
new/usr/src/tools/scripts/validate_pkg.py 1

**
 29993 Mon Sep 22 23:59:11 2014
new/usr/src/tools/scripts/validate_pkg.py
5189 validate_pkg should support mediated links
Reviewed by: Richard Lowe <richlowe@richlowe.net>
Reviewed by: Josef ’Jeff’ Sipek <josef.sipek@nexenta.com>
**

1 #!/usr/bin/python2.6
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #

28 #
29 # Compare the content generated by a build to a set of manifests
30 # describing how that content is to be delivered.
31 #

34 import getopt
35 import os
36 import stat
37 import sys

39 from pkg import actions
40 from pkg import manifest

43 #
44 # Dictionary used to map action names to output format. Each entry is
45 # indexed by action name, and consists of a list of tuples that map
46 # FileInfo class members to output labels.
47 #
48 OUTPUTMAP = {
49 "dir": [
50 ("group", "group="),
51 ("mode", "mode="),
52 ("owner", "owner="),
53 ("path", "path=")
54],
55 "file": [
56 ("hash", ""),
57 ("group", "group="),
58 ("mode", "mode="),
59 ("owner", "owner="),

new/usr/src/tools/scripts/validate_pkg.py 2

60 ("path", "path=")
61],
62 "link": [
63 ("mediator", "mediator="),
64 #endif /* ! codereview */
65 ("path", "path="),
66 ("target", "target=")
67],
68 "hardlink": [
69 ("path", "path="),
70 ("hardkey", "target=")
71],
72 }

74 # Mode checks used to validate safe file and directory permissions
75 ALLMODECHECKS = frozenset(("m", "w", "s", "o"))
76 DEFAULTMODECHECKS = frozenset(("m", "w", "o"))

78 class FileInfo(object):
79 """Base class to represent a file.

81 Subclassed according to whether the file represents an actual filesystem
82 object (RealFileInfo) or an IPS manifest action (ActionInfo).
83 """

85 def __init__(self):
86 self.path = None
87 self.isdir = False
88 self.target = None
89 self.owner = None
90 self.group = None
91 self.mode = None
92 self.hardkey = None
93 self.hardpaths = set()
94 self.editable = False

96 def name(self):
97 """Return the IPS action name of a FileInfo object.
98 """
99 if self.isdir:
100 return "dir"

102 if self.target:
103 return "link"

105 if self.hardkey:
106 return "hardlink"

108 return "file"

110 def checkmodes(self, modechecks):
111 """Check for and report on unsafe permissions.

113 Returns a potentially empty list of warning strings.
114 """
115 w = []

117 t = self.name()
118 if t in ("link", "hardlink"):
119 return w
120 m = int(self.mode, 8)
121 o = self.owner
122 p = self.path

124 if "s" in modechecks and t == "file":
125 if m & (stat.S_ISUID | stat.S_ISGID):

new/usr/src/tools/scripts/validate_pkg.py 3

126 if m & (stat.S_IRGRP | stat.S_IROTH):
127 w.extend(["%s: 0%o: setuid/setgid file should not be " \
128 "readable by group or other" % (p, m)])

130 if "o" in modechecks and o != "root" and ((m & stat.S_ISUID) == 0):
131 mu = (m & stat.S_IRWXU) >> 6
132 mg = (m & stat.S_IRWXG) >> 3
133 mo = m & stat.S_IRWXO
134 e = self.editable

136 if (((mu & 02) == 0 and (mo & mg & 04) == 04) or
137 (t == "file" and mo & 01 == 1) or
138 (mg, mo) == (mu, mu) or
139 ((t == "file" and not e or t == "dir" and o == "bin") and
140 (mg & 05 == mo & 05)) or
141 (t == "file" and o == "bin" and mu & 01 == 01) or
142 (m & 0105 != 0 and p.startswith("etc/security/dev/"))):
143 w.extend(["%s: owner \"%s\" may be safely " \
144 "changed to \"root\"" % (p, o)])

146 if "w" in modechecks and t == "file" and o != "root":
147 uwx = stat.S_IWUSR | stat.S_IXUSR
148 if m & uwx == uwx:
149 w.extend(["%s: non-root-owned executable should not " \
150 "also be writable by owner." % p])

152 if ("m" in modechecks and
153 m & (stat.S_IWGRP | stat.S_IWOTH) != 0 and
154 m & stat.S_ISVTX == 0):
155 w.extend(["%s: 0%o: should not be writable by group or other" %
156 (p, m)])

158 return w

160 def __ne__(self, other):
161 """Compare two FileInfo objects.

163 Note this is the "not equal" comparison, so a return value of False
164 indicates that the objects are functionally equivalent.
165 """
166 #
167 # Map the objects such that the lhs is always the ActionInfo,
168 # and the rhs is always the RealFileInfo.
169 #
170 # It’s only really important that the rhs not be an
171 # ActionInfo; if we’re comparing FileInfo the RealFileInfo, it
172 # won’t actually matter what we choose.
173 #
174 if isinstance(self, ActionInfo):
175 lhs = self
176 rhs = other
177 else:
178 lhs = other
179 rhs = self

181 #
182 # Because the manifest may legitimately translate a relative
183 # path from the proto area into a different path on the installed
184 # system, we don’t compare paths here. We only expect this comparison
185 # to be invoked on items with identical relative paths in
186 # first place.
187 #

189 #
190 # All comparisons depend on type. For symlink and directory, they
191 # must be the same. For file and hardlink, see below.

new/usr/src/tools/scripts/validate_pkg.py 4

192 #
193 typelhs = lhs.name()
194 typerhs = rhs.name()
195 if typelhs in ("link", "dir"):
196 if typelhs != typerhs:
197 return True

199 #
200 # For symlinks, all that’s left is the link target.
201 # For mediated symlinks targets can differ.
202 #endif /* ! codereview */
203 #
204 if typelhs == "link":
205 return (lhs.mediator is None) and (lhs.target != rhs.target)
63 return lhs.target != rhs.target

207 #
208 # For a directory, it’s important that both be directories,
209 # the modes be identical, and the paths are identical. We already
210 # checked all but the modes above.
211 #
212 # If both objects are files, then we’re in the same boat.
213 #
214 if typelhs == "dir" or (typelhs == "file" and typerhs == "file"):
215 return lhs.mode != rhs.mode

217 #
218 # For files or hardlinks:
219 #
220 # Since the key space is different (inodes for real files and
221 # actual link targets for hard links), and since the proto area will
222 # identify all N occurrences as hardlinks, but the manifests as one
223 # file and N-1 hardlinks, we have to compare files to hardlinks.
224 #

226 #
227 # If they’re both hardlinks, we just make sure that
228 # the same target path appears in both sets of
229 # possible targets.
230 #
231 if typelhs == "hardlink" and typerhs == "hardlink":
232 return len(lhs.hardpaths.intersection(rhs.hardpaths)) == 0

234 #
235 # Otherwise, we have a mix of file and hardlink, so we
236 # need to make sure that the file path appears in the
237 # set of possible target paths for the hardlink.
238 #
239 # We already know that the ActionInfo, if present, is the lhs
240 # operator. So it’s the rhs operator that’s guaranteed to
241 # have a set of hardpaths.
242 #
243 return lhs.path not in rhs.hardpaths

245 def __str__(self):
246 """Return an action-style representation of a FileInfo object.

248 We don’t currently quote items with embedded spaces. If we
249 ever decide to parse this output, we’ll want to revisit that.
250 """
251 name = self.name()
252 out = name

254 for member, label in OUTPUTMAP[name]:
255 out += " " + label + str(getattr(self, member))

new/usr/src/tools/scripts/validate_pkg.py 5

257 return out

259 def protostr(self):
260 """Return a protolist-style representation of a FileInfo object.
261 """
262 target = "-"
263 major = "-"
264 minor = "-"

266 mode = self.mode
267 owner = self.owner
268 group = self.group

270 name = self.name()
271 if name == "dir":
272 ftype = "d"
273 elif name in ("file", "hardlink"):
274 ftype = "f"
275 elif name == "link":
276 ftype = "s"
277 target = self.target
278 mode = "777"
279 owner = "root"
280 group = "other"

282 out = "%c %-30s %-20s %4s %-5s %-5s %6d %2ld - -" % \
283 (ftype, self.path, target, mode, owner, group, 0, 1)

285 return out

288 class ActionInfo(FileInfo):
289 """Object to track information about manifest actions.

291 This currently understands file, link, dir, and hardlink actions.
292 """

294 def __init__(self, action):
295 FileInfo.__init__(self)
296 #
297 # Currently, all actions that we support have a "path"
298 # attribute. If that changes, then we’ll need to
299 # catch a KeyError from this assignment.
300 #
301 self.path = action.attrs["path"]

303 if action.name == "file":
304 self.owner = action.attrs["owner"]
305 self.group = action.attrs["group"]
306 self.mode = action.attrs["mode"]
307 self.hash = action.hash
308 if "preserve" in action.attrs:
309 self.editable = True
310 elif action.name == "link":
311 target = action.attrs["target"]
312 self.target = os.path.normpath(target)
313 self.mediator = action.attrs.get("mediator")
314 #endif /* ! codereview */
315 elif action.name == "dir":
316 self.owner = action.attrs["owner"]
317 self.group = action.attrs["group"]
318 self.mode = action.attrs["mode"]
319 self.isdir = True
320 elif action.name == "hardlink":
321 target = os.path.normpath(action.get_target_path())
322 self.hardkey = target

new/usr/src/tools/scripts/validate_pkg.py 6

323 self.hardpaths.add(target)

325 @staticmethod
326 def supported(action):
327 """Indicates whether the specified IPS action time is
328 correctly handled by the ActionInfo constructor.
329 """
330 return action in frozenset(("file", "dir", "link", "hardlink"))

333 class UnsupportedFileFormatError(Exception):
334 """This means that the stat.S_IFMT returned something we don’t
335 support, ie a pipe or socket. If it’s appropriate for such an
336 object to be in the proto area, then the RealFileInfo constructor
337 will need to evolve to support it, or it will need to be in the
338 exception list.
339 """
340 def __init__(self, path, mode):
341 Exception.__init__(self)
342 self.path = path
343 self.mode = mode

345 def __str__(self):
346 return ’%s: unsupported S_IFMT %07o’ % (self.path, self.mode)

349 class RealFileInfo(FileInfo):
350 """Object to track important-to-packaging file information.

352 This currently handles regular files, directories, and symbolic links.

354 For multiple RealFileInfo objects with identical hardkeys, there
355 is no way to determine which of the hard links should be
356 delivered as a file, and which as hardlinks.
357 """

359 def __init__(self, root=None, path=None):
360 FileInfo.__init__(self)
361 self.path = path
362 path = os.path.join(root, path)
363 lstat = os.lstat(path)
364 mode = lstat.st_mode

366 #
367 # Per stat.py, these cases are mutually exclusive.
368 #
369 if stat.S_ISREG(mode):
370 self.hash = self.path
371 elif stat.S_ISDIR(mode):
372 self.isdir = True
373 elif stat.S_ISLNK(mode):
374 self.target = os.path.normpath(os.readlink(path))
375 self.mediator = None
376 #endif /* ! codereview */
377 else:
378 raise UnsupportedFileFormatError(path, mode)

380 if not stat.S_ISLNK(mode):
381 self.mode = "%04o" % stat.S_IMODE(mode)
382 #
383 # Instead of reading the group and owner from the proto area after
384 # a non-root build, just drop in dummy values. Since we don’t
385 # compare them anywhere, this should allow at least marginally
386 # useful comparisons of protolist-style output.
387 #
388 self.owner = "owner"

new/usr/src/tools/scripts/validate_pkg.py 7

389 self.group = "group"

391 #
392 # refcount > 1 indicates a hard link
393 #
394 if lstat.st_nlink > 1:
395 #
396 # This could get ugly if multiple proto areas reside
397 # on different filesystems.
398 #
399 self.hardkey = lstat.st_ino

402 class DirectoryTree(dict):
403 """Meant to be subclassed according to population method.
404 """
405 def __init__(self, name):
406 dict.__init__(self)
407 self.name = name

409 def compare(self, other):
410 """Compare two different sets of FileInfo objects.
411 """
412 keys1 = frozenset(self.keys())
413 keys2 = frozenset(other.keys())

415 common = keys1.intersection(keys2)
416 onlykeys1 = keys1.difference(common)
417 onlykeys2 = keys2.difference(common)

419 if onlykeys1:
420 print "Entries present in %s but not %s:" % \
421 (self.name, other.name)
422 for path in sorted(onlykeys1):
423 print("\t%s" % str(self[path]))
424 print ""

426 if onlykeys2:
427 print "Entries present in %s but not %s:" % \
428 (other.name, self.name)
429 for path in sorted(onlykeys2):
430 print("\t%s" % str(other[path]))
431 print ""

433 nodifferences = True
434 for path in sorted(common):
435 if self[path] != other[path]:
436 if nodifferences:
437 nodifferences = False
438 print "Entries that differ between %s and %s:" \
439 % (self.name, other.name)
440 print("%14s %s" % (self.name, self[path]))
441 print("%14s %s" % (other.name, other[path]))
442 if not nodifferences:
443 print ""

446 class BadProtolistFormat(Exception):
447 """This means that the user supplied a file via -l, but at least
448 one line from that file doesn’t have the right number of fields to
449 parse as protolist output.
450 """
451 def __str__(self):
452 return ’bad proto list entry: "%s"’ % Exception.__str__(self)

new/usr/src/tools/scripts/validate_pkg.py 8

455 class ProtoTree(DirectoryTree):
456 """Describes one or more proto directories as a dictionary of
457 RealFileInfo objects, indexed by relative path.
458 """

460 def adddir(self, proto, exceptions):
461 """Extends the ProtoTree dictionary with RealFileInfo
462 objects describing the proto dir, indexed by relative
463 path.
464 """
465 newentries = {}

467 pdir = os.path.normpath(proto)
468 strippdir = lambda r, n: os.path.join(r, n)[len(pdir)+1:]
469 for root, dirs, files in os.walk(pdir):
470 for name in dirs + files:
471 path = strippdir(root, name)
472 if path not in exceptions:
473 try:
474 newentries[path] = RealFileInfo(pdir, path)
475 except OSError, e:
476 sys.stderr.write("Warning: unable to stat %s: %s\n" %
477 (path, e))
478 continue
479 else:
480 exceptions.remove(path)
481 if name in dirs:
482 dirs.remove(name)

484 #
485 # Find the sets of paths in this proto dir that are hardlinks
486 # to the same inode.
487 #
488 # It seems wasteful to store this in each FileInfo, but we
489 # otherwise need a linking mechanism. With this information
490 # here, FileInfo object comparison can be self contained.
491 #
492 # We limit this aggregation to a single proto dir, as
493 # represented by newentries. That means we don’t need to care
494 # about proto dirs on separate filesystems, or about hardlinks
495 # that cross proto dir boundaries.
496 #
497 hk2path = {}
498 for path, fileinfo in newentries.iteritems():
499 if fileinfo.hardkey:
500 hk2path.setdefault(fileinfo.hardkey, set()).add(path)
501 for fileinfo in newentries.itervalues():
502 if fileinfo.hardkey:
503 fileinfo.hardpaths.update(hk2path[fileinfo.hardkey])
504 self.update(newentries)

506 def addprotolist(self, protolist, exceptions):
507 """Read in the specified file, assumed to be the
508 output of protolist.

510 This has been tested minimally, and is potentially useful for
511 comparing across the transition period, but should ultimately
512 go away.
513 """

515 try:
516 plist = open(protolist)
517 except IOError, exc:
518 raise IOError("cannot open proto list: %s" % str(exc))

520 newentries = {}

new/usr/src/tools/scripts/validate_pkg.py 9

522 for pline in plist:
523 pline = pline.split()
524 #
525 # Use a FileInfo() object instead of a RealFileInfo()
526 # object because we want to avoid the RealFileInfo
527 # constructor, because there’s nothing to actually stat().
528 #
529 fileinfo = FileInfo()
530 try:
531 if pline[1] in exceptions:
532 exceptions.remove(pline[1])
533 continue
534 if pline[0] == "d":
535 fileinfo.isdir = True
536 fileinfo.path = pline[1]
537 if pline[2] != "-":
538 fileinfo.target = os.path.normpath(pline[2])
539 fileinfo.mode = int("0%s" % pline[3])
540 fileinfo.owner = pline[4]
541 fileinfo.group = pline[5]
542 if pline[6] != "0":
543 fileinfo.hardkey = pline[6]
544 newentries[pline[1]] = fileinfo
545 except IndexError:
546 raise BadProtolistFormat(pline)

548 plist.close()
549 hk2path = {}
550 for path, fileinfo in newentries.iteritems():
551 if fileinfo.hardkey:
552 hk2path.setdefault(fileinfo.hardkey, set()).add(path)
553 for fileinfo in newentries.itervalues():
554 if fileinfo.hardkey:
555 fileinfo.hardpaths.update(hk2path[fileinfo.hardkey])
556 self.update(newentries)

559 class ManifestParsingError(Exception):
560 """This means that the Manifest.set_content() raised an
561 ActionError. We raise this, instead, to tell us which manifest
562 could not be parsed, rather than what action error we hit.
563 """
564 def __init__(self, mfile, error):
565 Exception.__init__(self)
566 self.mfile = mfile
567 self.error = error

569 def __str__(self):
570 return "unable to parse manifest %s: %s" % (self.mfile, self.error)

573 class ManifestTree(DirectoryTree):
574 """Describes one or more directories containing arbitrarily
575 many manifests as a dictionary of ActionInfo objects, indexed
576 by the relative path of the data source within the proto area.
577 That path may or may not be the same as the path attribute of the
578 given action.
579 """

581 def addmanifest(self, root, mfile, arch, modechecks, exceptions):
582 """Treats the specified input file as a pkg(5) package
583 manifest, and extends the ManifestTree dictionary with entries
584 for the actions therein.
585 """
586 mfest = manifest.Manifest()

new/usr/src/tools/scripts/validate_pkg.py 10

587 try:
588 mfest.set_content(open(os.path.join(root, mfile)).read())
589 except IOError, exc:
590 raise IOError("cannot read manifest: %s" % str(exc))
591 except actions.ActionError, exc:
592 raise ManifestParsingError(mfile, str(exc))

594 #
595 # Make sure the manifest is applicable to the user-specified
596 # architecture. Assumption: if variant.arch is not an
597 # attribute of the manifest, then the package should be
598 # installed on all architectures.
599 #
600 if arch not in mfest.attributes.get("variant.arch", (arch,)):
601 return

603 modewarnings = set()
604 for action in mfest.gen_actions():
605 if "path" not in action.attrs or \
606 not ActionInfo.supported(action.name):
607 continue

609 #
610 # The dir action is currently fully specified, in that it
611 # lists owner, group, and mode attributes. If that
612 # changes in pkg(5) code, we’ll need to revisit either this
613 # code or the ActionInfo() constructor. It’s possible
614 # that the pkg(5) system could be extended to provide a
615 # mechanism for specifying directory permissions outside
616 # of the individual manifests that deliver files into
617 # those directories. Doing so at time of manifest
618 # processing would mean that validate_pkg continues to work,
619 # but doing so at time of publication would require updates.
620 #

622 #
623 # See pkgsend(1) for the use of NOHASH for objects with
624 # datastreams. Currently, that means "files," but this
625 # should work for any other such actions.
626 #
627 if getattr(action, "hash", "NOHASH") != "NOHASH":
628 path = action.hash
629 else:
630 path = action.attrs["path"]

632 #
633 # This is the wrong tool in which to enforce consistency
634 # on a set of manifests. So instead of comparing the
635 # different actions with the same "path" attribute, we
636 # use the first one.
637 #
638 if path in self:
639 continue

641 #
642 # As with the manifest itself, if an action has specified
643 # variant.arch, we look for the target architecture
644 # therein.
645 #
646 var = None

648 #
649 # The name of this method changed in pkg(5) build 150, we need to
650 # work with both sets.
651 #
652 if hasattr(action, ’get_variants’):

new/usr/src/tools/scripts/validate_pkg.py 11

653 var = action.get_variants()
654 else:
655 var = action.get_variant_template()
656 if "variant.arch" in var and arch not in var["variant.arch"]:
657 return

659 self[path] = ActionInfo(action)
660 if modechecks is not None and path not in exceptions:
661 modewarnings.update(self[path].checkmodes(modechecks))

663 if len(modewarnings) > 0:
664 print "warning: unsafe permissions in %s" % mfile
665 for w in sorted(modewarnings):
666 print w
667 print ""

669 def adddir(self, mdir, arch, modechecks, exceptions):
670 """Walks the specified directory looking for pkg(5) manifests.
671 """
672 for mfile in os.listdir(mdir):
673 if (mfile.endswith(".mog") and
674 stat.S_ISREG(os.lstat(os.path.join(mdir, mfile)).st_mode)):
675 try:
676 self.addmanifest(mdir, mfile, arch, modechecks, exceptions)
677 except IOError, exc:
678 sys.stderr.write("warning: %s\n" % str(exc))

680 def resolvehardlinks(self):
681 """Populates mode, group, and owner for resolved (ie link target
682 is present in the manifest tree) hard links.
683 """
684 for info in self.values():
685 if info.name() == "hardlink":
686 tgt = info.hardkey
687 if tgt in self:
688 tgtinfo = self[tgt]
689 info.owner = tgtinfo.owner
690 info.group = tgtinfo.group
691 info.mode = tgtinfo.mode

693 class ExceptionList(set):
694 """Keep track of an exception list as a set of paths to be excluded
695 from any other lists we build.
696 """

698 def __init__(self, files, arch):
699 set.__init__(self)
700 for fname in files:
701 try:
702 self.readexceptionfile(fname, arch)
703 except IOError, exc:
704 sys.stderr.write("warning: cannot read exception file: %s\n" %
705 str(exc))

707 def readexceptionfile(self, efile, arch):
708 """Build a list of all pathnames from the specified file that
709 either apply to all architectures (ie which have no trailing
710 architecture tokens), or to the specified architecture (ie
711 which have the value of the arch arg as a trailing
712 architecture token.)
713 """

715 excfile = open(efile)

717 for exc in excfile:
718 exc = exc.split()

new/usr/src/tools/scripts/validate_pkg.py 12

719 if len(exc) and exc[0][0] != "#":
720 if arch in (exc[1:] or arch):
721 self.add(os.path.normpath(exc[0]))

723 excfile.close()

726 USAGE = """%s [-v] -a arch [-e exceptionfile]... [-L|-M [-X check]...] input_1 [

728 where input_1 and input_2 may specify proto lists, proto areas,
729 or manifest directories. For proto lists, use one or more

731 -l file

733 arguments. For proto areas, use one or more

735 -p dir

737 arguments. For manifest directories, use one or more

739 -m dir

741 arguments.

743 If -L or -M is specified, then only one input source is allowed, and
744 it should be one or more manifest directories. These two options are
745 mutually exclusive.

747 The -L option is used to generate a proto list to stdout.

749 The -M option is used to check for safe file and directory modes.
750 By default, this causes all mode checks to be performed. Individual
751 mode checks may be turned off using "-X check," where "check" comes
752 from the following set of checks:

754 m check for group or other write permissions
755 w check for user write permissions on files and directories
756 not owned by root
757 s check for group/other read permission on executable files
758 that have setuid/setgid bit(s)
759 o check for files that could be safely owned by root
760 """ % sys.argv[0]

763 def usage(msg=None):
764 """Try to give the user useful information when they don’t get the
765 command syntax right.
766 """
767 if msg:
768 sys.stderr.write("%s: %s\n" % (sys.argv[0], msg))
769 sys.stderr.write(USAGE)
770 sys.exit(2)

773 def main(argv):
774 """Compares two out of three possible data sources: a proto list, a
775 set of proto areas, and a set of manifests.
776 """
777 try:
778 opts, args = getopt.getopt(argv, ’a:e:Ll:Mm:p:vX:’)
779 except getopt.GetoptError, exc:
780 usage(str(exc))

782 if args:
783 usage()

new/usr/src/tools/scripts/validate_pkg.py 13

785 arch = None
786 exceptionlists = []
787 listonly = False
788 manifestdirs = []
789 manifesttree = ManifestTree("manifests")
790 protodirs = []
791 prototree = ProtoTree("proto area")
792 protolists = []
793 protolist = ProtoTree("proto list")
794 modechecks = set()
795 togglemodechecks = set()
796 trees = []
797 comparing = set()
798 verbose = False

800 for opt, arg in opts:
801 if opt == "-a":
802 if arch:
803 usage("may only specify one architecture")
804 else:
805 arch = arg
806 elif opt == "-e":
807 exceptionlists.append(arg)
808 elif opt == "-L":
809 listonly = True
810 elif opt == "-l":
811 comparing.add("protolist")
812 protolists.append(os.path.normpath(arg))
813 elif opt == "-M":
814 modechecks.update(DEFAULTMODECHECKS)
815 elif opt == "-m":
816 comparing.add("manifests")
817 manifestdirs.append(os.path.normpath(arg))
818 elif opt == "-p":
819 comparing.add("proto area")
820 protodirs.append(os.path.normpath(arg))
821 elif opt == "-v":
822 verbose = True
823 elif opt == "-X":
824 togglemodechecks.add(arg)

826 if listonly or len(modechecks) > 0:
827 if len(comparing) != 1 or "manifests" not in comparing:
828 usage("-L and -M require one or more -m args, and no -l or -p")
829 if listonly and len(modechecks) > 0:
830 usage("-L and -M are mutually exclusive")
831 elif len(comparing) != 2:
832 usage("must specify exactly two of -l, -m, and -p")

834 if len(togglemodechecks) > 0 and len(modechecks) == 0:
835 usage("-X requires -M")

837 for s in togglemodechecks:
838 if s not in ALLMODECHECKS:
839 usage("unknown mode check %s" % s)
840 modechecks.symmetric_difference_update((s))

842 if len(modechecks) == 0:
843 modechecks = None

845 if not arch:
846 usage("must specify architecture")

848 exceptions = ExceptionList(exceptionlists, arch)
849 originalexceptions = exceptions.copy()

new/usr/src/tools/scripts/validate_pkg.py 14

851 if len(manifestdirs) > 0:
852 for mdir in manifestdirs:
853 manifesttree.adddir(mdir, arch, modechecks, exceptions)
854 if listonly:
855 manifesttree.resolvehardlinks()
856 for info in manifesttree.values():
857 print "%s" % info.protostr()
858 sys.exit(0)
859 if modechecks is not None:
860 sys.exit(0)
861 trees.append(manifesttree)

863 if len(protodirs) > 0:
864 for pdir in protodirs:
865 prototree.adddir(pdir, exceptions)
866 trees.append(prototree)

868 if len(protolists) > 0:
869 for plist in protolists:
870 try:
871 protolist.addprotolist(plist, exceptions)
872 except IOError, exc:
873 sys.stderr.write("warning: %s\n" % str(exc))
874 trees.append(protolist)

876 if verbose and exceptions:
877 print "Entries present in exception list but missing from proto area:"
878 for exc in sorted(exceptions):
879 print "\t%s" % exc
880 print ""

882 usedexceptions = originalexceptions.difference(exceptions)
883 harmfulexceptions = usedexceptions.intersection(manifesttree)
884 if harmfulexceptions:
885 print "Entries present in exception list but also in manifests:"
886 for exc in sorted(harmfulexceptions):
887 print "\t%s" % exc
888 del manifesttree[exc]
889 print ""

891 trees[0].compare(trees[1])

893 if __name__ == ’__main__’:
894 try:
895 main(sys.argv[1:])
896 except KeyboardInterrupt:
897 sys.exit(1)
898 except IOError:
899 sys.exit(1)

