new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

R R R R

22310 Thu COct 30 22:02:12 2014
new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c
5270 1d(1) cannot handle CIE version 3 in .eh_frane

R R R R R R R R R R AR R

1/*

2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Devel opnent and Distribution License (the "License").
6 * You may not use this file except in conpliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/ OPENSOLARI S. LI CENSE
9 * or http://ww. opensol aris.org/os/licensing.
10 * See the License for the specific |anguage governi ng perm ssions
11 * and limtations under the License.
12 =
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/ OPENSOLARI S. LI CENSE.
15 * |f applicable, add the follow ng below this CODL HEADER, wth the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy]l [nane of copyright owner]
18 *
19 * CDDL HEADER END
*/

22 /*

23 * Copyright (c) 2005, 2010, Oacle and/or its affiliates. Al rights reserved.

24 * Copyright 2014 Nexenta Systens, Inc.
*/

25
27 #incl ude <string. h>
28 #include <stdi 0. h>
29 #include <sys/types. h>
30 #incl ude <sgs. h>
31 #incl ude <debug. h>
32 #include <_libld. h>
33 #include <dwar f . h>
34 #incl ude <stdlib. h>
36 /*
37 * A EH_FRAME_HDR consists of the follow ng:
38 *
39 * Encodi ng Field
40 * e e e e e e mmemmmmmmmm e
41 = unsi gned byte version
42 * unsi gned byte eh_frame_ptr_enc
43 * unsi gned byte fde_count _enc
44 = unsi gned byte tabl e_enc
45 = encoded eh_frame_ptr
46 = encoded f de_count
47 * [binary search table]
48 *
49 * The binary search table entries each consists of:
50 *
51 * encoded initial_func_loc
52 * encoded FDE_addr ess
53 *
54 * The entries in the binary search table are sorted
55 * in a increasing order by the initial |ocation.
56 *
57 *
58 * version
59 *
*
*

Version of the .eh_frane_hdr format. This value shall be 1.

new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

106

127

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

B

* Ok R ok ok ok ok kb % Ok b % ok ok ok 3k

eh_frame_ptr_enc

The encoding format of the eh_frane_ptr field. For shared
l'ibraries the encoding nust be

DW EH PE_sdat a4| DW EH _PE_pcrel or

DW EH PE_sdat a4| DW EH PE_dat arel .

f de_count _enc

The encoding format of the fde_count field. A value of
DWEH PE_omt indicates the binary search table is not
present.

tabl e_enc

The encoding fornat of the entries in the binary search
table. A value of DWEH PE omt indicates the binary search
table is not present. For shared libraries the encoding
nust be DWEH PE_sdat a4| DW EH _PE pcrel or

DW EH _PE_sdat a4| DW EH _PE_datarel .

eh_frame_ptr

The encoded val ue of the pointer to the start of the
.eh_frane section.

f de_count

The encoded val ue of the count of entries in the binary
search table.

bi nary search table

A binary search table containing fde_count entries. Each
entry of the table consist of two encoded val ues, the
initial location of the function to which an FDE applies,
and the address of the FDE. The entries are sorted in an
increasing order by the initial |ocation value.

EH _FRAME secti ons

The call frame information needed for unwi nding the stack is output in

an ELF section(s) of type SHT_AMD64_UNW ND (and64) or SHT_PROGBI TS (ot her).
In the sinplest case there will be one such section per object file and it
will be naned ".eh_frane". An .eh_frame section consists of one or nore
subsections. Each subsection contains a ClE (Common |nfornation Entry)

foll owed by varying nunber of FDEs (Frame Descriptor Entry). A FDE
corresponds to an explicit or conpiler generated function in a

conpilation unit, all FDEs can access the CIE that begins their

subsection for data.

If an object file contains C++ tenplate instantiations, there shall be
a separate CIE i medi ately precedi ng each FDE corresponding to an
instantiation.

Using the preferred encodi ng specified below, the .eh_frame section can
be entirely resolved at link tine and thus can become part of the
text segnent.

new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

.eh_frame Section Layout

EH_PE encoding below refers to the pointer encoding as specified in the

enhanced LSB Chapter 7 for Eh_Franme_Hd

Common I nformation Entry (ClE)

ClE has the follow ng format:

Lengt h
in
Field Byte
1. Length 4
2. CQEid 4
3. Version 1
4. CE Augnentation string
String
5. Code Align Factor ul eb128
6. Data Align Factor sl eb128
7. Ret Address Reg 1
8. Optional CIE varying
Augnent ati on Section
z:
si ze ul eb128
P:
personality_enc 1
personal ity routine (encoded)
R

r.

Descri ption
Length of CIE (not including
this 4-byte field).

Val ue Zero (0) for .eh_frame
(used to distinguish CIEs and
FDEs when scanni ng the section)

Val ue One (1)

Nul I -terminated string with | egal
val ues being "" or 'z’ optionally
foll owed by single occurrences of
P, 'L, or 'R in any order.
The presence of character(s) in the
string dictates the content of
field 8, the Augnentation Section.
Each character has one or two
associ ated operands in the AS.
Operand order depends on

position in the string (’z' nust
be first).

To be nultiplied with the
"Advance Location" instructions in
the Call Frame Instructions

To be nultiplied with all offset
in the Call Franme Instructions

A "virtual" register representation
of the return address. In Dwarf V2,
this is a byte, otherwise it is

uleb128. It is a byte in gcc 3.3.x

Present if Augnentation String in
field 4 is not O.

Length of the remai nder of the
Augnent ati on Section

Encodi ng specifier - preferred
value is a pc-relative, signed
4-byte

Encoded pointer to personality
routine (actually to the PLT
entry for the personality
routine)

new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259

code_enc 1

L:
| sda_enc 1

9. Optional Call Frame varying
Instructions

preceding fields of the CIE

Frame Descriptor Entry (FDE)

FDE has the follow ng fornmat:

Lengt h

Cl E Poi nter 4

3. Initial Location

4. Address Range

5. Optional FDE
Augnent ati on Section

® Ok ok ok E Sk ok o E Ok R b ok OF 3k ok Sk b SR SF Sk F S 3k O E O R b 3k OF 3k b Sk 3k SR F Sk F o 3k O F O ok b 3k F R ok Sk ok R ok % O % O ko ok o % 3k
N

varying

varying

varying

Non- defaul t encoding for the

code- poi nters (FDE nmenbers
"initial_location" and "address_range"
and the operand for DWCFA set_| oc)

- preferred value is pc-relative,
signed 4-byte.

FDE augnent ati on bodi es may contain
LSDA pointers. If so they are
encoded as specified here -
preferred value is pc-relative,
signed 4-byte possibly indirect
thru a GOT entry.

The size of the optional call frame instruction area nust be conputed
based on the overall size and the offset reached while scanning the

Descri ption

Length of remminder of this FDE

Di stance fromthis field to the
nearest preceding CIE

(uthe value is subtracted fromthe
current address). This val ue

can never be zero and thus can

be used to distinguish CIE' s and
FDE s when scanning the

.eh_franme section

Reference to the function code
corresponding to this FDE.

If "R is mssing fromthe CIE
Augnentation String, the field is an
8-byte absolute pointer. O herw se,

the correspondi ng EH PE encoding in the
Cl E Augnentation Section is used to
interpret the reference.

Si ze of the function code correspondi ng
to this FDE.

If "R is missing fromthe CIE
Augnentation String, the field is an

8- byt e unsigned nunber. O herwi se,

the size is determned by the
corresponding EH_PE encoding in the

Cl E Augnent ation Section (the

val ue i s always absol ute).

present if ClE augnmentation
string i s non-enpty.

new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281

286
287

289
290

292
293
294
295
296

298
299
300

302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325

I ength ul eb128 I ength of the remainder of the

FDE augnent ati on section

"L (and length > 0):
LSDA

varying LSDA pointer, encoded in the
format specified by the
correspondi ng operand in the CIE s
augnent ati on body.
Optional Call varying

Frame Instructions

The size of the optional call frame instruction area nust be conputed
based on the overall size and the offset reached while scanning the
preceding fields of the FDE

The overall size of a .eh_frame section is given in the ELF section
header. The only way to deternmine the nunber of entries is to scan
the section till the end and count.

B T A N S
[}

static uint_t
extract _uint(const uchar_t *data, uint64_t *ndx, int do_swap)

uint_t r;
uchar_t *p = (uchar_t *)&r;
data += *ndx;
if (do_swap)
UL_ASSI GN_BSWAP_WORD(p, data);

el se
UL_ASSI GN_WORD(p, dat a);
(*ndx) += 4;
return (r);
}
/*
* Create an unwi nd header (.eh_frane_hdr) output section.
* The section is created and space reserved, but the data
* is not copied into place. That is done by a |ater call
* to | d_unwi nd_popul ate(), after active relocations have been
* processed.
*
* When G\U |inkonce processing is in effect, we can end up in a situation
* where the FDEs related to discarded sections remain in the eh_frame
* section. ldeally, we would renpve these dead entries from eh_frane.
* However, that optim zation has not yet been inplenented. In the current
* inplementation, the nunber of dead FDEs cannot be determ ned until
* active relocations are processed, and that processing follows the
* call to this function. This neans that we are unable to detect dead FDEs
* here, and the section created by this routine is sized for maxi num case
* where all FDEs are valid.
*/
uintptr
I d_unwi nd make_hdr (Ofl _desc *ofl)
{
int bswap = (ofl->ofl _flagsl & FLG OF1_ENCDI FF) != 0;
Shdr *shdr;
El f_Data *el f dat a;

I's_desc *isp;

new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

326
327
328
329

331
332
333
334
335
336

338
339
340
341
342
343
344
345

347
348
349
350
351
352
353
354
355

357
358
359
360
361
362
363
364

366
367
368

370
371
372
373
374
375
376
377
378

380
381
382

384
385

387
388
389

391

size_t si ze;
Xwor d fde_cnt;
Aliste i dx1;
Cs_desc *osp;

/*

* we only build a unwi nd header if we have
* some unwind information in the file.
*

if (ofl->ofl _unwi nd == NULL)

return (1);
/*
* Allocate and initialize the EIf_Data structure.
*
/
if ((elfdata = libld_calloc(sizeof (Elf_Data), 1)) == NULL)

return (S_ERROR);
el fdata->d_type = ELF_T_BYTE;
elfdata->d_align = Id_targ.t_m mword_align;
el fdata- >d_version = of | ->of | _dehdr->e_version;

/*
* Allocate and initialize the Shdr structure.
*

/

if ((shdr = 1libld_calloc(sizeof (Shdr), 1)) == NULL)
return (S_ ERRO?)

shdr->sh_type = |

shdr->sh_flags =

shdr->sh_addral i

shdr->sh_entsi ze

d_targ.t_m msht_unwi nd;
SHF_ALLCC;

gn = |d_targ.t_mmword_align;
= 0;

*

* Allocate and initialize the |s_desc structure.
*/

if ((isp =1libld_calloc(1, sizeof (Is_desc))) == NULL)
return (S_ERROR);

i sp->is_name = MSG ORI G(IVSG SCN_UNW NDHDR) ;

i sp->i s_shdr = shdr;

isp->is_indata = el f dat a;

if ((ofl->ofl _unwi ndhdr = |d_pl ace_section(ofl, isp, NULL,
Id_targ.t_id.id_unwi ndhdr, NULL)) == (Gs_desc *)S_ERROR)
return (S_ERROR);

*
* Scan through all of the input Frame information, counting each FDE
* that requires an index. Each fde_entry gets a corresponding entry
*

n

i the bi nary search table.

*
/
fde_cnt = 0;
for (APLI ST _TRAVERSE(of | - >of | _unwi nd, idx1, osp)) {
Aliste idx2;
int os_i sdescs_i dx;
OS_| SDESCS_TRAVERSE(os_i sdescs_i dx, osp, idx2, isp) {
uchar _t *dat a;
ui nt64_t off = 0;
data = isp->i s_i ndata->d_buf;
size = isp->is_indata->d_size;
while (off < size) {
ui nt _t I ength, id;
ui nt 64_t ndx = O;
/*

new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

392
393
394
395
396
397
398
399

401
402
403
404

406
407
408
409
410
411
412
412
413
414
415
416
413
414
415
416
420
417
418
419
420
421
422
423
424
425
426
427
428
429
430

432
433
434
435
436
437
438
439
440
441
442

444
445
446
447

449

450 }

* Extract length in Isb format. A zero length
* indicates that this CIEis a term nator and
* that processing for unwind information is

* conpl ete.
*
e

/
length = extract_uint(data + off, &ndx, bswap);
if (length == 0)
br eak;

/*
* Extract CIEid in |Isb format.
*
/
id = extract_uint(data + off, &ndx, bswap);

/*

* ACIE record has a id of "0, otherw se
* this is a FDE entry and the "id is the
* ClIE pointer.

*/

if (id == 0)
uint_t cieversion;
/*
* The only CIE version supported
* is '1 - quick sanity check
* here.
*/
cieversion = data[off + ndx];
ndx += 1;
/* BEG N CSTYLED */
if (cieversion != 1 && cieversion != 3)
if (cieversion != 1)

Id_eprintf(ofl, ERR _FATAL,
MSG_| NTL(MSG_UNW BADCI EVERS) ,
isp->is_file->ifl_nane,
i sp->i s_name, off);

return (S_ERROR);

/* END CSTYLED */

} else {
fde_cnt ++;
}
off += length + 4;
}
}
}
/*
* section size:
* byt e ver si on +1
* byte eh_frame_ptr_enc +1
* byte fde_count _enc +1
* byte t abl e_enc +1
* 4 bytes eh_frame_ptr +4
* 4 bytes f de_count +4
* [4 bytes] [4bytes] * fde_count
*
size = 12 + (8 * fde_cnt);

if ((elfdata->d_buf = libld_calloc(size, 1)) == NULL)
return (S_ERROR);

el fdat a- >d_si ze = si ze;

shdr->sh_size = (Xword)si ze;

return (1);

__unchanged_portion_onitted_

7

new usr/src/cnd/ sgs/ i bl d/ conmon/ unwi nd. c

482 uintptr_t
483 | d_unwi nd_popul ate_hdr (Of | _desc *ofl)

484 {

485 uchar _t *hdr dat a;

486 uint_t *bi nar yt abl e;

487 uint_t hdrof f;

488 Aliste idx;

489 Addr hdr addr ;

490 Gs_desc *hdr osp;

491 Gs_desc *osp;

492 Gs_desc *first_unwi nd;

493 uint_t fde_count;

494 uint_t *uint_ptr;

495 int bswap = (ofl->of | _flagsl & FLG OF1_ENCDI FF)
497 /*

498 * Are we building the unwi nd hdr?

499 */

500 if ((hdrosp = ofl->ofl _unwi ndhdr) == 0)

501 return (1);

503 hdrdata = hdrosp->o0s_out dat a- >d_buf;

504 hdraddr = hdrosp->o0s_shdr->sh_addr;

505 hdroff = 0;

507 /*

508 * version ==

509 *

510 hdrdat a[hdrof f ++] = 1;

511 /*

512 * The encodi ngs are:

513 *

514 * eh_frameptr_enc sdatad4 | pcrel

515 * fde_count _enc udat a4

516 * table_enc sdatad4 | datarel
517

518 hdr dat a[hdrof f ++] = DW EH PE_sdata4 | DWEH PE pcrel;
519 hdr dat a[hdr of f ++] = DW EH_PE_udat a4;

520 hdrdat a[hdrof f ++] = DWEH PE_sdata4 | DWEH PE datarel;
522 /*

523 * Header Off sets

524 L b
525 * byt e ver si on +1
526 * byte eh_frame_ptr_enc +1
527 * byte fde_count _enc +1
528 * byte tabl e_enc +1
529 * 4 bytes eh_frame_ptr +4
530 * 4 bytes f de_count +4
531 */

532 /* LINTED */

533 bi narytable = (uint_t *)(hdrdata + 12);
534 first_unwind = O;

535 fde_count = 0;

537 for (APLI ST_TRAVERSE(of | ->of | _unwi nd, idx, osp)) {
538 uchar _t *dat a;

539 size_t si ze;

540 ui nt 64_t off = 0;

541 uint_t cieRflag = 0, ciePflag = O;
542 Shdr *shdr;

544 /*

545 * renmenber first UNWND section to
546 * point to in the frame_ptr entry.

1= 0;

new usr/src/cnd/ sgs/1i bl d/ common/ unwi nd. ¢ 9 new usr/src/cnd/ sgs/1i bl d/ common/ unwi nd. ¢ 10
547 */ 609 */
548 if (first_unwind == 0) 610 if (cieversion == 1)
549 first_unwi nd = osp; 611 ndx++;
612 el se
551 data = osp->o0s_out dat a- >d_buf; 613 (void) uleb_extract(&data[off], &ndx);
552 shdr = osp->os_shdr;
553 si ze = shdr->sh_si ze; 614 /*
615 * we wal k through the augnentation
555 while (off < size) { 616 * section now | ooking for the Rflag
556 uint _t length, id; 617 */
557 ui nt 64_t ndx = 0; 618 for (cieaugndx = 0; cieaugstr[cieaugndx];
619 ci eaugndx++)
559 /* 620 /* BEG N CSTYLED */
560 * Extract length in Isb format. A zero length 621 switch (cieaugstr[cieaugndx]) {
561 * indicates that this CTEis a termnator and that 622 case 'z’ :
562 * processing of unwind information is conplete. 623 /* size */
563 */ 624 (void) uleb_extract(&data[off],
564 length = extract_uint(data + off, &ndx, bswap); 625 &ndx) ;
565 if (length == 0) 626 br eak;
566 got o done; 627 case 'P':
628 /* personality */
568 /* 629 ciePflag = data[of f + ndx];
569 * Extract CIEid in Isb format. 630 ndx++;
570 */ 631 /*
571 id = extract_uint(data + off, &ndx, bswap); 632 * Just need to extract the
633 * value to nobve on to the next
573 /* 634 * field.
574 * A CIE record has a id of '0'; otherw se 635 */
575 * this is a FDE entry and the "id is the 636 (void) dwarf_ehe_extract(
576 * ClE pointer. 637 &dat a[of f + ndx],
577 */ 638 &ndx, ciePfl ag,
578 if (id ==0) { 639 of | - >of | _dehdr->e_i dent, B_FALSE
579 char *ci eaugstr; 640 shdr->sh_addr, off + ndx, 0);
580 uint_t cieaugndx; 641 br eak;
581 uint_t cieversion; 642 case 'R :
643 /* code encoding */
583 ciePflag = O; 644 cieRflag = data[off + ndx];
584 cieRflag = 0O; 645 ndx++;
585 /* 646 break;
586 * W need to drill through the CIE 647 case 'L':
587 * to find the Rflag. It's the Rflag 648 /* |sda encoding */
588 * which describes how the FDE code-pointers 649 ndx++;
589 * are encoded. 650 br eak;
590 */ 651 1
652 /* END CSTYLED */
592 cieversion = data[off + ndx]; 653 }
593 ndx += 1; 654 } else {
595 [655 uint_t bi nt abndx;
596 * burn through version 656 ui nt 64_t initloc;
597 =[] 657 ui nt64_t f deaddr;
598 ndx++; 658 ui nt 64_t gotaddr = O;
595 /* 660 if (ofl->ofl_osgot != NULL)
596 * augstr 661 gotaddr =
597 */ 662 of | ->of | _osgot - >0s_shdr - >sh_addr;
598 cieaugstr = (char *)(&data[off + ndx]);
599 ndx += strlen(cieaugstr) + 1; 664 initloc = dwarf_ehe_extract (&data[off],
665 &ndx, cieRflag, ofl->ofl_dehdr->e_ident,
601 /* 666 B_FALSE,
602 * calign & dalign 667 shdr->sh_addr, off + ndx,
603 */ 668 got addr) ;
604 (void) uleb_extract(&ataf[off], &ndx);
605 (void) sleb_extract(&data[off], &ndx); 670 /*
671 * lgnore FDEs with initloc set to O.
607 /* 672 * initloc will not be 0 unless this FDE was
608 * retreg 673 * abandoned due to GNU |inkonce processing.

new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

674
675
676
677
678
679
680

682
683
684
685
686
687

689
690
691
692
693
694

696
697
698
699
700
701
702

704
705
706
707
708
709
710
711
712
713
714
715

717
718
719

721
722
723
724
725
726
727
728
729
730
731
732

734
735
736
737
738
739

done:

The 0 val ue occurs because we don’t resolve
sl oppy relocations for unwi nd header target
sections.

*
*
*
*
if

11

new usr/src/cnd/ sgs/ i bl d/ cormon/ unwi nd. c

(initloc '=0) {
bi ntabndx = fde_count * 2;
f de_count ++;

*

* FDEaddr is adjusted

* to account for the length & id which

* have al ready been consuned.
*
fdeaddr = shdr->sh_addr + off;

bi naryt abl e[bi nt abndx] =
(uint_t)(initloc - hdraddr);

bi naryt abl e[bi ntabndx + 1] =
(uint_t)(fdeaddr - hdraddr);

}

/*

* the length does not include the length
* itself - so account for that too.

*/

off += length + 4;

}
}
/*
* Do a quicksort on the binary table. If this is a cross
* link froma systemw th the opposite byte order, xlate
* the resulting values into LSB order.
*

franehdr _addr = hdraddr;
gsort((void *)binarytable, (size_t)fde_count,
(size_t)(sizeof (uint_t) * 2), bintabconpare);
if (bswap) {
uint_t *btable = binarytable;
uint_t cnt;

for (cnt = fde_count * 2; cnt-- > 0; btable++)
*btabl e = | d_bswap_Word(*bt abl e);

}

/*

*Fill in:

* first_frame_ptr
* f de_count

*/

hdroff = 4;

/* LI NTED *

/
uint_ptr = (uint_t *)(&hdrdata[hdroff]);
*uint_ptr = first_unw nd->o0s_shdr->sh_addr -
(hdr osp->o0s_shdr->sh_addr + hdroff);
if (bswap)
*uint_ptr = | d_bswap_Word(*uint_ptr);

hdroff += 4;
/* LINTED */
uint_ptr = (uint_t *)&hdrdata[hdroff];
*uint_ptr = fde_count;
if (bswap)
*uint_ptr = I d_bswap_Word(*uint_ptr);

741 I*

742 * |If relaxed relocations are active, then there is a chance

743 * that we didn’t use all the space reserved for this section.

744 * For details, see the note at head of |d_unwi nd_make_hdr() above.
745 *

746 * Find the PT_SUNW UNW ND program header, and change the size val ues
747 * to the size of the subset of the section that was actually used.
748 *

749 if (ofl->ofl flagsl & FLG OF1_RLXREL) {

750 Wor d phnum = of | - >of | _nehdr - >e_phnum

751 Phdr *phdr = of | ->of | _phdr;

753 for (; phnum- > 0; phdr++) {

754 if (phdr->p_type == PT_SUNW UNW ND)

755 phdr->p_nmensz = 12 + (8 * fde_count);

756 phdr->p_filesz = phdr->p_nensz;

757 break;

758 }

759 }

760 }

762 return (1);

763 }

__unchanged_portion_omtted_

12

