1 #!/usr/bin/env perl 2 # 3 # ==================================================================== 4 # Written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL 5 # project. The module is, however, dual licensed under OpenSSL and 6 # CRYPTOGAMS licenses depending on where you obtain it. For further 7 # details see http://www.openssl.org/~appro/cryptogams/. 8 # ==================================================================== 9 # 10 # July 2004 11 # 12 # 2.22x RC4 tune-up:-) It should be noted though that my hand [as in 13 # "hand-coded assembler"] doesn't stand for the whole improvement 14 # coefficient. It turned out that eliminating RC4_CHAR from config 15 # line results in ~40% improvement (yes, even for C implementation). 16 # Presumably it has everything to do with AMD cache architecture and 17 # RAW or whatever penalties. Once again! The module *requires* config 18 # line *without* RC4_CHAR! As for coding "secret," I bet on partial 19 # register arithmetics. For example instead of 'inc %r8; and $255,%r8' 20 # I simply 'inc %r8b'. Even though optimization manual discourages 21 # to operate on partial registers, it turned out to be the best bet. 22 # At least for AMD... How IA32E would perform remains to be seen... 23 24 # November 2004 25 # 26 # As was shown by Marc Bevand reordering of couple of load operations 27 # results in even higher performance gain of 3.3x:-) At least on 28 # Opteron... For reference, 1x in this case is RC4_CHAR C-code 29 # compiled with gcc 3.3.2, which performs at ~54MBps per 1GHz clock. 30 # Latter means that if you want to *estimate* what to expect from 31 # *your* Opteron, then multiply 54 by 3.3 and clock frequency in GHz. 32 33 # November 2004 34 # 35 # Intel P4 EM64T core was found to run the AMD64 code really slow... 36 # The only way to achieve comparable performance on P4 was to keep 37 # RC4_CHAR. Kind of ironic, huh? As it's apparently impossible to 38 # compose blended code, which would perform even within 30% marginal 39 # on either AMD and Intel platforms, I implement both cases. See 40 # rc4_skey.c for further details... 41 42 # April 2005 43 # 44 # P4 EM64T core appears to be "allergic" to 64-bit inc/dec. Replacing 45 # those with add/sub results in 50% performance improvement of folded 46 # loop... 47 48 # May 2005 49 # 50 # As was shown by Zou Nanhai loop unrolling can improve Intel EM64T 51 # performance by >30% [unlike P4 32-bit case that is]. But this is 52 # provided that loads are reordered even more aggressively! Both code 53 # pathes, AMD64 and EM64T, reorder loads in essentially same manner 54 # as my IA-64 implementation. On Opteron this resulted in modest 5% 55 # improvement [I had to test it], while final Intel P4 performance 56 # achieves respectful 432MBps on 2.8GHz processor now. For reference. 57 # If executed on Xeon, current RC4_CHAR code-path is 2.7x faster than 58 # RC4_INT code-path. While if executed on Opteron, it's only 25% 59 # slower than the RC4_INT one [meaning that if CPU µ-arch detection 60 # is not implemented, then this final RC4_CHAR code-path should be 61 # preferred, as it provides better *all-round* performance]. 62 63 # March 2007 64 # 65 # Intel Core2 was observed to perform poorly on both code paths:-( It 66 # apparently suffers from some kind of partial register stall, which 67 # occurs in 64-bit mode only [as virtually identical 32-bit loop was 68 # observed to outperform 64-bit one by almost 50%]. Adding two movzb to 69 # cloop1 boosts its performance by 80%! This loop appears to be optimal 70 # fit for Core2 and therefore the code was modified to skip cloop8 on 71 # this CPU. 72 73 # May 2010 74 # 75 # Intel Westmere was observed to perform suboptimally. Adding yet 76 # another movzb to cloop1 improved performance by almost 50%! Core2 77 # performance is improved too, but nominally... 78 79 # May 2011 80 # 81 # The only code path that was not modified is P4-specific one. Non-P4 82 # Intel code path optimization is heavily based on submission by Maxim 83 # Perminov, Maxim Locktyukhin and Jim Guilford of Intel. I've used 84 # some of the ideas even in attempt to optmize the original RC4_INT 85 # code path... Current performance in cycles per processed byte (less 86 # is better) and improvement coefficients relative to previous 87 # version of this module are: 88 # 89 # Opteron 5.3/+0%(*) 90 # P4 6.5 91 # Core2 6.2/+15%(**) 92 # Westmere 4.2/+60% 93 # Sandy Bridge 4.2/+120% 94 # Atom 9.3/+80% 95 # 96 # (*) But corresponding loop has less instructions, which should have 97 # positive effect on upcoming Bulldozer, which has one less ALU. 98 # For reference, Intel code runs at 6.8 cpb rate on Opteron. 99 # (**) Note that Core2 result is ~15% lower than corresponding result 100 # for 32-bit code, meaning that it's possible to improve it, 101 # but more than likely at the cost of the others (see rc4-586.pl 102 # to get the idea)... 103 104 $flavour = shift; 105 $output = shift; 106 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 107 108 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 109 110 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 111 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 112 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or 113 die "can't locate x86_64-xlate.pl"; 114 115 open OUT,"| \"$^X\" $xlate $flavour $output"; 116 *STDOUT=*OUT; 117 118 $dat="%rdi"; # arg1 119 $len="%rsi"; # arg2 120 $inp="%rdx"; # arg3 121 $out="%rcx"; # arg4 122 123 { 124 $code=<<___; 125 .text 126 .extern OPENSSL_ia32cap_P 127 128 .globl RC4 129 .type RC4,\@function,4 130 .align 16 131 RC4: or $len,$len 132 jne .Lentry 133 ret 134 .Lentry: 135 push %rbx 136 push %r12 137 push %r13 138 .Lprologue: 139 mov $len,%r11 140 mov $inp,%r12 141 mov $out,%r13 142 ___ 143 my $len="%r11"; # reassign input arguments 144 my $inp="%r12"; 145 my $out="%r13"; 146 147 my @XX=("%r10","%rsi"); 148 my @TX=("%rax","%rbx"); 149 my $YY="%rcx"; 150 my $TY="%rdx"; 151 152 $code.=<<___; 153 xor $XX[0],$XX[0] 154 xor $YY,$YY 155 156 lea 8($dat),$dat 157 mov -8($dat),$XX[0]#b 158 mov -4($dat),$YY#b 159 cmpl \$-1,256($dat) 160 je .LRC4_CHAR 161 mov OPENSSL_ia32cap_P(%rip),%r8d 162 xor $TX[1],$TX[1] 163 inc $XX[0]#b 164 sub $XX[0],$TX[1] 165 sub $inp,$out 166 movl ($dat,$XX[0],4),$TX[0]#d 167 test \$-16,$len 168 jz .Lloop1 169 bt \$30,%r8d # Intel CPU? 170 jc .Lintel 171 and \$7,$TX[1] 172 lea 1($XX[0]),$XX[1] 173 jz .Loop8 174 sub $TX[1],$len 175 .Loop8_warmup: 176 add $TX[0]#b,$YY#b 177 movl ($dat,$YY,4),$TY#d 178 movl $TX[0]#d,($dat,$YY,4) 179 movl $TY#d,($dat,$XX[0],4) 180 add $TY#b,$TX[0]#b 181 inc $XX[0]#b 182 movl ($dat,$TX[0],4),$TY#d 183 movl ($dat,$XX[0],4),$TX[0]#d 184 xorb ($inp),$TY#b 185 movb $TY#b,($out,$inp) 186 lea 1($inp),$inp 187 dec $TX[1] 188 jnz .Loop8_warmup 189 190 lea 1($XX[0]),$XX[1] 191 jmp .Loop8 192 .align 16 193 .Loop8: 194 ___ 195 for ($i=0;$i<8;$i++) { 196 $code.=<<___ if ($i==7); 197 add \$8,$XX[1]#b 198 ___ 199 $code.=<<___; 200 add $TX[0]#b,$YY#b 201 movl ($dat,$YY,4),$TY#d 202 movl $TX[0]#d,($dat,$YY,4) 203 movl `4*($i==7?-1:$i)`($dat,$XX[1],4),$TX[1]#d 204 ror \$8,%r8 # ror is redundant when $i=0 205 movl $TY#d,4*$i($dat,$XX[0],4) 206 add $TX[0]#b,$TY#b 207 movb ($dat,$TY,4),%r8b 208 ___ 209 push(@TX,shift(@TX)); #push(@XX,shift(@XX)); # "rotate" registers 210 } 211 $code.=<<___; 212 add \$8,$XX[0]#b 213 ror \$8,%r8 214 sub \$8,$len 215 216 xor ($inp),%r8 217 mov %r8,($out,$inp) 218 lea 8($inp),$inp 219 220 test \$-8,$len 221 jnz .Loop8 222 cmp \$0,$len 223 jne .Lloop1 224 jmp .Lexit 225 226 .align 16 227 .Lintel: 228 test \$-32,$len 229 jz .Lloop1 230 and \$15,$TX[1] 231 jz .Loop16_is_hot 232 sub $TX[1],$len 233 .Loop16_warmup: 234 add $TX[0]#b,$YY#b 235 movl ($dat,$YY,4),$TY#d 236 movl $TX[0]#d,($dat,$YY,4) 237 movl $TY#d,($dat,$XX[0],4) 238 add $TY#b,$TX[0]#b 239 inc $XX[0]#b 240 movl ($dat,$TX[0],4),$TY#d 241 movl ($dat,$XX[0],4),$TX[0]#d 242 xorb ($inp),$TY#b 243 movb $TY#b,($out,$inp) 244 lea 1($inp),$inp 245 dec $TX[1] 246 jnz .Loop16_warmup 247 248 mov $YY,$TX[1] 249 xor $YY,$YY 250 mov $TX[1]#b,$YY#b 251 252 .Loop16_is_hot: 253 lea ($dat,$XX[0],4),$XX[1] 254 ___ 255 sub RC4_loop { 256 my $i=shift; 257 my $j=$i<0?0:$i; 258 my $xmm="%xmm".($j&1); 259 260 $code.=" add \$16,$XX[0]#b\n" if ($i==15); 261 $code.=" movdqu ($inp),%xmm2\n" if ($i==15); 262 $code.=" add $TX[0]#b,$YY#b\n" if ($i<=0); 263 $code.=" movl ($dat,$YY,4),$TY#d\n"; 264 $code.=" pxor %xmm0,%xmm2\n" if ($i==0); 265 $code.=" psllq \$8,%xmm1\n" if ($i==0); 266 $code.=" pxor $xmm,$xmm\n" if ($i<=1); 267 $code.=" movl $TX[0]#d,($dat,$YY,4)\n"; 268 $code.=" add $TY#b,$TX[0]#b\n"; 269 $code.=" movl `4*($j+1)`($XX[1]),$TX[1]#d\n" if ($i<15); 270 $code.=" movz $TX[0]#b,$TX[0]#d\n"; 271 $code.=" movl $TY#d,4*$j($XX[1])\n"; 272 $code.=" pxor %xmm1,%xmm2\n" if ($i==0); 273 $code.=" lea ($dat,$XX[0],4),$XX[1]\n" if ($i==15); 274 $code.=" add $TX[1]#b,$YY#b\n" if ($i<15); 275 $code.=" pinsrw \$`($j>>1)&7`,($dat,$TX[0],4),$xmm\n"; 276 $code.=" movdqu %xmm2,($out,$inp)\n" if ($i==0); 277 $code.=" lea 16($inp),$inp\n" if ($i==0); 278 $code.=" movl ($XX[1]),$TX[1]#d\n" if ($i==15); 279 } 280 RC4_loop(-1); 281 $code.=<<___; 282 jmp .Loop16_enter 283 .align 16 284 .Loop16: 285 ___ 286 287 for ($i=0;$i<16;$i++) { 288 $code.=".Loop16_enter:\n" if ($i==1); 289 RC4_loop($i); 290 push(@TX,shift(@TX)); # "rotate" registers 291 } 292 $code.=<<___; 293 mov $YY,$TX[1] 294 xor $YY,$YY # keyword to partial register 295 sub \$16,$len 296 mov $TX[1]#b,$YY#b 297 test \$-16,$len 298 jnz .Loop16 299 300 psllq \$8,%xmm1 301 pxor %xmm0,%xmm2 302 pxor %xmm1,%xmm2 303 movdqu %xmm2,($out,$inp) 304 lea 16($inp),$inp 305 306 cmp \$0,$len 307 jne .Lloop1 308 jmp .Lexit 309 310 .align 16 311 .Lloop1: 312 add $TX[0]#b,$YY#b 313 movl ($dat,$YY,4),$TY#d 314 movl $TX[0]#d,($dat,$YY,4) 315 movl $TY#d,($dat,$XX[0],4) 316 add $TY#b,$TX[0]#b 317 inc $XX[0]#b 318 movl ($dat,$TX[0],4),$TY#d 319 movl ($dat,$XX[0],4),$TX[0]#d 320 xorb ($inp),$TY#b 321 movb $TY#b,($out,$inp) 322 lea 1($inp),$inp 323 dec $len 324 jnz .Lloop1 325 jmp .Lexit 326 327 .align 16 328 .LRC4_CHAR: 329 add \$1,$XX[0]#b 330 movzb ($dat,$XX[0]),$TX[0]#d 331 test \$-8,$len 332 jz .Lcloop1 333 jmp .Lcloop8 334 .align 16 335 .Lcloop8: 336 mov ($inp),%r8d 337 mov 4($inp),%r9d 338 ___ 339 # unroll 2x4-wise, because 64-bit rotates kill Intel P4... 340 for ($i=0;$i<4;$i++) { 341 $code.=<<___; 342 add $TX[0]#b,$YY#b 343 lea 1($XX[0]),$XX[1] 344 movzb ($dat,$YY),$TY#d 345 movzb $XX[1]#b,$XX[1]#d 346 movzb ($dat,$XX[1]),$TX[1]#d 347 movb $TX[0]#b,($dat,$YY) 348 cmp $XX[1],$YY 349 movb $TY#b,($dat,$XX[0]) 350 jne .Lcmov$i # Intel cmov is sloooow... 351 mov $TX[0],$TX[1] 352 .Lcmov$i: 353 add $TX[0]#b,$TY#b 354 xor ($dat,$TY),%r8b 355 ror \$8,%r8d 356 ___ 357 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 358 } 359 for ($i=4;$i<8;$i++) { 360 $code.=<<___; 361 add $TX[0]#b,$YY#b 362 lea 1($XX[0]),$XX[1] 363 movzb ($dat,$YY),$TY#d 364 movzb $XX[1]#b,$XX[1]#d 365 movzb ($dat,$XX[1]),$TX[1]#d 366 movb $TX[0]#b,($dat,$YY) 367 cmp $XX[1],$YY 368 movb $TY#b,($dat,$XX[0]) 369 jne .Lcmov$i # Intel cmov is sloooow... 370 mov $TX[0],$TX[1] 371 .Lcmov$i: 372 add $TX[0]#b,$TY#b 373 xor ($dat,$TY),%r9b 374 ror \$8,%r9d 375 ___ 376 push(@TX,shift(@TX)); push(@XX,shift(@XX)); # "rotate" registers 377 } 378 $code.=<<___; 379 lea -8($len),$len 380 mov %r8d,($out) 381 lea 8($inp),$inp 382 mov %r9d,4($out) 383 lea 8($out),$out 384 385 test \$-8,$len 386 jnz .Lcloop8 387 cmp \$0,$len 388 jne .Lcloop1 389 jmp .Lexit 390 ___ 391 $code.=<<___; 392 .align 16 393 .Lcloop1: 394 add $TX[0]#b,$YY#b 395 movzb $YY#b,$YY#d 396 movzb ($dat,$YY),$TY#d 397 movb $TX[0]#b,($dat,$YY) 398 movb $TY#b,($dat,$XX[0]) 399 add $TX[0]#b,$TY#b 400 add \$1,$XX[0]#b 401 movzb $TY#b,$TY#d 402 movzb $XX[0]#b,$XX[0]#d 403 movzb ($dat,$TY),$TY#d 404 movzb ($dat,$XX[0]),$TX[0]#d 405 xorb ($inp),$TY#b 406 lea 1($inp),$inp 407 movb $TY#b,($out) 408 lea 1($out),$out 409 sub \$1,$len 410 jnz .Lcloop1 411 jmp .Lexit 412 413 .align 16 414 .Lexit: 415 sub \$1,$XX[0]#b 416 movl $XX[0]#d,-8($dat) 417 movl $YY#d,-4($dat) 418 419 mov (%rsp),%r13 420 mov 8(%rsp),%r12 421 mov 16(%rsp),%rbx 422 add \$24,%rsp 423 .Lepilogue: 424 ret 425 .size RC4,.-RC4 426 ___ 427 } 428 429 $idx="%r8"; 430 $ido="%r9"; 431 432 $code.=<<___; 433 .globl private_RC4_set_key 434 .type private_RC4_set_key,\@function,3 435 .align 16 436 private_RC4_set_key: 437 lea 8($dat),$dat 438 lea ($inp,$len),$inp 439 neg $len 440 mov $len,%rcx 441 xor %eax,%eax 442 xor $ido,$ido 443 xor %r10,%r10 444 xor %r11,%r11 445 446 mov OPENSSL_ia32cap_P(%rip),$idx#d 447 bt \$20,$idx#d # RC4_CHAR? 448 jc .Lc1stloop 449 jmp .Lw1stloop 450 451 .align 16 452 .Lw1stloop: 453 mov %eax,($dat,%rax,4) 454 add \$1,%al 455 jnc .Lw1stloop 456 457 xor $ido,$ido 458 xor $idx,$idx 459 .align 16 460 .Lw2ndloop: 461 mov ($dat,$ido,4),%r10d 462 add ($inp,$len,1),$idx#b 463 add %r10b,$idx#b 464 add \$1,$len 465 mov ($dat,$idx,4),%r11d 466 cmovz %rcx,$len 467 mov %r10d,($dat,$idx,4) 468 mov %r11d,($dat,$ido,4) 469 add \$1,$ido#b 470 jnc .Lw2ndloop 471 jmp .Lexit_key 472 473 .align 16 474 .Lc1stloop: 475 mov %al,($dat,%rax) 476 add \$1,%al 477 jnc .Lc1stloop 478 479 xor $ido,$ido 480 xor $idx,$idx 481 .align 16 482 .Lc2ndloop: 483 mov ($dat,$ido),%r10b 484 add ($inp,$len),$idx#b 485 add %r10b,$idx#b 486 add \$1,$len 487 mov ($dat,$idx),%r11b 488 jnz .Lcnowrap 489 mov %rcx,$len 490 .Lcnowrap: 491 mov %r10b,($dat,$idx) 492 mov %r11b,($dat,$ido) 493 add \$1,$ido#b 494 jnc .Lc2ndloop 495 movl \$-1,256($dat) 496 497 .align 16 498 .Lexit_key: 499 xor %eax,%eax 500 mov %eax,-8($dat) 501 mov %eax,-4($dat) 502 ret 503 .size private_RC4_set_key,.-private_RC4_set_key 504 505 .globl RC4_options 506 .type RC4_options,\@abi-omnipotent 507 .align 16 508 RC4_options: 509 lea .Lopts(%rip),%rax 510 mov OPENSSL_ia32cap_P(%rip),%edx 511 bt \$20,%edx 512 jc .L8xchar 513 bt \$30,%edx 514 jnc .Ldone 515 add \$25,%rax 516 ret 517 .L8xchar: 518 add \$12,%rax 519 .Ldone: 520 ret 521 .align 64 522 .Lopts: 523 .asciz "rc4(8x,int)" 524 .asciz "rc4(8x,char)" 525 .asciz "rc4(16x,int)" 526 .asciz "RC4 for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 527 .align 64 528 .size RC4_options,.-RC4_options 529 ___ 530 531 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 532 # CONTEXT *context,DISPATCHER_CONTEXT *disp) 533 if ($win64) { 534 $rec="%rcx"; 535 $frame="%rdx"; 536 $context="%r8"; 537 $disp="%r9"; 538 539 $code.=<<___; 540 .extern __imp_RtlVirtualUnwind 541 .type stream_se_handler,\@abi-omnipotent 542 .align 16 543 stream_se_handler: 544 push %rsi 545 push %rdi 546 push %rbx 547 push %rbp 548 push %r12 549 push %r13 550 push %r14 551 push %r15 552 pushfq 553 sub \$64,%rsp 554 555 mov 120($context),%rax # pull context->Rax 556 mov 248($context),%rbx # pull context->Rip 557 558 lea .Lprologue(%rip),%r10 559 cmp %r10,%rbx # context->Rip<prologue label 560 jb .Lin_prologue 561 562 mov 152($context),%rax # pull context->Rsp 563 564 lea .Lepilogue(%rip),%r10 565 cmp %r10,%rbx # context->Rip>=epilogue label 566 jae .Lin_prologue 567 568 lea 24(%rax),%rax 569 570 mov -8(%rax),%rbx 571 mov -16(%rax),%r12 572 mov -24(%rax),%r13 573 mov %rbx,144($context) # restore context->Rbx 574 mov %r12,216($context) # restore context->R12 575 mov %r13,224($context) # restore context->R13 576 577 .Lin_prologue: 578 mov 8(%rax),%rdi 579 mov 16(%rax),%rsi 580 mov %rax,152($context) # restore context->Rsp 581 mov %rsi,168($context) # restore context->Rsi 582 mov %rdi,176($context) # restore context->Rdi 583 584 jmp .Lcommon_seh_exit 585 .size stream_se_handler,.-stream_se_handler 586 587 .type key_se_handler,\@abi-omnipotent 588 .align 16 589 key_se_handler: 590 push %rsi 591 push %rdi 592 push %rbx 593 push %rbp 594 push %r12 595 push %r13 596 push %r14 597 push %r15 598 pushfq 599 sub \$64,%rsp 600 601 mov 152($context),%rax # pull context->Rsp 602 mov 8(%rax),%rdi 603 mov 16(%rax),%rsi 604 mov %rsi,168($context) # restore context->Rsi 605 mov %rdi,176($context) # restore context->Rdi 606 607 .Lcommon_seh_exit: 608 609 mov 40($disp),%rdi # disp->ContextRecord 610 mov $context,%rsi # context 611 mov \$154,%ecx # sizeof(CONTEXT) 612 .long 0xa548f3fc # cld; rep movsq 613 614 mov $disp,%rsi 615 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 616 mov 8(%rsi),%rdx # arg2, disp->ImageBase 617 mov 0(%rsi),%r8 # arg3, disp->ControlPc 618 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 619 mov 40(%rsi),%r10 # disp->ContextRecord 620 lea 56(%rsi),%r11 # &disp->HandlerData 621 lea 24(%rsi),%r12 # &disp->EstablisherFrame 622 mov %r10,32(%rsp) # arg5 623 mov %r11,40(%rsp) # arg6 624 mov %r12,48(%rsp) # arg7 625 mov %rcx,56(%rsp) # arg8, (NULL) 626 call *__imp_RtlVirtualUnwind(%rip) 627 628 mov \$1,%eax # ExceptionContinueSearch 629 add \$64,%rsp 630 popfq 631 pop %r15 632 pop %r14 633 pop %r13 634 pop %r12 635 pop %rbp 636 pop %rbx 637 pop %rdi 638 pop %rsi 639 ret 640 .size key_se_handler,.-key_se_handler 641 642 .section .pdata 643 .align 4 644 .rva .LSEH_begin_RC4 645 .rva .LSEH_end_RC4 646 .rva .LSEH_info_RC4 647 648 .rva .LSEH_begin_private_RC4_set_key 649 .rva .LSEH_end_private_RC4_set_key 650 .rva .LSEH_info_private_RC4_set_key 651 652 .section .xdata 653 .align 8 654 .LSEH_info_RC4: 655 .byte 9,0,0,0 656 .rva stream_se_handler 657 .LSEH_info_private_RC4_set_key: 658 .byte 9,0,0,0 659 .rva key_se_handler 660 ___ 661 } 662 663 sub reg_part { 664 my ($reg,$conv)=@_; 665 if ($reg =~ /%r[0-9]+/) { $reg .= $conv; } 666 elsif ($conv eq "b") { $reg =~ s/%[er]([^x]+)x?/%$1l/; } 667 elsif ($conv eq "w") { $reg =~ s/%[er](.+)/%$1/; } 668 elsif ($conv eq "d") { $reg =~ s/%[er](.+)/%e$1/; } 669 return $reg; 670 } 671 672 $code =~ s/(%[a-z0-9]+)#([bwd])/reg_part($1,$2)/gem; 673 $code =~ s/\`([^\`]*)\`/eval $1/gem; 674 675 print $code; 676 677 close STDOUT;