1 #!/usr/bin/env perl 2 # 3 # ==================================================================== 4 # Written by Andy Polyakov <appro@openssl.org> for the OpenSSL 5 # project. The module is, however, dual licensed under OpenSSL and 6 # CRYPTOGAMS licenses depending on where you obtain it. For further 7 # details see http://www.openssl.org/~appro/cryptogams/. 8 # ==================================================================== 9 # 10 # March, June 2010 11 # 12 # The module implements "4-bit" GCM GHASH function and underlying 13 # single multiplication operation in GF(2^128). "4-bit" means that 14 # it uses 256 bytes per-key table [+128 bytes shared table]. GHASH 15 # function features so called "528B" variant utilizing additional 16 # 256+16 bytes of per-key storage [+512 bytes shared table]. 17 # Performance results are for this streamed GHASH subroutine and are 18 # expressed in cycles per processed byte, less is better: 19 # 20 # gcc 3.4.x(*) assembler 21 # 22 # P4 28.6 14.0 +100% 23 # Opteron 19.3 7.7 +150% 24 # Core2 17.8 8.1(**) +120% 25 # 26 # (*) comparison is not completely fair, because C results are 27 # for vanilla "256B" implementation, while assembler results 28 # are for "528B";-) 29 # (**) it's mystery [to me] why Core2 result is not same as for 30 # Opteron; 31 32 # May 2010 33 # 34 # Add PCLMULQDQ version performing at 2.02 cycles per processed byte. 35 # See ghash-x86.pl for background information and details about coding 36 # techniques. 37 # 38 # Special thanks to David Woodhouse <dwmw2@infradead.org> for 39 # providing access to a Westmere-based system on behalf of Intel 40 # Open Source Technology Centre. 41 42 $flavour = shift; 43 $output = shift; 44 if ($flavour =~ /\./) { $output = $flavour; undef $flavour; } 45 46 $win64=0; $win64=1 if ($flavour =~ /[nm]asm|mingw64/ || $output =~ /\.asm$/); 47 48 $0 =~ m/(.*[\/\\])[^\/\\]+$/; $dir=$1; 49 ( $xlate="${dir}x86_64-xlate.pl" and -f $xlate ) or 50 ( $xlate="${dir}../../perlasm/x86_64-xlate.pl" and -f $xlate) or 51 die "can't locate x86_64-xlate.pl"; 52 53 open OUT,"| \"$^X\" $xlate $flavour $output"; 54 *STDOUT=*OUT; 55 56 # common register layout 57 $nlo="%rax"; 58 $nhi="%rbx"; 59 $Zlo="%r8"; 60 $Zhi="%r9"; 61 $tmp="%r10"; 62 $rem_4bit = "%r11"; 63 64 $Xi="%rdi"; 65 $Htbl="%rsi"; 66 67 # per-function register layout 68 $cnt="%rcx"; 69 $rem="%rdx"; 70 71 sub LB() { my $r=shift; $r =~ s/%[er]([a-d])x/%\1l/ or 72 $r =~ s/%[er]([sd]i)/%\1l/ or 73 $r =~ s/%[er](bp)/%\1l/ or 74 $r =~ s/%(r[0-9]+)[d]?/%\1b/; $r; } 75 76 sub AUTOLOAD() # thunk [simplified] 32-bit style perlasm 77 { my $opcode = $AUTOLOAD; $opcode =~ s/.*:://; 78 my $arg = pop; 79 $arg = "\$$arg" if ($arg*1 eq $arg); 80 $code .= "\t$opcode\t".join(',',$arg,reverse @_)."\n"; 81 } 82 83 { my $N; 84 sub loop() { 85 my $inp = shift; 86 87 $N++; 88 $code.=<<___; 89 xor $nlo,$nlo 90 xor $nhi,$nhi 91 mov `&LB("$Zlo")`,`&LB("$nlo")` 92 mov `&LB("$Zlo")`,`&LB("$nhi")` 93 shl \$4,`&LB("$nlo")` 94 mov \$14,$cnt 95 mov 8($Htbl,$nlo),$Zlo 96 mov ($Htbl,$nlo),$Zhi 97 and \$0xf0,`&LB("$nhi")` 98 mov $Zlo,$rem 99 jmp .Loop$N 100 101 .align 16 102 .Loop$N: 103 shr \$4,$Zlo 104 and \$0xf,$rem 105 mov $Zhi,$tmp 106 mov ($inp,$cnt),`&LB("$nlo")` 107 shr \$4,$Zhi 108 xor 8($Htbl,$nhi),$Zlo 109 shl \$60,$tmp 110 xor ($Htbl,$nhi),$Zhi 111 mov `&LB("$nlo")`,`&LB("$nhi")` 112 xor ($rem_4bit,$rem,8),$Zhi 113 mov $Zlo,$rem 114 shl \$4,`&LB("$nlo")` 115 xor $tmp,$Zlo 116 dec $cnt 117 js .Lbreak$N 118 119 shr \$4,$Zlo 120 and \$0xf,$rem 121 mov $Zhi,$tmp 122 shr \$4,$Zhi 123 xor 8($Htbl,$nlo),$Zlo 124 shl \$60,$tmp 125 xor ($Htbl,$nlo),$Zhi 126 and \$0xf0,`&LB("$nhi")` 127 xor ($rem_4bit,$rem,8),$Zhi 128 mov $Zlo,$rem 129 xor $tmp,$Zlo 130 jmp .Loop$N 131 132 .align 16 133 .Lbreak$N: 134 shr \$4,$Zlo 135 and \$0xf,$rem 136 mov $Zhi,$tmp 137 shr \$4,$Zhi 138 xor 8($Htbl,$nlo),$Zlo 139 shl \$60,$tmp 140 xor ($Htbl,$nlo),$Zhi 141 and \$0xf0,`&LB("$nhi")` 142 xor ($rem_4bit,$rem,8),$Zhi 143 mov $Zlo,$rem 144 xor $tmp,$Zlo 145 146 shr \$4,$Zlo 147 and \$0xf,$rem 148 mov $Zhi,$tmp 149 shr \$4,$Zhi 150 xor 8($Htbl,$nhi),$Zlo 151 shl \$60,$tmp 152 xor ($Htbl,$nhi),$Zhi 153 xor $tmp,$Zlo 154 xor ($rem_4bit,$rem,8),$Zhi 155 156 bswap $Zlo 157 bswap $Zhi 158 ___ 159 }} 160 161 $code=<<___; 162 .text 163 164 .globl gcm_gmult_4bit 165 .type gcm_gmult_4bit,\@function,2 166 .align 16 167 gcm_gmult_4bit: 168 push %rbx 169 push %rbp # %rbp and %r12 are pushed exclusively in 170 push %r12 # order to reuse Win64 exception handler... 171 .Lgmult_prologue: 172 173 movzb 15($Xi),$Zlo 174 lea .Lrem_4bit(%rip),$rem_4bit 175 ___ 176 &loop ($Xi); 177 $code.=<<___; 178 mov $Zlo,8($Xi) 179 mov $Zhi,($Xi) 180 181 mov 16(%rsp),%rbx 182 lea 24(%rsp),%rsp 183 .Lgmult_epilogue: 184 ret 185 .size gcm_gmult_4bit,.-gcm_gmult_4bit 186 ___ 187 188 # per-function register layout 189 $inp="%rdx"; 190 $len="%rcx"; 191 $rem_8bit=$rem_4bit; 192 193 $code.=<<___; 194 .globl gcm_ghash_4bit 195 .type gcm_ghash_4bit,\@function,4 196 .align 16 197 gcm_ghash_4bit: 198 push %rbx 199 push %rbp 200 push %r12 201 push %r13 202 push %r14 203 push %r15 204 sub \$280,%rsp 205 .Lghash_prologue: 206 mov $inp,%r14 # reassign couple of args 207 mov $len,%r15 208 ___ 209 { my $inp="%r14"; 210 my $dat="%edx"; 211 my $len="%r15"; 212 my @nhi=("%ebx","%ecx"); 213 my @rem=("%r12","%r13"); 214 my $Hshr4="%rbp"; 215 216 &sub ($Htbl,-128); # size optimization 217 &lea ($Hshr4,"16+128(%rsp)"); 218 { my @lo =($nlo,$nhi); 219 my @hi =($Zlo,$Zhi); 220 221 &xor ($dat,$dat); 222 for ($i=0,$j=-2;$i<18;$i++,$j++) { 223 &mov ("$j(%rsp)",&LB($dat)) if ($i>1); 224 &or ($lo[0],$tmp) if ($i>1); 225 &mov (&LB($dat),&LB($lo[1])) if ($i>0 && $i<17); 226 &shr ($lo[1],4) if ($i>0 && $i<17); 227 &mov ($tmp,$hi[1]) if ($i>0 && $i<17); 228 &shr ($hi[1],4) if ($i>0 && $i<17); 229 &mov ("8*$j($Hshr4)",$hi[0]) if ($i>1); 230 &mov ($hi[0],"16*$i+0-128($Htbl)") if ($i<16); 231 &shl (&LB($dat),4) if ($i>0 && $i<17); 232 &mov ("8*$j-128($Hshr4)",$lo[0]) if ($i>1); 233 &mov ($lo[0],"16*$i+8-128($Htbl)") if ($i<16); 234 &shl ($tmp,60) if ($i>0 && $i<17); 235 236 push (@lo,shift(@lo)); 237 push (@hi,shift(@hi)); 238 } 239 } 240 &add ($Htbl,-128); 241 &mov ($Zlo,"8($Xi)"); 242 &mov ($Zhi,"0($Xi)"); 243 &add ($len,$inp); # pointer to the end of data 244 &lea ($rem_8bit,".Lrem_8bit(%rip)"); 245 &jmp (".Louter_loop"); 246 247 $code.=".align 16\n.Louter_loop:\n"; 248 &xor ($Zhi,"($inp)"); 249 &mov ("%rdx","8($inp)"); 250 &lea ($inp,"16($inp)"); 251 &xor ("%rdx",$Zlo); 252 &mov ("($Xi)",$Zhi); 253 &mov ("8($Xi)","%rdx"); 254 &shr ("%rdx",32); 255 256 &xor ($nlo,$nlo); 257 &rol ($dat,8); 258 &mov (&LB($nlo),&LB($dat)); 259 &movz ($nhi[0],&LB($dat)); 260 &shl (&LB($nlo),4); 261 &shr ($nhi[0],4); 262 263 for ($j=11,$i=0;$i<15;$i++) { 264 &rol ($dat,8); 265 &xor ($Zlo,"8($Htbl,$nlo)") if ($i>0); 266 &xor ($Zhi,"($Htbl,$nlo)") if ($i>0); 267 &mov ($Zlo,"8($Htbl,$nlo)") if ($i==0); 268 &mov ($Zhi,"($Htbl,$nlo)") if ($i==0); 269 270 &mov (&LB($nlo),&LB($dat)); 271 &xor ($Zlo,$tmp) if ($i>0); 272 &movzw ($rem[1],"($rem_8bit,$rem[1],2)") if ($i>0); 273 274 &movz ($nhi[1],&LB($dat)); 275 &shl (&LB($nlo),4); 276 &movzb ($rem[0],"(%rsp,$nhi[0])"); 277 278 &shr ($nhi[1],4) if ($i<14); 279 &and ($nhi[1],0xf0) if ($i==14); 280 &shl ($rem[1],48) if ($i>0); 281 &xor ($rem[0],$Zlo); 282 283 &mov ($tmp,$Zhi); 284 &xor ($Zhi,$rem[1]) if ($i>0); 285 &shr ($Zlo,8); 286 287 &movz ($rem[0],&LB($rem[0])); 288 &mov ($dat,"$j($Xi)") if (--$j%4==0); 289 &shr ($Zhi,8); 290 291 &xor ($Zlo,"-128($Hshr4,$nhi[0],8)"); 292 &shl ($tmp,56); 293 &xor ($Zhi,"($Hshr4,$nhi[0],8)"); 294 295 unshift (@nhi,pop(@nhi)); # "rotate" registers 296 unshift (@rem,pop(@rem)); 297 } 298 &movzw ($rem[1],"($rem_8bit,$rem[1],2)"); 299 &xor ($Zlo,"8($Htbl,$nlo)"); 300 &xor ($Zhi,"($Htbl,$nlo)"); 301 302 &shl ($rem[1],48); 303 &xor ($Zlo,$tmp); 304 305 &xor ($Zhi,$rem[1]); 306 &movz ($rem[0],&LB($Zlo)); 307 &shr ($Zlo,4); 308 309 &mov ($tmp,$Zhi); 310 &shl (&LB($rem[0]),4); 311 &shr ($Zhi,4); 312 313 &xor ($Zlo,"8($Htbl,$nhi[0])"); 314 &movzw ($rem[0],"($rem_8bit,$rem[0],2)"); 315 &shl ($tmp,60); 316 317 &xor ($Zhi,"($Htbl,$nhi[0])"); 318 &xor ($Zlo,$tmp); 319 &shl ($rem[0],48); 320 321 &bswap ($Zlo); 322 &xor ($Zhi,$rem[0]); 323 324 &bswap ($Zhi); 325 &cmp ($inp,$len); 326 &jb (".Louter_loop"); 327 } 328 $code.=<<___; 329 mov $Zlo,8($Xi) 330 mov $Zhi,($Xi) 331 332 lea 280(%rsp),%rsi 333 mov 0(%rsi),%r15 334 mov 8(%rsi),%r14 335 mov 16(%rsi),%r13 336 mov 24(%rsi),%r12 337 mov 32(%rsi),%rbp 338 mov 40(%rsi),%rbx 339 lea 48(%rsi),%rsp 340 .Lghash_epilogue: 341 ret 342 .size gcm_ghash_4bit,.-gcm_ghash_4bit 343 ___ 344 345 ###################################################################### 346 # PCLMULQDQ version. 347 348 @_4args=$win64? ("%rcx","%rdx","%r8", "%r9") : # Win64 order 349 ("%rdi","%rsi","%rdx","%rcx"); # Unix order 350 351 ($Xi,$Xhi)=("%xmm0","%xmm1"); $Hkey="%xmm2"; 352 ($T1,$T2,$T3)=("%xmm3","%xmm4","%xmm5"); 353 354 sub clmul64x64_T2 { # minimal register pressure 355 my ($Xhi,$Xi,$Hkey,$modulo)=@_; 356 357 $code.=<<___ if (!defined($modulo)); 358 movdqa $Xi,$Xhi # 359 pshufd \$0b01001110,$Xi,$T1 360 pshufd \$0b01001110,$Hkey,$T2 361 pxor $Xi,$T1 # 362 pxor $Hkey,$T2 363 ___ 364 $code.=<<___; 365 pclmulqdq \$0x00,$Hkey,$Xi ####### 366 pclmulqdq \$0x11,$Hkey,$Xhi ####### 367 pclmulqdq \$0x00,$T2,$T1 ####### 368 pxor $Xi,$T1 # 369 pxor $Xhi,$T1 # 370 371 movdqa $T1,$T2 # 372 psrldq \$8,$T1 373 pslldq \$8,$T2 # 374 pxor $T1,$Xhi 375 pxor $T2,$Xi # 376 ___ 377 } 378 379 sub reduction_alg9 { # 17/13 times faster than Intel version 380 my ($Xhi,$Xi) = @_; 381 382 $code.=<<___; 383 # 1st phase 384 movdqa $Xi,$T1 # 385 psllq \$1,$Xi 386 pxor $T1,$Xi # 387 psllq \$5,$Xi # 388 pxor $T1,$Xi # 389 psllq \$57,$Xi # 390 movdqa $Xi,$T2 # 391 pslldq \$8,$Xi 392 psrldq \$8,$T2 # 393 pxor $T1,$Xi 394 pxor $T2,$Xhi # 395 396 # 2nd phase 397 movdqa $Xi,$T2 398 psrlq \$5,$Xi 399 pxor $T2,$Xi # 400 psrlq \$1,$Xi # 401 pxor $T2,$Xi # 402 pxor $Xhi,$T2 403 psrlq \$1,$Xi # 404 pxor $T2,$Xi # 405 ___ 406 } 407 408 { my ($Htbl,$Xip)=@_4args; 409 410 $code.=<<___; 411 .globl gcm_init_clmul 412 .type gcm_init_clmul,\@abi-omnipotent 413 .align 16 414 gcm_init_clmul: 415 movdqu ($Xip),$Hkey 416 pshufd \$0b01001110,$Hkey,$Hkey # dword swap 417 418 # <<1 twist 419 pshufd \$0b11111111,$Hkey,$T2 # broadcast uppermost dword 420 movdqa $Hkey,$T1 421 psllq \$1,$Hkey 422 pxor $T3,$T3 # 423 psrlq \$63,$T1 424 pcmpgtd $T2,$T3 # broadcast carry bit 425 pslldq \$8,$T1 426 por $T1,$Hkey # H<<=1 427 428 # magic reduction 429 pand .L0x1c2_polynomial(%rip),$T3 430 pxor $T3,$Hkey # if(carry) H^=0x1c2_polynomial 431 432 # calculate H^2 433 movdqa $Hkey,$Xi 434 ___ 435 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); 436 &reduction_alg9 ($Xhi,$Xi); 437 $code.=<<___; 438 movdqu $Hkey,($Htbl) # save H 439 movdqu $Xi,16($Htbl) # save H^2 440 ret 441 .size gcm_init_clmul,.-gcm_init_clmul 442 ___ 443 } 444 445 { my ($Xip,$Htbl)=@_4args; 446 447 $code.=<<___; 448 .globl gcm_gmult_clmul 449 .type gcm_gmult_clmul,\@abi-omnipotent 450 .align 16 451 gcm_gmult_clmul: 452 movdqu ($Xip),$Xi 453 movdqa .Lbswap_mask(%rip),$T3 454 movdqu ($Htbl),$Hkey 455 pshufb $T3,$Xi 456 ___ 457 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); 458 &reduction_alg9 ($Xhi,$Xi); 459 $code.=<<___; 460 pshufb $T3,$Xi 461 movdqu $Xi,($Xip) 462 ret 463 .size gcm_gmult_clmul,.-gcm_gmult_clmul 464 ___ 465 } 466 467 { my ($Xip,$Htbl,$inp,$len)=@_4args; 468 my $Xn="%xmm6"; 469 my $Xhn="%xmm7"; 470 my $Hkey2="%xmm8"; 471 my $T1n="%xmm9"; 472 my $T2n="%xmm10"; 473 474 $code.=<<___; 475 .globl gcm_ghash_clmul 476 .type gcm_ghash_clmul,\@abi-omnipotent 477 .align 16 478 gcm_ghash_clmul: 479 ___ 480 $code.=<<___ if ($win64); 481 .LSEH_begin_gcm_ghash_clmul: 482 # I can't trust assembler to use specific encoding:-( 483 .byte 0x48,0x83,0xec,0x58 #sub \$0x58,%rsp 484 .byte 0x0f,0x29,0x34,0x24 #movaps %xmm6,(%rsp) 485 .byte 0x0f,0x29,0x7c,0x24,0x10 #movdqa %xmm7,0x10(%rsp) 486 .byte 0x44,0x0f,0x29,0x44,0x24,0x20 #movaps %xmm8,0x20(%rsp) 487 .byte 0x44,0x0f,0x29,0x4c,0x24,0x30 #movaps %xmm9,0x30(%rsp) 488 .byte 0x44,0x0f,0x29,0x54,0x24,0x40 #movaps %xmm10,0x40(%rsp) 489 ___ 490 $code.=<<___; 491 movdqa .Lbswap_mask(%rip),$T3 492 493 movdqu ($Xip),$Xi 494 movdqu ($Htbl),$Hkey 495 pshufb $T3,$Xi 496 497 sub \$0x10,$len 498 jz .Lodd_tail 499 500 movdqu 16($Htbl),$Hkey2 501 ####### 502 # Xi+2 =[H*(Ii+1 + Xi+1)] mod P = 503 # [(H*Ii+1) + (H*Xi+1)] mod P = 504 # [(H*Ii+1) + H^2*(Ii+Xi)] mod P 505 # 506 movdqu ($inp),$T1 # Ii 507 movdqu 16($inp),$Xn # Ii+1 508 pshufb $T3,$T1 509 pshufb $T3,$Xn 510 pxor $T1,$Xi # Ii+Xi 511 ___ 512 &clmul64x64_T2 ($Xhn,$Xn,$Hkey); # H*Ii+1 513 $code.=<<___; 514 movdqa $Xi,$Xhi # 515 pshufd \$0b01001110,$Xi,$T1 516 pshufd \$0b01001110,$Hkey2,$T2 517 pxor $Xi,$T1 # 518 pxor $Hkey2,$T2 519 520 lea 32($inp),$inp # i+=2 521 sub \$0x20,$len 522 jbe .Leven_tail 523 524 .Lmod_loop: 525 ___ 526 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi) 527 $code.=<<___; 528 movdqu ($inp),$T1 # Ii 529 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi) 530 pxor $Xhn,$Xhi 531 532 movdqu 16($inp),$Xn # Ii+1 533 pshufb $T3,$T1 534 pshufb $T3,$Xn 535 536 movdqa $Xn,$Xhn # 537 pshufd \$0b01001110,$Xn,$T1n 538 pshufd \$0b01001110,$Hkey,$T2n 539 pxor $Xn,$T1n # 540 pxor $Hkey,$T2n 541 pxor $T1,$Xhi # "Ii+Xi", consume early 542 543 movdqa $Xi,$T1 # 1st phase 544 psllq \$1,$Xi 545 pxor $T1,$Xi # 546 psllq \$5,$Xi # 547 pxor $T1,$Xi # 548 pclmulqdq \$0x00,$Hkey,$Xn ####### 549 psllq \$57,$Xi # 550 movdqa $Xi,$T2 # 551 pslldq \$8,$Xi 552 psrldq \$8,$T2 # 553 pxor $T1,$Xi 554 pxor $T2,$Xhi # 555 556 pclmulqdq \$0x11,$Hkey,$Xhn ####### 557 movdqa $Xi,$T2 # 2nd phase 558 psrlq \$5,$Xi 559 pxor $T2,$Xi # 560 psrlq \$1,$Xi # 561 pxor $T2,$Xi # 562 pxor $Xhi,$T2 563 psrlq \$1,$Xi # 564 pxor $T2,$Xi # 565 566 pclmulqdq \$0x00,$T2n,$T1n ####### 567 movdqa $Xi,$Xhi # 568 pshufd \$0b01001110,$Xi,$T1 569 pshufd \$0b01001110,$Hkey2,$T2 570 pxor $Xi,$T1 # 571 pxor $Hkey2,$T2 572 573 pxor $Xn,$T1n # 574 pxor $Xhn,$T1n # 575 movdqa $T1n,$T2n # 576 psrldq \$8,$T1n 577 pslldq \$8,$T2n # 578 pxor $T1n,$Xhn 579 pxor $T2n,$Xn # 580 581 lea 32($inp),$inp 582 sub \$0x20,$len 583 ja .Lmod_loop 584 585 .Leven_tail: 586 ___ 587 &clmul64x64_T2 ($Xhi,$Xi,$Hkey2,1); # H^2*(Ii+Xi) 588 $code.=<<___; 589 pxor $Xn,$Xi # (H*Ii+1) + H^2*(Ii+Xi) 590 pxor $Xhn,$Xhi 591 ___ 592 &reduction_alg9 ($Xhi,$Xi); 593 $code.=<<___; 594 test $len,$len 595 jnz .Ldone 596 597 .Lodd_tail: 598 movdqu ($inp),$T1 # Ii 599 pshufb $T3,$T1 600 pxor $T1,$Xi # Ii+Xi 601 ___ 602 &clmul64x64_T2 ($Xhi,$Xi,$Hkey); # H*(Ii+Xi) 603 &reduction_alg9 ($Xhi,$Xi); 604 $code.=<<___; 605 .Ldone: 606 pshufb $T3,$Xi 607 movdqu $Xi,($Xip) 608 ___ 609 $code.=<<___ if ($win64); 610 movaps (%rsp),%xmm6 611 movaps 0x10(%rsp),%xmm7 612 movaps 0x20(%rsp),%xmm8 613 movaps 0x30(%rsp),%xmm9 614 movaps 0x40(%rsp),%xmm10 615 add \$0x58,%rsp 616 ___ 617 $code.=<<___; 618 ret 619 .LSEH_end_gcm_ghash_clmul: 620 .size gcm_ghash_clmul,.-gcm_ghash_clmul 621 ___ 622 } 623 624 $code.=<<___; 625 .align 64 626 .Lbswap_mask: 627 .byte 15,14,13,12,11,10,9,8,7,6,5,4,3,2,1,0 628 .L0x1c2_polynomial: 629 .byte 1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0xc2 630 .align 64 631 .type .Lrem_4bit,\@object 632 .Lrem_4bit: 633 .long 0,`0x0000<<16`,0,`0x1C20<<16`,0,`0x3840<<16`,0,`0x2460<<16` 634 .long 0,`0x7080<<16`,0,`0x6CA0<<16`,0,`0x48C0<<16`,0,`0x54E0<<16` 635 .long 0,`0xE100<<16`,0,`0xFD20<<16`,0,`0xD940<<16`,0,`0xC560<<16` 636 .long 0,`0x9180<<16`,0,`0x8DA0<<16`,0,`0xA9C0<<16`,0,`0xB5E0<<16` 637 .type .Lrem_8bit,\@object 638 .Lrem_8bit: 639 .value 0x0000,0x01C2,0x0384,0x0246,0x0708,0x06CA,0x048C,0x054E 640 .value 0x0E10,0x0FD2,0x0D94,0x0C56,0x0918,0x08DA,0x0A9C,0x0B5E 641 .value 0x1C20,0x1DE2,0x1FA4,0x1E66,0x1B28,0x1AEA,0x18AC,0x196E 642 .value 0x1230,0x13F2,0x11B4,0x1076,0x1538,0x14FA,0x16BC,0x177E 643 .value 0x3840,0x3982,0x3BC4,0x3A06,0x3F48,0x3E8A,0x3CCC,0x3D0E 644 .value 0x3650,0x3792,0x35D4,0x3416,0x3158,0x309A,0x32DC,0x331E 645 .value 0x2460,0x25A2,0x27E4,0x2626,0x2368,0x22AA,0x20EC,0x212E 646 .value 0x2A70,0x2BB2,0x29F4,0x2836,0x2D78,0x2CBA,0x2EFC,0x2F3E 647 .value 0x7080,0x7142,0x7304,0x72C6,0x7788,0x764A,0x740C,0x75CE 648 .value 0x7E90,0x7F52,0x7D14,0x7CD6,0x7998,0x785A,0x7A1C,0x7BDE 649 .value 0x6CA0,0x6D62,0x6F24,0x6EE6,0x6BA8,0x6A6A,0x682C,0x69EE 650 .value 0x62B0,0x6372,0x6134,0x60F6,0x65B8,0x647A,0x663C,0x67FE 651 .value 0x48C0,0x4902,0x4B44,0x4A86,0x4FC8,0x4E0A,0x4C4C,0x4D8E 652 .value 0x46D0,0x4712,0x4554,0x4496,0x41D8,0x401A,0x425C,0x439E 653 .value 0x54E0,0x5522,0x5764,0x56A6,0x53E8,0x522A,0x506C,0x51AE 654 .value 0x5AF0,0x5B32,0x5974,0x58B6,0x5DF8,0x5C3A,0x5E7C,0x5FBE 655 .value 0xE100,0xE0C2,0xE284,0xE346,0xE608,0xE7CA,0xE58C,0xE44E 656 .value 0xEF10,0xEED2,0xEC94,0xED56,0xE818,0xE9DA,0xEB9C,0xEA5E 657 .value 0xFD20,0xFCE2,0xFEA4,0xFF66,0xFA28,0xFBEA,0xF9AC,0xF86E 658 .value 0xF330,0xF2F2,0xF0B4,0xF176,0xF438,0xF5FA,0xF7BC,0xF67E 659 .value 0xD940,0xD882,0xDAC4,0xDB06,0xDE48,0xDF8A,0xDDCC,0xDC0E 660 .value 0xD750,0xD692,0xD4D4,0xD516,0xD058,0xD19A,0xD3DC,0xD21E 661 .value 0xC560,0xC4A2,0xC6E4,0xC726,0xC268,0xC3AA,0xC1EC,0xC02E 662 .value 0xCB70,0xCAB2,0xC8F4,0xC936,0xCC78,0xCDBA,0xCFFC,0xCE3E 663 .value 0x9180,0x9042,0x9204,0x93C6,0x9688,0x974A,0x950C,0x94CE 664 .value 0x9F90,0x9E52,0x9C14,0x9DD6,0x9898,0x995A,0x9B1C,0x9ADE 665 .value 0x8DA0,0x8C62,0x8E24,0x8FE6,0x8AA8,0x8B6A,0x892C,0x88EE 666 .value 0x83B0,0x8272,0x8034,0x81F6,0x84B8,0x857A,0x873C,0x86FE 667 .value 0xA9C0,0xA802,0xAA44,0xAB86,0xAEC8,0xAF0A,0xAD4C,0xAC8E 668 .value 0xA7D0,0xA612,0xA454,0xA596,0xA0D8,0xA11A,0xA35C,0xA29E 669 .value 0xB5E0,0xB422,0xB664,0xB7A6,0xB2E8,0xB32A,0xB16C,0xB0AE 670 .value 0xBBF0,0xBA32,0xB874,0xB9B6,0xBCF8,0xBD3A,0xBF7C,0xBEBE 671 672 .asciz "GHASH for x86_64, CRYPTOGAMS by <appro\@openssl.org>" 673 .align 64 674 ___ 675 676 # EXCEPTION_DISPOSITION handler (EXCEPTION_RECORD *rec,ULONG64 frame, 677 # CONTEXT *context,DISPATCHER_CONTEXT *disp) 678 if ($win64) { 679 $rec="%rcx"; 680 $frame="%rdx"; 681 $context="%r8"; 682 $disp="%r9"; 683 684 $code.=<<___; 685 .extern __imp_RtlVirtualUnwind 686 .type se_handler,\@abi-omnipotent 687 .align 16 688 se_handler: 689 push %rsi 690 push %rdi 691 push %rbx 692 push %rbp 693 push %r12 694 push %r13 695 push %r14 696 push %r15 697 pushfq 698 sub \$64,%rsp 699 700 mov 120($context),%rax # pull context->Rax 701 mov 248($context),%rbx # pull context->Rip 702 703 mov 8($disp),%rsi # disp->ImageBase 704 mov 56($disp),%r11 # disp->HandlerData 705 706 mov 0(%r11),%r10d # HandlerData[0] 707 lea (%rsi,%r10),%r10 # prologue label 708 cmp %r10,%rbx # context->Rip<prologue label 709 jb .Lin_prologue 710 711 mov 152($context),%rax # pull context->Rsp 712 713 mov 4(%r11),%r10d # HandlerData[1] 714 lea (%rsi,%r10),%r10 # epilogue label 715 cmp %r10,%rbx # context->Rip>=epilogue label 716 jae .Lin_prologue 717 718 lea 24(%rax),%rax # adjust "rsp" 719 720 mov -8(%rax),%rbx 721 mov -16(%rax),%rbp 722 mov -24(%rax),%r12 723 mov %rbx,144($context) # restore context->Rbx 724 mov %rbp,160($context) # restore context->Rbp 725 mov %r12,216($context) # restore context->R12 726 727 .Lin_prologue: 728 mov 8(%rax),%rdi 729 mov 16(%rax),%rsi 730 mov %rax,152($context) # restore context->Rsp 731 mov %rsi,168($context) # restore context->Rsi 732 mov %rdi,176($context) # restore context->Rdi 733 734 mov 40($disp),%rdi # disp->ContextRecord 735 mov $context,%rsi # context 736 mov \$`1232/8`,%ecx # sizeof(CONTEXT) 737 .long 0xa548f3fc # cld; rep movsq 738 739 mov $disp,%rsi 740 xor %rcx,%rcx # arg1, UNW_FLAG_NHANDLER 741 mov 8(%rsi),%rdx # arg2, disp->ImageBase 742 mov 0(%rsi),%r8 # arg3, disp->ControlPc 743 mov 16(%rsi),%r9 # arg4, disp->FunctionEntry 744 mov 40(%rsi),%r10 # disp->ContextRecord 745 lea 56(%rsi),%r11 # &disp->HandlerData 746 lea 24(%rsi),%r12 # &disp->EstablisherFrame 747 mov %r10,32(%rsp) # arg5 748 mov %r11,40(%rsp) # arg6 749 mov %r12,48(%rsp) # arg7 750 mov %rcx,56(%rsp) # arg8, (NULL) 751 call *__imp_RtlVirtualUnwind(%rip) 752 753 mov \$1,%eax # ExceptionContinueSearch 754 add \$64,%rsp 755 popfq 756 pop %r15 757 pop %r14 758 pop %r13 759 pop %r12 760 pop %rbp 761 pop %rbx 762 pop %rdi 763 pop %rsi 764 ret 765 .size se_handler,.-se_handler 766 767 .section .pdata 768 .align 4 769 .rva .LSEH_begin_gcm_gmult_4bit 770 .rva .LSEH_end_gcm_gmult_4bit 771 .rva .LSEH_info_gcm_gmult_4bit 772 773 .rva .LSEH_begin_gcm_ghash_4bit 774 .rva .LSEH_end_gcm_ghash_4bit 775 .rva .LSEH_info_gcm_ghash_4bit 776 777 .rva .LSEH_begin_gcm_ghash_clmul 778 .rva .LSEH_end_gcm_ghash_clmul 779 .rva .LSEH_info_gcm_ghash_clmul 780 781 .section .xdata 782 .align 8 783 .LSEH_info_gcm_gmult_4bit: 784 .byte 9,0,0,0 785 .rva se_handler 786 .rva .Lgmult_prologue,.Lgmult_epilogue # HandlerData 787 .LSEH_info_gcm_ghash_4bit: 788 .byte 9,0,0,0 789 .rva se_handler 790 .rva .Lghash_prologue,.Lghash_epilogue # HandlerData 791 .LSEH_info_gcm_ghash_clmul: 792 .byte 0x01,0x1f,0x0b,0x00 793 .byte 0x1f,0xa8,0x04,0x00 #movaps 0x40(rsp),xmm10 794 .byte 0x19,0x98,0x03,0x00 #movaps 0x30(rsp),xmm9 795 .byte 0x13,0x88,0x02,0x00 #movaps 0x20(rsp),xmm8 796 .byte 0x0d,0x78,0x01,0x00 #movaps 0x10(rsp),xmm7 797 .byte 0x08,0x68,0x00,0x00 #movaps (rsp),xmm6 798 .byte 0x04,0xa2,0x00,0x00 #sub rsp,0x58 799 ___ 800 } 801 802 $code =~ s/\`([^\`]*)\`/eval($1)/gem; 803 804 print $code; 805 806 close STDOUT;