1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License, Version 1.0 only
   6  * (the "License").  You may not use this file except in compliance
   7  * with the License.
   8  *
   9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
  10  * or http://www.opensolaris.org/os/licensing.
  11  * See the License for the specific language governing permissions
  12  * and limitations under the License.
  13  *
  14  * When distributing Covered Code, include this CDDL HEADER in each
  15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  16  * If applicable, add the following below this CDDL HEADER, with the
  17  * fields enclosed by brackets "[]" replaced with your own identifying
  18  * information: Portions Copyright [yyyy] [name of copyright owner]
  19  *
  20  * CDDL HEADER END
  21  */
  22 /*
  23  * Copyright 2004 Sun Microsystems, Inc.  All rights reserved.
  24  * Use is subject to license terms.
  25  * Copyright (c) 2011 Bayard G. Bell. All rights reserved.
  26  */
  27 
  28 #include <sys/errno.h>
  29 #include <sys/param.h>
  30 #include <sys/types.h>
  31 #include <sys/user.h>
  32 #include <sys/stat.h>
  33 #include <sys/time.h>
  34 #include <sys/vfs.h>
  35 #include <sys/vnode.h>
  36 #include <rpc/types.h>
  37 #include <sys/mode.h>
  38 #include <sys/cmn_err.h>
  39 #include <sys/debug.h>
  40 #include <sys/fs/cachefs_fs.h>
  41 
  42 /*
  43  * This is the loadable module wrapper.
  44  */
  45 #include <sys/systm.h>
  46 #include <sys/modctl.h>
  47 #include <sys/syscall.h>
  48 
  49 extern time_t time;
  50 
  51 static int cachefs_init(int, char *);
  52 static void cachefs_fini();
  53 
  54 static int cachefs_unloadable = 0; /* tunable */
  55 static boolean_t cachefs_up = B_FALSE;
  56 
  57 uint_t cachefs_max_apop_inqueue = CACHEFS_MAX_APOP_INQUEUE;
  58 
  59 /*
  60  * this is a list of possible hash table sizes, for the `double
  61  * hashing' algorithm described in rosen's `elementary number theory
  62  * and its applications'.  minimally, this needs to be a list of
  63  * increasing prime integers, terminated by a 0.  ideally, they should
  64  * be the larger of twin primes; i.e. P and P-2 are both prime.
  65  */
  66 
  67 int cachefs_hash_sizes[] = {5, 2029, 4093, 8089, 16363, 32719, 0};
  68 
  69 /*
  70  * Module linkage information for the kernel.
  71  */
  72 
  73 static vfsdef_t vfs_z = {
  74         VFSDEF_VERSION,
  75         CACHEFS_BASETYPE,
  76         cachefs_init,
  77         VSW_CANREMOUNT,
  78         NULL
  79 };
  80 
  81 static struct modlfs modlfs = {
  82         &mod_fsops,
  83         "cache filesystem",
  84         &vfs_z
  85 };
  86 
  87 static struct modlinkage modlinkage = {
  88         MODREV_1, (void *)&modlfs, NULL
  89 };
  90 
  91 int
  92 _init(void)
  93 {
  94         int status;
  95 
  96         status = mod_install(&modlinkage);
  97         if (status != 0) {
  98                 /*
  99                  * Could not load module, clean up the work performed
 100                  * by cachefs_init() which was indirectly called by
 101                  * mod_installfs() which in turn was called by mod_install().
 102                  */
 103                 cachefs_fini();
 104         }
 105 
 106         return (status);
 107 }
 108 
 109 int
 110 _info(struct modinfo *modinfop)
 111 {
 112         return (mod_info(&modlinkage, modinfop));
 113 }
 114 
 115 int
 116 _fini(void)
 117 {
 118         int status;
 119 
 120         if (!cachefs_unloadable)
 121                 return (EBUSY);
 122 
 123         if ((status = mod_remove(&modlinkage)) == 0) {
 124                 /*
 125                  * Module has been unloaded, now clean up
 126                  */
 127                 cachefs_fini();
 128         }
 129 
 130         return (status);
 131 }
 132 
 133 extern kmutex_t cachefs_cachelock;              /* Cache list mutex */
 134 extern kmutex_t cachefs_newnum_lock;
 135 extern kmutex_t cachefs_kstat_key_lock;
 136 extern kmutex_t cachefs_rename_lock;
 137 extern kmutex_t cachefs_minor_lock;     /* Lock for minor device map */
 138 extern kmutex_t cachefs_kmem_lock;
 139 extern kmutex_t cachefs_async_lock;     /* global async work count */
 140 extern major_t cachefs_major;
 141 
 142 /*
 143  * Cache initialization routine.  This routine should only be called
 144  * once.  It performs the following tasks:
 145  *      - Initalize all global locks
 146  *      - Call sub-initialization routines (localize access to variables)
 147  */
 148 static int
 149 cachefs_init(int fstyp, char *name)
 150 {
 151         kstat_t *ksp;
 152         int error;
 153 
 154         ASSERT(cachefs_up == B_FALSE);
 155 
 156         error = cachefs_init_vfsops(fstyp);
 157         if (error != 0)
 158                 return (error);
 159 
 160         error = cachefs_init_vnops(name);
 161         if (error != 0)
 162                 return (error);
 163 
 164         mutex_init(&cachefs_cachelock, NULL, MUTEX_DEFAULT, NULL);
 165         mutex_init(&cachefs_newnum_lock, NULL, MUTEX_DEFAULT, NULL);
 166         mutex_init(&cachefs_kstat_key_lock, NULL, MUTEX_DEFAULT, NULL);
 167         mutex_init(&cachefs_kmem_lock, NULL, MUTEX_DEFAULT, NULL);
 168         mutex_init(&cachefs_rename_lock, NULL, MUTEX_DEFAULT, NULL);
 169         mutex_init(&cachefs_minor_lock, NULL, MUTEX_DEFAULT, NULL);
 170         mutex_init(&cachefs_async_lock, NULL, MUTEX_DEFAULT, NULL);
 171 #ifdef CFSRLDEBUG
 172         mutex_init(&cachefs_rl_debug_mutex, NULL, MUTEX_DEFAULT, NULL);
 173 #endif /* CFSRLDEBUG */
 174 
 175         /*
 176          * set up kmem_cache entities
 177          */
 178 
 179         cachefs_cnode_cache = kmem_cache_create("cachefs_cnode_cache",
 180             sizeof (struct cnode), 0, NULL, NULL, NULL, NULL, NULL, 0);
 181         cachefs_req_cache = kmem_cache_create("cachefs_async_request",
 182             sizeof (struct cachefs_req), 0,
 183             cachefs_req_create, cachefs_req_destroy, NULL, NULL, NULL, 0);
 184         cachefs_fscache_cache = kmem_cache_create("cachefs_fscache",
 185             sizeof (fscache_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 186         cachefs_filegrp_cache = kmem_cache_create("cachefs_filegrp",
 187             sizeof (filegrp_t), 0,
 188             filegrp_cache_create, filegrp_cache_destroy, NULL, NULL, NULL, 0);
 189         cachefs_cache_kmcache = kmem_cache_create("cachefs_cache_t",
 190             sizeof (cachefscache_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
 191 
 192         /*
 193          * set up the cachefs.0.key kstat
 194          */
 195 
 196         cachefs_kstat_key = NULL;
 197         cachefs_kstat_key_n = 0;
 198         ksp = kstat_create("cachefs", 0, "key", "misc", KSTAT_TYPE_RAW, 1,
 199             KSTAT_FLAG_VIRTUAL | KSTAT_FLAG_VAR_SIZE);
 200         if (ksp != NULL) {
 201                 ksp->ks_data = &cachefs_kstat_key;
 202                 ksp->ks_update = cachefs_kstat_key_update;
 203                 ksp->ks_snapshot = cachefs_kstat_key_snapshot;
 204                 ksp->ks_lock = &cachefs_kstat_key_lock;
 205                 kstat_install(ksp);
 206         }
 207 
 208         /*
 209          * Assign unique major number for all nfs mounts
 210          */
 211 
 212         if ((cachefs_major = getudev()) == -1) {
 213                 cmn_err(CE_WARN,
 214                         "cachefs: init: can't get unique device number");
 215                 cachefs_major = 0;
 216         }
 217         cachefs_up = B_TRUE;
 218 #ifdef CFSRLDEBUG
 219         cachefs_dbvalid = time;
 220 #endif /* CFSRLDEBUG */
 221 
 222         return (0);
 223 }
 224 
 225 /*
 226  * Cache clean up routine. This routine is called if mod_install() failed
 227  * and we have to clean up because the module could not be installed,
 228  * or by _fini() when we're unloading the module.
 229  */
 230 static void
 231 cachefs_fini()
 232 {
 233         extern int cachefsfstyp;
 234         extern struct vnodeops *cachefs_vnodeops;
 235 
 236         if (cachefs_up == B_FALSE) {
 237                 /*
 238                  * cachefs_init() was not called on _init(),
 239                  * nothing to deallocate.
 240                  */
 241                 return;
 242         }
 243 
 244         /*
 245          * Clean up cachefs.0.key kstat.
 246          * Currently, you can only do a
 247          * modunload if cachefs_unloadable is nonzero, and that's
 248          * pretty much just for debugging.  however, if there ever
 249          * comes a day when cachefs is more freely unloadable
 250          * (e.g. the modunload daemon can do it normally), then we'll
 251          * have to make changes in the stats_ API.  this is because a
 252          * stats_cookie_t holds the id # derived from here, and it
 253          * will all go away at modunload time.  thus, the API will
 254          * need to somehow be more robust than is currently necessary.
 255          */
 256         kstat_delete_byname("cachefs", 0, "key");
 257 
 258         if (cachefs_kstat_key != NULL) {
 259                 cachefs_kstat_key_t *key;
 260                 int i;
 261 
 262                 for (i = 0; i < cachefs_kstat_key_n; i++) {
 263                         key = cachefs_kstat_key + i;
 264 
 265                         cachefs_kmem_free((void *)(uintptr_t)key->ks_mountpoint,
 266                             strlen((char *)(uintptr_t)key->ks_mountpoint) + 1);
 267                         cachefs_kmem_free((void *)(uintptr_t)key->ks_backfs,
 268                             strlen((char *)(uintptr_t)key->ks_backfs) + 1);
 269                         cachefs_kmem_free((void *)(uintptr_t)key->ks_cachedir,
 270                             strlen((char *)(uintptr_t)key->ks_cachedir) + 1);
 271                         cachefs_kmem_free((void *)(uintptr_t)key->ks_cacheid,
 272                             strlen((char *)(uintptr_t)key->ks_cacheid) + 1);
 273                 }
 274 
 275                 cachefs_kmem_free(cachefs_kstat_key,
 276                     cachefs_kstat_key_n * sizeof (*cachefs_kstat_key));
 277         }
 278 
 279         /*
 280          * Clean up kmem_cache entities
 281          */
 282         kmem_cache_destroy(cachefs_cache_kmcache);
 283         kmem_cache_destroy(cachefs_filegrp_cache);
 284         kmem_cache_destroy(cachefs_fscache_cache);
 285         kmem_cache_destroy(cachefs_req_cache);
 286         kmem_cache_destroy(cachefs_cnode_cache);
 287 #ifdef CFSRLDEBUG
 288         if (cachefs_rl_debug_cache != NULL)
 289                 kmem_cache_destroy(cachefs_rl_debug_cache);
 290 #endif /* CFSRLDEBUG */
 291 
 292         /*
 293          * Clean up the operations structures
 294          */
 295         (void) vfs_freevfsops_by_type(cachefsfstyp);
 296         vn_freevnodeops(cachefs_vnodeops);
 297 
 298         /*
 299          * Destroy mutexes
 300          */
 301 #ifdef CFSRLDEBUG
 302         mutex_destroy(&cachefs_rl_debug_mutex);
 303 #endif /* CFSRLDEBUG */
 304         mutex_destroy(&cachefs_async_lock);
 305         mutex_destroy(&cachefs_minor_lock);
 306         mutex_destroy(&cachefs_rename_lock);
 307         mutex_destroy(&cachefs_kmem_lock);
 308         mutex_destroy(&cachefs_kstat_key_lock);
 309         mutex_destroy(&cachefs_newnum_lock);
 310         mutex_destroy(&cachefs_cachelock);
 311 }