new usr/src/tool s/scripts/validate_pkg. py

R R R R

29993 Mon Sep 22 23:59:11 2014
new usr/src/tool s/scripts/validate_pkg. py
5189 val i date_pkg shoul d support nedi ated |inks
Revi ewed by: Richard Lowe <richlowe@i chl owe. net>
Revi ewed by: Josef ’'Jeff’ Sipek <josef.sipek@exenta.con>

hhkkkkkkkkkkkkkkkkkk kR kR kR hkkhkhkkkhkhkhkkkkkkkkkkkkkkkk kK k%

1 #!'/usr/bin/python2.6

2 #

3 # CDDL HEADER START

4 #

5 # The contents of this file are subject to the terns of the

6 # Common Devel oprent and Distribution License (the "License").

7 # You may not use this file except in conpliance with the License.
8 #

9 # You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
10 # or http://ww. opensol aris.org/os/licensing.

11 # See the License for the specific |anguage governing permni ssions
12 # and limtations under the License.

13 #

14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
16 # If applicable, add the followi ng below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [nane of copyright owner]
19 #

20 # CDDL HEADER END

21 #

23 #

24 # Copyright 2010 Sun Mcrosystens, Inc. Al rights reserved.

25 # Use is subject to |license terns.

26 #

28 #

29 # Conpare the content generated by a build to a set of manifests

30 # describing how that content is to be delivered.

31 #

34 inport getopt
35 inport os

36 inport stat
37 inport sys

39 from pkg inport actions
40 from pkg inport nanifest

43 #

44 # Dictionary used to map action names to output format. Each entry is
45 # indexed by action nane, and consists of a |list of tuples that map
46 # Filelnfo class nenbers to output |abels.

47 #

48 QUTPUTMAP = {

49 “dir": [

50 ("group”, "group="),

51 ("rmode", "node="),

52 ("owner", "owner="),

53 ("path", "path=")

54 s

55 "file"

e": [
("hash", ""),

57 ("group”, "group="),
("node", "node="),
("owner ="),

new usr/src/tool s/scripts/validate_pkg. py

60 ("path", "path=")

61 s

62 "1ink":

63 ("nediator", "nediator="),
64 #endif /* ! codereview */

65 ("path", "path="),

66 ("target", "target=")
67],

68 "hardl i nk":

69 ("path", "path="),

70 ("hardkey", "target=")
71 o

72 }

74 # Mode checks used to validate safe file and directory perm ssions
75 ALLMODECHECKS = frozenset(("nf, "w', "s", "o"
76 DEFAULTMODECHECKS = frozenset (("nf, "w', "0"))

78 class Filelnfo(object):

79 """Base class to represent a file.
81 Subcl assed according to whether the file represents an actual
82 obj ect (Real Filelnfo) or an IPS manifest action (Actionlnfo).
83 e
85 def __init__(self):
86 sel f.path = None
87 self.isdir = Fal se
88 sel f.target = None
89 sel f. owner = None
90 sel f.group = None
91 sel f. node = None
92 sel f. hardkey = None
93 sel f. hardpaths = set()
94 sel f.editable = Fal se
96 def name(self):
97 """Return the I PS action name of a Filelnfo object.
98 e
99 if self.isdir:
100 return "dir"
102 if self.target:
103 return "link"
105 if self.hardkey:
106 return "hardlink"
108 return "file"
110 def checknpdes(sel f, nmpbdechecks):
111 """Check for and report on unsafe perm ssions.
113 Returns a potentially enpty list of warning strings.
114 won
115 w =[]
117 t = self.nanme()
118 if t in ("link", "hardlink"):
119 return w
120 m = int(self.node, 8)
121 o = sel f.owner
122 p = self.path
124 if "s" in nodechecks and t == "file":
125 if m& (stat.S ISUD| stat.S_ISGD):

filesystem

new usr/src/tool s/scripts/validate_pkg. py

126
127
128

130
131
132
133
134

136
137
138
139
140
141
142
143
144

146
147
148
149
150

152
153
154
155
156

160
161

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179

181
182
183
184
185
186
187

189
190
191

def

stat.S_| ROTH):
setwd/setgld file should not be " \
% (p. M)

if m& (stat.S | RGRP |
wextend([%: 0%:
'readabl e by group or other"

if "0o" in nodechecks and o != "root" and ((m & stat.S ISUID) == 0):
mi = (m& stat.S_|RWKU) >> 6
g = (m&stat S IRWKG >> 3
m = mé& stat. S | R\WKO
e = self.editable
if (((mu &02) == 0 and (no & ng & 04) == 04) or
(t == "f||e and nmo & 01 == 1) or
(ng, mo) == (mu, mu) or
((t == "file" and not e or t == "dir" and o == "bin") and
(my & 05 == no &05)) or
(t == "file" and o == "bin" and nu & 01 ==

01)
(m& 0105 !'= 0 and p. startswlth("etc/securlty/dev/")))
wextend([%: owner \" %;\ may be safely

"changed to \"root\"" % (p, 0)])
if "w' in nodechecks and t == "file" and o != "root":
uwx = stat.S |WUSR | stat.S_| XUSR

if m&uwx == uwx:
w. extend(["%s: non-root-owned executable should not " \
"al so be witable by owner." %p])

if ("m' in nodechecks and
m& (stat.S IV‘GRP| stat.S_IWOTH) != 0 and
mé& stat.S | SVTX = :
w. ext end([" %: O%:)
(p,

return w

0):
shoul d not be witable by group or other" %

__(self, other):
"Conpare two Filelnfo objects.

Note this is the "not equal" conparison, so a return value of Fal se
indicates that the objects are functionally equival ent.

#
Map the objects such that the I hs is always the Actionlnfo,
and the rhs is always the Real Filelnfo.
#
1t’s only really inportant that the rhs not be an
Actionlnfo; if we're conparing Filelnfo the Real Filelnfo, it
won't actually matter what we choose.
#
if isinstance(self, Actionlnfo):
I hs = self
rhs = other
el se:
I hs = other
rhs = self

Because the manifest may legitimately translate a rel ative

path fromthe proto area into a different path on the installed
system we don’t conpare paths here. W only expect this conparison
to be invoked on itens with identical relative paths in

first place.

HHHF HHFHHTH

Al'l conparisons depend on type. For symink and directory, they
nmust be the sane. For file and hardlink, see bel ow.

new usr/src/tool s/scripts/validate_pkg. py

192
193
194
195
196
197

199
200
201
202
203
204
205

63

207
208
209
210
211
212
213
214
215

217
218
219
220
221
222
223
224

226
227
228
229
230
231
232

234
235
236
237
238
239
240
241
242
243

245
246

248
249
250
251
252

254
255

#endi f /

def

#
typel hs = | hs. nane()
typerhs = rhs. nanme()
if typelhs in ("link", "dir"):
if typelhs !'= typerhs:
return True

For syminks, all that's left is the link target.
For medi ated syminks targets can differ.
I codereview */

T R HH

if typelhs == "link":
return (lhs.mediator is None) and (lhs.target != rhs.target)
return | hs.target != rhs.target

For a directory, it’s inmportant that both be directories,
the nodes be identical, and the paths are identical. W already
checked all but the nodes above.

If both objects are files, then we're in the same boat.

THHHHHFR

if typelhs == "dir" or (typelhs == "file"
return | hs. rode != rhs. node

and typerhs == "file"):

For files or hardlinks:

Since the key space is different (inodes for real files and
actual link targets for hard links), and since the proto area wll
identify all N occurrences as hardlinks, but the manifests as one
file and N1 hardlinks, we have to conpare files to hardlinks.

If they’'re both hardlinks, we just make sure that
the same target path appears in both sets of
possible targets.

THFHHTF HHTHHITHR

if typelhs == "hardlink" and typerhs == "hardlink":
return | en(l hs. hardpaths.intersection(rhs. hardpaths)) ==

Gt herwi se, we have a mix of file and hardlink, so we
need to neke sure that the file path appears in the
set of possible target paths for the hardlink.

W al ready know that the Actionlnfo, if present, is the |lhs
operator. So it's the rhs operator that’s guaranteed to
have a set of hardpaths.

SHHFHHHFF R

eturn | hs.path not in rhs. hardpaths

__str__(self):
""Return an action-style representation of a Filelnfo object.

We don’t currently quote items with enbedded spaces. If we
ever decide to parse this output, we'll want to revisit that.

name = sel f.nanme()
out = nane

for nenber,

| abel in OUTPUTMAP[nane] :
out += " "

+ label + str(getattr'(self, menber))

new usr/src/tool s/scripts/validate_pkg. py

257

259
260
261
262
263
264

266
267
268

270
271
272
273
274
275
276
277
278
279
280

282
283

288
289

291
292

294
295
296
297
298
299
300
301

303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

return out

def protostr(self):
"""Return a protolist-style representation of a Filelnfo object.
target
maj or
m nor

nmode = sel f. node
owner = sel f.owner
group = sel f.group

name = sel f.name()

if name == "dir":
ftype = "d"
elif name in ("file", "hardlink"):
ftype = "f"
elif name == "link":
ftype = "s"
target = self.target
nmode = "777"
owner = "root"
group = "other"
out = "% % 30s % 20s %s %5s %5s ¥%d %Id - -" %\

(_ftype, sel f.path, target, node, owner, group, 0, 1)

return out

class Actionlnfo(Filelnfo):
"""Cbject to track information about nanifest actions.

This currently understands file, link, dir, and hardlink actions.
def __init__(self, action):

Filelnfo.__init__(self)

#

Currently, all actions that we support have a "path"

attribute. If that changes, then we'll need to
catch a KeyError fromthis assignnment.

#
sel f.path = action.attrs["path"]

if action.name == "file":
sel f.owner = action.attrs["owner"]
sel f.group = action.attrs["group"]
sel f.node = action.attrs["node"]
sel f. hash = action. hash
if "preserve" in action.attrs:
self.editable = True
elif action.name == "link":
target = action.attrs["target"]
sel f.target = os. path. nornpath(target)
sel f.nediator = action.attrs.get("nediator")
#endif /* | codereview */
elif action.name == "dir":
sel f.owner = action.attrs["owner"]
sel f.group = action.attrs["group"]
sel f.node = action.attrs["npde"]
self.isdir = True
elif action.name == "hardlink":
target = os. path. nornpath(action. get_target_path())
sel f. hardkey = target

new usr/src/tool s/scripts/validate_pkg. py

323

325
326
327
328
329
330

333
334
335
336
337
338
339
340
341
342
343

345
346

349
350

352

354
355
356
357

359
360
361
362
363
364

366
367
368
369
370
371
372
373
374
375
376
377
378

380
381
382
383
384
385
386
387
388

sel f. hardpat hs. add(t ar get)

@t aticnet hod

def supported(action):
"""|ndi cates whether the specified |IPS action tine is
correctly handl ed by the Actionlnfo constructor.

return action in frozenset(("file", "dir", "link", "hardlink"))

cl ass Unsupport edFi | eFor mat Err or (Excepti on):
"""This means that the stat.S | FMI returned sonething we don’'t
support, ie a pipe or socket. |If it's appropriate for such an
object to be in the proto area, then the Real Filelnfo constructor
will need to evolve to support it, or it will need to be in the
exception list.

def __init_ (self, path, node):
Exception.__init__(self)
sel f.path path

sel f. node = node
def _ str__(self):
return ' %: unsupported S | FMI %970 % (self.path, self.node)
cl ass Real Fil el nfo(Filelnfo):
"""Cbject to track inmportant-to-packaging file information.
This currently handles regular files, directories, and synbolic |inks.
For multiple Real Filelnfo objects with identical hardkeys, there

is no way to determne which of the hard |inks should be
delivered as a file, and which as hardlinks.

def __init__(self, root=None, path=None):
Filelnfo.__init__(self)
sel f.path = path

path = os.path.join(root, path)
Istat = os.lstat(path)
node = |stat.st_node

Per stat.py, these cases are nutually excl usive.
#

if stat.S | SREG node):
sel f. hash = sel f.path

elif stat.S_|SD R(node):
self.isdir = True

elif stat.S_ | SLNK(node):
sel f.target = os. path. nornpat h(os. readl i nk(pat h))
sel f. nedi ator = None

#endif /* | codereview */

el se:

rai se Unsupport edFi | eFor mat Error (pat h, node)

if not stat.S | SLNK(npde):
sel f.node = "%40" % stat.S_| MODE(node)
#

Instead of reading the group and owner fromthe proto area after
a non-root build, just drop in dummy values. Since we don’t

conpare them anywhere, this should allow at |east nmarginally

useful conparisons of protolist-style output.

#

sel f. owner = "owner"

new usr/src/tool s/scripts/validate_pkg. py 7 new usr/src/tool s/scripts/validate_pkg. py
389 sel f.group = "group” 455 class ProtoTree(DirectoryTree):
456 """Describes one or nore proto directories as a dictionary of
391 # 457 Real Fi |l el nfo objects, indexed by relative path.
392 # refcount > 1 indicates a hard link 458 e
393 #
394 if Istat.st_nlink > 1: 460 def adddir(self, proto, exceptions):
395 # 461 """Extends the ProtoTree dictionary with Real Filelnfo
396 # This could get ugly if nultiple proto areas reside 462 obj ects describing the proto dir, indexed by relative
397 # on different filesystens. 463 pat h
398 # 464 e
399 sel f. hardkey = Istat.st_ino 465 newentries = {}
467 pdir = os. path. nor rrpath(prot 0)
402 class DirectoryTree(dict): 468 strippdir = lanbda r, n: os.path.join(r, n)[len(pdir)+1:]
403 """Meant to be subclassed according to popul ati on nethod. 469 for root, dirs, files in os.walk(pdir):
404 470 for name in dirs + files:
405 def __init__(self, name): 471 path = strippdir(root, nane)
406 dict.__init__(self) 472 1 f path not In exceptions:
407 sel f. name = nane 473 try:
474 newentries[path] = Real Filelnfo(pdir, path)
409 def corrpare(sel f, other): 475 except COSError, e:
410 Conpar e two different sets of Filelnfo obj ect s. 476 sys.stderr.wite("Warning: unable to stat %: %\n" %
411 e 477 (path, e))
412 keysl = frozenset (sel f. keys()) 478 conti nue
413 keys2 = frozenset (ot her.keys()) 479 el se:
480 exceptions. renove(pat h)
415 common = keysl.intersection(keys2) 481 if name in dirs:
416 onl ykeysl = keysl. difference(conmon) 482 di rs. renmove(nane)
417 onl ykeys2 = keys2.difference(conmon)
484 #
419 if onlykeysl: 485 # Find the sets of paths in this proto dir that are hardlinks
420 print "Entries present in % but not %:" %)\ 486 # to the sane inode.
421 (sel f.name, other. nane) 487 #
422 for path in sorted(onlykeysl): 488 # It seems wasteful to store this in each Filelnfo, but we
423 print("\t%" %str(self[path])) 489 # otherwi se need a |inking mechanism Wth this information
424 print "" 490 # here, Filelnfo object conparison can be self contained.
491 #
426 if onlykeysz 492 # We limt this aggregation to a single proto dir, as
427 print "Entries present in % but not %:" %)\ 493 # represented by newentries. That neans we don’t need to care
428 (ot her. nanme, self.nane) 494 # about proto dirs on separate filesystens, or about hardlinks
429 for path in sorted(onl ykeys2): 495 # that cross proto dir boundaries.
430 print("\t%" %str(other[path])) 496 #
431 print "" 497 hk2path = {}
498 for path, fileinfo in newentries.iteritens():
433 nodi f f erences = True 499 i1f fileinfo.hardkey:
434 for path in sorted(common): 500 hk2pat h. set def aul t (fi | ei nf o. hardkey, set()).add(path)
435 if self[path] != other[path]: 501 for fileinfo in newentries.itervalues():
436 if nodifferences: 502 if fileinfo.hardkey:
437 nodi f ferences = Fal se 503 fil ei nfo. hardpat hs. updat e(hk2pat h[fi | ei nf 0. har dkey])
438 print "Entries that differ between % and ¥%:" \ 504 sel f. updat e(newentri es)
439 % (sel f.name, other.nane)
440 print("%4s %" % (self.nane, self[path])) 506 def addpr otolist(self, protolist, exceptions):
441 print("9%d4s %" % (other.nanme, other[path])) 507 "Read in the speC|f| ed fil e assuned to be the
442 if not nodifferences: 508 output of protolist.
443 print ""
510 This has been tested minimally, and is potentially useful for
511 conparing across the transition period, but should ultimtely
446 cl ass BadProtol i st Fornmat (Exception): 512 go away.
447 """This means that the user supplied a file via -1, but at |east 513 e
448 one line fromthat file doesn’t have the right nunber of fields to
449 parse as protolist output. 515 try:
450 e 516 plist = open(protolist)
451 def __str__(self): 517 except | OError, exc:
452 return "bad proto list entry: "%"' % Exception.__str__(self) 518 raise | CError("cannot open proto list: %" %str(exc))
520 newentries = {}

new usr/src/tool s/scripts/validate_pkg. py

522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546

548
549
550
551
552
553
554
555
556

559
560
561
562
563
564
565
566
567

569
570

573
574

5145]
576
577
578
579

581
582
583
584
585
586

for pline in plist:
pline = pline.split()
#

Use a Filelnfo() object instead of a Real Filelnfo()

obj ect because we want to avoid the Real Fil elnfo

constructor, because there’s nothing to actually stat().
#

fileinfo = Filelnfo()
try:
if pline[1] in exceptions:
exceptions. renmove(pline[1])
cont i nue
if pline[0] == "d":
fileinfo.isdir = True
fileinfo.path = pllne[1]
if pline[2] !="-":
filelnfo. target = 0s. pat h. nornmpat h(pline[2])
ileinfo.mde = int("0%" %pline[3])
il einfo.owner = pline[4]
i | einfo. group = pline[5]
if pline[6] != :
filelnfo. hardkey
newentries[pline[1]]
except |ndexError:
rai se BadProtolistFornmat(pline)

f
f
f
i

n
=

plist.close()
hk2path =
for path, fileinfo in newentries.iteritens():
1 f fileinfo.hardkey:
hk2pat h. setdefaul t (fil ei nfo. hardkey, set()).add(path)
for fileinfo in newentries.itervalues():
if fileinfo.hardkey:
fil einfo.hardpat hs. updat e(hk2pat h[fi | ei nfo. har dkey])
sel f. updat e(newentri es)

cl ass Mani f est Par si ngError (Exception):

""This neans that the Manifest.set_content() raised an
ActionError. W raise this, instead, to tell us which manifest
coul d not be parsed, rather than what action error we hit.

def _ init_ (self, nfile, error):
Exception. __init__(self
self.nfile = nfile
self.error = error

def __str__(self):

return "unable to parse manifest %: %" % (self.nfile, self.error)

class ManifestTree(DirectoryTree):

"""Describes one or nore directories containing arbitrarily

many manifests as a dictionary of Actionlnfo objects, indexed

by the relative path of the data source within the proto area.
That path may or may not be the same as the path attribute of the
gi ven action.

def addmanifest(self, root, nfile, arch, nbdechecks, exceptions):
"""Treats the specified input file as a pkg(5) package
mani f est, and extends the ManifestTree dictionary with entries
for the actions therein.

nfest = manifest.Mnifest()

new usr/src/tool s/scripts/validate_pkg. py

587
588
589
590
591
592

594
595
596
597
598
599
600
601

603
604
605
606
607

609
610
611
612
613
614
615
616
617
618
619
620

622
623
624
625
626
627
628
629
630

632
633
634
635
636
637
638
639

641
642
643
644
645
646

648
649
650
651
652

try:
except | CError, exc:

nfest.set_content (open(os. path.join(root, nfile)).read())

raise |OError("cannot read manifest: %" % str(exc))

except actions.ActionError, exc:

THHFH I

rai se Mani f est Par si ngError(m‘lle str(exc))

Make sure the nmanifest is applicable to the user-specified
architecture. Assunption: if variant.arch is not an
attribute of the manifest, then the package shoul d be
installed on all architectures.

if arch not in nfest.attributes.get("variant.arch", (arch,)):

return

nodewar ni ngs = set ()
for action in nfest.gen_actions():

if "path" not in action.attrs or \
not Actionl nfo. supported(action.nane):

conti nue
The dir action is currently fully specified, in that it
lists owner, group, and node attributes. If that
changes in pkg(5) code, we'll need to revisit either this

code or the Actionlnfo() constructor. 1t’s possible

that the pkg(5) system could be extended to provide a
nmechani sm for specifying directory perm ssions outside

of the individual manifests that deliver files into

those directories. Doing so at tinme of manifest

processi ng woul d nmean that validate_pkg continues to work,
but doing so at time of publication would require updates.

See pkgsend(1) for the use of NOHASH for objects with
datastreans. Currently, that nmeans "files,"” but this
shoul d work for any other such actions.

THFHHH HHFHHHFFHHFHHS

if getattr(action, "hash",
path = action. hash

"NOHASH') !'= "NOHASH":

bat h = action.attrs["path"]

#
This is the wong tool in which to enforce consistency
on a set of manifests. So instead of conparing the
different actions with the same "path" attribute, we
use the first one.
#
if path in self:
conti nue
#
As with the manifest itself, if an action has specified
variant.arch, we look for the target architecture
therein.
#
var = None
#

The name of this nethod changed in pkg(5) build 150, we need to
work with both sets.
#

if hasattr(action, 'get_variants’):

10

new usr/src/tool s/scripts/validate_pkg. py 11

653
654
655
656
657

659
660
661

663
664
665
666
667

669
670
671
672
673
674
675
676
677
678

680
681
682
683
684
685
686
687
688
689
690
691

693
694
695
696

698
699
700
701
702
703
704
705

707
708
709
710
711
712
713

717
718

var

el se:
var = action.get_variant_tenplate()

if "variant.arch" in var and arch not in var["variant.arch"]:
return

action.get_variants()

sel f[path] = Actionlnfo(action)
if nodechecks is not None and path not in exceptions:
nmodewar ni ngs. updat e(sel f [pat h] . checknodes(nodechecks))

if Ien(m)devxarni ngs) > 0:
print "warning: unsafe permissions in %" %nfile
for win sorted(npdewarnings):
print w
print

def adddlr(self mdir, arch, nodechecks, exceptions):
V\al ks the speC|f| ed di rectory I ooki ng for pkg(5) manifests.

for nfile in os. Ilstdlr(m:ilr)

if (nfile.endswith(".nopg") and
stat.S_| SREG os. Istat(os path.join(nmdir, nfile)).st_node)):
try:

sel f. addmani fest (ndir,
except | CError, exc:
sys.stderr.wite("warning: %\n"

nfile, arch, nodechecks, exceptions)

% str(exc))

def resolvehardlinks(self):
""" popul ates node, group, and owner for resolved (ie link target
is present in the manifest tree) hard |inks.

for info in self.values():
if info.nane() == "hardlink":

tgt = info. hardkey

if tgt in self:
tgtinfo :self[tgt]
info.owner = tgtinfo.owner
info.group = tgtinfo.group
info.nmode = tgtinfo.nnode

cl ass ExceptionList(set):

"""Keep track of an exception list as a set of paths to be excluded
fromany other lists we build.

def __init_ (self, files, arch):
set.__init__(self)
for fname in files:
try:

sel f.readexceptionfil e(fname, arch)
except | CError, exc:
sys.stderr.wite("warning: cannot read exception file: %\n" %
str(exc))

def readexceptionfile(self, efile, arch):
"""Build a list of all pathnanmes fromthe specified file that
either apply to all architectures (ie which have no trailing
architecture tokens), or to the specified architecture (ie
whi ch have the value of the arch arg as a trailing
architecture token.)

excfile = open(efile)

for exc in excfile:
exc = exc.split()

new usr/src/tool s/scripts/validate_pkg. py

719 if len(exc) and exc[0][0] != "#":

720 if arch in (exc[1:] or arch):

721 sel f. add(os. pat h. nor npat h(exc[0]))

723 excfile.close()

726 USAGE = """9% [-v] -a arch [-e exceptionfile]... [-L|-M[-X check]...] input_1
728 where input_1 and input_2 nay specify proto lists, proto areas,

752

754
755
756
757
758
759
760

763
764
765
766
767
768
769
770

773
774
775
776
777
778
779
780

782
783

or mani fest directories. For proto lists, use one or nore

-1 file
argunents. For proto areas, use one or nore

-p dir
argunments. For nanifest directories, use one or nore

-mdir
argunents.
If -L or -Mis specified, then only one input source is allowed, and
it should be one or nore manifest directories. These two options are
mut ual |y excl usi ve.

The -L option is used to generate a proto |list to stdout.

The -Moption is used to check for safe file and directory nodes.
By default, this causes all node checks to be perforned. |ndividual
node checks may be turned off using "-X check," where "check" comes
fromthe follow ng set of checks:

m check for group or other wite perm ssions

w check for user wite permssions on files and directories
not owned by root

S check for group/other read perm ssion on executable files
that have setuid/setgid bit(s)
check for files that could be safely owned by root

%sys argv|[0]

def usage(nsg=None):
"""Try to give the user useful information when they don't get the
command syntax right.

if msg:

sys.stderr.wite("%:
sys.stderr.wite(USAGE)
sys. exit(2)

%\ n" % (sys.argv[0], nsQg))

def main(argv):
"""Conmpares two out of three possible data sources:
set of proto areas, and a set of nanifests.
try:
opts, args = getopt.getopt(argy,
except getopt.GetoptError, exc:
usage(str(exc))

a proto list, a

‘are:Ll:Mnp:vX ')

if args:
usage()

12

[

new usr/src/tool s/scripts/validate_pkg. py 13 new usr/src/tool s/scripts/validate_pkg. py

785 arch = None 851 if len(manifestdirs) > O:
786 exceptionlists =[] 852 for ndir in manifestdirs:
787 listonly = Fal se 853 mani festtree. adddi r(ndir, arch, nodechecks, exceptions)
788 mani festdirs = [] 854 if listonly:
789 mani festtree = Manifest Tree("manifests") 855 mani f esttree. resol vehardl i nks()
790 protodirs = [] 856 for info in nanifesttree.values():
791 prototree = ProtoTree("proto area") 857 print "9%" %info.protostr()
792 protolists =[] 858 sys. exi t (0)
793 protolist = ProtoTree("proto list") 859 i f nodechecks I's not None:
794 nodechecks = set () 860 sys. exit(0)
795 t oggl enndechecks = set () 861 trees. append(mani festtree)
796 trees =[]
797 conparing = set() 863 if len(protodirs) > O:
798 verbose = Fal se 864 for pdir in protodirs:
865 prototree. adddi r(pdir, exceptions)
800 for opt, arg in opt 866 trees. append(prototree)
801 it opt == "-a":
802 1 f arch: 868 if len(protolists) > 0:
803 usage("may only specify one architecture") 869 for plist in protolists:
804 el se: 870 try:
805 arch = arg 871 protolist.addprotolist(plist, exceptions)
806 elif opt == "-e" 872 except | CError, exc:
807 exceptl onl i st s. append(arg) 873 sys.stderr.wite("warning: %\n" %str(exc))
808 elif opt == "-L" 874 trees. append(protolist)
809 Ilstonly = True
810 elif opt == "-1" 876 if verbose and exceptions:
811 conpari ng. add(protolist") 877 print "Entries present in exception list but missing fromproto area:"
812 protoli sts. append(os. pat h. nor npat h(arg)) 878 for exc in sorted(exceptions):
813 elif opt == "-M: 879 print "\tu%" % exc
814 m)dechecks updat e(DEFAUL TMODECHECKS) 880 print ""
815 elif opt == "-ni":
816 conparing. add(" mani f ests") 882 usedexceptions = or| gi nal exceptions. di ff erence(excepti ons)
817 nmani f est dl rs. append(os. pat h. nor npat h(ar g)) 883 har nf ul excepti ons = usedexceptions.intersection(nanifesttree)
818 elif opt == "-p": 884 if harnful exceptl ons:
819 conparl ng. add(proto area") 885 print "Entries present in exception list but also in manifests:"
820 pr ot odi rs. append(os pat h. nor npat h(arg)) 886 for exc in sorted(harnful exceptions):
821 elif opt == "- 887 print "\t%" % exc
822 verbose = Tr ue 888 del manifesttree[exc]
823 elif opt == "-X": 889 print
824 t oggl enodechecks. add(ar g)
891 trees[0].conpare(trees[1])
826 if listonly or |en(nmdechecks) > 0:
827 if len(conmparing) !=1 or "manifests" not in conparing: 893 if __name__ =="'_ main__
828 usage("-L and -Mrequire one or nore -margs, and no -1 or -p") 894 try:
829 if listonly and | en(nodechecks) > O: 895 mai n(sys.argv[1:])
830 usage("-L and -Mare nutual ly exclusive") 896 except Keyboardlnterrupt:
831 elif len(conparing) != 2: 897 sys. exit(1)
832 usage("nmust specify exactly two of -1, -m and -p") 898 except | CError:
899 sys.exit(1)
834 if len(toggl enndechecks) > 0 and | en(nodechecks) == 0:
835 usage("-X requires -M)
837 for s in toggl enbdechecks:
838 if s not in ALLMODECHECKS
839 usage("unknown node check %" % s)
840 nmodechecks. symetri c_di ff erence_update((s))
842 i f | en(nodechecks) ==
843 nodechecks = None
845 if not arch:
846 usage("nmust specify architecture")
848 exceptions = Exceptl onlLi st (exceptionlists, arch)

849 ori gi nal exceptions = exceptions. copy()

