1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 1995, 2010, Oracle and/or its affiliates. All rights reserved. 24 */ 25 26 /* Copyright (c) 2013, OmniTI Computer Consulting, Inc. All rights reserved. */ 27 28 #include <sys/types.h> 29 #include <sys/t_lock.h> 30 #include <sys/param.h> 31 #include <sys/systm.h> 32 #include <sys/buf.h> 33 #include <sys/conf.h> 34 #include <sys/cred.h> 35 #include <sys/kmem.h> 36 #include <sys/sysmacros.h> 37 #include <sys/vfs.h> 38 #include <sys/vnode.h> 39 #include <sys/debug.h> 40 #include <sys/errno.h> 41 #include <sys/time.h> 42 #include <sys/file.h> 43 #include <sys/user.h> 44 #include <sys/stream.h> 45 #include <sys/strsubr.h> 46 #include <sys/strsun.h> 47 #include <sys/sunddi.h> 48 #include <sys/esunddi.h> 49 #include <sys/flock.h> 50 #include <sys/modctl.h> 51 #include <sys/cmn_err.h> 52 #include <sys/vmsystm.h> 53 #include <sys/policy.h> 54 55 #include <sys/socket.h> 56 #include <sys/socketvar.h> 57 58 #include <sys/isa_defs.h> 59 #include <sys/inttypes.h> 60 #include <sys/systm.h> 61 #include <sys/cpuvar.h> 62 #include <sys/filio.h> 63 #include <sys/sendfile.h> 64 #include <sys/ddi.h> 65 #include <vm/seg.h> 66 #include <vm/seg_map.h> 67 #include <vm/seg_kpm.h> 68 69 #include <fs/sockfs/nl7c.h> 70 #include <fs/sockfs/sockcommon.h> 71 #include <fs/sockfs/sockfilter_impl.h> 72 #include <fs/sockfs/socktpi.h> 73 74 #ifdef SOCK_TEST 75 int do_useracc = 1; /* Controlled by setting SO_DEBUG to 4 */ 76 #else 77 #define do_useracc 1 78 #endif /* SOCK_TEST */ 79 80 extern int xnet_truncate_print; 81 82 extern void nl7c_init(void); 83 extern int sockfs_defer_nl7c_init; 84 85 /* 86 * Note: DEF_IOV_MAX is defined and used as it is in "fs/vncalls.c" 87 * as there isn't a formal definition of IOV_MAX ??? 88 */ 89 #define MSG_MAXIOVLEN 16 90 91 /* 92 * Kernel component of socket creation. 93 * 94 * The socket library determines which version number to use. 95 * First the library calls this with a NULL devpath. If this fails 96 * to find a transport (using solookup) the library will look in /etc/netconfig 97 * for the appropriate transport. If one is found it will pass in the 98 * devpath for the kernel to use. 99 */ 100 int 101 so_socket(int family, int type_w_flags, int protocol, char *devpath, 102 int version) 103 { 104 struct sonode *so; 105 vnode_t *vp; 106 struct file *fp; 107 int fd; 108 int error; 109 int type; 110 111 type = type_w_flags & SOCK_TYPE_MASK; 112 type_w_flags &= ~SOCK_TYPE_MASK; 113 if (type_w_flags & ~(SOCK_CLOEXEC|SOCK_NDELAY|SOCK_NONBLOCK)) 114 return (set_errno(EINVAL)); 115 116 if (devpath != NULL) { 117 char *buf; 118 size_t kdevpathlen = 0; 119 120 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 121 if ((error = copyinstr(devpath, buf, 122 MAXPATHLEN, &kdevpathlen)) != 0) { 123 kmem_free(buf, MAXPATHLEN); 124 return (set_errno(error)); 125 } 126 so = socket_create(family, type, protocol, buf, NULL, 127 SOCKET_SLEEP, version, CRED(), &error); 128 kmem_free(buf, MAXPATHLEN); 129 } else { 130 so = socket_create(family, type, protocol, NULL, NULL, 131 SOCKET_SLEEP, version, CRED(), &error); 132 } 133 if (so == NULL) 134 return (set_errno(error)); 135 136 /* Allocate a file descriptor for the socket */ 137 vp = SOTOV(so); 138 if (error = falloc(vp, FWRITE|FREAD, &fp, &fd)) { 139 (void) socket_close(so, 0, CRED()); 140 socket_destroy(so); 141 return (set_errno(error)); 142 } 143 144 /* 145 * Now fill in the entries that falloc reserved 146 */ 147 if (type_w_flags & SOCK_NDELAY) { 148 so->so_state |= SS_NDELAY; 149 fp->f_flag |= FNDELAY; 150 } 151 if (type_w_flags & SOCK_NONBLOCK) { 152 so->so_state |= SS_NONBLOCK; 153 fp->f_flag |= FNONBLOCK; 154 } 155 mutex_exit(&fp->f_tlock); 156 setf(fd, fp); 157 if ((type_w_flags & SOCK_CLOEXEC) != 0) { 158 f_setfd(fd, FD_CLOEXEC); 159 } 160 161 return (fd); 162 } 163 164 /* 165 * Map from a file descriptor to a socket node. 166 * Returns with the file descriptor held i.e. the caller has to 167 * use releasef when done with the file descriptor. 168 */ 169 struct sonode * 170 getsonode(int sock, int *errorp, file_t **fpp) 171 { 172 file_t *fp; 173 vnode_t *vp; 174 struct sonode *so; 175 176 if ((fp = getf(sock)) == NULL) { 177 *errorp = EBADF; 178 eprintline(*errorp); 179 return (NULL); 180 } 181 vp = fp->f_vnode; 182 /* Check if it is a socket */ 183 if (vp->v_type != VSOCK) { 184 releasef(sock); 185 *errorp = ENOTSOCK; 186 eprintline(*errorp); 187 return (NULL); 188 } 189 /* 190 * Use the stream head to find the real socket vnode. 191 * This is needed when namefs sits above sockfs. 192 */ 193 if (vp->v_stream) { 194 ASSERT(vp->v_stream->sd_vnode); 195 vp = vp->v_stream->sd_vnode; 196 197 so = VTOSO(vp); 198 if (so->so_version == SOV_STREAM) { 199 releasef(sock); 200 *errorp = ENOTSOCK; 201 eprintsoline(so, *errorp); 202 return (NULL); 203 } 204 } else { 205 so = VTOSO(vp); 206 } 207 if (fpp) 208 *fpp = fp; 209 return (so); 210 } 211 212 /* 213 * Allocate and copyin a sockaddr. 214 * Ensures NULL termination for AF_UNIX addresses by extending them 215 * with one NULL byte if need be. Verifies that the length is not 216 * excessive to prevent an application from consuming all of kernel 217 * memory. Returns NULL when an error occurred. 218 */ 219 static struct sockaddr * 220 copyin_name(struct sonode *so, struct sockaddr *name, socklen_t *namelenp, 221 int *errorp) 222 { 223 char *faddr; 224 size_t namelen = (size_t)*namelenp; 225 226 ASSERT(namelen != 0); 227 if (namelen > SO_MAXARGSIZE) { 228 *errorp = EINVAL; 229 eprintsoline(so, *errorp); 230 return (NULL); 231 } 232 233 faddr = (char *)kmem_alloc(namelen, KM_SLEEP); 234 if (copyin(name, faddr, namelen)) { 235 kmem_free(faddr, namelen); 236 *errorp = EFAULT; 237 eprintsoline(so, *errorp); 238 return (NULL); 239 } 240 241 /* 242 * Add space for NULL termination if needed. 243 * Do a quick check if the last byte is NUL. 244 */ 245 if (so->so_family == AF_UNIX && faddr[namelen - 1] != '\0') { 246 /* Check if there is any NULL termination */ 247 size_t i; 248 int foundnull = 0; 249 250 for (i = sizeof (name->sa_family); i < namelen; i++) { 251 if (faddr[i] == '\0') { 252 foundnull = 1; 253 break; 254 } 255 } 256 if (!foundnull) { 257 /* Add extra byte for NUL padding */ 258 char *nfaddr; 259 260 nfaddr = (char *)kmem_alloc(namelen + 1, KM_SLEEP); 261 bcopy(faddr, nfaddr, namelen); 262 kmem_free(faddr, namelen); 263 264 /* NUL terminate */ 265 nfaddr[namelen] = '\0'; 266 namelen++; 267 ASSERT((socklen_t)namelen == namelen); 268 *namelenp = (socklen_t)namelen; 269 faddr = nfaddr; 270 } 271 } 272 return ((struct sockaddr *)faddr); 273 } 274 275 /* 276 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 277 */ 278 static int 279 copyout_arg(void *uaddr, socklen_t ulen, void *ulenp, 280 void *kaddr, socklen_t klen) 281 { 282 if (uaddr != NULL) { 283 if (ulen > klen) 284 ulen = klen; 285 286 if (ulen != 0) { 287 if (copyout(kaddr, uaddr, ulen)) 288 return (EFAULT); 289 } 290 } else 291 ulen = 0; 292 293 if (ulenp != NULL) { 294 if (copyout(&ulen, ulenp, sizeof (ulen))) 295 return (EFAULT); 296 } 297 return (0); 298 } 299 300 /* 301 * Copy from kaddr/klen to uaddr/ulen. Updates ulenp if non-NULL. 302 * If klen is greater than ulen it still uses the non-truncated 303 * klen to update ulenp. 304 */ 305 static int 306 copyout_name(void *uaddr, socklen_t ulen, void *ulenp, 307 void *kaddr, socklen_t klen) 308 { 309 if (uaddr != NULL) { 310 if (ulen >= klen) 311 ulen = klen; 312 else if (ulen != 0 && xnet_truncate_print) { 313 printf("sockfs: truncating copyout of address using " 314 "XNET semantics for pid = %d. Lengths %d, %d\n", 315 curproc->p_pid, klen, ulen); 316 } 317 318 if (ulen != 0) { 319 if (copyout(kaddr, uaddr, ulen)) 320 return (EFAULT); 321 } else 322 klen = 0; 323 } else 324 klen = 0; 325 326 if (ulenp != NULL) { 327 if (copyout(&klen, ulenp, sizeof (klen))) 328 return (EFAULT); 329 } 330 return (0); 331 } 332 333 /* 334 * The socketpair() code in libsocket creates two sockets (using 335 * the /etc/netconfig fallback if needed) before calling this routine 336 * to connect the two sockets together. 337 * 338 * For a SOCK_STREAM socketpair a listener is needed - in that case this 339 * routine will create a new file descriptor as part of accepting the 340 * connection. The library socketpair() will check if svs[2] has changed 341 * in which case it will close the changed fd. 342 * 343 * Note that this code could use the TPI feature of accepting the connection 344 * on the listening endpoint. However, that would require significant changes 345 * to soaccept. 346 */ 347 int 348 so_socketpair(int sv[2]) 349 { 350 int svs[2]; 351 struct sonode *so1, *so2; 352 int error; 353 int orig_flags; 354 struct sockaddr_ux *name; 355 size_t namelen; 356 sotpi_info_t *sti1; 357 sotpi_info_t *sti2; 358 359 dprint(1, ("so_socketpair(%p)\n", (void *)sv)); 360 361 error = useracc(sv, sizeof (svs), B_WRITE); 362 if (error && do_useracc) 363 return (set_errno(EFAULT)); 364 365 if (copyin(sv, svs, sizeof (svs))) 366 return (set_errno(EFAULT)); 367 368 if ((so1 = getsonode(svs[0], &error, NULL)) == NULL) 369 return (set_errno(error)); 370 371 if ((so2 = getsonode(svs[1], &error, NULL)) == NULL) { 372 releasef(svs[0]); 373 return (set_errno(error)); 374 } 375 376 if (so1->so_family != AF_UNIX || so2->so_family != AF_UNIX) { 377 error = EOPNOTSUPP; 378 goto done; 379 } 380 381 sti1 = SOTOTPI(so1); 382 sti2 = SOTOTPI(so2); 383 384 /* 385 * The code below makes assumptions about the "sockfs" implementation. 386 * So make sure that the correct implementation is really used. 387 */ 388 ASSERT(so1->so_ops == &sotpi_sonodeops); 389 ASSERT(so2->so_ops == &sotpi_sonodeops); 390 391 if (so1->so_type == SOCK_DGRAM) { 392 /* 393 * Bind both sockets and connect them with each other. 394 * Need to allocate name/namelen for soconnect. 395 */ 396 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC, CRED()); 397 if (error) { 398 eprintsoline(so1, error); 399 goto done; 400 } 401 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 402 if (error) { 403 eprintsoline(so2, error); 404 goto done; 405 } 406 namelen = sizeof (struct sockaddr_ux); 407 name = kmem_alloc(namelen, KM_SLEEP); 408 name->sou_family = AF_UNIX; 409 name->sou_addr = sti2->sti_ux_laddr; 410 error = socket_connect(so1, 411 (struct sockaddr *)name, 412 (socklen_t)namelen, 413 0, _SOCONNECT_NOXLATE, CRED()); 414 if (error) { 415 kmem_free(name, namelen); 416 eprintsoline(so1, error); 417 goto done; 418 } 419 name->sou_addr = sti1->sti_ux_laddr; 420 error = socket_connect(so2, 421 (struct sockaddr *)name, 422 (socklen_t)namelen, 423 0, _SOCONNECT_NOXLATE, CRED()); 424 kmem_free(name, namelen); 425 if (error) { 426 eprintsoline(so2, error); 427 goto done; 428 } 429 releasef(svs[0]); 430 releasef(svs[1]); 431 } else { 432 /* 433 * Bind both sockets, with so1 being a listener. 434 * Connect so2 to so1 - nonblocking to avoid waiting for 435 * soaccept to complete. 436 * Accept a connection on so1. Pass out the new fd as sv[0]. 437 * The library will detect the changed fd and close 438 * the original one. 439 */ 440 struct sonode *nso; 441 struct vnode *nvp; 442 struct file *nfp; 443 int nfd; 444 445 /* 446 * We could simply call socket_listen() here (which would do the 447 * binding automatically) if the code didn't rely on passing 448 * _SOBIND_NOXLATE to the TPI implementation of socket_bind(). 449 */ 450 error = socket_bind(so1, NULL, 0, _SOBIND_UNSPEC| 451 _SOBIND_NOXLATE|_SOBIND_LISTEN|_SOBIND_SOCKETPAIR, 452 CRED()); 453 if (error) { 454 eprintsoline(so1, error); 455 goto done; 456 } 457 error = socket_bind(so2, NULL, 0, _SOBIND_UNSPEC, CRED()); 458 if (error) { 459 eprintsoline(so2, error); 460 goto done; 461 } 462 463 namelen = sizeof (struct sockaddr_ux); 464 name = kmem_alloc(namelen, KM_SLEEP); 465 name->sou_family = AF_UNIX; 466 name->sou_addr = sti1->sti_ux_laddr; 467 error = socket_connect(so2, 468 (struct sockaddr *)name, 469 (socklen_t)namelen, 470 FNONBLOCK, _SOCONNECT_NOXLATE, CRED()); 471 kmem_free(name, namelen); 472 if (error) { 473 if (error != EINPROGRESS) { 474 eprintsoline(so2, error); goto done; 475 } 476 } 477 478 error = socket_accept(so1, 0, CRED(), &nso); 479 if (error) { 480 eprintsoline(so1, error); 481 goto done; 482 } 483 484 /* wait for so2 being SS_CONNECTED ignoring signals */ 485 mutex_enter(&so2->so_lock); 486 error = sowaitconnected(so2, 0, 1); 487 mutex_exit(&so2->so_lock); 488 if (error != 0) { 489 (void) socket_close(nso, 0, CRED()); 490 socket_destroy(nso); 491 eprintsoline(so2, error); 492 goto done; 493 } 494 495 nvp = SOTOV(nso); 496 if (error = falloc(nvp, FWRITE|FREAD, &nfp, &nfd)) { 497 (void) socket_close(nso, 0, CRED()); 498 socket_destroy(nso); 499 eprintsoline(nso, error); 500 goto done; 501 } 502 /* 503 * copy over FNONBLOCK and FNDELAY flags should they exist 504 */ 505 if (so1->so_state & SS_NONBLOCK) 506 nfp->f_flag |= FNONBLOCK; 507 if (so1->so_state & SS_NDELAY) 508 nfp->f_flag |= FNDELAY; 509 510 /* 511 * fill in the entries that falloc reserved 512 */ 513 mutex_exit(&nfp->f_tlock); 514 setf(nfd, nfp); 515 516 /* 517 * get the original flags before we release 518 */ 519 VERIFY(f_getfd_error(svs[0], &orig_flags) == 0); 520 521 releasef(svs[0]); 522 releasef(svs[1]); 523 524 /* 525 * If FD_CLOEXEC was set on the filedescriptor we're 526 * swapping out, we should set it on the new one too. 527 */ 528 if (orig_flags & FD_CLOEXEC) { 529 f_setfd(nfd, FD_CLOEXEC); 530 } 531 532 /* 533 * The socketpair library routine will close the original 534 * svs[0] when this code passes out a different file 535 * descriptor. 536 */ 537 svs[0] = nfd; 538 539 if (copyout(svs, sv, sizeof (svs))) { 540 (void) closeandsetf(nfd, NULL); 541 eprintline(EFAULT); 542 return (set_errno(EFAULT)); 543 } 544 } 545 return (0); 546 547 done: 548 releasef(svs[0]); 549 releasef(svs[1]); 550 return (set_errno(error)); 551 } 552 553 int 554 bind(int sock, struct sockaddr *name, socklen_t namelen, int version) 555 { 556 struct sonode *so; 557 int error; 558 559 dprint(1, ("bind(%d, %p, %d)\n", 560 sock, (void *)name, namelen)); 561 562 if ((so = getsonode(sock, &error, NULL)) == NULL) 563 return (set_errno(error)); 564 565 /* Allocate and copyin name */ 566 /* 567 * X/Open test does not expect EFAULT with NULL name and non-zero 568 * namelen. 569 */ 570 if (name != NULL && namelen != 0) { 571 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 572 name = copyin_name(so, name, &namelen, &error); 573 if (name == NULL) { 574 releasef(sock); 575 return (set_errno(error)); 576 } 577 } else { 578 name = NULL; 579 namelen = 0; 580 } 581 582 switch (version) { 583 default: 584 error = socket_bind(so, name, namelen, 0, CRED()); 585 break; 586 case SOV_XPG4_2: 587 error = socket_bind(so, name, namelen, _SOBIND_XPG4_2, CRED()); 588 break; 589 case SOV_SOCKBSD: 590 error = socket_bind(so, name, namelen, _SOBIND_SOCKBSD, CRED()); 591 break; 592 } 593 done: 594 releasef(sock); 595 if (name != NULL) 596 kmem_free(name, (size_t)namelen); 597 598 if (error) 599 return (set_errno(error)); 600 return (0); 601 } 602 603 /* ARGSUSED2 */ 604 int 605 listen(int sock, int backlog, int version) 606 { 607 struct sonode *so; 608 int error; 609 610 dprint(1, ("listen(%d, %d)\n", 611 sock, backlog)); 612 613 if ((so = getsonode(sock, &error, NULL)) == NULL) 614 return (set_errno(error)); 615 616 error = socket_listen(so, backlog, CRED()); 617 618 releasef(sock); 619 if (error) 620 return (set_errno(error)); 621 return (0); 622 } 623 624 /*ARGSUSED3*/ 625 int 626 accept(int sock, struct sockaddr *name, socklen_t *namelenp, int version, 627 int flags) 628 { 629 struct sonode *so; 630 file_t *fp; 631 int error; 632 socklen_t namelen; 633 struct sonode *nso; 634 struct vnode *nvp; 635 struct file *nfp; 636 int nfd; 637 int ssflags; 638 struct sockaddr *addrp; 639 socklen_t addrlen; 640 641 dprint(1, ("accept(%d, %p, %p)\n", 642 sock, (void *)name, (void *)namelenp)); 643 644 if (flags & ~(SOCK_CLOEXEC|SOCK_NONBLOCK|SOCK_NDELAY)) { 645 return (set_errno(EINVAL)); 646 } 647 648 /* Translate SOCK_ flags to their SS_ variant */ 649 ssflags = 0; 650 if (flags & SOCK_NONBLOCK) 651 ssflags |= SS_NONBLOCK; 652 if (flags & SOCK_NDELAY) 653 ssflags |= SS_NDELAY; 654 655 if ((so = getsonode(sock, &error, &fp)) == NULL) 656 return (set_errno(error)); 657 658 if (name != NULL) { 659 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 660 if (copyin(namelenp, &namelen, sizeof (namelen))) { 661 releasef(sock); 662 return (set_errno(EFAULT)); 663 } 664 if (namelen != 0) { 665 error = useracc(name, (size_t)namelen, B_WRITE); 666 if (error && do_useracc) { 667 releasef(sock); 668 return (set_errno(EFAULT)); 669 } 670 } else 671 name = NULL; 672 } else { 673 namelen = 0; 674 } 675 676 /* 677 * Allocate the user fd before socket_accept() in order to 678 * catch EMFILE errors before calling socket_accept(). 679 */ 680 if ((nfd = ufalloc(0)) == -1) { 681 eprintsoline(so, EMFILE); 682 releasef(sock); 683 return (set_errno(EMFILE)); 684 } 685 error = socket_accept(so, fp->f_flag, CRED(), &nso); 686 if (error) { 687 setf(nfd, NULL); 688 releasef(sock); 689 return (set_errno(error)); 690 } 691 692 nvp = SOTOV(nso); 693 694 ASSERT(MUTEX_NOT_HELD(&nso->so_lock)); 695 if (namelen != 0) { 696 addrlen = so->so_max_addr_len; 697 addrp = (struct sockaddr *)kmem_alloc(addrlen, KM_SLEEP); 698 699 if ((error = socket_getpeername(nso, (struct sockaddr *)addrp, 700 &addrlen, B_TRUE, CRED())) == 0) { 701 error = copyout_name(name, namelen, namelenp, 702 addrp, addrlen); 703 } else { 704 ASSERT(error == EINVAL || error == ENOTCONN); 705 error = ECONNABORTED; 706 } 707 kmem_free(addrp, so->so_max_addr_len); 708 } 709 710 if (error) { 711 setf(nfd, NULL); 712 (void) socket_close(nso, 0, CRED()); 713 socket_destroy(nso); 714 releasef(sock); 715 return (set_errno(error)); 716 } 717 if (error = falloc(NULL, FWRITE|FREAD, &nfp, NULL)) { 718 setf(nfd, NULL); 719 (void) socket_close(nso, 0, CRED()); 720 socket_destroy(nso); 721 eprintsoline(so, error); 722 releasef(sock); 723 return (set_errno(error)); 724 } 725 /* 726 * fill in the entries that falloc reserved 727 */ 728 nfp->f_vnode = nvp; 729 mutex_exit(&nfp->f_tlock); 730 setf(nfd, nfp); 731 732 /* 733 * Act on SOCK_CLOEXEC from flags 734 */ 735 if (flags & SOCK_CLOEXEC) { 736 f_setfd(nfd, FD_CLOEXEC); 737 } 738 739 /* 740 * Copy FNDELAY and FNONBLOCK from listener to acceptor 741 * and from ssflags 742 */ 743 if ((ssflags | so->so_state) & (SS_NDELAY|SS_NONBLOCK)) { 744 uint_t oflag = nfp->f_flag; 745 int arg = 0; 746 747 if ((ssflags | so->so_state) & SS_NONBLOCK) 748 arg |= FNONBLOCK; 749 else if ((ssflags | so->so_state) & SS_NDELAY) 750 arg |= FNDELAY; 751 752 /* 753 * This code is a simplification of the F_SETFL code in fcntl() 754 * Ignore any errors from VOP_SETFL. 755 */ 756 if ((error = VOP_SETFL(nvp, oflag, arg, nfp->f_cred, NULL)) 757 != 0) { 758 eprintsoline(so, error); 759 error = 0; 760 } else { 761 mutex_enter(&nfp->f_tlock); 762 nfp->f_flag &= ~FMASK | (FREAD|FWRITE); 763 nfp->f_flag |= arg; 764 mutex_exit(&nfp->f_tlock); 765 } 766 } 767 releasef(sock); 768 return (nfd); 769 } 770 771 int 772 connect(int sock, struct sockaddr *name, socklen_t namelen, int version) 773 { 774 struct sonode *so; 775 file_t *fp; 776 int error; 777 778 dprint(1, ("connect(%d, %p, %d)\n", 779 sock, (void *)name, namelen)); 780 781 if ((so = getsonode(sock, &error, &fp)) == NULL) 782 return (set_errno(error)); 783 784 /* Allocate and copyin name */ 785 if (namelen != 0) { 786 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 787 name = copyin_name(so, name, &namelen, &error); 788 if (name == NULL) { 789 releasef(sock); 790 return (set_errno(error)); 791 } 792 } else 793 name = NULL; 794 795 error = socket_connect(so, name, namelen, fp->f_flag, 796 (version != SOV_XPG4_2) ? 0 : _SOCONNECT_XPG4_2, CRED()); 797 releasef(sock); 798 if (name) 799 kmem_free(name, (size_t)namelen); 800 if (error) 801 return (set_errno(error)); 802 return (0); 803 } 804 805 /*ARGSUSED2*/ 806 int 807 shutdown(int sock, int how, int version) 808 { 809 struct sonode *so; 810 int error; 811 812 dprint(1, ("shutdown(%d, %d)\n", 813 sock, how)); 814 815 if ((so = getsonode(sock, &error, NULL)) == NULL) 816 return (set_errno(error)); 817 818 error = socket_shutdown(so, how, CRED()); 819 820 releasef(sock); 821 if (error) 822 return (set_errno(error)); 823 return (0); 824 } 825 826 /* 827 * Common receive routine. 828 */ 829 static ssize_t 830 recvit(int sock, 831 struct nmsghdr *msg, 832 struct uio *uiop, 833 int flags, 834 socklen_t *namelenp, 835 socklen_t *controllenp, 836 int *flagsp) 837 { 838 struct sonode *so; 839 file_t *fp; 840 void *name; 841 socklen_t namelen; 842 void *control; 843 socklen_t controllen; 844 ssize_t len; 845 int error; 846 847 if ((so = getsonode(sock, &error, &fp)) == NULL) 848 return (set_errno(error)); 849 850 len = uiop->uio_resid; 851 uiop->uio_fmode = fp->f_flag; 852 uiop->uio_extflg = UIO_COPY_CACHED; 853 854 name = msg->msg_name; 855 namelen = msg->msg_namelen; 856 control = msg->msg_control; 857 controllen = msg->msg_controllen; 858 859 msg->msg_flags = flags & (MSG_OOB | MSG_PEEK | MSG_WAITALL | 860 MSG_DONTWAIT | MSG_XPG4_2); 861 862 error = socket_recvmsg(so, msg, uiop, CRED()); 863 if (error) { 864 releasef(sock); 865 return (set_errno(error)); 866 } 867 lwp_stat_update(LWP_STAT_MSGRCV, 1); 868 releasef(sock); 869 870 error = copyout_name(name, namelen, namelenp, 871 msg->msg_name, msg->msg_namelen); 872 if (error) 873 goto err; 874 875 if (flagsp != NULL) { 876 /* 877 * Clear internal flag. 878 */ 879 msg->msg_flags &= ~MSG_XPG4_2; 880 881 /* 882 * Determine MSG_CTRUNC. sorecvmsg sets MSG_CTRUNC only 883 * when controllen is zero and there is control data to 884 * copy out. 885 */ 886 if (controllen != 0 && 887 (msg->msg_controllen > controllen || control == NULL)) { 888 dprint(1, ("recvit: CTRUNC %d %d %p\n", 889 msg->msg_controllen, controllen, control)); 890 891 msg->msg_flags |= MSG_CTRUNC; 892 } 893 if (copyout(&msg->msg_flags, flagsp, 894 sizeof (msg->msg_flags))) { 895 error = EFAULT; 896 goto err; 897 } 898 } 899 /* 900 * Note: This MUST be done last. There can be no "goto err" after this 901 * point since it could make so_closefds run twice on some part 902 * of the file descriptor array. 903 */ 904 if (controllen != 0) { 905 if (!(flags & MSG_XPG4_2)) { 906 /* 907 * Good old msg_accrights can only return a multiple 908 * of 4 bytes. 909 */ 910 controllen &= ~((int)sizeof (uint32_t) - 1); 911 } 912 error = copyout_arg(control, controllen, controllenp, 913 msg->msg_control, msg->msg_controllen); 914 if (error) 915 goto err; 916 917 if (msg->msg_controllen > controllen || control == NULL) { 918 if (control == NULL) 919 controllen = 0; 920 so_closefds(msg->msg_control, msg->msg_controllen, 921 !(flags & MSG_XPG4_2), controllen); 922 } 923 } 924 if (msg->msg_namelen != 0) 925 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 926 if (msg->msg_controllen != 0) 927 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 928 return (len - uiop->uio_resid); 929 930 err: 931 /* 932 * If we fail and the control part contains file descriptors 933 * we have to close the fd's. 934 */ 935 if (msg->msg_controllen != 0) 936 so_closefds(msg->msg_control, msg->msg_controllen, 937 !(flags & MSG_XPG4_2), 0); 938 if (msg->msg_namelen != 0) 939 kmem_free(msg->msg_name, (size_t)msg->msg_namelen); 940 if (msg->msg_controllen != 0) 941 kmem_free(msg->msg_control, (size_t)msg->msg_controllen); 942 return (set_errno(error)); 943 } 944 945 /* 946 * Native system call 947 */ 948 ssize_t 949 recv(int sock, void *buffer, size_t len, int flags) 950 { 951 struct nmsghdr lmsg; 952 struct uio auio; 953 struct iovec aiov[1]; 954 955 dprint(1, ("recv(%d, %p, %ld, %d)\n", 956 sock, buffer, len, flags)); 957 958 if ((ssize_t)len < 0) { 959 return (set_errno(EINVAL)); 960 } 961 962 aiov[0].iov_base = buffer; 963 aiov[0].iov_len = len; 964 auio.uio_loffset = 0; 965 auio.uio_iov = aiov; 966 auio.uio_iovcnt = 1; 967 auio.uio_resid = len; 968 auio.uio_segflg = UIO_USERSPACE; 969 auio.uio_limit = 0; 970 971 lmsg.msg_namelen = 0; 972 lmsg.msg_controllen = 0; 973 lmsg.msg_flags = 0; 974 return (recvit(sock, &lmsg, &auio, flags, NULL, NULL, NULL)); 975 } 976 977 ssize_t 978 recvfrom(int sock, void *buffer, size_t len, int flags, 979 struct sockaddr *name, socklen_t *namelenp) 980 { 981 struct nmsghdr lmsg; 982 struct uio auio; 983 struct iovec aiov[1]; 984 985 dprint(1, ("recvfrom(%d, %p, %ld, %d, %p, %p)\n", 986 sock, buffer, len, flags, (void *)name, (void *)namelenp)); 987 988 if ((ssize_t)len < 0) { 989 return (set_errno(EINVAL)); 990 } 991 992 aiov[0].iov_base = buffer; 993 aiov[0].iov_len = len; 994 auio.uio_loffset = 0; 995 auio.uio_iov = aiov; 996 auio.uio_iovcnt = 1; 997 auio.uio_resid = len; 998 auio.uio_segflg = UIO_USERSPACE; 999 auio.uio_limit = 0; 1000 1001 lmsg.msg_name = (char *)name; 1002 if (namelenp != NULL) { 1003 if (copyin(namelenp, &lmsg.msg_namelen, 1004 sizeof (lmsg.msg_namelen))) 1005 return (set_errno(EFAULT)); 1006 } else { 1007 lmsg.msg_namelen = 0; 1008 } 1009 lmsg.msg_controllen = 0; 1010 lmsg.msg_flags = 0; 1011 1012 return (recvit(sock, &lmsg, &auio, flags, namelenp, NULL, NULL)); 1013 } 1014 1015 /* 1016 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1017 * struct omsghdr or struct nmsghdr. 1018 */ 1019 ssize_t 1020 recvmsg(int sock, struct nmsghdr *msg, int flags) 1021 { 1022 STRUCT_DECL(nmsghdr, u_lmsg); 1023 STRUCT_HANDLE(nmsghdr, umsgptr); 1024 struct nmsghdr lmsg; 1025 struct uio auio; 1026 struct iovec aiov[MSG_MAXIOVLEN]; 1027 int iovcnt; 1028 ssize_t len; 1029 int i; 1030 int *flagsp; 1031 model_t model; 1032 1033 dprint(1, ("recvmsg(%d, %p, %d)\n", 1034 sock, (void *)msg, flags)); 1035 1036 model = get_udatamodel(); 1037 STRUCT_INIT(u_lmsg, model); 1038 STRUCT_SET_HANDLE(umsgptr, model, msg); 1039 1040 if (flags & MSG_XPG4_2) { 1041 if (copyin(msg, STRUCT_BUF(u_lmsg), STRUCT_SIZE(u_lmsg))) 1042 return (set_errno(EFAULT)); 1043 flagsp = STRUCT_FADDR(umsgptr, msg_flags); 1044 } else { 1045 /* 1046 * Assumes that nmsghdr and omsghdr are identically shaped 1047 * except for the added msg_flags field. 1048 */ 1049 if (copyin(msg, STRUCT_BUF(u_lmsg), 1050 SIZEOF_STRUCT(omsghdr, model))) 1051 return (set_errno(EFAULT)); 1052 STRUCT_FSET(u_lmsg, msg_flags, 0); 1053 flagsp = NULL; 1054 } 1055 1056 /* 1057 * Code below us will kmem_alloc memory and hang it 1058 * off msg_control and msg_name fields. This forces 1059 * us to copy the structure to its native form. 1060 */ 1061 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1062 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1063 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1064 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1065 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1066 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1067 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1068 1069 iovcnt = lmsg.msg_iovlen; 1070 1071 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1072 return (set_errno(EMSGSIZE)); 1073 } 1074 1075 #ifdef _SYSCALL32_IMPL 1076 /* 1077 * 32-bit callers need to have their iovec expanded, while ensuring 1078 * that they can't move more than 2Gbytes of data in a single call. 1079 */ 1080 if (model == DATAMODEL_ILP32) { 1081 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1082 ssize32_t count32; 1083 1084 if (copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1085 iovcnt * sizeof (struct iovec32))) 1086 return (set_errno(EFAULT)); 1087 1088 count32 = 0; 1089 for (i = 0; i < iovcnt; i++) { 1090 ssize32_t iovlen32; 1091 1092 iovlen32 = aiov32[i].iov_len; 1093 count32 += iovlen32; 1094 if (iovlen32 < 0 || count32 < 0) 1095 return (set_errno(EINVAL)); 1096 aiov[i].iov_len = iovlen32; 1097 aiov[i].iov_base = 1098 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1099 } 1100 } else 1101 #endif /* _SYSCALL32_IMPL */ 1102 if (copyin(lmsg.msg_iov, aiov, iovcnt * sizeof (struct iovec))) { 1103 return (set_errno(EFAULT)); 1104 } 1105 len = 0; 1106 for (i = 0; i < iovcnt; i++) { 1107 ssize_t iovlen = aiov[i].iov_len; 1108 len += iovlen; 1109 if (iovlen < 0 || len < 0) { 1110 return (set_errno(EINVAL)); 1111 } 1112 } 1113 auio.uio_loffset = 0; 1114 auio.uio_iov = aiov; 1115 auio.uio_iovcnt = iovcnt; 1116 auio.uio_resid = len; 1117 auio.uio_segflg = UIO_USERSPACE; 1118 auio.uio_limit = 0; 1119 1120 if (lmsg.msg_control != NULL && 1121 (do_useracc == 0 || 1122 useracc(lmsg.msg_control, lmsg.msg_controllen, 1123 B_WRITE) != 0)) { 1124 return (set_errno(EFAULT)); 1125 } 1126 1127 return (recvit(sock, &lmsg, &auio, flags, 1128 STRUCT_FADDR(umsgptr, msg_namelen), 1129 STRUCT_FADDR(umsgptr, msg_controllen), flagsp)); 1130 } 1131 1132 /* 1133 * Common send function. 1134 */ 1135 static ssize_t 1136 sendit(int sock, struct nmsghdr *msg, struct uio *uiop, int flags) 1137 { 1138 struct sonode *so; 1139 file_t *fp; 1140 void *name; 1141 socklen_t namelen; 1142 void *control; 1143 socklen_t controllen; 1144 ssize_t len; 1145 int error; 1146 1147 if ((so = getsonode(sock, &error, &fp)) == NULL) 1148 return (set_errno(error)); 1149 1150 uiop->uio_fmode = fp->f_flag; 1151 1152 if (so->so_family == AF_UNIX) 1153 uiop->uio_extflg = UIO_COPY_CACHED; 1154 else 1155 uiop->uio_extflg = UIO_COPY_DEFAULT; 1156 1157 /* Allocate and copyin name and control */ 1158 name = msg->msg_name; 1159 namelen = msg->msg_namelen; 1160 if (name != NULL && namelen != 0) { 1161 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1162 name = copyin_name(so, 1163 (struct sockaddr *)name, 1164 &namelen, &error); 1165 if (name == NULL) 1166 goto done3; 1167 /* copyin_name null terminates addresses for AF_UNIX */ 1168 msg->msg_namelen = namelen; 1169 msg->msg_name = name; 1170 } else { 1171 msg->msg_name = name = NULL; 1172 msg->msg_namelen = namelen = 0; 1173 } 1174 1175 control = msg->msg_control; 1176 controllen = msg->msg_controllen; 1177 if ((control != NULL) && (controllen != 0)) { 1178 /* 1179 * Verify that the length is not excessive to prevent 1180 * an application from consuming all of kernel memory. 1181 */ 1182 if (controllen > SO_MAXARGSIZE) { 1183 error = EINVAL; 1184 goto done2; 1185 } 1186 control = kmem_alloc(controllen, KM_SLEEP); 1187 1188 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1189 if (copyin(msg->msg_control, control, controllen)) { 1190 error = EFAULT; 1191 goto done1; 1192 } 1193 msg->msg_control = control; 1194 } else { 1195 msg->msg_control = control = NULL; 1196 msg->msg_controllen = controllen = 0; 1197 } 1198 1199 len = uiop->uio_resid; 1200 msg->msg_flags = flags; 1201 1202 error = socket_sendmsg(so, msg, uiop, CRED()); 1203 done1: 1204 if (control != NULL) 1205 kmem_free(control, controllen); 1206 done2: 1207 if (name != NULL) 1208 kmem_free(name, namelen); 1209 done3: 1210 if (error != 0) { 1211 releasef(sock); 1212 return (set_errno(error)); 1213 } 1214 lwp_stat_update(LWP_STAT_MSGSND, 1); 1215 releasef(sock); 1216 return (len - uiop->uio_resid); 1217 } 1218 1219 /* 1220 * Native system call 1221 */ 1222 ssize_t 1223 send(int sock, void *buffer, size_t len, int flags) 1224 { 1225 struct nmsghdr lmsg; 1226 struct uio auio; 1227 struct iovec aiov[1]; 1228 1229 dprint(1, ("send(%d, %p, %ld, %d)\n", 1230 sock, buffer, len, flags)); 1231 1232 if ((ssize_t)len < 0) { 1233 return (set_errno(EINVAL)); 1234 } 1235 1236 aiov[0].iov_base = buffer; 1237 aiov[0].iov_len = len; 1238 auio.uio_loffset = 0; 1239 auio.uio_iov = aiov; 1240 auio.uio_iovcnt = 1; 1241 auio.uio_resid = len; 1242 auio.uio_segflg = UIO_USERSPACE; 1243 auio.uio_limit = 0; 1244 1245 lmsg.msg_name = NULL; 1246 lmsg.msg_control = NULL; 1247 if (!(flags & MSG_XPG4_2)) { 1248 /* 1249 * In order to be compatible with the libsocket/sockmod 1250 * implementation we set EOR for all send* calls. 1251 */ 1252 flags |= MSG_EOR; 1253 } 1254 return (sendit(sock, &lmsg, &auio, flags)); 1255 } 1256 1257 /* 1258 * Uses the MSG_XPG4_2 flag to determine if the caller is using 1259 * struct omsghdr or struct nmsghdr. 1260 */ 1261 ssize_t 1262 sendmsg(int sock, struct nmsghdr *msg, int flags) 1263 { 1264 struct nmsghdr lmsg; 1265 STRUCT_DECL(nmsghdr, u_lmsg); 1266 struct uio auio; 1267 struct iovec aiov[MSG_MAXIOVLEN]; 1268 int iovcnt; 1269 ssize_t len; 1270 int i; 1271 model_t model; 1272 1273 dprint(1, ("sendmsg(%d, %p, %d)\n", sock, (void *)msg, flags)); 1274 1275 model = get_udatamodel(); 1276 STRUCT_INIT(u_lmsg, model); 1277 1278 if (flags & MSG_XPG4_2) { 1279 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1280 STRUCT_SIZE(u_lmsg))) 1281 return (set_errno(EFAULT)); 1282 } else { 1283 /* 1284 * Assumes that nmsghdr and omsghdr are identically shaped 1285 * except for the added msg_flags field. 1286 */ 1287 if (copyin(msg, (char *)STRUCT_BUF(u_lmsg), 1288 SIZEOF_STRUCT(omsghdr, model))) 1289 return (set_errno(EFAULT)); 1290 /* 1291 * In order to be compatible with the libsocket/sockmod 1292 * implementation we set EOR for all send* calls. 1293 */ 1294 flags |= MSG_EOR; 1295 } 1296 1297 /* 1298 * Code below us will kmem_alloc memory and hang it 1299 * off msg_control and msg_name fields. This forces 1300 * us to copy the structure to its native form. 1301 */ 1302 lmsg.msg_name = STRUCT_FGETP(u_lmsg, msg_name); 1303 lmsg.msg_namelen = STRUCT_FGET(u_lmsg, msg_namelen); 1304 lmsg.msg_iov = STRUCT_FGETP(u_lmsg, msg_iov); 1305 lmsg.msg_iovlen = STRUCT_FGET(u_lmsg, msg_iovlen); 1306 lmsg.msg_control = STRUCT_FGETP(u_lmsg, msg_control); 1307 lmsg.msg_controllen = STRUCT_FGET(u_lmsg, msg_controllen); 1308 lmsg.msg_flags = STRUCT_FGET(u_lmsg, msg_flags); 1309 1310 iovcnt = lmsg.msg_iovlen; 1311 1312 if (iovcnt <= 0 || iovcnt > MSG_MAXIOVLEN) { 1313 /* 1314 * Unless this is XPG 4.2 we allow iovcnt == 0 to 1315 * be compatible with SunOS 4.X and 4.4BSD. 1316 */ 1317 if (iovcnt != 0 || (flags & MSG_XPG4_2)) 1318 return (set_errno(EMSGSIZE)); 1319 } 1320 1321 #ifdef _SYSCALL32_IMPL 1322 /* 1323 * 32-bit callers need to have their iovec expanded, while ensuring 1324 * that they can't move more than 2Gbytes of data in a single call. 1325 */ 1326 if (model == DATAMODEL_ILP32) { 1327 struct iovec32 aiov32[MSG_MAXIOVLEN]; 1328 ssize32_t count32; 1329 1330 if (iovcnt != 0 && 1331 copyin((struct iovec32 *)lmsg.msg_iov, aiov32, 1332 iovcnt * sizeof (struct iovec32))) 1333 return (set_errno(EFAULT)); 1334 1335 count32 = 0; 1336 for (i = 0; i < iovcnt; i++) { 1337 ssize32_t iovlen32; 1338 1339 iovlen32 = aiov32[i].iov_len; 1340 count32 += iovlen32; 1341 if (iovlen32 < 0 || count32 < 0) 1342 return (set_errno(EINVAL)); 1343 aiov[i].iov_len = iovlen32; 1344 aiov[i].iov_base = 1345 (caddr_t)(uintptr_t)aiov32[i].iov_base; 1346 } 1347 } else 1348 #endif /* _SYSCALL32_IMPL */ 1349 if (iovcnt != 0 && 1350 copyin(lmsg.msg_iov, aiov, 1351 (unsigned)iovcnt * sizeof (struct iovec))) { 1352 return (set_errno(EFAULT)); 1353 } 1354 len = 0; 1355 for (i = 0; i < iovcnt; i++) { 1356 ssize_t iovlen = aiov[i].iov_len; 1357 len += iovlen; 1358 if (iovlen < 0 || len < 0) { 1359 return (set_errno(EINVAL)); 1360 } 1361 } 1362 auio.uio_loffset = 0; 1363 auio.uio_iov = aiov; 1364 auio.uio_iovcnt = iovcnt; 1365 auio.uio_resid = len; 1366 auio.uio_segflg = UIO_USERSPACE; 1367 auio.uio_limit = 0; 1368 1369 return (sendit(sock, &lmsg, &auio, flags)); 1370 } 1371 1372 ssize_t 1373 sendto(int sock, void *buffer, size_t len, int flags, 1374 struct sockaddr *name, socklen_t namelen) 1375 { 1376 struct nmsghdr lmsg; 1377 struct uio auio; 1378 struct iovec aiov[1]; 1379 1380 dprint(1, ("sendto(%d, %p, %ld, %d, %p, %d)\n", 1381 sock, buffer, len, flags, (void *)name, namelen)); 1382 1383 if ((ssize_t)len < 0) { 1384 return (set_errno(EINVAL)); 1385 } 1386 1387 aiov[0].iov_base = buffer; 1388 aiov[0].iov_len = len; 1389 auio.uio_loffset = 0; 1390 auio.uio_iov = aiov; 1391 auio.uio_iovcnt = 1; 1392 auio.uio_resid = len; 1393 auio.uio_segflg = UIO_USERSPACE; 1394 auio.uio_limit = 0; 1395 1396 lmsg.msg_name = (char *)name; 1397 lmsg.msg_namelen = namelen; 1398 lmsg.msg_control = NULL; 1399 if (!(flags & MSG_XPG4_2)) { 1400 /* 1401 * In order to be compatible with the libsocket/sockmod 1402 * implementation we set EOR for all send* calls. 1403 */ 1404 flags |= MSG_EOR; 1405 } 1406 return (sendit(sock, &lmsg, &auio, flags)); 1407 } 1408 1409 /*ARGSUSED3*/ 1410 int 1411 getpeername(int sock, struct sockaddr *name, socklen_t *namelenp, int version) 1412 { 1413 struct sonode *so; 1414 int error; 1415 socklen_t namelen; 1416 socklen_t sock_addrlen; 1417 struct sockaddr *sock_addrp; 1418 1419 dprint(1, ("getpeername(%d, %p, %p)\n", 1420 sock, (void *)name, (void *)namelenp)); 1421 1422 if ((so = getsonode(sock, &error, NULL)) == NULL) 1423 goto bad; 1424 1425 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1426 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1427 (name == NULL && namelen != 0)) { 1428 error = EFAULT; 1429 goto rel_out; 1430 } 1431 sock_addrlen = so->so_max_addr_len; 1432 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1433 1434 if ((error = socket_getpeername(so, sock_addrp, &sock_addrlen, 1435 B_FALSE, CRED())) == 0) { 1436 ASSERT(sock_addrlen <= so->so_max_addr_len); 1437 error = copyout_name(name, namelen, namelenp, 1438 (void *)sock_addrp, sock_addrlen); 1439 } 1440 kmem_free(sock_addrp, so->so_max_addr_len); 1441 rel_out: 1442 releasef(sock); 1443 bad: return (error != 0 ? set_errno(error) : 0); 1444 } 1445 1446 /*ARGSUSED3*/ 1447 int 1448 getsockname(int sock, struct sockaddr *name, 1449 socklen_t *namelenp, int version) 1450 { 1451 struct sonode *so; 1452 int error; 1453 socklen_t namelen, sock_addrlen; 1454 struct sockaddr *sock_addrp; 1455 1456 dprint(1, ("getsockname(%d, %p, %p)\n", 1457 sock, (void *)name, (void *)namelenp)); 1458 1459 if ((so = getsonode(sock, &error, NULL)) == NULL) 1460 goto bad; 1461 1462 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1463 if (copyin(namelenp, &namelen, sizeof (namelen)) || 1464 (name == NULL && namelen != 0)) { 1465 error = EFAULT; 1466 goto rel_out; 1467 } 1468 1469 sock_addrlen = so->so_max_addr_len; 1470 sock_addrp = (struct sockaddr *)kmem_alloc(sock_addrlen, KM_SLEEP); 1471 if ((error = socket_getsockname(so, sock_addrp, &sock_addrlen, 1472 CRED())) == 0) { 1473 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1474 ASSERT(sock_addrlen <= so->so_max_addr_len); 1475 error = copyout_name(name, namelen, namelenp, 1476 (void *)sock_addrp, sock_addrlen); 1477 } 1478 kmem_free(sock_addrp, so->so_max_addr_len); 1479 rel_out: 1480 releasef(sock); 1481 bad: return (error != 0 ? set_errno(error) : 0); 1482 } 1483 1484 /*ARGSUSED5*/ 1485 int 1486 getsockopt(int sock, 1487 int level, 1488 int option_name, 1489 void *option_value, 1490 socklen_t *option_lenp, 1491 int version) 1492 { 1493 struct sonode *so; 1494 socklen_t optlen, optlen_res; 1495 void *optval; 1496 int error; 1497 1498 dprint(1, ("getsockopt(%d, %d, %d, %p, %p)\n", 1499 sock, level, option_name, option_value, (void *)option_lenp)); 1500 1501 if ((so = getsonode(sock, &error, NULL)) == NULL) 1502 return (set_errno(error)); 1503 1504 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1505 if (copyin(option_lenp, &optlen, sizeof (optlen))) { 1506 releasef(sock); 1507 return (set_errno(EFAULT)); 1508 } 1509 /* 1510 * Verify that the length is not excessive to prevent 1511 * an application from consuming all of kernel memory. 1512 */ 1513 if (optlen > SO_MAXARGSIZE) { 1514 error = EINVAL; 1515 releasef(sock); 1516 return (set_errno(error)); 1517 } 1518 optval = kmem_alloc(optlen, KM_SLEEP); 1519 optlen_res = optlen; 1520 error = socket_getsockopt(so, level, option_name, optval, 1521 &optlen_res, (version != SOV_XPG4_2) ? 0 : _SOGETSOCKOPT_XPG4_2, 1522 CRED()); 1523 releasef(sock); 1524 if (error) { 1525 kmem_free(optval, optlen); 1526 return (set_errno(error)); 1527 } 1528 error = copyout_arg(option_value, optlen, option_lenp, 1529 optval, optlen_res); 1530 kmem_free(optval, optlen); 1531 if (error) 1532 return (set_errno(error)); 1533 return (0); 1534 } 1535 1536 /*ARGSUSED5*/ 1537 int 1538 setsockopt(int sock, 1539 int level, 1540 int option_name, 1541 void *option_value, 1542 socklen_t option_len, 1543 int version) 1544 { 1545 struct sonode *so; 1546 intptr_t buffer[2]; 1547 void *optval = NULL; 1548 int error; 1549 1550 dprint(1, ("setsockopt(%d, %d, %d, %p, %d)\n", 1551 sock, level, option_name, option_value, option_len)); 1552 1553 if ((so = getsonode(sock, &error, NULL)) == NULL) 1554 return (set_errno(error)); 1555 1556 if (option_value != NULL) { 1557 if (option_len != 0) { 1558 /* 1559 * Verify that the length is not excessive to prevent 1560 * an application from consuming all of kernel memory. 1561 */ 1562 if (option_len > SO_MAXARGSIZE) { 1563 error = EINVAL; 1564 goto done2; 1565 } 1566 optval = option_len <= sizeof (buffer) ? 1567 &buffer : kmem_alloc((size_t)option_len, KM_SLEEP); 1568 ASSERT(MUTEX_NOT_HELD(&so->so_lock)); 1569 if (copyin(option_value, optval, (size_t)option_len)) { 1570 error = EFAULT; 1571 goto done1; 1572 } 1573 } 1574 } else 1575 option_len = 0; 1576 1577 error = socket_setsockopt(so, level, option_name, optval, 1578 (t_uscalar_t)option_len, CRED()); 1579 done1: 1580 if (optval != buffer) 1581 kmem_free(optval, (size_t)option_len); 1582 done2: 1583 releasef(sock); 1584 if (error) 1585 return (set_errno(error)); 1586 return (0); 1587 } 1588 1589 static int 1590 sockconf_add_sock(int family, int type, int protocol, char *name) 1591 { 1592 int error = 0; 1593 char *kdevpath = NULL; 1594 char *kmodule = NULL; 1595 char *buf = NULL; 1596 size_t pathlen = 0; 1597 struct sockparams *sp; 1598 1599 if (name == NULL) 1600 return (EINVAL); 1601 /* 1602 * Copyin the name. 1603 * This also makes it possible to check for too long pathnames. 1604 * Compress the space needed for the name before passing it 1605 * to soconfig - soconfig will store the string until 1606 * the configuration is removed. 1607 */ 1608 buf = kmem_alloc(MAXPATHLEN, KM_SLEEP); 1609 if ((error = copyinstr(name, buf, MAXPATHLEN, &pathlen)) != 0) { 1610 kmem_free(buf, MAXPATHLEN); 1611 return (error); 1612 } 1613 if (strncmp(buf, "/dev", strlen("/dev")) == 0) { 1614 /* For device */ 1615 1616 /* 1617 * Special handling for NCA: 1618 * 1619 * DEV_NCA is never opened even if an application 1620 * requests for AF_NCA. The device opened is instead a 1621 * predefined AF_INET transport (NCA_INET_DEV). 1622 * 1623 * Prior to Volo (PSARC/2007/587) NCA would determine 1624 * the device using a lookup, which worked then because 1625 * all protocols were based on TPI. Since TPI is no 1626 * longer the default, we have to explicitly state 1627 * which device to use. 1628 */ 1629 if (strcmp(buf, NCA_DEV) == 0) { 1630 /* only support entry <28, 2, 0> */ 1631 if (family != AF_NCA || type != SOCK_STREAM || 1632 protocol != 0) { 1633 kmem_free(buf, MAXPATHLEN); 1634 return (EINVAL); 1635 } 1636 1637 pathlen = strlen(NCA_INET_DEV) + 1; 1638 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1639 bcopy(NCA_INET_DEV, kdevpath, pathlen); 1640 kdevpath[pathlen - 1] = '\0'; 1641 } else { 1642 kdevpath = kmem_alloc(pathlen, KM_SLEEP); 1643 bcopy(buf, kdevpath, pathlen); 1644 kdevpath[pathlen - 1] = '\0'; 1645 } 1646 } else { 1647 /* For socket module */ 1648 kmodule = kmem_alloc(pathlen, KM_SLEEP); 1649 bcopy(buf, kmodule, pathlen); 1650 kmodule[pathlen - 1] = '\0'; 1651 pathlen = 0; 1652 } 1653 kmem_free(buf, MAXPATHLEN); 1654 1655 /* sockparams_create frees mod name and devpath upon failure */ 1656 sp = sockparams_create(family, type, protocol, kmodule, 1657 kdevpath, pathlen, 0, KM_SLEEP, &error); 1658 if (sp != NULL) { 1659 error = sockparams_add(sp); 1660 if (error != 0) 1661 sockparams_destroy(sp); 1662 } 1663 1664 return (error); 1665 } 1666 1667 static int 1668 sockconf_remove_sock(int family, int type, int protocol) 1669 { 1670 return (sockparams_delete(family, type, protocol)); 1671 } 1672 1673 static int 1674 sockconfig_remove_filter(const char *uname) 1675 { 1676 char kname[SOF_MAXNAMELEN]; 1677 size_t len; 1678 int error; 1679 sof_entry_t *ent; 1680 1681 if ((error = copyinstr(uname, kname, SOF_MAXNAMELEN, &len)) != 0) 1682 return (error); 1683 1684 ent = sof_entry_remove_by_name(kname); 1685 if (ent == NULL) 1686 return (ENXIO); 1687 1688 mutex_enter(&ent->sofe_lock); 1689 ASSERT(!(ent->sofe_flags & SOFEF_CONDEMED)); 1690 if (ent->sofe_refcnt == 0) { 1691 mutex_exit(&ent->sofe_lock); 1692 sof_entry_free(ent); 1693 } else { 1694 /* let the last socket free the filter */ 1695 ent->sofe_flags |= SOFEF_CONDEMED; 1696 mutex_exit(&ent->sofe_lock); 1697 } 1698 1699 return (0); 1700 } 1701 1702 static int 1703 sockconfig_add_filter(const char *uname, void *ufilpropp) 1704 { 1705 struct sockconfig_filter_props filprop; 1706 sof_entry_t *ent; 1707 int error; 1708 size_t tuplesz, len; 1709 char hintbuf[SOF_MAXNAMELEN]; 1710 1711 ent = kmem_zalloc(sizeof (sof_entry_t), KM_SLEEP); 1712 mutex_init(&ent->sofe_lock, NULL, MUTEX_DEFAULT, NULL); 1713 1714 if ((error = copyinstr(uname, ent->sofe_name, SOF_MAXNAMELEN, 1715 &len)) != 0) { 1716 sof_entry_free(ent); 1717 return (error); 1718 } 1719 1720 if (get_udatamodel() == DATAMODEL_NATIVE) { 1721 if (copyin(ufilpropp, &filprop, sizeof (filprop)) != 0) { 1722 sof_entry_free(ent); 1723 return (EFAULT); 1724 } 1725 } 1726 #ifdef _SYSCALL32_IMPL 1727 else { 1728 struct sockconfig_filter_props32 filprop32; 1729 1730 if (copyin(ufilpropp, &filprop32, sizeof (filprop32)) != 0) { 1731 sof_entry_free(ent); 1732 return (EFAULT); 1733 } 1734 filprop.sfp_modname = (char *)(uintptr_t)filprop32.sfp_modname; 1735 filprop.sfp_autoattach = filprop32.sfp_autoattach; 1736 filprop.sfp_hint = filprop32.sfp_hint; 1737 filprop.sfp_hintarg = (char *)(uintptr_t)filprop32.sfp_hintarg; 1738 filprop.sfp_socktuple_cnt = filprop32.sfp_socktuple_cnt; 1739 filprop.sfp_socktuple = 1740 (sof_socktuple_t *)(uintptr_t)filprop32.sfp_socktuple; 1741 } 1742 #endif /* _SYSCALL32_IMPL */ 1743 1744 if ((error = copyinstr(filprop.sfp_modname, ent->sofe_modname, 1745 sizeof (ent->sofe_modname), &len)) != 0) { 1746 sof_entry_free(ent); 1747 return (error); 1748 } 1749 1750 /* 1751 * A filter must specify at least one socket tuple. 1752 */ 1753 if (filprop.sfp_socktuple_cnt == 0 || 1754 filprop.sfp_socktuple_cnt > SOF_MAXSOCKTUPLECNT) { 1755 sof_entry_free(ent); 1756 return (EINVAL); 1757 } 1758 ent->sofe_flags = filprop.sfp_autoattach ? SOFEF_AUTO : SOFEF_PROG; 1759 ent->sofe_hint = filprop.sfp_hint; 1760 1761 /* 1762 * Verify the hint, and copy in the hint argument, if necessary. 1763 */ 1764 switch (ent->sofe_hint) { 1765 case SOF_HINT_BEFORE: 1766 case SOF_HINT_AFTER: 1767 if ((error = copyinstr(filprop.sfp_hintarg, hintbuf, 1768 sizeof (hintbuf), &len)) != 0) { 1769 sof_entry_free(ent); 1770 return (error); 1771 } 1772 ent->sofe_hintarg = kmem_alloc(len, KM_SLEEP); 1773 bcopy(hintbuf, ent->sofe_hintarg, len); 1774 /* FALLTHRU */ 1775 case SOF_HINT_TOP: 1776 case SOF_HINT_BOTTOM: 1777 /* hints cannot be used with programmatic filters */ 1778 if (ent->sofe_flags & SOFEF_PROG) { 1779 sof_entry_free(ent); 1780 return (EINVAL); 1781 } 1782 break; 1783 case SOF_HINT_NONE: 1784 break; 1785 default: 1786 /* bad hint value */ 1787 sof_entry_free(ent); 1788 return (EINVAL); 1789 } 1790 1791 ent->sofe_socktuple_cnt = filprop.sfp_socktuple_cnt; 1792 tuplesz = sizeof (sof_socktuple_t) * ent->sofe_socktuple_cnt; 1793 ent->sofe_socktuple = kmem_alloc(tuplesz, KM_SLEEP); 1794 1795 if (get_udatamodel() == DATAMODEL_NATIVE) { 1796 if (copyin(filprop.sfp_socktuple, ent->sofe_socktuple, 1797 tuplesz)) { 1798 sof_entry_free(ent); 1799 return (EFAULT); 1800 } 1801 } 1802 #ifdef _SYSCALL32_IMPL 1803 else { 1804 int i; 1805 caddr_t data = (caddr_t)filprop.sfp_socktuple; 1806 sof_socktuple_t *tup = ent->sofe_socktuple; 1807 sof_socktuple32_t tup32; 1808 1809 tup = ent->sofe_socktuple; 1810 for (i = 0; i < ent->sofe_socktuple_cnt; i++, tup++) { 1811 ASSERT(tup < ent->sofe_socktuple + tuplesz); 1812 1813 if (copyin(data, &tup32, sizeof (tup32)) != 0) { 1814 sof_entry_free(ent); 1815 return (EFAULT); 1816 } 1817 tup->sofst_family = tup32.sofst_family; 1818 tup->sofst_type = tup32.sofst_type; 1819 tup->sofst_protocol = tup32.sofst_protocol; 1820 1821 data += sizeof (tup32); 1822 } 1823 } 1824 #endif /* _SYSCALL32_IMPL */ 1825 1826 /* Sockets can start using the filter as soon as the filter is added */ 1827 if ((error = sof_entry_add(ent)) != 0) 1828 sof_entry_free(ent); 1829 1830 return (error); 1831 } 1832 1833 /* 1834 * Socket configuration system call. It is used to add and remove 1835 * socket types. 1836 */ 1837 int 1838 sockconfig(int cmd, void *arg1, void *arg2, void *arg3, void *arg4) 1839 { 1840 int error = 0; 1841 1842 if (secpolicy_net_config(CRED(), B_FALSE) != 0) 1843 return (set_errno(EPERM)); 1844 1845 if (sockfs_defer_nl7c_init) { 1846 nl7c_init(); 1847 sockfs_defer_nl7c_init = 0; 1848 } 1849 1850 switch (cmd) { 1851 case SOCKCONFIG_ADD_SOCK: 1852 error = sockconf_add_sock((int)(uintptr_t)arg1, 1853 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3, arg4); 1854 break; 1855 case SOCKCONFIG_REMOVE_SOCK: 1856 error = sockconf_remove_sock((int)(uintptr_t)arg1, 1857 (int)(uintptr_t)arg2, (int)(uintptr_t)arg3); 1858 break; 1859 case SOCKCONFIG_ADD_FILTER: 1860 error = sockconfig_add_filter((const char *)arg1, arg2); 1861 break; 1862 case SOCKCONFIG_REMOVE_FILTER: 1863 error = sockconfig_remove_filter((const char *)arg1); 1864 break; 1865 default: 1866 #ifdef DEBUG 1867 cmn_err(CE_NOTE, "sockconfig: unkonwn subcommand %d", cmd); 1868 #endif 1869 error = EINVAL; 1870 break; 1871 } 1872 1873 if (error != 0) { 1874 eprintline(error); 1875 return (set_errno(error)); 1876 } 1877 return (0); 1878 } 1879 1880 1881 /* 1882 * Sendfile is implemented through two schemes, direct I/O or by 1883 * caching in the filesystem page cache. We cache the input file by 1884 * default and use direct I/O only if sendfile_max_size is set 1885 * appropriately as explained below. Note that this logic is consistent 1886 * with other filesystems where caching is turned on by default 1887 * unless explicitly turned off by using the DIRECTIO ioctl. 1888 * 1889 * We choose a slightly different scheme here. One can turn off 1890 * caching by setting sendfile_max_size to 0. One can also enable 1891 * caching of files <= sendfile_max_size by setting sendfile_max_size 1892 * to an appropriate value. By default sendfile_max_size is set to the 1893 * maximum value so that all files are cached. In future, we may provide 1894 * better interfaces for caching the file. 1895 * 1896 * Sendfile through Direct I/O (Zero copy) 1897 * -------------------------------------- 1898 * 1899 * As disks are normally slower than the network, we can't have a 1900 * single thread that reads the disk and writes to the network. We 1901 * need to have parallelism. This is done by having the sendfile 1902 * thread create another thread that reads from the filesystem 1903 * and queues it for network processing. In this scheme, the data 1904 * is never copied anywhere i.e it is zero copy unlike the other 1905 * scheme. 1906 * 1907 * We have a sendfile queue (snfq) where each sendfile 1908 * request (snf_req_t) is queued for processing by a thread. Number 1909 * of threads is dynamically allocated and they exit if they are idling 1910 * beyond a specified amount of time. When each request (snf_req_t) is 1911 * processed by a thread, it produces a number of mblk_t structures to 1912 * be consumed by the sendfile thread. snf_deque and snf_enque are 1913 * used for consuming and producing mblks. Size of the filesystem 1914 * read is determined by the tunable (sendfile_read_size). A single 1915 * mblk holds sendfile_read_size worth of data (except the last 1916 * read of the file) which is sent down as a whole to the network. 1917 * sendfile_read_size is set to 1 MB as this seems to be the optimal 1918 * value for the UFS filesystem backed by a striped storage array. 1919 * 1920 * Synchronisation between read (producer) and write (consumer) threads. 1921 * -------------------------------------------------------------------- 1922 * 1923 * sr_lock protects sr_ib_head and sr_ib_tail. The lock is held while 1924 * adding and deleting items in this list. Error can happen anytime 1925 * during read or write. There could be unprocessed mblks in the 1926 * sr_ib_XXX list when a read or write error occurs. Whenever error 1927 * is encountered, we need two things to happen : 1928 * 1929 * a) One of the threads need to clean the mblks. 1930 * b) When one thread encounters an error, the other should stop. 1931 * 1932 * For (a), we don't want to penalize the reader thread as it could do 1933 * some useful work processing other requests. For (b), the error can 1934 * be detected by examining sr_read_error or sr_write_error. 1935 * sr_lock protects sr_read_error and sr_write_error. If both reader and 1936 * writer encounters error, we need to report the write error back to 1937 * the application as that's what would have happened if the operations 1938 * were done sequentially. With this in mind, following should work : 1939 * 1940 * - Check for errors before read or write. 1941 * - If the reader encounters error, set the error in sr_read_error. 1942 * Check sr_write_error, if it is set, send cv_signal as it is 1943 * waiting for reader to complete. If it is not set, the writer 1944 * is either running sinking data to the network or blocked 1945 * because of flow control. For handling the latter case, we 1946 * always send a signal. In any case, it will examine sr_read_error 1947 * and return. sr_read_error is marked with SR_READ_DONE to tell 1948 * the writer that the reader is done in all the cases. 1949 * - If the writer encounters error, set the error in sr_write_error. 1950 * The reader thread is either blocked because of flow control or 1951 * running reading data from the disk. For the former, we need to 1952 * wakeup the thread. Again to keep it simple, we always wake up 1953 * the reader thread. Then, wait for the read thread to complete 1954 * if it is not done yet. Cleanup and return. 1955 * 1956 * High and low water marks for the read thread. 1957 * -------------------------------------------- 1958 * 1959 * If sendfile() is used to send data over a slow network, we need to 1960 * make sure that the read thread does not produce data at a faster 1961 * rate than the network. This can happen if the disk is faster than 1962 * the network. In such a case, we don't want to build a very large queue. 1963 * But we would still like to get all of the network throughput possible. 1964 * This implies that network should never block waiting for data. 1965 * As there are lot of disk throughput/network throughput combinations 1966 * possible, it is difficult to come up with an accurate number. 1967 * A typical 10K RPM disk has a max seek latency 17ms and rotational 1968 * latency of 3ms for reading a disk block. Thus, the total latency to 1969 * initiate a new read, transfer data from the disk and queue for 1970 * transmission would take about a max of 25ms. Todays max transfer rate 1971 * for network is 100MB/sec. If the thread is blocked because of flow 1972 * control, it would take 25ms to get new data ready for transmission. 1973 * We have to make sure that network is not idling, while we are initiating 1974 * new transfers. So, at 100MB/sec, to keep network busy we would need 1975 * 2.5MB of data. Rounding off, we keep the low water mark to be 3MB of data. 1976 * We need to pick a high water mark so that the woken up thread would 1977 * do considerable work before blocking again to prevent thrashing. Currently, 1978 * we pick this to be 10 times that of the low water mark. 1979 * 1980 * Sendfile with segmap caching (One copy from page cache to mblks). 1981 * ---------------------------------------------------------------- 1982 * 1983 * We use the segmap cache for caching the file, if the size of file 1984 * is <= sendfile_max_size. In this case we don't use threads as VM 1985 * is reasonably fast enough to keep up with the network. If the underlying 1986 * transport allows, we call segmap_getmapflt() to map MAXBSIZE (8K) worth 1987 * of data into segmap space, and use the virtual address from segmap 1988 * directly through desballoc() to avoid copy. Once the transport is done 1989 * with the data, the mapping will be released through segmap_release() 1990 * called by the call-back routine. 1991 * 1992 * If zero-copy is not allowed by the transport, we simply call VOP_READ() 1993 * to copy the data from the filesystem into our temporary network buffer. 1994 * 1995 * To disable caching, set sendfile_max_size to 0. 1996 */ 1997 1998 uint_t sendfile_read_size = 1024 * 1024; 1999 #define SENDFILE_REQ_LOWAT 3 * 1024 * 1024 2000 uint_t sendfile_req_lowat = SENDFILE_REQ_LOWAT; 2001 uint_t sendfile_req_hiwat = 10 * SENDFILE_REQ_LOWAT; 2002 struct sendfile_stats sf_stats; 2003 struct sendfile_queue *snfq; 2004 clock_t snfq_timeout; 2005 off64_t sendfile_max_size; 2006 2007 static void snf_enque(snf_req_t *, mblk_t *); 2008 static mblk_t *snf_deque(snf_req_t *); 2009 2010 void 2011 sendfile_init(void) 2012 { 2013 snfq = kmem_zalloc(sizeof (struct sendfile_queue), KM_SLEEP); 2014 2015 mutex_init(&snfq->snfq_lock, NULL, MUTEX_DEFAULT, NULL); 2016 cv_init(&snfq->snfq_cv, NULL, CV_DEFAULT, NULL); 2017 snfq->snfq_max_threads = max_ncpus; 2018 snfq_timeout = SNFQ_TIMEOUT; 2019 /* Cache all files by default. */ 2020 sendfile_max_size = MAXOFFSET_T; 2021 } 2022 2023 /* 2024 * Queues a mblk_t for network processing. 2025 */ 2026 static void 2027 snf_enque(snf_req_t *sr, mblk_t *mp) 2028 { 2029 mp->b_next = NULL; 2030 mutex_enter(&sr->sr_lock); 2031 if (sr->sr_mp_head == NULL) { 2032 sr->sr_mp_head = sr->sr_mp_tail = mp; 2033 cv_signal(&sr->sr_cv); 2034 } else { 2035 sr->sr_mp_tail->b_next = mp; 2036 sr->sr_mp_tail = mp; 2037 } 2038 sr->sr_qlen += MBLKL(mp); 2039 while ((sr->sr_qlen > sr->sr_hiwat) && 2040 (sr->sr_write_error == 0)) { 2041 sf_stats.ss_full_waits++; 2042 cv_wait(&sr->sr_cv, &sr->sr_lock); 2043 } 2044 mutex_exit(&sr->sr_lock); 2045 } 2046 2047 /* 2048 * De-queues a mblk_t for network processing. 2049 */ 2050 static mblk_t * 2051 snf_deque(snf_req_t *sr) 2052 { 2053 mblk_t *mp; 2054 2055 mutex_enter(&sr->sr_lock); 2056 /* 2057 * If we have encountered an error on read or read is 2058 * completed and no more mblks, return NULL. 2059 * We need to check for NULL sr_mp_head also as 2060 * the reads could have completed and there is 2061 * nothing more to come. 2062 */ 2063 if (((sr->sr_read_error & ~SR_READ_DONE) != 0) || 2064 ((sr->sr_read_error & SR_READ_DONE) && 2065 sr->sr_mp_head == NULL)) { 2066 mutex_exit(&sr->sr_lock); 2067 return (NULL); 2068 } 2069 /* 2070 * To start with neither SR_READ_DONE is marked nor 2071 * the error is set. When we wake up from cv_wait, 2072 * following are the possibilities : 2073 * 2074 * a) sr_read_error is zero and mblks are queued. 2075 * b) sr_read_error is set to SR_READ_DONE 2076 * and mblks are queued. 2077 * c) sr_read_error is set to SR_READ_DONE 2078 * and no mblks. 2079 * d) sr_read_error is set to some error other 2080 * than SR_READ_DONE. 2081 */ 2082 2083 while ((sr->sr_read_error == 0) && (sr->sr_mp_head == NULL)) { 2084 sf_stats.ss_empty_waits++; 2085 cv_wait(&sr->sr_cv, &sr->sr_lock); 2086 } 2087 /* Handle (a) and (b) first - the normal case. */ 2088 if (((sr->sr_read_error & ~SR_READ_DONE) == 0) && 2089 (sr->sr_mp_head != NULL)) { 2090 mp = sr->sr_mp_head; 2091 sr->sr_mp_head = mp->b_next; 2092 sr->sr_qlen -= MBLKL(mp); 2093 if (sr->sr_qlen < sr->sr_lowat) 2094 cv_signal(&sr->sr_cv); 2095 mutex_exit(&sr->sr_lock); 2096 mp->b_next = NULL; 2097 return (mp); 2098 } 2099 /* Handle (c) and (d). */ 2100 mutex_exit(&sr->sr_lock); 2101 return (NULL); 2102 } 2103 2104 /* 2105 * Reads data from the filesystem and queues it for network processing. 2106 */ 2107 void 2108 snf_async_read(snf_req_t *sr) 2109 { 2110 size_t iosize; 2111 u_offset_t fileoff; 2112 u_offset_t size; 2113 int ret_size; 2114 int error; 2115 file_t *fp; 2116 mblk_t *mp; 2117 struct vnode *vp; 2118 int extra = 0; 2119 int maxblk = 0; 2120 int wroff = 0; 2121 struct sonode *so; 2122 2123 fp = sr->sr_fp; 2124 size = sr->sr_file_size; 2125 fileoff = sr->sr_file_off; 2126 2127 /* 2128 * Ignore the error for filesystems that doesn't support DIRECTIO. 2129 */ 2130 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_ON, 0, 2131 kcred, NULL, NULL); 2132 2133 vp = sr->sr_vp; 2134 if (vp->v_type == VSOCK) { 2135 stdata_t *stp; 2136 2137 /* 2138 * Get the extra space to insert a header and a trailer. 2139 */ 2140 so = VTOSO(vp); 2141 stp = vp->v_stream; 2142 if (stp == NULL) { 2143 wroff = so->so_proto_props.sopp_wroff; 2144 maxblk = so->so_proto_props.sopp_maxblk; 2145 extra = wroff + so->so_proto_props.sopp_tail; 2146 } else { 2147 wroff = (int)(stp->sd_wroff); 2148 maxblk = (int)(stp->sd_maxblk); 2149 extra = wroff + (int)(stp->sd_tail); 2150 } 2151 } 2152 2153 while ((size != 0) && (sr->sr_write_error == 0)) { 2154 2155 iosize = (int)MIN(sr->sr_maxpsz, size); 2156 2157 /* 2158 * Socket filters can limit the mblk size, 2159 * so limit reads to maxblk if there are 2160 * filters present. 2161 */ 2162 if (vp->v_type == VSOCK && 2163 so->so_filter_active > 0 && maxblk != INFPSZ) 2164 iosize = (int)MIN(iosize, maxblk); 2165 2166 if (is_system_labeled()) { 2167 mp = allocb_cred(iosize + extra, CRED(), 2168 curproc->p_pid); 2169 } else { 2170 mp = allocb(iosize + extra, BPRI_MED); 2171 } 2172 if (mp == NULL) { 2173 error = EAGAIN; 2174 break; 2175 } 2176 2177 mp->b_rptr += wroff; 2178 2179 ret_size = soreadfile(fp, mp->b_rptr, fileoff, &error, iosize); 2180 2181 /* Error or Reached EOF ? */ 2182 if ((error != 0) || (ret_size == 0)) { 2183 freeb(mp); 2184 break; 2185 } 2186 mp->b_wptr = mp->b_rptr + ret_size; 2187 2188 snf_enque(sr, mp); 2189 size -= ret_size; 2190 fileoff += ret_size; 2191 } 2192 (void) VOP_IOCTL(fp->f_vnode, _FIODIRECTIO, DIRECTIO_OFF, 0, 2193 kcred, NULL, NULL); 2194 mutex_enter(&sr->sr_lock); 2195 sr->sr_read_error = error; 2196 sr->sr_read_error |= SR_READ_DONE; 2197 cv_signal(&sr->sr_cv); 2198 mutex_exit(&sr->sr_lock); 2199 } 2200 2201 void 2202 snf_async_thread(void) 2203 { 2204 snf_req_t *sr; 2205 callb_cpr_t cprinfo; 2206 clock_t time_left = 1; 2207 2208 CALLB_CPR_INIT(&cprinfo, &snfq->snfq_lock, callb_generic_cpr, "snfq"); 2209 2210 mutex_enter(&snfq->snfq_lock); 2211 for (;;) { 2212 /* 2213 * If we didn't find a entry, then block until woken up 2214 * again and then look through the queues again. 2215 */ 2216 while ((sr = snfq->snfq_req_head) == NULL) { 2217 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2218 if (time_left <= 0) { 2219 snfq->snfq_svc_threads--; 2220 CALLB_CPR_EXIT(&cprinfo); 2221 thread_exit(); 2222 /* NOTREACHED */ 2223 } 2224 snfq->snfq_idle_cnt++; 2225 2226 time_left = cv_reltimedwait(&snfq->snfq_cv, 2227 &snfq->snfq_lock, snfq_timeout, TR_CLOCK_TICK); 2228 snfq->snfq_idle_cnt--; 2229 2230 CALLB_CPR_SAFE_END(&cprinfo, &snfq->snfq_lock); 2231 } 2232 snfq->snfq_req_head = sr->sr_next; 2233 snfq->snfq_req_cnt--; 2234 mutex_exit(&snfq->snfq_lock); 2235 snf_async_read(sr); 2236 mutex_enter(&snfq->snfq_lock); 2237 } 2238 } 2239 2240 2241 snf_req_t * 2242 create_thread(int operation, struct vnode *vp, file_t *fp, 2243 u_offset_t fileoff, u_offset_t size) 2244 { 2245 snf_req_t *sr; 2246 stdata_t *stp; 2247 2248 sr = (snf_req_t *)kmem_zalloc(sizeof (snf_req_t), KM_SLEEP); 2249 2250 sr->sr_vp = vp; 2251 sr->sr_fp = fp; 2252 stp = vp->v_stream; 2253 2254 /* 2255 * store sd_qn_maxpsz into sr_maxpsz while we have stream head. 2256 * stream might be closed before thread returns from snf_async_read. 2257 */ 2258 if (stp != NULL && stp->sd_qn_maxpsz > 0) { 2259 sr->sr_maxpsz = MIN(MAXBSIZE, stp->sd_qn_maxpsz); 2260 } else { 2261 sr->sr_maxpsz = MAXBSIZE; 2262 } 2263 2264 sr->sr_operation = operation; 2265 sr->sr_file_off = fileoff; 2266 sr->sr_file_size = size; 2267 sr->sr_hiwat = sendfile_req_hiwat; 2268 sr->sr_lowat = sendfile_req_lowat; 2269 mutex_init(&sr->sr_lock, NULL, MUTEX_DEFAULT, NULL); 2270 cv_init(&sr->sr_cv, NULL, CV_DEFAULT, NULL); 2271 /* 2272 * See whether we need another thread for servicing this 2273 * request. If there are already enough requests queued 2274 * for the threads, create one if not exceeding 2275 * snfq_max_threads. 2276 */ 2277 mutex_enter(&snfq->snfq_lock); 2278 if (snfq->snfq_req_cnt >= snfq->snfq_idle_cnt && 2279 snfq->snfq_svc_threads < snfq->snfq_max_threads) { 2280 (void) thread_create(NULL, 0, &snf_async_thread, 0, 0, &p0, 2281 TS_RUN, minclsyspri); 2282 snfq->snfq_svc_threads++; 2283 } 2284 if (snfq->snfq_req_head == NULL) { 2285 snfq->snfq_req_head = snfq->snfq_req_tail = sr; 2286 cv_signal(&snfq->snfq_cv); 2287 } else { 2288 snfq->snfq_req_tail->sr_next = sr; 2289 snfq->snfq_req_tail = sr; 2290 } 2291 snfq->snfq_req_cnt++; 2292 mutex_exit(&snfq->snfq_lock); 2293 return (sr); 2294 } 2295 2296 int 2297 snf_direct_io(file_t *fp, file_t *rfp, u_offset_t fileoff, u_offset_t size, 2298 ssize_t *count) 2299 { 2300 snf_req_t *sr; 2301 mblk_t *mp; 2302 int iosize; 2303 int error = 0; 2304 short fflag; 2305 struct vnode *vp; 2306 int ksize; 2307 struct nmsghdr msg; 2308 2309 ksize = 0; 2310 *count = 0; 2311 bzero(&msg, sizeof (msg)); 2312 2313 vp = fp->f_vnode; 2314 fflag = fp->f_flag; 2315 if ((sr = create_thread(READ_OP, vp, rfp, fileoff, size)) == NULL) 2316 return (EAGAIN); 2317 2318 /* 2319 * We check for read error in snf_deque. It has to check 2320 * for successful READ_DONE and return NULL, and we might 2321 * as well make an additional check there. 2322 */ 2323 while ((mp = snf_deque(sr)) != NULL) { 2324 2325 if (ISSIG(curthread, JUSTLOOKING)) { 2326 freeb(mp); 2327 error = EINTR; 2328 break; 2329 } 2330 iosize = MBLKL(mp); 2331 2332 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2333 2334 if (error != 0) { 2335 if (mp != NULL) 2336 freeb(mp); 2337 break; 2338 } 2339 ksize += iosize; 2340 } 2341 *count = ksize; 2342 2343 mutex_enter(&sr->sr_lock); 2344 sr->sr_write_error = error; 2345 /* Look at the big comments on why we cv_signal here. */ 2346 cv_signal(&sr->sr_cv); 2347 2348 /* Wait for the reader to complete always. */ 2349 while (!(sr->sr_read_error & SR_READ_DONE)) { 2350 cv_wait(&sr->sr_cv, &sr->sr_lock); 2351 } 2352 /* If there is no write error, check for read error. */ 2353 if (error == 0) 2354 error = (sr->sr_read_error & ~SR_READ_DONE); 2355 2356 if (error != 0) { 2357 mblk_t *next_mp; 2358 2359 mp = sr->sr_mp_head; 2360 while (mp != NULL) { 2361 next_mp = mp->b_next; 2362 mp->b_next = NULL; 2363 freeb(mp); 2364 mp = next_mp; 2365 } 2366 } 2367 mutex_exit(&sr->sr_lock); 2368 kmem_free(sr, sizeof (snf_req_t)); 2369 return (error); 2370 } 2371 2372 /* Maximum no.of pages allocated by vpm for sendfile at a time */ 2373 #define SNF_VPMMAXPGS (VPMMAXPGS/2) 2374 2375 /* 2376 * Maximum no.of elements in the list returned by vpm, including 2377 * NULL for the last entry 2378 */ 2379 #define SNF_MAXVMAPS (SNF_VPMMAXPGS + 1) 2380 2381 typedef struct { 2382 unsigned int snfv_ref; 2383 frtn_t snfv_frtn; 2384 vnode_t *snfv_vp; 2385 struct vmap snfv_vml[SNF_MAXVMAPS]; 2386 } snf_vmap_desbinfo; 2387 2388 typedef struct { 2389 frtn_t snfi_frtn; 2390 caddr_t snfi_base; 2391 uint_t snfi_mapoff; 2392 size_t snfi_len; 2393 vnode_t *snfi_vp; 2394 } snf_smap_desbinfo; 2395 2396 /* 2397 * The callback function used for vpm mapped mblks called when the last ref of 2398 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2399 * can be the driver too due to lazy reclaim. 2400 */ 2401 void 2402 snf_vmap_desbfree(snf_vmap_desbinfo *snfv) 2403 { 2404 ASSERT(snfv->snfv_ref != 0); 2405 if (atomic_dec_32_nv(&snfv->snfv_ref) == 0) { 2406 vpm_unmap_pages(snfv->snfv_vml, S_READ); 2407 VN_RELE(snfv->snfv_vp); 2408 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2409 } 2410 } 2411 2412 /* 2413 * The callback function used for segmap'ped mblks called when the last ref of 2414 * the mblk is dropped which normally occurs when TCP receives the ack. But it 2415 * can be the driver too due to lazy reclaim. 2416 */ 2417 void 2418 snf_smap_desbfree(snf_smap_desbinfo *snfi) 2419 { 2420 if (! IS_KPM_ADDR(snfi->snfi_base)) { 2421 /* 2422 * We don't need to call segmap_fault(F_SOFTUNLOCK) for 2423 * segmap_kpm as long as the latter never falls back to 2424 * "use_segmap_range". (See segmap_getmapflt().) 2425 * 2426 * Using S_OTHER saves an redundant hat_setref() in 2427 * segmap_unlock() 2428 */ 2429 (void) segmap_fault(kas.a_hat, segkmap, 2430 (caddr_t)(uintptr_t)(((uintptr_t)snfi->snfi_base + 2431 snfi->snfi_mapoff) & PAGEMASK), snfi->snfi_len, 2432 F_SOFTUNLOCK, S_OTHER); 2433 } 2434 (void) segmap_release(segkmap, snfi->snfi_base, SM_DONTNEED); 2435 VN_RELE(snfi->snfi_vp); 2436 kmem_free(snfi, sizeof (*snfi)); 2437 } 2438 2439 /* 2440 * Use segmap or vpm instead of bcopy to send down a desballoca'ed, mblk. 2441 * When segmap is used, the mblk contains a segmap slot of no more 2442 * than MAXBSIZE. 2443 * 2444 * With vpm, a maximum of SNF_MAXVMAPS page-sized mappings can be obtained 2445 * in each iteration and sent by socket_sendmblk until an error occurs or 2446 * the requested size has been transferred. An mblk is esballoca'ed from 2447 * each mapped page and a chain of these mblk is sent to the transport layer. 2448 * vpm will be called to unmap the pages when all mblks have been freed by 2449 * free_func. 2450 * 2451 * At the end of the whole sendfile() operation, we wait till the data from 2452 * the last mblk is ack'ed by the transport before returning so that the 2453 * caller of sendfile() can safely modify the file content. 2454 */ 2455 int 2456 snf_segmap(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t total_size, 2457 ssize_t *count, boolean_t nowait) 2458 { 2459 caddr_t base; 2460 int mapoff; 2461 vnode_t *vp; 2462 mblk_t *mp = NULL; 2463 int chain_size; 2464 int error; 2465 clock_t deadlk_wait; 2466 short fflag; 2467 int ksize; 2468 struct vattr va; 2469 boolean_t dowait = B_FALSE; 2470 struct nmsghdr msg; 2471 2472 vp = fp->f_vnode; 2473 fflag = fp->f_flag; 2474 ksize = 0; 2475 bzero(&msg, sizeof (msg)); 2476 2477 for (;;) { 2478 if (ISSIG(curthread, JUSTLOOKING)) { 2479 error = EINTR; 2480 break; 2481 } 2482 2483 if (vpm_enable) { 2484 snf_vmap_desbinfo *snfv; 2485 mblk_t *nmp; 2486 int mblk_size; 2487 int maxsize; 2488 int i; 2489 2490 mapoff = fileoff & PAGEOFFSET; 2491 maxsize = MIN((SNF_VPMMAXPGS * PAGESIZE), total_size); 2492 2493 snfv = kmem_zalloc(sizeof (snf_vmap_desbinfo), 2494 KM_SLEEP); 2495 2496 /* 2497 * Get vpm mappings for maxsize with read access. 2498 * If the pages aren't available yet, we get 2499 * DEADLK, so wait and try again a little later using 2500 * an increasing wait. We might be here a long time. 2501 * 2502 * If delay_sig returns EINTR, be sure to exit and 2503 * pass it up to the caller. 2504 */ 2505 deadlk_wait = 0; 2506 while ((error = vpm_map_pages(fvp, fileoff, 2507 (size_t)maxsize, (VPM_FETCHPAGE), snfv->snfv_vml, 2508 SNF_MAXVMAPS, NULL, S_READ)) == EDEADLK) { 2509 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2510 if ((error = delay_sig(deadlk_wait)) != 0) { 2511 break; 2512 } 2513 } 2514 if (error != 0) { 2515 kmem_free(snfv, sizeof (snf_vmap_desbinfo)); 2516 error = (error == EINTR) ? EINTR : EIO; 2517 goto out; 2518 } 2519 snfv->snfv_frtn.free_func = snf_vmap_desbfree; 2520 snfv->snfv_frtn.free_arg = (caddr_t)snfv; 2521 2522 /* Construct the mblk chain from the page mappings */ 2523 chain_size = 0; 2524 for (i = 0; (snfv->snfv_vml[i].vs_addr != NULL) && 2525 total_size > 0; i++) { 2526 ASSERT(chain_size < maxsize); 2527 mblk_size = MIN(snfv->snfv_vml[i].vs_len - 2528 mapoff, total_size); 2529 nmp = esballoca( 2530 (uchar_t *)snfv->snfv_vml[i].vs_addr + 2531 mapoff, mblk_size, BPRI_HI, 2532 &snfv->snfv_frtn); 2533 2534 /* 2535 * We return EAGAIN after unmapping the pages 2536 * if we cannot allocate the the head of the 2537 * chain. Otherwise, we continue sending the 2538 * mblks constructed so far. 2539 */ 2540 if (nmp == NULL) { 2541 if (i == 0) { 2542 vpm_unmap_pages(snfv->snfv_vml, 2543 S_READ); 2544 kmem_free(snfv, 2545 sizeof (snf_vmap_desbinfo)); 2546 error = EAGAIN; 2547 goto out; 2548 } 2549 break; 2550 } 2551 /* Mark this dblk with the zero-copy flag */ 2552 nmp->b_datap->db_struioflag |= STRUIO_ZC; 2553 nmp->b_wptr += mblk_size; 2554 chain_size += mblk_size; 2555 fileoff += mblk_size; 2556 total_size -= mblk_size; 2557 snfv->snfv_ref++; 2558 mapoff = 0; 2559 if (i > 0) 2560 linkb(mp, nmp); 2561 else 2562 mp = nmp; 2563 } 2564 VN_HOLD(fvp); 2565 snfv->snfv_vp = fvp; 2566 } else { 2567 /* vpm not supported. fallback to segmap */ 2568 snf_smap_desbinfo *snfi; 2569 2570 mapoff = fileoff & MAXBOFFSET; 2571 chain_size = MAXBSIZE - mapoff; 2572 if (chain_size > total_size) 2573 chain_size = total_size; 2574 /* 2575 * we don't forcefault because we'll call 2576 * segmap_fault(F_SOFTLOCK) next. 2577 * 2578 * S_READ will get the ref bit set (by either 2579 * segmap_getmapflt() or segmap_fault()) and page 2580 * shared locked. 2581 */ 2582 base = segmap_getmapflt(segkmap, fvp, fileoff, 2583 chain_size, segmap_kpm ? SM_FAULT : 0, S_READ); 2584 2585 snfi = kmem_alloc(sizeof (*snfi), KM_SLEEP); 2586 snfi->snfi_len = (size_t)roundup(mapoff+chain_size, 2587 PAGESIZE)- (mapoff & PAGEMASK); 2588 /* 2589 * We must call segmap_fault() even for segmap_kpm 2590 * because that's how error gets returned. 2591 * (segmap_getmapflt() never fails but segmap_fault() 2592 * does.) 2593 * 2594 * If the pages aren't available yet, we get 2595 * DEADLK, so wait and try again a little later using 2596 * an increasing wait. We might be here a long time. 2597 * 2598 * If delay_sig returns EINTR, be sure to exit and 2599 * pass it up to the caller. 2600 */ 2601 deadlk_wait = 0; 2602 while ((error = FC_ERRNO(segmap_fault(kas.a_hat, 2603 segkmap, (caddr_t)(uintptr_t)(((uintptr_t)base + 2604 mapoff) & PAGEMASK), snfi->snfi_len, F_SOFTLOCK, 2605 S_READ))) == EDEADLK) { 2606 deadlk_wait += (deadlk_wait < 5) ? 1 : 4; 2607 if ((error = delay_sig(deadlk_wait)) != 0) { 2608 break; 2609 } 2610 } 2611 if (error != 0) { 2612 (void) segmap_release(segkmap, base, 0); 2613 kmem_free(snfi, sizeof (*snfi)); 2614 error = (error == EINTR) ? EINTR : EIO; 2615 goto out; 2616 } 2617 snfi->snfi_frtn.free_func = snf_smap_desbfree; 2618 snfi->snfi_frtn.free_arg = (caddr_t)snfi; 2619 snfi->snfi_base = base; 2620 snfi->snfi_mapoff = mapoff; 2621 mp = esballoca((uchar_t *)base + mapoff, chain_size, 2622 BPRI_HI, &snfi->snfi_frtn); 2623 2624 if (mp == NULL) { 2625 (void) segmap_fault(kas.a_hat, segkmap, 2626 (caddr_t)(uintptr_t)(((uintptr_t)base + 2627 mapoff) & PAGEMASK), snfi->snfi_len, 2628 F_SOFTUNLOCK, S_OTHER); 2629 (void) segmap_release(segkmap, base, 0); 2630 kmem_free(snfi, sizeof (*snfi)); 2631 freemsg(mp); 2632 error = EAGAIN; 2633 goto out; 2634 } 2635 VN_HOLD(fvp); 2636 snfi->snfi_vp = fvp; 2637 mp->b_wptr += chain_size; 2638 2639 /* Mark this dblk with the zero-copy flag */ 2640 mp->b_datap->db_struioflag |= STRUIO_ZC; 2641 fileoff += chain_size; 2642 total_size -= chain_size; 2643 } 2644 2645 if (total_size == 0 && !nowait) { 2646 ASSERT(!dowait); 2647 dowait = B_TRUE; 2648 mp->b_datap->db_struioflag |= STRUIO_ZCNOTIFY; 2649 } 2650 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2651 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2652 if (error != 0) { 2653 /* 2654 * mp contains the mblks that were not sent by 2655 * socket_sendmblk. Use its size to update *count 2656 */ 2657 *count = ksize + (chain_size - msgdsize(mp)); 2658 if (mp != NULL) 2659 freemsg(mp); 2660 return (error); 2661 } 2662 ksize += chain_size; 2663 if (total_size == 0) 2664 goto done; 2665 2666 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2667 va.va_mask = AT_SIZE; 2668 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2669 if (error) 2670 break; 2671 /* Read as much as possible. */ 2672 if (fileoff >= va.va_size) 2673 break; 2674 if (total_size + fileoff > va.va_size) 2675 total_size = va.va_size - fileoff; 2676 } 2677 out: 2678 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2679 done: 2680 *count = ksize; 2681 if (dowait) { 2682 stdata_t *stp; 2683 2684 stp = vp->v_stream; 2685 if (stp == NULL) { 2686 struct sonode *so; 2687 so = VTOSO(vp); 2688 error = so_zcopy_wait(so); 2689 } else { 2690 mutex_enter(&stp->sd_lock); 2691 while (!(stp->sd_flag & STZCNOTIFY)) { 2692 if (cv_wait_sig(&stp->sd_zcopy_wait, 2693 &stp->sd_lock) == 0) { 2694 error = EINTR; 2695 break; 2696 } 2697 } 2698 stp->sd_flag &= ~STZCNOTIFY; 2699 mutex_exit(&stp->sd_lock); 2700 } 2701 } 2702 return (error); 2703 } 2704 2705 int 2706 snf_cache(file_t *fp, vnode_t *fvp, u_offset_t fileoff, u_offset_t size, 2707 uint_t maxpsz, ssize_t *count) 2708 { 2709 struct vnode *vp; 2710 mblk_t *mp; 2711 int iosize; 2712 int extra = 0; 2713 int error; 2714 short fflag; 2715 int ksize; 2716 int ioflag; 2717 struct uio auio; 2718 struct iovec aiov; 2719 struct vattr va; 2720 int maxblk = 0; 2721 int wroff = 0; 2722 struct sonode *so; 2723 struct nmsghdr msg; 2724 2725 vp = fp->f_vnode; 2726 if (vp->v_type == VSOCK) { 2727 stdata_t *stp; 2728 2729 /* 2730 * Get the extra space to insert a header and a trailer. 2731 */ 2732 so = VTOSO(vp); 2733 stp = vp->v_stream; 2734 if (stp == NULL) { 2735 wroff = so->so_proto_props.sopp_wroff; 2736 maxblk = so->so_proto_props.sopp_maxblk; 2737 extra = wroff + so->so_proto_props.sopp_tail; 2738 } else { 2739 wroff = (int)(stp->sd_wroff); 2740 maxblk = (int)(stp->sd_maxblk); 2741 extra = wroff + (int)(stp->sd_tail); 2742 } 2743 } 2744 bzero(&msg, sizeof (msg)); 2745 fflag = fp->f_flag; 2746 ksize = 0; 2747 auio.uio_iov = &aiov; 2748 auio.uio_iovcnt = 1; 2749 auio.uio_segflg = UIO_SYSSPACE; 2750 auio.uio_llimit = MAXOFFSET_T; 2751 auio.uio_fmode = fflag; 2752 auio.uio_extflg = UIO_COPY_CACHED; 2753 ioflag = auio.uio_fmode & (FSYNC|FDSYNC|FRSYNC); 2754 /* If read sync is not asked for, filter sync flags */ 2755 if ((ioflag & FRSYNC) == 0) 2756 ioflag &= ~(FSYNC|FDSYNC); 2757 for (;;) { 2758 if (ISSIG(curthread, JUSTLOOKING)) { 2759 error = EINTR; 2760 break; 2761 } 2762 iosize = (int)MIN(maxpsz, size); 2763 2764 /* 2765 * Socket filters can limit the mblk size, 2766 * so limit reads to maxblk if there are 2767 * filters present. 2768 */ 2769 if (vp->v_type == VSOCK && 2770 so->so_filter_active > 0 && maxblk != INFPSZ) 2771 iosize = (int)MIN(iosize, maxblk); 2772 2773 if (is_system_labeled()) { 2774 mp = allocb_cred(iosize + extra, CRED(), 2775 curproc->p_pid); 2776 } else { 2777 mp = allocb(iosize + extra, BPRI_MED); 2778 } 2779 if (mp == NULL) { 2780 error = EAGAIN; 2781 break; 2782 } 2783 2784 mp->b_rptr += wroff; 2785 2786 aiov.iov_base = (caddr_t)mp->b_rptr; 2787 aiov.iov_len = iosize; 2788 auio.uio_loffset = fileoff; 2789 auio.uio_resid = iosize; 2790 2791 error = VOP_READ(fvp, &auio, ioflag, fp->f_cred, NULL); 2792 iosize -= auio.uio_resid; 2793 2794 if (error == EINTR && iosize != 0) 2795 error = 0; 2796 2797 if (error != 0 || iosize == 0) { 2798 freeb(mp); 2799 break; 2800 } 2801 mp->b_wptr = mp->b_rptr + iosize; 2802 2803 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2804 2805 error = socket_sendmblk(VTOSO(vp), &msg, fflag, CRED(), &mp); 2806 2807 if (error != 0) { 2808 *count = ksize; 2809 if (mp != NULL) 2810 freeb(mp); 2811 return (error); 2812 } 2813 ksize += iosize; 2814 size -= iosize; 2815 if (size == 0) 2816 goto done; 2817 2818 fileoff += iosize; 2819 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2820 va.va_mask = AT_SIZE; 2821 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2822 if (error) 2823 break; 2824 /* Read as much as possible. */ 2825 if (fileoff >= va.va_size) 2826 size = 0; 2827 else if (size + fileoff > va.va_size) 2828 size = va.va_size - fileoff; 2829 } 2830 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2831 done: 2832 *count = ksize; 2833 return (error); 2834 } 2835 2836 #if defined(_SYSCALL32_IMPL) || defined(_ILP32) 2837 /* 2838 * Largefile support for 32 bit applications only. 2839 */ 2840 int 2841 sosendfile64(file_t *fp, file_t *rfp, const struct ksendfilevec64 *sfv, 2842 ssize32_t *count32) 2843 { 2844 ssize32_t sfv_len; 2845 u_offset_t sfv_off, va_size; 2846 struct vnode *vp, *fvp, *realvp; 2847 struct vattr va; 2848 stdata_t *stp; 2849 ssize_t count = 0; 2850 int error = 0; 2851 boolean_t dozcopy = B_FALSE; 2852 uint_t maxpsz; 2853 2854 sfv_len = (ssize32_t)sfv->sfv_len; 2855 if (sfv_len < 0) { 2856 error = EINVAL; 2857 goto out; 2858 } 2859 2860 if (sfv_len == 0) goto out; 2861 2862 sfv_off = (u_offset_t)sfv->sfv_off; 2863 2864 /* Same checks as in pread */ 2865 if (sfv_off > MAXOFFSET_T) { 2866 error = EINVAL; 2867 goto out; 2868 } 2869 if (sfv_off + sfv_len > MAXOFFSET_T) 2870 sfv_len = (ssize32_t)(MAXOFFSET_T - sfv_off); 2871 2872 /* 2873 * There are no more checks on sfv_len. So, we cast it to 2874 * u_offset_t and share the snf_direct_io/snf_cache code between 2875 * 32 bit and 64 bit. 2876 * 2877 * TODO: should do nbl_need_check() like read()? 2878 */ 2879 if (sfv_len > sendfile_max_size) { 2880 sf_stats.ss_file_not_cached++; 2881 error = snf_direct_io(fp, rfp, sfv_off, (u_offset_t)sfv_len, 2882 &count); 2883 goto out; 2884 } 2885 fvp = rfp->f_vnode; 2886 if (VOP_REALVP(fvp, &realvp, NULL) == 0) 2887 fvp = realvp; 2888 /* 2889 * Grab the lock as a reader to prevent the file size 2890 * from changing underneath. 2891 */ 2892 (void) VOP_RWLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2893 va.va_mask = AT_SIZE; 2894 error = VOP_GETATTR(fvp, &va, 0, kcred, NULL); 2895 va_size = va.va_size; 2896 if ((error != 0) || (va_size == 0) || (sfv_off >= va_size)) { 2897 VOP_RWUNLOCK(fvp, V_WRITELOCK_FALSE, NULL); 2898 goto out; 2899 } 2900 /* Read as much as possible. */ 2901 if (sfv_off + sfv_len > va_size) 2902 sfv_len = va_size - sfv_off; 2903 2904 vp = fp->f_vnode; 2905 stp = vp->v_stream; 2906 /* 2907 * When the NOWAIT flag is not set, we enable zero-copy only if the 2908 * transfer size is large enough. This prevents performance loss 2909 * when the caller sends the file piece by piece. 2910 */ 2911 if (sfv_len >= MAXBSIZE && (sfv_len >= (va_size >> 1) || 2912 (sfv->sfv_flag & SFV_NOWAIT) || sfv_len >= 0x1000000) && 2913 !vn_has_flocks(fvp) && !(fvp->v_flag & VNOMAP)) { 2914 uint_t copyflag; 2915 copyflag = stp != NULL ? stp->sd_copyflag : 2916 VTOSO(vp)->so_proto_props.sopp_zcopyflag; 2917 if ((copyflag & (STZCVMSAFE|STZCVMUNSAFE)) == 0) { 2918 int on = 1; 2919 2920 if (socket_setsockopt(VTOSO(vp), SOL_SOCKET, 2921 SO_SND_COPYAVOID, &on, sizeof (on), CRED()) == 0) 2922 dozcopy = B_TRUE; 2923 } else { 2924 dozcopy = copyflag & STZCVMSAFE; 2925 } 2926 } 2927 if (dozcopy) { 2928 sf_stats.ss_file_segmap++; 2929 error = snf_segmap(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2930 &count, ((sfv->sfv_flag & SFV_NOWAIT) != 0)); 2931 } else { 2932 if (vp->v_type == VSOCK && stp == NULL) { 2933 sonode_t *so = VTOSO(vp); 2934 maxpsz = so->so_proto_props.sopp_maxpsz; 2935 } else if (stp != NULL) { 2936 maxpsz = stp->sd_qn_maxpsz; 2937 } else { 2938 maxpsz = maxphys; 2939 } 2940 2941 if (maxpsz == INFPSZ) 2942 maxpsz = maxphys; 2943 else 2944 maxpsz = roundup(maxpsz, MAXBSIZE); 2945 sf_stats.ss_file_cached++; 2946 error = snf_cache(fp, fvp, sfv_off, (u_offset_t)sfv_len, 2947 maxpsz, &count); 2948 } 2949 out: 2950 releasef(sfv->sfv_fd); 2951 *count32 = (ssize32_t)count; 2952 return (error); 2953 } 2954 #endif 2955 2956 #ifdef _SYSCALL32_IMPL 2957 /* 2958 * recv32(), recvfrom32(), send32(), sendto32(): intentionally return a 2959 * ssize_t rather than ssize32_t; see the comments above read32 for details. 2960 */ 2961 2962 ssize_t 2963 recv32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2964 { 2965 return (recv(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2966 } 2967 2968 ssize_t 2969 recvfrom32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2970 caddr32_t name, caddr32_t namelenp) 2971 { 2972 return (recvfrom(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2973 (void *)(uintptr_t)name, (void *)(uintptr_t)namelenp)); 2974 } 2975 2976 ssize_t 2977 send32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags) 2978 { 2979 return (send(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags)); 2980 } 2981 2982 ssize_t 2983 sendto32(int32_t sock, caddr32_t buffer, size32_t len, int32_t flags, 2984 caddr32_t name, socklen_t namelen) 2985 { 2986 return (sendto(sock, (void *)(uintptr_t)buffer, (ssize32_t)len, flags, 2987 (void *)(uintptr_t)name, namelen)); 2988 } 2989 #endif /* _SYSCALL32_IMPL */ 2990 2991 /* 2992 * Function wrappers (mostly around the sonode switch) for 2993 * backward compatibility. 2994 */ 2995 2996 int 2997 soaccept(struct sonode *so, int fflag, struct sonode **nsop) 2998 { 2999 return (socket_accept(so, fflag, CRED(), nsop)); 3000 } 3001 3002 int 3003 sobind(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3004 int backlog, int flags) 3005 { 3006 int error; 3007 3008 error = socket_bind(so, name, namelen, flags, CRED()); 3009 if (error == 0 && backlog != 0) 3010 return (socket_listen(so, backlog, CRED())); 3011 3012 return (error); 3013 } 3014 3015 int 3016 solisten(struct sonode *so, int backlog) 3017 { 3018 return (socket_listen(so, backlog, CRED())); 3019 } 3020 3021 int 3022 soconnect(struct sonode *so, struct sockaddr *name, socklen_t namelen, 3023 int fflag, int flags) 3024 { 3025 return (socket_connect(so, name, namelen, fflag, flags, CRED())); 3026 } 3027 3028 int 3029 sorecvmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3030 { 3031 return (socket_recvmsg(so, msg, uiop, CRED())); 3032 } 3033 3034 int 3035 sosendmsg(struct sonode *so, struct nmsghdr *msg, struct uio *uiop) 3036 { 3037 return (socket_sendmsg(so, msg, uiop, CRED())); 3038 } 3039 3040 int 3041 soshutdown(struct sonode *so, int how) 3042 { 3043 return (socket_shutdown(so, how, CRED())); 3044 } 3045 3046 int 3047 sogetsockopt(struct sonode *so, int level, int option_name, void *optval, 3048 socklen_t *optlenp, int flags) 3049 { 3050 return (socket_getsockopt(so, level, option_name, optval, optlenp, 3051 flags, CRED())); 3052 } 3053 3054 int 3055 sosetsockopt(struct sonode *so, int level, int option_name, const void *optval, 3056 t_uscalar_t optlen) 3057 { 3058 return (socket_setsockopt(so, level, option_name, optval, optlen, 3059 CRED())); 3060 } 3061 3062 /* 3063 * Because this is backward compatibility interface it only needs to be 3064 * able to handle the creation of TPI sockfs sockets. 3065 */ 3066 struct sonode * 3067 socreate(struct sockparams *sp, int family, int type, int protocol, int version, 3068 int *errorp) 3069 { 3070 struct sonode *so; 3071 3072 ASSERT(sp != NULL); 3073 3074 so = sp->sp_smod_info->smod_sock_create_func(sp, family, type, protocol, 3075 version, SOCKET_SLEEP, errorp, CRED()); 3076 if (so == NULL) { 3077 SOCKPARAMS_DEC_REF(sp); 3078 } else { 3079 if ((*errorp = SOP_INIT(so, NULL, CRED(), SOCKET_SLEEP)) == 0) { 3080 /* Cannot fail, only bumps so_count */ 3081 (void) VOP_OPEN(&SOTOV(so), FREAD|FWRITE, CRED(), NULL); 3082 } else { 3083 socket_destroy(so); 3084 so = NULL; 3085 } 3086 } 3087 return (so); 3088 }