
new/usr/src/uts/common/sys/feature_tests.h 1

**
 14668 Fri Jun 21 17:40:58 2013
new/usr/src/uts/common/sys/feature_tests.h
Be more consistent with other OSes. Try to avoid failing on unknown _XOPEN_SOURC
3801 _XOPEN_SOURCE value is ignored if __XOPEN_SOURCE_EXTENDED is set
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _SYS_FEATURE_TESTS_H
28 #define _SYS_FEATURE_TESTS_H

30 #include <sys/ccompile.h>
31 #include <sys/isa_defs.h>

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 /*
38 * Values of _POSIX_C_SOURCE
39 *
40 * undefined not a POSIX compilation
41 * 1 POSIX.1-1990 compilation
42 * 2 POSIX.2-1992 compilation
43 * 199309L POSIX.1b-1993 compilation (Real Time)
44 * 199506L POSIX.1c-1995 compilation (POSIX Threads)
45 * 200112L POSIX.1-2001 compilation (Austin Group Revision)
46 */
47 #if defined(_POSIX_SOURCE) && !defined(_POSIX_C_SOURCE)
48 #define _POSIX_C_SOURCE 1
49 #endif

51 /*
52 * The feature test macros __XOPEN_OR_POSIX, _STRICT_STDC, and _STDC_C99
53 * are Sun implementation specific macros created in order to compress
54 * common standards specified feature test macros for easier reading.
55 * These macros should not be used by the application developer as
56 * unexpected results may occur. Instead, the user should reference
57 * standards(5) for correct usage of the standards feature test macros.
58 *
59 * __XOPEN_OR_POSIX Used in cases where a symbol is defined by both
60 * X/Open or POSIX or in the negative, when neither

new/usr/src/uts/common/sys/feature_tests.h 2

61 * X/Open or POSIX defines a symbol.
62 *
63 * _STRICT_STDC __STDC__ is specified by the C Standards and defined
64 * by the compiler. For Sun compilers the value of
65 * __STDC__ is either 1, 0, or not defined based on the
66 * compilation mode (see cc(1)). When the value of
67 * __STDC__ is 1 and in the absence of any other feature
68 * test macros, the namespace available to the application
69 * is limited to only those symbols defined by the C
70 * Standard. _STRICT_STDC provides a more readable means
71 * of identifying symbols defined by the standard, or in
72 * the negative, symbols that are extensions to the C
73 * Standard. See additional comments for GNU C differences.
74 *
75 * _STDC_C99 __STDC_VERSION__ is specified by the C standards and
76 * defined by the compiler and indicates the version of
77 * the C standard. A value of 199901L indicates a
78 * compiler that complies with ISO/IEC 9899:1999, other-
79 * wise known as the C99 standard.
80 */

82 #if defined(_XOPEN_SOURCE) || defined(_POSIX_C_SOURCE)
83 #define __XOPEN_OR_POSIX
84 #endif

86 /*
87 * ISO/IEC 9899:1990 and it’s revision, ISO/IEC 9899:1999 specify the
88 * following predefined macro name:
89 *
90 * __STDC__ The integer constant 1, intended to indicate a conforming
91 * implementation.
92 *
93 * Furthermore, a strictly conforming program shall use only those features
94 * of the language and library specified in these standards. A conforming
95 * implementation shall accept any strictly conforming program.
96 *
97 * Based on these requirements, Sun’s C compiler defines __STDC__ to 1 for
98 * strictly conforming environments and __STDC__ to 0 for environments that
99 * use ANSI C semantics but allow extensions to the C standard. For non-ANSI
100 * C semantics, Sun’s C compiler does not define __STDC__.
101 *
102 * The GNU C project interpretation is that __STDC__ should always be defined
103 * to 1 for compilation modes that accept ANSI C syntax regardless of whether
104 * or not extensions to the C standard are used. Violations of conforming
105 * behavior are conditionally flagged as warnings via the use of the
106 * -pedantic option. In addition to defining __STDC__ to 1, the GNU C
107 * compiler also defines __STRICT_ANSI__ as a means of specifying strictly
108 * conforming environments using the -ansi or -std=<standard> options.
109 *
110 * In the absence of any other compiler options, Sun and GNU set the value
111 * of __STDC__ as follows when using the following options:
112 *
113 * Value of __STDC__ __STRICT_ANSI__
114 *
115 * cc -Xa (default) 0 undefined
116 * cc -Xt (transitional) 0 undefined
117 * cc -Xc (strictly conforming) 1 undefined
118 * cc -Xs (K&R C) undefined undefined
119 *
120 * gcc (default) 1 undefined
121 * gcc -ansi, -std={c89, c99,...) 1 defined
122 * gcc -traditional (K&R) undefined undefined
123 *
124 * The default compilation modes for Sun C compilers versus GNU C compilers
125 * results in a differing value for __STDC__ which results in a more
126 * restricted namespace when using Sun compilers. To allow both GNU and Sun

new/usr/src/uts/common/sys/feature_tests.h 3

127 * interpretations to peacefully co-exist, we use the following Sun
128 * implementation _STRICT_STDC_ macro:
129 */

131 #if (__STDC__ - 0 == 1 && !defined(__GNUC__)) || \
132 (defined(__GNUC__) && defined(__STRICT_ANSI__))
133 #define _STRICT_STDC
134 #else
135 #undef _STRICT_STDC
136 #endif

138 /*
139 * Compiler complies with ISO/IEC 9899:1999
140 */

142 #if __STDC_VERSION__ - 0 >= 199901L
143 #define _STDC_C99
144 #endif

146 /*
147 * Large file interfaces:
148 *
149 * _LARGEFILE_SOURCE
150 * 1 large file-related additions to POSIX
151 * interfaces requested (fseeko, etc.)
152 * _LARGEFILE64_SOURCE
153 * 1 transitional large-file-related interfaces
154 * requested (seek64, stat64, etc.)
155 *
156 * The corresponding announcement macros are respectively:
157 * _LFS_LARGEFILE
158 * _LFS64_LARGEFILE
159 * (These are set in <unistd.h>.)
160 *
161 * Requesting _LARGEFILE64_SOURCE implies requesting _LARGEFILE_SOURCE as
162 * well.
163 *
164 * The large file interfaces are made visible regardless of the initial values
165 * of the feature test macros under certain circumstances:
166 * - If no explicit standards-conforming environment is requested (neither
167 * of _POSIX_SOURCE nor _XOPEN_SOURCE is defined and the value of
168 * __STDC__ does not imply standards conformance).
169 * - Extended system interfaces are explicitly requested (__EXTENSIONS__
170 * is defined).
171 * - Access to in-kernel interfaces is requested (_KERNEL or _KMEMUSER is
172 * defined). (Note that this dependency is an artifact of the current
173 * kernel implementation and may change in future releases.)
174 */
175 #if (!defined(_STRICT_STDC) && !defined(__XOPEN_OR_POSIX)) || \
176 defined(_KERNEL) || defined(_KMEMUSER) || \
177 defined(__EXTENSIONS__)
178 #undef _LARGEFILE64_SOURCE
179 #define _LARGEFILE64_SOURCE 1
180 #endif
181 #if _LARGEFILE64_SOURCE - 0 == 1
182 #undef _LARGEFILE_SOURCE
183 #define _LARGEFILE_SOURCE 1
184 #endif

186 /*
187 * Large file compilation environment control:
188 *
189 * The setting of _FILE_OFFSET_BITS controls the size of various file-related
190 * types and governs the mapping between file-related source function symbol
191 * names and the corresponding binary entry points.
192 *

new/usr/src/uts/common/sys/feature_tests.h 4

193 * In the 32-bit environment, the default value is 32; if not set, set it to
194 * the default here, to simplify tests in other headers.
195 *
196 * In the 64-bit compilation environment, the only value allowed is 64.
197 */
198 #if defined(_LP64)
199 #ifndef _FILE_OFFSET_BITS
200 #define _FILE_OFFSET_BITS 64
201 #endif
202 #if _FILE_OFFSET_BITS - 0 != 64
203 #error "invalid _FILE_OFFSET_BITS value specified"
204 #endif
205 #else /* _LP64 */
206 #ifndef _FILE_OFFSET_BITS
207 #define _FILE_OFFSET_BITS 32
208 #endif
209 #if _FILE_OFFSET_BITS - 0 != 32 && _FILE_OFFSET_BITS - 0 != 64
210 #error "invalid _FILE_OFFSET_BITS value specified"
211 #endif
212 #endif /* _LP64 */

214 /*
215 * Use of _XOPEN_SOURCE
216 *
217 * The following X/Open specifications are supported:
218 *
219 * X/Open Portability Guide, Issue 3 (XPG3)
220 * X/Open CAE Specification, Issue 4 (XPG4)
221 * X/Open CAE Specification, Issue 4, Version 2 (XPG4v2)
222 * X/Open CAE Specification, Issue 5 (XPG5)
223 * Open Group Technical Standard, Issue 6 (XPG6), also referred to as
224 * IEEE Std. 1003.1-2001 and ISO/IEC 9945:2002.
225 *
226 * XPG4v2 is also referred to as UNIX 95 (SUS or SUSv1).
227 * XPG5 is also referred to as UNIX 98 or the Single Unix Specification,
228 * Version 2 (SUSv2)
229 * XPG6 is the result of a merge of the X/Open and POSIX specifications
230 * and as such is also referred to as IEEE Std. 1003.1-2001 in
231 * addition to UNIX 03 and SUSv3.
232 *
233 * When writing a conforming X/Open application, as per the specification
234 * requirements, the appropriate feature test macros must be defined at
235 * compile time. These are as follows. For more info, see standards(5).
236 *
237 * Feature Test Macro Specification
238 * -- -------------
239 * _XOPEN_SOURCE >= 600 (or POSIX_C_SOURCE>=200112L) XPG6
240 * _XOPEN_SOURCE >= 500 XPG5
241 * _XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED = 1 XPG4v2
242 * _XOPEN_SOURCE && _XOPEN_VERSION = 4 XPG4
243 #endif /* ! codereview */
244 * _XOPEN_SOURCE XPG3
239 * _XOPEN_SOURCE && _XOPEN_VERSION = 4 XPG4
240 * _XOPEN_SOURCE && _XOPEN_SOURCE_EXTENDED = 1 XPG4v2
241 * _XOPEN_SOURCE = 500 XPG5
242 * _XOPEN_SOURCE = 600 (or POSIX_C_SOURCE=200112L) XPG6
245 *
246 * In order to simplify the guards within the headers, the following
247 * implementation private test macros have been created. Applications
248 * must NOT use these private test macros as unexpected results will
249 * occur.
250 *
251 * Note that in general, the use of these private macros is cumulative.
252 * For example, the use of _XPG3 with no other restrictions on the X/Open
253 * namespace will make the symbols visible for XPG3 through XPG6
254 * compilation environments. The use of _XPG4_2 with no other X/Open

new/usr/src/uts/common/sys/feature_tests.h 5

255 * namespace restrictions indicates that the symbols were introduced in
256 * XPG4v2 and are therefore visible for XPG4v2 through XPG6 compilation
257 * environments, but not for XPG3 or XPG4 compilation environments.
258 *
259 * _XPG3 X/Open Portability Guide, Issue 3 (XPG3)
260 * _XPG4 X/Open CAE Specification, Issue 4 (XPG4)
261 * _XPG4_2 X/Open CAE Specification, Issue 4, Version 2 (XPG4v2/UNIX 95/SUS)
262 * _XPG5 X/Open CAE Specification, Issue 5 (XPG5/UNIX 98/SUSv2)
263 * _XPG6 Open Group Technical Standard, Issue 6 (XPG6/UNIX 03/SUSv3)
264 */

266 /* Open Group Technical Standard , Issue 6 */
267 #if (_XOPEN_SOURCE - 0 >= 600) || (_POSIX_C_SOURCE - 0 >= 200112L)
268 #define _XPG6
269 #define _XPG5
264 /* X/Open Portability Guide, Issue 3 */
265 #if defined(_XOPEN_SOURCE) && (_XOPEN_SOURCE - 0 < 500) && \
266 (_XOPEN_VERSION - 0 < 4) && !defined(_XOPEN_SOURCE_EXTENDED)
267 #define _XPG3
268 /* X/Open CAE Specification, Issue 4 */
269 #elif (defined(_XOPEN_SOURCE) && _XOPEN_VERSION - 0 == 4)
270 #define _XPG4
271 #define _XPG3
272 /* X/Open CAE Specification, Issue 4, Version 2 */
273 #elif (defined(_XOPEN_SOURCE) && _XOPEN_SOURCE_EXTENDED - 0 == 1)
270 #define _XPG4_2
271 #define _XPG4
272 #define _XPG3
273 #undef _POSIX_C_SOURCE
274 #define _POSIX_C_SOURCE 200112L
275 #undef _XOPEN_SOURCE
276 #define _XOPEN_SOURCE 600
277 #endif /* ! codereview */
278 /* X/Open CAE Specification, Issue 5 */
279 #elif (_XOPEN_SOURCE - 0 >= 500)
277 #elif (_XOPEN_SOURCE - 0 == 500)
280 #define _XPG5
281 #define _XPG4_2
282 #define _XPG4
283 #define _XPG3
284 #undef _POSIX_C_SOURCE
285 #define _POSIX_C_SOURCE 199506L
286 /* X/Open CAE Specification, Issue 4, Version 2 */
287 #elif (defined(_XOPEN_SOURCE) && _XOPEN_SOURCE_EXTENDED - 0 == 1)
284 /* Open Group Technical Standard , Issue 6 */
285 #elif (_XOPEN_SOURCE - 0 == 600) || (_POSIX_C_SOURCE - 0 == 200112L)
286 #define _XPG6
287 #define _XPG5
288 #define _XPG4_2
289 #define _XPG4
290 #define _XPG3
291 /* X/Open CAE Specification, Issue 4 */
292 #elif (defined(_XOPEN_SOURCE) && _XOPEN_VERSION - 0 == 4)
293 #define _XPG4
294 #define _XPG3
295 /* X/Open Portability Guide, Issue 3 */
296 #elif defined(_XOPEN_SOURCE) && (_XOPEN_VERSION - 0 < 4)
297 #define _XPG3
291 #undef _POSIX_C_SOURCE
292 #define _POSIX_C_SOURCE 200112L
293 #undef _XOPEN_SOURCE
294 #define _XOPEN_SOURCE 600
298 #endif

300 /*
301 * _XOPEN_VERSION is defined by the X/Open specifications and is not

new/usr/src/uts/common/sys/feature_tests.h 6

302 * normally defined by the application, except in the case of an XPG4
303 * application. On the implementation side, _XOPEN_VERSION defined with
304 * the value of 3 indicates an XPG3 application. _XOPEN_VERSION defined
305 * with the value of 4 indicates an XPG4 or XPG4v2 (UNIX 95) application.
306 * _XOPEN_VERSION defined with a value of 500 indicates an XPG5 (UNIX 98)
307 * application and with a value of 600 indicates an XPG6 (UNIX 03)
308 * application. The appropriate version is determined by the use of the
309 * feature test macros described earlier. The value of _XOPEN_VERSION
310 * defaults to 3 otherwise indicating support for XPG3 applications.
311 */
312 #ifndef _XOPEN_VERSION
313 #ifdef _XPG6
314 #define _XOPEN_VERSION 600
315 #elif defined(_XPG5)
316 #define _XOPEN_VERSION 500
317 #elif defined(_XPG4_2)
318 #define _XOPEN_VERSION 4
319 #else
320 #define _XOPEN_VERSION 3
321 #endif
322 #endif

324 /*
325 * ANSI C and ISO 9899:1990 say the type long long doesn’t exist in strictly
326 * conforming environments. ISO 9899:1999 says it does.
327 *
328 * The presence of _LONGLONG_TYPE says "long long exists" which is therefore
329 * defined in all but strictly conforming environments that disallow it.
330 */
331 #if !defined(_STDC_C99) && defined(_STRICT_STDC) && !defined(__GNUC__)
332 /*
333 * Resist attempts to force the definition of long long in this case.
334 */
335 #if defined(_LONGLONG_TYPE)
336 #error "No long long in strictly conforming ANSI C & 1990 ISO C environments"
337 #endif
338 #else
339 #if !defined(_LONGLONG_TYPE)
340 #define _LONGLONG_TYPE
341 #endif
342 #endif

344 /*
345 * It is invalid to compile an XPG3, XPG4, XPG4v2, or XPG5 application
346 * using c99. The same is true for POSIX.1-1990, POSIX.2-1992, POSIX.1b,
347 * and POSIX.1c applications. Likewise, it is invalid to compile an XPG6
348 * or a POSIX.1-2001 application with anything other than a c99 or later
349 * compiler. Therefore, we force an error in both cases.
350 */
351 #if defined(_STDC_C99) && (defined(__XOPEN_OR_POSIX) && !defined(_XPG6))
352 #error "Compiler or options invalid for pre-UNIX 03 X/Open applications \
353 and pre-2001 POSIX applications"
354 #elif !defined(_STDC_C99) && \
355 (defined(__XOPEN_OR_POSIX) && defined(_XPG6))
356 #error "Compiler or options invalid; UNIX 03 and POSIX.1-2001 applications \
357 require the use of c99"
358 #endif

360 /*
361 * The following macro defines a value for the ISO C99 restrict
362 * keyword so that _RESTRICT_KYWD resolves to "restrict" if
363 * an ISO C99 compiler is used and "" (null string) if any other
364 * compiler is used. This allows for the use of single prototype
365 * declarations regardless of compiler version.
366 */
367 #if (defined(__STDC__) && defined(_STDC_C99)) && !defined(__cplusplus)

new/usr/src/uts/common/sys/feature_tests.h 7

368 #define _RESTRICT_KYWD restrict
369 #else
370 #define _RESTRICT_KYWD
371 #endif

373 /*
374 * The following macro indicates header support for the ANSI C++
375 * standard. The ISO/IEC designation for this is ISO/IEC FDIS 14882.
376 */
377 #define _ISO_CPP_14882_1998

379 /*
380 * The following macro indicates header support for the C99 standard,
381 * ISO/IEC 9899:1999, Programming Languages - C.
382 */
383 #define _ISO_C_9899_1999

385 /*
386 * The following macro indicates header support for DTrace. The value is an
387 * integer that corresponds to the major version number for DTrace.
388 */
389 #define _DTRACE_VERSION 1

391 #ifdef __cplusplus
392 }

______unchanged_portion_omitted_

