1 #!/usr/bin/env perl
   2 
   3 # ====================================================================
   4 # [Re]written by Andy Polyakov <appro@fy.chalmers.se> for the OpenSSL
   5 # project. The module is, however, dual licensed under OpenSSL and
   6 # CRYPTOGAMS licenses depending on where you obtain it. For further
   7 # details see http://www.openssl.org/~appro/cryptogams/.
   8 # ====================================================================
   9 
  10 # "[Re]written" was achieved in two major overhauls. In 2004 BODY_*
  11 # functions were re-implemented to address P4 performance issue [see
  12 # commentary below], and in 2006 the rest was rewritten in order to
  13 # gain freedom to liberate licensing terms.
  14 
  15 # January, September 2004.
  16 #
  17 # It was noted that Intel IA-32 C compiler generates code which
  18 # performs ~30% *faster* on P4 CPU than original *hand-coded*
  19 # SHA1 assembler implementation. To address this problem (and
  20 # prove that humans are still better than machines:-), the
  21 # original code was overhauled, which resulted in following
  22 # performance changes:
  23 #
  24 #               compared with original  compared with Intel cc
  25 #               assembler impl.         generated code
  26 # Pentium       -16%                    +48%
  27 # PIII/AMD      +8%                     +16%
  28 # P4            +85%(!)                 +45%
  29 #
  30 # As you can see Pentium came out as looser:-( Yet I reckoned that
  31 # improvement on P4 outweights the loss and incorporate this
  32 # re-tuned code to 0.9.7 and later.
  33 # ----------------------------------------------------------------
  34 #                                       <appro@fy.chalmers.se>
  35 
  36 # August 2009.
  37 #
  38 # George Spelvin has tipped that F_40_59(b,c,d) can be rewritten as
  39 # '(c&d) + (b&(c^d))', which allows to accumulate partial results
  40 # and lighten "pressure" on scratch registers. This resulted in
  41 # >12% performance improvement on contemporary AMD cores (with no
  42 # degradation on other CPUs:-). Also, the code was revised to maximize
  43 # "distance" between instructions producing input to 'lea' instruction
  44 # and the 'lea' instruction itself, which is essential for Intel Atom
  45 # core and resulted in ~15% improvement.
  46 
  47 # October 2010.
  48 #
  49 # Add SSSE3, Supplemental[!] SSE3, implementation. The idea behind it
  50 # is to offload message schedule denoted by Wt in NIST specification,
  51 # or Xupdate in OpenSSL source, to SIMD unit. The idea is not novel,
  52 # and in SSE2 context was first explored by Dean Gaudet in 2004, see
  53 # http://arctic.org/~dean/crypto/sha1.html. Since then several things
  54 # have changed that made it interesting again:
  55 #
  56 # a) XMM units became faster and wider;
  57 # b) instruction set became more versatile;
  58 # c) an important observation was made by Max Locktykhin, which made
  59 #    it possible to reduce amount of instructions required to perform
  60 #    the operation in question, for further details see
  61 #    http://software.intel.com/en-us/articles/improving-the-performance-of-the-secure-hash-algorithm-1/.
  62 
  63 # April 2011.
  64 #
  65 # Add AVX code path, probably most controversial... The thing is that
  66 # switch to AVX alone improves performance by as little as 4% in
  67 # comparison to SSSE3 code path. But below result doesn't look like
  68 # 4% improvement... Trouble is that Sandy Bridge decodes 'ro[rl]' as
  69 # pair of -ops, and it's the additional -ops, two per round, that
  70 # make it run slower than Core2 and Westmere. But 'sh[rl]d' is decoded
  71 # as single -op by Sandy Bridge and it's replacing 'ro[rl]' with
  72 # equivalent 'sh[rl]d' that is responsible for the impressive 5.1
  73 # cycles per processed byte. But 'sh[rl]d' is not something that used
  74 # to be fast, nor does it appear to be fast in upcoming Bulldozer
  75 # [according to its optimization manual]. Which is why AVX code path
  76 # is guarded by *both* AVX and synthetic bit denoting Intel CPUs.
  77 # One can argue that it's unfair to AMD, but without 'sh[rl]d' it
  78 # makes no sense to keep the AVX code path. If somebody feels that
  79 # strongly, it's probably more appropriate to discuss possibility of
  80 # using vector rotate XOP on AMD...
  81 
  82 ######################################################################
  83 # Current performance is summarized in following table. Numbers are
  84 # CPU clock cycles spent to process single byte (less is better).
  85 #
  86 #               x86             SSSE3           AVX
  87 # Pentium       15.7            -
  88 # PIII          11.5            -
  89 # P4            10.6            -
  90 # AMD K8        7.1             -
  91 # Core2         7.3             6.1/+20%        -
  92 # Atom          12.5            9.5(*)/+32%     -
  93 # Westmere      7.3             5.6/+30%        -
  94 # Sandy Bridge  8.8             6.2/+40%        5.1(**)/+70%
  95 #
  96 # (*)   Loop is 1056 instructions long and expected result is ~8.25.
  97 #       It remains mystery [to me] why ILP is limited to 1.7.
  98 #
  99 # (**)  As per above comment, the result is for AVX *plus* sh[rl]d.
 100 
 101 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1;
 102 push(@INC,"${dir}","${dir}../../perlasm");
 103 require "x86asm.pl";
 104 
 105 &asm_init($ARGV[0],"sha1-586.pl",$ARGV[$#ARGV] eq "386");
 106 
 107 $xmm=$ymm=0;
 108 for (@ARGV) { $xmm=1 if (/-DOPENSSL_IA32_SSE2/); }
 109 
 110 $ymm=1 if ($xmm &&
 111                 `$ENV{CC} -Wa,-v -c -o /dev/null -x assembler /dev/null 2>&1`
 112                         =~ /GNU assembler version ([2-9]\.[0-9]+)/ &&
 113                 $1>=2.19);   # first version supporting AVX
 114 
 115 $ymm=1 if ($xmm && !$ymm && $ARGV[0] eq "win32n" &&
 116                 `nasm -v 2>&1` =~ /NASM version ([2-9]\.[0-9]+)/ &&
 117                 $1>=2.03);   # first version supporting AVX
 118 
 119 &external_label("OPENSSL_ia32cap_P") if ($xmm);
 120 
 121 
 122 $A="eax";
 123 $B="ebx";
 124 $C="ecx";
 125 $D="edx";
 126 $E="edi";
 127 $T="esi";
 128 $tmp1="ebp";
 129 
 130 @V=($A,$B,$C,$D,$E,$T);
 131 
 132 $alt=0; # 1 denotes alternative IALU implementation, which performs
 133         # 8% *worse* on P4, same on Westmere and Atom, 2% better on
 134         # Sandy Bridge...
 135 
 136 sub BODY_00_15
 137         {
 138         local($n,$a,$b,$c,$d,$e,$f)=@_;
 139 
 140         &comment("00_15 $n");
 141 
 142         &mov($f,$c);                        # f to hold F_00_19(b,c,d)
 143          if ($n==0)  { &mov($tmp1,$a); }
 144          else        { &mov($a,$tmp1); }
 145         &rotl($tmp1,5);                     # tmp1=ROTATE(a,5)
 146          &xor($f,$d);
 147         &add($tmp1,$e);                     # tmp1+=e;
 148          &mov($e,&swtmp($n%16));        # e becomes volatile and is loaded
 149                                         # with xi, also note that e becomes
 150                                         # f in next round...
 151         &and($f,$b);
 152         &rotr($b,2);                        # b=ROTATE(b,30)
 153          &xor($f,$d);                       # f holds F_00_19(b,c,d)
 154         &lea($tmp1,&DWP(0x5a827999,$tmp1,$e));  # tmp1+=K_00_19+xi
 155 
 156         if ($n==15) { &mov($e,&swtmp(($n+1)%16));# pre-fetch f for next round
 157                       &add($f,$tmp1); }     # f+=tmp1
 158         else        { &add($tmp1,$f); }     # f becomes a in next round
 159         &mov($tmp1,$a)                      if ($alt && $n==15);
 160         }
 161 
 162 sub BODY_16_19
 163         {
 164         local($n,$a,$b,$c,$d,$e,$f)=@_;
 165 
 166         &comment("16_19 $n");
 167 
 168 if ($alt) {
 169         &xor($c,$d);
 170          &xor($f,&swtmp(($n+2)%16));    # f to hold Xupdate(xi,xa,xb,xc,xd)
 171         &and($tmp1,$c);                     # tmp1 to hold F_00_19(b,c,d), b&=c^d
 172          &xor($f,&swtmp(($n+8)%16));
 173         &xor($tmp1,$d);                     # tmp1=F_00_19(b,c,d)
 174          &xor($f,&swtmp(($n+13)%16));   # f holds xa^xb^xc^xd
 175         &rotl($f,1);                        # f=ROTATE(f,1)
 176          &add($e,$tmp1);            # e+=F_00_19(b,c,d)
 177         &xor($c,$d);                        # restore $c
 178          &mov($tmp1,$a);            # b in next round
 179         &rotr($b,$n==16?2:7);               # b=ROTATE(b,30)
 180          &mov(&swtmp($n%16),$f);        # xi=f
 181         &rotl($a,5);                        # ROTATE(a,5)
 182          &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
 183         &mov($e,&swtmp(($n+1)%16));     # pre-fetch f for next round
 184          &add($f,$a);                       # f+=ROTATE(a,5)
 185 } else {
 186         &mov($tmp1,$c);                     # tmp1 to hold F_00_19(b,c,d)
 187          &xor($f,&swtmp(($n+2)%16));    # f to hold Xupdate(xi,xa,xb,xc,xd)
 188         &xor($tmp1,$d);
 189          &xor($f,&swtmp(($n+8)%16));
 190         &and($tmp1,$b);
 191          &xor($f,&swtmp(($n+13)%16));   # f holds xa^xb^xc^xd
 192         &rotl($f,1);                        # f=ROTATE(f,1)
 193          &xor($tmp1,$d);            # tmp1=F_00_19(b,c,d)
 194         &add($e,$tmp1);                     # e+=F_00_19(b,c,d)
 195          &mov($tmp1,$a);
 196         &rotr($b,2);                        # b=ROTATE(b,30)
 197          &mov(&swtmp($n%16),$f);        # xi=f
 198         &rotl($tmp1,5);                     # ROTATE(a,5)
 199          &lea($f,&DWP(0x5a827999,$f,$e));# f+=F_00_19(b,c,d)+e
 200         &mov($e,&swtmp(($n+1)%16));     # pre-fetch f for next round
 201          &add($f,$tmp1);            # f+=ROTATE(a,5)
 202 }
 203         }
 204 
 205 sub BODY_20_39
 206         {
 207         local($n,$a,$b,$c,$d,$e,$f)=@_;
 208         local $K=($n<40)?0x6ed9eba1:0xca62c1d6;
 209 
 210         &comment("20_39 $n");
 211 
 212 if ($alt) {
 213         &xor($tmp1,$c);                     # tmp1 to hold F_20_39(b,c,d), b^=c
 214          &xor($f,&swtmp(($n+2)%16));    # f to hold Xupdate(xi,xa,xb,xc,xd)
 215         &xor($tmp1,$d);                     # tmp1 holds F_20_39(b,c,d)
 216          &xor($f,&swtmp(($n+8)%16));
 217         &add($e,$tmp1);                     # e+=F_20_39(b,c,d)
 218          &xor($f,&swtmp(($n+13)%16));   # f holds xa^xb^xc^xd
 219         &rotl($f,1);                        # f=ROTATE(f,1)
 220          &mov($tmp1,$a);            # b in next round
 221         &rotr($b,7);                        # b=ROTATE(b,30)
 222          &mov(&swtmp($n%16),$f)         if($n<77);# xi=f
 223         &rotl($a,5);                        # ROTATE(a,5)
 224          &xor($b,$c)                        if($n==39);# warm up for BODY_40_59
 225         &and($tmp1,$b)                      if($n==39);
 226          &lea($f,&DWP($K,$f,$e));       # f+=e+K_XX_YY
 227         &mov($e,&swtmp(($n+1)%16))      if($n<79);# pre-fetch f for next round
 228          &add($f,$a);                       # f+=ROTATE(a,5)
 229         &rotr($a,5)                 if ($n==79);
 230 } else {
 231         &mov($tmp1,$b);                     # tmp1 to hold F_20_39(b,c,d)
 232          &xor($f,&swtmp(($n+2)%16));    # f to hold Xupdate(xi,xa,xb,xc,xd)
 233         &xor($tmp1,$c);
 234          &xor($f,&swtmp(($n+8)%16));
 235         &xor($tmp1,$d);                     # tmp1 holds F_20_39(b,c,d)
 236          &xor($f,&swtmp(($n+13)%16));   # f holds xa^xb^xc^xd
 237         &rotl($f,1);                        # f=ROTATE(f,1)
 238          &add($e,$tmp1);            # e+=F_20_39(b,c,d)
 239         &rotr($b,2);                        # b=ROTATE(b,30)
 240          &mov($tmp1,$a);
 241         &rotl($tmp1,5);                     # ROTATE(a,5)
 242          &mov(&swtmp($n%16),$f) if($n<77);# xi=f
 243         &lea($f,&DWP($K,$f,$e));        # f+=e+K_XX_YY
 244          &mov($e,&swtmp(($n+1)%16)) if($n<79);# pre-fetch f for next round
 245         &add($f,$tmp1);                     # f+=ROTATE(a,5)
 246 }
 247         }
 248 
 249 sub BODY_40_59
 250         {
 251         local($n,$a,$b,$c,$d,$e,$f)=@_;
 252 
 253         &comment("40_59 $n");
 254 
 255 if ($alt) {
 256         &add($e,$tmp1);                     # e+=b&(c^d)
 257          &xor($f,&swtmp(($n+2)%16));    # f to hold Xupdate(xi,xa,xb,xc,xd)
 258         &mov($tmp1,$d);
 259          &xor($f,&swtmp(($n+8)%16));
 260         &xor($c,$d);                        # restore $c
 261          &xor($f,&swtmp(($n+13)%16));   # f holds xa^xb^xc^xd
 262         &rotl($f,1);                        # f=ROTATE(f,1)
 263          &and($tmp1,$c);
 264         &rotr($b,7);                        # b=ROTATE(b,30)
 265          &add($e,$tmp1);            # e+=c&d
 266         &mov($tmp1,$a);                     # b in next round
 267          &mov(&swtmp($n%16),$f);        # xi=f
 268         &rotl($a,5);                        # ROTATE(a,5)
 269          &xor($b,$c)                        if ($n<59);
 270         &and($tmp1,$b)                      if ($n<59);# tmp1 to hold F_40_59(b,c,d)
 271          &lea($f,&DWP(0x8f1bbcdc,$f,$e));# f+=K_40_59+e+(b&(c^d))
 272         &mov($e,&swtmp(($n+1)%16));     # pre-fetch f for next round
 273          &add($f,$a);                       # f+=ROTATE(a,5)
 274 } else {
 275         &mov($tmp1,$c);                     # tmp1 to hold F_40_59(b,c,d)
 276          &xor($f,&swtmp(($n+2)%16));    # f to hold Xupdate(xi,xa,xb,xc,xd)
 277         &xor($tmp1,$d);
 278          &xor($f,&swtmp(($n+8)%16));
 279         &and($tmp1,$b);
 280          &xor($f,&swtmp(($n+13)%16));   # f holds xa^xb^xc^xd
 281         &rotl($f,1);                        # f=ROTATE(f,1)
 282          &add($tmp1,$e);            # b&(c^d)+=e
 283         &rotr($b,2);                        # b=ROTATE(b,30)
 284          &mov($e,$a);                       # e becomes volatile
 285         &rotl($e,5);                        # ROTATE(a,5)
 286          &mov(&swtmp($n%16),$f);        # xi=f
 287         &lea($f,&DWP(0x8f1bbcdc,$f,$tmp1));# f+=K_40_59+e+(b&(c^d))
 288          &mov($tmp1,$c);
 289         &add($f,$e);                        # f+=ROTATE(a,5)
 290          &and($tmp1,$d);
 291         &mov($e,&swtmp(($n+1)%16));     # pre-fetch f for next round
 292          &add($f,$tmp1);            # f+=c&d
 293 }
 294         }
 295 
 296 &function_begin("sha1_block_data_order");
 297 if ($xmm) {
 298   &static_label("ssse3_shortcut");
 299   &static_label("avx_shortcut")             if ($ymm);
 300   &static_label("K_XX_XX");
 301 
 302         &call       (&label("pic_point"));      # make it PIC!
 303   &set_label("pic_point");
 304         &blindpop($tmp1);
 305         &picmeup($T,"OPENSSL_ia32cap_P",$tmp1,&label("pic_point"));
 306         &lea        ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
 307 
 308         &mov        ($A,&DWP(0,$T));
 309         &mov        ($D,&DWP(4,$T));
 310         &test       ($D,1<<9);                # check SSSE3 bit
 311         &jz (&label("x86"));
 312         &test       ($A,1<<24);               # check FXSR bit
 313         &jz (&label("x86"));
 314         if ($ymm) {
 315                 &and        ($D,1<<28);               # mask AVX bit
 316                 &and        ($A,1<<30);               # mask "Intel CPU" bit
 317                 &or ($A,$D);
 318                 &cmp        ($A,1<<28|1<<30);
 319                 &je (&label("avx_shortcut"));
 320         }
 321         &jmp        (&label("ssse3_shortcut"));
 322   &set_label("x86",16);
 323 }
 324         &mov($tmp1,&wparam(0)); # SHA_CTX *c
 325         &mov($T,&wparam(1));    # const void *input
 326         &mov($A,&wparam(2));    # size_t num
 327         &stack_push(16+3);  # allocate X[16]
 328         &shl($A,6);
 329         &add($A,$T);
 330         &mov(&wparam(2),$A);    # pointer beyond the end of input
 331         &mov($E,&DWP(16,$tmp1));# pre-load E
 332         &jmp(&label("loop"));
 333 
 334 &set_label("loop",16);
 335 
 336         # copy input chunk to X, but reversing byte order!
 337         for ($i=0; $i<16; $i+=4)
 338                 {
 339                 &mov($A,&DWP(4*($i+0),$T));
 340                 &mov($B,&DWP(4*($i+1),$T));
 341                 &mov($C,&DWP(4*($i+2),$T));
 342                 &mov($D,&DWP(4*($i+3),$T));
 343                 &bswap($A);
 344                 &bswap($B);
 345                 &bswap($C);
 346                 &bswap($D);
 347                 &mov(&swtmp($i+0),$A);
 348                 &mov(&swtmp($i+1),$B);
 349                 &mov(&swtmp($i+2),$C);
 350                 &mov(&swtmp($i+3),$D);
 351                 }
 352         &mov(&wparam(1),$T);    # redundant in 1st spin
 353 
 354         &mov($A,&DWP(0,$tmp1)); # load SHA_CTX
 355         &mov($B,&DWP(4,$tmp1));
 356         &mov($C,&DWP(8,$tmp1));
 357         &mov($D,&DWP(12,$tmp1));
 358         # E is pre-loaded
 359 
 360         for($i=0;$i<16;$i++) { &BODY_00_15($i,@V); unshift(@V,pop(@V)); }
 361         for(;$i<20;$i++)     { &BODY_16_19($i,@V); unshift(@V,pop(@V)); }
 362         for(;$i<40;$i++)     { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
 363         for(;$i<60;$i++)     { &BODY_40_59($i,@V); unshift(@V,pop(@V)); }
 364         for(;$i<80;$i++)     { &BODY_20_39($i,@V); unshift(@V,pop(@V)); }
 365 
 366         (($V[5] eq $D) and ($V[0] eq $E)) or die;       # double-check
 367 
 368         &mov($tmp1,&wparam(0)); # re-load SHA_CTX*
 369         &mov($D,&wparam(1));    # D is last "T" and is discarded
 370 
 371         &add($E,&DWP(0,$tmp1)); # E is last "A"...
 372         &add($T,&DWP(4,$tmp1));
 373         &add($A,&DWP(8,$tmp1));
 374         &add($B,&DWP(12,$tmp1));
 375         &add($C,&DWP(16,$tmp1));
 376 
 377         &mov(&DWP(0,$tmp1),$E); # update SHA_CTX
 378          &add($D,64);               # advance input pointer
 379         &mov(&DWP(4,$tmp1),$T);
 380          &cmp($D,&wparam(2));   # have we reached the end yet?
 381         &mov(&DWP(8,$tmp1),$A);
 382          &mov($E,$C);               # C is last "E" which needs to be "pre-loaded"
 383         &mov(&DWP(12,$tmp1),$B);
 384          &mov($T,$D);               # input pointer
 385         &mov(&DWP(16,$tmp1),$C);
 386         &jb(&label("loop"));
 387 
 388         &stack_pop(16+3);
 389 &function_end("sha1_block_data_order");
 390 
 391 if ($xmm) {
 392 ######################################################################
 393 # The SSSE3 implementation.
 394 #
 395 # %xmm[0-7] are used as ring @X[] buffer containing quadruples of last
 396 # 32 elements of the message schedule or Xupdate outputs. First 4
 397 # quadruples are simply byte-swapped input, next 4 are calculated
 398 # according to method originally suggested by Dean Gaudet (modulo
 399 # being implemented in SSSE3). Once 8 quadruples or 32 elements are
 400 # collected, it switches to routine proposed by Max Locktyukhin.
 401 #
 402 # Calculations inevitably require temporary reqisters, and there are
 403 # no %xmm registers left to spare. For this reason part of the ring
 404 # buffer, X[2..4] to be specific, is offloaded to 3 quadriples ring
 405 # buffer on the stack. Keep in mind that X[2] is alias X[-6], X[3] -
 406 # X[-5], and X[4] - X[-4]...
 407 #
 408 # Another notable optimization is aggressive stack frame compression
 409 # aiming to minimize amount of 9-byte instructions...
 410 #
 411 # Yet another notable optimization is "jumping" $B variable. It means
 412 # that there is no register permanently allocated for $B value. This
 413 # allowed to eliminate one instruction from body_20_39...
 414 #
 415 my $Xi=4;                       # 4xSIMD Xupdate round, start pre-seeded
 416 my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
 417 my @V=($A,$B,$C,$D,$E);
 418 my $j=0;                        # hash round
 419 my @T=($T,$tmp1);
 420 my $inp;
 421 
 422 my $_rol=sub { &rol(@_) };
 423 my $_ror=sub { &ror(@_) };
 424 
 425 &function_begin("_sha1_block_data_order_ssse3");
 426         &call       (&label("pic_point"));      # make it PIC!
 427         &set_label("pic_point");
 428         &blindpop($tmp1);
 429         &lea        ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
 430 &set_label("ssse3_shortcut");
 431 
 432         &movdqa     (@X[3],&QWP(0,$tmp1));              # K_00_19
 433         &movdqa     (@X[4],&QWP(16,$tmp1));             # K_20_39
 434         &movdqa     (@X[5],&QWP(32,$tmp1));             # K_40_59
 435         &movdqa     (@X[6],&QWP(48,$tmp1));             # K_60_79
 436         &movdqa     (@X[2],&QWP(64,$tmp1));             # pbswap mask
 437 
 438         &mov        ($E,&wparam(0));            # load argument block
 439         &mov        ($inp=@T[1],&wparam(1));
 440         &mov        ($D,&wparam(2));
 441         &mov        (@T[0],"esp");
 442 
 443         # stack frame layout
 444         #
 445         # +0    X[0]+K  X[1]+K  X[2]+K  X[3]+K  # XMM->IALU xfer area
 446         #       X[4]+K  X[5]+K  X[6]+K  X[7]+K
 447         #       X[8]+K  X[9]+K  X[10]+K X[11]+K
 448         #       X[12]+K X[13]+K X[14]+K X[15]+K
 449         #
 450         # +64   X[0]    X[1]    X[2]    X[3]    # XMM->XMM backtrace area
 451         #       X[4]    X[5]    X[6]    X[7]
 452         #       X[8]    X[9]    X[10]   X[11]   # even borrowed for K_00_19
 453         #
 454         # +112  K_20_39 K_20_39 K_20_39 K_20_39 # constants
 455         #       K_40_59 K_40_59 K_40_59 K_40_59
 456         #       K_60_79 K_60_79 K_60_79 K_60_79
 457         #       K_00_19 K_00_19 K_00_19 K_00_19
 458         #       pbswap mask
 459         #
 460         # +192  ctx                             # argument block
 461         # +196  inp
 462         # +200  end
 463         # +204  esp
 464         &sub        ("esp",208);
 465         &and        ("esp",-64);
 466 
 467         &movdqa     (&QWP(112+0,"esp"),@X[4]);  # copy constants
 468         &movdqa     (&QWP(112+16,"esp"),@X[5]);
 469         &movdqa     (&QWP(112+32,"esp"),@X[6]);
 470         &shl        ($D,6);                         # len*64
 471         &movdqa     (&QWP(112+48,"esp"),@X[3]);
 472         &add        ($D,$inp);                      # end of input
 473         &movdqa     (&QWP(112+64,"esp"),@X[2]);
 474         &add        ($inp,64);
 475         &mov        (&DWP(192+0,"esp"),$E);             # save argument block
 476         &mov        (&DWP(192+4,"esp"),$inp);
 477         &mov        (&DWP(192+8,"esp"),$D);
 478         &mov        (&DWP(192+12,"esp"),@T[0]); # save original %esp
 479 
 480         &mov        ($A,&DWP(0,$E));            # load context
 481         &mov        ($B,&DWP(4,$E));
 482         &mov        ($C,&DWP(8,$E));
 483         &mov        ($D,&DWP(12,$E));
 484         &mov        ($E,&DWP(16,$E));
 485         &mov        (@T[0],$B);                     # magic seed
 486 
 487         &movdqu     (@X[-4&7],&QWP(-64,$inp));      # load input to %xmm[0-3]
 488         &movdqu     (@X[-3&7],&QWP(-48,$inp));
 489         &movdqu     (@X[-2&7],&QWP(-32,$inp));
 490         &movdqu     (@X[-1&7],&QWP(-16,$inp));
 491         &pshufb     (@X[-4&7],@X[2]);           # byte swap
 492         &pshufb     (@X[-3&7],@X[2]);
 493         &pshufb     (@X[-2&7],@X[2]);
 494         &movdqa     (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
 495         &pshufb     (@X[-1&7],@X[2]);
 496         &paddd      (@X[-4&7],@X[3]);           # add K_00_19
 497         &paddd      (@X[-3&7],@X[3]);
 498         &paddd      (@X[-2&7],@X[3]);
 499         &movdqa     (&QWP(0,"esp"),@X[-4&7]);       # X[]+K xfer to IALU
 500         &psubd      (@X[-4&7],@X[3]);           # restore X[]
 501         &movdqa     (&QWP(0+16,"esp"),@X[-3&7]);
 502         &psubd      (@X[-3&7],@X[3]);
 503         &movdqa     (&QWP(0+32,"esp"),@X[-2&7]);
 504         &psubd      (@X[-2&7],@X[3]);
 505         &movdqa     (@X[0],@X[-3&7]);
 506         &jmp        (&label("loop"));
 507 
 508 ######################################################################
 509 # SSE instruction sequence is first broken to groups of indepentent
 510 # instructions, independent in respect to their inputs and shifter
 511 # (not all architectures have more than one). Then IALU instructions
 512 # are "knitted in" between the SSE groups. Distance is maintained for
 513 # SSE latency of 2 in hope that it fits better upcoming AMD Bulldozer
 514 # [which allegedly also implements SSSE3]...
 515 #
 516 # Temporary registers usage. X[2] is volatile at the entry and at the
 517 # end is restored from backtrace ring buffer. X[3] is expected to
 518 # contain current K_XX_XX constant and is used to caclulate X[-1]+K
 519 # from previous round, it becomes volatile the moment the value is
 520 # saved to stack for transfer to IALU. X[4] becomes volatile whenever
 521 # X[-4] is accumulated and offloaded to backtrace ring buffer, at the
 522 # end it is loaded with next K_XX_XX [which becomes X[3] in next
 523 # round]...
 524 #
 525 sub Xupdate_ssse3_16_31()               # recall that $Xi starts wtih 4
 526 { use integer;
 527   my $body = shift;
 528   my @insns = (&$body,&$body,&$body,&$body);    # 40 instructions
 529   my ($a,$b,$c,$d,$e);
 530 
 531          eval(shift(@insns));
 532          eval(shift(@insns));
 533         &palignr(@X[0],@X[-4&7],8);     # compose "X[-14]" in "X[0]"
 534         &movdqa     (@X[2],@X[-1&7]);
 535          eval(shift(@insns));
 536          eval(shift(@insns));
 537 
 538           &paddd    (@X[3],@X[-1&7]);
 539           &movdqa   (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
 540          eval(shift(@insns));
 541          eval(shift(@insns));
 542         &psrldq     (@X[2],4);              # "X[-3]", 3 dwords
 543          eval(shift(@insns));
 544          eval(shift(@insns));
 545         &pxor       (@X[0],@X[-4&7]);   # "X[0]"^="X[-16]"
 546          eval(shift(@insns));
 547          eval(shift(@insns));
 548 
 549         &pxor       (@X[2],@X[-2&7]);   # "X[-3]"^"X[-8]"
 550          eval(shift(@insns));
 551          eval(shift(@insns));
 552          eval(shift(@insns));
 553          eval(shift(@insns));
 554 
 555         &pxor       (@X[0],@X[2]);          # "X[0]"^="X[-3]"^"X[-8]"
 556          eval(shift(@insns));
 557          eval(shift(@insns));
 558           &movdqa   (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);   # X[]+K xfer to IALU
 559          eval(shift(@insns));
 560          eval(shift(@insns));
 561 
 562         &movdqa     (@X[4],@X[0]);
 563         &movdqa     (@X[2],@X[0]);
 564          eval(shift(@insns));
 565          eval(shift(@insns));
 566          eval(shift(@insns));
 567          eval(shift(@insns));
 568 
 569         &pslldq     (@X[4],12);             # "X[0]"<<96, extract one dword
 570         &paddd      (@X[0],@X[0]);
 571          eval(shift(@insns));
 572          eval(shift(@insns));
 573          eval(shift(@insns));
 574          eval(shift(@insns));
 575 
 576         &psrld      (@X[2],31);
 577          eval(shift(@insns));
 578          eval(shift(@insns));
 579         &movdqa     (@X[3],@X[4]);
 580          eval(shift(@insns));
 581          eval(shift(@insns));
 582 
 583         &psrld      (@X[4],30);
 584         &por        (@X[0],@X[2]);          # "X[0]"<<<=1
 585          eval(shift(@insns));
 586          eval(shift(@insns));
 587           &movdqa   (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);        # restore X[] from backtrace buffer
 588          eval(shift(@insns));
 589          eval(shift(@insns));
 590 
 591         &pslld      (@X[3],2);
 592         &pxor       (@X[0],@X[4]);
 593          eval(shift(@insns));
 594          eval(shift(@insns));
 595           &movdqa   (@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));    # K_XX_XX
 596          eval(shift(@insns));
 597          eval(shift(@insns));
 598 
 599         &pxor       (@X[0],@X[3]);          # "X[0]"^=("X[0]"<<96)<<<2
 600           &movdqa   (@X[1],@X[-2&7])    if ($Xi<7);
 601          eval(shift(@insns));
 602          eval(shift(@insns));
 603 
 604          foreach (@insns) { eval; }     # remaining instructions [if any]
 605 
 606   $Xi++;        push(@X,shift(@X));     # "rotate" X[]
 607 }
 608 
 609 sub Xupdate_ssse3_32_79()
 610 { use integer;
 611   my $body = shift;
 612   my @insns = (&$body,&$body,&$body,&$body);    # 32 to 48 instructions
 613   my ($a,$b,$c,$d,$e);
 614 
 615         &movdqa     (@X[2],@X[-1&7])    if ($Xi==8);
 616          eval(shift(@insns));           # body_20_39
 617         &pxor       (@X[0],@X[-4&7]);   # "X[0]"="X[-32]"^"X[-16]"
 618         &palignr(@X[2],@X[-2&7],8);     # compose "X[-6]"
 619          eval(shift(@insns));
 620          eval(shift(@insns));
 621          eval(shift(@insns));           # rol
 622 
 623         &pxor       (@X[0],@X[-7&7]);   # "X[0]"^="X[-28]"
 624           &movdqa   (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);       # save X[] to backtrace buffer
 625          eval(shift(@insns));
 626          eval(shift(@insns));
 627          if ($Xi%5) {
 628           &movdqa   (@X[4],@X[3]);  # "perpetuate" K_XX_XX...
 629          } else {                       # ... or load next one
 630           &movdqa   (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
 631          }
 632           &paddd    (@X[3],@X[-1&7]);
 633          eval(shift(@insns));           # ror
 634          eval(shift(@insns));
 635 
 636         &pxor       (@X[0],@X[2]);          # "X[0]"^="X[-6]"
 637          eval(shift(@insns));           # body_20_39
 638          eval(shift(@insns));
 639          eval(shift(@insns));
 640          eval(shift(@insns));           # rol
 641 
 642         &movdqa     (@X[2],@X[0]);
 643           &movdqa   (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);   # X[]+K xfer to IALU
 644          eval(shift(@insns));
 645          eval(shift(@insns));
 646          eval(shift(@insns));           # ror
 647          eval(shift(@insns));
 648 
 649         &pslld      (@X[0],2);
 650          eval(shift(@insns));           # body_20_39
 651          eval(shift(@insns));
 652         &psrld      (@X[2],30);
 653          eval(shift(@insns));
 654          eval(shift(@insns));           # rol
 655          eval(shift(@insns));
 656          eval(shift(@insns));
 657          eval(shift(@insns));           # ror
 658          eval(shift(@insns));
 659 
 660         &por        (@X[0],@X[2]);          # "X[0]"<<<=2
 661          eval(shift(@insns));           # body_20_39
 662          eval(shift(@insns));
 663           &movdqa   (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);        # restore X[] from backtrace buffer
 664          eval(shift(@insns));
 665          eval(shift(@insns));           # rol
 666          eval(shift(@insns));
 667          eval(shift(@insns));
 668          eval(shift(@insns));           # ror
 669           &movdqa   (@X[3],@X[0])   if ($Xi<19);
 670          eval(shift(@insns));
 671 
 672          foreach (@insns) { eval; }     # remaining instructions
 673 
 674   $Xi++;        push(@X,shift(@X));     # "rotate" X[]
 675 }
 676 
 677 sub Xuplast_ssse3_80()
 678 { use integer;
 679   my $body = shift;
 680   my @insns = (&$body,&$body,&$body,&$body);    # 32 instructions
 681   my ($a,$b,$c,$d,$e);
 682 
 683          eval(shift(@insns));
 684           &paddd    (@X[3],@X[-1&7]);
 685          eval(shift(@insns));
 686          eval(shift(@insns));
 687          eval(shift(@insns));
 688          eval(shift(@insns));
 689 
 690           &movdqa   (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);   # X[]+K xfer IALU
 691 
 692          foreach (@insns) { eval; }             # remaining instructions
 693 
 694         &mov        ($inp=@T[1],&DWP(192+4,"esp"));
 695         &cmp        ($inp,&DWP(192+8,"esp"));
 696         &je (&label("done"));
 697 
 698         &movdqa     (@X[3],&QWP(112+48,"esp")); # K_00_19
 699         &movdqa     (@X[2],&QWP(112+64,"esp")); # pbswap mask
 700         &movdqu     (@X[-4&7],&QWP(0,$inp));        # load input
 701         &movdqu     (@X[-3&7],&QWP(16,$inp));
 702         &movdqu     (@X[-2&7],&QWP(32,$inp));
 703         &movdqu     (@X[-1&7],&QWP(48,$inp));
 704         &add        ($inp,64);
 705         &pshufb     (@X[-4&7],@X[2]);           # byte swap
 706         &mov        (&DWP(192+4,"esp"),$inp);
 707         &movdqa     (&QWP(112-16,"esp"),@X[3]); # borrow last backtrace slot
 708 
 709   $Xi=0;
 710 }
 711 
 712 sub Xloop_ssse3()
 713 { use integer;
 714   my $body = shift;
 715   my @insns = (&$body,&$body,&$body,&$body);    # 32 instructions
 716   my ($a,$b,$c,$d,$e);
 717 
 718          eval(shift(@insns));
 719          eval(shift(@insns));
 720         &pshufb     (@X[($Xi-3)&7],@X[2]);
 721          eval(shift(@insns));
 722          eval(shift(@insns));
 723         &paddd      (@X[($Xi-4)&7],@X[3]);
 724          eval(shift(@insns));
 725          eval(shift(@insns));
 726          eval(shift(@insns));
 727          eval(shift(@insns));
 728         &movdqa     (&QWP(0+16*$Xi,"esp"),@X[($Xi-4)&7]);   # X[]+K xfer to IALU
 729          eval(shift(@insns));
 730          eval(shift(@insns));
 731         &psubd      (@X[($Xi-4)&7],@X[3]);
 732 
 733         foreach (@insns) { eval; }
 734   $Xi++;
 735 }
 736 
 737 sub Xtail_ssse3()
 738 { use integer;
 739   my $body = shift;
 740   my @insns = (&$body,&$body,&$body,&$body);    # 32 instructions
 741   my ($a,$b,$c,$d,$e);
 742 
 743         foreach (@insns) { eval; }
 744 }
 745 
 746 sub body_00_19 () {
 747         (
 748         '($a,$b,$c,$d,$e)=@V;'.
 749         '&add       ($e,&DWP(4*($j&15),"esp"));',   # X[]+K xfer
 750         '&xor       ($c,$d);',
 751         '&mov       (@T[1],$a);',   # $b in next round
 752         '&$_rol     ($a,5);',
 753         '&and       (@T[0],$c);',   # ($b&($c^$d))
 754         '&xor       ($c,$d);',      # restore $c
 755         '&xor       (@T[0],$d);',
 756         '&add       ($e,$a);',
 757         '&$_ror     ($b,$j?7:2);',  # $b>>>2
 758         '&add       ($e,@T[0]);'    .'$j++; unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 759         );
 760 }
 761 
 762 sub body_20_39 () {
 763         (
 764         '($a,$b,$c,$d,$e)=@V;'.
 765         '&add       ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
 766         '&xor       (@T[0],$d);',   # ($b^$d)
 767         '&mov       (@T[1],$a);',   # $b in next round
 768         '&$_rol     ($a,5);',
 769         '&xor       (@T[0],$c);',   # ($b^$d^$c)
 770         '&add       ($e,$a);',
 771         '&$_ror     ($b,7);',       # $b>>>2
 772         '&add       ($e,@T[0]);'    .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 773         );
 774 }
 775 
 776 sub body_40_59 () {
 777         (
 778         '($a,$b,$c,$d,$e)=@V;'.
 779         '&mov       (@T[1],$c);',
 780         '&xor       ($c,$d);',
 781         '&add       ($e,&DWP(4*($j++&15),"esp"));', # X[]+K xfer
 782         '&and       (@T[1],$d);',
 783         '&and       (@T[0],$c);',   # ($b&($c^$d))
 784         '&$_ror     ($b,7);',       # $b>>>2
 785         '&add       ($e,@T[1]);',
 786         '&mov       (@T[1],$a);',   # $b in next round
 787         '&$_rol     ($a,5);',
 788         '&add       ($e,@T[0]);',
 789         '&xor       ($c,$d);',      # restore $c
 790         '&add       ($e,$a);'       .'unshift(@V,pop(@V)); unshift(@T,pop(@T));'
 791         );
 792 }
 793 
 794 &set_label("loop",16);
 795         &Xupdate_ssse3_16_31(\&body_00_19);
 796         &Xupdate_ssse3_16_31(\&body_00_19);
 797         &Xupdate_ssse3_16_31(\&body_00_19);
 798         &Xupdate_ssse3_16_31(\&body_00_19);
 799         &Xupdate_ssse3_32_79(\&body_00_19);
 800         &Xupdate_ssse3_32_79(\&body_20_39);
 801         &Xupdate_ssse3_32_79(\&body_20_39);
 802         &Xupdate_ssse3_32_79(\&body_20_39);
 803         &Xupdate_ssse3_32_79(\&body_20_39);
 804         &Xupdate_ssse3_32_79(\&body_20_39);
 805         &Xupdate_ssse3_32_79(\&body_40_59);
 806         &Xupdate_ssse3_32_79(\&body_40_59);
 807         &Xupdate_ssse3_32_79(\&body_40_59);
 808         &Xupdate_ssse3_32_79(\&body_40_59);
 809         &Xupdate_ssse3_32_79(\&body_40_59);
 810         &Xupdate_ssse3_32_79(\&body_20_39);
 811         &Xuplast_ssse3_80(\&body_20_39);        # can jump to "done"
 812 
 813                                 $saved_j=$j; @saved_V=@V;
 814 
 815         &Xloop_ssse3(\&body_20_39);
 816         &Xloop_ssse3(\&body_20_39);
 817         &Xloop_ssse3(\&body_20_39);
 818 
 819         &mov        (@T[1],&DWP(192,"esp"));    # update context
 820         &add        ($A,&DWP(0,@T[1]));
 821         &add        (@T[0],&DWP(4,@T[1]));              # $b
 822         &add        ($C,&DWP(8,@T[1]));
 823         &mov        (&DWP(0,@T[1]),$A);
 824         &add        ($D,&DWP(12,@T[1]));
 825         &mov        (&DWP(4,@T[1]),@T[0]);
 826         &add        ($E,&DWP(16,@T[1]));
 827         &mov        (&DWP(8,@T[1]),$C);
 828         &mov        ($B,@T[0]);
 829         &mov        (&DWP(12,@T[1]),$D);
 830         &mov        (&DWP(16,@T[1]),$E);
 831         &movdqa     (@X[0],@X[-3&7]);
 832 
 833         &jmp        (&label("loop"));
 834 
 835 &set_label("done",16);              $j=$saved_j; @V=@saved_V;
 836 
 837         &Xtail_ssse3(\&body_20_39);
 838         &Xtail_ssse3(\&body_20_39);
 839         &Xtail_ssse3(\&body_20_39);
 840 
 841         &mov        (@T[1],&DWP(192,"esp"));    # update context
 842         &add        ($A,&DWP(0,@T[1]));
 843         &mov        ("esp",&DWP(192+12,"esp")); # restore %esp
 844         &add        (@T[0],&DWP(4,@T[1]));              # $b
 845         &add        ($C,&DWP(8,@T[1]));
 846         &mov        (&DWP(0,@T[1]),$A);
 847         &add        ($D,&DWP(12,@T[1]));
 848         &mov        (&DWP(4,@T[1]),@T[0]);
 849         &add        ($E,&DWP(16,@T[1]));
 850         &mov        (&DWP(8,@T[1]),$C);
 851         &mov        (&DWP(12,@T[1]),$D);
 852         &mov        (&DWP(16,@T[1]),$E);
 853 
 854 &function_end("_sha1_block_data_order_ssse3");
 855 
 856 if ($ymm) {
 857 my $Xi=4;                       # 4xSIMD Xupdate round, start pre-seeded
 858 my @X=map("xmm$_",(4..7,0..3)); # pre-seeded for $Xi=4
 859 my @V=($A,$B,$C,$D,$E);
 860 my $j=0;                        # hash round
 861 my @T=($T,$tmp1);
 862 my $inp;
 863 
 864 my $_rol=sub { &shld(@_[0],@_) };
 865 my $_ror=sub { &shrd(@_[0],@_) };
 866 
 867 &function_begin("_sha1_block_data_order_avx");
 868         &call       (&label("pic_point"));      # make it PIC!
 869         &set_label("pic_point");
 870         &blindpop($tmp1);
 871         &lea        ($tmp1,&DWP(&label("K_XX_XX")."-".&label("pic_point"),$tmp1));
 872 &set_label("avx_shortcut");
 873         &vzeroall();
 874 
 875         &vmovdqa(@X[3],&QWP(0,$tmp1));          # K_00_19
 876         &vmovdqa(@X[4],&QWP(16,$tmp1));         # K_20_39
 877         &vmovdqa(@X[5],&QWP(32,$tmp1));         # K_40_59
 878         &vmovdqa(@X[6],&QWP(48,$tmp1));         # K_60_79
 879         &vmovdqa(@X[2],&QWP(64,$tmp1));         # pbswap mask
 880 
 881         &mov        ($E,&wparam(0));            # load argument block
 882         &mov        ($inp=@T[1],&wparam(1));
 883         &mov        ($D,&wparam(2));
 884         &mov        (@T[0],"esp");
 885 
 886         # stack frame layout
 887         #
 888         # +0    X[0]+K  X[1]+K  X[2]+K  X[3]+K  # XMM->IALU xfer area
 889         #       X[4]+K  X[5]+K  X[6]+K  X[7]+K
 890         #       X[8]+K  X[9]+K  X[10]+K X[11]+K
 891         #       X[12]+K X[13]+K X[14]+K X[15]+K
 892         #
 893         # +64   X[0]    X[1]    X[2]    X[3]    # XMM->XMM backtrace area
 894         #       X[4]    X[5]    X[6]    X[7]
 895         #       X[8]    X[9]    X[10]   X[11]   # even borrowed for K_00_19
 896         #
 897         # +112  K_20_39 K_20_39 K_20_39 K_20_39 # constants
 898         #       K_40_59 K_40_59 K_40_59 K_40_59
 899         #       K_60_79 K_60_79 K_60_79 K_60_79
 900         #       K_00_19 K_00_19 K_00_19 K_00_19
 901         #       pbswap mask
 902         #
 903         # +192  ctx                             # argument block
 904         # +196  inp
 905         # +200  end
 906         # +204  esp
 907         &sub        ("esp",208);
 908         &and        ("esp",-64);
 909 
 910         &vmovdqa(&QWP(112+0,"esp"),@X[4]);      # copy constants
 911         &vmovdqa(&QWP(112+16,"esp"),@X[5]);
 912         &vmovdqa(&QWP(112+32,"esp"),@X[6]);
 913         &shl        ($D,6);                         # len*64
 914         &vmovdqa(&QWP(112+48,"esp"),@X[3]);
 915         &add        ($D,$inp);                      # end of input
 916         &vmovdqa(&QWP(112+64,"esp"),@X[2]);
 917         &add        ($inp,64);
 918         &mov        (&DWP(192+0,"esp"),$E);             # save argument block
 919         &mov        (&DWP(192+4,"esp"),$inp);
 920         &mov        (&DWP(192+8,"esp"),$D);
 921         &mov        (&DWP(192+12,"esp"),@T[0]); # save original %esp
 922 
 923         &mov        ($A,&DWP(0,$E));            # load context
 924         &mov        ($B,&DWP(4,$E));
 925         &mov        ($C,&DWP(8,$E));
 926         &mov        ($D,&DWP(12,$E));
 927         &mov        ($E,&DWP(16,$E));
 928         &mov        (@T[0],$B);                     # magic seed
 929 
 930         &vmovdqu(@X[-4&7],&QWP(-64,$inp));  # load input to %xmm[0-3]
 931         &vmovdqu(@X[-3&7],&QWP(-48,$inp));
 932         &vmovdqu(@X[-2&7],&QWP(-32,$inp));
 933         &vmovdqu(@X[-1&7],&QWP(-16,$inp));
 934         &vpshufb(@X[-4&7],@X[-4&7],@X[2]);  # byte swap
 935         &vpshufb(@X[-3&7],@X[-3&7],@X[2]);
 936         &vpshufb(@X[-2&7],@X[-2&7],@X[2]);
 937         &vmovdqa(&QWP(112-16,"esp"),@X[3]);     # borrow last backtrace slot
 938         &vpshufb(@X[-1&7],@X[-1&7],@X[2]);
 939         &vpaddd     (@X[0],@X[-4&7],@X[3]);             # add K_00_19
 940         &vpaddd     (@X[1],@X[-3&7],@X[3]);
 941         &vpaddd     (@X[2],@X[-2&7],@X[3]);
 942         &vmovdqa(&QWP(0,"esp"),@X[0]);          # X[]+K xfer to IALU
 943         &vmovdqa(&QWP(0+16,"esp"),@X[1]);
 944         &vmovdqa(&QWP(0+32,"esp"),@X[2]);
 945         &jmp        (&label("loop"));
 946 
 947 sub Xupdate_avx_16_31()         # recall that $Xi starts wtih 4
 948 { use integer;
 949   my $body = shift;
 950   my @insns = (&$body,&$body,&$body,&$body);    # 40 instructions
 951   my ($a,$b,$c,$d,$e);
 952 
 953          eval(shift(@insns));
 954          eval(shift(@insns));
 955         &vpalignr(@X[0],@X[-3&7],@X[-4&7],8);       # compose "X[-14]" in "X[0]"
 956          eval(shift(@insns));
 957          eval(shift(@insns));
 958 
 959           &vpaddd   (@X[3],@X[3],@X[-1&7]);
 960           &vmovdqa  (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);# save X[] to backtrace buffer
 961          eval(shift(@insns));
 962          eval(shift(@insns));
 963         &vpsrldq(@X[2],@X[-1&7],4);             # "X[-3]", 3 dwords
 964          eval(shift(@insns));
 965          eval(shift(@insns));
 966         &vpxor      (@X[0],@X[0],@X[-4&7]);             # "X[0]"^="X[-16]"
 967          eval(shift(@insns));
 968          eval(shift(@insns));
 969 
 970         &vpxor      (@X[2],@X[2],@X[-2&7]);             # "X[-3]"^"X[-8]"
 971          eval(shift(@insns));
 972          eval(shift(@insns));
 973           &vmovdqa  (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);   # X[]+K xfer to IALU
 974          eval(shift(@insns));
 975          eval(shift(@insns));
 976 
 977         &vpxor      (@X[0],@X[0],@X[2]);            # "X[0]"^="X[-3]"^"X[-8]"
 978          eval(shift(@insns));
 979          eval(shift(@insns));
 980          eval(shift(@insns));
 981          eval(shift(@insns));
 982 
 983         &vpsrld     (@X[2],@X[0],31);
 984          eval(shift(@insns));
 985          eval(shift(@insns));
 986          eval(shift(@insns));
 987          eval(shift(@insns));
 988 
 989         &vpslldq(@X[4],@X[0],12);           # "X[0]"<<96, extract one dword
 990         &vpaddd     (@X[0],@X[0],@X[0]);
 991          eval(shift(@insns));
 992          eval(shift(@insns));
 993          eval(shift(@insns));
 994          eval(shift(@insns));
 995 
 996         &vpsrld     (@X[3],@X[4],30);
 997         &vpor       (@X[0],@X[0],@X[2]);            # "X[0]"<<<=1
 998          eval(shift(@insns));
 999          eval(shift(@insns));
1000          eval(shift(@insns));
1001          eval(shift(@insns));
1002 
1003         &vpslld     (@X[4],@X[4],2);
1004           &vmovdqa  (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if ($Xi>5);        # restore X[] from backtrace buffer
1005          eval(shift(@insns));
1006          eval(shift(@insns));
1007         &vpxor      (@X[0],@X[0],@X[3]);
1008          eval(shift(@insns));
1009          eval(shift(@insns));
1010          eval(shift(@insns));
1011          eval(shift(@insns));
1012 
1013         &vpxor      (@X[0],@X[0],@X[4]);            # "X[0]"^=("X[0]"<<96)<<<2
1014          eval(shift(@insns));
1015          eval(shift(@insns));
1016           &vmovdqa  (@X[4],&QWP(112-16+16*(($Xi)/5),"esp"));    # K_XX_XX
1017          eval(shift(@insns));
1018          eval(shift(@insns));
1019 
1020          foreach (@insns) { eval; }     # remaining instructions [if any]
1021 
1022   $Xi++;        push(@X,shift(@X));     # "rotate" X[]
1023 }
1024 
1025 sub Xupdate_avx_32_79()
1026 { use integer;
1027   my $body = shift;
1028   my @insns = (&$body,&$body,&$body,&$body);    # 32 to 48 instructions
1029   my ($a,$b,$c,$d,$e);
1030 
1031         &vpalignr(@X[2],@X[-1&7],@X[-2&7],8);       # compose "X[-6]"
1032         &vpxor      (@X[0],@X[0],@X[-4&7]);     # "X[0]"="X[-32]"^"X[-16]"
1033          eval(shift(@insns));           # body_20_39
1034          eval(shift(@insns));
1035          eval(shift(@insns));
1036          eval(shift(@insns));           # rol
1037 
1038         &vpxor      (@X[0],@X[0],@X[-7&7]);     # "X[0]"^="X[-28]"
1039           &vmovdqa  (&QWP(64+16*(($Xi-4)%3),"esp"),@X[-4&7]);       # save X[] to backtrace buffer
1040          eval(shift(@insns));
1041          eval(shift(@insns));
1042          if ($Xi%5) {
1043           &vmovdqa  (@X[4],@X[3]);  # "perpetuate" K_XX_XX...
1044          } else {                       # ... or load next one
1045           &vmovdqa  (@X[4],&QWP(112-16+16*($Xi/5),"esp"));
1046          }
1047           &vpaddd   (@X[3],@X[3],@X[-1&7]);
1048          eval(shift(@insns));           # ror
1049          eval(shift(@insns));
1050 
1051         &vpxor      (@X[0],@X[0],@X[2]);            # "X[0]"^="X[-6]"
1052          eval(shift(@insns));           # body_20_39
1053          eval(shift(@insns));
1054          eval(shift(@insns));
1055          eval(shift(@insns));           # rol
1056 
1057         &vpsrld     (@X[2],@X[0],30);
1058           &vmovdqa  (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);   # X[]+K xfer to IALU
1059          eval(shift(@insns));
1060          eval(shift(@insns));
1061          eval(shift(@insns));           # ror
1062          eval(shift(@insns));
1063 
1064         &vpslld     (@X[0],@X[0],2);
1065          eval(shift(@insns));           # body_20_39
1066          eval(shift(@insns));
1067          eval(shift(@insns));
1068          eval(shift(@insns));           # rol
1069          eval(shift(@insns));
1070          eval(shift(@insns));
1071          eval(shift(@insns));           # ror
1072          eval(shift(@insns));
1073 
1074         &vpor       (@X[0],@X[0],@X[2]);    # "X[0]"<<<=2
1075          eval(shift(@insns));           # body_20_39
1076          eval(shift(@insns));
1077           &vmovdqa  (@X[2],&QWP(64+16*(($Xi-6)%3),"esp")) if($Xi<19);        # restore X[] from backtrace buffer
1078          eval(shift(@insns));
1079          eval(shift(@insns));           # rol
1080          eval(shift(@insns));
1081          eval(shift(@insns));
1082          eval(shift(@insns));           # ror
1083          eval(shift(@insns));
1084 
1085          foreach (@insns) { eval; }     # remaining instructions
1086 
1087   $Xi++;        push(@X,shift(@X));     # "rotate" X[]
1088 }
1089 
1090 sub Xuplast_avx_80()
1091 { use integer;
1092   my $body = shift;
1093   my @insns = (&$body,&$body,&$body,&$body);    # 32 instructions
1094   my ($a,$b,$c,$d,$e);
1095 
1096          eval(shift(@insns));
1097           &vpaddd   (@X[3],@X[3],@X[-1&7]);
1098          eval(shift(@insns));
1099          eval(shift(@insns));
1100          eval(shift(@insns));
1101          eval(shift(@insns));
1102 
1103           &vmovdqa  (&QWP(0+16*(($Xi-1)&3),"esp"),@X[3]);   # X[]+K xfer IALU
1104 
1105          foreach (@insns) { eval; }             # remaining instructions
1106 
1107         &mov        ($inp=@T[1],&DWP(192+4,"esp"));
1108         &cmp        ($inp,&DWP(192+8,"esp"));
1109         &je (&label("done"));
1110 
1111         &vmovdqa(@X[3],&QWP(112+48,"esp"));     # K_00_19
1112         &vmovdqa(@X[2],&QWP(112+64,"esp"));     # pbswap mask
1113         &vmovdqu(@X[-4&7],&QWP(0,$inp));    # load input
1114         &vmovdqu(@X[-3&7],&QWP(16,$inp));
1115         &vmovdqu(@X[-2&7],&QWP(32,$inp));
1116         &vmovdqu(@X[-1&7],&QWP(48,$inp));
1117         &add        ($inp,64);
1118         &vpshufb(@X[-4&7],@X[-4&7],@X[2]);          # byte swap
1119         &mov        (&DWP(192+4,"esp"),$inp);
1120         &vmovdqa(&QWP(112-16,"esp"),@X[3]);     # borrow last backtrace slot
1121 
1122   $Xi=0;
1123 }
1124 
1125 sub Xloop_avx()
1126 { use integer;
1127   my $body = shift;
1128   my @insns = (&$body,&$body,&$body,&$body);    # 32 instructions
1129   my ($a,$b,$c,$d,$e);
1130 
1131          eval(shift(@insns));
1132          eval(shift(@insns));
1133         &vpshufb    (@X[($Xi-3)&7],@X[($Xi-3)&7],@X[2]);
1134          eval(shift(@insns));
1135          eval(shift(@insns));
1136         &vpaddd     (@X[$Xi&7],@X[($Xi-4)&7],@X[3]);
1137          eval(shift(@insns));
1138          eval(shift(@insns));
1139          eval(shift(@insns));
1140          eval(shift(@insns));
1141         &vmovdqa    (&QWP(0+16*$Xi,"esp"),@X[$Xi&7]);       # X[]+K xfer to IALU
1142          eval(shift(@insns));
1143          eval(shift(@insns));
1144 
1145         foreach (@insns) { eval; }
1146   $Xi++;
1147 }
1148 
1149 sub Xtail_avx()
1150 { use integer;
1151   my $body = shift;
1152   my @insns = (&$body,&$body,&$body,&$body);    # 32 instructions
1153   my ($a,$b,$c,$d,$e);
1154 
1155         foreach (@insns) { eval; }
1156 }
1157 
1158 &set_label("loop",16);
1159         &Xupdate_avx_16_31(\&body_00_19);
1160         &Xupdate_avx_16_31(\&body_00_19);
1161         &Xupdate_avx_16_31(\&body_00_19);
1162         &Xupdate_avx_16_31(\&body_00_19);
1163         &Xupdate_avx_32_79(\&body_00_19);
1164         &Xupdate_avx_32_79(\&body_20_39);
1165         &Xupdate_avx_32_79(\&body_20_39);
1166         &Xupdate_avx_32_79(\&body_20_39);
1167         &Xupdate_avx_32_79(\&body_20_39);
1168         &Xupdate_avx_32_79(\&body_20_39);
1169         &Xupdate_avx_32_79(\&body_40_59);
1170         &Xupdate_avx_32_79(\&body_40_59);
1171         &Xupdate_avx_32_79(\&body_40_59);
1172         &Xupdate_avx_32_79(\&body_40_59);
1173         &Xupdate_avx_32_79(\&body_40_59);
1174         &Xupdate_avx_32_79(\&body_20_39);
1175         &Xuplast_avx_80(\&body_20_39);  # can jump to "done"
1176 
1177                                 $saved_j=$j; @saved_V=@V;
1178 
1179         &Xloop_avx(\&body_20_39);
1180         &Xloop_avx(\&body_20_39);
1181         &Xloop_avx(\&body_20_39);
1182 
1183         &mov        (@T[1],&DWP(192,"esp"));    # update context
1184         &add        ($A,&DWP(0,@T[1]));
1185         &add        (@T[0],&DWP(4,@T[1]));              # $b
1186         &add        ($C,&DWP(8,@T[1]));
1187         &mov        (&DWP(0,@T[1]),$A);
1188         &add        ($D,&DWP(12,@T[1]));
1189         &mov        (&DWP(4,@T[1]),@T[0]);
1190         &add        ($E,&DWP(16,@T[1]));
1191         &mov        (&DWP(8,@T[1]),$C);
1192         &mov        ($B,@T[0]);
1193         &mov        (&DWP(12,@T[1]),$D);
1194         &mov        (&DWP(16,@T[1]),$E);
1195 
1196         &jmp        (&label("loop"));
1197 
1198 &set_label("done",16);              $j=$saved_j; @V=@saved_V;
1199 
1200         &Xtail_avx(\&body_20_39);
1201         &Xtail_avx(\&body_20_39);
1202         &Xtail_avx(\&body_20_39);
1203 
1204         &vzeroall();
1205 
1206         &mov        (@T[1],&DWP(192,"esp"));    # update context
1207         &add        ($A,&DWP(0,@T[1]));
1208         &mov        ("esp",&DWP(192+12,"esp")); # restore %esp
1209         &add        (@T[0],&DWP(4,@T[1]));              # $b
1210         &add        ($C,&DWP(8,@T[1]));
1211         &mov        (&DWP(0,@T[1]),$A);
1212         &add        ($D,&DWP(12,@T[1]));
1213         &mov        (&DWP(4,@T[1]),@T[0]);
1214         &add        ($E,&DWP(16,@T[1]));
1215         &mov        (&DWP(8,@T[1]),$C);
1216         &mov        (&DWP(12,@T[1]),$D);
1217         &mov        (&DWP(16,@T[1]),$E);
1218 &function_end("_sha1_block_data_order_avx");
1219 }
1220 &set_label("K_XX_XX",64);
1221 &data_word(0x5a827999,0x5a827999,0x5a827999,0x5a827999);    # K_00_19
1222 &data_word(0x6ed9eba1,0x6ed9eba1,0x6ed9eba1,0x6ed9eba1);    # K_20_39
1223 &data_word(0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc,0x8f1bbcdc);    # K_40_59
1224 &data_word(0xca62c1d6,0xca62c1d6,0xca62c1d6,0xca62c1d6);    # K_60_79
1225 &data_word(0x00010203,0x04050607,0x08090a0b,0x0c0d0e0f);    # pbswap mask
1226 }
1227 &asciz("SHA1 block transform for x86, CRYPTOGAMS by <appro\@openssl.org>");
1228 
1229 &asm_finish();