new usr/src/uts/comon/fs/nfs/nfs_acl _xdr.c

R R R R

12641 Tue Jan 20 23:18:28 2015
new usr/src/uts/comon/fs/nfs/nfs_acl _xdr.c
5548 Attenpt to read ACLs fromIllunbs NFS client is toxic

R R R R R

__unchanged_portion_onitted_

86 /*

87 * Serialize and de-serialize access control attributes

88 */

89 bool _t

90 ?dr_secattr(XDR *xdrs, vsecattr_t *objp)

91

92 uint_t count = 0;

93 uint_t dfacount = O;

89 uint_t count;

95 if (!xdr_u_int(xdrs, &objp->vsa_nask)) {

91 if (!xdr_u_int(xdrs, &objp->vsa_nask))

96 return (FALSE);

97 }

99 I*

100 * Refuse request if we do not understand it conpletely.

101 * There should be at |east one valid bit set in the mask and
102 * none of the unknown bits set.

103 */

104 if ((objp->vsa_mask &

105 (VSA_ACL | VSA ACLCNT | VSA DFACL | VSA DFACLCNT)) == 0) {
93 if (!xdr_int(xdrs, &objp->vsa_aclcnt))

106 return (FALSE);

107 1

108 if ((objp->vsa_nask &

109 ~(VSA_ACL | VSA ACLCNT | VSA DFACL | VSA DFACLCNT)) != 0)
110 return (FALSE);

111 1

113 if (!'xdr_int(xdrs, &objp->vsa_aclcnt)) {

114 return (FALSE);

115 1

116 if (objp->vsa_aclentp != NULL) {

95 if (objp->vsa_aclentp != NULL)

117 count = (uint_t)objp->vsa_aclcnt;

118 }

97 el se

98 count = 0;

120 if (!xdr_array(xdrs, (char **)&objp->vsa_acl entp, &count,
121 NFS_ACL_MAX_ENTRI ES, sizeof (aclent_t), (xdrproc_t)xdr_aclent)
100 NFS_ACL_MAX_ENTRI ES, sizeof (aclent_t), (xdrproc_t)xdr_aclent)
122 return (FALSE);

123 }

125 if (coun} 1= 0 & count != (uint_t)objp->vsa_aclcnt) {

126

127 * Assign the actual array size to vsa_aclcnt before
128 * aborting on error

129 */

130 obj p->vsa_acl cnt = (int)count;

131 return (FALSE);

132 1

134 /*

135 * For VSA_ACL the count should be zero or there shoul d

136 * be array attached.

137 */

{

)
)

new usr/src/uts/comon/fs/nfs/nfs_acl _xdr.c

138
139
140
110
141
142
143

145
112
113
114
115
116
117
146
147
148
149
150

152
153
154
155

157
119
158
159
160
161
162
124
163
164

166
167
168
169
170
171
172
173
174
175
176

179

180 }
__unchanged_portion_onitted_

if ((objp->vsa_mask & VSA ACL) != 0) {
if ((objp->vsa_aclcnt != 0) && (obj p->vsa_aclentp == NULL)) {
obj p->vsa_acl cnt = 0;
if (!xdr_int(xdrs, &objp->vsa_dfacl cnt))
return (FALSE);
}

}

if (!xdr_int(xdrs, &objp->vsa_dfaclcnt)) {
if (objp->vsa dfaclentp I'= NULL)
count = (uint_t)objp->vsa_dfaclcnt;
el se
count = 0;
if (!xdr_array(xdrs, (char **)&objp->vsa_dfacl entp, &count,
NFS_ACL_MAX_ENTRI ES, sizeof (aclent_t), (xdrproc_t)xdr_acl ent))
return (FALSE);

}
i1 f (objp->vsa_dfaclentp !'= NULL) {

df acount = (uint_t)objp->vsa_dfaclcnt;
}

if (!xdr_array(xdrs, (char **)&objp->vsa_dfacl entp, &dfacount,
NFS_ACL_MAX_ENTRI ES, sizeof (aclent_t), (xdrproc_t)xdr_aclent)) {
return (FALSE);

}
if (dfacount !'= 0 && dfacount != (uint_t)objp->vsa_dfaclcnt) {
if (count != 0 && count != (uint_t)objp->vsa_dfaclcnt) {
/*
* Assign the actual array size to vsa_dfaclcnt before
* aborting on error
*
/
obj p->vsa_dfacl cnt = (int)dfacount;
obj p- >vsa_dfaclcnt = (int)count;
return (FALSE);
}
/*

* for VSA DFACL The count should be zero or there shoul d
* be array attached
*

if ((objp->vsa_nmask & VSA DFACL) != 0) {
1f ((objp->vsa_dfaclcnt = 0) &&
(obj p->vsa_dfacl entp == NULL)) {
obj p->vsa_df acl cnt = O;
return (FALSE);

return (TRUE);

