
new/usr/src/uts/common/fs/nfs/nfs_acl_xdr.c 1

**
 12641 Tue Jan 20 23:18:28 2015
new/usr/src/uts/common/fs/nfs/nfs_acl_xdr.c
5548 Attempt to read ACLs from Illumos NFS client is toxic
**
______unchanged_portion_omitted_

86 /*
87 * Serialize and de-serialize access control attributes
88 */
89 bool_t
90 xdr_secattr(XDR *xdrs, vsecattr_t *objp)
91 {
92 uint_t count = 0;
93 uint_t dfacount = 0;
89 uint_t count;

95 if (!xdr_u_int(xdrs, &objp->vsa_mask)) {
91 if (!xdr_u_int(xdrs, &objp->vsa_mask))
96 return (FALSE);
97 }

99 /*
100 * Refuse request if we do not understand it completely.
101 * There should be at least one valid bit set in the mask and
102 * none of the unknown bits set.
103 */
104 if ((objp->vsa_mask &
105 (VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) == 0) {
93 if (!xdr_int(xdrs, &objp->vsa_aclcnt))
106 return (FALSE);
107 }
108 if ((objp->vsa_mask &
109 ~(VSA_ACL | VSA_ACLCNT | VSA_DFACL | VSA_DFACLCNT)) != 0) {
110 return (FALSE);
111 }

113 if (!xdr_int(xdrs, &objp->vsa_aclcnt)) {
114 return (FALSE);
115 }
116 if (objp->vsa_aclentp != NULL) {
95 if (objp->vsa_aclentp != NULL)
117 count = (uint_t)objp->vsa_aclcnt;
118 }

97 else
98 count = 0;
120 if (!xdr_array(xdrs, (char **)&objp->vsa_aclentp, &count,
121 NFS_ACL_MAX_ENTRIES, sizeof (aclent_t), (xdrproc_t)xdr_aclent)) {
100 NFS_ACL_MAX_ENTRIES, sizeof (aclent_t), (xdrproc_t)xdr_aclent))
122 return (FALSE);
123 }

125 if (count != 0 && count != (uint_t)objp->vsa_aclcnt) {
126 /*
127 * Assign the actual array size to vsa_aclcnt before
128 * aborting on error
129 */
130 objp->vsa_aclcnt = (int)count;
131 return (FALSE);
132 }

134 /*
135 * For VSA_ACL the count should be zero or there should
136 * be array attached.
137 */

new/usr/src/uts/common/fs/nfs/nfs_acl_xdr.c 2

138 if ((objp->vsa_mask & VSA_ACL) != 0) {
139 if ((objp->vsa_aclcnt != 0) && (objp->vsa_aclentp == NULL)) {
140 objp->vsa_aclcnt = 0;
110 if (!xdr_int(xdrs, &objp->vsa_dfaclcnt))
141 return (FALSE);
142 }
143 }

145 if (!xdr_int(xdrs, &objp->vsa_dfaclcnt)) {
112 if (objp->vsa_dfaclentp != NULL)
113 count = (uint_t)objp->vsa_dfaclcnt;
114 else
115 count = 0;
116 if (!xdr_array(xdrs, (char **)&objp->vsa_dfaclentp, &count,
117 NFS_ACL_MAX_ENTRIES, sizeof (aclent_t), (xdrproc_t)xdr_aclent))
146 return (FALSE);
147 }
148 if (objp->vsa_dfaclentp != NULL) {
149 dfacount = (uint_t)objp->vsa_dfaclcnt;
150 }

152 if (!xdr_array(xdrs, (char **)&objp->vsa_dfaclentp, &dfacount,
153 NFS_ACL_MAX_ENTRIES, sizeof (aclent_t), (xdrproc_t)xdr_aclent)) {
154 return (FALSE);
155 }

157 if (dfacount != 0 && dfacount != (uint_t)objp->vsa_dfaclcnt) {
119 if (count != 0 && count != (uint_t)objp->vsa_dfaclcnt) {
158 /*
159 * Assign the actual array size to vsa_dfaclcnt before
160 * aborting on error
161 */
162 objp->vsa_dfaclcnt = (int)dfacount;
124 objp->vsa_dfaclcnt = (int)count;
163 return (FALSE);
164 }

166 /*
167 * for VSA_DFACL The count should be zero or there should
168 * be array attached
169 */
170 if ((objp->vsa_mask & VSA_DFACL) != 0) {
171 if ((objp->vsa_dfaclcnt != 0) &&
172 (objp->vsa_dfaclentp == NULL)) {
173 objp->vsa_dfaclcnt = 0;
174 return (FALSE);
175 }
176 }

179 return (TRUE);
180 }

______unchanged_portion_omitted_

