1 /* crypto/sha/sha256.c */ 2 /* ==================================================================== 3 * Copyright (c) 2004 The OpenSSL Project. All rights reserved 4 * according to the OpenSSL license [found in ../../LICENSE]. 5 * ==================================================================== 6 */ 7 #include <openssl/opensslconf.h> 8 #if !defined(OPENSSL_NO_SHA) && !defined(OPENSSL_NO_SHA256) 9 10 #include <stdlib.h> 11 #include <string.h> 12 13 #include <openssl/crypto.h> 14 #include <openssl/sha.h> 15 #include <openssl/opensslv.h> 16 17 const char SHA256_version[]="SHA-256" OPENSSL_VERSION_PTEXT; 18 19 fips_md_init_ctx(SHA224, SHA256) 20 { 21 memset (c,0,sizeof(*c)); 22 c->h[0]=0xc1059ed8UL; c->h[1]=0x367cd507UL; 23 c->h[2]=0x3070dd17UL; c->h[3]=0xf70e5939UL; 24 c->h[4]=0xffc00b31UL; c->h[5]=0x68581511UL; 25 c->h[6]=0x64f98fa7UL; c->h[7]=0xbefa4fa4UL; 26 c->md_len=SHA224_DIGEST_LENGTH; 27 return 1; 28 } 29 30 fips_md_init(SHA256) 31 { 32 memset (c,0,sizeof(*c)); 33 c->h[0]=0x6a09e667UL; c->h[1]=0xbb67ae85UL; 34 c->h[2]=0x3c6ef372UL; c->h[3]=0xa54ff53aUL; 35 c->h[4]=0x510e527fUL; c->h[5]=0x9b05688cUL; 36 c->h[6]=0x1f83d9abUL; c->h[7]=0x5be0cd19UL; 37 c->md_len=SHA256_DIGEST_LENGTH; 38 return 1; 39 } 40 41 unsigned char *SHA224(const unsigned char *d, size_t n, unsigned char *md) 42 { 43 SHA256_CTX c; 44 static unsigned char m[SHA224_DIGEST_LENGTH]; 45 46 if (md == NULL) md=m; 47 SHA224_Init(&c); 48 SHA256_Update(&c,d,n); 49 SHA256_Final(md,&c); 50 OPENSSL_cleanse(&c,sizeof(c)); 51 return(md); 52 } 53 54 unsigned char *SHA256(const unsigned char *d, size_t n, unsigned char *md) 55 { 56 SHA256_CTX c; 57 static unsigned char m[SHA256_DIGEST_LENGTH]; 58 59 if (md == NULL) md=m; 60 SHA256_Init(&c); 61 SHA256_Update(&c,d,n); 62 SHA256_Final(md,&c); 63 OPENSSL_cleanse(&c,sizeof(c)); 64 return(md); 65 } 66 67 int SHA224_Update(SHA256_CTX *c, const void *data, size_t len) 68 { return SHA256_Update (c,data,len); } 69 int SHA224_Final (unsigned char *md, SHA256_CTX *c) 70 { return SHA256_Final (md,c); } 71 72 #define DATA_ORDER_IS_BIG_ENDIAN 73 74 #define HASH_LONG SHA_LONG 75 #define HASH_CTX SHA256_CTX 76 #define HASH_CBLOCK SHA_CBLOCK 77 /* 78 * Note that FIPS180-2 discusses "Truncation of the Hash Function Output." 79 * default: case below covers for it. It's not clear however if it's 80 * permitted to truncate to amount of bytes not divisible by 4. I bet not, 81 * but if it is, then default: case shall be extended. For reference. 82 * Idea behind separate cases for pre-defined lenghts is to let the 83 * compiler decide if it's appropriate to unroll small loops. 84 */ 85 #define HASH_MAKE_STRING(c,s) do { \ 86 unsigned long ll; \ 87 unsigned int nn; \ 88 switch ((c)->md_len) \ 89 { case SHA224_DIGEST_LENGTH: \ 90 for (nn=0;nn<SHA224_DIGEST_LENGTH/4;nn++) \ 91 { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ 92 break; \ 93 case SHA256_DIGEST_LENGTH: \ 94 for (nn=0;nn<SHA256_DIGEST_LENGTH/4;nn++) \ 95 { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ 96 break; \ 97 default: \ 98 if ((c)->md_len > SHA256_DIGEST_LENGTH) \ 99 return 0; \ 100 for (nn=0;nn<(c)->md_len/4;nn++) \ 101 { ll=(c)->h[nn]; (void)HOST_l2c(ll,(s)); } \ 102 break; \ 103 } \ 104 } while (0) 105 106 #define HASH_UPDATE SHA256_Update 107 #define HASH_TRANSFORM SHA256_Transform 108 #define HASH_FINAL SHA256_Final 109 #define HASH_BLOCK_DATA_ORDER sha256_block_data_order 110 #ifndef SHA256_ASM 111 static 112 #endif 113 void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num); 114 115 #include "md32_common.h" 116 117 #ifndef SHA256_ASM 118 static const SHA_LONG K256[64] = { 119 0x428a2f98UL,0x71374491UL,0xb5c0fbcfUL,0xe9b5dba5UL, 120 0x3956c25bUL,0x59f111f1UL,0x923f82a4UL,0xab1c5ed5UL, 121 0xd807aa98UL,0x12835b01UL,0x243185beUL,0x550c7dc3UL, 122 0x72be5d74UL,0x80deb1feUL,0x9bdc06a7UL,0xc19bf174UL, 123 0xe49b69c1UL,0xefbe4786UL,0x0fc19dc6UL,0x240ca1ccUL, 124 0x2de92c6fUL,0x4a7484aaUL,0x5cb0a9dcUL,0x76f988daUL, 125 0x983e5152UL,0xa831c66dUL,0xb00327c8UL,0xbf597fc7UL, 126 0xc6e00bf3UL,0xd5a79147UL,0x06ca6351UL,0x14292967UL, 127 0x27b70a85UL,0x2e1b2138UL,0x4d2c6dfcUL,0x53380d13UL, 128 0x650a7354UL,0x766a0abbUL,0x81c2c92eUL,0x92722c85UL, 129 0xa2bfe8a1UL,0xa81a664bUL,0xc24b8b70UL,0xc76c51a3UL, 130 0xd192e819UL,0xd6990624UL,0xf40e3585UL,0x106aa070UL, 131 0x19a4c116UL,0x1e376c08UL,0x2748774cUL,0x34b0bcb5UL, 132 0x391c0cb3UL,0x4ed8aa4aUL,0x5b9cca4fUL,0x682e6ff3UL, 133 0x748f82eeUL,0x78a5636fUL,0x84c87814UL,0x8cc70208UL, 134 0x90befffaUL,0xa4506cebUL,0xbef9a3f7UL,0xc67178f2UL }; 135 136 /* 137 * FIPS specification refers to right rotations, while our ROTATE macro 138 * is left one. This is why you might notice that rotation coefficients 139 * differ from those observed in FIPS document by 32-N... 140 */ 141 #define Sigma0(x) (ROTATE((x),30) ^ ROTATE((x),19) ^ ROTATE((x),10)) 142 #define Sigma1(x) (ROTATE((x),26) ^ ROTATE((x),21) ^ ROTATE((x),7)) 143 #define sigma0(x) (ROTATE((x),25) ^ ROTATE((x),14) ^ ((x)>>3)) 144 #define sigma1(x) (ROTATE((x),15) ^ ROTATE((x),13) ^ ((x)>>10)) 145 146 #define Ch(x,y,z) (((x) & (y)) ^ ((~(x)) & (z))) 147 #define Maj(x,y,z) (((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z))) 148 149 #ifdef OPENSSL_SMALL_FOOTPRINT 150 151 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) 152 { 153 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1,T2; 154 SHA_LONG X[16],l; 155 int i; 156 const unsigned char *data=in; 157 158 while (num--) { 159 160 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; 161 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; 162 163 for (i=0;i<16;i++) 164 { 165 HOST_c2l(data,l); T1 = X[i] = l; 166 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; 167 T2 = Sigma0(a) + Maj(a,b,c); 168 h = g; g = f; f = e; e = d + T1; 169 d = c; c = b; b = a; a = T1 + T2; 170 } 171 172 for (;i<64;i++) 173 { 174 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); 175 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); 176 177 T1 = X[i&0xf] += s0 + s1 + X[(i+9)&0xf]; 178 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; 179 T2 = Sigma0(a) + Maj(a,b,c); 180 h = g; g = f; f = e; e = d + T1; 181 d = c; c = b; b = a; a = T1 + T2; 182 } 183 184 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 185 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 186 187 } 188 } 189 190 #else 191 192 #define ROUND_00_15(i,a,b,c,d,e,f,g,h) do { \ 193 T1 += h + Sigma1(e) + Ch(e,f,g) + K256[i]; \ 194 h = Sigma0(a) + Maj(a,b,c); \ 195 d += T1; h += T1; } while (0) 196 197 #define ROUND_16_63(i,a,b,c,d,e,f,g,h,X) do { \ 198 s0 = X[(i+1)&0x0f]; s0 = sigma0(s0); \ 199 s1 = X[(i+14)&0x0f]; s1 = sigma1(s1); \ 200 T1 = X[(i)&0x0f] += s0 + s1 + X[(i+9)&0x0f]; \ 201 ROUND_00_15(i,a,b,c,d,e,f,g,h); } while (0) 202 203 static void sha256_block_data_order (SHA256_CTX *ctx, const void *in, size_t num) 204 { 205 unsigned MD32_REG_T a,b,c,d,e,f,g,h,s0,s1,T1; 206 SHA_LONG X[16]; 207 int i; 208 const unsigned char *data=in; 209 const union { long one; char little; } is_endian = {1}; 210 211 while (num--) { 212 213 a = ctx->h[0]; b = ctx->h[1]; c = ctx->h[2]; d = ctx->h[3]; 214 e = ctx->h[4]; f = ctx->h[5]; g = ctx->h[6]; h = ctx->h[7]; 215 216 if (!is_endian.little && sizeof(SHA_LONG)==4 && ((size_t)in%4)==0) 217 { 218 const SHA_LONG *W=(const SHA_LONG *)data; 219 220 T1 = X[0] = W[0]; ROUND_00_15(0,a,b,c,d,e,f,g,h); 221 T1 = X[1] = W[1]; ROUND_00_15(1,h,a,b,c,d,e,f,g); 222 T1 = X[2] = W[2]; ROUND_00_15(2,g,h,a,b,c,d,e,f); 223 T1 = X[3] = W[3]; ROUND_00_15(3,f,g,h,a,b,c,d,e); 224 T1 = X[4] = W[4]; ROUND_00_15(4,e,f,g,h,a,b,c,d); 225 T1 = X[5] = W[5]; ROUND_00_15(5,d,e,f,g,h,a,b,c); 226 T1 = X[6] = W[6]; ROUND_00_15(6,c,d,e,f,g,h,a,b); 227 T1 = X[7] = W[7]; ROUND_00_15(7,b,c,d,e,f,g,h,a); 228 T1 = X[8] = W[8]; ROUND_00_15(8,a,b,c,d,e,f,g,h); 229 T1 = X[9] = W[9]; ROUND_00_15(9,h,a,b,c,d,e,f,g); 230 T1 = X[10] = W[10]; ROUND_00_15(10,g,h,a,b,c,d,e,f); 231 T1 = X[11] = W[11]; ROUND_00_15(11,f,g,h,a,b,c,d,e); 232 T1 = X[12] = W[12]; ROUND_00_15(12,e,f,g,h,a,b,c,d); 233 T1 = X[13] = W[13]; ROUND_00_15(13,d,e,f,g,h,a,b,c); 234 T1 = X[14] = W[14]; ROUND_00_15(14,c,d,e,f,g,h,a,b); 235 T1 = X[15] = W[15]; ROUND_00_15(15,b,c,d,e,f,g,h,a); 236 237 data += SHA256_CBLOCK; 238 } 239 else 240 { 241 SHA_LONG l; 242 243 HOST_c2l(data,l); T1 = X[0] = l; ROUND_00_15(0,a,b,c,d,e,f,g,h); 244 HOST_c2l(data,l); T1 = X[1] = l; ROUND_00_15(1,h,a,b,c,d,e,f,g); 245 HOST_c2l(data,l); T1 = X[2] = l; ROUND_00_15(2,g,h,a,b,c,d,e,f); 246 HOST_c2l(data,l); T1 = X[3] = l; ROUND_00_15(3,f,g,h,a,b,c,d,e); 247 HOST_c2l(data,l); T1 = X[4] = l; ROUND_00_15(4,e,f,g,h,a,b,c,d); 248 HOST_c2l(data,l); T1 = X[5] = l; ROUND_00_15(5,d,e,f,g,h,a,b,c); 249 HOST_c2l(data,l); T1 = X[6] = l; ROUND_00_15(6,c,d,e,f,g,h,a,b); 250 HOST_c2l(data,l); T1 = X[7] = l; ROUND_00_15(7,b,c,d,e,f,g,h,a); 251 HOST_c2l(data,l); T1 = X[8] = l; ROUND_00_15(8,a,b,c,d,e,f,g,h); 252 HOST_c2l(data,l); T1 = X[9] = l; ROUND_00_15(9,h,a,b,c,d,e,f,g); 253 HOST_c2l(data,l); T1 = X[10] = l; ROUND_00_15(10,g,h,a,b,c,d,e,f); 254 HOST_c2l(data,l); T1 = X[11] = l; ROUND_00_15(11,f,g,h,a,b,c,d,e); 255 HOST_c2l(data,l); T1 = X[12] = l; ROUND_00_15(12,e,f,g,h,a,b,c,d); 256 HOST_c2l(data,l); T1 = X[13] = l; ROUND_00_15(13,d,e,f,g,h,a,b,c); 257 HOST_c2l(data,l); T1 = X[14] = l; ROUND_00_15(14,c,d,e,f,g,h,a,b); 258 HOST_c2l(data,l); T1 = X[15] = l; ROUND_00_15(15,b,c,d,e,f,g,h,a); 259 } 260 261 for (i=16;i<64;i+=8) 262 { 263 ROUND_16_63(i+0,a,b,c,d,e,f,g,h,X); 264 ROUND_16_63(i+1,h,a,b,c,d,e,f,g,X); 265 ROUND_16_63(i+2,g,h,a,b,c,d,e,f,X); 266 ROUND_16_63(i+3,f,g,h,a,b,c,d,e,X); 267 ROUND_16_63(i+4,e,f,g,h,a,b,c,d,X); 268 ROUND_16_63(i+5,d,e,f,g,h,a,b,c,X); 269 ROUND_16_63(i+6,c,d,e,f,g,h,a,b,X); 270 ROUND_16_63(i+7,b,c,d,e,f,g,h,a,X); 271 } 272 273 ctx->h[0] += a; ctx->h[1] += b; ctx->h[2] += c; ctx->h[3] += d; 274 ctx->h[4] += e; ctx->h[5] += f; ctx->h[6] += g; ctx->h[7] += h; 275 276 } 277 } 278 279 #endif 280 #endif /* SHA256_ASM */ 281 282 #endif /* OPENSSL_NO_SHA256 */