1 /* 2 * read_bignum(): 3 * Copyright (c) 1995 Tatu Ylonen <ylo@cs.hut.fi>, Espoo, Finland 4 * 5 * As far as I am concerned, the code I have written for this software 6 * can be used freely for any purpose. Any derived versions of this 7 * software must be clearly marked as such, and if the derived work is 8 * incompatible with the protocol description in the RFC file, it must be 9 * called by a name other than "ssh" or "Secure Shell". 10 * 11 * 12 * Copyright (c) 2000, 2001 Markus Friedl. All rights reserved. 13 * 14 * Redistribution and use in source and binary forms, with or without 15 * modification, are permitted provided that the following conditions 16 * are met: 17 * 1. Redistributions of source code must retain the above copyright 18 * notice, this list of conditions and the following disclaimer. 19 * 2. Redistributions in binary form must reproduce the above copyright 20 * notice, this list of conditions and the following disclaimer in the 21 * documentation and/or other materials provided with the distribution. 22 * 23 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR 24 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES 25 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. 26 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, 27 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT 28 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 29 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 30 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 31 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF 32 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 33 */ 34 #include "includes.h" 35 RCSID("$OpenBSD: key.c,v 1.49 2002/09/09 14:54:14 markus Exp $"); 36 37 #pragma ident "%Z%%M% %I% %E% SMI" 38 39 #include <openssl/opensslconf.h> 40 #include <openssl/evp.h> 41 42 #include "xmalloc.h" 43 #include "key.h" 44 #include "rsa.h" 45 #include "ssh-dss.h" 46 #include "ssh-rsa.h" 47 #include "uuencode.h" 48 #include "buffer.h" 49 #include "bufaux.h" 50 #include "log.h" 51 52 Key * 53 key_new(int type) 54 { 55 Key *k; 56 RSA *rsa; 57 DSA *dsa; 58 k = xmalloc(sizeof(*k)); 59 k->type = type; 60 k->flags = 0; 61 k->dsa = NULL; 62 k->rsa = NULL; 63 switch (k->type) { 64 case KEY_RSA1: 65 case KEY_RSA: 66 if ((rsa = RSA_new()) == NULL) 67 fatal("key_new: RSA_new failed"); 68 if ((rsa->n = BN_new()) == NULL) 69 fatal("key_new: BN_new failed"); 70 if ((rsa->e = BN_new()) == NULL) 71 fatal("key_new: BN_new failed"); 72 k->rsa = rsa; 73 break; 74 case KEY_DSA: 75 if ((dsa = DSA_new()) == NULL) 76 fatal("key_new: DSA_new failed"); 77 if ((dsa->p = BN_new()) == NULL) 78 fatal("key_new: BN_new failed"); 79 if ((dsa->q = BN_new()) == NULL) 80 fatal("key_new: BN_new failed"); 81 if ((dsa->g = BN_new()) == NULL) 82 fatal("key_new: BN_new failed"); 83 if ((dsa->pub_key = BN_new()) == NULL) 84 fatal("key_new: BN_new failed"); 85 k->dsa = dsa; 86 break; 87 case KEY_UNSPEC: 88 break; 89 default: 90 fatal("key_new: bad key type %d", k->type); 91 break; 92 } 93 return k; 94 } 95 96 Key * 97 key_new_private(int type) 98 { 99 Key *k = key_new(type); 100 switch (k->type) { 101 case KEY_RSA1: 102 case KEY_RSA: 103 if ((k->rsa->d = BN_new()) == NULL) 104 fatal("key_new_private: BN_new failed"); 105 if ((k->rsa->iqmp = BN_new()) == NULL) 106 fatal("key_new_private: BN_new failed"); 107 if ((k->rsa->q = BN_new()) == NULL) 108 fatal("key_new_private: BN_new failed"); 109 if ((k->rsa->p = BN_new()) == NULL) 110 fatal("key_new_private: BN_new failed"); 111 if ((k->rsa->dmq1 = BN_new()) == NULL) 112 fatal("key_new_private: BN_new failed"); 113 if ((k->rsa->dmp1 = BN_new()) == NULL) 114 fatal("key_new_private: BN_new failed"); 115 break; 116 case KEY_DSA: 117 if ((k->dsa->priv_key = BN_new()) == NULL) 118 fatal("key_new_private: BN_new failed"); 119 break; 120 case KEY_UNSPEC: 121 break; 122 default: 123 break; 124 } 125 return k; 126 } 127 128 void 129 key_free(Key *k) 130 { 131 switch (k->type) { 132 case KEY_RSA1: 133 case KEY_RSA: 134 if (k->rsa != NULL) 135 RSA_free(k->rsa); 136 k->rsa = NULL; 137 break; 138 case KEY_DSA: 139 if (k->dsa != NULL) 140 DSA_free(k->dsa); 141 k->dsa = NULL; 142 break; 143 case KEY_UNSPEC: 144 break; 145 default: 146 fatal("key_free: bad key type %d", k->type); 147 break; 148 } 149 xfree(k); 150 } 151 int 152 key_equal(const Key *a, const Key *b) 153 { 154 if (a == NULL || b == NULL || a->type != b->type) 155 return 0; 156 switch (a->type) { 157 case KEY_RSA1: 158 case KEY_RSA: 159 return a->rsa != NULL && b->rsa != NULL && 160 BN_cmp(a->rsa->e, b->rsa->e) == 0 && 161 BN_cmp(a->rsa->n, b->rsa->n) == 0; 162 break; 163 case KEY_DSA: 164 return a->dsa != NULL && b->dsa != NULL && 165 BN_cmp(a->dsa->p, b->dsa->p) == 0 && 166 BN_cmp(a->dsa->q, b->dsa->q) == 0 && 167 BN_cmp(a->dsa->g, b->dsa->g) == 0 && 168 BN_cmp(a->dsa->pub_key, b->dsa->pub_key) == 0; 169 break; 170 default: 171 fatal("key_equal: bad key type %d", a->type); 172 break; 173 } 174 return 0; 175 } 176 177 static u_char * 178 key_fingerprint_raw(Key *k, enum fp_type dgst_type, u_int *dgst_raw_length) 179 { 180 const EVP_MD *md = NULL; 181 EVP_MD_CTX ctx; 182 u_char *blob = NULL; 183 u_char *retval = NULL; 184 u_int len = 0; 185 int nlen, elen; 186 187 *dgst_raw_length = 0; 188 189 switch (dgst_type) { 190 case SSH_FP_MD5: 191 md = EVP_md5(); 192 break; 193 case SSH_FP_SHA1: 194 md = EVP_sha1(); 195 break; 196 default: 197 fatal("key_fingerprint_raw: bad digest type %d", 198 dgst_type); 199 } 200 switch (k->type) { 201 case KEY_RSA1: 202 nlen = BN_num_bytes(k->rsa->n); 203 elen = BN_num_bytes(k->rsa->e); 204 len = nlen + elen; 205 blob = xmalloc(len); 206 BN_bn2bin(k->rsa->n, blob); 207 BN_bn2bin(k->rsa->e, blob + nlen); 208 break; 209 case KEY_DSA: 210 case KEY_RSA: 211 key_to_blob(k, &blob, &len); 212 break; 213 case KEY_UNSPEC: 214 return retval; 215 break; 216 default: 217 fatal("key_fingerprint_raw: bad key type %d", k->type); 218 break; 219 } 220 if (blob != NULL) { 221 retval = xmalloc(EVP_MAX_MD_SIZE); 222 EVP_DigestInit(&ctx, md); 223 EVP_DigestUpdate(&ctx, blob, len); 224 EVP_DigestFinal(&ctx, retval, dgst_raw_length); 225 memset(blob, 0, len); 226 xfree(blob); 227 } else { 228 fatal("key_fingerprint_raw: blob is null"); 229 } 230 return retval; 231 } 232 233 static char * 234 key_fingerprint_hex(u_char *dgst_raw, u_int dgst_raw_len) 235 { 236 char *retval; 237 int i; 238 239 retval = xmalloc(dgst_raw_len * 3 + 1); 240 retval[0] = '\0'; 241 for (i = 0; i < dgst_raw_len; i++) { 242 char hex[4]; 243 snprintf(hex, sizeof(hex), "%02x:", dgst_raw[i]); 244 strlcat(retval, hex, dgst_raw_len * 3); 245 } 246 retval[(dgst_raw_len * 3) - 1] = '\0'; 247 return retval; 248 } 249 250 static char * 251 key_fingerprint_bubblebabble(u_char *dgst_raw, u_int dgst_raw_len) 252 { 253 char vowels[] = { 'a', 'e', 'i', 'o', 'u', 'y' }; 254 char consonants[] = { 'b', 'c', 'd', 'f', 'g', 'h', 'k', 'l', 'm', 255 'n', 'p', 'r', 's', 't', 'v', 'z', 'x' }; 256 u_int i, j = 0, rounds, seed = 1; 257 char *retval; 258 259 rounds = (dgst_raw_len / 2) + 1; 260 retval = xmalloc(sizeof(char) * (rounds*6)); 261 retval[j++] = 'x'; 262 for (i = 0; i < rounds; i++) { 263 u_int idx0, idx1, idx2, idx3, idx4; 264 if ((i + 1 < rounds) || (dgst_raw_len % 2 != 0)) { 265 idx0 = (((((u_int)(dgst_raw[2 * i])) >> 6) & 3) + 266 seed) % 6; 267 idx1 = (((u_int)(dgst_raw[2 * i])) >> 2) & 15; 268 idx2 = ((((u_int)(dgst_raw[2 * i])) & 3) + 269 (seed / 6)) % 6; 270 retval[j++] = vowels[idx0]; 271 retval[j++] = consonants[idx1]; 272 retval[j++] = vowels[idx2]; 273 if ((i + 1) < rounds) { 274 idx3 = (((u_int)(dgst_raw[(2 * i) + 1])) >> 4) & 15; 275 idx4 = (((u_int)(dgst_raw[(2 * i) + 1]))) & 15; 276 retval[j++] = consonants[idx3]; 277 retval[j++] = '-'; 278 retval[j++] = consonants[idx4]; 279 seed = ((seed * 5) + 280 ((((u_int)(dgst_raw[2 * i])) * 7) + 281 ((u_int)(dgst_raw[(2 * i) + 1])))) % 36; 282 } 283 } else { 284 idx0 = seed % 6; 285 idx1 = 16; 286 idx2 = seed / 6; 287 retval[j++] = vowels[idx0]; 288 retval[j++] = consonants[idx1]; 289 retval[j++] = vowels[idx2]; 290 } 291 } 292 retval[j++] = 'x'; 293 retval[j++] = '\0'; 294 return retval; 295 } 296 297 char * 298 key_fingerprint(Key *k, enum fp_type dgst_type, enum fp_rep dgst_rep) 299 { 300 char *retval = NULL; 301 u_char *dgst_raw; 302 u_int dgst_raw_len; 303 304 dgst_raw = key_fingerprint_raw(k, dgst_type, &dgst_raw_len); 305 if (!dgst_raw) 306 fatal("key_fingerprint: null from key_fingerprint_raw()"); 307 switch (dgst_rep) { 308 case SSH_FP_HEX: 309 retval = key_fingerprint_hex(dgst_raw, dgst_raw_len); 310 break; 311 case SSH_FP_BUBBLEBABBLE: 312 retval = key_fingerprint_bubblebabble(dgst_raw, dgst_raw_len); 313 break; 314 default: 315 fatal("key_fingerprint_ex: bad digest representation %d", 316 dgst_rep); 317 break; 318 } 319 memset(dgst_raw, 0, dgst_raw_len); 320 xfree(dgst_raw); 321 return retval; 322 } 323 324 /* 325 * Reads a multiple-precision integer in decimal from the buffer, and advances 326 * the pointer. The integer must already be initialized. This function is 327 * permitted to modify the buffer. This leaves *cpp to point just beyond the 328 * last processed (and maybe modified) character. Note that this may modify 329 * the buffer containing the number. 330 */ 331 static int 332 read_bignum(char **cpp, BIGNUM * value) 333 { 334 char *cp = *cpp; 335 int old; 336 337 /* Skip any leading whitespace. */ 338 for (; *cp == ' ' || *cp == '\t'; cp++) 339 ; 340 341 /* Check that it begins with a decimal digit. */ 342 if (*cp < '0' || *cp > '9') 343 return 0; 344 345 /* Save starting position. */ 346 *cpp = cp; 347 348 /* Move forward until all decimal digits skipped. */ 349 for (; *cp >= '0' && *cp <= '9'; cp++) 350 ; 351 352 /* Save the old terminating character, and replace it by \0. */ 353 old = *cp; 354 *cp = 0; 355 356 /* Parse the number. */ 357 if (BN_dec2bn(&value, *cpp) == 0) 358 return 0; 359 360 /* Restore old terminating character. */ 361 *cp = old; 362 363 /* Move beyond the number and return success. */ 364 *cpp = cp; 365 return 1; 366 } 367 368 static int 369 write_bignum(FILE *f, BIGNUM *num) 370 { 371 char *buf = BN_bn2dec(num); 372 if (buf == NULL) { 373 error("write_bignum: BN_bn2dec() failed"); 374 return 0; 375 } 376 fprintf(f, " %s", buf); 377 OPENSSL_free(buf); 378 return 1; 379 } 380 381 /* returns 1 ok, -1 error */ 382 int 383 key_read(Key *ret, char **cpp) 384 { 385 Key *k; 386 int success = -1; 387 char *cp, *space; 388 int len, n, type; 389 u_int bits; 390 u_char *blob; 391 392 cp = *cpp; 393 394 switch (ret->type) { 395 case KEY_RSA1: 396 /* Get number of bits. */ 397 if (*cp < '0' || *cp > '9') 398 return -1; /* Bad bit count... */ 399 for (bits = 0; *cp >= '0' && *cp <= '9'; cp++) 400 bits = 10 * bits + *cp - '0'; 401 if (bits == 0) 402 return -1; 403 *cpp = cp; 404 /* Get public exponent, public modulus. */ 405 if (!read_bignum(cpp, ret->rsa->e)) 406 return -1; 407 if (!read_bignum(cpp, ret->rsa->n)) 408 return -1; 409 success = 1; 410 break; 411 case KEY_UNSPEC: 412 case KEY_RSA: 413 case KEY_DSA: 414 space = strchr(cp, ' '); 415 if (space == NULL) { 416 debug3("key_read: no space"); 417 return -1; 418 } 419 *space = '\0'; 420 type = key_type_from_name(cp); 421 *space = ' '; 422 if (type == KEY_UNSPEC) { 423 debug3("key_read: no key found"); 424 return -1; 425 } 426 cp = space+1; 427 if (*cp == '\0') { 428 debug3("key_read: short string"); 429 return -1; 430 } 431 if (ret->type == KEY_UNSPEC) { 432 ret->type = type; 433 } else if (ret->type != type) { 434 /* is a key, but different type */ 435 debug3("key_read: type mismatch"); 436 return -1; 437 } 438 len = 2*strlen(cp); 439 blob = xmalloc(len); 440 n = uudecode(cp, blob, len); 441 if (n < 0) { 442 error("key_read: uudecode %s failed", cp); 443 xfree(blob); 444 return -1; 445 } 446 k = key_from_blob(blob, n); 447 xfree(blob); 448 if (k == NULL) { 449 error("key_read: key_from_blob %s failed", cp); 450 return -1; 451 } 452 if (k->type != type) { 453 error("key_read: type mismatch: encoding error"); 454 key_free(k); 455 return -1; 456 } 457 /*XXXX*/ 458 if (ret->type == KEY_RSA) { 459 if (ret->rsa != NULL) 460 RSA_free(ret->rsa); 461 ret->rsa = k->rsa; 462 k->rsa = NULL; 463 success = 1; 464 #ifdef DEBUG_PK 465 RSA_print_fp(stderr, ret->rsa, 8); 466 #endif 467 } else { 468 if (ret->dsa != NULL) 469 DSA_free(ret->dsa); 470 ret->dsa = k->dsa; 471 k->dsa = NULL; 472 success = 1; 473 #ifdef DEBUG_PK 474 DSA_print_fp(stderr, ret->dsa, 8); 475 #endif 476 } 477 /*XXXX*/ 478 key_free(k); 479 if (success != 1) 480 break; 481 /* advance cp: skip whitespace and data */ 482 while (*cp == ' ' || *cp == '\t') 483 cp++; 484 while (*cp != '\0' && *cp != ' ' && *cp != '\t') 485 cp++; 486 *cpp = cp; 487 break; 488 default: 489 fatal("key_read: bad key type: %d", ret->type); 490 break; 491 } 492 return success; 493 } 494 495 int 496 key_write(const Key *key, FILE *f) 497 { 498 int n, success = 0; 499 u_int len, bits = 0; 500 u_char *blob; 501 char *uu; 502 503 if (key->type == KEY_RSA1 && key->rsa != NULL) { 504 /* size of modulus 'n' */ 505 bits = BN_num_bits(key->rsa->n); 506 fprintf(f, "%u", bits); 507 if (write_bignum(f, key->rsa->e) && 508 write_bignum(f, key->rsa->n)) { 509 success = 1; 510 } else { 511 error("key_write: failed for RSA key"); 512 } 513 } else if ((key->type == KEY_DSA && key->dsa != NULL) || 514 (key->type == KEY_RSA && key->rsa != NULL)) { 515 key_to_blob(key, &blob, &len); 516 uu = xmalloc(2*len); 517 n = uuencode(blob, len, uu, 2*len); 518 if (n > 0) { 519 fprintf(f, "%s %s", key_ssh_name(key), uu); 520 success = 1; 521 } 522 xfree(blob); 523 xfree(uu); 524 } 525 return success; 526 } 527 528 char * 529 key_type(Key *k) 530 { 531 switch (k->type) { 532 case KEY_RSA1: 533 return "RSA1"; 534 break; 535 case KEY_RSA: 536 return "RSA"; 537 break; 538 case KEY_DSA: 539 return "DSA"; 540 break; 541 } 542 return "unknown"; 543 } 544 545 char * 546 key_ssh_name(const Key *k) 547 { 548 switch (k->type) { 549 case KEY_RSA: 550 return "ssh-rsa"; 551 break; 552 case KEY_DSA: 553 return "ssh-dss"; 554 break; 555 } 556 return "ssh-unknown"; 557 } 558 559 u_int 560 key_size(Key *k) 561 { 562 switch (k->type) { 563 case KEY_RSA1: 564 case KEY_RSA: 565 return BN_num_bits(k->rsa->n); 566 break; 567 case KEY_DSA: 568 return BN_num_bits(k->dsa->p); 569 break; 570 } 571 return 0; 572 } 573 574 static RSA * 575 rsa_generate_private_key(u_int bits) 576 { 577 RSA *private; 578 private = RSA_generate_key(bits, 35, NULL, NULL); 579 if (private == NULL) 580 fatal("rsa_generate_private_key: key generation failed."); 581 return private; 582 } 583 584 static DSA* 585 dsa_generate_private_key(u_int bits) 586 { 587 DSA *private = DSA_generate_parameters(bits, NULL, 0, NULL, NULL, NULL, NULL); 588 if (private == NULL) 589 fatal("dsa_generate_private_key: DSA_generate_parameters failed"); 590 if (!DSA_generate_key(private)) 591 fatal("dsa_generate_private_key: DSA_generate_key failed."); 592 if (private == NULL) 593 fatal("dsa_generate_private_key: NULL."); 594 return private; 595 } 596 597 Key * 598 key_generate(int type, u_int bits) 599 { 600 Key *k = key_new(KEY_UNSPEC); 601 switch (type) { 602 case KEY_DSA: 603 k->dsa = dsa_generate_private_key(bits); 604 break; 605 case KEY_RSA: 606 case KEY_RSA1: 607 k->rsa = rsa_generate_private_key(bits); 608 break; 609 default: 610 fatal("key_generate: unknown type %d", type); 611 } 612 k->type = type; 613 return k; 614 } 615 616 Key * 617 key_from_private(Key *k) 618 { 619 Key *n = NULL; 620 switch (k->type) { 621 case KEY_DSA: 622 n = key_new(k->type); 623 BN_copy(n->dsa->p, k->dsa->p); 624 BN_copy(n->dsa->q, k->dsa->q); 625 BN_copy(n->dsa->g, k->dsa->g); 626 BN_copy(n->dsa->pub_key, k->dsa->pub_key); 627 break; 628 case KEY_RSA: 629 case KEY_RSA1: 630 n = key_new(k->type); 631 BN_copy(n->rsa->n, k->rsa->n); 632 BN_copy(n->rsa->e, k->rsa->e); 633 break; 634 default: 635 fatal("key_from_private: unknown type %d", k->type); 636 break; 637 } 638 return n; 639 } 640 641 int 642 key_type_from_name(char *name) 643 { 644 if (strcmp(name, "rsa1") == 0) { 645 return KEY_RSA1; 646 } else if (strcmp(name, "rsa") == 0) { 647 return KEY_RSA; 648 } else if (strcmp(name, "dsa") == 0) { 649 return KEY_DSA; 650 } else if (strcmp(name, "ssh-rsa") == 0) { 651 return KEY_RSA; 652 } else if (strcmp(name, "ssh-dss") == 0) { 653 return KEY_DSA; 654 } else if (strcmp(name, "null") == 0){ 655 return KEY_NULL; 656 } 657 debug2("key_type_from_name: unknown key type '%s'", name); 658 return KEY_UNSPEC; 659 } 660 661 int 662 key_names_valid2(const char *names) 663 { 664 char *s, *cp, *p; 665 666 if (names == NULL || strcmp(names, "") == 0) 667 return 0; 668 s = cp = xstrdup(names); 669 for ((p = strsep(&cp, ",")); p && *p != '\0'; 670 (p = strsep(&cp, ","))) { 671 switch (key_type_from_name(p)) { 672 case KEY_RSA1: 673 case KEY_UNSPEC: 674 xfree(s); 675 return 0; 676 } 677 } 678 debug3("key names ok: [%s]", names); 679 xfree(s); 680 return 1; 681 } 682 683 Key * 684 key_from_blob(u_char *blob, int blen) 685 { 686 Buffer b; 687 char *ktype; 688 int rlen, type; 689 Key *key = NULL; 690 691 #ifdef DEBUG_PK 692 dump_base64(stderr, blob, blen); 693 #endif 694 buffer_init(&b); 695 buffer_append(&b, blob, blen); 696 if ((ktype = buffer_get_string_ret(&b, NULL)) == NULL) { 697 error("key_from_blob: can't read key type"); 698 goto out; 699 } 700 701 type = key_type_from_name(ktype); 702 703 switch (type) { 704 case KEY_RSA: 705 key = key_new(type); 706 if (buffer_get_bignum2_ret(&b, key->rsa->e) == -1 || 707 buffer_get_bignum2_ret(&b, key->rsa->n) == -1) { 708 error("key_from_blob: can't read rsa key"); 709 key_free(key); 710 key = NULL; 711 goto out; 712 } 713 #ifdef DEBUG_PK 714 RSA_print_fp(stderr, key->rsa, 8); 715 #endif 716 break; 717 case KEY_DSA: 718 key = key_new(type); 719 if (buffer_get_bignum2_ret(&b, key->dsa->p) == -1 || 720 buffer_get_bignum2_ret(&b, key->dsa->q) == -1 || 721 buffer_get_bignum2_ret(&b, key->dsa->g) == -1 || 722 buffer_get_bignum2_ret(&b, key->dsa->pub_key) == -1) { 723 error("key_from_blob: can't read dsa key"); 724 key_free(key); 725 key = NULL; 726 goto out; 727 } 728 #ifdef DEBUG_PK 729 DSA_print_fp(stderr, key->dsa, 8); 730 #endif 731 break; 732 case KEY_UNSPEC: 733 key = key_new(type); 734 break; 735 default: 736 error("key_from_blob: cannot handle type %s", ktype); 737 goto out; 738 } 739 rlen = buffer_len(&b); 740 if (key != NULL && rlen != 0) 741 error("key_from_blob: remaining bytes in key blob %d", rlen); 742 out: 743 if (ktype != NULL) 744 xfree(ktype); 745 buffer_free(&b); 746 return key; 747 } 748 749 int 750 key_to_blob(const Key *key, u_char **blobp, u_int *lenp) 751 { 752 Buffer b; 753 int len; 754 755 if (key == NULL) { 756 error("key_to_blob: key == NULL"); 757 return 0; 758 } 759 buffer_init(&b); 760 switch (key->type) { 761 case KEY_DSA: 762 buffer_put_cstring(&b, key_ssh_name(key)); 763 buffer_put_bignum2(&b, key->dsa->p); 764 buffer_put_bignum2(&b, key->dsa->q); 765 buffer_put_bignum2(&b, key->dsa->g); 766 buffer_put_bignum2(&b, key->dsa->pub_key); 767 break; 768 case KEY_RSA: 769 buffer_put_cstring(&b, key_ssh_name(key)); 770 buffer_put_bignum2(&b, key->rsa->e); 771 buffer_put_bignum2(&b, key->rsa->n); 772 break; 773 default: 774 error("key_to_blob: unsupported key type %d", key->type); 775 buffer_free(&b); 776 return 0; 777 } 778 len = buffer_len(&b); 779 if (lenp != NULL) 780 *lenp = len; 781 if (blobp != NULL) { 782 *blobp = xmalloc(len); 783 memcpy(*blobp, buffer_ptr(&b), len); 784 } 785 memset(buffer_ptr(&b), 0, len); 786 buffer_free(&b); 787 return len; 788 } 789 790 int 791 key_sign( 792 Key *key, 793 u_char **sigp, u_int *lenp, 794 u_char *data, u_int datalen) 795 { 796 switch (key->type) { 797 case KEY_DSA: 798 return ssh_dss_sign(key, sigp, lenp, data, datalen); 799 break; 800 case KEY_RSA: 801 return ssh_rsa_sign(key, sigp, lenp, data, datalen); 802 break; 803 default: 804 error("key_sign: illegal key type %d", key->type); 805 return -1; 806 break; 807 } 808 } 809 810 /* 811 * key_verify returns 1 for a correct signature, 0 for an incorrect signature 812 * and -1 on error. 813 */ 814 int 815 key_verify( 816 Key *key, 817 u_char *signature, u_int signaturelen, 818 u_char *data, u_int datalen) 819 { 820 if (signaturelen == 0) 821 return -1; 822 823 switch (key->type) { 824 case KEY_DSA: 825 return ssh_dss_verify(key, signature, signaturelen, data, datalen); 826 break; 827 case KEY_RSA: 828 return ssh_rsa_verify(key, signature, signaturelen, data, datalen); 829 break; 830 default: 831 error("key_verify: illegal key type %d", key->type); 832 return -1; 833 break; 834 } 835 } 836 837 /* Converts a private to a public key */ 838 Key * 839 key_demote(Key *k) 840 { 841 Key *pk; 842 843 pk = xmalloc(sizeof(*pk)); 844 pk->type = k->type; 845 pk->flags = k->flags; 846 pk->dsa = NULL; 847 pk->rsa = NULL; 848 849 switch (k->type) { 850 case KEY_RSA1: 851 case KEY_RSA: 852 if ((pk->rsa = RSA_new()) == NULL) 853 fatal("key_demote: RSA_new failed"); 854 if ((pk->rsa->e = BN_dup(k->rsa->e)) == NULL) 855 fatal("key_demote: BN_dup failed"); 856 if ((pk->rsa->n = BN_dup(k->rsa->n)) == NULL) 857 fatal("key_demote: BN_dup failed"); 858 break; 859 case KEY_DSA: 860 if ((pk->dsa = DSA_new()) == NULL) 861 fatal("key_demote: DSA_new failed"); 862 if ((pk->dsa->p = BN_dup(k->dsa->p)) == NULL) 863 fatal("key_demote: BN_dup failed"); 864 if ((pk->dsa->q = BN_dup(k->dsa->q)) == NULL) 865 fatal("key_demote: BN_dup failed"); 866 if ((pk->dsa->g = BN_dup(k->dsa->g)) == NULL) 867 fatal("key_demote: BN_dup failed"); 868 if ((pk->dsa->pub_key = BN_dup(k->dsa->pub_key)) == NULL) 869 fatal("key_demote: BN_dup failed"); 870 break; 871 default: 872 fatal("key_free: bad key type %d", k->type); 873 break; 874 } 875 876 return (pk); 877 }