1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */ 27 /* 28 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 29 */ 30 31 #include <sys/types.h> 32 #include <sys/t_lock.h> 33 #include <sys/param.h> 34 #include <sys/systm.h> 35 #include <sys/buf.h> 36 #include <sys/conf.h> 37 #include <sys/cred.h> 38 #include <sys/kmem.h> 39 #include <sys/sysmacros.h> 40 #include <sys/vfs.h> 41 #include <sys/vnode.h> 42 #include <sys/debug.h> 43 #include <sys/errno.h> 44 #include <sys/time.h> 45 #include <sys/file.h> 46 #include <sys/user.h> 47 #include <sys/stream.h> 48 #include <sys/strsubr.h> 49 #include <sys/strsun.h> 50 #include <sys/sunddi.h> 51 #include <sys/esunddi.h> 52 #include <sys/flock.h> 53 #include <sys/modctl.h> 54 #include <sys/cmn_err.h> 55 #include <sys/vmsystm.h> 56 #include <sys/policy.h> 57 58 #include <sys/socket.h> 59 #include <sys/socketvar.h> 60 61 #include <sys/isa_defs.h> 62 #include <sys/inttypes.h> 63 #include <sys/systm.h> 64 #include <sys/cpuvar.h> 65 #include <sys/filio.h> 66 #include <sys/sendfile.h> 67 #include <sys/ddi.h> 68 #include <vm/seg.h> 69 #include <vm/seg_map.h> 70 #include <vm/seg_kpm.h> 71 72 #include <fs/sockfs/nl7c.h> 73 #include <fs/sockfs/sockcommon.h> 74 #include <fs/sockfs/sockfilter_impl.h> 75 #include <fs/sockfs/socktpi.h> 76 77 #ifdef SOCK_TEST 78 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 79 #else 80 #define do_useracc 1 81 #endif /* SOCK_TEST */ 82 83 extern int xnet_truncate_print; 84 85 extern void nl7c_init(void); 86 extern int sockfs_defer_nl7c_init; 87 88 /* 89 * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c" 90 * as there isn't a formal definition of IOV_MAX ??? 91 */ 92 #define MSG_MAXIOVLEN 16 93 94 /* 95 * Kernel component of socket creation. 96 * 97 * The socket library determines which version number to use. 98 * First the library calls this with a NULL devpath. If this fails 99 * to find a transport (using solookup) the library will look in /etc/netconfig 100 * for the appropriate transport. If one is found it will pass in the 101 * devpath for the kernel to use. 102 */ 103 int 104 so_socket(int family, int type_w_flags, int protocol, char *devpath, 105 int version) 106 { 107 struct sonode *so; 108 vnode_t *vp; 109 struct file *fp; 110 int fd; 111 int error; 112 int type; 113 114 type = type_w_flags & SOCK_TYPE_MASK; 115 type_w_flags &= ~SOCK_TYPE_MASK; 116 if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK)) 117 return (set_errno(EINVAL)); 118 119 if (devpath != NULL) { 120 char *buf; 121 size_t kdevpathlen = 0; 122 123 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 124 if ((error = copyinstr(devpath, buf, 125 MAXPATHLEN, &kdevpathlen)) != 0) { 126 kmem_free(buf, MAXPATHLEN); 127 return (set_errno(error)); 128 } 129 so = socket_create(family, type, protocol, buf, NULL, 130 SOCKET_SLEEP, version, CRED(), &error); 131 kmem_free(buf, MAXPATHLEN); 132 } else { 133 so = socket_create(family, type, protocol, NULL, NULL, 134 SOCKET_SLEEP, version, CRED(), &error); 135 } 136 if (so == NULL) 137 return (set_errno(error)); 138 139 /* Allocate a file descriptor for the socket */ 140 vp = SOTOV(so); 141 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) { 142 (void) socket_close(so, 0, CRED()); 143 socket_destroy(so); 144 return (set_errno(error)); 145 } 146 147 /* 148 * Now fill in the entries that falloc reserved 149 */ 150 if (type_w_flags & SOCK_NDELAY) { 151 so->so_state |= SS_NDELAY; 152 fp->f_flag |= FNDELAY; 153 } 154 if (type_w_flags & SOCK_NONBLOCK) { 155 so->so_state |= SS_NONBLOCK; 156 fp->f_flag |= FNONBLOCK; 157 } 158 mutex_exit(&fp->f_tlock); 159 setf(fd, fp); 160 if ((type_w_flags & SOCK_CLOEXEC) != 0) { 161 f_setfd(fd, FD_CLOEXEC); 162 } 163 164 return (fd); 165 } 166 167 /* 168 * Map from a file descriptor to a socket node. 169 * Returns with the file descriptor held i.e. the caller has to 170 * use releasef when done with the file descriptor. 171 */ 172 struct sonode * 173 getsonode(int sock, int *errorp, file_t **fpp) 174 { 175 file_t *fp; 176 vnode_t *vp; 177 struct sonode *so; 178 179 if ((fp = getf(sock)) == NULL) { 180 *errorp = EBADF; 181 eprintline(*errorp); 182 return (NULL); 183 } 184 vp = fp->f_vnode; 185 /* Check if it is a socket */ 186 if (vp->v_type != VSOCK) { 187 releasef(sock); 188 *errorp = ENOTSOCK; 189 eprintline(*errorp); 190 return (NULL); 191 } 192 /* 193 * Use the stream head to find the real socket vnode. 194 * This is needed when namefs sits above sockfs. 195 */ 196 if (vp->v_stream) { 197 ASSERT(vp->v_stream->sd_vnode); 198 vp = vp->v_stream->sd_vnode; 199 200 so = VTOSO(vp); 201 if (so->so_version == SOV_STREAM) { 202 releasef(sock); 203 *errorp = ENOTSOCK; 204 eprintsoline(so, *errorp); 205 return (NULL); 206 } 207 } else { 208 so = VTOSO(vp); 209 } 210 if (fpp) 211 *fpp = fp; 212 return (so); 213 } 214 215 /* 216 * Allocate and copyin a sockaddr. 217 * Ensures NULL termination for AF_UNIX addresses by extending them 218 * with one NULL byte if need be. Verifies that the length is not 219 * excessive to prevent an application from consuming all of kernel 220 * memory. Returns NULL when an error occurred. 221 */ 222 static struct sockaddr * 223 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 224 int *errorp) 225 { 226 char *faddr; 227 size_t namelen = (size_t)*namelenp; 228 229 ASSERT(namelen != 0); 230 if (namelen > SO_MAXARGSIZE) { 231 *errorp = EINVAL; 232 eprintsoline(so, *errorp); 233 return (NULL); 234 } 235 236 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 237 if (copyin(name, faddr, namelen)) { 238 kmem_free(faddr, namelen); 239 *errorp = EFAULT; 240 eprintsoline(so, *errorp); 241 return (NULL); 242 } 243 244 /* 245 * Add space for NULL termination if needed. 246 * Do a quick check if the last byte is NUL. 247 */ 248 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 249 /* Check if there is any NULL termination */ 250 size_t i; 251 int foundnull = 0; 252 253 for (i = sizeof (name->sa_family); i < namelen; i++) { 254 if (faddr[i] == '\0') { 255 foundnull = 1; 256 break; 257 } 258 } 259 if (!foundnull) { 260 /* Add extra byte for NUL padding */ 261 char *nfaddr; 262 263 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 264 bcopy(faddr, nfaddr, namelen); 265 kmem_free(faddr, namelen); 266 267 /* NUL terminate */ 268 nfaddr[namelen] = '\0'; 269 namelen++; 270 ASSERT((socklen_t)namelen == namelen); 271 *namelenp = (socklen_t)namelen; 272 faddr = nfaddr; 273 } 274 } 275 return ((struct sockaddr *)faddr); 276 } 277 278 /* 279 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 280 */ 281 static int 282 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, 283 void *kaddr, socklen_t klen) 284 { 285 if (uaddr != NULL) { 286 if (ulen > klen) 287 ulen = klen; 288 289 if (ulen != 0) { 290 if (copyout(kaddr, uaddr, ulen)) 291 return (EFAULT); 292 } 293 } else 294 ulen = 0; 295 296 if (ulenp != NULL) { 297 if (copyout(&ulen, ulenp, sizeof (ulen))) 298 return (EFAULT); 299 } 300 return (0); 301 } 302 303 /* 304 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 305 * If klen is greater than ulen it still uses the non-truncated 306 * klen to update ulenp. 307 */ 308 static int 309 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, 310 void *kaddr, socklen_t klen) 311 { 312 if (uaddr != NULL) { 313 if (ulen >= klen) 314 ulen = klen; 315 else if (ulen != 0 && xnet_truncate_print) { 316 printf("sockfs: truncating copyout of address using " 317 "XNET semantics for pid = %d. Lengths %d, %d\n", 318 curproc->p_pid, klen, ulen); 319 } 320 321 if (ulen != 0) { 322 if (copyout(kaddr, uaddr, ulen)) 323 return (EFAULT); 324 } else 325 klen = 0; 326 } else 327 klen = 0; 328 329 if (ulenp != NULL) { 330 if (copyout(&klen, ulenp, sizeof (klen))) 331 return (EFAULT); 332 } 333 return (0); 334 } 335 336 /* 337 * The socketpair() code in libsocket creates two sockets (using 338 * the /etc/netconfig fallback if needed) before calling this routine 339 * to connect the two sockets together. 340 * 341 * For a SOCK_STREAM socketpair a listener is needed - in that case this 342 * routine will create a new file descriptor as part of accepting the 343 * connection. The library socketpair() will check if svs[2] has changed 344 * in which case it will close the changed fd. 345 * 346 * Note that this code could use the TPI feature of accepting the connection 347 * on the listening endpoint. However, that would require significant changes 348 * to soaccept. 349 */ 350 int 351 so_socketpair(int sv[2]) 352 { 353 int svs[2]; 354 struct sonode *so1, *so2; 355 int error; 356 int orig_flags; 357 struct sockaddr_ux *name; 358 size_t namelen; 359 sotpi_info_t *sti1; 360 sotpi_info_t *sti2; 361 362 dprint(1, ("so_socketpair(%p)\n", (void *)sv)); 363 364 error = useracc(sv, sizeof (svs), B_WRITE); 365 if (error && do_useracc) 366 return (set_errno(EFAULT)); 367 368 if (copyin(sv, svs, sizeof (svs))) 369 return (set_errno(EFAULT)); 370 371 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 372 return (set_errno(error)); 373 374 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 375 releasef(svs[0]); 376 return (set_errno(error)); 377 } 378 379 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 380 error = EOPNOTSUPP; 381 goto done; 382 } 383 384 sti1 = SOTOTPI(so1); 385 sti2 = SOTOTPI(so2); 386 387 /* 388 * The code below makes assumptions about the "sockfs" implementation. 389 * So make sure that the correct implementation is really used. 390 */ 391 ASSERT(so1->so_ops == &sotpi_sonodeops); 392 ASSERT(so2->so_ops == &sotpi_sonodeops); 393 394 if (so1->so_type == SOCK_DGRAM) { 395 /* 396 * Bind both sockets and connect them with each other. 397 * Need to allocate name/namelen for soconnect. 398 */ 399 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED()); 400 if (error) { 401 eprintsoline(so1, error); 402 goto done; 403 } 404 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 405 if (error) { 406 eprintsoline(so2, error); 407 goto done; 408 } 409 namelen = sizeof (struct sockaddr_ux); 410 name = kmem_alloc(namelen, KM_SLEEP); 411 name->sou_family = AF_UNIX; 412 name->sou_addr = sti2->sti_ux_laddr; 413 error = socket_connect(so1, 414 (struct sockaddr *)name, 415 (socklen_t)namelen, 416 0, _SOCONNECT_NOXLATE, CRED()); 417 if (error) { 418 kmem_free(name, namelen); 419 eprintsoline(so1, error); 420 goto done; 421 } 422 name->sou_addr = sti1->sti_ux_laddr; 423 error = socket_connect(so2, 424 (struct sockaddr *)name, 425 (socklen_t)namelen, 426 0, _SOCONNECT_NOXLATE, CRED()); 427 kmem_free(name, namelen); 428 if (error) { 429 eprintsoline(so2, error); 430 goto done; 431 } 432 releasef(svs[0]); 433 releasef(svs[1]); 434 } else { 435 /* 436 * Bind both sockets, with so1 being a listener. 437 * Connect so2 to so1 - nonblocking to avoid waiting for 438 * soaccept to complete. 439 * Accept a connection on so1. Pass out the new fd as sv[0]. 440 * The library will detect the changed fd and close 441 * the original one. 442 */ 443 struct sonode *nso; 444 struct vnode *nvp; 445 struct file *nfp; 446 int nfd; 447 448 /* 449 * We could simply call socket_listen() here (which would do the 450 * binding automatically) if the code didn't rely on passing 451 * _SOBIND_NOXLATE to the TPI implementation of socket_bind(). 452 */ 453 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC| 454 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR, 455 CRED()); 456 if (error) { 457 eprintsoline(so1, error); 458 goto done; 459 } 460 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 461 if (error) { 462 eprintsoline(so2, error); 463 goto done; 464 } 465 466 namelen = sizeof (struct sockaddr_ux); 467 name = kmem_alloc(namelen, KM_SLEEP); 468 name->sou_family = AF_UNIX; 469 name->sou_addr = sti1->sti_ux_laddr; 470 error = socket_connect(so2, 471 (struct sockaddr *)name, 472 (socklen_t)namelen, 473 FNONBLOCK, _SOCONNECT_NOXLATE, CRED()); 474 kmem_free(name, namelen); 475 if (error) { 476 if (error != EINPROGRESS) { 477 eprintsoline(so2, error); goto done; 478 } 479 } 480 481 error = socket_accept(so1, 0, CRED(), &nso); 482 if (error) { 483 eprintsoline(so1, error); 484 goto done; 485 } 486 487 /* wait for so2 being SS_CONNECTED ignoring signals */ 488 mutex_enter(&so2->so_lock); 489 error = sowaitconnected(so2, 0, 1); 490 mutex_exit(&so2->so_lock); 491 if (error != 0) { 492 (void) socket_close(nso, 0, CRED()); 493 socket_destroy(nso); 494 eprintsoline(so2, error); 495 goto done; 496 } 497 498 nvp = SOTOV(nso); 499 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) { 500 (void) socket_close(nso, 0, CRED()); 501 socket_destroy(nso); 502 eprintsoline(nso, error); 503 goto done; 504 } 505 /* 506 * copy over FNONBLOCK and FNDELAY flags should they exist 507 */ 508 if (so1->so_state & SS_NONBLOCK) 509 nfp->f_flag |= FNONBLOCK; 510 if (so1->so_state & SS_NDELAY) 511 nfp->f_flag |= FNDELAY; 512 513 /* 514 * fill in the entries that falloc reserved 515 */ 516 mutex_exit(&nfp->f_tlock); 517 setf(nfd, nfp); 518 519 /* 520 * get the original flags before we release 521 */ 522 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0); 523 524 releasef(svs[0]); 525 releasef(svs[1]); 526 527 /* 528 * If FD_CLOEXEC was set on the filedescriptor we're 529 * swapping out, we should set it on the new one too. 530 */ 531 if (orig_flags & FD_CLOEXEC) { 532 f_setfd(nfd, FD_CLOEXEC); 533 } 534 535 /* 536 * The socketpair library routine will close the original 537 * svs[0] when this code passes out a different file 538 * descriptor. 539 */ 540 svs[0] = nfd; 541 542 if (copyout(svs, sv, sizeof (svs))) { 543 (void) closeandsetf(nfd, NULL); 544 eprintline(EFAULT); 545 return (set_errno(EFAULT)); 546 } 547 } 548 return (0); 549 550 done: 551 releasef(svs[0]); 552 releasef(svs[1]); 553 return (set_errno(error)); 554 } 555 556 int 557 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 558 { 559 struct sonode *so; 560 int error; 561 562 dprint(1, ("bind(%d, %p, %d)\n", 563 sock, (void *)name, namelen)); 564 565 if ((so = getsonode(sock, &error, NULL)) == NULL) 566 return (set_errno(error)); 567 568 /* Allocate and copyin name */ 569 /* 570 * X/Open test does not expect EFAULT with NULL name and non-zero 571 * namelen. 572 */ 573 if (name != NULL && namelen != 0) { 574 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 575 name = copyin_name(so, name, &namelen, &error); 576 if (name == NULL) { 577 releasef(sock); 578 return (set_errno(error)); 579 } 580 } else { 581 name = NULL; 582 namelen = 0; 583 } 584 585 switch (version) { 586 default: 587 error = socket_bind(so, name, namelen, 0, CRED()); 588 break; 589 case SOV_XPG4_2: 590 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED()); 591 break; 592 case SOV_SOCKBSD: 593 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED()); 594 break; 595 } 596 done: 597 releasef(sock); 598 if (name != NULL) 599 kmem_free(name, (size_t)namelen); 600 601 if (error) 602 return (set_errno(error)); 603 return (0); 604 } 605 606 /* ARGSUSED2 */ 607 int 608 listen(int sock, int backlog, int version) 609 { 610 struct sonode *so; 611 int error; 612 613 dprint(1, ("listen(%d, %d)\n", 614 sock, backlog)); 615 616 if ((so = getsonode(sock, &error, NULL)) == NULL) 617 return (set_errno(error)); 618 619 error = socket_listen(so, backlog, CRED()); 620 621 releasef(sock); 622 if (error) 623 return (set_errno(error)); 624 return (0); 625 } 626 627 /*ARGSUSED3*/ 628 int 629 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version, 630 int flags) 631 { 632 struct sonode *so; 633 file_t *fp; 634 int error; 635 socklen_t namelen; 636 struct sonode *nso; 637 struct vnode *nvp; 638 struct file *nfp; 639 int nfd; 640 int ssflags; 641 struct sockaddr *addrp; 642 socklen_t addrlen; 643 644 dprint(1, ("accept(%d, %p, %p)\n", 645 sock, (void *)name, (void *)namelenp)); 646 647 if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) { 648 return (set_errno(EINVAL)); 649 } 650 651 /* Translate SOCK_ flags to their SS_ variant */ 652 ssflags = 0; 653 if (flags & SOCK_NONBLOCK) 654 ssflags |= SS_NONBLOCK; 655 if (flags & SOCK_NDELAY) 656 ssflags |= SS_NDELAY; 657 658 if ((so = getsonode(sock, &error, &fp)) == NULL) 659 return (set_errno(error)); 660 661 if (name != NULL) { 662 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 663 if (copyin(namelenp, &namelen, sizeof (namelen))) { 664 releasef(sock); 665 return (set_errno(EFAULT)); 666 } 667 if (namelen != 0) { 668 error = useracc(name, (size_t)namelen, B_WRITE); 669 if (error && do_useracc) { 670 releasef(sock); 671 return (set_errno(EFAULT)); 672 } 673 } else 674 name = NULL; 675 } else { 676 namelen = 0; 677 } 678 679 /* 680 * Allocate the user fd before socket_accept() in order to 681 * catch EMFILE errors before calling socket_accept(). 682 */ 683 if ((nfd = ufalloc(0)) == -1) { 684 eprintsoline(so, EMFILE); 685 releasef(sock); 686 return (set_errno(EMFILE)); 687 } 688 error = socket_accept(so, fp->f_flag, CRED(), &nso); 689 if (error) { 690 setf(nfd, NULL); 691 releasef(sock); 692 return (set_errno(error)); 693 } 694 695 nvp = SOTOV(nso); 696 697 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 698 if (namelen != 0) { 699 addrlen = so->so_max_addr_len; 700 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP); 701 702 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp, 703 &addrlen, B_TRUE, CRED())) == 0) { 704 error = copyout_name(name, namelen, namelenp, 705 addrp, addrlen); 706 } else { 707 ASSERT(error == EINVAL || error == ENOTCONN); 708 error = ECONNABORTED; 709 } 710 kmem_free(addrp, so->so_max_addr_len); 711 } 712 713 if (error) { 714 setf(nfd, NULL); 715 (void) socket_close(nso, 0, CRED()); 716 socket_destroy(nso); 717 releasef(sock); 718 return (set_errno(error)); 719 } 720 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) { 721 setf(nfd, NULL); 722 (void) socket_close(nso, 0, CRED()); 723 socket_destroy(nso); 724 eprintsoline(so, error); 725 releasef(sock); 726 return (set_errno(error)); 727 } 728 /* 729 * fill in the entries that falloc reserved 730 */ 731 nfp->f_vnode = nvp; 732 mutex_exit(&nfp->f_tlock); 733 setf(nfd, nfp); 734 735 /* 736 * Act on SOCK_CLOEXEC from flags 737 */ 738 if (flags & SOCK_CLOEXEC) { 739 f_setfd(nfd, FD_CLOEXEC); 740 } 741 742 /* 743 * Copy FNDELAY and FNONBLOCK from listener to acceptor 744 * and from ssflags 745 */ 746 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) { 747 uint_t oflag = nfp->f_flag; 748 int arg = 0; 749 750 if ((ssflags | so->so_state) & SS_NONBLOCK) 751 arg |= FNONBLOCK; 752 else if ((ssflags | so->so_state) & SS_NDELAY) 753 arg |= FNDELAY; 754 755 /* 756 * This code is a simplification of the F_SETFL code in fcntl() 757 * Ignore any errors from VOP_SETFL. 758 */ 759 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL)) 760 != 0) { 761 eprintsoline(so, error); 762 error = 0; 763 } else { 764 mutex_enter(&nfp->f_tlock); 765 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 766 nfp->f_flag |= arg; 767 mutex_exit(&nfp->f_tlock); 768 } 769 } 770 releasef(sock); 771 return (nfd); 772 } 773 774 int 775 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 776 { 777 struct sonode *so; 778 file_t *fp; 779 int error; 780 781 dprint(1, ("connect(%d, %p, %d)\n", 782 sock, (void *)name, namelen)); 783 784 if ((so = getsonode(sock, &error, &fp)) == NULL) 785 return (set_errno(error)); 786 787 /* Allocate and copyin name */ 788 if (namelen != 0) { 789 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 790 name = copyin_name(so, name, &namelen, &error); 791 if (name == NULL) { 792 releasef(sock); 793 return (set_errno(error)); 794 } 795 } else 796 name = NULL; 797 798 error = socket_connect(so, name, namelen, fp->f_flag, 799 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED()); 800 releasef(sock); 801 if (name) 802 kmem_free(name, (size_t)namelen); 803 if (error) 804 return (set_errno(error)); 805 return (0); 806 } 807 808 /*ARGSUSED2*/ 809 int 810 shutdown(int sock, int how, int version) 811 { 812 struct sonode *so; 813 int error; 814 815 dprint(1, ("shutdown(%d, %d)\n", 816 sock, how)); 817 818 if ((so = getsonode(sock, &error, NULL)) == NULL) 819 return (set_errno(error)); 820 821 error = socket_shutdown(so, how, CRED()); 822 823 releasef(sock); 824 if (error) 825 return (set_errno(error)); 826 return (0); 827 } 828 829 /* 830 * Common receive routine. 831 */ 832 static ssize_t 833 recvit(int sock, 834 struct nmsghdr *msg, 835 struct uio *uiop, 836 int flags, 837 socklen_t *namelenp, 838 socklen_t *controllenp, 839 int *flagsp) 840 { 841 struct sonode *so; 842 file_t *fp; 843 void *name; 844 socklen_t namelen; 845 void *control; 846 socklen_t controllen; 847 ssize_t len; 848 int error; 849 850 if ((so = getsonode(sock, &error, &fp)) == NULL) 851 return (set_errno(error)); 852 853 len = uiop->uio_resid; 854 uiop->uio_fmode = fp->f_flag; 855 uiop->uio_extflg = UIO_COPY_CACHED; 856 857 name = msg->msg_name; 858 namelen = msg->msg_namelen; 859 control = msg->msg_control; 860 controllen = msg->msg_controllen; 861 862 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 863 MSG_DONTWAIT | MSG_XPG4_2); 864 865 error = socket_recvmsg(so, msg, uiop, CRED()); 866 if (error) { 867 releasef(sock); 868 return (set_errno(error)); 869 } 870 lwp_stat_update(LWP_STAT_MSGRCV, 1); 871 releasef(sock); 872 873 error = copyout_name(name, namelen, namelenp, 874 msg->msg_name, msg->msg_namelen); 875 if (error) 876 goto err; 877 878 if (flagsp != NULL) { 879 /* 880 * Clear internal flag. 881 */ 882 msg->msg_flags &= ~MSG_XPG4_2; 883 884 /* 885 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 886 * when controllen is zero and there is control data to 887 * copy out. 888 */ 889 if (controllen != 0 && 890 (msg->msg_controllen > controllen || control == NULL)) { 891 dprint(1, ("recvit: CTRUNC %d %d %p\n", 892 msg->msg_controllen, controllen, control)); 893 894 msg->msg_flags |= MSG_CTRUNC; 895 } 896 if (copyout(&msg->msg_flags, flagsp, 897 sizeof (msg->msg_flags))) { 898 error = EFAULT; 899 goto err; 900 } 901 } 902 /* 903 * Note: This MUST be done last. There can be no "goto err" after this 904 * point since it could make so_closefds run twice on some part 905 * of the file descriptor array. 906 */ 907 if (controllen != 0) { 908 if (!(flags & MSG_XPG4_2)) { 909 /* 910 * Good old msg_accrights can only return a multiple 911 * of 4 bytes. 912 */ 913 controllen &= ~((int)sizeof (uint32_t) - 1); 914 } 915 error = copyout_arg(control, controllen, controllenp, 916 msg->msg_control, msg->msg_controllen); 917 if (error) 918 goto err; 919 920 if (msg->msg_controllen > controllen || control == NULL) { 921 if (control == NULL) 922 controllen = 0; 923 so_closefds(msg->msg_control, msg->msg_controllen, 924 !(flags & MSG_XPG4_2), controllen); 925 } 926 } 927 if (msg->msg_namelen != 0) 928 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 929 if (msg->msg_controllen != 0) 930 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 931 return (len - uiop->uio_resid); 932 933 err: 934 /* 935 * If we fail and the control part contains file descriptors 936 * we have to close the fd's. 937 */ 938 if (msg->msg_controllen != 0) 939 so_closefds(msg->msg_control, msg->msg_controllen, 940 !(flags & MSG_XPG4_2), 0); 941 if (msg->msg_namelen != 0) 942 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 943 if (msg->msg_controllen != 0) 944 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 945 return (set_errno(error)); 946 } 947 948 /* 949 * Native system call 950 */ 951 ssize_t 952 recv(int sock, void *buffer, size_t len, int flags) 953 { 954 struct nmsghdr lmsg; 955 struct uio auio; 956 struct iovec aiov[1]; 957 958 dprint(1, ("recv(%d, %p, %ld, %d)\n", 959 sock, buffer, len, flags)); 960 961 if ((ssize_t)len < 0) { 962 return (set_errno(EINVAL)); 963 } 964 965 aiov[0].iov_base = buffer; 966 aiov[0].iov_len = len; 967 auio.uio_loffset = 0; 968 auio.uio_iov = aiov; 969 auio.uio_iovcnt = 1; 970 auio.uio_resid = len; 971 auio.uio_segflg = UIO_USERSPACE; 972 auio.uio_limit = 0; 973 974 lmsg.msg_namelen = 0; 975 lmsg.msg_controllen = 0; 976 lmsg.msg_flags = 0; 977 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 978 } 979 980 ssize_t 981 recvfrom(int sock, void *buffer, size_t len, int flags, 982 struct sockaddr *name, socklen_t *namelenp) 983 { 984 struct nmsghdr lmsg; 985 struct uio auio; 986 struct iovec aiov[1]; 987 988 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 989 sock, buffer, len, flags, (void *)name, (void *)namelenp)); 990 991 if ((ssize_t)len < 0) { 992 return (set_errno(EINVAL)); 993 } 994 995 aiov[0].iov_base = buffer; 996 aiov[0].iov_len = len; 997 auio.uio_loffset = 0; 998 auio.uio_iov = aiov; 999 auio.uio_iovcnt = 1; 1000 auio.uio_resid = len; 1001 auio.uio_segflg = UIO_USERSPACE; 1002 auio.uio_limit = 0; 1003 1004 lmsg.msg_name = (char *)name; 1005 if (namelenp != NULL) { 1006 if (copyin(namelenp, &lmsg.msg_namelen, 1007 sizeof (lmsg.msg_namelen))) 1008 return (set_errno(EFAULT)); 1009 } else { 1010 lmsg.msg_namelen = 0; 1011 } 1012 lmsg.msg_controllen = 0; 1013 lmsg.msg_flags = 0; 1014 1015 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 1016 } 1017 1018 /* 1019 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1020 * struct omsghdr or struct nmsghdr. 1021 */ 1022 ssize_t 1023 recvmsg(int sock, struct nmsghdr *msg, int flags) 1024 { 1025 STRUCT_DECL(nmsghdr, u_lmsg); 1026 STRUCT_HANDLE(nmsghdr, umsgptr); 1027 struct nmsghdr lmsg; 1028 struct uio auio; 1029 struct iovec aiov[MSG_MAXIOVLEN]; 1030 int iovcnt; 1031 ssize_t len; 1032 int i; 1033 int *flagsp; 1034 model_t model; 1035 1036 dprint(1, ("recvmsg(%d, %p, %d)\n", 1037 sock, (void *)msg, flags)); 1038 1039 model = get_udatamodel(); 1040 STRUCT_INIT(u_lmsg, model); 1041 STRUCT_SET_HANDLE(umsgptr, model, msg); 1042 1043 if (flags & MSG_XPG4_2) { 1044 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 1045 return (set_errno(EFAULT)); 1046 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 1047 } else { 1048 /* 1049 * Assumes that nmsghdr and omsghdr are identically shaped 1050 * except for the added msg_flags field. 1051 */ 1052 if (copyin(msg, STRUCT_BUF(u_lmsg), 1053 SIZEOF_STRUCT(omsghdr, model))) 1054 return (set_errno(EFAULT)); 1055 STRUCT_FSET(u_lmsg, msg_flags, 0); 1056 flagsp = NULL; 1057 } 1058 1059 /* 1060 * Code below us will kmem_alloc memory and hang it 1061 * off msg_control and msg_name fields. This forces 1062 * us to copy the structure to its native form. 1063 */ 1064 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1065 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1066 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1067 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1068 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1069 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1070 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1071 1072 iovcnt = lmsg.msg_iovlen; 1073 1074 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1075 return (set_errno(EMSGSIZE)); 1076 } 1077 1078 #ifdef _SYSCALL32_IMPL 1079 /* 1080 * 32-bit callers need to have their iovec expanded, while ensuring 1081 * that they can't move more than 2Gbytes of data in a single call. 1082 */ 1083 if (model == DATAMODEL_ILP32) { 1084 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1085 ssize32_t count32; 1086 1087 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1088 iovcnt * sizeof (struct iovec32))) 1089 return (set_errno(EFAULT)); 1090 1091 count32 = 0; 1092 for (i = 0; i < iovcnt; i++) { 1093 ssize32_t iovlen32; 1094 1095 iovlen32 = aiov32[i].iov_len; 1096 count32 += iovlen32; 1097 if (iovlen32 < 0 || count32 < 0) 1098 return (set_errno(EINVAL)); 1099 aiov[i].iov_len = iovlen32; 1100 aiov[i].iov_base = 1101 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1102 } 1103 } else 1104 #endif /* _SYSCALL32_IMPL */ 1105 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1106 return (set_errno(EFAULT)); 1107 } 1108 len = 0; 1109 for (i = 0; i < iovcnt; i++) { 1110 ssize_t iovlen = aiov[i].iov_len; 1111 len += iovlen; 1112 if (iovlen < 0 || len < 0) { 1113 return (set_errno(EINVAL)); 1114 } 1115 } 1116 auio.uio_loffset = 0; 1117 auio.uio_iov = aiov; 1118 auio.uio_iovcnt = iovcnt; 1119 auio.uio_resid = len; 1120 auio.uio_segflg = UIO_USERSPACE; 1121 auio.uio_limit = 0; 1122 1123 if (lmsg.msg_control != NULL && 1124 (do_useracc == 0 || 1125 useracc(lmsg.msg_control, lmsg.msg_controllen, 1126 B_WRITE) != 0)) { 1127 return (set_errno(EFAULT)); 1128 } 1129 1130 return (recvit(sock, &lmsg, &auio, flags, 1131 STRUCT_FADDR(umsgptr, msg_namelen), 1132 STRUCT_FADDR(umsgptr, msg_controllen), flagsp)); 1133 } 1134 1135 /* 1136 * Common send function. 1137 */ 1138 static ssize_t 1139 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1140 { 1141 struct sonode *so; 1142 file_t *fp; 1143 void *name; 1144 socklen_t namelen; 1145 void *control; 1146 socklen_t controllen; 1147 ssize_t len; 1148 int error; 1149 1150 if ((so = getsonode(sock, &error, &fp)) == NULL) 1151 return (set_errno(error)); 1152 1153 uiop->uio_fmode = fp->f_flag; 1154 1155 if (so->so_family == AF_UNIX) 1156 uiop->uio_extflg = UIO_COPY_CACHED; 1157 else 1158 uiop->uio_extflg = UIO_COPY_DEFAULT; 1159 1160 /* Allocate and copyin name and control */ 1161 name = msg->msg_name; 1162 namelen = msg->msg_namelen; 1163 if (name != NULL && namelen != 0) { 1164 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1165 name = copyin_name(so, 1166 (struct sockaddr *)name, 1167 &namelen, &error); 1168 if (name == NULL) 1169 goto done3; 1170 /* copyin_name null terminates addresses for AF_UNIX */ 1171 msg->msg_namelen = namelen; 1172 msg->msg_name = name; 1173 } else { 1174 msg->msg_name = name = NULL; 1175 msg->msg_namelen = namelen = 0; 1176 } 1177 1178 control = msg->msg_control; 1179 controllen = msg->msg_controllen; 1180 if ((control != NULL) && (controllen != 0)) { 1181 /* 1182 * Verify that the length is not excessive to prevent 1183 * an application from consuming all of kernel memory. 1184 */ 1185 if (controllen > SO_MAXARGSIZE) { 1186 error = EINVAL; 1187 goto done2; 1188 } 1189 control = kmem_alloc(controllen, KM_SLEEP); 1190 1191 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1192 if (copyin(msg->msg_control, control, controllen)) { 1193 error = EFAULT; 1194 goto done1; 1195 } 1196 msg->msg_control = control; 1197 } else { 1198 msg->msg_control = control = NULL; 1199 msg->msg_controllen = controllen = 0; 1200 } 1201 1202 len = uiop->uio_resid; 1203 msg->msg_flags = flags; 1204 1205 error = socket_sendmsg(so, msg, uiop, CRED()); 1206 done1: 1207 if (control != NULL) 1208 kmem_free(control, controllen); 1209 done2: 1210 if (name != NULL) 1211 kmem_free(name, namelen); 1212 done3: 1213 if (error != 0) { 1214 releasef(sock); 1215 return (set_errno(error)); 1216 } 1217 lwp_stat_update(LWP_STAT_MSGSND, 1); 1218 releasef(sock); 1219 return (len - uiop->uio_resid); 1220 } 1221 1222 /* 1223 * Native system call 1224 */ 1225 ssize_t 1226 send(int sock, void *buffer, size_t len, int flags) 1227 { 1228 struct nmsghdr lmsg; 1229 struct uio auio; 1230 struct iovec aiov[1]; 1231 1232 dprint(1, ("send(%d, %p, %ld, %d)\n", 1233 sock, buffer, len, flags)); 1234 1235 if ((ssize_t)len < 0) { 1236 return (set_errno(EINVAL)); 1237 } 1238 1239 aiov[0].iov_base = buffer; 1240 aiov[0].iov_len = len; 1241 auio.uio_loffset = 0; 1242 auio.uio_iov = aiov; 1243 auio.uio_iovcnt = 1; 1244 auio.uio_resid = len; 1245 auio.uio_segflg = UIO_USERSPACE; 1246 auio.uio_limit = 0; 1247 1248 lmsg.msg_name = NULL; 1249 lmsg.msg_control = NULL; 1250 if (!(flags & MSG_XPG4_2)) { 1251 /* 1252 * In order to be compatible with the libsocket/sockmod 1253 * implementation we set EOR for all send* calls. 1254 */ 1255 flags |= MSG_EOR; 1256 } 1257 return (sendit(sock, &lmsg, &auio, flags)); 1258 } 1259 1260 /* 1261 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1262 * struct omsghdr or struct nmsghdr. 1263 */ 1264 ssize_t 1265 sendmsg(int sock, struct nmsghdr *msg, int flags) 1266 { 1267 struct nmsghdr lmsg; 1268 STRUCT_DECL(nmsghdr, u_lmsg); 1269 struct uio auio; 1270 struct iovec aiov[MSG_MAXIOVLEN]; 1271 int iovcnt; 1272 ssize_t len; 1273 int i; 1274 model_t model; 1275 1276 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags)); 1277 1278 model = get_udatamodel(); 1279 STRUCT_INIT(u_lmsg, model); 1280 1281 if (flags & MSG_XPG4_2) { 1282 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1283 STRUCT_SIZE(u_lmsg))) 1284 return (set_errno(EFAULT)); 1285 } else { 1286 /* 1287 * Assumes that nmsghdr and omsghdr are identically shaped 1288 * except for the added msg_flags field. 1289 */ 1290 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1291 SIZEOF_STRUCT(omsghdr, model))) 1292 return (set_errno(EFAULT)); 1293 /* 1294 * In order to be compatible with the libsocket/sockmod 1295 * implementation we set EOR for all send* calls. 1296 */ 1297 flags |= MSG_EOR; 1298 } 1299 1300 /* 1301 * Code below us will kmem_alloc memory and hang it 1302 * off msg_control and msg_name fields. This forces 1303 * us to copy the structure to its native form. 1304 */ 1305 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1306 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1307 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1308 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1309 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1310 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1311 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1312 1313 iovcnt = lmsg.msg_iovlen; 1314 1315 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1316 /* 1317 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1318 * be compatible with SunOS 4.X and 4.4BSD. 1319 */ 1320 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1321 return (set_errno(EMSGSIZE)); 1322 } 1323 1324 #ifdef _SYSCALL32_IMPL 1325 /* 1326 * 32-bit callers need to have their iovec expanded, while ensuring 1327 * that they can't move more than 2Gbytes of data in a single call. 1328 */ 1329 if (model == DATAMODEL_ILP32) { 1330 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1331 ssize32_t count32; 1332 1333 if (iovcnt != 0 && 1334 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1335 iovcnt * sizeof (struct iovec32))) 1336 return (set_errno(EFAULT)); 1337 1338 count32 = 0; 1339 for (i = 0; i < iovcnt; i++) { 1340 ssize32_t iovlen32; 1341 1342 iovlen32 = aiov32[i].iov_len; 1343 count32 += iovlen32; 1344 if (iovlen32 < 0 || count32 < 0) 1345 return (set_errno(EINVAL)); 1346 aiov[i].iov_len = iovlen32; 1347 aiov[i].iov_base = 1348 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1349 } 1350 } else 1351 #endif /* _SYSCALL32_IMPL */ 1352 if (iovcnt != 0 && 1353 copyin(lmsg.msg_iov, aiov, 1354 (unsigned)iovcnt * sizeof (struct iovec))) { 1355 return (set_errno(EFAULT)); 1356 } 1357 len = 0; 1358 for (i = 0; i < iovcnt; i++) { 1359 ssize_t iovlen = aiov[i].iov_len; 1360 len += iovlen; 1361 if (iovlen < 0 || len < 0) { 1362 return (set_errno(EINVAL)); 1363 } 1364 } 1365 auio.uio_loffset = 0; 1366 auio.uio_iov = aiov; 1367 auio.uio_iovcnt = iovcnt; 1368 auio.uio_resid = len; 1369 auio.uio_segflg = UIO_USERSPACE; 1370 auio.uio_limit = 0; 1371 1372 return (sendit(sock, &lmsg, &auio, flags)); 1373 } 1374 1375 ssize_t 1376 sendto(int sock, void *buffer, size_t len, int flags, 1377 struct sockaddr *name, socklen_t namelen) 1378 { 1379 struct nmsghdr lmsg; 1380 struct uio auio; 1381 struct iovec aiov[1]; 1382 1383 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1384 sock, buffer, len, flags, (void *)name, namelen)); 1385 1386 if ((ssize_t)len < 0) { 1387 return (set_errno(EINVAL)); 1388 } 1389 1390 aiov[0].iov_base = buffer; 1391 aiov[0].iov_len = len; 1392 auio.uio_loffset = 0; 1393 auio.uio_iov = aiov; 1394 auio.uio_iovcnt = 1; 1395 auio.uio_resid = len; 1396 auio.uio_segflg = UIO_USERSPACE; 1397 auio.uio_limit = 0; 1398 1399 lmsg.msg_name = (char *)name; 1400 lmsg.msg_namelen = namelen; 1401 lmsg.msg_control = NULL; 1402 if (!(flags & MSG_XPG4_2)) { 1403 /* 1404 * In order to be compatible with the libsocket/sockmod 1405 * implementation we set EOR for all send* calls. 1406 */ 1407 flags |= MSG_EOR; 1408 } 1409 return (sendit(sock, &lmsg, &auio, flags)); 1410 } 1411 1412 /*ARGSUSED3*/ 1413 int 1414 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1415 { 1416 struct sonode *so; 1417 int error; 1418 socklen_t namelen; 1419 socklen_t sock_addrlen; 1420 struct sockaddr *sock_addrp; 1421 1422 dprint(1, ("getpeername(%d, %p, %p)\n", 1423 sock, (void *)name, (void *)namelenp)); 1424 1425 if ((so = getsonode(sock, &error, NULL)) == NULL) 1426 goto bad; 1427 1428 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1429 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1430 (name == NULL && namelen != 0)) { 1431 error = EFAULT; 1432 goto rel_out; 1433 } 1434 sock_addrlen = so->so_max_addr_len; 1435 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1436 1437 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen, 1438 B_FALSE, CRED())) == 0) { 1439 ASSERT(sock_addrlen <= so->so_max_addr_len); 1440 error = copyout_name(name, namelen, namelenp, 1441 (void *)sock_addrp, sock_addrlen); 1442 } 1443 kmem_free(sock_addrp, so->so_max_addr_len); 1444 rel_out: 1445 releasef(sock); 1446 bad: return (error != 0 ? set_errno(error) : 0); 1447 } 1448 1449 /*ARGSUSED3*/ 1450 int 1451 getsockname(int sock, struct sockaddr *name, 1452 socklen_t *namelenp, int version) 1453 { 1454 struct sonode *so; 1455 int error; 1456 socklen_t namelen, sock_addrlen; 1457 struct sockaddr *sock_addrp; 1458 1459 dprint(1, ("getsockname(%d, %p, %p)\n", 1460 sock, (void *)name, (void *)namelenp)); 1461 1462 if ((so = getsonode(sock, &error, NULL)) == NULL) 1463 goto bad; 1464 1465 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1466 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1467 (name == NULL && namelen != 0)) { 1468 error = EFAULT; 1469 goto rel_out; 1470 } 1471 1472 sock_addrlen = so->so_max_addr_len; 1473 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1474 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen, 1475 CRED())) == 0) { 1476 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1477 ASSERT(sock_addrlen <= so->so_max_addr_len); 1478 error = copyout_name(name, namelen, namelenp, 1479 (void *)sock_addrp, sock_addrlen); 1480 } 1481 kmem_free(sock_addrp, so->so_max_addr_len); 1482 rel_out: 1483 releasef(sock); 1484 bad: return (error != 0 ? set_errno(error) : 0); 1485 } 1486 1487 /*ARGSUSED5*/ 1488 int 1489 getsockopt(int sock, 1490 int level, 1491 int option_name, 1492 void *option_value, 1493 socklen_t *option_lenp, 1494 int version) 1495 { 1496 struct sonode *so; 1497 socklen_t optlen, optlen_res; 1498 void *optval; 1499 int error; 1500 1501 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1502 sock, level, option_name, option_value, (void *)option_lenp)); 1503 1504 if ((so = getsonode(sock, &error, NULL)) == NULL) 1505 return (set_errno(error)); 1506 1507 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1508 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1509 releasef(sock); 1510 return (set_errno(EFAULT)); 1511 } 1512 /* 1513 * Verify that the length is not excessive to prevent 1514 * an application from consuming all of kernel memory. 1515 */ 1516 if (optlen > SO_MAXARGSIZE) { 1517 error = EINVAL; 1518 releasef(sock); 1519 return (set_errno(error)); 1520 } 1521 optval = kmem_alloc(optlen, KM_SLEEP); 1522 optlen_res = optlen; 1523 error = socket_getsockopt(so, level, option_name, optval, 1524 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2, 1525 CRED()); 1526 releasef(sock); 1527 if (error) { 1528 kmem_free(optval, optlen); 1529 return (set_errno(error)); 1530 } 1531 error = copyout_arg(option_value, optlen, option_lenp, 1532 optval, optlen_res); 1533 kmem_free(optval, optlen); 1534 if (error) 1535 return (set_errno(error)); 1536 return (0); 1537 } 1538 1539 /*ARGSUSED5*/ 1540 int 1541 setsockopt(int sock, 1542 int level, 1543 int option_name, 1544 void *option_value, 1545 socklen_t option_len, 1546 int version) 1547 { 1548 struct sonode *so; 1549 intptr_t buffer[2]; 1550 void *optval = NULL; 1551 int error; 1552 1553 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1554 sock, level, option_name, option_value, option_len)); 1555 1556 if ((so = getsonode(sock, &error, NULL)) == NULL) 1557 return (set_errno(error)); 1558 1559 if (option_value != NULL) { 1560 if (option_len != 0) { 1561 /* 1562 * Verify that the length is not excessive to prevent 1563 * an application from consuming all of kernel memory. 1564 */ 1565 if (option_len > SO_MAXARGSIZE) { 1566 error = EINVAL; 1567 goto done2; 1568 } 1569 optval = option_len <= sizeof (buffer) ? 1570 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1571 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1572 if (copyin(option_value, optval, (size_t)option_len)) { 1573 error = EFAULT; 1574 goto done1; 1575 } 1576 } 1577 } else 1578 option_len = 0; 1579 1580 error = socket_setsockopt(so, level, option_name, optval, 1581 (t_uscalar_t)option_len, CRED()); 1582 done1: 1583 if (optval != buffer) 1584 kmem_free(optval, (size_t)option_len); 1585 done2: 1586 releasef(sock); 1587 if (error) 1588 return (set_errno(error)); 1589 return (0); 1590 } 1591 1592 static int 1593 sockconf_add_sock(int family, int type, int protocol, char *name) 1594 { 1595 int error = 0; 1596 char *kdevpath = NULL; 1597 char *kmodule = NULL; 1598 char *buf = NULL; 1599 size_t pathlen = 0; 1600 struct sockparams *sp; 1601 1602 if (name == NULL) 1603 return (EINVAL); 1604 /* 1605 * Copyin the name. 1606 * This also makes it possible to check for too long pathnames. 1607 * Compress the space needed for the name before passing it 1608 * to soconfig - soconfig will store the string until 1609 * the configuration is removed. 1610 */ 1611 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1612 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) { 1613 kmem_free(buf, MAXPATHLEN); 1614 return (error); 1615 } 1616 if (strncmp(buf, "/dev", strlen("/dev")) == 0) { 1617 /* For device */ 1618 1619 /* 1620 * Special handling for NCA: 1621 * 1622 * DEV_NCA is never opened even if an application 1623 * requests for AF_NCA. The device opened is instead a 1624 * predefined AF_INET transport (NCA_INET_DEV). 1625 * 1626 * Prior to Volo (PSARC/2007/587) NCA would determine 1627 * the device using a lookup, which worked then because 1628 * all protocols were based on TPI. Since TPI is no 1629 * longer the default, we have to explicitly state 1630 * which device to use. 1631 */ 1632 if (strcmp(buf, NCA_DEV) == 0) { 1633 /* only support entry <28, 2, 0> */ 1634 if (family != AF_NCA || type != SOCK_STREAM || 1635 protocol != 0) { 1636 kmem_free(buf, MAXPATHLEN); 1637 return (EINVAL); 1638 } 1639 1640 pathlen = strlen(NCA_INET_DEV) + 1; 1641 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1642 bcopy(NCA_INET_DEV, kdevpath, pathlen); 1643 kdevpath[pathlen - 1] = '\0'; 1644 } else { 1645 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1646 bcopy(buf, kdevpath, pathlen); 1647 kdevpath[pathlen - 1] = '\0'; 1648 } 1649 } else { 1650 /* For socket module */ 1651 kmodule = kmem_alloc(pathlen, KM_SLEEP); 1652 bcopy(buf, kmodule, pathlen); 1653 kmodule[pathlen - 1] = '\0'; 1654 pathlen = 0; 1655 } 1656 kmem_free(buf, MAXPATHLEN); 1657 1658 /* sockparams_create frees mod name and devpath upon failure */ 1659 sp = sockparams_create(family, type, protocol, kmodule, 1660 kdevpath, pathlen, 0, KM_SLEEP, &error); 1661 if (sp != NULL) { 1662 error = sockparams_add(sp); 1663 if (error != 0) 1664 sockparams_destroy(sp); 1665 } 1666 1667 return (error); 1668 } 1669 1670 static int 1671 sockconf_remove_sock(int family, int type, int protocol) 1672 { 1673 return (sockparams_delete(family, type, protocol)); 1674 } 1675 1676 static int 1677 sockconfig_remove_filter(const char *uname) 1678 { 1679 char kname[SOF_MAXNAMELEN]; 1680 size_t len; 1681 int error; 1682 sof_entry_t *ent; 1683 1684 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0) 1685 return (error); 1686 1687 ent = sof_entry_remove_by_name(kname); 1688 if (ent == NULL) 1689 return (ENXIO); 1690 1691 mutex_enter(&ent->sofe_lock); 1692 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED)); 1693 if (ent->sofe_refcnt == 0) { 1694 mutex_exit(&ent->sofe_lock); 1695 sof_entry_free(ent); 1696 } else { 1697 /* let the last socket free the filter */ 1698 ent->sofe_flags |= SOFEF_CONDEMED; 1699 mutex_exit(&ent->sofe_lock); 1700 } 1701 1702 return (0); 1703 } 1704 1705 static int 1706 sockconfig_add_filter(const char *uname, void *ufilpropp) 1707 { 1708 struct sockconfig_filter_props filprop; 1709 sof_entry_t *ent; 1710 int error; 1711 size_t tuplesz, len; 1712 char hintbuf[SOF_MAXNAMELEN]; 1713 1714 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP); 1715 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL); 1716 1717 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN, 1718 &len)) != 0) { 1719 sof_entry_free(ent); 1720 return (error); 1721 } 1722 1723 if (get_udatamodel() == DATAMODEL_NATIVE) { 1724 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) { 1725 sof_entry_free(ent); 1726 return (EFAULT); 1727 } 1728 } 1729 #ifdef _SYSCALL32_IMPL 1730 else { 1731 struct sockconfig_filter_props32 filprop32; 1732 1733 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) { 1734 sof_entry_free(ent); 1735 return (EFAULT); 1736 } 1737 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname; 1738 filprop.sfp_autoattach = filprop32.sfp_autoattach; 1739 filprop.sfp_hint = filprop32.sfp_hint; 1740 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg; 1741 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt; 1742 filprop.sfp_socktuple = 1743 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple; 1744 } 1745 #endif /* _SYSCALL32_IMPL */ 1746 1747 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname, 1748 sizeof (ent->sofe_modname), &len)) != 0) { 1749 sof_entry_free(ent); 1750 return (error); 1751 } 1752 1753 /* 1754 * A filter must specify at least one socket tuple. 1755 */ 1756 if (filprop.sfp_socktuple_cnt == 0 || 1757 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) { 1758 sof_entry_free(ent); 1759 return (EINVAL); 1760 } 1761 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG; 1762 ent->sofe_hint = filprop.sfp_hint; 1763 1764 /* 1765 * Verify the hint, and copy in the hint argument, if necessary. 1766 */ 1767 switch (ent->sofe_hint) { 1768 case SOF_HINT_BEFORE: 1769 case SOF_HINT_AFTER: 1770 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf, 1771 sizeof (hintbuf), &len)) != 0) { 1772 sof_entry_free(ent); 1773 return (error); 1774 } 1775 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP); 1776 bcopy(hintbuf, ent->sofe_hintarg, len); 1777 /* FALLTHRU */ 1778 case SOF_HINT_TOP: 1779 case SOF_HINT_BOTTOM: 1780 /* hints cannot be used with programmatic filters */ 1781 if (ent->sofe_flags & SOFEF_PROG) { 1782 sof_entry_free(ent); 1783 return (EINVAL); 1784 } 1785 break; 1786 case SOF_HINT_NONE: 1787 break; 1788 default: 1789 /* bad hint value */ 1790 sof_entry_free(ent); 1791 return (EINVAL); 1792 } 1793 1794 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt; 1795 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt; 1796 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP); 1797 1798 if (get_udatamodel() == DATAMODEL_NATIVE) { 1799 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple, 1800 tuplesz)) { 1801 sof_entry_free(ent); 1802 return (EFAULT); 1803 } 1804 } 1805 #ifdef _SYSCALL32_IMPL 1806 else { 1807 int i; 1808 caddr_t data = (caddr_t)filprop.sfp_socktuple; 1809 sof_socktuple_t *tup = ent->sofe_socktuple; 1810 sof_socktuple32_t tup32; 1811 1812 tup = ent->sofe_socktuple; 1813 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) { 1814 ASSERT(tup < ent->sofe_socktuple + tuplesz); 1815 1816 if (copyin(data, &tup32, sizeof (tup32)) != 0) { 1817 sof_entry_free(ent); 1818 return (EFAULT); 1819 } 1820 tup->sofst_family = tup32.sofst_family; 1821 tup->sofst_type = tup32.sofst_type; 1822 tup->sofst_protocol = tup32.sofst_protocol; 1823 1824 data += sizeof (tup32); 1825 } 1826 } 1827 #endif /* _SYSCALL32_IMPL */ 1828 1829 /* Sockets can start using the filter as soon as the filter is added */ 1830 if ((error = sof_entry_add(ent)) != 0) 1831 sof_entry_free(ent); 1832 1833 return (error); 1834 } 1835 1836 /* 1837 * Socket configuration system call. It is used to add and remove 1838 * socket types. 1839 */ 1840 int 1841 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 1842 { 1843 int error = 0; 1844 1845 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1846 return (set_errno(EPERM)); 1847 1848 if (sockfs_defer_nl7c_init) { 1849 nl7c_init(); 1850 sockfs_defer_nl7c_init = 0; 1851 } 1852 1853 switch (cmd) { 1854 case SOCKCONFIG_ADD_SOCK: 1855 error = sockconf_add_sock((int)(uintptr_t)arg1, 1856 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4); 1857 break; 1858 case SOCKCONFIG_REMOVE_SOCK: 1859 error = sockconf_remove_sock((int)(uintptr_t)arg1, 1860 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3); 1861 break; 1862 case SOCKCONFIG_ADD_FILTER: 1863 error = sockconfig_add_filter((const char *)arg1, arg2); 1864 break; 1865 case SOCKCONFIG_REMOVE_FILTER: 1866 error = sockconfig_remove_filter((const char *)arg1); 1867 break; 1868 case SOCKCONFIG_GET_SOCKTABLE: 1869 error = sockparams_copyout_socktable((int)(uintptr_t)arg1); 1870 break; 1871 default: 1872 #ifdef DEBUG 1873 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd); 1874 #endif 1875 error = EINVAL; 1876 break; 1877 } 1878 1879 if (error != 0) { 1880 eprintline(error); 1881 return (set_errno(error)); 1882 } 1883 return (0); 1884 } 1885 1886 1887 /* 1888 * Sendfile is implemented through two schemes, direct I/O or by 1889 * caching in the filesystem page cache. We cache the input file by 1890 * default and use direct I/O only if sendfile_max_size is set 1891 * appropriately as explained below. Note that this logic is consistent 1892 * with other filesystems where caching is turned on by default 1893 * unless explicitly turned off by using the DIRECTIO ioctl. 1894 * 1895 * We choose a slightly different scheme here. One can turn off 1896 * caching by setting sendfile_max_size to 0. One can also enable 1897 * caching of files <= sendfile_max_size by setting sendfile_max_size 1898 * to an appropriate value. By default sendfile_max_size is set to the 1899 * maximum value so that all files are cached. In future, we may provide 1900 * better interfaces for caching the file. 1901 * 1902 * Sendfile through Direct I/O (Zero copy) 1903 * -------------------------------------- 1904 * 1905 * As disks are normally slower than the network, we can't have a 1906 * single thread that reads the disk and writes to the network. We 1907 * need to have parallelism. This is done by having the sendfile 1908 * thread create another thread that reads from the filesystem 1909 * and queues it for network processing. In this scheme, the data 1910 * is never copied anywhere i.e it is zero copy unlike the other 1911 * scheme. 1912 * 1913 * We have a sendfile queue (snfq) where each sendfile 1914 * request (snf_req_t) is queued for processing by a thread. Number 1915 * of threads is dynamically allocated and they exit if they are idling 1916 * beyond a specified amount of time. When each request (snf_req_t) is 1917 * processed by a thread, it produces a number of mblk_t structures to 1918 * be consumed by the sendfile thread. snf_deque and snf_enque are 1919 * used for consuming and producing mblks. Size of the filesystem 1920 * read is determined by the tunable (sendfile_read_size). A single 1921 * mblk holds sendfile_read_size worth of data (except the last 1922 * read of the file) which is sent down as a whole to the network. 1923 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1924 * value for the UFS filesystem backed by a striped storage array. 1925 * 1926 * Synchronisation between read (producer) and write (consumer) threads. 1927 * -------------------------------------------------------------------- 1928 * 1929 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 1930 * adding and deleting items in this list. Error can happen anytime 1931 * during read or write. There could be unprocessed mblks in the 1932 * sr_ib_XXX list when a read or write error occurs. Whenever error 1933 * is encountered, we need two things to happen : 1934 * 1935 * a) One of the threads need to clean the mblks. 1936 * b) When one thread encounters an error, the other should stop. 1937 * 1938 * For (a), we don't want to penalize the reader thread as it could do 1939 * some useful work processing other requests. For (b), the error can 1940 * be detected by examining sr_read_error or sr_write_error. 1941 * sr_lock protects sr_read_error and sr_write_error. If both reader and 1942 * writer encounters error, we need to report the write error back to 1943 * the application as that's what would have happened if the operations 1944 * were done sequentially. With this in mind, following should work : 1945 * 1946 * - Check for errors before read or write. 1947 * - If the reader encounters error, set the error in sr_read_error. 1948 * Check sr_write_error, if it is set, send cv_signal as it is 1949 * waiting for reader to complete. If it is not set, the writer 1950 * is either running sinking data to the network or blocked 1951 * because of flow control. For handling the latter case, we 1952 * always send a signal. In any case, it will examine sr_read_error 1953 * and return. sr_read_error is marked with SR_READ_DONE to tell 1954 * the writer that the reader is done in all the cases. 1955 * - If the writer encounters error, set the error in sr_write_error. 1956 * The reader thread is either blocked because of flow control or 1957 * running reading data from the disk. For the former, we need to 1958 * wakeup the thread. Again to keep it simple, we always wake up 1959 * the reader thread. Then, wait for the read thread to complete 1960 * if it is not done yet. Cleanup and return. 1961 * 1962 * High and low water marks for the read thread. 1963 * -------------------------------------------- 1964 * 1965 * If sendfile() is used to send data over a slow network, we need to 1966 * make sure that the read thread does not produce data at a faster 1967 * rate than the network. This can happen if the disk is faster than 1968 * the network. In such a case, we don't want to build a very large queue. 1969 * But we would still like to get all of the network throughput possible. 1970 * This implies that network should never block waiting for data. 1971 * As there are lot of disk throughput/network throughput combinations 1972 * possible, it is difficult to come up with an accurate number. 1973 * A typical 10K RPM disk has a max seek latency 17ms and rotational 1974 * latency of 3ms for reading a disk block. Thus, the total latency to 1975 * initiate a new read, transfer data from the disk and queue for 1976 * transmission would take about a max of 25ms. Todays max transfer rate 1977 * for network is 100MB/sec. If the thread is blocked because of flow 1978 * control, it would take 25ms to get new data ready for transmission. 1979 * We have to make sure that network is not idling, while we are initiating 1980 * new transfers. So, at 100MB/sec, to keep network busy we would need 1981 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data. 1982 * We need to pick a high water mark so that the woken up thread would 1983 * do considerable work before blocking again to prevent thrashing. Currently, 1984 * we pick this to be 10 times that of the low water mark. 1985 * 1986 * Sendfile with segmap caching (One copy from page cache to mblks). 1987 * ---------------------------------------------------------------- 1988 * 1989 * We use the segmap cache for caching the file, if the size of file 1990 * is <= sendfile_max_size. In this case we don't use threads as VM 1991 * is reasonably fast enough to keep up with the network. If the underlying 1992 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 1993 * of data into segmap space, and use the virtual address from segmap 1994 * directly through desballoc() to avoid copy. Once the transport is done 1995 * with the data, the mapping will be released through segmap_release() 1996 * called by the call-back routine. 1997 * 1998 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 1999 * to copy the data from the filesystem into our temporary network buffer. 2000 * 2001 * To disable caching, set sendfile_max_size to 0. 2002 */ 2003 2004 uint_t sendfile_read_size = 1024 * 1024; 2005 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 2006 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 2007 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 2008 struct sendfile_stats sf_stats; 2009 struct sendfile_queue *snfq; 2010 clock_t snfq_timeout; 2011 off64_t sendfile_max_size; 2012 2013 static void snf_enque(snf_req_t *, mblk_t *); 2014 static mblk_t *snf_deque(snf_req_t *); 2015 2016 void 2017 sendfile_init(void) 2018 { 2019 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 2020 2021 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 2022 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 2023 snfq->snfq_max_threads = max_ncpus; 2024 snfq_timeout = SNFQ_TIMEOUT; 2025 /* Cache all files by default. */ 2026 sendfile_max_size = MAXOFFSET_T; 2027 } 2028 2029 /* 2030 * Queues a mblk_t for network processing. 2031 */ 2032 static void 2033 snf_enque(snf_req_t *sr, mblk_t *mp) 2034 { 2035 mp->b_next = NULL; 2036 mutex_enter(&sr->sr_lock); 2037 if (sr->sr_mp_head == NULL) { 2038 sr->sr_mp_head = sr->sr_mp_tail = mp; 2039 cv_signal(&sr->sr_cv); 2040 } else { 2041 sr->sr_mp_tail->b_next = mp; 2042 sr->sr_mp_tail = mp; 2043 } 2044 sr->sr_qlen += MBLKL(mp); 2045 while ((sr->sr_qlen > sr->sr_hiwat) && 2046 (sr->sr_write_error == 0)) { 2047 sf_stats.ss_full_waits++; 2048 cv_wait(&sr->sr_cv, &sr->sr_lock); 2049 } 2050 mutex_exit(&sr->sr_lock); 2051 } 2052 2053 /* 2054 * De-queues a mblk_t for network processing. 2055 */ 2056 static mblk_t * 2057 snf_deque(snf_req_t *sr) 2058 { 2059 mblk_t *mp; 2060 2061 mutex_enter(&sr->sr_lock); 2062 /* 2063 * If we have encountered an error on read or read is 2064 * completed and no more mblks, return NULL. 2065 * We need to check for NULL sr_mp_head also as 2066 * the reads could have completed and there is 2067 * nothing more to come. 2068 */ 2069 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 2070 ((sr->sr_read_error & SR_READ_DONE) && 2071 sr->sr_mp_head == NULL)) { 2072 mutex_exit(&sr->sr_lock); 2073 return (NULL); 2074 } 2075 /* 2076 * To start with neither SR_READ_DONE is marked nor 2077 * the error is set. When we wake up from cv_wait, 2078 * following are the possibilities : 2079 * 2080 * a) sr_read_error is zero and mblks are queued. 2081 * b) sr_read_error is set to SR_READ_DONE 2082 * and mblks are queued. 2083 * c) sr_read_error is set to SR_READ_DONE 2084 * and no mblks. 2085 * d) sr_read_error is set to some error other 2086 * than SR_READ_DONE. 2087 */ 2088 2089 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 2090 sf_stats.ss_empty_waits++; 2091 cv_wait(&sr->sr_cv, &sr->sr_lock); 2092 } 2093 /* Handle (a) and (b) first - the normal case. */ 2094 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 2095 (sr->sr_mp_head != NULL)) { 2096 mp = sr->sr_mp_head; 2097 sr->sr_mp_head = mp->b_next; 2098 sr->sr_qlen -= MBLKL(mp); 2099 if (sr->sr_qlen < sr->sr_lowat) 2100 cv_signal(&sr->sr_cv); 2101 mutex_exit(&sr->sr_lock); 2102 mp->b_next = NULL; 2103 return (mp); 2104 } 2105 /* Handle (c) and (d). */ 2106 mutex_exit(&sr->sr_lock); 2107 return (NULL); 2108 } 2109 2110 /* 2111 * Reads data from the filesystem and queues it for network processing. 2112 */ 2113 void 2114 snf_async_read(snf_req_t *sr) 2115 { 2116 size_t iosize; 2117 u_offset_t fileoff; 2118 u_offset_t size; 2119 int ret_size; 2120 int error; 2121 file_t *fp; 2122 mblk_t *mp; 2123 struct vnode *vp; 2124 int extra = 0; 2125 int maxblk = 0; 2126 int wroff = 0; 2127 struct sonode *so; 2128 2129 fp = sr->sr_fp; 2130 size = sr->sr_file_size; 2131 fileoff = sr->sr_file_off; 2132 2133 /* 2134 * Ignore the error for filesystems that doesn't support DIRECTIO. 2135 */ 2136 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 2137 kcred, NULL, NULL); 2138 2139 vp = sr->sr_vp; 2140 if (vp->v_type == VSOCK) { 2141 stdata_t *stp; 2142 2143 /* 2144 * Get the extra space to insert a header and a trailer. 2145 */ 2146 so = VTOSO(vp); 2147 stp = vp->v_stream; 2148 if (stp == NULL) { 2149 wroff = so->so_proto_props.sopp_wroff; 2150 maxblk = so->so_proto_props.sopp_maxblk; 2151 extra = wroff + so->so_proto_props.sopp_tail; 2152 } else { 2153 wroff = (int)(stp->sd_wroff); 2154 maxblk = (int)(stp->sd_maxblk); 2155 extra = wroff + (int)(stp->sd_tail); 2156 } 2157 } 2158 2159 while ((size != 0) && (sr->sr_write_error == 0)) { 2160 2161 iosize = (int)MIN(sr->sr_maxpsz, size); 2162 2163 /* 2164 * Socket filters can limit the mblk size, 2165 * so limit reads to maxblk if there are 2166 * filters present. 2167 */ 2168 if (vp->v_type == VSOCK && 2169 so->so_filter_active > 0 && maxblk != INFPSZ) 2170 iosize = (int)MIN(iosize, maxblk); 2171 2172 if (is_system_labeled()) { 2173 mp = allocb_cred(iosize + extra, CRED(), 2174 curproc->p_pid); 2175 } else { 2176 mp = allocb(iosize + extra, BPRI_MED); 2177 } 2178 if (mp == NULL) { 2179 error = EAGAIN; 2180 break; 2181 } 2182 2183 mp->b_rptr += wroff; 2184 2185 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 2186 2187 /* Error or Reached EOF ? */ 2188 if ((error != 0) || (ret_size == 0)) { 2189 freeb(mp); 2190 break; 2191 } 2192 mp->b_wptr = mp->b_rptr + ret_size; 2193 2194 snf_enque(sr, mp); 2195 size -= ret_size; 2196 fileoff += ret_size; 2197 } 2198 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 2199 kcred, NULL, NULL); 2200 mutex_enter(&sr->sr_lock); 2201 sr->sr_read_error = error; 2202 sr->sr_read_error |= SR_READ_DONE; 2203 cv_signal(&sr->sr_cv); 2204 mutex_exit(&sr->sr_lock); 2205 } 2206 2207 void 2208 snf_async_thread(void) 2209 { 2210 snf_req_t *sr; 2211 callb_cpr_t cprinfo; 2212 clock_t time_left = 1; 2213 2214 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 2215 2216 mutex_enter(&snfq->snfq_lock); 2217 for (;;) { 2218 /* 2219 * If we didn't find a entry, then block until woken up 2220 * again and then look through the queues again. 2221 */ 2222 while ((sr = snfq->snfq_req_head) == NULL) { 2223 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2224 if (time_left <= 0) { 2225 snfq->snfq_svc_threads--; 2226 CALLB_CPR_EXIT(&cprinfo); 2227 thread_exit(); 2228 /* NOTREACHED */ 2229 } 2230 snfq->snfq_idle_cnt++; 2231 2232 time_left = cv_reltimedwait(&snfq->snfq_cv, 2233 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK); 2234 snfq->snfq_idle_cnt--; 2235 2236 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2237 } 2238 snfq->snfq_req_head = sr->sr_next; 2239 snfq->snfq_req_cnt--; 2240 mutex_exit(&snfq->snfq_lock); 2241 snf_async_read(sr); 2242 mutex_enter(&snfq->snfq_lock); 2243 } 2244 } 2245 2246 2247 snf_req_t * 2248 create_thread(int operation, struct vnode *vp, file_t *fp, 2249 u_offset_t fileoff, u_offset_t size) 2250 { 2251 snf_req_t *sr; 2252 stdata_t *stp; 2253 2254 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2255 2256 sr->sr_vp = vp; 2257 sr->sr_fp = fp; 2258 stp = vp->v_stream; 2259 2260 /* 2261 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2262 * stream might be closed before thread returns from snf_async_read. 2263 */ 2264 if (stp != NULL && stp->sd_qn_maxpsz > 0) { 2265 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2266 } else { 2267 sr->sr_maxpsz = MAXBSIZE; 2268 } 2269 2270 sr->sr_operation = operation; 2271 sr->sr_file_off = fileoff; 2272 sr->sr_file_size = size; 2273 sr->sr_hiwat = sendfile_req_hiwat; 2274 sr->sr_lowat = sendfile_req_lowat; 2275 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2276 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2277 /* 2278 * See whether we need another thread for servicing this 2279 * request. If there are already enough requests queued 2280 * for the threads, create one if not exceeding 2281 * snfq_max_threads. 2282 */ 2283 mutex_enter(&snfq->snfq_lock); 2284 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2285 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2286 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2287 TS_RUN, minclsyspri); 2288 snfq->snfq_svc_threads++; 2289 } 2290 if (snfq->snfq_req_head == NULL) { 2291 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2292 cv_signal(&snfq->snfq_cv); 2293 } else { 2294 snfq->snfq_req_tail->sr_next = sr; 2295 snfq->snfq_req_tail = sr; 2296 } 2297 snfq->snfq_req_cnt++; 2298 mutex_exit(&snfq->snfq_lock); 2299 return (sr); 2300 } 2301 2302 int 2303 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2304 ssize_t *count) 2305 { 2306 snf_req_t *sr; 2307 mblk_t *mp; 2308 int iosize; 2309 int error = 0; 2310 short fflag; 2311 struct vnode *vp; 2312 int ksize; 2313 struct nmsghdr msg; 2314 2315 ksize = 0; 2316 *count = 0; 2317 bzero(&msg, sizeof (msg)); 2318 2319 vp = fp->f_vnode; 2320 fflag = fp->f_flag; 2321 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2322 return (EAGAIN); 2323 2324 /* 2325 * We check for read error in snf_deque. It has to check 2326 * for successful READ_DONE and return NULL, and we might 2327 * as well make an additional check there. 2328 */ 2329 while ((mp = snf_deque(sr)) != NULL) { 2330 2331 if (ISSIG(curthread, JUSTLOOKING)) { 2332 freeb(mp); 2333 error = EINTR; 2334 break; 2335 } 2336 iosize = MBLKL(mp); 2337 2338 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2339 2340 if (error != 0) { 2341 if (mp != NULL) 2342 freeb(mp); 2343 break; 2344 } 2345 ksize += iosize; 2346 } 2347 *count = ksize; 2348 2349 mutex_enter(&sr->sr_lock); 2350 sr->sr_write_error = error; 2351 /* Look at the big comments on why we cv_signal here. */ 2352 cv_signal(&sr->sr_cv); 2353 2354 /* Wait for the reader to complete always. */ 2355 while (!(sr->sr_read_error & SR_READ_DONE)) { 2356 cv_wait(&sr->sr_cv, &sr->sr_lock); 2357 } 2358 /* If there is no write error, check for read error. */ 2359 if (error == 0) 2360 error = (sr->sr_read_error & ~SR_READ_DONE); 2361 2362 if (error != 0) { 2363 mblk_t *next_mp; 2364 2365 mp = sr->sr_mp_head; 2366 while (mp != NULL) { 2367 next_mp = mp->b_next; 2368 mp->b_next = NULL; 2369 freeb(mp); 2370 mp = next_mp; 2371 } 2372 } 2373 mutex_exit(&sr->sr_lock); 2374 kmem_free(sr, sizeof (snf_req_t)); 2375 return (error); 2376 } 2377 2378 /* Maximum no.of pages allocated by vpm for sendfile at a time */ 2379 #define SNF_VPMMAXPGS (VPMMAXPGS/2) 2380 2381 /* 2382 * Maximum no.of elements in the list returned by vpm, including 2383 * NULL for the last entry 2384 */ 2385 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1) 2386 2387 typedef struct { 2388 unsigned int snfv_ref; 2389 frtn_t snfv_frtn; 2390 vnode_t *snfv_vp; 2391 struct vmap snfv_vml[SNF_MAXVMAPS]; 2392 } snf_vmap_desbinfo; 2393 2394 typedef struct { 2395 frtn_t snfi_frtn; 2396 caddr_t snfi_base; 2397 uint_t snfi_mapoff; 2398 size_t snfi_len; 2399 vnode_t *snfi_vp; 2400 } snf_smap_desbinfo; 2401 2402 /* 2403 * The callback function used for vpm mapped mblks called when the last ref of 2404 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2405 * can be the driver too due to lazy reclaim. 2406 */ 2407 void 2408 snf_vmap_desbfree(snf_vmap_desbinfo *snfv) 2409 { 2410 ASSERT(snfv->snfv_ref != 0); 2411 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) { 2412 vpm_unmap_pages(snfv->snfv_vml, S_READ); 2413 VN_RELE(snfv->snfv_vp); 2414 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2415 } 2416 } 2417 2418 /* 2419 * The callback function used for segmap'ped mblks called when the last ref of 2420 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2421 * can be the driver too due to lazy reclaim. 2422 */ 2423 void 2424 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2425 { 2426 if (! IS_KPM_ADDR(snfi->snfi_base)) { 2427 /* 2428 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2429 * segmap_kpm as long as the latter never falls back to 2430 * "use_segmap_range". (See segmap_getmapflt().) 2431 * 2432 * Using S_OTHER saves an redundant hat_setref() in 2433 * segmap_unlock() 2434 */ 2435 (void) segmap_fault(kas.a_hat, segkmap, 2436 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2437 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2438 F_SOFTUNLOCK, S_OTHER); 2439 } 2440 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2441 VN_RELE(snfi->snfi_vp); 2442 kmem_free(snfi, sizeof (*snfi)); 2443 } 2444 2445 /* 2446 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk. 2447 * When segmap is used, the mblk contains a segmap slot of no more 2448 * than MAXBSIZE. 2449 * 2450 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained 2451 * in each iteration and sent by socket_sendmblk until an error occurs or 2452 * the requested size has been transferred. An mblk is esballoca'ed from 2453 * each mapped page and a chain of these mblk is sent to the transport layer. 2454 * vpm will be called to unmap the pages when all mblks have been freed by 2455 * free_func. 2456 * 2457 * At the end of the whole sendfile() operation, we wait till the data from 2458 * the last mblk is ack'ed by the transport before returning so that the 2459 * caller of sendfile() can safely modify the file content. 2460 */ 2461 int 2462 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size, 2463 ssize_t *count, boolean_t nowait) 2464 { 2465 caddr_t base; 2466 int mapoff; 2467 vnode_t *vp; 2468 mblk_t *mp = NULL; 2469 int chain_size; 2470 int error; 2471 clock_t deadlk_wait; 2472 short fflag; 2473 int ksize; 2474 struct vattr va; 2475 boolean_t dowait = B_FALSE; 2476 struct nmsghdr msg; 2477 2478 vp = fp->f_vnode; 2479 fflag = fp->f_flag; 2480 ksize = 0; 2481 bzero(&msg, sizeof (msg)); 2482 2483 for (;;) { 2484 if (ISSIG(curthread, JUSTLOOKING)) { 2485 error = EINTR; 2486 break; 2487 } 2488 2489 if (vpm_enable) { 2490 snf_vmap_desbinfo *snfv; 2491 mblk_t *nmp; 2492 int mblk_size; 2493 int maxsize; 2494 int i; 2495 2496 mapoff = fileoff & PAGEOFFSET; 2497 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size); 2498 2499 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo), 2500 KM_SLEEP); 2501 2502 /* 2503 * Get vpm mappings for maxsize with read access. 2504 * If the pages aren't available yet, we get 2505 * DEADLK, so wait and try again a little later using 2506 * an increasing wait. We might be here a long time. 2507 * 2508 * If delay_sig returns EINTR, be sure to exit and 2509 * pass it up to the caller. 2510 */ 2511 deadlk_wait = 0; 2512 while ((error = vpm_map_pages(fvp, fileoff, 2513 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml, 2514 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) { 2515 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2516 if ((error = delay_sig(deadlk_wait)) != 0) { 2517 break; 2518 } 2519 } 2520 if (error != 0) { 2521 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2522 error = (error == EINTR) ? EINTR : EIO; 2523 goto out; 2524 } 2525 snfv->snfv_frtn.free_func = snf_vmap_desbfree; 2526 snfv->snfv_frtn.free_arg = (caddr_t)snfv; 2527 2528 /* Construct the mblk chain from the page mappings */ 2529 chain_size = 0; 2530 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) && 2531 total_size > 0; i++) { 2532 ASSERT(chain_size < maxsize); 2533 mblk_size = MIN(snfv->snfv_vml[i].vs_len - 2534 mapoff, total_size); 2535 nmp = esballoca( 2536 (uchar_t *)snfv->snfv_vml[i].vs_addr + 2537 mapoff, mblk_size, BPRI_HI, 2538 &snfv->snfv_frtn); 2539 2540 /* 2541 * We return EAGAIN after unmapping the pages 2542 * if we cannot allocate the the head of the 2543 * chain. Otherwise, we continue sending the 2544 * mblks constructed so far. 2545 */ 2546 if (nmp == NULL) { 2547 if (i == 0) { 2548 vpm_unmap_pages(snfv->snfv_vml, 2549 S_READ); 2550 kmem_free(snfv, 2551 sizeof (snf_vmap_desbinfo)); 2552 error = EAGAIN; 2553 goto out; 2554 } 2555 break; 2556 } 2557 /* Mark this dblk with the zero-copy flag */ 2558 nmp->b_datap->db_struioflag |= STRUIO_ZC; 2559 nmp->b_wptr += mblk_size; 2560 chain_size += mblk_size; 2561 fileoff += mblk_size; 2562 total_size -= mblk_size; 2563 snfv->snfv_ref++; 2564 mapoff = 0; 2565 if (i > 0) 2566 linkb(mp, nmp); 2567 else 2568 mp = nmp; 2569 } 2570 VN_HOLD(fvp); 2571 snfv->snfv_vp = fvp; 2572 } else { 2573 /* vpm not supported. fallback to segmap */ 2574 snf_smap_desbinfo *snfi; 2575 2576 mapoff = fileoff & MAXBOFFSET; 2577 chain_size = MAXBSIZE - mapoff; 2578 if (chain_size > total_size) 2579 chain_size = total_size; 2580 /* 2581 * we don't forcefault because we'll call 2582 * segmap_fault(F_SOFTLOCK) next. 2583 * 2584 * S_READ will get the ref bit set (by either 2585 * segmap_getmapflt() or segmap_fault()) and page 2586 * shared locked. 2587 */ 2588 base = segmap_getmapflt(segkmap, fvp, fileoff, 2589 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ); 2590 2591 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2592 snfi->snfi_len = (size_t)roundup(mapoff+chain_size, 2593 PAGESIZE)- (mapoff & PAGEMASK); 2594 /* 2595 * We must call segmap_fault() even for segmap_kpm 2596 * because that's how error gets returned. 2597 * (segmap_getmapflt() never fails but segmap_fault() 2598 * does.) 2599 * 2600 * If the pages aren't available yet, we get 2601 * DEADLK, so wait and try again a little later using 2602 * an increasing wait. We might be here a long time. 2603 * 2604 * If delay_sig returns EINTR, be sure to exit and 2605 * pass it up to the caller. 2606 */ 2607 deadlk_wait = 0; 2608 while ((error = FC_ERRNO(segmap_fault(kas.a_hat, 2609 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base + 2610 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK, 2611 S_READ))) == EDEADLK) { 2612 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2613 if ((error = delay_sig(deadlk_wait)) != 0) { 2614 break; 2615 } 2616 } 2617 if (error != 0) { 2618 (void) segmap_release(segkmap, base, 0); 2619 kmem_free(snfi, sizeof (*snfi)); 2620 error = (error == EINTR) ? EINTR : EIO; 2621 goto out; 2622 } 2623 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2624 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2625 snfi->snfi_base = base; 2626 snfi->snfi_mapoff = mapoff; 2627 mp = esballoca((uchar_t *)base + mapoff, chain_size, 2628 BPRI_HI, &snfi->snfi_frtn); 2629 2630 if (mp == NULL) { 2631 (void) segmap_fault(kas.a_hat, segkmap, 2632 (caddr_t)(uintptr_t)(((uintptr_t)base + 2633 mapoff) & PAGEMASK), snfi->snfi_len, 2634 F_SOFTUNLOCK, S_OTHER); 2635 (void) segmap_release(segkmap, base, 0); 2636 kmem_free(snfi, sizeof (*snfi)); 2637 freemsg(mp); 2638 error = EAGAIN; 2639 goto out; 2640 } 2641 VN_HOLD(fvp); 2642 snfi->snfi_vp = fvp; 2643 mp->b_wptr += chain_size; 2644 2645 /* Mark this dblk with the zero-copy flag */ 2646 mp->b_datap->db_struioflag |= STRUIO_ZC; 2647 fileoff += chain_size; 2648 total_size -= chain_size; 2649 } 2650 2651 if (total_size == 0 && !nowait) { 2652 ASSERT(!dowait); 2653 dowait = B_TRUE; 2654 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2655 } 2656 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2657 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2658 if (error != 0) { 2659 /* 2660 * mp contains the mblks that were not sent by 2661 * socket_sendmblk. Use its size to update *count 2662 */ 2663 *count = ksize + (chain_size - msgdsize(mp)); 2664 if (mp != NULL) 2665 freemsg(mp); 2666 return (error); 2667 } 2668 ksize += chain_size; 2669 if (total_size == 0) 2670 goto done; 2671 2672 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2673 va.va_mask = AT_SIZE; 2674 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2675 if (error) 2676 break; 2677 /* Read as much as possible. */ 2678 if (fileoff >= va.va_size) 2679 break; 2680 if (total_size + fileoff > va.va_size) 2681 total_size = va.va_size - fileoff; 2682 } 2683 out: 2684 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2685 done: 2686 *count = ksize; 2687 if (dowait) { 2688 stdata_t *stp; 2689 2690 stp = vp->v_stream; 2691 if (stp == NULL) { 2692 struct sonode *so; 2693 so = VTOSO(vp); 2694 error = so_zcopy_wait(so); 2695 } else { 2696 mutex_enter(&stp->sd_lock); 2697 while (!(stp->sd_flag & STZCNOTIFY)) { 2698 if (cv_wait_sig(&stp->sd_zcopy_wait, 2699 &stp->sd_lock) == 0) { 2700 error = EINTR; 2701 break; 2702 } 2703 } 2704 stp->sd_flag &= ~STZCNOTIFY; 2705 mutex_exit(&stp->sd_lock); 2706 } 2707 } 2708 return (error); 2709 } 2710 2711 int 2712 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2713 uint_t maxpsz, ssize_t *count) 2714 { 2715 struct vnode *vp; 2716 mblk_t *mp; 2717 int iosize; 2718 int extra = 0; 2719 int error; 2720 short fflag; 2721 int ksize; 2722 int ioflag; 2723 struct uio auio; 2724 struct iovec aiov; 2725 struct vattr va; 2726 int maxblk = 0; 2727 int wroff = 0; 2728 struct sonode *so; 2729 struct nmsghdr msg; 2730 2731 vp = fp->f_vnode; 2732 if (vp->v_type == VSOCK) { 2733 stdata_t *stp; 2734 2735 /* 2736 * Get the extra space to insert a header and a trailer. 2737 */ 2738 so = VTOSO(vp); 2739 stp = vp->v_stream; 2740 if (stp == NULL) { 2741 wroff = so->so_proto_props.sopp_wroff; 2742 maxblk = so->so_proto_props.sopp_maxblk; 2743 extra = wroff + so->so_proto_props.sopp_tail; 2744 } else { 2745 wroff = (int)(stp->sd_wroff); 2746 maxblk = (int)(stp->sd_maxblk); 2747 extra = wroff + (int)(stp->sd_tail); 2748 } 2749 } 2750 bzero(&msg, sizeof (msg)); 2751 fflag = fp->f_flag; 2752 ksize = 0; 2753 auio.uio_iov = &aiov; 2754 auio.uio_iovcnt = 1; 2755 auio.uio_segflg = UIO_SYSSPACE; 2756 auio.uio_llimit = MAXOFFSET_T; 2757 auio.uio_fmode = fflag; 2758 auio.uio_extflg = UIO_COPY_CACHED; 2759 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2760 /* If read sync is not asked for, filter sync flags */ 2761 if ((ioflag & FRSYNC) == 0) 2762 ioflag &= ~(FSYNC|FDSYNC); 2763 for (;;) { 2764 if (ISSIG(curthread, JUSTLOOKING)) { 2765 error = EINTR; 2766 break; 2767 } 2768 iosize = (int)MIN(maxpsz, size); 2769 2770 /* 2771 * Socket filters can limit the mblk size, 2772 * so limit reads to maxblk if there are 2773 * filters present. 2774 */ 2775 if (vp->v_type == VSOCK && 2776 so->so_filter_active > 0 && maxblk != INFPSZ) 2777 iosize = (int)MIN(iosize, maxblk); 2778 2779 if (is_system_labeled()) { 2780 mp = allocb_cred(iosize + extra, CRED(), 2781 curproc->p_pid); 2782 } else { 2783 mp = allocb(iosize + extra, BPRI_MED); 2784 } 2785 if (mp == NULL) { 2786 error = EAGAIN; 2787 break; 2788 } 2789 2790 mp->b_rptr += wroff; 2791 2792 aiov.iov_base = (caddr_t)mp->b_rptr; 2793 aiov.iov_len = iosize; 2794 auio.uio_loffset = fileoff; 2795 auio.uio_resid = iosize; 2796 2797 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2798 iosize -= auio.uio_resid; 2799 2800 if (error == EINTR && iosize != 0) 2801 error = 0; 2802 2803 if (error != 0 || iosize == 0) { 2804 freeb(mp); 2805 break; 2806 } 2807 mp->b_wptr = mp->b_rptr + iosize; 2808 2809 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2810 2811 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2812 2813 if (error != 0) { 2814 *count = ksize; 2815 if (mp != NULL) 2816 freeb(mp); 2817 return (error); 2818 } 2819 ksize += iosize; 2820 size -= iosize; 2821 if (size == 0) 2822 goto done; 2823 2824 fileoff += iosize; 2825 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2826 va.va_mask = AT_SIZE; 2827 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2828 if (error) 2829 break; 2830 /* Read as much as possible. */ 2831 if (fileoff >= va.va_size) 2832 size = 0; 2833 else if (size + fileoff > va.va_size) 2834 size = va.va_size - fileoff; 2835 } 2836 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2837 done: 2838 *count = ksize; 2839 return (error); 2840 } 2841 2842 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2843 /* 2844 * Largefile support for 32 bit applications only. 2845 */ 2846 int 2847 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2848 ssize32_t *count32) 2849 { 2850 ssize32_t sfv_len; 2851 u_offset_t sfv_off, va_size; 2852 struct vnode *vp, *fvp, *realvp; 2853 struct vattr va; 2854 stdata_t *stp; 2855 ssize_t count = 0; 2856 int error = 0; 2857 boolean_t dozcopy = B_FALSE; 2858 uint_t maxpsz; 2859 2860 sfv_len = (ssize32_t)sfv->sfv_len; 2861 if (sfv_len < 0) { 2862 error = EINVAL; 2863 goto out; 2864 } 2865 2866 if (sfv_len == 0) goto out; 2867 2868 sfv_off = (u_offset_t)sfv->sfv_off; 2869 2870 /* Same checks as in pread */ 2871 if (sfv_off > MAXOFFSET_T) { 2872 error = EINVAL; 2873 goto out; 2874 } 2875 if (sfv_off + sfv_len > MAXOFFSET_T) 2876 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2877 2878 /* 2879 * There are no more checks on sfv_len. So, we cast it to 2880 * u_offset_t and share the snf_direct_io/snf_cache code between 2881 * 32 bit and 64 bit. 2882 * 2883 * TODO: should do nbl_need_check() like read()? 2884 */ 2885 if (sfv_len > sendfile_max_size) { 2886 sf_stats.ss_file_not_cached++; 2887 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2888 &count); 2889 goto out; 2890 } 2891 fvp = rfp->f_vnode; 2892 if (VOP_REALVP(fvp, &realvp, NULL) == 0) 2893 fvp = realvp; 2894 /* 2895 * Grab the lock as a reader to prevent the file size 2896 * from changing underneath. 2897 */ 2898 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2899 va.va_mask = AT_SIZE; 2900 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2901 va_size = va.va_size; 2902 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) { 2903 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2904 goto out; 2905 } 2906 /* Read as much as possible. */ 2907 if (sfv_off + sfv_len > va_size) 2908 sfv_len = va_size - sfv_off; 2909 2910 vp = fp->f_vnode; 2911 stp = vp->v_stream; 2912 /* 2913 * When the NOWAIT flag is not set, we enable zero-copy only if the 2914 * transfer size is large enough. This prevents performance loss 2915 * when the caller sends the file piece by piece. 2916 */ 2917 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2918 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2919 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2920 uint_t copyflag; 2921 copyflag = stp != NULL ? stp->sd_copyflag : 2922 VTOSO(vp)->so_proto_props.sopp_zcopyflag; 2923 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2924 int on = 1; 2925 2926 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET, 2927 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0) 2928 dozcopy = B_TRUE; 2929 } else { 2930 dozcopy = copyflag & STZCVMSAFE; 2931 } 2932 } 2933 if (dozcopy) { 2934 sf_stats.ss_file_segmap++; 2935 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2936 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 2937 } else { 2938 if (vp->v_type == VSOCK && stp == NULL) { 2939 sonode_t *so = VTOSO(vp); 2940 maxpsz = so->so_proto_props.sopp_maxpsz; 2941 } else if (stp != NULL) { 2942 maxpsz = stp->sd_qn_maxpsz; 2943 } else { 2944 maxpsz = maxphys; 2945 } 2946 2947 if (maxpsz == INFPSZ) 2948 maxpsz = maxphys; 2949 else 2950 maxpsz = roundup(maxpsz, MAXBSIZE); 2951 sf_stats.ss_file_cached++; 2952 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2953 maxpsz, &count); 2954 } 2955 out: 2956 releasef(sfv->sfv_fd); 2957 *count32 = (ssize32_t)count; 2958 return (error); 2959 } 2960 #endif 2961 2962 #ifdef _SYSCALL32_IMPL 2963 /* 2964 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 2965 * ssize_t rather than ssize32_t; see the comments above read32 for details. 2966 */ 2967 2968 ssize_t 2969 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2970 { 2971 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2972 } 2973 2974 ssize_t 2975 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2976 caddr32_t name, caddr32_t namelenp) 2977 { 2978 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2979 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 2980 } 2981 2982 ssize_t 2983 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2984 { 2985 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2986 } 2987 2988 ssize_t 2989 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2990 caddr32_t name, socklen_t namelen) 2991 { 2992 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2993 (void *)(uintptr_t)name, namelen)); 2994 } 2995 #endif /* _SYSCALL32_IMPL */ 2996 2997 /* 2998 * Function wrappers (mostly around the sonode switch) for 2999 * backward compatibility. 3000 */ 3001 3002 int 3003 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 3004 { 3005 return (socket_accept(so, fflag, CRED(), nsop)); 3006 } 3007 3008 int 3009 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3010 int backlog, int flags) 3011 { 3012 int error; 3013 3014 error = socket_bind(so, name, namelen, flags, CRED()); 3015 if (error == 0 && backlog != 0) 3016 return (socket_listen(so, backlog, CRED())); 3017 3018 return (error); 3019 } 3020 3021 int 3022 solisten(struct sonode *so, int backlog) 3023 { 3024 return (socket_listen(so, backlog, CRED())); 3025 } 3026 3027 int 3028 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3029 int fflag, int flags) 3030 { 3031 return (socket_connect(so, name, namelen, fflag, flags, CRED())); 3032 } 3033 3034 int 3035 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3036 { 3037 return (socket_recvmsg(so, msg, uiop, CRED())); 3038 } 3039 3040 int 3041 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3042 { 3043 return (socket_sendmsg(so, msg, uiop, CRED())); 3044 } 3045 3046 int 3047 soshutdown(struct sonode *so, int how) 3048 { 3049 return (socket_shutdown(so, how, CRED())); 3050 } 3051 3052 int 3053 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 3054 socklen_t *optlenp, int flags) 3055 { 3056 return (socket_getsockopt(so, level, option_name, optval, optlenp, 3057 flags, CRED())); 3058 } 3059 3060 int 3061 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 3062 t_uscalar_t optlen) 3063 { 3064 return (socket_setsockopt(so, level, option_name, optval, optlen, 3065 CRED())); 3066 } 3067 3068 /* 3069 * Because this is backward compatibility interface it only needs to be 3070 * able to handle the creation of TPI sockfs sockets. 3071 */ 3072 struct sonode * 3073 socreate(struct sockparams *sp, int family, int type, int protocol, int version, 3074 int *errorp) 3075 { 3076 struct sonode *so; 3077 3078 ASSERT(sp != NULL); 3079 3080 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol, 3081 version, SOCKET_SLEEP, errorp, CRED()); 3082 if (so == NULL) { 3083 SOCKPARAMS_DEC_REF(sp); 3084 } else { 3085 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) { 3086 /* Cannot fail, only bumps so_count */ 3087 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL); 3088 } else { 3089 socket_destroy(so); 3090 so = NULL; 3091 } 3092 } 3093 return (so); 3094 }