
new/usr/src/cmd/savecore/savecore.c 1

**
 50363 Wed Jul 11 18:26:05 2012
new/usr/src/cmd/savecore/savecore.c
2445 savecore fails with dump archive but return EXIT_OK
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1983, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /*
25 * Copyright 2012 Nexenta Systems, Inc. All rights reserved.
26 */

28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <stdarg.h>
31 #include <unistd.h>
32 #include <fcntl.h>
33 #include <errno.h>
34 #include <string.h>
35 #include <deflt.h>
36 #include <time.h>
37 #include <syslog.h>
38 #include <stropts.h>
39 #include <pthread.h>
40 #include <limits.h>
41 #include <atomic.h>
42 #include <libnvpair.h>
43 #include <libintl.h>
44 #include <sys/mem.h>
45 #include <sys/statvfs.h>
46 #include <sys/dumphdr.h>
47 #include <sys/dumpadm.h>
48 #include <sys/compress.h>
49 #include <sys/panic.h>
50 #include <sys/sysmacros.h>
51 #include <sys/stat.h>
52 #include <sys/resource.h>
53 #include <bzip2/bzlib.h>
54 #include <sys/fm/util.h>
55 #include <fm/libfmevent.h>
56 #include <sys/int_fmtio.h>

59 /* fread/fwrite buffer size */
60 #define FBUFSIZE (1ULL << 20)

new/usr/src/cmd/savecore/savecore.c 2

62 /* minimum size for output buffering */
63 #define MINCOREBLKSIZE (1ULL << 17)

65 /* create this file if metrics collection is enabled in the kernel */
66 #define METRICSFILE "METRICS.csv"

68 static char progname[9] = "savecore";
69 static char *savedir; /* savecore directory */
70 static char *dumpfile; /* source of raw crash dump */
71 static long bounds = -1; /* numeric suffix */
72 static long pagesize; /* dump pagesize */
73 static int dumpfd = -1; /* dumpfile descriptor */
74 static dumphdr_t corehdr, dumphdr; /* initial and terminal dumphdrs */
75 static boolean_t dump_incomplete; /* dumphdr indicates incomplete */
76 static boolean_t fm_panic; /* dump is the result of fm_panic */
77 static offset_t endoff; /* offset of end-of-dump header */
78 static int verbose; /* chatty mode */
79 static int disregard_valid_flag; /* disregard valid flag */
80 static int livedump; /* dump the current running system */
81 static int interactive; /* user invoked; no syslog */
82 static int csave; /* save dump compressed */
83 static int filemode; /* processing file, not dump device */
84 static int percent_done; /* progress indicator */
85 static hrtime_t startts; /* timestamp at start */
86 static volatile uint64_t saved; /* count of pages written */
87 static volatile uint64_t zpages; /* count of zero pages not written */
88 static dumpdatahdr_t datahdr; /* compression info */
89 static long coreblksize; /* preferred write size (st_blksize) */
90 static int cflag; /* run as savecore -c */
91 static int mflag; /* run as savecore -m */

93 /*
94 * Payload information for the events we raise. These are used
95 * in raise_event to determine what payload to include.
96 */
97 #define SC_PAYLOAD_SAVEDIR 0x0001 /* Include savedir in event */
98 #define SC_PAYLOAD_INSTANCE 0x0002 /* Include bounds instance number */
99 #define SC_PAYLOAD_IMAGEUUID 0x0004 /* Include dump OS instance uuid */
100 #define SC_PAYLOAD_CRASHTIME 0x0008 /* Include epoch crashtime */
101 #define SC_PAYLOAD_PANICSTR 0x0010 /* Include panic string */
102 #define SC_PAYLOAD_PANICSTACK 0x0020 /* Include panic string */
103 #define SC_PAYLOAD_FAILREASON 0x0040 /* Include failure reason */
104 #define SC_PAYLOAD_DUMPCOMPLETE 0x0080 /* Include completeness indicator */
105 #define SC_PAYLOAD_ISCOMPRESSED 0x0100 /* Dump is in vmdump.N form */
106 #define SC_PAYLOAD_DUMPADM_EN 0x0200 /* Is dumpadm enabled or not? */
107 #define SC_PAYLOAD_FM_PANIC 0x0400 /* Panic initiated by FMA */
108 #define SC_PAYLOAD_JUSTCHECKING 0x0800 /* Run with -c flag? */

110 enum sc_event_type {
111 SC_EVENT_DUMP_PENDING,
112 SC_EVENT_SAVECORE_FAILURE,
113 SC_EVENT_DUMP_AVAILABLE
114 };

______unchanged_portion_omitted_

168 #define SC_SL_NONE 0x0001 /* no syslog */
169 #define SC_SL_ERR 0x0002 /* syslog if !interactive, LOG_ERR */
170 #define SC_SL_WARN 0x0004 /* syslog if !interactive, LOG_WARNING */
171 #define SC_IF_VERBOSE 0x0008 /* message only if -v */
172 #define SC_IF_ISATTY 0x0010 /* message only if interactive */
173 #define SC_EXIT_OK 0x0020 /* exit(0) */
174 #define SC_EXIT_ERR 0x0040 /* exit(1) */
175 #define SC_EXIT_PEND 0x0080 /* exit(2) */
176 #define SC_EXIT_FM 0x0100 /* exit(3) */

178 #define _SC_ALLEXIT (SC_EXIT_OK | SC_EXIT_ERR | SC_EXIT_PEND | SC_EXIT_FM)

new/usr/src/cmd/savecore/savecore.c 3

180 static void
181 logprint(uint32_t flags, char *message, ...)
182 {
183 va_list args;
184 char buf[1024];
185 int do_always = ((flags & (SC_IF_VERBOSE | SC_IF_ISATTY)) == 0);
186 int do_ifverb = (flags & SC_IF_VERBOSE) && verbose;
187 int do_ifisatty = (flags & SC_IF_ISATTY) && interactive;
188 int code;
189 static int logprint_raised = 0;

191 if (do_always || do_ifverb || do_ifisatty) {
192 va_start(args, message);
193 /*LINTED: E_SEC_PRINTF_VAR_FMT*/
194 (void) vsnprintf(buf, sizeof (buf), message, args);
195 (void) fprintf(stderr, "%s: %s\n", progname, buf);
196 if (!interactive) {
197 switch (flags & (SC_SL_NONE | SC_SL_ERR | SC_SL_WARN)) {
198 case SC_SL_ERR:
199 /*LINTED: E_SEC_PRINTF_VAR_FMT*/
200 syslog(LOG_ERR, buf);
201 break;

203 case SC_SL_WARN:
204 /*LINTED: E_SEC_PRINTF_VAR_FMT*/
205 syslog(LOG_WARNING, buf);
206 break;

208 default:
209 break;
210 }
211 }
212 va_end(args);
213 }

215 switch (flags & _SC_ALLEXIT) {
216 case 0:
217 return;

219 case SC_EXIT_OK:
220 code = 0;
221 break;

223 case SC_EXIT_PEND:
224 /*
225 * Raise an ireport saying why we are exiting. Do not
226 * raise if run as savecore -m. If something in the
227 * raise_event codepath calls logprint avoid recursion.
228 */
229 if (!mflag && logprint_raised++ == 0)
230 raise_event(SC_EVENT_SAVECORE_FAILURE, buf);
231 code = 2;
232 break;

234 case SC_EXIT_FM:
235 code = 3;
236 break;

238 case SC_EXIT_ERR:
239 default:
230 /*
231 * Raise an ireport saying why we are exiting. Do not
232 * raise if run as savecore -m. If something in the
233 * raise_event codepath calls logprint avoid recursion.
234 */

new/usr/src/cmd/savecore/savecore.c 4

240 if (!mflag && logprint_raised++ == 0)
241 raise_event(SC_EVENT_SAVECORE_FAILURE, buf);
242 code = 1;
243 break;
244 }

246 exit(code);
247 }

______unchanged_portion_omitted_

350 static void
351 read_dumphdr(void)
352 {
353 if (filemode)
354 dumpfd = Open(dumpfile, O_RDONLY, 0644);
355 else
356 dumpfd = Open(dumpfile, O_RDWR | O_DSYNC, 0644);
357 endoff = llseek(dumpfd, -DUMP_OFFSET, SEEK_END) & -DUMP_OFFSET;
358 Pread(dumpfd, &dumphdr, sizeof (dumphdr), endoff);
359 Pread(dumpfd, &datahdr, sizeof (datahdr), endoff + sizeof (dumphdr));

361 pagesize = dumphdr.dump_pagesize;

363 if (dumphdr.dump_magic != DUMP_MAGIC)
364 logprint(SC_SL_NONE | SC_EXIT_PEND, "bad magic number %x",
359 logprint(SC_SL_NONE | SC_EXIT_OK, "bad magic number %x",
365 dumphdr.dump_magic);

367 if ((dumphdr.dump_flags & DF_VALID) == 0 && !disregard_valid_flag)
368 logprint(SC_SL_NONE | SC_IF_VERBOSE | SC_EXIT_OK,
369 "dump already processed");

371 if (dumphdr.dump_version != DUMP_VERSION)
372 logprint(SC_SL_NONE | SC_IF_VERBOSE | SC_EXIT_PEND,
367 logprint(SC_SL_NONE | SC_IF_VERBOSE | SC_EXIT_OK,
373 "dump version (%d) != %s version (%d)",
374 dumphdr.dump_version, progname, DUMP_VERSION);

376 if (dumphdr.dump_wordsize != DUMP_WORDSIZE)
377 logprint(SC_SL_NONE | SC_EXIT_PEND,
372 logprint(SC_SL_NONE | SC_EXIT_OK,
378 "dump is from %u-bit kernel - cannot save on %u-bit kernel",
379 dumphdr.dump_wordsize, DUMP_WORDSIZE);

381 if (datahdr.dump_datahdr_magic == DUMP_DATAHDR_MAGIC) {
382 if (datahdr.dump_datahdr_version != DUMP_DATAHDR_VERSION)
383 logprint(SC_SL_NONE | SC_IF_VERBOSE | SC_EXIT_PEND,
378 logprint(SC_SL_NONE | SC_IF_VERBOSE | SC_EXIT_OK,
384 "dump data version (%d) != %s data version (%d)",
385 datahdr.dump_datahdr_version, progname,
386 DUMP_DATAHDR_VERSION);
387 } else {
388 (void) memset(&datahdr, 0, sizeof (datahdr));
389 datahdr.dump_maxcsize = pagesize;
390 }

392 /*
393 * Read the initial header, clear the valid bits, and compare headers.
394 * The main header may have been overwritten by swapping if we’re
395 * using a swap partition as the dump device, in which case we bail.
396 */
397 Pread(dumpfd, &corehdr, sizeof (dumphdr_t), dumphdr.dump_start);

399 corehdr.dump_flags &= ~DF_VALID;
400 dumphdr.dump_flags &= ~DF_VALID;

new/usr/src/cmd/savecore/savecore.c 5

402 if (memcmp(&corehdr, &dumphdr, sizeof (dumphdr_t)) != 0) {
403 /*
404 * Clear valid bit so we don’t complain on every invocation.
405 */
406 if (!filemode)
407 Pwrite(dumpfd, &dumphdr, sizeof (dumphdr), endoff);
408 logprint(SC_SL_ERR | SC_EXIT_ERR,
409 "initial dump header corrupt");
410 }
411 }

______unchanged_portion_omitted_

