1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Copyright (c) 1990, 1991 UNIX System Laboratories, Inc. */ 26 /* Copyright (c) 1984, 1986, 1987, 1988, 1989, 1990 AT&T */ 27 /* All Rights Reserved */ 28 29 /* Copyright (c) 1987, 1988 Microsoft Corporation */ 30 /* All Rights Reserved */ 31 32 #include <sys/asm_linkage.h> 33 #include <sys/asm_misc.h> 34 #include <sys/regset.h> 35 #include <sys/psw.h> 36 #include <sys/x86_archext.h> 37 #include <sys/machbrand.h> 38 #include <sys/privregs.h> 39 40 #if defined(__lint) 41 42 #include <sys/types.h> 43 #include <sys/thread.h> 44 #include <sys/systm.h> 45 46 #else /* __lint */ 47 48 #include <sys/segments.h> 49 #include <sys/pcb.h> 50 #include <sys/trap.h> 51 #include <sys/ftrace.h> 52 #include <sys/traptrace.h> 53 #include <sys/clock.h> 54 #include <sys/panic.h> 55 #include "assym.h" 56 57 #endif /* __lint */ 58 59 /* 60 * We implement two flavours of system call entry points 61 * 62 * - {int,lcall}/iret (i386) 63 * - sysenter/sysexit (Pentium II and beyond) 64 * 65 * The basic pattern used in the handlers is to check to see if we can 66 * do fast (simple) version of the system call; if we can't we use various 67 * C routines that handle corner cases and debugging. 68 * 69 * To reduce the amount of assembler replication, yet keep the system call 70 * implementations vaguely comprehensible, the common code in the body 71 * of the handlers is broken up into a set of preprocessor definitions 72 * below. 73 */ 74 75 /* 76 * When we have SYSCALLTRACE defined, we sneak an extra 77 * predicate into a couple of tests. 78 */ 79 #if defined(SYSCALLTRACE) 80 #define ORL_SYSCALLTRACE(r32) \ 81 orl syscalltrace, r32 82 #else 83 #define ORL_SYSCALLTRACE(r32) 84 #endif 85 86 /* 87 * This check is false whenever we want to go fast i.e. 88 * 89 * if (code >= NSYSCALL || 90 * t->t_pre_sys || (t->t_proc_flag & TP_WATCHPT) != 0) 91 * do full version 92 * #ifdef SYSCALLTRACE 93 * if (syscalltrace) 94 * do full version 95 * #endif 96 * 97 * Preconditions: 98 * - t curthread 99 * - code contains the syscall number 100 * Postconditions: 101 * - %ecx and %edi are smashed 102 * - condition code flag ZF is cleared if pre-sys is too complex 103 */ 104 #define CHECK_PRESYS_NE(t, code) \ 105 movzbl T_PRE_SYS(t), %edi; \ 106 movzwl T_PROC_FLAG(t), %ecx; \ 107 andl $TP_WATCHPT, %ecx; \ 108 orl %ecx, %edi; \ 109 cmpl $NSYSCALL, code; \ 110 setae %cl; \ 111 movzbl %cl, %ecx; \ 112 orl %ecx, %edi; \ 113 ORL_SYSCALLTRACE(%edi) 114 115 /* 116 * Check if a brand_mach_ops callback is defined for the specified callback_id 117 * type. If so invoke it with the user's %gs value loaded and the following 118 * data on the stack: 119 * -------------------------------------- 120 * | user's %ss | 121 * | | user's %esp | 122 * | | EFLAGS register | 123 * | | user's %cs | 124 * | | user's %eip (user return address) | 125 * | | 'scratch space' | 126 * | | user's %ebx | 127 * | | user's %gs selector | 128 * v | lwp pointer | 129 * | callback wrapper return addr | 130 * -------------------------------------- 131 * 132 * If the brand code returns, we assume that we are meant to execute the 133 * normal system call path. 134 * 135 * The interface to the brand callbacks on the 32-bit kernel assumes %ebx 136 * is available as a scratch register within the callback. If the callback 137 * returns within the kernel then this macro will restore %ebx. If the 138 * callback is going to return directly to userland then it should restore 139 * %ebx before returning to userland. 140 */ 141 #define BRAND_CALLBACK(callback_id) \ 142 subl $4, %esp /* save some scratch space */ ;\ 143 pushl %ebx /* save %ebx to use for scratch */ ;\ 144 pushl %gs /* save the user %gs */ ;\ 145 movl $KGS_SEL, %ebx ;\ 146 movw %bx, %gs /* switch to the kernel's %gs */ ;\ 147 movl %gs:CPU_THREAD, %ebx /* load the thread pointer */ ;\ 148 movl T_LWP(%ebx), %ebx /* load the lwp pointer */ ;\ 149 pushl %ebx /* push the lwp pointer */ ;\ 150 movl LWP_PROCP(%ebx), %ebx /* load the proc pointer */ ;\ 151 movl P_BRAND(%ebx), %ebx /* load the brand pointer */ ;\ 152 movl B_MACHOPS(%ebx), %ebx /* load the machops pointer */ ;\ 153 movl _CONST(_MUL(callback_id, CPTRSIZE))(%ebx), %ebx ;\ 154 cmpl $0, %ebx ;\ 155 je 1f ;\ 156 movl %ebx, 12(%esp) /* save callback to scratch */ ;\ 157 movl 4(%esp), %ebx /* grab the user %gs */ ;\ 158 movw %bx, %gs /* restore the user %gs */ ;\ 159 call *12(%esp) /* call callback in scratch */ ;\ 160 1: movl 4(%esp), %ebx /* restore user %gs (re-do if */ ;\ 161 movw %bx, %gs /* branch due to no callback) */ ;\ 162 movl 8(%esp), %ebx /* restore user's %ebx */ ;\ 163 addl $16, %esp /* restore stack ptr */ 164 165 #define MSTATE_TRANSITION(from, to) \ 166 pushl $to; \ 167 pushl $from; \ 168 call syscall_mstate; \ 169 addl $0x8, %esp 170 171 /* 172 * aka CPU_STATS_ADDQ(CPU, sys.syscall, 1) 173 * This must be called with interrupts or preemption disabled. 174 */ 175 #define CPU_STATS_SYS_SYSCALL_INC \ 176 addl $1, %gs:CPU_STATS_SYS_SYSCALL; \ 177 adcl $0, %gs:CPU_STATS_SYS_SYSCALL+4; 178 179 #if !defined(__lint) 180 181 /* 182 * ASSERT(lwptoregs(lwp) == rp); 183 * 184 * this may seem obvious, but very odd things happen if this 185 * assertion is false 186 * 187 * Preconditions: 188 * -none- 189 * Postconditions (if assertion is true): 190 * %esi and %edi are smashed 191 */ 192 #if defined(DEBUG) 193 194 __lwptoregs_msg: 195 .string "syscall_asm.s:%d lwptoregs(%p) [%p] != rp [%p]" 196 197 #define ASSERT_LWPTOREGS(t, rp) \ 198 movl T_LWP(t), %esi; \ 199 movl LWP_REGS(%esi), %edi; \ 200 cmpl rp, %edi; \ 201 je 7f; \ 202 pushl rp; \ 203 pushl %edi; \ 204 pushl %esi; \ 205 pushl $__LINE__; \ 206 pushl $__lwptoregs_msg; \ 207 call panic; \ 208 7: 209 #else 210 #define ASSERT_LWPTOREGS(t, rp) 211 #endif 212 213 #endif /* __lint */ 214 215 /* 216 * This is an assembler version of this fragment: 217 * 218 * lwp->lwp_state = LWP_SYS; 219 * lwp->lwp_ru.sysc++; 220 * lwp->lwp_eosys = NORMALRETURN; 221 * lwp->lwp_ap = argp; 222 * 223 * Preconditions: 224 * -none- 225 * Postconditions: 226 * -none- 227 */ 228 #define SET_LWP(lwp, argp) \ 229 movb $LWP_SYS, LWP_STATE(lwp); \ 230 addl $1, LWP_RU_SYSC(lwp); \ 231 adcl $0, LWP_RU_SYSC+4(lwp); \ 232 movb $NORMALRETURN, LWP_EOSYS(lwp); \ 233 movl argp, LWP_AP(lwp) 234 235 /* 236 * Set up the thread, lwp, find the handler, and copy 237 * in the arguments from userland to the kernel stack. 238 * 239 * Preconditions: 240 * - %eax contains the syscall number 241 * Postconditions: 242 * - %eax contains a pointer to the sysent structure 243 * - %ecx is zeroed 244 * - %esi, %edi are smashed 245 * - %esp is SYS_DROPped ready for the syscall 246 */ 247 #define SIMPLE_SYSCALL_PRESYS(t, faultlabel) \ 248 movl T_LWP(t), %esi; \ 249 movw %ax, T_SYSNUM(t); \ 250 subl $SYS_DROP, %esp; \ 251 shll $SYSENT_SIZE_SHIFT, %eax; \ 252 SET_LWP(%esi, %esp); \ 253 leal sysent(%eax), %eax; \ 254 movzbl SY_NARG(%eax), %ecx; \ 255 testl %ecx, %ecx; \ 256 jz 4f; \ 257 movl %esp, %edi; \ 258 movl SYS_DROP + REGOFF_UESP(%esp), %esi; \ 259 movl $faultlabel, T_LOFAULT(t); \ 260 addl $4, %esi; \ 261 rep; \ 262 smovl; \ 263 movl %ecx, T_LOFAULT(t); \ 264 4: 265 266 /* 267 * Check to see if a simple return is possible i.e. 268 * 269 * if ((t->t_post_sys_ast | syscalltrace) != 0) 270 * do full version; 271 * 272 * Preconditions: 273 * - t is curthread 274 * Postconditions: 275 * - condition code NE is set if post-sys is too complex 276 * - rtmp is zeroed if it isn't (we rely on this!) 277 */ 278 #define CHECK_POSTSYS_NE(t, rtmp) \ 279 xorl rtmp, rtmp; \ 280 ORL_SYSCALLTRACE(rtmp); \ 281 orl T_POST_SYS_AST(t), rtmp; \ 282 cmpl $0, rtmp 283 284 /* 285 * Fix up the lwp, thread, and eflags for a successful return 286 * 287 * Preconditions: 288 * - zwreg contains zero 289 * Postconditions: 290 * - %esp has been unSYS_DROPped 291 * - %esi is smashed (points to lwp) 292 */ 293 #define SIMPLE_SYSCALL_POSTSYS(t, zwreg) \ 294 movl T_LWP(t), %esi; \ 295 addl $SYS_DROP, %esp; \ 296 movw zwreg, T_SYSNUM(t); \ 297 movb $LWP_USER, LWP_STATE(%esi); \ 298 andb $_CONST(0xffff - PS_C), REGOFF_EFL(%esp) 299 300 /* 301 * System call handler. This is the destination of both the call 302 * gate (lcall 0x27) _and_ the interrupt gate (int 0x91). For our purposes, 303 * there are two significant differences between an interrupt gate and a call 304 * gate: 305 * 306 * 1) An interrupt gate runs the handler with interrupts disabled, whereas a 307 * call gate runs the handler with whatever EFLAGS settings were in effect at 308 * the time of the call. 309 * 310 * 2) An interrupt gate pushes the contents of the EFLAGS register at the time 311 * of the interrupt onto the stack, whereas a call gate does not. 312 * 313 * Because we use the following code sequence to handle system calls made from 314 * _both_ a call gate _and_ an interrupt gate, these two differences must be 315 * respected. In regards to number 1) above, the handler must ensure that a sane 316 * EFLAGS snapshot is stored on the stack so that when the kernel returns back 317 * to the user via iret (which returns to user with the EFLAGS value saved on 318 * the stack), interrupts are re-enabled. 319 * 320 * In regards to number 2) above, the handler must always put a current snapshot 321 * of EFLAGS onto the stack in the appropriate place. If we came in via an 322 * interrupt gate, we will be clobbering the EFLAGS value that was pushed by 323 * the interrupt gate. This is OK, as the only bit that was changed by the 324 * hardware was the IE (interrupt enable) bit, which for an interrupt gate is 325 * now off. If we were to do nothing, the stack would contain an EFLAGS with 326 * IE off, resulting in us eventually returning back to the user with interrupts 327 * disabled. The solution is to turn on the IE bit in the EFLAGS value saved on 328 * the stack. 329 * 330 * Another subtlety which deserves mention is the difference between the two 331 * descriptors. The call gate descriptor is set to instruct the hardware to copy 332 * one parameter from the user stack to the kernel stack, whereas the interrupt 333 * gate descriptor doesn't use the parameter passing mechanism at all. The 334 * kernel doesn't actually use the parameter that is copied by the hardware; the 335 * only reason it does this is so that there is a space on the stack large 336 * enough to hold an EFLAGS register value, which happens to be in the correct 337 * place for use by iret when we go back to userland. How convenient. 338 * 339 * Stack frame description in syscall() and callees. 340 * 341 * |------------| 342 * | regs | +(8*4)+4 registers 343 * |------------| 344 * | 8 args | <- %esp MAXSYSARGS (currently 8) arguments 345 * |------------| 346 * 347 */ 348 #define SYS_DROP _CONST(_MUL(MAXSYSARGS, 4)) 349 350 #if defined(__lint) 351 352 /*ARGSUSED*/ 353 void 354 sys_call() 355 {} 356 357 void 358 _allsyscalls() 359 {} 360 361 size_t _allsyscalls_size; 362 363 #else /* __lint */ 364 365 ENTRY_NP2(brand_sys_call, _allsyscalls) 366 BRAND_CALLBACK(BRAND_CB_SYSCALL) 367 368 ALTENTRY(sys_call) 369 / on entry eax = system call number 370 371 / set up the stack to look as in reg.h 372 subl $8, %esp / pad the stack with ERRCODE and TRAPNO 373 374 SYSCALL_PUSH 375 376 #ifdef TRAPTRACE 377 TRACE_PTR(%edi, %ebx, %ebx, %ecx, $TT_SYSCALL) / Uses labels "8" and "9" 378 TRACE_REGS(%edi, %esp, %ebx, %ecx) / Uses label "9" 379 pushl %eax 380 TRACE_STAMP(%edi) / Clobbers %eax, %edx, uses "9" 381 popl %eax 382 movl %eax, TTR_SYSNUM(%edi) 383 #endif 384 385 _watch_do_syscall: 386 movl %esp, %ebp 387 388 / Interrupts may be enabled here, so we must make sure this thread 389 / doesn't migrate off the CPU while it updates the CPU stats. 390 / 391 / XXX This is only true if we got here via call gate thru the LDT for 392 / old style syscalls. Perhaps this preempt++-- will go away soon? 393 movl %gs:CPU_THREAD, %ebx 394 addb $1, T_PREEMPT(%ebx) 395 CPU_STATS_SYS_SYSCALL_INC 396 subb $1, T_PREEMPT(%ebx) 397 398 ENABLE_INTR_FLAGS 399 400 pushl %eax / preserve across mstate call 401 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 402 popl %eax 403 404 movl %gs:CPU_THREAD, %ebx 405 406 ASSERT_LWPTOREGS(%ebx, %esp) 407 408 CHECK_PRESYS_NE(%ebx, %eax) 409 jne _full_syscall_presys 410 SIMPLE_SYSCALL_PRESYS(%ebx, _syscall_fault) 411 412 _syslcall_call: 413 call *SY_CALLC(%eax) 414 415 _syslcall_done: 416 CHECK_POSTSYS_NE(%ebx, %ecx) 417 jne _full_syscall_postsys 418 SIMPLE_SYSCALL_POSTSYS(%ebx, %cx) 419 movl %eax, REGOFF_EAX(%esp) 420 movl %edx, REGOFF_EDX(%esp) 421 422 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 423 424 / 425 / get back via iret 426 / 427 CLI(%edx) 428 jmp sys_rtt_syscall 429 430 _full_syscall_presys: 431 movl T_LWP(%ebx), %esi 432 subl $SYS_DROP, %esp 433 movb $LWP_SYS, LWP_STATE(%esi) 434 pushl %esp 435 pushl %ebx 436 call syscall_entry 437 addl $8, %esp 438 jmp _syslcall_call 439 440 _full_syscall_postsys: 441 addl $SYS_DROP, %esp 442 pushl %edx 443 pushl %eax 444 pushl %ebx 445 call syscall_exit 446 addl $12, %esp 447 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 448 jmp _sys_rtt 449 450 _syscall_fault: 451 push $0xe / EFAULT 452 call set_errno 453 addl $4, %esp 454 xorl %eax, %eax / fake syscall_err() 455 xorl %edx, %edx 456 jmp _syslcall_done 457 SET_SIZE(sys_call) 458 SET_SIZE(brand_sys_call) 459 460 #endif /* __lint */ 461 462 /* 463 * System call handler via the sysenter instruction 464 * 465 * Here's how syscall entry usually works (see sys_call for details). 466 * 467 * There, the caller (lcall or int) in userland has arranged that: 468 * 469 * - %eax contains the syscall number 470 * - the user stack contains the args to the syscall 471 * 472 * Normally the lcall instruction into the call gate causes the processor 473 * to push %ss, %esp, <top-of-stack>, %cs, %eip onto the kernel stack. 474 * The sys_call handler then leaves space for r_trapno and r_err, and 475 * pusha's {%eax, %ecx, %edx, %ebx, %esp, %ebp, %esi, %edi}, followed 476 * by %ds, %es, %fs and %gs to capture a 'struct regs' on the stack. 477 * Then the kernel sets %ds, %es and %gs to kernel selectors, and finally 478 * extracts %efl and puts it into r_efl (which happens to live at the offset 479 * that <top-of-stack> was copied into). Note that the value in r_efl has 480 * the IF (interrupt enable) flag turned on. (The int instruction into the 481 * interrupt gate does essentially the same thing, only instead of 482 * <top-of-stack> we get eflags - see comment above.) 483 * 484 * In the sysenter case, things are a lot more primitive. 485 * 486 * The caller in userland has arranged that: 487 * 488 * - %eax contains the syscall number 489 * - %ecx contains the user %esp 490 * - %edx contains the return %eip 491 * - the user stack contains the args to the syscall 492 * 493 * e.g. 494 * <args on the stack> 495 * mov $SYS_callnum, %eax 496 * mov $1f, %edx / return %eip 497 * mov %esp, %ecx / return %esp 498 * sysenter 499 * 1: 500 * 501 * Hardware and (privileged) initialization code have arranged that by 502 * the time the sysenter instructions completes: 503 * 504 * - %eip is pointing to sys_sysenter (below). 505 * - %cs and %ss are set to kernel text and stack (data) selectors. 506 * - %esp is pointing at the lwp's stack 507 * - Interrupts have been disabled. 508 * 509 * The task for the sysenter handler is: 510 * 511 * - recreate the same regs structure on the stack and the same 512 * kernel state as if we'd come in on an lcall 513 * - do the normal work of a syscall 514 * - execute the system call epilogue, use sysexit to return to userland. 515 * 516 * Note that we are unable to return both "rvals" to userland with this 517 * call, as %edx is used by the sysexit instruction. 518 * 519 * One final complication in this routine is its interaction with 520 * single-stepping in a debugger. For most of the system call mechanisms, 521 * the CPU automatically clears the single-step flag before we enter the 522 * kernel. The sysenter mechanism does not clear the flag, so a user 523 * single-stepping through a libc routine may suddenly find him/herself 524 * single-stepping through the kernel. To detect this, kmdb compares the 525 * trap %pc to the [brand_]sys_enter addresses on each single-step trap. 526 * If it finds that we have single-stepped to a sysenter entry point, it 527 * explicitly clears the flag and executes the sys_sysenter routine. 528 * 529 * One final complication in this final complication is the fact that we 530 * have two different entry points for sysenter: brand_sys_sysenter and 531 * sys_sysenter. If we enter at brand_sys_sysenter and start single-stepping 532 * through the kernel with kmdb, we will eventually hit the instruction at 533 * sys_sysenter. kmdb cannot distinguish between that valid single-step 534 * and the undesirable one mentioned above. To avoid this situation, we 535 * simply add a jump over the instruction at sys_sysenter to make it 536 * impossible to single-step to it. 537 */ 538 #if defined(__lint) 539 540 void 541 sys_sysenter() 542 {} 543 544 #else /* __lint */ 545 546 ENTRY_NP(brand_sys_sysenter) 547 pushl %edx 548 BRAND_CALLBACK(BRAND_CB_SYSENTER) 549 popl %edx 550 /* 551 * Jump over sys_sysenter to allow single-stepping as described 552 * above. 553 */ 554 ja 1f 555 556 ALTENTRY(sys_sysenter) 557 nop 558 1: 559 / 560 / do what the call gate would've done to the stack .. 561 / 562 pushl $UDS_SEL / (really %ss, but it's the same ..) 563 pushl %ecx / userland makes this a copy of %esp 564 pushfl 565 orl $PS_IE, (%esp) / turn interrupts on when we return to user 566 pushl $UCS_SEL 567 pushl %edx / userland makes this a copy of %eip 568 / 569 / done. finish building the stack frame 570 / 571 subl $8, %esp / leave space for ERR and TRAPNO 572 573 SYSENTER_PUSH 574 575 #ifdef TRAPTRACE 576 TRACE_PTR(%edi, %ebx, %ebx, %ecx, $TT_SYSENTER) / uses labels 8 and 9 577 TRACE_REGS(%edi, %esp, %ebx, %ecx) / uses label 9 578 pushl %eax 579 TRACE_STAMP(%edi) / clobbers %eax, %edx, uses label 9 580 popl %eax 581 movl %eax, TTR_SYSNUM(%edi) 582 #endif 583 movl %esp, %ebp 584 585 CPU_STATS_SYS_SYSCALL_INC 586 587 ENABLE_INTR_FLAGS 588 589 pushl %eax / preserve across mstate call 590 MSTATE_TRANSITION(LMS_USER, LMS_SYSTEM) 591 popl %eax 592 593 movl %gs:CPU_THREAD, %ebx 594 595 ASSERT_LWPTOREGS(%ebx, %esp) 596 597 CHECK_PRESYS_NE(%ebx, %eax) 598 jne _full_syscall_presys 599 SIMPLE_SYSCALL_PRESYS(%ebx, _syscall_fault) 600 601 _sysenter_call: 602 call *SY_CALLC(%eax) 603 604 _sysenter_done: 605 CHECK_POSTSYS_NE(%ebx, %ecx) 606 jne _full_syscall_postsys 607 SIMPLE_SYSCALL_POSTSYS(%ebx, %cx) 608 / 609 / sysexit uses %edx to restore %eip, so we can't use it 610 / to return a value, sigh. 611 / 612 movl %eax, REGOFF_EAX(%esp) 613 / movl %edx, REGOFF_EDX(%esp) 614 615 / Interrupts will be turned on by the 'sti' executed just before 616 / sysexit. The following ensures that restoring the user's EFLAGS 617 / doesn't enable interrupts too soon. 618 andl $_BITNOT(PS_IE), REGOFF_EFL(%esp) 619 620 MSTATE_TRANSITION(LMS_SYSTEM, LMS_USER) 621 622 cli 623 624 SYSCALL_POP 625 626 popl %edx / sysexit: %edx -> %eip 627 addl $4, %esp / get CS off the stack 628 popfl / EFL 629 popl %ecx / sysexit: %ecx -> %esp 630 sti 631 sysexit 632 SET_SIZE(sys_sysenter) 633 SET_SIZE(brand_sys_sysenter) 634 635 /* 636 * Declare a uintptr_t which covers the entire pc range of syscall 637 * handlers for the stack walkers that need this. 638 */ 639 .align CPTRSIZE 640 .globl _allsyscalls_size 641 .type _allsyscalls_size, @object 642 _allsyscalls_size: 643 .NWORD . - _allsyscalls 644 SET_SIZE(_allsyscalls_size) 645 646 #endif /* __lint */ 647 648 /* 649 * These are the thread context handlers for lwps using sysenter/sysexit. 650 */ 651 652 #if defined(__lint) 653 654 /*ARGSUSED*/ 655 void 656 sep_save(void *ksp) 657 {} 658 659 /*ARGSUSED*/ 660 void 661 sep_restore(void *ksp) 662 {} 663 664 #else /* __lint */ 665 666 /* 667 * setting this value to zero as we switch away causes the 668 * stack-pointer-on-sysenter to be NULL, ensuring that we 669 * don't silently corrupt another (preempted) thread stack 670 * when running an lwp that (somehow) didn't get sep_restore'd 671 */ 672 ENTRY_NP(sep_save) 673 xorl %edx, %edx 674 xorl %eax, %eax 675 movl $MSR_INTC_SEP_ESP, %ecx 676 wrmsr 677 ret 678 SET_SIZE(sep_save) 679 680 /* 681 * Update the kernel stack pointer as we resume onto this cpu. 682 */ 683 ENTRY_NP(sep_restore) 684 movl 4(%esp), %eax /* per-lwp kernel sp */ 685 xorl %edx, %edx 686 movl $MSR_INTC_SEP_ESP, %ecx 687 wrmsr 688 ret 689 SET_SIZE(sep_restore) 690 691 #endif /* __lint */ 692 693 /* 694 * Call syscall(). Called from trap() on watchpoint at lcall 0,7 695 */ 696 697 #if defined(__lint) 698 699 void 700 watch_syscall(void) 701 {} 702 703 #else /* __lint */ 704 705 ENTRY_NP(watch_syscall) 706 CLI(%eax) 707 movl %gs:CPU_THREAD, %ebx 708 movl T_STACK(%ebx), %esp / switch to the thread stack 709 movl REGOFF_EAX(%esp), %eax / recover original syscall# 710 jmp _watch_do_syscall 711 SET_SIZE(watch_syscall) 712 713 #endif /* __lint */