1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, Joyent, Inc. All rights reserved.
  24  * Copyright 2015 Nexenta Systems, Inc. All rights reserved.
  25  */
  26 
  27 /*      Copyright (c) 1983, 1984, 1985, 1986, 1987, 1988, 1989 AT&T */
  28 /*        All Rights Reserved   */
  29 
  30 /*
  31  * University Copyright- Copyright (c) 1982, 1986, 1988
  32  * The Regents of the University of California
  33  * All Rights Reserved
  34  *
  35  * University Acknowledgment- Portions of this document are derived from
  36  * software developed by the University of California, Berkeley, and its
  37  * contributors.
  38  */
  39 
  40 #include <sys/types.h>
  41 #include <sys/t_lock.h>
  42 #include <sys/param.h>
  43 #include <sys/errno.h>
  44 #include <sys/user.h>
  45 #include <sys/fstyp.h>
  46 #include <sys/kmem.h>
  47 #include <sys/systm.h>
  48 #include <sys/proc.h>
  49 #include <sys/mount.h>
  50 #include <sys/vfs.h>
  51 #include <sys/vfs_opreg.h>
  52 #include <sys/fem.h>
  53 #include <sys/mntent.h>
  54 #include <sys/stat.h>
  55 #include <sys/statvfs.h>
  56 #include <sys/statfs.h>
  57 #include <sys/cred.h>
  58 #include <sys/vnode.h>
  59 #include <sys/rwstlock.h>
  60 #include <sys/dnlc.h>
  61 #include <sys/file.h>
  62 #include <sys/time.h>
  63 #include <sys/atomic.h>
  64 #include <sys/cmn_err.h>
  65 #include <sys/buf.h>
  66 #include <sys/swap.h>
  67 #include <sys/debug.h>
  68 #include <sys/vnode.h>
  69 #include <sys/modctl.h>
  70 #include <sys/ddi.h>
  71 #include <sys/pathname.h>
  72 #include <sys/bootconf.h>
  73 #include <sys/dumphdr.h>
  74 #include <sys/dc_ki.h>
  75 #include <sys/poll.h>
  76 #include <sys/sunddi.h>
  77 #include <sys/sysmacros.h>
  78 #include <sys/zone.h>
  79 #include <sys/policy.h>
  80 #include <sys/ctfs.h>
  81 #include <sys/objfs.h>
  82 #include <sys/console.h>
  83 #include <sys/reboot.h>
  84 #include <sys/attr.h>
  85 #include <sys/zio.h>
  86 #include <sys/spa.h>
  87 #include <sys/lofi.h>
  88 #include <sys/bootprops.h>
  89 
  90 #include <vm/page.h>
  91 
  92 #include <fs/fs_subr.h>
  93 /* Private interfaces to create vopstats-related data structures */
  94 extern void             initialize_vopstats(vopstats_t *);
  95 extern vopstats_t       *get_fstype_vopstats(struct vfs *, struct vfssw *);
  96 extern vsk_anchor_t     *get_vskstat_anchor(struct vfs *);
  97 
  98 static void vfs_clearmntopt_nolock(mntopts_t *, const char *, int);
  99 static void vfs_setmntopt_nolock(mntopts_t *, const char *,
 100     const char *, int, int);
 101 static int  vfs_optionisset_nolock(const mntopts_t *, const char *, char **);
 102 static void vfs_freemnttab(struct vfs *);
 103 static void vfs_freeopt(mntopt_t *);
 104 static void vfs_swapopttbl_nolock(mntopts_t *, mntopts_t *);
 105 static void vfs_swapopttbl(mntopts_t *, mntopts_t *);
 106 static void vfs_copyopttbl_extend(const mntopts_t *, mntopts_t *, int);
 107 static void vfs_createopttbl_extend(mntopts_t *, const char *,
 108     const mntopts_t *);
 109 static char **vfs_copycancelopt_extend(char **const, int);
 110 static void vfs_freecancelopt(char **);
 111 static void getrootfs(char **, char **);
 112 static int getmacpath(dev_info_t *, void *);
 113 static void vfs_mnttabvp_setup(void);
 114 
 115 struct ipmnt {
 116         struct ipmnt    *mip_next;
 117         dev_t           mip_dev;
 118         struct vfs      *mip_vfsp;
 119 };
 120 
 121 static kmutex_t         vfs_miplist_mutex;
 122 static struct ipmnt     *vfs_miplist = NULL;
 123 static struct ipmnt     *vfs_miplist_end = NULL;
 124 
 125 static kmem_cache_t *vfs_cache; /* Pointer to VFS kmem cache */
 126 
 127 /*
 128  * VFS global data.
 129  */
 130 vnode_t *rootdir;               /* pointer to root inode vnode. */
 131 vnode_t *devicesdir;            /* pointer to inode of devices root */
 132 vnode_t *devdir;                /* pointer to inode of dev root */
 133 
 134 char *server_rootpath;          /* root path for diskless clients */
 135 char *server_hostname;          /* hostname of diskless server */
 136 
 137 static struct vfs root;
 138 static struct vfs devices;
 139 static struct vfs dev;
 140 struct vfs *rootvfs = &root;        /* pointer to root vfs; head of VFS list. */
 141 rvfs_t *rvfs_list;              /* array of vfs ptrs for vfs hash list */
 142 int vfshsz = 512;               /* # of heads/locks in vfs hash arrays */
 143                                 /* must be power of 2!  */
 144 timespec_t vfs_mnttab_ctime;    /* mnttab created time */
 145 timespec_t vfs_mnttab_mtime;    /* mnttab last modified time */
 146 char *vfs_dummyfstype = "\0";
 147 struct pollhead vfs_pollhd;     /* for mnttab pollers */
 148 struct vnode *vfs_mntdummyvp;   /* to fake mnttab read/write for file events */
 149 int     mntfstype;              /* will be set once mnt fs is mounted */
 150 
 151 /*
 152  * Table for generic options recognized in the VFS layer and acted
 153  * on at this level before parsing file system specific options.
 154  * The nosuid option is stronger than any of the devices and setuid
 155  * options, so those are canceled when nosuid is seen.
 156  *
 157  * All options which are added here need to be added to the
 158  * list of standard options in usr/src/cmd/fs.d/fslib.c as well.
 159  */
 160 /*
 161  * VFS Mount options table
 162  */
 163 static char *ro_cancel[] = { MNTOPT_RW, NULL };
 164 static char *rw_cancel[] = { MNTOPT_RO, NULL };
 165 static char *suid_cancel[] = { MNTOPT_NOSUID, NULL };
 166 static char *nosuid_cancel[] = { MNTOPT_SUID, MNTOPT_DEVICES, MNTOPT_NODEVICES,
 167     MNTOPT_NOSETUID, MNTOPT_SETUID, NULL };
 168 static char *devices_cancel[] = { MNTOPT_NODEVICES, NULL };
 169 static char *nodevices_cancel[] = { MNTOPT_DEVICES, NULL };
 170 static char *setuid_cancel[] = { MNTOPT_NOSETUID, NULL };
 171 static char *nosetuid_cancel[] = { MNTOPT_SETUID, NULL };
 172 static char *nbmand_cancel[] = { MNTOPT_NONBMAND, NULL };
 173 static char *nonbmand_cancel[] = { MNTOPT_NBMAND, NULL };
 174 static char *exec_cancel[] = { MNTOPT_NOEXEC, NULL };
 175 static char *noexec_cancel[] = { MNTOPT_EXEC, NULL };
 176 
 177 static const mntopt_t mntopts[] = {
 178 /*
 179  *      option name             cancel options          default arg     flags
 180  */
 181         { MNTOPT_REMOUNT,       NULL,                   NULL,
 182                 MO_NODISPLAY, (void *)0 },
 183         { MNTOPT_RO,            ro_cancel,              NULL,           0,
 184                 (void *)0 },
 185         { MNTOPT_RW,            rw_cancel,              NULL,           0,
 186                 (void *)0 },
 187         { MNTOPT_SUID,          suid_cancel,            NULL,           0,
 188                 (void *)0 },
 189         { MNTOPT_NOSUID,        nosuid_cancel,          NULL,           0,
 190                 (void *)0 },
 191         { MNTOPT_DEVICES,       devices_cancel,         NULL,           0,
 192                 (void *)0 },
 193         { MNTOPT_NODEVICES,     nodevices_cancel,       NULL,           0,
 194                 (void *)0 },
 195         { MNTOPT_SETUID,        setuid_cancel,          NULL,           0,
 196                 (void *)0 },
 197         { MNTOPT_NOSETUID,      nosetuid_cancel,        NULL,           0,
 198                 (void *)0 },
 199         { MNTOPT_NBMAND,        nbmand_cancel,          NULL,           0,
 200                 (void *)0 },
 201         { MNTOPT_NONBMAND,      nonbmand_cancel,        NULL,           0,
 202                 (void *)0 },
 203         { MNTOPT_EXEC,          exec_cancel,            NULL,           0,
 204                 (void *)0 },
 205         { MNTOPT_NOEXEC,        noexec_cancel,          NULL,           0,
 206                 (void *)0 },
 207 };
 208 
 209 const mntopts_t vfs_mntopts = {
 210         sizeof (mntopts) / sizeof (mntopt_t),
 211         (mntopt_t *)&mntopts[0]
 212 };
 213 
 214 /*
 215  * File system operation dispatch functions.
 216  */
 217 
 218 int
 219 fsop_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
 220 {
 221         return (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr);
 222 }
 223 
 224 int
 225 fsop_unmount(vfs_t *vfsp, int flag, cred_t *cr)
 226 {
 227         return (*(vfsp)->vfs_op->vfs_unmount)(vfsp, flag, cr);
 228 }
 229 
 230 int
 231 fsop_root(vfs_t *vfsp, vnode_t **vpp)
 232 {
 233         refstr_t *mntpt;
 234         int ret = (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp);
 235         /*
 236          * Make sure this root has a path.  With lofs, it is possible to have
 237          * a NULL mountpoint.
 238          */
 239         if (ret == 0 && vfsp->vfs_mntpt != NULL && (*vpp)->v_path == NULL) {
 240                 mntpt = vfs_getmntpoint(vfsp);
 241                 vn_setpath_str(*vpp, refstr_value(mntpt),
 242                     strlen(refstr_value(mntpt)));
 243                 refstr_rele(mntpt);
 244         }
 245 
 246         return (ret);
 247 }
 248 
 249 int
 250 fsop_statfs(vfs_t *vfsp, statvfs64_t *sp)
 251 {
 252         return (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp);
 253 }
 254 
 255 int
 256 fsop_sync(vfs_t *vfsp, short flag, cred_t *cr)
 257 {
 258         return (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr);
 259 }
 260 
 261 int
 262 fsop_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
 263 {
 264         /*
 265          * In order to handle system attribute fids in a manner
 266          * transparent to the underlying fs, we embed the fid for
 267          * the sysattr parent object in the sysattr fid and tack on
 268          * some extra bytes that only the sysattr layer knows about.
 269          *
 270          * This guarantees that sysattr fids are larger than other fids
 271          * for this vfs. If the vfs supports the sysattr view interface
 272          * (as indicated by VFSFT_SYSATTR_VIEWS), we cannot have a size
 273          * collision with XATTR_FIDSZ.
 274          */
 275         if (vfs_has_feature(vfsp, VFSFT_SYSATTR_VIEWS) &&
 276             fidp->fid_len == XATTR_FIDSZ)
 277                 return (xattr_dir_vget(vfsp, vpp, fidp));
 278 
 279         return (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp);
 280 }
 281 
 282 int
 283 fsop_mountroot(vfs_t *vfsp, enum whymountroot reason)
 284 {
 285         return (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, reason);
 286 }
 287 
 288 void
 289 fsop_freefs(vfs_t *vfsp)
 290 {
 291         (*(vfsp)->vfs_op->vfs_freevfs)(vfsp);
 292 }
 293 
 294 int
 295 fsop_vnstate(vfs_t *vfsp, vnode_t *vp, vntrans_t nstate)
 296 {
 297         return ((*(vfsp)->vfs_op->vfs_vnstate)(vfsp, vp, nstate));
 298 }
 299 
 300 int
 301 fsop_sync_by_kind(int fstype, short flag, cred_t *cr)
 302 {
 303         ASSERT((fstype >= 0) && (fstype < nfstype));
 304 
 305         if (ALLOCATED_VFSSW(&vfssw[fstype]) && VFS_INSTALLED(&vfssw[fstype]))
 306                 return (*vfssw[fstype].vsw_vfsops.vfs_sync) (NULL, flag, cr);
 307         else
 308                 return (ENOTSUP);
 309 }
 310 
 311 /*
 312  * File system initialization.  vfs_setfsops() must be called from a file
 313  * system's init routine.
 314  */
 315 
 316 static int
 317 fs_copyfsops(const fs_operation_def_t *template, vfsops_t *actual,
 318     int *unused_ops)
 319 {
 320         static const fs_operation_trans_def_t vfs_ops_table[] = {
 321                 VFSNAME_MOUNT, offsetof(vfsops_t, vfs_mount),
 322                         fs_nosys, fs_nosys,
 323 
 324                 VFSNAME_UNMOUNT, offsetof(vfsops_t, vfs_unmount),
 325                         fs_nosys, fs_nosys,
 326 
 327                 VFSNAME_ROOT, offsetof(vfsops_t, vfs_root),
 328                         fs_nosys, fs_nosys,
 329 
 330                 VFSNAME_STATVFS, offsetof(vfsops_t, vfs_statvfs),
 331                         fs_nosys, fs_nosys,
 332 
 333                 VFSNAME_SYNC, offsetof(vfsops_t, vfs_sync),
 334                         (fs_generic_func_p) fs_sync,
 335                         (fs_generic_func_p) fs_sync,    /* No errors allowed */
 336 
 337                 VFSNAME_VGET, offsetof(vfsops_t, vfs_vget),
 338                         fs_nosys, fs_nosys,
 339 
 340                 VFSNAME_MOUNTROOT, offsetof(vfsops_t, vfs_mountroot),
 341                         fs_nosys, fs_nosys,
 342 
 343                 VFSNAME_FREEVFS, offsetof(vfsops_t, vfs_freevfs),
 344                         (fs_generic_func_p)fs_freevfs,
 345                         (fs_generic_func_p)fs_freevfs,  /* Shouldn't fail */
 346 
 347                 VFSNAME_VNSTATE, offsetof(vfsops_t, vfs_vnstate),
 348                         (fs_generic_func_p)fs_nosys,
 349                         (fs_generic_func_p)fs_nosys,
 350 
 351                 NULL, 0, NULL, NULL
 352         };
 353 
 354         return (fs_build_vector(actual, unused_ops, vfs_ops_table, template));
 355 }
 356 
 357 void
 358 zfs_boot_init() {
 359 
 360         if (strcmp(rootfs.bo_fstype, MNTTYPE_ZFS) == 0)
 361                 spa_boot_init();
 362 }
 363 
 364 int
 365 vfs_setfsops(int fstype, const fs_operation_def_t *template, vfsops_t **actual)
 366 {
 367         int error;
 368         int unused_ops;
 369 
 370         /*
 371          * Verify that fstype refers to a valid fs.  Note that
 372          * 0 is valid since it's used to set "stray" ops.
 373          */
 374         if ((fstype < 0) || (fstype >= nfstype))
 375                 return (EINVAL);
 376 
 377         if (!ALLOCATED_VFSSW(&vfssw[fstype]))
 378                 return (EINVAL);
 379 
 380         /* Set up the operations vector. */
 381 
 382         error = fs_copyfsops(template, &vfssw[fstype].vsw_vfsops, &unused_ops);
 383 
 384         if (error != 0)
 385                 return (error);
 386 
 387         vfssw[fstype].vsw_flag |= VSW_INSTALLED;
 388 
 389         if (actual != NULL)
 390                 *actual = &vfssw[fstype].vsw_vfsops;
 391 
 392 #if DEBUG
 393         if (unused_ops != 0)
 394                 cmn_err(CE_WARN, "vfs_setfsops: %s: %d operations supplied "
 395                     "but not used", vfssw[fstype].vsw_name, unused_ops);
 396 #endif
 397 
 398         return (0);
 399 }
 400 
 401 int
 402 vfs_makefsops(const fs_operation_def_t *template, vfsops_t **actual)
 403 {
 404         int error;
 405         int unused_ops;
 406 
 407         *actual = (vfsops_t *)kmem_alloc(sizeof (vfsops_t), KM_SLEEP);
 408 
 409         error = fs_copyfsops(template, *actual, &unused_ops);
 410         if (error != 0) {
 411                 kmem_free(*actual, sizeof (vfsops_t));
 412                 *actual = NULL;
 413                 return (error);
 414         }
 415 
 416         return (0);
 417 }
 418 
 419 /*
 420  * Free a vfsops structure created as a result of vfs_makefsops().
 421  * NOTE: For a vfsops structure initialized by vfs_setfsops(), use
 422  * vfs_freevfsops_by_type().
 423  */
 424 void
 425 vfs_freevfsops(vfsops_t *vfsops)
 426 {
 427         kmem_free(vfsops, sizeof (vfsops_t));
 428 }
 429 
 430 /*
 431  * Since the vfsops structure is part of the vfssw table and wasn't
 432  * really allocated, we're not really freeing anything.  We keep
 433  * the name for consistency with vfs_freevfsops().  We do, however,
 434  * need to take care of a little bookkeeping.
 435  * NOTE: For a vfsops structure created by vfs_setfsops(), use
 436  * vfs_freevfsops_by_type().
 437  */
 438 int
 439 vfs_freevfsops_by_type(int fstype)
 440 {
 441 
 442         /* Verify that fstype refers to a loaded fs (and not fsid 0). */
 443         if ((fstype <= 0) || (fstype >= nfstype))
 444                 return (EINVAL);
 445 
 446         WLOCK_VFSSW();
 447         if ((vfssw[fstype].vsw_flag & VSW_INSTALLED) == 0) {
 448                 WUNLOCK_VFSSW();
 449                 return (EINVAL);
 450         }
 451 
 452         vfssw[fstype].vsw_flag &= ~VSW_INSTALLED;
 453         WUNLOCK_VFSSW();
 454 
 455         return (0);
 456 }
 457 
 458 /* Support routines used to reference vfs_op */
 459 
 460 /* Set the operations vector for a vfs */
 461 void
 462 vfs_setops(vfs_t *vfsp, vfsops_t *vfsops)
 463 {
 464         vfsops_t        *op;
 465 
 466         ASSERT(vfsp != NULL);
 467         ASSERT(vfsops != NULL);
 468 
 469         op = vfsp->vfs_op;
 470         membar_consumer();
 471         if (vfsp->vfs_femhead == NULL &&
 472             atomic_cas_ptr(&vfsp->vfs_op, op, vfsops) == op) {
 473                 return;
 474         }
 475         fsem_setvfsops(vfsp, vfsops);
 476 }
 477 
 478 /* Retrieve the operations vector for a vfs */
 479 vfsops_t *
 480 vfs_getops(vfs_t *vfsp)
 481 {
 482         vfsops_t        *op;
 483 
 484         ASSERT(vfsp != NULL);
 485 
 486         op = vfsp->vfs_op;
 487         membar_consumer();
 488         if (vfsp->vfs_femhead == NULL && op == vfsp->vfs_op) {
 489                 return (op);
 490         } else {
 491                 return (fsem_getvfsops(vfsp));
 492         }
 493 }
 494 
 495 /*
 496  * Returns non-zero (1) if the vfsops matches that of the vfs.
 497  * Returns zero (0) if not.
 498  */
 499 int
 500 vfs_matchops(vfs_t *vfsp, vfsops_t *vfsops)
 501 {
 502         return (vfs_getops(vfsp) == vfsops);
 503 }
 504 
 505 /*
 506  * Returns non-zero (1) if the file system has installed a non-default,
 507  * non-error vfs_sync routine.  Returns zero (0) otherwise.
 508  */
 509 int
 510 vfs_can_sync(vfs_t *vfsp)
 511 {
 512         /* vfs_sync() routine is not the default/error function */
 513         return (vfs_getops(vfsp)->vfs_sync != fs_sync);
 514 }
 515 
 516 /*
 517  * Initialize a vfs structure.
 518  */
 519 void
 520 vfs_init(vfs_t *vfsp, vfsops_t *op, void *data)
 521 {
 522         /* Other initialization has been moved to vfs_alloc() */
 523         vfsp->vfs_count = 0;
 524         vfsp->vfs_next = vfsp;
 525         vfsp->vfs_prev = vfsp;
 526         vfsp->vfs_zone_next = vfsp;
 527         vfsp->vfs_zone_prev = vfsp;
 528         vfsp->vfs_lofi_minor = 0;
 529         sema_init(&vfsp->vfs_reflock, 1, NULL, SEMA_DEFAULT, NULL);
 530         vfsimpl_setup(vfsp);
 531         vfsp->vfs_data = (data);
 532         vfs_setops((vfsp), (op));
 533 }
 534 
 535 /*
 536  * Allocate and initialize the vfs implementation private data
 537  * structure, vfs_impl_t.
 538  */
 539 void
 540 vfsimpl_setup(vfs_t *vfsp)
 541 {
 542         int i;
 543 
 544         if (vfsp->vfs_implp != NULL) {
 545                 return;
 546         }
 547 
 548         vfsp->vfs_implp = kmem_alloc(sizeof (vfs_impl_t), KM_SLEEP);
 549         /* Note that these are #define'd in vfs.h */
 550         vfsp->vfs_vskap = NULL;
 551         vfsp->vfs_fstypevsp = NULL;
 552 
 553         /* Set size of counted array, then zero the array */
 554         vfsp->vfs_featureset[0] = VFS_FEATURE_MAXSZ - 1;
 555         for (i = 1; i <  VFS_FEATURE_MAXSZ; i++) {
 556                 vfsp->vfs_featureset[i] = 0;
 557         }
 558 }
 559 
 560 /*
 561  * Release the vfs_impl_t structure, if it exists. Some unbundled
 562  * filesystems may not use the newer version of vfs and thus
 563  * would not contain this implementation private data structure.
 564  */
 565 void
 566 vfsimpl_teardown(vfs_t *vfsp)
 567 {
 568         vfs_impl_t      *vip = vfsp->vfs_implp;
 569 
 570         if (vip == NULL)
 571                 return;
 572 
 573         kmem_free(vfsp->vfs_implp, sizeof (vfs_impl_t));
 574         vfsp->vfs_implp = NULL;
 575 }
 576 
 577 /*
 578  * VFS system calls: mount, umount, syssync, statfs, fstatfs, statvfs,
 579  * fstatvfs, and sysfs moved to common/syscall.
 580  */
 581 
 582 /*
 583  * Update every mounted file system.  We call the vfs_sync operation of
 584  * each file system type, passing it a NULL vfsp to indicate that all
 585  * mounted file systems of that type should be updated.
 586  */
 587 void
 588 vfs_sync(int flag)
 589 {
 590         struct vfssw *vswp;
 591         RLOCK_VFSSW();
 592         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
 593                 if (ALLOCATED_VFSSW(vswp) && VFS_INSTALLED(vswp)) {
 594                         vfs_refvfssw(vswp);
 595                         RUNLOCK_VFSSW();
 596                         (void) (*vswp->vsw_vfsops.vfs_sync)(NULL, flag,
 597                             CRED());
 598                         vfs_unrefvfssw(vswp);
 599                         RLOCK_VFSSW();
 600                 }
 601         }
 602         RUNLOCK_VFSSW();
 603 }
 604 
 605 void
 606 sync(void)
 607 {
 608         vfs_sync(0);
 609 }
 610 
 611 /*
 612  * External routines.
 613  */
 614 
 615 krwlock_t vfssw_lock;   /* lock accesses to vfssw */
 616 
 617 /*
 618  * Lock for accessing the vfs linked list.  Initialized in vfs_mountroot(),
 619  * but otherwise should be accessed only via vfs_list_lock() and
 620  * vfs_list_unlock().  Also used to protect the timestamp for mods to the list.
 621  */
 622 static krwlock_t vfslist;
 623 
 624 /*
 625  * Mount devfs on /devices. This is done right after root is mounted
 626  * to provide device access support for the system
 627  */
 628 static void
 629 vfs_mountdevices(void)
 630 {
 631         struct vfssw *vsw;
 632         struct vnode *mvp;
 633         struct mounta mounta = {        /* fake mounta for devfs_mount() */
 634                 NULL,
 635                 NULL,
 636                 MS_SYSSPACE,
 637                 NULL,
 638                 NULL,
 639                 0,
 640                 NULL,
 641                 0
 642         };
 643 
 644         /*
 645          * _init devfs module to fill in the vfssw
 646          */
 647         if (modload("fs", "devfs") == -1)
 648                 panic("Cannot _init devfs module");
 649 
 650         /*
 651          * Hold vfs
 652          */
 653         RLOCK_VFSSW();
 654         vsw = vfs_getvfsswbyname("devfs");
 655         VFS_INIT(&devices, &vsw->vsw_vfsops, NULL);
 656         VFS_HOLD(&devices);
 657 
 658         /*
 659          * Locate mount point
 660          */
 661         if (lookupname("/devices", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
 662                 panic("Cannot find /devices");
 663 
 664         /*
 665          * Perform the mount of /devices
 666          */
 667         if (VFS_MOUNT(&devices, mvp, &mounta, CRED()))
 668                 panic("Cannot mount /devices");
 669 
 670         RUNLOCK_VFSSW();
 671 
 672         /*
 673          * Set appropriate members and add to vfs list for mnttab display
 674          */
 675         vfs_setresource(&devices, "/devices", 0);
 676         vfs_setmntpoint(&devices, "/devices", 0);
 677 
 678         /*
 679          * Hold the root of /devices so it won't go away
 680          */
 681         if (VFS_ROOT(&devices, &devicesdir))
 682                 panic("vfs_mountdevices: not devices root");
 683 
 684         if (vfs_lock(&devices) != 0) {
 685                 VN_RELE(devicesdir);
 686                 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /devices");
 687                 return;
 688         }
 689 
 690         if (vn_vfswlock(mvp) != 0) {
 691                 vfs_unlock(&devices);
 692                 VN_RELE(devicesdir);
 693                 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /devices");
 694                 return;
 695         }
 696 
 697         vfs_add(mvp, &devices, 0);
 698         vn_vfsunlock(mvp);
 699         vfs_unlock(&devices);
 700         VN_RELE(devicesdir);
 701 }
 702 
 703 /*
 704  * mount the first instance of /dev  to root and remain mounted
 705  */
 706 static void
 707 vfs_mountdev1(void)
 708 {
 709         struct vfssw *vsw;
 710         struct vnode *mvp;
 711         struct mounta mounta = {        /* fake mounta for sdev_mount() */
 712                 NULL,
 713                 NULL,
 714                 MS_SYSSPACE | MS_OVERLAY,
 715                 NULL,
 716                 NULL,
 717                 0,
 718                 NULL,
 719                 0
 720         };
 721 
 722         /*
 723          * _init dev module to fill in the vfssw
 724          */
 725         if (modload("fs", "dev") == -1)
 726                 cmn_err(CE_PANIC, "Cannot _init dev module\n");
 727 
 728         /*
 729          * Hold vfs
 730          */
 731         RLOCK_VFSSW();
 732         vsw = vfs_getvfsswbyname("dev");
 733         VFS_INIT(&dev, &vsw->vsw_vfsops, NULL);
 734         VFS_HOLD(&dev);
 735 
 736         /*
 737          * Locate mount point
 738          */
 739         if (lookupname("/dev", UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp))
 740                 cmn_err(CE_PANIC, "Cannot find /dev\n");
 741 
 742         /*
 743          * Perform the mount of /dev
 744          */
 745         if (VFS_MOUNT(&dev, mvp, &mounta, CRED()))
 746                 cmn_err(CE_PANIC, "Cannot mount /dev 1\n");
 747 
 748         RUNLOCK_VFSSW();
 749 
 750         /*
 751          * Set appropriate members and add to vfs list for mnttab display
 752          */
 753         vfs_setresource(&dev, "/dev", 0);
 754         vfs_setmntpoint(&dev, "/dev", 0);
 755 
 756         /*
 757          * Hold the root of /dev so it won't go away
 758          */
 759         if (VFS_ROOT(&dev, &devdir))
 760                 cmn_err(CE_PANIC, "vfs_mountdev1: not dev root");
 761 
 762         if (vfs_lock(&dev) != 0) {
 763                 VN_RELE(devdir);
 764                 cmn_err(CE_NOTE, "Cannot acquire vfs_lock of /dev");
 765                 return;
 766         }
 767 
 768         if (vn_vfswlock(mvp) != 0) {
 769                 vfs_unlock(&dev);
 770                 VN_RELE(devdir);
 771                 cmn_err(CE_NOTE, "Cannot acquire vfswlock of /dev");
 772                 return;
 773         }
 774 
 775         vfs_add(mvp, &dev, 0);
 776         vn_vfsunlock(mvp);
 777         vfs_unlock(&dev);
 778         VN_RELE(devdir);
 779 }
 780 
 781 /*
 782  * Mount required filesystem. This is done right after root is mounted.
 783  */
 784 static void
 785 vfs_mountfs(char *module, char *spec, char *path)
 786 {
 787         struct vnode *mvp;
 788         struct mounta mounta;
 789         vfs_t *vfsp;
 790 
 791         mounta.flags = MS_SYSSPACE | MS_DATA;
 792         mounta.fstype = module;
 793         mounta.spec = spec;
 794         mounta.dir = path;
 795         if (lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &mvp)) {
 796                 cmn_err(CE_WARN, "Cannot find %s", path);
 797                 return;
 798         }
 799         if (domount(NULL, &mounta, mvp, CRED(), &vfsp))
 800                 cmn_err(CE_WARN, "Cannot mount %s", path);
 801         else
 802                 VFS_RELE(vfsp);
 803         VN_RELE(mvp);
 804 }
 805 
 806 /*
 807  * vfs_mountroot is called by main() to mount the root filesystem.
 808  */
 809 void
 810 vfs_mountroot(void)
 811 {
 812         struct vnode    *rvp = NULL;
 813         char            *path;
 814         size_t          plen;
 815         struct vfssw    *vswp;
 816         proc_t          *p;
 817 
 818         rw_init(&vfssw_lock, NULL, RW_DEFAULT, NULL);
 819         rw_init(&vfslist, NULL, RW_DEFAULT, NULL);
 820 
 821         /*
 822          * Alloc the vfs hash bucket array and locks
 823          */
 824         rvfs_list = kmem_zalloc(vfshsz * sizeof (rvfs_t), KM_SLEEP);
 825 
 826         /*
 827          * Call machine-dependent routine "rootconf" to choose a root
 828          * file system type.
 829          */
 830         if (rootconf())
 831                 panic("vfs_mountroot: cannot mount root");
 832         /*
 833          * Get vnode for '/'.  Set up rootdir, u.u_rdir and u.u_cdir
 834          * to point to it.  These are used by lookuppn() so that it
 835          * knows where to start from ('/' or '.').
 836          */
 837         vfs_setmntpoint(rootvfs, "/", 0);
 838         if (VFS_ROOT(rootvfs, &rootdir))
 839                 panic("vfs_mountroot: no root vnode");
 840 
 841         /*
 842          * At this point, the process tree consists of p0 and possibly some
 843          * direct children of p0.  (i.e. there are no grandchildren)
 844          *
 845          * Walk through them all, setting their current directory.
 846          */
 847         mutex_enter(&pidlock);
 848         for (p = practive; p != NULL; p = p->p_next) {
 849                 ASSERT(p == &p0 || p->p_parent == &p0);
 850 
 851                 PTOU(p)->u_cdir = rootdir;
 852                 VN_HOLD(PTOU(p)->u_cdir);
 853                 PTOU(p)->u_rdir = NULL;
 854         }
 855         mutex_exit(&pidlock);
 856 
 857         /*
 858          * Setup the global zone's rootvp, now that it exists.
 859          */
 860         global_zone->zone_rootvp = rootdir;
 861         VN_HOLD(global_zone->zone_rootvp);
 862 
 863         /*
 864          * Notify the module code that it can begin using the
 865          * root filesystem instead of the boot program's services.
 866          */
 867         modrootloaded = 1;
 868 
 869         /*
 870          * Special handling for a ZFS root file system.
 871          */
 872         zfs_boot_init();
 873 
 874         /*
 875          * Set up mnttab information for root
 876          */
 877         vfs_setresource(rootvfs, rootfs.bo_name, 0);
 878 
 879         /*
 880          * Notify cluster software that the root filesystem is available.
 881          */
 882         clboot_mountroot();
 883 
 884         /* Now that we're all done with the root FS, set up its vopstats */
 885         if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) != NULL) {
 886                 /* Set flag for statistics collection */
 887                 if (vswp->vsw_flag & VSW_STATS) {
 888                         initialize_vopstats(&rootvfs->vfs_vopstats);
 889                         rootvfs->vfs_flag |= VFS_STATS;
 890                         rootvfs->vfs_fstypevsp =
 891                             get_fstype_vopstats(rootvfs, vswp);
 892                         rootvfs->vfs_vskap = get_vskstat_anchor(rootvfs);
 893                 }
 894                 vfs_unrefvfssw(vswp);
 895         }
 896 
 897         /*
 898          * Mount /devices, /dev instance 1, /system/contract, /etc/mnttab,
 899          * /etc/svc/volatile, /etc/dfs/sharetab, /system/object, and /proc.
 900          */
 901         vfs_mountdevices();
 902         vfs_mountdev1();
 903 
 904         vfs_mountfs("ctfs", "ctfs", CTFS_ROOT);
 905         vfs_mountfs("proc", "/proc", "/proc");
 906         vfs_mountfs("mntfs", "/etc/mnttab", "/etc/mnttab");
 907         vfs_mountfs("tmpfs", "/etc/svc/volatile", "/etc/svc/volatile");
 908         vfs_mountfs("objfs", "objfs", OBJFS_ROOT);
 909 
 910         if (getzoneid() == GLOBAL_ZONEID) {
 911                 vfs_mountfs("sharefs", "sharefs", "/etc/dfs/sharetab");
 912         }
 913 
 914 #ifdef __sparc
 915         /*
 916          * This bit of magic can go away when we convert sparc to
 917          * the new boot architecture based on ramdisk.
 918          *
 919          * Booting off a mirrored root volume:
 920          * At this point, we have booted and mounted root on a
 921          * single component of the mirror.  Complete the boot
 922          * by configuring SVM and converting the root to the
 923          * dev_t of the mirrored root device.  This dev_t conversion
 924          * only works because the underlying device doesn't change.
 925          */
 926         if (root_is_svm) {
 927                 if (svm_rootconf()) {
 928                         panic("vfs_mountroot: cannot remount root");
 929                 }
 930 
 931                 /*
 932                  * mnttab should reflect the new root device
 933                  */
 934                 vfs_lock_wait(rootvfs);
 935                 vfs_setresource(rootvfs, rootfs.bo_name, 0);
 936                 vfs_unlock(rootvfs);
 937         }
 938 #endif /* __sparc */
 939 
 940         if (strcmp(rootfs.bo_fstype, "zfs") != 0) {
 941                 /*
 942                  * Look up the root device via devfs so that a dv_node is
 943                  * created for it. The vnode is never VN_RELE()ed.
 944                  * We allocate more than MAXPATHLEN so that the
 945                  * buffer passed to i_ddi_prompath_to_devfspath() is
 946                  * exactly MAXPATHLEN (the function expects a buffer
 947                  * of that length).
 948                  */
 949                 plen = strlen("/devices");
 950                 path = kmem_alloc(plen + MAXPATHLEN, KM_SLEEP);
 951                 (void) strcpy(path, "/devices");
 952 
 953                 if (i_ddi_prompath_to_devfspath(rootfs.bo_name, path + plen)
 954                     != DDI_SUCCESS ||
 955                     lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, &rvp)) {
 956 
 957                         /* NUL terminate in case "path" has garbage */
 958                         path[plen + MAXPATHLEN - 1] = '\0';
 959 #ifdef  DEBUG
 960                         cmn_err(CE_WARN, "!Cannot lookup root device: %s",
 961                             path);
 962 #endif
 963                 }
 964                 kmem_free(path, plen + MAXPATHLEN);
 965         }
 966 
 967         vfs_mnttabvp_setup();
 968 }
 969 
 970 /*
 971  * Check to see if our "block device" is actually a file.  If so,
 972  * automatically add a lofi device, and keep track of this fact.
 973  */
 974 static int
 975 lofi_add(const char *fsname, struct vfs *vfsp,
 976     mntopts_t *mntopts, struct mounta *uap)
 977 {
 978         int fromspace = (uap->flags & MS_SYSSPACE) ?
 979             UIO_SYSSPACE : UIO_USERSPACE;
 980         struct lofi_ioctl *li = NULL;
 981         struct vnode *vp = NULL;
 982         struct pathname pn = { NULL };
 983         ldi_ident_t ldi_id;
 984         ldi_handle_t ldi_hdl;
 985         vfssw_t *vfssw;
 986         int minor;
 987         int err = 0;
 988 
 989         if ((vfssw = vfs_getvfssw(fsname)) == NULL)
 990                 return (0);
 991 
 992         if (!(vfssw->vsw_flag & VSW_CANLOFI)) {
 993                 vfs_unrefvfssw(vfssw);
 994                 return (0);
 995         }
 996 
 997         vfs_unrefvfssw(vfssw);
 998         vfssw = NULL;
 999 
1000         if (pn_get(uap->spec, fromspace, &pn) != 0)
1001                 return (0);
1002 
1003         if (lookupname(uap->spec, fromspace, FOLLOW, NULL, &vp) != 0)
1004                 goto out;
1005 
1006         if (vp->v_type != VREG)
1007                 goto out;
1008 
1009         /* OK, this is a lofi mount. */
1010 
1011         if ((uap->flags & (MS_REMOUNT|MS_GLOBAL)) ||
1012             vfs_optionisset_nolock(mntopts, MNTOPT_SUID, NULL) ||
1013             vfs_optionisset_nolock(mntopts, MNTOPT_SETUID, NULL) ||
1014             vfs_optionisset_nolock(mntopts, MNTOPT_DEVICES, NULL)) {
1015                 err = EINVAL;
1016                 goto out;
1017         }
1018 
1019         ldi_id = ldi_ident_from_anon();
1020         li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1021         (void) strlcpy(li->li_filename, pn.pn_path, MAXPATHLEN);
1022 
1023         err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1024             &ldi_hdl, ldi_id);
1025 
1026         if (err)
1027                 goto out2;
1028 
1029         err = ldi_ioctl(ldi_hdl, LOFI_MAP_FILE, (intptr_t)li,
1030             FREAD | FWRITE | FKIOCTL, kcred, &minor);
1031 
1032         (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1033 
1034         if (!err)
1035                 vfsp->vfs_lofi_minor = minor;
1036 
1037 out2:
1038         ldi_ident_release(ldi_id);
1039 out:
1040         if (li != NULL)
1041                 kmem_free(li, sizeof (*li));
1042         if (vp != NULL)
1043                 VN_RELE(vp);
1044         pn_free(&pn);
1045         return (err);
1046 }
1047 
1048 static void
1049 lofi_remove(struct vfs *vfsp)
1050 {
1051         struct lofi_ioctl *li = NULL;
1052         ldi_ident_t ldi_id;
1053         ldi_handle_t ldi_hdl;
1054         int err;
1055 
1056         if (vfsp->vfs_lofi_minor == 0)
1057                 return;
1058 
1059         ldi_id = ldi_ident_from_anon();
1060 
1061         li = kmem_zalloc(sizeof (*li), KM_SLEEP);
1062         li->li_minor = vfsp->vfs_lofi_minor;
1063         li->li_cleanup = B_TRUE;
1064 
1065         err = ldi_open_by_name("/dev/lofictl", FREAD | FWRITE, kcred,
1066             &ldi_hdl, ldi_id);
1067 
1068         if (err)
1069                 goto out;
1070 
1071         err = ldi_ioctl(ldi_hdl, LOFI_UNMAP_FILE_MINOR, (intptr_t)li,
1072             FREAD | FWRITE | FKIOCTL, kcred, NULL);
1073 
1074         (void) ldi_close(ldi_hdl, FREAD | FWRITE, kcred);
1075 
1076         if (!err)
1077                 vfsp->vfs_lofi_minor = 0;
1078 
1079 out:
1080         ldi_ident_release(ldi_id);
1081         if (li != NULL)
1082                 kmem_free(li, sizeof (*li));
1083 }
1084 
1085 /*
1086  * Common mount code.  Called from the system call entry point, from autofs,
1087  * nfsv4 trigger mounts, and from pxfs.
1088  *
1089  * Takes the effective file system type, mount arguments, the mount point
1090  * vnode, flags specifying whether the mount is a remount and whether it
1091  * should be entered into the vfs list, and credentials.  Fills in its vfspp
1092  * parameter with the mounted file system instance's vfs.
1093  *
1094  * Note that the effective file system type is specified as a string.  It may
1095  * be null, in which case it's determined from the mount arguments, and may
1096  * differ from the type specified in the mount arguments; this is a hook to
1097  * allow interposition when instantiating file system instances.
1098  *
1099  * The caller is responsible for releasing its own hold on the mount point
1100  * vp (this routine does its own hold when necessary).
1101  * Also note that for remounts, the mount point vp should be the vnode for
1102  * the root of the file system rather than the vnode that the file system
1103  * is mounted on top of.
1104  */
1105 int
1106 domount(char *fsname, struct mounta *uap, vnode_t *vp, struct cred *credp,
1107         struct vfs **vfspp)
1108 {
1109         struct vfssw    *vswp;
1110         vfsops_t        *vfsops;
1111         struct vfs      *vfsp;
1112         struct vnode    *bvp;
1113         dev_t           bdev = 0;
1114         mntopts_t       mnt_mntopts;
1115         int             error = 0;
1116         int             copyout_error = 0;
1117         int             ovflags;
1118         char            *opts = uap->optptr;
1119         char            *inargs = opts;
1120         int             optlen = uap->optlen;
1121         int             remount;
1122         int             rdonly;
1123         int             nbmand = 0;
1124         int             delmip = 0;
1125         int             addmip = 0;
1126         int             splice = ((uap->flags & MS_NOSPLICE) == 0);
1127         int             fromspace = (uap->flags & MS_SYSSPACE) ?
1128             UIO_SYSSPACE : UIO_USERSPACE;
1129         char            *resource = NULL, *mountpt = NULL;
1130         refstr_t        *oldresource, *oldmntpt;
1131         struct pathname pn, rpn;
1132         vsk_anchor_t    *vskap;
1133         char fstname[FSTYPSZ];
1134         zone_t          *zone;
1135 
1136         /*
1137          * The v_flag value for the mount point vp is permanently set
1138          * to VVFSLOCK so that no one bypasses the vn_vfs*locks routine
1139          * for mount point locking.
1140          */
1141         mutex_enter(&vp->v_lock);
1142         vp->v_flag |= VVFSLOCK;
1143         mutex_exit(&vp->v_lock);
1144 
1145         mnt_mntopts.mo_count = 0;
1146         /*
1147          * Find the ops vector to use to invoke the file system-specific mount
1148          * method.  If the fsname argument is non-NULL, use it directly.
1149          * Otherwise, dig the file system type information out of the mount
1150          * arguments.
1151          *
1152          * A side effect is to hold the vfssw entry.
1153          *
1154          * Mount arguments can be specified in several ways, which are
1155          * distinguished by flag bit settings.  The preferred way is to set
1156          * MS_OPTIONSTR, indicating an 8 argument mount with the file system
1157          * type supplied as a character string and the last two arguments
1158          * being a pointer to a character buffer and the size of the buffer.
1159          * On entry, the buffer holds a null terminated list of options; on
1160          * return, the string is the list of options the file system
1161          * recognized. If MS_DATA is set arguments five and six point to a
1162          * block of binary data which the file system interprets.
1163          * A further wrinkle is that some callers don't set MS_FSS and MS_DATA
1164          * consistently with these conventions.  To handle them, we check to
1165          * see whether the pointer to the file system name has a numeric value
1166          * less than 256.  If so, we treat it as an index.
1167          */
1168         if (fsname != NULL) {
1169                 if ((vswp = vfs_getvfssw(fsname)) == NULL) {
1170                         return (EINVAL);
1171                 }
1172         } else if (uap->flags & (MS_OPTIONSTR | MS_DATA | MS_FSS)) {
1173                 size_t n;
1174                 uint_t fstype;
1175 
1176                 fsname = fstname;
1177 
1178                 if ((fstype = (uintptr_t)uap->fstype) < 256) {
1179                         RLOCK_VFSSW();
1180                         if (fstype == 0 || fstype >= nfstype ||
1181                             !ALLOCATED_VFSSW(&vfssw[fstype])) {
1182                                 RUNLOCK_VFSSW();
1183                                 return (EINVAL);
1184                         }
1185                         (void) strcpy(fsname, vfssw[fstype].vsw_name);
1186                         RUNLOCK_VFSSW();
1187                         if ((vswp = vfs_getvfssw(fsname)) == NULL)
1188                                 return (EINVAL);
1189                 } else {
1190                         /*
1191                          * Handle either kernel or user address space.
1192                          */
1193                         if (uap->flags & MS_SYSSPACE) {
1194                                 error = copystr(uap->fstype, fsname,
1195                                     FSTYPSZ, &n);
1196                         } else {
1197                                 error = copyinstr(uap->fstype, fsname,
1198                                     FSTYPSZ, &n);
1199                         }
1200                         if (error) {
1201                                 if (error == ENAMETOOLONG)
1202                                         return (EINVAL);
1203                                 return (error);
1204                         }
1205                         if ((vswp = vfs_getvfssw(fsname)) == NULL)
1206                                 return (EINVAL);
1207                 }
1208         } else {
1209                 if ((vswp = vfs_getvfsswbyvfsops(vfs_getops(rootvfs))) == NULL)
1210                         return (EINVAL);
1211                 fsname = vswp->vsw_name;
1212         }
1213         if (!VFS_INSTALLED(vswp))
1214                 return (EINVAL);
1215 
1216         if ((error = secpolicy_fs_allowed_mount(fsname)) != 0)  {
1217                 vfs_unrefvfssw(vswp);
1218                 return (error);
1219         }
1220 
1221         vfsops = &vswp->vsw_vfsops;
1222 
1223         vfs_copyopttbl(&vswp->vsw_optproto, &mnt_mntopts);
1224         /*
1225          * Fetch mount options and parse them for generic vfs options
1226          */
1227         if (uap->flags & MS_OPTIONSTR) {
1228                 /*
1229                  * Limit the buffer size
1230                  */
1231                 if (optlen < 0 || optlen > MAX_MNTOPT_STR) {
1232                         error = EINVAL;
1233                         goto errout;
1234                 }
1235                 if ((uap->flags & MS_SYSSPACE) == 0) {
1236                         inargs = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
1237                         inargs[0] = '\0';
1238                         if (optlen) {
1239                                 error = copyinstr(opts, inargs, (size_t)optlen,
1240                                     NULL);
1241                                 if (error) {
1242                                         goto errout;
1243                                 }
1244                         }
1245                 }
1246                 vfs_parsemntopts(&mnt_mntopts, inargs, 0);
1247         }
1248         /*
1249          * Flag bits override the options string.
1250          */
1251         if (uap->flags & MS_REMOUNT)
1252                 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_REMOUNT, NULL, 0, 0);
1253         if (uap->flags & MS_RDONLY)
1254                 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_RO, NULL, 0, 0);
1255         if (uap->flags & MS_NOSUID)
1256                 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1257 
1258         /*
1259          * Check if this is a remount; must be set in the option string and
1260          * the file system must support a remount option.
1261          */
1262         if (remount = vfs_optionisset_nolock(&mnt_mntopts,
1263             MNTOPT_REMOUNT, NULL)) {
1264                 if (!(vswp->vsw_flag & VSW_CANREMOUNT)) {
1265                         error = ENOTSUP;
1266                         goto errout;
1267                 }
1268                 uap->flags |= MS_REMOUNT;
1269         }
1270 
1271         /*
1272          * uap->flags and vfs_optionisset() should agree.
1273          */
1274         if (rdonly = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_RO, NULL)) {
1275                 uap->flags |= MS_RDONLY;
1276         }
1277         if (vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL)) {
1278                 uap->flags |= MS_NOSUID;
1279         }
1280         nbmand = vfs_optionisset_nolock(&mnt_mntopts, MNTOPT_NBMAND, NULL);
1281         ASSERT(splice || !remount);
1282         /*
1283          * If we are splicing the fs into the namespace,
1284          * perform mount point checks.
1285          *
1286          * We want to resolve the path for the mount point to eliminate
1287          * '.' and ".." and symlinks in mount points; we can't do the
1288          * same for the resource string, since it would turn
1289          * "/dev/dsk/c0t0d0s0" into "/devices/pci@...".  We need to do
1290          * this before grabbing vn_vfswlock(), because otherwise we
1291          * would deadlock with lookuppn().
1292          */
1293         if (splice) {
1294                 ASSERT(vp->v_count > 0);
1295 
1296                 /*
1297                  * Pick up mount point and device from appropriate space.
1298                  */
1299                 if (pn_get(uap->spec, fromspace, &pn) == 0) {
1300                         resource = kmem_alloc(pn.pn_pathlen + 1,
1301                             KM_SLEEP);
1302                         (void) strcpy(resource, pn.pn_path);
1303                         pn_free(&pn);
1304                 }
1305                 /*
1306                  * Do a lookupname prior to taking the
1307                  * writelock. Mark this as completed if
1308                  * successful for later cleanup and addition to
1309                  * the mount in progress table.
1310                  */
1311                 if ((uap->flags & MS_GLOBAL) == 0 &&
1312                     lookupname(uap->spec, fromspace,
1313                     FOLLOW, NULL, &bvp) == 0) {
1314                         addmip = 1;
1315                 }
1316 
1317                 if ((error = pn_get(uap->dir, fromspace, &pn)) == 0) {
1318                         pathname_t *pnp;
1319 
1320                         if (*pn.pn_path != '/') {
1321                                 error = EINVAL;
1322                                 pn_free(&pn);
1323                                 goto errout;
1324                         }
1325                         pn_alloc(&rpn);
1326                         /*
1327                          * Kludge to prevent autofs from deadlocking with
1328                          * itself when it calls domount().
1329                          *
1330                          * If autofs is calling, it is because it is doing
1331                          * (autofs) mounts in the process of an NFS mount.  A
1332                          * lookuppn() here would cause us to block waiting for
1333                          * said NFS mount to complete, which can't since this
1334                          * is the thread that was supposed to doing it.
1335                          */
1336                         if (fromspace == UIO_USERSPACE) {
1337                                 if ((error = lookuppn(&pn, &rpn, FOLLOW, NULL,
1338                                     NULL)) == 0) {
1339                                         pnp = &rpn;
1340                                 } else {
1341                                         /*
1342                                          * The file disappeared or otherwise
1343                                          * became inaccessible since we opened
1344                                          * it; might as well fail the mount
1345                                          * since the mount point is no longer
1346                                          * accessible.
1347                                          */
1348                                         pn_free(&rpn);
1349                                         pn_free(&pn);
1350                                         goto errout;
1351                                 }
1352                         } else {
1353                                 pnp = &pn;
1354                         }
1355                         mountpt = kmem_alloc(pnp->pn_pathlen + 1, KM_SLEEP);
1356                         (void) strcpy(mountpt, pnp->pn_path);
1357 
1358                         /*
1359                          * If the addition of the zone's rootpath
1360                          * would push us over a total path length
1361                          * of MAXPATHLEN, we fail the mount with
1362                          * ENAMETOOLONG, which is what we would have
1363                          * gotten if we were trying to perform the same
1364                          * mount in the global zone.
1365                          *
1366                          * strlen() doesn't count the trailing
1367                          * '\0', but zone_rootpathlen counts both a
1368                          * trailing '/' and the terminating '\0'.
1369                          */
1370                         if ((curproc->p_zone->zone_rootpathlen - 1 +
1371                             strlen(mountpt)) > MAXPATHLEN ||
1372                             (resource != NULL &&
1373                             (curproc->p_zone->zone_rootpathlen - 1 +
1374                             strlen(resource)) > MAXPATHLEN)) {
1375                                 error = ENAMETOOLONG;
1376                         }
1377 
1378                         pn_free(&rpn);
1379                         pn_free(&pn);
1380                 }
1381 
1382                 if (error)
1383                         goto errout;
1384 
1385                 /*
1386                  * Prevent path name resolution from proceeding past
1387                  * the mount point.
1388                  */
1389                 if (vn_vfswlock(vp) != 0) {
1390                         error = EBUSY;
1391                         goto errout;
1392                 }
1393 
1394                 /*
1395                  * Verify that it's legitimate to establish a mount on
1396                  * the prospective mount point.
1397                  */
1398                 if (vn_mountedvfs(vp) != NULL) {
1399                         /*
1400                          * The mount point lock was obtained after some
1401                          * other thread raced through and established a mount.
1402                          */
1403                         vn_vfsunlock(vp);
1404                         error = EBUSY;
1405                         goto errout;
1406                 }
1407                 if (vp->v_flag & VNOMOUNT) {
1408                         vn_vfsunlock(vp);
1409                         error = EINVAL;
1410                         goto errout;
1411                 }
1412         }
1413         if ((uap->flags & (MS_DATA | MS_OPTIONSTR)) == 0) {
1414                 uap->dataptr = NULL;
1415                 uap->datalen = 0;
1416         }
1417 
1418         /*
1419          * If this is a remount, we don't want to create a new VFS.
1420          * Instead, we pass the existing one with a remount flag.
1421          */
1422         if (remount) {
1423                 /*
1424                  * Confirm that the mount point is the root vnode of the
1425                  * file system that is being remounted.
1426                  * This can happen if the user specifies a different
1427                  * mount point directory pathname in the (re)mount command.
1428                  *
1429                  * Code below can only be reached if splice is true, so it's
1430                  * safe to do vn_vfsunlock() here.
1431                  */
1432                 if ((vp->v_flag & VROOT) == 0) {
1433                         vn_vfsunlock(vp);
1434                         error = ENOENT;
1435                         goto errout;
1436                 }
1437                 /*
1438                  * Disallow making file systems read-only unless file system
1439                  * explicitly allows it in its vfssw.  Ignore other flags.
1440                  */
1441                 if (rdonly && vn_is_readonly(vp) == 0 &&
1442                     (vswp->vsw_flag & VSW_CANRWRO) == 0) {
1443                         vn_vfsunlock(vp);
1444                         error = EINVAL;
1445                         goto errout;
1446                 }
1447                 /*
1448                  * Disallow changing the NBMAND disposition of the file
1449                  * system on remounts.
1450                  */
1451                 if ((nbmand && ((vp->v_vfsp->vfs_flag & VFS_NBMAND) == 0)) ||
1452                     (!nbmand && (vp->v_vfsp->vfs_flag & VFS_NBMAND))) {
1453                         vn_vfsunlock(vp);
1454                         error = EINVAL;
1455                         goto errout;
1456                 }
1457                 vfsp = vp->v_vfsp;
1458                 ovflags = vfsp->vfs_flag;
1459                 vfsp->vfs_flag |= VFS_REMOUNT;
1460                 vfsp->vfs_flag &= ~VFS_RDONLY;
1461         } else {
1462                 vfsp = vfs_alloc(KM_SLEEP);
1463                 VFS_INIT(vfsp, vfsops, NULL);
1464         }
1465 
1466         VFS_HOLD(vfsp);
1467 
1468         if ((error = lofi_add(fsname, vfsp, &mnt_mntopts, uap)) != 0) {
1469                 if (!remount) {
1470                         if (splice)
1471                                 vn_vfsunlock(vp);
1472                         vfs_free(vfsp);
1473                 } else {
1474                         vn_vfsunlock(vp);
1475                         VFS_RELE(vfsp);
1476                 }
1477                 goto errout;
1478         }
1479 
1480         /*
1481          * PRIV_SYS_MOUNT doesn't mean you can become root.
1482          */
1483         if (vfsp->vfs_lofi_minor != 0) {
1484                 uap->flags |= MS_NOSUID;
1485                 vfs_setmntopt_nolock(&mnt_mntopts, MNTOPT_NOSUID, NULL, 0, 0);
1486         }
1487 
1488         /*
1489          * The vfs_reflock is not used anymore the code below explicitly
1490          * holds it preventing others accesing it directly.
1491          */
1492         if ((sema_tryp(&vfsp->vfs_reflock) == 0) &&
1493             !(vfsp->vfs_flag & VFS_REMOUNT))
1494                 cmn_err(CE_WARN,
1495                     "mount type %s couldn't get vfs_reflock", vswp->vsw_name);
1496 
1497         /*
1498          * Lock the vfs. If this is a remount we want to avoid spurious umount
1499          * failures that happen as a side-effect of fsflush() and other mount
1500          * and unmount operations that might be going on simultaneously and
1501          * may have locked the vfs currently. To not return EBUSY immediately
1502          * here we use vfs_lock_wait() instead vfs_lock() for the remount case.
1503          */
1504         if (!remount) {
1505                 if (error = vfs_lock(vfsp)) {
1506                         vfsp->vfs_flag = ovflags;
1507 
1508                         lofi_remove(vfsp);
1509 
1510                         if (splice)
1511                                 vn_vfsunlock(vp);
1512                         vfs_free(vfsp);
1513                         goto errout;
1514                 }
1515         } else {
1516                 vfs_lock_wait(vfsp);
1517         }
1518 
1519         /*
1520          * Add device to mount in progress table, global mounts require special
1521          * handling. It is possible that we have already done the lookupname
1522          * on a spliced, non-global fs. If so, we don't want to do it again
1523          * since we cannot do a lookupname after taking the
1524          * wlock above. This case is for a non-spliced, non-global filesystem.
1525          */
1526         if (!addmip) {
1527                 if ((uap->flags & MS_GLOBAL) == 0 &&
1528                     lookupname(uap->spec, fromspace, FOLLOW, NULL, &bvp) == 0) {
1529                         addmip = 1;
1530                 }
1531         }
1532 
1533         if (addmip) {
1534                 vnode_t *lvp = NULL;
1535 
1536                 error = vfs_get_lofi(vfsp, &lvp);
1537                 if (error > 0) {
1538                         lofi_remove(vfsp);
1539 
1540                         if (splice)
1541                                 vn_vfsunlock(vp);
1542                         vfs_unlock(vfsp);
1543 
1544                         if (remount) {
1545                                 VFS_RELE(vfsp);
1546                         } else {
1547                                 vfs_free(vfsp);
1548                         }
1549 
1550                         goto errout;
1551                 } else if (error == -1) {
1552                         bdev = bvp->v_rdev;
1553                         VN_RELE(bvp);
1554                 } else {
1555                         bdev = lvp->v_rdev;
1556                         VN_RELE(lvp);
1557                         VN_RELE(bvp);
1558                 }
1559 
1560                 vfs_addmip(bdev, vfsp);
1561                 addmip = 0;
1562                 delmip = 1;
1563         }
1564         /*
1565          * Invalidate cached entry for the mount point.
1566          */
1567         if (splice)
1568                 dnlc_purge_vp(vp);
1569 
1570         /*
1571          * If have an option string but the filesystem doesn't supply a
1572          * prototype options table, create a table with the global
1573          * options and sufficient room to accept all the options in the
1574          * string.  Then parse the passed in option string
1575          * accepting all the options in the string.  This gives us an
1576          * option table with all the proper cancel properties for the
1577          * global options.
1578          *
1579          * Filesystems that supply a prototype options table are handled
1580          * earlier in this function.
1581          */
1582         if (uap->flags & MS_OPTIONSTR) {
1583                 if (!(vswp->vsw_flag & VSW_HASPROTO)) {
1584                         mntopts_t tmp_mntopts;
1585 
1586                         tmp_mntopts.mo_count = 0;
1587                         vfs_createopttbl_extend(&tmp_mntopts, inargs,
1588                             &mnt_mntopts);
1589                         vfs_parsemntopts(&tmp_mntopts, inargs, 1);
1590                         vfs_swapopttbl_nolock(&mnt_mntopts, &tmp_mntopts);
1591                         vfs_freeopttbl(&tmp_mntopts);
1592                 }
1593         }
1594 
1595         /*
1596          * Serialize with zone state transitions.
1597          * See vfs_list_add; zone mounted into is:
1598          *      zone_find_by_path(refstr_value(vfsp->vfs_mntpt))
1599          * not the zone doing the mount (curproc->p_zone), but if we're already
1600          * inside a NGZ, then we know what zone we are.
1601          */
1602         if (INGLOBALZONE(curproc)) {
1603                 zone = zone_find_by_path(mountpt);
1604                 ASSERT(zone != NULL);
1605         } else {
1606                 zone = curproc->p_zone;
1607                 /*
1608                  * zone_find_by_path does a hold, so do one here too so that
1609                  * we can do a zone_rele after mount_completed.
1610                  */
1611                 zone_hold(zone);
1612         }
1613         mount_in_progress(zone);
1614         /*
1615          * Instantiate (or reinstantiate) the file system.  If appropriate,
1616          * splice it into the file system name space.
1617          *
1618          * We want VFS_MOUNT() to be able to override the vfs_resource
1619          * string if necessary (ie, mntfs), and also for a remount to
1620          * change the same (necessary when remounting '/' during boot).
1621          * So we set up vfs_mntpt and vfs_resource to what we think they
1622          * should be, then hand off control to VFS_MOUNT() which can
1623          * override this.
1624          *
1625          * For safety's sake, when changing vfs_resource or vfs_mntpt of
1626          * a vfs which is on the vfs list (i.e. during a remount), we must
1627          * never set those fields to NULL. Several bits of code make
1628          * assumptions that the fields are always valid.
1629          */
1630         vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1631         if (remount) {
1632                 if ((oldresource = vfsp->vfs_resource) != NULL)
1633                         refstr_hold(oldresource);
1634                 if ((oldmntpt = vfsp->vfs_mntpt) != NULL)
1635                         refstr_hold(oldmntpt);
1636         }
1637         vfs_setresource(vfsp, resource, 0);
1638         vfs_setmntpoint(vfsp, mountpt, 0);
1639 
1640         /*
1641          * going to mount on this vnode, so notify.
1642          */
1643         vnevent_mountedover(vp, NULL);
1644         error = VFS_MOUNT(vfsp, vp, uap, credp);
1645 
1646         if (uap->flags & MS_RDONLY)
1647                 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1648         if (uap->flags & MS_NOSUID)
1649                 vfs_setmntopt(vfsp, MNTOPT_NOSUID, NULL, 0);
1650         if (uap->flags & MS_GLOBAL)
1651                 vfs_setmntopt(vfsp, MNTOPT_GLOBAL, NULL, 0);
1652 
1653         if (error) {
1654                 lofi_remove(vfsp);
1655 
1656                 if (remount) {
1657                         /* put back pre-remount options */
1658                         vfs_swapopttbl(&mnt_mntopts, &vfsp->vfs_mntopts);
1659                         vfs_setmntpoint(vfsp, refstr_value(oldmntpt),
1660                             VFSSP_VERBATIM);
1661                         if (oldmntpt)
1662                                 refstr_rele(oldmntpt);
1663                         vfs_setresource(vfsp, refstr_value(oldresource),
1664                             VFSSP_VERBATIM);
1665                         if (oldresource)
1666                                 refstr_rele(oldresource);
1667                         vfsp->vfs_flag = ovflags;
1668                         vfs_unlock(vfsp);
1669                         VFS_RELE(vfsp);
1670                 } else {
1671                         vfs_unlock(vfsp);
1672                         vfs_freemnttab(vfsp);
1673                         vfs_free(vfsp);
1674                 }
1675         } else {
1676                 /*
1677                  * Set the mount time to now
1678                  */
1679                 vfsp->vfs_mtime = ddi_get_time();
1680                 if (remount) {
1681                         vfsp->vfs_flag &= ~VFS_REMOUNT;
1682                         if (oldresource)
1683                                 refstr_rele(oldresource);
1684                         if (oldmntpt)
1685                                 refstr_rele(oldmntpt);
1686                 } else if (splice) {
1687                         /*
1688                          * Link vfsp into the name space at the mount
1689                          * point. Vfs_add() is responsible for
1690                          * holding the mount point which will be
1691                          * released when vfs_remove() is called.
1692                          */
1693                         vfs_add(vp, vfsp, uap->flags);
1694                 } else {
1695                         /*
1696                          * Hold the reference to file system which is
1697                          * not linked into the name space.
1698                          */
1699                         vfsp->vfs_zone = NULL;
1700                         VFS_HOLD(vfsp);
1701                         vfsp->vfs_vnodecovered = NULL;
1702                 }
1703                 /*
1704                  * Set flags for global options encountered
1705                  */
1706                 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL))
1707                         vfsp->vfs_flag |= VFS_RDONLY;
1708                 else
1709                         vfsp->vfs_flag &= ~VFS_RDONLY;
1710                 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
1711                         vfsp->vfs_flag |= (VFS_NOSETUID|VFS_NODEVICES);
1712                 } else {
1713                         if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
1714                                 vfsp->vfs_flag |= VFS_NODEVICES;
1715                         else
1716                                 vfsp->vfs_flag &= ~VFS_NODEVICES;
1717                         if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
1718                                 vfsp->vfs_flag |= VFS_NOSETUID;
1719                         else
1720                                 vfsp->vfs_flag &= ~VFS_NOSETUID;
1721                 }
1722                 if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL))
1723                         vfsp->vfs_flag |= VFS_NBMAND;
1724                 else
1725                         vfsp->vfs_flag &= ~VFS_NBMAND;
1726 
1727                 if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL))
1728                         vfsp->vfs_flag |= VFS_XATTR;
1729                 else
1730                         vfsp->vfs_flag &= ~VFS_XATTR;
1731 
1732                 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
1733                         vfsp->vfs_flag |= VFS_NOEXEC;
1734                 else
1735                         vfsp->vfs_flag &= ~VFS_NOEXEC;
1736 
1737                 /*
1738                  * Now construct the output option string of options
1739                  * we recognized.
1740                  */
1741                 if (uap->flags & MS_OPTIONSTR) {
1742                         vfs_list_read_lock();
1743                         copyout_error = vfs_buildoptionstr(
1744                             &vfsp->vfs_mntopts, inargs, optlen);
1745                         vfs_list_unlock();
1746                         if (copyout_error == 0 &&
1747                             (uap->flags & MS_SYSSPACE) == 0) {
1748                                 copyout_error = copyoutstr(inargs, opts,
1749                                     optlen, NULL);
1750                         }
1751                 }
1752 
1753                 /*
1754                  * If this isn't a remount, set up the vopstats before
1755                  * anyone can touch this. We only allow spliced file
1756                  * systems (file systems which are in the namespace) to
1757                  * have the VFS_STATS flag set.
1758                  * NOTE: PxFS mounts the underlying file system with
1759                  * MS_NOSPLICE set and copies those vfs_flags to its private
1760                  * vfs structure. As a result, PxFS should never have
1761                  * the VFS_STATS flag or else we might access the vfs
1762                  * statistics-related fields prior to them being
1763                  * properly initialized.
1764                  */
1765                 if (!remount && (vswp->vsw_flag & VSW_STATS) && splice) {
1766                         initialize_vopstats(&vfsp->vfs_vopstats);
1767                         /*
1768                          * We need to set vfs_vskap to NULL because there's
1769                          * a chance it won't be set below.  This is checked
1770                          * in teardown_vopstats() so we can't have garbage.
1771                          */
1772                         vfsp->vfs_vskap = NULL;
1773                         vfsp->vfs_flag |= VFS_STATS;
1774                         vfsp->vfs_fstypevsp = get_fstype_vopstats(vfsp, vswp);
1775                 }
1776 
1777                 if (vswp->vsw_flag & VSW_XID)
1778                         vfsp->vfs_flag |= VFS_XID;
1779 
1780                 vfs_unlock(vfsp);
1781         }
1782         mount_completed(zone);
1783         zone_rele(zone);
1784         if (splice)
1785                 vn_vfsunlock(vp);
1786 
1787         if ((error == 0) && (copyout_error == 0)) {
1788                 if (!remount) {
1789                         /*
1790                          * Don't call get_vskstat_anchor() while holding
1791                          * locks since it allocates memory and calls
1792                          * VFS_STATVFS().  For NFS, the latter can generate
1793                          * an over-the-wire call.
1794                          */
1795                         vskap = get_vskstat_anchor(vfsp);
1796                         /* Only take the lock if we have something to do */
1797                         if (vskap != NULL) {
1798                                 vfs_lock_wait(vfsp);
1799                                 if (vfsp->vfs_flag & VFS_STATS) {
1800                                         vfsp->vfs_vskap = vskap;
1801                                 }
1802                                 vfs_unlock(vfsp);
1803                         }
1804                 }
1805                 /* Return vfsp to caller. */
1806                 *vfspp = vfsp;
1807         }
1808 errout:
1809         vfs_freeopttbl(&mnt_mntopts);
1810         if (resource != NULL)
1811                 kmem_free(resource, strlen(resource) + 1);
1812         if (mountpt != NULL)
1813                 kmem_free(mountpt, strlen(mountpt) + 1);
1814         /*
1815          * It is possible we errored prior to adding to mount in progress
1816          * table. Must free vnode we acquired with successful lookupname.
1817          */
1818         if (addmip)
1819                 VN_RELE(bvp);
1820         if (delmip)
1821                 vfs_delmip(vfsp);
1822         ASSERT(vswp != NULL);
1823         vfs_unrefvfssw(vswp);
1824         if (inargs != opts)
1825                 kmem_free(inargs, MAX_MNTOPT_STR);
1826         if (copyout_error) {
1827                 lofi_remove(vfsp);
1828                 VFS_RELE(vfsp);
1829                 error = copyout_error;
1830         }
1831         return (error);
1832 }
1833 
1834 static void
1835 vfs_setpath(
1836     struct vfs *vfsp,           /* vfs being updated */
1837     refstr_t **refp,            /* Ref-count string to contain the new path */
1838     const char *newpath,        /* Path to add to refp (above) */
1839     uint32_t flag)              /* flag */
1840 {
1841         size_t len;
1842         refstr_t *ref;
1843         zone_t *zone = curproc->p_zone;
1844         char *sp;
1845         int have_list_lock = 0;
1846 
1847         ASSERT(!VFS_ON_LIST(vfsp) || vfs_lock_held(vfsp));
1848 
1849         /*
1850          * New path must be less than MAXPATHLEN because mntfs
1851          * will only display up to MAXPATHLEN bytes. This is currently
1852          * safe, because domount() uses pn_get(), and other callers
1853          * similarly cap the size to fewer than MAXPATHLEN bytes.
1854          */
1855 
1856         ASSERT(strlen(newpath) < MAXPATHLEN);
1857 
1858         /* mntfs requires consistency while vfs list lock is held */
1859 
1860         if (VFS_ON_LIST(vfsp)) {
1861                 have_list_lock = 1;
1862                 vfs_list_lock();
1863         }
1864 
1865         if (*refp != NULL)
1866                 refstr_rele(*refp);
1867 
1868         /*
1869          * If we are in a non-global zone then we prefix the supplied path,
1870          * newpath, with the zone's root path, with two exceptions. The first
1871          * is where we have been explicitly directed to avoid doing so; this
1872          * will be the case following a failed remount, where the path supplied
1873          * will be a saved version which must now be restored. The second
1874          * exception is where newpath is not a pathname but a descriptive name,
1875          * e.g. "procfs".
1876          */
1877         if (zone == global_zone || (flag & VFSSP_VERBATIM) || *newpath != '/') {
1878                 ref = refstr_alloc(newpath);
1879                 goto out;
1880         }
1881 
1882         /*
1883          * Truncate the trailing '/' in the zoneroot, and merge
1884          * in the zone's rootpath with the "newpath" (resource
1885          * or mountpoint) passed in.
1886          *
1887          * The size of the required buffer is thus the size of
1888          * the buffer required for the passed-in newpath
1889          * (strlen(newpath) + 1), plus the size of the buffer
1890          * required to hold zone_rootpath (zone_rootpathlen)
1891          * minus one for one of the now-superfluous NUL
1892          * terminations, minus one for the trailing '/'.
1893          *
1894          * That gives us:
1895          *
1896          * (strlen(newpath) + 1) + zone_rootpathlen - 1 - 1
1897          *
1898          * Which is what we have below.
1899          */
1900 
1901         len = strlen(newpath) + zone->zone_rootpathlen - 1;
1902         sp = kmem_alloc(len, KM_SLEEP);
1903 
1904         /*
1905          * Copy everything including the trailing slash, which
1906          * we then overwrite with the NUL character.
1907          */
1908 
1909         (void) strcpy(sp, zone->zone_rootpath);
1910         sp[zone->zone_rootpathlen - 2] = '\0';
1911         (void) strcat(sp, newpath);
1912 
1913         ref = refstr_alloc(sp);
1914         kmem_free(sp, len);
1915 out:
1916         *refp = ref;
1917 
1918         if (have_list_lock) {
1919                 vfs_mnttab_modtimeupd();
1920                 vfs_list_unlock();
1921         }
1922 }
1923 
1924 /*
1925  * Record a mounted resource name in a vfs structure.
1926  * If vfsp is already mounted, caller must hold the vfs lock.
1927  */
1928 void
1929 vfs_setresource(struct vfs *vfsp, const char *resource, uint32_t flag)
1930 {
1931         if (resource == NULL || resource[0] == '\0')
1932                 resource = VFS_NORESOURCE;
1933         vfs_setpath(vfsp, &vfsp->vfs_resource, resource, flag);
1934 }
1935 
1936 /*
1937  * Record a mount point name in a vfs structure.
1938  * If vfsp is already mounted, caller must hold the vfs lock.
1939  */
1940 void
1941 vfs_setmntpoint(struct vfs *vfsp, const char *mntpt, uint32_t flag)
1942 {
1943         if (mntpt == NULL || mntpt[0] == '\0')
1944                 mntpt = VFS_NOMNTPT;
1945         vfs_setpath(vfsp, &vfsp->vfs_mntpt, mntpt, flag);
1946 }
1947 
1948 /* Returns the vfs_resource. Caller must call refstr_rele() when finished. */
1949 
1950 refstr_t *
1951 vfs_getresource(const struct vfs *vfsp)
1952 {
1953         refstr_t *resource;
1954 
1955         vfs_list_read_lock();
1956         resource = vfsp->vfs_resource;
1957         refstr_hold(resource);
1958         vfs_list_unlock();
1959 
1960         return (resource);
1961 }
1962 
1963 /* Returns the vfs_mntpt. Caller must call refstr_rele() when finished. */
1964 
1965 refstr_t *
1966 vfs_getmntpoint(const struct vfs *vfsp)
1967 {
1968         refstr_t *mntpt;
1969 
1970         vfs_list_read_lock();
1971         mntpt = vfsp->vfs_mntpt;
1972         refstr_hold(mntpt);
1973         vfs_list_unlock();
1974 
1975         return (mntpt);
1976 }
1977 
1978 /*
1979  * Create an empty options table with enough empty slots to hold all
1980  * The options in the options string passed as an argument.
1981  * Potentially prepend another options table.
1982  *
1983  * Note: caller is responsible for locking the vfs list, if needed,
1984  *       to protect mops.
1985  */
1986 static void
1987 vfs_createopttbl_extend(mntopts_t *mops, const char *opts,
1988     const mntopts_t *mtmpl)
1989 {
1990         const char *s = opts;
1991         uint_t count;
1992 
1993         if (opts == NULL || *opts == '\0') {
1994                 count = 0;
1995         } else {
1996                 count = 1;
1997 
1998                 /*
1999                  * Count number of options in the string
2000                  */
2001                 for (s = strchr(s, ','); s != NULL; s = strchr(s, ',')) {
2002                         count++;
2003                         s++;
2004                 }
2005         }
2006         vfs_copyopttbl_extend(mtmpl, mops, count);
2007 }
2008 
2009 /*
2010  * Create an empty options table with enough empty slots to hold all
2011  * The options in the options string passed as an argument.
2012  *
2013  * This function is *not* for general use by filesystems.
2014  *
2015  * Note: caller is responsible for locking the vfs list, if needed,
2016  *       to protect mops.
2017  */
2018 void
2019 vfs_createopttbl(mntopts_t *mops, const char *opts)
2020 {
2021         vfs_createopttbl_extend(mops, opts, NULL);
2022 }
2023 
2024 
2025 /*
2026  * Swap two mount options tables
2027  */
2028 static void
2029 vfs_swapopttbl_nolock(mntopts_t *optbl1, mntopts_t *optbl2)
2030 {
2031         uint_t tmpcnt;
2032         mntopt_t *tmplist;
2033 
2034         tmpcnt = optbl2->mo_count;
2035         tmplist = optbl2->mo_list;
2036         optbl2->mo_count = optbl1->mo_count;
2037         optbl2->mo_list = optbl1->mo_list;
2038         optbl1->mo_count = tmpcnt;
2039         optbl1->mo_list = tmplist;
2040 }
2041 
2042 static void
2043 vfs_swapopttbl(mntopts_t *optbl1, mntopts_t *optbl2)
2044 {
2045         vfs_list_lock();
2046         vfs_swapopttbl_nolock(optbl1, optbl2);
2047         vfs_mnttab_modtimeupd();
2048         vfs_list_unlock();
2049 }
2050 
2051 static char **
2052 vfs_copycancelopt_extend(char **const moc, int extend)
2053 {
2054         int i = 0;
2055         int j;
2056         char **result;
2057 
2058         if (moc != NULL) {
2059                 for (; moc[i] != NULL; i++)
2060                         /* count number of options to cancel */;
2061         }
2062 
2063         if (i + extend == 0)
2064                 return (NULL);
2065 
2066         result = kmem_alloc((i + extend + 1) * sizeof (char *), KM_SLEEP);
2067 
2068         for (j = 0; j < i; j++) {
2069                 result[j] = kmem_alloc(strlen(moc[j]) + 1, KM_SLEEP);
2070                 (void) strcpy(result[j], moc[j]);
2071         }
2072         for (; j <= i + extend; j++)
2073                 result[j] = NULL;
2074 
2075         return (result);
2076 }
2077 
2078 static void
2079 vfs_copyopt(const mntopt_t *s, mntopt_t *d)
2080 {
2081         char *sp, *dp;
2082 
2083         d->mo_flags = s->mo_flags;
2084         d->mo_data = s->mo_data;
2085         sp = s->mo_name;
2086         if (sp != NULL) {
2087                 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2088                 (void) strcpy(dp, sp);
2089                 d->mo_name = dp;
2090         } else {
2091                 d->mo_name = NULL; /* should never happen */
2092         }
2093 
2094         d->mo_cancel = vfs_copycancelopt_extend(s->mo_cancel, 0);
2095 
2096         sp = s->mo_arg;
2097         if (sp != NULL) {
2098                 dp = kmem_alloc(strlen(sp) + 1, KM_SLEEP);
2099                 (void) strcpy(dp, sp);
2100                 d->mo_arg = dp;
2101         } else {
2102                 d->mo_arg = NULL;
2103         }
2104 }
2105 
2106 /*
2107  * Copy a mount options table, possibly allocating some spare
2108  * slots at the end.  It is permissible to copy_extend the NULL table.
2109  */
2110 static void
2111 vfs_copyopttbl_extend(const mntopts_t *smo, mntopts_t *dmo, int extra)
2112 {
2113         uint_t i, count;
2114         mntopt_t *motbl;
2115 
2116         /*
2117          * Clear out any existing stuff in the options table being initialized
2118          */
2119         vfs_freeopttbl(dmo);
2120         count = (smo == NULL) ? 0 : smo->mo_count;
2121         if ((count + extra) == 0)       /* nothing to do */
2122                 return;
2123         dmo->mo_count = count + extra;
2124         motbl = kmem_zalloc((count + extra) * sizeof (mntopt_t), KM_SLEEP);
2125         dmo->mo_list = motbl;
2126         for (i = 0; i < count; i++) {
2127                 vfs_copyopt(&smo->mo_list[i], &motbl[i]);
2128         }
2129         for (i = count; i < count + extra; i++) {
2130                 motbl[i].mo_flags = MO_EMPTY;
2131         }
2132 }
2133 
2134 /*
2135  * Copy a mount options table.
2136  *
2137  * This function is *not* for general use by filesystems.
2138  *
2139  * Note: caller is responsible for locking the vfs list, if needed,
2140  *       to protect smo and dmo.
2141  */
2142 void
2143 vfs_copyopttbl(const mntopts_t *smo, mntopts_t *dmo)
2144 {
2145         vfs_copyopttbl_extend(smo, dmo, 0);
2146 }
2147 
2148 static char **
2149 vfs_mergecancelopts(const mntopt_t *mop1, const mntopt_t *mop2)
2150 {
2151         int c1 = 0;
2152         int c2 = 0;
2153         char **result;
2154         char **sp1, **sp2, **dp;
2155 
2156         /*
2157          * First we count both lists of cancel options.
2158          * If either is NULL or has no elements, we return a copy of
2159          * the other.
2160          */
2161         if (mop1->mo_cancel != NULL) {
2162                 for (; mop1->mo_cancel[c1] != NULL; c1++)
2163                         /* count cancel options in mop1 */;
2164         }
2165 
2166         if (c1 == 0)
2167                 return (vfs_copycancelopt_extend(mop2->mo_cancel, 0));
2168 
2169         if (mop2->mo_cancel != NULL) {
2170                 for (; mop2->mo_cancel[c2] != NULL; c2++)
2171                         /* count cancel options in mop2 */;
2172         }
2173 
2174         result = vfs_copycancelopt_extend(mop1->mo_cancel, c2);
2175 
2176         if (c2 == 0)
2177                 return (result);
2178 
2179         /*
2180          * When we get here, we've got two sets of cancel options;
2181          * we need to merge the two sets.  We know that the result
2182          * array has "c1+c2+1" entries and in the end we might shrink
2183          * it.
2184          * Result now has a copy of the c1 entries from mop1; we'll
2185          * now lookup all the entries of mop2 in mop1 and copy it if
2186          * it is unique.
2187          * This operation is O(n^2) but it's only called once per
2188          * filesystem per duplicate option.  This is a situation
2189          * which doesn't arise with the filesystems in ON and
2190          * n is generally 1.
2191          */
2192 
2193         dp = &result[c1];
2194         for (sp2 = mop2->mo_cancel; *sp2 != NULL; sp2++) {
2195                 for (sp1 = mop1->mo_cancel; *sp1 != NULL; sp1++) {
2196                         if (strcmp(*sp1, *sp2) == 0)
2197                                 break;
2198                 }
2199                 if (*sp1 == NULL) {
2200                         /*
2201                          * Option *sp2 not found in mop1, so copy it.
2202                          * The calls to vfs_copycancelopt_extend()
2203                          * guarantee that there's enough room.
2204                          */
2205                         *dp = kmem_alloc(strlen(*sp2) + 1, KM_SLEEP);
2206                         (void) strcpy(*dp++, *sp2);
2207                 }
2208         }
2209         if (dp != &result[c1+c2]) {
2210                 size_t bytes = (dp - result + 1) * sizeof (char *);
2211                 char **nres = kmem_alloc(bytes, KM_SLEEP);
2212 
2213                 bcopy(result, nres, bytes);
2214                 kmem_free(result, (c1 + c2 + 1) * sizeof (char *));
2215                 result = nres;
2216         }
2217         return (result);
2218 }
2219 
2220 /*
2221  * Merge two mount option tables (outer and inner) into one.  This is very
2222  * similar to "merging" global variables and automatic variables in C.
2223  *
2224  * This isn't (and doesn't have to be) fast.
2225  *
2226  * This function is *not* for general use by filesystems.
2227  *
2228  * Note: caller is responsible for locking the vfs list, if needed,
2229  *       to protect omo, imo & dmo.
2230  */
2231 void
2232 vfs_mergeopttbl(const mntopts_t *omo, const mntopts_t *imo, mntopts_t *dmo)
2233 {
2234         uint_t i, count;
2235         mntopt_t *mop, *motbl;
2236         uint_t freeidx;
2237 
2238         /*
2239          * First determine how much space we need to allocate.
2240          */
2241         count = omo->mo_count;
2242         for (i = 0; i < imo->mo_count; i++) {
2243                 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2244                         continue;
2245                 if (vfs_hasopt(omo, imo->mo_list[i].mo_name) == NULL)
2246                         count++;
2247         }
2248         ASSERT(count >= omo->mo_count &&
2249             count <= omo->mo_count + imo->mo_count);
2250         motbl = kmem_alloc(count * sizeof (mntopt_t), KM_SLEEP);
2251         for (i = 0; i < omo->mo_count; i++)
2252                 vfs_copyopt(&omo->mo_list[i], &motbl[i]);
2253         freeidx = omo->mo_count;
2254         for (i = 0; i < imo->mo_count; i++) {
2255                 if (imo->mo_list[i].mo_flags & MO_EMPTY)
2256                         continue;
2257                 if ((mop = vfs_hasopt(omo, imo->mo_list[i].mo_name)) != NULL) {
2258                         char **newcanp;
2259                         uint_t index = mop - omo->mo_list;
2260 
2261                         newcanp = vfs_mergecancelopts(mop, &motbl[index]);
2262 
2263                         vfs_freeopt(&motbl[index]);
2264                         vfs_copyopt(&imo->mo_list[i], &motbl[index]);
2265 
2266                         vfs_freecancelopt(motbl[index].mo_cancel);
2267                         motbl[index].mo_cancel = newcanp;
2268                 } else {
2269                         /*
2270                          * If it's a new option, just copy it over to the first
2271                          * free location.
2272                          */
2273                         vfs_copyopt(&imo->mo_list[i], &motbl[freeidx++]);
2274                 }
2275         }
2276         dmo->mo_count = count;
2277         dmo->mo_list = motbl;
2278 }
2279 
2280 /*
2281  * Functions to set and clear mount options in a mount options table.
2282  */
2283 
2284 /*
2285  * Clear a mount option, if it exists.
2286  *
2287  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2288  * the vfs list.
2289  */
2290 static void
2291 vfs_clearmntopt_nolock(mntopts_t *mops, const char *opt, int update_mnttab)
2292 {
2293         struct mntopt *mop;
2294         uint_t i, count;
2295 
2296         ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2297 
2298         count = mops->mo_count;
2299         for (i = 0; i < count; i++) {
2300                 mop = &mops->mo_list[i];
2301 
2302                 if (mop->mo_flags & MO_EMPTY)
2303                         continue;
2304                 if (strcmp(opt, mop->mo_name))
2305                         continue;
2306                 mop->mo_flags &= ~MO_SET;
2307                 if (mop->mo_arg != NULL) {
2308                         kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2309                 }
2310                 mop->mo_arg = NULL;
2311                 if (update_mnttab)
2312                         vfs_mnttab_modtimeupd();
2313                 break;
2314         }
2315 }
2316 
2317 void
2318 vfs_clearmntopt(struct vfs *vfsp, const char *opt)
2319 {
2320         int gotlock = 0;
2321 
2322         if (VFS_ON_LIST(vfsp)) {
2323                 gotlock = 1;
2324                 vfs_list_lock();
2325         }
2326         vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, opt, gotlock);
2327         if (gotlock)
2328                 vfs_list_unlock();
2329 }
2330 
2331 
2332 /*
2333  * Set a mount option on.  If it's not found in the table, it's silently
2334  * ignored.  If the option has MO_IGNORE set, it is still set unless the
2335  * VFS_NOFORCEOPT bit is set in the flags.  Also, VFS_DISPLAY/VFS_NODISPLAY flag
2336  * bits can be used to toggle the MO_NODISPLAY bit for the option.
2337  * If the VFS_CREATEOPT flag bit is set then the first option slot with
2338  * MO_EMPTY set is created as the option passed in.
2339  *
2340  * The update_mnttab arg indicates whether mops is part of a vfs that is on
2341  * the vfs list.
2342  */
2343 static void
2344 vfs_setmntopt_nolock(mntopts_t *mops, const char *opt,
2345     const char *arg, int flags, int update_mnttab)
2346 {
2347         mntopt_t *mop;
2348         uint_t i, count;
2349         char *sp;
2350 
2351         ASSERT(!update_mnttab || RW_WRITE_HELD(&vfslist));
2352 
2353         if (flags & VFS_CREATEOPT) {
2354                 if (vfs_hasopt(mops, opt) != NULL) {
2355                         flags &= ~VFS_CREATEOPT;
2356                 }
2357         }
2358         count = mops->mo_count;
2359         for (i = 0; i < count; i++) {
2360                 mop = &mops->mo_list[i];
2361 
2362                 if (mop->mo_flags & MO_EMPTY) {
2363                         if ((flags & VFS_CREATEOPT) == 0)
2364                                 continue;
2365                         sp = kmem_alloc(strlen(opt) + 1, KM_SLEEP);
2366                         (void) strcpy(sp, opt);
2367                         mop->mo_name = sp;
2368                         if (arg != NULL)
2369                                 mop->mo_flags = MO_HASVALUE;
2370                         else
2371                                 mop->mo_flags = 0;
2372                 } else if (strcmp(opt, mop->mo_name)) {
2373                         continue;
2374                 }
2375                 if ((mop->mo_flags & MO_IGNORE) && (flags & VFS_NOFORCEOPT))
2376                         break;
2377                 if (arg != NULL && (mop->mo_flags & MO_HASVALUE) != 0) {
2378                         sp = kmem_alloc(strlen(arg) + 1, KM_SLEEP);
2379                         (void) strcpy(sp, arg);
2380                 } else {
2381                         sp = NULL;
2382                 }
2383                 if (mop->mo_arg != NULL)
2384                         kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2385                 mop->mo_arg = sp;
2386                 if (flags & VFS_DISPLAY)
2387                         mop->mo_flags &= ~MO_NODISPLAY;
2388                 if (flags & VFS_NODISPLAY)
2389                         mop->mo_flags |= MO_NODISPLAY;
2390                 mop->mo_flags |= MO_SET;
2391                 if (mop->mo_cancel != NULL) {
2392                         char **cp;
2393 
2394                         for (cp = mop->mo_cancel; *cp != NULL; cp++)
2395                                 vfs_clearmntopt_nolock(mops, *cp, 0);
2396                 }
2397                 if (update_mnttab)
2398                         vfs_mnttab_modtimeupd();
2399                 break;
2400         }
2401 }
2402 
2403 void
2404 vfs_setmntopt(struct vfs *vfsp, const char *opt, const char *arg, int flags)
2405 {
2406         int gotlock = 0;
2407 
2408         if (VFS_ON_LIST(vfsp)) {
2409                 gotlock = 1;
2410                 vfs_list_lock();
2411         }
2412         vfs_setmntopt_nolock(&vfsp->vfs_mntopts, opt, arg, flags, gotlock);
2413         if (gotlock)
2414                 vfs_list_unlock();
2415 }
2416 
2417 
2418 /*
2419  * Add a "tag" option to a mounted file system's options list.
2420  *
2421  * Note: caller is responsible for locking the vfs list, if needed,
2422  *       to protect mops.
2423  */
2424 static mntopt_t *
2425 vfs_addtag(mntopts_t *mops, const char *tag)
2426 {
2427         uint_t count;
2428         mntopt_t *mop, *motbl;
2429 
2430         count = mops->mo_count + 1;
2431         motbl = kmem_zalloc(count * sizeof (mntopt_t), KM_SLEEP);
2432         if (mops->mo_count) {
2433                 size_t len = (count - 1) * sizeof (mntopt_t);
2434 
2435                 bcopy(mops->mo_list, motbl, len);
2436                 kmem_free(mops->mo_list, len);
2437         }
2438         mops->mo_count = count;
2439         mops->mo_list = motbl;
2440         mop = &motbl[count - 1];
2441         mop->mo_flags = MO_TAG;
2442         mop->mo_name = kmem_alloc(strlen(tag) + 1, KM_SLEEP);
2443         (void) strcpy(mop->mo_name, tag);
2444         return (mop);
2445 }
2446 
2447 /*
2448  * Allow users to set arbitrary "tags" in a vfs's mount options.
2449  * Broader use within the kernel is discouraged.
2450  */
2451 int
2452 vfs_settag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2453     cred_t *cr)
2454 {
2455         vfs_t *vfsp;
2456         mntopts_t *mops;
2457         mntopt_t *mop;
2458         int found = 0;
2459         dev_t dev = makedevice(major, minor);
2460         int err = 0;
2461         char *buf = kmem_alloc(MAX_MNTOPT_STR, KM_SLEEP);
2462 
2463         /*
2464          * Find the desired mounted file system
2465          */
2466         vfs_list_lock();
2467         vfsp = rootvfs;
2468         do {
2469                 if (vfsp->vfs_dev == dev &&
2470                     strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2471                         found = 1;
2472                         break;
2473                 }
2474                 vfsp = vfsp->vfs_next;
2475         } while (vfsp != rootvfs);
2476 
2477         if (!found) {
2478                 err = EINVAL;
2479                 goto out;
2480         }
2481         err = secpolicy_fs_config(cr, vfsp);
2482         if (err != 0)
2483                 goto out;
2484 
2485         mops = &vfsp->vfs_mntopts;
2486         /*
2487          * Add tag if it doesn't already exist
2488          */
2489         if ((mop = vfs_hasopt(mops, tag)) == NULL) {
2490                 int len;
2491 
2492                 (void) vfs_buildoptionstr(mops, buf, MAX_MNTOPT_STR);
2493                 len = strlen(buf);
2494                 if (len + strlen(tag) + 2 > MAX_MNTOPT_STR) {
2495                         err = ENAMETOOLONG;
2496                         goto out;
2497                 }
2498                 mop = vfs_addtag(mops, tag);
2499         }
2500         if ((mop->mo_flags & MO_TAG) == 0) {
2501                 err = EINVAL;
2502                 goto out;
2503         }
2504         vfs_setmntopt_nolock(mops, tag, NULL, 0, 1);
2505 out:
2506         vfs_list_unlock();
2507         kmem_free(buf, MAX_MNTOPT_STR);
2508         return (err);
2509 }
2510 
2511 /*
2512  * Allow users to remove arbitrary "tags" in a vfs's mount options.
2513  * Broader use within the kernel is discouraged.
2514  */
2515 int
2516 vfs_clrtag(uint_t major, uint_t minor, const char *mntpt, const char *tag,
2517     cred_t *cr)
2518 {
2519         vfs_t *vfsp;
2520         mntopt_t *mop;
2521         int found = 0;
2522         dev_t dev = makedevice(major, minor);
2523         int err = 0;
2524 
2525         /*
2526          * Find the desired mounted file system
2527          */
2528         vfs_list_lock();
2529         vfsp = rootvfs;
2530         do {
2531                 if (vfsp->vfs_dev == dev &&
2532                     strcmp(mntpt, refstr_value(vfsp->vfs_mntpt)) == 0) {
2533                         found = 1;
2534                         break;
2535                 }
2536                 vfsp = vfsp->vfs_next;
2537         } while (vfsp != rootvfs);
2538 
2539         if (!found) {
2540                 err = EINVAL;
2541                 goto out;
2542         }
2543         err = secpolicy_fs_config(cr, vfsp);
2544         if (err != 0)
2545                 goto out;
2546 
2547         if ((mop = vfs_hasopt(&vfsp->vfs_mntopts, tag)) == NULL) {
2548                 err = EINVAL;
2549                 goto out;
2550         }
2551         if ((mop->mo_flags & MO_TAG) == 0) {
2552                 err = EINVAL;
2553                 goto out;
2554         }
2555         vfs_clearmntopt_nolock(&vfsp->vfs_mntopts, tag, 1);
2556 out:
2557         vfs_list_unlock();
2558         return (err);
2559 }
2560 
2561 /*
2562  * Function to parse an option string and fill in a mount options table.
2563  * Unknown options are silently ignored.  The input option string is modified
2564  * by replacing separators with nulls.  If the create flag is set, options
2565  * not found in the table are just added on the fly.  The table must have
2566  * an option slot marked MO_EMPTY to add an option on the fly.
2567  *
2568  * This function is *not* for general use by filesystems.
2569  *
2570  * Note: caller is responsible for locking the vfs list, if needed,
2571  *       to protect mops..
2572  */
2573 void
2574 vfs_parsemntopts(mntopts_t *mops, char *osp, int create)
2575 {
2576         char *s = osp, *p, *nextop, *valp, *cp, *ep;
2577         int setflg = VFS_NOFORCEOPT;
2578 
2579         if (osp == NULL)
2580                 return;
2581         while (*s != '\0') {
2582                 p = strchr(s, ',');     /* find next option */
2583                 if (p == NULL) {
2584                         cp = NULL;
2585                         p = s + strlen(s);
2586                 } else {
2587                         cp = p;         /* save location of comma */
2588                         *p++ = '\0';    /* mark end and point to next option */
2589                 }
2590                 nextop = p;
2591                 p = strchr(s, '=');     /* look for value */
2592                 if (p == NULL) {
2593                         valp = NULL;    /* no value supplied */
2594                 } else {
2595                         ep = p;         /* save location of equals */
2596                         *p++ = '\0';    /* end option and point to value */
2597                         valp = p;
2598                 }
2599                 /*
2600                  * set option into options table
2601                  */
2602                 if (create)
2603                         setflg |= VFS_CREATEOPT;
2604                 vfs_setmntopt_nolock(mops, s, valp, setflg, 0);
2605                 if (cp != NULL)
2606                         *cp = ',';      /* restore the comma */
2607                 if (valp != NULL)
2608                         *ep = '=';      /* restore the equals */
2609                 s = nextop;
2610         }
2611 }
2612 
2613 /*
2614  * Function to inquire if an option exists in a mount options table.
2615  * Returns a pointer to the option if it exists, else NULL.
2616  *
2617  * This function is *not* for general use by filesystems.
2618  *
2619  * Note: caller is responsible for locking the vfs list, if needed,
2620  *       to protect mops.
2621  */
2622 struct mntopt *
2623 vfs_hasopt(const mntopts_t *mops, const char *opt)
2624 {
2625         struct mntopt *mop;
2626         uint_t i, count;
2627 
2628         count = mops->mo_count;
2629         for (i = 0; i < count; i++) {
2630                 mop = &mops->mo_list[i];
2631 
2632                 if (mop->mo_flags & MO_EMPTY)
2633                         continue;
2634                 if (strcmp(opt, mop->mo_name) == 0)
2635                         return (mop);
2636         }
2637         return (NULL);
2638 }
2639 
2640 /*
2641  * Function to inquire if an option is set in a mount options table.
2642  * Returns non-zero if set and fills in the arg pointer with a pointer to
2643  * the argument string or NULL if there is no argument string.
2644  */
2645 static int
2646 vfs_optionisset_nolock(const mntopts_t *mops, const char *opt, char **argp)
2647 {
2648         struct mntopt *mop;
2649         uint_t i, count;
2650 
2651         count = mops->mo_count;
2652         for (i = 0; i < count; i++) {
2653                 mop = &mops->mo_list[i];
2654 
2655                 if (mop->mo_flags & MO_EMPTY)
2656                         continue;
2657                 if (strcmp(opt, mop->mo_name))
2658                         continue;
2659                 if ((mop->mo_flags & MO_SET) == 0)
2660                         return (0);
2661                 if (argp != NULL && (mop->mo_flags & MO_HASVALUE) != 0)
2662                         *argp = mop->mo_arg;
2663                 return (1);
2664         }
2665         return (0);
2666 }
2667 
2668 
2669 int
2670 vfs_optionisset(const struct vfs *vfsp, const char *opt, char **argp)
2671 {
2672         int ret;
2673 
2674         vfs_list_read_lock();
2675         ret = vfs_optionisset_nolock(&vfsp->vfs_mntopts, opt, argp);
2676         vfs_list_unlock();
2677         return (ret);
2678 }
2679 
2680 
2681 /*
2682  * Construct a comma separated string of the options set in the given
2683  * mount table, return the string in the given buffer.  Return non-zero if
2684  * the buffer would overflow.
2685  *
2686  * This function is *not* for general use by filesystems.
2687  *
2688  * Note: caller is responsible for locking the vfs list, if needed,
2689  *       to protect mp.
2690  */
2691 int
2692 vfs_buildoptionstr(const mntopts_t *mp, char *buf, int len)
2693 {
2694         char *cp;
2695         uint_t i;
2696 
2697         buf[0] = '\0';
2698         cp = buf;
2699         for (i = 0; i < mp->mo_count; i++) {
2700                 struct mntopt *mop;
2701 
2702                 mop = &mp->mo_list[i];
2703                 if (mop->mo_flags & MO_SET) {
2704                         int optlen, comma = 0;
2705 
2706                         if (buf[0] != '\0')
2707                                 comma = 1;
2708                         optlen = strlen(mop->mo_name);
2709                         if (strlen(buf) + comma + optlen + 1 > len)
2710                                 goto err;
2711                         if (comma)
2712                                 *cp++ = ',';
2713                         (void) strcpy(cp, mop->mo_name);
2714                         cp += optlen;
2715                         /*
2716                          * Append option value if there is one
2717                          */
2718                         if (mop->mo_arg != NULL) {
2719                                 int arglen;
2720 
2721                                 arglen = strlen(mop->mo_arg);
2722                                 if (strlen(buf) + arglen + 2 > len)
2723                                         goto err;
2724                                 *cp++ = '=';
2725                                 (void) strcpy(cp, mop->mo_arg);
2726                                 cp += arglen;
2727                         }
2728                 }
2729         }
2730         return (0);
2731 err:
2732         return (EOVERFLOW);
2733 }
2734 
2735 static void
2736 vfs_freecancelopt(char **moc)
2737 {
2738         if (moc != NULL) {
2739                 int ccnt = 0;
2740                 char **cp;
2741 
2742                 for (cp = moc; *cp != NULL; cp++) {
2743                         kmem_free(*cp, strlen(*cp) + 1);
2744                         ccnt++;
2745                 }
2746                 kmem_free(moc, (ccnt + 1) * sizeof (char *));
2747         }
2748 }
2749 
2750 static void
2751 vfs_freeopt(mntopt_t *mop)
2752 {
2753         if (mop->mo_name != NULL)
2754                 kmem_free(mop->mo_name, strlen(mop->mo_name) + 1);
2755 
2756         vfs_freecancelopt(mop->mo_cancel);
2757 
2758         if (mop->mo_arg != NULL)
2759                 kmem_free(mop->mo_arg, strlen(mop->mo_arg) + 1);
2760 }
2761 
2762 /*
2763  * Free a mount options table
2764  *
2765  * This function is *not* for general use by filesystems.
2766  *
2767  * Note: caller is responsible for locking the vfs list, if needed,
2768  *       to protect mp.
2769  */
2770 void
2771 vfs_freeopttbl(mntopts_t *mp)
2772 {
2773         uint_t i, count;
2774 
2775         count = mp->mo_count;
2776         for (i = 0; i < count; i++) {
2777                 vfs_freeopt(&mp->mo_list[i]);
2778         }
2779         if (count) {
2780                 kmem_free(mp->mo_list, sizeof (mntopt_t) * count);
2781                 mp->mo_count = 0;
2782                 mp->mo_list = NULL;
2783         }
2784 }
2785 
2786 
2787 /* ARGSUSED */
2788 static int
2789 vfs_mntdummyread(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2790         caller_context_t *ct)
2791 {
2792         return (0);
2793 }
2794 
2795 /* ARGSUSED */
2796 static int
2797 vfs_mntdummywrite(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cred,
2798         caller_context_t *ct)
2799 {
2800         return (0);
2801 }
2802 
2803 /*
2804  * The dummy vnode is currently used only by file events notification
2805  * module which is just interested in the timestamps.
2806  */
2807 /* ARGSUSED */
2808 static int
2809 vfs_mntdummygetattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2810     caller_context_t *ct)
2811 {
2812         bzero(vap, sizeof (vattr_t));
2813         vap->va_type = VREG;
2814         vap->va_nlink = 1;
2815         vap->va_ctime = vfs_mnttab_ctime;
2816         /*
2817          * it is ok to just copy mtime as the time will be monotonically
2818          * increasing.
2819          */
2820         vap->va_mtime = vfs_mnttab_mtime;
2821         vap->va_atime = vap->va_mtime;
2822         return (0);
2823 }
2824 
2825 static void
2826 vfs_mnttabvp_setup(void)
2827 {
2828         vnode_t *tvp;
2829         vnodeops_t *vfs_mntdummyvnops;
2830         const fs_operation_def_t mnt_dummyvnodeops_template[] = {
2831                 VOPNAME_READ,           { .vop_read = vfs_mntdummyread },
2832                 VOPNAME_WRITE,          { .vop_write = vfs_mntdummywrite },
2833                 VOPNAME_GETATTR,        { .vop_getattr = vfs_mntdummygetattr },
2834                 VOPNAME_VNEVENT,        { .vop_vnevent = fs_vnevent_support },
2835                 NULL,                   NULL
2836         };
2837 
2838         if (vn_make_ops("mnttab", mnt_dummyvnodeops_template,
2839             &vfs_mntdummyvnops) != 0) {
2840                 cmn_err(CE_WARN, "vfs_mnttabvp_setup: vn_make_ops failed");
2841                 /* Shouldn't happen, but not bad enough to panic */
2842                 return;
2843         }
2844 
2845         /*
2846          * A global dummy vnode is allocated to represent mntfs files.
2847          * The mntfs file (/etc/mnttab) can be monitored for file events
2848          * and receive an event when mnttab changes. Dummy VOP calls
2849          * will be made on this vnode. The file events notification module
2850          * intercepts this vnode and delivers relevant events.
2851          */
2852         tvp = vn_alloc(KM_SLEEP);
2853         tvp->v_flag = VNOMOUNT|VNOMAP|VNOSWAP|VNOCACHE;
2854         vn_setops(tvp, vfs_mntdummyvnops);
2855         tvp->v_type = VREG;
2856         /*
2857          * The mnt dummy ops do not reference v_data.
2858          * No other module intercepting this vnode should either.
2859          * Just set it to point to itself.
2860          */
2861         tvp->v_data = (caddr_t)tvp;
2862         tvp->v_vfsp = rootvfs;
2863         vfs_mntdummyvp = tvp;
2864 }
2865 
2866 /*
2867  * performs fake read/write ops
2868  */
2869 static void
2870 vfs_mnttab_rwop(int rw)
2871 {
2872         struct uio      uio;
2873         struct iovec    iov;
2874         char    buf[1];
2875 
2876         if (vfs_mntdummyvp == NULL)
2877                 return;
2878 
2879         bzero(&uio, sizeof (uio));
2880         bzero(&iov, sizeof (iov));
2881         iov.iov_base = buf;
2882         iov.iov_len = 0;
2883         uio.uio_iov = &iov;
2884         uio.uio_iovcnt = 1;
2885         uio.uio_loffset = 0;
2886         uio.uio_segflg = UIO_SYSSPACE;
2887         uio.uio_resid = 0;
2888         if (rw) {
2889                 (void) VOP_WRITE(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2890         } else {
2891                 (void) VOP_READ(vfs_mntdummyvp, &uio, 0, kcred, NULL);
2892         }
2893 }
2894 
2895 /*
2896  * Generate a write operation.
2897  */
2898 void
2899 vfs_mnttab_writeop(void)
2900 {
2901         vfs_mnttab_rwop(1);
2902 }
2903 
2904 /*
2905  * Generate a read operation.
2906  */
2907 void
2908 vfs_mnttab_readop(void)
2909 {
2910         vfs_mnttab_rwop(0);
2911 }
2912 
2913 /*
2914  * Free any mnttab information recorded in the vfs struct.
2915  * The vfs must not be on the vfs list.
2916  */
2917 static void
2918 vfs_freemnttab(struct vfs *vfsp)
2919 {
2920         ASSERT(!VFS_ON_LIST(vfsp));
2921 
2922         /*
2923          * Free device and mount point information
2924          */
2925         if (vfsp->vfs_mntpt != NULL) {
2926                 refstr_rele(vfsp->vfs_mntpt);
2927                 vfsp->vfs_mntpt = NULL;
2928         }
2929         if (vfsp->vfs_resource != NULL) {
2930                 refstr_rele(vfsp->vfs_resource);
2931                 vfsp->vfs_resource = NULL;
2932         }
2933         /*
2934          * Now free mount options information
2935          */
2936         vfs_freeopttbl(&vfsp->vfs_mntopts);
2937 }
2938 
2939 /*
2940  * Return the last mnttab modification time
2941  */
2942 void
2943 vfs_mnttab_modtime(timespec_t *ts)
2944 {
2945         ASSERT(RW_LOCK_HELD(&vfslist));
2946         *ts = vfs_mnttab_mtime;
2947 }
2948 
2949 /*
2950  * See if mnttab is changed
2951  */
2952 void
2953 vfs_mnttab_poll(timespec_t *old, struct pollhead **phpp)
2954 {
2955         int changed;
2956 
2957         *phpp = (struct pollhead *)NULL;
2958 
2959         /*
2960          * Note: don't grab vfs list lock before accessing vfs_mnttab_mtime.
2961          * Can lead to deadlock against vfs_mnttab_modtimeupd(). It is safe
2962          * to not grab the vfs list lock because tv_sec is monotonically
2963          * increasing.
2964          */
2965 
2966         changed = (old->tv_nsec != vfs_mnttab_mtime.tv_nsec) ||
2967             (old->tv_sec != vfs_mnttab_mtime.tv_sec);
2968         if (!changed) {
2969                 *phpp = &vfs_pollhd;
2970         }
2971 }
2972 
2973 /* Provide a unique and monotonically-increasing timestamp. */
2974 void
2975 vfs_mono_time(timespec_t *ts)
2976 {
2977         static volatile hrtime_t hrt;           /* The saved time. */
2978         hrtime_t        newhrt, oldhrt;         /* For effecting the CAS. */
2979         timespec_t      newts;
2980 
2981         /*
2982          * Try gethrestime() first, but be prepared to fabricate a sensible
2983          * answer at the first sign of any trouble.
2984          */
2985         gethrestime(&newts);
2986         newhrt = ts2hrt(&newts);
2987         for (;;) {
2988                 oldhrt = hrt;
2989                 if (newhrt <= hrt)
2990                         newhrt = hrt + 1;
2991                 if (atomic_cas_64((uint64_t *)&hrt, oldhrt, newhrt) == oldhrt)
2992                         break;
2993         }
2994         hrt2ts(newhrt, ts);
2995 }
2996 
2997 /*
2998  * Update the mnttab modification time and wake up any waiters for
2999  * mnttab changes
3000  */
3001 void
3002 vfs_mnttab_modtimeupd()
3003 {
3004         hrtime_t oldhrt, newhrt;
3005 
3006         ASSERT(RW_WRITE_HELD(&vfslist));
3007         oldhrt = ts2hrt(&vfs_mnttab_mtime);
3008         gethrestime(&vfs_mnttab_mtime);
3009         newhrt = ts2hrt(&vfs_mnttab_mtime);
3010         if (oldhrt == (hrtime_t)0)
3011                 vfs_mnttab_ctime = vfs_mnttab_mtime;
3012         /*
3013          * Attempt to provide unique mtime (like uniqtime but not).
3014          */
3015         if (newhrt == oldhrt) {
3016                 newhrt++;
3017                 hrt2ts(newhrt, &vfs_mnttab_mtime);
3018         }
3019         pollwakeup(&vfs_pollhd, (short)POLLRDBAND);
3020         vfs_mnttab_writeop();
3021 }
3022 
3023 int
3024 dounmount(struct vfs *vfsp, int flag, cred_t *cr)
3025 {
3026         vnode_t *coveredvp;
3027         int error;
3028         extern void teardown_vopstats(vfs_t *);
3029 
3030         /*
3031          * Get covered vnode. This will be NULL if the vfs is not linked
3032          * into the file system name space (i.e., domount() with MNT_NOSPICE).
3033          */
3034         coveredvp = vfsp->vfs_vnodecovered;
3035         ASSERT(coveredvp == NULL || vn_vfswlock_held(coveredvp));
3036 
3037         /*
3038          * Purge all dnlc entries for this vfs.
3039          */
3040         (void) dnlc_purge_vfsp(vfsp, 0);
3041 
3042         /* For forcible umount, skip VFS_SYNC() since it may hang */
3043         if ((flag & MS_FORCE) == 0)
3044                 (void) VFS_SYNC(vfsp, 0, cr);
3045 
3046         /*
3047          * Lock the vfs to maintain fs status quo during unmount.  This
3048          * has to be done after the sync because ufs_update tries to acquire
3049          * the vfs_reflock.
3050          */
3051         vfs_lock_wait(vfsp);
3052 
3053         if (error = VFS_UNMOUNT(vfsp, flag, cr)) {
3054                 vfs_unlock(vfsp);
3055                 if (coveredvp != NULL)
3056                         vn_vfsunlock(coveredvp);
3057         } else if (coveredvp != NULL) {
3058                 teardown_vopstats(vfsp);
3059                 /*
3060                  * vfs_remove() will do a VN_RELE(vfsp->vfs_vnodecovered)
3061                  * when it frees vfsp so we do a VN_HOLD() so we can
3062                  * continue to use coveredvp afterwards.
3063                  */
3064                 VN_HOLD(coveredvp);
3065                 vfs_remove(vfsp);
3066                 vn_vfsunlock(coveredvp);
3067                 VN_RELE(coveredvp);
3068         } else {
3069                 teardown_vopstats(vfsp);
3070                 /*
3071                  * Release the reference to vfs that is not linked
3072                  * into the name space.
3073                  */
3074                 vfs_unlock(vfsp);
3075                 VFS_RELE(vfsp);
3076         }
3077         return (error);
3078 }
3079 
3080 
3081 /*
3082  * Vfs_unmountall() is called by uadmin() to unmount all
3083  * mounted file systems (except the root file system) during shutdown.
3084  * It follows the existing locking protocol when traversing the vfs list
3085  * to sync and unmount vfses. Even though there should be no
3086  * other thread running while the system is shutting down, it is prudent
3087  * to still follow the locking protocol.
3088  */
3089 void
3090 vfs_unmountall(void)
3091 {
3092         struct vfs *vfsp;
3093         struct vfs *prev_vfsp = NULL;
3094         int error;
3095 
3096         /*
3097          * Toss all dnlc entries now so that the per-vfs sync
3098          * and unmount operations don't have to slog through
3099          * a bunch of uninteresting vnodes over and over again.
3100          */
3101         dnlc_purge();
3102 
3103         vfs_list_lock();
3104         for (vfsp = rootvfs->vfs_prev; vfsp != rootvfs; vfsp = prev_vfsp) {
3105                 prev_vfsp = vfsp->vfs_prev;
3106 
3107                 if (vfs_lock(vfsp) != 0)
3108                         continue;
3109                 error = vn_vfswlock(vfsp->vfs_vnodecovered);
3110                 vfs_unlock(vfsp);
3111                 if (error)
3112                         continue;
3113 
3114                 vfs_list_unlock();
3115 
3116                 (void) VFS_SYNC(vfsp, SYNC_CLOSE, CRED());
3117                 (void) dounmount(vfsp, 0, CRED());
3118 
3119                 /*
3120                  * Since we dropped the vfslist lock above we must
3121                  * verify that next_vfsp still exists, else start over.
3122                  */
3123                 vfs_list_lock();
3124                 for (vfsp = rootvfs->vfs_prev;
3125                     vfsp != rootvfs; vfsp = vfsp->vfs_prev)
3126                         if (vfsp == prev_vfsp)
3127                                 break;
3128                 if (vfsp == rootvfs && prev_vfsp != rootvfs)
3129                         prev_vfsp = rootvfs->vfs_prev;
3130         }
3131         vfs_list_unlock();
3132 }
3133 
3134 /*
3135  * Called to add an entry to the end of the vfs mount in progress list
3136  */
3137 void
3138 vfs_addmip(dev_t dev, struct vfs *vfsp)
3139 {
3140         struct ipmnt *mipp;
3141 
3142         mipp = (struct ipmnt *)kmem_alloc(sizeof (struct ipmnt), KM_SLEEP);
3143         mipp->mip_next = NULL;
3144         mipp->mip_dev = dev;
3145         mipp->mip_vfsp = vfsp;
3146         mutex_enter(&vfs_miplist_mutex);
3147         if (vfs_miplist_end != NULL)
3148                 vfs_miplist_end->mip_next = mipp;
3149         else
3150                 vfs_miplist = mipp;
3151         vfs_miplist_end = mipp;
3152         mutex_exit(&vfs_miplist_mutex);
3153 }
3154 
3155 /*
3156  * Called to remove an entry from the mount in progress list
3157  * Either because the mount completed or it failed.
3158  */
3159 void
3160 vfs_delmip(struct vfs *vfsp)
3161 {
3162         struct ipmnt *mipp, *mipprev;
3163 
3164         mutex_enter(&vfs_miplist_mutex);
3165         mipprev = NULL;
3166         for (mipp = vfs_miplist;
3167             mipp && mipp->mip_vfsp != vfsp; mipp = mipp->mip_next) {
3168                 mipprev = mipp;
3169         }
3170         if (mipp == NULL)
3171                 return; /* shouldn't happen */
3172         if (mipp == vfs_miplist_end)
3173                 vfs_miplist_end = mipprev;
3174         if (mipprev == NULL)
3175                 vfs_miplist = mipp->mip_next;
3176         else
3177                 mipprev->mip_next = mipp->mip_next;
3178         mutex_exit(&vfs_miplist_mutex);
3179         kmem_free(mipp, sizeof (struct ipmnt));
3180 }
3181 
3182 /*
3183  * vfs_add is called by a specific filesystem's mount routine to add
3184  * the new vfs into the vfs list/hash and to cover the mounted-on vnode.
3185  * The vfs should already have been locked by the caller.
3186  *
3187  * coveredvp is NULL if this is the root.
3188  */
3189 void
3190 vfs_add(vnode_t *coveredvp, struct vfs *vfsp, int mflag)
3191 {
3192         int newflag;
3193 
3194         ASSERT(vfs_lock_held(vfsp));
3195         VFS_HOLD(vfsp);
3196         newflag = vfsp->vfs_flag;
3197         if (mflag & MS_RDONLY)
3198                 newflag |= VFS_RDONLY;
3199         else
3200                 newflag &= ~VFS_RDONLY;
3201         if (mflag & MS_NOSUID)
3202                 newflag |= (VFS_NOSETUID|VFS_NODEVICES);
3203         else
3204                 newflag &= ~(VFS_NOSETUID|VFS_NODEVICES);
3205         if (mflag & MS_NOMNTTAB)
3206                 newflag |= VFS_NOMNTTAB;
3207         else
3208                 newflag &= ~VFS_NOMNTTAB;
3209 
3210         if (coveredvp != NULL) {
3211                 ASSERT(vn_vfswlock_held(coveredvp));
3212                 coveredvp->v_vfsmountedhere = vfsp;
3213                 VN_HOLD(coveredvp);
3214         }
3215         vfsp->vfs_vnodecovered = coveredvp;
3216         vfsp->vfs_flag = newflag;
3217 
3218         vfs_list_add(vfsp);
3219 }
3220 
3221 /*
3222  * Remove a vfs from the vfs list, null out the pointer from the
3223  * covered vnode to the vfs (v_vfsmountedhere), and null out the pointer
3224  * from the vfs to the covered vnode (vfs_vnodecovered). Release the
3225  * reference to the vfs and to the covered vnode.
3226  *
3227  * Called from dounmount after it's confirmed with the file system
3228  * that the unmount is legal.
3229  */
3230 void
3231 vfs_remove(struct vfs *vfsp)
3232 {
3233         vnode_t *vp;
3234 
3235         ASSERT(vfs_lock_held(vfsp));
3236 
3237         /*
3238          * Can't unmount root.  Should never happen because fs will
3239          * be busy.
3240          */
3241         if (vfsp == rootvfs)
3242                 panic("vfs_remove: unmounting root");
3243 
3244         vfs_list_remove(vfsp);
3245 
3246         /*
3247          * Unhook from the file system name space.
3248          */
3249         vp = vfsp->vfs_vnodecovered;
3250         ASSERT(vn_vfswlock_held(vp));
3251         vp->v_vfsmountedhere = NULL;
3252         vfsp->vfs_vnodecovered = NULL;
3253         VN_RELE(vp);
3254 
3255         /*
3256          * Release lock and wakeup anybody waiting.
3257          */
3258         vfs_unlock(vfsp);
3259         VFS_RELE(vfsp);
3260 }
3261 
3262 /*
3263  * Lock a filesystem to prevent access to it while mounting,
3264  * unmounting and syncing.  Return EBUSY immediately if lock
3265  * can't be acquired.
3266  */
3267 int
3268 vfs_lock(vfs_t *vfsp)
3269 {
3270         vn_vfslocks_entry_t *vpvfsentry;
3271 
3272         vpvfsentry = vn_vfslocks_getlock(vfsp);
3273         if (rwst_tryenter(&vpvfsentry->ve_lock, RW_WRITER))
3274                 return (0);
3275 
3276         vn_vfslocks_rele(vpvfsentry);
3277         return (EBUSY);
3278 }
3279 
3280 int
3281 vfs_rlock(vfs_t *vfsp)
3282 {
3283         vn_vfslocks_entry_t *vpvfsentry;
3284 
3285         vpvfsentry = vn_vfslocks_getlock(vfsp);
3286 
3287         if (rwst_tryenter(&vpvfsentry->ve_lock, RW_READER))
3288                 return (0);
3289 
3290         vn_vfslocks_rele(vpvfsentry);
3291         return (EBUSY);
3292 }
3293 
3294 void
3295 vfs_lock_wait(vfs_t *vfsp)
3296 {
3297         vn_vfslocks_entry_t *vpvfsentry;
3298 
3299         vpvfsentry = vn_vfslocks_getlock(vfsp);
3300         rwst_enter(&vpvfsentry->ve_lock, RW_WRITER);
3301 }
3302 
3303 void
3304 vfs_rlock_wait(vfs_t *vfsp)
3305 {
3306         vn_vfslocks_entry_t *vpvfsentry;
3307 
3308         vpvfsentry = vn_vfslocks_getlock(vfsp);
3309         rwst_enter(&vpvfsentry->ve_lock, RW_READER);
3310 }
3311 
3312 /*
3313  * Unlock a locked filesystem.
3314  */
3315 void
3316 vfs_unlock(vfs_t *vfsp)
3317 {
3318         vn_vfslocks_entry_t *vpvfsentry;
3319 
3320         /*
3321          * vfs_unlock will mimic sema_v behaviour to fix 4748018.
3322          * And these changes should remain for the patch changes as it is.
3323          */
3324         if (panicstr)
3325                 return;
3326 
3327         /*
3328          * ve_refcount needs to be dropped twice here.
3329          * 1. To release refernce after a call to vfs_locks_getlock()
3330          * 2. To release the reference from the locking routines like
3331          *    vfs_rlock_wait/vfs_wlock_wait/vfs_wlock etc,.
3332          */
3333 
3334         vpvfsentry = vn_vfslocks_getlock(vfsp);
3335         vn_vfslocks_rele(vpvfsentry);
3336 
3337         rwst_exit(&vpvfsentry->ve_lock);
3338         vn_vfslocks_rele(vpvfsentry);
3339 }
3340 
3341 /*
3342  * Utility routine that allows a filesystem to construct its
3343  * fsid in "the usual way" - by munging some underlying dev_t and
3344  * the filesystem type number into the 64-bit fsid.  Note that
3345  * this implicitly relies on dev_t persistence to make filesystem
3346  * id's persistent.
3347  *
3348  * There's nothing to prevent an individual fs from constructing its
3349  * fsid in a different way, and indeed they should.
3350  *
3351  * Since we want fsids to be 32-bit quantities (so that they can be
3352  * exported identically by either 32-bit or 64-bit APIs, as well as
3353  * the fact that fsid's are "known" to NFS), we compress the device
3354  * number given down to 32-bits, and panic if that isn't possible.
3355  */
3356 void
3357 vfs_make_fsid(fsid_t *fsi, dev_t dev, int val)
3358 {
3359         if (!cmpldev((dev32_t *)&fsi->val[0], dev))
3360                 panic("device number too big for fsid!");
3361         fsi->val[1] = val;
3362 }
3363 
3364 int
3365 vfs_lock_held(vfs_t *vfsp)
3366 {
3367         int held;
3368         vn_vfslocks_entry_t *vpvfsentry;
3369 
3370         /*
3371          * vfs_lock_held will mimic sema_held behaviour
3372          * if panicstr is set. And these changes should remain
3373          * for the patch changes as it is.
3374          */
3375         if (panicstr)
3376                 return (1);
3377 
3378         vpvfsentry = vn_vfslocks_getlock(vfsp);
3379         held = rwst_lock_held(&vpvfsentry->ve_lock, RW_WRITER);
3380 
3381         vn_vfslocks_rele(vpvfsentry);
3382         return (held);
3383 }
3384 
3385 struct _kthread *
3386 vfs_lock_owner(vfs_t *vfsp)
3387 {
3388         struct _kthread *owner;
3389         vn_vfslocks_entry_t *vpvfsentry;
3390 
3391         /*
3392          * vfs_wlock_held will mimic sema_held behaviour
3393          * if panicstr is set. And these changes should remain
3394          * for the patch changes as it is.
3395          */
3396         if (panicstr)
3397                 return (NULL);
3398 
3399         vpvfsentry = vn_vfslocks_getlock(vfsp);
3400         owner = rwst_owner(&vpvfsentry->ve_lock);
3401 
3402         vn_vfslocks_rele(vpvfsentry);
3403         return (owner);
3404 }
3405 
3406 /*
3407  * vfs list locking.
3408  *
3409  * Rather than manipulate the vfslist lock directly, we abstract into lock
3410  * and unlock routines to allow the locking implementation to be changed for
3411  * clustering.
3412  *
3413  * Whenever the vfs list is modified through its hash links, the overall list
3414  * lock must be obtained before locking the relevant hash bucket.  But to see
3415  * whether a given vfs is on the list, it suffices to obtain the lock for the
3416  * hash bucket without getting the overall list lock.  (See getvfs() below.)
3417  */
3418 
3419 void
3420 vfs_list_lock()
3421 {
3422         rw_enter(&vfslist, RW_WRITER);
3423 }
3424 
3425 void
3426 vfs_list_read_lock()
3427 {
3428         rw_enter(&vfslist, RW_READER);
3429 }
3430 
3431 void
3432 vfs_list_unlock()
3433 {
3434         rw_exit(&vfslist);
3435 }
3436 
3437 /*
3438  * Low level worker routines for adding entries to and removing entries from
3439  * the vfs list.
3440  */
3441 
3442 static void
3443 vfs_hash_add(struct vfs *vfsp, int insert_at_head)
3444 {
3445         int vhno;
3446         struct vfs **hp;
3447         dev_t dev;
3448 
3449         ASSERT(RW_WRITE_HELD(&vfslist));
3450 
3451         dev = expldev(vfsp->vfs_fsid.val[0]);
3452         vhno = VFSHASH(getmajor(dev), getminor(dev));
3453 
3454         mutex_enter(&rvfs_list[vhno].rvfs_lock);
3455 
3456         /*
3457          * Link into the hash table, inserting it at the end, so that LOFS
3458          * with the same fsid as UFS (or other) file systems will not hide the
3459          * UFS.
3460          */
3461         if (insert_at_head) {
3462                 vfsp->vfs_hash = rvfs_list[vhno].rvfs_head;
3463                 rvfs_list[vhno].rvfs_head = vfsp;
3464         } else {
3465                 for (hp = &rvfs_list[vhno].rvfs_head; *hp != NULL;
3466                     hp = &(*hp)->vfs_hash)
3467                         continue;
3468                 /*
3469                  * hp now contains the address of the pointer to update
3470                  * to effect the insertion.
3471                  */
3472                 vfsp->vfs_hash = NULL;
3473                 *hp = vfsp;
3474         }
3475 
3476         rvfs_list[vhno].rvfs_len++;
3477         mutex_exit(&rvfs_list[vhno].rvfs_lock);
3478 }
3479 
3480 
3481 static void
3482 vfs_hash_remove(struct vfs *vfsp)
3483 {
3484         int vhno;
3485         struct vfs *tvfsp;
3486         dev_t dev;
3487 
3488         ASSERT(RW_WRITE_HELD(&vfslist));
3489 
3490         dev = expldev(vfsp->vfs_fsid.val[0]);
3491         vhno = VFSHASH(getmajor(dev), getminor(dev));
3492 
3493         mutex_enter(&rvfs_list[vhno].rvfs_lock);
3494 
3495         /*
3496          * Remove from hash.
3497          */
3498         if (rvfs_list[vhno].rvfs_head == vfsp) {
3499                 rvfs_list[vhno].rvfs_head = vfsp->vfs_hash;
3500                 rvfs_list[vhno].rvfs_len--;
3501                 goto foundit;
3502         }
3503         for (tvfsp = rvfs_list[vhno].rvfs_head; tvfsp != NULL;
3504             tvfsp = tvfsp->vfs_hash) {
3505                 if (tvfsp->vfs_hash == vfsp) {
3506                         tvfsp->vfs_hash = vfsp->vfs_hash;
3507                         rvfs_list[vhno].rvfs_len--;
3508                         goto foundit;
3509                 }
3510         }
3511         cmn_err(CE_WARN, "vfs_list_remove: vfs not found in hash");
3512 
3513 foundit:
3514 
3515         mutex_exit(&rvfs_list[vhno].rvfs_lock);
3516 }
3517 
3518 
3519 void
3520 vfs_list_add(struct vfs *vfsp)
3521 {
3522         zone_t *zone;
3523 
3524         /*
3525          * Typically, the vfs_t will have been created on behalf of the file
3526          * system in vfs_init, where it will have been provided with a
3527          * vfs_impl_t. This, however, might be lacking if the vfs_t was created
3528          * by an unbundled file system. We therefore check for such an example
3529          * before stamping the vfs_t with its creation time for the benefit of
3530          * mntfs.
3531          */
3532         if (vfsp->vfs_implp == NULL)
3533                 vfsimpl_setup(vfsp);
3534         vfs_mono_time(&vfsp->vfs_hrctime);
3535 
3536         /*
3537          * The zone that owns the mount is the one that performed the mount.
3538          * Note that this isn't necessarily the same as the zone mounted into.
3539          * The corresponding zone_rele_ref() will be done when the vfs_t
3540          * is being free'd.
3541          */
3542         vfsp->vfs_zone = curproc->p_zone;
3543         zone_init_ref(&vfsp->vfs_implp->vi_zone_ref);
3544         zone_hold_ref(vfsp->vfs_zone, &vfsp->vfs_implp->vi_zone_ref,
3545             ZONE_REF_VFS);
3546 
3547         /*
3548          * Find the zone mounted into, and put this mount on its vfs list.
3549          */
3550         zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3551         ASSERT(zone != NULL);
3552         /*
3553          * Special casing for the root vfs.  This structure is allocated
3554          * statically and hooked onto rootvfs at link time.  During the
3555          * vfs_mountroot call at system startup time, the root file system's
3556          * VFS_MOUNTROOT routine will call vfs_add with this root vfs struct
3557          * as argument.  The code below must detect and handle this special
3558          * case.  The only apparent justification for this special casing is
3559          * to ensure that the root file system appears at the head of the
3560          * list.
3561          *
3562          * XXX: I'm assuming that it's ok to do normal list locking when
3563          *      adding the entry for the root file system (this used to be
3564          *      done with no locks held).
3565          */
3566         vfs_list_lock();
3567         /*
3568          * Link into the vfs list proper.
3569          */
3570         if (vfsp == &root) {
3571                 /*
3572                  * Assert: This vfs is already on the list as its first entry.
3573                  * Thus, there's nothing to do.
3574                  */
3575                 ASSERT(rootvfs == vfsp);
3576                 /*
3577                  * Add it to the head of the global zone's vfslist.
3578                  */
3579                 ASSERT(zone == global_zone);
3580                 ASSERT(zone->zone_vfslist == NULL);
3581                 zone->zone_vfslist = vfsp;
3582         } else {
3583                 /*
3584                  * Link to end of list using vfs_prev (as rootvfs is now a
3585                  * doubly linked circular list) so list is in mount order for
3586                  * mnttab use.
3587                  */
3588                 rootvfs->vfs_prev->vfs_next = vfsp;
3589                 vfsp->vfs_prev = rootvfs->vfs_prev;
3590                 rootvfs->vfs_prev = vfsp;
3591                 vfsp->vfs_next = rootvfs;
3592 
3593                 /*
3594                  * Do it again for the zone-private list (which may be NULL).
3595                  */
3596                 if (zone->zone_vfslist == NULL) {
3597                         ASSERT(zone != global_zone);
3598                         zone->zone_vfslist = vfsp;
3599                 } else {
3600                         zone->zone_vfslist->vfs_zone_prev->vfs_zone_next = vfsp;
3601                         vfsp->vfs_zone_prev = zone->zone_vfslist->vfs_zone_prev;
3602                         zone->zone_vfslist->vfs_zone_prev = vfsp;
3603                         vfsp->vfs_zone_next = zone->zone_vfslist;
3604                 }
3605         }
3606 
3607         /*
3608          * Link into the hash table, inserting it at the end, so that LOFS
3609          * with the same fsid as UFS (or other) file systems will not hide
3610          * the UFS.
3611          */
3612         vfs_hash_add(vfsp, 0);
3613 
3614         /*
3615          * update the mnttab modification time
3616          */
3617         vfs_mnttab_modtimeupd();
3618         vfs_list_unlock();
3619         zone_rele(zone);
3620 }
3621 
3622 void
3623 vfs_list_remove(struct vfs *vfsp)
3624 {
3625         zone_t *zone;
3626 
3627         zone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
3628         ASSERT(zone != NULL);
3629         /*
3630          * Callers are responsible for preventing attempts to unmount the
3631          * root.
3632          */
3633         ASSERT(vfsp != rootvfs);
3634 
3635         vfs_list_lock();
3636 
3637         /*
3638          * Remove from hash.
3639          */
3640         vfs_hash_remove(vfsp);
3641 
3642         /*
3643          * Remove from vfs list.
3644          */
3645         vfsp->vfs_prev->vfs_next = vfsp->vfs_next;
3646         vfsp->vfs_next->vfs_prev = vfsp->vfs_prev;
3647         vfsp->vfs_next = vfsp->vfs_prev = NULL;
3648 
3649         /*
3650          * Remove from zone-specific vfs list.
3651          */
3652         if (zone->zone_vfslist == vfsp)
3653                 zone->zone_vfslist = vfsp->vfs_zone_next;
3654 
3655         if (vfsp->vfs_zone_next == vfsp) {
3656                 ASSERT(vfsp->vfs_zone_prev == vfsp);
3657                 ASSERT(zone->zone_vfslist == vfsp);
3658                 zone->zone_vfslist = NULL;
3659         }
3660 
3661         vfsp->vfs_zone_prev->vfs_zone_next = vfsp->vfs_zone_next;
3662         vfsp->vfs_zone_next->vfs_zone_prev = vfsp->vfs_zone_prev;
3663         vfsp->vfs_zone_next = vfsp->vfs_zone_prev = NULL;
3664 
3665         /*
3666          * update the mnttab modification time
3667          */
3668         vfs_mnttab_modtimeupd();
3669         vfs_list_unlock();
3670         zone_rele(zone);
3671 }
3672 
3673 struct vfs *
3674 getvfs(fsid_t *fsid)
3675 {
3676         struct vfs *vfsp;
3677         int val0 = fsid->val[0];
3678         int val1 = fsid->val[1];
3679         dev_t dev = expldev(val0);
3680         int vhno = VFSHASH(getmajor(dev), getminor(dev));
3681         kmutex_t *hmp = &rvfs_list[vhno].rvfs_lock;
3682 
3683         mutex_enter(hmp);
3684         for (vfsp = rvfs_list[vhno].rvfs_head; vfsp; vfsp = vfsp->vfs_hash) {
3685                 if (vfsp->vfs_fsid.val[0] == val0 &&
3686                     vfsp->vfs_fsid.val[1] == val1) {
3687                         VFS_HOLD(vfsp);
3688                         mutex_exit(hmp);
3689                         return (vfsp);
3690                 }
3691         }
3692         mutex_exit(hmp);
3693         return (NULL);
3694 }
3695 
3696 /*
3697  * Search the vfs mount in progress list for a specified device/vfs entry.
3698  * Returns 0 if the first entry in the list that the device matches has the
3699  * given vfs pointer as well.  If the device matches but a different vfs
3700  * pointer is encountered in the list before the given vfs pointer then
3701  * a 1 is returned.
3702  */
3703 
3704 int
3705 vfs_devmounting(dev_t dev, struct vfs *vfsp)
3706 {
3707         int retval = 0;
3708         struct ipmnt *mipp;
3709 
3710         mutex_enter(&vfs_miplist_mutex);
3711         for (mipp = vfs_miplist; mipp != NULL; mipp = mipp->mip_next) {
3712                 if (mipp->mip_dev == dev) {
3713                         if (mipp->mip_vfsp != vfsp)
3714                                 retval = 1;
3715                         break;
3716                 }
3717         }
3718         mutex_exit(&vfs_miplist_mutex);
3719         return (retval);
3720 }
3721 
3722 /*
3723  * Search the vfs list for a specified device.  Returns 1, if entry is found
3724  * or 0 if no suitable entry is found.
3725  */
3726 
3727 int
3728 vfs_devismounted(dev_t dev)
3729 {
3730         struct vfs *vfsp;
3731         int found;
3732 
3733         vfs_list_read_lock();
3734         vfsp = rootvfs;
3735         found = 0;
3736         do {
3737                 if (vfsp->vfs_dev == dev) {
3738                         found = 1;
3739                         break;
3740                 }
3741                 vfsp = vfsp->vfs_next;
3742         } while (vfsp != rootvfs);
3743 
3744         vfs_list_unlock();
3745         return (found);
3746 }
3747 
3748 /*
3749  * Search the vfs list for a specified device.  Returns a pointer to it
3750  * or NULL if no suitable entry is found. The caller of this routine
3751  * is responsible for releasing the returned vfs pointer.
3752  */
3753 struct vfs *
3754 vfs_dev2vfsp(dev_t dev)
3755 {
3756         struct vfs *vfsp;
3757         int found;
3758 
3759         vfs_list_read_lock();
3760         vfsp = rootvfs;
3761         found = 0;
3762         do {
3763                 /*
3764                  * The following could be made more efficient by making
3765                  * the entire loop use vfs_zone_next if the call is from
3766                  * a zone.  The only callers, however, ustat(2) and
3767                  * umount2(2), don't seem to justify the added
3768                  * complexity at present.
3769                  */
3770                 if (vfsp->vfs_dev == dev &&
3771                     ZONE_PATH_VISIBLE(refstr_value(vfsp->vfs_mntpt),
3772                     curproc->p_zone)) {
3773                         VFS_HOLD(vfsp);
3774                         found = 1;
3775                         break;
3776                 }
3777                 vfsp = vfsp->vfs_next;
3778         } while (vfsp != rootvfs);
3779         vfs_list_unlock();
3780         return (found ? vfsp: NULL);
3781 }
3782 
3783 /*
3784  * Search the vfs list for a specified mntpoint.  Returns a pointer to it
3785  * or NULL if no suitable entry is found. The caller of this routine
3786  * is responsible for releasing the returned vfs pointer.
3787  *
3788  * Note that if multiple mntpoints match, the last one matching is
3789  * returned in an attempt to return the "top" mount when overlay
3790  * mounts are covering the same mount point.  This is accomplished by starting
3791  * at the end of the list and working our way backwards, stopping at the first
3792  * matching mount.
3793  */
3794 struct vfs *
3795 vfs_mntpoint2vfsp(const char *mp)
3796 {
3797         struct vfs *vfsp;
3798         struct vfs *retvfsp = NULL;
3799         zone_t *zone = curproc->p_zone;
3800         struct vfs *list;
3801 
3802         vfs_list_read_lock();
3803         if (getzoneid() == GLOBAL_ZONEID) {
3804                 /*
3805                  * The global zone may see filesystems in any zone.
3806                  */
3807                 vfsp = rootvfs->vfs_prev;
3808                 do {
3809                         if (strcmp(refstr_value(vfsp->vfs_mntpt), mp) == 0) {
3810                                 retvfsp = vfsp;
3811                                 break;
3812                         }
3813                         vfsp = vfsp->vfs_prev;
3814                 } while (vfsp != rootvfs->vfs_prev);
3815         } else if ((list = zone->zone_vfslist) != NULL) {
3816                 const char *mntpt;
3817 
3818                 vfsp = list->vfs_zone_prev;
3819                 do {
3820                         mntpt = refstr_value(vfsp->vfs_mntpt);
3821                         mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
3822                         if (strcmp(mntpt, mp) == 0) {
3823                                 retvfsp = vfsp;
3824                                 break;
3825                         }
3826                         vfsp = vfsp->vfs_zone_prev;
3827                 } while (vfsp != list->vfs_zone_prev);
3828         }
3829         if (retvfsp)
3830                 VFS_HOLD(retvfsp);
3831         vfs_list_unlock();
3832         return (retvfsp);
3833 }
3834 
3835 /*
3836  * Search the vfs list for a specified vfsops.
3837  * if vfs entry is found then return 1, else 0.
3838  */
3839 int
3840 vfs_opsinuse(vfsops_t *ops)
3841 {
3842         struct vfs *vfsp;
3843         int found;
3844 
3845         vfs_list_read_lock();
3846         vfsp = rootvfs;
3847         found = 0;
3848         do {
3849                 if (vfs_getops(vfsp) == ops) {
3850                         found = 1;
3851                         break;
3852                 }
3853                 vfsp = vfsp->vfs_next;
3854         } while (vfsp != rootvfs);
3855         vfs_list_unlock();
3856         return (found);
3857 }
3858 
3859 /*
3860  * Allocate an entry in vfssw for a file system type
3861  */
3862 struct vfssw *
3863 allocate_vfssw(const char *type)
3864 {
3865         struct vfssw *vswp;
3866 
3867         if (type[0] == '\0' || strlen(type) + 1 > _ST_FSTYPSZ) {
3868                 /*
3869                  * The vfssw table uses the empty string to identify an
3870                  * available entry; we cannot add any type which has
3871                  * a leading NUL. The string length is limited to
3872                  * the size of the st_fstype array in struct stat.
3873                  */
3874                 return (NULL);
3875         }
3876 
3877         ASSERT(VFSSW_WRITE_LOCKED());
3878         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++)
3879                 if (!ALLOCATED_VFSSW(vswp)) {
3880                         vswp->vsw_name = kmem_alloc(strlen(type) + 1, KM_SLEEP);
3881                         (void) strcpy(vswp->vsw_name, type);
3882                         ASSERT(vswp->vsw_count == 0);
3883                         vswp->vsw_count = 1;
3884                         mutex_init(&vswp->vsw_lock, NULL, MUTEX_DEFAULT, NULL);
3885                         return (vswp);
3886                 }
3887         return (NULL);
3888 }
3889 
3890 /*
3891  * Impose additional layer of translation between vfstype names
3892  * and module names in the filesystem.
3893  */
3894 static const char *
3895 vfs_to_modname(const char *vfstype)
3896 {
3897         if (strcmp(vfstype, "proc") == 0) {
3898                 vfstype = "procfs";
3899         } else if (strcmp(vfstype, "fd") == 0) {
3900                 vfstype = "fdfs";
3901         } else if (strncmp(vfstype, "nfs", 3) == 0) {
3902                 vfstype = "nfs";
3903         }
3904 
3905         return (vfstype);
3906 }
3907 
3908 /*
3909  * Find a vfssw entry given a file system type name.
3910  * Try to autoload the filesystem if it's not found.
3911  * If it's installed, return the vfssw locked to prevent unloading.
3912  */
3913 struct vfssw *
3914 vfs_getvfssw(const char *type)
3915 {
3916         struct vfssw *vswp;
3917         const char *modname;
3918 
3919         RLOCK_VFSSW();
3920         vswp = vfs_getvfsswbyname(type);
3921         modname = vfs_to_modname(type);
3922 
3923         if (rootdir == NULL) {
3924                 /*
3925                  * If we haven't yet loaded the root file system, then our
3926                  * _init won't be called until later. Allocate vfssw entry,
3927                  * because mod_installfs won't be called.
3928                  */
3929                 if (vswp == NULL) {
3930                         RUNLOCK_VFSSW();
3931                         WLOCK_VFSSW();
3932                         if ((vswp = vfs_getvfsswbyname(type)) == NULL) {
3933                                 if ((vswp = allocate_vfssw(type)) == NULL) {
3934                                         WUNLOCK_VFSSW();
3935                                         return (NULL);
3936                                 }
3937                         }
3938                         WUNLOCK_VFSSW();
3939                         RLOCK_VFSSW();
3940                 }
3941                 if (!VFS_INSTALLED(vswp)) {
3942                         RUNLOCK_VFSSW();
3943                         (void) modloadonly("fs", modname);
3944                 } else
3945                         RUNLOCK_VFSSW();
3946                 return (vswp);
3947         }
3948 
3949         /*
3950          * Try to load the filesystem.  Before calling modload(), we drop
3951          * our lock on the VFS switch table, and pick it up after the
3952          * module is loaded.  However, there is a potential race:  the
3953          * module could be unloaded after the call to modload() completes
3954          * but before we pick up the lock and drive on.  Therefore,
3955          * we keep reloading the module until we've loaded the module
3956          * _and_ we have the lock on the VFS switch table.
3957          */
3958         while (vswp == NULL || !VFS_INSTALLED(vswp)) {
3959                 RUNLOCK_VFSSW();
3960                 if (modload("fs", modname) == -1)
3961                         return (NULL);
3962                 RLOCK_VFSSW();
3963                 if (vswp == NULL)
3964                         if ((vswp = vfs_getvfsswbyname(type)) == NULL)
3965                                 break;
3966         }
3967         RUNLOCK_VFSSW();
3968 
3969         return (vswp);
3970 }
3971 
3972 /*
3973  * Find a vfssw entry given a file system type name.
3974  */
3975 struct vfssw *
3976 vfs_getvfsswbyname(const char *type)
3977 {
3978         struct vfssw *vswp;
3979 
3980         ASSERT(VFSSW_LOCKED());
3981         if (type == NULL || *type == '\0')
3982                 return (NULL);
3983 
3984         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
3985                 if (strcmp(type, vswp->vsw_name) == 0) {
3986                         vfs_refvfssw(vswp);
3987                         return (vswp);
3988                 }
3989         }
3990 
3991         return (NULL);
3992 }
3993 
3994 /*
3995  * Find a vfssw entry given a set of vfsops.
3996  */
3997 struct vfssw *
3998 vfs_getvfsswbyvfsops(vfsops_t *vfsops)
3999 {
4000         struct vfssw *vswp;
4001 
4002         RLOCK_VFSSW();
4003         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4004                 if (ALLOCATED_VFSSW(vswp) && &vswp->vsw_vfsops == vfsops) {
4005                         vfs_refvfssw(vswp);
4006                         RUNLOCK_VFSSW();
4007                         return (vswp);
4008                 }
4009         }
4010         RUNLOCK_VFSSW();
4011 
4012         return (NULL);
4013 }
4014 
4015 /*
4016  * Reference a vfssw entry.
4017  */
4018 void
4019 vfs_refvfssw(struct vfssw *vswp)
4020 {
4021 
4022         mutex_enter(&vswp->vsw_lock);
4023         vswp->vsw_count++;
4024         mutex_exit(&vswp->vsw_lock);
4025 }
4026 
4027 /*
4028  * Unreference a vfssw entry.
4029  */
4030 void
4031 vfs_unrefvfssw(struct vfssw *vswp)
4032 {
4033 
4034         mutex_enter(&vswp->vsw_lock);
4035         vswp->vsw_count--;
4036         mutex_exit(&vswp->vsw_lock);
4037 }
4038 
4039 int sync_timeout = 30;          /* timeout for syncing a page during panic */
4040 int sync_timeleft;              /* portion of sync_timeout remaining */
4041 
4042 static int sync_retries = 20;   /* number of retries when not making progress */
4043 static int sync_triesleft;      /* portion of sync_retries remaining */
4044 
4045 static pgcnt_t old_pgcnt, new_pgcnt;
4046 static int new_bufcnt, old_bufcnt;
4047 
4048 /*
4049  * Sync all of the mounted filesystems, and then wait for the actual i/o to
4050  * complete.  We wait by counting the number of dirty pages and buffers,
4051  * pushing them out using bio_busy() and page_busy(), and then counting again.
4052  * This routine is used during both the uadmin A_SHUTDOWN code as well as
4053  * the SYNC phase of the panic code (see comments in panic.c).  It should only
4054  * be used after some higher-level mechanism has quiesced the system so that
4055  * new writes are not being initiated while we are waiting for completion.
4056  *
4057  * To ensure finite running time, our algorithm uses two timeout mechanisms:
4058  * sync_timeleft (a timer implemented by the omnipresent deadman() cyclic), and
4059  * sync_triesleft (a progress counter used by the vfs_syncall() loop below).
4060  * Together these ensure that syncing completes if our i/o paths are stuck.
4061  * The counters are declared above so they can be found easily in the debugger.
4062  *
4063  * The sync_timeleft counter is reset by bio_busy() and page_busy() using the
4064  * vfs_syncprogress() subroutine whenever we make progress through the lists of
4065  * pages and buffers.  It is decremented and expired by the deadman() cyclic.
4066  * When vfs_syncall() decides it is done, we disable the deadman() counter by
4067  * setting sync_timeleft to zero.  This timer guards against vfs_syncall()
4068  * deadlocking or hanging inside of a broken filesystem or driver routine.
4069  *
4070  * The sync_triesleft counter is updated by vfs_syncall() itself.  If we make
4071  * sync_retries consecutive calls to bio_busy() and page_busy() without
4072  * decreasing either the number of dirty buffers or dirty pages below the
4073  * lowest count we have seen so far, we give up and return from vfs_syncall().
4074  *
4075  * Each loop iteration ends with a call to delay() one second to allow time for
4076  * i/o completion and to permit the user time to read our progress messages.
4077  */
4078 void
4079 vfs_syncall(void)
4080 {
4081         if (rootdir == NULL && !modrootloaded)
4082                 return; /* panic during boot - no filesystems yet */
4083 
4084         printf("syncing file systems...");
4085         vfs_syncprogress();
4086         sync();
4087 
4088         vfs_syncprogress();
4089         sync_triesleft = sync_retries;
4090 
4091         old_bufcnt = new_bufcnt = INT_MAX;
4092         old_pgcnt = new_pgcnt = ULONG_MAX;
4093 
4094         while (sync_triesleft > 0) {
4095                 old_bufcnt = MIN(old_bufcnt, new_bufcnt);
4096                 old_pgcnt = MIN(old_pgcnt, new_pgcnt);
4097 
4098                 new_bufcnt = bio_busy(B_TRUE);
4099                 new_pgcnt = page_busy(B_TRUE);
4100                 vfs_syncprogress();
4101 
4102                 if (new_bufcnt == 0 && new_pgcnt == 0)
4103                         break;
4104 
4105                 if (new_bufcnt < old_bufcnt || new_pgcnt < old_pgcnt)
4106                         sync_triesleft = sync_retries;
4107                 else
4108                         sync_triesleft--;
4109 
4110                 if (new_bufcnt)
4111                         printf(" [%d]", new_bufcnt);
4112                 if (new_pgcnt)
4113                         printf(" %lu", new_pgcnt);
4114 
4115                 delay(hz);
4116         }
4117 
4118         if (new_bufcnt != 0 || new_pgcnt != 0)
4119                 printf(" done (not all i/o completed)\n");
4120         else
4121                 printf(" done\n");
4122 
4123         sync_timeleft = 0;
4124         delay(hz);
4125 }
4126 
4127 /*
4128  * If we are in the middle of the sync phase of panic, reset sync_timeleft to
4129  * sync_timeout to indicate that we are making progress and the deadman()
4130  * omnipresent cyclic should not yet time us out.  Note that it is safe to
4131  * store to sync_timeleft here since the deadman() is firing at high-level
4132  * on top of us.  If we are racing with the deadman(), either the deadman()
4133  * will decrement the old value and then we will reset it, or we will
4134  * reset it and then the deadman() will immediately decrement it.  In either
4135  * case, correct behavior results.
4136  */
4137 void
4138 vfs_syncprogress(void)
4139 {
4140         if (panicstr)
4141                 sync_timeleft = sync_timeout;
4142 }
4143 
4144 /*
4145  * Map VFS flags to statvfs flags.  These shouldn't really be separate
4146  * flags at all.
4147  */
4148 uint_t
4149 vf_to_stf(uint_t vf)
4150 {
4151         uint_t stf = 0;
4152 
4153         if (vf & VFS_RDONLY)
4154                 stf |= ST_RDONLY;
4155         if (vf & VFS_NOSETUID)
4156                 stf |= ST_NOSUID;
4157         if (vf & VFS_NOTRUNC)
4158                 stf |= ST_NOTRUNC;
4159 
4160         return (stf);
4161 }
4162 
4163 /*
4164  * Entries for (illegal) fstype 0.
4165  */
4166 /* ARGSUSED */
4167 int
4168 vfsstray_sync(struct vfs *vfsp, short arg, struct cred *cr)
4169 {
4170         cmn_err(CE_PANIC, "stray vfs operation");
4171         return (0);
4172 }
4173 
4174 /*
4175  * Entries for (illegal) fstype 0.
4176  */
4177 int
4178 vfsstray(void)
4179 {
4180         cmn_err(CE_PANIC, "stray vfs operation");
4181         return (0);
4182 }
4183 
4184 /*
4185  * Support for dealing with forced UFS unmount and its interaction with
4186  * LOFS. Could be used by any filesystem.
4187  * See bug 1203132.
4188  */
4189 int
4190 vfs_EIO(void)
4191 {
4192         return (EIO);
4193 }
4194 
4195 /*
4196  * We've gotta define the op for sync separately, since the compiler gets
4197  * confused if we mix and match ANSI and normal style prototypes when
4198  * a "short" argument is present and spits out a warning.
4199  */
4200 /*ARGSUSED*/
4201 int
4202 vfs_EIO_sync(struct vfs *vfsp, short arg, struct cred *cr)
4203 {
4204         return (EIO);
4205 }
4206 
4207 vfs_t EIO_vfs;
4208 vfsops_t *EIO_vfsops;
4209 
4210 /*
4211  * Called from startup() to initialize all loaded vfs's
4212  */
4213 void
4214 vfsinit(void)
4215 {
4216         struct vfssw *vswp;
4217         int error;
4218         extern int vopstats_enabled;
4219         extern void vopstats_startup();
4220 
4221         static const fs_operation_def_t EIO_vfsops_template[] = {
4222                 VFSNAME_MOUNT,          { .error = vfs_EIO },
4223                 VFSNAME_UNMOUNT,        { .error = vfs_EIO },
4224                 VFSNAME_ROOT,           { .error = vfs_EIO },
4225                 VFSNAME_STATVFS,        { .error = vfs_EIO },
4226                 VFSNAME_SYNC,           { .vfs_sync = vfs_EIO_sync },
4227                 VFSNAME_VGET,           { .error = vfs_EIO },
4228                 VFSNAME_MOUNTROOT,      { .error = vfs_EIO },
4229                 VFSNAME_FREEVFS,        { .error = vfs_EIO },
4230                 VFSNAME_VNSTATE,        { .error = vfs_EIO },
4231                 NULL, NULL
4232         };
4233 
4234         static const fs_operation_def_t stray_vfsops_template[] = {
4235                 VFSNAME_MOUNT,          { .error = vfsstray },
4236                 VFSNAME_UNMOUNT,        { .error = vfsstray },
4237                 VFSNAME_ROOT,           { .error = vfsstray },
4238                 VFSNAME_STATVFS,        { .error = vfsstray },
4239                 VFSNAME_SYNC,           { .vfs_sync = vfsstray_sync },
4240                 VFSNAME_VGET,           { .error = vfsstray },
4241                 VFSNAME_MOUNTROOT,      { .error = vfsstray },
4242                 VFSNAME_FREEVFS,        { .error = vfsstray },
4243                 VFSNAME_VNSTATE,        { .error = vfsstray },
4244                 NULL, NULL
4245         };
4246 
4247         /* Create vfs cache */
4248         vfs_cache = kmem_cache_create("vfs_cache", sizeof (struct vfs),
4249             sizeof (uintptr_t), NULL, NULL, NULL, NULL, NULL, 0);
4250 
4251         /* Initialize the vnode cache (file systems may use it during init). */
4252         vn_create_cache();
4253 
4254         /* Setup event monitor framework */
4255         fem_init();
4256 
4257         /* Initialize the dummy stray file system type. */
4258         error = vfs_setfsops(0, stray_vfsops_template, NULL);
4259 
4260         /* Initialize the dummy EIO file system. */
4261         error = vfs_makefsops(EIO_vfsops_template, &EIO_vfsops);
4262         if (error != 0) {
4263                 cmn_err(CE_WARN, "vfsinit: bad EIO vfs ops template");
4264                 /* Shouldn't happen, but not bad enough to panic */
4265         }
4266 
4267         VFS_INIT(&EIO_vfs, EIO_vfsops, (caddr_t)NULL);
4268 
4269         /*
4270          * Default EIO_vfs.vfs_flag to VFS_UNMOUNTED so a lookup
4271          * on this vfs can immediately notice it's invalid.
4272          */
4273         EIO_vfs.vfs_flag |= VFS_UNMOUNTED;
4274 
4275         /*
4276          * Call the init routines of non-loadable filesystems only.
4277          * Filesystems which are loaded as separate modules will be
4278          * initialized by the module loading code instead.
4279          */
4280 
4281         for (vswp = &vfssw[1]; vswp < &vfssw[nfstype]; vswp++) {
4282                 RLOCK_VFSSW();
4283                 if (vswp->vsw_init != NULL)
4284                         (*vswp->vsw_init)(vswp - vfssw, vswp->vsw_name);
4285                 RUNLOCK_VFSSW();
4286         }
4287 
4288         vopstats_startup();
4289 
4290         if (vopstats_enabled) {
4291                 /* EIO_vfs can collect stats, but we don't retrieve them */
4292                 initialize_vopstats(&EIO_vfs.vfs_vopstats);
4293                 EIO_vfs.vfs_fstypevsp = NULL;
4294                 EIO_vfs.vfs_vskap = NULL;
4295                 EIO_vfs.vfs_flag |= VFS_STATS;
4296         }
4297 
4298         xattr_init();
4299 
4300         reparse_point_init();
4301 }
4302 
4303 vfs_t *
4304 vfs_alloc(int kmflag)
4305 {
4306         vfs_t *vfsp;
4307 
4308         vfsp = kmem_cache_alloc(vfs_cache, kmflag);
4309 
4310         /*
4311          * Do the simplest initialization here.
4312          * Everything else gets done in vfs_init()
4313          */
4314         bzero(vfsp, sizeof (vfs_t));
4315         return (vfsp);
4316 }
4317 
4318 void
4319 vfs_free(vfs_t *vfsp)
4320 {
4321         /*
4322          * One would be tempted to assert that "vfsp->vfs_count == 0".
4323          * The problem is that this gets called out of domount() with
4324          * a partially initialized vfs and a vfs_count of 1.  This is
4325          * also called from vfs_rele() with a vfs_count of 0.  We can't
4326          * call VFS_RELE() from domount() if VFS_MOUNT() hasn't successfully
4327          * returned.  This is because VFS_MOUNT() fully initializes the
4328          * vfs structure and its associated data.  VFS_RELE() will call
4329          * VFS_FREEVFS() which may panic the system if the data structures
4330          * aren't fully initialized from a successful VFS_MOUNT()).
4331          */
4332 
4333         /* If FEM was in use, make sure everything gets cleaned up */
4334         if (vfsp->vfs_femhead) {
4335                 ASSERT(vfsp->vfs_femhead->femh_list == NULL);
4336                 mutex_destroy(&vfsp->vfs_femhead->femh_lock);
4337                 kmem_free(vfsp->vfs_femhead, sizeof (*(vfsp->vfs_femhead)));
4338                 vfsp->vfs_femhead = NULL;
4339         }
4340 
4341         if (vfsp->vfs_implp)
4342                 vfsimpl_teardown(vfsp);
4343         sema_destroy(&vfsp->vfs_reflock);
4344         kmem_cache_free(vfs_cache, vfsp);
4345 }
4346 
4347 /*
4348  * Increments the vfs reference count by one atomically.
4349  */
4350 void
4351 vfs_hold(vfs_t *vfsp)
4352 {
4353         atomic_inc_32(&vfsp->vfs_count);
4354         ASSERT(vfsp->vfs_count != 0);
4355 }
4356 
4357 /*
4358  * Decrements the vfs reference count by one atomically. When
4359  * vfs reference count becomes zero, it calls the file system
4360  * specific vfs_freevfs() to free up the resources.
4361  */
4362 void
4363 vfs_rele(vfs_t *vfsp)
4364 {
4365         ASSERT(vfsp->vfs_count != 0);
4366         if (atomic_dec_32_nv(&vfsp->vfs_count) == 0) {
4367                 VFS_FREEVFS(vfsp);
4368                 lofi_remove(vfsp);
4369                 if (vfsp->vfs_zone)
4370                         zone_rele_ref(&vfsp->vfs_implp->vi_zone_ref,
4371                             ZONE_REF_VFS);
4372                 vfs_freemnttab(vfsp);
4373                 vfs_free(vfsp);
4374         }
4375 }
4376 
4377 /*
4378  * Generic operations vector support.
4379  *
4380  * This is used to build operations vectors for both the vfs and vnode.
4381  * It's normally called only when a file system is loaded.
4382  *
4383  * There are many possible algorithms for this, including the following:
4384  *
4385  *   (1) scan the list of known operations; for each, see if the file system
4386  *       includes an entry for it, and fill it in as appropriate.
4387  *
4388  *   (2) set up defaults for all known operations.  scan the list of ops
4389  *       supplied by the file system; for each which is both supplied and
4390  *       known, fill it in.
4391  *
4392  *   (3) sort the lists of known ops & supplied ops; scan the list, filling
4393  *       in entries as we go.
4394  *
4395  * we choose (1) for simplicity, and because performance isn't critical here.
4396  * note that (2) could be sped up using a precomputed hash table on known ops.
4397  * (3) could be faster than either, but only if the lists were very large or
4398  * supplied in sorted order.
4399  *
4400  */
4401 
4402 int
4403 fs_build_vector(void *vector, int *unused_ops,
4404     const fs_operation_trans_def_t *translation,
4405     const fs_operation_def_t *operations)
4406 {
4407         int i, num_trans, num_ops, used;
4408 
4409         /*
4410          * Count the number of translations and the number of supplied
4411          * operations.
4412          */
4413 
4414         {
4415                 const fs_operation_trans_def_t *p;
4416 
4417                 for (num_trans = 0, p = translation;
4418                     p->name != NULL;
4419                     num_trans++, p++)
4420                         ;
4421         }
4422 
4423         {
4424                 const fs_operation_def_t *p;
4425 
4426                 for (num_ops = 0, p = operations;
4427                     p->name != NULL;
4428                     num_ops++, p++)
4429                         ;
4430         }
4431 
4432         /* Walk through each operation known to our caller.  There will be */
4433         /* one entry in the supplied "translation table" for each. */
4434 
4435         used = 0;
4436 
4437         for (i = 0; i < num_trans; i++) {
4438                 int j, found;
4439                 char *curname;
4440                 fs_generic_func_p result;
4441                 fs_generic_func_p *location;
4442 
4443                 curname = translation[i].name;
4444 
4445                 /* Look for a matching operation in the list supplied by the */
4446                 /* file system. */
4447 
4448                 found = 0;
4449 
4450                 for (j = 0; j < num_ops; j++) {
4451                         if (strcmp(operations[j].name, curname) == 0) {
4452                                 used++;
4453                                 found = 1;
4454                                 break;
4455                         }
4456                 }
4457 
4458                 /*
4459                  * If the file system is using a "placeholder" for default
4460                  * or error functions, grab the appropriate function out of
4461                  * the translation table.  If the file system didn't supply
4462                  * this operation at all, use the default function.
4463                  */
4464 
4465                 if (found) {
4466                         result = operations[j].func.fs_generic;
4467                         if (result == fs_default) {
4468                                 result = translation[i].defaultFunc;
4469                         } else if (result == fs_error) {
4470                                 result = translation[i].errorFunc;
4471                         } else if (result == NULL) {
4472                                 /* Null values are PROHIBITED */
4473                                 return (EINVAL);
4474                         }
4475                 } else {
4476                         result = translation[i].defaultFunc;
4477                 }
4478 
4479                 /* Now store the function into the operations vector. */
4480 
4481                 location = (fs_generic_func_p *)
4482                     (((char *)vector) + translation[i].offset);
4483 
4484                 *location = result;
4485         }
4486 
4487         *unused_ops = num_ops - used;
4488 
4489         return (0);
4490 }
4491 
4492 /* Placeholder functions, should never be called. */
4493 
4494 int
4495 fs_error(void)
4496 {
4497         cmn_err(CE_PANIC, "fs_error called");
4498         return (0);
4499 }
4500 
4501 int
4502 fs_default(void)
4503 {
4504         cmn_err(CE_PANIC, "fs_default called");
4505         return (0);
4506 }
4507 
4508 #ifdef __sparc
4509 
4510 /*
4511  * Part of the implementation of booting off a mirrored root
4512  * involves a change of dev_t for the root device.  To
4513  * accomplish this, first remove the existing hash table
4514  * entry for the root device, convert to the new dev_t,
4515  * then re-insert in the hash table at the head of the list.
4516  */
4517 void
4518 vfs_root_redev(vfs_t *vfsp, dev_t ndev, int fstype)
4519 {
4520         vfs_list_lock();
4521 
4522         vfs_hash_remove(vfsp);
4523 
4524         vfsp->vfs_dev = ndev;
4525         vfs_make_fsid(&vfsp->vfs_fsid, ndev, fstype);
4526 
4527         vfs_hash_add(vfsp, 1);
4528 
4529         vfs_list_unlock();
4530 }
4531 
4532 #else /* x86 NEWBOOT */
4533 
4534 #if defined(__x86)
4535 extern int hvmboot_rootconf();
4536 #endif /* __x86 */
4537 
4538 extern ib_boot_prop_t *iscsiboot_prop;
4539 
4540 int
4541 rootconf()
4542 {
4543         int error;
4544         struct vfssw *vsw;
4545         extern void pm_init();
4546         char *fstyp, *fsmod;
4547         int ret = -1;
4548 
4549         getrootfs(&fstyp, &fsmod);
4550 
4551 #if defined(__x86)
4552         /*
4553          * hvmboot_rootconf() is defined in the hvm_bootstrap misc module,
4554          * which lives in /platform/i86hvm, and hence is only available when
4555          * booted in an x86 hvm environment.  If the hvm_bootstrap misc module
4556          * is not available then the modstub for this function will return 0.
4557          * If the hvm_bootstrap misc module is available it will be loaded
4558          * and hvmboot_rootconf() will be invoked.
4559          */
4560         if (error = hvmboot_rootconf())
4561                 return (error);
4562 #endif /* __x86 */
4563 
4564         if (error = clboot_rootconf())
4565                 return (error);
4566 
4567         if (modload("fs", fsmod) == -1)
4568                 panic("Cannot _init %s module", fsmod);
4569 
4570         RLOCK_VFSSW();
4571         vsw = vfs_getvfsswbyname(fstyp);
4572         RUNLOCK_VFSSW();
4573         if (vsw == NULL) {
4574                 cmn_err(CE_CONT, "Cannot find %s filesystem\n", fstyp);
4575                 return (ENXIO);
4576         }
4577         VFS_INIT(rootvfs, &vsw->vsw_vfsops, 0);
4578         VFS_HOLD(rootvfs);
4579 
4580         /* always mount readonly first */
4581         rootvfs->vfs_flag |= VFS_RDONLY;
4582 
4583         pm_init();
4584 
4585         if (netboot && iscsiboot_prop) {
4586                 cmn_err(CE_WARN, "NFS boot and iSCSI boot"
4587                     " shouldn't happen in the same time");
4588                 return (EINVAL);
4589         }
4590 
4591         if (netboot || iscsiboot_prop) {
4592                 ret = strplumb();
4593                 if (ret != 0) {
4594                         cmn_err(CE_WARN, "Cannot plumb network device %d", ret);
4595                         return (EFAULT);
4596                 }
4597         }
4598 
4599         if ((ret == 0) && iscsiboot_prop) {
4600                 ret = modload("drv", "iscsi");
4601                 /* -1 indicates fail */
4602                 if (ret == -1) {
4603                         cmn_err(CE_WARN, "Failed to load iscsi module");
4604                         iscsi_boot_prop_free();
4605                         return (EINVAL);
4606                 } else {
4607                         if (!i_ddi_attach_pseudo_node("iscsi")) {
4608                                 cmn_err(CE_WARN,
4609                                     "Failed to attach iscsi driver");
4610                                 iscsi_boot_prop_free();
4611                                 return (ENODEV);
4612                         }
4613                 }
4614         }
4615 
4616         error = VFS_MOUNTROOT(rootvfs, ROOT_INIT);
4617         vfs_unrefvfssw(vsw);
4618         rootdev = rootvfs->vfs_dev;
4619 
4620         if (error)
4621                 cmn_err(CE_CONT, "Cannot mount root on %s fstype %s\n",
4622                     rootfs.bo_name, fstyp);
4623         else
4624                 cmn_err(CE_CONT, "?root on %s fstype %s\n",
4625                     rootfs.bo_name, fstyp);
4626         return (error);
4627 }
4628 
4629 /*
4630  * XXX this is called by nfs only and should probably be removed
4631  * If booted with ASKNAME, prompt on the console for a filesystem
4632  * name and return it.
4633  */
4634 void
4635 getfsname(char *askfor, char *name, size_t namelen)
4636 {
4637         if (boothowto & RB_ASKNAME) {
4638                 printf("%s name: ", askfor);
4639                 console_gets(name, namelen);
4640         }
4641 }
4642 
4643 /*
4644  * Init the root filesystem type (rootfs.bo_fstype) from the "fstype"
4645  * property.
4646  *
4647  * Filesystem types starting with the prefix "nfs" are diskless clients;
4648  * init the root filename name (rootfs.bo_name), too.
4649  *
4650  * If we are booting via NFS we currently have these options:
4651  *      nfs -   dynamically choose NFS V2, V3, or V4 (default)
4652  *      nfs2 -  force NFS V2
4653  *      nfs3 -  force NFS V3
4654  *      nfs4 -  force NFS V4
4655  * Because we need to maintain backward compatibility with the naming
4656  * convention that the NFS V2 filesystem name is "nfs" (see vfs_conf.c)
4657  * we need to map "nfs" => "nfsdyn" and "nfs2" => "nfs".  The dynamic
4658  * nfs module will map the type back to either "nfs", "nfs3", or "nfs4".
4659  * This is only for root filesystems, all other uses will expect
4660  * that "nfs" == NFS V2.
4661  */
4662 static void
4663 getrootfs(char **fstypp, char **fsmodp)
4664 {
4665         extern char *strplumb_get_netdev_path(void);
4666         char *propstr = NULL;
4667 
4668         /*
4669          * Check fstype property; for diskless it should be one of "nfs",
4670          * "nfs2", "nfs3" or "nfs4".
4671          */
4672         if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4673             DDI_PROP_DONTPASS, "fstype", &propstr)
4674             == DDI_SUCCESS) {
4675                 (void) strncpy(rootfs.bo_fstype, propstr, BO_MAXFSNAME);
4676                 ddi_prop_free(propstr);
4677 
4678         /*
4679          * if the boot property 'fstype' is not set, but 'zfs-bootfs' is set,
4680          * assume the type of this root filesystem is 'zfs'.
4681          */
4682         } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4683             DDI_PROP_DONTPASS, "zfs-bootfs", &propstr)
4684             == DDI_SUCCESS) {
4685                 (void) strncpy(rootfs.bo_fstype, "zfs", BO_MAXFSNAME);
4686                 ddi_prop_free(propstr);
4687         }
4688 
4689         if (strncmp(rootfs.bo_fstype, "nfs", 3) != 0) {
4690                 *fstypp = *fsmodp = rootfs.bo_fstype;
4691                 return;
4692         }
4693 
4694         ++netboot;
4695 
4696         if (strcmp(rootfs.bo_fstype, "nfs2") == 0)
4697                 (void) strcpy(rootfs.bo_fstype, "nfs");
4698         else if (strcmp(rootfs.bo_fstype, "nfs") == 0)
4699                 (void) strcpy(rootfs.bo_fstype, "nfsdyn");
4700 
4701         /*
4702          * check if path to network interface is specified in bootpath
4703          * or by a hypervisor domain configuration file.
4704          * XXPV - enable strlumb_get_netdev_path()
4705          */
4706         if (ddi_prop_exists(DDI_DEV_T_ANY, ddi_root_node(), DDI_PROP_DONTPASS,
4707             "xpv-nfsroot")) {
4708                 (void) strcpy(rootfs.bo_name, "/xpvd/xnf@0");
4709         } else if (ddi_prop_lookup_string(DDI_DEV_T_ANY, ddi_root_node(),
4710             DDI_PROP_DONTPASS, "bootpath", &propstr)
4711             == DDI_SUCCESS) {
4712                 (void) strncpy(rootfs.bo_name, propstr, BO_MAXOBJNAME);
4713                 ddi_prop_free(propstr);
4714         } else {
4715                 /* attempt to determine netdev_path via boot_mac address */
4716                 netdev_path = strplumb_get_netdev_path();
4717                 if (netdev_path == NULL)
4718                         panic("cannot find boot network interface");
4719                 (void) strncpy(rootfs.bo_name, netdev_path, BO_MAXOBJNAME);
4720         }
4721         *fstypp = rootfs.bo_fstype;
4722         *fsmodp = "nfs";
4723 }
4724 #endif
4725 
4726 /*
4727  * VFS feature routines
4728  */
4729 
4730 #define VFTINDEX(feature)       (((feature) >> 32) & 0xFFFFFFFF)
4731 #define VFTBITS(feature)        ((feature) & 0xFFFFFFFFLL)
4732 
4733 /* Register a feature in the vfs */
4734 void
4735 vfs_set_feature(vfs_t *vfsp, vfs_feature_t feature)
4736 {
4737         /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4738         if (vfsp->vfs_implp == NULL)
4739                 return;
4740 
4741         vfsp->vfs_featureset[VFTINDEX(feature)] |= VFTBITS(feature);
4742 }
4743 
4744 void
4745 vfs_clear_feature(vfs_t *vfsp, vfs_feature_t feature)
4746 {
4747         /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4748         if (vfsp->vfs_implp == NULL)
4749                 return;
4750         vfsp->vfs_featureset[VFTINDEX(feature)] &= VFTBITS(~feature);
4751 }
4752 
4753 /*
4754  * Query a vfs for a feature.
4755  * Returns 1 if feature is present, 0 if not
4756  */
4757 int
4758 vfs_has_feature(vfs_t *vfsp, vfs_feature_t feature)
4759 {
4760         int     ret = 0;
4761 
4762         /* Note that vfs_featureset[] is found in *vfsp->vfs_implp */
4763         if (vfsp->vfs_implp == NULL)
4764                 return (ret);
4765 
4766         if (vfsp->vfs_featureset[VFTINDEX(feature)] & VFTBITS(feature))
4767                 ret = 1;
4768 
4769         return (ret);
4770 }
4771 
4772 /*
4773  * Propagate feature set from one vfs to another
4774  */
4775 void
4776 vfs_propagate_features(vfs_t *from, vfs_t *to)
4777 {
4778         int i;
4779 
4780         if (to->vfs_implp == NULL || from->vfs_implp == NULL)
4781                 return;
4782 
4783         for (i = 1; i <= to->vfs_featureset[0]; i++) {
4784                 to->vfs_featureset[i] = from->vfs_featureset[i];
4785         }
4786 }
4787 
4788 #define LOFINODE_PATH "/dev/lofi/%d"
4789 
4790 /*
4791  * Return the vnode for the lofi node if there's a lofi mount in place.
4792  * Returns -1 when there's no lofi node, 0 on success, and > 0 on
4793  * failure.
4794  */
4795 int
4796 vfs_get_lofi(vfs_t *vfsp, vnode_t **vpp)
4797 {
4798         char *path = NULL;
4799         int strsize;
4800         int err;
4801 
4802         if (vfsp->vfs_lofi_minor == 0) {
4803                 *vpp = NULL;
4804                 return (-1);
4805         }
4806 
4807         strsize = snprintf(NULL, 0, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4808         path = kmem_alloc(strsize + 1, KM_SLEEP);
4809         (void) snprintf(path, strsize + 1, LOFINODE_PATH, vfsp->vfs_lofi_minor);
4810 
4811         /*
4812          * We may be inside a zone, so we need to use the /dev path, but
4813          * it's created asynchronously, so we wait here.
4814          */
4815         for (;;) {
4816                 err = lookupname(path, UIO_SYSSPACE, FOLLOW, NULLVPP, vpp);
4817 
4818                 if (err != ENOENT)
4819                         break;
4820 
4821                 if ((err = delay_sig(hz / 8)) == EINTR)
4822                         break;
4823         }
4824 
4825         if (err)
4826                 *vpp = NULL;
4827 
4828         kmem_free(path, strsize + 1);
4829         return (err);
4830 }