Bring back LX zones.
1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
24 */
25
26 #include <sys/asm_linkage.h>
27 #include <sys/asm_misc.h>
28 #include <sys/regset.h>
29 #include <sys/privregs.h>
30 #include <sys/psw.h>
31 #include <sys/machbrand.h>
32
33 #if defined(__lint)
34
35 #include <sys/types.h>
36 #include <sys/thread.h>
37 #include <sys/systm.h>
38
39 #else /* __lint */
40
41 #include <sys/segments.h>
42 #include <sys/pcb.h>
43 #include <sys/trap.h>
44 #include <sys/ftrace.h>
45 #include <sys/traptrace.h>
46 #include <sys/clock.h>
47 #include <sys/model.h>
48 #include <sys/panic.h>
49
50 #if defined(__xpv)
51 #include <sys/hypervisor.h>
52 #endif
53
54 #include "assym.h"
55
56 #endif /* __lint */
57
58 /*
59 * We implement five flavours of system call entry points
60 *
61 * - syscall/sysretq (amd64 generic)
62 * - syscall/sysretl (i386 plus SYSC bit)
63 * - sysenter/sysexit (i386 plus SEP bit)
64 * - int/iret (i386 generic)
65 * - lcall/iret (i386 generic)
66 *
67 * The current libc included in Solaris uses int/iret as the base unoptimized
68 * kernel entry method. Older libc implementations and legacy binaries may use
69 * the lcall call gate, so it must continue to be supported.
70 *
71 * System calls that use an lcall call gate are processed in trap() via a
72 * segment-not-present trap, i.e. lcalls are extremely slow(!).
73 *
74 * The basic pattern used in the 32-bit SYSC handler at this point in time is
75 * to have the bare minimum of assembler, and get to the C handlers as
76 * quickly as possible.
77 *
78 * The 64-bit handler is much closer to the sparcv9 handler; that's
79 * because of passing arguments in registers. The 32-bit world still
80 * passes arguments on the stack -- that makes that handler substantially
81 * more complex.
82 *
83 * The two handlers share a few code fragments which are broken
84 * out into preprocessor macros below.
85 *
86 * XX64 come back and speed all this up later. The 32-bit stuff looks
87 * especially easy to speed up the argument copying part ..
88 *
89 *
90 * Notes about segment register usage (c.f. the 32-bit kernel)
91 *
92 * In the 32-bit kernel, segment registers are dutifully saved and
93 * restored on all mode transitions because the kernel uses them directly.
94 * When the processor is running in 64-bit mode, segment registers are
95 * largely ignored.
96 *
97 * %cs and %ss
98 * controlled by the hardware mechanisms that make mode transitions
99 *
100 * The remaining segment registers have to either be pointing at a valid
101 * descriptor i.e. with the 'present' bit set, or they can NULL descriptors
102 *
103 * %ds and %es
104 * always ignored
105 *
106 * %fs and %gs
107 * fsbase and gsbase are used to control the place they really point at.
108 * The kernel only depends on %gs, and controls its own gsbase via swapgs
109 *
110 * Note that loading segment registers is still costly because the GDT
111 * lookup still happens (this is because the hardware can't know that we're
112 * not setting up these segment registers for a 32-bit program). Thus we
113 * avoid doing this in the syscall path, and defer them to lwp context switch
114 * handlers, so the register values remain virtualized to the lwp.
115 */
116
117 #if defined(SYSCALLTRACE)
118 #define ORL_SYSCALLTRACE(r32) \
119 orl syscalltrace(%rip), r32
120 #else
121 #define ORL_SYSCALLTRACE(r32)
122 #endif
123
124 /*
125 * In the 32-bit kernel, we do absolutely nothing before getting into the
126 * brand callback checks. In 64-bit land, we do swapgs and then come here.
127 * We assume that the %rsp- and %r15-stashing fields in the CPU structure
128 * are still unused.
129 *
130 * Check if a brand_mach_ops callback is defined for the specified callback_id
131 * type. If so invoke it with the kernel's %gs value loaded and the following
132 * data on the stack:
133 *
134 * stack: --------------------------------------
135 * 32 | callback pointer |
136 * | 24 | user (or interrupt) stack pointer |
137 * | 16 | lwp pointer |
138 * v 8 | userland return address |
139 * 0 | callback wrapper return addr |
140 * --------------------------------------
141 *
142 * Since we're pushing the userland return address onto the kernel stack
143 * we need to get that address without accessing the user's stack (since we
144 * can't trust that data). There are different ways to get the userland
145 * return address depending on how the syscall trap was made:
146 *
147 * a) For sys_syscall and sys_syscall32 the return address is in %rcx.
148 * b) For sys_sysenter the return address is in %rdx.
149 * c) For sys_int80 and sys_syscall_int (int91), upon entry into the macro,
150 * the stack pointer points at the state saved when we took the interrupt:
151 * ------------------------
152 * | | user's %ss |
153 * | | user's %esp |
154 * | | EFLAGS register |
155 * v | user's %cs |
156 * | user's %eip |
157 * ------------------------
158 *
159 * The 2nd parameter to the BRAND_CALLBACK macro is either the
160 * BRAND_URET_FROM_REG or BRAND_URET_FROM_INTR_STACK macro. These macros are
161 * used to generate the proper code to get the userland return address for
162 * each syscall entry point.
163 *
164 * The interface to the brand callbacks on the 64-bit kernel assumes %r15
165 * is available as a scratch register within the callback. If the callback
166 * returns within the kernel then this macro will restore %r15. If the
167 * callback is going to return directly to userland then it should restore
168 * %r15 before returning to userland.
169 */
170 #define BRAND_URET_FROM_REG(rip_reg) \
171 pushq rip_reg /* push the return address */
172
173 /*
174 * The interrupt stack pointer we saved on entry to the BRAND_CALLBACK macro
175 * is currently pointing at the user return address (%eip).
176 */
177 #define BRAND_URET_FROM_INTR_STACK() \
178 movq %gs:CPU_RTMP_RSP, %r15 /* grab the intr. stack pointer */ ;\
179 pushq (%r15) /* push the return address */
180
181 #define BRAND_CALLBACK(callback_id, push_userland_ret) \
182 movq %rsp, %gs:CPU_RTMP_RSP /* save the stack pointer */ ;\
183 movq %r15, %gs:CPU_RTMP_R15 /* save %r15 */ ;\
184 movq %gs:CPU_THREAD, %r15 /* load the thread pointer */ ;\
185 movq T_STACK(%r15), %rsp /* switch to the kernel stack */ ;\
186 subq $16, %rsp /* save space for 2 pointers */ ;\
187 pushq %r14 /* save %r14 */ ;\
188 movq %gs:CPU_RTMP_RSP, %r14 ;\
189 movq %r14, 8(%rsp) /* stash the user stack pointer */ ;\
190 popq %r14 /* restore %r14 */ ;\
191 movq T_LWP(%r15), %r15 /* load the lwp pointer */ ;\
192 pushq %r15 /* push the lwp pointer */ ;\
193 movq LWP_PROCP(%r15), %r15 /* load the proc pointer */ ;\
194 movq P_BRAND(%r15), %r15 /* load the brand pointer */ ;\
195 movq B_MACHOPS(%r15), %r15 /* load the machops pointer */ ;\
196 movq _CONST(_MUL(callback_id, CPTRSIZE))(%r15), %r15 ;\
197 cmpq $0, %r15 ;\
198 je 1f ;\
199 movq %r15, 16(%rsp) /* save the callback pointer */ ;\
200 push_userland_ret /* push the return address */ ;\
201 call *24(%rsp) /* call callback */ ;\
202 1: movq %gs:CPU_RTMP_R15, %r15 /* restore %r15 */ ;\
203 movq %gs:CPU_RTMP_RSP, %rsp /* restore the stack pointer */
204
205 #define MSTATE_TRANSITION(from, to) \
206 movl $from, %edi; \
207 movl $to, %esi; \
208 call syscall_mstate
209
210 /*
211 * Check to see if a simple (direct) return is possible i.e.
212 *
213 * if (t->t_post_sys_ast | syscalltrace |
214 * lwp->lwp_pcb.pcb_rupdate == 1)
215 * do full version ;
216 *
217 * Preconditions:
218 * - t is curthread
219 * Postconditions:
220 * - condition code NE is set if post-sys is too complex
221 * - rtmp is zeroed if it isn't (we rely on this!)
222 * - ltmp is smashed
223 */
224 #define CHECK_POSTSYS_NE(t, ltmp, rtmp) \
225 movq T_LWP(t), ltmp; \
226 movzbl PCB_RUPDATE(ltmp), rtmp; \
227 ORL_SYSCALLTRACE(rtmp); \
228 orl T_POST_SYS_AST(t), rtmp; \
229 cmpl $0, rtmp
230
231 /*
232 * Fix up the lwp, thread, and eflags for a successful return
233 *
234 * Preconditions:
235 * - zwreg contains zero
236 */
237 #define SIMPLE_SYSCALL_POSTSYS(t, lwp, zwreg) \
238 movb $LWP_USER, LWP_STATE(lwp); \
239 movw zwreg, T_SYSNUM(t); \
240 andb $_CONST(0xffff - PS_C), REGOFF_RFL(%rsp)
241
242 /*
243 * ASSERT(lwptoregs(lwp) == rp);
244 *
245 * This may seem obvious, but very odd things happen if this
246 * assertion is false
247 *
248 * Preconditions:
249 * (%rsp is ready for normal call sequence)
250 * Postconditions (if assertion is true):
251 * %r11 is smashed
252 *
253 * ASSERT(rp->r_cs == descnum)
254 *
255 * The code selector is written into the regs structure when the
256 * lwp stack is created. We use this ASSERT to validate that
257 * the regs structure really matches how we came in.
258 *
259 * Preconditions:
260 * (%rsp is ready for normal call sequence)
261 * Postconditions (if assertion is true):
262 * -none-
263 *
264 * ASSERT(lwp->lwp_pcb.pcb_rupdate == 0);
265 *
266 * If this is false, it meant that we returned to userland without
267 * updating the segment registers as we were supposed to.
268 *
269 * Note that we must ensure no interrupts or other traps intervene
270 * between entering privileged mode and performing the assertion,
271 * otherwise we may perform a context switch on the thread, which
272 * will end up setting pcb_rupdate to 1 again.
273 */
274 #if defined(DEBUG)
275
276 #if !defined(__lint)
277
278 __lwptoregs_msg:
279 .string "syscall_asm_amd64.s:%d lwptoregs(%p) [%p] != rp [%p]"
280
281 __codesel_msg:
282 .string "syscall_asm_amd64.s:%d rp->r_cs [%ld] != %ld"
283
284 __no_rupdate_msg:
285 .string "syscall_asm_amd64.s:%d lwp %p, pcb_rupdate != 0"
286
287 #endif /* !__lint */
288
289 #define ASSERT_LWPTOREGS(lwp, rp) \
290 movq LWP_REGS(lwp), %r11; \
291 cmpq rp, %r11; \
292 je 7f; \
293 leaq __lwptoregs_msg(%rip), %rdi; \
294 movl $__LINE__, %esi; \
295 movq lwp, %rdx; \
296 movq %r11, %rcx; \
297 movq rp, %r8; \
298 xorl %eax, %eax; \
299 call panic; \
300 7:
301
302 #define ASSERT_NO_RUPDATE_PENDING(lwp) \
303 testb $0x1, PCB_RUPDATE(lwp); \
304 je 8f; \
305 movq lwp, %rdx; \
306 leaq __no_rupdate_msg(%rip), %rdi; \
307 movl $__LINE__, %esi; \
308 xorl %eax, %eax; \
309 call panic; \
310 8:
311
312 #else
313 #define ASSERT_LWPTOREGS(lwp, rp)
314 #define ASSERT_NO_RUPDATE_PENDING(lwp)
315 #endif
316
317 /*
318 * Do the traptrace thing and restore any registers we used
319 * in situ. Assumes that %rsp is pointing at the base of
320 * the struct regs, obviously ..
321 */
322 #ifdef TRAPTRACE
323 #define SYSCALL_TRAPTRACE(ttype) \
324 TRACE_PTR(%rdi, %rbx, %ebx, %rcx, ttype); \
325 TRACE_REGS(%rdi, %rsp, %rbx, %rcx); \
326 TRACE_STAMP(%rdi); /* rdtsc clobbers %eax, %edx */ \
327 movq REGOFF_RAX(%rsp), %rax; \
328 movq REGOFF_RBX(%rsp), %rbx; \
329 movq REGOFF_RCX(%rsp), %rcx; \
330 movq REGOFF_RDX(%rsp), %rdx; \
331 movl %eax, TTR_SYSNUM(%rdi); \
332 movq REGOFF_RDI(%rsp), %rdi
333
334 #define SYSCALL_TRAPTRACE32(ttype) \
335 SYSCALL_TRAPTRACE(ttype); \
336 /* paranoia: clean the top 32-bits of the registers */ \
337 orl %eax, %eax; \
338 orl %ebx, %ebx; \
339 orl %ecx, %ecx; \
340 orl %edx, %edx; \
341 orl %edi, %edi
342 #else /* TRAPTRACE */
343 #define SYSCALL_TRAPTRACE(ttype)
344 #define SYSCALL_TRAPTRACE32(ttype)
345 #endif /* TRAPTRACE */
346
347 /*
348 * The 64-bit libc syscall wrapper does this:
349 *
350 * fn(<args>)
351 * {
352 * movq %rcx, %r10 -- because syscall smashes %rcx
353 * movl $CODE, %eax
354 * syscall
355 * <error processing>
356 * }
357 *
358 * Thus when we come into the kernel:
359 *
360 * %rdi, %rsi, %rdx, %r10, %r8, %r9 contain first six args
361 * %rax is the syscall number
362 * %r12-%r15 contain caller state
363 *
364 * The syscall instruction arranges that:
365 *
366 * %rcx contains the return %rip
367 * %r11d contains bottom 32-bits of %rflags
368 * %rflags is masked (as determined by the SFMASK msr)
369 * %cs is set to UCS_SEL (as determined by the STAR msr)
370 * %ss is set to UDS_SEL (as determined by the STAR msr)
371 * %rip is set to sys_syscall (as determined by the LSTAR msr)
372 *
373 * Or in other words, we have no registers available at all.
374 * Only swapgs can save us!
375 *
376 * Under the hypervisor, the swapgs has happened already. However, the
377 * state of the world is very different from that we're familiar with.
378 *
379 * In particular, we have a stack structure like that for interrupt
380 * gates, except that the %cs and %ss registers are modified for reasons
381 * that are not entirely clear. Critically, the %rcx/%r11 values do
382 * *not* reflect the usage of those registers under a 'real' syscall[1];
383 * the stack, therefore, looks like this:
384 *
385 * 0x0(rsp) potentially junk %rcx
386 * 0x8(rsp) potentially junk %r11
387 * 0x10(rsp) user %rip
388 * 0x18(rsp) modified %cs
389 * 0x20(rsp) user %rflags
390 * 0x28(rsp) user %rsp
391 * 0x30(rsp) modified %ss
392 *
393 *
394 * and before continuing on, we must load the %rip into %rcx and the
395 * %rflags into %r11.
396 *
397 * [1] They used to, and we relied on it, but this was broken in 3.1.1.
398 * Sigh.
399 */
400 #if defined(__xpv)
401 #define XPV_SYSCALL_PROD \
402 movq 0x10(%rsp), %rcx; \
403 movq 0x20(%rsp), %r11; \
404 movq 0x28(%rsp), %rsp
405 #else
406 #define XPV_SYSCALL_PROD /* nothing */
407 #endif
408
409 #if defined(__lint)
410
411 /*ARGSUSED*/
412 void
413 sys_syscall()
414 {}
415
416 void
417 _allsyscalls()
418 {}
419
420 size_t _allsyscalls_size;
421
422 #else /* __lint */
423
424 ENTRY_NP2(brand_sys_syscall,_allsyscalls)
425 SWAPGS /* kernel gsbase */
426 XPV_SYSCALL_PROD
427 BRAND_CALLBACK(BRAND_CB_SYSCALL, BRAND_URET_FROM_REG(%rcx))
428 jmp noprod_sys_syscall
429
430 ALTENTRY(sys_syscall)
431 SWAPGS /* kernel gsbase */
432 XPV_SYSCALL_PROD
433
434 noprod_sys_syscall:
435 movq %r15, %gs:CPU_RTMP_R15
436 movq %rsp, %gs:CPU_RTMP_RSP
437
438 movq %gs:CPU_THREAD, %r15
439 movq T_STACK(%r15), %rsp /* switch from user to kernel stack */
440
441 ASSERT_UPCALL_MASK_IS_SET
442
443 movl $UCS_SEL, REGOFF_CS(%rsp)
444 movq %rcx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */
445 movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */
446 movl $UDS_SEL, REGOFF_SS(%rsp)
447
448 movl %eax, %eax /* wrapper: sysc# -> %eax */
449 movq %rdi, REGOFF_RDI(%rsp)
450 movq %rsi, REGOFF_RSI(%rsp)
451 movq %rdx, REGOFF_RDX(%rsp)
452 movq %r10, REGOFF_RCX(%rsp) /* wrapper: %rcx -> %r10 */
453 movq %r10, %rcx /* arg[3] for direct calls */
454
455 movq %r8, REGOFF_R8(%rsp)
456 movq %r9, REGOFF_R9(%rsp)
457 movq %rax, REGOFF_RAX(%rsp)
458 movq %rbx, REGOFF_RBX(%rsp)
459
460 movq %rbp, REGOFF_RBP(%rsp)
461 movq %r10, REGOFF_R10(%rsp)
462 movq %gs:CPU_RTMP_RSP, %r11
463 movq %r11, REGOFF_RSP(%rsp)
464 movq %r12, REGOFF_R12(%rsp)
465
466 movq %r13, REGOFF_R13(%rsp)
467 movq %r14, REGOFF_R14(%rsp)
468 movq %gs:CPU_RTMP_R15, %r10
469 movq %r10, REGOFF_R15(%rsp)
470 movq $0, REGOFF_SAVFP(%rsp)
471 movq $0, REGOFF_SAVPC(%rsp)
472
473 /*
474 * Copy these registers here in case we end up stopped with
475 * someone (like, say, /proc) messing with our register state.
476 * We don't -restore- them unless we have to in update_sregs.
477 *
478 * Since userland -can't- change fsbase or gsbase directly,
479 * and capturing them involves two serializing instructions,
480 * we don't bother to capture them here.
481 */
482 xorl %ebx, %ebx
483 movw %ds, %bx
484 movq %rbx, REGOFF_DS(%rsp)
485 movw %es, %bx
486 movq %rbx, REGOFF_ES(%rsp)
487 movw %fs, %bx
488 movq %rbx, REGOFF_FS(%rsp)
489 movw %gs, %bx
490 movq %rbx, REGOFF_GS(%rsp)
491
492 /*
493 * Machine state saved in the regs structure on the stack
494 * First six args in %rdi, %rsi, %rdx, %rcx, %r8, %r9
495 * %eax is the syscall number
496 * %rsp is the thread's stack, %r15 is curthread
497 * REG_RSP(%rsp) is the user's stack
498 */
499
500 SYSCALL_TRAPTRACE($TT_SYSC64)
501
502 movq %rsp, %rbp
503
504 movq T_LWP(%r15), %r14
505 ASSERT_NO_RUPDATE_PENDING(%r14)
506 ENABLE_INTR_FLAGS
507
508 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
509 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */
510
511 ASSERT_LWPTOREGS(%r14, %rsp)
512
513 movb $LWP_SYS, LWP_STATE(%r14)
514 incq LWP_RU_SYSC(%r14)
515 movb $NORMALRETURN, LWP_EOSYS(%r14)
516
517 incq %gs:CPU_STATS_SYS_SYSCALL
518
519 movw %ax, T_SYSNUM(%r15)
520 movzbl T_PRE_SYS(%r15), %ebx
521 ORL_SYSCALLTRACE(%ebx)
522 testl %ebx, %ebx
523 jne _syscall_pre
524
525 _syscall_invoke:
526 movq REGOFF_RDI(%rbp), %rdi
527 movq REGOFF_RSI(%rbp), %rsi
528 movq REGOFF_RDX(%rbp), %rdx
529 movq REGOFF_RCX(%rbp), %rcx
530 movq REGOFF_R8(%rbp), %r8
531 movq REGOFF_R9(%rbp), %r9
532
533 cmpl $NSYSCALL, %eax
534 jae _syscall_ill
535 shll $SYSENT_SIZE_SHIFT, %eax
536 leaq sysent(%rax), %rbx
537
538 call *SY_CALLC(%rbx)
539
540 movq %rax, %r12
541 movq %rdx, %r13
542
543 /*
544 * If the handler returns two ints, then we need to split the
545 * 64-bit return value into two 32-bit values.
546 */
547 testw $SE_32RVAL2, SY_FLAGS(%rbx)
548 je 5f
549 movq %r12, %r13
550 shrq $32, %r13 /* upper 32-bits into %edx */
551 movl %r12d, %r12d /* lower 32-bits into %eax */
552 5:
553 /*
554 * Optimistically assume that there's no post-syscall
555 * work to do. (This is to avoid having to call syscall_mstate()
556 * with interrupts disabled)
557 */
558 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
559
560 /*
561 * We must protect ourselves from being descheduled here;
562 * If we were, and we ended up on another cpu, or another
563 * lwp got in ahead of us, it could change the segment
564 * registers without us noticing before we return to userland.
565 */
566 CLI(%r14)
567 CHECK_POSTSYS_NE(%r15, %r14, %ebx)
568 jne _syscall_post
569
570 /*
571 * We need to protect ourselves against non-canonical return values
572 * because Intel doesn't check for them on sysret (AMD does). Canonical
573 * addresses on current amd64 processors only use 48-bits for VAs; an
574 * address is canonical if all upper bits (47-63) are identical. If we
575 * find a non-canonical %rip, we opt to go through the full
576 * _syscall_post path which takes us into an iretq which is not
577 * susceptible to the same problems sysret is.
578 *
579 * We're checking for a canonical address by first doing an arithmetic
580 * shift. This will fill in the remaining bits with the value of bit 63.
581 * If the address were canonical, the register would now have either all
582 * zeroes or all ones in it. Therefore we add one (inducing overflow)
583 * and compare against 1. A canonical address will either be zero or one
584 * at this point, hence the use of ja.
585 *
586 * At this point, r12 and r13 have the return value so we can't use
587 * those registers.
588 */
589 movq REGOFF_RIP(%rsp), %rcx
590 sarq $47, %rcx
591 incq %rcx
592 cmpq $1, %rcx
593 ja _syscall_post
594
595
596 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
597
598 movq %r12, REGOFF_RAX(%rsp)
599 movq %r13, REGOFF_RDX(%rsp)
600
601 /*
602 * To get back to userland, we need the return %rip in %rcx and
603 * the return %rfl in %r11d. The sysretq instruction also arranges
604 * to fix up %cs and %ss; everything else is our responsibility.
605 */
606 movq REGOFF_RDI(%rsp), %rdi
607 movq REGOFF_RSI(%rsp), %rsi
608 movq REGOFF_RDX(%rsp), %rdx
609 /* %rcx used to restore %rip value */
610
611 movq REGOFF_R8(%rsp), %r8
612 movq REGOFF_R9(%rsp), %r9
613 movq REGOFF_RAX(%rsp), %rax
614 movq REGOFF_RBX(%rsp), %rbx
615
616 movq REGOFF_RBP(%rsp), %rbp
617 movq REGOFF_R10(%rsp), %r10
618 /* %r11 used to restore %rfl value */
619 movq REGOFF_R12(%rsp), %r12
620
621 movq REGOFF_R13(%rsp), %r13
622 movq REGOFF_R14(%rsp), %r14
623 movq REGOFF_R15(%rsp), %r15
624
625 movq REGOFF_RIP(%rsp), %rcx
626 movl REGOFF_RFL(%rsp), %r11d
627
628 #if defined(__xpv)
629 addq $REGOFF_RIP, %rsp
630 #else
631 movq REGOFF_RSP(%rsp), %rsp
632 #endif
633
634 /*
635 * There can be no instructions between the ALTENTRY below and
636 * SYSRET or we could end up breaking brand support. See label usage
637 * in sn1_brand_syscall_callback for an example.
638 */
639 ASSERT_UPCALL_MASK_IS_SET
640 #if defined(__xpv)
641 SYSRETQ
642 ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
643
644 /*
645 * We can only get here after executing a brand syscall
646 * interposition callback handler and simply need to
647 * "sysretq" back to userland. On the hypervisor this
648 * involves the iret hypercall which requires us to construct
649 * just enough of the stack needed for the hypercall.
650 * (rip, cs, rflags, rsp, ss).
651 */
652 movq %rsp, %gs:CPU_RTMP_RSP /* save user's rsp */
653 movq %gs:CPU_THREAD, %r11
654 movq T_STACK(%r11), %rsp
655
656 movq %rcx, REGOFF_RIP(%rsp)
657 movl $UCS_SEL, REGOFF_CS(%rsp)
658 movq %gs:CPU_RTMP_RSP, %r11
659 movq %r11, REGOFF_RSP(%rsp)
660 pushfq
661 popq %r11 /* hypercall enables ints */
662 movq %r11, REGOFF_RFL(%rsp)
663 movl $UDS_SEL, REGOFF_SS(%rsp)
664 addq $REGOFF_RIP, %rsp
665 /*
666 * XXPV: see comment in SYSRETQ definition for future optimization
667 * we could take.
668 */
669 ASSERT_UPCALL_MASK_IS_SET
670 SYSRETQ
671 #else
672 ALTENTRY(nopop_sys_syscall_swapgs_sysretq)
673 SWAPGS /* user gsbase */
674 SYSRETQ
675 #endif
676 /*NOTREACHED*/
677 SET_SIZE(nopop_sys_syscall_swapgs_sysretq)
678
679 _syscall_pre:
680 call pre_syscall
681 movl %eax, %r12d
682 testl %eax, %eax
683 jne _syscall_post_call
684 /*
685 * Didn't abort, so reload the syscall args and invoke the handler.
686 */
687 movzwl T_SYSNUM(%r15), %eax
688 jmp _syscall_invoke
689
690 _syscall_ill:
691 call nosys
692 movq %rax, %r12
693 movq %rdx, %r13
694 jmp _syscall_post_call
695
696 _syscall_post:
697 STI
698 /*
699 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
700 * so that we can account for the extra work it takes us to finish.
701 */
702 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
703 _syscall_post_call:
704 movq %r12, %rdi
705 movq %r13, %rsi
706 call post_syscall
707 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
708 jmp _sys_rtt
709 SET_SIZE(sys_syscall)
710 SET_SIZE(brand_sys_syscall)
711
712 #endif /* __lint */
713
714 #if defined(__lint)
715
716 /*ARGSUSED*/
717 void
718 sys_syscall32()
719 {}
720
721 #else /* __lint */
722
723 ENTRY_NP(brand_sys_syscall32)
724 SWAPGS /* kernel gsbase */
725 XPV_TRAP_POP
726 BRAND_CALLBACK(BRAND_CB_SYSCALL32, BRAND_URET_FROM_REG(%rcx))
727 jmp nopop_sys_syscall32
728
729 ALTENTRY(sys_syscall32)
730 SWAPGS /* kernel gsbase */
731 XPV_TRAP_POP
732
733 nopop_sys_syscall32:
734 movl %esp, %r10d
735 movq %gs:CPU_THREAD, %r15
736 movq T_STACK(%r15), %rsp
737 movl %eax, %eax
738
739 movl $U32CS_SEL, REGOFF_CS(%rsp)
740 movl %ecx, REGOFF_RIP(%rsp) /* syscall: %rip -> %rcx */
741 movq %r11, REGOFF_RFL(%rsp) /* syscall: %rfl -> %r11d */
742 movq %r10, REGOFF_RSP(%rsp)
743 movl $UDS_SEL, REGOFF_SS(%rsp)
744
745 _syscall32_save:
746 movl %edi, REGOFF_RDI(%rsp)
747 movl %esi, REGOFF_RSI(%rsp)
748 movl %ebp, REGOFF_RBP(%rsp)
749 movl %ebx, REGOFF_RBX(%rsp)
750 movl %edx, REGOFF_RDX(%rsp)
751 movl %ecx, REGOFF_RCX(%rsp)
752 movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */
753 movq $0, REGOFF_SAVFP(%rsp)
754 movq $0, REGOFF_SAVPC(%rsp)
755
756 /*
757 * Copy these registers here in case we end up stopped with
758 * someone (like, say, /proc) messing with our register state.
759 * We don't -restore- them unless we have to in update_sregs.
760 *
761 * Since userland -can't- change fsbase or gsbase directly,
762 * we don't bother to capture them here.
763 */
764 xorl %ebx, %ebx
765 movw %ds, %bx
766 movq %rbx, REGOFF_DS(%rsp)
767 movw %es, %bx
768 movq %rbx, REGOFF_ES(%rsp)
769 movw %fs, %bx
770 movq %rbx, REGOFF_FS(%rsp)
771 movw %gs, %bx
772 movq %rbx, REGOFF_GS(%rsp)
773
774 /*
775 * Application state saved in the regs structure on the stack
776 * %eax is the syscall number
777 * %rsp is the thread's stack, %r15 is curthread
778 * REG_RSP(%rsp) is the user's stack
779 */
780
781 SYSCALL_TRAPTRACE32($TT_SYSC)
782
783 movq %rsp, %rbp
784
785 movq T_LWP(%r15), %r14
786 ASSERT_NO_RUPDATE_PENDING(%r14)
787
788 ENABLE_INTR_FLAGS
789
790 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
791 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate call) */
792
793 ASSERT_LWPTOREGS(%r14, %rsp)
794
795 incq %gs:CPU_STATS_SYS_SYSCALL
796
797 /*
798 * Make some space for MAXSYSARGS (currently 8) 32-bit args placed
799 * into 64-bit (long) arg slots, maintaining 16 byte alignment. Or
800 * more succinctly:
801 *
802 * SA(MAXSYSARGS * sizeof (long)) == 64
803 */
804 #define SYS_DROP 64 /* drop for args */
805 subq $SYS_DROP, %rsp
806 movb $LWP_SYS, LWP_STATE(%r14)
807 movq %r15, %rdi
808 movq %rsp, %rsi
809 call syscall_entry
810
811 /*
812 * Fetch the arguments copied onto the kernel stack and put
813 * them in the right registers to invoke a C-style syscall handler.
814 * %rax contains the handler address.
815 *
816 * Ideas for making all this go faster of course include simply
817 * forcibly fetching 6 arguments from the user stack under lofault
818 * protection, reverting to copyin_args only when watchpoints
819 * are in effect.
820 *
821 * (If we do this, make sure that exec and libthread leave
822 * enough space at the top of the stack to ensure that we'll
823 * never do a fetch from an invalid page.)
824 *
825 * Lots of ideas here, but they won't really help with bringup B-)
826 * Correctness can't wait, performance can wait a little longer ..
827 */
828
829 movq %rax, %rbx
830 movl 0(%rsp), %edi
831 movl 8(%rsp), %esi
832 movl 0x10(%rsp), %edx
833 movl 0x18(%rsp), %ecx
834 movl 0x20(%rsp), %r8d
835 movl 0x28(%rsp), %r9d
836
837 call *SY_CALLC(%rbx)
838
839 movq %rbp, %rsp /* pop the args */
840
841 /*
842 * amd64 syscall handlers -always- return a 64-bit value in %rax.
843 * On the 32-bit kernel, they always return that value in %eax:%edx
844 * as required by the 32-bit ABI.
845 *
846 * Simulate the same behaviour by unconditionally splitting the
847 * return value in the same way.
848 */
849 movq %rax, %r13
850 shrq $32, %r13 /* upper 32-bits into %edx */
851 movl %eax, %r12d /* lower 32-bits into %eax */
852
853 /*
854 * Optimistically assume that there's no post-syscall
855 * work to do. (This is to avoid having to call syscall_mstate()
856 * with interrupts disabled)
857 */
858 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
859
860 /*
861 * We must protect ourselves from being descheduled here;
862 * If we were, and we ended up on another cpu, or another
863 * lwp got in ahead of us, it could change the segment
864 * registers without us noticing before we return to userland.
865 */
866 CLI(%r14)
867 CHECK_POSTSYS_NE(%r15, %r14, %ebx)
868 jne _full_syscall_postsys32
869 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
870
871 /*
872 * To get back to userland, we need to put the return %rip in %rcx and
873 * the return %rfl in %r11d. The sysret instruction also arranges
874 * to fix up %cs and %ss; everything else is our responsibility.
875 */
876
877 movl %r12d, %eax /* %eax: rval1 */
878 movl REGOFF_RBX(%rsp), %ebx
879 /* %ecx used for return pointer */
880 movl %r13d, %edx /* %edx: rval2 */
881 movl REGOFF_RBP(%rsp), %ebp
882 movl REGOFF_RSI(%rsp), %esi
883 movl REGOFF_RDI(%rsp), %edi
884
885 movl REGOFF_RFL(%rsp), %r11d /* %r11 -> eflags */
886 movl REGOFF_RIP(%rsp), %ecx /* %ecx -> %eip */
887 movl REGOFF_RSP(%rsp), %esp
888
889 ASSERT_UPCALL_MASK_IS_SET
890 ALTENTRY(nopop_sys_syscall32_swapgs_sysretl)
891 SWAPGS /* user gsbase */
892 SYSRETL
893 SET_SIZE(nopop_sys_syscall32_swapgs_sysretl)
894 /*NOTREACHED*/
895
896 _full_syscall_postsys32:
897 STI
898 /*
899 * Sigh, our optimism wasn't justified, put it back to LMS_SYSTEM
900 * so that we can account for the extra work it takes us to finish.
901 */
902 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
903 movq %r15, %rdi
904 movq %r12, %rsi /* rval1 - %eax */
905 movq %r13, %rdx /* rval2 - %edx */
906 call syscall_exit
907 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
908 jmp _sys_rtt
909 SET_SIZE(sys_syscall32)
910 SET_SIZE(brand_sys_syscall32)
911
912 #endif /* __lint */
913
914 /*
915 * System call handler via the sysenter instruction
916 * Used only for 32-bit system calls on the 64-bit kernel.
917 *
918 * The caller in userland has arranged that:
919 *
920 * - %eax contains the syscall number
921 * - %ecx contains the user %esp
922 * - %edx contains the return %eip
923 * - the user stack contains the args to the syscall
924 *
925 * Hardware and (privileged) initialization code have arranged that by
926 * the time the sysenter instructions completes:
927 *
928 * - %rip is pointing to sys_sysenter (below).
929 * - %cs and %ss are set to kernel text and stack (data) selectors.
930 * - %rsp is pointing at the lwp's stack
931 * - interrupts have been disabled.
932 *
933 * Note that we are unable to return both "rvals" to userland with
934 * this call, as %edx is used by the sysexit instruction.
935 *
936 * One final complication in this routine is its interaction with
937 * single-stepping in a debugger. For most of the system call mechanisms,
938 * the CPU automatically clears the single-step flag before we enter the
939 * kernel. The sysenter mechanism does not clear the flag, so a user
940 * single-stepping through a libc routine may suddenly find him/herself
941 * single-stepping through the kernel. To detect this, kmdb compares the
942 * trap %pc to the [brand_]sys_enter addresses on each single-step trap.
943 * If it finds that we have single-stepped to a sysenter entry point, it
944 * explicitly clears the flag and executes the sys_sysenter routine.
945 *
946 * One final complication in this final complication is the fact that we
947 * have two different entry points for sysenter: brand_sys_sysenter and
948 * sys_sysenter. If we enter at brand_sys_sysenter and start single-stepping
949 * through the kernel with kmdb, we will eventually hit the instruction at
950 * sys_sysenter. kmdb cannot distinguish between that valid single-step
951 * and the undesirable one mentioned above. To avoid this situation, we
952 * simply add a jump over the instruction at sys_sysenter to make it
953 * impossible to single-step to it.
954 */
955 #if defined(__lint)
956
957 void
958 sys_sysenter()
959 {}
960
961 #else /* __lint */
962
963 ENTRY_NP(brand_sys_sysenter)
964 SWAPGS /* kernel gsbase */
965 ALTENTRY(_brand_sys_sysenter_post_swapgs)
966 BRAND_CALLBACK(BRAND_CB_SYSENTER, BRAND_URET_FROM_REG(%rdx))
967 /*
968 * Jump over sys_sysenter to allow single-stepping as described
969 * above.
970 */
971 jmp _sys_sysenter_post_swapgs
972
973 ALTENTRY(sys_sysenter)
974 SWAPGS /* kernel gsbase */
975
976 ALTENTRY(_sys_sysenter_post_swapgs)
977 movq %gs:CPU_THREAD, %r15
978
979 movl $U32CS_SEL, REGOFF_CS(%rsp)
980 movl %ecx, REGOFF_RSP(%rsp) /* wrapper: %esp -> %ecx */
981 movl %edx, REGOFF_RIP(%rsp) /* wrapper: %eip -> %edx */
982 pushfq
983 popq %r10
984 movl $UDS_SEL, REGOFF_SS(%rsp)
985
986 /*
987 * Set the interrupt flag before storing the flags to the
988 * flags image on the stack so we can return to user with
989 * interrupts enabled if we return via sys_rtt_syscall32
990 */
991 orq $PS_IE, %r10
992 movq %r10, REGOFF_RFL(%rsp)
993
994 movl %edi, REGOFF_RDI(%rsp)
995 movl %esi, REGOFF_RSI(%rsp)
996 movl %ebp, REGOFF_RBP(%rsp)
997 movl %ebx, REGOFF_RBX(%rsp)
998 movl %edx, REGOFF_RDX(%rsp)
999 movl %ecx, REGOFF_RCX(%rsp)
1000 movl %eax, REGOFF_RAX(%rsp) /* wrapper: sysc# -> %eax */
1001 movq $0, REGOFF_SAVFP(%rsp)
1002 movq $0, REGOFF_SAVPC(%rsp)
1003
1004 /*
1005 * Copy these registers here in case we end up stopped with
1006 * someone (like, say, /proc) messing with our register state.
1007 * We don't -restore- them unless we have to in update_sregs.
1008 *
1009 * Since userland -can't- change fsbase or gsbase directly,
1010 * we don't bother to capture them here.
1011 */
1012 xorl %ebx, %ebx
1013 movw %ds, %bx
1014 movq %rbx, REGOFF_DS(%rsp)
1015 movw %es, %bx
1016 movq %rbx, REGOFF_ES(%rsp)
1017 movw %fs, %bx
1018 movq %rbx, REGOFF_FS(%rsp)
1019 movw %gs, %bx
1020 movq %rbx, REGOFF_GS(%rsp)
1021
1022 /*
1023 * Application state saved in the regs structure on the stack
1024 * %eax is the syscall number
1025 * %rsp is the thread's stack, %r15 is curthread
1026 * REG_RSP(%rsp) is the user's stack
1027 */
1028
1029 SYSCALL_TRAPTRACE($TT_SYSENTER)
1030
1031 movq %rsp, %rbp
1032
1033 movq T_LWP(%r15), %r14
1034 ASSERT_NO_RUPDATE_PENDING(%r14)
1035
1036 ENABLE_INTR_FLAGS
1037
1038 /*
1039 * Catch 64-bit process trying to issue sysenter instruction
1040 * on Nocona based systems.
1041 */
1042 movq LWP_PROCP(%r14), %rax
1043 cmpq $DATAMODEL_ILP32, P_MODEL(%rax)
1044 je 7f
1045
1046 /*
1047 * For a non-32-bit process, simulate a #ud, since that's what
1048 * native hardware does. The traptrace entry (above) will
1049 * let you know what really happened.
1050 */
1051 movq $T_ILLINST, REGOFF_TRAPNO(%rsp)
1052 movq REGOFF_CS(%rsp), %rdi
1053 movq %rdi, REGOFF_ERR(%rsp)
1054 movq %rsp, %rdi
1055 movq REGOFF_RIP(%rsp), %rsi
1056 movl %gs:CPU_ID, %edx
1057 call trap
1058 jmp _sys_rtt
1059 7:
1060
1061 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM)
1062 movl REGOFF_RAX(%rsp), %eax /* (%rax damaged by mstate calls) */
1063
1064 ASSERT_LWPTOREGS(%r14, %rsp)
1065
1066 incq %gs:CPU_STATS_SYS_SYSCALL
1067
1068 /*
1069 * Make some space for MAXSYSARGS (currently 8) 32-bit args
1070 * placed into 64-bit (long) arg slots, plus one 64-bit
1071 * (long) arg count, maintaining 16 byte alignment.
1072 */
1073 subq $SYS_DROP, %rsp
1074 movb $LWP_SYS, LWP_STATE(%r14)
1075 movq %r15, %rdi
1076 movq %rsp, %rsi
1077 call syscall_entry
1078
1079 /*
1080 * Fetch the arguments copied onto the kernel stack and put
1081 * them in the right registers to invoke a C-style syscall handler.
1082 * %rax contains the handler address.
1083 */
1084 movq %rax, %rbx
1085 movl 0(%rsp), %edi
1086 movl 8(%rsp), %esi
1087 movl 0x10(%rsp), %edx
1088 movl 0x18(%rsp), %ecx
1089 movl 0x20(%rsp), %r8d
1090 movl 0x28(%rsp), %r9d
1091
1092 call *SY_CALLC(%rbx)
1093
1094 movq %rbp, %rsp /* pop the args */
1095
1096 /*
1097 * amd64 syscall handlers -always- return a 64-bit value in %rax.
1098 * On the 32-bit kernel, the always return that value in %eax:%edx
1099 * as required by the 32-bit ABI.
1100 *
1101 * Simulate the same behaviour by unconditionally splitting the
1102 * return value in the same way.
1103 */
1104 movq %rax, %r13
1105 shrq $32, %r13 /* upper 32-bits into %edx */
1106 movl %eax, %r12d /* lower 32-bits into %eax */
1107
1108 /*
1109 * Optimistically assume that there's no post-syscall
1110 * work to do. (This is to avoid having to call syscall_mstate()
1111 * with interrupts disabled)
1112 */
1113 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER)
1114
1115 /*
1116 * We must protect ourselves from being descheduled here;
1117 * If we were, and we ended up on another cpu, or another
1118 * lwp got int ahead of us, it could change the segment
1119 * registers without us noticing before we return to userland.
1120 */
1121 cli
1122 CHECK_POSTSYS_NE(%r15, %r14, %ebx)
1123 jne _full_syscall_postsys32
1124 SIMPLE_SYSCALL_POSTSYS(%r15, %r14, %bx)
1125
1126 /*
1127 * To get back to userland, load up the 32-bit registers and
1128 * sysexit back where we came from.
1129 */
1130
1131 /*
1132 * Interrupts will be turned on by the 'sti' executed just before
1133 * sysexit. The following ensures that restoring the user's rflags
1134 * doesn't enable interrupts too soon.
1135 */
1136 andq $_BITNOT(PS_IE), REGOFF_RFL(%rsp)
1137
1138 /*
1139 * (There's no point in loading up %edx because the sysexit
1140 * mechanism smashes it.)
1141 */
1142 movl %r12d, %eax
1143 movl REGOFF_RBX(%rsp), %ebx
1144 movl REGOFF_RBP(%rsp), %ebp
1145 movl REGOFF_RSI(%rsp), %esi
1146 movl REGOFF_RDI(%rsp), %edi
1147
1148 movl REGOFF_RIP(%rsp), %edx /* sysexit: %edx -> %eip */
1149 pushq REGOFF_RFL(%rsp)
1150 popfq
1151 movl REGOFF_RSP(%rsp), %ecx /* sysexit: %ecx -> %esp */
1152 ALTENTRY(sys_sysenter_swapgs_sysexit)
1153 swapgs
1154 sti
1155 sysexit
1156 SET_SIZE(sys_sysenter_swapgs_sysexit)
1157 SET_SIZE(sys_sysenter)
1158 SET_SIZE(_sys_sysenter_post_swapgs)
1159 SET_SIZE(brand_sys_sysenter)
1160
1161 #endif /* __lint */
1162
1163 /*
1164 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1165 * the generic i386 libc to do system calls. We do a small amount of setup
1166 * before jumping into the existing sys_syscall32 path.
1167 */
1168 #if defined(__lint)
1169
1170 /*ARGSUSED*/
1171 void
1172 sys_syscall_int()
1173 {}
1174
1175 #else /* __lint */
1176
1177 ENTRY_NP(brand_sys_syscall_int)
1178 SWAPGS /* kernel gsbase */
1179 XPV_TRAP_POP
1180 BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK())
1181 jmp nopop_syscall_int
1182
1183 ALTENTRY(sys_syscall_int)
1184 SWAPGS /* kernel gsbase */
1185 XPV_TRAP_POP
1186
1187 nopop_syscall_int:
1188 movq %gs:CPU_THREAD, %r15
1189 movq T_STACK(%r15), %rsp
1190 movl %eax, %eax
1191 /*
1192 * Set t_post_sys on this thread to force ourselves out via the slow
1193 * path. It might be possible at some later date to optimize this out
1194 * and use a faster return mechanism.
1195 */
1196 movb $1, T_POST_SYS(%r15)
1197 CLEAN_CS
1198 jmp _syscall32_save
1199 /*
1200 * There should be no instructions between this label and SWAPGS/IRET
1201 * or we could end up breaking branded zone support. See the usage of
1202 * this label in lx_brand_int80_callback and sn1_brand_int91_callback
1203 * for examples.
1204 */
1205 ALTENTRY(sys_sysint_swapgs_iret)
1206 SWAPGS /* user gsbase */
1207 IRET
1208 /*NOTREACHED*/
1209 SET_SIZE(sys_sysint_swapgs_iret)
1210 SET_SIZE(sys_syscall_int)
1211 SET_SIZE(brand_sys_syscall_int)
1212
1213 #endif /* __lint */
1214
1215 /*
1216 * Legacy 32-bit applications and old libc implementations do lcalls;
1217 * we should never get here because the LDT entry containing the syscall
1218 * segment descriptor has the "segment present" bit cleared, which means
1219 * we end up processing those system calls in trap() via a not-present trap.
1220 *
1221 * We do it this way because a call gate unhelpfully does -nothing- to the
1222 * interrupt flag bit, so an interrupt can run us just after the lcall
1223 * completes, but just before the swapgs takes effect. Thus the INTR_PUSH and
1224 * INTR_POP paths would have to be slightly more complex to dance around
1225 * this problem, and end up depending explicitly on the first
1226 * instruction of this handler being either swapgs or cli.
1227 */
1228
1229 #if defined(__lint)
1230
1231 /*ARGSUSED*/
1232 void
1233 sys_lcall32()
1234 {}
1235
1236 #else /* __lint */
1237
1238 ENTRY_NP(sys_lcall32)
1239 SWAPGS /* kernel gsbase */
1240 pushq $0
1241 pushq %rbp
1242 movq %rsp, %rbp
1243 leaq __lcall_panic_str(%rip), %rdi
1244 xorl %eax, %eax
1245 call panic
1246 SET_SIZE(sys_lcall32)
1247
1248 __lcall_panic_str:
1249 .string "sys_lcall32: shouldn't be here!"
1250
1251 /*
1252 * Declare a uintptr_t which covers the entire pc range of syscall
1253 * handlers for the stack walkers that need this.
1254 */
1255 .align CPTRSIZE
1256 .globl _allsyscalls_size
1257 .type _allsyscalls_size, @object
1258 _allsyscalls_size:
1259 .NWORD . - _allsyscalls
1260 SET_SIZE(_allsyscalls_size)
1261
1262 #endif /* __lint */
1263
1264 /*
1265 * These are the thread context handlers for lwps using sysenter/sysexit.
1266 */
1267
1268 #if defined(__lint)
1269
1270 /*ARGSUSED*/
1271 void
1272 sep_save(void *ksp)
1273 {}
1274
1275 /*ARGSUSED*/
1276 void
1277 sep_restore(void *ksp)
1278 {}
1279
1280 #else /* __lint */
1281
1282 /*
1283 * setting this value to zero as we switch away causes the
1284 * stack-pointer-on-sysenter to be NULL, ensuring that we
1285 * don't silently corrupt another (preempted) thread stack
1286 * when running an lwp that (somehow) didn't get sep_restore'd
1287 */
1288 ENTRY_NP(sep_save)
1289 xorl %edx, %edx
1290 xorl %eax, %eax
1291 movl $MSR_INTC_SEP_ESP, %ecx
1292 wrmsr
1293 ret
1294 SET_SIZE(sep_save)
1295
1296 /*
1297 * Update the kernel stack pointer as we resume onto this cpu.
1298 */
1299 ENTRY_NP(sep_restore)
1300 movq %rdi, %rdx
1301 shrq $32, %rdx
1302 movl %edi, %eax
1303 movl $MSR_INTC_SEP_ESP, %ecx
1304 wrmsr
1305 ret
1306 SET_SIZE(sep_restore)
1307
1308 #endif /* __lint */
--- EOF ---