
new/usr/src/uts/common/fs/dev/sdev_profile.c 1

**
 26470 Mon Dec 1 21:05:21 2014
new/usr/src/uts/common/fs/dev/sdev_profile.c
5360 Race condition in devfs upgrades reader to writer incidentally and causes p
**
______unchanged_portion_omitted_

657 /*
658 * Return True if directory cache is out of date and should be updated.
659 */
660 static boolean_t
661 prof_dev_needupdate(sdev_node_t *ddv)
662 {
663 sdev_node_t *gdir = ddv->sdev_origin;

665 /*
666 * Caller can have either reader or writer lock
667 */
668 ASSERT(RW_LOCK_HELD(&ddv->sdev_contents));

670 /*
671 * We need to rebuild the directory content if
672 * - ddv is not in a SDEV_ZOMBIE state
673 * - SDEV_BUILD is set OR
674 * - The device tree generation number has changed OR
675 * - The corresponding /dev namespace has been updated
676 */
677 return ((ddv->sdev_state != SDEV_ZOMBIE) &&
678 (((ddv->sdev_flags & SDEV_BUILD) != 0) ||
679 (ddv->sdev_devtree_gen != devtree_gen) ||
680 ((gdir != NULL) &&
681 (ddv->sdev_ldir_gen != gdir->sdev_gdir_gen))));
682 }

684 /*
685 * Build directory vnodes based on the profile and the global
686 * dev instance.
687 */
688 void
689 prof_filldir(sdev_node_t *ddv)
662 prof_filldir(struct sdev_node *ddv)
690 {
691 sdev_node_t *gdir;
664 int firsttime = 1;
665 struct sdev_node *gdir = ddv->sdev_origin;

693 ASSERT(RW_READ_HELD(&ddv->sdev_contents));

695 if (!prof_dev_needupdate(ddv)) {
696 ASSERT(RW_READ_HELD(&ddv->sdev_contents));
697 return;
698 }
699 /*
700 * Upgrade to writer lock
670 * We need to rebuild the directory content if
671 * - SDEV_BUILD is set
672 * - The device tree generation number has changed
673 * - The corresponding /dev namespace has been updated
701 */
702 if (rw_tryupgrade(&ddv->sdev_contents) == 0) {
703 /*
704 * We need to drop the read lock and re-acquire it as a
705 * write lock. While we do this the condition may change so we
706 * need to re-check condition
707 */
675 check_build:

new/usr/src/uts/common/fs/dev/sdev_profile.c 2

676 if ((ddv->sdev_flags & SDEV_BUILD) == 0 &&
677 ddv->sdev_devtree_gen == devtree_gen &&
678 (gdir == NULL || ddv->sdev_ldir_gen
679 == gdir->sdev_gdir_gen))
680 return; /* already up to date */

682 /* We may have become a zombie (across a try) */
683 if (ddv->sdev_state == SDEV_ZOMBIE)
684 return;

686 if (firsttime && rw_tryupgrade(&ddv->sdev_contents) == 0) {
708 rw_exit(&ddv->sdev_contents);
688 firsttime = 0;
709 rw_enter(&ddv->sdev_contents, RW_WRITER);
710 if (!prof_dev_needupdate(ddv)) {
711 /* Downgrade back to the read lock before returning */
712 rw_downgrade(&ddv->sdev_contents);
713 return;
690 goto check_build;
714 }
715 }
716 /* At this point we should have a write lock */
717 ASSERT(RW_WRITE_HELD(&ddv->sdev_contents));

719 sdcmn_err10(("devtree_gen (%s): %ld -> %ld\n",
720 ddv->sdev_path, ddv->sdev_devtree_gen, devtree_gen));

722 gdir = ddv->sdev_origin;

724 if (gdir != NULL)
694 if (gdir)
725 sdcmn_err10(("sdev_dir_gen (%s): %ld -> %ld\n",
726 ddv->sdev_path, ddv->sdev_ldir_gen,
727 gdir->sdev_gdir_gen));

729 /* update flags and generation number so next filldir is quick */
730 if ((ddv->sdev_flags & SDEV_BUILD) == SDEV_BUILD) {
731 ddv->sdev_flags &= ~SDEV_BUILD;
732 }
733 ddv->sdev_devtree_gen = devtree_gen;
734 if (gdir != NULL)
702 if (gdir)
735 ddv->sdev_ldir_gen = gdir->sdev_gdir_gen;

737 prof_make_symlinks(ddv);
738 prof_make_maps(ddv);
739 prof_make_names(ddv);
740 rw_downgrade(&ddv->sdev_contents);
741 }

______unchanged_portion_omitted_

