1 /* Written by Dr Stephen N Henson (steve@openssl.org) for the OpenSSL
   2  * project 2005.
   3  */
   4 /* ====================================================================
   5  * Copyright (c) 2005 The OpenSSL Project.  All rights reserved.
   6  *
   7  * Redistribution and use in source and binary forms, with or without
   8  * modification, are permitted provided that the following conditions
   9  * are met:
  10  *
  11  * 1. Redistributions of source code must retain the above copyright
  12  *    notice, this list of conditions and the following disclaimer.
  13  *
  14  * 2. Redistributions in binary form must reproduce the above copyright
  15  *    notice, this list of conditions and the following disclaimer in
  16  *    the documentation and/or other materials provided with the
  17  *    distribution.
  18  *
  19  * 3. All advertising materials mentioning features or use of this
  20  *    software must display the following acknowledgment:
  21  *    "This product includes software developed by the OpenSSL Project
  22  *    for use in the OpenSSL Toolkit. (http://www.OpenSSL.org/)"
  23  *
  24  * 4. The names "OpenSSL Toolkit" and "OpenSSL Project" must not be used to
  25  *    endorse or promote products derived from this software without
  26  *    prior written permission. For written permission, please contact
  27  *    licensing@OpenSSL.org.
  28  *
  29  * 5. Products derived from this software may not be called "OpenSSL"
  30  *    nor may "OpenSSL" appear in their names without prior written
  31  *    permission of the OpenSSL Project.
  32  *
  33  * 6. Redistributions of any form whatsoever must retain the following
  34  *    acknowledgment:
  35  *    "This product includes software developed by the OpenSSL Project
  36  *    for use in the OpenSSL Toolkit (http://www.OpenSSL.org/)"
  37  *
  38  * THIS SOFTWARE IS PROVIDED BY THE OpenSSL PROJECT ``AS IS'' AND ANY
  39  * EXPRESSED OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  40  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
  41  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE OpenSSL PROJECT OR
  42  * ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
  43  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
  44  * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
  45  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  46  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
  47  * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
  48  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
  49  * OF THE POSSIBILITY OF SUCH DAMAGE.
  50  * ====================================================================
  51  *
  52  * This product includes cryptographic software written by Eric Young
  53  * (eay@cryptsoft.com).  This product includes software written by Tim
  54  * Hudson (tjh@cryptsoft.com).
  55  *
  56  */
  57 
  58 /* Support for PVK format keys and related structures (such a PUBLICKEYBLOB
  59  * and PRIVATEKEYBLOB).
  60  */
  61 
  62 #include "cryptlib.h"
  63 #include <openssl/pem.h>
  64 #include <openssl/rand.h>
  65 #include <openssl/bn.h>
  66 #if !defined(OPENSSL_NO_RSA) && !defined(OPENSSL_NO_DSA)
  67 #include <openssl/dsa.h>
  68 #include <openssl/rsa.h>
  69 
  70 /* Utility function: read a DWORD (4 byte unsigned integer) in little endian
  71  * format
  72  */
  73 
  74 static unsigned int read_ledword(const unsigned char **in)
  75         {
  76         const unsigned char *p = *in;
  77         unsigned int ret;
  78         ret = *p++;
  79         ret |= (*p++ << 8);
  80         ret |= (*p++ << 16);
  81         ret |= (*p++ << 24);
  82         *in = p;
  83         return ret;
  84         }
  85 
  86 /* Read a BIGNUM in little endian format. The docs say that this should take up
  87  * bitlen/8 bytes.
  88  */
  89 
  90 static int read_lebn(const unsigned char **in, unsigned int nbyte, BIGNUM **r)
  91         {
  92         const unsigned char *p;
  93         unsigned char *tmpbuf, *q;
  94         unsigned int i;
  95         p = *in + nbyte - 1;
  96         tmpbuf = OPENSSL_malloc(nbyte);
  97         if (!tmpbuf)
  98                 return 0;
  99         q = tmpbuf;
 100         for (i = 0; i < nbyte; i++)
 101                 *q++ = *p--;
 102         *r = BN_bin2bn(tmpbuf, nbyte, NULL);
 103         OPENSSL_free(tmpbuf);
 104         if (*r)
 105                 {
 106                 *in += nbyte;
 107                 return 1;
 108                 }
 109         else
 110                 return 0;
 111         }
 112 
 113 
 114 /* Convert private key blob to EVP_PKEY: RSA and DSA keys supported */
 115 
 116 #define MS_PUBLICKEYBLOB        0x6
 117 #define MS_PRIVATEKEYBLOB       0x7
 118 #define MS_RSA1MAGIC            0x31415352L
 119 #define MS_RSA2MAGIC            0x32415352L
 120 #define MS_DSS1MAGIC            0x31535344L
 121 #define MS_DSS2MAGIC            0x32535344L
 122 
 123 #define MS_KEYALG_RSA_KEYX      0xa400
 124 #define MS_KEYALG_DSS_SIGN      0x2200
 125 
 126 #define MS_KEYTYPE_KEYX         0x1
 127 #define MS_KEYTYPE_SIGN         0x2
 128 
 129 /* The PVK file magic number: seems to spell out "bobsfile", who is Bob? */
 130 #define MS_PVKMAGIC             0xb0b5f11eL
 131 /* Salt length for PVK files */
 132 #define PVK_SALTLEN             0x10
 133 
 134 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
 135                                                 unsigned int bitlen, int ispub);
 136 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
 137                                                 unsigned int bitlen, int ispub);
 138 
 139 static int do_blob_header(const unsigned char **in, unsigned int length,
 140                                 unsigned int *pmagic, unsigned int *pbitlen,
 141                                 int *pisdss, int *pispub)
 142         {
 143         const unsigned char *p = *in;
 144         if (length < 16)
 145                 return 0;
 146         /* bType */
 147         if (*p == MS_PUBLICKEYBLOB)
 148                 {
 149                 if (*pispub == 0)
 150                         {
 151                         PEMerr(PEM_F_DO_BLOB_HEADER,
 152                                         PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
 153                         return 0;
 154                         }
 155                 *pispub = 1;
 156                 }
 157         else if (*p == MS_PRIVATEKEYBLOB)
 158                 {
 159                 if (*pispub == 1)
 160                         {
 161                         PEMerr(PEM_F_DO_BLOB_HEADER,
 162                                         PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
 163                         return 0;
 164                         }
 165                 *pispub = 0;
 166                 }
 167         else
 168                 return 0;
 169         p++;
 170         /* Version */
 171         if (*p++ != 0x2)
 172                 {
 173                 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_VERSION_NUMBER);
 174                 return 0;
 175                 }
 176         /* Ignore reserved, aiKeyAlg */
 177         p+= 6;
 178         *pmagic = read_ledword(&p);
 179         *pbitlen = read_ledword(&p);
 180         *pisdss = 0;
 181         switch (*pmagic)
 182                 {
 183 
 184                 case MS_DSS1MAGIC:
 185                 *pisdss = 1;
 186                 case MS_RSA1MAGIC:
 187                 if (*pispub == 0)
 188                         {
 189                         PEMerr(PEM_F_DO_BLOB_HEADER,
 190                                         PEM_R_EXPECTING_PRIVATE_KEY_BLOB);
 191                         return 0;
 192                         }
 193                 break;
 194 
 195                 case MS_DSS2MAGIC:
 196                 *pisdss = 1;
 197                 case MS_RSA2MAGIC:
 198                 if (*pispub == 1)
 199                         {
 200                         PEMerr(PEM_F_DO_BLOB_HEADER,
 201                                         PEM_R_EXPECTING_PUBLIC_KEY_BLOB);
 202                         return 0;
 203                         }
 204                 break;
 205 
 206                 default:
 207                 PEMerr(PEM_F_DO_BLOB_HEADER, PEM_R_BAD_MAGIC_NUMBER);
 208                 return -1;
 209                 }
 210         *in = p;
 211         return 1;
 212         }
 213 
 214 static unsigned int blob_length(unsigned bitlen, int isdss, int ispub)
 215         {
 216         unsigned int nbyte, hnbyte;
 217         nbyte = (bitlen + 7) >> 3;
 218         hnbyte = (bitlen + 15) >> 4;
 219         if (isdss)
 220                 {
 221 
 222                 /* Expected length: 20 for q + 3 components bitlen each + 24
 223                  * for seed structure.
 224                  */
 225                 if (ispub)
 226                         return  44 + 3 * nbyte;
 227                 /* Expected length: 20 for q, priv, 2 bitlen components + 24
 228                  * for seed structure.
 229                  */
 230                 else
 231                         return 64 + 2 * nbyte;
 232                 }
 233         else
 234                 {
 235                 /* Expected length: 4 for 'e' + 'n' */
 236                 if (ispub)
 237                         return 4 + nbyte;
 238                 else
 239                 /* Expected length: 4 for 'e' and 7 other components.
 240                  * 2 components are bitlen size, 5 are bitlen/2
 241                  */
 242                         return 4 + 2*nbyte + 5*hnbyte;
 243                 }
 244 
 245         }
 246 
 247 static EVP_PKEY *do_b2i(const unsigned char **in, unsigned int length,
 248                                                                 int ispub)
 249         {
 250         const unsigned char *p = *in;
 251         unsigned int bitlen, magic;
 252         int isdss;
 253         if (do_blob_header(&p, length, &magic, &bitlen, &isdss, &ispub) <= 0)
 254                 {
 255                 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_HEADER_PARSE_ERROR);
 256                 return NULL;
 257                 }
 258         length -= 16;
 259         if (length < blob_length(bitlen, isdss, ispub))
 260                 {
 261                 PEMerr(PEM_F_DO_B2I, PEM_R_KEYBLOB_TOO_SHORT);
 262                 return NULL;
 263                 }
 264         if (isdss)
 265                 return b2i_dss(&p, length, bitlen, ispub);
 266         else
 267                 return b2i_rsa(&p, length, bitlen, ispub);
 268         }
 269 
 270 static EVP_PKEY *do_b2i_bio(BIO *in, int ispub)
 271         {
 272         const unsigned char *p;
 273         unsigned char hdr_buf[16], *buf = NULL;
 274         unsigned int bitlen, magic, length;
 275         int isdss;
 276         EVP_PKEY *ret = NULL;
 277         if (BIO_read(in, hdr_buf, 16) != 16)
 278                 {
 279                 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
 280                 return NULL;
 281                 }
 282         p = hdr_buf;
 283         if (do_blob_header(&p, 16, &magic, &bitlen, &isdss, &ispub) <= 0)
 284                 return NULL;
 285 
 286         length = blob_length(bitlen, isdss, ispub);
 287         buf = OPENSSL_malloc(length);
 288         if (!buf)
 289                 {
 290                 PEMerr(PEM_F_DO_B2I_BIO, ERR_R_MALLOC_FAILURE);
 291                 goto err;
 292                 }
 293         p = buf;
 294         if (BIO_read(in, buf, length) != (int)length)
 295                 {
 296                 PEMerr(PEM_F_DO_B2I_BIO, PEM_R_KEYBLOB_TOO_SHORT);
 297                 goto err;
 298                 }
 299 
 300         if (isdss)
 301                 ret = b2i_dss(&p, length, bitlen, ispub);
 302         else
 303                 ret = b2i_rsa(&p, length, bitlen, ispub);
 304 
 305         err:
 306         if (buf)
 307                 OPENSSL_free(buf);
 308         return ret;
 309         }
 310 
 311 static EVP_PKEY *b2i_dss(const unsigned char **in, unsigned int length,
 312                                                 unsigned int bitlen, int ispub)
 313         {
 314         const unsigned char *p = *in;
 315         EVP_PKEY *ret = NULL;
 316         DSA *dsa = NULL;
 317         BN_CTX *ctx = NULL;
 318         unsigned int nbyte;
 319         nbyte = (bitlen + 7) >> 3;
 320 
 321         dsa = DSA_new();
 322         ret = EVP_PKEY_new();
 323         if (!dsa || !ret)
 324                 goto memerr;
 325         if (!read_lebn(&p, nbyte, &dsa->p))
 326                 goto memerr;
 327         if (!read_lebn(&p, 20, &dsa->q))
 328                 goto memerr;
 329         if (!read_lebn(&p, nbyte, &dsa->g))
 330                 goto memerr;
 331         if (ispub)
 332                 {
 333                 if (!read_lebn(&p, nbyte, &dsa->pub_key))
 334                         goto memerr;
 335                 }
 336         else
 337                 {
 338                 if (!read_lebn(&p, 20, &dsa->priv_key))
 339                         goto memerr;
 340                 /* Calculate public key */
 341                 if (!(dsa->pub_key = BN_new()))
 342                         goto memerr;
 343                 if (!(ctx = BN_CTX_new()))
 344                         goto memerr;
 345 
 346                 if (!BN_mod_exp(dsa->pub_key, dsa->g,
 347                                                  dsa->priv_key, dsa->p, ctx))
 348 
 349                         goto memerr;
 350                 BN_CTX_free(ctx);
 351                 }
 352 
 353         EVP_PKEY_set1_DSA(ret, dsa);
 354         DSA_free(dsa);
 355         *in = p;
 356         return ret;
 357 
 358         memerr:
 359         PEMerr(PEM_F_B2I_DSS, ERR_R_MALLOC_FAILURE);
 360         if (dsa)
 361                 DSA_free(dsa);
 362         if (ret)
 363                 EVP_PKEY_free(ret);
 364         if (ctx)
 365                 BN_CTX_free(ctx);
 366         return NULL;
 367         }
 368 
 369 static EVP_PKEY *b2i_rsa(const unsigned char **in, unsigned int length,
 370                                                 unsigned int bitlen, int ispub)
 371 
 372         {
 373         const unsigned char *p = *in;
 374         EVP_PKEY *ret = NULL;
 375         RSA *rsa = NULL;
 376         unsigned int nbyte, hnbyte;
 377         nbyte = (bitlen + 7) >> 3;
 378         hnbyte = (bitlen + 15) >> 4;
 379         rsa = RSA_new();
 380         ret = EVP_PKEY_new();
 381         if (!rsa || !ret)
 382                 goto memerr;
 383         rsa->e = BN_new();
 384         if (!rsa->e)
 385                 goto memerr;
 386         if (!BN_set_word(rsa->e, read_ledword(&p)))
 387                 goto memerr;
 388         if (!read_lebn(&p, nbyte, &rsa->n))
 389                 goto memerr;
 390         if (!ispub)
 391                 {
 392                 if (!read_lebn(&p, hnbyte, &rsa->p))
 393                         goto memerr;
 394                 if (!read_lebn(&p, hnbyte, &rsa->q))
 395                         goto memerr;
 396                 if (!read_lebn(&p, hnbyte, &rsa->dmp1))
 397                         goto memerr;
 398                 if (!read_lebn(&p, hnbyte, &rsa->dmq1))
 399                         goto memerr;
 400                 if (!read_lebn(&p, hnbyte, &rsa->iqmp))
 401                         goto memerr;
 402                 if (!read_lebn(&p, nbyte, &rsa->d))
 403                         goto memerr;
 404                 }
 405 
 406         EVP_PKEY_set1_RSA(ret, rsa);
 407         RSA_free(rsa);
 408         *in = p;
 409         return ret;
 410         memerr:
 411         PEMerr(PEM_F_B2I_RSA, ERR_R_MALLOC_FAILURE);
 412         if (rsa)
 413                 RSA_free(rsa);
 414         if (ret)
 415                 EVP_PKEY_free(ret);
 416         return NULL;
 417         }
 418 
 419 EVP_PKEY *b2i_PrivateKey(const unsigned char **in, long length)
 420         {
 421         return do_b2i(in, length, 0);
 422         }
 423 
 424 EVP_PKEY *b2i_PublicKey(const unsigned char **in, long length)
 425         {
 426         return do_b2i(in, length, 1);
 427         }
 428 
 429 
 430 EVP_PKEY *b2i_PrivateKey_bio(BIO *in)
 431         {
 432         return do_b2i_bio(in, 0);
 433         }
 434 
 435 EVP_PKEY *b2i_PublicKey_bio(BIO *in)
 436         {
 437         return do_b2i_bio(in, 1);
 438         }
 439 
 440 static void write_ledword(unsigned char **out, unsigned int dw)
 441         {
 442         unsigned char *p = *out;
 443         *p++ = dw & 0xff;
 444         *p++ = (dw>>8) & 0xff;
 445         *p++ = (dw>>16) & 0xff;
 446         *p++ = (dw>>24) & 0xff;
 447         *out = p;
 448         }
 449 
 450 static void write_lebn(unsigned char **out, const BIGNUM *bn, int len)
 451         {
 452         int nb, i;
 453         unsigned char *p = *out, *q, c;
 454         nb = BN_num_bytes(bn);
 455         BN_bn2bin(bn, p);
 456         q = p + nb - 1;
 457         /* In place byte order reversal */
 458         for (i = 0; i < nb/2; i++)
 459                 {
 460                 c = *p;
 461                 *p++ = *q;
 462                 *q-- = c;
 463                 }
 464         *out += nb;
 465         /* Pad with zeroes if we have to */
 466         if (len > 0)
 467                 {
 468                 len -= nb;
 469                 if (len > 0)
 470                         {
 471                         memset(*out, 0, len);
 472                         *out += len;
 473                         }
 474                 }
 475         }
 476 
 477 
 478 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *magic);
 479 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *magic);
 480 
 481 static void write_rsa(unsigned char **out, RSA *rsa, int ispub);
 482 static void write_dsa(unsigned char **out, DSA *dsa, int ispub);
 483 
 484 static int do_i2b(unsigned char **out, EVP_PKEY *pk, int ispub)
 485         {
 486         unsigned char *p;
 487         unsigned int bitlen, magic = 0, keyalg;
 488         int outlen, noinc = 0;
 489         if (pk->type == EVP_PKEY_DSA)
 490                 {
 491                 bitlen = check_bitlen_dsa(pk->pkey.dsa, ispub, &magic);
 492                 keyalg = MS_KEYALG_DSS_SIGN;
 493                 }
 494         else if (pk->type == EVP_PKEY_RSA)
 495                 {
 496                 bitlen = check_bitlen_rsa(pk->pkey.rsa, ispub, &magic);
 497                 keyalg = MS_KEYALG_RSA_KEYX;
 498                 }
 499         else
 500                 return -1;
 501         if (bitlen == 0)
 502                 return -1;
 503         outlen = 16 + blob_length(bitlen,
 504                         keyalg == MS_KEYALG_DSS_SIGN ? 1 : 0, ispub);
 505         if (out == NULL)
 506                 return outlen;
 507         if (*out)
 508                 p = *out;
 509         else
 510                 {
 511                 p = OPENSSL_malloc(outlen);
 512                 if (!p)
 513                         return -1;
 514                 *out = p;
 515                 noinc = 1;
 516                 }
 517         if (ispub)
 518                 *p++ = MS_PUBLICKEYBLOB;
 519         else
 520                 *p++ = MS_PRIVATEKEYBLOB;
 521         *p++ = 0x2;
 522         *p++ = 0;
 523         *p++ = 0;
 524         write_ledword(&p, keyalg);
 525         write_ledword(&p, magic);
 526         write_ledword(&p, bitlen);
 527         if (keyalg == MS_KEYALG_DSS_SIGN)
 528                 write_dsa(&p, pk->pkey.dsa, ispub);
 529         else
 530                 write_rsa(&p, pk->pkey.rsa, ispub);
 531         if (!noinc)
 532                 *out += outlen;
 533         return outlen;
 534         }
 535 
 536 static int do_i2b_bio(BIO *out, EVP_PKEY *pk, int ispub)
 537         {
 538         unsigned char *tmp = NULL;
 539         int outlen, wrlen;
 540         outlen = do_i2b(&tmp, pk, ispub);
 541         if (outlen < 0)
 542                 return -1;
 543         wrlen = BIO_write(out, tmp, outlen);
 544         OPENSSL_free(tmp);
 545         if (wrlen == outlen)
 546                 return outlen;
 547         return -1;
 548         }
 549 
 550 static int check_bitlen_dsa(DSA *dsa, int ispub, unsigned int *pmagic)
 551         {
 552         int bitlen;
 553         bitlen = BN_num_bits(dsa->p);
 554         if ((bitlen & 7) || (BN_num_bits(dsa->q) != 160)
 555                 || (BN_num_bits(dsa->g) > bitlen))
 556                 goto badkey;
 557         if (ispub)
 558                 {
 559                 if (BN_num_bits(dsa->pub_key) > bitlen)
 560                         goto badkey;
 561                 *pmagic = MS_DSS1MAGIC;
 562                 }
 563         else
 564                 {
 565                 if (BN_num_bits(dsa->priv_key) > 160)
 566                         goto badkey;
 567                 *pmagic = MS_DSS2MAGIC;
 568                 }
 569 
 570         return bitlen;
 571         badkey:
 572         PEMerr(PEM_F_CHECK_BITLEN_DSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
 573         return 0;
 574         }
 575 
 576 static int check_bitlen_rsa(RSA *rsa, int ispub, unsigned int *pmagic)
 577         {
 578         int nbyte, hnbyte, bitlen;
 579         if (BN_num_bits(rsa->e) > 32)
 580                 goto badkey;
 581         bitlen = BN_num_bits(rsa->n);
 582         nbyte = BN_num_bytes(rsa->n);
 583         hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
 584         if (ispub)
 585                 {
 586                 *pmagic = MS_RSA1MAGIC;
 587                 return bitlen;
 588                 }
 589         else
 590         {
 591                 *pmagic = MS_RSA2MAGIC;
 592                 /* For private key each component must fit within nbyte or
 593                  * hnbyte.
 594                  */
 595                 if (BN_num_bytes(rsa->d) > nbyte)
 596                         goto badkey;
 597                 if ((BN_num_bytes(rsa->iqmp) > hnbyte)
 598                         || (BN_num_bytes(rsa->p) > hnbyte)
 599                         || (BN_num_bytes(rsa->q) > hnbyte)
 600                         || (BN_num_bytes(rsa->dmp1) > hnbyte)
 601                         || (BN_num_bytes(rsa->dmq1) > hnbyte))
 602                         goto badkey;
 603         }
 604         return bitlen;
 605         badkey:
 606         PEMerr(PEM_F_CHECK_BITLEN_RSA, PEM_R_UNSUPPORTED_KEY_COMPONENTS);
 607         return 0;
 608         }
 609 
 610 
 611 static void write_rsa(unsigned char **out, RSA *rsa, int ispub)
 612         {
 613         int nbyte, hnbyte;
 614         nbyte = BN_num_bytes(rsa->n);
 615         hnbyte = (BN_num_bits(rsa->n) + 15) >> 4;
 616         write_lebn(out, rsa->e, 4);
 617         write_lebn(out, rsa->n, -1);
 618         if (ispub)
 619                 return;
 620         write_lebn(out, rsa->p, hnbyte);
 621         write_lebn(out, rsa->q, hnbyte);
 622         write_lebn(out, rsa->dmp1, hnbyte);
 623         write_lebn(out, rsa->dmq1, hnbyte);
 624         write_lebn(out, rsa->iqmp, hnbyte);
 625         write_lebn(out, rsa->d, nbyte);
 626         }
 627 
 628 
 629 static void write_dsa(unsigned char **out, DSA *dsa, int ispub)
 630         {
 631         int nbyte;
 632         nbyte = BN_num_bytes(dsa->p);
 633         write_lebn(out, dsa->p, nbyte);
 634         write_lebn(out, dsa->q, 20);
 635         write_lebn(out, dsa->g, nbyte);
 636         if (ispub)
 637                 write_lebn(out, dsa->pub_key, nbyte);
 638         else
 639                 write_lebn(out, dsa->priv_key, 20);
 640         /* Set "invalid" for seed structure values */
 641         memset(*out, 0xff, 24);
 642         *out += 24;
 643         return;
 644         }
 645 
 646 
 647 int i2b_PrivateKey_bio(BIO *out, EVP_PKEY *pk)
 648         {
 649         return do_i2b_bio(out, pk, 0);
 650         }
 651 
 652 int i2b_PublicKey_bio(BIO *out, EVP_PKEY *pk)
 653         {
 654         return do_i2b_bio(out, pk, 1);
 655         }
 656 
 657 #ifndef OPENSSL_NO_RC4
 658 
 659 static int do_PVK_header(const unsigned char **in, unsigned int length,
 660                 int skip_magic,
 661                 unsigned int *psaltlen, unsigned int *pkeylen)
 662 
 663         {
 664         const unsigned char *p = *in;
 665         unsigned int pvk_magic, is_encrypted;
 666         if (skip_magic)
 667                 {
 668                 if (length < 20)
 669                         {
 670                         PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
 671                         return 0;
 672                         }
 673                 length -= 20;
 674                 }
 675         else
 676                 {
 677                 if (length < 24)
 678                         {
 679                         PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_PVK_TOO_SHORT);
 680                         return 0;
 681                         }
 682                 length -= 24;
 683                 pvk_magic = read_ledword(&p);
 684                 if (pvk_magic != MS_PVKMAGIC)
 685                         {
 686                         PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_BAD_MAGIC_NUMBER);
 687                         return 0;
 688                         }
 689                 }
 690         /* Skip reserved */
 691         p += 4;
 692         /*keytype = */read_ledword(&p);
 693         is_encrypted = read_ledword(&p);
 694         *psaltlen = read_ledword(&p);
 695         *pkeylen = read_ledword(&p);
 696 
 697         if (is_encrypted && !*psaltlen)
 698                 {
 699                 PEMerr(PEM_F_DO_PVK_HEADER, PEM_R_INCONSISTENT_HEADER);
 700                 return 0;
 701                 }
 702 
 703         *in = p;
 704         return 1;
 705         }
 706 
 707 static int derive_pvk_key(unsigned char *key,
 708                         const unsigned char *salt, unsigned int saltlen,
 709                         const unsigned char *pass, int passlen)
 710         {
 711         EVP_MD_CTX mctx;
 712         int rv = 1;
 713         EVP_MD_CTX_init(&mctx);
 714         if (!EVP_DigestInit_ex(&mctx, EVP_sha1(), NULL)
 715                 || !EVP_DigestUpdate(&mctx, salt, saltlen)
 716                 || !EVP_DigestUpdate(&mctx, pass, passlen)
 717                 || !EVP_DigestFinal_ex(&mctx, key, NULL))
 718                         rv = 0;
 719 
 720         EVP_MD_CTX_cleanup(&mctx);
 721         return rv;
 722         }
 723 
 724 
 725 static EVP_PKEY *do_PVK_body(const unsigned char **in,
 726                 unsigned int saltlen, unsigned int keylen,
 727                 pem_password_cb *cb, void *u)
 728         {
 729         EVP_PKEY *ret = NULL;
 730         const unsigned char *p = *in;
 731         unsigned int magic;
 732         unsigned char *enctmp = NULL, *q;
 733         EVP_CIPHER_CTX cctx;
 734         EVP_CIPHER_CTX_init(&cctx);
 735         if (saltlen)
 736                 {
 737                 char psbuf[PEM_BUFSIZE];
 738                 unsigned char keybuf[20];
 739                 int enctmplen, inlen;
 740                 if (cb)
 741                         inlen=cb(psbuf,PEM_BUFSIZE,0,u);
 742                 else
 743                         inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,0,u);
 744                 if (inlen <= 0)
 745                         {
 746                         PEMerr(PEM_F_DO_PVK_BODY,PEM_R_BAD_PASSWORD_READ);
 747                         return NULL;
 748                         }
 749                 enctmp = OPENSSL_malloc(keylen + 8);
 750                 if (!enctmp)
 751                         {
 752                         PEMerr(PEM_F_DO_PVK_BODY, ERR_R_MALLOC_FAILURE);
 753                         return NULL;
 754                         }
 755                 if (!derive_pvk_key(keybuf, p, saltlen,
 756                             (unsigned char *)psbuf, inlen))
 757                         return NULL;
 758                 p += saltlen;
 759                 /* Copy BLOBHEADER across, decrypt rest */
 760                 memcpy(enctmp, p, 8);
 761                 p += 8;
 762                 if (keylen < 8)
 763                         {
 764                         PEMerr(PEM_F_DO_PVK_BODY, PEM_R_PVK_TOO_SHORT);
 765                         return NULL;
 766                         }
 767                 inlen = keylen - 8;
 768                 q = enctmp + 8;
 769                 if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
 770                         goto err;
 771                 if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
 772                         goto err;
 773                 if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen, &enctmplen))
 774                         goto err;
 775                 magic = read_ledword((const unsigned char **)&q);
 776                 if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
 777                         {
 778                         q = enctmp + 8;
 779                         memset(keybuf + 5, 0, 11);
 780                         if (!EVP_DecryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf,
 781                                                                 NULL))
 782                                 goto err;
 783                         OPENSSL_cleanse(keybuf, 20);
 784                         if (!EVP_DecryptUpdate(&cctx, q, &enctmplen, p, inlen))
 785                                 goto err;
 786                         if (!EVP_DecryptFinal_ex(&cctx, q + enctmplen,
 787                                                                 &enctmplen))
 788                                 goto err;
 789                         magic = read_ledword((const unsigned char **)&q);
 790                         if (magic != MS_RSA2MAGIC && magic != MS_DSS2MAGIC)
 791                                 {
 792                                 PEMerr(PEM_F_DO_PVK_BODY, PEM_R_BAD_DECRYPT);
 793                                 goto err;
 794                                 }
 795                         }
 796                 else
 797                         OPENSSL_cleanse(keybuf, 20);
 798                 p = enctmp;
 799                 }
 800 
 801         ret = b2i_PrivateKey(&p, keylen);
 802         err:
 803         EVP_CIPHER_CTX_cleanup(&cctx);
 804         if (enctmp && saltlen)
 805                 OPENSSL_free(enctmp);
 806         return ret;
 807         }
 808 
 809 
 810 EVP_PKEY *b2i_PVK_bio(BIO *in, pem_password_cb *cb, void *u)
 811         {
 812         unsigned char pvk_hdr[24], *buf = NULL;
 813         const unsigned char *p;
 814         int buflen;
 815         EVP_PKEY *ret = NULL;
 816         unsigned int saltlen, keylen;
 817         if (BIO_read(in, pvk_hdr, 24) != 24)
 818                 {
 819                 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
 820                 return NULL;
 821                 }
 822         p = pvk_hdr;
 823 
 824         if (!do_PVK_header(&p, 24, 0, &saltlen, &keylen))
 825                 return 0;
 826         buflen = (int) keylen + saltlen;
 827         buf = OPENSSL_malloc(buflen);
 828         if (!buf)
 829                 {
 830                 PEMerr(PEM_F_B2I_PVK_BIO, ERR_R_MALLOC_FAILURE);
 831                 return 0;
 832                 }
 833         p = buf;
 834         if (BIO_read(in, buf, buflen) != buflen)
 835                 {
 836                 PEMerr(PEM_F_B2I_PVK_BIO, PEM_R_PVK_DATA_TOO_SHORT);
 837                 goto err;
 838                 }
 839         ret = do_PVK_body(&p, saltlen, keylen, cb, u);
 840 
 841         err:
 842         if (buf)
 843                 {
 844                 OPENSSL_cleanse(buf, buflen);
 845                 OPENSSL_free(buf);
 846                 }
 847         return ret;
 848         }
 849 
 850 
 851 
 852 static int i2b_PVK(unsigned char **out, EVP_PKEY*pk, int enclevel,
 853                 pem_password_cb *cb, void *u)
 854         {
 855         int outlen = 24, pklen;
 856         unsigned char *p, *salt = NULL;
 857         EVP_CIPHER_CTX cctx;
 858         EVP_CIPHER_CTX_init(&cctx);
 859         if (enclevel)
 860                 outlen += PVK_SALTLEN;
 861         pklen = do_i2b(NULL, pk, 0);
 862         if (pklen < 0)
 863                 return -1;
 864         outlen += pklen;
 865         if (!out)
 866                 return outlen;
 867         if (*out)
 868                 p = *out;
 869         else
 870                 {
 871                 p = OPENSSL_malloc(outlen);
 872                 if (!p)
 873                         {
 874                         PEMerr(PEM_F_I2B_PVK,ERR_R_MALLOC_FAILURE);
 875                         return -1;
 876                         }
 877                 *out = p;
 878                 }
 879 
 880         write_ledword(&p, MS_PVKMAGIC);
 881         write_ledword(&p, 0);
 882         if (pk->type == EVP_PKEY_DSA)
 883                 write_ledword(&p, MS_KEYTYPE_SIGN);
 884         else
 885                 write_ledword(&p, MS_KEYTYPE_KEYX);
 886         write_ledword(&p, enclevel ? 1 : 0);
 887         write_ledword(&p, enclevel ? PVK_SALTLEN: 0);
 888         write_ledword(&p, pklen);
 889         if (enclevel)
 890                 {
 891                 if (RAND_bytes(p, PVK_SALTLEN) <= 0)
 892                         goto error;
 893                 salt = p;
 894                 p += PVK_SALTLEN;
 895                 }
 896         do_i2b(&p, pk, 0);
 897         if (enclevel == 0)
 898                 return outlen;
 899         else
 900                 {
 901                 char psbuf[PEM_BUFSIZE];
 902                 unsigned char keybuf[20];
 903                 int enctmplen, inlen;
 904                 if (cb)
 905                         inlen=cb(psbuf,PEM_BUFSIZE,1,u);
 906                 else
 907                         inlen=PEM_def_callback(psbuf,PEM_BUFSIZE,1,u);
 908                 if (inlen <= 0)
 909                         {
 910                         PEMerr(PEM_F_I2B_PVK,PEM_R_BAD_PASSWORD_READ);
 911                         goto error;
 912                         }
 913                 if (!derive_pvk_key(keybuf, salt, PVK_SALTLEN,
 914                             (unsigned char *)psbuf, inlen))
 915                         goto error;
 916                 if (enclevel == 1)
 917                         memset(keybuf + 5, 0, 11);
 918                 p = salt + PVK_SALTLEN + 8;
 919                 if (!EVP_EncryptInit_ex(&cctx, EVP_rc4(), NULL, keybuf, NULL))
 920                         goto error;
 921                 OPENSSL_cleanse(keybuf, 20);
 922                 if (!EVP_DecryptUpdate(&cctx, p, &enctmplen, p, pklen - 8))
 923                         goto error;
 924                 if (!EVP_DecryptFinal_ex(&cctx, p + enctmplen, &enctmplen))
 925                         goto error;
 926                 }
 927         EVP_CIPHER_CTX_cleanup(&cctx);
 928         return outlen;
 929 
 930         error:
 931         EVP_CIPHER_CTX_cleanup(&cctx);
 932         return -1;
 933         }
 934 
 935 int i2b_PVK_bio(BIO *out, EVP_PKEY *pk, int enclevel,
 936                 pem_password_cb *cb, void *u)
 937         {
 938         unsigned char *tmp = NULL;
 939         int outlen, wrlen;
 940         outlen = i2b_PVK(&tmp, pk, enclevel, cb, u);
 941         if (outlen < 0)
 942                 return -1;
 943         wrlen = BIO_write(out, tmp, outlen);
 944         OPENSSL_free(tmp);
 945         if (wrlen == outlen)
 946                 {
 947                 PEMerr(PEM_F_I2B_PVK_BIO, PEM_R_BIO_WRITE_FAILURE);
 948                 return outlen;
 949                 }
 950         return -1;
 951         }
 952 
 953 #endif
 954 
 955 #endif