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__unchanged_portion_onitted_

86 /*

87 * Serialize and de-serialize access control attributes

88 */

89 bool _t

90 ?dr_secattr(XDR *xdrs, vsecattr_t *objp)

91

92 uint_t count = 0;

93 uint_t dfacount = O;

89 uint_t count;

95 if (!xdr_u_int(xdrs, &objp->vsa_nask)) {

91 if (!xdr_u_int(xdrs, &objp->vsa_nask))

96 return (FALSE);

97 }

99 I*

100 * Refuse request if we do not understand it conpletely.

101 * There should be at |east one valid bit set in the mask and
102 * none of the unknown bits set.

103 */

104 if ((objp->vsa_mask &

105 (VSA_ACL | VSA ACLCNT | VSA DFACL | VSA DFACLCNT)) == 0) {
93 if (!xdr_int(xdrs, &objp->vsa_aclcnt))

106 return (FALSE);

107 1

108 if ((objp->vsa_nask &

109 ~(VSA_ACL | VSA ACLCNT | VSA DFACL | VSA DFACLCNT)) != 0)
110 return (FALSE);

111 1

113 if (!'xdr_int(xdrs, &objp->vsa_aclcnt)) {

114 return (FALSE);

115 1

116 if (objp->vsa_aclentp != NULL) {

95 if (objp->vsa_aclentp != NULL)

117 count = (uint_t)objp->vsa_aclcnt;

118 }

97 el se

98 count = 0;

120 if (!xdr_array(xdrs, (char **)&objp->vsa_acl entp, &count,
121 NFS_ACL_MAX_ENTRI ES, sizeof (aclent_t), (xdrproc_t)xdr_aclent)
100 NFS_ACL_MAX_ENTRI ES, sizeof (aclent_t), (xdrproc_t)xdr_aclent)
122 return (FALSE);

123 }

125 if (coun} 1= 0 & count != (uint_t)objp->vsa_aclcnt) {

126

127 * Assign the actual array size to vsa_aclcnt before
128 * aborting on error

129 */

130 obj p->vsa_acl cnt = (int)count;

131 return (FALSE);

132 1

134 /*

135 * For VSA_ACL the count should be zero or there shoul d

136 * be array attached.

137 */

{

)
)
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__unchanged_portion_onitted_

if ((objp->vsa_mask & VSA ACL) != 0) {
if ((objp->vsa_aclcnt != 0) && (obj p->vsa_aclentp == NULL)) {
obj p->vsa_acl cnt = 0;
if (!xdr_int(xdrs, &objp->vsa_dfacl cnt))
return (FALSE);
}

}

if (!xdr_int(xdrs, &objp->vsa_dfaclcnt)) {
if (objp->vsa dfaclentp I'= NULL)
count = (uint_t)objp->vsa_dfaclcnt;
el se
count = 0;
if (!xdr_array(xdrs, (char **)&objp->vsa_dfacl entp, &count,
NFS_ACL_MAX_ENTRI ES, sizeof (aclent_t), (xdrproc_t)xdr_acl ent))
return (FALSE);

}
i1 f (objp->vsa_dfaclentp !'= NULL) {

df acount = (uint_t)objp->vsa_dfaclcnt;
}

if (!xdr_array(xdrs, (char **)&objp->vsa_dfacl entp, &dfacount,
NFS_ACL_MAX_ENTRI ES, sizeof (aclent_t), (xdrproc_t)xdr_aclent)) {
return (FALSE);

}
if (dfacount !'= 0 && dfacount != (uint_t)objp->vsa_dfaclcnt) {
if (count != 0 && count != (uint_t)objp->vsa_dfaclcnt) {
/*
* Assign the actual array size to vsa_dfaclcnt before
* aborting on error
*
/
obj p->vsa_dfacl cnt = (int)dfacount;
obj p- >vsa_dfaclcnt = (int)count;
return (FALSE);
}
/*

* for VSA DFACL The count should be zero or there shoul d
* be array attached
*

if ((objp->vsa_nmask & VSA DFACL) != 0) {
1f ((objp->vsa_dfaclcnt = 0) &&
(obj p->vsa_dfacl entp == NULL)) {
obj p->vsa_df acl cnt = O;
return (FALSE);

return (TRUE);



