1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */ 22 /* All Rights Reserved */ 23 24 25 /* 26 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved. 27 */ 28 29 #include <sys/types.h> 30 #include <sys/sysmacros.h> 31 #include <sys/param.h> 32 #include <sys/errno.h> 33 #include <sys/signal.h> 34 #include <sys/stat.h> 35 #include <sys/proc.h> 36 #include <sys/cred.h> 37 #include <sys/user.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stream.h> 41 #include <sys/strsubr.h> 42 #include <sys/stropts.h> 43 #include <sys/tihdr.h> 44 #include <sys/var.h> 45 #include <sys/poll.h> 46 #include <sys/termio.h> 47 #include <sys/ttold.h> 48 #include <sys/systm.h> 49 #include <sys/uio.h> 50 #include <sys/cmn_err.h> 51 #include <sys/sad.h> 52 #include <sys/netstack.h> 53 #include <sys/priocntl.h> 54 #include <sys/jioctl.h> 55 #include <sys/procset.h> 56 #include <sys/session.h> 57 #include <sys/kmem.h> 58 #include <sys/filio.h> 59 #include <sys/vtrace.h> 60 #include <sys/debug.h> 61 #include <sys/strredir.h> 62 #include <sys/fs/fifonode.h> 63 #include <sys/fs/snode.h> 64 #include <sys/strlog.h> 65 #include <sys/strsun.h> 66 #include <sys/project.h> 67 #include <sys/kbio.h> 68 #include <sys/msio.h> 69 #include <sys/tty.h> 70 #include <sys/ptyvar.h> 71 #include <sys/vuid_event.h> 72 #include <sys/modctl.h> 73 #include <sys/sunddi.h> 74 #include <sys/sunldi_impl.h> 75 #include <sys/autoconf.h> 76 #include <sys/policy.h> 77 #include <sys/dld.h> 78 #include <sys/zone.h> 79 #include <c2/audit.h> 80 81 /* 82 * This define helps improve the readability of streams code while 83 * still maintaining a very old streams performance enhancement. The 84 * performance enhancement basically involved having all callers 85 * of straccess() perform the first check that straccess() will do 86 * locally before actually calling straccess(). (There by reducing 87 * the number of unnecessary calls to straccess().) 88 */ 89 #define i_straccess(x, y) ((stp->sd_sidp == NULL) ? 0 : \ 90 (stp->sd_vnode->v_type == VFIFO) ? 0 : \ 91 straccess((x), (y))) 92 93 /* 94 * what is mblk_pull_len? 95 * 96 * If a streams message consists of many short messages, 97 * a performance degradation occurs from copyout overhead. 98 * To decrease the per mblk overhead, messages that are 99 * likely to consist of many small mblks are pulled up into 100 * one continuous chunk of memory. 101 * 102 * To avoid the processing overhead of examining every 103 * mblk, a quick heuristic is used. If the first mblk in 104 * the message is shorter than mblk_pull_len, it is likely 105 * that the rest of the mblk will be short. 106 * 107 * This heuristic was decided upon after performance tests 108 * indicated that anything more complex slowed down the main 109 * code path. 110 */ 111 #define MBLK_PULL_LEN 64 112 uint32_t mblk_pull_len = MBLK_PULL_LEN; 113 114 /* 115 * The sgttyb_handling flag controls the handling of the old BSD 116 * TIOCGETP, TIOCSETP, and TIOCSETN ioctls as follows: 117 * 118 * 0 - Emit no warnings at all and retain old, broken behavior. 119 * 1 - Emit no warnings and silently handle new semantics. 120 * 2 - Send cmn_err(CE_NOTE) when either TIOCSETP or TIOCSETN is used 121 * (once per system invocation). Handle with new semantics. 122 * 3 - Send SIGSYS when any TIOCGETP, TIOCSETP, or TIOCSETN call is 123 * made (so that offenders drop core and are easy to debug). 124 * 125 * The "new semantics" are that TIOCGETP returns B38400 for 126 * sg_[io]speed if the corresponding value is over B38400, and that 127 * TIOCSET[PN] accept B38400 in these cases to mean "retain current 128 * bit rate." 129 */ 130 int sgttyb_handling = 1; 131 static boolean_t sgttyb_complaint; 132 133 /* don't push drcompat module by default on Style-2 streams */ 134 static int push_drcompat = 0; 135 136 /* 137 * id value used to distinguish between different ioctl messages 138 */ 139 static uint32_t ioc_id; 140 141 static void putback(struct stdata *, queue_t *, mblk_t *, int); 142 static void strcleanall(struct vnode *); 143 static int strwsrv(queue_t *); 144 static int strdocmd(struct stdata *, struct strcmd *, cred_t *); 145 146 /* 147 * qinit and module_info structures for stream head read and write queues 148 */ 149 struct module_info strm_info = { 0, "strrhead", 0, INFPSZ, STRHIGH, STRLOW }; 150 struct module_info stwm_info = { 0, "strwhead", 0, 0, 0, 0 }; 151 struct qinit strdata = { strrput, NULL, NULL, NULL, NULL, &strm_info }; 152 struct qinit stwdata = { NULL, strwsrv, NULL, NULL, NULL, &stwm_info }; 153 struct module_info fiform_info = { 0, "fifostrrhead", 0, PIPE_BUF, FIFOHIWAT, 154 FIFOLOWAT }; 155 struct module_info fifowm_info = { 0, "fifostrwhead", 0, 0, 0, 0 }; 156 struct qinit fifo_strdata = { strrput, NULL, NULL, NULL, NULL, &fiform_info }; 157 struct qinit fifo_stwdata = { NULL, strwsrv, NULL, NULL, NULL, &fifowm_info }; 158 159 extern kmutex_t strresources; /* protects global resources */ 160 extern kmutex_t muxifier; /* single-threads multiplexor creation */ 161 162 static boolean_t msghasdata(mblk_t *bp); 163 #define msgnodata(bp) (!msghasdata(bp)) 164 165 /* 166 * Stream head locking notes: 167 * There are four monitors associated with the stream head: 168 * 1. v_stream monitor: in stropen() and strclose() v_lock 169 * is held while the association of vnode and stream 170 * head is established or tested for. 171 * 2. open/close/push/pop monitor: sd_lock is held while each 172 * thread bids for exclusive access to this monitor 173 * for opening or closing a stream. In addition, this 174 * monitor is entered during pushes and pops. This 175 * guarantees that during plumbing operations there 176 * is only one thread trying to change the plumbing. 177 * Any other threads present in the stream are only 178 * using the plumbing. 179 * 3. read/write monitor: in the case of read, a thread holds 180 * sd_lock while trying to get data from the stream 181 * head queue. if there is none to fulfill a read 182 * request, it sets RSLEEP and calls cv_wait_sig() down 183 * in strwaitq() to await the arrival of new data. 184 * when new data arrives in strrput(), sd_lock is acquired 185 * before testing for RSLEEP and calling cv_broadcast(). 186 * the behavior of strwrite(), strwsrv(), and WSLEEP 187 * mirror this. 188 * 4. ioctl monitor: sd_lock is gotten to ensure that only one 189 * thread is doing an ioctl at a time. 190 */ 191 192 static int 193 push_mod(queue_t *qp, dev_t *devp, struct stdata *stp, const char *name, 194 int anchor, cred_t *crp, uint_t anchor_zoneid) 195 { 196 int error; 197 fmodsw_impl_t *fp; 198 199 if (stp->sd_flag & (STRHUP|STRDERR|STWRERR)) { 200 error = (stp->sd_flag & STRHUP) ? ENXIO : EIO; 201 return (error); 202 } 203 if (stp->sd_pushcnt >= nstrpush) { 204 return (EINVAL); 205 } 206 207 if ((fp = fmodsw_find(name, FMODSW_HOLD | FMODSW_LOAD)) == NULL) { 208 stp->sd_flag |= STREOPENFAIL; 209 return (EINVAL); 210 } 211 212 /* 213 * push new module and call its open routine via qattach 214 */ 215 if ((error = qattach(qp, devp, 0, crp, fp, B_FALSE)) != 0) 216 return (error); 217 218 /* 219 * Check to see if caller wants a STREAMS anchor 220 * put at this place in the stream, and add if so. 221 */ 222 mutex_enter(&stp->sd_lock); 223 if (anchor == stp->sd_pushcnt) { 224 stp->sd_anchor = stp->sd_pushcnt; 225 stp->sd_anchorzone = anchor_zoneid; 226 } 227 mutex_exit(&stp->sd_lock); 228 229 return (0); 230 } 231 232 /* 233 * Open a stream device. 234 */ 235 int 236 stropen(vnode_t *vp, dev_t *devp, int flag, cred_t *crp) 237 { 238 struct stdata *stp; 239 queue_t *qp; 240 int s; 241 dev_t dummydev, savedev; 242 struct autopush *ap; 243 struct dlautopush dlap; 244 int error = 0; 245 ssize_t rmin, rmax; 246 int cloneopen; 247 queue_t *brq; 248 major_t major; 249 str_stack_t *ss; 250 zoneid_t zoneid; 251 uint_t anchor; 252 253 /* 254 * If the stream already exists, wait for any open in progress 255 * to complete, then call the open function of each module and 256 * driver in the stream. Otherwise create the stream. 257 */ 258 TRACE_1(TR_FAC_STREAMS_FR, TR_STROPEN, "stropen:%p", vp); 259 retry: 260 mutex_enter(&vp->v_lock); 261 if ((stp = vp->v_stream) != NULL) { 262 263 /* 264 * Waiting for stream to be created to device 265 * due to another open. 266 */ 267 mutex_exit(&vp->v_lock); 268 269 if (STRMATED(stp)) { 270 struct stdata *strmatep = stp->sd_mate; 271 272 STRLOCKMATES(stp); 273 if (strmatep->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 274 if (flag & (FNDELAY|FNONBLOCK)) { 275 error = EAGAIN; 276 mutex_exit(&strmatep->sd_lock); 277 goto ckreturn; 278 } 279 mutex_exit(&stp->sd_lock); 280 if (!cv_wait_sig(&strmatep->sd_monitor, 281 &strmatep->sd_lock)) { 282 error = EINTR; 283 mutex_exit(&strmatep->sd_lock); 284 mutex_enter(&stp->sd_lock); 285 goto ckreturn; 286 } 287 mutex_exit(&strmatep->sd_lock); 288 goto retry; 289 } 290 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 291 if (flag & (FNDELAY|FNONBLOCK)) { 292 error = EAGAIN; 293 mutex_exit(&strmatep->sd_lock); 294 goto ckreturn; 295 } 296 mutex_exit(&strmatep->sd_lock); 297 if (!cv_wait_sig(&stp->sd_monitor, 298 &stp->sd_lock)) { 299 error = EINTR; 300 goto ckreturn; 301 } 302 mutex_exit(&stp->sd_lock); 303 goto retry; 304 } 305 306 if (stp->sd_flag & (STRDERR|STWRERR)) { 307 error = EIO; 308 mutex_exit(&strmatep->sd_lock); 309 goto ckreturn; 310 } 311 312 stp->sd_flag |= STWOPEN; 313 STRUNLOCKMATES(stp); 314 } else { 315 mutex_enter(&stp->sd_lock); 316 if (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 317 if (flag & (FNDELAY|FNONBLOCK)) { 318 error = EAGAIN; 319 goto ckreturn; 320 } 321 if (!cv_wait_sig(&stp->sd_monitor, 322 &stp->sd_lock)) { 323 error = EINTR; 324 goto ckreturn; 325 } 326 mutex_exit(&stp->sd_lock); 327 goto retry; /* could be clone! */ 328 } 329 330 if (stp->sd_flag & (STRDERR|STWRERR)) { 331 error = EIO; 332 goto ckreturn; 333 } 334 335 stp->sd_flag |= STWOPEN; 336 mutex_exit(&stp->sd_lock); 337 } 338 339 /* 340 * Open all modules and devices down stream to notify 341 * that another user is streaming. For modules, set the 342 * last argument to MODOPEN and do not pass any open flags. 343 * Ignore dummydev since this is not the first open. 344 */ 345 claimstr(stp->sd_wrq); 346 qp = stp->sd_wrq; 347 while (_SAMESTR(qp)) { 348 qp = qp->q_next; 349 if ((error = qreopen(_RD(qp), devp, flag, crp)) != 0) 350 break; 351 } 352 releasestr(stp->sd_wrq); 353 mutex_enter(&stp->sd_lock); 354 stp->sd_flag &= ~(STRHUP|STWOPEN|STRDERR|STWRERR); 355 stp->sd_rerror = 0; 356 stp->sd_werror = 0; 357 ckreturn: 358 cv_broadcast(&stp->sd_monitor); 359 mutex_exit(&stp->sd_lock); 360 return (error); 361 } 362 363 /* 364 * This vnode isn't streaming. SPECFS already 365 * checked for multiple vnodes pointing to the 366 * same stream, so create a stream to the driver. 367 */ 368 qp = allocq(); 369 stp = shalloc(qp); 370 371 /* 372 * Initialize stream head. shalloc() has given us 373 * exclusive access, and we have the vnode locked; 374 * we can do whatever we want with stp. 375 */ 376 stp->sd_flag = STWOPEN; 377 stp->sd_siglist = NULL; 378 stp->sd_pollist.ph_list = NULL; 379 stp->sd_sigflags = 0; 380 stp->sd_mark = NULL; 381 stp->sd_closetime = STRTIMOUT; 382 stp->sd_sidp = NULL; 383 stp->sd_pgidp = NULL; 384 stp->sd_vnode = vp; 385 stp->sd_rerror = 0; 386 stp->sd_werror = 0; 387 stp->sd_wroff = 0; 388 stp->sd_tail = 0; 389 stp->sd_iocblk = NULL; 390 stp->sd_cmdblk = NULL; 391 stp->sd_pushcnt = 0; 392 stp->sd_qn_minpsz = 0; 393 stp->sd_qn_maxpsz = INFPSZ - 1; /* used to check for initialization */ 394 stp->sd_maxblk = INFPSZ; 395 qp->q_ptr = _WR(qp)->q_ptr = stp; 396 STREAM(qp) = STREAM(_WR(qp)) = stp; 397 vp->v_stream = stp; 398 mutex_exit(&vp->v_lock); 399 if (vp->v_type == VFIFO) { 400 stp->sd_flag |= OLDNDELAY; 401 /* 402 * This means, both for pipes and fifos 403 * strwrite will send SIGPIPE if the other 404 * end is closed. For putmsg it depends 405 * on whether it is a XPG4_2 application 406 * or not 407 */ 408 stp->sd_wput_opt = SW_SIGPIPE; 409 410 /* setq might sleep in kmem_alloc - avoid holding locks. */ 411 setq(qp, &fifo_strdata, &fifo_stwdata, NULL, QMTSAFE, 412 SQ_CI|SQ_CO, B_FALSE); 413 414 set_qend(qp); 415 stp->sd_strtab = fifo_getinfo(); 416 _WR(qp)->q_nfsrv = _WR(qp); 417 qp->q_nfsrv = qp; 418 /* 419 * Wake up others that are waiting for stream to be created. 420 */ 421 mutex_enter(&stp->sd_lock); 422 /* 423 * nothing is be pushed on stream yet, so 424 * optimized stream head packetsizes are just that 425 * of the read queue 426 */ 427 stp->sd_qn_minpsz = qp->q_minpsz; 428 stp->sd_qn_maxpsz = qp->q_maxpsz; 429 stp->sd_flag &= ~STWOPEN; 430 goto fifo_opendone; 431 } 432 /* setq might sleep in kmem_alloc - avoid holding locks. */ 433 setq(qp, &strdata, &stwdata, NULL, QMTSAFE, SQ_CI|SQ_CO, B_FALSE); 434 435 set_qend(qp); 436 437 /* 438 * Open driver and create stream to it (via qattach). 439 */ 440 savedev = *devp; 441 cloneopen = (getmajor(*devp) == clone_major); 442 if ((error = qattach(qp, devp, flag, crp, NULL, B_FALSE)) != 0) { 443 mutex_enter(&vp->v_lock); 444 vp->v_stream = NULL; 445 mutex_exit(&vp->v_lock); 446 mutex_enter(&stp->sd_lock); 447 cv_broadcast(&stp->sd_monitor); 448 mutex_exit(&stp->sd_lock); 449 freeq(_RD(qp)); 450 shfree(stp); 451 return (error); 452 } 453 /* 454 * Set sd_strtab after open in order to handle clonable drivers 455 */ 456 stp->sd_strtab = STREAMSTAB(getmajor(*devp)); 457 458 /* 459 * Historical note: dummydev used to be be prior to the initial 460 * open (via qattach above), which made the value seen 461 * inconsistent between an I_PUSH and an autopush of a module. 462 */ 463 dummydev = *devp; 464 465 /* 466 * For clone open of old style (Q not associated) network driver, 467 * push DRMODNAME module to handle DL_ATTACH/DL_DETACH 468 */ 469 brq = _RD(_WR(qp)->q_next); 470 major = getmajor(*devp); 471 if (push_drcompat && cloneopen && NETWORK_DRV(major) && 472 ((brq->q_flag & _QASSOCIATED) == 0)) { 473 if (push_mod(qp, &dummydev, stp, DRMODNAME, 0, crp, 0) != 0) 474 cmn_err(CE_WARN, "cannot push " DRMODNAME 475 " streams module"); 476 } 477 478 if (!NETWORK_DRV(major)) { 479 savedev = *devp; 480 } else { 481 /* 482 * For network devices, process differently based on the 483 * return value from dld_autopush(): 484 * 485 * 0: the passed-in device points to a GLDv3 datalink with 486 * per-link autopush configuration; use that configuration 487 * and ignore any per-driver autopush configuration. 488 * 489 * 1: the passed-in device points to a physical GLDv3 490 * datalink without per-link autopush configuration. The 491 * passed in device was changed to refer to the actual 492 * physical device (if it's not already); we use that new 493 * device to look up any per-driver autopush configuration. 494 * 495 * -1: neither of the above cases applied; use the initial 496 * device to look up any per-driver autopush configuration. 497 */ 498 switch (dld_autopush(&savedev, &dlap)) { 499 case 0: 500 zoneid = crgetzoneid(crp); 501 for (s = 0; s < dlap.dap_npush; s++) { 502 error = push_mod(qp, &dummydev, stp, 503 dlap.dap_aplist[s], dlap.dap_anchor, crp, 504 zoneid); 505 if (error != 0) 506 break; 507 } 508 goto opendone; 509 case 1: 510 break; 511 case -1: 512 savedev = *devp; 513 break; 514 } 515 } 516 /* 517 * Find the autopush configuration based on "savedev". Start with the 518 * global zone. If not found check in the local zone. 519 */ 520 zoneid = GLOBAL_ZONEID; 521 retryap: 522 ss = netstack_find_by_stackid(zoneid_to_netstackid(zoneid))-> 523 netstack_str; 524 if ((ap = sad_ap_find_by_dev(savedev, ss)) == NULL) { 525 netstack_rele(ss->ss_netstack); 526 if (zoneid == GLOBAL_ZONEID) { 527 /* 528 * None found. Also look in the zone's autopush table. 529 */ 530 zoneid = crgetzoneid(crp); 531 if (zoneid != GLOBAL_ZONEID) 532 goto retryap; 533 } 534 goto opendone; 535 } 536 anchor = ap->ap_anchor; 537 zoneid = crgetzoneid(crp); 538 for (s = 0; s < ap->ap_npush; s++) { 539 error = push_mod(qp, &dummydev, stp, ap->ap_list[s], 540 anchor, crp, zoneid); 541 if (error != 0) 542 break; 543 } 544 sad_ap_rele(ap, ss); 545 netstack_rele(ss->ss_netstack); 546 547 opendone: 548 549 /* 550 * let specfs know that open failed part way through 551 */ 552 if (error) { 553 mutex_enter(&stp->sd_lock); 554 stp->sd_flag |= STREOPENFAIL; 555 mutex_exit(&stp->sd_lock); 556 } 557 558 /* 559 * Wake up others that are waiting for stream to be created. 560 */ 561 mutex_enter(&stp->sd_lock); 562 stp->sd_flag &= ~STWOPEN; 563 564 /* 565 * As a performance concern we are caching the values of 566 * q_minpsz and q_maxpsz of the module below the stream 567 * head in the stream head. 568 */ 569 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 570 rmin = stp->sd_wrq->q_next->q_minpsz; 571 rmax = stp->sd_wrq->q_next->q_maxpsz; 572 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 573 574 /* do this processing here as a performance concern */ 575 if (strmsgsz != 0) { 576 if (rmax == INFPSZ) 577 rmax = strmsgsz; 578 else 579 rmax = MIN(strmsgsz, rmax); 580 } 581 582 mutex_enter(QLOCK(stp->sd_wrq)); 583 stp->sd_qn_minpsz = rmin; 584 stp->sd_qn_maxpsz = rmax; 585 mutex_exit(QLOCK(stp->sd_wrq)); 586 587 fifo_opendone: 588 cv_broadcast(&stp->sd_monitor); 589 mutex_exit(&stp->sd_lock); 590 return (error); 591 } 592 593 static int strsink(queue_t *, mblk_t *); 594 static struct qinit deadrend = { 595 strsink, NULL, NULL, NULL, NULL, &strm_info, NULL 596 }; 597 static struct qinit deadwend = { 598 NULL, NULL, NULL, NULL, NULL, &stwm_info, NULL 599 }; 600 601 /* 602 * Close a stream. 603 * This is called from closef() on the last close of an open stream. 604 * Strclean() will already have removed the siglist and pollist 605 * information, so all that remains is to remove all multiplexor links 606 * for the stream, pop all the modules (and the driver), and free the 607 * stream structure. 608 */ 609 610 int 611 strclose(struct vnode *vp, int flag, cred_t *crp) 612 { 613 struct stdata *stp; 614 queue_t *qp; 615 int rval; 616 int freestp = 1; 617 queue_t *rmq; 618 619 TRACE_1(TR_FAC_STREAMS_FR, 620 TR_STRCLOSE, "strclose:%p", vp); 621 ASSERT(vp->v_stream); 622 623 stp = vp->v_stream; 624 ASSERT(!(stp->sd_flag & STPLEX)); 625 qp = stp->sd_wrq; 626 627 /* 628 * Needed so that strpoll will return non-zero for this fd. 629 * Note that with POLLNOERR STRHUP does still cause POLLHUP. 630 */ 631 mutex_enter(&stp->sd_lock); 632 stp->sd_flag |= STRHUP; 633 mutex_exit(&stp->sd_lock); 634 635 /* 636 * If the registered process or process group did not have an 637 * open instance of this stream then strclean would not be 638 * called. Thus at the time of closing all remaining siglist entries 639 * are removed. 640 */ 641 if (stp->sd_siglist != NULL) 642 strcleanall(vp); 643 644 ASSERT(stp->sd_siglist == NULL); 645 ASSERT(stp->sd_sigflags == 0); 646 647 if (STRMATED(stp)) { 648 struct stdata *strmatep = stp->sd_mate; 649 int waited = 1; 650 651 STRLOCKMATES(stp); 652 while (waited) { 653 waited = 0; 654 while (stp->sd_flag & (STWOPEN|STRCLOSE|STRPLUMB)) { 655 mutex_exit(&strmatep->sd_lock); 656 cv_wait(&stp->sd_monitor, &stp->sd_lock); 657 mutex_exit(&stp->sd_lock); 658 STRLOCKMATES(stp); 659 waited = 1; 660 } 661 while (strmatep->sd_flag & 662 (STWOPEN|STRCLOSE|STRPLUMB)) { 663 mutex_exit(&stp->sd_lock); 664 cv_wait(&strmatep->sd_monitor, 665 &strmatep->sd_lock); 666 mutex_exit(&strmatep->sd_lock); 667 STRLOCKMATES(stp); 668 waited = 1; 669 } 670 } 671 stp->sd_flag |= STRCLOSE; 672 STRUNLOCKMATES(stp); 673 } else { 674 mutex_enter(&stp->sd_lock); 675 stp->sd_flag |= STRCLOSE; 676 mutex_exit(&stp->sd_lock); 677 } 678 679 ASSERT(qp->q_first == NULL); /* No more delayed write */ 680 681 /* Check if an I_LINK was ever done on this stream */ 682 if (stp->sd_flag & STRHASLINKS) { 683 netstack_t *ns; 684 str_stack_t *ss; 685 686 ns = netstack_find_by_cred(crp); 687 ASSERT(ns != NULL); 688 ss = ns->netstack_str; 689 ASSERT(ss != NULL); 690 691 (void) munlinkall(stp, LINKCLOSE|LINKNORMAL, crp, &rval, ss); 692 netstack_rele(ss->ss_netstack); 693 } 694 695 while (_SAMESTR(qp)) { 696 /* 697 * Holding sd_lock prevents q_next from changing in 698 * this stream. 699 */ 700 mutex_enter(&stp->sd_lock); 701 if (!(flag & (FNDELAY|FNONBLOCK)) && (stp->sd_closetime > 0)) { 702 703 /* 704 * sleep until awakened by strwsrv() or timeout 705 */ 706 for (;;) { 707 mutex_enter(QLOCK(qp->q_next)); 708 if (!(qp->q_next->q_mblkcnt)) { 709 mutex_exit(QLOCK(qp->q_next)); 710 break; 711 } 712 stp->sd_flag |= WSLEEP; 713 714 /* ensure strwsrv gets enabled */ 715 qp->q_next->q_flag |= QWANTW; 716 mutex_exit(QLOCK(qp->q_next)); 717 /* get out if we timed out or recv'd a signal */ 718 if (str_cv_wait(&qp->q_wait, &stp->sd_lock, 719 stp->sd_closetime, 0) <= 0) { 720 break; 721 } 722 } 723 stp->sd_flag &= ~WSLEEP; 724 } 725 mutex_exit(&stp->sd_lock); 726 727 rmq = qp->q_next; 728 if (rmq->q_flag & QISDRV) { 729 ASSERT(!_SAMESTR(rmq)); 730 wait_sq_svc(_RD(qp)->q_syncq); 731 } 732 733 qdetach(_RD(rmq), 1, flag, crp, B_FALSE); 734 } 735 736 /* 737 * Since we call pollwakeup in close() now, the poll list should 738 * be empty in most cases. The only exception is the layered devices 739 * (e.g. the console drivers with redirection modules pushed on top 740 * of it). We have to do this after calling qdetach() because 741 * the redirection module won't have torn down the console 742 * redirection until after qdetach() has been invoked. 743 */ 744 if (stp->sd_pollist.ph_list != NULL) { 745 pollwakeup(&stp->sd_pollist, POLLERR); 746 pollhead_clean(&stp->sd_pollist); 747 } 748 ASSERT(stp->sd_pollist.ph_list == NULL); 749 ASSERT(stp->sd_sidp == NULL); 750 ASSERT(stp->sd_pgidp == NULL); 751 752 /* Prevent qenable from re-enabling the stream head queue */ 753 disable_svc(_RD(qp)); 754 755 /* 756 * Wait until service procedure of each queue is 757 * run, if QINSERVICE is set. 758 */ 759 wait_svc(_RD(qp)); 760 761 /* 762 * Now, flush both queues. 763 */ 764 flushq(_RD(qp), FLUSHALL); 765 flushq(qp, FLUSHALL); 766 767 /* 768 * If the write queue of the stream head is pointing to a 769 * read queue, we have a twisted stream. If the read queue 770 * is alive, convert the stream head queues into a dead end. 771 * If the read queue is dead, free the dead pair. 772 */ 773 if (qp->q_next && !_SAMESTR(qp)) { 774 if (qp->q_next->q_qinfo == &deadrend) { /* half-closed pipe */ 775 flushq(qp->q_next, FLUSHALL); /* ensure no message */ 776 shfree(qp->q_next->q_stream); 777 freeq(qp->q_next); 778 freeq(_RD(qp)); 779 } else if (qp->q_next == _RD(qp)) { /* fifo */ 780 freeq(_RD(qp)); 781 } else { /* pipe */ 782 freestp = 0; 783 /* 784 * The q_info pointers are never accessed when 785 * SQLOCK is held. 786 */ 787 ASSERT(qp->q_syncq == _RD(qp)->q_syncq); 788 mutex_enter(SQLOCK(qp->q_syncq)); 789 qp->q_qinfo = &deadwend; 790 _RD(qp)->q_qinfo = &deadrend; 791 mutex_exit(SQLOCK(qp->q_syncq)); 792 } 793 } else { 794 freeq(_RD(qp)); /* free stream head queue pair */ 795 } 796 797 mutex_enter(&vp->v_lock); 798 if (stp->sd_iocblk) { 799 if (stp->sd_iocblk != (mblk_t *)-1) { 800 freemsg(stp->sd_iocblk); 801 } 802 stp->sd_iocblk = NULL; 803 } 804 stp->sd_vnode = NULL; 805 vp->v_stream = NULL; 806 mutex_exit(&vp->v_lock); 807 mutex_enter(&stp->sd_lock); 808 freemsg(stp->sd_cmdblk); 809 stp->sd_cmdblk = NULL; 810 stp->sd_flag &= ~STRCLOSE; 811 cv_broadcast(&stp->sd_monitor); 812 mutex_exit(&stp->sd_lock); 813 814 if (freestp) 815 shfree(stp); 816 return (0); 817 } 818 819 static int 820 strsink(queue_t *q, mblk_t *bp) 821 { 822 struct copyresp *resp; 823 824 switch (bp->b_datap->db_type) { 825 case M_FLUSH: 826 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 827 *bp->b_rptr &= ~FLUSHR; 828 bp->b_flag |= MSGNOLOOP; 829 /* 830 * Protect against the driver passing up 831 * messages after it has done a qprocsoff. 832 */ 833 if (_OTHERQ(q)->q_next == NULL) 834 freemsg(bp); 835 else 836 qreply(q, bp); 837 } else { 838 freemsg(bp); 839 } 840 break; 841 842 case M_COPYIN: 843 case M_COPYOUT: 844 if (bp->b_cont) { 845 freemsg(bp->b_cont); 846 bp->b_cont = NULL; 847 } 848 bp->b_datap->db_type = M_IOCDATA; 849 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 850 resp = (struct copyresp *)bp->b_rptr; 851 resp->cp_rval = (caddr_t)1; /* failure */ 852 /* 853 * Protect against the driver passing up 854 * messages after it has done a qprocsoff. 855 */ 856 if (_OTHERQ(q)->q_next == NULL) 857 freemsg(bp); 858 else 859 qreply(q, bp); 860 break; 861 862 case M_IOCTL: 863 if (bp->b_cont) { 864 freemsg(bp->b_cont); 865 bp->b_cont = NULL; 866 } 867 bp->b_datap->db_type = M_IOCNAK; 868 /* 869 * Protect against the driver passing up 870 * messages after it has done a qprocsoff. 871 */ 872 if (_OTHERQ(q)->q_next == NULL) 873 freemsg(bp); 874 else 875 qreply(q, bp); 876 break; 877 878 default: 879 freemsg(bp); 880 break; 881 } 882 883 return (0); 884 } 885 886 /* 887 * Clean up after a process when it closes a stream. This is called 888 * from closef for all closes, whereas strclose is called only for the 889 * last close on a stream. The siglist is scanned for entries for the 890 * current process, and these are removed. 891 */ 892 void 893 strclean(struct vnode *vp) 894 { 895 strsig_t *ssp, *pssp, *tssp; 896 stdata_t *stp; 897 int update = 0; 898 899 TRACE_1(TR_FAC_STREAMS_FR, 900 TR_STRCLEAN, "strclean:%p", vp); 901 stp = vp->v_stream; 902 pssp = NULL; 903 mutex_enter(&stp->sd_lock); 904 ssp = stp->sd_siglist; 905 while (ssp) { 906 if (ssp->ss_pidp == curproc->p_pidp) { 907 tssp = ssp->ss_next; 908 if (pssp) 909 pssp->ss_next = tssp; 910 else 911 stp->sd_siglist = tssp; 912 mutex_enter(&pidlock); 913 PID_RELE(ssp->ss_pidp); 914 mutex_exit(&pidlock); 915 kmem_free(ssp, sizeof (strsig_t)); 916 update = 1; 917 ssp = tssp; 918 } else { 919 pssp = ssp; 920 ssp = ssp->ss_next; 921 } 922 } 923 if (update) { 924 stp->sd_sigflags = 0; 925 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 926 stp->sd_sigflags |= ssp->ss_events; 927 } 928 mutex_exit(&stp->sd_lock); 929 } 930 931 /* 932 * Used on the last close to remove any remaining items on the siglist. 933 * These could be present on the siglist due to I_ESETSIG calls that 934 * use process groups or processed that do not have an open file descriptor 935 * for this stream (Such entries would not be removed by strclean). 936 */ 937 static void 938 strcleanall(struct vnode *vp) 939 { 940 strsig_t *ssp, *nssp; 941 stdata_t *stp; 942 943 stp = vp->v_stream; 944 mutex_enter(&stp->sd_lock); 945 ssp = stp->sd_siglist; 946 stp->sd_siglist = NULL; 947 while (ssp) { 948 nssp = ssp->ss_next; 949 mutex_enter(&pidlock); 950 PID_RELE(ssp->ss_pidp); 951 mutex_exit(&pidlock); 952 kmem_free(ssp, sizeof (strsig_t)); 953 ssp = nssp; 954 } 955 stp->sd_sigflags = 0; 956 mutex_exit(&stp->sd_lock); 957 } 958 959 /* 960 * Retrieve the next message from the logical stream head read queue 961 * using either rwnext (if sync stream) or getq_noenab. 962 * It is the callers responsibility to call qbackenable after 963 * it is finished with the message. The caller should not call 964 * qbackenable until after any putback calls to avoid spurious backenabling. 965 */ 966 mblk_t * 967 strget(struct stdata *stp, queue_t *q, struct uio *uiop, int first, 968 int *errorp) 969 { 970 mblk_t *bp; 971 int error; 972 ssize_t rbytes = 0; 973 974 /* Holding sd_lock prevents the read queue from changing */ 975 ASSERT(MUTEX_HELD(&stp->sd_lock)); 976 977 if (uiop != NULL && stp->sd_struiordq != NULL && 978 q->q_first == NULL && 979 (!first || (stp->sd_wakeq & RSLEEP))) { 980 /* 981 * Stream supports rwnext() for the read side. 982 * If this is the first time we're called by e.g. strread 983 * only do the downcall if there is a deferred wakeup 984 * (registered in sd_wakeq). 985 */ 986 struiod_t uiod; 987 988 if (first) 989 stp->sd_wakeq &= ~RSLEEP; 990 991 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 992 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 993 uiod.d_mp = 0; 994 /* 995 * Mark that a thread is in rwnext on the read side 996 * to prevent strrput from nacking ioctls immediately. 997 * When the last concurrent rwnext returns 998 * the ioctls are nack'ed. 999 */ 1000 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1001 stp->sd_struiodnak++; 1002 /* 1003 * Note: rwnext will drop sd_lock. 1004 */ 1005 error = rwnext(q, &uiod); 1006 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 1007 mutex_enter(&stp->sd_lock); 1008 stp->sd_struiodnak--; 1009 while (stp->sd_struiodnak == 0 && 1010 ((bp = stp->sd_struionak) != NULL)) { 1011 stp->sd_struionak = bp->b_next; 1012 bp->b_next = NULL; 1013 bp->b_datap->db_type = M_IOCNAK; 1014 /* 1015 * Protect against the driver passing up 1016 * messages after it has done a qprocsoff. 1017 */ 1018 if (_OTHERQ(q)->q_next == NULL) 1019 freemsg(bp); 1020 else { 1021 mutex_exit(&stp->sd_lock); 1022 qreply(q, bp); 1023 mutex_enter(&stp->sd_lock); 1024 } 1025 } 1026 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1027 if (error == 0 || error == EWOULDBLOCK) { 1028 if ((bp = uiod.d_mp) != NULL) { 1029 *errorp = 0; 1030 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1031 return (bp); 1032 } 1033 error = 0; 1034 } else if (error == EINVAL) { 1035 /* 1036 * The stream plumbing must have 1037 * changed while we were away, so 1038 * just turn off rwnext()s. 1039 */ 1040 error = 0; 1041 } else if (error == EBUSY) { 1042 /* 1043 * The module might have data in transit using putnext 1044 * Fall back on waiting + getq. 1045 */ 1046 error = 0; 1047 } else { 1048 *errorp = error; 1049 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1050 return (NULL); 1051 } 1052 /* 1053 * Try a getq in case a rwnext() generated mblk 1054 * has bubbled up via strrput(). 1055 */ 1056 } 1057 *errorp = 0; 1058 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1059 1060 /* 1061 * If we have a valid uio, try and use this as a guide for how 1062 * many bytes to retrieve from the queue via getq_noenab(). 1063 * Doing this can avoid unneccesary counting of overlong 1064 * messages in putback(). We currently only do this for sockets 1065 * and only if there is no sd_rputdatafunc hook. 1066 * 1067 * The sd_rputdatafunc hook transforms the entire message 1068 * before any bytes in it can be given to a client. So, rbytes 1069 * must be 0 if there is a hook. 1070 */ 1071 if ((uiop != NULL) && (stp->sd_vnode->v_type == VSOCK) && 1072 (stp->sd_rputdatafunc == NULL)) 1073 rbytes = uiop->uio_resid; 1074 1075 return (getq_noenab(q, rbytes)); 1076 } 1077 1078 /* 1079 * Copy out the message pointed to by `bp' into the uio pointed to by `uiop'. 1080 * If the message does not fit in the uio the remainder of it is returned; 1081 * otherwise NULL is returned. Any embedded zero-length mblk_t's are 1082 * consumed, even if uio_resid reaches zero. On error, `*errorp' is set to 1083 * the error code, the message is consumed, and NULL is returned. 1084 */ 1085 static mblk_t * 1086 struiocopyout(mblk_t *bp, struct uio *uiop, int *errorp) 1087 { 1088 int error; 1089 ptrdiff_t n; 1090 mblk_t *nbp; 1091 1092 ASSERT(bp->b_wptr >= bp->b_rptr); 1093 1094 do { 1095 if ((n = MIN(uiop->uio_resid, MBLKL(bp))) != 0) { 1096 ASSERT(n > 0); 1097 1098 error = uiomove(bp->b_rptr, n, UIO_READ, uiop); 1099 if (error != 0) { 1100 freemsg(bp); 1101 *errorp = error; 1102 return (NULL); 1103 } 1104 } 1105 1106 bp->b_rptr += n; 1107 while (bp != NULL && (bp->b_rptr >= bp->b_wptr)) { 1108 nbp = bp; 1109 bp = bp->b_cont; 1110 freeb(nbp); 1111 } 1112 } while (bp != NULL && uiop->uio_resid > 0); 1113 1114 *errorp = 0; 1115 return (bp); 1116 } 1117 1118 /* 1119 * Read a stream according to the mode flags in sd_flag: 1120 * 1121 * (default mode) - Byte stream, msg boundaries are ignored 1122 * RD_MSGDIS (msg discard) - Read on msg boundaries and throw away 1123 * any data remaining in msg 1124 * RD_MSGNODIS (msg non-discard) - Read on msg boundaries and put back 1125 * any remaining data on head of read queue 1126 * 1127 * Consume readable messages on the front of the queue until 1128 * ttolwp(curthread)->lwp_count 1129 * is satisfied, the readable messages are exhausted, or a message 1130 * boundary is reached in a message mode. If no data was read and 1131 * the stream was not opened with the NDELAY flag, block until data arrives. 1132 * Otherwise return the data read and update the count. 1133 * 1134 * In default mode a 0 length message signifies end-of-file and terminates 1135 * a read in progress. The 0 length message is removed from the queue 1136 * only if it is the only message read (no data is read). 1137 * 1138 * An attempt to read an M_PROTO or M_PCPROTO message results in an 1139 * EBADMSG error return, unless either RD_PROTDAT or RD_PROTDIS are set. 1140 * If RD_PROTDAT is set, M_PROTO and M_PCPROTO messages are read as data. 1141 * If RD_PROTDIS is set, the M_PROTO and M_PCPROTO parts of the message 1142 * are unlinked from and M_DATA blocks in the message, the protos are 1143 * thrown away, and the data is read. 1144 */ 1145 /* ARGSUSED */ 1146 int 1147 strread(struct vnode *vp, struct uio *uiop, cred_t *crp) 1148 { 1149 struct stdata *stp; 1150 mblk_t *bp, *nbp; 1151 queue_t *q; 1152 int error = 0; 1153 uint_t old_sd_flag; 1154 int first; 1155 char rflg; 1156 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 1157 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 1158 short delim; 1159 unsigned char pri = 0; 1160 char waitflag; 1161 unsigned char type; 1162 1163 TRACE_1(TR_FAC_STREAMS_FR, 1164 TR_STRREAD_ENTER, "strread:%p", vp); 1165 ASSERT(vp->v_stream); 1166 stp = vp->v_stream; 1167 1168 mutex_enter(&stp->sd_lock); 1169 1170 if ((error = i_straccess(stp, JCREAD)) != 0) { 1171 mutex_exit(&stp->sd_lock); 1172 return (error); 1173 } 1174 1175 if (stp->sd_flag & (STRDERR|STPLEX)) { 1176 error = strgeterr(stp, STRDERR|STPLEX, 0); 1177 if (error != 0) { 1178 mutex_exit(&stp->sd_lock); 1179 return (error); 1180 } 1181 } 1182 1183 /* 1184 * Loop terminates when uiop->uio_resid == 0. 1185 */ 1186 rflg = 0; 1187 waitflag = READWAIT; 1188 q = _RD(stp->sd_wrq); 1189 for (;;) { 1190 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1191 old_sd_flag = stp->sd_flag; 1192 mark = 0; 1193 delim = 0; 1194 first = 1; 1195 while ((bp = strget(stp, q, uiop, first, &error)) == NULL) { 1196 int done = 0; 1197 1198 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1199 1200 if (error != 0) 1201 goto oops; 1202 1203 if (stp->sd_flag & (STRHUP|STREOF)) { 1204 goto oops; 1205 } 1206 if (rflg && !(stp->sd_flag & STRDELIM)) { 1207 goto oops; 1208 } 1209 /* 1210 * If a read(fd,buf,0) has been done, there is no 1211 * need to sleep. We always have zero bytes to 1212 * return. 1213 */ 1214 if (uiop->uio_resid == 0) { 1215 goto oops; 1216 } 1217 1218 qbackenable(q, 0); 1219 1220 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_WAIT, 1221 "strread calls strwaitq:%p, %p, %p", 1222 vp, uiop, crp); 1223 if ((error = strwaitq(stp, waitflag, uiop->uio_resid, 1224 uiop->uio_fmode, -1, &done)) != 0 || done) { 1225 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_DONE, 1226 "strread error or done:%p, %p, %p", 1227 vp, uiop, crp); 1228 if ((uiop->uio_fmode & FNDELAY) && 1229 (stp->sd_flag & OLDNDELAY) && 1230 (error == EAGAIN)) 1231 error = 0; 1232 goto oops; 1233 } 1234 TRACE_3(TR_FAC_STREAMS_FR, TR_STRREAD_AWAKE, 1235 "strread awakes:%p, %p, %p", vp, uiop, crp); 1236 if ((error = i_straccess(stp, JCREAD)) != 0) { 1237 goto oops; 1238 } 1239 first = 0; 1240 } 1241 1242 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1243 ASSERT(bp); 1244 pri = bp->b_band; 1245 /* 1246 * Extract any mark information. If the message is not 1247 * completely consumed this information will be put in the mblk 1248 * that is putback. 1249 * If MSGMARKNEXT is set and the message is completely consumed 1250 * the STRATMARK flag will be set below. Likewise, if 1251 * MSGNOTMARKNEXT is set and the message is 1252 * completely consumed STRNOTATMARK will be set. 1253 * 1254 * For some unknown reason strread only breaks the read at the 1255 * last mark. 1256 */ 1257 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 1258 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 1259 (MSGMARKNEXT|MSGNOTMARKNEXT)); 1260 if (mark != 0 && bp == stp->sd_mark) { 1261 if (rflg) { 1262 putback(stp, q, bp, pri); 1263 goto oops; 1264 } 1265 mark |= _LASTMARK; 1266 stp->sd_mark = NULL; 1267 } 1268 if ((stp->sd_flag & STRDELIM) && (bp->b_flag & MSGDELIM)) 1269 delim = 1; 1270 mutex_exit(&stp->sd_lock); 1271 1272 if (STREAM_NEEDSERVICE(stp)) 1273 stream_runservice(stp); 1274 1275 type = bp->b_datap->db_type; 1276 1277 switch (type) { 1278 1279 case M_DATA: 1280 ismdata: 1281 if (msgnodata(bp)) { 1282 if (mark || delim) { 1283 freemsg(bp); 1284 } else if (rflg) { 1285 1286 /* 1287 * If already read data put zero 1288 * length message back on queue else 1289 * free msg and return 0. 1290 */ 1291 bp->b_band = pri; 1292 mutex_enter(&stp->sd_lock); 1293 putback(stp, q, bp, pri); 1294 mutex_exit(&stp->sd_lock); 1295 } else { 1296 freemsg(bp); 1297 } 1298 error = 0; 1299 goto oops1; 1300 } 1301 1302 rflg = 1; 1303 waitflag |= NOINTR; 1304 bp = struiocopyout(bp, uiop, &error); 1305 if (error != 0) 1306 goto oops1; 1307 1308 mutex_enter(&stp->sd_lock); 1309 if (bp) { 1310 /* 1311 * Have remaining data in message. 1312 * Free msg if in discard mode. 1313 */ 1314 if (stp->sd_read_opt & RD_MSGDIS) { 1315 freemsg(bp); 1316 } else { 1317 bp->b_band = pri; 1318 if ((mark & _LASTMARK) && 1319 (stp->sd_mark == NULL)) 1320 stp->sd_mark = bp; 1321 bp->b_flag |= mark & ~_LASTMARK; 1322 if (delim) 1323 bp->b_flag |= MSGDELIM; 1324 if (msgnodata(bp)) 1325 freemsg(bp); 1326 else 1327 putback(stp, q, bp, pri); 1328 } 1329 } else { 1330 /* 1331 * Consumed the complete message. 1332 * Move the MSG*MARKNEXT information 1333 * to the stream head just in case 1334 * the read queue becomes empty. 1335 * 1336 * If the stream head was at the mark 1337 * (STRATMARK) before we dropped sd_lock above 1338 * and some data was consumed then we have 1339 * moved past the mark thus STRATMARK is 1340 * cleared. However, if a message arrived in 1341 * strrput during the copyout above causing 1342 * STRATMARK to be set we can not clear that 1343 * flag. 1344 */ 1345 if (mark & 1346 (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 1347 if (mark & MSGMARKNEXT) { 1348 stp->sd_flag &= ~STRNOTATMARK; 1349 stp->sd_flag |= STRATMARK; 1350 } else if (mark & MSGNOTMARKNEXT) { 1351 stp->sd_flag &= ~STRATMARK; 1352 stp->sd_flag |= STRNOTATMARK; 1353 } else { 1354 stp->sd_flag &= 1355 ~(STRATMARK|STRNOTATMARK); 1356 } 1357 } else if (rflg && (old_sd_flag & STRATMARK)) { 1358 stp->sd_flag &= ~STRATMARK; 1359 } 1360 } 1361 1362 /* 1363 * Check for signal messages at the front of the read 1364 * queue and generate the signal(s) if appropriate. 1365 * The only signal that can be on queue is M_SIG at 1366 * this point. 1367 */ 1368 while ((((bp = q->q_first)) != NULL) && 1369 (bp->b_datap->db_type == M_SIG)) { 1370 bp = getq_noenab(q, 0); 1371 /* 1372 * sd_lock is held so the content of the 1373 * read queue can not change. 1374 */ 1375 ASSERT(bp != NULL && DB_TYPE(bp) == M_SIG); 1376 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 1377 mutex_exit(&stp->sd_lock); 1378 freemsg(bp); 1379 if (STREAM_NEEDSERVICE(stp)) 1380 stream_runservice(stp); 1381 mutex_enter(&stp->sd_lock); 1382 } 1383 1384 if ((uiop->uio_resid == 0) || (mark & _LASTMARK) || 1385 delim || 1386 (stp->sd_read_opt & (RD_MSGDIS|RD_MSGNODIS))) { 1387 goto oops; 1388 } 1389 continue; 1390 1391 case M_SIG: 1392 strsignal(stp, *bp->b_rptr, (int32_t)bp->b_band); 1393 freemsg(bp); 1394 mutex_enter(&stp->sd_lock); 1395 continue; 1396 1397 case M_PROTO: 1398 case M_PCPROTO: 1399 /* 1400 * Only data messages are readable. 1401 * Any others generate an error, unless 1402 * RD_PROTDIS or RD_PROTDAT is set. 1403 */ 1404 if (stp->sd_read_opt & RD_PROTDAT) { 1405 for (nbp = bp; nbp; nbp = nbp->b_next) { 1406 if ((nbp->b_datap->db_type == 1407 M_PROTO) || 1408 (nbp->b_datap->db_type == 1409 M_PCPROTO)) { 1410 nbp->b_datap->db_type = M_DATA; 1411 } else { 1412 break; 1413 } 1414 } 1415 /* 1416 * clear stream head hi pri flag based on 1417 * first message 1418 */ 1419 if (type == M_PCPROTO) { 1420 mutex_enter(&stp->sd_lock); 1421 stp->sd_flag &= ~STRPRI; 1422 mutex_exit(&stp->sd_lock); 1423 } 1424 goto ismdata; 1425 } else if (stp->sd_read_opt & RD_PROTDIS) { 1426 /* 1427 * discard non-data messages 1428 */ 1429 while (bp && 1430 ((bp->b_datap->db_type == M_PROTO) || 1431 (bp->b_datap->db_type == M_PCPROTO))) { 1432 nbp = unlinkb(bp); 1433 freeb(bp); 1434 bp = nbp; 1435 } 1436 /* 1437 * clear stream head hi pri flag based on 1438 * first message 1439 */ 1440 if (type == M_PCPROTO) { 1441 mutex_enter(&stp->sd_lock); 1442 stp->sd_flag &= ~STRPRI; 1443 mutex_exit(&stp->sd_lock); 1444 } 1445 if (bp) { 1446 bp->b_band = pri; 1447 goto ismdata; 1448 } else { 1449 break; 1450 } 1451 } 1452 /* FALLTHRU */ 1453 case M_PASSFP: 1454 if ((bp->b_datap->db_type == M_PASSFP) && 1455 (stp->sd_read_opt & RD_PROTDIS)) { 1456 freemsg(bp); 1457 break; 1458 } 1459 mutex_enter(&stp->sd_lock); 1460 putback(stp, q, bp, pri); 1461 mutex_exit(&stp->sd_lock); 1462 if (rflg == 0) 1463 error = EBADMSG; 1464 goto oops1; 1465 1466 default: 1467 /* 1468 * Garbage on stream head read queue. 1469 */ 1470 cmn_err(CE_WARN, "bad %x found at stream head\n", 1471 bp->b_datap->db_type); 1472 freemsg(bp); 1473 goto oops1; 1474 } 1475 mutex_enter(&stp->sd_lock); 1476 } 1477 oops: 1478 mutex_exit(&stp->sd_lock); 1479 oops1: 1480 qbackenable(q, pri); 1481 return (error); 1482 #undef _LASTMARK 1483 } 1484 1485 /* 1486 * Default processing of M_PROTO/M_PCPROTO messages. 1487 * Determine which wakeups and signals are needed. 1488 * This can be replaced by a user-specified procedure for kernel users 1489 * of STREAMS. 1490 */ 1491 /* ARGSUSED */ 1492 mblk_t * 1493 strrput_proto(vnode_t *vp, mblk_t *mp, 1494 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1495 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1496 { 1497 *wakeups = RSLEEP; 1498 *allmsgsigs = 0; 1499 1500 switch (mp->b_datap->db_type) { 1501 case M_PROTO: 1502 if (mp->b_band == 0) { 1503 *firstmsgsigs = S_INPUT | S_RDNORM; 1504 *pollwakeups = POLLIN | POLLRDNORM; 1505 } else { 1506 *firstmsgsigs = S_INPUT | S_RDBAND; 1507 *pollwakeups = POLLIN | POLLRDBAND; 1508 } 1509 break; 1510 case M_PCPROTO: 1511 *firstmsgsigs = S_HIPRI; 1512 *pollwakeups = POLLPRI; 1513 break; 1514 } 1515 return (mp); 1516 } 1517 1518 /* 1519 * Default processing of everything but M_DATA, M_PROTO, M_PCPROTO and 1520 * M_PASSFP messages. 1521 * Determine which wakeups and signals are needed. 1522 * This can be replaced by a user-specified procedure for kernel users 1523 * of STREAMS. 1524 */ 1525 /* ARGSUSED */ 1526 mblk_t * 1527 strrput_misc(vnode_t *vp, mblk_t *mp, 1528 strwakeup_t *wakeups, strsigset_t *firstmsgsigs, 1529 strsigset_t *allmsgsigs, strpollset_t *pollwakeups) 1530 { 1531 *wakeups = 0; 1532 *firstmsgsigs = 0; 1533 *allmsgsigs = 0; 1534 *pollwakeups = 0; 1535 return (mp); 1536 } 1537 1538 /* 1539 * Stream read put procedure. Called from downstream driver/module 1540 * with messages for the stream head. Data, protocol, and in-stream 1541 * signal messages are placed on the queue, others are handled directly. 1542 */ 1543 int 1544 strrput(queue_t *q, mblk_t *bp) 1545 { 1546 struct stdata *stp; 1547 ulong_t rput_opt; 1548 strwakeup_t wakeups; 1549 strsigset_t firstmsgsigs; /* Signals if first message on queue */ 1550 strsigset_t allmsgsigs; /* Signals for all messages */ 1551 strsigset_t signals; /* Signals events to generate */ 1552 strpollset_t pollwakeups; 1553 mblk_t *nextbp; 1554 uchar_t band = 0; 1555 int hipri_sig; 1556 1557 stp = (struct stdata *)q->q_ptr; 1558 /* 1559 * Use rput_opt for optimized access to the SR_ flags except 1560 * SR_POLLIN. That flag has to be checked under sd_lock since it 1561 * is modified by strpoll(). 1562 */ 1563 rput_opt = stp->sd_rput_opt; 1564 1565 ASSERT(qclaimed(q)); 1566 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_ENTER, 1567 "strrput called with message type:q %p bp %p", q, bp); 1568 1569 /* 1570 * Perform initial processing and pass to the parameterized functions. 1571 */ 1572 ASSERT(bp->b_next == NULL); 1573 1574 switch (bp->b_datap->db_type) { 1575 case M_DATA: 1576 /* 1577 * sockfs is the only consumer of STREOF and when it is set, 1578 * it implies that the receiver is not interested in receiving 1579 * any more data, hence the mblk is freed to prevent unnecessary 1580 * message queueing at the stream head. 1581 */ 1582 if (stp->sd_flag == STREOF) { 1583 freemsg(bp); 1584 return (0); 1585 } 1586 if ((rput_opt & SR_IGN_ZEROLEN) && 1587 bp->b_rptr == bp->b_wptr && msgnodata(bp)) { 1588 /* 1589 * Ignore zero-length M_DATA messages. These might be 1590 * generated by some transports. 1591 * The zero-length M_DATA messages, even if they 1592 * are ignored, should effect the atmark tracking and 1593 * should wake up a thread sleeping in strwaitmark. 1594 */ 1595 mutex_enter(&stp->sd_lock); 1596 if (bp->b_flag & MSGMARKNEXT) { 1597 /* 1598 * Record the position of the mark either 1599 * in q_last or in STRATMARK. 1600 */ 1601 if (q->q_last != NULL) { 1602 q->q_last->b_flag &= ~MSGNOTMARKNEXT; 1603 q->q_last->b_flag |= MSGMARKNEXT; 1604 } else { 1605 stp->sd_flag &= ~STRNOTATMARK; 1606 stp->sd_flag |= STRATMARK; 1607 } 1608 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1609 /* 1610 * Record that this is not the position of 1611 * the mark either in q_last or in 1612 * STRNOTATMARK. 1613 */ 1614 if (q->q_last != NULL) { 1615 q->q_last->b_flag &= ~MSGMARKNEXT; 1616 q->q_last->b_flag |= MSGNOTMARKNEXT; 1617 } else { 1618 stp->sd_flag &= ~STRATMARK; 1619 stp->sd_flag |= STRNOTATMARK; 1620 } 1621 } 1622 if (stp->sd_flag & RSLEEP) { 1623 stp->sd_flag &= ~RSLEEP; 1624 cv_broadcast(&q->q_wait); 1625 } 1626 mutex_exit(&stp->sd_lock); 1627 freemsg(bp); 1628 return (0); 1629 } 1630 wakeups = RSLEEP; 1631 if (bp->b_band == 0) { 1632 firstmsgsigs = S_INPUT | S_RDNORM; 1633 pollwakeups = POLLIN | POLLRDNORM; 1634 } else { 1635 firstmsgsigs = S_INPUT | S_RDBAND; 1636 pollwakeups = POLLIN | POLLRDBAND; 1637 } 1638 if (rput_opt & SR_SIGALLDATA) 1639 allmsgsigs = firstmsgsigs; 1640 else 1641 allmsgsigs = 0; 1642 1643 mutex_enter(&stp->sd_lock); 1644 if ((rput_opt & SR_CONSOL_DATA) && 1645 (q->q_last != NULL) && 1646 (bp->b_flag & (MSGMARK|MSGDELIM)) == 0) { 1647 /* 1648 * Consolidate an M_DATA message onto an M_DATA, 1649 * M_PROTO, or M_PCPROTO by merging it with q_last. 1650 * The consolidation does not take place if 1651 * the old message is marked with either of the 1652 * marks or the delim flag or if the new 1653 * message is marked with MSGMARK. The MSGMARK 1654 * check is needed to handle the odd semantics of 1655 * MSGMARK where essentially the whole message 1656 * is to be treated as marked. 1657 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from the 1658 * new message to the front of the b_cont chain. 1659 */ 1660 mblk_t *lbp = q->q_last; 1661 unsigned char db_type = lbp->b_datap->db_type; 1662 1663 if ((db_type == M_DATA || db_type == M_PROTO || 1664 db_type == M_PCPROTO) && 1665 !(lbp->b_flag & (MSGDELIM|MSGMARK|MSGMARKNEXT))) { 1666 rmvq_noenab(q, lbp); 1667 /* 1668 * The first message in the b_cont list 1669 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 1670 * We need to handle the case where we 1671 * are appending: 1672 * 1673 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 1674 * 2) a MSGMARKNEXT to a plain message. 1675 * 3) a MSGNOTMARKNEXT to a plain message 1676 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 1677 * message. 1678 * 1679 * Thus we never append a MSGMARKNEXT or 1680 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 1681 */ 1682 if (bp->b_flag & MSGMARKNEXT) { 1683 lbp->b_flag |= MSGMARKNEXT; 1684 lbp->b_flag &= ~MSGNOTMARKNEXT; 1685 bp->b_flag &= ~MSGMARKNEXT; 1686 } else if (bp->b_flag & MSGNOTMARKNEXT) { 1687 lbp->b_flag |= MSGNOTMARKNEXT; 1688 bp->b_flag &= ~MSGNOTMARKNEXT; 1689 } 1690 1691 linkb(lbp, bp); 1692 bp = lbp; 1693 /* 1694 * The new message logically isn't the first 1695 * even though the q_first check below thinks 1696 * it is. Clear the firstmsgsigs to make it 1697 * not appear to be first. 1698 */ 1699 firstmsgsigs = 0; 1700 } 1701 } 1702 break; 1703 1704 case M_PASSFP: 1705 wakeups = RSLEEP; 1706 allmsgsigs = 0; 1707 if (bp->b_band == 0) { 1708 firstmsgsigs = S_INPUT | S_RDNORM; 1709 pollwakeups = POLLIN | POLLRDNORM; 1710 } else { 1711 firstmsgsigs = S_INPUT | S_RDBAND; 1712 pollwakeups = POLLIN | POLLRDBAND; 1713 } 1714 mutex_enter(&stp->sd_lock); 1715 break; 1716 1717 case M_PROTO: 1718 case M_PCPROTO: 1719 ASSERT(stp->sd_rprotofunc != NULL); 1720 bp = (stp->sd_rprotofunc)(stp->sd_vnode, bp, 1721 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1722 #define ALLSIG (S_INPUT|S_HIPRI|S_OUTPUT|S_MSG|S_ERROR|S_HANGUP|S_RDNORM|\ 1723 S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG) 1724 #define ALLPOLL (POLLIN|POLLPRI|POLLOUT|POLLRDNORM|POLLWRNORM|POLLRDBAND|\ 1725 POLLWRBAND) 1726 1727 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1728 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1729 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1730 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1731 1732 mutex_enter(&stp->sd_lock); 1733 break; 1734 1735 default: 1736 ASSERT(stp->sd_rmiscfunc != NULL); 1737 bp = (stp->sd_rmiscfunc)(stp->sd_vnode, bp, 1738 &wakeups, &firstmsgsigs, &allmsgsigs, &pollwakeups); 1739 ASSERT((wakeups & ~(RSLEEP|WSLEEP)) == 0); 1740 ASSERT((firstmsgsigs & ~ALLSIG) == 0); 1741 ASSERT((allmsgsigs & ~ALLSIG) == 0); 1742 ASSERT((pollwakeups & ~ALLPOLL) == 0); 1743 #undef ALLSIG 1744 #undef ALLPOLL 1745 mutex_enter(&stp->sd_lock); 1746 break; 1747 } 1748 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1749 1750 /* By default generate superset of signals */ 1751 signals = (firstmsgsigs | allmsgsigs); 1752 1753 /* 1754 * The proto and misc functions can return multiple messages 1755 * as a b_next chain. Such messages are processed separately. 1756 */ 1757 one_more: 1758 hipri_sig = 0; 1759 if (bp == NULL) { 1760 nextbp = NULL; 1761 } else { 1762 nextbp = bp->b_next; 1763 bp->b_next = NULL; 1764 1765 switch (bp->b_datap->db_type) { 1766 case M_PCPROTO: 1767 /* 1768 * Only one priority protocol message is allowed at the 1769 * stream head at a time. 1770 */ 1771 if (stp->sd_flag & STRPRI) { 1772 TRACE_0(TR_FAC_STREAMS_FR, TR_STRRPUT_PROTERR, 1773 "M_PCPROTO already at head"); 1774 freemsg(bp); 1775 mutex_exit(&stp->sd_lock); 1776 goto done; 1777 } 1778 stp->sd_flag |= STRPRI; 1779 hipri_sig = 1; 1780 /* FALLTHRU */ 1781 case M_DATA: 1782 case M_PROTO: 1783 case M_PASSFP: 1784 band = bp->b_band; 1785 /* 1786 * Marking doesn't work well when messages 1787 * are marked in more than one band. We only 1788 * remember the last message received, even if 1789 * it is placed on the queue ahead of other 1790 * marked messages. 1791 */ 1792 if (bp->b_flag & MSGMARK) 1793 stp->sd_mark = bp; 1794 (void) putq(q, bp); 1795 1796 /* 1797 * If message is a PCPROTO message, always use 1798 * firstmsgsigs to determine if a signal should be 1799 * sent as strrput is the only place to send 1800 * signals for PCPROTO. Other messages are based on 1801 * the STRGETINPROG flag. The flag determines if 1802 * strrput or (k)strgetmsg will be responsible for 1803 * sending the signals, in the firstmsgsigs case. 1804 */ 1805 if ((hipri_sig == 1) || 1806 (((stp->sd_flag & STRGETINPROG) == 0) && 1807 (q->q_first == bp))) 1808 signals = (firstmsgsigs | allmsgsigs); 1809 else 1810 signals = allmsgsigs; 1811 break; 1812 1813 default: 1814 mutex_exit(&stp->sd_lock); 1815 (void) strrput_nondata(q, bp); 1816 mutex_enter(&stp->sd_lock); 1817 break; 1818 } 1819 } 1820 ASSERT(MUTEX_HELD(&stp->sd_lock)); 1821 /* 1822 * Wake sleeping read/getmsg and cancel deferred wakeup 1823 */ 1824 if (wakeups & RSLEEP) 1825 stp->sd_wakeq &= ~RSLEEP; 1826 1827 wakeups &= stp->sd_flag; 1828 if (wakeups & RSLEEP) { 1829 stp->sd_flag &= ~RSLEEP; 1830 cv_broadcast(&q->q_wait); 1831 } 1832 if (wakeups & WSLEEP) { 1833 stp->sd_flag &= ~WSLEEP; 1834 cv_broadcast(&_WR(q)->q_wait); 1835 } 1836 1837 if (pollwakeups != 0) { 1838 if (pollwakeups == (POLLIN | POLLRDNORM)) { 1839 /* 1840 * Can't use rput_opt since it was not 1841 * read when sd_lock was held and SR_POLLIN is changed 1842 * by strpoll() under sd_lock. 1843 */ 1844 if (!(stp->sd_rput_opt & SR_POLLIN)) 1845 goto no_pollwake; 1846 stp->sd_rput_opt &= ~SR_POLLIN; 1847 } 1848 mutex_exit(&stp->sd_lock); 1849 pollwakeup(&stp->sd_pollist, pollwakeups); 1850 mutex_enter(&stp->sd_lock); 1851 } 1852 no_pollwake: 1853 1854 /* 1855 * strsendsig can handle multiple signals with a 1856 * single call. 1857 */ 1858 if (stp->sd_sigflags & signals) 1859 strsendsig(stp->sd_siglist, signals, band, 0); 1860 mutex_exit(&stp->sd_lock); 1861 1862 1863 done: 1864 if (nextbp == NULL) 1865 return (0); 1866 1867 /* 1868 * Any signals were handled the first time. 1869 * Wakeups and pollwakeups are redone to avoid any race 1870 * conditions - all the messages are not queued until the 1871 * last message has been processed by strrput. 1872 */ 1873 bp = nextbp; 1874 signals = firstmsgsigs = allmsgsigs = 0; 1875 mutex_enter(&stp->sd_lock); 1876 goto one_more; 1877 } 1878 1879 static void 1880 log_dupioc(queue_t *rq, mblk_t *bp) 1881 { 1882 queue_t *wq, *qp; 1883 char *modnames, *mnp, *dname; 1884 size_t maxmodstr; 1885 boolean_t islast; 1886 1887 /* 1888 * Allocate a buffer large enough to hold the names of nstrpush modules 1889 * and one driver, with spaces between and NUL terminator. If we can't 1890 * get memory, then we'll just log the driver name. 1891 */ 1892 maxmodstr = nstrpush * (FMNAMESZ + 1); 1893 mnp = modnames = kmem_alloc(maxmodstr, KM_NOSLEEP); 1894 1895 /* march down write side to print log message down to the driver */ 1896 wq = WR(rq); 1897 1898 /* make sure q_next doesn't shift around while we're grabbing data */ 1899 claimstr(wq); 1900 qp = wq->q_next; 1901 do { 1902 dname = Q2NAME(qp); 1903 islast = !SAMESTR(qp) || qp->q_next == NULL; 1904 if (modnames == NULL) { 1905 /* 1906 * If we don't have memory, then get the driver name in 1907 * the log where we can see it. Note that memory 1908 * pressure is a possible cause of these sorts of bugs. 1909 */ 1910 if (islast) { 1911 modnames = dname; 1912 maxmodstr = 0; 1913 } 1914 } else { 1915 mnp += snprintf(mnp, FMNAMESZ + 1, "%s", dname); 1916 if (!islast) 1917 *mnp++ = ' '; 1918 } 1919 qp = qp->q_next; 1920 } while (!islast); 1921 releasestr(wq); 1922 /* Cannot happen unless stream head is corrupt. */ 1923 ASSERT(modnames != NULL); 1924 (void) strlog(rq->q_qinfo->qi_minfo->mi_idnum, 0, 1, 1925 SL_CONSOLE|SL_TRACE|SL_ERROR, 1926 "Warning: stream %p received duplicate %X M_IOC%s; module list: %s", 1927 rq->q_ptr, ((struct iocblk *)bp->b_rptr)->ioc_cmd, 1928 (DB_TYPE(bp) == M_IOCACK ? "ACK" : "NAK"), modnames); 1929 if (maxmodstr != 0) 1930 kmem_free(modnames, maxmodstr); 1931 } 1932 1933 int 1934 strrput_nondata(queue_t *q, mblk_t *bp) 1935 { 1936 struct stdata *stp; 1937 struct iocblk *iocbp; 1938 struct stroptions *sop; 1939 struct copyreq *reqp; 1940 struct copyresp *resp; 1941 unsigned char bpri; 1942 unsigned char flushed_already = 0; 1943 1944 stp = (struct stdata *)q->q_ptr; 1945 1946 ASSERT(!(stp->sd_flag & STPLEX)); 1947 ASSERT(qclaimed(q)); 1948 1949 switch (bp->b_datap->db_type) { 1950 case M_ERROR: 1951 /* 1952 * An error has occurred downstream, the errno is in the first 1953 * bytes of the message. 1954 */ 1955 if ((bp->b_wptr - bp->b_rptr) == 2) { /* New flavor */ 1956 unsigned char rw = 0; 1957 1958 mutex_enter(&stp->sd_lock); 1959 if (*bp->b_rptr != NOERROR) { /* read error */ 1960 if (*bp->b_rptr != 0) { 1961 if (stp->sd_flag & STRDERR) 1962 flushed_already |= FLUSHR; 1963 stp->sd_flag |= STRDERR; 1964 rw |= FLUSHR; 1965 } else { 1966 stp->sd_flag &= ~STRDERR; 1967 } 1968 stp->sd_rerror = *bp->b_rptr; 1969 } 1970 bp->b_rptr++; 1971 if (*bp->b_rptr != NOERROR) { /* write error */ 1972 if (*bp->b_rptr != 0) { 1973 if (stp->sd_flag & STWRERR) 1974 flushed_already |= FLUSHW; 1975 stp->sd_flag |= STWRERR; 1976 rw |= FLUSHW; 1977 } else { 1978 stp->sd_flag &= ~STWRERR; 1979 } 1980 stp->sd_werror = *bp->b_rptr; 1981 } 1982 if (rw) { 1983 TRACE_2(TR_FAC_STREAMS_FR, TR_STRRPUT_WAKE, 1984 "strrput cv_broadcast:q %p, bp %p", 1985 q, bp); 1986 cv_broadcast(&q->q_wait); /* readers */ 1987 cv_broadcast(&_WR(q)->q_wait); /* writers */ 1988 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 1989 1990 mutex_exit(&stp->sd_lock); 1991 pollwakeup(&stp->sd_pollist, POLLERR); 1992 mutex_enter(&stp->sd_lock); 1993 1994 if (stp->sd_sigflags & S_ERROR) 1995 strsendsig(stp->sd_siglist, S_ERROR, 0, 1996 ((rw & FLUSHR) ? stp->sd_rerror : 1997 stp->sd_werror)); 1998 mutex_exit(&stp->sd_lock); 1999 /* 2000 * Send the M_FLUSH only 2001 * for the first M_ERROR 2002 * message on the stream 2003 */ 2004 if (flushed_already == rw) { 2005 freemsg(bp); 2006 return (0); 2007 } 2008 2009 bp->b_datap->db_type = M_FLUSH; 2010 *bp->b_rptr = rw; 2011 bp->b_wptr = bp->b_rptr + 1; 2012 /* 2013 * Protect against the driver 2014 * passing up messages after 2015 * it has done a qprocsoff 2016 */ 2017 if (_OTHERQ(q)->q_next == NULL) 2018 freemsg(bp); 2019 else 2020 qreply(q, bp); 2021 return (0); 2022 } else 2023 mutex_exit(&stp->sd_lock); 2024 } else if (*bp->b_rptr != 0) { /* Old flavor */ 2025 if (stp->sd_flag & (STRDERR|STWRERR)) 2026 flushed_already = FLUSHRW; 2027 mutex_enter(&stp->sd_lock); 2028 stp->sd_flag |= (STRDERR|STWRERR); 2029 stp->sd_rerror = *bp->b_rptr; 2030 stp->sd_werror = *bp->b_rptr; 2031 TRACE_2(TR_FAC_STREAMS_FR, 2032 TR_STRRPUT_WAKE2, 2033 "strrput wakeup #2:q %p, bp %p", q, bp); 2034 cv_broadcast(&q->q_wait); /* the readers */ 2035 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2036 cv_broadcast(&stp->sd_monitor); /* ioctllers */ 2037 2038 mutex_exit(&stp->sd_lock); 2039 pollwakeup(&stp->sd_pollist, POLLERR); 2040 mutex_enter(&stp->sd_lock); 2041 2042 if (stp->sd_sigflags & S_ERROR) 2043 strsendsig(stp->sd_siglist, S_ERROR, 0, 2044 (stp->sd_werror ? stp->sd_werror : 2045 stp->sd_rerror)); 2046 mutex_exit(&stp->sd_lock); 2047 2048 /* 2049 * Send the M_FLUSH only 2050 * for the first M_ERROR 2051 * message on the stream 2052 */ 2053 if (flushed_already != FLUSHRW) { 2054 bp->b_datap->db_type = M_FLUSH; 2055 *bp->b_rptr = FLUSHRW; 2056 /* 2057 * Protect against the driver passing up 2058 * messages after it has done a 2059 * qprocsoff. 2060 */ 2061 if (_OTHERQ(q)->q_next == NULL) 2062 freemsg(bp); 2063 else 2064 qreply(q, bp); 2065 return (0); 2066 } 2067 } 2068 freemsg(bp); 2069 return (0); 2070 2071 case M_HANGUP: 2072 2073 freemsg(bp); 2074 mutex_enter(&stp->sd_lock); 2075 stp->sd_werror = ENXIO; 2076 stp->sd_flag |= STRHUP; 2077 stp->sd_flag &= ~(WSLEEP|RSLEEP); 2078 2079 /* 2080 * send signal if controlling tty 2081 */ 2082 2083 if (stp->sd_sidp) { 2084 prsignal(stp->sd_sidp, SIGHUP); 2085 if (stp->sd_sidp != stp->sd_pgidp) 2086 pgsignal(stp->sd_pgidp, SIGTSTP); 2087 } 2088 2089 /* 2090 * wake up read, write, and exception pollers and 2091 * reset wakeup mechanism. 2092 */ 2093 cv_broadcast(&q->q_wait); /* the readers */ 2094 cv_broadcast(&_WR(q)->q_wait); /* the writers */ 2095 cv_broadcast(&stp->sd_monitor); /* the ioctllers */ 2096 strhup(stp); 2097 mutex_exit(&stp->sd_lock); 2098 return (0); 2099 2100 case M_UNHANGUP: 2101 freemsg(bp); 2102 mutex_enter(&stp->sd_lock); 2103 stp->sd_werror = 0; 2104 stp->sd_flag &= ~STRHUP; 2105 mutex_exit(&stp->sd_lock); 2106 return (0); 2107 2108 case M_SIG: 2109 /* 2110 * Someone downstream wants to post a signal. The 2111 * signal to post is contained in the first byte of the 2112 * message. If the message would go on the front of 2113 * the queue, send a signal to the process group 2114 * (if not SIGPOLL) or to the siglist processes 2115 * (SIGPOLL). If something is already on the queue, 2116 * OR if we are delivering a delayed suspend (*sigh* 2117 * another "tty" hack) and there's no one sleeping already, 2118 * just enqueue the message. 2119 */ 2120 mutex_enter(&stp->sd_lock); 2121 if (q->q_first || (*bp->b_rptr == SIGTSTP && 2122 !(stp->sd_flag & RSLEEP))) { 2123 (void) putq(q, bp); 2124 mutex_exit(&stp->sd_lock); 2125 return (0); 2126 } 2127 mutex_exit(&stp->sd_lock); 2128 /* FALLTHRU */ 2129 2130 case M_PCSIG: 2131 /* 2132 * Don't enqueue, just post the signal. 2133 */ 2134 strsignal(stp, *bp->b_rptr, 0L); 2135 freemsg(bp); 2136 return (0); 2137 2138 case M_CMD: 2139 if (MBLKL(bp) != sizeof (cmdblk_t)) { 2140 freemsg(bp); 2141 return (0); 2142 } 2143 2144 mutex_enter(&stp->sd_lock); 2145 if (stp->sd_flag & STRCMDWAIT) { 2146 ASSERT(stp->sd_cmdblk == NULL); 2147 stp->sd_cmdblk = bp; 2148 cv_broadcast(&stp->sd_monitor); 2149 mutex_exit(&stp->sd_lock); 2150 } else { 2151 mutex_exit(&stp->sd_lock); 2152 freemsg(bp); 2153 } 2154 return (0); 2155 2156 case M_FLUSH: 2157 /* 2158 * Flush queues. The indication of which queues to flush 2159 * is in the first byte of the message. If the read queue 2160 * is specified, then flush it. If FLUSHBAND is set, just 2161 * flush the band specified by the second byte of the message. 2162 * 2163 * If a module has issued a M_SETOPT to not flush hi 2164 * priority messages off of the stream head, then pass this 2165 * flag into the flushq code to preserve such messages. 2166 */ 2167 2168 if (*bp->b_rptr & FLUSHR) { 2169 mutex_enter(&stp->sd_lock); 2170 if (*bp->b_rptr & FLUSHBAND) { 2171 ASSERT((bp->b_wptr - bp->b_rptr) >= 2); 2172 flushband(q, *(bp->b_rptr + 1), FLUSHALL); 2173 } else 2174 flushq_common(q, FLUSHALL, 2175 stp->sd_read_opt & RFLUSHPCPROT); 2176 if ((q->q_first == NULL) || 2177 (q->q_first->b_datap->db_type < QPCTL)) 2178 stp->sd_flag &= ~STRPRI; 2179 else { 2180 ASSERT(stp->sd_flag & STRPRI); 2181 } 2182 mutex_exit(&stp->sd_lock); 2183 } 2184 if ((*bp->b_rptr & FLUSHW) && !(bp->b_flag & MSGNOLOOP)) { 2185 *bp->b_rptr &= ~FLUSHR; 2186 bp->b_flag |= MSGNOLOOP; 2187 /* 2188 * Protect against the driver passing up 2189 * messages after it has done a qprocsoff. 2190 */ 2191 if (_OTHERQ(q)->q_next == NULL) 2192 freemsg(bp); 2193 else 2194 qreply(q, bp); 2195 return (0); 2196 } 2197 freemsg(bp); 2198 return (0); 2199 2200 case M_IOCACK: 2201 case M_IOCNAK: 2202 iocbp = (struct iocblk *)bp->b_rptr; 2203 /* 2204 * If not waiting for ACK or NAK then just free msg. 2205 * If incorrect id sequence number then just free msg. 2206 * If already have ACK or NAK for user then this is a 2207 * duplicate, display a warning and free the msg. 2208 */ 2209 mutex_enter(&stp->sd_lock); 2210 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2211 (stp->sd_iocid != iocbp->ioc_id)) { 2212 /* 2213 * If the ACK/NAK is a dup, display a message 2214 * Dup is when sd_iocid == ioc_id, and 2215 * sd_iocblk == <valid ptr> or -1 (the former 2216 * is when an ioctl has been put on the stream 2217 * head, but has not yet been consumed, the 2218 * later is when it has been consumed). 2219 */ 2220 if ((stp->sd_iocid == iocbp->ioc_id) && 2221 (stp->sd_iocblk != NULL)) { 2222 log_dupioc(q, bp); 2223 } 2224 freemsg(bp); 2225 mutex_exit(&stp->sd_lock); 2226 return (0); 2227 } 2228 2229 /* 2230 * Assign ACK or NAK to user and wake up. 2231 */ 2232 stp->sd_iocblk = bp; 2233 cv_broadcast(&stp->sd_monitor); 2234 mutex_exit(&stp->sd_lock); 2235 return (0); 2236 2237 case M_COPYIN: 2238 case M_COPYOUT: 2239 reqp = (struct copyreq *)bp->b_rptr; 2240 2241 /* 2242 * If not waiting for ACK or NAK then just fail request. 2243 * If already have ACK, NAK, or copy request, then just 2244 * fail request. 2245 * If incorrect id sequence number then just fail request. 2246 */ 2247 mutex_enter(&stp->sd_lock); 2248 if ((stp->sd_flag & IOCWAIT) == 0 || stp->sd_iocblk || 2249 (stp->sd_iocid != reqp->cq_id)) { 2250 if (bp->b_cont) { 2251 freemsg(bp->b_cont); 2252 bp->b_cont = NULL; 2253 } 2254 bp->b_datap->db_type = M_IOCDATA; 2255 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 2256 resp = (struct copyresp *)bp->b_rptr; 2257 resp->cp_rval = (caddr_t)1; /* failure */ 2258 mutex_exit(&stp->sd_lock); 2259 putnext(stp->sd_wrq, bp); 2260 return (0); 2261 } 2262 2263 /* 2264 * Assign copy request to user and wake up. 2265 */ 2266 stp->sd_iocblk = bp; 2267 cv_broadcast(&stp->sd_monitor); 2268 mutex_exit(&stp->sd_lock); 2269 return (0); 2270 2271 case M_SETOPTS: 2272 /* 2273 * Set stream head options (read option, write offset, 2274 * min/max packet size, and/or high/low water marks for 2275 * the read side only). 2276 */ 2277 2278 bpri = 0; 2279 sop = (struct stroptions *)bp->b_rptr; 2280 mutex_enter(&stp->sd_lock); 2281 if (sop->so_flags & SO_READOPT) { 2282 switch (sop->so_readopt & RMODEMASK) { 2283 case RNORM: 2284 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 2285 break; 2286 2287 case RMSGD: 2288 stp->sd_read_opt = 2289 ((stp->sd_read_opt & ~RD_MSGNODIS) | 2290 RD_MSGDIS); 2291 break; 2292 2293 case RMSGN: 2294 stp->sd_read_opt = 2295 ((stp->sd_read_opt & ~RD_MSGDIS) | 2296 RD_MSGNODIS); 2297 break; 2298 } 2299 switch (sop->so_readopt & RPROTMASK) { 2300 case RPROTNORM: 2301 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 2302 break; 2303 2304 case RPROTDAT: 2305 stp->sd_read_opt = 2306 ((stp->sd_read_opt & ~RD_PROTDIS) | 2307 RD_PROTDAT); 2308 break; 2309 2310 case RPROTDIS: 2311 stp->sd_read_opt = 2312 ((stp->sd_read_opt & ~RD_PROTDAT) | 2313 RD_PROTDIS); 2314 break; 2315 } 2316 switch (sop->so_readopt & RFLUSHMASK) { 2317 case RFLUSHPCPROT: 2318 /* 2319 * This sets the stream head to NOT flush 2320 * M_PCPROTO messages. 2321 */ 2322 stp->sd_read_opt |= RFLUSHPCPROT; 2323 break; 2324 } 2325 } 2326 if (sop->so_flags & SO_ERROPT) { 2327 switch (sop->so_erropt & RERRMASK) { 2328 case RERRNORM: 2329 stp->sd_flag &= ~STRDERRNONPERSIST; 2330 break; 2331 case RERRNONPERSIST: 2332 stp->sd_flag |= STRDERRNONPERSIST; 2333 break; 2334 } 2335 switch (sop->so_erropt & WERRMASK) { 2336 case WERRNORM: 2337 stp->sd_flag &= ~STWRERRNONPERSIST; 2338 break; 2339 case WERRNONPERSIST: 2340 stp->sd_flag |= STWRERRNONPERSIST; 2341 break; 2342 } 2343 } 2344 if (sop->so_flags & SO_COPYOPT) { 2345 if (sop->so_copyopt & ZCVMSAFE) { 2346 stp->sd_copyflag |= STZCVMSAFE; 2347 stp->sd_copyflag &= ~STZCVMUNSAFE; 2348 } else if (sop->so_copyopt & ZCVMUNSAFE) { 2349 stp->sd_copyflag |= STZCVMUNSAFE; 2350 stp->sd_copyflag &= ~STZCVMSAFE; 2351 } 2352 2353 if (sop->so_copyopt & COPYCACHED) { 2354 stp->sd_copyflag |= STRCOPYCACHED; 2355 } 2356 } 2357 if (sop->so_flags & SO_WROFF) 2358 stp->sd_wroff = sop->so_wroff; 2359 if (sop->so_flags & SO_TAIL) 2360 stp->sd_tail = sop->so_tail; 2361 if (sop->so_flags & SO_MINPSZ) 2362 q->q_minpsz = sop->so_minpsz; 2363 if (sop->so_flags & SO_MAXPSZ) 2364 q->q_maxpsz = sop->so_maxpsz; 2365 if (sop->so_flags & SO_MAXBLK) 2366 stp->sd_maxblk = sop->so_maxblk; 2367 if (sop->so_flags & SO_HIWAT) { 2368 if (sop->so_flags & SO_BAND) { 2369 if (strqset(q, QHIWAT, 2370 sop->so_band, sop->so_hiwat)) { 2371 cmn_err(CE_WARN, "strrput: could not " 2372 "allocate qband\n"); 2373 } else { 2374 bpri = sop->so_band; 2375 } 2376 } else { 2377 q->q_hiwat = sop->so_hiwat; 2378 } 2379 } 2380 if (sop->so_flags & SO_LOWAT) { 2381 if (sop->so_flags & SO_BAND) { 2382 if (strqset(q, QLOWAT, 2383 sop->so_band, sop->so_lowat)) { 2384 cmn_err(CE_WARN, "strrput: could not " 2385 "allocate qband\n"); 2386 } else { 2387 bpri = sop->so_band; 2388 } 2389 } else { 2390 q->q_lowat = sop->so_lowat; 2391 } 2392 } 2393 if (sop->so_flags & SO_MREADON) 2394 stp->sd_flag |= SNDMREAD; 2395 if (sop->so_flags & SO_MREADOFF) 2396 stp->sd_flag &= ~SNDMREAD; 2397 if (sop->so_flags & SO_NDELON) 2398 stp->sd_flag |= OLDNDELAY; 2399 if (sop->so_flags & SO_NDELOFF) 2400 stp->sd_flag &= ~OLDNDELAY; 2401 if (sop->so_flags & SO_ISTTY) 2402 stp->sd_flag |= STRISTTY; 2403 if (sop->so_flags & SO_ISNTTY) 2404 stp->sd_flag &= ~STRISTTY; 2405 if (sop->so_flags & SO_TOSTOP) 2406 stp->sd_flag |= STRTOSTOP; 2407 if (sop->so_flags & SO_TONSTOP) 2408 stp->sd_flag &= ~STRTOSTOP; 2409 if (sop->so_flags & SO_DELIM) 2410 stp->sd_flag |= STRDELIM; 2411 if (sop->so_flags & SO_NODELIM) 2412 stp->sd_flag &= ~STRDELIM; 2413 2414 mutex_exit(&stp->sd_lock); 2415 freemsg(bp); 2416 2417 /* Check backenable in case the water marks changed */ 2418 qbackenable(q, bpri); 2419 return (0); 2420 2421 /* 2422 * The following set of cases deal with situations where two stream 2423 * heads are connected to each other (twisted streams). These messages 2424 * have no meaning at the stream head. 2425 */ 2426 case M_BREAK: 2427 case M_CTL: 2428 case M_DELAY: 2429 case M_START: 2430 case M_STOP: 2431 case M_IOCDATA: 2432 case M_STARTI: 2433 case M_STOPI: 2434 freemsg(bp); 2435 return (0); 2436 2437 case M_IOCTL: 2438 /* 2439 * Always NAK this condition 2440 * (makes no sense) 2441 * If there is one or more threads in the read side 2442 * rwnext we have to defer the nacking until that thread 2443 * returns (in strget). 2444 */ 2445 mutex_enter(&stp->sd_lock); 2446 if (stp->sd_struiodnak != 0) { 2447 /* 2448 * Defer NAK to the streamhead. Queue at the end 2449 * the list. 2450 */ 2451 mblk_t *mp = stp->sd_struionak; 2452 2453 while (mp && mp->b_next) 2454 mp = mp->b_next; 2455 if (mp) 2456 mp->b_next = bp; 2457 else 2458 stp->sd_struionak = bp; 2459 bp->b_next = NULL; 2460 mutex_exit(&stp->sd_lock); 2461 return (0); 2462 } 2463 mutex_exit(&stp->sd_lock); 2464 2465 bp->b_datap->db_type = M_IOCNAK; 2466 /* 2467 * Protect against the driver passing up 2468 * messages after it has done a qprocsoff. 2469 */ 2470 if (_OTHERQ(q)->q_next == NULL) 2471 freemsg(bp); 2472 else 2473 qreply(q, bp); 2474 return (0); 2475 2476 default: 2477 #ifdef DEBUG 2478 cmn_err(CE_WARN, 2479 "bad message type %x received at stream head\n", 2480 bp->b_datap->db_type); 2481 #endif 2482 freemsg(bp); 2483 return (0); 2484 } 2485 2486 /* NOTREACHED */ 2487 } 2488 2489 /* 2490 * Check if the stream pointed to by `stp' can be written to, and return an 2491 * error code if not. If `eiohup' is set, then return EIO if STRHUP is set. 2492 * If `sigpipeok' is set and the SW_SIGPIPE option is enabled on the stream, 2493 * then always return EPIPE and send a SIGPIPE to the invoking thread. 2494 */ 2495 static int 2496 strwriteable(struct stdata *stp, boolean_t eiohup, boolean_t sigpipeok) 2497 { 2498 int error; 2499 2500 ASSERT(MUTEX_HELD(&stp->sd_lock)); 2501 2502 /* 2503 * For modem support, POSIX states that on writes, EIO should 2504 * be returned if the stream has been hung up. 2505 */ 2506 if (eiohup && (stp->sd_flag & (STPLEX|STRHUP)) == STRHUP) 2507 error = EIO; 2508 else 2509 error = strgeterr(stp, STRHUP|STPLEX|STWRERR, 0); 2510 2511 if (error != 0) { 2512 if (!(stp->sd_flag & STPLEX) && 2513 (stp->sd_wput_opt & SW_SIGPIPE) && sigpipeok) { 2514 tsignal(curthread, SIGPIPE); 2515 error = EPIPE; 2516 } 2517 } 2518 2519 return (error); 2520 } 2521 2522 /* 2523 * Copyin and send data down a stream. 2524 * The caller will allocate and copyin any control part that precedes the 2525 * message and pass that in as mctl. 2526 * 2527 * Caller should *not* hold sd_lock. 2528 * When EWOULDBLOCK is returned the caller has to redo the canputnext 2529 * under sd_lock in order to avoid missing a backenabling wakeup. 2530 * 2531 * Use iosize = -1 to not send any M_DATA. iosize = 0 sends zero-length M_DATA. 2532 * 2533 * Set MSG_IGNFLOW in flags to ignore flow control for hipri messages. 2534 * For sync streams we can only ignore flow control by reverting to using 2535 * putnext. 2536 * 2537 * If sd_maxblk is less than *iosize this routine might return without 2538 * transferring all of *iosize. In all cases, on return *iosize will contain 2539 * the amount of data that was transferred. 2540 */ 2541 static int 2542 strput(struct stdata *stp, mblk_t *mctl, struct uio *uiop, ssize_t *iosize, 2543 int b_flag, int pri, int flags) 2544 { 2545 struiod_t uiod; 2546 mblk_t *mp; 2547 queue_t *wqp = stp->sd_wrq; 2548 int error = 0; 2549 ssize_t count = *iosize; 2550 2551 ASSERT(MUTEX_NOT_HELD(&stp->sd_lock)); 2552 2553 if (uiop != NULL && count >= 0) 2554 flags |= stp->sd_struiowrq ? STRUIO_POSTPONE : 0; 2555 2556 if (!(flags & STRUIO_POSTPONE)) { 2557 /* 2558 * Use regular canputnext, strmakedata, putnext sequence. 2559 */ 2560 if (pri == 0) { 2561 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2562 freemsg(mctl); 2563 return (EWOULDBLOCK); 2564 } 2565 } else { 2566 if (!(flags & MSG_IGNFLOW) && !bcanputnext(wqp, pri)) { 2567 freemsg(mctl); 2568 return (EWOULDBLOCK); 2569 } 2570 } 2571 2572 if ((error = strmakedata(iosize, uiop, stp, flags, 2573 &mp)) != 0) { 2574 freemsg(mctl); 2575 /* 2576 * need to change return code to ENOMEM 2577 * so that this is not confused with 2578 * flow control, EAGAIN. 2579 */ 2580 2581 if (error == EAGAIN) 2582 return (ENOMEM); 2583 else 2584 return (error); 2585 } 2586 if (mctl != NULL) { 2587 if (mctl->b_cont == NULL) 2588 mctl->b_cont = mp; 2589 else if (mp != NULL) 2590 linkb(mctl, mp); 2591 mp = mctl; 2592 } else if (mp == NULL) 2593 return (0); 2594 2595 mp->b_flag |= b_flag; 2596 mp->b_band = (uchar_t)pri; 2597 2598 if (flags & MSG_IGNFLOW) { 2599 /* 2600 * XXX Hack: Don't get stuck running service 2601 * procedures. This is needed for sockfs when 2602 * sending the unbind message out of the rput 2603 * procedure - we don't want a put procedure 2604 * to run service procedures. 2605 */ 2606 putnext(wqp, mp); 2607 } else { 2608 stream_willservice(stp); 2609 putnext(wqp, mp); 2610 stream_runservice(stp); 2611 } 2612 return (0); 2613 } 2614 /* 2615 * Stream supports rwnext() for the write side. 2616 */ 2617 if ((error = strmakedata(iosize, uiop, stp, flags, &mp)) != 0) { 2618 freemsg(mctl); 2619 /* 2620 * map EAGAIN to ENOMEM since EAGAIN means "flow controlled". 2621 */ 2622 return (error == EAGAIN ? ENOMEM : error); 2623 } 2624 if (mctl != NULL) { 2625 if (mctl->b_cont == NULL) 2626 mctl->b_cont = mp; 2627 else if (mp != NULL) 2628 linkb(mctl, mp); 2629 mp = mctl; 2630 } else if (mp == NULL) { 2631 return (0); 2632 } 2633 2634 mp->b_flag |= b_flag; 2635 mp->b_band = (uchar_t)pri; 2636 2637 (void) uiodup(uiop, &uiod.d_uio, uiod.d_iov, 2638 sizeof (uiod.d_iov) / sizeof (*uiod.d_iov)); 2639 uiod.d_uio.uio_offset = 0; 2640 uiod.d_mp = mp; 2641 error = rwnext(wqp, &uiod); 2642 if (! uiod.d_mp) { 2643 uioskip(uiop, *iosize); 2644 return (error); 2645 } 2646 ASSERT(mp == uiod.d_mp); 2647 if (error == EINVAL) { 2648 /* 2649 * The stream plumbing must have changed while 2650 * we were away, so just turn off rwnext()s. 2651 */ 2652 error = 0; 2653 } else if (error == EBUSY || error == EWOULDBLOCK) { 2654 /* 2655 * Couldn't enter a perimeter or took a page fault, 2656 * so fall-back to putnext(). 2657 */ 2658 error = 0; 2659 } else { 2660 freemsg(mp); 2661 return (error); 2662 } 2663 /* Have to check canput before consuming data from the uio */ 2664 if (pri == 0) { 2665 if (!canputnext(wqp) && !(flags & MSG_IGNFLOW)) { 2666 freemsg(mp); 2667 return (EWOULDBLOCK); 2668 } 2669 } else { 2670 if (!bcanputnext(wqp, pri) && !(flags & MSG_IGNFLOW)) { 2671 freemsg(mp); 2672 return (EWOULDBLOCK); 2673 } 2674 } 2675 ASSERT(mp == uiod.d_mp); 2676 /* Copyin data from the uio */ 2677 if ((error = struioget(wqp, mp, &uiod, 0)) != 0) { 2678 freemsg(mp); 2679 return (error); 2680 } 2681 uioskip(uiop, *iosize); 2682 if (flags & MSG_IGNFLOW) { 2683 /* 2684 * XXX Hack: Don't get stuck running service procedures. 2685 * This is needed for sockfs when sending the unbind message 2686 * out of the rput procedure - we don't want a put procedure 2687 * to run service procedures. 2688 */ 2689 putnext(wqp, mp); 2690 } else { 2691 stream_willservice(stp); 2692 putnext(wqp, mp); 2693 stream_runservice(stp); 2694 } 2695 return (0); 2696 } 2697 2698 /* 2699 * Write attempts to break the write request into messages conforming 2700 * with the minimum and maximum packet sizes set downstream. 2701 * 2702 * Write will not block if downstream queue is full and 2703 * O_NDELAY is set, otherwise it will block waiting for the queue to get room. 2704 * 2705 * A write of zero bytes gets packaged into a zero length message and sent 2706 * downstream like any other message. 2707 * 2708 * If buffers of the requested sizes are not available, the write will 2709 * sleep until the buffers become available. 2710 * 2711 * Write (if specified) will supply a write offset in a message if it 2712 * makes sense. This can be specified by downstream modules as part of 2713 * a M_SETOPTS message. Write will not supply the write offset if it 2714 * cannot supply any data in a buffer. In other words, write will never 2715 * send down an empty packet due to a write offset. 2716 */ 2717 /* ARGSUSED2 */ 2718 int 2719 strwrite(struct vnode *vp, struct uio *uiop, cred_t *crp) 2720 { 2721 return (strwrite_common(vp, uiop, crp, 0)); 2722 } 2723 2724 /* ARGSUSED2 */ 2725 int 2726 strwrite_common(struct vnode *vp, struct uio *uiop, cred_t *crp, int wflag) 2727 { 2728 struct stdata *stp; 2729 struct queue *wqp; 2730 ssize_t rmin, rmax; 2731 ssize_t iosize; 2732 int waitflag; 2733 int tempmode; 2734 int error = 0; 2735 int b_flag; 2736 2737 ASSERT(vp->v_stream); 2738 stp = vp->v_stream; 2739 2740 mutex_enter(&stp->sd_lock); 2741 2742 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2743 mutex_exit(&stp->sd_lock); 2744 return (error); 2745 } 2746 2747 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 2748 error = strwriteable(stp, B_TRUE, B_TRUE); 2749 if (error != 0) { 2750 mutex_exit(&stp->sd_lock); 2751 return (error); 2752 } 2753 } 2754 2755 mutex_exit(&stp->sd_lock); 2756 2757 wqp = stp->sd_wrq; 2758 2759 /* get these values from them cached in the stream head */ 2760 rmin = stp->sd_qn_minpsz; 2761 rmax = stp->sd_qn_maxpsz; 2762 2763 /* 2764 * Check the min/max packet size constraints. If min packet size 2765 * is non-zero, the write cannot be split into multiple messages 2766 * and still guarantee the size constraints. 2767 */ 2768 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_IN, "strwrite in:q %p", wqp); 2769 2770 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 2771 if (rmax == 0) { 2772 return (0); 2773 } 2774 if (rmin > 0) { 2775 if (uiop->uio_resid < rmin) { 2776 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2777 "strwrite out:q %p out %d error %d", 2778 wqp, 0, ERANGE); 2779 return (ERANGE); 2780 } 2781 if ((rmax != INFPSZ) && (uiop->uio_resid > rmax)) { 2782 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2783 "strwrite out:q %p out %d error %d", 2784 wqp, 1, ERANGE); 2785 return (ERANGE); 2786 } 2787 } 2788 2789 /* 2790 * Do until count satisfied or error. 2791 */ 2792 waitflag = WRITEWAIT | wflag; 2793 if (stp->sd_flag & OLDNDELAY) 2794 tempmode = uiop->uio_fmode & ~FNDELAY; 2795 else 2796 tempmode = uiop->uio_fmode; 2797 2798 if (rmax == INFPSZ) 2799 rmax = uiop->uio_resid; 2800 2801 /* 2802 * Note that tempmode does not get used in strput/strmakedata 2803 * but only in strwaitq. The other routines use uio_fmode 2804 * unmodified. 2805 */ 2806 2807 /* LINTED: constant in conditional context */ 2808 while (1) { /* breaks when uio_resid reaches zero */ 2809 /* 2810 * Determine the size of the next message to be 2811 * packaged. May have to break write into several 2812 * messages based on max packet size. 2813 */ 2814 iosize = MIN(uiop->uio_resid, rmax); 2815 2816 /* 2817 * Put block downstream when flow control allows it. 2818 */ 2819 if ((stp->sd_flag & STRDELIM) && (uiop->uio_resid == iosize)) 2820 b_flag = MSGDELIM; 2821 else 2822 b_flag = 0; 2823 2824 for (;;) { 2825 int done = 0; 2826 2827 error = strput(stp, NULL, uiop, &iosize, b_flag, 0, 0); 2828 if (error == 0) 2829 break; 2830 if (error != EWOULDBLOCK) 2831 goto out; 2832 2833 mutex_enter(&stp->sd_lock); 2834 /* 2835 * Check for a missed wakeup. 2836 * Needed since strput did not hold sd_lock across 2837 * the canputnext. 2838 */ 2839 if (canputnext(wqp)) { 2840 /* Try again */ 2841 mutex_exit(&stp->sd_lock); 2842 continue; 2843 } 2844 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAIT, 2845 "strwrite wait:q %p wait", wqp); 2846 if ((error = strwaitq(stp, waitflag, (ssize_t)0, 2847 tempmode, -1, &done)) != 0 || done) { 2848 mutex_exit(&stp->sd_lock); 2849 if ((vp->v_type == VFIFO) && 2850 (uiop->uio_fmode & FNDELAY) && 2851 (error == EAGAIN)) 2852 error = 0; 2853 goto out; 2854 } 2855 TRACE_1(TR_FAC_STREAMS_FR, TR_STRWRITE_WAKE, 2856 "strwrite wake:q %p awakes", wqp); 2857 if ((error = i_straccess(stp, JCWRITE)) != 0) { 2858 mutex_exit(&stp->sd_lock); 2859 goto out; 2860 } 2861 mutex_exit(&stp->sd_lock); 2862 } 2863 waitflag |= NOINTR; 2864 TRACE_2(TR_FAC_STREAMS_FR, TR_STRWRITE_RESID, 2865 "strwrite resid:q %p uiop %p", wqp, uiop); 2866 if (uiop->uio_resid) { 2867 /* Recheck for errors - needed for sockets */ 2868 if ((stp->sd_wput_opt & SW_RECHECK_ERR) && 2869 (stp->sd_flag & (STWRERR|STRHUP|STPLEX))) { 2870 mutex_enter(&stp->sd_lock); 2871 error = strwriteable(stp, B_FALSE, B_TRUE); 2872 mutex_exit(&stp->sd_lock); 2873 if (error != 0) 2874 return (error); 2875 } 2876 continue; 2877 } 2878 break; 2879 } 2880 out: 2881 /* 2882 * For historical reasons, applications expect EAGAIN when a data 2883 * mblk_t cannot be allocated, so change ENOMEM back to EAGAIN. 2884 */ 2885 if (error == ENOMEM) 2886 error = EAGAIN; 2887 TRACE_3(TR_FAC_STREAMS_FR, TR_STRWRITE_OUT, 2888 "strwrite out:q %p out %d error %d", wqp, 2, error); 2889 return (error); 2890 } 2891 2892 /* 2893 * Stream head write service routine. 2894 * Its job is to wake up any sleeping writers when a queue 2895 * downstream needs data (part of the flow control in putq and getq). 2896 * It also must wake anyone sleeping on a poll(). 2897 * For stream head right below mux module, it must also invoke put procedure 2898 * of next downstream module. 2899 */ 2900 int 2901 strwsrv(queue_t *q) 2902 { 2903 struct stdata *stp; 2904 queue_t *tq; 2905 qband_t *qbp; 2906 int i; 2907 qband_t *myqbp; 2908 int isevent; 2909 unsigned char qbf[NBAND]; /* band flushing backenable flags */ 2910 2911 TRACE_1(TR_FAC_STREAMS_FR, 2912 TR_STRWSRV, "strwsrv:q %p", q); 2913 stp = (struct stdata *)q->q_ptr; 2914 ASSERT(qclaimed(q)); 2915 mutex_enter(&stp->sd_lock); 2916 ASSERT(!(stp->sd_flag & STPLEX)); 2917 2918 if (stp->sd_flag & WSLEEP) { 2919 stp->sd_flag &= ~WSLEEP; 2920 cv_broadcast(&q->q_wait); 2921 } 2922 mutex_exit(&stp->sd_lock); 2923 2924 /* The other end of a stream pipe went away. */ 2925 if ((tq = q->q_next) == NULL) { 2926 return (0); 2927 } 2928 2929 /* Find the next module forward that has a service procedure */ 2930 claimstr(q); 2931 tq = q->q_nfsrv; 2932 ASSERT(tq != NULL); 2933 2934 if ((q->q_flag & QBACK)) { 2935 if ((tq->q_flag & QFULL)) { 2936 mutex_enter(QLOCK(tq)); 2937 if (!(tq->q_flag & QFULL)) { 2938 mutex_exit(QLOCK(tq)); 2939 goto wakeup; 2940 } 2941 /* 2942 * The queue must have become full again. Set QWANTW 2943 * again so strwsrv will be back enabled when 2944 * the queue becomes non-full next time. 2945 */ 2946 tq->q_flag |= QWANTW; 2947 mutex_exit(QLOCK(tq)); 2948 } else { 2949 wakeup: 2950 pollwakeup(&stp->sd_pollist, POLLWRNORM); 2951 mutex_enter(&stp->sd_lock); 2952 if (stp->sd_sigflags & S_WRNORM) 2953 strsendsig(stp->sd_siglist, S_WRNORM, 0, 0); 2954 mutex_exit(&stp->sd_lock); 2955 } 2956 } 2957 2958 isevent = 0; 2959 i = 1; 2960 bzero((caddr_t)qbf, NBAND); 2961 mutex_enter(QLOCK(tq)); 2962 if ((myqbp = q->q_bandp) != NULL) 2963 for (qbp = tq->q_bandp; qbp && myqbp; qbp = qbp->qb_next) { 2964 ASSERT(myqbp); 2965 if ((myqbp->qb_flag & QB_BACK)) { 2966 if (qbp->qb_flag & QB_FULL) { 2967 /* 2968 * The band must have become full again. 2969 * Set QB_WANTW again so strwsrv will 2970 * be back enabled when the band becomes 2971 * non-full next time. 2972 */ 2973 qbp->qb_flag |= QB_WANTW; 2974 } else { 2975 isevent = 1; 2976 qbf[i] = 1; 2977 } 2978 } 2979 myqbp = myqbp->qb_next; 2980 i++; 2981 } 2982 mutex_exit(QLOCK(tq)); 2983 2984 if (isevent) { 2985 for (i = tq->q_nband; i; i--) { 2986 if (qbf[i]) { 2987 pollwakeup(&stp->sd_pollist, POLLWRBAND); 2988 mutex_enter(&stp->sd_lock); 2989 if (stp->sd_sigflags & S_WRBAND) 2990 strsendsig(stp->sd_siglist, S_WRBAND, 2991 (uchar_t)i, 0); 2992 mutex_exit(&stp->sd_lock); 2993 } 2994 } 2995 } 2996 2997 releasestr(q); 2998 return (0); 2999 } 3000 3001 /* 3002 * Special case of strcopyin/strcopyout for copying 3003 * struct strioctl that can deal with both data 3004 * models. 3005 */ 3006 3007 #ifdef _LP64 3008 3009 static int 3010 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3011 { 3012 struct strioctl32 strioc32; 3013 struct strioctl *striocp; 3014 3015 if (copyflag & U_TO_K) { 3016 ASSERT((copyflag & K_TO_K) == 0); 3017 3018 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3019 if (copyin(from, &strioc32, sizeof (strioc32))) 3020 return (EFAULT); 3021 3022 striocp = (struct strioctl *)to; 3023 striocp->ic_cmd = strioc32.ic_cmd; 3024 striocp->ic_timout = strioc32.ic_timout; 3025 striocp->ic_len = strioc32.ic_len; 3026 striocp->ic_dp = (char *)(uintptr_t)strioc32.ic_dp; 3027 3028 } else { /* NATIVE data model */ 3029 if (copyin(from, to, sizeof (struct strioctl))) { 3030 return (EFAULT); 3031 } else { 3032 return (0); 3033 } 3034 } 3035 } else { 3036 ASSERT(copyflag & K_TO_K); 3037 bcopy(from, to, sizeof (struct strioctl)); 3038 } 3039 return (0); 3040 } 3041 3042 static int 3043 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3044 { 3045 struct strioctl32 strioc32; 3046 struct strioctl *striocp; 3047 3048 if (copyflag & U_TO_K) { 3049 ASSERT((copyflag & K_TO_K) == 0); 3050 3051 if ((flag & FMODELS) == DATAMODEL_ILP32) { 3052 striocp = (struct strioctl *)from; 3053 strioc32.ic_cmd = striocp->ic_cmd; 3054 strioc32.ic_timout = striocp->ic_timout; 3055 strioc32.ic_len = striocp->ic_len; 3056 strioc32.ic_dp = (caddr32_t)(uintptr_t)striocp->ic_dp; 3057 ASSERT((char *)(uintptr_t)strioc32.ic_dp == 3058 striocp->ic_dp); 3059 3060 if (copyout(&strioc32, to, sizeof (strioc32))) 3061 return (EFAULT); 3062 3063 } else { /* NATIVE data model */ 3064 if (copyout(from, to, sizeof (struct strioctl))) { 3065 return (EFAULT); 3066 } else { 3067 return (0); 3068 } 3069 } 3070 } else { 3071 ASSERT(copyflag & K_TO_K); 3072 bcopy(from, to, sizeof (struct strioctl)); 3073 } 3074 return (0); 3075 } 3076 3077 #else /* ! _LP64 */ 3078 3079 /* ARGSUSED2 */ 3080 static int 3081 strcopyin_strioctl(void *from, void *to, int flag, int copyflag) 3082 { 3083 return (strcopyin(from, to, sizeof (struct strioctl), copyflag)); 3084 } 3085 3086 /* ARGSUSED2 */ 3087 static int 3088 strcopyout_strioctl(void *from, void *to, int flag, int copyflag) 3089 { 3090 return (strcopyout(from, to, sizeof (struct strioctl), copyflag)); 3091 } 3092 3093 #endif /* _LP64 */ 3094 3095 /* 3096 * Determine type of job control semantics expected by user. The 3097 * possibilities are: 3098 * JCREAD - Behaves like read() on fd; send SIGTTIN 3099 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set 3100 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP 3101 * JCGETP - Gets a value in the stream; no signals. 3102 * See straccess in strsubr.c for usage of these values. 3103 * 3104 * This routine also returns -1 for I_STR as a special case; the 3105 * caller must call again with the real ioctl number for 3106 * classification. 3107 */ 3108 static int 3109 job_control_type(int cmd) 3110 { 3111 switch (cmd) { 3112 case I_STR: 3113 return (-1); 3114 3115 case I_RECVFD: 3116 case I_E_RECVFD: 3117 return (JCREAD); 3118 3119 case I_FDINSERT: 3120 case I_SENDFD: 3121 return (JCWRITE); 3122 3123 case TCSETA: 3124 case TCSETAW: 3125 case TCSETAF: 3126 case TCSBRK: 3127 case TCXONC: 3128 case TCFLSH: 3129 case TCDSET: /* Obsolete */ 3130 case TIOCSWINSZ: 3131 case TCSETS: 3132 case TCSETSW: 3133 case TCSETSF: 3134 case TIOCSETD: 3135 case TIOCHPCL: 3136 case TIOCSETP: 3137 case TIOCSETN: 3138 case TIOCEXCL: 3139 case TIOCNXCL: 3140 case TIOCFLUSH: 3141 case TIOCSETC: 3142 case TIOCLBIS: 3143 case TIOCLBIC: 3144 case TIOCLSET: 3145 case TIOCSBRK: 3146 case TIOCCBRK: 3147 case TIOCSDTR: 3148 case TIOCCDTR: 3149 case TIOCSLTC: 3150 case TIOCSTOP: 3151 case TIOCSTART: 3152 case TIOCSTI: 3153 case TIOCSPGRP: 3154 case TIOCMSET: 3155 case TIOCMBIS: 3156 case TIOCMBIC: 3157 case TIOCREMOTE: 3158 case TIOCSIGNAL: 3159 case LDSETT: 3160 case LDSMAP: /* Obsolete */ 3161 case DIOCSETP: 3162 case I_FLUSH: 3163 case I_SRDOPT: 3164 case I_SETSIG: 3165 case I_SWROPT: 3166 case I_FLUSHBAND: 3167 case I_SETCLTIME: 3168 case I_SERROPT: 3169 case I_ESETSIG: 3170 case FIONBIO: 3171 case FIOASYNC: 3172 case FIOSETOWN: 3173 case JBOOT: /* Obsolete */ 3174 case JTERM: /* Obsolete */ 3175 case JTIMOM: /* Obsolete */ 3176 case JZOMBOOT: /* Obsolete */ 3177 case JAGENT: /* Obsolete */ 3178 case JTRUN: /* Obsolete */ 3179 case JXTPROTO: /* Obsolete */ 3180 return (JCSETP); 3181 } 3182 3183 return (JCGETP); 3184 } 3185 3186 /* 3187 * ioctl for streams 3188 */ 3189 int 3190 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag, 3191 cred_t *crp, int *rvalp) 3192 { 3193 struct stdata *stp; 3194 struct strcmd *scp; 3195 struct strioctl strioc; 3196 struct uio uio; 3197 struct iovec iov; 3198 int access; 3199 mblk_t *mp; 3200 int error = 0; 3201 int done = 0; 3202 ssize_t rmin, rmax; 3203 queue_t *wrq; 3204 queue_t *rdq; 3205 boolean_t kioctl = B_FALSE; 3206 uint32_t auditing = AU_AUDITING(); 3207 3208 if (flag & FKIOCTL) { 3209 copyflag = K_TO_K; 3210 kioctl = B_TRUE; 3211 } 3212 ASSERT(vp->v_stream); 3213 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 3214 stp = vp->v_stream; 3215 3216 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER, 3217 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg); 3218 3219 /* 3220 * If the copy is kernel to kernel, make sure that the FNATIVE 3221 * flag is set. After this it would be a serious error to have 3222 * no model flag. 3223 */ 3224 if (copyflag == K_TO_K) 3225 flag = (flag & ~FMODELS) | FNATIVE; 3226 3227 ASSERT((flag & FMODELS) != 0); 3228 3229 wrq = stp->sd_wrq; 3230 rdq = _RD(wrq); 3231 3232 access = job_control_type(cmd); 3233 3234 /* We should never see these here, should be handled by iwscn */ 3235 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR) 3236 return (EINVAL); 3237 3238 mutex_enter(&stp->sd_lock); 3239 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) { 3240 mutex_exit(&stp->sd_lock); 3241 return (error); 3242 } 3243 mutex_exit(&stp->sd_lock); 3244 3245 /* 3246 * Check for sgttyb-related ioctls first, and complain as 3247 * necessary. 3248 */ 3249 switch (cmd) { 3250 case TIOCGETP: 3251 case TIOCSETP: 3252 case TIOCSETN: 3253 if (sgttyb_handling >= 2 && !sgttyb_complaint) { 3254 sgttyb_complaint = B_TRUE; 3255 cmn_err(CE_NOTE, 3256 "application used obsolete TIOC[GS]ET"); 3257 } 3258 if (sgttyb_handling >= 3) { 3259 tsignal(curthread, SIGSYS); 3260 return (EIO); 3261 } 3262 break; 3263 } 3264 3265 mutex_enter(&stp->sd_lock); 3266 3267 switch (cmd) { 3268 case I_RECVFD: 3269 case I_E_RECVFD: 3270 case I_PEEK: 3271 case I_NREAD: 3272 case FIONREAD: 3273 case FIORDCHK: 3274 case I_ATMARK: 3275 case FIONBIO: 3276 case FIOASYNC: 3277 if (stp->sd_flag & (STRDERR|STPLEX)) { 3278 error = strgeterr(stp, STRDERR|STPLEX, 0); 3279 if (error != 0) { 3280 mutex_exit(&stp->sd_lock); 3281 return (error); 3282 } 3283 } 3284 break; 3285 3286 default: 3287 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) { 3288 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0); 3289 if (error != 0) { 3290 mutex_exit(&stp->sd_lock); 3291 return (error); 3292 } 3293 } 3294 } 3295 3296 mutex_exit(&stp->sd_lock); 3297 3298 switch (cmd) { 3299 default: 3300 /* 3301 * The stream head has hardcoded knowledge of a 3302 * miscellaneous collection of terminal-, keyboard- and 3303 * mouse-related ioctls, enumerated below. This hardcoded 3304 * knowledge allows the stream head to automatically 3305 * convert transparent ioctl requests made by userland 3306 * programs into I_STR ioctls which many old STREAMS 3307 * modules and drivers require. 3308 * 3309 * No new ioctls should ever be added to this list. 3310 * Instead, the STREAMS module or driver should be written 3311 * to either handle transparent ioctls or require any 3312 * userland programs to use I_STR ioctls (by returning 3313 * EINVAL to any transparent ioctl requests). 3314 * 3315 * More importantly, removing ioctls from this list should 3316 * be done with the utmost care, since our STREAMS modules 3317 * and drivers *count* on the stream head performing this 3318 * conversion, and thus may panic while processing 3319 * transparent ioctl request for one of these ioctls (keep 3320 * in mind that third party modules and drivers may have 3321 * similar problems). 3322 */ 3323 if (((cmd & IOCTYPE) == LDIOC) || 3324 ((cmd & IOCTYPE) == tIOC) || 3325 ((cmd & IOCTYPE) == TIOC) || 3326 ((cmd & IOCTYPE) == KIOC) || 3327 ((cmd & IOCTYPE) == MSIOC) || 3328 ((cmd & IOCTYPE) == VUIOC)) { 3329 /* 3330 * The ioctl is a tty ioctl - set up strioc buffer 3331 * and call strdoioctl() to do the work. 3332 */ 3333 if (stp->sd_flag & STRHUP) 3334 return (ENXIO); 3335 strioc.ic_cmd = cmd; 3336 strioc.ic_timout = INFTIM; 3337 3338 switch (cmd) { 3339 3340 case TCXONC: 3341 case TCSBRK: 3342 case TCFLSH: 3343 case TCDSET: 3344 { 3345 int native_arg = (int)arg; 3346 strioc.ic_len = sizeof (int); 3347 strioc.ic_dp = (char *)&native_arg; 3348 return (strdoioctl(stp, &strioc, flag, 3349 K_TO_K, crp, rvalp)); 3350 } 3351 3352 case TCSETA: 3353 case TCSETAW: 3354 case TCSETAF: 3355 strioc.ic_len = sizeof (struct termio); 3356 strioc.ic_dp = (char *)arg; 3357 return (strdoioctl(stp, &strioc, flag, 3358 copyflag, crp, rvalp)); 3359 3360 case TCSETS: 3361 case TCSETSW: 3362 case TCSETSF: 3363 strioc.ic_len = sizeof (struct termios); 3364 strioc.ic_dp = (char *)arg; 3365 return (strdoioctl(stp, &strioc, flag, 3366 copyflag, crp, rvalp)); 3367 3368 case LDSETT: 3369 strioc.ic_len = sizeof (struct termcb); 3370 strioc.ic_dp = (char *)arg; 3371 return (strdoioctl(stp, &strioc, flag, 3372 copyflag, crp, rvalp)); 3373 3374 case TIOCSETP: 3375 strioc.ic_len = sizeof (struct sgttyb); 3376 strioc.ic_dp = (char *)arg; 3377 return (strdoioctl(stp, &strioc, flag, 3378 copyflag, crp, rvalp)); 3379 3380 case TIOCSTI: 3381 if ((flag & FREAD) == 0 && 3382 secpolicy_sti(crp) != 0) { 3383 return (EPERM); 3384 } 3385 mutex_enter(&stp->sd_lock); 3386 mutex_enter(&curproc->p_splock); 3387 if (stp->sd_sidp != curproc->p_sessp->s_sidp && 3388 secpolicy_sti(crp) != 0) { 3389 mutex_exit(&curproc->p_splock); 3390 mutex_exit(&stp->sd_lock); 3391 return (EACCES); 3392 } 3393 mutex_exit(&curproc->p_splock); 3394 mutex_exit(&stp->sd_lock); 3395 3396 strioc.ic_len = sizeof (char); 3397 strioc.ic_dp = (char *)arg; 3398 return (strdoioctl(stp, &strioc, flag, 3399 copyflag, crp, rvalp)); 3400 3401 case TIOCSWINSZ: 3402 strioc.ic_len = sizeof (struct winsize); 3403 strioc.ic_dp = (char *)arg; 3404 return (strdoioctl(stp, &strioc, flag, 3405 copyflag, crp, rvalp)); 3406 3407 case TIOCSSIZE: 3408 strioc.ic_len = sizeof (struct ttysize); 3409 strioc.ic_dp = (char *)arg; 3410 return (strdoioctl(stp, &strioc, flag, 3411 copyflag, crp, rvalp)); 3412 3413 case TIOCSSOFTCAR: 3414 case KIOCTRANS: 3415 case KIOCTRANSABLE: 3416 case KIOCCMD: 3417 case KIOCSDIRECT: 3418 case KIOCSCOMPAT: 3419 case KIOCSKABORTEN: 3420 case KIOCSRPTDELAY: 3421 case KIOCSRPTRATE: 3422 case VUIDSFORMAT: 3423 case TIOCSPPS: 3424 strioc.ic_len = sizeof (int); 3425 strioc.ic_dp = (char *)arg; 3426 return (strdoioctl(stp, &strioc, flag, 3427 copyflag, crp, rvalp)); 3428 3429 case KIOCSETKEY: 3430 case KIOCGETKEY: 3431 strioc.ic_len = sizeof (struct kiockey); 3432 strioc.ic_dp = (char *)arg; 3433 return (strdoioctl(stp, &strioc, flag, 3434 copyflag, crp, rvalp)); 3435 3436 case KIOCSKEY: 3437 case KIOCGKEY: 3438 strioc.ic_len = sizeof (struct kiockeymap); 3439 strioc.ic_dp = (char *)arg; 3440 return (strdoioctl(stp, &strioc, flag, 3441 copyflag, crp, rvalp)); 3442 3443 case KIOCSLED: 3444 /* arg is a pointer to char */ 3445 strioc.ic_len = sizeof (char); 3446 strioc.ic_dp = (char *)arg; 3447 return (strdoioctl(stp, &strioc, flag, 3448 copyflag, crp, rvalp)); 3449 3450 case MSIOSETPARMS: 3451 strioc.ic_len = sizeof (Ms_parms); 3452 strioc.ic_dp = (char *)arg; 3453 return (strdoioctl(stp, &strioc, flag, 3454 copyflag, crp, rvalp)); 3455 3456 case VUIDSADDR: 3457 case VUIDGADDR: 3458 strioc.ic_len = sizeof (struct vuid_addr_probe); 3459 strioc.ic_dp = (char *)arg; 3460 return (strdoioctl(stp, &strioc, flag, 3461 copyflag, crp, rvalp)); 3462 3463 /* 3464 * These M_IOCTL's don't require any data to be sent 3465 * downstream, and the driver will allocate and link 3466 * on its own mblk_t upon M_IOCACK -- thus we set 3467 * ic_len to zero and set ic_dp to arg so we know 3468 * where to copyout to later. 3469 */ 3470 case TIOCGSOFTCAR: 3471 case TIOCGWINSZ: 3472 case TIOCGSIZE: 3473 case KIOCGTRANS: 3474 case KIOCGTRANSABLE: 3475 case KIOCTYPE: 3476 case KIOCGDIRECT: 3477 case KIOCGCOMPAT: 3478 case KIOCLAYOUT: 3479 case KIOCGLED: 3480 case MSIOGETPARMS: 3481 case MSIOBUTTONS: 3482 case VUIDGFORMAT: 3483 case TIOCGPPS: 3484 case TIOCGPPSEV: 3485 case TCGETA: 3486 case TCGETS: 3487 case LDGETT: 3488 case TIOCGETP: 3489 case KIOCGRPTDELAY: 3490 case KIOCGRPTRATE: 3491 strioc.ic_len = 0; 3492 strioc.ic_dp = (char *)arg; 3493 return (strdoioctl(stp, &strioc, flag, 3494 copyflag, crp, rvalp)); 3495 } 3496 } 3497 3498 /* 3499 * Unknown cmd - send it down as a transparent ioctl. 3500 */ 3501 strioc.ic_cmd = cmd; 3502 strioc.ic_timout = INFTIM; 3503 strioc.ic_len = TRANSPARENT; 3504 strioc.ic_dp = (char *)&arg; 3505 3506 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp)); 3507 3508 case I_STR: 3509 /* 3510 * Stream ioctl. Read in an strioctl buffer from the user 3511 * along with any data specified and send it downstream. 3512 * Strdoioctl will wait allow only one ioctl message at 3513 * a time, and waits for the acknowledgement. 3514 */ 3515 3516 if (stp->sd_flag & STRHUP) 3517 return (ENXIO); 3518 3519 error = strcopyin_strioctl((void *)arg, &strioc, flag, 3520 copyflag); 3521 if (error != 0) 3522 return (error); 3523 3524 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1)) 3525 return (EINVAL); 3526 3527 access = job_control_type(strioc.ic_cmd); 3528 mutex_enter(&stp->sd_lock); 3529 if ((access != -1) && 3530 ((error = i_straccess(stp, access)) != 0)) { 3531 mutex_exit(&stp->sd_lock); 3532 return (error); 3533 } 3534 mutex_exit(&stp->sd_lock); 3535 3536 /* 3537 * The I_STR facility provides a trap door for malicious 3538 * code to send down bogus streamio(7I) ioctl commands to 3539 * unsuspecting STREAMS modules and drivers which expect to 3540 * only get these messages from the stream head. 3541 * Explicitly prohibit any streamio ioctls which can be 3542 * passed downstream by the stream head. Note that we do 3543 * not block all streamio ioctls because the ioctl 3544 * numberspace is not well managed and thus it's possible 3545 * that a module or driver's ioctl numbers may accidentally 3546 * collide with them. 3547 */ 3548 switch (strioc.ic_cmd) { 3549 case I_LINK: 3550 case I_PLINK: 3551 case I_UNLINK: 3552 case I_PUNLINK: 3553 case _I_GETPEERCRED: 3554 case _I_PLINK_LH: 3555 return (EINVAL); 3556 } 3557 3558 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp); 3559 if (error == 0) { 3560 error = strcopyout_strioctl(&strioc, (void *)arg, 3561 flag, copyflag); 3562 } 3563 return (error); 3564 3565 case _I_CMD: 3566 /* 3567 * Like I_STR, but without using M_IOC* messages and without 3568 * copyins/copyouts beyond the passed-in argument. 3569 */ 3570 if (stp->sd_flag & STRHUP) 3571 return (ENXIO); 3572 3573 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL) 3574 return (ENOMEM); 3575 3576 if (copyin((void *)arg, scp, sizeof (strcmd_t))) { 3577 kmem_free(scp, sizeof (strcmd_t)); 3578 return (EFAULT); 3579 } 3580 3581 access = job_control_type(scp->sc_cmd); 3582 mutex_enter(&stp->sd_lock); 3583 if (access != -1 && (error = i_straccess(stp, access)) != 0) { 3584 mutex_exit(&stp->sd_lock); 3585 kmem_free(scp, sizeof (strcmd_t)); 3586 return (error); 3587 } 3588 mutex_exit(&stp->sd_lock); 3589 3590 *rvalp = 0; 3591 if ((error = strdocmd(stp, scp, crp)) == 0) { 3592 if (copyout(scp, (void *)arg, sizeof (strcmd_t))) 3593 error = EFAULT; 3594 } 3595 kmem_free(scp, sizeof (strcmd_t)); 3596 return (error); 3597 3598 case I_NREAD: 3599 /* 3600 * Return number of bytes of data in first message 3601 * in queue in "arg" and return the number of messages 3602 * in queue in return value. 3603 */ 3604 { 3605 size_t size; 3606 int retval; 3607 int count = 0; 3608 3609 mutex_enter(QLOCK(rdq)); 3610 3611 size = msgdsize(rdq->q_first); 3612 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3613 count++; 3614 3615 mutex_exit(QLOCK(rdq)); 3616 if (stp->sd_struiordq) { 3617 infod_t infod; 3618 3619 infod.d_cmd = INFOD_COUNT; 3620 infod.d_count = 0; 3621 if (count == 0) { 3622 infod.d_cmd |= INFOD_FIRSTBYTES; 3623 infod.d_bytes = 0; 3624 } 3625 infod.d_res = 0; 3626 (void) infonext(rdq, &infod); 3627 count += infod.d_count; 3628 if (infod.d_res & INFOD_FIRSTBYTES) 3629 size = infod.d_bytes; 3630 } 3631 3632 /* 3633 * Drop down from size_t to the "int" required by the 3634 * interface. Cap at INT_MAX. 3635 */ 3636 retval = MIN(size, INT_MAX); 3637 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3638 copyflag); 3639 if (!error) 3640 *rvalp = count; 3641 return (error); 3642 } 3643 3644 case FIONREAD: 3645 /* 3646 * Return number of bytes of data in all data messages 3647 * in queue in "arg". 3648 */ 3649 { 3650 size_t size = 0; 3651 int retval; 3652 3653 mutex_enter(QLOCK(rdq)); 3654 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3655 size += msgdsize(mp); 3656 mutex_exit(QLOCK(rdq)); 3657 3658 if (stp->sd_struiordq) { 3659 infod_t infod; 3660 3661 infod.d_cmd = INFOD_BYTES; 3662 infod.d_res = 0; 3663 infod.d_bytes = 0; 3664 (void) infonext(rdq, &infod); 3665 size += infod.d_bytes; 3666 } 3667 3668 /* 3669 * Drop down from size_t to the "int" required by the 3670 * interface. Cap at INT_MAX. 3671 */ 3672 retval = MIN(size, INT_MAX); 3673 error = strcopyout(&retval, (void *)arg, sizeof (retval), 3674 copyflag); 3675 3676 *rvalp = 0; 3677 return (error); 3678 } 3679 case FIORDCHK: 3680 /* 3681 * FIORDCHK does not use arg value (like FIONREAD), 3682 * instead a count is returned. I_NREAD value may 3683 * not be accurate but safe. The real thing to do is 3684 * to add the msgdsizes of all data messages until 3685 * a non-data message. 3686 */ 3687 { 3688 size_t size = 0; 3689 3690 mutex_enter(QLOCK(rdq)); 3691 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 3692 size += msgdsize(mp); 3693 mutex_exit(QLOCK(rdq)); 3694 3695 if (stp->sd_struiordq) { 3696 infod_t infod; 3697 3698 infod.d_cmd = INFOD_BYTES; 3699 infod.d_res = 0; 3700 infod.d_bytes = 0; 3701 (void) infonext(rdq, &infod); 3702 size += infod.d_bytes; 3703 } 3704 3705 /* 3706 * Since ioctl returns an int, and memory sizes under 3707 * LP64 may not fit, we return INT_MAX if the count was 3708 * actually greater. 3709 */ 3710 *rvalp = MIN(size, INT_MAX); 3711 return (0); 3712 } 3713 3714 case I_FIND: 3715 /* 3716 * Get module name. 3717 */ 3718 { 3719 char mname[FMNAMESZ + 1]; 3720 queue_t *q; 3721 3722 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3723 mname, FMNAMESZ + 1, NULL); 3724 if (error) 3725 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3726 3727 /* 3728 * Return EINVAL if we're handed a bogus module name. 3729 */ 3730 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) { 3731 TRACE_0(TR_FAC_STREAMS_FR, 3732 TR_I_CANT_FIND, "couldn't I_FIND"); 3733 return (EINVAL); 3734 } 3735 3736 *rvalp = 0; 3737 3738 /* Look downstream to see if module is there. */ 3739 claimstr(stp->sd_wrq); 3740 for (q = stp->sd_wrq->q_next; q; q = q->q_next) { 3741 if (q->q_flag & QREADR) { 3742 q = NULL; 3743 break; 3744 } 3745 if (strcmp(mname, Q2NAME(q)) == 0) 3746 break; 3747 } 3748 releasestr(stp->sd_wrq); 3749 3750 *rvalp = (q ? 1 : 0); 3751 return (error); 3752 } 3753 3754 case I_PUSH: 3755 case __I_PUSH_NOCTTY: 3756 /* 3757 * Push a module. 3758 * For the case __I_PUSH_NOCTTY push a module but 3759 * do not allocate controlling tty. See bugid 4025044 3760 */ 3761 3762 { 3763 char mname[FMNAMESZ + 1]; 3764 fmodsw_impl_t *fp; 3765 dev_t dummydev; 3766 3767 if (stp->sd_flag & STRHUP) 3768 return (ENXIO); 3769 3770 /* 3771 * Get module name and look up in fmodsw. 3772 */ 3773 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg, 3774 mname, FMNAMESZ + 1, NULL); 3775 if (error) 3776 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 3777 3778 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) == 3779 NULL) 3780 return (EINVAL); 3781 3782 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH, 3783 "I_PUSH:fp %p stp %p", fp, stp); 3784 3785 if (error = strstartplumb(stp, flag, cmd)) { 3786 fmodsw_rele(fp); 3787 return (error); 3788 } 3789 3790 /* 3791 * See if any more modules can be pushed on this stream. 3792 * Note that this check must be done after strstartplumb() 3793 * since otherwise multiple threads issuing I_PUSHes on 3794 * the same stream will be able to exceed nstrpush. 3795 */ 3796 mutex_enter(&stp->sd_lock); 3797 if (stp->sd_pushcnt >= nstrpush) { 3798 fmodsw_rele(fp); 3799 strendplumb(stp); 3800 mutex_exit(&stp->sd_lock); 3801 return (EINVAL); 3802 } 3803 mutex_exit(&stp->sd_lock); 3804 3805 /* 3806 * Push new module and call its open routine 3807 * via qattach(). Modules don't change device 3808 * numbers, so just ignore dummydev here. 3809 */ 3810 dummydev = vp->v_rdev; 3811 if ((error = qattach(rdq, &dummydev, 0, crp, fp, 3812 B_FALSE)) == 0) { 3813 if (vp->v_type == VCHR && /* sorry, no pipes allowed */ 3814 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) { 3815 /* 3816 * try to allocate it as a controlling terminal 3817 */ 3818 (void) strctty(stp); 3819 } 3820 } 3821 3822 mutex_enter(&stp->sd_lock); 3823 3824 /* 3825 * As a performance concern we are caching the values of 3826 * q_minpsz and q_maxpsz of the module below the stream 3827 * head in the stream head. 3828 */ 3829 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 3830 rmin = stp->sd_wrq->q_next->q_minpsz; 3831 rmax = stp->sd_wrq->q_next->q_maxpsz; 3832 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 3833 3834 /* Do this processing here as a performance concern */ 3835 if (strmsgsz != 0) { 3836 if (rmax == INFPSZ) 3837 rmax = strmsgsz; 3838 else { 3839 if (vp->v_type == VFIFO) 3840 rmax = MIN(PIPE_BUF, rmax); 3841 else rmax = MIN(strmsgsz, rmax); 3842 } 3843 } 3844 3845 mutex_enter(QLOCK(wrq)); 3846 stp->sd_qn_minpsz = rmin; 3847 stp->sd_qn_maxpsz = rmax; 3848 mutex_exit(QLOCK(wrq)); 3849 3850 strendplumb(stp); 3851 mutex_exit(&stp->sd_lock); 3852 return (error); 3853 } 3854 3855 case I_POP: 3856 { 3857 queue_t *q; 3858 3859 if (stp->sd_flag & STRHUP) 3860 return (ENXIO); 3861 if (!wrq->q_next) /* for broken pipes */ 3862 return (EINVAL); 3863 3864 if (error = strstartplumb(stp, flag, cmd)) 3865 return (error); 3866 3867 /* 3868 * If there is an anchor on this stream and popping 3869 * the current module would attempt to pop through the 3870 * anchor, then disallow the pop unless we have sufficient 3871 * privileges; take the cheapest (non-locking) check 3872 * first. 3873 */ 3874 if (secpolicy_ip_config(crp, B_TRUE) != 0 || 3875 (stp->sd_anchorzone != crgetzoneid(crp))) { 3876 mutex_enter(&stp->sd_lock); 3877 /* 3878 * Anchors only apply if there's at least one 3879 * module on the stream (sd_pushcnt > 0). 3880 */ 3881 if (stp->sd_pushcnt > 0 && 3882 stp->sd_pushcnt == stp->sd_anchor && 3883 stp->sd_vnode->v_type != VFIFO) { 3884 strendplumb(stp); 3885 mutex_exit(&stp->sd_lock); 3886 if (stp->sd_anchorzone != crgetzoneid(crp)) 3887 return (EINVAL); 3888 /* Audit and report error */ 3889 return (secpolicy_ip_config(crp, B_FALSE)); 3890 } 3891 mutex_exit(&stp->sd_lock); 3892 } 3893 3894 q = wrq->q_next; 3895 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP, 3896 "I_POP:%p from %p", q, stp); 3897 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) { 3898 error = EINVAL; 3899 } else { 3900 qdetach(_RD(q), 1, flag, crp, B_FALSE); 3901 error = 0; 3902 } 3903 mutex_enter(&stp->sd_lock); 3904 3905 /* 3906 * As a performance concern we are caching the values of 3907 * q_minpsz and q_maxpsz of the module below the stream 3908 * head in the stream head. 3909 */ 3910 mutex_enter(QLOCK(wrq->q_next)); 3911 rmin = wrq->q_next->q_minpsz; 3912 rmax = wrq->q_next->q_maxpsz; 3913 mutex_exit(QLOCK(wrq->q_next)); 3914 3915 /* Do this processing here as a performance concern */ 3916 if (strmsgsz != 0) { 3917 if (rmax == INFPSZ) 3918 rmax = strmsgsz; 3919 else { 3920 if (vp->v_type == VFIFO) 3921 rmax = MIN(PIPE_BUF, rmax); 3922 else rmax = MIN(strmsgsz, rmax); 3923 } 3924 } 3925 3926 mutex_enter(QLOCK(wrq)); 3927 stp->sd_qn_minpsz = rmin; 3928 stp->sd_qn_maxpsz = rmax; 3929 mutex_exit(QLOCK(wrq)); 3930 3931 /* If we popped through the anchor, then reset the anchor. */ 3932 if (stp->sd_pushcnt < stp->sd_anchor) { 3933 stp->sd_anchor = 0; 3934 stp->sd_anchorzone = 0; 3935 } 3936 strendplumb(stp); 3937 mutex_exit(&stp->sd_lock); 3938 return (error); 3939 } 3940 3941 case _I_MUXID2FD: 3942 { 3943 /* 3944 * Create a fd for a I_PLINK'ed lower stream with a given 3945 * muxid. With the fd, application can send down ioctls, 3946 * like I_LIST, to the previously I_PLINK'ed stream. Note 3947 * that after getting the fd, the application has to do an 3948 * I_PUNLINK on the muxid before it can do any operation 3949 * on the lower stream. This is required by spec1170. 3950 * 3951 * The fd used to do this ioctl should point to the same 3952 * controlling device used to do the I_PLINK. If it uses 3953 * a different stream or an invalid muxid, I_MUXID2FD will 3954 * fail. The error code is set to EINVAL. 3955 * 3956 * The intended use of this interface is the following. 3957 * An application I_PLINK'ed a stream and exits. The fd 3958 * to the lower stream is gone. Another application 3959 * wants to get a fd to the lower stream, it uses I_MUXID2FD. 3960 */ 3961 int muxid = (int)arg; 3962 int fd; 3963 linkinfo_t *linkp; 3964 struct file *fp; 3965 netstack_t *ns; 3966 str_stack_t *ss; 3967 3968 /* 3969 * Do not allow the wildcard muxid. This ioctl is not 3970 * intended to find arbitrary link. 3971 */ 3972 if (muxid == 0) { 3973 return (EINVAL); 3974 } 3975 3976 ns = netstack_find_by_cred(crp); 3977 ASSERT(ns != NULL); 3978 ss = ns->netstack_str; 3979 ASSERT(ss != NULL); 3980 3981 mutex_enter(&muxifier); 3982 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss); 3983 if (linkp == NULL) { 3984 mutex_exit(&muxifier); 3985 netstack_rele(ss->ss_netstack); 3986 return (EINVAL); 3987 } 3988 3989 if ((fd = ufalloc(0)) == -1) { 3990 mutex_exit(&muxifier); 3991 netstack_rele(ss->ss_netstack); 3992 return (EMFILE); 3993 } 3994 fp = linkp->li_fpdown; 3995 mutex_enter(&fp->f_tlock); 3996 fp->f_count++; 3997 mutex_exit(&fp->f_tlock); 3998 mutex_exit(&muxifier); 3999 setf(fd, fp); 4000 *rvalp = fd; 4001 netstack_rele(ss->ss_netstack); 4002 return (0); 4003 } 4004 4005 case _I_INSERT: 4006 { 4007 /* 4008 * To insert a module to a given position in a stream. 4009 * In the first release, only allow privileged user 4010 * to use this ioctl. Furthermore, the insert is only allowed 4011 * below an anchor if the zoneid is the same as the zoneid 4012 * which created the anchor. 4013 * 4014 * Note that we do not plan to support this ioctl 4015 * on pipes in the first release. We want to learn more 4016 * about the implications of these ioctls before extending 4017 * their support. And we do not think these features are 4018 * valuable for pipes. 4019 */ 4020 STRUCT_DECL(strmodconf, strmodinsert); 4021 char mod_name[FMNAMESZ + 1]; 4022 fmodsw_impl_t *fp; 4023 dev_t dummydev; 4024 queue_t *tmp_wrq; 4025 int pos; 4026 boolean_t is_insert; 4027 4028 STRUCT_INIT(strmodinsert, flag); 4029 if (stp->sd_flag & STRHUP) 4030 return (ENXIO); 4031 if (STRMATED(stp)) 4032 return (EINVAL); 4033 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4034 return (error); 4035 if (stp->sd_anchor != 0 && 4036 stp->sd_anchorzone != crgetzoneid(crp)) 4037 return (EINVAL); 4038 4039 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert), 4040 STRUCT_SIZE(strmodinsert), copyflag); 4041 if (error) 4042 return (error); 4043 4044 /* 4045 * Get module name and look up in fmodsw. 4046 */ 4047 error = (copyflag & U_TO_K ? copyinstr : 4048 copystr)(STRUCT_FGETP(strmodinsert, mod_name), 4049 mod_name, FMNAMESZ + 1, NULL); 4050 if (error) 4051 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4052 4053 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) == 4054 NULL) 4055 return (EINVAL); 4056 4057 if (error = strstartplumb(stp, flag, cmd)) { 4058 fmodsw_rele(fp); 4059 return (error); 4060 } 4061 4062 /* 4063 * Is this _I_INSERT just like an I_PUSH? We need to know 4064 * this because we do some optimizations if this is a 4065 * module being pushed. 4066 */ 4067 pos = STRUCT_FGET(strmodinsert, pos); 4068 is_insert = (pos != 0); 4069 4070 /* 4071 * Make sure pos is valid. Even though it is not an I_PUSH, 4072 * we impose the same limit on the number of modules in a 4073 * stream. 4074 */ 4075 mutex_enter(&stp->sd_lock); 4076 if (stp->sd_pushcnt >= nstrpush || pos < 0 || 4077 pos > stp->sd_pushcnt) { 4078 fmodsw_rele(fp); 4079 strendplumb(stp); 4080 mutex_exit(&stp->sd_lock); 4081 return (EINVAL); 4082 } 4083 if (stp->sd_anchor != 0) { 4084 /* 4085 * Is this insert below the anchor? 4086 * Pushcnt hasn't been increased yet hence 4087 * we test for greater than here, and greater or 4088 * equal after qattach. 4089 */ 4090 if (pos > (stp->sd_pushcnt - stp->sd_anchor) && 4091 stp->sd_anchorzone != crgetzoneid(crp)) { 4092 fmodsw_rele(fp); 4093 strendplumb(stp); 4094 mutex_exit(&stp->sd_lock); 4095 return (EPERM); 4096 } 4097 } 4098 4099 mutex_exit(&stp->sd_lock); 4100 4101 /* 4102 * First find the correct position this module to 4103 * be inserted. We don't need to call claimstr() 4104 * as the stream should not be changing at this point. 4105 * 4106 * Insert new module and call its open routine 4107 * via qattach(). Modules don't change device 4108 * numbers, so just ignore dummydev here. 4109 */ 4110 for (tmp_wrq = stp->sd_wrq; pos > 0; 4111 tmp_wrq = tmp_wrq->q_next, pos--) { 4112 ASSERT(SAMESTR(tmp_wrq)); 4113 } 4114 dummydev = vp->v_rdev; 4115 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp, 4116 fp, is_insert)) != 0) { 4117 mutex_enter(&stp->sd_lock); 4118 strendplumb(stp); 4119 mutex_exit(&stp->sd_lock); 4120 return (error); 4121 } 4122 4123 mutex_enter(&stp->sd_lock); 4124 4125 /* 4126 * As a performance concern we are caching the values of 4127 * q_minpsz and q_maxpsz of the module below the stream 4128 * head in the stream head. 4129 */ 4130 if (!is_insert) { 4131 mutex_enter(QLOCK(stp->sd_wrq->q_next)); 4132 rmin = stp->sd_wrq->q_next->q_minpsz; 4133 rmax = stp->sd_wrq->q_next->q_maxpsz; 4134 mutex_exit(QLOCK(stp->sd_wrq->q_next)); 4135 4136 /* Do this processing here as a performance concern */ 4137 if (strmsgsz != 0) { 4138 if (rmax == INFPSZ) { 4139 rmax = strmsgsz; 4140 } else { 4141 rmax = MIN(strmsgsz, rmax); 4142 } 4143 } 4144 4145 mutex_enter(QLOCK(wrq)); 4146 stp->sd_qn_minpsz = rmin; 4147 stp->sd_qn_maxpsz = rmax; 4148 mutex_exit(QLOCK(wrq)); 4149 } 4150 4151 /* 4152 * Need to update the anchor value if this module is 4153 * inserted below the anchor point. 4154 */ 4155 if (stp->sd_anchor != 0) { 4156 pos = STRUCT_FGET(strmodinsert, pos); 4157 if (pos >= (stp->sd_pushcnt - stp->sd_anchor)) 4158 stp->sd_anchor++; 4159 } 4160 4161 strendplumb(stp); 4162 mutex_exit(&stp->sd_lock); 4163 return (0); 4164 } 4165 4166 case _I_REMOVE: 4167 { 4168 /* 4169 * To remove a module with a given name in a stream. The 4170 * caller of this ioctl needs to provide both the name and 4171 * the position of the module to be removed. This eliminates 4172 * the ambiguity of removal if a module is inserted/pushed 4173 * multiple times in a stream. In the first release, only 4174 * allow privileged user to use this ioctl. 4175 * Furthermore, the remove is only allowed 4176 * below an anchor if the zoneid is the same as the zoneid 4177 * which created the anchor. 4178 * 4179 * Note that we do not plan to support this ioctl 4180 * on pipes in the first release. We want to learn more 4181 * about the implications of these ioctls before extending 4182 * their support. And we do not think these features are 4183 * valuable for pipes. 4184 * 4185 * Also note that _I_REMOVE cannot be used to remove a 4186 * driver or the stream head. 4187 */ 4188 STRUCT_DECL(strmodconf, strmodremove); 4189 queue_t *q; 4190 int pos; 4191 char mod_name[FMNAMESZ + 1]; 4192 boolean_t is_remove; 4193 4194 STRUCT_INIT(strmodremove, flag); 4195 if (stp->sd_flag & STRHUP) 4196 return (ENXIO); 4197 if (STRMATED(stp)) 4198 return (EINVAL); 4199 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0) 4200 return (error); 4201 if (stp->sd_anchor != 0 && 4202 stp->sd_anchorzone != crgetzoneid(crp)) 4203 return (EINVAL); 4204 4205 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove), 4206 STRUCT_SIZE(strmodremove), copyflag); 4207 if (error) 4208 return (error); 4209 4210 error = (copyflag & U_TO_K ? copyinstr : 4211 copystr)(STRUCT_FGETP(strmodremove, mod_name), 4212 mod_name, FMNAMESZ + 1, NULL); 4213 if (error) 4214 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT); 4215 4216 if ((error = strstartplumb(stp, flag, cmd)) != 0) 4217 return (error); 4218 4219 /* 4220 * Match the name of given module to the name of module at 4221 * the given position. 4222 */ 4223 pos = STRUCT_FGET(strmodremove, pos); 4224 4225 is_remove = (pos != 0); 4226 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0; 4227 q = q->q_next, pos--) 4228 ; 4229 if (pos > 0 || !SAMESTR(q) || 4230 strcmp(Q2NAME(q), mod_name) != 0) { 4231 mutex_enter(&stp->sd_lock); 4232 strendplumb(stp); 4233 mutex_exit(&stp->sd_lock); 4234 return (EINVAL); 4235 } 4236 4237 /* 4238 * If the position is at or below an anchor, then the zoneid 4239 * must match the zoneid that created the anchor. 4240 */ 4241 if (stp->sd_anchor != 0) { 4242 pos = STRUCT_FGET(strmodremove, pos); 4243 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) && 4244 stp->sd_anchorzone != crgetzoneid(crp)) { 4245 mutex_enter(&stp->sd_lock); 4246 strendplumb(stp); 4247 mutex_exit(&stp->sd_lock); 4248 return (EPERM); 4249 } 4250 } 4251 4252 4253 ASSERT(!(q->q_flag & QREADR)); 4254 qdetach(_RD(q), 1, flag, crp, is_remove); 4255 4256 mutex_enter(&stp->sd_lock); 4257 4258 /* 4259 * As a performance concern we are caching the values of 4260 * q_minpsz and q_maxpsz of the module below the stream 4261 * head in the stream head. 4262 */ 4263 if (!is_remove) { 4264 mutex_enter(QLOCK(wrq->q_next)); 4265 rmin = wrq->q_next->q_minpsz; 4266 rmax = wrq->q_next->q_maxpsz; 4267 mutex_exit(QLOCK(wrq->q_next)); 4268 4269 /* Do this processing here as a performance concern */ 4270 if (strmsgsz != 0) { 4271 if (rmax == INFPSZ) 4272 rmax = strmsgsz; 4273 else { 4274 if (vp->v_type == VFIFO) 4275 rmax = MIN(PIPE_BUF, rmax); 4276 else rmax = MIN(strmsgsz, rmax); 4277 } 4278 } 4279 4280 mutex_enter(QLOCK(wrq)); 4281 stp->sd_qn_minpsz = rmin; 4282 stp->sd_qn_maxpsz = rmax; 4283 mutex_exit(QLOCK(wrq)); 4284 } 4285 4286 /* 4287 * Need to update the anchor value if this module is removed 4288 * at or below the anchor point. If the removed module is at 4289 * the anchor point, remove the anchor for this stream if 4290 * there is no module above the anchor point. Otherwise, if 4291 * the removed module is below the anchor point, decrement the 4292 * anchor point by 1. 4293 */ 4294 if (stp->sd_anchor != 0) { 4295 pos = STRUCT_FGET(strmodremove, pos); 4296 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1) 4297 stp->sd_anchor = 0; 4298 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1)) 4299 stp->sd_anchor--; 4300 } 4301 4302 strendplumb(stp); 4303 mutex_exit(&stp->sd_lock); 4304 return (0); 4305 } 4306 4307 case I_ANCHOR: 4308 /* 4309 * Set the anchor position on the stream to reside at 4310 * the top module (in other words, the top module 4311 * cannot be popped). Anchors with a FIFO make no 4312 * obvious sense, so they're not allowed. 4313 */ 4314 mutex_enter(&stp->sd_lock); 4315 4316 if (stp->sd_vnode->v_type == VFIFO) { 4317 mutex_exit(&stp->sd_lock); 4318 return (EINVAL); 4319 } 4320 /* Only allow the same zoneid to update the anchor */ 4321 if (stp->sd_anchor != 0 && 4322 stp->sd_anchorzone != crgetzoneid(crp)) { 4323 mutex_exit(&stp->sd_lock); 4324 return (EINVAL); 4325 } 4326 stp->sd_anchor = stp->sd_pushcnt; 4327 stp->sd_anchorzone = crgetzoneid(crp); 4328 mutex_exit(&stp->sd_lock); 4329 return (0); 4330 4331 case I_LOOK: 4332 /* 4333 * Get name of first module downstream. 4334 * If no module, return an error. 4335 */ 4336 claimstr(wrq); 4337 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) { 4338 char *name = Q2NAME(wrq->q_next); 4339 4340 error = strcopyout(name, (void *)arg, strlen(name) + 1, 4341 copyflag); 4342 releasestr(wrq); 4343 return (error); 4344 } 4345 releasestr(wrq); 4346 return (EINVAL); 4347 4348 case I_LINK: 4349 case I_PLINK: 4350 /* 4351 * Link a multiplexor. 4352 */ 4353 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0)); 4354 4355 case _I_PLINK_LH: 4356 /* 4357 * Link a multiplexor: Call must originate from kernel. 4358 */ 4359 if (kioctl) 4360 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp)); 4361 4362 return (EINVAL); 4363 case I_UNLINK: 4364 case I_PUNLINK: 4365 /* 4366 * Unlink a multiplexor. 4367 * If arg is -1, unlink all links for which this is the 4368 * controlling stream. Otherwise, arg is an index number 4369 * for a link to be removed. 4370 */ 4371 { 4372 struct linkinfo *linkp; 4373 int native_arg = (int)arg; 4374 int type; 4375 netstack_t *ns; 4376 str_stack_t *ss; 4377 4378 TRACE_1(TR_FAC_STREAMS_FR, 4379 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp); 4380 if (vp->v_type == VFIFO) { 4381 return (EINVAL); 4382 } 4383 if (cmd == I_UNLINK) 4384 type = LINKNORMAL; 4385 else /* I_PUNLINK */ 4386 type = LINKPERSIST; 4387 if (native_arg == 0) { 4388 return (EINVAL); 4389 } 4390 ns = netstack_find_by_cred(crp); 4391 ASSERT(ns != NULL); 4392 ss = ns->netstack_str; 4393 ASSERT(ss != NULL); 4394 4395 if (native_arg == MUXID_ALL) 4396 error = munlinkall(stp, type, crp, rvalp, ss); 4397 else { 4398 mutex_enter(&muxifier); 4399 if (!(linkp = findlinks(stp, (int)arg, type, ss))) { 4400 /* invalid user supplied index number */ 4401 mutex_exit(&muxifier); 4402 netstack_rele(ss->ss_netstack); 4403 return (EINVAL); 4404 } 4405 /* munlink drops the muxifier lock */ 4406 error = munlink(stp, linkp, type, crp, rvalp, ss); 4407 } 4408 netstack_rele(ss->ss_netstack); 4409 return (error); 4410 } 4411 4412 case I_FLUSH: 4413 /* 4414 * send a flush message downstream 4415 * flush message can indicate 4416 * FLUSHR - flush read queue 4417 * FLUSHW - flush write queue 4418 * FLUSHRW - flush read/write queue 4419 */ 4420 if (stp->sd_flag & STRHUP) 4421 return (ENXIO); 4422 if (arg & ~FLUSHRW) 4423 return (EINVAL); 4424 4425 for (;;) { 4426 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) { 4427 break; 4428 } 4429 if (error = strwaitbuf(1, BPRI_HI)) { 4430 return (error); 4431 } 4432 } 4433 4434 /* 4435 * Send down an unsupported ioctl and wait for the nack 4436 * in order to allow the M_FLUSH to propagate back 4437 * up to the stream head. 4438 * Replaces if (qready()) runqueues(); 4439 */ 4440 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4441 strioc.ic_timout = 0; 4442 strioc.ic_len = 0; 4443 strioc.ic_dp = NULL; 4444 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4445 *rvalp = 0; 4446 return (0); 4447 4448 case I_FLUSHBAND: 4449 { 4450 struct bandinfo binfo; 4451 4452 error = strcopyin((void *)arg, &binfo, sizeof (binfo), 4453 copyflag); 4454 if (error) 4455 return (error); 4456 if (stp->sd_flag & STRHUP) 4457 return (ENXIO); 4458 if (binfo.bi_flag & ~FLUSHRW) 4459 return (EINVAL); 4460 while (!(mp = allocb(2, BPRI_HI))) { 4461 if (error = strwaitbuf(2, BPRI_HI)) 4462 return (error); 4463 } 4464 mp->b_datap->db_type = M_FLUSH; 4465 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND; 4466 *mp->b_wptr++ = binfo.bi_pri; 4467 putnext(stp->sd_wrq, mp); 4468 /* 4469 * Send down an unsupported ioctl and wait for the nack 4470 * in order to allow the M_FLUSH to propagate back 4471 * up to the stream head. 4472 * Replaces if (qready()) runqueues(); 4473 */ 4474 strioc.ic_cmd = -1; /* The unsupported ioctl */ 4475 strioc.ic_timout = 0; 4476 strioc.ic_len = 0; 4477 strioc.ic_dp = NULL; 4478 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp); 4479 *rvalp = 0; 4480 return (0); 4481 } 4482 4483 case I_SRDOPT: 4484 /* 4485 * Set read options 4486 * 4487 * RNORM - default stream mode 4488 * RMSGN - message no discard 4489 * RMSGD - message discard 4490 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs 4491 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs 4492 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs 4493 */ 4494 if (arg & ~(RMODEMASK | RPROTMASK)) 4495 return (EINVAL); 4496 4497 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN)) 4498 return (EINVAL); 4499 4500 mutex_enter(&stp->sd_lock); 4501 switch (arg & RMODEMASK) { 4502 case RNORM: 4503 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS); 4504 break; 4505 case RMSGD: 4506 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) | 4507 RD_MSGDIS; 4508 break; 4509 case RMSGN: 4510 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) | 4511 RD_MSGNODIS; 4512 break; 4513 } 4514 4515 switch (arg & RPROTMASK) { 4516 case RPROTNORM: 4517 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS); 4518 break; 4519 4520 case RPROTDAT: 4521 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) | 4522 RD_PROTDAT); 4523 break; 4524 4525 case RPROTDIS: 4526 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) | 4527 RD_PROTDIS); 4528 break; 4529 } 4530 mutex_exit(&stp->sd_lock); 4531 return (0); 4532 4533 case I_GRDOPT: 4534 /* 4535 * Get read option and return the value 4536 * to spot pointed to by arg 4537 */ 4538 { 4539 int rdopt; 4540 4541 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD : 4542 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM)); 4543 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT : 4544 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM)); 4545 4546 return (strcopyout(&rdopt, (void *)arg, sizeof (int), 4547 copyflag)); 4548 } 4549 4550 case I_SERROPT: 4551 /* 4552 * Set error options 4553 * 4554 * RERRNORM - persistent read errors 4555 * RERRNONPERSIST - non-persistent read errors 4556 * WERRNORM - persistent write errors 4557 * WERRNONPERSIST - non-persistent write errors 4558 */ 4559 if (arg & ~(RERRMASK | WERRMASK)) 4560 return (EINVAL); 4561 4562 mutex_enter(&stp->sd_lock); 4563 switch (arg & RERRMASK) { 4564 case RERRNORM: 4565 stp->sd_flag &= ~STRDERRNONPERSIST; 4566 break; 4567 case RERRNONPERSIST: 4568 stp->sd_flag |= STRDERRNONPERSIST; 4569 break; 4570 } 4571 switch (arg & WERRMASK) { 4572 case WERRNORM: 4573 stp->sd_flag &= ~STWRERRNONPERSIST; 4574 break; 4575 case WERRNONPERSIST: 4576 stp->sd_flag |= STWRERRNONPERSIST; 4577 break; 4578 } 4579 mutex_exit(&stp->sd_lock); 4580 return (0); 4581 4582 case I_GERROPT: 4583 /* 4584 * Get error option and return the value 4585 * to spot pointed to by arg 4586 */ 4587 { 4588 int erropt = 0; 4589 4590 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST : 4591 RERRNORM; 4592 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST : 4593 WERRNORM; 4594 return (strcopyout(&erropt, (void *)arg, sizeof (int), 4595 copyflag)); 4596 } 4597 4598 case I_SETSIG: 4599 /* 4600 * Register the calling proc to receive the SIGPOLL 4601 * signal based on the events given in arg. If 4602 * arg is zero, remove the proc from register list. 4603 */ 4604 { 4605 strsig_t *ssp, *pssp; 4606 struct pid *pidp; 4607 4608 pssp = NULL; 4609 pidp = curproc->p_pidp; 4610 /* 4611 * Hold sd_lock to prevent traversal of sd_siglist while 4612 * it is modified. 4613 */ 4614 mutex_enter(&stp->sd_lock); 4615 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp); 4616 pssp = ssp, ssp = ssp->ss_next) 4617 ; 4618 4619 if (arg) { 4620 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4621 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4622 mutex_exit(&stp->sd_lock); 4623 return (EINVAL); 4624 } 4625 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) { 4626 mutex_exit(&stp->sd_lock); 4627 return (EINVAL); 4628 } 4629 4630 /* 4631 * If proc not already registered, add it 4632 * to list. 4633 */ 4634 if (!ssp) { 4635 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4636 ssp->ss_pidp = pidp; 4637 ssp->ss_pid = pidp->pid_id; 4638 ssp->ss_next = NULL; 4639 if (pssp) 4640 pssp->ss_next = ssp; 4641 else 4642 stp->sd_siglist = ssp; 4643 mutex_enter(&pidlock); 4644 PID_HOLD(pidp); 4645 mutex_exit(&pidlock); 4646 } 4647 4648 /* 4649 * Set events. 4650 */ 4651 ssp->ss_events = (int)arg; 4652 } else { 4653 /* 4654 * Remove proc from register list. 4655 */ 4656 if (ssp) { 4657 mutex_enter(&pidlock); 4658 PID_RELE(pidp); 4659 mutex_exit(&pidlock); 4660 if (pssp) 4661 pssp->ss_next = ssp->ss_next; 4662 else 4663 stp->sd_siglist = ssp->ss_next; 4664 kmem_free(ssp, sizeof (strsig_t)); 4665 } else { 4666 mutex_exit(&stp->sd_lock); 4667 return (EINVAL); 4668 } 4669 } 4670 4671 /* 4672 * Recalculate OR of sig events. 4673 */ 4674 stp->sd_sigflags = 0; 4675 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4676 stp->sd_sigflags |= ssp->ss_events; 4677 mutex_exit(&stp->sd_lock); 4678 return (0); 4679 } 4680 4681 case I_GETSIG: 4682 /* 4683 * Return (in arg) the current registration of events 4684 * for which the calling proc is to be signaled. 4685 */ 4686 { 4687 struct strsig *ssp; 4688 struct pid *pidp; 4689 4690 pidp = curproc->p_pidp; 4691 mutex_enter(&stp->sd_lock); 4692 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4693 if (ssp->ss_pidp == pidp) { 4694 error = strcopyout(&ssp->ss_events, (void *)arg, 4695 sizeof (int), copyflag); 4696 mutex_exit(&stp->sd_lock); 4697 return (error); 4698 } 4699 mutex_exit(&stp->sd_lock); 4700 return (EINVAL); 4701 } 4702 4703 case I_ESETSIG: 4704 /* 4705 * Register the ss_pid to receive the SIGPOLL 4706 * signal based on the events is ss_events arg. If 4707 * ss_events is zero, remove the proc from register list. 4708 */ 4709 { 4710 struct strsig *ssp, *pssp; 4711 struct proc *proc; 4712 struct pid *pidp; 4713 pid_t pid; 4714 struct strsigset ss; 4715 4716 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4717 if (error) 4718 return (error); 4719 4720 pid = ss.ss_pid; 4721 4722 if (ss.ss_events != 0) { 4723 /* 4724 * Permissions check by sending signal 0. 4725 * Note that when kill fails it does a set_errno 4726 * causing the system call to fail. 4727 */ 4728 error = kill(pid, 0); 4729 if (error) { 4730 return (error); 4731 } 4732 } 4733 mutex_enter(&pidlock); 4734 if (pid == 0) 4735 proc = curproc; 4736 else if (pid < 0) 4737 proc = pgfind(-pid); 4738 else 4739 proc = prfind(pid); 4740 if (proc == NULL) { 4741 mutex_exit(&pidlock); 4742 return (ESRCH); 4743 } 4744 if (pid < 0) 4745 pidp = proc->p_pgidp; 4746 else 4747 pidp = proc->p_pidp; 4748 ASSERT(pidp); 4749 /* 4750 * Get a hold on the pid structure while referencing it. 4751 * There is a separate PID_HOLD should it be inserted 4752 * in the list below. 4753 */ 4754 PID_HOLD(pidp); 4755 mutex_exit(&pidlock); 4756 4757 pssp = NULL; 4758 /* 4759 * Hold sd_lock to prevent traversal of sd_siglist while 4760 * it is modified. 4761 */ 4762 mutex_enter(&stp->sd_lock); 4763 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid); 4764 pssp = ssp, ssp = ssp->ss_next) 4765 ; 4766 4767 if (ss.ss_events) { 4768 if (ss.ss_events & 4769 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR| 4770 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) { 4771 mutex_exit(&stp->sd_lock); 4772 mutex_enter(&pidlock); 4773 PID_RELE(pidp); 4774 mutex_exit(&pidlock); 4775 return (EINVAL); 4776 } 4777 if ((ss.ss_events & S_BANDURG) && 4778 !(ss.ss_events & S_RDBAND)) { 4779 mutex_exit(&stp->sd_lock); 4780 mutex_enter(&pidlock); 4781 PID_RELE(pidp); 4782 mutex_exit(&pidlock); 4783 return (EINVAL); 4784 } 4785 4786 /* 4787 * If proc not already registered, add it 4788 * to list. 4789 */ 4790 if (!ssp) { 4791 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP); 4792 ssp->ss_pidp = pidp; 4793 ssp->ss_pid = pid; 4794 ssp->ss_next = NULL; 4795 if (pssp) 4796 pssp->ss_next = ssp; 4797 else 4798 stp->sd_siglist = ssp; 4799 mutex_enter(&pidlock); 4800 PID_HOLD(pidp); 4801 mutex_exit(&pidlock); 4802 } 4803 4804 /* 4805 * Set events. 4806 */ 4807 ssp->ss_events = ss.ss_events; 4808 } else { 4809 /* 4810 * Remove proc from register list. 4811 */ 4812 if (ssp) { 4813 mutex_enter(&pidlock); 4814 PID_RELE(pidp); 4815 mutex_exit(&pidlock); 4816 if (pssp) 4817 pssp->ss_next = ssp->ss_next; 4818 else 4819 stp->sd_siglist = ssp->ss_next; 4820 kmem_free(ssp, sizeof (strsig_t)); 4821 } else { 4822 mutex_exit(&stp->sd_lock); 4823 mutex_enter(&pidlock); 4824 PID_RELE(pidp); 4825 mutex_exit(&pidlock); 4826 return (EINVAL); 4827 } 4828 } 4829 4830 /* 4831 * Recalculate OR of sig events. 4832 */ 4833 stp->sd_sigflags = 0; 4834 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4835 stp->sd_sigflags |= ssp->ss_events; 4836 mutex_exit(&stp->sd_lock); 4837 mutex_enter(&pidlock); 4838 PID_RELE(pidp); 4839 mutex_exit(&pidlock); 4840 return (0); 4841 } 4842 4843 case I_EGETSIG: 4844 /* 4845 * Return (in arg) the current registration of events 4846 * for which the calling proc is to be signaled. 4847 */ 4848 { 4849 struct strsig *ssp; 4850 struct proc *proc; 4851 pid_t pid; 4852 struct pid *pidp; 4853 struct strsigset ss; 4854 4855 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag); 4856 if (error) 4857 return (error); 4858 4859 pid = ss.ss_pid; 4860 mutex_enter(&pidlock); 4861 if (pid == 0) 4862 proc = curproc; 4863 else if (pid < 0) 4864 proc = pgfind(-pid); 4865 else 4866 proc = prfind(pid); 4867 if (proc == NULL) { 4868 mutex_exit(&pidlock); 4869 return (ESRCH); 4870 } 4871 if (pid < 0) 4872 pidp = proc->p_pgidp; 4873 else 4874 pidp = proc->p_pidp; 4875 4876 /* Prevent the pidp from being reassigned */ 4877 PID_HOLD(pidp); 4878 mutex_exit(&pidlock); 4879 4880 mutex_enter(&stp->sd_lock); 4881 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 4882 if (ssp->ss_pid == pid) { 4883 ss.ss_pid = ssp->ss_pid; 4884 ss.ss_events = ssp->ss_events; 4885 error = strcopyout(&ss, (void *)arg, 4886 sizeof (struct strsigset), copyflag); 4887 mutex_exit(&stp->sd_lock); 4888 mutex_enter(&pidlock); 4889 PID_RELE(pidp); 4890 mutex_exit(&pidlock); 4891 return (error); 4892 } 4893 mutex_exit(&stp->sd_lock); 4894 mutex_enter(&pidlock); 4895 PID_RELE(pidp); 4896 mutex_exit(&pidlock); 4897 return (EINVAL); 4898 } 4899 4900 case I_PEEK: 4901 { 4902 STRUCT_DECL(strpeek, strpeek); 4903 size_t n; 4904 mblk_t *fmp, *tmp_mp = NULL; 4905 4906 STRUCT_INIT(strpeek, flag); 4907 4908 error = strcopyin((void *)arg, STRUCT_BUF(strpeek), 4909 STRUCT_SIZE(strpeek), copyflag); 4910 if (error) 4911 return (error); 4912 4913 mutex_enter(QLOCK(rdq)); 4914 /* 4915 * Skip the invalid messages 4916 */ 4917 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next) 4918 if (mp->b_datap->db_type != M_SIG) 4919 break; 4920 4921 /* 4922 * If user has requested to peek at a high priority message 4923 * and first message is not, return 0 4924 */ 4925 if (mp != NULL) { 4926 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) && 4927 queclass(mp) == QNORM) { 4928 *rvalp = 0; 4929 mutex_exit(QLOCK(rdq)); 4930 return (0); 4931 } 4932 } else if (stp->sd_struiordq == NULL || 4933 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) { 4934 /* 4935 * No mblks to look at at the streamhead and 4936 * 1). This isn't a synch stream or 4937 * 2). This is a synch stream but caller wants high 4938 * priority messages which is not supported by 4939 * the synch stream. (it only supports QNORM) 4940 */ 4941 *rvalp = 0; 4942 mutex_exit(QLOCK(rdq)); 4943 return (0); 4944 } 4945 4946 fmp = mp; 4947 4948 if (mp && mp->b_datap->db_type == M_PASSFP) { 4949 mutex_exit(QLOCK(rdq)); 4950 return (EBADMSG); 4951 } 4952 4953 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO || 4954 mp->b_datap->db_type == M_PROTO || 4955 mp->b_datap->db_type == M_DATA); 4956 4957 if (mp && mp->b_datap->db_type == M_PCPROTO) { 4958 STRUCT_FSET(strpeek, flags, RS_HIPRI); 4959 } else { 4960 STRUCT_FSET(strpeek, flags, 0); 4961 } 4962 4963 4964 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) { 4965 mutex_exit(QLOCK(rdq)); 4966 return (ENOSR); 4967 } 4968 mutex_exit(QLOCK(rdq)); 4969 4970 /* 4971 * set mp = tmp_mp, so that I_PEEK processing can continue. 4972 * tmp_mp is used to free the dup'd message. 4973 */ 4974 mp = tmp_mp; 4975 4976 uio.uio_fmode = 0; 4977 uio.uio_extflg = UIO_COPY_CACHED; 4978 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 4979 UIO_SYSSPACE; 4980 uio.uio_limit = 0; 4981 /* 4982 * First process PROTO blocks, if any. 4983 * If user doesn't want to get ctl info by setting maxlen <= 0, 4984 * then set len to -1/0 and skip control blocks part. 4985 */ 4986 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0) 4987 STRUCT_FSET(strpeek, ctlbuf.len, -1); 4988 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0) 4989 STRUCT_FSET(strpeek, ctlbuf.len, 0); 4990 else { 4991 int ctl_part = 0; 4992 4993 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf); 4994 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen); 4995 uio.uio_iov = &iov; 4996 uio.uio_resid = iov.iov_len; 4997 uio.uio_loffset = 0; 4998 uio.uio_iovcnt = 1; 4999 while (mp && mp->b_datap->db_type != M_DATA && 5000 uio.uio_resid >= 0) { 5001 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ? 5002 mp->b_datap->db_type == M_PROTO : 5003 mp->b_datap->db_type == M_PCPROTO); 5004 5005 if ((n = MIN(uio.uio_resid, 5006 mp->b_wptr - mp->b_rptr)) != 0 && 5007 (error = uiomove((char *)mp->b_rptr, n, 5008 UIO_READ, &uio)) != 0) { 5009 freemsg(tmp_mp); 5010 return (error); 5011 } 5012 ctl_part = 1; 5013 mp = mp->b_cont; 5014 } 5015 /* No ctl message */ 5016 if (ctl_part == 0) 5017 STRUCT_FSET(strpeek, ctlbuf.len, -1); 5018 else 5019 STRUCT_FSET(strpeek, ctlbuf.len, 5020 STRUCT_FGET(strpeek, ctlbuf.maxlen) - 5021 uio.uio_resid); 5022 } 5023 5024 /* 5025 * Now process DATA blocks, if any. 5026 * If user doesn't want to get data info by setting maxlen <= 0, 5027 * then set len to -1/0 and skip data blocks part. 5028 */ 5029 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0) 5030 STRUCT_FSET(strpeek, databuf.len, -1); 5031 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0) 5032 STRUCT_FSET(strpeek, databuf.len, 0); 5033 else { 5034 int data_part = 0; 5035 5036 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf); 5037 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen); 5038 uio.uio_iov = &iov; 5039 uio.uio_resid = iov.iov_len; 5040 uio.uio_loffset = 0; 5041 uio.uio_iovcnt = 1; 5042 while (mp && uio.uio_resid) { 5043 if (mp->b_datap->db_type == M_DATA) { 5044 if ((n = MIN(uio.uio_resid, 5045 mp->b_wptr - mp->b_rptr)) != 0 && 5046 (error = uiomove((char *)mp->b_rptr, 5047 n, UIO_READ, &uio)) != 0) { 5048 freemsg(tmp_mp); 5049 return (error); 5050 } 5051 data_part = 1; 5052 } 5053 ASSERT(data_part == 0 || 5054 mp->b_datap->db_type == M_DATA); 5055 mp = mp->b_cont; 5056 } 5057 /* No data message */ 5058 if (data_part == 0) 5059 STRUCT_FSET(strpeek, databuf.len, -1); 5060 else 5061 STRUCT_FSET(strpeek, databuf.len, 5062 STRUCT_FGET(strpeek, databuf.maxlen) - 5063 uio.uio_resid); 5064 } 5065 freemsg(tmp_mp); 5066 5067 /* 5068 * It is a synch stream and user wants to get 5069 * data (maxlen > 0). 5070 * uio setup is done by the codes that process DATA 5071 * blocks above. 5072 */ 5073 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) { 5074 infod_t infod; 5075 5076 infod.d_cmd = INFOD_COPYOUT; 5077 infod.d_res = 0; 5078 infod.d_uiop = &uio; 5079 error = infonext(rdq, &infod); 5080 if (error == EINVAL || error == EBUSY) 5081 error = 0; 5082 if (error) 5083 return (error); 5084 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek, 5085 databuf.maxlen) - uio.uio_resid); 5086 if (STRUCT_FGET(strpeek, databuf.len) == 0) { 5087 /* 5088 * No data found by the infonext(). 5089 */ 5090 STRUCT_FSET(strpeek, databuf.len, -1); 5091 } 5092 } 5093 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg, 5094 STRUCT_SIZE(strpeek), copyflag); 5095 if (error) { 5096 return (error); 5097 } 5098 /* 5099 * If there is no message retrieved, set return code to 0 5100 * otherwise, set it to 1. 5101 */ 5102 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 && 5103 STRUCT_FGET(strpeek, databuf.len) == -1) 5104 *rvalp = 0; 5105 else 5106 *rvalp = 1; 5107 return (0); 5108 } 5109 5110 case I_FDINSERT: 5111 { 5112 STRUCT_DECL(strfdinsert, strfdinsert); 5113 struct file *resftp; 5114 struct stdata *resstp; 5115 t_uscalar_t ival; 5116 ssize_t msgsize; 5117 struct strbuf mctl; 5118 5119 STRUCT_INIT(strfdinsert, flag); 5120 if (stp->sd_flag & STRHUP) 5121 return (ENXIO); 5122 /* 5123 * STRDERR, STWRERR and STPLEX tested above. 5124 */ 5125 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert), 5126 STRUCT_SIZE(strfdinsert), copyflag); 5127 if (error) 5128 return (error); 5129 5130 if (STRUCT_FGET(strfdinsert, offset) < 0 || 5131 (STRUCT_FGET(strfdinsert, offset) % 5132 sizeof (t_uscalar_t)) != 0) 5133 return (EINVAL); 5134 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) { 5135 if ((resstp = resftp->f_vnode->v_stream) == NULL) { 5136 releasef(STRUCT_FGET(strfdinsert, fildes)); 5137 return (EINVAL); 5138 } 5139 } else 5140 return (EINVAL); 5141 5142 mutex_enter(&resstp->sd_lock); 5143 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) { 5144 error = strgeterr(resstp, 5145 STRDERR|STWRERR|STRHUP|STPLEX, 0); 5146 if (error != 0) { 5147 mutex_exit(&resstp->sd_lock); 5148 releasef(STRUCT_FGET(strfdinsert, fildes)); 5149 return (error); 5150 } 5151 } 5152 mutex_exit(&resstp->sd_lock); 5153 5154 #ifdef _ILP32 5155 { 5156 queue_t *q; 5157 queue_t *mate = NULL; 5158 5159 /* get read queue of stream terminus */ 5160 claimstr(resstp->sd_wrq); 5161 for (q = resstp->sd_wrq->q_next; q->q_next != NULL; 5162 q = q->q_next) 5163 if (!STRMATED(resstp) && STREAM(q) != resstp && 5164 mate == NULL) { 5165 ASSERT(q->q_qinfo->qi_srvp); 5166 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp); 5167 claimstr(q); 5168 mate = q; 5169 } 5170 q = _RD(q); 5171 if (mate) 5172 releasestr(mate); 5173 releasestr(resstp->sd_wrq); 5174 ival = (t_uscalar_t)q; 5175 } 5176 #else 5177 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev); 5178 #endif /* _ILP32 */ 5179 5180 if (STRUCT_FGET(strfdinsert, ctlbuf.len) < 5181 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) { 5182 releasef(STRUCT_FGET(strfdinsert, fildes)); 5183 return (EINVAL); 5184 } 5185 5186 /* 5187 * Check for legal flag value. 5188 */ 5189 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) { 5190 releasef(STRUCT_FGET(strfdinsert, fildes)); 5191 return (EINVAL); 5192 } 5193 5194 /* get these values from those cached in the stream head */ 5195 mutex_enter(QLOCK(stp->sd_wrq)); 5196 rmin = stp->sd_qn_minpsz; 5197 rmax = stp->sd_qn_maxpsz; 5198 mutex_exit(QLOCK(stp->sd_wrq)); 5199 5200 /* 5201 * Make sure ctl and data sizes together fall within 5202 * the limits of the max and min receive packet sizes 5203 * and do not exceed system limit. A negative data 5204 * length means that no data part is to be sent. 5205 */ 5206 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 5207 if (rmax == 0) { 5208 releasef(STRUCT_FGET(strfdinsert, fildes)); 5209 return (ERANGE); 5210 } 5211 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0) 5212 msgsize = 0; 5213 if ((msgsize < rmin) || 5214 ((msgsize > rmax) && (rmax != INFPSZ)) || 5215 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) { 5216 releasef(STRUCT_FGET(strfdinsert, fildes)); 5217 return (ERANGE); 5218 } 5219 5220 mutex_enter(&stp->sd_lock); 5221 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) && 5222 !canputnext(stp->sd_wrq)) { 5223 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, 5224 flag, -1, &done)) != 0 || done) { 5225 mutex_exit(&stp->sd_lock); 5226 releasef(STRUCT_FGET(strfdinsert, fildes)); 5227 return (error); 5228 } 5229 if ((error = i_straccess(stp, access)) != 0) { 5230 mutex_exit(&stp->sd_lock); 5231 releasef( 5232 STRUCT_FGET(strfdinsert, fildes)); 5233 return (error); 5234 } 5235 } 5236 mutex_exit(&stp->sd_lock); 5237 5238 /* 5239 * Copy strfdinsert.ctlbuf into native form of 5240 * ctlbuf to pass down into strmakemsg(). 5241 */ 5242 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen); 5243 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len); 5244 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf); 5245 5246 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf); 5247 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len); 5248 uio.uio_iov = &iov; 5249 uio.uio_iovcnt = 1; 5250 uio.uio_loffset = 0; 5251 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE : 5252 UIO_SYSSPACE; 5253 uio.uio_fmode = 0; 5254 uio.uio_extflg = UIO_COPY_CACHED; 5255 uio.uio_resid = iov.iov_len; 5256 if ((error = strmakemsg(&mctl, 5257 &msgsize, &uio, stp, 5258 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) { 5259 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5260 releasef(STRUCT_FGET(strfdinsert, fildes)); 5261 return (error); 5262 } 5263 5264 STRUCT_FSET(strfdinsert, databuf.len, msgsize); 5265 5266 /* 5267 * Place the possibly reencoded queue pointer 'offset' bytes 5268 * from the start of the control portion of the message. 5269 */ 5270 *((t_uscalar_t *)(mp->b_rptr + 5271 STRUCT_FGET(strfdinsert, offset))) = ival; 5272 5273 /* 5274 * Put message downstream. 5275 */ 5276 stream_willservice(stp); 5277 putnext(stp->sd_wrq, mp); 5278 stream_runservice(stp); 5279 releasef(STRUCT_FGET(strfdinsert, fildes)); 5280 return (error); 5281 } 5282 5283 case I_SENDFD: 5284 { 5285 struct file *fp; 5286 5287 if ((fp = getf((int)arg)) == NULL) 5288 return (EBADF); 5289 error = do_sendfp(stp, fp, crp); 5290 if (auditing) { 5291 audit_fdsend((int)arg, fp, error); 5292 } 5293 releasef((int)arg); 5294 return (error); 5295 } 5296 5297 case I_RECVFD: 5298 case I_E_RECVFD: 5299 { 5300 struct k_strrecvfd *srf; 5301 int i, fd; 5302 5303 mutex_enter(&stp->sd_lock); 5304 while (!(mp = getq(rdq))) { 5305 if (stp->sd_flag & (STRHUP|STREOF)) { 5306 mutex_exit(&stp->sd_lock); 5307 return (ENXIO); 5308 } 5309 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0, 5310 flag, -1, &done)) != 0 || done) { 5311 mutex_exit(&stp->sd_lock); 5312 return (error); 5313 } 5314 if ((error = i_straccess(stp, access)) != 0) { 5315 mutex_exit(&stp->sd_lock); 5316 return (error); 5317 } 5318 } 5319 if (mp->b_datap->db_type != M_PASSFP) { 5320 putback(stp, rdq, mp, mp->b_band); 5321 mutex_exit(&stp->sd_lock); 5322 return (EBADMSG); 5323 } 5324 mutex_exit(&stp->sd_lock); 5325 5326 srf = (struct k_strrecvfd *)mp->b_rptr; 5327 if ((fd = ufalloc(0)) == -1) { 5328 mutex_enter(&stp->sd_lock); 5329 putback(stp, rdq, mp, mp->b_band); 5330 mutex_exit(&stp->sd_lock); 5331 return (EMFILE); 5332 } 5333 if (cmd == I_RECVFD) { 5334 struct o_strrecvfd ostrfd; 5335 5336 /* check to see if uid/gid values are too large. */ 5337 5338 if (srf->uid > (o_uid_t)USHRT_MAX || 5339 srf->gid > (o_gid_t)USHRT_MAX) { 5340 mutex_enter(&stp->sd_lock); 5341 putback(stp, rdq, mp, mp->b_band); 5342 mutex_exit(&stp->sd_lock); 5343 setf(fd, NULL); /* release fd entry */ 5344 return (EOVERFLOW); 5345 } 5346 5347 ostrfd.fd = fd; 5348 ostrfd.uid = (o_uid_t)srf->uid; 5349 ostrfd.gid = (o_gid_t)srf->gid; 5350 5351 /* Null the filler bits */ 5352 for (i = 0; i < 8; i++) 5353 ostrfd.fill[i] = 0; 5354 5355 error = strcopyout(&ostrfd, (void *)arg, 5356 sizeof (struct o_strrecvfd), copyflag); 5357 } else { /* I_E_RECVFD */ 5358 struct strrecvfd strfd; 5359 5360 strfd.fd = fd; 5361 strfd.uid = srf->uid; 5362 strfd.gid = srf->gid; 5363 5364 /* null the filler bits */ 5365 for (i = 0; i < 8; i++) 5366 strfd.fill[i] = 0; 5367 5368 error = strcopyout(&strfd, (void *)arg, 5369 sizeof (struct strrecvfd), copyflag); 5370 } 5371 5372 if (error) { 5373 setf(fd, NULL); /* release fd entry */ 5374 mutex_enter(&stp->sd_lock); 5375 putback(stp, rdq, mp, mp->b_band); 5376 mutex_exit(&stp->sd_lock); 5377 return (error); 5378 } 5379 if (auditing) { 5380 audit_fdrecv(fd, srf->fp); 5381 } 5382 5383 /* 5384 * Always increment f_count since the freemsg() below will 5385 * always call free_passfp() which performs a closef(). 5386 */ 5387 mutex_enter(&srf->fp->f_tlock); 5388 srf->fp->f_count++; 5389 mutex_exit(&srf->fp->f_tlock); 5390 setf(fd, srf->fp); 5391 freemsg(mp); 5392 return (0); 5393 } 5394 5395 case I_SWROPT: 5396 /* 5397 * Set/clear the write options. arg is a bit 5398 * mask with any of the following bits set... 5399 * SNDZERO - send zero length message 5400 * SNDPIPE - send sigpipe to process if 5401 * sd_werror is set and process is 5402 * doing a write or putmsg. 5403 * The new stream head write options should reflect 5404 * what is in arg. 5405 */ 5406 if (arg & ~(SNDZERO|SNDPIPE)) 5407 return (EINVAL); 5408 5409 mutex_enter(&stp->sd_lock); 5410 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO); 5411 if (arg & SNDZERO) 5412 stp->sd_wput_opt |= SW_SNDZERO; 5413 if (arg & SNDPIPE) 5414 stp->sd_wput_opt |= SW_SIGPIPE; 5415 mutex_exit(&stp->sd_lock); 5416 return (0); 5417 5418 case I_GWROPT: 5419 { 5420 int wropt = 0; 5421 5422 if (stp->sd_wput_opt & SW_SNDZERO) 5423 wropt |= SNDZERO; 5424 if (stp->sd_wput_opt & SW_SIGPIPE) 5425 wropt |= SNDPIPE; 5426 return (strcopyout(&wropt, (void *)arg, sizeof (wropt), 5427 copyflag)); 5428 } 5429 5430 case I_LIST: 5431 /* 5432 * Returns all the modules found on this stream, 5433 * upto the driver. If argument is NULL, return the 5434 * number of modules (including driver). If argument 5435 * is not NULL, copy the names into the structure 5436 * provided. 5437 */ 5438 5439 { 5440 queue_t *q; 5441 char *qname; 5442 int i, nmods; 5443 struct str_mlist *mlist; 5444 STRUCT_DECL(str_list, strlist); 5445 5446 if (arg == NULL) { /* Return number of modules plus driver */ 5447 if (stp->sd_vnode->v_type == VFIFO) 5448 *rvalp = stp->sd_pushcnt; 5449 else 5450 *rvalp = stp->sd_pushcnt + 1; 5451 return (0); 5452 } 5453 5454 STRUCT_INIT(strlist, flag); 5455 5456 error = strcopyin((void *)arg, STRUCT_BUF(strlist), 5457 STRUCT_SIZE(strlist), copyflag); 5458 if (error != 0) 5459 return (error); 5460 5461 mlist = STRUCT_FGETP(strlist, sl_modlist); 5462 nmods = STRUCT_FGET(strlist, sl_nmods); 5463 if (nmods <= 0) 5464 return (EINVAL); 5465 5466 claimstr(stp->sd_wrq); 5467 q = stp->sd_wrq; 5468 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) { 5469 qname = Q2NAME(q->q_next); 5470 error = strcopyout(qname, &mlist[i], strlen(qname) + 1, 5471 copyflag); 5472 if (error != 0) { 5473 releasestr(stp->sd_wrq); 5474 return (error); 5475 } 5476 } 5477 releasestr(stp->sd_wrq); 5478 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag)); 5479 } 5480 5481 case I_CKBAND: 5482 { 5483 queue_t *q; 5484 qband_t *qbp; 5485 5486 if ((arg < 0) || (arg >= NBAND)) 5487 return (EINVAL); 5488 q = _RD(stp->sd_wrq); 5489 mutex_enter(QLOCK(q)); 5490 if (arg > (int)q->q_nband) { 5491 *rvalp = 0; 5492 } else { 5493 if (arg == 0) { 5494 if (q->q_first) 5495 *rvalp = 1; 5496 else 5497 *rvalp = 0; 5498 } else { 5499 qbp = q->q_bandp; 5500 while (--arg > 0) 5501 qbp = qbp->qb_next; 5502 if (qbp->qb_first) 5503 *rvalp = 1; 5504 else 5505 *rvalp = 0; 5506 } 5507 } 5508 mutex_exit(QLOCK(q)); 5509 return (0); 5510 } 5511 5512 case I_GETBAND: 5513 { 5514 int intpri; 5515 queue_t *q; 5516 5517 q = _RD(stp->sd_wrq); 5518 mutex_enter(QLOCK(q)); 5519 mp = q->q_first; 5520 if (!mp) { 5521 mutex_exit(QLOCK(q)); 5522 return (ENODATA); 5523 } 5524 intpri = (int)mp->b_band; 5525 error = strcopyout(&intpri, (void *)arg, sizeof (int), 5526 copyflag); 5527 mutex_exit(QLOCK(q)); 5528 return (error); 5529 } 5530 5531 case I_ATMARK: 5532 { 5533 queue_t *q; 5534 5535 if (arg & ~(ANYMARK|LASTMARK)) 5536 return (EINVAL); 5537 q = _RD(stp->sd_wrq); 5538 mutex_enter(&stp->sd_lock); 5539 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) { 5540 *rvalp = 1; 5541 } else { 5542 mutex_enter(QLOCK(q)); 5543 mp = q->q_first; 5544 5545 if (mp == NULL) 5546 *rvalp = 0; 5547 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK)) 5548 *rvalp = 1; 5549 else if ((arg == LASTMARK) && (mp == stp->sd_mark)) 5550 *rvalp = 1; 5551 else 5552 *rvalp = 0; 5553 mutex_exit(QLOCK(q)); 5554 } 5555 mutex_exit(&stp->sd_lock); 5556 return (0); 5557 } 5558 5559 case I_CANPUT: 5560 { 5561 char band; 5562 5563 if ((arg < 0) || (arg >= NBAND)) 5564 return (EINVAL); 5565 band = (char)arg; 5566 *rvalp = bcanputnext(stp->sd_wrq, band); 5567 return (0); 5568 } 5569 5570 case I_SETCLTIME: 5571 { 5572 int closetime; 5573 5574 error = strcopyin((void *)arg, &closetime, sizeof (int), 5575 copyflag); 5576 if (error) 5577 return (error); 5578 if (closetime < 0) 5579 return (EINVAL); 5580 5581 stp->sd_closetime = closetime; 5582 return (0); 5583 } 5584 5585 case I_GETCLTIME: 5586 { 5587 int closetime; 5588 5589 closetime = stp->sd_closetime; 5590 return (strcopyout(&closetime, (void *)arg, sizeof (int), 5591 copyflag)); 5592 } 5593 5594 case TIOCGSID: 5595 { 5596 pid_t sid; 5597 5598 mutex_enter(&stp->sd_lock); 5599 if (stp->sd_sidp == NULL) { 5600 mutex_exit(&stp->sd_lock); 5601 return (ENOTTY); 5602 } 5603 sid = stp->sd_sidp->pid_id; 5604 mutex_exit(&stp->sd_lock); 5605 return (strcopyout(&sid, (void *)arg, sizeof (pid_t), 5606 copyflag)); 5607 } 5608 5609 case TIOCSPGRP: 5610 { 5611 pid_t pgrp; 5612 proc_t *q; 5613 pid_t sid, fg_pgid, bg_pgid; 5614 5615 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t), 5616 copyflag)) 5617 return (error); 5618 mutex_enter(&stp->sd_lock); 5619 mutex_enter(&pidlock); 5620 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) { 5621 mutex_exit(&pidlock); 5622 mutex_exit(&stp->sd_lock); 5623 return (ENOTTY); 5624 } 5625 if (pgrp == stp->sd_pgidp->pid_id) { 5626 mutex_exit(&pidlock); 5627 mutex_exit(&stp->sd_lock); 5628 return (0); 5629 } 5630 if (pgrp <= 0 || pgrp >= maxpid) { 5631 mutex_exit(&pidlock); 5632 mutex_exit(&stp->sd_lock); 5633 return (EINVAL); 5634 } 5635 if ((q = pgfind(pgrp)) == NULL || 5636 q->p_sessp != ttoproc(curthread)->p_sessp) { 5637 mutex_exit(&pidlock); 5638 mutex_exit(&stp->sd_lock); 5639 return (EPERM); 5640 } 5641 sid = stp->sd_sidp->pid_id; 5642 fg_pgid = q->p_pgrp; 5643 bg_pgid = stp->sd_pgidp->pid_id; 5644 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid); 5645 PID_RELE(stp->sd_pgidp); 5646 ctty_clear_sighuped(); 5647 stp->sd_pgidp = q->p_pgidp; 5648 PID_HOLD(stp->sd_pgidp); 5649 mutex_exit(&pidlock); 5650 mutex_exit(&stp->sd_lock); 5651 return (0); 5652 } 5653 5654 case TIOCGPGRP: 5655 { 5656 pid_t pgrp; 5657 5658 mutex_enter(&stp->sd_lock); 5659 if (stp->sd_sidp == NULL) { 5660 mutex_exit(&stp->sd_lock); 5661 return (ENOTTY); 5662 } 5663 pgrp = stp->sd_pgidp->pid_id; 5664 mutex_exit(&stp->sd_lock); 5665 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t), 5666 copyflag)); 5667 } 5668 5669 case TIOCSCTTY: 5670 { 5671 return (strctty(stp)); 5672 } 5673 5674 case TIOCNOTTY: 5675 { 5676 /* freectty() always assumes curproc. */ 5677 if (freectty(B_FALSE) != 0) 5678 return (0); 5679 return (ENOTTY); 5680 } 5681 5682 case FIONBIO: 5683 case FIOASYNC: 5684 return (0); /* handled by the upper layer */ 5685 } 5686 } 5687 5688 /* 5689 * Custom free routine used for M_PASSFP messages. 5690 */ 5691 static void 5692 free_passfp(struct k_strrecvfd *srf) 5693 { 5694 (void) closef(srf->fp); 5695 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t)); 5696 } 5697 5698 /* ARGSUSED */ 5699 int 5700 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr) 5701 { 5702 queue_t *qp, *nextqp; 5703 struct k_strrecvfd *srf; 5704 mblk_t *mp; 5705 frtn_t *frtnp; 5706 size_t bufsize; 5707 queue_t *mate = NULL; 5708 syncq_t *sq = NULL; 5709 int retval = 0; 5710 5711 if (stp->sd_flag & STRHUP) 5712 return (ENXIO); 5713 5714 claimstr(stp->sd_wrq); 5715 5716 /* Fastpath, we have a pipe, and we are already mated, use it. */ 5717 if (STRMATED(stp)) { 5718 qp = _RD(stp->sd_mate->sd_wrq); 5719 claimstr(qp); 5720 mate = qp; 5721 } else { /* Not already mated. */ 5722 5723 /* 5724 * Walk the stream to the end of this one. 5725 * assumes that the claimstr() will prevent 5726 * plumbing between the stream head and the 5727 * driver from changing 5728 */ 5729 qp = stp->sd_wrq; 5730 5731 /* 5732 * Loop until we reach the end of this stream. 5733 * On completion, qp points to the write queue 5734 * at the end of the stream, or the read queue 5735 * at the stream head if this is a fifo. 5736 */ 5737 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp)) 5738 ; 5739 5740 /* 5741 * Just in case we get a q_next which is NULL, but 5742 * not at the end of the stream. This is actually 5743 * broken, so we set an assert to catch it in 5744 * debug, and set an error and return if not debug. 5745 */ 5746 ASSERT(qp); 5747 if (qp == NULL) { 5748 releasestr(stp->sd_wrq); 5749 return (EINVAL); 5750 } 5751 5752 /* 5753 * Enter the syncq for the driver, so (hopefully) 5754 * the queue values will not change on us. 5755 * XXXX - This will only prevent the race IFF only 5756 * the write side modifies the q_next member, and 5757 * the put procedure is protected by at least 5758 * MT_PERQ. 5759 */ 5760 if ((sq = qp->q_syncq) != NULL) 5761 entersq(sq, SQ_PUT); 5762 5763 /* Now get the q_next value from this qp. */ 5764 nextqp = qp->q_next; 5765 5766 /* 5767 * If nextqp exists and the other stream is different 5768 * from this one claim the stream, set the mate, and 5769 * get the read queue at the stream head of the other 5770 * stream. Assumes that nextqp was at least valid when 5771 * we got it. Hopefully the entersq of the driver 5772 * will prevent it from changing on us. 5773 */ 5774 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) { 5775 ASSERT(qp->q_qinfo->qi_srvp); 5776 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp); 5777 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp); 5778 claimstr(nextqp); 5779 5780 /* Make sure we still have a q_next */ 5781 if (nextqp != qp->q_next) { 5782 releasestr(stp->sd_wrq); 5783 releasestr(nextqp); 5784 return (EINVAL); 5785 } 5786 5787 qp = _RD(STREAM(nextqp)->sd_wrq); 5788 mate = qp; 5789 } 5790 /* If we entered the synq above, leave it. */ 5791 if (sq != NULL) 5792 leavesq(sq, SQ_PUT); 5793 } /* STRMATED(STP) */ 5794 5795 /* XXX prevents substitution of the ops vector */ 5796 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) { 5797 retval = EINVAL; 5798 goto out; 5799 } 5800 5801 if (qp->q_flag & QFULL) { 5802 retval = EAGAIN; 5803 goto out; 5804 } 5805 5806 /* 5807 * Since M_PASSFP messages include a file descriptor, we use 5808 * esballoc() and specify a custom free routine (free_passfp()) that 5809 * will close the descriptor as part of freeing the message. For 5810 * convenience, we stash the frtn_t right after the data block. 5811 */ 5812 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t); 5813 srf = kmem_alloc(bufsize, KM_NOSLEEP); 5814 if (srf == NULL) { 5815 retval = EAGAIN; 5816 goto out; 5817 } 5818 5819 frtnp = (frtn_t *)(srf + 1); 5820 frtnp->free_arg = (caddr_t)srf; 5821 frtnp->free_func = free_passfp; 5822 5823 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp); 5824 if (mp == NULL) { 5825 kmem_free(srf, bufsize); 5826 retval = EAGAIN; 5827 goto out; 5828 } 5829 mp->b_wptr += sizeof (struct k_strrecvfd); 5830 mp->b_datap->db_type = M_PASSFP; 5831 5832 srf->fp = fp; 5833 srf->uid = crgetuid(curthread->t_cred); 5834 srf->gid = crgetgid(curthread->t_cred); 5835 mutex_enter(&fp->f_tlock); 5836 fp->f_count++; 5837 mutex_exit(&fp->f_tlock); 5838 5839 put(qp, mp); 5840 out: 5841 releasestr(stp->sd_wrq); 5842 if (mate) 5843 releasestr(mate); 5844 return (retval); 5845 } 5846 5847 /* 5848 * Send an ioctl message downstream and wait for acknowledgement. 5849 * flags may be set to either U_TO_K or K_TO_K and a combination 5850 * of STR_NOERROR or STR_NOSIG 5851 * STR_NOSIG: Signals are essentially ignored or held and have 5852 * no effect for the duration of the call. 5853 * STR_NOERROR: Ignores stream head read, write and hup errors. 5854 * Additionally, if an existing ioctl times out, it is assumed 5855 * lost and and this ioctl will continue as if the previous ioctl had 5856 * finished. ETIME may be returned if this ioctl times out (i.e. 5857 * ic_timout is not INFTIM). Non-stream head errors may be returned if 5858 * the ioc_error indicates that the driver/module had problems, 5859 * an EFAULT was found when accessing user data, a lack of 5860 * resources, etc. 5861 */ 5862 int 5863 strdoioctl( 5864 struct stdata *stp, 5865 struct strioctl *strioc, 5866 int fflags, /* file flags with model info */ 5867 int flag, 5868 cred_t *crp, 5869 int *rvalp) 5870 { 5871 mblk_t *bp; 5872 struct iocblk *iocbp; 5873 struct copyreq *reqp; 5874 struct copyresp *resp; 5875 int id; 5876 int transparent = 0; 5877 int error = 0; 5878 int len = 0; 5879 caddr_t taddr; 5880 int copyflag = (flag & (U_TO_K | K_TO_K)); 5881 int sigflag = (flag & STR_NOSIG); 5882 int errs; 5883 uint_t waitflags; 5884 boolean_t set_iocwaitne = B_FALSE; 5885 5886 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K); 5887 ASSERT((fflags & FMODELS) != 0); 5888 5889 TRACE_2(TR_FAC_STREAMS_FR, 5890 TR_STRDOIOCTL, 5891 "strdoioctl:stp %p strioc %p", stp, strioc); 5892 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */ 5893 transparent = 1; 5894 strioc->ic_len = sizeof (intptr_t); 5895 } 5896 5897 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz)) 5898 return (EINVAL); 5899 5900 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error, 5901 crp, curproc->p_pid)) == NULL) 5902 return (error); 5903 5904 bzero(bp->b_wptr, sizeof (union ioctypes)); 5905 5906 iocbp = (struct iocblk *)bp->b_wptr; 5907 iocbp->ioc_count = strioc->ic_len; 5908 iocbp->ioc_cmd = strioc->ic_cmd; 5909 iocbp->ioc_flag = (fflags & FMODELS); 5910 5911 crhold(crp); 5912 iocbp->ioc_cr = crp; 5913 DB_TYPE(bp) = M_IOCTL; 5914 bp->b_wptr += sizeof (struct iocblk); 5915 5916 if (flag & STR_NOERROR) 5917 errs = STPLEX; 5918 else 5919 errs = STRHUP|STRDERR|STWRERR|STPLEX; 5920 5921 /* 5922 * If there is data to copy into ioctl block, do so. 5923 */ 5924 if (iocbp->ioc_count > 0) { 5925 if (transparent) 5926 /* 5927 * Note: STR_NOERROR does not have an effect 5928 * in putiocd() 5929 */ 5930 id = K_TO_K | sigflag; 5931 else 5932 id = flag; 5933 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) { 5934 freemsg(bp); 5935 crfree(crp); 5936 return (error); 5937 } 5938 5939 /* 5940 * We could have slept copying in user pages. 5941 * Recheck the stream head state (the other end 5942 * of a pipe could have gone away). 5943 */ 5944 if (stp->sd_flag & errs) { 5945 mutex_enter(&stp->sd_lock); 5946 error = strgeterr(stp, errs, 0); 5947 mutex_exit(&stp->sd_lock); 5948 if (error != 0) { 5949 freemsg(bp); 5950 crfree(crp); 5951 return (error); 5952 } 5953 } 5954 } 5955 if (transparent) 5956 iocbp->ioc_count = TRANSPARENT; 5957 5958 /* 5959 * Block for up to STRTIMOUT milliseconds if there is an outstanding 5960 * ioctl for this stream already running. All processes 5961 * sleeping here will be awakened as a result of an ACK 5962 * or NAK being received for the outstanding ioctl, or 5963 * as a result of the timer expiring on the outstanding 5964 * ioctl (a failure), or as a result of any waiting 5965 * process's timer expiring (also a failure). 5966 */ 5967 5968 error = 0; 5969 mutex_enter(&stp->sd_lock); 5970 while ((stp->sd_flag & IOCWAIT) || 5971 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) { 5972 clock_t cv_rval; 5973 5974 TRACE_0(TR_FAC_STREAMS_FR, 5975 TR_STRDOIOCTL_WAIT, 5976 "strdoioctl sleeps - IOCWAIT"); 5977 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock, 5978 STRTIMOUT, sigflag); 5979 if (cv_rval <= 0) { 5980 if (cv_rval == 0) { 5981 error = EINTR; 5982 } else { 5983 if (flag & STR_NOERROR) { 5984 /* 5985 * Terminating current ioctl in 5986 * progress -- assume it got lost and 5987 * wake up the other thread so that the 5988 * operation completes. 5989 */ 5990 if (!(stp->sd_flag & IOCWAITNE)) { 5991 set_iocwaitne = B_TRUE; 5992 stp->sd_flag |= IOCWAITNE; 5993 cv_broadcast(&stp->sd_monitor); 5994 } 5995 /* 5996 * Otherwise, there's a running 5997 * STR_NOERROR -- we have no choice 5998 * here but to wait forever (or until 5999 * interrupted). 6000 */ 6001 } else { 6002 /* 6003 * pending ioctl has caused 6004 * us to time out 6005 */ 6006 error = ETIME; 6007 } 6008 } 6009 } else if ((stp->sd_flag & errs)) { 6010 error = strgeterr(stp, errs, 0); 6011 } 6012 if (error) { 6013 mutex_exit(&stp->sd_lock); 6014 freemsg(bp); 6015 crfree(crp); 6016 return (error); 6017 } 6018 } 6019 6020 /* 6021 * Have control of ioctl mechanism. 6022 * Send down ioctl packet and wait for response. 6023 */ 6024 if (stp->sd_iocblk != (mblk_t *)-1) { 6025 freemsg(stp->sd_iocblk); 6026 } 6027 stp->sd_iocblk = NULL; 6028 6029 /* 6030 * If this is marked with 'noerror' (internal; mostly 6031 * I_{P,}{UN,}LINK), then make sure nobody else is able to get 6032 * in here by setting IOCWAITNE. 6033 */ 6034 waitflags = IOCWAIT; 6035 if (flag & STR_NOERROR) 6036 waitflags |= IOCWAITNE; 6037 6038 stp->sd_flag |= waitflags; 6039 6040 /* 6041 * Assign sequence number. 6042 */ 6043 iocbp->ioc_id = stp->sd_iocid = getiocseqno(); 6044 6045 mutex_exit(&stp->sd_lock); 6046 6047 TRACE_1(TR_FAC_STREAMS_FR, 6048 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp); 6049 stream_willservice(stp); 6050 putnext(stp->sd_wrq, bp); 6051 stream_runservice(stp); 6052 6053 /* 6054 * Timed wait for acknowledgment. The wait time is limited by the 6055 * timeout value, which must be a positive integer (number of 6056 * milliseconds) to wait, or 0 (use default value of STRTIMOUT 6057 * milliseconds), or -1 (wait forever). This will be awakened 6058 * either by an ACK/NAK message arriving, the timer expiring, or 6059 * the timer expiring on another ioctl waiting for control of the 6060 * mechanism. 6061 */ 6062 waitioc: 6063 mutex_enter(&stp->sd_lock); 6064 6065 6066 /* 6067 * If the reply has already arrived, don't sleep. If awakened from 6068 * the sleep, fail only if the reply has not arrived by then. 6069 * Otherwise, process the reply. 6070 */ 6071 while (!stp->sd_iocblk) { 6072 clock_t cv_rval; 6073 6074 if (stp->sd_flag & errs) { 6075 error = strgeterr(stp, errs, 0); 6076 if (error != 0) { 6077 stp->sd_flag &= ~waitflags; 6078 cv_broadcast(&stp->sd_iocmonitor); 6079 mutex_exit(&stp->sd_lock); 6080 crfree(crp); 6081 return (error); 6082 } 6083 } 6084 6085 TRACE_0(TR_FAC_STREAMS_FR, 6086 TR_STRDOIOCTL_WAIT2, 6087 "strdoioctl sleeps awaiting reply"); 6088 ASSERT(error == 0); 6089 6090 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, 6091 (strioc->ic_timout ? 6092 strioc->ic_timout * 1000 : STRTIMOUT), sigflag); 6093 6094 /* 6095 * There are four possible cases here: interrupt, timeout, 6096 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a 6097 * valid M_IOCTL reply). 6098 * 6099 * If we've been awakened by a STR_NOERROR ioctl on some other 6100 * thread, then sd_iocblk will still be NULL, and IOCWAITNE 6101 * will be set. Pretend as if we just timed out. Note that 6102 * this other thread waited at least STRTIMOUT before trying to 6103 * awaken our thread, so this is indistinguishable (even for 6104 * INFTIM) from the case where we failed with ETIME waiting on 6105 * IOCWAIT in the prior loop. 6106 */ 6107 if (cv_rval > 0 && !(flag & STR_NOERROR) && 6108 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) { 6109 cv_rval = -1; 6110 } 6111 6112 /* 6113 * note: STR_NOERROR does not protect 6114 * us here.. use ic_timout < 0 6115 */ 6116 if (cv_rval <= 0) { 6117 if (cv_rval == 0) { 6118 error = EINTR; 6119 } else { 6120 error = ETIME; 6121 } 6122 /* 6123 * A message could have come in after we were scheduled 6124 * but before we were actually run. 6125 */ 6126 bp = stp->sd_iocblk; 6127 stp->sd_iocblk = NULL; 6128 if (bp != NULL) { 6129 if ((bp->b_datap->db_type == M_COPYIN) || 6130 (bp->b_datap->db_type == M_COPYOUT)) { 6131 mutex_exit(&stp->sd_lock); 6132 if (bp->b_cont) { 6133 freemsg(bp->b_cont); 6134 bp->b_cont = NULL; 6135 } 6136 bp->b_datap->db_type = M_IOCDATA; 6137 bp->b_wptr = bp->b_rptr + 6138 sizeof (struct copyresp); 6139 resp = (struct copyresp *)bp->b_rptr; 6140 resp->cp_rval = 6141 (caddr_t)1; /* failure */ 6142 stream_willservice(stp); 6143 putnext(stp->sd_wrq, bp); 6144 stream_runservice(stp); 6145 mutex_enter(&stp->sd_lock); 6146 } else { 6147 freemsg(bp); 6148 } 6149 } 6150 stp->sd_flag &= ~waitflags; 6151 cv_broadcast(&stp->sd_iocmonitor); 6152 mutex_exit(&stp->sd_lock); 6153 crfree(crp); 6154 return (error); 6155 } 6156 } 6157 bp = stp->sd_iocblk; 6158 /* 6159 * Note: it is strictly impossible to get here with sd_iocblk set to 6160 * -1. This is because the initial loop above doesn't allow any new 6161 * ioctls into the fray until all others have passed this point. 6162 */ 6163 ASSERT(bp != NULL && bp != (mblk_t *)-1); 6164 TRACE_1(TR_FAC_STREAMS_FR, 6165 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp); 6166 if ((bp->b_datap->db_type == M_IOCACK) || 6167 (bp->b_datap->db_type == M_IOCNAK)) { 6168 /* for detection of duplicate ioctl replies */ 6169 stp->sd_iocblk = (mblk_t *)-1; 6170 stp->sd_flag &= ~waitflags; 6171 cv_broadcast(&stp->sd_iocmonitor); 6172 mutex_exit(&stp->sd_lock); 6173 } else { 6174 /* 6175 * flags not cleared here because we're still doing 6176 * copy in/out for ioctl. 6177 */ 6178 stp->sd_iocblk = NULL; 6179 mutex_exit(&stp->sd_lock); 6180 } 6181 6182 6183 /* 6184 * Have received acknowledgment. 6185 */ 6186 6187 switch (bp->b_datap->db_type) { 6188 case M_IOCACK: 6189 /* 6190 * Positive ack. 6191 */ 6192 iocbp = (struct iocblk *)bp->b_rptr; 6193 6194 /* 6195 * Set error if indicated. 6196 */ 6197 if (iocbp->ioc_error) { 6198 error = iocbp->ioc_error; 6199 break; 6200 } 6201 6202 /* 6203 * Set return value. 6204 */ 6205 *rvalp = iocbp->ioc_rval; 6206 6207 /* 6208 * Data may have been returned in ACK message (ioc_count > 0). 6209 * If so, copy it out to the user's buffer. 6210 */ 6211 if (iocbp->ioc_count && !transparent) { 6212 if (error = getiocd(bp, strioc->ic_dp, copyflag)) 6213 break; 6214 } 6215 if (!transparent) { 6216 if (len) /* an M_COPYOUT was used with I_STR */ 6217 strioc->ic_len = len; 6218 else 6219 strioc->ic_len = (int)iocbp->ioc_count; 6220 } 6221 break; 6222 6223 case M_IOCNAK: 6224 /* 6225 * Negative ack. 6226 * 6227 * The only thing to do is set error as specified 6228 * in neg ack packet. 6229 */ 6230 iocbp = (struct iocblk *)bp->b_rptr; 6231 6232 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL); 6233 break; 6234 6235 case M_COPYIN: 6236 /* 6237 * Driver or module has requested user ioctl data. 6238 */ 6239 reqp = (struct copyreq *)bp->b_rptr; 6240 6241 /* 6242 * M_COPYIN should *never* have a message attached, though 6243 * it's harmless if it does -- thus, panic on a DEBUG 6244 * kernel and just free it on a non-DEBUG build. 6245 */ 6246 ASSERT(bp->b_cont == NULL); 6247 if (bp->b_cont != NULL) { 6248 freemsg(bp->b_cont); 6249 bp->b_cont = NULL; 6250 } 6251 6252 error = putiocd(bp, reqp->cq_addr, flag, crp); 6253 if (error && bp->b_cont) { 6254 freemsg(bp->b_cont); 6255 bp->b_cont = NULL; 6256 } 6257 6258 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6259 bp->b_datap->db_type = M_IOCDATA; 6260 6261 mblk_setcred(bp, crp, curproc->p_pid); 6262 resp = (struct copyresp *)bp->b_rptr; 6263 resp->cp_rval = (caddr_t)(uintptr_t)error; 6264 resp->cp_flag = (fflags & FMODELS); 6265 6266 stream_willservice(stp); 6267 putnext(stp->sd_wrq, bp); 6268 stream_runservice(stp); 6269 6270 if (error) { 6271 mutex_enter(&stp->sd_lock); 6272 stp->sd_flag &= ~waitflags; 6273 cv_broadcast(&stp->sd_iocmonitor); 6274 mutex_exit(&stp->sd_lock); 6275 crfree(crp); 6276 return (error); 6277 } 6278 6279 goto waitioc; 6280 6281 case M_COPYOUT: 6282 /* 6283 * Driver or module has ioctl data for a user. 6284 */ 6285 reqp = (struct copyreq *)bp->b_rptr; 6286 ASSERT(bp->b_cont != NULL); 6287 6288 /* 6289 * Always (transparent or non-transparent ) 6290 * use the address specified in the request 6291 */ 6292 taddr = reqp->cq_addr; 6293 if (!transparent) 6294 len = (int)reqp->cq_size; 6295 6296 /* copyout data to the provided address */ 6297 error = getiocd(bp, taddr, copyflag); 6298 6299 freemsg(bp->b_cont); 6300 bp->b_cont = NULL; 6301 6302 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp); 6303 bp->b_datap->db_type = M_IOCDATA; 6304 6305 mblk_setcred(bp, crp, curproc->p_pid); 6306 resp = (struct copyresp *)bp->b_rptr; 6307 resp->cp_rval = (caddr_t)(uintptr_t)error; 6308 resp->cp_flag = (fflags & FMODELS); 6309 6310 stream_willservice(stp); 6311 putnext(stp->sd_wrq, bp); 6312 stream_runservice(stp); 6313 6314 if (error) { 6315 mutex_enter(&stp->sd_lock); 6316 stp->sd_flag &= ~waitflags; 6317 cv_broadcast(&stp->sd_iocmonitor); 6318 mutex_exit(&stp->sd_lock); 6319 crfree(crp); 6320 return (error); 6321 } 6322 goto waitioc; 6323 6324 default: 6325 ASSERT(0); 6326 mutex_enter(&stp->sd_lock); 6327 stp->sd_flag &= ~waitflags; 6328 cv_broadcast(&stp->sd_iocmonitor); 6329 mutex_exit(&stp->sd_lock); 6330 break; 6331 } 6332 6333 freemsg(bp); 6334 crfree(crp); 6335 return (error); 6336 } 6337 6338 /* 6339 * Send an M_CMD message downstream and wait for a reply. This is a ptools 6340 * special used to retrieve information from modules/drivers a stream without 6341 * being subjected to flow control or interfering with pending messages on the 6342 * stream (e.g. an ioctl in flight). 6343 */ 6344 int 6345 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp) 6346 { 6347 mblk_t *mp; 6348 struct cmdblk *cmdp; 6349 int error = 0; 6350 int errs = STRHUP|STRDERR|STWRERR|STPLEX; 6351 clock_t rval, timeout = STRTIMOUT; 6352 6353 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) || 6354 scp->sc_timeout < -1) 6355 return (EINVAL); 6356 6357 if (scp->sc_timeout > 0) 6358 timeout = scp->sc_timeout * MILLISEC; 6359 6360 if ((mp = allocb_cred(sizeof (struct cmdblk), crp, 6361 curproc->p_pid)) == NULL) 6362 return (ENOMEM); 6363 6364 crhold(crp); 6365 6366 cmdp = (struct cmdblk *)mp->b_wptr; 6367 cmdp->cb_cr = crp; 6368 cmdp->cb_cmd = scp->sc_cmd; 6369 cmdp->cb_len = scp->sc_len; 6370 cmdp->cb_error = 0; 6371 mp->b_wptr += sizeof (struct cmdblk); 6372 6373 DB_TYPE(mp) = M_CMD; 6374 DB_CPID(mp) = curproc->p_pid; 6375 6376 /* 6377 * Copy in the payload. 6378 */ 6379 if (cmdp->cb_len > 0) { 6380 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp, 6381 curproc->p_pid); 6382 if (mp->b_cont == NULL) { 6383 error = ENOMEM; 6384 goto out; 6385 } 6386 6387 /* cb_len comes from sc_len, which has already been checked */ 6388 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf)); 6389 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len); 6390 mp->b_cont->b_wptr += cmdp->cb_len; 6391 DB_CPID(mp->b_cont) = curproc->p_pid; 6392 } 6393 6394 /* 6395 * Since this mechanism is strictly for ptools, and since only one 6396 * process can be grabbed at a time, we simply fail if there's 6397 * currently an operation pending. 6398 */ 6399 mutex_enter(&stp->sd_lock); 6400 if (stp->sd_flag & STRCMDWAIT) { 6401 mutex_exit(&stp->sd_lock); 6402 error = EBUSY; 6403 goto out; 6404 } 6405 stp->sd_flag |= STRCMDWAIT; 6406 ASSERT(stp->sd_cmdblk == NULL); 6407 mutex_exit(&stp->sd_lock); 6408 6409 putnext(stp->sd_wrq, mp); 6410 mp = NULL; 6411 6412 /* 6413 * Timed wait for acknowledgment. If the reply has already arrived, 6414 * don't sleep. If awakened from the sleep, fail only if the reply 6415 * has not arrived by then. Otherwise, process the reply. 6416 */ 6417 mutex_enter(&stp->sd_lock); 6418 while (stp->sd_cmdblk == NULL) { 6419 if (stp->sd_flag & errs) { 6420 if ((error = strgeterr(stp, errs, 0)) != 0) 6421 goto waitout; 6422 } 6423 6424 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0); 6425 if (stp->sd_cmdblk != NULL) 6426 break; 6427 6428 if (rval <= 0) { 6429 error = (rval == 0) ? EINTR : ETIME; 6430 goto waitout; 6431 } 6432 } 6433 6434 /* 6435 * We received a reply. 6436 */ 6437 mp = stp->sd_cmdblk; 6438 stp->sd_cmdblk = NULL; 6439 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD); 6440 ASSERT(stp->sd_flag & STRCMDWAIT); 6441 stp->sd_flag &= ~STRCMDWAIT; 6442 mutex_exit(&stp->sd_lock); 6443 6444 cmdp = (struct cmdblk *)mp->b_rptr; 6445 if ((error = cmdp->cb_error) != 0) 6446 goto out; 6447 6448 /* 6449 * Data may have been returned in the reply (cb_len > 0). 6450 * If so, copy it out to the user's buffer. 6451 */ 6452 if (cmdp->cb_len > 0) { 6453 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) { 6454 error = EPROTO; 6455 goto out; 6456 } 6457 6458 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf)); 6459 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len); 6460 } 6461 scp->sc_len = cmdp->cb_len; 6462 out: 6463 freemsg(mp); 6464 crfree(crp); 6465 return (error); 6466 waitout: 6467 ASSERT(stp->sd_cmdblk == NULL); 6468 stp->sd_flag &= ~STRCMDWAIT; 6469 mutex_exit(&stp->sd_lock); 6470 crfree(crp); 6471 return (error); 6472 } 6473 6474 /* 6475 * For the SunOS keyboard driver. 6476 * Return the next available "ioctl" sequence number. 6477 * Exported, so that streams modules can send "ioctl" messages 6478 * downstream from their open routine. 6479 */ 6480 int 6481 getiocseqno(void) 6482 { 6483 int i; 6484 6485 mutex_enter(&strresources); 6486 i = ++ioc_id; 6487 mutex_exit(&strresources); 6488 return (i); 6489 } 6490 6491 /* 6492 * Get the next message from the read queue. If the message is 6493 * priority, STRPRI will have been set by strrput(). This flag 6494 * should be reset only when the entire message at the front of the 6495 * queue as been consumed. 6496 * 6497 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 6498 */ 6499 int 6500 strgetmsg( 6501 struct vnode *vp, 6502 struct strbuf *mctl, 6503 struct strbuf *mdata, 6504 unsigned char *prip, 6505 int *flagsp, 6506 int fmode, 6507 rval_t *rvp) 6508 { 6509 struct stdata *stp; 6510 mblk_t *bp, *nbp; 6511 mblk_t *savemp = NULL; 6512 mblk_t *savemptail = NULL; 6513 uint_t old_sd_flag; 6514 int flg; 6515 int more = 0; 6516 int error = 0; 6517 char first = 1; 6518 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 6519 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 6520 unsigned char pri = 0; 6521 queue_t *q; 6522 int pr = 0; /* Partial read successful */ 6523 struct uio uios; 6524 struct uio *uiop = &uios; 6525 struct iovec iovs; 6526 unsigned char type; 6527 6528 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER, 6529 "strgetmsg:%p", vp); 6530 6531 ASSERT(vp->v_stream); 6532 stp = vp->v_stream; 6533 rvp->r_val1 = 0; 6534 6535 mutex_enter(&stp->sd_lock); 6536 6537 if ((error = i_straccess(stp, JCREAD)) != 0) { 6538 mutex_exit(&stp->sd_lock); 6539 return (error); 6540 } 6541 6542 if (stp->sd_flag & (STRDERR|STPLEX)) { 6543 error = strgeterr(stp, STRDERR|STPLEX, 0); 6544 if (error != 0) { 6545 mutex_exit(&stp->sd_lock); 6546 return (error); 6547 } 6548 } 6549 mutex_exit(&stp->sd_lock); 6550 6551 switch (*flagsp) { 6552 case MSG_HIPRI: 6553 if (*prip != 0) 6554 return (EINVAL); 6555 break; 6556 6557 case MSG_ANY: 6558 case MSG_BAND: 6559 break; 6560 6561 default: 6562 return (EINVAL); 6563 } 6564 /* 6565 * Setup uio and iov for data part 6566 */ 6567 iovs.iov_base = mdata->buf; 6568 iovs.iov_len = mdata->maxlen; 6569 uios.uio_iov = &iovs; 6570 uios.uio_iovcnt = 1; 6571 uios.uio_loffset = 0; 6572 uios.uio_segflg = UIO_USERSPACE; 6573 uios.uio_fmode = 0; 6574 uios.uio_extflg = UIO_COPY_CACHED; 6575 uios.uio_resid = mdata->maxlen; 6576 uios.uio_offset = 0; 6577 6578 q = _RD(stp->sd_wrq); 6579 mutex_enter(&stp->sd_lock); 6580 old_sd_flag = stp->sd_flag; 6581 mark = 0; 6582 for (;;) { 6583 int done = 0; 6584 mblk_t *q_first = q->q_first; 6585 6586 /* 6587 * Get the next message of appropriate priority 6588 * from the stream head. If the caller is interested 6589 * in band or hipri messages, then they should already 6590 * be enqueued at the stream head. On the other hand 6591 * if the caller wants normal (band 0) messages, they 6592 * might be deferred in a synchronous stream and they 6593 * will need to be pulled up. 6594 * 6595 * After we have dequeued a message, we might find that 6596 * it was a deferred M_SIG that was enqueued at the 6597 * stream head. It must now be posted as part of the 6598 * read by calling strsignal_nolock(). 6599 * 6600 * Also note that strrput does not enqueue an M_PCSIG, 6601 * and there cannot be more than one hipri message, 6602 * so there was no need to have the M_PCSIG case. 6603 * 6604 * At some time it might be nice to try and wrap the 6605 * functionality of kstrgetmsg() and strgetmsg() into 6606 * a common routine so to reduce the amount of replicated 6607 * code (since they are extremely similar). 6608 */ 6609 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) { 6610 /* Asking for normal, band0 data */ 6611 bp = strget(stp, q, uiop, first, &error); 6612 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6613 if (bp != NULL) { 6614 if (DB_TYPE(bp) == M_SIG) { 6615 strsignal_nolock(stp, *bp->b_rptr, 6616 bp->b_band); 6617 freemsg(bp); 6618 continue; 6619 } else { 6620 break; 6621 } 6622 } 6623 if (error != 0) 6624 goto getmout; 6625 6626 /* 6627 * We can't depend on the value of STRPRI here because 6628 * the stream head may be in transit. Therefore, we 6629 * must look at the type of the first message to 6630 * determine if a high priority messages is waiting 6631 */ 6632 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL && 6633 DB_TYPE(q_first) >= QPCTL && 6634 (bp = getq_noenab(q, 0)) != NULL) { 6635 /* Asked for HIPRI and got one */ 6636 ASSERT(DB_TYPE(bp) >= QPCTL); 6637 break; 6638 } else if ((*flagsp & MSG_BAND) && q_first != NULL && 6639 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 6640 (bp = getq_noenab(q, 0)) != NULL) { 6641 /* 6642 * Asked for at least band "prip" and got either at 6643 * least that band or a hipri message. 6644 */ 6645 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 6646 if (DB_TYPE(bp) == M_SIG) { 6647 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6648 freemsg(bp); 6649 continue; 6650 } else { 6651 break; 6652 } 6653 } 6654 6655 /* No data. Time to sleep? */ 6656 qbackenable(q, 0); 6657 6658 /* 6659 * If STRHUP or STREOF, return 0 length control and data. 6660 * If resid is 0, then a read(fd,buf,0) was done. Do not 6661 * sleep to satisfy this request because by default we have 6662 * zero bytes to return. 6663 */ 6664 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 && 6665 mdata->maxlen == 0)) { 6666 mctl->len = mdata->len = 0; 6667 *flagsp = 0; 6668 mutex_exit(&stp->sd_lock); 6669 return (0); 6670 } 6671 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT, 6672 "strgetmsg calls strwaitq:%p, %p", 6673 vp, uiop); 6674 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1, 6675 &done)) != 0) || done) { 6676 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE, 6677 "strgetmsg error or done:%p, %p", 6678 vp, uiop); 6679 mutex_exit(&stp->sd_lock); 6680 return (error); 6681 } 6682 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE, 6683 "strgetmsg awakes:%p, %p", vp, uiop); 6684 if ((error = i_straccess(stp, JCREAD)) != 0) { 6685 mutex_exit(&stp->sd_lock); 6686 return (error); 6687 } 6688 first = 0; 6689 } 6690 ASSERT(bp != NULL); 6691 /* 6692 * Extract any mark information. If the message is not completely 6693 * consumed this information will be put in the mblk 6694 * that is putback. 6695 * If MSGMARKNEXT is set and the message is completely consumed 6696 * the STRATMARK flag will be set below. Likewise, if 6697 * MSGNOTMARKNEXT is set and the message is 6698 * completely consumed STRNOTATMARK will be set. 6699 */ 6700 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 6701 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 6702 (MSGMARKNEXT|MSGNOTMARKNEXT)); 6703 if (mark != 0 && bp == stp->sd_mark) { 6704 mark |= _LASTMARK; 6705 stp->sd_mark = NULL; 6706 } 6707 /* 6708 * keep track of the original message type and priority 6709 */ 6710 pri = bp->b_band; 6711 type = bp->b_datap->db_type; 6712 if (type == M_PASSFP) { 6713 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 6714 stp->sd_mark = bp; 6715 bp->b_flag |= mark & ~_LASTMARK; 6716 putback(stp, q, bp, pri); 6717 qbackenable(q, pri); 6718 mutex_exit(&stp->sd_lock); 6719 return (EBADMSG); 6720 } 6721 ASSERT(type != M_SIG); 6722 6723 /* 6724 * Set this flag so strrput will not generate signals. Need to 6725 * make sure this flag is cleared before leaving this routine 6726 * else signals will stop being sent. 6727 */ 6728 stp->sd_flag |= STRGETINPROG; 6729 mutex_exit(&stp->sd_lock); 6730 6731 if (STREAM_NEEDSERVICE(stp)) 6732 stream_runservice(stp); 6733 6734 /* 6735 * Set HIPRI flag if message is priority. 6736 */ 6737 if (type >= QPCTL) 6738 flg = MSG_HIPRI; 6739 else 6740 flg = MSG_BAND; 6741 6742 /* 6743 * First process PROTO or PCPROTO blocks, if any. 6744 */ 6745 if (mctl->maxlen >= 0 && type != M_DATA) { 6746 size_t n, bcnt; 6747 char *ubuf; 6748 6749 bcnt = mctl->maxlen; 6750 ubuf = mctl->buf; 6751 while (bp != NULL && bp->b_datap->db_type != M_DATA) { 6752 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 && 6753 copyout(bp->b_rptr, ubuf, n)) { 6754 error = EFAULT; 6755 mutex_enter(&stp->sd_lock); 6756 /* 6757 * clear stream head pri flag based on 6758 * first message type 6759 */ 6760 if (type >= QPCTL) { 6761 ASSERT(type == M_PCPROTO); 6762 stp->sd_flag &= ~STRPRI; 6763 } 6764 more = 0; 6765 freemsg(bp); 6766 goto getmout; 6767 } 6768 ubuf += n; 6769 bp->b_rptr += n; 6770 if (bp->b_rptr >= bp->b_wptr) { 6771 nbp = bp; 6772 bp = bp->b_cont; 6773 freeb(nbp); 6774 } 6775 ASSERT(n <= bcnt); 6776 bcnt -= n; 6777 if (bcnt == 0) 6778 break; 6779 } 6780 mctl->len = mctl->maxlen - bcnt; 6781 } else 6782 mctl->len = -1; 6783 6784 if (bp && bp->b_datap->db_type != M_DATA) { 6785 /* 6786 * More PROTO blocks in msg. 6787 */ 6788 more |= MORECTL; 6789 savemp = bp; 6790 while (bp && bp->b_datap->db_type != M_DATA) { 6791 savemptail = bp; 6792 bp = bp->b_cont; 6793 } 6794 savemptail->b_cont = NULL; 6795 } 6796 6797 /* 6798 * Now process DATA blocks, if any. 6799 */ 6800 if (mdata->maxlen >= 0 && bp) { 6801 /* 6802 * struiocopyout will consume a potential zero-length 6803 * M_DATA even if uio_resid is zero. 6804 */ 6805 size_t oldresid = uiop->uio_resid; 6806 6807 bp = struiocopyout(bp, uiop, &error); 6808 if (error != 0) { 6809 mutex_enter(&stp->sd_lock); 6810 /* 6811 * clear stream head hi pri flag based on 6812 * first message 6813 */ 6814 if (type >= QPCTL) { 6815 ASSERT(type == M_PCPROTO); 6816 stp->sd_flag &= ~STRPRI; 6817 } 6818 more = 0; 6819 freemsg(savemp); 6820 goto getmout; 6821 } 6822 /* 6823 * (pr == 1) indicates a partial read. 6824 */ 6825 if (oldresid > uiop->uio_resid) 6826 pr = 1; 6827 mdata->len = mdata->maxlen - uiop->uio_resid; 6828 } else 6829 mdata->len = -1; 6830 6831 if (bp) { /* more data blocks in msg */ 6832 more |= MOREDATA; 6833 if (savemp) 6834 savemptail->b_cont = bp; 6835 else 6836 savemp = bp; 6837 } 6838 6839 mutex_enter(&stp->sd_lock); 6840 if (savemp) { 6841 if (pr && (savemp->b_datap->db_type == M_DATA) && 6842 msgnodata(savemp)) { 6843 /* 6844 * Avoid queuing a zero-length tail part of 6845 * a message. pr=1 indicates that we read some of 6846 * the message. 6847 */ 6848 freemsg(savemp); 6849 more &= ~MOREDATA; 6850 /* 6851 * clear stream head hi pri flag based on 6852 * first message 6853 */ 6854 if (type >= QPCTL) { 6855 ASSERT(type == M_PCPROTO); 6856 stp->sd_flag &= ~STRPRI; 6857 } 6858 } else { 6859 savemp->b_band = pri; 6860 /* 6861 * If the first message was HIPRI and the one we're 6862 * putting back isn't, then clear STRPRI, otherwise 6863 * set STRPRI again. Note that we must set STRPRI 6864 * again since the flush logic in strrput_nondata() 6865 * may have cleared it while we had sd_lock dropped. 6866 */ 6867 if (type >= QPCTL) { 6868 ASSERT(type == M_PCPROTO); 6869 if (queclass(savemp) < QPCTL) 6870 stp->sd_flag &= ~STRPRI; 6871 else 6872 stp->sd_flag |= STRPRI; 6873 } else if (queclass(savemp) >= QPCTL) { 6874 /* 6875 * The first message was not a HIPRI message, 6876 * but the one we are about to putback is. 6877 * For simplicitly, we do not allow for HIPRI 6878 * messages to be embedded in the message 6879 * body, so just force it to same type as 6880 * first message. 6881 */ 6882 ASSERT(type == M_DATA || type == M_PROTO); 6883 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 6884 savemp->b_datap->db_type = type; 6885 } 6886 if (mark != 0) { 6887 savemp->b_flag |= mark & ~_LASTMARK; 6888 if ((mark & _LASTMARK) && 6889 (stp->sd_mark == NULL)) { 6890 /* 6891 * If another marked message arrived 6892 * while sd_lock was not held sd_mark 6893 * would be non-NULL. 6894 */ 6895 stp->sd_mark = savemp; 6896 } 6897 } 6898 putback(stp, q, savemp, pri); 6899 } 6900 } else { 6901 /* 6902 * The complete message was consumed. 6903 * 6904 * If another M_PCPROTO arrived while sd_lock was not held 6905 * it would have been discarded since STRPRI was still set. 6906 * 6907 * Move the MSG*MARKNEXT information 6908 * to the stream head just in case 6909 * the read queue becomes empty. 6910 * clear stream head hi pri flag based on 6911 * first message 6912 * 6913 * If the stream head was at the mark 6914 * (STRATMARK) before we dropped sd_lock above 6915 * and some data was consumed then we have 6916 * moved past the mark thus STRATMARK is 6917 * cleared. However, if a message arrived in 6918 * strrput during the copyout above causing 6919 * STRATMARK to be set we can not clear that 6920 * flag. 6921 */ 6922 if (type >= QPCTL) { 6923 ASSERT(type == M_PCPROTO); 6924 stp->sd_flag &= ~STRPRI; 6925 } 6926 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 6927 if (mark & MSGMARKNEXT) { 6928 stp->sd_flag &= ~STRNOTATMARK; 6929 stp->sd_flag |= STRATMARK; 6930 } else if (mark & MSGNOTMARKNEXT) { 6931 stp->sd_flag &= ~STRATMARK; 6932 stp->sd_flag |= STRNOTATMARK; 6933 } else { 6934 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 6935 } 6936 } else if (pr && (old_sd_flag & STRATMARK)) { 6937 stp->sd_flag &= ~STRATMARK; 6938 } 6939 } 6940 6941 *flagsp = flg; 6942 *prip = pri; 6943 6944 /* 6945 * Getmsg cleanup processing - if the state of the queue has changed 6946 * some signals may need to be sent and/or poll awakened. 6947 */ 6948 getmout: 6949 qbackenable(q, pri); 6950 6951 /* 6952 * We dropped the stream head lock above. Send all M_SIG messages 6953 * before processing stream head for SIGPOLL messages. 6954 */ 6955 ASSERT(MUTEX_HELD(&stp->sd_lock)); 6956 while ((bp = q->q_first) != NULL && 6957 (bp->b_datap->db_type == M_SIG)) { 6958 /* 6959 * sd_lock is held so the content of the read queue can not 6960 * change. 6961 */ 6962 bp = getq(q); 6963 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 6964 6965 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 6966 mutex_exit(&stp->sd_lock); 6967 freemsg(bp); 6968 if (STREAM_NEEDSERVICE(stp)) 6969 stream_runservice(stp); 6970 mutex_enter(&stp->sd_lock); 6971 } 6972 6973 /* 6974 * stream head cannot change while we make the determination 6975 * whether or not to send a signal. Drop the flag to allow strrput 6976 * to send firstmsgsigs again. 6977 */ 6978 stp->sd_flag &= ~STRGETINPROG; 6979 6980 /* 6981 * If the type of message at the front of the queue changed 6982 * due to the receive the appropriate signals and pollwakeup events 6983 * are generated. The type of changes are: 6984 * Processed a hipri message, q_first is not hipri. 6985 * Processed a band X message, and q_first is band Y. 6986 * The generated signals and pollwakeups are identical to what 6987 * strrput() generates should the message that is now on q_first 6988 * arrive to an empty read queue. 6989 * 6990 * Note: only strrput will send a signal for a hipri message. 6991 */ 6992 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 6993 strsigset_t signals = 0; 6994 strpollset_t pollwakeups = 0; 6995 6996 if (flg & MSG_HIPRI) { 6997 /* 6998 * Removed a hipri message. Regular data at 6999 * the front of the queue. 7000 */ 7001 if (bp->b_band == 0) { 7002 signals = S_INPUT | S_RDNORM; 7003 pollwakeups = POLLIN | POLLRDNORM; 7004 } else { 7005 signals = S_INPUT | S_RDBAND; 7006 pollwakeups = POLLIN | POLLRDBAND; 7007 } 7008 } else if (pri != bp->b_band) { 7009 /* 7010 * The band is different for the new q_first. 7011 */ 7012 if (bp->b_band == 0) { 7013 signals = S_RDNORM; 7014 pollwakeups = POLLIN | POLLRDNORM; 7015 } else { 7016 signals = S_RDBAND; 7017 pollwakeups = POLLIN | POLLRDBAND; 7018 } 7019 } 7020 7021 if (pollwakeups != 0) { 7022 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7023 if (!(stp->sd_rput_opt & SR_POLLIN)) 7024 goto no_pollwake; 7025 stp->sd_rput_opt &= ~SR_POLLIN; 7026 } 7027 mutex_exit(&stp->sd_lock); 7028 pollwakeup(&stp->sd_pollist, pollwakeups); 7029 mutex_enter(&stp->sd_lock); 7030 } 7031 no_pollwake: 7032 7033 if (stp->sd_sigflags & signals) 7034 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7035 } 7036 mutex_exit(&stp->sd_lock); 7037 7038 rvp->r_val1 = more; 7039 return (error); 7040 #undef _LASTMARK 7041 } 7042 7043 /* 7044 * Get the next message from the read queue. If the message is 7045 * priority, STRPRI will have been set by strrput(). This flag 7046 * should be reset only when the entire message at the front of the 7047 * queue as been consumed. 7048 * 7049 * If uiop is NULL all data is returned in mctlp. 7050 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed 7051 * not enabled. 7052 * The timeout parameter is in milliseconds; -1 for infinity. 7053 * This routine handles the consolidation private flags: 7054 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7055 * MSG_DELAYERROR Defer the error check until the queue is empty. 7056 * MSG_HOLDSIG Hold signals while waiting for data. 7057 * MSG_IPEEK Only peek at messages. 7058 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message 7059 * that doesn't fit. 7060 * MSG_NOMARK If the message is marked leave it on the queue. 7061 * 7062 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common. 7063 */ 7064 int 7065 kstrgetmsg( 7066 struct vnode *vp, 7067 mblk_t **mctlp, 7068 struct uio *uiop, 7069 unsigned char *prip, 7070 int *flagsp, 7071 clock_t timout, 7072 rval_t *rvp) 7073 { 7074 struct stdata *stp; 7075 mblk_t *bp, *nbp; 7076 mblk_t *savemp = NULL; 7077 mblk_t *savemptail = NULL; 7078 int flags; 7079 uint_t old_sd_flag; 7080 int flg; 7081 int more = 0; 7082 int error = 0; 7083 char first = 1; 7084 uint_t mark; /* Contains MSG*MARK and _LASTMARK */ 7085 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */ 7086 unsigned char pri = 0; 7087 queue_t *q; 7088 int pr = 0; /* Partial read successful */ 7089 unsigned char type; 7090 7091 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER, 7092 "kstrgetmsg:%p", vp); 7093 7094 ASSERT(vp->v_stream); 7095 stp = vp->v_stream; 7096 rvp->r_val1 = 0; 7097 7098 mutex_enter(&stp->sd_lock); 7099 7100 if ((error = i_straccess(stp, JCREAD)) != 0) { 7101 mutex_exit(&stp->sd_lock); 7102 return (error); 7103 } 7104 7105 flags = *flagsp; 7106 if (stp->sd_flag & (STRDERR|STPLEX)) { 7107 if ((stp->sd_flag & STPLEX) || 7108 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) { 7109 error = strgeterr(stp, STRDERR|STPLEX, 7110 (flags & MSG_IPEEK)); 7111 if (error != 0) { 7112 mutex_exit(&stp->sd_lock); 7113 return (error); 7114 } 7115 } 7116 } 7117 mutex_exit(&stp->sd_lock); 7118 7119 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) { 7120 case MSG_HIPRI: 7121 if (*prip != 0) 7122 return (EINVAL); 7123 break; 7124 7125 case MSG_ANY: 7126 case MSG_BAND: 7127 break; 7128 7129 default: 7130 return (EINVAL); 7131 } 7132 7133 retry: 7134 q = _RD(stp->sd_wrq); 7135 mutex_enter(&stp->sd_lock); 7136 old_sd_flag = stp->sd_flag; 7137 mark = 0; 7138 for (;;) { 7139 int done = 0; 7140 int waitflag; 7141 int fmode; 7142 mblk_t *q_first = q->q_first; 7143 7144 /* 7145 * This section of the code operates just like the code 7146 * in strgetmsg(). There is a comment there about what 7147 * is going on here. 7148 */ 7149 if (!(flags & (MSG_HIPRI|MSG_BAND))) { 7150 /* Asking for normal, band0 data */ 7151 bp = strget(stp, q, uiop, first, &error); 7152 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7153 if (bp != NULL) { 7154 if (DB_TYPE(bp) == M_SIG) { 7155 strsignal_nolock(stp, *bp->b_rptr, 7156 bp->b_band); 7157 freemsg(bp); 7158 continue; 7159 } else { 7160 break; 7161 } 7162 } 7163 if (error != 0) { 7164 goto getmout; 7165 } 7166 /* 7167 * We can't depend on the value of STRPRI here because 7168 * the stream head may be in transit. Therefore, we 7169 * must look at the type of the first message to 7170 * determine if a high priority messages is waiting 7171 */ 7172 } else if ((flags & MSG_HIPRI) && q_first != NULL && 7173 DB_TYPE(q_first) >= QPCTL && 7174 (bp = getq_noenab(q, 0)) != NULL) { 7175 ASSERT(DB_TYPE(bp) >= QPCTL); 7176 break; 7177 } else if ((flags & MSG_BAND) && q_first != NULL && 7178 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) && 7179 (bp = getq_noenab(q, 0)) != NULL) { 7180 /* 7181 * Asked for at least band "prip" and got either at 7182 * least that band or a hipri message. 7183 */ 7184 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL); 7185 if (DB_TYPE(bp) == M_SIG) { 7186 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7187 freemsg(bp); 7188 continue; 7189 } else { 7190 break; 7191 } 7192 } 7193 7194 /* No data. Time to sleep? */ 7195 qbackenable(q, 0); 7196 7197 /* 7198 * Delayed error notification? 7199 */ 7200 if ((stp->sd_flag & (STRDERR|STPLEX)) && 7201 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) { 7202 error = strgeterr(stp, STRDERR|STPLEX, 7203 (flags & MSG_IPEEK)); 7204 if (error != 0) { 7205 mutex_exit(&stp->sd_lock); 7206 return (error); 7207 } 7208 } 7209 7210 /* 7211 * If STRHUP or STREOF, return 0 length control and data. 7212 * If a read(fd,buf,0) has been done, do not sleep, just 7213 * return. 7214 * 7215 * If mctlp == NULL and uiop == NULL, then the code will 7216 * do the strwaitq. This is an understood way of saying 7217 * sleep "polling" until a message is received. 7218 */ 7219 if ((stp->sd_flag & (STRHUP|STREOF)) || 7220 (uiop != NULL && uiop->uio_resid == 0)) { 7221 if (mctlp != NULL) 7222 *mctlp = NULL; 7223 *flagsp = 0; 7224 mutex_exit(&stp->sd_lock); 7225 return (0); 7226 } 7227 7228 waitflag = GETWAIT; 7229 if (flags & 7230 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) { 7231 if (flags & MSG_HOLDSIG) 7232 waitflag |= STR_NOSIG; 7233 if (flags & MSG_IGNERROR) 7234 waitflag |= STR_NOERROR; 7235 if (flags & MSG_IPEEK) 7236 waitflag |= STR_PEEK; 7237 if (flags & MSG_DELAYERROR) 7238 waitflag |= STR_DELAYERR; 7239 } 7240 if (uiop != NULL) 7241 fmode = uiop->uio_fmode; 7242 else 7243 fmode = 0; 7244 7245 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT, 7246 "kstrgetmsg calls strwaitq:%p, %p", 7247 vp, uiop); 7248 if (((error = strwaitq(stp, waitflag, (ssize_t)0, 7249 fmode, timout, &done))) != 0 || done) { 7250 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE, 7251 "kstrgetmsg error or done:%p, %p", 7252 vp, uiop); 7253 mutex_exit(&stp->sd_lock); 7254 return (error); 7255 } 7256 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE, 7257 "kstrgetmsg awakes:%p, %p", vp, uiop); 7258 if ((error = i_straccess(stp, JCREAD)) != 0) { 7259 mutex_exit(&stp->sd_lock); 7260 return (error); 7261 } 7262 first = 0; 7263 } 7264 ASSERT(bp != NULL); 7265 /* 7266 * Extract any mark information. If the message is not completely 7267 * consumed this information will be put in the mblk 7268 * that is putback. 7269 * If MSGMARKNEXT is set and the message is completely consumed 7270 * the STRATMARK flag will be set below. Likewise, if 7271 * MSGNOTMARKNEXT is set and the message is 7272 * completely consumed STRNOTATMARK will be set. 7273 */ 7274 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT); 7275 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 7276 (MSGMARKNEXT|MSGNOTMARKNEXT)); 7277 pri = bp->b_band; 7278 if (mark != 0) { 7279 /* 7280 * If the caller doesn't want the mark return. 7281 * Used to implement MSG_WAITALL in sockets. 7282 */ 7283 if (flags & MSG_NOMARK) { 7284 putback(stp, q, bp, pri); 7285 qbackenable(q, pri); 7286 mutex_exit(&stp->sd_lock); 7287 return (EWOULDBLOCK); 7288 } 7289 if (bp == stp->sd_mark) { 7290 mark |= _LASTMARK; 7291 stp->sd_mark = NULL; 7292 } 7293 } 7294 7295 /* 7296 * keep track of the first message type 7297 */ 7298 type = bp->b_datap->db_type; 7299 7300 if (bp->b_datap->db_type == M_PASSFP) { 7301 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7302 stp->sd_mark = bp; 7303 bp->b_flag |= mark & ~_LASTMARK; 7304 putback(stp, q, bp, pri); 7305 qbackenable(q, pri); 7306 mutex_exit(&stp->sd_lock); 7307 return (EBADMSG); 7308 } 7309 ASSERT(type != M_SIG); 7310 7311 if (flags & MSG_IPEEK) { 7312 /* 7313 * Clear any struioflag - we do the uiomove over again 7314 * when peeking since it simplifies the code. 7315 * 7316 * Dup the message and put the original back on the queue. 7317 * If dupmsg() fails, try again with copymsg() to see if 7318 * there is indeed a shortage of memory. dupmsg() may fail 7319 * if db_ref in any of the messages reaches its limit. 7320 */ 7321 7322 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) { 7323 /* 7324 * Restore the state of the stream head since we 7325 * need to drop sd_lock (strwaitbuf is sleeping). 7326 */ 7327 size_t size = msgdsize(bp); 7328 7329 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7330 stp->sd_mark = bp; 7331 bp->b_flag |= mark & ~_LASTMARK; 7332 putback(stp, q, bp, pri); 7333 mutex_exit(&stp->sd_lock); 7334 error = strwaitbuf(size, BPRI_HI); 7335 if (error) { 7336 /* 7337 * There is no net change to the queue thus 7338 * no need to qbackenable. 7339 */ 7340 return (error); 7341 } 7342 goto retry; 7343 } 7344 7345 if ((mark & _LASTMARK) && (stp->sd_mark == NULL)) 7346 stp->sd_mark = bp; 7347 bp->b_flag |= mark & ~_LASTMARK; 7348 putback(stp, q, bp, pri); 7349 bp = nbp; 7350 } 7351 7352 /* 7353 * Set this flag so strrput will not generate signals. Need to 7354 * make sure this flag is cleared before leaving this routine 7355 * else signals will stop being sent. 7356 */ 7357 stp->sd_flag |= STRGETINPROG; 7358 mutex_exit(&stp->sd_lock); 7359 7360 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) { 7361 mblk_t *tmp, *prevmp; 7362 7363 /* 7364 * Put first non-data mblk back to stream head and 7365 * cut the mblk chain so sd_rputdatafunc only sees 7366 * M_DATA mblks. We can skip the first mblk since it 7367 * is M_DATA according to the condition above. 7368 */ 7369 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL; 7370 prevmp = tmp, tmp = tmp->b_cont) { 7371 if (DB_TYPE(tmp) != M_DATA) { 7372 prevmp->b_cont = NULL; 7373 mutex_enter(&stp->sd_lock); 7374 putback(stp, q, tmp, tmp->b_band); 7375 mutex_exit(&stp->sd_lock); 7376 break; 7377 } 7378 } 7379 7380 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp, 7381 NULL, NULL, NULL, NULL); 7382 7383 if (bp == NULL) 7384 goto retry; 7385 } 7386 7387 if (STREAM_NEEDSERVICE(stp)) 7388 stream_runservice(stp); 7389 7390 /* 7391 * Set HIPRI flag if message is priority. 7392 */ 7393 if (type >= QPCTL) 7394 flg = MSG_HIPRI; 7395 else 7396 flg = MSG_BAND; 7397 7398 /* 7399 * First process PROTO or PCPROTO blocks, if any. 7400 */ 7401 if (mctlp != NULL && type != M_DATA) { 7402 mblk_t *nbp; 7403 7404 *mctlp = bp; 7405 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA) 7406 bp = bp->b_cont; 7407 nbp = bp->b_cont; 7408 bp->b_cont = NULL; 7409 bp = nbp; 7410 } 7411 7412 if (bp && bp->b_datap->db_type != M_DATA) { 7413 /* 7414 * More PROTO blocks in msg. Will only happen if mctlp is NULL. 7415 */ 7416 more |= MORECTL; 7417 savemp = bp; 7418 while (bp && bp->b_datap->db_type != M_DATA) { 7419 savemptail = bp; 7420 bp = bp->b_cont; 7421 } 7422 savemptail->b_cont = NULL; 7423 } 7424 7425 /* 7426 * Now process DATA blocks, if any. 7427 */ 7428 if (uiop == NULL) { 7429 /* Append data to tail of mctlp */ 7430 7431 if (mctlp != NULL) { 7432 mblk_t **mpp = mctlp; 7433 7434 while (*mpp != NULL) 7435 mpp = &((*mpp)->b_cont); 7436 *mpp = bp; 7437 bp = NULL; 7438 } 7439 } else if (uiop->uio_resid >= 0 && bp) { 7440 size_t oldresid = uiop->uio_resid; 7441 7442 /* 7443 * If a streams message is likely to consist 7444 * of many small mblks, it is pulled up into 7445 * one continuous chunk of memory. 7446 * The size of the first mblk may be bogus because 7447 * successive read() calls on the socket reduce 7448 * the size of this mblk until it is exhausted 7449 * and then the code walks on to the next. Thus 7450 * the size of the mblk may not be the original size 7451 * that was passed up, it's simply a remainder 7452 * and hence can be very small without any 7453 * implication that the packet is badly fragmented. 7454 * So the size of the possible second mblk is 7455 * used to spot a badly fragmented packet. 7456 * see longer comment at top of page 7457 * by mblk_pull_len declaration. 7458 */ 7459 7460 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) { 7461 (void) pullupmsg(bp, -1); 7462 } 7463 7464 bp = struiocopyout(bp, uiop, &error); 7465 if (error != 0) { 7466 if (mctlp != NULL) { 7467 freemsg(*mctlp); 7468 *mctlp = NULL; 7469 } else 7470 freemsg(savemp); 7471 mutex_enter(&stp->sd_lock); 7472 /* 7473 * clear stream head hi pri flag based on 7474 * first message 7475 */ 7476 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7477 ASSERT(type == M_PCPROTO); 7478 stp->sd_flag &= ~STRPRI; 7479 } 7480 more = 0; 7481 goto getmout; 7482 } 7483 /* 7484 * (pr == 1) indicates a partial read. 7485 */ 7486 if (oldresid > uiop->uio_resid) 7487 pr = 1; 7488 } 7489 7490 if (bp) { /* more data blocks in msg */ 7491 more |= MOREDATA; 7492 if (savemp) 7493 savemptail->b_cont = bp; 7494 else 7495 savemp = bp; 7496 } 7497 7498 mutex_enter(&stp->sd_lock); 7499 if (savemp) { 7500 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) { 7501 /* 7502 * When MSG_DISCARDTAIL is set or 7503 * when peeking discard any tail. When peeking this 7504 * is the tail of the dup that was copied out - the 7505 * message has already been putback on the queue. 7506 * Return MOREDATA to the caller even though the data 7507 * is discarded. This is used by sockets (to 7508 * set MSG_TRUNC). 7509 */ 7510 freemsg(savemp); 7511 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) { 7512 ASSERT(type == M_PCPROTO); 7513 stp->sd_flag &= ~STRPRI; 7514 } 7515 } else if (pr && (savemp->b_datap->db_type == M_DATA) && 7516 msgnodata(savemp)) { 7517 /* 7518 * Avoid queuing a zero-length tail part of 7519 * a message. pr=1 indicates that we read some of 7520 * the message. 7521 */ 7522 freemsg(savemp); 7523 more &= ~MOREDATA; 7524 if (type >= QPCTL) { 7525 ASSERT(type == M_PCPROTO); 7526 stp->sd_flag &= ~STRPRI; 7527 } 7528 } else { 7529 savemp->b_band = pri; 7530 /* 7531 * If the first message was HIPRI and the one we're 7532 * putting back isn't, then clear STRPRI, otherwise 7533 * set STRPRI again. Note that we must set STRPRI 7534 * again since the flush logic in strrput_nondata() 7535 * may have cleared it while we had sd_lock dropped. 7536 */ 7537 7538 if (type >= QPCTL) { 7539 ASSERT(type == M_PCPROTO); 7540 if (queclass(savemp) < QPCTL) 7541 stp->sd_flag &= ~STRPRI; 7542 else 7543 stp->sd_flag |= STRPRI; 7544 } else if (queclass(savemp) >= QPCTL) { 7545 /* 7546 * The first message was not a HIPRI message, 7547 * but the one we are about to putback is. 7548 * For simplicitly, we do not allow for HIPRI 7549 * messages to be embedded in the message 7550 * body, so just force it to same type as 7551 * first message. 7552 */ 7553 ASSERT(type == M_DATA || type == M_PROTO); 7554 ASSERT(savemp->b_datap->db_type == M_PCPROTO); 7555 savemp->b_datap->db_type = type; 7556 } 7557 if (mark != 0) { 7558 if ((mark & _LASTMARK) && 7559 (stp->sd_mark == NULL)) { 7560 /* 7561 * If another marked message arrived 7562 * while sd_lock was not held sd_mark 7563 * would be non-NULL. 7564 */ 7565 stp->sd_mark = savemp; 7566 } 7567 savemp->b_flag |= mark & ~_LASTMARK; 7568 } 7569 putback(stp, q, savemp, pri); 7570 } 7571 } else if (!(flags & MSG_IPEEK)) { 7572 /* 7573 * The complete message was consumed. 7574 * 7575 * If another M_PCPROTO arrived while sd_lock was not held 7576 * it would have been discarded since STRPRI was still set. 7577 * 7578 * Move the MSG*MARKNEXT information 7579 * to the stream head just in case 7580 * the read queue becomes empty. 7581 * clear stream head hi pri flag based on 7582 * first message 7583 * 7584 * If the stream head was at the mark 7585 * (STRATMARK) before we dropped sd_lock above 7586 * and some data was consumed then we have 7587 * moved past the mark thus STRATMARK is 7588 * cleared. However, if a message arrived in 7589 * strrput during the copyout above causing 7590 * STRATMARK to be set we can not clear that 7591 * flag. 7592 * XXX A "perimeter" would help by single-threading strrput, 7593 * strread, strgetmsg and kstrgetmsg. 7594 */ 7595 if (type >= QPCTL) { 7596 ASSERT(type == M_PCPROTO); 7597 stp->sd_flag &= ~STRPRI; 7598 } 7599 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) { 7600 if (mark & MSGMARKNEXT) { 7601 stp->sd_flag &= ~STRNOTATMARK; 7602 stp->sd_flag |= STRATMARK; 7603 } else if (mark & MSGNOTMARKNEXT) { 7604 stp->sd_flag &= ~STRATMARK; 7605 stp->sd_flag |= STRNOTATMARK; 7606 } else { 7607 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK); 7608 } 7609 } else if (pr && (old_sd_flag & STRATMARK)) { 7610 stp->sd_flag &= ~STRATMARK; 7611 } 7612 } 7613 7614 *flagsp = flg; 7615 *prip = pri; 7616 7617 /* 7618 * Getmsg cleanup processing - if the state of the queue has changed 7619 * some signals may need to be sent and/or poll awakened. 7620 */ 7621 getmout: 7622 qbackenable(q, pri); 7623 7624 /* 7625 * We dropped the stream head lock above. Send all M_SIG messages 7626 * before processing stream head for SIGPOLL messages. 7627 */ 7628 ASSERT(MUTEX_HELD(&stp->sd_lock)); 7629 while ((bp = q->q_first) != NULL && 7630 (bp->b_datap->db_type == M_SIG)) { 7631 /* 7632 * sd_lock is held so the content of the read queue can not 7633 * change. 7634 */ 7635 bp = getq(q); 7636 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG); 7637 7638 strsignal_nolock(stp, *bp->b_rptr, bp->b_band); 7639 mutex_exit(&stp->sd_lock); 7640 freemsg(bp); 7641 if (STREAM_NEEDSERVICE(stp)) 7642 stream_runservice(stp); 7643 mutex_enter(&stp->sd_lock); 7644 } 7645 7646 /* 7647 * stream head cannot change while we make the determination 7648 * whether or not to send a signal. Drop the flag to allow strrput 7649 * to send firstmsgsigs again. 7650 */ 7651 stp->sd_flag &= ~STRGETINPROG; 7652 7653 /* 7654 * If the type of message at the front of the queue changed 7655 * due to the receive the appropriate signals and pollwakeup events 7656 * are generated. The type of changes are: 7657 * Processed a hipri message, q_first is not hipri. 7658 * Processed a band X message, and q_first is band Y. 7659 * The generated signals and pollwakeups are identical to what 7660 * strrput() generates should the message that is now on q_first 7661 * arrive to an empty read queue. 7662 * 7663 * Note: only strrput will send a signal for a hipri message. 7664 */ 7665 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) { 7666 strsigset_t signals = 0; 7667 strpollset_t pollwakeups = 0; 7668 7669 if (flg & MSG_HIPRI) { 7670 /* 7671 * Removed a hipri message. Regular data at 7672 * the front of the queue. 7673 */ 7674 if (bp->b_band == 0) { 7675 signals = S_INPUT | S_RDNORM; 7676 pollwakeups = POLLIN | POLLRDNORM; 7677 } else { 7678 signals = S_INPUT | S_RDBAND; 7679 pollwakeups = POLLIN | POLLRDBAND; 7680 } 7681 } else if (pri != bp->b_band) { 7682 /* 7683 * The band is different for the new q_first. 7684 */ 7685 if (bp->b_band == 0) { 7686 signals = S_RDNORM; 7687 pollwakeups = POLLIN | POLLRDNORM; 7688 } else { 7689 signals = S_RDBAND; 7690 pollwakeups = POLLIN | POLLRDBAND; 7691 } 7692 } 7693 7694 if (pollwakeups != 0) { 7695 if (pollwakeups == (POLLIN | POLLRDNORM)) { 7696 if (!(stp->sd_rput_opt & SR_POLLIN)) 7697 goto no_pollwake; 7698 stp->sd_rput_opt &= ~SR_POLLIN; 7699 } 7700 mutex_exit(&stp->sd_lock); 7701 pollwakeup(&stp->sd_pollist, pollwakeups); 7702 mutex_enter(&stp->sd_lock); 7703 } 7704 no_pollwake: 7705 7706 if (stp->sd_sigflags & signals) 7707 strsendsig(stp->sd_siglist, signals, bp->b_band, 0); 7708 } 7709 mutex_exit(&stp->sd_lock); 7710 7711 rvp->r_val1 = more; 7712 return (error); 7713 #undef _LASTMARK 7714 } 7715 7716 /* 7717 * Put a message downstream. 7718 * 7719 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7720 */ 7721 int 7722 strputmsg( 7723 struct vnode *vp, 7724 struct strbuf *mctl, 7725 struct strbuf *mdata, 7726 unsigned char pri, 7727 int flag, 7728 int fmode) 7729 { 7730 struct stdata *stp; 7731 queue_t *wqp; 7732 mblk_t *mp; 7733 ssize_t msgsize; 7734 ssize_t rmin, rmax; 7735 int error; 7736 struct uio uios; 7737 struct uio *uiop = &uios; 7738 struct iovec iovs; 7739 int xpg4 = 0; 7740 7741 ASSERT(vp->v_stream); 7742 stp = vp->v_stream; 7743 wqp = stp->sd_wrq; 7744 7745 /* 7746 * If it is an XPG4 application, we need to send 7747 * SIGPIPE below 7748 */ 7749 7750 xpg4 = (flag & MSG_XPG4) ? 1 : 0; 7751 flag &= ~MSG_XPG4; 7752 7753 if (AU_AUDITING()) 7754 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode); 7755 7756 mutex_enter(&stp->sd_lock); 7757 7758 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7759 mutex_exit(&stp->sd_lock); 7760 return (error); 7761 } 7762 7763 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7764 error = strwriteable(stp, B_FALSE, xpg4); 7765 if (error != 0) { 7766 mutex_exit(&stp->sd_lock); 7767 return (error); 7768 } 7769 } 7770 7771 mutex_exit(&stp->sd_lock); 7772 7773 /* 7774 * Check for legal flag value. 7775 */ 7776 switch (flag) { 7777 case MSG_HIPRI: 7778 if ((mctl->len < 0) || (pri != 0)) 7779 return (EINVAL); 7780 break; 7781 case MSG_BAND: 7782 break; 7783 7784 default: 7785 return (EINVAL); 7786 } 7787 7788 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN, 7789 "strputmsg in:stp %p", stp); 7790 7791 /* get these values from those cached in the stream head */ 7792 rmin = stp->sd_qn_minpsz; 7793 rmax = stp->sd_qn_maxpsz; 7794 7795 /* 7796 * Make sure ctl and data sizes together fall within the 7797 * limits of the max and min receive packet sizes and do 7798 * not exceed system limit. 7799 */ 7800 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7801 if (rmax == 0) { 7802 return (ERANGE); 7803 } 7804 /* 7805 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 7806 * Needed to prevent partial failures in the strmakedata loop. 7807 */ 7808 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 7809 rmax = stp->sd_maxblk; 7810 7811 if ((msgsize = mdata->len) < 0) { 7812 msgsize = 0; 7813 rmin = 0; /* no range check for NULL data part */ 7814 } 7815 if ((msgsize < rmin) || 7816 ((msgsize > rmax) && (rmax != INFPSZ)) || 7817 (mctl->len > strctlsz)) { 7818 return (ERANGE); 7819 } 7820 7821 /* 7822 * Setup uio and iov for data part 7823 */ 7824 iovs.iov_base = mdata->buf; 7825 iovs.iov_len = msgsize; 7826 uios.uio_iov = &iovs; 7827 uios.uio_iovcnt = 1; 7828 uios.uio_loffset = 0; 7829 uios.uio_segflg = UIO_USERSPACE; 7830 uios.uio_fmode = fmode; 7831 uios.uio_extflg = UIO_COPY_DEFAULT; 7832 uios.uio_resid = msgsize; 7833 uios.uio_offset = 0; 7834 7835 /* Ignore flow control in strput for HIPRI */ 7836 if (flag & MSG_HIPRI) 7837 flag |= MSG_IGNFLOW; 7838 7839 for (;;) { 7840 int done = 0; 7841 7842 /* 7843 * strput will always free the ctl mblk - even when strput 7844 * fails. 7845 */ 7846 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) { 7847 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7848 "strputmsg out:stp %p out %d error %d", 7849 stp, 1, error); 7850 return (error); 7851 } 7852 /* 7853 * Verify that the whole message can be transferred by 7854 * strput. 7855 */ 7856 ASSERT(stp->sd_maxblk == INFPSZ || 7857 stp->sd_maxblk >= mdata->len); 7858 7859 msgsize = mdata->len; 7860 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 7861 mdata->len = msgsize; 7862 7863 if (error == 0) 7864 break; 7865 7866 if (error != EWOULDBLOCK) 7867 goto out; 7868 7869 mutex_enter(&stp->sd_lock); 7870 /* 7871 * Check for a missed wakeup. 7872 * Needed since strput did not hold sd_lock across 7873 * the canputnext. 7874 */ 7875 if (bcanputnext(wqp, pri)) { 7876 /* Try again */ 7877 mutex_exit(&stp->sd_lock); 7878 continue; 7879 } 7880 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT, 7881 "strputmsg wait:stp %p waits pri %d", stp, pri); 7882 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1, 7883 &done)) != 0) || done) { 7884 mutex_exit(&stp->sd_lock); 7885 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7886 "strputmsg out:q %p out %d error %d", 7887 stp, 0, error); 7888 return (error); 7889 } 7890 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE, 7891 "strputmsg wake:stp %p wakes", stp); 7892 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7893 mutex_exit(&stp->sd_lock); 7894 return (error); 7895 } 7896 mutex_exit(&stp->sd_lock); 7897 } 7898 out: 7899 /* 7900 * For historic reasons, applications expect EAGAIN 7901 * when data mblk could not be allocated. so change 7902 * ENOMEM back to EAGAIN 7903 */ 7904 if (error == ENOMEM) 7905 error = EAGAIN; 7906 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT, 7907 "strputmsg out:stp %p out %d error %d", stp, 2, error); 7908 return (error); 7909 } 7910 7911 /* 7912 * Put a message downstream. 7913 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop. 7914 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio 7915 * and the fmode parameter. 7916 * 7917 * This routine handles the consolidation private flags: 7918 * MSG_IGNERROR Ignore any stream head error except STPLEX. 7919 * MSG_HOLDSIG Hold signals while waiting for data. 7920 * MSG_IGNFLOW Don't check streams flow control. 7921 * 7922 * NOTE: strputmsg and kstrputmsg have much of the logic in common. 7923 */ 7924 int 7925 kstrputmsg( 7926 struct vnode *vp, 7927 mblk_t *mctl, 7928 struct uio *uiop, 7929 ssize_t msgsize, 7930 unsigned char pri, 7931 int flag, 7932 int fmode) 7933 { 7934 struct stdata *stp; 7935 queue_t *wqp; 7936 ssize_t rmin, rmax; 7937 int error; 7938 7939 ASSERT(vp->v_stream); 7940 stp = vp->v_stream; 7941 wqp = stp->sd_wrq; 7942 if (AU_AUDITING()) 7943 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode); 7944 if (mctl == NULL) 7945 return (EINVAL); 7946 7947 mutex_enter(&stp->sd_lock); 7948 7949 if ((error = i_straccess(stp, JCWRITE)) != 0) { 7950 mutex_exit(&stp->sd_lock); 7951 freemsg(mctl); 7952 return (error); 7953 } 7954 7955 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) { 7956 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) { 7957 error = strwriteable(stp, B_FALSE, B_TRUE); 7958 if (error != 0) { 7959 mutex_exit(&stp->sd_lock); 7960 freemsg(mctl); 7961 return (error); 7962 } 7963 } 7964 } 7965 7966 mutex_exit(&stp->sd_lock); 7967 7968 /* 7969 * Check for legal flag value. 7970 */ 7971 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) { 7972 case MSG_HIPRI: 7973 if (pri != 0) { 7974 freemsg(mctl); 7975 return (EINVAL); 7976 } 7977 break; 7978 case MSG_BAND: 7979 break; 7980 default: 7981 freemsg(mctl); 7982 return (EINVAL); 7983 } 7984 7985 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN, 7986 "kstrputmsg in:stp %p", stp); 7987 7988 /* get these values from those cached in the stream head */ 7989 rmin = stp->sd_qn_minpsz; 7990 rmax = stp->sd_qn_maxpsz; 7991 7992 /* 7993 * Make sure ctl and data sizes together fall within the 7994 * limits of the max and min receive packet sizes and do 7995 * not exceed system limit. 7996 */ 7997 ASSERT((rmax >= 0) || (rmax == INFPSZ)); 7998 if (rmax == 0) { 7999 freemsg(mctl); 8000 return (ERANGE); 8001 } 8002 /* 8003 * Use the MAXIMUM of sd_maxblk and q_maxpsz. 8004 * Needed to prevent partial failures in the strmakedata loop. 8005 */ 8006 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk) 8007 rmax = stp->sd_maxblk; 8008 8009 if (uiop == NULL) { 8010 msgsize = -1; 8011 rmin = -1; /* no range check for NULL data part */ 8012 } else { 8013 /* Use uio flags as well as the fmode parameter flags */ 8014 fmode |= uiop->uio_fmode; 8015 8016 if ((msgsize < rmin) || 8017 ((msgsize > rmax) && (rmax != INFPSZ))) { 8018 freemsg(mctl); 8019 return (ERANGE); 8020 } 8021 } 8022 8023 /* Ignore flow control in strput for HIPRI */ 8024 if (flag & MSG_HIPRI) 8025 flag |= MSG_IGNFLOW; 8026 8027 for (;;) { 8028 int done = 0; 8029 int waitflag; 8030 mblk_t *mp; 8031 8032 /* 8033 * strput will always free the ctl mblk - even when strput 8034 * fails. If MSG_IGNFLOW is set then any error returned 8035 * will cause us to break the loop, so we don't need a copy 8036 * of the message. If MSG_IGNFLOW is not set, then we can 8037 * get hit by flow control and be forced to try again. In 8038 * this case we need to have a copy of the message. We 8039 * do this using copymsg since the message may get modified 8040 * by something below us. 8041 * 8042 * We've observed that many TPI providers do not check db_ref 8043 * on the control messages but blindly reuse them for the 8044 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more 8045 * friendly to such providers than using dupmsg. Also, note 8046 * that sockfs uses MSG_IGNFLOW for all TPI control messages. 8047 * Only data messages are subject to flow control, hence 8048 * subject to this copymsg. 8049 */ 8050 if (flag & MSG_IGNFLOW) { 8051 mp = mctl; 8052 mctl = NULL; 8053 } else { 8054 do { 8055 /* 8056 * If a message has a free pointer, the message 8057 * must be dupmsg to maintain this pointer. 8058 * Code using this facility must be sure 8059 * that modules below will not change the 8060 * contents of the dblk without checking db_ref 8061 * first. If db_ref is > 1, then the module 8062 * needs to do a copymsg first. Otherwise, 8063 * the contents of the dblk may become 8064 * inconsistent because the freesmg/freeb below 8065 * may end up calling atomic_add_32_nv. 8066 * The atomic_add_32_nv in freeb (accessing 8067 * all of db_ref, db_type, db_flags, and 8068 * db_struioflag) does not prevent other threads 8069 * from concurrently trying to modify e.g. 8070 * db_type. 8071 */ 8072 if (mctl->b_datap->db_frtnp != NULL) 8073 mp = dupmsg(mctl); 8074 else 8075 mp = copymsg(mctl); 8076 8077 if (mp != NULL) 8078 break; 8079 8080 error = strwaitbuf(msgdsize(mctl), BPRI_MED); 8081 if (error) { 8082 freemsg(mctl); 8083 return (error); 8084 } 8085 } while (mp == NULL); 8086 } 8087 /* 8088 * Verify that all of msgsize can be transferred by 8089 * strput. 8090 */ 8091 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize); 8092 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag); 8093 if (error == 0) 8094 break; 8095 8096 if (error != EWOULDBLOCK) 8097 goto out; 8098 8099 /* 8100 * IF MSG_IGNFLOW is set we should have broken out of loop 8101 * above. 8102 */ 8103 ASSERT(!(flag & MSG_IGNFLOW)); 8104 mutex_enter(&stp->sd_lock); 8105 /* 8106 * Check for a missed wakeup. 8107 * Needed since strput did not hold sd_lock across 8108 * the canputnext. 8109 */ 8110 if (bcanputnext(wqp, pri)) { 8111 /* Try again */ 8112 mutex_exit(&stp->sd_lock); 8113 continue; 8114 } 8115 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT, 8116 "kstrputmsg wait:stp %p waits pri %d", stp, pri); 8117 8118 waitflag = WRITEWAIT; 8119 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) { 8120 if (flag & MSG_HOLDSIG) 8121 waitflag |= STR_NOSIG; 8122 if (flag & MSG_IGNERROR) 8123 waitflag |= STR_NOERROR; 8124 } 8125 if (((error = strwaitq(stp, waitflag, 8126 (ssize_t)0, fmode, -1, &done)) != 0) || done) { 8127 mutex_exit(&stp->sd_lock); 8128 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8129 "kstrputmsg out:stp %p out %d error %d", 8130 stp, 0, error); 8131 freemsg(mctl); 8132 return (error); 8133 } 8134 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE, 8135 "kstrputmsg wake:stp %p wakes", stp); 8136 if ((error = i_straccess(stp, JCWRITE)) != 0) { 8137 mutex_exit(&stp->sd_lock); 8138 freemsg(mctl); 8139 return (error); 8140 } 8141 mutex_exit(&stp->sd_lock); 8142 } 8143 out: 8144 freemsg(mctl); 8145 /* 8146 * For historic reasons, applications expect EAGAIN 8147 * when data mblk could not be allocated. so change 8148 * ENOMEM back to EAGAIN 8149 */ 8150 if (error == ENOMEM) 8151 error = EAGAIN; 8152 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT, 8153 "kstrputmsg out:stp %p out %d error %d", stp, 2, error); 8154 return (error); 8155 } 8156 8157 /* 8158 * Determines whether the necessary conditions are set on a stream 8159 * for it to be readable, writeable, or have exceptions. 8160 * 8161 * strpoll handles the consolidation private events: 8162 * POLLNOERR Do not return POLLERR even if there are stream 8163 * head errors. 8164 * Used by sockfs. 8165 * POLLRDDATA Do not return POLLIN unless at least one message on 8166 * the queue contains one or more M_DATA mblks. Thus 8167 * when this flag is set a queue with only 8168 * M_PROTO/M_PCPROTO mblks does not return POLLIN. 8169 * Used by sockfs to ignore T_EXDATA_IND messages. 8170 * 8171 * Note: POLLRDDATA assumes that synch streams only return messages with 8172 * an M_DATA attached (i.e. not messages consisting of only 8173 * an M_PROTO/M_PCPROTO part). 8174 */ 8175 int 8176 strpoll( 8177 struct stdata *stp, 8178 short events_arg, 8179 int anyyet, 8180 short *reventsp, 8181 struct pollhead **phpp) 8182 { 8183 int events = (ushort_t)events_arg; 8184 int retevents = 0; 8185 mblk_t *mp; 8186 qband_t *qbp; 8187 long sd_flags = stp->sd_flag; 8188 int headlocked = 0; 8189 8190 /* 8191 * For performance, a single 'if' tests for most possible edge 8192 * conditions in one shot 8193 */ 8194 if (sd_flags & (STPLEX | STRDERR | STWRERR)) { 8195 if (sd_flags & STPLEX) { 8196 *reventsp = POLLNVAL; 8197 return (EINVAL); 8198 } 8199 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) && 8200 (sd_flags & STRDERR)) || 8201 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) && 8202 (sd_flags & STWRERR))) { 8203 if (!(events & POLLNOERR)) { 8204 *reventsp = POLLERR; 8205 return (0); 8206 } 8207 } 8208 } 8209 if (sd_flags & STRHUP) { 8210 retevents |= POLLHUP; 8211 } else if (events & (POLLWRNORM | POLLWRBAND)) { 8212 queue_t *tq; 8213 queue_t *qp = stp->sd_wrq; 8214 8215 claimstr(qp); 8216 /* Find next module forward that has a service procedure */ 8217 tq = qp->q_next->q_nfsrv; 8218 ASSERT(tq != NULL); 8219 8220 polllock(&stp->sd_pollist, QLOCK(tq)); 8221 if (events & POLLWRNORM) { 8222 queue_t *sqp; 8223 8224 if (tq->q_flag & QFULL) 8225 /* ensure backq svc procedure runs */ 8226 tq->q_flag |= QWANTW; 8227 else if ((sqp = stp->sd_struiowrq) != NULL) { 8228 /* Check sync stream barrier write q */ 8229 mutex_exit(QLOCK(tq)); 8230 polllock(&stp->sd_pollist, QLOCK(sqp)); 8231 if (sqp->q_flag & QFULL) 8232 /* ensure pollwakeup() is done */ 8233 sqp->q_flag |= QWANTWSYNC; 8234 else 8235 retevents |= POLLOUT; 8236 /* More write events to process ??? */ 8237 if (! (events & POLLWRBAND)) { 8238 mutex_exit(QLOCK(sqp)); 8239 releasestr(qp); 8240 goto chkrd; 8241 } 8242 mutex_exit(QLOCK(sqp)); 8243 polllock(&stp->sd_pollist, QLOCK(tq)); 8244 } else 8245 retevents |= POLLOUT; 8246 } 8247 if (events & POLLWRBAND) { 8248 qbp = tq->q_bandp; 8249 if (qbp) { 8250 while (qbp) { 8251 if (qbp->qb_flag & QB_FULL) 8252 qbp->qb_flag |= QB_WANTW; 8253 else 8254 retevents |= POLLWRBAND; 8255 qbp = qbp->qb_next; 8256 } 8257 } else { 8258 retevents |= POLLWRBAND; 8259 } 8260 } 8261 mutex_exit(QLOCK(tq)); 8262 releasestr(qp); 8263 } 8264 chkrd: 8265 if (sd_flags & STRPRI) { 8266 retevents |= (events & POLLPRI); 8267 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) { 8268 queue_t *qp = _RD(stp->sd_wrq); 8269 int normevents = (events & (POLLIN | POLLRDNORM)); 8270 8271 /* 8272 * Note: Need to do polllock() here since ps_lock may be 8273 * held. See bug 4191544. 8274 */ 8275 polllock(&stp->sd_pollist, &stp->sd_lock); 8276 headlocked = 1; 8277 mp = qp->q_first; 8278 while (mp) { 8279 /* 8280 * For POLLRDDATA we scan b_cont and b_next until we 8281 * find an M_DATA. 8282 */ 8283 if ((events & POLLRDDATA) && 8284 mp->b_datap->db_type != M_DATA) { 8285 mblk_t *nmp = mp->b_cont; 8286 8287 while (nmp != NULL && 8288 nmp->b_datap->db_type != M_DATA) 8289 nmp = nmp->b_cont; 8290 if (nmp == NULL) { 8291 mp = mp->b_next; 8292 continue; 8293 } 8294 } 8295 if (mp->b_band == 0) 8296 retevents |= normevents; 8297 else 8298 retevents |= (events & (POLLIN | POLLRDBAND)); 8299 break; 8300 } 8301 if (! (retevents & normevents) && 8302 (stp->sd_wakeq & RSLEEP)) { 8303 /* 8304 * Sync stream barrier read queue has data. 8305 */ 8306 retevents |= normevents; 8307 } 8308 /* Treat eof as normal data */ 8309 if (sd_flags & STREOF) 8310 retevents |= normevents; 8311 } 8312 8313 *reventsp = (short)retevents; 8314 if (retevents) { 8315 if (headlocked) 8316 mutex_exit(&stp->sd_lock); 8317 return (0); 8318 } 8319 8320 /* 8321 * If poll() has not found any events yet, set up event cell 8322 * to wake up the poll if a requested event occurs on this 8323 * stream. Check for collisions with outstanding poll requests. 8324 */ 8325 if (!anyyet) { 8326 *phpp = &stp->sd_pollist; 8327 if (headlocked == 0) { 8328 polllock(&stp->sd_pollist, &stp->sd_lock); 8329 headlocked = 1; 8330 } 8331 stp->sd_rput_opt |= SR_POLLIN; 8332 } 8333 if (headlocked) 8334 mutex_exit(&stp->sd_lock); 8335 return (0); 8336 } 8337 8338 /* 8339 * The purpose of putback() is to assure sleeping polls/reads 8340 * are awakened when there are no new messages arriving at the, 8341 * stream head, and a message is placed back on the read queue. 8342 * 8343 * sd_lock must be held when messages are placed back on stream 8344 * head. (getq() holds sd_lock when it removes messages from 8345 * the queue) 8346 */ 8347 8348 static void 8349 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band) 8350 { 8351 mblk_t *qfirst; 8352 ASSERT(MUTEX_HELD(&stp->sd_lock)); 8353 8354 /* 8355 * As a result of lock-step ordering around q_lock and sd_lock, 8356 * it's possible for function calls like putnext() and 8357 * canputnext() to get an inaccurate picture of how much 8358 * data is really being processed at the stream head. 8359 * We only consolidate with existing messages on the queue 8360 * if the length of the message we want to put back is smaller 8361 * than the queue hiwater mark. 8362 */ 8363 if ((stp->sd_rput_opt & SR_CONSOL_DATA) && 8364 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) && 8365 (DB_TYPE(qfirst) == M_DATA) && 8366 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) && 8367 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) && 8368 (mp_cont_len(bp, NULL) < q->q_hiwat)) { 8369 /* 8370 * We use the same logic as defined in strrput() 8371 * but in reverse as we are putting back onto the 8372 * queue and want to retain byte ordering. 8373 * Consolidate M_DATA messages with M_DATA ONLY. 8374 * strrput() allows the consolidation of M_DATA onto 8375 * M_PROTO | M_PCPROTO but not the other way round. 8376 * 8377 * The consolidation does not take place if the message 8378 * we are returning to the queue is marked with either 8379 * of the marks or the delim flag or if q_first 8380 * is marked with MSGMARK. The MSGMARK check is needed to 8381 * handle the odd semantics of MSGMARK where essentially 8382 * the whole message is to be treated as marked. 8383 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first 8384 * to the front of the b_cont chain. 8385 */ 8386 rmvq_noenab(q, qfirst); 8387 8388 /* 8389 * The first message in the b_cont list 8390 * tracks MSGMARKNEXT and MSGNOTMARKNEXT. 8391 * We need to handle the case where we 8392 * are appending: 8393 * 8394 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT. 8395 * 2) a MSGMARKNEXT to a plain message. 8396 * 3) a MSGNOTMARKNEXT to a plain message 8397 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT 8398 * message. 8399 * 8400 * Thus we never append a MSGMARKNEXT or 8401 * MSGNOTMARKNEXT to a MSGMARKNEXT message. 8402 */ 8403 if (qfirst->b_flag & MSGMARKNEXT) { 8404 bp->b_flag |= MSGMARKNEXT; 8405 bp->b_flag &= ~MSGNOTMARKNEXT; 8406 qfirst->b_flag &= ~MSGMARKNEXT; 8407 } else if (qfirst->b_flag & MSGNOTMARKNEXT) { 8408 bp->b_flag |= MSGNOTMARKNEXT; 8409 qfirst->b_flag &= ~MSGNOTMARKNEXT; 8410 } 8411 8412 linkb(bp, qfirst); 8413 } 8414 (void) putbq(q, bp); 8415 8416 /* 8417 * A message may have come in when the sd_lock was dropped in the 8418 * calling routine. If this is the case and STR*ATMARK info was 8419 * received, need to move that from the stream head to the q_last 8420 * so that SIOCATMARK can return the proper value. 8421 */ 8422 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) { 8423 unsigned short *flagp = &q->q_last->b_flag; 8424 uint_t b_flag = (uint_t)*flagp; 8425 8426 if (stp->sd_flag & STRATMARK) { 8427 b_flag &= ~MSGNOTMARKNEXT; 8428 b_flag |= MSGMARKNEXT; 8429 stp->sd_flag &= ~STRATMARK; 8430 } else { 8431 b_flag &= ~MSGMARKNEXT; 8432 b_flag |= MSGNOTMARKNEXT; 8433 stp->sd_flag &= ~STRNOTATMARK; 8434 } 8435 *flagp = (unsigned short) b_flag; 8436 } 8437 8438 #ifdef DEBUG 8439 /* 8440 * Make sure that the flags are not messed up. 8441 */ 8442 { 8443 mblk_t *mp; 8444 mp = q->q_last; 8445 while (mp != NULL) { 8446 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) != 8447 (MSGMARKNEXT|MSGNOTMARKNEXT)); 8448 mp = mp->b_cont; 8449 } 8450 } 8451 #endif 8452 if (q->q_first == bp) { 8453 short pollevents; 8454 8455 if (stp->sd_flag & RSLEEP) { 8456 stp->sd_flag &= ~RSLEEP; 8457 cv_broadcast(&q->q_wait); 8458 } 8459 if (stp->sd_flag & STRPRI) { 8460 pollevents = POLLPRI; 8461 } else { 8462 if (band == 0) { 8463 if (!(stp->sd_rput_opt & SR_POLLIN)) 8464 return; 8465 stp->sd_rput_opt &= ~SR_POLLIN; 8466 pollevents = POLLIN | POLLRDNORM; 8467 } else { 8468 pollevents = POLLIN | POLLRDBAND; 8469 } 8470 } 8471 mutex_exit(&stp->sd_lock); 8472 pollwakeup(&stp->sd_pollist, pollevents); 8473 mutex_enter(&stp->sd_lock); 8474 } 8475 } 8476 8477 /* 8478 * Return the held vnode attached to the stream head of a 8479 * given queue 8480 * It is the responsibility of the calling routine to ensure 8481 * that the queue does not go away (e.g. pop). 8482 */ 8483 vnode_t * 8484 strq2vp(queue_t *qp) 8485 { 8486 vnode_t *vp; 8487 vp = STREAM(qp)->sd_vnode; 8488 ASSERT(vp != NULL); 8489 VN_HOLD(vp); 8490 return (vp); 8491 } 8492 8493 /* 8494 * return the stream head write queue for the given vp 8495 * It is the responsibility of the calling routine to ensure 8496 * that the stream or vnode do not close. 8497 */ 8498 queue_t * 8499 strvp2wq(vnode_t *vp) 8500 { 8501 ASSERT(vp->v_stream != NULL); 8502 return (vp->v_stream->sd_wrq); 8503 } 8504 8505 /* 8506 * pollwakeup stream head 8507 * It is the responsibility of the calling routine to ensure 8508 * that the stream or vnode do not close. 8509 */ 8510 void 8511 strpollwakeup(vnode_t *vp, short event) 8512 { 8513 ASSERT(vp->v_stream); 8514 pollwakeup(&vp->v_stream->sd_pollist, event); 8515 } 8516 8517 /* 8518 * Mate the stream heads of two vnodes together. If the two vnodes are the 8519 * same, we just make the write-side point at the read-side -- otherwise, 8520 * we do a full mate. Only works on vnodes associated with streams that are 8521 * still being built and thus have only a stream head. 8522 */ 8523 void 8524 strmate(vnode_t *vp1, vnode_t *vp2) 8525 { 8526 queue_t *wrq1 = strvp2wq(vp1); 8527 queue_t *wrq2 = strvp2wq(vp2); 8528 8529 /* 8530 * Verify that there are no modules on the stream yet. We also 8531 * rely on the stream head always having a service procedure to 8532 * avoid tweaking q_nfsrv. 8533 */ 8534 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL); 8535 ASSERT(wrq1->q_qinfo->qi_srvp != NULL); 8536 ASSERT(wrq2->q_qinfo->qi_srvp != NULL); 8537 8538 /* 8539 * If the queues are the same, just twist; otherwise do a full mate. 8540 */ 8541 if (wrq1 == wrq2) { 8542 wrq1->q_next = _RD(wrq1); 8543 } else { 8544 wrq1->q_next = _RD(wrq2); 8545 wrq2->q_next = _RD(wrq1); 8546 STREAM(wrq1)->sd_mate = STREAM(wrq2); 8547 STREAM(wrq1)->sd_flag |= STRMATE; 8548 STREAM(wrq2)->sd_mate = STREAM(wrq1); 8549 STREAM(wrq2)->sd_flag |= STRMATE; 8550 } 8551 } 8552 8553 /* 8554 * XXX will go away when console is correctly fixed. 8555 * Clean up the console PIDS, from previous I_SETSIG, 8556 * called only for cnopen which never calls strclean(). 8557 */ 8558 void 8559 str_cn_clean(struct vnode *vp) 8560 { 8561 strsig_t *ssp, *pssp, *tssp; 8562 struct stdata *stp; 8563 struct pid *pidp; 8564 int update = 0; 8565 8566 ASSERT(vp->v_stream); 8567 stp = vp->v_stream; 8568 pssp = NULL; 8569 mutex_enter(&stp->sd_lock); 8570 ssp = stp->sd_siglist; 8571 while (ssp) { 8572 mutex_enter(&pidlock); 8573 pidp = ssp->ss_pidp; 8574 /* 8575 * Get rid of PID if the proc is gone. 8576 */ 8577 if (pidp->pid_prinactive) { 8578 tssp = ssp->ss_next; 8579 if (pssp) 8580 pssp->ss_next = tssp; 8581 else 8582 stp->sd_siglist = tssp; 8583 ASSERT(pidp->pid_ref <= 1); 8584 PID_RELE(ssp->ss_pidp); 8585 mutex_exit(&pidlock); 8586 kmem_free(ssp, sizeof (strsig_t)); 8587 update = 1; 8588 ssp = tssp; 8589 continue; 8590 } else 8591 mutex_exit(&pidlock); 8592 pssp = ssp; 8593 ssp = ssp->ss_next; 8594 } 8595 if (update) { 8596 stp->sd_sigflags = 0; 8597 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next) 8598 stp->sd_sigflags |= ssp->ss_events; 8599 } 8600 mutex_exit(&stp->sd_lock); 8601 } 8602 8603 /* 8604 * Return B_TRUE if there is data in the message, B_FALSE otherwise. 8605 */ 8606 static boolean_t 8607 msghasdata(mblk_t *bp) 8608 { 8609 for (; bp; bp = bp->b_cont) 8610 if (bp->b_datap->db_type == M_DATA) { 8611 ASSERT(bp->b_wptr >= bp->b_rptr); 8612 if (bp->b_wptr > bp->b_rptr) 8613 return (B_TRUE); 8614 } 8615 return (B_FALSE); 8616 }