1 /* crypto/bn/bn_asm.c */
   2 /* Copyright (C) 1995-1998 Eric Young (eay@cryptsoft.com)
   3  * All rights reserved.
   4  *
   5  * This package is an SSL implementation written
   6  * by Eric Young (eay@cryptsoft.com).
   7  * The implementation was written so as to conform with Netscapes SSL.
   8  *
   9  * This library is free for commercial and non-commercial use as long as
  10  * the following conditions are aheared to.  The following conditions
  11  * apply to all code found in this distribution, be it the RC4, RSA,
  12  * lhash, DES, etc., code; not just the SSL code.  The SSL documentation
  13  * included with this distribution is covered by the same copyright terms
  14  * except that the holder is Tim Hudson (tjh@cryptsoft.com).
  15  *
  16  * Copyright remains Eric Young's, and as such any Copyright notices in
  17  * the code are not to be removed.
  18  * If this package is used in a product, Eric Young should be given attribution
  19  * as the author of the parts of the library used.
  20  * This can be in the form of a textual message at program startup or
  21  * in documentation (online or textual) provided with the package.
  22  *
  23  * Redistribution and use in source and binary forms, with or without
  24  * modification, are permitted provided that the following conditions
  25  * are met:
  26  * 1. Redistributions of source code must retain the copyright
  27  *    notice, this list of conditions and the following disclaimer.
  28  * 2. Redistributions in binary form must reproduce the above copyright
  29  *    notice, this list of conditions and the following disclaimer in the
  30  *    documentation and/or other materials provided with the distribution.
  31  * 3. All advertising materials mentioning features or use of this software
  32  *    must display the following acknowledgement:
  33  *    "This product includes cryptographic software written by
  34  *     Eric Young (eay@cryptsoft.com)"
  35  *    The word 'cryptographic' can be left out if the rouines from the library
  36  *    being used are not cryptographic related :-).
  37  * 4. If you include any Windows specific code (or a derivative thereof) from
  38  *    the apps directory (application code) you must include an acknowledgement:
  39  *    "This product includes software written by Tim Hudson (tjh@cryptsoft.com)"
  40  *
  41  * THIS SOFTWARE IS PROVIDED BY ERIC YOUNG ``AS IS'' AND
  42  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
  43  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
  44  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
  45  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
  46  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
  47  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
  48  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
  49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
  50  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
  51  * SUCH DAMAGE.
  52  *
  53  * The licence and distribution terms for any publically available version or
  54  * derivative of this code cannot be changed.  i.e. this code cannot simply be
  55  * copied and put under another distribution licence
  56  * [including the GNU Public Licence.]
  57  */
  58 
  59 #ifndef BN_DEBUG
  60 # undef NDEBUG /* avoid conflicting definitions */
  61 # define NDEBUG
  62 #endif
  63 
  64 #include <stdio.h>
  65 #include <assert.h>
  66 #include "cryptlib.h"
  67 #include "bn_lcl.h"
  68 
  69 #if defined(BN_LLONG) || defined(BN_UMULT_HIGH)
  70 
  71 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
  72         {
  73         BN_ULONG c1=0;
  74 
  75         assert(num >= 0);
  76         if (num <= 0) return(c1);
  77 
  78 #ifndef OPENSSL_SMALL_FOOTPRINT
  79         while (num&~3)
  80                 {
  81                 mul_add(rp[0],ap[0],w,c1);
  82                 mul_add(rp[1],ap[1],w,c1);
  83                 mul_add(rp[2],ap[2],w,c1);
  84                 mul_add(rp[3],ap[3],w,c1);
  85                 ap+=4; rp+=4; num-=4;
  86                 }
  87 #endif
  88         while (num)
  89                 {
  90                 mul_add(rp[0],ap[0],w,c1);
  91                 ap++; rp++; num--;
  92                 }
  93 
  94         return(c1);
  95         }
  96 
  97 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
  98         {
  99         BN_ULONG c1=0;
 100 
 101         assert(num >= 0);
 102         if (num <= 0) return(c1);
 103 
 104 #ifndef OPENSSL_SMALL_FOOTPRINT
 105         while (num&~3)
 106                 {
 107                 mul(rp[0],ap[0],w,c1);
 108                 mul(rp[1],ap[1],w,c1);
 109                 mul(rp[2],ap[2],w,c1);
 110                 mul(rp[3],ap[3],w,c1);
 111                 ap+=4; rp+=4; num-=4;
 112                 }
 113 #endif
 114         while (num)
 115                 {
 116                 mul(rp[0],ap[0],w,c1);
 117                 ap++; rp++; num--;
 118                 }
 119         return(c1);
 120         }
 121 
 122 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
 123         {
 124         assert(n >= 0);
 125         if (n <= 0) return;
 126 
 127 #ifndef OPENSSL_SMALL_FOOTPRINT
 128         while (n&~3)
 129                 {
 130                 sqr(r[0],r[1],a[0]);
 131                 sqr(r[2],r[3],a[1]);
 132                 sqr(r[4],r[5],a[2]);
 133                 sqr(r[6],r[7],a[3]);
 134                 a+=4; r+=8; n-=4;
 135                 }
 136 #endif
 137         while (n)
 138                 {
 139                 sqr(r[0],r[1],a[0]);
 140                 a++; r+=2; n--;
 141                 }
 142         }
 143 
 144 #else /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
 145 
 146 BN_ULONG bn_mul_add_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
 147         {
 148         BN_ULONG c=0;
 149         BN_ULONG bl,bh;
 150 
 151         assert(num >= 0);
 152         if (num <= 0) return((BN_ULONG)0);
 153 
 154         bl=LBITS(w);
 155         bh=HBITS(w);
 156 
 157 #ifndef OPENSSL_SMALL_FOOTPRINT
 158         while (num&~3)
 159                 {
 160                 mul_add(rp[0],ap[0],bl,bh,c);
 161                 mul_add(rp[1],ap[1],bl,bh,c);
 162                 mul_add(rp[2],ap[2],bl,bh,c);
 163                 mul_add(rp[3],ap[3],bl,bh,c);
 164                 ap+=4; rp+=4; num-=4;
 165                 }
 166 #endif
 167         while (num)
 168                 {
 169                 mul_add(rp[0],ap[0],bl,bh,c);
 170                 ap++; rp++; num--;
 171                 }
 172         return(c);
 173         }
 174 
 175 BN_ULONG bn_mul_words(BN_ULONG *rp, const BN_ULONG *ap, int num, BN_ULONG w)
 176         {
 177         BN_ULONG carry=0;
 178         BN_ULONG bl,bh;
 179 
 180         assert(num >= 0);
 181         if (num <= 0) return((BN_ULONG)0);
 182 
 183         bl=LBITS(w);
 184         bh=HBITS(w);
 185 
 186 #ifndef OPENSSL_SMALL_FOOTPRINT
 187         while (num&~3)
 188                 {
 189                 mul(rp[0],ap[0],bl,bh,carry);
 190                 mul(rp[1],ap[1],bl,bh,carry);
 191                 mul(rp[2],ap[2],bl,bh,carry);
 192                 mul(rp[3],ap[3],bl,bh,carry);
 193                 ap+=4; rp+=4; num-=4;
 194                 }
 195 #endif
 196         while (num)
 197                 {
 198                 mul(rp[0],ap[0],bl,bh,carry);
 199                 ap++; rp++; num--;
 200                 }
 201         return(carry);
 202         }
 203 
 204 void bn_sqr_words(BN_ULONG *r, const BN_ULONG *a, int n)
 205         {
 206         assert(n >= 0);
 207         if (n <= 0) return;
 208 
 209 #ifndef OPENSSL_SMALL_FOOTPRINT
 210         while (n&~3)
 211                 {
 212                 sqr64(r[0],r[1],a[0]);
 213                 sqr64(r[2],r[3],a[1]);
 214                 sqr64(r[4],r[5],a[2]);
 215                 sqr64(r[6],r[7],a[3]);
 216                 a+=4; r+=8; n-=4;
 217                 }
 218 #endif
 219         while (n)
 220                 {
 221                 sqr64(r[0],r[1],a[0]);
 222                 a++; r+=2; n--;
 223                 }
 224         }
 225 
 226 #endif /* !(defined(BN_LLONG) || defined(BN_UMULT_HIGH)) */
 227 
 228 #if defined(BN_LLONG) && defined(BN_DIV2W)
 229 
 230 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
 231         {
 232         return((BN_ULONG)(((((BN_ULLONG)h)<<BN_BITS2)|l)/(BN_ULLONG)d));
 233         }
 234 
 235 #else
 236 
 237 /* Divide h,l by d and return the result. */
 238 /* I need to test this some more :-( */
 239 BN_ULONG bn_div_words(BN_ULONG h, BN_ULONG l, BN_ULONG d)
 240         {
 241         BN_ULONG dh,dl,q,ret=0,th,tl,t;
 242         int i,count=2;
 243 
 244         if (d == 0) return(BN_MASK2);
 245 
 246         i=BN_num_bits_word(d);
 247         assert((i == BN_BITS2) || (h <= (BN_ULONG)1<<i));
 248 
 249         i=BN_BITS2-i;
 250         if (h >= d) h-=d;
 251 
 252         if (i)
 253                 {
 254                 d<<=i;
 255                 h=(h<<i)|(l>>(BN_BITS2-i));
 256                 l<<=i;
 257                 }
 258         dh=(d&BN_MASK2h)>>BN_BITS4;
 259         dl=(d&BN_MASK2l);
 260         for (;;)
 261                 {
 262                 if ((h>>BN_BITS4) == dh)
 263                         q=BN_MASK2l;
 264                 else
 265                         q=h/dh;
 266 
 267                 th=q*dh;
 268                 tl=dl*q;
 269                 for (;;)
 270                         {
 271                         t=h-th;
 272                         if ((t&BN_MASK2h) ||
 273                                 ((tl) <= (
 274                                         (t<<BN_BITS4)|
 275                                         ((l&BN_MASK2h)>>BN_BITS4))))
 276                                 break;
 277                         q--;
 278                         th-=dh;
 279                         tl-=dl;
 280                         }
 281                 t=(tl>>BN_BITS4);
 282                 tl=(tl<<BN_BITS4)&BN_MASK2h;
 283                 th+=t;
 284 
 285                 if (l < tl) th++;
 286                 l-=tl;
 287                 if (h < th)
 288                         {
 289                         h+=d;
 290                         q--;
 291                         }
 292                 h-=th;
 293 
 294                 if (--count == 0) break;
 295 
 296                 ret=q<<BN_BITS4;
 297                 h=((h<<BN_BITS4)|(l>>BN_BITS4))&BN_MASK2;
 298                 l=(l&BN_MASK2l)<<BN_BITS4;
 299                 }
 300         ret|=q;
 301         return(ret);
 302         }
 303 #endif /* !defined(BN_LLONG) && defined(BN_DIV2W) */
 304 
 305 #ifdef BN_LLONG
 306 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
 307         {
 308         BN_ULLONG ll=0;
 309 
 310         assert(n >= 0);
 311         if (n <= 0) return((BN_ULONG)0);
 312 
 313 #ifndef OPENSSL_SMALL_FOOTPRINT
 314         while (n&~3)
 315                 {
 316                 ll+=(BN_ULLONG)a[0]+b[0];
 317                 r[0]=(BN_ULONG)ll&BN_MASK2;
 318                 ll>>=BN_BITS2;
 319                 ll+=(BN_ULLONG)a[1]+b[1];
 320                 r[1]=(BN_ULONG)ll&BN_MASK2;
 321                 ll>>=BN_BITS2;
 322                 ll+=(BN_ULLONG)a[2]+b[2];
 323                 r[2]=(BN_ULONG)ll&BN_MASK2;
 324                 ll>>=BN_BITS2;
 325                 ll+=(BN_ULLONG)a[3]+b[3];
 326                 r[3]=(BN_ULONG)ll&BN_MASK2;
 327                 ll>>=BN_BITS2;
 328                 a+=4; b+=4; r+=4; n-=4;
 329                 }
 330 #endif
 331         while (n)
 332                 {
 333                 ll+=(BN_ULLONG)a[0]+b[0];
 334                 r[0]=(BN_ULONG)ll&BN_MASK2;
 335                 ll>>=BN_BITS2;
 336                 a++; b++; r++; n--;
 337                 }
 338         return((BN_ULONG)ll);
 339         }
 340 #else /* !BN_LLONG */
 341 BN_ULONG bn_add_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
 342         {
 343         BN_ULONG c,l,t;
 344 
 345         assert(n >= 0);
 346         if (n <= 0) return((BN_ULONG)0);
 347 
 348         c=0;
 349 #ifndef OPENSSL_SMALL_FOOTPRINT
 350         while (n&~3)
 351                 {
 352                 t=a[0];
 353                 t=(t+c)&BN_MASK2;
 354                 c=(t < c);
 355                 l=(t+b[0])&BN_MASK2;
 356                 c+=(l < t);
 357                 r[0]=l;
 358                 t=a[1];
 359                 t=(t+c)&BN_MASK2;
 360                 c=(t < c);
 361                 l=(t+b[1])&BN_MASK2;
 362                 c+=(l < t);
 363                 r[1]=l;
 364                 t=a[2];
 365                 t=(t+c)&BN_MASK2;
 366                 c=(t < c);
 367                 l=(t+b[2])&BN_MASK2;
 368                 c+=(l < t);
 369                 r[2]=l;
 370                 t=a[3];
 371                 t=(t+c)&BN_MASK2;
 372                 c=(t < c);
 373                 l=(t+b[3])&BN_MASK2;
 374                 c+=(l < t);
 375                 r[3]=l;
 376                 a+=4; b+=4; r+=4; n-=4;
 377                 }
 378 #endif
 379         while(n)
 380                 {
 381                 t=a[0];
 382                 t=(t+c)&BN_MASK2;
 383                 c=(t < c);
 384                 l=(t+b[0])&BN_MASK2;
 385                 c+=(l < t);
 386                 r[0]=l;
 387                 a++; b++; r++; n--;
 388                 }
 389         return((BN_ULONG)c);
 390         }
 391 #endif /* !BN_LLONG */
 392 
 393 BN_ULONG bn_sub_words(BN_ULONG *r, const BN_ULONG *a, const BN_ULONG *b, int n)
 394         {
 395         BN_ULONG t1,t2;
 396         int c=0;
 397 
 398         assert(n >= 0);
 399         if (n <= 0) return((BN_ULONG)0);
 400 
 401 #ifndef OPENSSL_SMALL_FOOTPRINT
 402         while (n&~3)
 403                 {
 404                 t1=a[0]; t2=b[0];
 405                 r[0]=(t1-t2-c)&BN_MASK2;
 406                 if (t1 != t2) c=(t1 < t2);
 407                 t1=a[1]; t2=b[1];
 408                 r[1]=(t1-t2-c)&BN_MASK2;
 409                 if (t1 != t2) c=(t1 < t2);
 410                 t1=a[2]; t2=b[2];
 411                 r[2]=(t1-t2-c)&BN_MASK2;
 412                 if (t1 != t2) c=(t1 < t2);
 413                 t1=a[3]; t2=b[3];
 414                 r[3]=(t1-t2-c)&BN_MASK2;
 415                 if (t1 != t2) c=(t1 < t2);
 416                 a+=4; b+=4; r+=4; n-=4;
 417                 }
 418 #endif
 419         while (n)
 420                 {
 421                 t1=a[0]; t2=b[0];
 422                 r[0]=(t1-t2-c)&BN_MASK2;
 423                 if (t1 != t2) c=(t1 < t2);
 424                 a++; b++; r++; n--;
 425                 }
 426         return(c);
 427         }
 428 
 429 #if defined(BN_MUL_COMBA) && !defined(OPENSSL_SMALL_FOOTPRINT)
 430 
 431 #undef bn_mul_comba8
 432 #undef bn_mul_comba4
 433 #undef bn_sqr_comba8
 434 #undef bn_sqr_comba4
 435 
 436 /* mul_add_c(a,b,c0,c1,c2)  -- c+=a*b for three word number c=(c2,c1,c0) */
 437 /* mul_add_c2(a,b,c0,c1,c2) -- c+=2*a*b for three word number c=(c2,c1,c0) */
 438 /* sqr_add_c(a,i,c0,c1,c2)  -- c+=a[i]^2 for three word number c=(c2,c1,c0) */
 439 /* sqr_add_c2(a,i,c0,c1,c2) -- c+=2*a[i]*a[j] for three word number c=(c2,c1,c0) */
 440 
 441 #ifdef BN_LLONG
 442 #define mul_add_c(a,b,c0,c1,c2) \
 443         t=(BN_ULLONG)a*b; \
 444         t1=(BN_ULONG)Lw(t); \
 445         t2=(BN_ULONG)Hw(t); \
 446         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
 447         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 448 
 449 #define mul_add_c2(a,b,c0,c1,c2) \
 450         t=(BN_ULLONG)a*b; \
 451         tt=(t+t)&BN_MASK; \
 452         if (tt < t) c2++; \
 453         t1=(BN_ULONG)Lw(tt); \
 454         t2=(BN_ULONG)Hw(tt); \
 455         c0=(c0+t1)&BN_MASK2;  \
 456         if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
 457         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 458 
 459 #define sqr_add_c(a,i,c0,c1,c2) \
 460         t=(BN_ULLONG)a[i]*a[i]; \
 461         t1=(BN_ULONG)Lw(t); \
 462         t2=(BN_ULONG)Hw(t); \
 463         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
 464         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 465 
 466 #define sqr_add_c2(a,i,j,c0,c1,c2) \
 467         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
 468 
 469 #elif defined(BN_UMULT_LOHI)
 470 
 471 #define mul_add_c(a,b,c0,c1,c2) {       \
 472         BN_ULONG ta=(a),tb=(b);         \
 473         BN_UMULT_LOHI(t1,t2,ta,tb);     \
 474         c0 += t1; t2 += (c0<t1)?1:0; \
 475         c1 += t2; c2 += (c1<t2)?1:0; \
 476         }
 477 
 478 #define mul_add_c2(a,b,c0,c1,c2) {      \
 479         BN_ULONG ta=(a),tb=(b),t0;      \
 480         BN_UMULT_LOHI(t0,t1,ta,tb);     \
 481         t2 = t1+t1; c2 += (t2<t1)?1:0;       \
 482         t1 = t0+t0; t2 += (t1<t0)?1:0;       \
 483         c0 += t1; t2 += (c0<t1)?1:0; \
 484         c1 += t2; c2 += (c1<t2)?1:0; \
 485         }
 486 
 487 #define sqr_add_c(a,i,c0,c1,c2) {       \
 488         BN_ULONG ta=(a)[i];             \
 489         BN_UMULT_LOHI(t1,t2,ta,ta);     \
 490         c0 += t1; t2 += (c0<t1)?1:0; \
 491         c1 += t2; c2 += (c1<t2)?1:0; \
 492         }
 493 
 494 #define sqr_add_c2(a,i,j,c0,c1,c2)      \
 495         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
 496 
 497 #elif defined(BN_UMULT_HIGH)
 498 
 499 #define mul_add_c(a,b,c0,c1,c2) {       \
 500         BN_ULONG ta=(a),tb=(b);         \
 501         t1 = ta * tb;                   \
 502         t2 = BN_UMULT_HIGH(ta,tb);      \
 503         c0 += t1; t2 += (c0<t1)?1:0; \
 504         c1 += t2; c2 += (c1<t2)?1:0; \
 505         }
 506 
 507 #define mul_add_c2(a,b,c0,c1,c2) {      \
 508         BN_ULONG ta=(a),tb=(b),t0;      \
 509         t1 = BN_UMULT_HIGH(ta,tb);      \
 510         t0 = ta * tb;                   \
 511         t2 = t1+t1; c2 += (t2<t1)?1:0;       \
 512         t1 = t0+t0; t2 += (t1<t0)?1:0;       \
 513         c0 += t1; t2 += (c0<t1)?1:0; \
 514         c1 += t2; c2 += (c1<t2)?1:0; \
 515         }
 516 
 517 #define sqr_add_c(a,i,c0,c1,c2) {       \
 518         BN_ULONG ta=(a)[i];             \
 519         t1 = ta * ta;                   \
 520         t2 = BN_UMULT_HIGH(ta,ta);      \
 521         c0 += t1; t2 += (c0<t1)?1:0; \
 522         c1 += t2; c2 += (c1<t2)?1:0; \
 523         }
 524 
 525 #define sqr_add_c2(a,i,j,c0,c1,c2)      \
 526         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
 527 
 528 #else /* !BN_LLONG */
 529 #define mul_add_c(a,b,c0,c1,c2) \
 530         t1=LBITS(a); t2=HBITS(a); \
 531         bl=LBITS(b); bh=HBITS(b); \
 532         mul64(t1,t2,bl,bh); \
 533         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
 534         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 535 
 536 #define mul_add_c2(a,b,c0,c1,c2) \
 537         t1=LBITS(a); t2=HBITS(a); \
 538         bl=LBITS(b); bh=HBITS(b); \
 539         mul64(t1,t2,bl,bh); \
 540         if (t2 & BN_TBIT) c2++; \
 541         t2=(t2+t2)&BN_MASK2; \
 542         if (t1 & BN_TBIT) t2++; \
 543         t1=(t1+t1)&BN_MASK2; \
 544         c0=(c0+t1)&BN_MASK2;  \
 545         if ((c0 < t1) && (((++t2)&BN_MASK2) == 0)) c2++; \
 546         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 547 
 548 #define sqr_add_c(a,i,c0,c1,c2) \
 549         sqr64(t1,t2,(a)[i]); \
 550         c0=(c0+t1)&BN_MASK2; if ((c0) < t1) t2++; \
 551         c1=(c1+t2)&BN_MASK2; if ((c1) < t2) c2++;
 552 
 553 #define sqr_add_c2(a,i,j,c0,c1,c2) \
 554         mul_add_c2((a)[i],(a)[j],c0,c1,c2)
 555 #endif /* !BN_LLONG */
 556 
 557 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
 558         {
 559 #ifdef BN_LLONG
 560         BN_ULLONG t;
 561 #else
 562         BN_ULONG bl,bh;
 563 #endif
 564         BN_ULONG t1,t2;
 565         BN_ULONG c1,c2,c3;
 566 
 567         c1=0;
 568         c2=0;
 569         c3=0;
 570         mul_add_c(a[0],b[0],c1,c2,c3);
 571         r[0]=c1;
 572         c1=0;
 573         mul_add_c(a[0],b[1],c2,c3,c1);
 574         mul_add_c(a[1],b[0],c2,c3,c1);
 575         r[1]=c2;
 576         c2=0;
 577         mul_add_c(a[2],b[0],c3,c1,c2);
 578         mul_add_c(a[1],b[1],c3,c1,c2);
 579         mul_add_c(a[0],b[2],c3,c1,c2);
 580         r[2]=c3;
 581         c3=0;
 582         mul_add_c(a[0],b[3],c1,c2,c3);
 583         mul_add_c(a[1],b[2],c1,c2,c3);
 584         mul_add_c(a[2],b[1],c1,c2,c3);
 585         mul_add_c(a[3],b[0],c1,c2,c3);
 586         r[3]=c1;
 587         c1=0;
 588         mul_add_c(a[4],b[0],c2,c3,c1);
 589         mul_add_c(a[3],b[1],c2,c3,c1);
 590         mul_add_c(a[2],b[2],c2,c3,c1);
 591         mul_add_c(a[1],b[3],c2,c3,c1);
 592         mul_add_c(a[0],b[4],c2,c3,c1);
 593         r[4]=c2;
 594         c2=0;
 595         mul_add_c(a[0],b[5],c3,c1,c2);
 596         mul_add_c(a[1],b[4],c3,c1,c2);
 597         mul_add_c(a[2],b[3],c3,c1,c2);
 598         mul_add_c(a[3],b[2],c3,c1,c2);
 599         mul_add_c(a[4],b[1],c3,c1,c2);
 600         mul_add_c(a[5],b[0],c3,c1,c2);
 601         r[5]=c3;
 602         c3=0;
 603         mul_add_c(a[6],b[0],c1,c2,c3);
 604         mul_add_c(a[5],b[1],c1,c2,c3);
 605         mul_add_c(a[4],b[2],c1,c2,c3);
 606         mul_add_c(a[3],b[3],c1,c2,c3);
 607         mul_add_c(a[2],b[4],c1,c2,c3);
 608         mul_add_c(a[1],b[5],c1,c2,c3);
 609         mul_add_c(a[0],b[6],c1,c2,c3);
 610         r[6]=c1;
 611         c1=0;
 612         mul_add_c(a[0],b[7],c2,c3,c1);
 613         mul_add_c(a[1],b[6],c2,c3,c1);
 614         mul_add_c(a[2],b[5],c2,c3,c1);
 615         mul_add_c(a[3],b[4],c2,c3,c1);
 616         mul_add_c(a[4],b[3],c2,c3,c1);
 617         mul_add_c(a[5],b[2],c2,c3,c1);
 618         mul_add_c(a[6],b[1],c2,c3,c1);
 619         mul_add_c(a[7],b[0],c2,c3,c1);
 620         r[7]=c2;
 621         c2=0;
 622         mul_add_c(a[7],b[1],c3,c1,c2);
 623         mul_add_c(a[6],b[2],c3,c1,c2);
 624         mul_add_c(a[5],b[3],c3,c1,c2);
 625         mul_add_c(a[4],b[4],c3,c1,c2);
 626         mul_add_c(a[3],b[5],c3,c1,c2);
 627         mul_add_c(a[2],b[6],c3,c1,c2);
 628         mul_add_c(a[1],b[7],c3,c1,c2);
 629         r[8]=c3;
 630         c3=0;
 631         mul_add_c(a[2],b[7],c1,c2,c3);
 632         mul_add_c(a[3],b[6],c1,c2,c3);
 633         mul_add_c(a[4],b[5],c1,c2,c3);
 634         mul_add_c(a[5],b[4],c1,c2,c3);
 635         mul_add_c(a[6],b[3],c1,c2,c3);
 636         mul_add_c(a[7],b[2],c1,c2,c3);
 637         r[9]=c1;
 638         c1=0;
 639         mul_add_c(a[7],b[3],c2,c3,c1);
 640         mul_add_c(a[6],b[4],c2,c3,c1);
 641         mul_add_c(a[5],b[5],c2,c3,c1);
 642         mul_add_c(a[4],b[6],c2,c3,c1);
 643         mul_add_c(a[3],b[7],c2,c3,c1);
 644         r[10]=c2;
 645         c2=0;
 646         mul_add_c(a[4],b[7],c3,c1,c2);
 647         mul_add_c(a[5],b[6],c3,c1,c2);
 648         mul_add_c(a[6],b[5],c3,c1,c2);
 649         mul_add_c(a[7],b[4],c3,c1,c2);
 650         r[11]=c3;
 651         c3=0;
 652         mul_add_c(a[7],b[5],c1,c2,c3);
 653         mul_add_c(a[6],b[6],c1,c2,c3);
 654         mul_add_c(a[5],b[7],c1,c2,c3);
 655         r[12]=c1;
 656         c1=0;
 657         mul_add_c(a[6],b[7],c2,c3,c1);
 658         mul_add_c(a[7],b[6],c2,c3,c1);
 659         r[13]=c2;
 660         c2=0;
 661         mul_add_c(a[7],b[7],c3,c1,c2);
 662         r[14]=c3;
 663         r[15]=c1;
 664         }
 665 
 666 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
 667         {
 668 #ifdef BN_LLONG
 669         BN_ULLONG t;
 670 #else
 671         BN_ULONG bl,bh;
 672 #endif
 673         BN_ULONG t1,t2;
 674         BN_ULONG c1,c2,c3;
 675 
 676         c1=0;
 677         c2=0;
 678         c3=0;
 679         mul_add_c(a[0],b[0],c1,c2,c3);
 680         r[0]=c1;
 681         c1=0;
 682         mul_add_c(a[0],b[1],c2,c3,c1);
 683         mul_add_c(a[1],b[0],c2,c3,c1);
 684         r[1]=c2;
 685         c2=0;
 686         mul_add_c(a[2],b[0],c3,c1,c2);
 687         mul_add_c(a[1],b[1],c3,c1,c2);
 688         mul_add_c(a[0],b[2],c3,c1,c2);
 689         r[2]=c3;
 690         c3=0;
 691         mul_add_c(a[0],b[3],c1,c2,c3);
 692         mul_add_c(a[1],b[2],c1,c2,c3);
 693         mul_add_c(a[2],b[1],c1,c2,c3);
 694         mul_add_c(a[3],b[0],c1,c2,c3);
 695         r[3]=c1;
 696         c1=0;
 697         mul_add_c(a[3],b[1],c2,c3,c1);
 698         mul_add_c(a[2],b[2],c2,c3,c1);
 699         mul_add_c(a[1],b[3],c2,c3,c1);
 700         r[4]=c2;
 701         c2=0;
 702         mul_add_c(a[2],b[3],c3,c1,c2);
 703         mul_add_c(a[3],b[2],c3,c1,c2);
 704         r[5]=c3;
 705         c3=0;
 706         mul_add_c(a[3],b[3],c1,c2,c3);
 707         r[6]=c1;
 708         r[7]=c2;
 709         }
 710 
 711 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
 712         {
 713 #ifdef BN_LLONG
 714         BN_ULLONG t,tt;
 715 #else
 716         BN_ULONG bl,bh;
 717 #endif
 718         BN_ULONG t1,t2;
 719         BN_ULONG c1,c2,c3;
 720 
 721         c1=0;
 722         c2=0;
 723         c3=0;
 724         sqr_add_c(a,0,c1,c2,c3);
 725         r[0]=c1;
 726         c1=0;
 727         sqr_add_c2(a,1,0,c2,c3,c1);
 728         r[1]=c2;
 729         c2=0;
 730         sqr_add_c(a,1,c3,c1,c2);
 731         sqr_add_c2(a,2,0,c3,c1,c2);
 732         r[2]=c3;
 733         c3=0;
 734         sqr_add_c2(a,3,0,c1,c2,c3);
 735         sqr_add_c2(a,2,1,c1,c2,c3);
 736         r[3]=c1;
 737         c1=0;
 738         sqr_add_c(a,2,c2,c3,c1);
 739         sqr_add_c2(a,3,1,c2,c3,c1);
 740         sqr_add_c2(a,4,0,c2,c3,c1);
 741         r[4]=c2;
 742         c2=0;
 743         sqr_add_c2(a,5,0,c3,c1,c2);
 744         sqr_add_c2(a,4,1,c3,c1,c2);
 745         sqr_add_c2(a,3,2,c3,c1,c2);
 746         r[5]=c3;
 747         c3=0;
 748         sqr_add_c(a,3,c1,c2,c3);
 749         sqr_add_c2(a,4,2,c1,c2,c3);
 750         sqr_add_c2(a,5,1,c1,c2,c3);
 751         sqr_add_c2(a,6,0,c1,c2,c3);
 752         r[6]=c1;
 753         c1=0;
 754         sqr_add_c2(a,7,0,c2,c3,c1);
 755         sqr_add_c2(a,6,1,c2,c3,c1);
 756         sqr_add_c2(a,5,2,c2,c3,c1);
 757         sqr_add_c2(a,4,3,c2,c3,c1);
 758         r[7]=c2;
 759         c2=0;
 760         sqr_add_c(a,4,c3,c1,c2);
 761         sqr_add_c2(a,5,3,c3,c1,c2);
 762         sqr_add_c2(a,6,2,c3,c1,c2);
 763         sqr_add_c2(a,7,1,c3,c1,c2);
 764         r[8]=c3;
 765         c3=0;
 766         sqr_add_c2(a,7,2,c1,c2,c3);
 767         sqr_add_c2(a,6,3,c1,c2,c3);
 768         sqr_add_c2(a,5,4,c1,c2,c3);
 769         r[9]=c1;
 770         c1=0;
 771         sqr_add_c(a,5,c2,c3,c1);
 772         sqr_add_c2(a,6,4,c2,c3,c1);
 773         sqr_add_c2(a,7,3,c2,c3,c1);
 774         r[10]=c2;
 775         c2=0;
 776         sqr_add_c2(a,7,4,c3,c1,c2);
 777         sqr_add_c2(a,6,5,c3,c1,c2);
 778         r[11]=c3;
 779         c3=0;
 780         sqr_add_c(a,6,c1,c2,c3);
 781         sqr_add_c2(a,7,5,c1,c2,c3);
 782         r[12]=c1;
 783         c1=0;
 784         sqr_add_c2(a,7,6,c2,c3,c1);
 785         r[13]=c2;
 786         c2=0;
 787         sqr_add_c(a,7,c3,c1,c2);
 788         r[14]=c3;
 789         r[15]=c1;
 790         }
 791 
 792 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
 793         {
 794 #ifdef BN_LLONG
 795         BN_ULLONG t,tt;
 796 #else
 797         BN_ULONG bl,bh;
 798 #endif
 799         BN_ULONG t1,t2;
 800         BN_ULONG c1,c2,c3;
 801 
 802         c1=0;
 803         c2=0;
 804         c3=0;
 805         sqr_add_c(a,0,c1,c2,c3);
 806         r[0]=c1;
 807         c1=0;
 808         sqr_add_c2(a,1,0,c2,c3,c1);
 809         r[1]=c2;
 810         c2=0;
 811         sqr_add_c(a,1,c3,c1,c2);
 812         sqr_add_c2(a,2,0,c3,c1,c2);
 813         r[2]=c3;
 814         c3=0;
 815         sqr_add_c2(a,3,0,c1,c2,c3);
 816         sqr_add_c2(a,2,1,c1,c2,c3);
 817         r[3]=c1;
 818         c1=0;
 819         sqr_add_c(a,2,c2,c3,c1);
 820         sqr_add_c2(a,3,1,c2,c3,c1);
 821         r[4]=c2;
 822         c2=0;
 823         sqr_add_c2(a,3,2,c3,c1,c2);
 824         r[5]=c3;
 825         c3=0;
 826         sqr_add_c(a,3,c1,c2,c3);
 827         r[6]=c1;
 828         r[7]=c2;
 829         }
 830 
 831 #ifdef OPENSSL_NO_ASM
 832 #ifdef OPENSSL_BN_ASM_MONT
 833 #include <alloca.h>
 834 /*
 835  * This is essentially reference implementation, which may or may not
 836  * result in performance improvement. E.g. on IA-32 this routine was
 837  * observed to give 40% faster rsa1024 private key operations and 10%
 838  * faster rsa4096 ones, while on AMD64 it improves rsa1024 sign only
 839  * by 10% and *worsens* rsa4096 sign by 15%. Once again, it's a
 840  * reference implementation, one to be used as starting point for
 841  * platform-specific assembler. Mentioned numbers apply to compiler
 842  * generated code compiled with and without -DOPENSSL_BN_ASM_MONT and
 843  * can vary not only from platform to platform, but even for compiler
 844  * versions. Assembler vs. assembler improvement coefficients can
 845  * [and are known to] differ and are to be documented elsewhere.
 846  */
 847 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
 848         {
 849         BN_ULONG c0,c1,ml,*tp,n0;
 850 #ifdef mul64
 851         BN_ULONG mh;
 852 #endif
 853         volatile BN_ULONG *vp;
 854         int i=0,j;
 855 
 856 #if 0   /* template for platform-specific implementation */
 857         if (ap==bp)     return bn_sqr_mont(rp,ap,np,n0p,num);
 858 #endif
 859         vp = tp = alloca((num+2)*sizeof(BN_ULONG));
 860 
 861         n0 = *n0p;
 862 
 863         c0 = 0;
 864         ml = bp[0];
 865 #ifdef mul64
 866         mh = HBITS(ml);
 867         ml = LBITS(ml);
 868         for (j=0;j<num;++j)
 869                 mul(tp[j],ap[j],ml,mh,c0);
 870 #else
 871         for (j=0;j<num;++j)
 872                 mul(tp[j],ap[j],ml,c0);
 873 #endif
 874 
 875         tp[num]   = c0;
 876         tp[num+1] = 0;
 877         goto enter;
 878 
 879         for(i=0;i<num;i++)
 880                 {
 881                 c0 = 0;
 882                 ml = bp[i];
 883 #ifdef mul64
 884                 mh = HBITS(ml);
 885                 ml = LBITS(ml);
 886                 for (j=0;j<num;++j)
 887                         mul_add(tp[j],ap[j],ml,mh,c0);
 888 #else
 889                 for (j=0;j<num;++j)
 890                         mul_add(tp[j],ap[j],ml,c0);
 891 #endif
 892                 c1 = (tp[num] + c0)&BN_MASK2;
 893                 tp[num]   = c1;
 894                 tp[num+1] = (c1<c0?1:0);
 895         enter:
 896                 c1  = tp[0];
 897                 ml = (c1*n0)&BN_MASK2;
 898                 c0 = 0;
 899 #ifdef mul64
 900                 mh = HBITS(ml);
 901                 ml = LBITS(ml);
 902                 mul_add(c1,np[0],ml,mh,c0);
 903 #else
 904                 mul_add(c1,ml,np[0],c0);
 905 #endif
 906                 for(j=1;j<num;j++)
 907                         {
 908                         c1 = tp[j];
 909 #ifdef mul64
 910                         mul_add(c1,np[j],ml,mh,c0);
 911 #else
 912                         mul_add(c1,ml,np[j],c0);
 913 #endif
 914                         tp[j-1] = c1&BN_MASK2;
 915                         }
 916                 c1        = (tp[num] + c0)&BN_MASK2;
 917                 tp[num-1] = c1;
 918                 tp[num]   = tp[num+1] + (c1<c0?1:0);
 919                 }
 920 
 921         if (tp[num]!=0 || tp[num-1]>=np[num-1])
 922                 {
 923                 c0 = bn_sub_words(rp,tp,np,num);
 924                 if (tp[num]!=0 || c0==0)
 925                         {
 926                         for(i=0;i<num+2;i++) vp[i] = 0;
 927                         return 1;
 928                         }
 929                 }
 930         for(i=0;i<num;i++)   rp[i] = tp[i],  vp[i] = 0;
 931         vp[num]   = 0;
 932         vp[num+1] = 0;
 933         return 1;
 934         }
 935 #else
 936 /*
 937  * Return value of 0 indicates that multiplication/convolution was not
 938  * performed to signal the caller to fall down to alternative/original
 939  * code-path.
 940  */
 941 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
 942 {       return 0;       }
 943 #endif /* OPENSSL_BN_ASM_MONT */
 944 #endif
 945 
 946 #else /* !BN_MUL_COMBA */
 947 
 948 /* hmm... is it faster just to do a multiply? */
 949 #undef bn_sqr_comba4
 950 void bn_sqr_comba4(BN_ULONG *r, const BN_ULONG *a)
 951         {
 952         BN_ULONG t[8];
 953         bn_sqr_normal(r,a,4,t);
 954         }
 955 
 956 #undef bn_sqr_comba8
 957 void bn_sqr_comba8(BN_ULONG *r, const BN_ULONG *a)
 958         {
 959         BN_ULONG t[16];
 960         bn_sqr_normal(r,a,8,t);
 961         }
 962 
 963 void bn_mul_comba4(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
 964         {
 965         r[4]=bn_mul_words(    &(r[0]),a,4,b[0]);
 966         r[5]=bn_mul_add_words(&(r[1]),a,4,b[1]);
 967         r[6]=bn_mul_add_words(&(r[2]),a,4,b[2]);
 968         r[7]=bn_mul_add_words(&(r[3]),a,4,b[3]);
 969         }
 970 
 971 void bn_mul_comba8(BN_ULONG *r, BN_ULONG *a, BN_ULONG *b)
 972         {
 973         r[ 8]=bn_mul_words(    &(r[0]),a,8,b[0]);
 974         r[ 9]=bn_mul_add_words(&(r[1]),a,8,b[1]);
 975         r[10]=bn_mul_add_words(&(r[2]),a,8,b[2]);
 976         r[11]=bn_mul_add_words(&(r[3]),a,8,b[3]);
 977         r[12]=bn_mul_add_words(&(r[4]),a,8,b[4]);
 978         r[13]=bn_mul_add_words(&(r[5]),a,8,b[5]);
 979         r[14]=bn_mul_add_words(&(r[6]),a,8,b[6]);
 980         r[15]=bn_mul_add_words(&(r[7]),a,8,b[7]);
 981         }
 982 
 983 #ifdef OPENSSL_NO_ASM
 984 #ifdef OPENSSL_BN_ASM_MONT
 985 #include <alloca.h>
 986 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0p, int num)
 987         {
 988         BN_ULONG c0,c1,*tp,n0=*n0p;
 989         volatile BN_ULONG *vp;
 990         int i=0,j;
 991 
 992         vp = tp = alloca((num+2)*sizeof(BN_ULONG));
 993 
 994         for(i=0;i<=num;i++)  tp[i]=0;
 995 
 996         for(i=0;i<num;i++)
 997                 {
 998                 c0         = bn_mul_add_words(tp,ap,num,bp[i]);
 999                 c1         = (tp[num] + c0)&BN_MASK2;
1000                 tp[num]    = c1;
1001                 tp[num+1]  = (c1<c0?1:0);
1002 
1003                 c0         = bn_mul_add_words(tp,np,num,tp[0]*n0);
1004                 c1         = (tp[num] + c0)&BN_MASK2;
1005                 tp[num]    = c1;
1006                 tp[num+1] += (c1<c0?1:0);
1007                 for(j=0;j<=num;j++)  tp[j]=tp[j+1];
1008                 }
1009 
1010         if (tp[num]!=0 || tp[num-1]>=np[num-1])
1011                 {
1012                 c0 = bn_sub_words(rp,tp,np,num);
1013                 if (tp[num]!=0 || c0==0)
1014                         {
1015                         for(i=0;i<num+2;i++) vp[i] = 0;
1016                         return 1;
1017                         }
1018                 }
1019         for(i=0;i<num;i++)   rp[i] = tp[i],  vp[i] = 0;
1020         vp[num]   = 0;
1021         vp[num+1] = 0;
1022         return 1;
1023         }
1024 #else
1025 int bn_mul_mont(BN_ULONG *rp, const BN_ULONG *ap, const BN_ULONG *bp, const BN_ULONG *np,const BN_ULONG *n0, int num)
1026 {       return 0;       }
1027 #endif /* OPENSSL_BN_ASM_MONT */
1028 #endif
1029 
1030 #endif /* !BN_MUL_COMBA */