1 #!/usr/bin/env perl 2 # 3 # ==================================================================== 4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 5 # project. The module is, however, dual licensed under OpenSSL and 6 # CRYPTOGAMS licenses depending on where you obtain it. For further 7 # details see http://www.openssl.org/~appro/cryptogams/. 8 # ==================================================================== 9 # 10 # May 2011 11 # 12 # The module implements bn_GF2m_mul_2x2 polynomial multiplication used 13 # in bn_gf2m.c. It's kind of low-hanging mechanical port from C for 14 # the time being... Except that it has two code paths: code suitable 15 # for any x86_64 CPU and PCLMULQDQ one suitable for Westmere and 16 # later. Improvement varies from one benchmark and µ-arch to another. 17 # Vanilla code path is at most 20% faster than compiler-generated code 18 # [not very impressive], while PCLMULQDQ - whole 85%-160% better on 19 # 163- and 571-bit ECDH benchmarks on Intel CPUs. Keep in mind that 20 # these coefficients are not ones for bn_GF2m_mul_2x2 itself, as not 21 # all CPU time is burnt in it... 22 23 $flavour = shift; 24 $output = shift; 25 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 26 27 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 28 29 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 30 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 31 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or 32 die "can't locate x86_64-xlate.pl"; 33 34 open OUT,"| \"$^X\" $xlate $flavour $output"; 35 *STDOUT=*OUT; 36 37 ($lo,$hi)=("%rax","%rdx"); $a=$lo; 38 ($i0,$i1)=("%rsi","%rdi"); 39 ($t0,$t1)=("%rbx","%rcx"); 40 ($b,$mask)=("%rbp","%r8"); 41 ($a1,$a2,$a4,$a8,$a12,$a48)=map("%r$_",(9..15)); 42 ($R,$Tx)=("%xmm0","%xmm1"); 43 44 $code.=<<___; 45 .text 46 47 .type _mul_1x1,\@abi-omnipotent 48 .align 16 49 _mul_1x1: 50 sub \$128+8,%rsp 51 mov \$-1,$a1 52 lea ($a,$a),$i0 53 shr \$3,$a1 54 lea (,$a,4),$i1 55 and $a,$a1 # a1=a&0x1fffffffffffffff 56 lea (,$a,8),$a8 57 sar \$63,$a # broadcast 63rd bit 58 lea ($a1,$a1),$a2 59 sar \$63,$i0 # broadcast 62nd bit 60 lea (,$a1,4),$a4 61 and $b,$a 62 sar \$63,$i1 # boardcast 61st bit 63 mov $a,$hi # $a is $lo 64 shl \$63,$lo 65 and $b,$i0 66 shr \$1,$hi 67 mov $i0,$t1 68 shl \$62,$i0 69 and $b,$i1 70 shr \$2,$t1 71 xor $i0,$lo 72 mov $i1,$t0 73 shl \$61,$i1 74 xor $t1,$hi 75 shr \$3,$t0 76 xor $i1,$lo 77 xor $t0,$hi 78 79 mov $a1,$a12 80 movq \$0,0(%rsp) # tab[0]=0 81 xor $a2,$a12 # a1^a2 82 mov $a1,8(%rsp) # tab[1]=a1 83 mov $a4,$a48 84 mov $a2,16(%rsp) # tab[2]=a2 85 xor $a8,$a48 # a4^a8 86 mov $a12,24(%rsp) # tab[3]=a1^a2 87 88 xor $a4,$a1 89 mov $a4,32(%rsp) # tab[4]=a4 90 xor $a4,$a2 91 mov $a1,40(%rsp) # tab[5]=a1^a4 92 xor $a4,$a12 93 mov $a2,48(%rsp) # tab[6]=a2^a4 94 xor $a48,$a1 # a1^a4^a4^a8=a1^a8 95 mov $a12,56(%rsp) # tab[7]=a1^a2^a4 96 xor $a48,$a2 # a2^a4^a4^a8=a1^a8 97 98 mov $a8,64(%rsp) # tab[8]=a8 99 xor $a48,$a12 # a1^a2^a4^a4^a8=a1^a2^a8 100 mov $a1,72(%rsp) # tab[9]=a1^a8 101 xor $a4,$a1 # a1^a8^a4 102 mov $a2,80(%rsp) # tab[10]=a2^a8 103 xor $a4,$a2 # a2^a8^a4 104 mov $a12,88(%rsp) # tab[11]=a1^a2^a8 105 106 xor $a4,$a12 # a1^a2^a8^a4 107 mov $a48,96(%rsp) # tab[12]=a4^a8 108 mov $mask,$i0 109 mov $a1,104(%rsp) # tab[13]=a1^a4^a8 110 and $b,$i0 111 mov $a2,112(%rsp) # tab[14]=a2^a4^a8 112 shr \$4,$b 113 mov $a12,120(%rsp) # tab[15]=a1^a2^a4^a8 114 mov $mask,$i1 115 and $b,$i1 116 shr \$4,$b 117 118 movq (%rsp,$i0,8),$R # half of calculations is done in SSE2 119 mov $mask,$i0 120 and $b,$i0 121 shr \$4,$b 122 ___ 123 for ($n=1;$n<8;$n++) { 124 $code.=<<___; 125 mov (%rsp,$i1,8),$t1 126 mov $mask,$i1 127 mov $t1,$t0 128 shl \$`8*$n-4`,$t1 129 and $b,$i1 130 movq (%rsp,$i0,8),$Tx 131 shr \$`64-(8*$n-4)`,$t0 132 xor $t1,$lo 133 pslldq \$$n,$Tx 134 mov $mask,$i0 135 shr \$4,$b 136 xor $t0,$hi 137 and $b,$i0 138 shr \$4,$b 139 pxor $Tx,$R 140 ___ 141 } 142 $code.=<<___; 143 mov (%rsp,$i1,8),$t1 144 mov $t1,$t0 145 shl \$`8*$n-4`,$t1 146 movq $R,$i0 147 shr \$`64-(8*$n-4)`,$t0 148 xor $t1,$lo 149 psrldq \$8,$R 150 xor $t0,$hi 151 movq $R,$i1 152 xor $i0,$lo 153 xor $i1,$hi 154 155 add \$128+8,%rsp 156 ret 157 .Lend_mul_1x1: 158 .size _mul_1x1,.-_mul_1x1 159 ___ 160 161 ($rp,$a1,$a0,$b1,$b0) = $win64? ("%rcx","%rdx","%r8", "%r9","%r10") : # Win64 order 162 ("%rdi","%rsi","%rdx","%rcx","%r8"); # Unix order 163 164 $code.=<<___; 165 .extern OPENSSL_ia32cap_P 166 .globl bn_GF2m_mul_2x2 167 .type bn_GF2m_mul_2x2,\@abi-omnipotent 168 .align 16 169 bn_GF2m_mul_2x2: 170 mov OPENSSL_ia32cap_P(%rip),%rax 171 bt \$33,%rax 172 jnc .Lvanilla_mul_2x2 173 174 movq $a1,%xmm0 175 movq $b1,%xmm1 176 movq $a0,%xmm2 177 ___ 178 $code.=<<___ if ($win64); 179 movq 40(%rsp),%xmm3 180 ___ 181 $code.=<<___ if (!$win64); 182 movq $b0,%xmm3 183 ___ 184 $code.=<<___; 185 movdqa %xmm0,%xmm4 186 movdqa %xmm1,%xmm5 187 pclmulqdq \$0,%xmm1,%xmm0 # a1·b1 188 pxor %xmm2,%xmm4 189 pxor %xmm3,%xmm5 190 pclmulqdq \$0,%xmm3,%xmm2 # a0·b0 191 pclmulqdq \$0,%xmm5,%xmm4 # (a0+a1)·(b0+b1) 192 xorps %xmm0,%xmm4 193 xorps %xmm2,%xmm4 # (a0+a1)·(b0+b1)-a0·b0-a1·b1 194 movdqa %xmm4,%xmm5 195 pslldq \$8,%xmm4 196 psrldq \$8,%xmm5 197 pxor %xmm4,%xmm2 198 pxor %xmm5,%xmm0 199 movdqu %xmm2,0($rp) 200 movdqu %xmm0,16($rp) 201 ret 202 203 .align 16 204 .Lvanilla_mul_2x2: 205 lea -8*17(%rsp),%rsp 206 ___ 207 $code.=<<___ if ($win64); 208 mov `8*17+40`(%rsp),$b0 209 mov %rdi,8*15(%rsp) 210 mov %rsi,8*16(%rsp) 211 ___ 212 $code.=<<___; 213 mov %r14,8*10(%rsp) 214 mov %r13,8*11(%rsp) 215 mov %r12,8*12(%rsp) 216 mov %rbp,8*13(%rsp) 217 mov %rbx,8*14(%rsp) 218 .Lbody_mul_2x2: 219 mov $rp,32(%rsp) # save the arguments 220 mov $a1,40(%rsp) 221 mov $a0,48(%rsp) 222 mov $b1,56(%rsp) 223 mov $b0,64(%rsp) 224 225 mov \$0xf,$mask 226 mov $a1,$a 227 mov $b1,$b 228 call _mul_1x1 # a1·b1 229 mov $lo,16(%rsp) 230 mov $hi,24(%rsp) 231 232 mov 48(%rsp),$a 233 mov 64(%rsp),$b 234 call _mul_1x1 # a0·b0 235 mov $lo,0(%rsp) 236 mov $hi,8(%rsp) 237 238 mov 40(%rsp),$a 239 mov 56(%rsp),$b 240 xor 48(%rsp),$a 241 xor 64(%rsp),$b 242 call _mul_1x1 # (a0+a1)·(b0+b1) 243 ___ 244 @r=("%rbx","%rcx","%rdi","%rsi"); 245 $code.=<<___; 246 mov 0(%rsp),@r[0] 247 mov 8(%rsp),@r[1] 248 mov 16(%rsp),@r[2] 249 mov 24(%rsp),@r[3] 250 mov 32(%rsp),%rbp 251 252 xor $hi,$lo 253 xor @r[1],$hi 254 xor @r[0],$lo 255 mov @r[0],0(%rbp) 256 xor @r[2],$hi 257 mov @r[3],24(%rbp) 258 xor @r[3],$lo 259 xor @r[3],$hi 260 xor $hi,$lo 261 mov $hi,16(%rbp) 262 mov $lo,8(%rbp) 263 264 mov 8*10(%rsp),%r14 265 mov 8*11(%rsp),%r13 266 mov 8*12(%rsp),%r12 267 mov 8*13(%rsp),%rbp 268 mov 8*14(%rsp),%rbx 269 ___ 270 $code.=<<___ if ($win64); 271 mov 8*15(%rsp),%rdi 272 mov 8*16(%rsp),%rsi 273 ___ 274 $code.=<<___; 275 lea 8*17(%rsp),%rsp 276 ret 277 .Lend_mul_2x2: 278 .size bn_GF2m_mul_2x2,.-bn_GF2m_mul_2x2 279 .asciz "GF(2^m) Multiplication for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 280 .align 16 281 ___ 282 283 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 284 # CONTEXT *context,DISPATCHER_CONTEXT *disp) 285 if ($win64) { 286 $rec="%rcx"; 287 $frame="%rdx"; 288 $context="%r8"; 289 $disp="%r9"; 290 291 $code.=<<___; 292 .extern __imp_RtlVirtualUnwind 293 294 .type se_handler,\@abi-omnipotent 295 .align 16 296 se_handler: 297 push %rsi 298 push %rdi 299 push %rbx 300 push %rbp 301 push %r12 302 push %r13 303 push %r14 304 push %r15 305 pushfq 306 sub \$64,%rsp 307 308 mov 152($context),%rax # pull context->Rsp 309 mov 248($context),%rbx # pull context->Rip 310 311 lea .Lbody_mul_2x2(%rip),%r10 312 cmp %r10,%rbx # context->Rip<"prologue" label 313 jb .Lin_prologue 314 315 mov 8*10(%rax),%r14 # mimic epilogue 316 mov 8*11(%rax),%r13 317 mov 8*12(%rax),%r12 318 mov 8*13(%rax),%rbp 319 mov 8*14(%rax),%rbx 320 mov 8*15(%rax),%rdi 321 mov 8*16(%rax),%rsi 322 323 mov %rbx,144($context) # restore context->Rbx 324 mov %rbp,160($context) # restore context->Rbp 325 mov %rsi,168($context) # restore context->Rsi 326 mov %rdi,176($context) # restore context->Rdi 327 mov %r12,216($context) # restore context->R12 328 mov %r13,224($context) # restore context->R13 329 mov %r14,232($context) # restore context->R14 330 331 .Lin_prologue: 332 lea 8*17(%rax),%rax 333 mov %rax,152($context) # restore context->Rsp 334 335 mov 40($disp),%rdi # disp->ContextRecord 336 mov $context,%rsi # context 337 mov \$154,%ecx # sizeof(CONTEXT) 338 .long 0xa548f3fc # cld; rep movsq 339 340 mov $disp,%rsi 341 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 342 mov 8(%rsi),%rdx # arg2, disp->ImageBase 343 mov 0(%rsi),%r8 # arg3, disp->ControlPc 344 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 345 mov 40(%rsi),%r10 # disp->ContextRecord 346 lea 56(%rsi),%r11 # &disp->HandlerData 347 lea 24(%rsi),%r12 # &disp->EstablisherFrame 348 mov %r10,32(%rsp) # arg5 349 mov %r11,40(%rsp) # arg6 350 mov %r12,48(%rsp) # arg7 351 mov %rcx,56(%rsp) # arg8, (NULL) 352 call *__imp_RtlVirtualUnwind(%rip) 353 354 mov \$1,%eax # ExceptionContinueSearch 355 add \$64,%rsp 356 popfq 357 pop %r15 358 pop %r14 359 pop %r13 360 pop %r12 361 pop %rbp 362 pop %rbx 363 pop %rdi 364 pop %rsi 365 ret 366 .size se_handler,.-se_handler 367 368 .section .pdata 369 .align 4 370 .rva _mul_1x1 371 .rva .Lend_mul_1x1 372 .rva .LSEH_info_1x1 373 374 .rva .Lvanilla_mul_2x2 375 .rva .Lend_mul_2x2 376 .rva .LSEH_info_2x2 377 .section .xdata 378 .align 8 379 .LSEH_info_1x1: 380 .byte 0x01,0x07,0x02,0x00 381 .byte 0x07,0x01,0x11,0x00 # sub rsp,128+8 382 .LSEH_info_2x2: 383 .byte 9,0,0,0 384 .rva se_handler 385 ___ 386 } 387 388 $code =~ s/\`([^\`]*)\`/eval($1)/gem; 389 print $code; 390 close STDOUT;