1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 1992, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 26 /* All Rights Reserved */ 27 /* 28 * Copyright (c) 2012, Joyent, Inc. All rights reserved. 29 * Copyright 2012 Nexenta Systems, Inc. All rights reserved. 30 */ 31 32 #include <sys/param.h> 33 #include <sys/types.h> 34 #include <sys/vmparam.h> 35 #include <sys/systm.h> 36 #include <sys/signal.h> 37 #include <sys/stack.h> 38 #include <sys/regset.h> 39 #include <sys/privregs.h> 40 #include <sys/frame.h> 41 #include <sys/proc.h> 42 #include <sys/psw.h> 43 #include <sys/siginfo.h> 44 #include <sys/cpuvar.h> 45 #include <sys/asm_linkage.h> 46 #include <sys/kmem.h> 47 #include <sys/errno.h> 48 #include <sys/bootconf.h> 49 #include <sys/archsystm.h> 50 #include <sys/debug.h> 51 #include <sys/elf.h> 52 #include <sys/spl.h> 53 #include <sys/time.h> 54 #include <sys/atomic.h> 55 #include <sys/sysmacros.h> 56 #include <sys/cmn_err.h> 57 #include <sys/modctl.h> 58 #include <sys/kobj.h> 59 #include <sys/panic.h> 60 #include <sys/reboot.h> 61 #include <sys/time.h> 62 #include <sys/fp.h> 63 #include <sys/x86_archext.h> 64 #include <sys/auxv.h> 65 #include <sys/auxv_386.h> 66 #include <sys/dtrace.h> 67 #include <sys/brand.h> 68 #include <sys/machbrand.h> 69 #include <sys/cmn_err.h> 70 71 extern const struct fnsave_state x87_initial; 72 extern const struct fxsave_state sse_initial; 73 74 /* 75 * Map an fnsave-formatted save area into an fxsave-formatted save area. 76 * 77 * Most fields are the same width, content and semantics. However 78 * the tag word is compressed. 79 */ 80 static void 81 fnsave_to_fxsave(const struct fnsave_state *fn, struct fxsave_state *fx) 82 { 83 uint_t i, tagbits; 84 85 fx->fx_fcw = fn->f_fcw; 86 fx->fx_fsw = fn->f_fsw; 87 88 /* 89 * copy element by element (because of holes) 90 */ 91 for (i = 0; i < 8; i++) 92 bcopy(&fn->f_st[i].fpr_16[0], &fx->fx_st[i].fpr_16[0], 93 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 94 95 /* 96 * synthesize compressed tag bits 97 */ 98 fx->fx_fctw = 0; 99 for (tagbits = fn->f_ftw, i = 0; i < 8; i++, tagbits >>= 2) 100 if ((tagbits & 3) != 3) 101 fx->fx_fctw |= (1 << i); 102 103 fx->fx_fop = fn->f_fop; 104 105 #if defined(__amd64) 106 fx->fx_rip = (uint64_t)fn->f_eip; 107 fx->fx_rdp = (uint64_t)fn->f_dp; 108 #else 109 fx->fx_eip = fn->f_eip; 110 fx->fx_cs = fn->f_cs; 111 fx->__fx_ign0 = 0; 112 fx->fx_dp = fn->f_dp; 113 fx->fx_ds = fn->f_ds; 114 fx->__fx_ign1 = 0; 115 #endif 116 } 117 118 /* 119 * Map from an fxsave-format save area to an fnsave-format save area. 120 */ 121 static void 122 fxsave_to_fnsave(const struct fxsave_state *fx, struct fnsave_state *fn) 123 { 124 uint_t i, top, tagbits; 125 126 fn->f_fcw = fx->fx_fcw; 127 fn->__f_ign0 = 0; 128 fn->f_fsw = fx->fx_fsw; 129 fn->__f_ign1 = 0; 130 131 top = (fx->fx_fsw & FPS_TOP) >> 11; 132 133 /* 134 * copy element by element (because of holes) 135 */ 136 for (i = 0; i < 8; i++) 137 bcopy(&fx->fx_st[i].fpr_16[0], &fn->f_st[i].fpr_16[0], 138 sizeof (fn->f_st[0].fpr_16)); /* 80-bit x87-style floats */ 139 140 /* 141 * synthesize uncompressed tag bits 142 */ 143 fn->f_ftw = 0; 144 for (tagbits = fx->fx_fctw, i = 0; i < 8; i++, tagbits >>= 1) { 145 uint_t ibit, expo; 146 const uint16_t *fpp; 147 static const uint16_t zero[5] = { 0, 0, 0, 0, 0 }; 148 149 if ((tagbits & 1) == 0) { 150 fn->f_ftw |= 3 << (i << 1); /* empty */ 151 continue; 152 } 153 154 /* 155 * (tags refer to *physical* registers) 156 */ 157 fpp = &fx->fx_st[(i - top + 8) & 7].fpr_16[0]; 158 ibit = fpp[3] >> 15; 159 expo = fpp[4] & 0x7fff; 160 161 if (ibit && expo != 0 && expo != 0x7fff) 162 continue; /* valid fp number */ 163 164 if (bcmp(fpp, &zero, sizeof (zero))) 165 fn->f_ftw |= 2 << (i << 1); /* NaN */ 166 else 167 fn->f_ftw |= 1 << (i << 1); /* fp zero */ 168 } 169 170 fn->f_fop = fx->fx_fop; 171 172 fn->__f_ign2 = 0; 173 #if defined(__amd64) 174 fn->f_eip = (uint32_t)fx->fx_rip; 175 fn->f_cs = U32CS_SEL; 176 fn->f_dp = (uint32_t)fx->fx_rdp; 177 fn->f_ds = UDS_SEL; 178 #else 179 fn->f_eip = fx->fx_eip; 180 fn->f_cs = fx->fx_cs; 181 fn->f_dp = fx->fx_dp; 182 fn->f_ds = fx->fx_ds; 183 #endif 184 fn->__f_ign3 = 0; 185 } 186 187 /* 188 * Map from an fpregset_t into an fxsave-format save area 189 */ 190 static void 191 fpregset_to_fxsave(const fpregset_t *fp, struct fxsave_state *fx) 192 { 193 #if defined(__amd64) 194 bcopy(fp, fx, sizeof (*fx)); 195 #else 196 const struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 197 198 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 199 fx->fx_mxcsr = fc->mxcsr; 200 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 201 #endif 202 /* 203 * avoid useless #gp exceptions - mask reserved bits 204 */ 205 fx->fx_mxcsr &= sse_mxcsr_mask; 206 } 207 208 /* 209 * Map from an fxsave-format save area into a fpregset_t 210 */ 211 static void 212 fxsave_to_fpregset(const struct fxsave_state *fx, fpregset_t *fp) 213 { 214 #if defined(__amd64) 215 bcopy(fx, fp, sizeof (*fx)); 216 #else 217 struct fpchip_state *fc = &fp->fp_reg_set.fpchip_state; 218 219 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 220 fc->mxcsr = fx->fx_mxcsr; 221 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 222 #endif 223 } 224 225 #if defined(_SYSCALL32_IMPL) 226 static void 227 fpregset32_to_fxsave(const fpregset32_t *fp, struct fxsave_state *fx) 228 { 229 const struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 230 231 fnsave_to_fxsave((const struct fnsave_state *)fc, fx); 232 /* 233 * avoid useless #gp exceptions - mask reserved bits 234 */ 235 fx->fx_mxcsr = sse_mxcsr_mask & fc->mxcsr; 236 bcopy(&fc->xmm[0], &fx->fx_xmm[0], sizeof (fc->xmm)); 237 } 238 239 static void 240 fxsave_to_fpregset32(const struct fxsave_state *fx, fpregset32_t *fp) 241 { 242 struct fpchip32_state *fc = &fp->fp_reg_set.fpchip_state; 243 244 fxsave_to_fnsave(fx, (struct fnsave_state *)fc); 245 fc->mxcsr = fx->fx_mxcsr; 246 bcopy(&fx->fx_xmm[0], &fc->xmm[0], sizeof (fc->xmm)); 247 } 248 249 static void 250 fpregset_nto32(const fpregset_t *src, fpregset32_t *dst) 251 { 252 fxsave_to_fpregset32((struct fxsave_state *)src, dst); 253 dst->fp_reg_set.fpchip_state.status = 254 src->fp_reg_set.fpchip_state.status; 255 dst->fp_reg_set.fpchip_state.xstatus = 256 src->fp_reg_set.fpchip_state.xstatus; 257 } 258 259 static void 260 fpregset_32ton(const fpregset32_t *src, fpregset_t *dst) 261 { 262 fpregset32_to_fxsave(src, (struct fxsave_state *)dst); 263 dst->fp_reg_set.fpchip_state.status = 264 src->fp_reg_set.fpchip_state.status; 265 dst->fp_reg_set.fpchip_state.xstatus = 266 src->fp_reg_set.fpchip_state.xstatus; 267 } 268 #endif 269 270 /* 271 * Set floating-point registers from a native fpregset_t. 272 */ 273 void 274 setfpregs(klwp_t *lwp, fpregset_t *fp) 275 { 276 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 277 278 if (fpu->fpu_flags & FPU_EN) { 279 if (!(fpu->fpu_flags & FPU_VALID)) { 280 /* 281 * FPU context is still active, release the 282 * ownership. 283 */ 284 fp_free(fpu, 0); 285 } 286 } 287 /* 288 * Else: if we are trying to change the FPU state of a thread which 289 * hasn't yet initialized floating point, store the state in 290 * the pcb and indicate that the state is valid. When the 291 * thread enables floating point, it will use this state instead 292 * of the default state. 293 */ 294 295 switch (fp_save_mech) { 296 #if defined(__i386) 297 case FP_FNSAVE: 298 bcopy(fp, &fpu->fpu_regs.kfpu_u.kfpu_fn, 299 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 300 break; 301 #endif 302 case FP_FXSAVE: 303 fpregset_to_fxsave(fp, &fpu->fpu_regs.kfpu_u.kfpu_fx); 304 fpu->fpu_regs.kfpu_xstatus = 305 fp->fp_reg_set.fpchip_state.xstatus; 306 break; 307 308 case FP_XSAVE: 309 fpregset_to_fxsave(fp, 310 &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave); 311 fpu->fpu_regs.kfpu_xstatus = 312 fp->fp_reg_set.fpchip_state.xstatus; 313 fpu->fpu_regs.kfpu_u.kfpu_xs.xs_xstate_bv |= 314 (XFEATURE_LEGACY_FP | XFEATURE_SSE); 315 break; 316 default: 317 panic("Invalid fp_save_mech"); 318 /*NOTREACHED*/ 319 } 320 321 fpu->fpu_regs.kfpu_status = fp->fp_reg_set.fpchip_state.status; 322 fpu->fpu_flags |= FPU_VALID; 323 } 324 325 /* 326 * Get floating-point registers into a native fpregset_t. 327 */ 328 void 329 getfpregs(klwp_t *lwp, fpregset_t *fp) 330 { 331 struct fpu_ctx *fpu = &lwp->lwp_pcb.pcb_fpu; 332 333 kpreempt_disable(); 334 if (fpu->fpu_flags & FPU_EN) { 335 /* 336 * If we have FPU hw and the thread's pcb doesn't have 337 * a valid FPU state then get the state from the hw. 338 */ 339 if (fpu_exists && ttolwp(curthread) == lwp && 340 !(fpu->fpu_flags & FPU_VALID)) 341 fp_save(fpu); /* get the current FPU state */ 342 } 343 344 /* 345 * There are 3 possible cases we have to be aware of here: 346 * 347 * 1. FPU is enabled. FPU state is stored in the current LWP. 348 * 349 * 2. FPU is not enabled, and there have been no intervening /proc 350 * modifications. Return initial FPU state. 351 * 352 * 3. FPU is not enabled, but a /proc consumer has modified FPU state. 353 * FPU state is stored in the current LWP. 354 */ 355 if ((fpu->fpu_flags & FPU_EN) || (fpu->fpu_flags & FPU_VALID)) { 356 /* 357 * Cases 1 and 3. 358 */ 359 switch (fp_save_mech) { 360 #if defined(__i386) 361 case FP_FNSAVE: 362 bcopy(&fpu->fpu_regs.kfpu_u.kfpu_fn, fp, 363 sizeof (fpu->fpu_regs.kfpu_u.kfpu_fn)); 364 break; 365 #endif 366 case FP_FXSAVE: 367 fxsave_to_fpregset(&fpu->fpu_regs.kfpu_u.kfpu_fx, fp); 368 fp->fp_reg_set.fpchip_state.xstatus = 369 fpu->fpu_regs.kfpu_xstatus; 370 break; 371 case FP_XSAVE: 372 fxsave_to_fpregset( 373 &fpu->fpu_regs.kfpu_u.kfpu_xs.xs_fxsave, fp); 374 fp->fp_reg_set.fpchip_state.xstatus = 375 fpu->fpu_regs.kfpu_xstatus; 376 break; 377 default: 378 panic("Invalid fp_save_mech"); 379 /*NOTREACHED*/ 380 } 381 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 382 } else { 383 /* 384 * Case 2. 385 */ 386 switch (fp_save_mech) { 387 #if defined(__i386) 388 case FP_FNSAVE: 389 bcopy(&x87_initial, fp, sizeof (x87_initial)); 390 break; 391 #endif 392 case FP_FXSAVE: 393 case FP_XSAVE: 394 /* 395 * For now, we don't have any AVX specific field in ABI. 396 * If we add any in the future, we need to initial them 397 * as well. 398 */ 399 fxsave_to_fpregset(&sse_initial, fp); 400 fp->fp_reg_set.fpchip_state.xstatus = 401 fpu->fpu_regs.kfpu_xstatus; 402 break; 403 default: 404 panic("Invalid fp_save_mech"); 405 /*NOTREACHED*/ 406 } 407 fp->fp_reg_set.fpchip_state.status = fpu->fpu_regs.kfpu_status; 408 } 409 kpreempt_enable(); 410 } 411 412 #if defined(_SYSCALL32_IMPL) 413 414 /* 415 * Set floating-point registers from an fpregset32_t. 416 */ 417 void 418 setfpregs32(klwp_t *lwp, fpregset32_t *fp) 419 { 420 fpregset_t fpregs; 421 422 fpregset_32ton(fp, &fpregs); 423 setfpregs(lwp, &fpregs); 424 } 425 426 /* 427 * Get floating-point registers into an fpregset32_t. 428 */ 429 void 430 getfpregs32(klwp_t *lwp, fpregset32_t *fp) 431 { 432 fpregset_t fpregs; 433 434 getfpregs(lwp, &fpregs); 435 fpregset_nto32(&fpregs, fp); 436 } 437 438 #endif /* _SYSCALL32_IMPL */ 439 440 /* 441 * Return the general registers 442 */ 443 void 444 getgregs(klwp_t *lwp, gregset_t grp) 445 { 446 struct regs *rp = lwptoregs(lwp); 447 #if defined(__amd64) 448 struct pcb *pcb = &lwp->lwp_pcb; 449 int thisthread = lwptot(lwp) == curthread; 450 451 grp[REG_RDI] = rp->r_rdi; 452 grp[REG_RSI] = rp->r_rsi; 453 grp[REG_RDX] = rp->r_rdx; 454 grp[REG_RCX] = rp->r_rcx; 455 grp[REG_R8] = rp->r_r8; 456 grp[REG_R9] = rp->r_r9; 457 grp[REG_RAX] = rp->r_rax; 458 grp[REG_RBX] = rp->r_rbx; 459 grp[REG_RBP] = rp->r_rbp; 460 grp[REG_R10] = rp->r_r10; 461 grp[REG_R11] = rp->r_r11; 462 grp[REG_R12] = rp->r_r12; 463 grp[REG_R13] = rp->r_r13; 464 grp[REG_R14] = rp->r_r14; 465 grp[REG_R15] = rp->r_r15; 466 grp[REG_FSBASE] = pcb->pcb_fsbase; 467 grp[REG_GSBASE] = pcb->pcb_gsbase; 468 if (thisthread) 469 kpreempt_disable(); 470 if (pcb->pcb_rupdate == 1) { 471 grp[REG_DS] = pcb->pcb_ds; 472 grp[REG_ES] = pcb->pcb_es; 473 grp[REG_FS] = pcb->pcb_fs; 474 grp[REG_GS] = pcb->pcb_gs; 475 } else { 476 grp[REG_DS] = rp->r_ds; 477 grp[REG_ES] = rp->r_es; 478 grp[REG_FS] = rp->r_fs; 479 grp[REG_GS] = rp->r_gs; 480 } 481 if (thisthread) 482 kpreempt_enable(); 483 grp[REG_TRAPNO] = rp->r_trapno; 484 grp[REG_ERR] = rp->r_err; 485 grp[REG_RIP] = rp->r_rip; 486 grp[REG_CS] = rp->r_cs; 487 grp[REG_SS] = rp->r_ss; 488 grp[REG_RFL] = rp->r_rfl; 489 grp[REG_RSP] = rp->r_rsp; 490 #else 491 bcopy(&rp->r_gs, grp, sizeof (gregset_t)); 492 #endif 493 } 494 495 #if defined(_SYSCALL32_IMPL) 496 497 void 498 getgregs32(klwp_t *lwp, gregset32_t grp) 499 { 500 struct regs *rp = lwptoregs(lwp); 501 struct pcb *pcb = &lwp->lwp_pcb; 502 int thisthread = lwptot(lwp) == curthread; 503 504 if (thisthread) 505 kpreempt_disable(); 506 if (pcb->pcb_rupdate == 1) { 507 grp[GS] = (uint16_t)pcb->pcb_gs; 508 grp[FS] = (uint16_t)pcb->pcb_fs; 509 grp[DS] = (uint16_t)pcb->pcb_ds; 510 grp[ES] = (uint16_t)pcb->pcb_es; 511 } else { 512 grp[GS] = (uint16_t)rp->r_gs; 513 grp[FS] = (uint16_t)rp->r_fs; 514 grp[DS] = (uint16_t)rp->r_ds; 515 grp[ES] = (uint16_t)rp->r_es; 516 } 517 if (thisthread) 518 kpreempt_enable(); 519 grp[EDI] = (greg32_t)rp->r_rdi; 520 grp[ESI] = (greg32_t)rp->r_rsi; 521 grp[EBP] = (greg32_t)rp->r_rbp; 522 grp[ESP] = 0; 523 grp[EBX] = (greg32_t)rp->r_rbx; 524 grp[EDX] = (greg32_t)rp->r_rdx; 525 grp[ECX] = (greg32_t)rp->r_rcx; 526 grp[EAX] = (greg32_t)rp->r_rax; 527 grp[TRAPNO] = (greg32_t)rp->r_trapno; 528 grp[ERR] = (greg32_t)rp->r_err; 529 grp[EIP] = (greg32_t)rp->r_rip; 530 grp[CS] = (uint16_t)rp->r_cs; 531 grp[EFL] = (greg32_t)rp->r_rfl; 532 grp[UESP] = (greg32_t)rp->r_rsp; 533 grp[SS] = (uint16_t)rp->r_ss; 534 } 535 536 void 537 ucontext_32ton(const ucontext32_t *src, ucontext_t *dst) 538 { 539 mcontext_t *dmc = &dst->uc_mcontext; 540 const mcontext32_t *smc = &src->uc_mcontext; 541 542 bzero(dst, sizeof (*dst)); 543 dst->uc_flags = src->uc_flags; 544 dst->uc_link = (ucontext_t *)(uintptr_t)src->uc_link; 545 546 bcopy(&src->uc_sigmask, &dst->uc_sigmask, sizeof (dst->uc_sigmask)); 547 548 dst->uc_stack.ss_sp = (void *)(uintptr_t)src->uc_stack.ss_sp; 549 dst->uc_stack.ss_size = (size_t)src->uc_stack.ss_size; 550 dst->uc_stack.ss_flags = src->uc_stack.ss_flags; 551 552 dmc->gregs[REG_GS] = (greg_t)(uint32_t)smc->gregs[GS]; 553 dmc->gregs[REG_FS] = (greg_t)(uint32_t)smc->gregs[FS]; 554 dmc->gregs[REG_ES] = (greg_t)(uint32_t)smc->gregs[ES]; 555 dmc->gregs[REG_DS] = (greg_t)(uint32_t)smc->gregs[DS]; 556 dmc->gregs[REG_RDI] = (greg_t)(uint32_t)smc->gregs[EDI]; 557 dmc->gregs[REG_RSI] = (greg_t)(uint32_t)smc->gregs[ESI]; 558 dmc->gregs[REG_RBP] = (greg_t)(uint32_t)smc->gregs[EBP]; 559 dmc->gregs[REG_RBX] = (greg_t)(uint32_t)smc->gregs[EBX]; 560 dmc->gregs[REG_RDX] = (greg_t)(uint32_t)smc->gregs[EDX]; 561 dmc->gregs[REG_RCX] = (greg_t)(uint32_t)smc->gregs[ECX]; 562 dmc->gregs[REG_RAX] = (greg_t)(uint32_t)smc->gregs[EAX]; 563 dmc->gregs[REG_TRAPNO] = (greg_t)(uint32_t)smc->gregs[TRAPNO]; 564 dmc->gregs[REG_ERR] = (greg_t)(uint32_t)smc->gregs[ERR]; 565 dmc->gregs[REG_RIP] = (greg_t)(uint32_t)smc->gregs[EIP]; 566 dmc->gregs[REG_CS] = (greg_t)(uint32_t)smc->gregs[CS]; 567 dmc->gregs[REG_RFL] = (greg_t)(uint32_t)smc->gregs[EFL]; 568 dmc->gregs[REG_RSP] = (greg_t)(uint32_t)smc->gregs[UESP]; 569 dmc->gregs[REG_SS] = (greg_t)(uint32_t)smc->gregs[SS]; 570 571 /* 572 * A valid fpregs is only copied in if uc.uc_flags has UC_FPU set 573 * otherwise there is no guarantee that anything in fpregs is valid. 574 */ 575 if (src->uc_flags & UC_FPU) 576 fpregset_32ton(&src->uc_mcontext.fpregs, 577 &dst->uc_mcontext.fpregs); 578 } 579 580 #endif /* _SYSCALL32_IMPL */ 581 582 /* 583 * Return the user-level PC. 584 * If in a system call, return the address of the syscall trap. 585 */ 586 greg_t 587 getuserpc() 588 { 589 greg_t upc = lwptoregs(ttolwp(curthread))->r_pc; 590 uint32_t insn; 591 592 if (curthread->t_sysnum == 0) 593 return (upc); 594 595 /* 596 * We might've gotten here from sysenter (0xf 0x34), 597 * syscall (0xf 0x5) or lcall (0x9a 0 0 0 0 0x27 0). 598 * 599 * Go peek at the binary to figure it out.. 600 */ 601 if (fuword32((void *)(upc - 2), &insn) != -1 && 602 (insn & 0xffff) == 0x340f || (insn & 0xffff) == 0x050f) 603 return (upc - 2); 604 return (upc - 7); 605 } 606 607 /* 608 * Protect segment registers from non-user privilege levels and GDT selectors 609 * other than USER_CS, USER_DS and lwp FS and GS values. If the segment 610 * selector is non-null and not USER_CS/USER_DS, we make sure that the 611 * TI bit is set to point into the LDT and that the RPL is set to 3. 612 * 613 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we 614 * also explicitly zero the top 16 bits since they may be coming from the 615 * user's address space via setcontext(2) or /proc. 616 * 617 * Note about null selector. When running on the hypervisor if we allow a 618 * process to set its %cs to null selector with RPL of 0 the hypervisor will 619 * crash the domain. If running on bare metal we would get a #gp fault and 620 * be able to kill the process and continue on. Therefore we make sure to 621 * force RPL to SEL_UPL even for null selector when setting %cs. 622 */ 623 624 #if defined(IS_CS) || defined(IS_NOT_CS) 625 #error "IS_CS and IS_NOT_CS already defined" 626 #endif 627 628 #define IS_CS 1 629 #define IS_NOT_CS 0 630 631 /*ARGSUSED*/ 632 static greg_t 633 fix_segreg(greg_t sr, int iscs, model_t datamodel) 634 { 635 kthread_t *t = curthread; 636 637 switch (sr &= 0xffff) { 638 639 case 0: 640 if (iscs == IS_CS) 641 return (0 | SEL_UPL); 642 else 643 return (0); 644 645 #if defined(__amd64) 646 /* 647 * If lwp attempts to switch data model then force their 648 * code selector to be null selector. 649 */ 650 case U32CS_SEL: 651 if (datamodel == DATAMODEL_NATIVE) 652 return (0 | SEL_UPL); 653 else 654 return (sr); 655 656 case UCS_SEL: 657 if (datamodel == DATAMODEL_ILP32) 658 return (0 | SEL_UPL); 659 #elif defined(__i386) 660 case UCS_SEL: 661 #endif 662 /*FALLTHROUGH*/ 663 case UDS_SEL: 664 case LWPFS_SEL: 665 case LWPGS_SEL: 666 case SEL_UPL: 667 return (sr); 668 default: 669 break; 670 } 671 672 /* 673 * Allow this process's brand to do any necessary segment register 674 * manipulation. 675 */ 676 if (PROC_IS_BRANDED(t->t_procp) && BRMOP(t->t_procp)->b_fixsegreg) { 677 greg_t bsr = BRMOP(t->t_procp)->b_fixsegreg(sr, datamodel); 678 679 if (bsr == 0 && iscs == IS_CS) 680 return (0 | SEL_UPL); 681 else 682 return (bsr); 683 } 684 685 /* 686 * Force it into the LDT in ring 3 for 32-bit processes, which by 687 * default do not have an LDT, so that any attempt to use an invalid 688 * selector will reference the (non-existant) LDT, and cause a #gp 689 * fault for the process. 690 * 691 * 64-bit processes get the null gdt selector since they 692 * are not allowed to have a private LDT. 693 */ 694 #if defined(__amd64) 695 if (datamodel == DATAMODEL_ILP32) { 696 return (sr | SEL_TI_LDT | SEL_UPL); 697 } else { 698 if (iscs == IS_CS) 699 return (0 | SEL_UPL); 700 else 701 return (0); 702 } 703 704 #elif defined(__i386) 705 return (sr | SEL_TI_LDT | SEL_UPL); 706 #endif 707 } 708 709 /* 710 * Set general registers. 711 */ 712 void 713 setgregs(klwp_t *lwp, gregset_t grp) 714 { 715 struct regs *rp = lwptoregs(lwp); 716 model_t datamodel = lwp_getdatamodel(lwp); 717 718 #if defined(__amd64) 719 struct pcb *pcb = &lwp->lwp_pcb; 720 int thisthread = lwptot(lwp) == curthread; 721 722 if (datamodel == DATAMODEL_NATIVE) { 723 724 if (thisthread) 725 (void) save_syscall_args(); /* copy the args */ 726 727 rp->r_rdi = grp[REG_RDI]; 728 rp->r_rsi = grp[REG_RSI]; 729 rp->r_rdx = grp[REG_RDX]; 730 rp->r_rcx = grp[REG_RCX]; 731 rp->r_r8 = grp[REG_R8]; 732 rp->r_r9 = grp[REG_R9]; 733 rp->r_rax = grp[REG_RAX]; 734 rp->r_rbx = grp[REG_RBX]; 735 rp->r_rbp = grp[REG_RBP]; 736 rp->r_r10 = grp[REG_R10]; 737 rp->r_r11 = grp[REG_R11]; 738 rp->r_r12 = grp[REG_R12]; 739 rp->r_r13 = grp[REG_R13]; 740 rp->r_r14 = grp[REG_R14]; 741 rp->r_r15 = grp[REG_R15]; 742 rp->r_trapno = grp[REG_TRAPNO]; 743 rp->r_err = grp[REG_ERR]; 744 rp->r_rip = grp[REG_RIP]; 745 /* 746 * Setting %cs or %ss to anything else is quietly but 747 * quite definitely forbidden! 748 */ 749 rp->r_cs = UCS_SEL; 750 rp->r_ss = UDS_SEL; 751 rp->r_rsp = grp[REG_RSP]; 752 753 if (thisthread) 754 kpreempt_disable(); 755 756 pcb->pcb_ds = UDS_SEL; 757 pcb->pcb_es = UDS_SEL; 758 759 /* 760 * 64-bit processes -are- allowed to set their fsbase/gsbase 761 * values directly, but only if they're using the segment 762 * selectors that allow that semantic. 763 * 764 * (32-bit processes must use lwp_set_private().) 765 */ 766 pcb->pcb_fsbase = grp[REG_FSBASE]; 767 pcb->pcb_gsbase = grp[REG_GSBASE]; 768 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); 769 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); 770 771 /* 772 * Ensure that we go out via update_sregs 773 */ 774 pcb->pcb_rupdate = 1; 775 lwptot(lwp)->t_post_sys = 1; 776 if (thisthread) 777 kpreempt_enable(); 778 #if defined(_SYSCALL32_IMPL) 779 } else { 780 rp->r_rdi = (uint32_t)grp[REG_RDI]; 781 rp->r_rsi = (uint32_t)grp[REG_RSI]; 782 rp->r_rdx = (uint32_t)grp[REG_RDX]; 783 rp->r_rcx = (uint32_t)grp[REG_RCX]; 784 rp->r_rax = (uint32_t)grp[REG_RAX]; 785 rp->r_rbx = (uint32_t)grp[REG_RBX]; 786 rp->r_rbp = (uint32_t)grp[REG_RBP]; 787 rp->r_trapno = (uint32_t)grp[REG_TRAPNO]; 788 rp->r_err = (uint32_t)grp[REG_ERR]; 789 rp->r_rip = (uint32_t)grp[REG_RIP]; 790 791 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel); 792 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); 793 794 rp->r_rsp = (uint32_t)grp[REG_RSP]; 795 796 if (thisthread) 797 kpreempt_disable(); 798 799 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel); 800 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel); 801 802 /* 803 * (See fsbase/gsbase commentary above) 804 */ 805 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel); 806 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel); 807 808 /* 809 * Ensure that we go out via update_sregs 810 */ 811 pcb->pcb_rupdate = 1; 812 lwptot(lwp)->t_post_sys = 1; 813 if (thisthread) 814 kpreempt_enable(); 815 #endif 816 } 817 818 /* 819 * Only certain bits of the flags register can be modified. 820 */ 821 rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) | 822 (grp[REG_RFL] & PSL_USERMASK); 823 824 #elif defined(__i386) 825 826 /* 827 * Only certain bits of the flags register can be modified. 828 */ 829 grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK); 830 831 /* 832 * Copy saved registers from user stack. 833 */ 834 bcopy(grp, &rp->r_gs, sizeof (gregset_t)); 835 836 rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel); 837 rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel); 838 rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel); 839 rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel); 840 rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel); 841 rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel); 842 843 #endif /* __i386 */ 844 } 845 846 /* 847 * Determine whether eip is likely to have an interrupt frame 848 * on the stack. We do this by comparing the address to the 849 * range of addresses spanned by several well-known routines. 850 */ 851 extern void _interrupt(); 852 extern void _allsyscalls(); 853 extern void _cmntrap(); 854 extern void fakesoftint(); 855 856 extern size_t _interrupt_size; 857 extern size_t _allsyscalls_size; 858 extern size_t _cmntrap_size; 859 extern size_t _fakesoftint_size; 860 861 /* 862 * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking. 863 * Returns MIN(current stack depth, pcstack_limit). 864 */ 865 int 866 getpcstack(pc_t *pcstack, int pcstack_limit) 867 { 868 struct frame *fp = (struct frame *)getfp(); 869 struct frame *nextfp, *minfp, *stacktop; 870 int depth = 0; 871 int on_intr; 872 uintptr_t pc; 873 874 if ((on_intr = CPU_ON_INTR(CPU)) != 0) 875 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME)); 876 else 877 stacktop = (struct frame *)curthread->t_stk; 878 minfp = fp; 879 880 pc = ((struct regs *)fp)->r_pc; 881 882 while (depth < pcstack_limit) { 883 nextfp = (struct frame *)fp->fr_savfp; 884 pc = fp->fr_savpc; 885 if (nextfp <= minfp || nextfp >= stacktop) { 886 if (on_intr) { 887 /* 888 * Hop from interrupt stack to thread stack. 889 */ 890 stacktop = (struct frame *)curthread->t_stk; 891 minfp = (struct frame *)curthread->t_stkbase; 892 on_intr = 0; 893 continue; 894 } 895 break; 896 } 897 pcstack[depth++] = (pc_t)pc; 898 fp = nextfp; 899 minfp = fp; 900 } 901 return (depth); 902 } 903 904 /* 905 * The following ELF header fields are defined as processor-specific 906 * in the V8 ABI: 907 * 908 * e_ident[EI_DATA] encoding of the processor-specific 909 * data in the object file 910 * e_machine processor identification 911 * e_flags processor-specific flags associated 912 * with the file 913 */ 914 915 /* 916 * The value of at_flags reflects a platform's cpu module support. 917 * at_flags is used to check for allowing a binary to execute and 918 * is passed as the value of the AT_FLAGS auxiliary vector. 919 */ 920 int at_flags = 0; 921 922 /* 923 * Check the processor-specific fields of an ELF header. 924 * 925 * returns 1 if the fields are valid, 0 otherwise 926 */ 927 /*ARGSUSED2*/ 928 int 929 elfheadcheck( 930 unsigned char e_data, 931 Elf32_Half e_machine, 932 Elf32_Word e_flags) 933 { 934 if (e_data != ELFDATA2LSB) 935 return (0); 936 #if defined(__amd64) 937 if (e_machine == EM_AMD64) 938 return (1); 939 #endif 940 return (e_machine == EM_386); 941 } 942 943 uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */ 944 uint_t auxv_hwcap_include_2 = 0; /* second word */ 945 uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */ 946 uint_t auxv_hwcap_exclude_2 = 0; /* second word */ 947 #if defined(_SYSCALL32_IMPL) 948 uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */ 949 uint_t auxv_hwcap32_include_2 = 0; /* ditto for 32-bit apps */ 950 uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */ 951 uint_t auxv_hwcap32_exclude_2 = 0; /* ditto for 32-bit apps */ 952 #endif 953 954 /* 955 * Gather information about the processor and place it into auxv_hwcap 956 * so that it can be exported to the linker via the aux vector. 957 * 958 * We use this seemingly complicated mechanism so that we can ensure 959 * that /etc/system can be used to override what the system can or 960 * cannot discover for itself. 961 */ 962 void 963 bind_hwcap(void) 964 { 965 uint_t cpu_hwcap_flags[2]; 966 cpuid_pass4(NULL, cpu_hwcap_flags); 967 968 auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) & 969 ~auxv_hwcap_exclude; 970 auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) & 971 ~auxv_hwcap_exclude_2; 972 973 #if defined(__amd64) 974 /* 975 * On AMD processors, sysenter just doesn't work at all 976 * when the kernel is in long mode. On IA-32e processors 977 * it does, but there's no real point in all the alternate 978 * mechanism when syscall works on both. 979 * 980 * Besides, the kernel's sysenter handler is expecting a 981 * 32-bit lwp ... 982 */ 983 auxv_hwcap &= ~AV_386_SEP; 984 #else 985 /* 986 * 32-bit processes can -always- use the lahf/sahf instructions 987 */ 988 auxv_hwcap |= AV_386_AHF; 989 #endif 990 991 if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 || 992 auxv_hwcap_exclude_2) { 993 /* 994 * The below assignment is regrettably required to get lint 995 * to accept the validity of our format string. The format 996 * string is in fact valid, but whatever intelligence in lint 997 * understands the cmn_err()-specific %b appears to have an 998 * off-by-one error: it (mistakenly) complains about bit 999 * number 32 (even though this is explicitly permitted). 1000 * Normally, one would will away such warnings with a "LINTED" 1001 * directive, but for reasons unclear and unknown, lint 1002 * refuses to be assuaged in this case. Fortunately, lint 1003 * doesn't pretend to have solved the Halting Problem -- 1004 * and as soon as the format string is programmatic, it 1005 * knows enough to shut up. 1006 */ 1007 char *fmt = "?user ABI extensions: %b\n"; 1008 cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386); 1009 fmt = "?user ABI extensions (word 2): %b\n"; 1010 cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2); 1011 } 1012 1013 #if defined(_SYSCALL32_IMPL) 1014 auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) & 1015 ~auxv_hwcap32_exclude; 1016 auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) & 1017 ~auxv_hwcap32_exclude_2; 1018 1019 #if defined(__amd64) 1020 /* 1021 * If this is an amd64 architecture machine from Intel, then 1022 * syscall -doesn't- work in compatibility mode, only sysenter does. 1023 * 1024 * Sigh. 1025 */ 1026 if (!cpuid_syscall32_insn(NULL)) 1027 auxv_hwcap32 &= ~AV_386_AMD_SYSC; 1028 1029 /* 1030 * 32-bit processes can -always- use the lahf/sahf instructions 1031 */ 1032 auxv_hwcap32 |= AV_386_AHF; 1033 #endif 1034 1035 if (auxv_hwcap32_include || auxv_hwcap32_exclude || 1036 auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) { 1037 /* 1038 * See the block comment in the cmn_err() of auxv_hwcap, above. 1039 */ 1040 char *fmt = "?32-bit user ABI extensions: %b\n"; 1041 cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386); 1042 fmt = "?32-bit user ABI extensions (word 2): %b\n"; 1043 cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2); 1044 } 1045 #endif 1046 } 1047 1048 /* 1049 * sync_icache() - this is called 1050 * in proc/fs/prusrio.c. x86 has an unified cache and therefore 1051 * this is a nop. 1052 */ 1053 /* ARGSUSED */ 1054 void 1055 sync_icache(caddr_t addr, uint_t len) 1056 { 1057 /* Do nothing for now */ 1058 } 1059 1060 /*ARGSUSED*/ 1061 void 1062 sync_data_memory(caddr_t va, size_t len) 1063 { 1064 /* Not implemented for this platform */ 1065 } 1066 1067 int 1068 __ipltospl(int ipl) 1069 { 1070 return (ipltospl(ipl)); 1071 } 1072 1073 /* 1074 * The panic code invokes panic_saveregs() to record the contents of a 1075 * regs structure into the specified panic_data structure for debuggers. 1076 */ 1077 void 1078 panic_saveregs(panic_data_t *pdp, struct regs *rp) 1079 { 1080 panic_nv_t *pnv = PANICNVGET(pdp); 1081 1082 struct cregs creg; 1083 1084 getcregs(&creg); 1085 1086 #if defined(__amd64) 1087 PANICNVADD(pnv, "rdi", rp->r_rdi); 1088 PANICNVADD(pnv, "rsi", rp->r_rsi); 1089 PANICNVADD(pnv, "rdx", rp->r_rdx); 1090 PANICNVADD(pnv, "rcx", rp->r_rcx); 1091 PANICNVADD(pnv, "r8", rp->r_r8); 1092 PANICNVADD(pnv, "r9", rp->r_r9); 1093 PANICNVADD(pnv, "rax", rp->r_rax); 1094 PANICNVADD(pnv, "rbx", rp->r_rbx); 1095 PANICNVADD(pnv, "rbp", rp->r_rbp); 1096 PANICNVADD(pnv, "r10", rp->r_r10); 1097 PANICNVADD(pnv, "r11", rp->r_r11); 1098 PANICNVADD(pnv, "r12", rp->r_r12); 1099 PANICNVADD(pnv, "r13", rp->r_r13); 1100 PANICNVADD(pnv, "r14", rp->r_r14); 1101 PANICNVADD(pnv, "r15", rp->r_r15); 1102 PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE)); 1103 PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE)); 1104 PANICNVADD(pnv, "ds", rp->r_ds); 1105 PANICNVADD(pnv, "es", rp->r_es); 1106 PANICNVADD(pnv, "fs", rp->r_fs); 1107 PANICNVADD(pnv, "gs", rp->r_gs); 1108 PANICNVADD(pnv, "trapno", rp->r_trapno); 1109 PANICNVADD(pnv, "err", rp->r_err); 1110 PANICNVADD(pnv, "rip", rp->r_rip); 1111 PANICNVADD(pnv, "cs", rp->r_cs); 1112 PANICNVADD(pnv, "rflags", rp->r_rfl); 1113 PANICNVADD(pnv, "rsp", rp->r_rsp); 1114 PANICNVADD(pnv, "ss", rp->r_ss); 1115 PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3])); 1116 PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0])); 1117 PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3])); 1118 PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0])); 1119 #elif defined(__i386) 1120 PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs); 1121 PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs); 1122 PANICNVADD(pnv, "es", (uint32_t)rp->r_es); 1123 PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds); 1124 PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi); 1125 PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi); 1126 PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp); 1127 PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp); 1128 PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx); 1129 PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx); 1130 PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx); 1131 PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax); 1132 PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno); 1133 PANICNVADD(pnv, "err", (uint32_t)rp->r_err); 1134 PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip); 1135 PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs); 1136 PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl); 1137 PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp); 1138 PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss); 1139 PANICNVADD(pnv, "gdt", creg.cr_gdt); 1140 PANICNVADD(pnv, "idt", creg.cr_idt); 1141 #endif /* __i386 */ 1142 1143 PANICNVADD(pnv, "ldt", creg.cr_ldt); 1144 PANICNVADD(pnv, "task", creg.cr_task); 1145 PANICNVADD(pnv, "cr0", creg.cr_cr0); 1146 PANICNVADD(pnv, "cr2", creg.cr_cr2); 1147 PANICNVADD(pnv, "cr3", creg.cr_cr3); 1148 if (creg.cr_cr4) 1149 PANICNVADD(pnv, "cr4", creg.cr_cr4); 1150 1151 PANICNVSET(pdp, pnv); 1152 } 1153 1154 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */ 1155 1156 #if !defined(__amd64) 1157 1158 /* 1159 * Given a return address (%eip), determine the likely number of arguments 1160 * that were pushed on the stack prior to its execution. We do this by 1161 * expecting that a typical call sequence consists of pushing arguments on 1162 * the stack, executing a call instruction, and then performing an add 1163 * on %esp to restore it to the value prior to pushing the arguments for 1164 * the call. We attempt to detect such an add, and divide the addend 1165 * by the size of a word to determine the number of pushed arguments. 1166 * 1167 * If we do not find such an add, we punt and return TR_ARG_MAX. It is not 1168 * possible to reliably determine if a function took no arguments (i.e. was 1169 * void) because assembler routines do not reliably perform an add on %esp 1170 * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is 1171 * safer than returning 0. 1172 */ 1173 static ulong_t 1174 argcount(uintptr_t eip) 1175 { 1176 const uint8_t *ins = (const uint8_t *)eip; 1177 ulong_t n; 1178 1179 enum { 1180 M_MODRM_ESP = 0xc4, /* Mod/RM byte indicates %esp */ 1181 M_ADD_IMM32 = 0x81, /* ADD imm32 to r/m32 */ 1182 M_ADD_IMM8 = 0x83 /* ADD imm8 to r/m32 */ 1183 }; 1184 1185 if (eip < KERNELBASE || ins[1] != M_MODRM_ESP) 1186 return (TR_ARG_MAX); 1187 1188 switch (ins[0]) { 1189 case M_ADD_IMM32: 1190 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24); 1191 break; 1192 1193 case M_ADD_IMM8: 1194 n = ins[2]; 1195 break; 1196 1197 default: 1198 return (TR_ARG_MAX); 1199 } 1200 1201 n /= sizeof (long); 1202 return (MIN(n, TR_ARG_MAX)); 1203 } 1204 1205 #endif /* !__amd64 */ 1206 1207 /* 1208 * Print a stack backtrace using the specified frame pointer. We delay two 1209 * seconds before continuing, unless this is the panic traceback. 1210 * If we are in the process of panicking, we also attempt to write the 1211 * stack backtrace to a staticly assigned buffer, to allow the panic 1212 * code to find it and write it in to uncompressed pages within the 1213 * system crash dump. 1214 * Note that the frame for the starting stack pointer value is omitted because 1215 * the corresponding %eip is not known. 1216 */ 1217 1218 extern char *dump_stack_scratch; 1219 1220 #if defined(__amd64) 1221 1222 void 1223 traceback(caddr_t fpreg) 1224 { 1225 struct frame *fp = (struct frame *)fpreg; 1226 struct frame *nextfp; 1227 uintptr_t pc, nextpc; 1228 ulong_t off; 1229 char args[TR_ARG_MAX * 2 + 16], *sym; 1230 uint_t offset = 0; 1231 uint_t next_offset = 0; 1232 char stack_buffer[1024]; 1233 1234 if (!panicstr) 1235 printf("traceback: %%fp = %p\n", (void *)fp); 1236 1237 if (panicstr && !dump_stack_scratch) { 1238 printf("Warning - stack not written to the dump buffer\n"); 1239 } 1240 1241 fp = (struct frame *)plat_traceback(fpreg); 1242 if ((uintptr_t)fp < KERNELBASE) 1243 goto out; 1244 1245 pc = fp->fr_savpc; 1246 fp = (struct frame *)fp->fr_savfp; 1247 1248 while ((uintptr_t)fp >= KERNELBASE) { 1249 /* 1250 * XX64 Until port is complete tolerate 8-byte aligned 1251 * frame pointers but flag with a warning so they can 1252 * be fixed. 1253 */ 1254 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) { 1255 if (((uintptr_t)fp & (8 - 1)) == 0) { 1256 printf(" >> warning! 8-byte" 1257 " aligned %%fp = %p\n", (void *)fp); 1258 } else { 1259 printf( 1260 " >> mis-aligned %%fp = %p\n", (void *)fp); 1261 break; 1262 } 1263 } 1264 1265 args[0] = '\0'; 1266 nextpc = (uintptr_t)fp->fr_savpc; 1267 nextfp = (struct frame *)fp->fr_savfp; 1268 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1269 printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1270 mod_containing_pc((caddr_t)pc), sym, off, args); 1271 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1272 "%s:%s+%lx (%s) | ", 1273 mod_containing_pc((caddr_t)pc), sym, off, args); 1274 } else { 1275 printf("%016lx %lx (%s)\n", 1276 (uintptr_t)fp, pc, args); 1277 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1278 "%lx (%s) | ", pc, args); 1279 } 1280 1281 if (panicstr && dump_stack_scratch) { 1282 next_offset = offset + strlen(stack_buffer); 1283 if (next_offset < STACK_BUF_SIZE) { 1284 bcopy(stack_buffer, dump_stack_scratch + offset, 1285 strlen(stack_buffer)); 1286 offset = next_offset; 1287 } else { 1288 /* 1289 * In attempting to save the panic stack 1290 * to the dumpbuf we have overflowed that area. 1291 * Print a warning and continue to printf the 1292 * stack to the msgbuf 1293 */ 1294 printf("Warning: stack in the dump buffer" 1295 " may be incomplete\n"); 1296 offset = next_offset; 1297 } 1298 } 1299 1300 pc = nextpc; 1301 fp = nextfp; 1302 } 1303 out: 1304 if (!panicstr) { 1305 printf("end of traceback\n"); 1306 DELAY(2 * MICROSEC); 1307 } else if (dump_stack_scratch) { 1308 dump_stack_scratch[offset] = '\0'; 1309 } 1310 } 1311 1312 #elif defined(__i386) 1313 1314 void 1315 traceback(caddr_t fpreg) 1316 { 1317 struct frame *fp = (struct frame *)fpreg; 1318 struct frame *nextfp, *minfp, *stacktop; 1319 uintptr_t pc, nextpc; 1320 uint_t offset = 0; 1321 uint_t next_offset = 0; 1322 char stack_buffer[1024]; 1323 1324 cpu_t *cpu; 1325 1326 /* 1327 * args[] holds TR_ARG_MAX hex long args, plus ", " or '\0'. 1328 */ 1329 char args[TR_ARG_MAX * 2 + 8], *p; 1330 1331 int on_intr; 1332 ulong_t off; 1333 char *sym; 1334 1335 if (!panicstr) 1336 printf("traceback: %%fp = %p\n", (void *)fp); 1337 1338 if (panicstr && !dump_stack_scratch) { 1339 printf("Warning - stack not written to the dumpbuf\n"); 1340 } 1341 1342 /* 1343 * If we are panicking, all high-level interrupt information in 1344 * CPU was overwritten. panic_cpu has the correct values. 1345 */ 1346 kpreempt_disable(); /* prevent migration */ 1347 1348 cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU; 1349 1350 if ((on_intr = CPU_ON_INTR(cpu)) != 0) 1351 stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME)); 1352 else 1353 stacktop = (struct frame *)curthread->t_stk; 1354 1355 kpreempt_enable(); 1356 1357 fp = (struct frame *)plat_traceback(fpreg); 1358 if ((uintptr_t)fp < KERNELBASE) 1359 goto out; 1360 1361 minfp = fp; /* Baseline minimum frame pointer */ 1362 pc = fp->fr_savpc; 1363 fp = (struct frame *)fp->fr_savfp; 1364 1365 while ((uintptr_t)fp >= KERNELBASE) { 1366 ulong_t argc; 1367 long *argv; 1368 1369 if (fp <= minfp || fp >= stacktop) { 1370 if (on_intr) { 1371 /* 1372 * Hop from interrupt stack to thread stack. 1373 */ 1374 stacktop = (struct frame *)curthread->t_stk; 1375 minfp = (struct frame *)curthread->t_stkbase; 1376 on_intr = 0; 1377 continue; 1378 } 1379 break; /* we're outside of the expected range */ 1380 } 1381 1382 if ((uintptr_t)fp & (STACK_ALIGN - 1)) { 1383 printf(" >> mis-aligned %%fp = %p\n", (void *)fp); 1384 break; 1385 } 1386 1387 nextpc = fp->fr_savpc; 1388 nextfp = (struct frame *)fp->fr_savfp; 1389 argc = argcount(nextpc); 1390 argv = (long *)((char *)fp + sizeof (struct frame)); 1391 1392 args[0] = '\0'; 1393 p = args; 1394 while (argc-- > 0 && argv < (long *)stacktop) { 1395 p += snprintf(p, args + sizeof (args) - p, 1396 "%s%lx", (p == args) ? "" : ", ", *argv++); 1397 } 1398 1399 if ((sym = kobj_getsymname(pc, &off)) != NULL) { 1400 printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp, 1401 mod_containing_pc((caddr_t)pc), sym, off, args); 1402 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1403 "%s:%s+%lx (%s) | ", 1404 mod_containing_pc((caddr_t)pc), sym, off, args); 1405 1406 } else { 1407 printf("%08lx %lx (%s)\n", 1408 (uintptr_t)fp, pc, args); 1409 (void) snprintf(stack_buffer, sizeof (stack_buffer), 1410 "%lx (%s) | ", pc, args); 1411 1412 } 1413 1414 if (panicstr && dump_stack_scratch) { 1415 next_offset = offset + strlen(stack_buffer); 1416 if (next_offset < STACK_BUF_SIZE) { 1417 bcopy(stack_buffer, dump_stack_scratch + offset, 1418 strlen(stack_buffer)); 1419 offset = next_offset; 1420 } else { 1421 /* 1422 * In attempting to save the panic stack 1423 * to the dumpbuf we have overflowed that area. 1424 * Print a warning and continue to printf the 1425 * stack to the msgbuf 1426 */ 1427 printf("Warning: stack in the dumpbuf" 1428 " may be incomplete\n"); 1429 offset = next_offset; 1430 } 1431 } 1432 1433 minfp = fp; 1434 pc = nextpc; 1435 fp = nextfp; 1436 } 1437 out: 1438 if (!panicstr) { 1439 printf("end of traceback\n"); 1440 DELAY(2 * MICROSEC); 1441 } else if (dump_stack_scratch) { 1442 dump_stack_scratch[offset] = '\0'; 1443 } 1444 1445 } 1446 1447 #endif /* __i386 */ 1448 1449 /* 1450 * Generate a stack backtrace from a saved register set. 1451 */ 1452 void 1453 traceregs(struct regs *rp) 1454 { 1455 traceback((caddr_t)rp->r_fp); 1456 } 1457 1458 void 1459 exec_set_sp(size_t stksize) 1460 { 1461 klwp_t *lwp = ttolwp(curthread); 1462 1463 lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize; 1464 } 1465 1466 hrtime_t 1467 gethrtime_waitfree(void) 1468 { 1469 return (dtrace_gethrtime()); 1470 } 1471 1472 hrtime_t 1473 gethrtime(void) 1474 { 1475 return (gethrtimef()); 1476 } 1477 1478 hrtime_t 1479 gethrtime_unscaled(void) 1480 { 1481 return (gethrtimeunscaledf()); 1482 } 1483 1484 void 1485 scalehrtime(hrtime_t *hrt) 1486 { 1487 scalehrtimef(hrt); 1488 } 1489 1490 uint64_t 1491 unscalehrtime(hrtime_t nsecs) 1492 { 1493 return (unscalehrtimef(nsecs)); 1494 } 1495 1496 void 1497 gethrestime(timespec_t *tp) 1498 { 1499 gethrestimef(tp); 1500 } 1501 1502 #if defined(__amd64) 1503 /* 1504 * Part of the implementation of hres_tick(); this routine is 1505 * easier in C than assembler .. called with the hres_lock held. 1506 * 1507 * XX64 Many of these timekeeping variables need to be extern'ed in a header 1508 */ 1509 1510 #include <sys/time.h> 1511 #include <sys/machlock.h> 1512 1513 extern int one_sec; 1514 extern int max_hres_adj; 1515 1516 void 1517 __adj_hrestime(void) 1518 { 1519 long long adj; 1520 1521 if (hrestime_adj == 0) 1522 adj = 0; 1523 else if (hrestime_adj > 0) { 1524 if (hrestime_adj < max_hres_adj) 1525 adj = hrestime_adj; 1526 else 1527 adj = max_hres_adj; 1528 } else { 1529 if (hrestime_adj < -max_hres_adj) 1530 adj = -max_hres_adj; 1531 else 1532 adj = hrestime_adj; 1533 } 1534 1535 timedelta -= adj; 1536 hrestime_adj = timedelta; 1537 hrestime.tv_nsec += adj; 1538 1539 while (hrestime.tv_nsec >= NANOSEC) { 1540 one_sec++; 1541 hrestime.tv_sec++; 1542 hrestime.tv_nsec -= NANOSEC; 1543 } 1544 } 1545 #endif 1546 1547 /* 1548 * Wrapper functions to maintain backwards compability 1549 */ 1550 int 1551 xcopyin(const void *uaddr, void *kaddr, size_t count) 1552 { 1553 return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED)); 1554 } 1555 1556 int 1557 xcopyout(const void *kaddr, void *uaddr, size_t count) 1558 { 1559 return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED)); 1560 }