg_find((SV *)hash, 'P');
877 PERL_ASSERTMSG(mg != 0, "get_tie: lost P magic");
878 tie = (HV *)SvRV(mg->mg_obj);
879 }
880 if (is_new) {
881 *is_new = new;
882 }
883 return (tie);
884 }
885
886 /*
887 * This is an iterator function used to traverse the hash hierarchy and apply
888 * the passed function to the tied hashes at the bottom of the hierarchy. If
889 * any of the callback functions return 0, 0 is returned, otherwise 1
890 */
891
892 static int
893 apply_to_ties(SV *self, ATTCb_t cb, void *arg)
894 {
895 HV *hash1;
896 HE *entry1;
897 long s;
898 int ret;
899
900 hash1 = (HV *)SvRV(self);
901 hv_iterinit(hash1);
902 ret = 1;
903
904 /* Iterate over each module */
905 while (entry1 = hv_iternext(hash1)) {
906 HV *hash2;
907 HE *entry2;
908
909 hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
910 hv_iterinit(hash2);
911
912 /* Iterate over each module:instance */
913 while (entry2 = hv_iternext(hash2)) {
914 HV *hash3;
915 HE *entry3;
916
917 hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
918 hv_iterinit(hash3);
919
920 /* Iterate over each module:instance:name */
921 while (entry3 = hv_iternext(hash3)) {
922 HV *hash4;
923 MAGIC *mg;
924 HV *tie;
925
926 /* Get the tie */
927 hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
928 mg = mg_find((SV *)hash4, 'P');
929 PERL_ASSERTMSG(mg != 0,
930 "apply_to_ties: lost P magic");
931
932 /* Apply the callback */
933 if (! cb((HV *)SvRV(mg->mg_obj), arg)) {
934 ret = 0;
935 }
936 }
937 }
938 }
939 return (ret);
940 }
941
942 /*
943 * Mark this HV as valid - used by update() when pruning deleted kstat nodes
944 */
945
946 static int
947 set_valid(HV *self, void *arg)
948 {
949 MAGIC *mg;
950
951 mg = mg_find((SV *)self, '~');
952 PERL_ASSERTMSG(mg != 0, "set_valid: lost ~ magic");
953 ((KstatInfo_t *)SvPVX(mg->mg_obj))->valid = (int)(intptr_t)arg;
954 return (1);
955 }
956
957 /*
958 * Prune invalid kstat nodes. This is called when kstat_chain_update() detects
959 * that the kstat chain has been updated. This removes any hash tree entries
960 * that no longer have a corresponding kstat. If del is non-null it will be
961 * set to the keys of the deleted kstat nodes, if any. If any entries are
962 * deleted 1 will be retured, otherwise 0
963 */
964
965 static int
966 prune_invalid(SV *self, AV *del)
967 {
968 HV *hash1;
969 HE *entry1;
970 STRLEN klen;
971 char *module, *instance, *name, *key;
972 int ret;
973
974 hash1 = (HV *)SvRV(self);
975 hv_iterinit(hash1);
976 ret = 0;
977
978 /* Iterate over each module */
979 while (entry1 = hv_iternext(hash1)) {
980 HV *hash2;
981 HE *entry2;
982
983 module = HePV(entry1, PL_na);
984 hash2 = (HV *)SvRV(hv_iterval(hash1, entry1));
985 hv_iterinit(hash2);
986
987 /* Iterate over each module:instance */
988 while (entry2 = hv_iternext(hash2)) {
989 HV *hash3;
990 HE *entry3;
991
992 instance = HePV(entry2, PL_na);
993 hash3 = (HV *)SvRV(hv_iterval(hash2, entry2));
994 hv_iterinit(hash3);
995
996 /* Iterate over each module:instance:name */
997 while (entry3 = hv_iternext(hash3)) {
998 HV *hash4;
999 MAGIC *mg;
1000 HV *tie;
1001
1002 name = HePV(entry3, PL_na);
1003 hash4 = (HV *)SvRV(hv_iterval(hash3, entry3));
1004 mg = mg_find((SV *)hash4, 'P');
1005 PERL_ASSERTMSG(mg != 0,
1006 "prune_invalid: lost P magic");
1007 tie = (HV *)SvRV(mg->mg_obj);
1008 mg = mg_find((SV *)tie, '~');
1009 PERL_ASSERTMSG(mg != 0,
1010 "prune_invalid: lost ~ magic");
1011
1012 /* If this is marked as invalid, prune it */
1013 if (((KstatInfo_t *)SvPVX(
1014 (SV *)mg->mg_obj))->valid == FALSE) {
1015 SvREADONLY_off(hash3);
1016 key = HePV(entry3, klen);
1017 hv_delete(hash3, key, klen, G_DISCARD);
1018 SvREADONLY_on(hash3);
1019 if (del) {
1020 av_push(del,
1021 newSVpvf("%s:%s:%s",
1022 module, instance, name));
1023 }
1024 ret = 1;
1025 }
1026 }
1027
1028 /* If the module:instance:name hash is empty prune it */
1029 if (HvKEYS(hash3) == 0) {
1030 SvREADONLY_off(hash2);
1031 key = HePV(entry2, klen);
1032 hv_delete(hash2, key, klen, G_DISCARD);
1033 SvREADONLY_on(hash2);
1034 }
1035 }
1036 /* If the module:instance hash is empty prune it */
1037 if (HvKEYS(hash2) == 0) {
1038 SvREADONLY_off(hash1);
1039 key = HePV(entry1, klen);
1040 hv_delete(hash1, key, klen, G_DISCARD);
1041 SvREADONLY_on(hash1);
1042 }
1043 }
1044 return (ret);
1045 }
1046
1047 /*
1048 * Named kstats are returned as a list of key/values. This function converts
1049 * such a list into the equivalent perl datatypes, and stores them in the passed
1050 * hash.
1051 */
1052
1053 static void
1054 save_named(HV *self, kstat_t *kp, int strip_str)
1055 {
1056 kstat_named_t *knp;
1057 int n;
1058 SV* value;
1059
1060 for (n = kp->ks_ndata, knp = KSTAT_NAMED_PTR(kp); n > 0; n--, knp++) {
1061 switch (knp->data_type) {
1062 case KSTAT_DATA_CHAR:
1063 value = newSVpv(knp->value.c, strip_str ?
1064 strlen(knp->value.c) : sizeof (knp->value.c));
1065 break;
1066 case KSTAT_DATA_INT32:
1067 value = newSViv(knp->value.i32);
1068 break;
1069 case KSTAT_DATA_UINT32:
1070 value = NEW_UV(knp->value.ui32);
1071 break;
1072 case KSTAT_DATA_INT64:
1073 value = NEW_UV(knp->value.i64);
1074 break;
1075 case KSTAT_DATA_UINT64:
1076 value = NEW_UV(knp->value.ui64);
1077 break;
1078 case KSTAT_DATA_STRING:
1079 if (KSTAT_NAMED_STR_PTR(knp) == NULL)
1080 value = newSVpv("null", sizeof ("null") - 1);
1081 else
1082 value = newSVpv(KSTAT_NAMED_STR_PTR(knp),
1083 KSTAT_NAMED_STR_BUFLEN(knp) -1);
1084 break;
1085 default:
1086 PERL_ASSERTMSG(0, "kstat_read: invalid data type");
1087 break;
1088 }
1089 hv_store(self, knp->name, strlen(knp->name), value, 0);
1090 }
1091 }
1092
1093 /*
1094 * Save kstat interrupt statistics
1095 */
1096
1097 static void
1098 save_intr(HV *self, kstat_t *kp, int strip_str)
1099 {
1100 kstat_intr_t *kintrp;
1101 int i;
1102 static char *intr_names[] =
1103 { "hard", "soft", "watchdog", "spurious", "multiple_service" };
1104
1105 PERL_ASSERT(kp->ks_ndata == 1);
1106 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_intr_t));
1107 kintrp = KSTAT_INTR_PTR(kp);
1108
1109 for (i = 0; i < KSTAT_NUM_INTRS; i++) {
1110 hv_store(self, intr_names[i], strlen(intr_names[i]),
1111 NEW_UV(kintrp->intrs[i]), 0);
1112 }
1113 }
1114
1115 /*
1116 * Save IO statistics
1117 */
1118
1119 static void
1120 save_io(HV *self, kstat_t *kp, int strip_str)
1121 {
1122 kstat_io_t *kiop;
1123
1124 PERL_ASSERT(kp->ks_ndata == 1);
1125 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_io_t));
1126 kiop = KSTAT_IO_PTR(kp);
1127 SAVE_UINT64(self, kiop, nread);
1128 SAVE_UINT64(self, kiop, nwritten);
1129 SAVE_UINT32(self, kiop, reads);
1130 SAVE_UINT32(self, kiop, writes);
1131 SAVE_HRTIME(self, kiop, wtime);
1132 SAVE_HRTIME(self, kiop, wlentime);
1133 SAVE_HRTIME(self, kiop, wlastupdate);
1134 SAVE_HRTIME(self, kiop, rtime);
1135 SAVE_HRTIME(self, kiop, rlentime);
1136 SAVE_HRTIME(self, kiop, rlastupdate);
1137 SAVE_UINT32(self, kiop, wcnt);
1138 SAVE_UINT32(self, kiop, rcnt);
1139 }
1140
1141 /*
1142 * Save timer statistics
1143 */
1144
1145 static void
1146 save_timer(HV *self, kstat_t *kp, int strip_str)
1147 {
1148 kstat_timer_t *ktimerp;
1149
1150 PERL_ASSERT(kp->ks_ndata == 1);
1151 PERL_ASSERT(kp->ks_data_size == sizeof (kstat_timer_t));
1152 ktimerp = KSTAT_TIMER_PTR(kp);
1153 SAVE_STRING(self, ktimerp, name, strip_str);
1154 SAVE_UINT64(self, ktimerp, num_events);
1155 SAVE_HRTIME(self, ktimerp, elapsed_time);
1156 SAVE_HRTIME(self, ktimerp, min_time);
1157 SAVE_HRTIME(self, ktimerp, max_time);
1158 SAVE_HRTIME(self, ktimerp, start_time);
1159 SAVE_HRTIME(self, ktimerp, stop_time);
1160 }
1161
1162 /*
1163 * Read kstats and copy into the supplied perl hash structure. If refresh is
1164 * true, this function is being called as part of the update() method. In this
1165 * case it is only necessary to read the kstats if they have previously been
1166 * accessed (kip->read == TRUE). If refresh is false, this function is being
1167 * called prior to returning a value to the caller. In this case, it is only
1168 * necessary to read the kstats if they have not previously been read. If the
1169 * kstat_read() fails, 0 is returned, otherwise 1
1170 */
1171
1172 static int
1173 read_kstats(HV *self, int refresh)
1174 {
1175 MAGIC *mg;
1176 KstatInfo_t *kip;
1177 kstat_raw_reader_t fnp;
1178
1179 /* Find the MAGIC KstatInfo_t data structure */
1180 mg = mg_find((SV *)self, '~');
1181 PERL_ASSERTMSG(mg != 0, "read_kstats: lost ~ magic");
1182 kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1183
1184 /* Return early if we don't need to actually read the kstats */
1185 if ((refresh && ! kip->read) || (! refresh && kip->read)) {
1186 return (1);
1187 }
1188
1189 /* Read the kstats and return 0 if this fails */
1190 if (kstat_read(kip->kstat_ctl, kip->kstat, NULL) < 0) {
1191 return (0);
1192 }
1193
1194 /* Save the read data */
1195 hv_store(self, "snaptime", 8, NEW_HRTIME(kip->kstat->ks_snaptime), 0);
1196 switch (kip->kstat->ks_type) {
1197 case KSTAT_TYPE_RAW:
1198 if ((fnp = lookup_raw_kstat_fn(kip->kstat->ks_module,
1199 kip->kstat->ks_name)) != 0) {
1200 fnp(self, kip->kstat, kip->strip_str);
1201 }
1202 break;
1203 case KSTAT_TYPE_NAMED:
1204 save_named(self, kip->kstat, kip->strip_str);
1205 break;
1206 case KSTAT_TYPE_INTR:
1207 save_intr(self, kip->kstat, kip->strip_str);
1208 break;
1209 case KSTAT_TYPE_IO:
1210 save_io(self, kip->kstat, kip->strip_str);
1211 break;
1212 case KSTAT_TYPE_TIMER:
1213 save_timer(self, kip->kstat, kip->strip_str);
1214 break;
1215 default:
1216 PERL_ASSERTMSG(0, "read_kstats: illegal kstat type");
1217 break;
1218 }
1219 kip->read = TRUE;
1220 return (1);
1221 }
1222
1223 /*
1224 * The XS code exported to perl is below here. Note that the XS preprocessor
1225 * has its own commenting syntax, so all comments from this point on are in
1226 * that form.
1227 */
1228
1229 /* The following XS methods are the ABI of the Sun::Solaris::Kstat package */
1230
1231 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat
1232 PROTOTYPES: ENABLE
1233
1234 # Create the raw kstat to store function lookup table on load
1235 BOOT:
1236 build_raw_kstat_lookup();
1237
1238 #
1239 # The Sun::Solaris::Kstat constructor. This builds the nested
1240 # name::instance::module hash structure, but doesn't actually read the
1241 # underlying kstats. This is done on demand by the TIEHASH methods in
1242 # Sun::Solaris::Kstat::_Stat
1243 #
1244
1245 SV*
1246 new(class, ...)
1247 char *class;
1248 PREINIT:
1249 HV *stash;
1250 kstat_ctl_t *kc;
1251 SV *kcsv;
1252 kstat_t *kp;
1253 KstatInfo_t kstatinfo;
1254 int sp, strip_str;
1255 CODE:
1256 /* Check we have an even number of arguments, excluding the class */
1257 sp = 1;
1258 if (((items - sp) % 2) != 0) {
1259 croak(DEBUG_ID ": new: invalid number of arguments");
1260 }
1261
1262 /* Process any (name => value) arguments */
1263 strip_str = 0;
1264 while (sp < items) {
1265 SV *name, *value;
1266
1267 name = ST(sp);
1268 sp++;
1269 value = ST(sp);
1270 sp++;
1271 if (strcmp(SvPVX(name), "strip_strings") == 0) {
1272 strip_str = SvTRUE(value);
1273 } else {
1274 croak(DEBUG_ID ": new: invalid parameter name '%s'",
1275 SvPVX(name));
1276 }
1277 }
1278
1279 /* Open the kstats handle */
1280 if ((kc = kstat_open()) == 0) {
1281 XSRETURN_UNDEF;
1282 }
1283
1284 /* Create a blessed hash ref */
1285 RETVAL = (SV *)newRV_noinc((SV *)newHV());
1286 stash = gv_stashpv(class, TRUE);
1287 sv_bless(RETVAL, stash);
1288
1289 /* Create a place to save the KstatInfo_t structure */
1290 kcsv = newSVpv((char *)&kc, sizeof (kc));
1291 sv_magic(SvRV(RETVAL), kcsv, '~', 0, 0);
1292 SvREFCNT_dec(kcsv);
1293
1294 /* Initialise the KstatsInfo_t structure */
1295 kstatinfo.read = FALSE;
1296 kstatinfo.valid = TRUE;
1297 kstatinfo.strip_str = strip_str;
1298 kstatinfo.kstat_ctl = kc;
1299
1300 /* Scan the kstat chain, building hash entries for the kstats */
1301 for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1302 HV *tie;
1303 SV *kstatsv;
1304
1305 /* Don't bother storing the kstat headers */
1306 if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1307 continue;
1308 }
1309
1310 /* Don't bother storing raw stats we don't understand */
1311 if (kp->ks_type == KSTAT_TYPE_RAW &&
1312 lookup_raw_kstat_fn(kp->ks_module, kp->ks_name) == 0) {
1313 #ifdef REPORT_UNKNOWN
1314 (void) fprintf(stderr,
1315 "Unknown kstat type %s:%d:%s - %d of size %d\n",
1316 kp->ks_module, kp->ks_instance, kp->ks_name,
1317 kp->ks_ndata, kp->ks_data_size);
1318 #endif
1319 continue;
1320 }
1321
1322 /* Create a 3-layer hash hierarchy - module.instance.name */
1323 tie = get_tie(RETVAL, kp->ks_module, kp->ks_instance,
1324 kp->ks_name, 0);
1325
1326 /* Save the data necessary to read the kstat info on demand */
1327 hv_store(tie, "class", 5, newSVpv(kp->ks_class, 0), 0);
1328 hv_store(tie, "crtime", 6, NEW_HRTIME(kp->ks_crtime), 0);
1329 kstatinfo.kstat = kp;
1330 kstatsv = newSVpv((char *)&kstatinfo, sizeof (kstatinfo));
1331 sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1332 SvREFCNT_dec(kstatsv);
1333 }
1334 SvREADONLY_on(SvRV(RETVAL));
1335 /* SvREADONLY_on(RETVAL); */
1336 OUTPUT:
1337 RETVAL
1338
1339 #
1340 # Update the perl hash structure so that it is in line with the kernel kstats
1341 # data. Only kstats athat have previously been accessed are read,
1342 #
1343
1344 # Scalar context: true/false
1345 # Array context: (\@added, \@deleted)
1346 void
1347 update(self)
1348 SV* self;
1349 PREINIT:
1350 MAGIC *mg;
1351 kstat_ctl_t *kc;
1352 kstat_t *kp;
1353 int ret;
1354 AV *add, *del;
1355 PPCODE:
1356 /* Find the hidden KstatInfo_t structure */
1357 mg = mg_find(SvRV(self), '~');
1358 PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1359 kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1360
1361 /* Update the kstat chain, and return immediately on error. */
1362 if ((ret = kstat_chain_update(kc)) == -1) {
1363 if (GIMME_V == G_ARRAY) {
1364 EXTEND(SP, 2);
1365 PUSHs(sv_newmortal());
1366 PUSHs(sv_newmortal());
1367 } else {
1368 EXTEND(SP, 1);
1369 PUSHs(sv_2mortal(newSViv(ret)));
1370 }
1371 }
1372
1373 /* Create the arrays to be returned if in an array context */
1374 if (GIMME_V == G_ARRAY) {
1375 add = newAV();
1376 del = newAV();
1377 } else {
1378 add = 0;
1379 del = 0;
1380 }
1381
1382 /*
1383 * If the kstat chain hasn't changed we can just reread any stats
1384 * that have already been read
1385 */
1386 if (ret == 0) {
1387 if (! apply_to_ties(self, (ATTCb_t)read_kstats, (void *)TRUE)) {
1388 if (GIMME_V == G_ARRAY) {
1389 EXTEND(SP, 2);
1390 PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1391 PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1392 } else {
1393 EXTEND(SP, 1);
1394 PUSHs(sv_2mortal(newSViv(-1)));
1395 }
1396 }
1397
1398 /*
1399 * Otherwise we have to update the Perl structure so that it is in
1400 * agreement with the new kstat chain. We do this in such a way as to
1401 * retain all the existing structures, just adding or deleting the
1402 * bare minimum.
1403 */
1404 } else {
1405 KstatInfo_t kstatinfo;
1406
1407 /*
1408 * Step 1: set the 'invalid' flag on each entry
1409 */
1410 apply_to_ties(self, &set_valid, (void *)FALSE);
1411
1412 /*
1413 * Step 2: Set the 'valid' flag on all entries still in the
1414 * kernel kstat chain
1415 */
1416 kstatinfo.read = FALSE;
1417 kstatinfo.valid = TRUE;
1418 kstatinfo.kstat_ctl = kc;
1419 for (kp = kc->kc_chain; kp != 0; kp = kp->ks_next) {
1420 int new;
1421 HV *tie;
1422
1423 /* Don't bother storing the kstat headers or types */
1424 if (strncmp(kp->ks_name, "kstat_", 6) == 0) {
1425 continue;
1426 }
1427
1428 /* Don't bother storing raw stats we don't understand */
1429 if (kp->ks_type == KSTAT_TYPE_RAW &&
1430 lookup_raw_kstat_fn(kp->ks_module, kp->ks_name)
1431 == 0) {
1432 #ifdef REPORT_UNKNOWN
1433 (void) printf("Unknown kstat type %s:%d:%s "
1434 "- %d of size %d\n", kp->ks_module,
1435 kp->ks_instance, kp->ks_name,
1436 kp->ks_ndata, kp->ks_data_size);
1437 #endif
1438 continue;
1439 }
1440
1441 /* Find the tied hash associated with the kstat entry */
1442 tie = get_tie(self, kp->ks_module, kp->ks_instance,
1443 kp->ks_name, &new);
1444
1445 /* If newly created store the associated kstat info */
1446 if (new) {
1447 SV *kstatsv;
1448
1449 /*
1450 * Save the data necessary to read the kstat
1451 * info on demand
1452 */
1453 hv_store(tie, "class", 5,
1454 newSVpv(kp->ks_class, 0), 0);
1455 hv_store(tie, "crtime", 6,
1456 NEW_HRTIME(kp->ks_crtime), 0);
1457 kstatinfo.kstat = kp;
1458 kstatsv = newSVpv((char *)&kstatinfo,
1459 sizeof (kstatinfo));
1460 sv_magic((SV *)tie, kstatsv, '~', 0, 0);
1461 SvREFCNT_dec(kstatsv);
1462
1463 /* Save the key on the add list, if required */
1464 if (GIMME_V == G_ARRAY) {
1465 av_push(add, newSVpvf("%s:%d:%s",
1466 kp->ks_module, kp->ks_instance,
1467 kp->ks_name));
1468 }
1469
1470 /* If the stats already exist, just update them */
1471 } else {
1472 MAGIC *mg;
1473 KstatInfo_t *kip;
1474
1475 /* Find the hidden KstatInfo_t */
1476 mg = mg_find((SV *)tie, '~');
1477 PERL_ASSERTMSG(mg != 0, "update: lost ~ magic");
1478 kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1479
1480 /* Mark the tie as valid */
1481 kip->valid = TRUE;
1482
1483 /* Re-save the kstat_t pointer. If the kstat
1484 * has been deleted and re-added since the last
1485 * update, the address of the kstat structure
1486 * will have changed, even though the kstat will
1487 * still live at the same place in the perl
1488 * hash tree structure.
1489 */
1490 kip->kstat = kp;
1491
1492 /* Reread the stats, if read previously */
1493 read_kstats(tie, TRUE);
1494 }
1495 }
1496
1497 /*
1498 *Step 3: Delete any entries still marked as 'invalid'
1499 */
1500 ret = prune_invalid(self, del);
1501
1502 }
1503 if (GIMME_V == G_ARRAY) {
1504 EXTEND(SP, 2);
1505 PUSHs(sv_2mortal(newRV_noinc((SV *)add)));
1506 PUSHs(sv_2mortal(newRV_noinc((SV *)del)));
1507 } else {
1508 EXTEND(SP, 1);
1509 PUSHs(sv_2mortal(newSViv(ret)));
1510 }
1511
1512
1513 #
1514 # Destructor. Closes the kstat connection
1515 #
1516
1517 void
1518 DESTROY(self)
1519 SV *self;
1520 PREINIT:
1521 MAGIC *mg;
1522 kstat_ctl_t *kc;
1523 CODE:
1524 mg = mg_find(SvRV(self), '~');
1525 PERL_ASSERTMSG(mg != 0, "DESTROY: lost ~ magic");
1526 kc = *(kstat_ctl_t **)SvPVX(mg->mg_obj);
1527 if (kstat_close(kc) != 0) {
1528 croak(DEBUG_ID ": kstat_close: failed");
1529 }
1530
1531 #
1532 # The following XS methods implement the TIEHASH mechanism used to update the
1533 # kstats hash structure. These are blessed into a package that isn't
1534 # visible to callers of the Sun::Solaris::Kstat module
1535 #
1536
1537 MODULE = Sun::Solaris::Kstat PACKAGE = Sun::Solaris::Kstat::_Stat
1538 PROTOTYPES: ENABLE
1539
1540 #
1541 # If a value has already been read, return it. Otherwise read the appropriate
1542 # kstat and then return the value
1543 #
1544
1545 SV*
1546 FETCH(self, key)
1547 SV* self;
1548 SV* key;
1549 PREINIT:
1550 char *k;
1551 STRLEN klen;
1552 SV **value;
1553 CODE:
1554 self = SvRV(self);
1555 k = SvPV(key, klen);
1556 if (strNE(k, "class") && strNE(k, "crtime")) {
1557 read_kstats((HV *)self, FALSE);
1558 }
1559 value = hv_fetch((HV *)self, k, klen, FALSE);
1560 if (value) {
1561 RETVAL = *value; SvREFCNT_inc(RETVAL);
1562 } else {
1563 RETVAL = &PL_sv_undef;
1564 }
1565 OUTPUT:
1566 RETVAL
1567
1568 #
1569 # Save the passed value into the kstat hash. Read the appropriate kstat first,
1570 # if necessary. Note that this DOES NOT update the underlying kernel kstat
1571 # structure.
1572 #
1573
1574 SV*
1575 STORE(self, key, value)
1576 SV* self;
1577 SV* key;
1578 SV* value;
1579 PREINIT:
1580 char *k;
1581 STRLEN klen;
1582 CODE:
1583 self = SvRV(self);
1584 k = SvPV(key, klen);
1585 if (strNE(k, "class") && strNE(k, "crtime")) {
1586 read_kstats((HV *)self, FALSE);
1587 }
1588 SvREFCNT_inc(value);
1589 RETVAL = *(hv_store((HV *)self, k, klen, value, 0));
1590 SvREFCNT_inc(RETVAL);
1591 OUTPUT:
1592 RETVAL
1593
1594 #
1595 # Check for the existence of the passed key. Read the kstat first if necessary
1596 #
1597
1598 bool
1599 EXISTS(self, key)
1600 SV* self;
1601 SV* key;
1602 PREINIT:
1603 char *k;
1604 CODE:
1605 self = SvRV(self);
1606 k = SvPV(key, PL_na);
1607 if (strNE(k, "class") && strNE(k, "crtime")) {
1608 read_kstats((HV *)self, FALSE);
1609 }
1610 RETVAL = hv_exists_ent((HV *)self, key, 0);
1611 OUTPUT:
1612 RETVAL
1613
1614
1615 #
1616 # Hash iterator initialisation. Read the kstats if necessary.
1617 #
1618
1619 SV*
1620 FIRSTKEY(self)
1621 SV* self;
1622 PREINIT:
1623 HE *he;
1624 PPCODE:
1625 self = SvRV(self);
1626 read_kstats((HV *)self, FALSE);
1627 hv_iterinit((HV *)self);
1628 if (he = hv_iternext((HV *)self)) {
1629 EXTEND(SP, 1);
1630 PUSHs(hv_iterkeysv(he));
1631 }
1632
1633 #
1634 # Return hash iterator next value. Read the kstats if necessary.
1635 #
1636
1637 SV*
1638 NEXTKEY(self, lastkey)
1639 SV* self;
1640 SV* lastkey;
1641 PREINIT:
1642 HE *he;
1643 PPCODE:
1644 self = SvRV(self);
1645 if (he = hv_iternext((HV *)self)) {
1646 EXTEND(SP, 1);
1647 PUSHs(hv_iterkeysv(he));
1648 }
1649
1650
1651 #
1652 # Delete the specified hash entry.
1653 #
1654
1655 SV*
1656 DELETE(self, key)
1657 SV *self;
1658 SV *key;
1659 CODE:
1660 self = SvRV(self);
1661 RETVAL = hv_delete_ent((HV *)self, key, 0, 0);
1662 if (RETVAL) {
1663 SvREFCNT_inc(RETVAL);
1664 } else {
1665 RETVAL = &PL_sv_undef;
1666 }
1667 OUTPUT:
1668 RETVAL
1669
1670 #
1671 # Clear the entire hash. This will stop any update() calls rereading this
1672 # kstat until it is accessed again.
1673 #
1674
1675 void
1676 CLEAR(self)
1677 SV* self;
1678 PREINIT:
1679 MAGIC *mg;
1680 KstatInfo_t *kip;
1681 CODE:
1682 self = SvRV(self);
1683 hv_clear((HV *)self);
1684 mg = mg_find(self, '~');
1685 PERL_ASSERTMSG(mg != 0, "CLEAR: lost ~ magic");
1686 kip = (KstatInfo_t *)SvPVX(mg->mg_obj);
1687 kip->read = FALSE;
1688 kip->valid = TRUE;
1689 hv_store((HV *)self, "class", 5, newSVpv(kip->kstat->ks_class, 0), 0);
1690 hv_store((HV *)self, "crtime", 6, NEW_HRTIME(kip->kstat->ks_crtime), 0);