
new/usr/src/Makefile.lint 1

**
 8733 Tue Jan 14 16:16:54 2014
new/usr/src/Makefile.lint
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 # Copyright (c) 2003, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright (c) 2012 by Delphix. All rights reserved.

25 # include global definitions
26 include Makefile.master

28 #
29 # As pieces are made lint-clean, add them here so the nightly build
30 # can be used to keep them that way.
31 #
32 COMMON_SUBDIRS = \
33 cmd/acctadm \
34 cmd/asa \
35 cmd/amt \
36 cmd/audio/audioctl \
37 cmd/audio/audiotest \
38 cmd/audit \
39 cmd/auditconfig \
40 cmd/auditd \
41 cmd/auditreduce \
42 cmd/auditstat \
43 cmd/auths \
44 cmd/autopush \
45 cmd/availdevs \
46 cmd/avs \
47 cmd/awk \
48 cmd/banner \
49 cmd/bart \
50 cmd/basename \
51 cmd/bdiff \
52 cmd/bfs \
53 cmd/busstat \
54 cmd/boot \
55 cmd/cal \
56 cmd/captoinfo \
57 cmd/cat \
58 cmd/cdrw \
59 cmd/cfgadm \
60 cmd/checkeq \
61 cmd/checknr \

new/usr/src/Makefile.lint 2

62 cmd/chgrp \
63 cmd/chmod \
64 cmd/chown \
65 cmd/chroot \
66 cmd/clinfo \
67 cmd/cmd-crypto \
68 cmd/cmd-inet/lib \
69 cmd/cmd-inet/lib/netcfgd \
70 cmd/cmd-inet/lib/nwamd \
71 cmd/cmd-inet/sbin \
72 cmd/cmd-inet/usr.bin \
73 cmd/cmd-inet/usr.lib/bridged \
74 cmd/cmd-inet/usr.lib/dsvclockd \
75 cmd/cmd-inet/usr.lib/ilbd \
76 cmd/cmd-inet/usr.lib/in.dhcpd \
77 cmd/cmd-inet/usr.lib/in.mpathd \
78 cmd/cmd-inet/usr.lib/in.ndpd \
79 cmd/cmd-inet/usr.lib/inetd \
80 cmd/cmd-inet/usr.lib/pppoe \
81 cmd/cmd-inet/usr.lib/slpd \
82 cmd/cmd-inet/usr.lib/vrrpd \
83 cmd/cmd-inet/usr.lib/wpad \
84 cmd/cmd-inet/usr.lib/wanboot \
85 cmd/cmd-inet/usr.sadm \
86 cmd/cmd-inet/usr.sbin \
87 cmd/cmd-inet/usr.sbin/ilbadm \
88 cmd/cmd-inet/usr.sbin/nwamadm \
89 cmd/cmd-inet/usr.sbin/nwamcfg \
90 cmd/col \
91 cmd/compress \
92 cmd/consadm \
93 cmd/coreadm \
94 cmd/cpc \
95 cmd/cpio \
96 cmd/crypt \
97 cmd/csplit \
98 cmd/ctrun \
99 cmd/ctstat \
100 cmd/ctwatch \
101 cmd/date \
102 cmd/dd \
103 cmd/deroff \
104 cmd/devctl \
105 cmd/devfsadm \
106 cmd/devinfo \
107 cmd/devmgmt \
108 cmd/devprop \
109 cmd/dfs.cmds \
110 cmd/diff3 \
111 cmd/dis \
112 cmd/dirname \
113 cmd/diskscan \
114 cmd/dispadmin \
115 cmd/dladm \
116 cmd/dlmgmtd \
117 cmd/dtrace \
118 cmd/du \
119 cmd/dumpadm \
120 cmd/dumpcs \
121 cmd/echo \
122 cmd/eject \
123 cmd/emul64ioctl \
124 cmd/env \
125 cmd/expand \
126 cmd/fcinfo \
127 cmd/fdetach \

new/usr/src/Makefile.lint 3

128 cmd/fdformat \
129 cmd/fdisk \
130 cmd/fgrep \
131 cmd/file \
132 cmd/filebench \
133 cmd/find \
134 cmd/fmthard \
135 cmd/fmtmsg \
136 cmd/fold \
137 cmd/fm \
138 cmd/format \
139 cmd/fs.d/fd \
140 cmd/fs.d/lofs/mount \
141 cmd/fs.d/mntfs \
142 cmd/fs.d/pcfs/mount \
143 cmd/fs.d/proc \
144 cmd/fs.d/tmpfs \
145 cmd/fs.d/udfs/mount \
146 cmd/fs.d/ufs/mount \
147 cmd/fs.d/ufs/fsirand\
148 cmd/fs.d/zfs/fstyp \
149 cmd/fwflash \
150 cmd/fuser \
151 cmd/gcore \
152 cmd/genmsg \
153 cmd/getconf \
154 cmd/getdevpolicy \
155 cmd/getfacl \
156 cmd/getopt \
157 cmd/gettext \
158 cmd/grep \
159 cmd/grep_xpg4 \
160 cmd/groups \
161 cmd/halt \
162 cmd/head \
163 cmd/hostid \
164 cmd/hostname \
165 cmd/hotplug \
166 cmd/hotplugd \
167 cmd/idmap \
168 cmd/init \
169 cmd/intrstat \
170 cmd/ipcrm \
171 cmd/ipcs \
172 cmd/isaexec \
173 cmd/isalist \
174 cmd/iscsiadm \
175 cmd/iscsid \
176 cmd/iscsitsvc \
177 cmd/isns \
178 cmd/itadm \
179 cmd/kbd \
180 cmd/killall \
181 cmd/ldap \
182 cmd/last \
183 cmd/lastcomm \
184 cmd/ldapcachemgr \
185 cmd/line \
186 cmd/link \
187 cmd/locator \
188 cmd/localedef \
189 cmd/lockstat \
190 cmd/lofiadm \
191 cmd/logadm \
192 cmd/logger \
193 cmd/login \

new/usr/src/Makefile.lint 4

194 cmd/logins \
195 cmd/ls \
196 cmd/luxadm \
197 cmd/lvm \
198 cmd/machid \
199 cmd/makekey \
200 cmd/mdb \
201 cmd/mesg \
202 cmd/mkdir \
203 cmd/mkfifo \
204 cmd/mkfile \
205 cmd/mkmsgs \
206 cmd/mknod \
207 cmd/mpathadm \
208 cmd/modload \
209 cmd/msgfmt \
210 cmd/msgid \
211 cmd/mt \
212 cmd/mv \
213 cmd/ndmpadm \
214 cmd/ndmpd \
215 cmd/ndmpstat \
216 cmd/newform \
217 cmd/newgrp \
218 cmd/newtask \
219 cmd/nice \
220 cmd/nl \
221 cmd/nohup \
222 cmd/nscd \
223 cmd/od \
224 cmd/pagesize \
225 cmd/passwd \
226 cmd/pathchk \
227 cmd/pbind \
228 cmd/pcidr \
229 cmd/pcitool \
230 cmd/pfexec \
231 cmd/pgrep \
232 cmd/picl/picld \
233 cmd/picl/prtpicl \
234 cmd/plockstat \
235 cmd/pools \
236 cmd/power \
237 cmd/powertop \
238 cmd/printf \
239 cmd/latencytop \
240 cmd/ppgsz \
241 cmd/praudit \
242 cmd/prctl \
243 cmd/priocntl \
244 cmd/profiles \
245 cmd/prstat \
246 cmd/prtconf \
247 cmd/prtdiag \
248 cmd/prtvtoc \
249 cmd/ps \
250 cmd/psradm \
251 cmd/psrinfo \
252 cmd/psrset \
253 cmd/ptools \
254 cmd/pwck \
255 cmd/pwconv \
256 cmd/ramdiskadm \
257 cmd/raidctl \
258 cmd/rcap \
259 cmd/rcm_daemon \

new/usr/src/Makefile.lint 5

260 cmd/rctladm \
261 cmd/renice \
262 cmd/rm \
263 cmd/rmdir \
264 cmd/rmformat \
265 cmd/rmt \
266 cmd/roles \
267 cmd/rpcgen \
268 cmd/rpcsvc/rpc.bootparamd \
269 cmd/runat \
270 cmd/savecore \
271 cmd/sbdadm \
272 cmd/sdpadm \
273 cmd/sed \
274 cmd/setpgrp \
275 cmd/smbios \
276 cmd/sgs \
277 cmd/smbsrv \
278 cmd/smserverd \
279 cmd/sort \
280 cmd/split \
281 cmd/srptadm \
282 cmd/srptsvc \
283 cmd/ssh \
284 cmd/stat \
285 cmd/stmfadm \
286 cmd/stmfsvc \
287 cmd/stmsboot \
288 cmd/streams/strcmd \
289 cmd/strings \
290 cmd/su \
291 cmd/sulogin \
292 cmd/svc \
293 cmd/swap \
294 cmd/sync \
295 cmd/syseventadm \
296 cmd/syseventd \
297 cmd/syslogd \
298 cmd/tabs \
299 cmd/tail \
300 cmd/th_tools \
301 cmd/tip \
302 cmd/touch \
303 cmd/tr \
304 cmd/truss \
305 cmd/tty \
306 cmd/tzreload \
307 cmd/uadmin \
308 cmd/ul \
309 cmd/userattr \
310 cmd/users \
311 cmd/utmp_update \
312 cmd/utmpd \
313 cmd/valtools \
314 cmd/vrrpadm \
315 cmd/vt \
316 cmd/wall \
317 cmd/who \
318 cmd/whodo \
319 cmd/wracct \
320 cmd/wusbadm \
321 cmd/xargs \
322 cmd/xstr \
323 cmd/yes \
324 cmd/yppasswd \
325 cmd/zdb \

new/usr/src/Makefile.lint 6

326 cmd/zdump \
327 cmd/zfs \
328 cmd/zhack \
329 cmd/zinject \
330 cmd/zlogin \
331 cmd/zoneadm \
332 cmd/zoneadmd \
333 cmd/zonecfg \
334 cmd/zonename \
335 cmd/zpool \
336 cmd/zlook \
337 cmd/ztest \
338 lib/abi \
339 lib/auditd_plugins \
340 lib/libbe \
341 lib/pylibbe \
342 lib/brand/sn1 \
343 lib/brand/solaris10 \
344 lib/crypt_modules \
345 lib/extendedFILE \
346 lib/libadm \
347 lib/libadutils \
348 lib/libadt_jni \
349 lib/libaio \
350 lib/libavl \
351 lib/libbrand \
352 lib/libbsdmalloc \
353 lib/libbsm \
354 lib/libc \
355 lib/libc_db \
356 lib/libcfgadm \
357 lib/libcmdutils \
358 lib/libcommputil \
359 lib/libcontract \
360 lib/libcryptoutil \
361 lib/libctf \
362 lib/libdevice \
363 lib/libdevid \
364 lib/libdevinfo \
365 lib/libdhcpagent \
366 lib/libdhcpdu \
367 lib/libdhcpsvc \
368 lib/libdhcputil \
369 lib/libdisasm \
370 lib/libdiskmgt \
371 lib/libdladm \
372 lib/libdlpi \
373 lib/libdoor \
374 lib/libdscfg \
375 lib/libdtrace \
376 lib/libefi \
377 lib/libelfsign \
378 lib/libexacct \
379 lib/libfcoe \
380 lib/libgen \
381 lib/libgrubmgmt \
382 lib/libgss \
383 lib/libhotplug \
384 lib/libidmap \
385 lib/libilb \
386 lib/libinetsvc \
387 lib/libinetutil \
388 lib/libinstzones \
389 lib/libipadm \
390 lib/libipmi \
391 lib/libipmp \

new/usr/src/Makefile.lint 7

392 lib/libipp \
393 lib/libipsecutil \
394 lib/libiscsit \
395 lib/libkmf \
396 lib/libkstat \
397 lib/liblgrp \
398 lib/liblm \
399 lib/libmalloc \
400 lib/libmapmalloc \
401 lib/libmapid \
402 lib/libmd \
403 lib/libmp \
404 lib/libmtmalloc \
405 lib/libndmp \
406 lib/libnsctl \
407 lib/libnsl \
408 lib/libnvpair \
409 lib/libnwam \
410 lib/libpam \
411 lib/libpctx \
412 lib/libpicl \
413 lib/libpicltree \
414 lib/libpkg \
415 lib/libpool \
416 lib/libproc \
417 lib/libpthread \
418 lib/libraidcfg \
419 lib/librcm \
420 lib/librdc \
421 lib/libreparse \
422 lib/librestart \
423 lib/librstp \
424 lib/librt \
425 lib/libscf \
426 lib/libsec \
427 lib/libsecdb \
428 lib/libsendfile \
429 lib/libsip \
430 lib/libshare \
431 lib/libsldap \
432 lib/libslp \
433 lib/libsmbfs \
434 lib/libsmbios \
435 lib/libsmedia \
436 lib/libsrpt \
437 lib/libstmf \
438 lib/libsun_ima \
439 lib/libsysevent \
440 lib/libthread \
441 lib/libtsnet \
442 lib/libtsol \
443 lib/libumem \
444 lib/libunistat \
445 lib/libuuid \
446 lib/libuutil \
447 lib/libvrrpadm \
448 lib/libwanboot \
449 lib/libwanbootutil \
450 lib/libxnet \
451 lib/libzfs \
452 lib/libzfs_jni \
453 lib/libzonecfg \
454 lib/libzoneinfo \
455 lib/lvm \
456 lib/madv \
457 lib/mpss \

new/usr/src/Makefile.lint 8

458 lib/nametoaddr \
459 lib/ncad_addr \
460 lib/nsswitch \
461 lib/pam_modules \
462 lib/passwdutil \
463 lib/pkcs11 \
464 lib/print \
465 lib/raidcfg_plugins \
466 lib/scsi \
467 lib/smbsrv \
468 lib/fm \
469 lib/udapl \
470 lib/watchmalloc \
471 psm \
472 test \
473 ucbcmd/basename \
474 ucbcmd/biff \
475 ucbcmd/echo \
476 ucbcmd/groups \
477 ucbcmd/mkstr \
478 ucbcmd/printenv \
479 ucbcmd/sum \
480 ucbcmd/test \
481 ucbcmd/users \
482 ucbcmd/whoami

484 i386_SUBDIRS= \
485 cmd/acpihpd \
486 cmd/biosdev \
487 cmd/rtc \
488 cmd/ucodeadm \
489 lib/brand/lx \
490 #endif /* ! codereview */
491 lib/cfgadm_plugins/sata \
492 lib/cfgadm_plugins/sbd \
493 lib/libfdisk

495 sparc_SUBDIRS= \
496 cmd/datadm \
497 cmd/dcs \
498 cmd/drd \
499 cmd/fruadm \
500 cmd/ldmad \
501 cmd/prtdscp \
502 cmd/prtfru \
503 cmd/sckmd \
504 cmd/virtinfo \
505 cmd/vntsd \
506 lib/libds \
507 lib/libdscp \
508 lib/libpri \
509 lib/libpcp \
510 lib/libtsalarm \
511 lib/libv12n \
512 lib/storage \
513 stand

515 LINTSUBDIRS= $(COMMON_SUBDIRS) $($(MACH)_SUBDIRS)

517 .PARALLEL: $(LINTSUBDIRS)

519 lint: uts .WAIT subdirs

521 subdirs: $(LINTSUBDIRS)

523 uts $(LINTSUBDIRS): FRC

new/usr/src/Makefile.lint 9

524 @cd $@; pwd; $(MAKE) lint

526 FRC:

new/usr/src/Targetdirs 1

**
 70200 Tue Jan 14 16:16:54 2014
new/usr/src/Targetdirs
Bring back LX zones.
**

1 # CDDL HEADER START
2 #
3 # The contents of this file are subject to the terms of the
4 # Common Development and Distribution License (the "License").
5 # You may not use this file except in compliance with the License.
6 #
7 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
8 # or http://www.opensolaris.org/os/licensing.
9 # See the License for the specific language governing permissions

10 # and limitations under the License.
11 #
12 # When distributing Covered Code, include this CDDL HEADER in each
13 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
14 # If applicable, add the following below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [name of copyright owner]
17 #
18 # CDDL HEADER END
19 #

21 #
22 # Copyright (c) 1989, 2010, Oracle and/or its affiliates. All rights reserved.
23 # Copyright 2011, Richard Lowe
24 # Copyright (c) 2012 by Delphix. All rights reserved.
25 # Copyright 2012 OmniTI Computer Consulting, Inc. All rights reserved.
26 # Copyright (c) 2013 RackTop Systems.
27 # Copyright 2013 Nexenta Systems, Inc. All rights reserved.
28 #

30 #
31 # It is easier to think in terms of directory names without the ROOT macro
32 # prefix. ROOTDIRS is TARGETDIRS with ROOT prefixes. It is necessary
33 # to work with ROOT prefixes when controlling conditional assignments.
34 #

36 DIRLINKS= $(SYM.DIRS)
37 $(BUILD64) DIRLINKS += $(SYM.DIRS64)

39 FILELINKS= $(SYM.USRCCSLIB) $(SYM.USRLIB)
40 $(BUILD64) FILELINKS += $(SYM.USRCCSLIB64) $(SYM.USRLIB64)

42 TARGETDIRS= $(DIRS)
43 $(BUILD64) TARGETDIRS += $(DIRS64)

45 TARGETDIRS += $(FILELINKS) $(DIRLINKS)

47 i386_DIRS= \
48 /boot/acpi \
49 /boot/acpi/tables \
50 /boot/grub \
51 /boot/grub/bin \
52 /platform/i86pc \
53 /usr/lib/brand/lx \
54 /usr/lib/brand/lx/amd64 \
55 /usr/lib/brand/lx/distros \
56 #endif /* ! codereview */
57 /usr/lib/xen \
58 /usr/lib/xen/bin

60 sparc_DIRS= \
61 /usr/lib/ldoms

new/usr/src/Targetdirs 2

63 sparc_64ONLY= $(POUND_SIGN)
64 64ONLY= $($(MACH)_64ONLY)

66 $(64ONLY) MACH32_DIRS=/usr/ucb/$(MACH32)

68 DIRS= \
69 /boot \
70 /boot/solaris \
71 /boot/solaris/bin \
72 $($(MACH)_DIRS) \
73 /dev \
74 /dev/dsk \
75 /dev/fd \
76 /dev/ipnet \
77 /dev/net \
78 /dev/rdsk \
79 /dev/rmt \
80 /dev/pts \
81 /dev/sad \
82 /dev/swap \
83 /dev/term \
84 /dev/vt \
85 /dev/zcons \
86 /devices \
87 /devices/pseudo \
88 /etc \
89 /etc/brand \
90 /etc/brand/solaris10 \
91 /etc/cron.d \
92 /etc/crypto \
93 /etc/crypto/certs \
94 /etc/crypto/crls \
95 /etc/dbus-1 \
96 /etc/dbus-1/system.d \
97 /etc/default \
98 /etc/devices \
99 /etc/dev \
100 /etc/dfs \
101 /etc/dladm \
102 /etc/fs \
103 /etc/fs/nfs \
104 /etc/fs/zfs \
105 /etc/ftpd \
106 /etc/hal \
107 /etc/hal/fdi \
108 /etc/hal/fdi/information \
109 /etc/hal/fdi/information/10freedesktop \
110 /etc/hal/fdi/information/20thirdparty \
111 /etc/hal/fdi/information/30user \
112 /etc/hal/fdi/policy \
113 /etc/hal/fdi/policy/10osvendor \
114 /etc/hal/fdi/policy/20thirdparty \
115 /etc/hal/fdi/policy/30user \
116 /etc/hal/fdi/preprobe \
117 /etc/hal/fdi/preprobe/10osvendor \
118 /etc/hal/fdi/preprobe/20thirdparty \
119 /etc/hal/fdi/preprobe/30user \
120 /etc/ipadm \
121 /etc/iscsi \
122 /etc/rpcsec \
123 /etc/security \
124 /etc/security/auth_attr.d \
125 /etc/security/exec_attr.d \
126 /etc/security/prof_attr.d \
127 /etc/security/tsol \

new/usr/src/Targetdirs 3

128 /etc/gss \
129 /etc/init.d \
130 /etc/dhcp \
131 /etc/lib \
132 /etc/mail \
133 /etc/mail/cf \
134 /etc/mail/cf/cf \
135 /etc/mail/cf/domain \
136 /etc/mail/cf/feature \
137 /etc/mail/cf/m4 \
138 /etc/mail/cf/mailer \
139 /etc/mail/cf/ostype \
140 /etc/mail/cf/sh \
141 /etc/net-snmp \
142 /etc/net-snmp/snmp \
143 /etc/opt \
144 /etc/rc0.d \
145 /etc/rc1.d \
146 /etc/rc2.d \
147 /etc/rc3.d \
148 /etc/rcS.d \
149 /etc/saf \
150 /etc/sasl \
151 /etc/sfw \
152 /etc/skel \
153 /etc/svc \
154 /etc/svc/profile \
155 /etc/svc/profile/site \
156 /etc/svc/volatile \
157 /etc/tm \
158 /etc/usb \
159 /etc/user_attr.d \
160 /etc/zfs \
161 /etc/zones \
162 /export \
163 /home \
164 /lib \
165 /lib/crypto \
166 /lib/inet \
167 /lib/fm \
168 /lib/secure \
169 /lib/svc \
170 /lib/svc/bin \
171 /lib/svc/capture \
172 /lib/svc/manifest \
173 /lib/svc/manifest/milestone \
174 /lib/svc/manifest/device \
175 /lib/svc/manifest/system \
176 /lib/svc/manifest/system/device \
177 /lib/svc/manifest/system/filesystem \
178 /lib/svc/manifest/system/security \
179 /lib/svc/manifest/system/svc \
180 /lib/svc/manifest/network \
181 /lib/svc/manifest/network/dns \
182 /lib/svc/manifest/network/ipsec \
183 /lib/svc/manifest/network/ldap \
184 /lib/svc/manifest/network/nfs \
185 /lib/svc/manifest/network/nis \
186 /lib/svc/manifest/network/rpc \
187 /lib/svc/manifest/network/security \
188 /lib/svc/manifest/network/shares \
189 /lib/svc/manifest/network/ssl \
190 /lib/svc/manifest/application \
191 /lib/svc/manifest/application/management \
192 /lib/svc/manifest/application/security \
193 /lib/svc/manifest/application/print \

new/usr/src/Targetdirs 4

194 /lib/svc/manifest/platform \
195 /lib/svc/manifest/platform/sun4u \
196 /lib/svc/manifest/platform/sun4v \
197 /lib/svc/manifest/site \
198 /lib/svc/method \
199 /lib/svc/monitor \
200 /lib/svc/seed \
201 /lib/svc/share \
202 /kernel \
203 /mnt \
204 /opt \
205 /platform \
206 /proc \
207 /root \
208 /sbin \
209 /system \
210 /system/contract \
211 /system/object \
212 /tmp \
213 /usr \
214 /usr/4lib \
215 /usr/ast \
216 /usr/ast/bin \
217 /usr/bin \
218 /usr/bin/$(MACH32) \
219 /usr/ccs \
220 /usr/ccs/bin \
221 /usr/ccs/lib \
222 /usr/demo \
223 /usr/demo/SOUND \
224 /usr/games \
225 /usr/has \
226 /usr/has/bin \
227 /usr/has/lib \
228 /usr/has/man \
229 /usr/has/man/man1has \
230 /usr/include \
231 /usr/include/ast \
232 /usr/include/fm \
233 /usr/include/gssapi \
234 /usr/include/hal \
235 /usr/include/kerberosv5 \
236 /usr/include/libmilter \
237 /usr/include/libpolkit \
238 /usr/include/sasl \
239 /usr/include/scsi \
240 /usr/include/security \
241 /usr/include/sys/crypto \
242 /usr/include/tsol \
243 /usr/kernel \
244 /usr/kvm \
245 /usr/lib \
246 /usr/lib/abi \
247 /usr/lib/brand \
248 /usr/lib/brand/ipkg \
249 /usr/lib/brand/labeled \
250 /usr/lib/brand/shared \
251 /usr/lib/brand/sn1 \
252 /usr/lib/brand/solaris10 \
253 /usr/lib/class \
254 /usr/lib/class/FSS \
255 /usr/lib/class/FX \
256 /usr/lib/class/IA \
257 /usr/lib/class/RT \
258 /usr/lib/class/SDC \
259 /usr/lib/class/TS \

new/usr/src/Targetdirs 5

260 /usr/lib/crypto \
261 /usr/lib/drv \
262 /usr/lib/elfedit \
263 /usr/lib/fm \
264 /usr/lib/font \
265 /usr/lib/fs \
266 /usr/lib/fs/nfs \
267 /usr/lib/fs/proc \
268 /usr/lib/fs/smb \
269 /usr/lib/fs/zfs \
270 /usr/lib/gss \
271 /usr/lib/hal \
272 /usr/lib/inet \
273 /usr/lib/inet/dhcp \
274 /usr/lib/inet/dhcp/nsu \
275 /usr/lib/inet/dhcp/svc \
276 /usr/lib/inet/dhcp/svcadm \
277 /usr/lib/inet/ilb \
278 /usr/lib/inet/$(MACH32) \
279 /usr/lib/inet/wanboot \
280 /usr/lib/krb5 \
281 /usr/lib/link_audit \
282 /usr/lib/libp \
283 /usr/lib/lwp \
284 /usr/lib/mdb \
285 /usr/lib/mdb/kvm \
286 /usr/lib/mdb/proc \
287 /usr/lib/nfs \
288 /usr/net \
289 /usr/net/servers \
290 /usr/lib/pool \
291 /usr/lib/python2.6 \
292 /usr/lib/python2.6/vendor-packages \
293 /usr/lib/python2.6/vendor-packages/64 \
294 /usr/lib/python2.6/vendor-packages/solaris \
295 /usr/lib/python2.6/vendor-packages/zfs \
296 /usr/lib/python2.6/vendor-packages/beadm \
297 /usr/lib/rcap \
298 /usr/lib/rcap/$(MACH32) \
299 /usr/lib/sa \
300 /usr/lib/saf \
301 /usr/lib/sasl \
302 /usr/lib/scsi \
303 /usr/lib/secure \
304 /usr/lib/security \
305 /usr/lib/smbsrv \
306 /usr/lib/vscan \
307 /usr/lib/zfs \
308 /usr/lib/zones \
309 /usr/old \
310 /usr/platform \
311 /usr/proc \
312 /usr/proc/bin \
313 /usr/sadm \
314 /usr/sadm/install \
315 /usr/sadm/install/bin \
316 /usr/sadm/install/scripts \
317 /usr/sbin \
318 /usr/sbin/$(MACH32) \
319 /usr/share \
320 /usr/share/applications \
321 /usr/share/audio \
322 /usr/share/audio/samples \
323 /usr/share/audio/samples/au \
324 /usr/share/gnome \
325 /usr/share/gnome/autostart \

new/usr/src/Targetdirs 6

326 /usr/share/hwdata \
327 /usr/share/lib \
328 /usr/share/lib/ccs \
329 /usr/share/lib/tmac \
330 /usr/share/lib/ldif \
331 /usr/share/lib/xml \
332 /usr/share/lib/xml/dtd \
333 /usr/share/man \
334 /usr/share/man/man1 \
335 /usr/share/man/man1b \
336 /usr/share/man/man1c \
337 /usr/share/man/man1m \
338 /usr/share/man/man2 \
339 /usr/share/man/man3 \
340 /usr/share/man/man3bsm \
341 /usr/share/man/man3c \
342 /usr/share/man/man3c_db \
343 /usr/share/man/man3cfgadm \
344 /usr/share/man/man3commputil \
345 /usr/share/man/man3contract \
346 /usr/share/man/man3cpc \
347 /usr/share/man/man3curses \
348 /usr/share/man/man3dat \
349 /usr/share/man/man3devid \
350 /usr/share/man/man3devinfo \
351 /usr/share/man/man3dlpi \
352 /usr/share/man/man3dns_sd \
353 /usr/share/man/man3elf \
354 /usr/share/man/man3exacct \
355 /usr/share/man/man3ext \
356 /usr/share/man/man3fcoe \
357 /usr/share/man/man3fstyp \
358 /usr/share/man/man3gen \
359 /usr/share/man/man3gss \
360 /usr/share/man/man3head \
361 /usr/share/man/man3iscsit \
362 /usr/share/man/man3kstat \
363 /usr/share/man/man3kvm \
364 /usr/share/man/man3ldap \
365 /usr/share/man/man3lgrp \
366 /usr/share/man/man3lib \
367 /usr/share/man/man3mail \
368 /usr/share/man/man3malloc \
369 /usr/share/man/man3mp \
370 /usr/share/man/man3mpapi \
371 /usr/share/man/man3nsl \
372 /usr/share/man/man3nvpair \
373 /usr/share/man/man3pam \
374 /usr/share/man/man3papi \
375 /usr/share/man/man3perl \
376 /usr/share/man/man3picl \
377 /usr/share/man/man3picltree \
378 /usr/share/man/man3pool \
379 /usr/share/man/man3proc \
380 /usr/share/man/man3project \
381 /usr/share/man/man3resolv \
382 /usr/share/man/man3rpc \
383 /usr/share/man/man3rsm \
384 /usr/share/man/man3sasl \
385 /usr/share/man/man3scf \
386 /usr/share/man/man3sec \
387 /usr/share/man/man3secdb \
388 /usr/share/man/man3sip \
389 /usr/share/man/man3slp \
390 /usr/share/man/man3socket \
391 /usr/share/man/man3stmf \

new/usr/src/Targetdirs 7

392 /usr/share/man/man3sysevent \
393 /usr/share/man/man3tecla \
394 /usr/share/man/man3tnf \
395 /usr/share/man/man3tsol \
396 /usr/share/man/man3uuid \
397 /usr/share/man/man3volmgt \
398 /usr/share/man/man3xcurses \
399 /usr/share/man/man3xnet \
400 /usr/share/man/man4 \
401 /usr/share/man/man5 \
402 /usr/share/man/man7 \
403 /usr/share/man/man7d \
404 /usr/share/man/man7fs \
405 /usr/share/man/man7i \
406 /usr/share/man/man7ipp \
407 /usr/share/man/man7m \
408 /usr/share/man/man7p \
409 /usr/share/man/man9 \
410 /usr/share/man/man9e \
411 /usr/share/man/man9f \
412 /usr/share/man/man9p \
413 /usr/share/man/man9s \
414 /usr/share/src \
415 /usr/snadm \
416 /usr/snadm/lib \
417 /usr/ucb \
418 $(MACH32_DIRS) \
419 /usr/ucblib \
420 /usr/xpg4 \
421 /usr/xpg4/bin \
422 /usr/xpg4/include \
423 /usr/xpg4/lib \
424 /usr/xpg6 \
425 /usr/xpg6/bin \
426 /var \
427 /var/adm \
428 /var/adm/exacct \
429 /var/adm/log \
430 /var/adm/pool \
431 /var/adm/sa \
432 /var/adm/sm.bin \
433 /var/adm/streams \
434 /var/cores \
435 /var/cron \
436 /var/db \
437 /var/db/ipf \
438 /var/games \
439 /var/idmap \
440 /var/krb5 \
441 /var/krb5/rcache \
442 /var/krb5/rcache/root \
443 /var/ld \
444 /var/log \
445 /var/log/pool \
446 /var/logadm \
447 /var/mail \
448 /var/news \
449 /var/opt \
450 /var/preserve \
451 /var/run \
452 /var/saf \
453 /var/sadm \
454 /var/sadm/install \
455 /var/sadm/install/admin \
456 /var/sadm/install/logs \
457 /var/sadm/pkg \

new/usr/src/Targetdirs 8

458 /var/sadm/security \
459 /var/smb \
460 /var/smb/cvol \
461 /var/smb/cvol/windows \
462 /var/smb/cvol/windows/system32 \
463 /var/smb/cvol/windows/system32/vss \
464 /var/spool \
465 /var/spool/cron \
466 /var/spool/cron/atjobs \
467 /var/spool/cron/crontabs \
468 /var/spool/lp \
469 /var/spool/pkg \
470 /var/spool/uucp \
471 /var/spool/uucppublic \
472 /var/svc \
473 /var/svc/log \
474 /var/svc/manifest \
475 /var/svc/manifest/milestone \
476 /var/svc/manifest/device \
477 /var/svc/manifest/system \
478 /var/svc/manifest/system/device \
479 /var/svc/manifest/system/filesystem \
480 /var/svc/manifest/system/security \
481 /var/svc/manifest/system/svc \
482 /var/svc/manifest/network \
483 /var/svc/manifest/network/dns \
484 /var/svc/manifest/network/ipsec \
485 /var/svc/manifest/network/ldap \
486 /var/svc/manifest/network/nfs \
487 /var/svc/manifest/network/nis \
488 /var/svc/manifest/network/rpc \
489 /var/svc/manifest/network/routing \
490 /var/svc/manifest/network/security \
491 /var/svc/manifest/network/shares \
492 /var/svc/manifest/network/ssl \
493 /var/svc/manifest/application \
494 /var/svc/manifest/application/management \
495 /var/svc/manifest/application/print \
496 /var/svc/manifest/application/security \
497 /var/svc/manifest/platform \
498 /var/svc/manifest/platform/sun4u \
499 /var/svc/manifest/platform/sun4v \
500 /var/svc/manifest/site \
501 /var/svc/profile \
502 /var/uucp \
503 /var/tmp \
504 /var/tsol \
505 /var/tsol/doors

507 sparcv9_DIRS64= \
508 /platform/sun4u \
509 /platform/sun4u/lib \
510 /platform/sun4u/lib/$(MACH64) \
511 /usr/platform/sun4u \
512 /usr/platform/sun4u/sbin \
513 /usr/platform/sun4u/lib \
514 /platform/sun4v/lib \
515 /platform/sun4v/lib/$(MACH64) \
516 /usr/platform/sun4v/sbin \
517 /usr/platform/sun4v/lib \
518 /usr/platform/sun4u-us3/lib \
519 /usr/platform/sun4u-opl/lib

521 amd64_DIRS64= \
522 /platform/i86pc/amd64

new/usr/src/Targetdirs 9

524 DIRS64= \
525 $($(MACH64)_DIRS64) \
526 /lib/$(MACH64) \
527 /lib/crypto/$(MACH64) \
528 /lib/fm/$(MACH64) \
529 /lib/secure/$(MACH64) \
530 /usr/bin/$(MACH64) \
531 /usr/ccs/bin/$(MACH64) \
532 /usr/ccs/lib/$(MACH64) \
533 /usr/lib/$(MACH64) \
534 /usr/lib/$(MACH64)/gss \
535 /usr/lib/brand/sn1/$(MACH64) \
536 /usr/lib/brand/solaris10/$(MACH64) \
537 /usr/lib/elfedit/$(MACH64) \
538 /usr/lib/fm/$(MACH64) \
539 /usr/lib/fs/nfs/$(MACH64) \
540 /usr/lib/fs/smb/$(MACH64) \
541 /usr/lib/inet/$(MACH64) \
542 /usr/lib/krb5/$(MACH64) \
543 /usr/lib/libp/$(MACH64) \
544 /usr/lib/link_audit/$(MACH64) \
545 /usr/lib/lwp/$(MACH64) \
546 /usr/lib/mdb/kvm/$(MACH64) \
547 /usr/lib/mdb/proc/$(MACH64) \
548 /usr/lib/rcap/$(MACH64) \
549 /usr/lib/sasl/$(MACH64) \
550 /usr/lib/scsi/$(MACH64) \
551 /usr/lib/secure/$(MACH64) \
552 /usr/lib/security/$(MACH64) \
553 /usr/lib/smbsrv/$(MACH64) \
554 /usr/lib/abi/$(MACH64) \
555 /usr/sbin/$(MACH64) \
556 /usr/ucb/$(MACH64) \
557 /usr/ucblib/$(MACH64) \
558 /usr/xpg4/lib/$(MACH64) \
559 /var/ld/$(MACH64)

561 # /var/mail/:saved is built directly by the rootdirs target in
562 # /usr/src/Makefile because of the colon in its name.

564 # macros for symbolic links
565 SYM.DIRS= \
566 /bin \
567 /dev/stdin \
568 /dev/stdout \
569 /dev/stderr \
570 /etc/lib/ld.so.1 \
571 /etc/lib/libdl.so.1 \
572 /etc/lib/nss_files.so.1 \
573 /etc/log \
574 /lib/32 \
575 /lib/crypto/32 \
576 /lib/secure/32 \
577 /usr/adm \
578 /usr/spool \
579 /usr/lib/tmac \
580 /usr/ccs/lib/link_audit \
581 /usr/news \
582 /usr/preserve \
583 /usr/lib/32 \
584 /usr/lib/cron \
585 /usr/lib/elfedit/32 \
586 /usr/lib/libp/32 \
587 /usr/lib/lwp/32 \
588 /usr/lib/link_audit/32 \
589 /usr/lib/secure/32 \

new/usr/src/Targetdirs 10

590 /usr/mail \
591 /usr/man \
592 /usr/pub \
593 /usr/src \
594 /usr/tmp \
595 /usr/ucblib/32 \
596 /var/ld/32

598 i386_SYM.DIRS64= \
599 /usr/lib/brand/lx/64

601 #endif /* ! codereview */
602 sparc_SYM.DIRS64=

604 SYM.DIRS64= \
605 $($(MACH)_SYM.DIRS64) \
606 /lib/64 \
607 /lib/crypto/64 \
608 /lib/secure/64 \
609 /usr/lib/64 \
610 /usr/lib/brand/sn1/64 \
611 /usr/lib/brand/solaris10/64 \
612 /usr/lib/elfedit/64 \
613 /usr/lib/libp/64 \
614 /usr/lib/link_audit/64 \
615 /usr/lib/lwp/64 \
616 /usr/lib/secure/64 \
617 /usr/lib/security/64 \
618 /usr/xpg4/lib/64 \
619 /var/ld/64 \
620 /usr/ucblib/64

622 # prepend the ROOT prefix

624 ROOTDIRS= $(TARGETDIRS:%=$(ROOT)%)

626 # conditional assignments
627 #
628 # Target directories with non-default values for owner and group must
629 # be referenced here, using their fully-prefixed names, and the non-
630 # default values assigned. If a directory is mentioned above and not
631 # mentioned below, it has default values for attributes.
632 #
633 # The default value for DIRMODE is specified in usr/src/Makefile.master.
634 #

636 $(ROOT)/var/adm \
637 $(ROOT)/var/adm/sa := DIRMODE= 775

639 $(ROOT)/var/spool/lp:= DIRMODE= 775

641 # file mode
642 #
643 $(ROOT)/tmp \
644 $(ROOT)/var/krb5/rcache \
645 $(ROOT)/var/preserve \
646 $(ROOT)/var/spool/pkg \
647 $(ROOT)/var/spool/uucppublic \
648 $(ROOT)/var/tmp:= DIRMODE= 1777

650 $(ROOT)/root:= DIRMODE= 700

652 $(ROOT)/var/krb5/rcache/root:= DIRMODE= 700

655 #

new/usr/src/Targetdirs 11

656 # These permissions must match those set
657 # in the package manifests.
658 #
659 $(ROOT)/var/sadm/pkg \
660 $(ROOT)/var/sadm/security \
661 $(ROOT)/var/sadm/install/logs := DIRMODE= 555

664 #
665 # These permissions must match the ones set
666 # internally by fdfs and autofs.
667 #
668 $(ROOT)/dev/fd \
669 $(ROOT)/home:= DIRMODE= 555

671 $(ROOT)/var/mail:= DIRMODE=1777

673 $(ROOT)/proc:= DIRMODE= 555

675 $(ROOT)/system/contract:= DIRMODE= 555
676 $(ROOT)/system/object:= DIRMODE= 555

678 # symlink assignments, LINKDEST is the value of the symlink
679 #
680 $(ROOT)/usr/lib/cron:= LINKDEST=../../etc/cron.d
681 $(ROOT)/bin:= LINKDEST=usr/bin
682 $(ROOT)/lib/32:= LINKDEST=.
683 $(ROOT)/lib/crypto/32:= LINKDEST=.
684 $(ROOT)/lib/secure/32:= LINKDEST=.
685 $(ROOT)/dev/stdin:= LINKDEST=fd/0
686 $(ROOT)/dev/stdout:= LINKDEST=fd/1
687 $(ROOT)/dev/stderr:= LINKDEST=fd/2
688 $(ROOT)/usr/pub:= LINKDEST=share/lib/pub
689 $(ROOT)/usr/man:= LINKDEST=share/man
690 $(ROOT)/usr/src:= LINKDEST=share/src
691 $(ROOT)/usr/adm:= LINKDEST=../var/adm
692 $(ROOT)/etc/lib/ld.so.1:= LINKDEST=../../lib/ld.so.1
693 $(ROOT)/etc/lib/libdl.so.1:= LINKDEST=../../lib/libdl.so.1
694 $(ROOT)/etc/lib/nss_files.so.1:= LINKDEST=../../lib/nss_files.so.1
695 $(ROOT)/etc/log:= LINKDEST=../var/adm/log
696 $(ROOT)/usr/mail:= LINKDEST=../var/mail
697 $(ROOT)/usr/news:= LINKDEST=../var/news
698 $(ROOT)/usr/preserve:= LINKDEST=../var/preserve
699 $(ROOT)/usr/spool:= LINKDEST=../var/spool
700 $(ROOT)/usr/tmp:= LINKDEST=../var/tmp
701 $(ROOT)/usr/lib/tmac:= LINKDEST=../share/lib/tmac
702 $(ROOT)/usr/lib/32:= LINKDEST=.
703 $(ROOT)/usr/lib/elfedit/32:= LINKDEST=.
704 $(ROOT)/usr/lib/libp/32:= LINKDEST=.
705 $(ROOT)/usr/lib/lwp/32:= LINKDEST=.
706 $(ROOT)/usr/lib/link_audit/32:= LINKDEST=.
707 $(ROOT)/usr/lib/secure/32:= LINKDEST=.
708 $(ROOT)/usr/ccs/lib/link_audit:= LINKDEST=../../lib/link_audit
709 $(ROOT)/var/ld/32:= LINKDEST=.
710 $(ROOT)/usr/ucblib/32:= LINKDEST=.

713 $(BUILD64) $(ROOT)/lib/64:= LINKDEST=$(MACH64)
714 $(BUILD64) $(ROOT)/lib/crypto/64:= LINKDEST=$(MACH64)
715 $(BUILD64) $(ROOT)/lib/secure/64:= LINKDEST=$(MACH64)
716 $(BUILD64) $(ROOT)/usr/lib/64:= LINKDEST=$(MACH64)
717 $(BUILD64) $(ROOT)/usr/lib/elfedit/64:= LINKDEST=$(MACH64)
718 $(BUILD64) $(ROOT)/usr/lib/brand/lx/64:= LINKDEST=$(MACH64)
719 #endif /* ! codereview */
720 $(BUILD64) $(ROOT)/usr/lib/brand/sn1/64:= LINKDEST=$(MACH64)
721 $(BUILD64) $(ROOT)/usr/lib/brand/solaris10/64:= LINKDEST=$(MACH64)

new/usr/src/Targetdirs 12

722 $(BUILD64) $(ROOT)/usr/lib/libp/64:= LINKDEST=$(MACH64)
723 $(BUILD64) $(ROOT)/usr/lib/lwp/64:= LINKDEST=$(MACH64)
724 $(BUILD64) $(ROOT)/usr/lib/link_audit/64:= LINKDEST=$(MACH64)
725 $(BUILD64) $(ROOT)/usr/lib/secure/64:= LINKDEST=$(MACH64)
726 $(BUILD64) $(ROOT)/usr/lib/security/64:= LINKDEST=$(MACH64)
727 $(BUILD64) $(ROOT)/usr/xpg4/lib/64:= LINKDEST=$(MACH64)
728 $(BUILD64) $(ROOT)/var/ld/64:= LINKDEST=$(MACH64)
729 $(BUILD64) $(ROOT)/usr/ucblib/64:= LINKDEST=$(MACH64)

731 #
732 # Installing a directory symlink calls for overriding INS.dir to install
733 # a symlink.
734 #
735 $(DIRLINKS:%=$(ROOT)%):= \
736 INS.dir= -$(RM) -r $@; $(SYMLINK) $(LINKDEST) $@

738 # Special symlinks to populate usr/ccs/lib, whose objects
739 # have actually been moved to usr/lib
740 # Rather than adding another set of rules, we add usr/lib/lwp files here
741 $(ROOT)/usr/ccs/lib/libcurses.so:= REALPATH=../../../lib/libcurses.so.1
742 $(ROOT)/usr/ccs/lib/llib-lcurses:= REALPATH=../../../lib/llib-lcurses
743 $(ROOT)/usr/ccs/lib/llib-lcurses.ln:= REALPATH=../../../lib/llib-lcurses.ln
744 $(ROOT)/usr/ccs/lib/libform.so:= REALPATH=../../lib/libform.so.1
745 $(ROOT)/usr/ccs/lib/llib-lform:= REALPATH=../../lib/llib-lform
746 $(ROOT)/usr/ccs/lib/llib-lform.ln:= REALPATH=../../lib/llib-lform.ln
747 $(ROOT)/usr/ccs/lib/libgen.so:= REALPATH=../../../lib/libgen.so.1
748 $(ROOT)/usr/ccs/lib/llib-lgen:= REALPATH=../../../lib/llib-lgen
749 $(ROOT)/usr/ccs/lib/llib-lgen.ln:= REALPATH=../../../lib/llib-lgen.ln
750 $(ROOT)/usr/ccs/lib/libmalloc.so:= REALPATH=../../lib/libmalloc.so.1
751 $(ROOT)/usr/ccs/lib/libmenu.so:= REALPATH=../../lib/libmenu.so.1
752 $(ROOT)/usr/ccs/lib/llib-lmenu:= REALPATH=../../lib/llib-lmenu
753 $(ROOT)/usr/ccs/lib/llib-lmenu.ln:= REALPATH=../../lib/llib-lmenu.ln
754 $(ROOT)/usr/ccs/lib/libpanel.so:= REALPATH=../../lib/libpanel.so.1
755 $(ROOT)/usr/ccs/lib/llib-lpanel:= REALPATH=../../lib/llib-lpanel
756 $(ROOT)/usr/ccs/lib/llib-lpanel.ln:= REALPATH=../../lib/llib-lpanel.ln
757 $(ROOT)/usr/ccs/lib/libtermlib.so:= REALPATH=../../../lib/libcurses.so.1
758 $(ROOT)/usr/ccs/lib/llib-ltermlib:= REALPATH=../../../lib/llib-lcurses
759 $(ROOT)/usr/ccs/lib/llib-ltermlib.ln:= REALPATH=../../../lib/llib-lcurses.ln
760 $(ROOT)/usr/ccs/lib/libtermcap.so:= REALPATH=../../../lib/libtermcap.so.1
761 $(ROOT)/usr/ccs/lib/llib-ltermcap:= REALPATH=../../../lib/llib-ltermcap
762 $(ROOT)/usr/ccs/lib/llib-ltermcap.ln:= REALPATH=../../../lib/llib-ltermcap.ln
763 $(ROOT)/usr/ccs/lib/values-Xa.o:= REALPATH=../../lib/values-Xa.o
764 $(ROOT)/usr/ccs/lib/values-Xc.o:= REALPATH=../../lib/values-Xc.o
765 $(ROOT)/usr/ccs/lib/values-Xs.o:= REALPATH=../../lib/values-Xs.o
766 $(ROOT)/usr/ccs/lib/values-Xt.o:= REALPATH=../../lib/values-Xt.o
767 $(ROOT)/usr/ccs/lib/values-xpg4.o:= REALPATH=../../lib/values-xpg4.o
768 $(ROOT)/usr/ccs/lib/values-xpg6.o:= REALPATH=../../lib/values-xpg6.o
769 $(ROOT)/usr/ccs/lib/libl.so:= REALPATH=../../lib/libl.so.1
770 $(ROOT)/usr/ccs/lib/llib-ll.ln:= REALPATH=../../lib/llib-ll.ln
771 $(ROOT)/usr/ccs/lib/liby.so:= REALPATH=../../lib/liby.so.1
772 $(ROOT)/usr/ccs/lib/llib-ly.ln:= REALPATH=../../lib/llib-ly.ln
773 $(ROOT)/usr/lib/libp/libc.so.1:= REALPATH=../../../lib/libc.so.1
774 $(ROOT)/usr/lib/lwp/libthread.so.1:= REALPATH=../libthread.so.1
775 $(ROOT)/usr/lib/lwp/libthread_db.so.1:= REALPATH=../libthread_db.so.1

777 # symlinks to populate usr/ccs/lib/$(MACH64)
778 $(ROOT)/usr/ccs/lib/$(MACH64)/libcurses.so:= \
779 REALPATH=../../../../lib/$(MACH64)/libcurses.so.1
780 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lcurses.ln:= \
781 REALPATH=../../../../lib/$(MACH64)/llib-lcurses.ln
782 $(ROOT)/usr/ccs/lib/$(MACH64)/libform.so:= \
783 REALPATH=../../../lib/$(MACH64)/libform.so.1
784 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lform.ln:= \
785 REALPATH=../../../lib/$(MACH64)/llib-lform.ln
786 $(ROOT)/usr/ccs/lib/$(MACH64)/libgen.so:= \
787 REALPATH=../../../../lib/$(MACH64)/libgen.so.1

new/usr/src/Targetdirs 13

788 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lgen.ln:= \
789 REALPATH=../../../../lib/$(MACH64)/llib-lgen.ln
790 $(ROOT)/usr/ccs/lib/$(MACH64)/libmalloc.so:= \
791 REALPATH=../../../lib/$(MACH64)/libmalloc.so.1
792 $(ROOT)/usr/ccs/lib/$(MACH64)/libmenu.so:= \
793 REALPATH=../../../lib/$(MACH64)/libmenu.so.1
794 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lmenu.ln:= \
795 REALPATH=../../../lib/$(MACH64)/llib-lmenu.ln
796 $(ROOT)/usr/ccs/lib/$(MACH64)/libpanel.so:= \
797 REALPATH=../../../lib/$(MACH64)/libpanel.so.1
798 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-lpanel.ln:= \
799 REALPATH=../../../lib/$(MACH64)/llib-lpanel.ln
800 $(ROOT)/usr/ccs/lib/$(MACH64)/libtermlib.so:= \
801 REALPATH=../../../../lib/$(MACH64)/libcurses.so.1
802 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-ltermlib.ln:= \
803 REALPATH=../../../../lib/$(MACH64)/llib-lcurses.ln
804 $(ROOT)/usr/ccs/lib/$(MACH64)/libtermcap.so:= \
805 REALPATH=../../../../lib/$(MACH64)/libtermcap.so.1
806 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-ltermcap.ln:= \
807 REALPATH=../../../../lib/$(MACH64)/llib-ltermcap.ln
808 $(ROOT)/usr/ccs/lib/$(MACH64)/values-Xa.o:= \
809 REALPATH=../../../lib/$(MACH64)/values-Xa.o
810 $(ROOT)/usr/ccs/lib/$(MACH64)/values-Xc.o:= \
811 REALPATH=../../../lib/$(MACH64)/values-Xc.o
812 $(ROOT)/usr/ccs/lib/$(MACH64)/values-Xs.o:= \
813 REALPATH=../../../lib/$(MACH64)/values-Xs.o
814 $(ROOT)/usr/ccs/lib/$(MACH64)/values-Xt.o:= \
815 REALPATH=../../../lib/$(MACH64)/values-Xt.o
816 $(ROOT)/usr/ccs/lib/$(MACH64)/values-xpg4.o:= \
817 REALPATH=../../../lib/$(MACH64)/values-xpg4.o
818 $(ROOT)/usr/ccs/lib/$(MACH64)/values-xpg6.o:= \
819 REALPATH=../../../lib/$(MACH64)/values-xpg6.o
820 $(ROOT)/usr/ccs/lib/$(MACH64)/libl.so:= \
821 REALPATH=../../../lib/$(MACH64)/libl.so.1
822 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-ll.ln:= \
823 REALPATH=../../../lib/$(MACH64)/llib-ll.ln
824 $(ROOT)/usr/ccs/lib/$(MACH64)/liby.so:= \
825 REALPATH=../../../lib/$(MACH64)/liby.so.1
826 $(ROOT)/usr/ccs/lib/$(MACH64)/llib-ly.ln:= \
827 REALPATH=../../../lib/$(MACH64)/llib-ly.ln
828 $(ROOT)/usr/lib/libp/$(MACH64)/libc.so.1:= \
829 REALPATH=../../../../lib/$(MACH64)/libc.so.1
830 $(ROOT)/usr/lib/lwp/$(MACH64)/libthread.so.1:= \
831 REALPATH=../../$(MACH64)/libthread.so.1
832 $(ROOT)/usr/lib/lwp/$(MACH64)/libthread_db.so.1:= \
833 REALPATH=../../$(MACH64)/libthread_db.so.1

835 SYM.USRCCSLIB= \
836 /usr/ccs/lib/libcurses.so \
837 /usr/ccs/lib/llib-lcurses \
838 /usr/ccs/lib/llib-lcurses.ln \
839 /usr/ccs/lib/libform.so \
840 /usr/ccs/lib/llib-lform \
841 /usr/ccs/lib/llib-lform.ln \
842 /usr/ccs/lib/libgen.so \
843 /usr/ccs/lib/llib-lgen \
844 /usr/ccs/lib/llib-lgen.ln \
845 /usr/ccs/lib/libmalloc.so \
846 /usr/ccs/lib/libmenu.so \
847 /usr/ccs/lib/llib-lmenu \
848 /usr/ccs/lib/llib-lmenu.ln \
849 /usr/ccs/lib/libpanel.so \
850 /usr/ccs/lib/llib-lpanel \
851 /usr/ccs/lib/llib-lpanel.ln \
852 /usr/ccs/lib/libtermlib.so \
853 /usr/ccs/lib/llib-ltermlib \

new/usr/src/Targetdirs 14

854 /usr/ccs/lib/llib-ltermlib.ln \
855 /usr/ccs/lib/libtermcap.so \
856 /usr/ccs/lib/llib-ltermcap \
857 /usr/ccs/lib/llib-ltermcap.ln \
858 /usr/ccs/lib/values-Xa.o \
859 /usr/ccs/lib/values-Xc.o \
860 /usr/ccs/lib/values-Xs.o \
861 /usr/ccs/lib/values-Xt.o \
862 /usr/ccs/lib/values-xpg4.o \
863 /usr/ccs/lib/values-xpg6.o \
864 /usr/ccs/lib/libl.so \
865 /usr/ccs/lib/llib-ll.ln \
866 /usr/ccs/lib/liby.so \
867 /usr/ccs/lib/llib-ly.ln \
868 /usr/lib/libp/libc.so.1 \
869 /usr/lib/lwp/libthread.so.1 \
870 /usr/lib/lwp/libthread_db.so.1

872 SYM.USRCCSLIB64= \
873 /usr/ccs/lib/$(MACH64)/libcurses.so \
874 /usr/ccs/lib/$(MACH64)/llib-lcurses.ln \
875 /usr/ccs/lib/$(MACH64)/libform.so \
876 /usr/ccs/lib/$(MACH64)/llib-lform.ln \
877 /usr/ccs/lib/$(MACH64)/libgen.so \
878 /usr/ccs/lib/$(MACH64)/llib-lgen.ln \
879 /usr/ccs/lib/$(MACH64)/libmalloc.so \
880 /usr/ccs/lib/$(MACH64)/libmenu.so \
881 /usr/ccs/lib/$(MACH64)/llib-lmenu.ln \
882 /usr/ccs/lib/$(MACH64)/libpanel.so \
883 /usr/ccs/lib/$(MACH64)/llib-lpanel.ln \
884 /usr/ccs/lib/$(MACH64)/libtermlib.so \
885 /usr/ccs/lib/$(MACH64)/llib-ltermlib.ln \
886 /usr/ccs/lib/$(MACH64)/libtermcap.so \
887 /usr/ccs/lib/$(MACH64)/llib-ltermcap.ln \
888 /usr/ccs/lib/$(MACH64)/values-Xa.o \
889 /usr/ccs/lib/$(MACH64)/values-Xc.o \
890 /usr/ccs/lib/$(MACH64)/values-Xs.o \
891 /usr/ccs/lib/$(MACH64)/values-Xt.o \
892 /usr/ccs/lib/$(MACH64)/values-xpg4.o \
893 /usr/ccs/lib/$(MACH64)/values-xpg6.o \
894 /usr/ccs/lib/$(MACH64)/libl.so \
895 /usr/ccs/lib/$(MACH64)/llib-ll.ln \
896 /usr/ccs/lib/$(MACH64)/liby.so \
897 /usr/ccs/lib/$(MACH64)/llib-ly.ln \
898 /usr/lib/libp/$(MACH64)/libc.so.1 \
899 /usr/lib/lwp/$(MACH64)/libthread.so.1 \
900 /usr/lib/lwp/$(MACH64)/libthread_db.so.1

902 # Special symlinks to direct libraries that have been moved
903 # from /usr/lib to /lib in order to live in the root filesystem.
904 $(ROOT)/lib/libposix4.so.1:= REALPATH=librt.so.1
905 $(ROOT)/lib/libposix4.so:= REALPATH=libposix4.so.1
906 $(ROOT)/lib/llib-lposix4:= REALPATH=llib-lrt
907 $(ROOT)/lib/llib-lposix4.ln:= REALPATH=llib-lrt.ln
908 $(ROOT)/lib/libthread_db.so.1:= REALPATH=libc_db.so.1
909 $(ROOT)/lib/libthread_db.so:= REALPATH=libc_db.so.1
910 $(ROOT)/usr/lib/ld.so.1:= REALPATH=../../lib/ld.so.1
911 $(ROOT)/usr/lib/libadm.so.1:= REALPATH=../../lib/libadm.so.1
912 $(ROOT)/usr/lib/libadm.so:= REALPATH=../../lib/libadm.so.1
913 $(ROOT)/usr/lib/libaio.so.1:= REALPATH=../../lib/libaio.so.1
914 $(ROOT)/usr/lib/libaio.so:= REALPATH=../../lib/libaio.so.1
915 $(ROOT)/usr/lib/libavl.so.1:= REALPATH=../../lib/libavl.so.1
916 $(ROOT)/usr/lib/libavl.so:= REALPATH=../../lib/libavl.so.1
917 $(ROOT)/usr/lib/libbsm.so.1:= REALPATH=../../lib/libbsm.so.1
918 $(ROOT)/usr/lib/libbsm.so:= REALPATH=../../lib/libbsm.so.1
919 $(ROOT)/usr/lib/libc.so.1:= REALPATH=../../lib/libc.so.1

new/usr/src/Targetdirs 15

920 $(ROOT)/usr/lib/libc.so:= REALPATH=../../lib/libc.so.1
921 $(ROOT)/usr/lib/libc_db.so.1:= REALPATH=../../lib/libc_db.so.1
922 $(ROOT)/usr/lib/libc_db.so:= REALPATH=../../lib/libc_db.so.1
923 $(ROOT)/usr/lib/libcmdutils.so.1:= REALPATH=../../lib/libcmdutils.so.1
924 $(ROOT)/usr/lib/libcmdutils.so:= REALPATH=../../lib/libcmdutils.so.1
925 $(ROOT)/usr/lib/libcontract.so.1:= REALPATH=../../lib/libcontract.so.1
926 $(ROOT)/usr/lib/libcontract.so:= REALPATH=../../lib/libcontract.so.1
927 $(ROOT)/usr/lib/libcryptoutil.so.1:= REALPATH=../../lib/libcryptoutil.so.1
928 $(ROOT)/usr/lib/libcryptoutil.so:= REALPATH=../../lib/libcryptoutil.so.1
929 $(ROOT)/usr/lib/libctf.so.1:= REALPATH=../../lib/libctf.so.1
930 $(ROOT)/usr/lib/libctf.so:= REALPATH=../../lib/libctf.so.1
931 $(ROOT)/usr/lib/libcurses.so.1:= REALPATH=../../lib/libcurses.so.1
932 $(ROOT)/usr/lib/libcurses.so:= REALPATH=../../lib/libcurses.so.1
933 $(ROOT)/usr/lib/libdevice.so.1:= REALPATH=../../lib/libdevice.so.1
934 $(ROOT)/usr/lib/libdevice.so:= REALPATH=../../lib/libdevice.so.1
935 $(ROOT)/usr/lib/libdevid.so.1:= REALPATH=../../lib/libdevid.so.1
936 $(ROOT)/usr/lib/libdevid.so:= REALPATH=../../lib/libdevid.so.1
937 $(ROOT)/usr/lib/libdevinfo.so.1:= REALPATH=../../lib/libdevinfo.so.1
938 $(ROOT)/usr/lib/libdevinfo.so:= REALPATH=../../lib/libdevinfo.so.1
939 $(ROOT)/usr/lib/libdhcpagent.so.1:= REALPATH=../../lib/libdhcpagent.so.1
940 $(ROOT)/usr/lib/libdhcpagent.so:= REALPATH=../../lib/libdhcpagent.so.1
941 $(ROOT)/usr/lib/libdhcputil.so.1:= REALPATH=../../lib/libdhcputil.so.1
942 $(ROOT)/usr/lib/libdhcputil.so:= REALPATH=../../lib/libdhcputil.so.1
943 $(ROOT)/usr/lib/libdl.so.1:= REALPATH=../../lib/libdl.so.1
944 $(ROOT)/usr/lib/libdl.so:= REALPATH=../../lib/libdl.so.1
945 $(ROOT)/usr/lib/libdlpi.so.1:= REALPATH=../../lib/libdlpi.so.1
946 $(ROOT)/usr/lib/libdlpi.so:= REALPATH=../../lib/libdlpi.so.1
947 $(ROOT)/usr/lib/libdoor.so.1:= REALPATH=../../lib/libdoor.so.1
948 $(ROOT)/usr/lib/libdoor.so:= REALPATH=../../lib/libdoor.so.1
949 $(ROOT)/usr/lib/libefi.so.1:= REALPATH=../../lib/libefi.so.1
950 $(ROOT)/usr/lib/libefi.so:= REALPATH=../../lib/libefi.so.1
951 $(ROOT)/usr/lib/libelf.so.1:= REALPATH=../../lib/libelf.so.1
952 $(ROOT)/usr/lib/libelf.so:= REALPATH=../../lib/libelf.so.1
953 $(ROOT)/usr/lib/libfdisk.so.1:= REALPATH=../../lib/libfdisk.so.1
954 $(ROOT)/usr/lib/libfdisk.so:= REALPATH=../../lib/libfdisk.so.1
955 $(ROOT)/usr/lib/libgen.so.1:= REALPATH=../../lib/libgen.so.1
956 $(ROOT)/usr/lib/libgen.so:= REALPATH=../../lib/libgen.so.1
957 $(ROOT)/usr/lib/libinetutil.so.1:= REALPATH=../../lib/libinetutil.so.1
958 $(ROOT)/usr/lib/libinetutil.so:= REALPATH=../../lib/libinetutil.so.1
959 $(ROOT)/usr/lib/libintl.so.1:= REALPATH=../../lib/libintl.so.1
960 $(ROOT)/usr/lib/libintl.so:= REALPATH=../../lib/libintl.so.1
961 $(ROOT)/usr/lib/libkmf.so.1:= REALPATH=../../lib/libkmf.so.1
962 $(ROOT)/usr/lib/libkmf.so:= REALPATH=../../lib/libkmf.so.1
963 $(ROOT)/usr/lib/libkmfberder.so.1:= REALPATH=../../lib/libkmfberder.so.1
964 $(ROOT)/usr/lib/libkmfberder.so:= REALPATH=../../lib/libkmfberder.so.1
965 $(ROOT)/usr/lib/libkstat.so.1:= REALPATH=../../lib/libkstat.so.1
966 $(ROOT)/usr/lib/libkstat.so:= REALPATH=../../lib/libkstat.so.1
967 $(ROOT)/usr/lib/liblddbg.so.4:= REALPATH=../../lib/liblddbg.so.4
968 $(ROOT)/usr/lib/libmd.so.1:= REALPATH=../../lib/libmd.so.1
969 $(ROOT)/usr/lib/libmd.so:= REALPATH=../../lib/libmd.so.1
970 $(ROOT)/usr/lib/libmd5.so.1:= REALPATH=../../lib/libmd5.so.1
971 $(ROOT)/usr/lib/libmd5.so:= REALPATH=../../lib/libmd5.so.1
972 $(ROOT)/usr/lib/libmeta.so.1:= REALPATH=../../lib/libmeta.so.1
973 $(ROOT)/usr/lib/libmeta.so:= REALPATH=../../lib/libmeta.so.1
974 $(ROOT)/usr/lib/libmp.so.1:= REALPATH=../../lib/libmp.so.1
975 $(ROOT)/usr/lib/libmp.so.2:= REALPATH=../../lib/libmp.so.2
976 $(ROOT)/usr/lib/libmp.so:= REALPATH=../../lib/libmp.so.2
977 $(ROOT)/usr/lib/libnsl.so.1:= REALPATH=../../lib/libnsl.so.1
978 $(ROOT)/usr/lib/libnsl.so:= REALPATH=../../lib/libnsl.so.1
979 $(ROOT)/usr/lib/libnvpair.so.1:= REALPATH=../../lib/libnvpair.so.1
980 $(ROOT)/usr/lib/libnvpair.so:= REALPATH=../../lib/libnvpair.so.1
981 $(ROOT)/usr/lib/libpam.so.1:= REALPATH=../../lib/libpam.so.1
982 $(ROOT)/usr/lib/libpam.so:= REALPATH=../../lib/libpam.so.1
983 $(ROOT)/usr/lib/libposix4.so.1:= REALPATH=../../lib/librt.so.1
984 $(ROOT)/usr/lib/libposix4.so:= REALPATH=../../lib/librt.so.1
985 $(ROOT)/usr/lib/libproc.so.1:= REALPATH=../../lib/libproc.so.1

new/usr/src/Targetdirs 16

986 $(ROOT)/usr/lib/libproc.so:= REALPATH=../../lib/libproc.so.1
987 $(ROOT)/usr/lib/libpthread.so.1:= REALPATH=../../lib/libpthread.so.1
988 $(ROOT)/usr/lib/libpthread.so:= REALPATH=../../lib/libpthread.so.1
989 $(ROOT)/usr/lib/librcm.so.1:= REALPATH=../../lib/librcm.so.1
990 $(ROOT)/usr/lib/librcm.so:= REALPATH=../../lib/librcm.so.1
991 $(ROOT)/usr/lib/libresolv.so.1:= REALPATH=../../lib/libresolv.so.1
992 $(ROOT)/usr/lib/libresolv.so.2:= REALPATH=../../lib/libresolv.so.2
993 $(ROOT)/usr/lib/libresolv.so:= REALPATH=../../lib/libresolv.so.2
994 $(ROOT)/usr/lib/librestart.so.1:= REALPATH=../../lib/librestart.so.1
995 $(ROOT)/usr/lib/librestart.so:= REALPATH=../../lib/librestart.so.1
996 $(ROOT)/usr/lib/librpcsvc.so.1:= REALPATH=../../lib/librpcsvc.so.1
997 $(ROOT)/usr/lib/librpcsvc.so:= REALPATH=../../lib/librpcsvc.so.1
998 $(ROOT)/usr/lib/librt.so.1:= REALPATH=../../lib/librt.so.1
999 $(ROOT)/usr/lib/librt.so:= REALPATH=../../lib/librt.so.1

1000 $(ROOT)/usr/lib/librtld.so.1:= REALPATH=../../lib/librtld.so.1
1001 $(ROOT)/usr/lib/librtld_db.so.1:= REALPATH=../../lib/librtld_db.so.1
1002 $(ROOT)/usr/lib/librtld_db.so:= REALPATH=../../lib/librtld_db.so.1
1003 $(ROOT)/usr/lib/libscf.so.1:= REALPATH=../../lib/libscf.so.1
1004 $(ROOT)/usr/lib/libscf.so:= REALPATH=../../lib/libscf.so.1
1005 $(ROOT)/usr/lib/libsec.so.1:= REALPATH=../../lib/libsec.so.1
1006 $(ROOT)/usr/lib/libsec.so:= REALPATH=../../lib/libsec.so.1
1007 $(ROOT)/usr/lib/libsecdb.so.1:= REALPATH=../../lib/libsecdb.so.1
1008 $(ROOT)/usr/lib/libsecdb.so:= REALPATH=../../lib/libsecdb.so.1
1009 $(ROOT)/usr/lib/libsendfile.so.1:= REALPATH=../../lib/libsendfile.so.1
1010 $(ROOT)/usr/lib/libsendfile.so:= REALPATH=../../lib/libsendfile.so.1
1011 $(ROOT)/usr/lib/libsocket.so.1:= REALPATH=../../lib/libsocket.so.1
1012 $(ROOT)/usr/lib/libsocket.so:= REALPATH=../../lib/libsocket.so.1
1013 $(ROOT)/usr/lib/libsysevent.so.1:= REALPATH=../../lib/libsysevent.so.1
1014 $(ROOT)/usr/lib/libsysevent.so:= REALPATH=../../lib/libsysevent.so.1
1015 $(ROOT)/usr/lib/libtermcap.so.1:= REALPATH=../../lib/libtermcap.so.1
1016 $(ROOT)/usr/lib/libtermcap.so:= REALPATH=../../lib/libtermcap.so.1
1017 $(ROOT)/usr/lib/libtermlib.so.1:= REALPATH=../../lib/libcurses.so.1
1018 $(ROOT)/usr/lib/libtermlib.so:= REALPATH=../../lib/libcurses.so.1
1019 $(ROOT)/usr/lib/libthread.so.1:= REALPATH=../../lib/libthread.so.1
1020 $(ROOT)/usr/lib/libthread.so:= REALPATH=../../lib/libthread.so.1
1021 $(ROOT)/usr/lib/libthread_db.so.1:= REALPATH=../../lib/libc_db.so.1
1022 $(ROOT)/usr/lib/libthread_db.so:= REALPATH=../../lib/libc_db.so.1
1023 $(ROOT)/usr/lib/libtsnet.so.1:= REALPATH=../../lib/libtsnet.so.1
1024 $(ROOT)/usr/lib/libtsnet.so:= REALPATH=../../lib/libtsnet.so.1
1025 $(ROOT)/usr/lib/libtsol.so.2:= REALPATH=../../lib/libtsol.so.2
1026 $(ROOT)/usr/lib/libtsol.so:= REALPATH=../../lib/libtsol.so.2
1027 $(ROOT)/usr/lib/libumem.so.1:= REALPATH=../../lib/libumem.so.1
1028 $(ROOT)/usr/lib/libumem.so:= REALPATH=../../lib/libumem.so.1
1029 $(ROOT)/usr/lib/libuuid.so.1:= REALPATH=../../lib/libuuid.so.1
1030 $(ROOT)/usr/lib/libuuid.so:= REALPATH=../../lib/libuuid.so.1
1031 $(ROOT)/usr/lib/libuutil.so.1:= REALPATH=../../lib/libuutil.so.1
1032 $(ROOT)/usr/lib/libuutil.so:= REALPATH=../../lib/libuutil.so.1
1033 $(ROOT)/usr/lib/libw.so.1:= REALPATH=../../lib/libw.so.1
1034 $(ROOT)/usr/lib/libw.so:= REALPATH=../../lib/libw.so.1
1035 $(ROOT)/usr/lib/libxnet.so.1:= REALPATH=../../lib/libxnet.so.1
1036 $(ROOT)/usr/lib/libxnet.so:= REALPATH=../../lib/libxnet.so.1
1037 $(ROOT)/usr/lib/libzfs.so.1:= REALPATH=../../lib/libzfs.so.1
1038 $(ROOT)/usr/lib/libzfs.so:= REALPATH=../../lib/libzfs.so.1
1039 $(ROOT)/usr/lib/libzfs_core.so.1:= REALPATH=../../lib/libzfs_core.so.1
1040 $(ROOT)/usr/lib/libzfs_core.so:= REALPATH=../../lib/libzfs_core.so.1
1041 $(ROOT)/usr/lib/llib-ladm.ln:= REALPATH=../../lib/llib-ladm.ln
1042 $(ROOT)/usr/lib/llib-ladm:= REALPATH=../../lib/llib-ladm
1043 $(ROOT)/usr/lib/llib-laio.ln:= REALPATH=../../lib/llib-laio.ln
1044 $(ROOT)/usr/lib/llib-laio:= REALPATH=../../lib/llib-laio
1045 $(ROOT)/usr/lib/llib-lavl.ln:= REALPATH=../../lib/llib-lavl.ln
1046 $(ROOT)/usr/lib/llib-lavl:= REALPATH=../../lib/llib-lavl
1047 $(ROOT)/usr/lib/llib-lbsm.ln:= REALPATH=../../lib/llib-lbsm.ln
1048 $(ROOT)/usr/lib/llib-lbsm:= REALPATH=../../lib/llib-lbsm
1049 $(ROOT)/usr/lib/llib-lc.ln:= REALPATH=../../lib/llib-lc.ln
1050 $(ROOT)/usr/lib/llib-lc:= REALPATH=../../lib/llib-lc
1051 $(ROOT)/usr/lib/llib-lcmdutils.ln:= REALPATH=../../lib/llib-lcmdutils.ln

new/usr/src/Targetdirs 17

1052 $(ROOT)/usr/lib/llib-lcmdutils:= REALPATH=../../lib/llib-lcmdutils
1053 $(ROOT)/usr/lib/llib-lcontract.ln:= REALPATH=../../lib/llib-lcontract.ln
1054 $(ROOT)/usr/lib/llib-lcontract:= REALPATH=../../lib/llib-lcontract
1055 $(ROOT)/usr/lib/llib-lctf.ln:= REALPATH=../../lib/llib-lctf.ln
1056 $(ROOT)/usr/lib/llib-lctf:= REALPATH=../../lib/llib-lctf
1057 $(ROOT)/usr/lib/llib-lcurses.ln:= REALPATH=../../lib/llib-lcurses.ln
1058 $(ROOT)/usr/lib/llib-lcurses:= REALPATH=../../lib/llib-lcurses
1059 $(ROOT)/usr/lib/llib-ldevice.ln:= REALPATH=../../lib/llib-ldevice.ln
1060 $(ROOT)/usr/lib/llib-ldevice:= REALPATH=../../lib/llib-ldevice
1061 $(ROOT)/usr/lib/llib-ldevid.ln:= REALPATH=../../lib/llib-ldevid.ln
1062 $(ROOT)/usr/lib/llib-ldevid:= REALPATH=../../lib/llib-ldevid
1063 $(ROOT)/usr/lib/llib-ldevinfo.ln:= REALPATH=../../lib/llib-ldevinfo.ln
1064 $(ROOT)/usr/lib/llib-ldevinfo:= REALPATH=../../lib/llib-ldevinfo
1065 $(ROOT)/usr/lib/llib-ldhcpagent.ln:= REALPATH=../../lib/llib-ldhcpagent.ln
1066 $(ROOT)/usr/lib/llib-ldhcpagent:= REALPATH=../../lib/llib-ldhcpagent
1067 $(ROOT)/usr/lib/llib-ldhcputil.ln:= REALPATH=../../lib/llib-ldhcputil.ln
1068 $(ROOT)/usr/lib/llib-ldhcputil:= REALPATH=../../lib/llib-ldhcputil
1069 $(ROOT)/usr/lib/llib-ldl.ln:= REALPATH=../../lib/llib-ldl.ln
1070 $(ROOT)/usr/lib/llib-ldl:= REALPATH=../../lib/llib-ldl
1071 $(ROOT)/usr/lib/llib-ldoor.ln:= REALPATH=../../lib/llib-ldoor.ln
1072 $(ROOT)/usr/lib/llib-ldoor:= REALPATH=../../lib/llib-ldoor
1073 $(ROOT)/usr/lib/llib-lefi.ln:= REALPATH=../../lib/llib-lefi.ln
1074 $(ROOT)/usr/lib/llib-lefi:= REALPATH=../../lib/llib-lefi
1075 $(ROOT)/usr/lib/llib-lelf.ln:= REALPATH=../../lib/llib-lelf.ln
1076 $(ROOT)/usr/lib/llib-lelf:= REALPATH=../../lib/llib-lelf
1077 $(ROOT)/usr/lib/llib-lfdisk.ln:= REALPATH=../../lib/llib-lfdisk.ln
1078 $(ROOT)/usr/lib/llib-lfdisk:= REALPATH=../../lib/llib-lfdisk
1079 $(ROOT)/usr/lib/llib-lgen.ln:= REALPATH=../../lib/llib-lgen.ln
1080 $(ROOT)/usr/lib/llib-lgen:= REALPATH=../../lib/llib-lgen
1081 $(ROOT)/usr/lib/llib-linetutil.ln:= REALPATH=../../lib/llib-linetutil.ln
1082 $(ROOT)/usr/lib/llib-linetutil:= REALPATH=../../lib/llib-linetutil
1083 $(ROOT)/usr/lib/llib-lintl.ln:= REALPATH=../../lib/llib-lintl.ln
1084 $(ROOT)/usr/lib/llib-lintl:= REALPATH=../../lib/llib-lintl
1085 $(ROOT)/usr/lib/llib-lkstat.ln:= REALPATH=../../lib/llib-lkstat.ln
1086 $(ROOT)/usr/lib/llib-lkstat:= REALPATH=../../lib/llib-lkstat
1087 $(ROOT)/usr/lib/llib-lmd5.ln:= REALPATH=../../lib/llib-lmd5.ln
1088 $(ROOT)/usr/lib/llib-lmd5:= REALPATH=../../lib/llib-lmd5
1089 $(ROOT)/usr/lib/llib-lmeta.ln:= REALPATH=../../lib/llib-lmeta.ln
1090 $(ROOT)/usr/lib/llib-lmeta:= REALPATH=../../lib/llib-lmeta
1091 $(ROOT)/usr/lib/llib-lnsl.ln:= REALPATH=../../lib/llib-lnsl.ln
1092 $(ROOT)/usr/lib/llib-lnsl:= REALPATH=../../lib/llib-lnsl
1093 $(ROOT)/usr/lib/llib-lnvpair.ln:= REALPATH=../../lib/llib-lnvpair.ln
1094 $(ROOT)/usr/lib/llib-lnvpair:= REALPATH=../../lib/llib-lnvpair
1095 $(ROOT)/usr/lib/llib-lpam.ln:= REALPATH=../../lib/llib-lpam.ln
1096 $(ROOT)/usr/lib/llib-lpam:= REALPATH=../../lib/llib-lpam
1097 $(ROOT)/usr/lib/llib-lposix4.ln:= REALPATH=../../lib/llib-lrt.ln
1098 $(ROOT)/usr/lib/llib-lposix4:= REALPATH=../../lib/llib-lrt
1099 $(ROOT)/usr/lib/llib-lpthread.ln:= REALPATH=../../lib/llib-lpthread.ln
1100 $(ROOT)/usr/lib/llib-lpthread:= REALPATH=../../lib/llib-lpthread
1101 $(ROOT)/usr/lib/llib-lresolv.ln:= REALPATH=../../lib/llib-lresolv.ln
1102 $(ROOT)/usr/lib/llib-lresolv:= REALPATH=../../lib/llib-lresolv
1103 $(ROOT)/usr/lib/llib-lrpcsvc.ln:= REALPATH=../../lib/llib-lrpcsvc.ln
1104 $(ROOT)/usr/lib/llib-lrpcsvc:= REALPATH=../../lib/llib-lrpcsvc
1105 $(ROOT)/usr/lib/llib-lrt.ln:= REALPATH=../../lib/llib-lrt.ln
1106 $(ROOT)/usr/lib/llib-lrt:= REALPATH=../../lib/llib-lrt
1107 $(ROOT)/usr/lib/llib-lrtld_db.ln:= REALPATH=../../lib/llib-lrtld_db.ln
1108 $(ROOT)/usr/lib/llib-lrtld_db:= REALPATH=../../lib/llib-lrtld_db
1109 $(ROOT)/usr/lib/llib-lscf.ln:= REALPATH=../../lib/llib-lscf.ln
1110 $(ROOT)/usr/lib/llib-lscf:= REALPATH=../../lib/llib-lscf
1111 $(ROOT)/usr/lib/llib-lsec.ln:= REALPATH=../../lib/llib-lsec.ln
1112 $(ROOT)/usr/lib/llib-lsec:= REALPATH=../../lib/llib-lsec
1113 $(ROOT)/usr/lib/llib-lsecdb.ln:= REALPATH=../../lib/llib-lsecdb.ln
1114 $(ROOT)/usr/lib/llib-lsecdb:= REALPATH=../../lib/llib-lsecdb
1115 $(ROOT)/usr/lib/llib-lsendfile.ln:= REALPATH=../../lib/llib-lsendfile.ln
1116 $(ROOT)/usr/lib/llib-lsendfile:= REALPATH=../../lib/llib-lsendfile
1117 $(ROOT)/usr/lib/llib-lsocket.ln:= REALPATH=../../lib/llib-lsocket.ln

new/usr/src/Targetdirs 18

1118 $(ROOT)/usr/lib/llib-lsocket:= REALPATH=../../lib/llib-lsocket
1119 $(ROOT)/usr/lib/llib-lsysevent.ln:= REALPATH=../../lib/llib-lsysevent.ln
1120 $(ROOT)/usr/lib/llib-lsysevent:= REALPATH=../../lib/llib-lsysevent
1121 $(ROOT)/usr/lib/llib-ltermcap.ln:= REALPATH=../../lib/llib-ltermcap.ln
1122 $(ROOT)/usr/lib/llib-ltermcap:= REALPATH=../../lib/llib-ltermcap
1123 $(ROOT)/usr/lib/llib-ltermlib.ln:= REALPATH=../../lib/llib-lcurses.ln
1124 $(ROOT)/usr/lib/llib-ltermlib:= REALPATH=../../lib/llib-lcurses
1125 $(ROOT)/usr/lib/llib-lthread.ln:= REALPATH=../../lib/llib-lthread.ln
1126 $(ROOT)/usr/lib/llib-lthread:= REALPATH=../../lib/llib-lthread
1127 $(ROOT)/usr/lib/llib-lthread_db.ln:= REALPATH=../../lib/llib-lc_db.ln
1128 $(ROOT)/usr/lib/llib-lthread_db:= REALPATH=../../lib/llib-lc_db
1129 $(ROOT)/usr/lib/llib-ltsnet.ln:= REALPATH=../../lib/llib-ltsnet.ln
1130 $(ROOT)/usr/lib/llib-ltsnet:= REALPATH=../../lib/llib-ltsnet
1131 $(ROOT)/usr/lib/llib-ltsol.ln:= REALPATH=../../lib/llib-ltsol.ln
1132 $(ROOT)/usr/lib/llib-ltsol:= REALPATH=../../lib/llib-ltsol
1133 $(ROOT)/usr/lib/llib-lumem.ln:= REALPATH=../../lib/llib-lumem.ln
1134 $(ROOT)/usr/lib/llib-lumem:= REALPATH=../../lib/llib-lumem
1135 $(ROOT)/usr/lib/llib-luuid.ln:= REALPATH=../../lib/llib-luuid.ln
1136 $(ROOT)/usr/lib/llib-luuid:= REALPATH=../../lib/llib-luuid
1137 $(ROOT)/usr/lib/llib-lxnet.ln:= REALPATH=../../lib/llib-lxnet.ln
1138 $(ROOT)/usr/lib/llib-lxnet:= REALPATH=../../lib/llib-lxnet
1139 $(ROOT)/usr/lib/llib-lzfs.ln:= REALPATH=../../lib/llib-lzfs.ln
1140 $(ROOT)/usr/lib/llib-lzfs:= REALPATH=../../lib/llib-lzfs
1141 $(ROOT)/usr/lib/llib-lzfs_core.ln:= REALPATH=../../lib/llib-lzfs_core.ln
1142 $(ROOT)/usr/lib/llib-lzfs_core:= REALPATH=../../lib/llib-lzfs_core
1143 $(ROOT)/usr/lib/nss_compat.so.1:= REALPATH=../../lib/nss_compat.so.1
1144 $(ROOT)/usr/lib/nss_dns.so.1:= REALPATH=../../lib/nss_dns.so.1
1145 $(ROOT)/usr/lib/nss_files.so.1:= REALPATH=../../lib/nss_files.so.1
1146 $(ROOT)/usr/lib/nss_nis.so.1:= REALPATH=../../lib/nss_nis.so.1
1147 $(ROOT)/usr/lib/nss_user.so.1:= REALPATH=../../lib/nss_user.so.1
1148 $(ROOT)/usr/lib/fm/libfmevent.so.1:= REALPATH=../../../lib/fm/libfmevent.so.1
1149 $(ROOT)/usr/lib/fm/libfmevent.so:= REALPATH=../../../lib/fm/libfmevent.so.1
1150 $(ROOT)/usr/lib/fm/llib-lfmevent.ln:= REALPATH=../../../lib/fm/llib-lfmevent.l
1151 $(ROOT)/usr/lib/fm/llib-lfmevent:= REALPATH=../../../lib/fm/llib-lfmevent

1153 $(ROOT)/lib/$(MACH64)/libposix4.so.1:= \
1154 REALPATH=librt.so.1
1155 $(ROOT)/lib/$(MACH64)/libposix4.so:= \
1156 REALPATH=libposix4.so.1
1157 $(ROOT)/lib/$(MACH64)/llib-lposix4.ln:= \
1158 REALPATH=llib-lrt.ln
1159 $(ROOT)/lib/$(MACH64)/libthread_db.so.1:= \
1160 REALPATH=libc_db.so.1
1161 $(ROOT)/lib/$(MACH64)/libthread_db.so:= \
1162 REALPATH=libc_db.so.1
1163 $(ROOT)/usr/lib/$(MACH64)/ld.so.1:= \
1164 REALPATH=../../../lib/$(MACH64)/ld.so.1
1165 $(ROOT)/usr/lib/$(MACH64)/libadm.so.1:= \
1166 REALPATH=../../../lib/$(MACH64)/libadm.so.1
1167 $(ROOT)/usr/lib/$(MACH64)/libadm.so:= \
1168 REALPATH=../../../lib/$(MACH64)/libadm.so.1
1169 $(ROOT)/usr/lib/$(MACH64)/libaio.so.1:= \
1170 REALPATH=../../../lib/$(MACH64)/libaio.so.1
1171 $(ROOT)/usr/lib/$(MACH64)/libaio.so:= \
1172 REALPATH=../../../lib/$(MACH64)/libaio.so.1
1173 $(ROOT)/usr/lib/$(MACH64)/libavl.so.1:= \
1174 REALPATH=../../../lib/$(MACH64)/libavl.so.1
1175 $(ROOT)/usr/lib/$(MACH64)/libavl.so:= \
1176 REALPATH=../../../lib/$(MACH64)/libavl.so.1
1177 $(ROOT)/usr/lib/$(MACH64)/libbsm.so.1:= \
1178 REALPATH=../../../lib/$(MACH64)/libbsm.so.1
1179 $(ROOT)/usr/lib/$(MACH64)/libbsm.so:= \
1180 REALPATH=../../../lib/$(MACH64)/libbsm.so.1
1181 $(ROOT)/usr/lib/$(MACH64)/libc.so.1:= \
1182 REALPATH=../../../lib/$(MACH64)/libc.so.1
1183 $(ROOT)/usr/lib/$(MACH64)/libc.so:= \

new/usr/src/Targetdirs 19

1184 REALPATH=../../../lib/$(MACH64)/libc.so.1
1185 $(ROOT)/usr/lib/$(MACH64)/libc_db.so.1:= \
1186 REALPATH=../../../lib/$(MACH64)/libc_db.so.1
1187 $(ROOT)/usr/lib/$(MACH64)/libc_db.so:= \
1188 REALPATH=../../../lib/$(MACH64)/libc_db.so.1
1189 $(ROOT)/usr/lib/$(MACH64)/libcmdutils.so.1:= \
1190 REALPATH=../../../lib/$(MACH64)/libcmdutils.so.1
1191 $(ROOT)/usr/lib/$(MACH64)/libcmdutils.so:= \
1192 REALPATH=../../../lib/$(MACH64)/libcmdutils.so.1
1193 $(ROOT)/usr/lib/$(MACH64)/libcontract.so.1:= \
1194 REALPATH=../../../lib/$(MACH64)/libcontract.so.1
1195 $(ROOT)/usr/lib/$(MACH64)/libcontract.so:= \
1196 REALPATH=../../../lib/$(MACH64)/libcontract.so.1
1197 $(ROOT)/usr/lib/$(MACH64)/libctf.so.1:= \
1198 REALPATH=../../../lib/$(MACH64)/libctf.so.1
1199 $(ROOT)/usr/lib/$(MACH64)/libctf.so:= \
1200 REALPATH=../../../lib/$(MACH64)/libctf.so.1
1201 $(ROOT)/usr/lib/$(MACH64)/libcurses.so.1:= \
1202 REALPATH=../../../lib/$(MACH64)/libcurses.so.1
1203 $(ROOT)/usr/lib/$(MACH64)/libcurses.so:= \
1204 REALPATH=../../../lib/$(MACH64)/libcurses.so.1
1205 $(ROOT)/usr/lib/$(MACH64)/libdevice.so.1:= \
1206 REALPATH=../../../lib/$(MACH64)/libdevice.so.1
1207 $(ROOT)/usr/lib/$(MACH64)/libdevice.so:= \
1208 REALPATH=../../../lib/$(MACH64)/libdevice.so.1
1209 $(ROOT)/usr/lib/$(MACH64)/libdevid.so.1:= \
1210 REALPATH=../../../lib/$(MACH64)/libdevid.so.1
1211 $(ROOT)/usr/lib/$(MACH64)/libdevid.so:= \
1212 REALPATH=../../../lib/$(MACH64)/libdevid.so.1
1213 $(ROOT)/usr/lib/$(MACH64)/libdevinfo.so.1:= \
1214 REALPATH=../../../lib/$(MACH64)/libdevinfo.so.1
1215 $(ROOT)/usr/lib/$(MACH64)/libdevinfo.so:= \
1216 REALPATH=../../../lib/$(MACH64)/libdevinfo.so.1
1217 $(ROOT)/usr/lib/$(MACH64)/libdhcputil.so.1:= \
1218 REALPATH=../../../lib/$(MACH64)/libdhcputil.so.1
1219 $(ROOT)/usr/lib/$(MACH64)/libdhcputil.so:= \
1220 REALPATH=../../../lib/$(MACH64)/libdhcputil.so.1
1221 $(ROOT)/usr/lib/$(MACH64)/libdl.so.1:= \
1222 REALPATH=../../../lib/$(MACH64)/libdl.so.1
1223 $(ROOT)/usr/lib/$(MACH64)/libdl.so:= \
1224 REALPATH=../../../lib/$(MACH64)/libdl.so.1
1225 $(ROOT)/usr/lib/$(MACH64)/libdlpi.so.1:= \
1226 REALPATH=../../../lib/$(MACH64)/libdlpi.so.1
1227 $(ROOT)/usr/lib/$(MACH64)/libdlpi.so:= \
1228 REALPATH=../../../lib/$(MACH64)/libdlpi.so.1
1229 $(ROOT)/usr/lib/$(MACH64)/libdoor.so.1:= \
1230 REALPATH=../../../lib/$(MACH64)/libdoor.so.1
1231 $(ROOT)/usr/lib/$(MACH64)/libdoor.so:= \
1232 REALPATH=../../../lib/$(MACH64)/libdoor.so.1
1233 $(ROOT)/usr/lib/$(MACH64)/libefi.so.1:= \
1234 REALPATH=../../../lib/$(MACH64)/libefi.so.1
1235 $(ROOT)/usr/lib/$(MACH64)/libefi.so:= \
1236 REALPATH=../../../lib/$(MACH64)/libefi.so.1
1237 $(ROOT)/usr/lib/$(MACH64)/libelf.so.1:= \
1238 REALPATH=../../../lib/$(MACH64)/libelf.so.1
1239 $(ROOT)/usr/lib/$(MACH64)/libelf.so:= \
1240 REALPATH=../../../lib/$(MACH64)/libelf.so.1
1241 $(ROOT)/usr/lib/$(MACH64)/libgen.so.1:= \
1242 REALPATH=../../../lib/$(MACH64)/libgen.so.1
1243 $(ROOT)/usr/lib/$(MACH64)/libgen.so:= \
1244 REALPATH=../../../lib/$(MACH64)/libgen.so.1
1245 $(ROOT)/usr/lib/$(MACH64)/libinetutil.so.1:= \
1246 REALPATH=../../../lib/$(MACH64)/libinetutil.so.1
1247 $(ROOT)/usr/lib/$(MACH64)/libinetutil.so:= \
1248 REALPATH=../../../lib/$(MACH64)/libinetutil.so.1
1249 $(ROOT)/usr/lib/$(MACH64)/libintl.so.1:= \

new/usr/src/Targetdirs 20

1250 REALPATH=../../../lib/$(MACH64)/libintl.so.1
1251 $(ROOT)/usr/lib/$(MACH64)/libintl.so:= \
1252 REALPATH=../../../lib/$(MACH64)/libintl.so.1
1253 $(ROOT)/usr/lib/$(MACH64)/libkstat.so.1:= \
1254 REALPATH=../../../lib/$(MACH64)/libkstat.so.1
1255 $(ROOT)/usr/lib/$(MACH64)/libkstat.so:= \
1256 REALPATH=../../../lib/$(MACH64)/libkstat.so.1
1257 $(ROOT)/usr/lib/$(MACH64)/liblddbg.so.4:= \
1258 REALPATH=../../../lib/$(MACH64)/liblddbg.so.4
1259 $(ROOT)/usr/lib/$(MACH64)/libmd.so.1:= \
1260 REALPATH=../../../lib/$(MACH64)/libmd.so.1
1261 $(ROOT)/usr/lib/$(MACH64)/libmd.so:= \
1262 REALPATH=../../../lib/$(MACH64)/libmd.so.1
1263 $(ROOT)/usr/lib/$(MACH64)/libmd5.so.1:= \
1264 REALPATH=../../../lib/$(MACH64)/libmd5.so.1
1265 $(ROOT)/usr/lib/$(MACH64)/libmd5.so:= \
1266 REALPATH=../../../lib/$(MACH64)/libmd5.so.1
1267 $(ROOT)/usr/lib/$(MACH64)/libmp.so.2:= \
1268 REALPATH=../../../lib/$(MACH64)/libmp.so.2
1269 $(ROOT)/usr/lib/$(MACH64)/libmp.so:= \
1270 REALPATH=../../../lib/$(MACH64)/libmp.so.2
1271 $(ROOT)/usr/lib/$(MACH64)/libnsl.so.1:= \
1272 REALPATH=../../../lib/$(MACH64)/libnsl.so.1
1273 $(ROOT)/usr/lib/$(MACH64)/libnsl.so:= \
1274 REALPATH=../../../lib/$(MACH64)/libnsl.so.1
1275 $(ROOT)/usr/lib/$(MACH64)/libnvpair.so.1:= \
1276 REALPATH=../../../lib/$(MACH64)/libnvpair.so.1
1277 $(ROOT)/usr/lib/$(MACH64)/libnvpair.so:= \
1278 REALPATH=../../../lib/$(MACH64)/libnvpair.so.1
1279 $(ROOT)/usr/lib/$(MACH64)/libpam.so.1:= \
1280 REALPATH=../../../lib/$(MACH64)/libpam.so.1
1281 $(ROOT)/usr/lib/$(MACH64)/libpam.so:= \
1282 REALPATH=../../../lib/$(MACH64)/libpam.so.1
1283 $(ROOT)/usr/lib/$(MACH64)/libposix4.so.1:= \
1284 REALPATH=../../../lib/$(MACH64)/librt.so.1
1285 $(ROOT)/usr/lib/$(MACH64)/libposix4.so:= \
1286 REALPATH=../../../lib/$(MACH64)/librt.so.1
1287 $(ROOT)/usr/lib/$(MACH64)/libproc.so.1:= \
1288 REALPATH=../../../lib/$(MACH64)/libproc.so.1
1289 $(ROOT)/usr/lib/$(MACH64)/libproc.so:= \
1290 REALPATH=../../../lib/$(MACH64)/libproc.so.1
1291 $(ROOT)/usr/lib/$(MACH64)/libpthread.so.1:= \
1292 REALPATH=../../../lib/$(MACH64)/libpthread.so.1
1293 $(ROOT)/usr/lib/$(MACH64)/libpthread.so:= \
1294 REALPATH=../../../lib/$(MACH64)/libpthread.so.1
1295 $(ROOT)/usr/lib/$(MACH64)/librcm.so.1:= \
1296 REALPATH=../../../lib/$(MACH64)/librcm.so.1
1297 $(ROOT)/usr/lib/$(MACH64)/librcm.so:= \
1298 REALPATH=../../../lib/$(MACH64)/librcm.so.1
1299 $(ROOT)/usr/lib/$(MACH64)/libresolv.so.2:= \
1300 REALPATH=../../../lib/$(MACH64)/libresolv.so.2
1301 $(ROOT)/usr/lib/$(MACH64)/libresolv.so:= \
1302 REALPATH=../../../lib/$(MACH64)/libresolv.so.2
1303 $(ROOT)/usr/lib/$(MACH64)/librestart.so.1:= \
1304 REALPATH=../../../lib/$(MACH64)/librestart.so.1
1305 $(ROOT)/usr/lib/$(MACH64)/librestart.so:= \
1306 REALPATH=../../../lib/$(MACH64)/librestart.so.1
1307 $(ROOT)/usr/lib/$(MACH64)/librpcsvc.so.1:= \
1308 REALPATH=../../../lib/$(MACH64)/librpcsvc.so.1
1309 $(ROOT)/usr/lib/$(MACH64)/librpcsvc.so:= \
1310 REALPATH=../../../lib/$(MACH64)/librpcsvc.so.1
1311 $(ROOT)/usr/lib/$(MACH64)/librt.so.1:= \
1312 REALPATH=../../../lib/$(MACH64)/librt.so.1
1313 $(ROOT)/usr/lib/$(MACH64)/librt.so:= \
1314 REALPATH=../../../lib/$(MACH64)/librt.so.1
1315 $(ROOT)/usr/lib/$(MACH64)/librtld.so.1:= \

new/usr/src/Targetdirs 21

1316 REALPATH=../../../lib/$(MACH64)/librtld.so.1
1317 $(ROOT)/usr/lib/$(MACH64)/librtld_db.so.1:= \
1318 REALPATH=../../../lib/$(MACH64)/librtld_db.so.1
1319 $(ROOT)/usr/lib/$(MACH64)/librtld_db.so:= \
1320 REALPATH=../../../lib/$(MACH64)/librtld_db.so.1
1321 $(ROOT)/usr/lib/$(MACH64)/libscf.so.1:= \
1322 REALPATH=../../../lib/$(MACH64)/libscf.so.1
1323 $(ROOT)/usr/lib/$(MACH64)/libscf.so:= \
1324 REALPATH=../../../lib/$(MACH64)/libscf.so.1
1325 $(ROOT)/usr/lib/$(MACH64)/libsec.so.1:= \
1326 REALPATH=../../../lib/$(MACH64)/libsec.so.1
1327 $(ROOT)/usr/lib/$(MACH64)/libsec.so:= \
1328 REALPATH=../../../lib/$(MACH64)/libsec.so.1
1329 $(ROOT)/usr/lib/$(MACH64)/libsecdb.so.1:= \
1330 REALPATH=../../../lib/$(MACH64)/libsecdb.so.1
1331 $(ROOT)/usr/lib/$(MACH64)/libsecdb.so:= \
1332 REALPATH=../../../lib/$(MACH64)/libsecdb.so.1
1333 $(ROOT)/usr/lib/$(MACH64)/libsendfile.so.1:= \
1334 REALPATH=../../../lib/$(MACH64)/libsendfile.so.1
1335 $(ROOT)/usr/lib/$(MACH64)/libsendfile.so:= \
1336 REALPATH=../../../lib/$(MACH64)/libsendfile.so.1
1337 $(ROOT)/usr/lib/$(MACH64)/libsocket.so.1:= \
1338 REALPATH=../../../lib/$(MACH64)/libsocket.so.1
1339 $(ROOT)/usr/lib/$(MACH64)/libsocket.so:= \
1340 REALPATH=../../../lib/$(MACH64)/libsocket.so.1
1341 $(ROOT)/usr/lib/$(MACH64)/libsysevent.so.1:= \
1342 REALPATH=../../../lib/$(MACH64)/libsysevent.so.1
1343 $(ROOT)/usr/lib/$(MACH64)/libsysevent.so:= \
1344 REALPATH=../../../lib/$(MACH64)/libsysevent.so.1
1345 $(ROOT)/usr/lib/$(MACH64)/libtermcap.so.1:= \
1346 REALPATH=../../../lib/$(MACH64)/libtermcap.so.1
1347 $(ROOT)/usr/lib/$(MACH64)/libtermcap.so:= \
1348 REALPATH=../../../lib/$(MACH64)/libtermcap.so.1
1349 $(ROOT)/usr/lib/$(MACH64)/libtermlib.so.1:= \
1350 REALPATH=../../../lib/$(MACH64)/libcurses.so.1
1351 $(ROOT)/usr/lib/$(MACH64)/libtermlib.so:= \
1352 REALPATH=../../../lib/$(MACH64)/libcurses.so.1
1353 $(ROOT)/usr/lib/$(MACH64)/libthread.so.1:= \
1354 REALPATH=../../../lib/$(MACH64)/libthread.so.1
1355 $(ROOT)/usr/lib/$(MACH64)/libthread.so:= \
1356 REALPATH=../../../lib/$(MACH64)/libthread.so.1
1357 $(ROOT)/usr/lib/$(MACH64)/libthread_db.so.1:= \
1358 REALPATH=../../../lib/$(MACH64)/libc_db.so.1
1359 $(ROOT)/usr/lib/$(MACH64)/libthread_db.so:= \
1360 REALPATH=../../../lib/$(MACH64)/libc_db.so.1
1361 $(ROOT)/usr/lib/$(MACH64)/libtsnet.so.1:= \
1362 REALPATH=../../../lib/$(MACH64)/libtsnet.so.1
1363 $(ROOT)/usr/lib/$(MACH64)/libtsnet.so:= \
1364 REALPATH=../../../lib/$(MACH64)/libtsnet.so.1
1365 $(ROOT)/usr/lib/$(MACH64)/libtsol.so.2:= \
1366 REALPATH=../../../lib/$(MACH64)/libtsol.so.2
1367 $(ROOT)/usr/lib/$(MACH64)/libtsol.so:= \
1368 REALPATH=../../../lib/$(MACH64)/libtsol.so.2
1369 $(ROOT)/usr/lib/$(MACH64)/libumem.so.1:= \
1370 REALPATH=../../../lib/$(MACH64)/libumem.so.1
1371 $(ROOT)/usr/lib/$(MACH64)/libumem.so:= \
1372 REALPATH=../../../lib/$(MACH64)/libumem.so.1
1373 $(ROOT)/usr/lib/$(MACH64)/libuuid.so.1:= \
1374 REALPATH=../../../lib/$(MACH64)/libuuid.so.1
1375 $(ROOT)/usr/lib/$(MACH64)/libuuid.so:= \
1376 REALPATH=../../../lib/$(MACH64)/libuuid.so.1
1377 $(ROOT)/usr/lib/$(MACH64)/libuutil.so.1:= \
1378 REALPATH=../../../lib/$(MACH64)/libuutil.so.1
1379 $(ROOT)/usr/lib/$(MACH64)/libuutil.so:= \
1380 REALPATH=../../../lib/$(MACH64)/libuutil.so.1
1381 $(ROOT)/usr/lib/$(MACH64)/libw.so.1:= \

new/usr/src/Targetdirs 22

1382 REALPATH=../../../lib/$(MACH64)/libw.so.1
1383 $(ROOT)/usr/lib/$(MACH64)/libw.so:= \
1384 REALPATH=../../../lib/$(MACH64)/libw.so.1
1385 $(ROOT)/usr/lib/$(MACH64)/libxnet.so.1:= \
1386 REALPATH=../../../lib/$(MACH64)/libxnet.so.1
1387 $(ROOT)/usr/lib/$(MACH64)/libxnet.so:= \
1388 REALPATH=../../../lib/$(MACH64)/libxnet.so.1
1389 $(ROOT)/usr/lib/$(MACH64)/libzfs.so:= \
1390 REALPATH=../../../lib/$(MACH64)/libzfs.so.1
1391 $(ROOT)/usr/lib/$(MACH64)/libzfs.so.1:= \
1392 REALPATH=../../../lib/$(MACH64)/libzfs.so.1
1393 $(ROOT)/usr/lib/$(MACH64)/libzfs_core.so:= \
1394 REALPATH=../../../lib/$(MACH64)/libzfs_core.so.1
1395 $(ROOT)/usr/lib/$(MACH64)/libzfs_core.so.1:= \
1396 REALPATH=../../../lib/$(MACH64)/libzfs_core.so.1
1397 $(ROOT)/usr/lib/$(MACH64)/libfdisk.so.1:= \
1398 REALPATH=../../../lib/$(MACH64)/libfdisk.so.1
1399 $(ROOT)/usr/lib/$(MACH64)/libfdisk.so:= \
1400 REALPATH=../../../lib/$(MACH64)/libfdisk.so.1
1401 $(ROOT)/usr/lib/$(MACH64)/llib-ladm.ln:= \
1402 REALPATH=../../../lib/$(MACH64)/llib-ladm.ln
1403 $(ROOT)/usr/lib/$(MACH64)/llib-laio.ln:= \
1404 REALPATH=../../../lib/$(MACH64)/llib-laio.ln
1405 $(ROOT)/usr/lib/$(MACH64)/llib-lavl.ln:= \
1406 REALPATH=../../../lib/$(MACH64)/llib-lavl.ln
1407 $(ROOT)/usr/lib/$(MACH64)/llib-lbsm.ln:= \
1408 REALPATH=../../../lib/$(MACH64)/llib-lbsm.ln
1409 $(ROOT)/usr/lib/$(MACH64)/llib-lc.ln:= \
1410 REALPATH=../../../lib/$(MACH64)/llib-lc.ln
1411 $(ROOT)/usr/lib/$(MACH64)/llib-lcmdutils.ln:= \
1412 REALPATH=../../../lib/$(MACH64)/llib-lcmdutils.ln
1413 $(ROOT)/usr/lib/$(MACH64)/llib-lcontract.ln:= \
1414 REALPATH=../../../lib/$(MACH64)/llib-lcontract.ln
1415 $(ROOT)/usr/lib/$(MACH64)/llib-lctf.ln:= \
1416 REALPATH=../../../lib/$(MACH64)/llib-lctf.ln
1417 $(ROOT)/usr/lib/$(MACH64)/llib-lcurses.ln:= \
1418 REALPATH=../../../lib/$(MACH64)/llib-lcurses.ln
1419 $(ROOT)/usr/lib/$(MACH64)/llib-ldevice.ln:= \
1420 REALPATH=../../../lib/$(MACH64)/llib-ldevice.ln
1421 $(ROOT)/usr/lib/$(MACH64)/llib-ldevid.ln:= \
1422 REALPATH=../../../lib/$(MACH64)/llib-ldevid.ln
1423 $(ROOT)/usr/lib/$(MACH64)/llib-ldevinfo.ln:= \
1424 REALPATH=../../../lib/$(MACH64)/llib-ldevinfo.ln
1425 $(ROOT)/usr/lib/$(MACH64)/llib-ldhcputil.ln:= \
1426 REALPATH=../../../lib/$(MACH64)/llib-ldhcputil.ln
1427 $(ROOT)/usr/lib/$(MACH64)/llib-ldl.ln:= \
1428 REALPATH=../../../lib/$(MACH64)/llib-ldl.ln
1429 $(ROOT)/usr/lib/$(MACH64)/llib-ldoor.ln:= \
1430 REALPATH=../../../lib/$(MACH64)/llib-ldoor.ln
1431 $(ROOT)/usr/lib/$(MACH64)/llib-lefi.ln:= \
1432 REALPATH=../../../lib/$(MACH64)/llib-lefi.ln
1433 $(ROOT)/usr/lib/$(MACH64)/llib-lelf.ln:= \
1434 REALPATH=../../../lib/$(MACH64)/llib-lelf.ln
1435 $(ROOT)/usr/lib/$(MACH64)/llib-lgen.ln:= \
1436 REALPATH=../../../lib/$(MACH64)/llib-lgen.ln
1437 $(ROOT)/usr/lib/$(MACH64)/llib-linetutil.ln:= \
1438 REALPATH=../../../lib/$(MACH64)/llib-linetutil.ln
1439 $(ROOT)/usr/lib/$(MACH64)/llib-lintl.ln:= \
1440 REALPATH=../../../lib/$(MACH64)/llib-lintl.ln
1441 $(ROOT)/usr/lib/$(MACH64)/llib-lkstat.ln:= \
1442 REALPATH=../../../lib/$(MACH64)/llib-lkstat.ln
1443 $(ROOT)/usr/lib/$(MACH64)/llib-lmd5.ln:= \
1444 REALPATH=../../../lib/$(MACH64)/llib-lmd5.ln
1445 $(ROOT)/usr/lib/$(MACH64)/llib-lnsl.ln:= \
1446 REALPATH=../../../lib/$(MACH64)/llib-lnsl.ln
1447 $(ROOT)/usr/lib/$(MACH64)/llib-lnvpair.ln:= \

new/usr/src/Targetdirs 23

1448 REALPATH=../../../lib/$(MACH64)/llib-lnvpair.ln
1449 $(ROOT)/usr/lib/$(MACH64)/llib-lpam.ln:= \
1450 REALPATH=../../../lib/$(MACH64)/llib-lpam.ln
1451 $(ROOT)/usr/lib/$(MACH64)/llib-lposix4.ln:= \
1452 REALPATH=../../../lib/$(MACH64)/llib-lrt.ln
1453 $(ROOT)/usr/lib/$(MACH64)/llib-lpthread.ln:= \
1454 REALPATH=../../../lib/$(MACH64)/llib-lpthread.ln
1455 $(ROOT)/usr/lib/$(MACH64)/llib-lresolv.ln:= \
1456 REALPATH=../../../lib/$(MACH64)/llib-lresolv.ln
1457 $(ROOT)/usr/lib/$(MACH64)/llib-lrpcsvc.ln:= \
1458 REALPATH=../../../lib/$(MACH64)/llib-lrpcsvc.ln
1459 $(ROOT)/usr/lib/$(MACH64)/llib-lrt.ln:= \
1460 REALPATH=../../../lib/$(MACH64)/llib-lrt.ln
1461 $(ROOT)/usr/lib/$(MACH64)/llib-lrtld_db.ln:= \
1462 REALPATH=../../../lib/$(MACH64)/llib-lrtld_db.ln
1463 $(ROOT)/usr/lib/$(MACH64)/llib-lscf.ln:= \
1464 REALPATH=../../../lib/$(MACH64)/llib-lscf.ln
1465 $(ROOT)/usr/lib/$(MACH64)/llib-lsec.ln:= \
1466 REALPATH=../../../lib/$(MACH64)/llib-lsec.ln
1467 $(ROOT)/usr/lib/$(MACH64)/llib-lsecdb.ln:= \
1468 REALPATH=../../../lib/$(MACH64)/llib-lsecdb.ln
1469 $(ROOT)/usr/lib/$(MACH64)/llib-lsendfile.ln:= \
1470 REALPATH=../../../lib/$(MACH64)/llib-lsendfile.ln
1471 $(ROOT)/usr/lib/$(MACH64)/llib-lsocket.ln:= \
1472 REALPATH=../../../lib/$(MACH64)/llib-lsocket.ln
1473 $(ROOT)/usr/lib/$(MACH64)/llib-lsysevent.ln:= \
1474 REALPATH=../../../lib/$(MACH64)/llib-lsysevent.ln
1475 $(ROOT)/usr/lib/$(MACH64)/llib-ltermcap.ln:= \
1476 REALPATH=../../../lib/$(MACH64)/llib-ltermcap.ln
1477 $(ROOT)/usr/lib/$(MACH64)/llib-ltermlib.ln:= \
1478 REALPATH=../../../lib/$(MACH64)/llib-lcurses.ln
1479 $(ROOT)/usr/lib/$(MACH64)/llib-lthread.ln:= \
1480 REALPATH=../../../lib/$(MACH64)/llib-lthread.ln
1481 $(ROOT)/usr/lib/$(MACH64)/llib-lthread_db.ln:= \
1482 REALPATH=../../../lib/$(MACH64)/llib-lc_db.ln
1483 $(ROOT)/usr/lib/$(MACH64)/llib-ltsnet.ln:= \
1484 REALPATH=../../../lib/$(MACH64)/llib-ltsnet.ln
1485 $(ROOT)/usr/lib/$(MACH64)/llib-ltsol.ln:= \
1486 REALPATH=../../../lib/$(MACH64)/llib-ltsol.ln
1487 $(ROOT)/usr/lib/$(MACH64)/llib-lumem.ln:= \
1488 REALPATH=../../../lib/$(MACH64)/llib-lumem.ln
1489 $(ROOT)/usr/lib/$(MACH64)/llib-luuid.ln:= \
1490 REALPATH=../../../lib/$(MACH64)/llib-luuid.ln
1491 $(ROOT)/usr/lib/$(MACH64)/llib-lxnet.ln:= \
1492 REALPATH=../../../lib/$(MACH64)/llib-lxnet.ln
1493 $(ROOT)/usr/lib/$(MACH64)/llib-lzfs.ln:= \
1494 REALPATH=../../../lib/$(MACH64)/llib-lzfs.ln
1495 $(ROOT)/usr/lib/$(MACH64)/llib-lzfs_core.ln:= \
1496 REALPATH=../../../lib/$(MACH64)/llib-lzfs_core.ln
1497 $(ROOT)/usr/lib/$(MACH64)/llib-lfdisk.ln:= \
1498 REALPATH=../../../lib/$(MACH64)/llib-lfdisk.ln
1499 $(ROOT)/usr/lib/$(MACH64)/nss_compat.so.1:= \
1500 REALPATH=../../../lib/$(MACH64)/nss_compat.so.1
1501 $(ROOT)/usr/lib/$(MACH64)/nss_dns.so.1:= \
1502 REALPATH=../../../lib/$(MACH64)/nss_dns.so.1
1503 $(ROOT)/usr/lib/$(MACH64)/nss_files.so.1:= \
1504 REALPATH=../../../lib/$(MACH64)/nss_files.so.1
1505 $(ROOT)/usr/lib/$(MACH64)/nss_nis.so.1:= \
1506 REALPATH=../../../lib/$(MACH64)/nss_nis.so.1
1507 $(ROOT)/usr/lib/$(MACH64)/nss_user.so.1:= \
1508 REALPATH=../../../lib/$(MACH64)/nss_user.so.1
1509 $(ROOT)/usr/lib/fm/$(MACH64)/libfmevent.so.1:= \
1510 REALPATH=../../../../lib/fm/$(MACH64)/libfmevent.so.1
1511 $(ROOT)/usr/lib/fm/$(MACH64)/libfmevent.so:= \
1512 REALPATH=../../../../lib/fm/$(MACH64)/libfmevent.so.1
1513 $(ROOT)/usr/lib/fm/$(MACH64)/llib-lfmevent.ln:= \

new/usr/src/Targetdirs 24

1514 REALPATH=../../../../lib/fm/$(MACH64)/llib-lfmevent.ln

1516 i386_SYM.USRLIB= \
1517 /usr/lib/libfdisk.so \
1518 /usr/lib/libfdisk.so.1 \
1519 /usr/lib/llib-lfdisk \
1520 /usr/lib/llib-lfdisk.ln

1522 SYM.USRLIB= \
1523 $($(MACH)_SYM.USRLIB) \
1524 /lib/libposix4.so \
1525 /lib/libposix4.so.1 \
1526 /lib/llib-lposix4 \
1527 /lib/llib-lposix4.ln \
1528 /lib/libthread_db.so \
1529 /lib/libthread_db.so.1 \
1530 /usr/lib/ld.so.1 \
1531 /usr/lib/libadm.so \
1532 /usr/lib/libadm.so.1 \
1533 /usr/lib/libaio.so \
1534 /usr/lib/libaio.so.1 \
1535 /usr/lib/libavl.so \
1536 /usr/lib/libavl.so.1 \
1537 /usr/lib/libbsm.so \
1538 /usr/lib/libbsm.so.1 \
1539 /usr/lib/libc.so \
1540 /usr/lib/libc.so.1 \
1541 /usr/lib/libc_db.so \
1542 /usr/lib/libc_db.so.1 \
1543 /usr/lib/libcmdutils.so \
1544 /usr/lib/libcmdutils.so.1 \
1545 /usr/lib/libcontract.so \
1546 /usr/lib/libcontract.so.1 \
1547 /usr/lib/libctf.so \
1548 /usr/lib/libctf.so.1 \
1549 /usr/lib/libcurses.so \
1550 /usr/lib/libcurses.so.1 \
1551 /usr/lib/libdevice.so \
1552 /usr/lib/libdevice.so.1 \
1553 /usr/lib/libdevid.so \
1554 /usr/lib/libdevid.so.1 \
1555 /usr/lib/libdevinfo.so \
1556 /usr/lib/libdevinfo.so.1 \
1557 /usr/lib/libdhcpagent.so \
1558 /usr/lib/libdhcpagent.so.1 \
1559 /usr/lib/libdhcputil.so \
1560 /usr/lib/libdhcputil.so.1 \
1561 /usr/lib/libdl.so \
1562 /usr/lib/libdl.so.1 \
1563 /usr/lib/libdlpi.so \
1564 /usr/lib/libdlpi.so.1 \
1565 /usr/lib/libdoor.so \
1566 /usr/lib/libdoor.so.1 \
1567 /usr/lib/libefi.so \
1568 /usr/lib/libefi.so.1 \
1569 /usr/lib/libelf.so \
1570 /usr/lib/libelf.so.1 \
1571 /usr/lib/libgen.so \
1572 /usr/lib/libgen.so.1 \
1573 /usr/lib/libinetutil.so \
1574 /usr/lib/libinetutil.so.1 \
1575 /usr/lib/libintl.so \
1576 /usr/lib/libintl.so.1 \
1577 /usr/lib/libkstat.so \
1578 /usr/lib/libkstat.so.1 \
1579 /usr/lib/liblddbg.so.4 \

new/usr/src/Targetdirs 25

1580 /usr/lib/libmd.so \
1581 /usr/lib/libmd.so.1 \
1582 /usr/lib/libmd5.so \
1583 /usr/lib/libmd5.so.1 \
1584 /usr/lib/libmeta.so \
1585 /usr/lib/libmeta.so.1 \
1586 /usr/lib/libmp.so \
1587 /usr/lib/libmp.so.1 \
1588 /usr/lib/libmp.so.2 \
1589 /usr/lib/libnsl.so \
1590 /usr/lib/libnsl.so.1 \
1591 /usr/lib/libnvpair.so \
1592 /usr/lib/libnvpair.so.1 \
1593 /usr/lib/libpam.so \
1594 /usr/lib/libpam.so.1 \
1595 /usr/lib/libposix4.so \
1596 /usr/lib/libposix4.so.1 \
1597 /usr/lib/libproc.so \
1598 /usr/lib/libproc.so.1 \
1599 /usr/lib/libpthread.so \
1600 /usr/lib/libpthread.so.1 \
1601 /usr/lib/librcm.so \
1602 /usr/lib/librcm.so.1 \
1603 /usr/lib/libresolv.so \
1604 /usr/lib/libresolv.so.1 \
1605 /usr/lib/libresolv.so.2 \
1606 /usr/lib/librestart.so \
1607 /usr/lib/librestart.so.1 \
1608 /usr/lib/librpcsvc.so \
1609 /usr/lib/librpcsvc.so.1 \
1610 /usr/lib/librt.so \
1611 /usr/lib/librt.so.1 \
1612 /usr/lib/librtld.so.1 \
1613 /usr/lib/librtld_db.so \
1614 /usr/lib/librtld_db.so.1 \
1615 /usr/lib/libscf.so \
1616 /usr/lib/libscf.so.1 \
1617 /usr/lib/libsec.so \
1618 /usr/lib/libsec.so.1 \
1619 /usr/lib/libsecdb.so \
1620 /usr/lib/libsecdb.so.1 \
1621 /usr/lib/libsendfile.so \
1622 /usr/lib/libsendfile.so.1 \
1623 /usr/lib/libsocket.so \
1624 /usr/lib/libsocket.so.1 \
1625 /usr/lib/libsysevent.so \
1626 /usr/lib/libsysevent.so.1 \
1627 /usr/lib/libtermcap.so \
1628 /usr/lib/libtermcap.so.1 \
1629 /usr/lib/libtermlib.so \
1630 /usr/lib/libtermlib.so.1 \
1631 /usr/lib/libthread.so \
1632 /usr/lib/libthread.so.1 \
1633 /usr/lib/libthread_db.so \
1634 /usr/lib/libthread_db.so.1 \
1635 /usr/lib/libtsnet.so \
1636 /usr/lib/libtsnet.so.1 \
1637 /usr/lib/libtsol.so \
1638 /usr/lib/libtsol.so.2 \
1639 /usr/lib/libumem.so \
1640 /usr/lib/libumem.so.1 \
1641 /usr/lib/libuuid.so \
1642 /usr/lib/libuuid.so.1 \
1643 /usr/lib/libuutil.so \
1644 /usr/lib/libuutil.so.1 \
1645 /usr/lib/libw.so \

new/usr/src/Targetdirs 26

1646 /usr/lib/libw.so.1 \
1647 /usr/lib/libxnet.so \
1648 /usr/lib/libxnet.so.1 \
1649 /usr/lib/libzfs.so \
1650 /usr/lib/libzfs.so.1 \
1651 /usr/lib/libzfs_core.so \
1652 /usr/lib/libzfs_core.so.1 \
1653 /usr/lib/llib-ladm \
1654 /usr/lib/llib-ladm.ln \
1655 /usr/lib/llib-laio \
1656 /usr/lib/llib-laio.ln \
1657 /usr/lib/llib-lavl \
1658 /usr/lib/llib-lavl.ln \
1659 /usr/lib/llib-lbsm \
1660 /usr/lib/llib-lbsm.ln \
1661 /usr/lib/llib-lc \
1662 /usr/lib/llib-lc.ln \
1663 /usr/lib/llib-lcmdutils \
1664 /usr/lib/llib-lcmdutils.ln \
1665 /usr/lib/llib-lcontract \
1666 /usr/lib/llib-lcontract.ln \
1667 /usr/lib/llib-lctf \
1668 /usr/lib/llib-lctf.ln \
1669 /usr/lib/llib-lcurses \
1670 /usr/lib/llib-lcurses.ln \
1671 /usr/lib/llib-ldevice \
1672 /usr/lib/llib-ldevice.ln \
1673 /usr/lib/llib-ldevid \
1674 /usr/lib/llib-ldevid.ln \
1675 /usr/lib/llib-ldevinfo \
1676 /usr/lib/llib-ldevinfo.ln \
1677 /usr/lib/llib-ldhcpagent \
1678 /usr/lib/llib-ldhcpagent.ln \
1679 /usr/lib/llib-ldhcputil \
1680 /usr/lib/llib-ldhcputil.ln \
1681 /usr/lib/llib-ldl \
1682 /usr/lib/llib-ldl.ln \
1683 /usr/lib/llib-ldoor \
1684 /usr/lib/llib-ldoor.ln \
1685 /usr/lib/llib-lefi \
1686 /usr/lib/llib-lefi.ln \
1687 /usr/lib/llib-lelf \
1688 /usr/lib/llib-lelf.ln \
1689 /usr/lib/llib-lgen \
1690 /usr/lib/llib-lgen.ln \
1691 /usr/lib/llib-linetutil \
1692 /usr/lib/llib-linetutil.ln \
1693 /usr/lib/llib-lintl \
1694 /usr/lib/llib-lintl.ln \
1695 /usr/lib/llib-lkstat \
1696 /usr/lib/llib-lkstat.ln \
1697 /usr/lib/llib-lmd5 \
1698 /usr/lib/llib-lmd5.ln \
1699 /usr/lib/llib-lmeta \
1700 /usr/lib/llib-lmeta.ln \
1701 /usr/lib/llib-lnsl \
1702 /usr/lib/llib-lnsl.ln \
1703 /usr/lib/llib-lnvpair \
1704 /usr/lib/llib-lnvpair.ln \
1705 /usr/lib/llib-lpam \
1706 /usr/lib/llib-lpam.ln \
1707 /usr/lib/llib-lposix4 \
1708 /usr/lib/llib-lposix4.ln \
1709 /usr/lib/llib-lpthread \
1710 /usr/lib/llib-lpthread.ln \
1711 /usr/lib/llib-lresolv \

new/usr/src/Targetdirs 27

1712 /usr/lib/llib-lresolv.ln \
1713 /usr/lib/llib-lrpcsvc \
1714 /usr/lib/llib-lrpcsvc.ln \
1715 /usr/lib/llib-lrt \
1716 /usr/lib/llib-lrt.ln \
1717 /usr/lib/llib-lrtld_db \
1718 /usr/lib/llib-lrtld_db.ln \
1719 /usr/lib/llib-lscf \
1720 /usr/lib/llib-lscf.ln \
1721 /usr/lib/llib-lsec \
1722 /usr/lib/llib-lsec.ln \
1723 /usr/lib/llib-lsecdb \
1724 /usr/lib/llib-lsecdb.ln \
1725 /usr/lib/llib-lsendfile \
1726 /usr/lib/llib-lsendfile.ln \
1727 /usr/lib/llib-lsocket \
1728 /usr/lib/llib-lsocket.ln \
1729 /usr/lib/llib-lsysevent \
1730 /usr/lib/llib-lsysevent.ln \
1731 /usr/lib/llib-ltermcap \
1732 /usr/lib/llib-ltermcap.ln \
1733 /usr/lib/llib-ltermlib \
1734 /usr/lib/llib-ltermlib.ln \
1735 /usr/lib/llib-lthread \
1736 /usr/lib/llib-lthread.ln \
1737 /usr/lib/llib-lthread_db \
1738 /usr/lib/llib-lthread_db.ln \
1739 /usr/lib/llib-ltsnet \
1740 /usr/lib/llib-ltsnet.ln \
1741 /usr/lib/llib-ltsol \
1742 /usr/lib/llib-ltsol.ln \
1743 /usr/lib/llib-lumem \
1744 /usr/lib/llib-lumem.ln \
1745 /usr/lib/llib-luuid \
1746 /usr/lib/llib-luuid.ln \
1747 /usr/lib/llib-lxnet \
1748 /usr/lib/llib-lxnet.ln \
1749 /usr/lib/llib-lzfs \
1750 /usr/lib/llib-lzfs.ln \
1751 /usr/lib/llib-lzfs_core \
1752 /usr/lib/llib-lzfs_core.ln \
1753 /usr/lib/nss_compat.so.1 \
1754 /usr/lib/nss_dns.so.1 \
1755 /usr/lib/nss_files.so.1 \
1756 /usr/lib/nss_nis.so.1 \
1757 /usr/lib/nss_user.so.1 \
1758 /usr/lib/fm/libfmevent.so \
1759 /usr/lib/fm/libfmevent.so.1 \
1760 /usr/lib/fm/llib-lfmevent \
1761 /usr/lib/fm/llib-lfmevent.ln

1763 sparcv9_SYM.USRLIB64=

1765 amd64_SYM.USRLIB64= \
1766 /usr/lib/amd64/libfdisk.so \
1767 /usr/lib/amd64/libfdisk.so.1 \
1768 /usr/lib/amd64/llib-lfdisk.ln

1771 SYM.USRLIB64= \
1772 $($(MACH64)_SYM.USRLIB64) \
1773 /lib/$(MACH64)/libposix4.so \
1774 /lib/$(MACH64)/libposix4.so.1 \
1775 /lib/$(MACH64)/llib-lposix4.ln \
1776 /lib/$(MACH64)/libthread_db.so \
1777 /lib/$(MACH64)/libthread_db.so.1 \

new/usr/src/Targetdirs 28

1778 /usr/lib/$(MACH64)/ld.so.1 \
1779 /usr/lib/$(MACH64)/libadm.so \
1780 /usr/lib/$(MACH64)/libadm.so.1 \
1781 /usr/lib/$(MACH64)/libaio.so \
1782 /usr/lib/$(MACH64)/libaio.so.1 \
1783 /usr/lib/$(MACH64)/libavl.so \
1784 /usr/lib/$(MACH64)/libavl.so.1 \
1785 /usr/lib/$(MACH64)/libbsm.so \
1786 /usr/lib/$(MACH64)/libbsm.so.1 \
1787 /usr/lib/$(MACH64)/libc.so \
1788 /usr/lib/$(MACH64)/libc.so.1 \
1789 /usr/lib/$(MACH64)/libc_db.so \
1790 /usr/lib/$(MACH64)/libc_db.so.1 \
1791 /usr/lib/$(MACH64)/libcmdutils.so \
1792 /usr/lib/$(MACH64)/libcmdutils.so.1 \
1793 /usr/lib/$(MACH64)/libcontract.so \
1794 /usr/lib/$(MACH64)/libcontract.so.1 \
1795 /usr/lib/$(MACH64)/libctf.so \
1796 /usr/lib/$(MACH64)/libctf.so.1 \
1797 /usr/lib/$(MACH64)/libcurses.so \
1798 /usr/lib/$(MACH64)/libcurses.so.1 \
1799 /usr/lib/$(MACH64)/libdevice.so \
1800 /usr/lib/$(MACH64)/libdevice.so.1 \
1801 /usr/lib/$(MACH64)/libdevid.so \
1802 /usr/lib/$(MACH64)/libdevid.so.1 \
1803 /usr/lib/$(MACH64)/libdevinfo.so \
1804 /usr/lib/$(MACH64)/libdevinfo.so.1 \
1805 /usr/lib/$(MACH64)/libdhcputil.so \
1806 /usr/lib/$(MACH64)/libdhcputil.so.1 \
1807 /usr/lib/$(MACH64)/libdl.so \
1808 /usr/lib/$(MACH64)/libdl.so.1 \
1809 /usr/lib/$(MACH64)/libdlpi.so \
1810 /usr/lib/$(MACH64)/libdlpi.so.1 \
1811 /usr/lib/$(MACH64)/libdoor.so \
1812 /usr/lib/$(MACH64)/libdoor.so.1 \
1813 /usr/lib/$(MACH64)/libefi.so \
1814 /usr/lib/$(MACH64)/libefi.so.1 \
1815 /usr/lib/$(MACH64)/libelf.so \
1816 /usr/lib/$(MACH64)/libelf.so.1 \
1817 /usr/lib/$(MACH64)/libgen.so \
1818 /usr/lib/$(MACH64)/libgen.so.1 \
1819 /usr/lib/$(MACH64)/libinetutil.so \
1820 /usr/lib/$(MACH64)/libinetutil.so.1 \
1821 /usr/lib/$(MACH64)/libintl.so \
1822 /usr/lib/$(MACH64)/libintl.so.1 \
1823 /usr/lib/$(MACH64)/libkstat.so \
1824 /usr/lib/$(MACH64)/libkstat.so.1 \
1825 /usr/lib/$(MACH64)/liblddbg.so.4 \
1826 /usr/lib/$(MACH64)/libmd.so \
1827 /usr/lib/$(MACH64)/libmd.so.1 \
1828 /usr/lib/$(MACH64)/libmd5.so \
1829 /usr/lib/$(MACH64)/libmd5.so.1 \
1830 /usr/lib/$(MACH64)/libmp.so \
1831 /usr/lib/$(MACH64)/libmp.so.2 \
1832 /usr/lib/$(MACH64)/libnsl.so \
1833 /usr/lib/$(MACH64)/libnsl.so.1 \
1834 /usr/lib/$(MACH64)/libnvpair.so \
1835 /usr/lib/$(MACH64)/libnvpair.so.1 \
1836 /usr/lib/$(MACH64)/libpam.so \
1837 /usr/lib/$(MACH64)/libpam.so.1 \
1838 /usr/lib/$(MACH64)/libposix4.so \
1839 /usr/lib/$(MACH64)/libposix4.so.1 \
1840 /usr/lib/$(MACH64)/libproc.so \
1841 /usr/lib/$(MACH64)/libproc.so.1 \
1842 /usr/lib/$(MACH64)/libpthread.so \
1843 /usr/lib/$(MACH64)/libpthread.so.1 \

new/usr/src/Targetdirs 29

1844 /usr/lib/$(MACH64)/librcm.so \
1845 /usr/lib/$(MACH64)/librcm.so.1 \
1846 /usr/lib/$(MACH64)/libresolv.so \
1847 /usr/lib/$(MACH64)/libresolv.so.2 \
1848 /usr/lib/$(MACH64)/librestart.so \
1849 /usr/lib/$(MACH64)/librestart.so.1 \
1850 /usr/lib/$(MACH64)/librpcsvc.so \
1851 /usr/lib/$(MACH64)/librpcsvc.so.1 \
1852 /usr/lib/$(MACH64)/librt.so \
1853 /usr/lib/$(MACH64)/librt.so.1 \
1854 /usr/lib/$(MACH64)/librtld.so.1 \
1855 /usr/lib/$(MACH64)/librtld_db.so \
1856 /usr/lib/$(MACH64)/librtld_db.so.1 \
1857 /usr/lib/$(MACH64)/libscf.so \
1858 /usr/lib/$(MACH64)/libscf.so.1 \
1859 /usr/lib/$(MACH64)/libsec.so \
1860 /usr/lib/$(MACH64)/libsec.so.1 \
1861 /usr/lib/$(MACH64)/libsecdb.so \
1862 /usr/lib/$(MACH64)/libsecdb.so.1 \
1863 /usr/lib/$(MACH64)/libsendfile.so \
1864 /usr/lib/$(MACH64)/libsendfile.so.1 \
1865 /usr/lib/$(MACH64)/libsocket.so \
1866 /usr/lib/$(MACH64)/libsocket.so.1 \
1867 /usr/lib/$(MACH64)/libsysevent.so \
1868 /usr/lib/$(MACH64)/libsysevent.so.1 \
1869 /usr/lib/$(MACH64)/libtermcap.so \
1870 /usr/lib/$(MACH64)/libtermcap.so.1 \
1871 /usr/lib/$(MACH64)/libtermlib.so \
1872 /usr/lib/$(MACH64)/libtermlib.so.1 \
1873 /usr/lib/$(MACH64)/libthread.so \
1874 /usr/lib/$(MACH64)/libthread.so.1 \
1875 /usr/lib/$(MACH64)/libthread_db.so \
1876 /usr/lib/$(MACH64)/libthread_db.so.1 \
1877 /usr/lib/$(MACH64)/libtsnet.so \
1878 /usr/lib/$(MACH64)/libtsnet.so.1 \
1879 /usr/lib/$(MACH64)/libtsol.so \
1880 /usr/lib/$(MACH64)/libtsol.so.2 \
1881 /usr/lib/$(MACH64)/libumem.so \
1882 /usr/lib/$(MACH64)/libumem.so.1 \
1883 /usr/lib/$(MACH64)/libuuid.so \
1884 /usr/lib/$(MACH64)/libuuid.so.1 \
1885 /usr/lib/$(MACH64)/libuutil.so \
1886 /usr/lib/$(MACH64)/libuutil.so.1 \
1887 /usr/lib/$(MACH64)/libw.so \
1888 /usr/lib/$(MACH64)/libw.so.1 \
1889 /usr/lib/$(MACH64)/libxnet.so \
1890 /usr/lib/$(MACH64)/libxnet.so.1 \
1891 /usr/lib/$(MACH64)/libzfs.so \
1892 /usr/lib/$(MACH64)/libzfs.so.1 \
1893 /usr/lib/$(MACH64)/libzfs_core.so \
1894 /usr/lib/$(MACH64)/libzfs_core.so.1 \
1895 /usr/lib/$(MACH64)/llib-ladm.ln \
1896 /usr/lib/$(MACH64)/llib-laio.ln \
1897 /usr/lib/$(MACH64)/llib-lavl.ln \
1898 /usr/lib/$(MACH64)/llib-lbsm.ln \
1899 /usr/lib/$(MACH64)/llib-lc.ln \
1900 /usr/lib/$(MACH64)/llib-lcmdutils.ln \
1901 /usr/lib/$(MACH64)/llib-lcontract.ln \
1902 /usr/lib/$(MACH64)/llib-lctf.ln \
1903 /usr/lib/$(MACH64)/llib-lcurses.ln \
1904 /usr/lib/$(MACH64)/llib-ldevice.ln \
1905 /usr/lib/$(MACH64)/llib-ldevid.ln \
1906 /usr/lib/$(MACH64)/llib-ldevinfo.ln \
1907 /usr/lib/$(MACH64)/llib-ldhcputil.ln \
1908 /usr/lib/$(MACH64)/llib-ldl.ln \
1909 /usr/lib/$(MACH64)/llib-ldoor.ln \

new/usr/src/Targetdirs 30

1910 /usr/lib/$(MACH64)/llib-lefi.ln \
1911 /usr/lib/$(MACH64)/llib-lelf.ln \
1912 /usr/lib/$(MACH64)/llib-lgen.ln \
1913 /usr/lib/$(MACH64)/llib-linetutil.ln \
1914 /usr/lib/$(MACH64)/llib-lintl.ln \
1915 /usr/lib/$(MACH64)/llib-lkstat.ln \
1916 /usr/lib/$(MACH64)/llib-lmd5.ln \
1917 /usr/lib/$(MACH64)/llib-lnsl.ln \
1918 /usr/lib/$(MACH64)/llib-lnvpair.ln \
1919 /usr/lib/$(MACH64)/llib-lpam.ln \
1920 /usr/lib/$(MACH64)/llib-lposix4.ln \
1921 /usr/lib/$(MACH64)/llib-lpthread.ln \
1922 /usr/lib/$(MACH64)/llib-lresolv.ln \
1923 /usr/lib/$(MACH64)/llib-lrpcsvc.ln \
1924 /usr/lib/$(MACH64)/llib-lrt.ln \
1925 /usr/lib/$(MACH64)/llib-lrtld_db.ln \
1926 /usr/lib/$(MACH64)/llib-lscf.ln \
1927 /usr/lib/$(MACH64)/llib-lsec.ln \
1928 /usr/lib/$(MACH64)/llib-lsecdb.ln \
1929 /usr/lib/$(MACH64)/llib-lsendfile.ln \
1930 /usr/lib/$(MACH64)/llib-lsocket.ln \
1931 /usr/lib/$(MACH64)/llib-lsysevent.ln \
1932 /usr/lib/$(MACH64)/llib-ltermcap.ln \
1933 /usr/lib/$(MACH64)/llib-ltermlib.ln \
1934 /usr/lib/$(MACH64)/llib-lthread.ln \
1935 /usr/lib/$(MACH64)/llib-lthread_db.ln \
1936 /usr/lib/$(MACH64)/llib-ltsnet.ln \
1937 /usr/lib/$(MACH64)/llib-ltsol.ln \
1938 /usr/lib/$(MACH64)/llib-lumem.ln \
1939 /usr/lib/$(MACH64)/llib-luuid.ln \
1940 /usr/lib/$(MACH64)/llib-lxnet.ln \
1941 /usr/lib/$(MACH64)/llib-lzfs.ln \
1942 /usr/lib/$(MACH64)/llib-lzfs_core.ln \
1943 /usr/lib/$(MACH64)/nss_compat.so.1 \
1944 /usr/lib/$(MACH64)/nss_dns.so.1 \
1945 /usr/lib/$(MACH64)/nss_files.so.1 \
1946 /usr/lib/$(MACH64)/nss_nis.so.1 \
1947 /usr/lib/$(MACH64)/nss_user.so.1 \
1948 /usr/lib/fm/$(MACH64)/libfmevent.so \
1949 /usr/lib/fm/$(MACH64)/libfmevent.so.1 \
1950 /usr/lib/fm/$(MACH64)/llib-lfmevent.ln

1952 #
1953 # usr/src/Makefile uses INS.dir for any member of ROOTDIRS, the fact
1954 # these are symlinks to files has no bearing on this.
1955 #
1956 $(FILELINKS:%=$(ROOT)%):= \
1957 INS.dir= -$(RM) $@; $(SYMLINK) $(REALPATH) $@

new/usr/src/cmd/devfsadm/i386/Makefile 1

**
 1169 Tue Jan 14 16:16:54 2014
new/usr/src/cmd/devfsadm/i386/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 1998, 2010, Oracle and/or its affiliates. All rights reserved.
23 #
24 #ident "%Z%%M% %I% %E% SMI"
25 #endif /* ! codereview */

27 LINK_OBJS_i386 = \
28 misc_link_i386.o \
29 lx_link_i386.o \
30 #endif /* ! codereview */
31 xen_link.o

33 lx_link_i386.o lx_link_i386.po lx_link_i386.ln := CPPFLAGS += -I$(UTSBASE)/commo
34 #endif /* ! codereview */

36 xen_link.o xen_link.ln xen_link.po := CPPFLAGS += -I$(UTSBASE)/i86xpv

38 include ../Makefile.com

new/usr/src/cmd/devfsadm/i386/lx_link_i386.c 1

**
 2555 Tue Jan 14 16:16:55 2014
new/usr/src/cmd/devfsadm/i386/lx_link_i386.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <devfsadm.h>
30 #include <strings.h>
31 #include <stdio.h>
32 #include <sys/lx_ptm.h>
33 #include <sys/lx_audio.h>

35 static int lx_ptm(di_minor_t minor, di_node_t node);
36 static int lx_audio(di_minor_t minor, di_node_t node);
37 static int lx_systrace(di_minor_t minor, di_node_t node);

39 static devfsadm_create_t lx_create_cbt[] = {
40 { "pseudo", "ddi_pseudo", LX_PTM_DRV,
41 TYPE_EXACT | DRV_EXACT, ILEVEL_0, lx_ptm },
42 { "pseudo", "ddi_pseudo", LX_AUDIO_DRV,
43 TYPE_EXACT | DRV_EXACT, ILEVEL_0, lx_audio },
44 { "pseudo", "ddi_pseudo", "lx_systrace",
45 TYPE_EXACT | DRV_EXACT, ILEVEL_0, lx_systrace },
46 };

48 DEVFSADM_CREATE_INIT_V0(lx_create_cbt);

50 static int
51 lx_ptm(di_minor_t minor, di_node_t node)
52 {
53 char *mname = di_minor_name(minor);

55 if (strcmp(LX_PTM_MINOR_NODE, mname) == 0)
56 (void) devfsadm_mklink("brand/lx/ptmx", node, minor, 0);

58 return (DEVFSADM_CONTINUE);
59 }

61 static int

new/usr/src/cmd/devfsadm/i386/lx_link_i386.c 2

62 lx_audio(di_minor_t minor, di_node_t node)
63 {
64 char *mname = di_minor_name(minor);

66 if (strcmp(LXA_MINORNAME_DEVCTL, mname) == 0)
67 (void) devfsadm_mklink("brand/lx/audio_devctl", node, minor, 0);
68 if (strcmp(LXA_MINORNAME_DSP, mname) == 0)
69 (void) devfsadm_mklink("brand/lx/dsp", node, minor, 0);
70 if (strcmp(LXA_MINORNAME_MIXER, mname) == 0)
71 (void) devfsadm_mklink("brand/lx/mixer", node, minor, 0);

73 return (DEVFSADM_CONTINUE);
74 }

76 static int
77 lx_systrace(di_minor_t minor, di_node_t node)
78 {
79 char *mname = di_minor_name(minor);
80 char path[MAXPATHLEN];

82 (void) snprintf(path, sizeof (path), "dtrace/provider/%s", mname);
83 (void) devfsadm_mklink(path, node, minor, 0);

85 return (DEVFSADM_CONTINUE);
86 }
87 #endif /* ! codereview */

new/usr/src/cmd/zlogin/zlogin.c 1

**
 57877 Tue Jan 14 16:16:55 2014
new/usr/src/cmd/zlogin/zlogin.c
Bring back LX zones.
**
______unchanged_portion_omitted_

1724 int
1725 main(int argc, char **argv)
1726 {
1727 int arg, console = 0;
1728 zoneid_t zoneid;
1729 zone_state_t st;
1730 char *login = "root";
1731 int lflag = 0;
1732 char *zonename = NULL;
1733 char **proc_args = NULL;
1734 char **new_args, **new_env;
1735 sigset_t block_cld;
1736 char devroot[MAXPATHLEN];
1737 char *slavename, slaveshortname[MAXPATHLEN];
1738 priv_set_t *privset;
1739 int tmpl_fd;
1740 char zonebrand[MAXNAMELEN];
1741 char default_brand[MAXNAMELEN];
1742 struct stat sb;
1743 char kernzone[ZONENAME_MAX];
1744 brand_handle_t bh;
1745 char user_cmd[MAXPATHLEN];
1746 char authname[MAXAUTHS];

1748 (void) setlocale(LC_ALL, "");
1749 (void) textdomain(TEXT_DOMAIN);

1751 (void) getpname(argv[0]);
1752 username = get_username();

1754 while ((arg = getopt(argc, argv, "ECR:Se:l:Q")) != EOF) {
1755 switch (arg) {
1756 case ’C’:
1757 console = 1;
1758 break;
1759 case ’E’:
1760 nocmdchar = 1;
1761 break;
1762 case ’R’: /* undocumented */
1763 if (*optarg != ’/’) {
1764 zerror(gettext("root path must be absolute."));
1765 exit(2);
1766 }
1767 if (stat(optarg, &sb) == -1 || !S_ISDIR(sb.st_mode)) {
1768 zerror(
1769 gettext("root path must be a directory."));
1770 exit(2);
1771 }
1772 zonecfg_set_root(optarg);
1773 break;
1774 case ’Q’:
1775 quiet = 1;
1776 break;
1777 case ’S’:
1778 failsafe = 1;
1779 break;
1780 case ’e’:
1781 set_cmdchar(optarg);
1782 break;

new/usr/src/cmd/zlogin/zlogin.c 2

1783 case ’l’:
1784 login = optarg;
1785 lflag = 1;
1786 break;
1787 default:
1788 usage();
1789 }
1790 }

1792 if (console != 0 && lflag != 0) {
1793 zerror(gettext("-l may not be specified for console login"));
1794 usage();
1795 }

1797 if (console != 0 && failsafe != 0) {
1798 zerror(gettext("-S may not be specified for console login"));
1799 usage();
1800 }

1802 if (console != 0 && zonecfg_in_alt_root()) {
1803 zerror(gettext("-R may not be specified for console login"));
1804 exit(2);
1805 }

1807 if (failsafe != 0 && lflag != 0) {
1808 zerror(gettext("-l may not be specified for failsafe login"));
1809 usage();
1810 }

1812 if (optind == (argc - 1)) {
1813 /*
1814 * zone name, no process name; this should be an interactive
1815 * as long as STDIN is really a tty.
1816 */
1817 if (isatty(STDIN_FILENO))
1818 interactive = 1;
1819 zonename = argv[optind];
1820 } else if (optind < (argc - 1)) {
1821 if (console) {
1822 zerror(gettext("Commands may not be specified for "
1823 "console login."));
1824 usage();
1825 }
1826 /* zone name and process name, and possibly some args */
1827 zonename = argv[optind];
1828 proc_args = &argv[optind + 1];
1829 interactive = 0;
1830 } else {
1831 usage();
1832 }

1834 if (getzoneid() != GLOBAL_ZONEID) {
1835 zerror(gettext("’%s’ may only be used from the global zone"),
1836 pname);
1837 return (1);
1838 }

1840 if (strcmp(zonename, GLOBAL_ZONENAME) == 0) {
1841 zerror(gettext("’%s’ not applicable to the global zone"),
1842 pname);
1843 return (1);
1844 }

1846 if (zone_get_state(zonename, &st) != Z_OK) {
1847 zerror(gettext("zone ’%s’ unknown"), zonename);
1848 return (1);

new/usr/src/cmd/zlogin/zlogin.c 3

1849 }

1851 if (st < ZONE_STATE_INSTALLED) {
1852 zerror(gettext("cannot login to a zone which is ’%s’"),
1853 zone_state_str(st));
1854 return (1);
1855 }

1857 /*
1858 * In both console and non-console cases, we require all privs.
1859 * In the console case, because we may need to startup zoneadmd.
1860 * In the non-console case in order to do zone_enter(2), zonept()
1861 * and other tasks.
1862 */

1864 if ((privset = priv_allocset()) == NULL) {
1865 zperror(gettext("priv_allocset failed"));
1866 return (1);
1867 }

1869 if (getppriv(PRIV_EFFECTIVE, privset) != 0) {
1870 zperror(gettext("getppriv failed"));
1871 priv_freeset(privset);
1872 return (1);
1873 }

1875 if (priv_isfullset(privset) == B_FALSE) {
1876 zerror(gettext("You lack sufficient privilege to run "
1877 "this command (all privs required)"));
1878 priv_freeset(privset);
1879 return (1);
1880 }
1881 priv_freeset(privset);

1883 /*
1884 * Check if user is authorized for requested usage of the zone
1885 */

1887 (void) snprintf(authname, MAXAUTHS, "%s%s%s",
1888 ZONE_MANAGE_AUTH, KV_OBJECT, zonename);
1889 if (chkauthattr(authname, username) == 0) {
1890 if (console) {
1891 zerror(gettext("%s is not authorized for console "
1892 "access to %s zone."),
1893 username, zonename);
1894 return (1);
1895 } else {
1896 (void) snprintf(authname, MAXAUTHS, "%s%s%s",
1897 ZONE_LOGIN_AUTH, KV_OBJECT, zonename);
1898 if (failsafe || !interactive) {
1899 zerror(gettext("%s is not authorized for "
1900 "failsafe or non-interactive login "
1901 "to %s zone."), username, zonename);
1902 return (1);
1903 } else if (chkauthattr(authname, username) == 0) {
1904 zerror(gettext("%s is not authorized "
1905 " to login to %s zone."),
1906 username, zonename);
1907 return (1);
1908 }
1909 }
1910 } else {
1911 forced_login = B_TRUE;
1912 }

1914 /*

new/usr/src/cmd/zlogin/zlogin.c 4

1915 * The console is a separate case from the rest of the code; handle
1916 * it first.
1917 */
1918 if (console) {
1919 /*
1920 * Ensure that zoneadmd for this zone is running.
1921 */
1922 if (start_zoneadmd(zonename) == -1)
1923 return (1);

1925 /*
1926 * Make contact with zoneadmd.
1927 */
1928 if (get_console_master(zonename) == -1)
1929 return (1);

1931 if (!quiet)
1932 (void) printf(
1933 gettext("[Connected to zone ’%s’ console]\n"),
1934 zonename);

1936 if (set_tty_rawmode(STDIN_FILENO) == -1) {
1937 reset_tty();
1938 zperror(gettext("failed to set stdin pty to raw mode"));
1939 return (1);
1940 }

1942 (void) sigset(SIGWINCH, sigwinch);
1943 (void) sigwinch(0);

1945 /*
1946 * Run the I/O loop until we get disconnected.
1947 */
1948 doio(masterfd, -1, masterfd, -1, -1, B_FALSE);
1949 reset_tty();
1950 if (!quiet)
1951 (void) printf(
1952 gettext("\n[Connection to zone ’%s’ console "
1953 "closed]\n"), zonename);

1955 return (0);
1956 }

1958 if (st != ZONE_STATE_RUNNING && st != ZONE_STATE_MOUNTED) {
1959 zerror(gettext("login allowed only to running zones "
1960 "(%s is ’%s’)."), zonename, zone_state_str(st));
1961 return (1);
1962 }

1964 (void) strlcpy(kernzone, zonename, sizeof (kernzone));
1965 if (zonecfg_in_alt_root()) {
1966 FILE *fp = zonecfg_open_scratch("", B_FALSE);

1968 if (fp == NULL || zonecfg_find_scratch(fp, zonename,
1969 zonecfg_get_root(), kernzone, sizeof (kernzone)) == -1) {
1970 zerror(gettext("cannot find scratch zone %s"),
1971 zonename);
1972 if (fp != NULL)
1973 zonecfg_close_scratch(fp);
1974 return (1);
1975 }
1976 zonecfg_close_scratch(fp);
1977 }

1979 if ((zoneid = getzoneidbyname(kernzone)) == -1) {
1980 zerror(gettext("failed to get zoneid for zone ’%s’"),

new/usr/src/cmd/zlogin/zlogin.c 5

1981 zonename);
1982 return (1);
1983 }

1985 /*
1986 * We need the zone root path only if we are setting up a pty.
1987 */
1988 if (zone_get_devroot(zonename, devroot, sizeof (devroot)) == -1) {
1989 zerror(gettext("could not get dev path for zone %s"),
1990 zonename);
1991 return (1);
1992 }

1994 if (zone_get_brand(zonename, zonebrand, sizeof (zonebrand)) != Z_OK) {
1995 zerror(gettext("could not get brand for zone %s"), zonename);
1996 return (1);
1997 }
1998 /*
1999 * In the alternate root environment, the only supported
2000 * operations are mount and unmount. In this case, just treat
2001 * the zone as native if it is cluster. Cluster zones can be
2002 * native for the purpose of LU or upgrade, and the cluster
2003 * brand may not exist in the miniroot (such as in net install
2004 * upgrade).
2005 */
2006 if (zonecfg_default_brand(default_brand,
2007 sizeof (default_brand)) != Z_OK) {
2008 zerror(gettext("unable to determine default brand"));
2009 return (1);
2010 }
2011 if (zonecfg_in_alt_root() &&
2012 strcmp(zonebrand, CLUSTER_BRAND_NAME) == 0) {
2013 (void) strlcpy(zonebrand, default_brand, sizeof (zonebrand));
2014 }

2016 if ((bh = brand_open(zonebrand)) == NULL) {
2017 zerror(gettext("could not open brand for zone %s"), zonename);
2018 return (1);
2019 }

2021 if ((new_args = prep_args(bh, login, proc_args)) == NULL) {
2022 zperror(gettext("could not assemble new arguments"));
2023 brand_close(bh);
2024 return (1);
2025 }
2026 /*
2027 * Get the brand specific user_cmd. This command is used to get
2028 * a passwd(4) entry for login.
2029 */
2030 if (!interactive && !failsafe) {
2031 if (zone_get_user_cmd(bh, login, user_cmd,
2032 sizeof (user_cmd)) == NULL) {
2033 zerror(gettext("could not get user_cmd for zone %s"),
2034 zonename);
2035 brand_close(bh);
2036 return (1);
2037 }
2038 }
2039 brand_close(bh);

2041 if ((new_env = prep_env()) == NULL) {
2042 zperror(gettext("could not assemble new environment"));
2043 return (1);
2044 }

2046 if (!interactive)

new/usr/src/cmd/zlogin/zlogin.c 6

2047 return (noninteractive_login(zonename, user_cmd, zoneid,
2048 new_args, new_env));

2050 if (zonecfg_in_alt_root()) {
2051 zerror(gettext("cannot use interactive login with scratch "
2052 "zone"));
2053 return (1);
2054 }

2056 /*
2057 * Things are more complex in interactive mode; we get the
2058 * master side of the pty, then place the user’s terminal into
2059 * raw mode.
2060 */
2061 if (get_master_pty() == -1) {
2062 zerror(gettext("could not setup master pty device"));
2063 return (1);
2064 }

2066 /*
2067 * Compute the "short name" of the pts. /dev/pts/2 --> pts/2
2068 */
2069 if ((slavename = ptsname(masterfd)) == NULL) {
2070 zperror(gettext("failed to get name for pseudo-tty"));
2071 return (1);
2072 }
2073 if (strncmp(slavename, "/dev/", strlen("/dev/")) == 0)
2074 (void) strlcpy(slaveshortname, slavename + strlen("/dev/"),
2075 sizeof (slaveshortname));
2076 else
2077 (void) strlcpy(slaveshortname, slavename,
2078 sizeof (slaveshortname));

2080 if (!quiet)
2081 (void) printf(gettext("[Connected to zone ’%s’ %s]\n"),
2082 zonename, slaveshortname);

2084 if (set_tty_rawmode(STDIN_FILENO) == -1) {
2085 reset_tty();
2086 zperror(gettext("failed to set stdin pty to raw mode"));
2087 return (1);
2088 }

2090 if (prefork_dropprivs() != 0) {
2091 reset_tty();
2092 zperror(gettext("could not allocate privilege set"));
2093 return (1);
2094 }

2096 /*
2097 * We must mask SIGCLD until after we have coped with the fork
2098 * sufficiently to deal with it; otherwise we can race and receive the
2099 * signal before child_pid has been initialized (yes, this really
2100 * happens).
2101 */
2102 (void) sigset(SIGCLD, sigcld);
2103 (void) sigemptyset(&block_cld);
2104 (void) sigaddset(&block_cld, SIGCLD);
2105 (void) sigprocmask(SIG_BLOCK, &block_cld, NULL);

2107 /*
2108 * We activate the contract template at the last minute to
2109 * avoid intermediate functions that could be using fork(2)
2110 * internally.
2111 */
2112 if ((tmpl_fd = init_template()) == -1) {

new/usr/src/cmd/zlogin/zlogin.c 7

2113 reset_tty();
2114 zperror(gettext("could not create contract"));
2115 return (1);
2116 }

2118 if ((child_pid = fork()) == -1) {
2119 (void) ct_tmpl_clear(tmpl_fd);
2120 reset_tty();
2121 zperror(gettext("could not fork"));
2122 return (1);
2123 } else if (child_pid == 0) { /* child process */
2124 int slavefd, newslave;

2126 (void) ct_tmpl_clear(tmpl_fd);
2127 (void) close(tmpl_fd);

2129 (void) sigprocmask(SIG_UNBLOCK, &block_cld, NULL);

2131 if ((slavefd = init_slave_pty(zoneid, devroot)) == -1)
2132 return (1);

2134 /*
2135 * Close all fds except for the slave pty.
2136 */
2137 (void) fdwalk(close_func, &slavefd);

2139 /*
2140 * Temporarily dup slavefd to stderr; that way if we have
2141 * to print out that zone_enter failed, the output will
2142 * have somewhere to go.
2143 */
2144 if (slavefd != STDERR_FILENO)
2145 (void) dup2(slavefd, STDERR_FILENO);

2147 if (zone_enter(zoneid) == -1) {
2148 zerror(gettext("could not enter zone %s: %s"),
2149 zonename, strerror(errno));
2150 return (1);
2151 }

2153 if (slavefd != STDERR_FILENO)
2154 (void) close(STDERR_FILENO);

2156 /*
2157 * We take pains to get this process into a new process
2158 * group, and subsequently a new session. In this way,
2159 * we’ll have a session which doesn’t yet have a controlling
2160 * terminal. When we open the slave, it will become the
2161 * controlling terminal; no PIDs concerning pgrps or sids
2162 * will leak inappropriately into the zone.
2163 */
2164 (void) setpgrp();

2166 /*
2167 * We need the slave pty to be referenced from the zone’s
2168 * /dev in order to ensure that the devt’s, etc are all
2169 * correct. Otherwise we break ttyname and the like.
2170 */
2171 if ((newslave = open(slavename, O_RDWR)) == -1) {
2172 (void) close(slavefd);
2173 return (1);
2174 }
2175 (void) close(slavefd);
2176 slavefd = newslave;

2178 /*

new/usr/src/cmd/zlogin/zlogin.c 8

2179 * dup the slave to the various FDs, so that when the
2180 * spawned process does a write/read it maps to the slave
2181 * pty.
2182 */
2183 (void) dup2(slavefd, STDIN_FILENO);
2184 (void) dup2(slavefd, STDOUT_FILENO);
2185 (void) dup2(slavefd, STDERR_FILENO);
2186 if (slavefd != STDIN_FILENO && slavefd != STDOUT_FILENO &&
2187 slavefd != STDERR_FILENO) {
2188 (void) close(slavefd);
2189 }

2191 /*
2192 * In failsafe mode, we don’t use login(1), so don’t try
2193 * setting up a utmpx entry.
2194 *
2195 * A branded zone may have very different utmpx semantics.
2196 * At the moment, we only have two brand types:
2197 * Solaris-like (native, sn1) and Linux. In the Solaris
2198 * case, we know exactly how to do the necessary utmpx
2199 * setup. Fortunately for us, the Linux /bin/login is
2200 * prepared to deal with a non-initialized utmpx entry, so
2201 * we can simply skip it. If future brands don’t fall into
2202 * either category, we’ll have to add a per-brand utmpx
2203 * setup hook.
2204 #endif /* ! codereview */
2205 */
2206 if (!failsafe && (strcmp(zonebrand, "lx") != 0))
2194 if (!failsafe)
2207 if (setup_utmpx(slaveshortname) == -1)
2208 return (1);

2210 /*
2211 * The child needs to run as root to
2212 * execute the brand’s login program.
2213 */
2214 if (setuid(0) == -1) {
2215 zperror(gettext("insufficient privilege"));
2216 return (1);
2217 }

2219 (void) execve(new_args[0], new_args, new_env);
2220 zperror(gettext("exec failure"));
2221 return (1);
2222 }

2224 (void) ct_tmpl_clear(tmpl_fd);
2225 (void) close(tmpl_fd);

2227 /*
2228 * The rest is only for the parent process.
2229 */
2230 (void) sigset(SIGWINCH, sigwinch);

2232 postfork_dropprivs();

2234 (void) sigprocmask(SIG_UNBLOCK, &block_cld, NULL);
2235 doio(masterfd, -1, masterfd, -1, -1, B_FALSE);

2237 reset_tty();
2238 if (!quiet)
2239 (void) fprintf(stderr,
2240 gettext("\n[Connection to zone ’%s’ %s closed]\n"),
2241 zonename, slaveshortname);

2243 if (pollerr != 0) {

new/usr/src/cmd/zlogin/zlogin.c 9

2244 (void) fprintf(stderr, gettext("Error: connection closed due "
2245 "to unexpected pollevents=0x%x.\n"), pollerr);
2246 return (1);
2247 }

2249 return (0);
2250 }
______unchanged_portion_omitted_

new/usr/src/cmd/zoneadm/svc-zones 1

**
 4592 Tue Jan 14 16:16:55 2014
new/usr/src/cmd/zoneadm/svc-zones
Bring back LX zones.
**

1 #!/sbin/sh
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE

10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright (c) 2004, 2010, Oracle and/or its affiliates. All rights reserved.

25 . /lib/svc/share/smf_include.sh

27 #
28 # Return a list of running, non-global zones for which a shutdown via
29 # "/sbin/init 0" may work (typically only Solaris zones.)
30 #
31 shutdown_zones()
32 {
33 zoneadm list -p | nawk -F: ’{
34 if (($5 != "lx") && ($2 != "global")) {
34 if ($2 != "global") {
35 print $2
36 }
37 }’
38 }

______unchanged_portion_omitted_

new/usr/src/common/brand/lx/lx_signum.c 1

**
 6232 Tue Jan 14 16:16:56 2014
new/usr/src/common/brand/lx/lx_signum.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/signal.h>
28 #include <lx_signum.h>

30 /*
31 * Delivering signals to a Linux process is complicated by differences in
32 * signal numbering, stack structure and contents, and the action taken when a
33 * signal handler exits. In addition, many signal-related structures, such as
34 * sigset_ts, vary between Solaris and Linux.
35 *
36 * The simplest transformation that must be done when sending signals is to
37 * translate between Linux and Solaris signal numbers.
38 *
39 * These are the major signal number differences between Linux and Solaris:
40 *
41 * ====================================
42 * | Number | Linux | Solaris |
43 * | ====== | ========= | ========== |
44 * | 7 | SIGBUS | SIGEMT |
45 * | 10 | SIGUSR1 | SIGBUS |
46 * | 12 | SIGUSR2 | SIGSYS |
47 * | 16 | SIGSTKFLT | SIGUSR1 |
48 * | 17 | SIGCHLD | SIGUSR2 |
49 * | 18 | SIGCONT | SIGCHLD |
50 * | 19 | SIGSTOP | SIGPWR |
51 * | 20 | SIGTSTP | SIGWINCH |
52 * | 21 | SIGTTIN | SIGURG |
53 * | 22 | SIGTTOU | SIGPOLL |
54 * | 23 | SIGURG | SIGSTOP |
55 * | 24 | SIGXCPU | SIGTSTP |
56 * | 25 | SIGXFSZ | SIGCONT |
57 * | 26 | SIGVTALARM | SIGTTIN |
58 * | 27 | SIGPROF | SIGTTOU |
59 * | 28 | SIGWINCH | SIGVTALARM |
60 * | 29 | SIGPOLL | SIGPROF |
61 * | 30 | SIGPWR | SIGXCPU |

new/usr/src/common/brand/lx/lx_signum.c 2

62 * | 31 | SIGSYS | SIGXFSZ |
63 * ====================================
64 *
65 * Not every Linux signal maps to a Solaris signal, nor does every Solaris
66 * signal map to a Linux counterpart. However, when signals do map, the
67 * mapping is unique.
68 *
69 * One mapping issue is that Linux supports 33 real time signals, with SIGRTMIN
70 * typically starting at or near 32 (SIGRTMIN) and proceeding to 64 (SIGRTMAX)
71 * (SIGRTMIN is "at or near" 32 because glibc usually "steals" one ore more of
72 * these signals for its own internal use, adjusting SIGRTMIN and SIGRTMAX as
73 * needed.) Conversely, Solaris actively uses signals 32-40 for other purposes
74 * and supports exactly 32 real time signals, in the range 41 (SIGRTMIN)
75 * to 72 (SIGRTMAX).
76 *
77 * At present, attempting to translate a Linux signal equal to 63
78 * will generate an error (we allow SIGRTMAX because a program
79 * should be able to send SIGRTMAX without getting an EINVAL, though obviously
80 * anything that loops through the signals from SIGRTMIN to SIGRTMAX will
81 * fail.)
82 *
83 * Similarly, attempting to translate a native Solaris signal in the range
84 * 32-40 will also generate an error as we don’t want to support the receipt of
85 * those signals from the Solaris global zone.
86 */

88 /*
89 * Linux to Solaris signal map
90 *
91 * Usage: solaris_signal = ltos_signum[lx_signal];
92 */
93 const int
94 ltos_signo[LX_NSIG] = {
95 0,
96 SIGHUP,
97 SIGINT,
98 SIGQUIT,
99 SIGILL,
100 SIGTRAP,
101 SIGABRT,
102 SIGBUS,
103 SIGFPE,
104 SIGKILL,
105 SIGUSR1,
106 SIGSEGV,
107 SIGUSR2,
108 SIGPIPE,
109 SIGALRM,
110 SIGTERM,
111 SIGEMT, /* 16: Linux SIGSTKFLT; use Solaris SIGEMT */
112 SIGCHLD,
113 SIGCONT,
114 SIGSTOP,
115 SIGTSTP,
116 SIGTTIN,
117 SIGTTOU,
118 SIGURG,
119 SIGXCPU,
120 SIGXFSZ,
121 SIGVTALRM,
122 SIGPROF,
123 SIGWINCH,
124 SIGPOLL,
125 SIGPWR,
126 SIGSYS,
127 _SIGRTMIN, /* 32: Linux SIGRTMIN */

new/usr/src/common/brand/lx/lx_signum.c 3

128 _SIGRTMIN + 1,
129 _SIGRTMIN + 2,
130 _SIGRTMIN + 3,
131 _SIGRTMIN + 4,
132 _SIGRTMIN + 5,
133 _SIGRTMIN + 6,
134 _SIGRTMIN + 7,
135 _SIGRTMIN + 8,
136 _SIGRTMIN + 9,
137 _SIGRTMIN + 10,
138 _SIGRTMIN + 11,
139 _SIGRTMIN + 12,
140 _SIGRTMIN + 13,
141 _SIGRTMIN + 14,
142 _SIGRTMIN + 15,
143 _SIGRTMIN + 16,
144 _SIGRTMIN + 17,
145 _SIGRTMIN + 18,
146 _SIGRTMIN + 19,
147 _SIGRTMIN + 20,
148 _SIGRTMIN + 21,
149 _SIGRTMIN + 22,
150 _SIGRTMIN + 23,
151 _SIGRTMIN + 24,
152 _SIGRTMIN + 25,
153 _SIGRTMIN + 26,
154 _SIGRTMIN + 27,
155 _SIGRTMIN + 28,
156 _SIGRTMIN + 29,
157 _SIGRTMIN + 30,
158 -1, /* 63: Linux SIGRTMIN + 31, or SIGRTMAX - 1 */
159 _SIGRTMAX, /* 64: Linux SIGRTMAX */
160 };

162 /*
163 * Solaris to Linux signal map
164 *
165 * Usage: lx_signal = stol_signo[solaris_signal];
166 */
167 const int
168 stol_signo[NSIG] = {
169 0,
170 LX_SIGHUP,
171 LX_SIGINT,
172 LX_SIGQUIT,
173 LX_SIGILL,
174 LX_SIGTRAP,
175 LX_SIGABRT,
176 LX_SIGSTKFLT, /* 7: Solaris SIGEMT; use for LX_SIGSTKFLT */
177 LX_SIGFPE,
178 LX_SIGKILL,
179 LX_SIGBUS,
180 LX_SIGSEGV,
181 LX_SIGSYS,
182 LX_SIGPIPE,
183 LX_SIGALRM,
184 LX_SIGTERM,
185 LX_SIGUSR1,
186 LX_SIGUSR2,
187 LX_SIGCHLD,
188 LX_SIGPWR,
189 LX_SIGWINCH,
190 LX_SIGURG,
191 LX_SIGPOLL,
192 LX_SIGSTOP,
193 LX_SIGTSTP,

new/usr/src/common/brand/lx/lx_signum.c 4

194 LX_SIGCONT,
195 LX_SIGTTIN,
196 LX_SIGTTOU,
197 LX_SIGVTALRM,
198 LX_SIGPROF,
199 LX_SIGXCPU,
200 LX_SIGXFSZ,
201 -1, /* 32: Solaris SIGWAITING */
202 -1, /* 33: Solaris SIGLWP */
203 -1, /* 34: Solaris SIGFREEZE */
204 -1, /* 35: Solaris SIGTHAW */
205 -1, /* 36: Solaris SIGCANCEL */
206 -1, /* 37: Solaris SIGLOST */
207 -1, /* 38: Solaris SIGXRES */
208 -1, /* 39: Solaris SIGJVM1 */
209 -1, /* 40: Solaris SIGJVM2 */
210 LX_SIGRTMIN, /* 41: Solaris _SIGRTMIN */
211 LX_SIGRTMIN + 1,
212 LX_SIGRTMIN + 2,
213 LX_SIGRTMIN + 3,
214 LX_SIGRTMIN + 4,
215 LX_SIGRTMIN + 5,
216 LX_SIGRTMIN + 6,
217 LX_SIGRTMIN + 7,
218 LX_SIGRTMIN + 8,
219 LX_SIGRTMIN + 9,
220 LX_SIGRTMIN + 10,
221 LX_SIGRTMIN + 11,
222 LX_SIGRTMIN + 12,
223 LX_SIGRTMIN + 13,
224 LX_SIGRTMIN + 14,
225 LX_SIGRTMIN + 15,
226 LX_SIGRTMIN + 16,
227 LX_SIGRTMIN + 17,
228 LX_SIGRTMIN + 18,
229 LX_SIGRTMIN + 19,
230 LX_SIGRTMIN + 20,
231 LX_SIGRTMIN + 21,
232 LX_SIGRTMIN + 22,
233 LX_SIGRTMIN + 23,
234 LX_SIGRTMIN + 24,
235 LX_SIGRTMIN + 25,
236 LX_SIGRTMIN + 26,
237 LX_SIGRTMIN + 27,
238 LX_SIGRTMIN + 28,
239 LX_SIGRTMIN + 29,
240 LX_SIGRTMIN + 30,
241 LX_SIGRTMAX, /* 72: Solaris _SIGRTMAX */
242 };
243 #endif /* ! codereview */

new/usr/src/common/brand/lx/lx_signum.h 1

**
 2055 Tue Jan 14 16:16:56 2014
new/usr/src/common/brand/lx/lx_signum.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _LX_SIGNUM_H
27 #define _LX_SIGNUM_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #define LX_SIGHUP 1
36 #define LX_SIGINT 2
37 #define LX_SIGQUIT 3
38 #define LX_SIGILL 4
39 #define LX_SIGTRAP 5
40 #define LX_SIGABRT 6
41 #define LX_SIGIOT 6
42 #define LX_SIGBUS 7
43 #define LX_SIGFPE 8
44 #define LX_SIGKILL 9
45 #define LX_SIGUSR1 10
46 #define LX_SIGSEGV 11
47 #define LX_SIGUSR2 12
48 #define LX_SIGPIPE 13
49 #define LX_SIGALRM 14
50 #define LX_SIGTERM 15
51 #define LX_SIGSTKFLT 16
52 #define LX_SIGCHLD 17
53 #define LX_SIGCONT 18
54 #define LX_SIGSTOP 19
55 #define LX_SIGTSTP 20
56 #define LX_SIGTTIN 21
57 #define LX_SIGTTOU 22
58 #define LX_SIGURG 23
59 #define LX_SIGXCPU 24
60 #define LX_SIGXFSZ 25
61 #define LX_SIGVTALRM 26

new/usr/src/common/brand/lx/lx_signum.h 2

62 #define LX_SIGPROF 27
63 #define LX_SIGWINCH 28
64 #define LX_SIGIO 29
65 #define LX_SIGPOLL LX_SIGIO
66 #define LX_SIGPWR 30
67 #define LX_SIGSYS 31
68 #define LX_SIGUNUSED 31

70 #define LX_NSIG_WORDS 2
71 #define LX_NBPW 32
72 #define LX_NSIG ((LX_NBPW * LX_NSIG_WORDS) + 1)

74 #define LX_SIGRTMIN 32
75 #define LX_SIGRTMAX LX_NSIG - 1

77 extern const int ltos_signo[];
78 extern const int stol_signo[];

80 #ifdef __cplusplus
81 }
82 #endif

84 #endif /* _LX_SIGNUM_H */
85 #endif /* ! codereview */

new/usr/src/head/regexp.h 1

**
 10059 Tue Jan 14 16:16:56 2014
new/usr/src/head/regexp.h
LX zone support should now build and packages of relevance produced.
**
______unchanged_portion_omitted_

357 int
358 #ifdef __STDC__
359 advance(const char *lp, const char *ep)
360 #else
361 advance(lp, ep)
362 register char *lp, *ep;
363 #endif
364 {
365 #ifdef __STDC__
366 const char *curlp;
367 #else
368 register char *curlp;
369 #endif
370 int c;
371 char *bbeg;
372 register char neg;
373 size_t ct;

375 for (;;) {
376 neg = 0;
377 switch (*ep++) {

379 case CCHR:
380 if (*ep++ == *lp++)
381 continue;
382 return (0);
383 /*FALLTHRU*/

385 case CDOT:
386 if (*lp++)
387 continue;
388 return (0);
389 /*FALLTHRU*/

391 case CDOL:
392 if (*lp == 0)
393 continue;
394 return (0);
395 /*FALLTHRU*/

397 case CCEOF:
398 loc2 = (char *)lp;
399 return (1);
400 /*FALLTHRU*/

402 case CXCL:
403 c = (unsigned char)*lp++;
404 if (ISTHERE(c)) {
405 ep += 32;
406 continue;
407 }
408 return (0);
409 /*FALLTHRU*/

411 case NCCL:
412 neg = 1;
413 /*FALLTHRU*/

415 case CCL:

new/usr/src/head/regexp.h 2

416 c = *lp++;
417 if (((c & 0200) == 0 && ISTHERE(c)) ^ neg) {
418 ep += 16;
419 continue;
420 }
421 return (0);
422 /*FALLTHRU*/

424 case CBRA:
425 braslist[(int)*ep++] = (char *)lp;
425 braslist[*ep++] = (char *)lp;
426 continue;
427 /*FALLTHRU*/

429 case CKET:
430 braelist[(int)*ep++] = (char *)lp;
430 braelist[*ep++] = (char *)lp;
431 continue;
432 /*FALLTHRU*/

434 case CCHR | RNGE:
435 c = *ep++;
436 getrnge(ep);
437 while (low--)
438 if (*lp++ != c)
439 return (0);
440 curlp = lp;
441 while (size--)
442 if (*lp++ != c)
443 break;
444 if (size < 0)
445 lp++;
446 ep += 2;
447 goto star;
448 /*FALLTHRU*/

450 case CDOT | RNGE:
451 getrnge(ep);
452 while (low--)
453 if (*lp++ == ’\0’)
454 return (0);
455 curlp = lp;
456 while (size--)
457 if (*lp++ == ’\0’)
458 break;
459 if (size < 0)
460 lp++;
461 ep += 2;
462 goto star;
463 /*FALLTHRU*/

465 case CXCL | RNGE:
466 getrnge(ep + 32);
467 while (low--) {
468 c = (unsigned char)*lp++;
469 if (!ISTHERE(c))
470 return (0);
471 }
472 curlp = lp;
473 while (size--) {
474 c = (unsigned char)*lp++;
475 if (!ISTHERE(c))
476 break;
477 }
478 if (size < 0)
479 lp++;

new/usr/src/head/regexp.h 3

480 ep += 34; /* 32 + 2 */
481 goto star;
482 /*FALLTHRU*/

484 case NCCL | RNGE:
485 neg = 1;
486 /*FALLTHRU*/

488 case CCL | RNGE:
489 getrnge(ep + 16);
490 while (low--) {
491 c = *lp++;
492 if (((c & 0200) || !ISTHERE(c)) ^ neg)
493 return (0);
494 }
495 curlp = lp;
496 while (size--) {
497 c = *lp++;
498 if (((c & 0200) || !ISTHERE(c)) ^ neg)
499 break;
500 }
501 if (size < 0)
502 lp++;
503 ep += 18; /* 16 + 2 */
504 goto star;
505 /*FALLTHRU*/

507 case CBACK:
508 bbeg = braslist[(int)*ep];
509 ct = braelist[(int)*ep++] - bbeg;
508 bbeg = braslist[*ep];
509 ct = braelist[*ep++] - bbeg;

511 if (ecmp(bbeg, lp, ct)) {
512 lp += ct;
513 continue;
514 }
515 return (0);
516 /*FALLTHRU*/

518 case CBACK | STAR:
519 bbeg = braslist[(int)*ep];
520 ct = braelist[(int)*ep++] - bbeg;
519 bbeg = braslist[*ep];
520 ct = braelist[*ep++] - bbeg;
521 curlp = lp;
522 while (ecmp(bbeg, lp, ct))
523 lp += ct;

525 while (lp >= curlp) {
526 if (advance(lp, ep))
527 return (1);
528 lp -= ct;
529 }
530 return (0);
531 /*FALLTHRU*/

533 case CDOT | STAR:
534 curlp = lp;
535 while (*lp++);
536 goto star;
537 /*FALLTHRU*/

539 case CCHR | STAR:
540 curlp = lp;
541 while (*lp++ == *ep);

new/usr/src/head/regexp.h 4

542 ep++;
543 goto star;
544 /*FALLTHRU*/

546 case CXCL | STAR:
547 curlp = lp;
548 do {
549 c = (unsigned char)*lp++;
550 } while (ISTHERE(c));
551 ep += 32;
552 goto star;
553 /*FALLTHRU*/

555 case NCCL | STAR:
556 neg = 1;
557 /*FALLTHRU*/

559 case CCL | STAR:
560 curlp = lp;
561 do {
562 c = *lp++;
563 } while (((c & 0200) == 0 && ISTHERE(c)) ^ neg);
564 ep += 16;
565 goto star;
566 /*FALLTHRU*/

568 star:
569 do {
570 if (--lp == locs)
571 break;
572 if (advance(lp, ep))
573 return (1);
574 } while (lp > curlp);
575 return (0);

577 }
578 }
579 /*NOTREACHED*/
580 }

______unchanged_portion_omitted_

new/usr/src/lib/brand/Makefile 1

**
 1471 Tue Jan 14 16:16:56 2014
new/usr/src/lib/brand/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 #
24 # lib/brand/Makefile
25 #
26 # include global definitions
27 include ../../Makefile.master

29 #
30 # Build everything in parallel; use .WAIT for dependencies
31 .PARALLEL:

33 i386_SUBDIRS= lx
34 i386_MSGSUBDIRS= lx

36 #endif /* ! codereview */
37 SUBDIRS= shared .WAIT sn1 solaris10 ipkg labeled $($(MACH)_SUBDIRS)
38 MSGSUBDIRS= solaris10 shared $($(MACH)_MSGSUBDIRS)

40 all := TARGET= all
41 install := TARGET= install
42 clean := TARGET= clean
43 clobber := TARGET= clobber
44 lint := TARGET= lint
45 _msg := TARGET= _msg

47 .KEEP_STATE:

49 all install clean clobber lint: $(SUBDIRS)

51 _msg: $(MSGSUBDIRS)

53 $(SUBDIRS): FRC
54 @cd $@; pwd; $(MAKE) $(TARGET)

56 FRC:

new/usr/src/lib/brand/lx/Makefile 1

**
 1443 Tue Jan 14 16:16:57 2014
new/usr/src/lib/brand/lx/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 default: all

31 include Makefile.lx

33 # Build everything in parallel; use .WAIT for dependencies
34 .PARALLEL:

36 SUBDIRS= cmd librtld_db lx_support lx_brand lx_thunk netfiles zone \
37 .WAIT lx_nametoaddr
38 MSGSUBDIRS= lx_brand lx_support zone

40 all := TARGET= all
41 install := TARGET= install
42 clean := TARGET= clean
43 clobber := TARGET= clobber
44 lint := TARGET= lint
45 _msg := TARGET= _msg

47 .KEEP_STATE:

49 all install clean clobber lint: $(SUBDIRS)

51 _msg: $(MSGSUBDIRS)

53 $(SUBDIRS): FRC
54 @cd $@; pwd; $(MAKE) $(TARGET)

56 FRC:
57 #endif /* ! codereview */

new/usr/src/lib/brand/lx/Makefile.lx 1

**
 1042 Tue Jan 14 16:16:57 2014
new/usr/src/lib/brand/lx/Makefile.lx
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # ident "%Z%%M% %I% %E% SMI"
26 #
27 # lib/brand/lx/Makefile.lx
28 #
29 # include global definitions

31 BRAND= lx

33 include $(SRC)/lib/brand/Makefile.brand

35 #endif /* ! codereview */

new/usr/src/lib/brand/lx/cmd/Makefile 1

**
 1212 Tue Jan 14 16:16:57 2014
new/usr/src/lib/brand/lx/cmd/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 #ident "%Z%%M% %I% %E% SMI"

28 PROGS = lx_lockd lx_native lx_statd lx_thunk

30 include ../Makefile.lx

32 # override the install directory
33 ROOTBIN = $(ROOTBRANDDIR)
34 CLOBBERFILES = $(ROOTPROGS)

36 .KEEP_STATE:

38 lint:

40 all: $(PROGS)

42 install: all $(ROOTPROGS)

44 clean:
45 $(RM) $(PROGS)

47 clobber: clean
48 $(RM) $(ROOTPROGS)
49 #endif /* ! codereview */

new/usr/src/lib/brand/lx/cmd/lx_lockd.sh 1

**
 1172 Tue Jan 14 16:16:57 2014
new/usr/src/lib/brand/lx/cmd/lx_lockd.sh
Bring back LX zones.
**

1 #!/bin/sh
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # ident "%Z%%M% %I% %E% SMI"
28 #

30 LD_LIBRARY_PATH=/usr/lib/brand/lx
31 LD_PRELOAD=/native/usr/lib/brand/lx/lx_thunk.so.1
32 LD_BIND_NOW=1
33 export LD_LIBRARY_PATH LD_PRELOAD LD_BIND_NOW

35 exec /native/usr/lib/brand/lx/lx_native \
36 /native/usr/lib/nfs/lockd -P -U 29 -G 29
37 #endif /* ! codereview */

new/usr/src/lib/brand/lx/cmd/lx_native.sh 1

**
 949 Tue Jan 14 16:16:57 2014
new/usr/src/lib/brand/lx/cmd/lx_native.sh
Bring back LX zones.
**

1 #!/bin/sh
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # ident "%Z%%M% %I% %E% SMI"
28 #
29 exit 0
30 #endif /* ! codereview */

new/usr/src/lib/brand/lx/cmd/lx_statd.sh 1

**
 1172 Tue Jan 14 16:16:58 2014
new/usr/src/lib/brand/lx/cmd/lx_statd.sh
Bring back LX zones.
**

1 #!/bin/sh
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # ident "%Z%%M% %I% %E% SMI"
28 #

30 LD_LIBRARY_PATH=/usr/lib/brand/lx
31 LD_PRELOAD=/native/usr/lib/brand/lx/lx_thunk.so.1
32 LD_BIND_NOW=1
33 export LD_LIBRARY_PATH LD_PRELOAD LD_BIND_NOW

35 exec /native/usr/lib/brand/lx/lx_native \
36 /native/usr/lib/nfs/statd -P -U 29 -G 29
37 #endif /* ! codereview */

new/usr/src/lib/brand/lx/cmd/lx_thunk.sh 1

**
 981 Tue Jan 14 16:16:58 2014
new/usr/src/lib/brand/lx/cmd/lx_thunk.sh
Bring back LX zones.
**

1 #!/bin/sh
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #

23 #
24 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # ident "%Z%%M% %I% %E% SMI"
28 #
29 exec /native/usr/lib/brand/lx/lx_thunk
30 #endif /* ! codereview */

new/usr/src/lib/brand/lx/librtld_db/Makefile 1

**
 1371 Tue Jan 14 16:16:58 2014
new/usr/src/lib/brand/lx/librtld_db/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 default: all

31 include $(SRC)/lib/Makefile.lib

33 SUBDIRS = $(MACH)
34 $(BUILD64)SUBDIRS += $(MACH64)

36 LINT_SUBDIRS= $(MACH)
37 $(BUILD64)LINT_SUBDIRS += $(MACH64)

39 all := TARGET= all
40 clean := TARGET= clean
41 clobber := TARGET= clobber
42 install := TARGET= install
43 lint := TARGET= lint

45 .KEEP_STATE:

47 all install clean clobber: $(SUBDIRS)

49 lint: $(LINT_SUBDIRS)

51 $(SUBDIRS): FRC
52 @cd $@; pwd; $(MAKE) $(TARGET)

54 FRC:
55 #endif /* ! codereview */

new/usr/src/lib/brand/lx/librtld_db/Makefile.com 1

**
 2453 Tue Jan 14 16:16:58 2014
new/usr/src/lib/brand/lx/librtld_db/Makefile.com
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 LIBRARY = lx_librtld_db.a
30 VERS = .1
31 COBJS = lx_librtld_db.o
32 OBJECTS = $(COBJS) $(COBJS64)

34 include $(SRC)/lib/Makefile.lib
35 include ../../Makefile.lx

37 CSRCS = $(COBJS:%o=../common/%c)
38 SRCS = $(CSRCS)

40 SRCDIR = ../common
41 UTSBASE = $(SRC)/uts

43 #
44 # ATTENTION:
45 # Librtl_db brand plugin libraries should NOT directly invoke any
46 # libproc.so interfaces or be linked against libproc. If a librtl_db
47 # brand plugin library uses libproc.so interfaces then it may break
48 # any other librtld_db consumers (like mdb) that tries to attach
49 # to a branded process. The only safe interfaces that the a librtld_db
50 # brand plugin library can use to access a target process are the
51 # proc_service(3PROC) apis.
52 #
53 DYNFLAGS += $(VERSREF) -M../common/mapfile-vers
54 LIBS = $(DYNLIB)
55 LDLIBS += -lc -lrtld_db
56 CFLAGS += $(CCVERBOSE)
57 CPPFLAGS += -D_REENTRANT -I../ -I$(UTSBASE)/common/brand/lx \
58 -I$(SRC)/cmd/sgs/librtld_db/common \
59 -I$(SRC)/cmd/sgs/include \
60 -I$(SRC)/cmd/sgs/include/$(MACH)

new/usr/src/lib/brand/lx/librtld_db/Makefile.com 2

62 ROOTLIBDIR = $(ROOT)/usr/lib/brand/lx
63 ROOTLIBDIR64 = $(ROOT)/usr/lib/brand/lx/$(MACH64)

65 #
66 # The top level Makefiles define define TEXT_DOMAIN. But librtld_db.so.1
67 # isn’t internationalized and this library won’t be either. The only
68 # messages that this library can generate are messages used for debugging
69 # the operation of the library itself.
70 #
71 DTEXTDOM =

73 .KEEP_STATE:

75 all: $(LIBS)

77 lint: lintcheck

79 pics/%64.o: ../common/%.c
80 $(COMPILE.c) -D_ELF64 $(PICFLAGS) -o $@ $<
81 $(POST_PROCESS_O)

83 include $(SRC)/lib/Makefile.targ
84 #endif /* ! codereview */

new/usr/src/lib/brand/lx/librtld_db/amd64/Makefile 1

**
 1119 Tue Jan 14 16:16:58 2014
new/usr/src/lib/brand/lx/librtld_db/amd64/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 COBJS64 = lx_librtld_db64.o

31 include ../Makefile.com
32 include $(SRC)/lib/Makefile.lib.64

34 DYNFLAGS += -Mmapfile-vers

36 CLOBBERFILES = $(ROOTLIBDIR64)/$(DYNLIB)

38 install: all $(ROOTLIBS64)
39 #endif /* ! codereview */

new/usr/src/lib/brand/lx/librtld_db/amd64/mapfile-vers 1

**
 1304 Tue Jan 14 16:16:59 2014
new/usr/src/lib/brand/lx/librtld_db/amd64/mapfile-vers
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # MAPFILE HEADER START
29 #
30 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
31 # Object versioning must comply with the rules detailed in
32 #
33 # usr/src/lib/README.mapfiles
34 #
35 # You should not be making modifications here until you’ve read the most current
36 # copy of that file. If you need help, contact a gatekeeper for guidance.
37 #
38 # MAPFILE HEADER END
39 #

41 SUNWprivate_1.1 {
42 global:
43 rtld_db_brand_ops64;
44 };
45 #endif /* ! codereview */

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 1

**
 17226 Tue Jan 14 16:16:59 2014
new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <stdio.h>
29 #include <stdlib.h>
30 #include <string.h>
31 #include <strings.h>
32 #include <sys/types.h>
33 #include <sys/link.h>
34 #include <libproc.h>
35 #include <proc_service.h>
36 #include <rtld_db.h>
37 #include <synch.h>

39 #include <sys/lx_brand.h>

41 /*
42 * ATTENTION:
43 * Librtl_db brand plugin libraries should NOT directly invoke any
44 * libproc.so interfaces or be linked against libproc. If a librtl_db
45 * brand plugin library uses libproc.so interfaces then it may break
46 * any other librtld_db consumers (like mdb) that tries to attach
47 * to a branded process. The only safe interfaces that the a librtld_db
48 * brand plugin library can use to access a target process are the
49 * proc_service(3PROC) apis.
50 */

52 /*
53 * M_DATA comes from some streams header file but is also redifined in
54 * _rtld_db.h, so nuke the old streams definition here.
55 */
56 #ifdef M_DATA
57 #undef M_DATA
58 #endif /* M_DATA */

60 /*

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 2

61 * For 32-bit versions of this library, this file get’s compiled once.
62 * For 64-bit versions of this library, this file get’s compiled twice,
63 * once with _ELF64 defined and once without. The expectation is that
64 * the 64-bit version of the library can properly deal with both 32-bit
65 * and 64-bit elf files, hence in the 64-bit library there are two copies
66 * of all the interfaces in this file, one set named *32 and one named *64.
67 *
68 * This also means that we need to be careful when declaring local pointers
69 * that point to objects in another processes address space, since these
70 * pointers may not match the current processes pointer width. Basically,
71 * we should avoid using data types that change size between 32 and 64 bit
72 * modes like: long, void *, uintprt_t, caddr_t, psaddr_t, size_t, etc.
73 * Instead we should declare all pointers as uint32_t. Then when we
74 * are compiled to deal with 64-bit targets we’ll re-define uint32_t
75 * to be a uint64_t.
76 *
77 * Finally, one last importante note. All the 64-bit elf file code
78 * is never used and can’t be tested. This is because we don’t actually
79 * support 64-bit Linux processes yet. The reason that we have it here
80 * is because we want to support debugging 32-bit elf targets with the
81 * 64-bit version of this library, so we need to have a 64-bit version
82 * of this library. But a 64-bit version of this library is expected
83 * to provide debugging interfaces for both 32 and 64-bit elf targets.
84 * So we provide the 64-bit elf target interfaces, but they will never
85 * be invoked and are untested. If we ever add support for 64-bit elf
86 * Linux processes, we’ll need to verify that this code works correctly
87 * for those targets.
88 */
89 #ifdef _LP64
90 #ifdef _ELF64
91 #define lx_ldb_get_dyns32 lx_ldb_get_dyns64
92 #define lx_ldb_init32 lx_ldb_init64
93 #define lx_ldb_fini32 lx_ldb_fini64
94 #define lx_ldb_loadobj_iter32 lx_ldb_loadobj_iter64
95 #define lx_ldb_getauxval32 lx_ldb_getauxval64
96 #define lx_elf_props32 lx_elf_props64
97 #define _rd_get_dyns32 _rd_get_dyns64
98 #define _rd_get_ehdr32 _rd_get_ehdr64
99 #define uint32_t uint64_t
100 #define Elf32_Dyn Elf64_Dyn
101 #define Elf32_Ehdr Elf64_Ehdr
102 #define Elf32_Phdr Elf64_Phdr
103 #endif /* _ELF64 */
104 #endif /* _LP64 */

106 /* Included from usr/src/cmd/sgs/librtld_db/common */
107 #include <_rtld_db.h>

109 typedef struct lx_rd {
110 rd_agent_t *lr_rap;
111 struct ps_prochandle *lr_php; /* proc handle pointer */
112 uint32_t lr_rdebug; /* address of lx r_debug */
113 uint32_t lr_exec; /* base address of executable */
114 } lx_rd_t;

116 typedef struct lx_link_map {
117 uint32_t lxm_addr; /* Base address shared object is loaded at. */
118 uint32_t lxm_name; /* Absolute file name object was found in. */
119 uint32_t lxm_ld; /* Dynamic section of the shared object. */
120 uint32_t lxm_next; /* Chain of loaded objects. */
121 } lx_link_map_t;

123 typedef struct lx_r_debug {
124 int r_version; /* Version number for this protocol. */
125 uint32_t r_map; /* Head of the chain of loaded objects. */

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 3

127 /*
128 * This is the address of a function internal to the run-time linker,
129 * that will always be called when the linker begins to map in a
130 * library or unmap it, and again when the mapping change is complete.
131 * The debugger can set a breakpoint at this address if it wants to
132 * notice shared object mapping changes.
133 */
134 uint32_t r_brk;
135 r_state_e r_state; /* defined the same way between lx/solaris */
136 uint32_t r_ldbase; /* Base address the linker is loaded at. */
137 } lx_r_debug_t;

139 static uint32_t
140 lx_ldb_getauxval32(struct ps_prochandle *php, int type)
141 {
142 const auxv_t *auxvp = NULL;

144 if (ps_pauxv(php, &auxvp) != PS_OK)
145 return ((uint32_t)-1);

147 while (auxvp->a_type != AT_NULL) {
148 if (auxvp->a_type == type)
149 return ((uint32_t)(uintptr_t)auxvp->a_un.a_ptr);
150 auxvp++;
151 }
152 return ((uint32_t)-1);
153 }

155 /*
156 * A key difference between the linux linker and ours’ is that the linux
157 * linker adds the base address of segments to certain values in the
158 * segments’ ELF header. As an example, look at the address of the
159 * DT_HASH hash table in a Solaris section - it is a relative address
160 * which locates the start of the hash table, relative to the beginning
161 * of the ELF file. However, when the linux linker loads a section, it
162 * modifies the in-memory ELF image by changing address of the hash
163 * table to be an absolute address. This is only done for libraries - not for
164 * executables.
165 *
166 * Solaris tools expect the relative address to remain relative, so
167 * here we will modify the in-memory ELF image so that it once again
168 * contains relative addresses.
169 *
170 * To accomplish this, we walk through all sections in the target.
171 * Linux sections are identified by pointing to the linux linker or libc in the
172 * DT_NEEDED section. For all matching sections, we subtract the segment
173 * base address to get back to relative addresses.
174 */
175 static rd_err_e
176 lx_ldb_get_dyns32(rd_helper_data_t rhd,
177 psaddr_t addr, void **dynpp, size_t *dynpp_sz)
178 {
179 lx_rd_t *lx_rd = (lx_rd_t *)rhd;
180 rd_agent_t *rap = lx_rd->lr_rap;
181 Elf32_Ehdr ehdr;
182 Elf32_Dyn *dynp = NULL;
183 size_t dynp_sz;
184 uint_t ndyns;
185 int i;

187 ps_plog("lx_ldb_get_dyns: invoked for object at 0x%p", addr);

189 /* Read in a copy of the ehdr */
190 if (_rd_get_ehdr32(rap, addr, &ehdr, NULL) != RD_OK) {
191 ps_plog("lx_ldb_get_dyns: _rd_get_ehdr() failed");
192 return (RD_ERR);

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 4

193 }

195 /* read out the PT_DYNAMIC elements for this object */
196 if (_rd_get_dyns32(rap, addr, &dynp, &dynp_sz) != RD_OK) {
197 ps_plog("lx_ldb_get_dyns: _rd_get_dyns() failed");
198 return (RD_ERR);
199 }

201 /*
202 * From here on out if we encounter an error we’ll just return
203 * success and pass back the unmolested dynamic elements that
204 * we’ve already obtained.
205 */
206 *dynpp = dynp;
207 *dynpp_sz = dynp_sz;
208 ndyns = dynp_sz / sizeof (Elf32_Dyn);

210 /* If this isn’t a dynamic object, there’s nothing left todo */
211 if (ehdr.e_type != ET_DYN) {
212 ps_plog("lx_ldb_get_dyns: done: not a shared object");
213 return (RD_OK);
214 }

216 /*
217 * Before we blindly start changing dynamic section addresses
218 * we need to figure out if the current object that we’re looking
219 * at is a linux object or a solaris object. To do this first
220 * we need to find the string tab dynamic section element.
221 */
222 for (i = 0; i < ndyns; i++) {
223 if (dynp[i].d_tag == DT_STRTAB)
224 break;
225 }
226 if (i == ndyns) {
227 ps_plog("lx_ldb_get_dyns: "
228 "failed to find string tab in the dynamic section");
229 return (RD_OK);
230 }

232 /*
233 * Check if the strtab value looks like an offset or an address.
234 * It’s an offset if the value is less then the base address that
235 * the object is loaded at, or if the value is less than the offset
236 * of the section headers in the same elf object. This check isn’t
237 * perfect, but in practice it’s good enough.
238 */
239 if ((dynp[i].d_un.d_ptr < addr) ||
240 (dynp[i].d_un.d_ptr < ehdr.e_shoff)) {
241 ps_plog("lx_ldb_get_dyns: "
242 "doesn’t appear to be an lx object");
243 return (RD_OK);
244 }

246 /*
247 * This seems to be a a linux object, so we’ll patch up the dynamic
248 * section addresses
249 */
250 ps_plog("lx_ldb_get_dyns: "
251 "patching up lx object dynamic section addresses");
252 for (i = 0; i < ndyns; i++) {
253 switch (dynp[i].d_tag) {
254 case DT_PLTGOT:
255 case DT_HASH:
256 case DT_STRTAB:
257 case DT_SYMTAB:
258 case DT_RELA:

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 5

259 case DT_REL:
260 case DT_DEBUG:
261 case DT_JMPREL:
262 case DT_VERSYM:
263 if (dynp[i].d_un.d_val > addr) {
264 dynp[i].d_un.d_ptr -= addr;
265 }
266 break;
267 default:
268 break;
269 }
270 }
271 return (RD_OK);
272 }

274 static void
275 lx_ldb_fini32(rd_helper_data_t rhd)
276 {
277 lx_rd_t *lx_rd = (lx_rd_t *)rhd;
278 ps_plog("lx_ldb_fini: cleaning up lx helper");
279 free(lx_rd);
280 }

282 /*
283 * The linux linker has an r_debug structure somewhere in its data section that
284 * contains the address of the head of the link map list. To find this, we will
285 * use the DT_DEBUG token in the executable’s dynamic section. The linux linker
286 * wrote the address of its r_debug structure to the DT_DEBUG dynamic entry. We
287 * get the address of the executable’s program headers from the
288 * AT_SUN_BRAND_LX_PHDR aux vector entry. From there, we calculate the
289 * address of the Elf header, and from there we can easily get to the DT_DEBUG
290 * entry.
291 */
292 static rd_helper_data_t
293 lx_ldb_init32(rd_agent_t *rap, struct ps_prochandle *php)
294 {
295 lx_rd_t *lx_rd;
296 uint32_t addr, phdr_addr, dyn_addr;
297 Elf32_Dyn *dyn;
298 Elf32_Phdr phdr, *ph, *phdrs;
299 Elf32_Ehdr ehdr;
300 int i, dyn_count;

302 lx_rd = calloc(sizeof (lx_rd_t), 1);
303 if (lx_rd == NULL) {
304 ps_plog("lx_ldb_init: cannot allocate memory");
305 return (NULL);
306 }
307 lx_rd->lr_rap = rap;
308 lx_rd->lr_php = php;

310 phdr_addr = lx_ldb_getauxval32(php, AT_SUN_BRAND_LX_PHDR);
311 if (phdr_addr == (uint32_t)-1) {
312 ps_plog("lx_ldb_init: no LX_PHDR found in aux vector");
313 return (NULL);
314 }
315 ps_plog("lx_ldb_init: found LX_PHDR auxv phdr at: 0x%p",
316 phdr_addr);

318 if (ps_pread(php, phdr_addr, &phdr, sizeof (phdr)) != PS_OK) {
319 ps_plog("lx_ldb_init: couldn’t read phdr at 0x%p",
320 phdr_addr);
321 free(lx_rd);
322 return (NULL);
323 }

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 6

325 /* The ELF headher should be before the program header in memory */
326 lx_rd->lr_exec = addr = phdr_addr - phdr.p_offset;
327 if (ps_pread(php, addr, &ehdr, sizeof (ehdr)) != PS_OK) {
328 ps_plog("lx_ldb_init: couldn’t read ehdr at 0x%p",
329 lx_rd->lr_exec);
330 free(lx_rd);
331 return (NULL);
332 }
333 ps_plog("lx_ldb_init: read ehdr at: 0x%p", addr);

335 if ((phdrs = malloc(ehdr.e_phnum * ehdr.e_phentsize)) == NULL) {
336 ps_plog("lx_ldb_init: couldn’t alloc phdrs memory");
337 free(lx_rd);
338 return (NULL);
339 }

341 if (ps_pread(php, phdr_addr, phdrs, ehdr.e_phnum * ehdr.e_phentsize) !=
342 PS_OK) {
343 ps_plog("lx_ldb_init: couldn’t read phdrs at 0x%p",
344 phdr_addr);
345 free(lx_rd);
346 free(phdrs);
347 return (NULL);
348 }
349 ps_plog("lx_ldb_init: read %d phdrs at: 0x%p",
350 ehdr.e_phnum, phdr_addr);

352 for (i = 0, ph = phdrs; i < ehdr.e_phnum; i++,
353 /*LINTED */
354 ph = (Elf32_Phdr *)((char *)ph + ehdr.e_phentsize)) {
355 if (ph->p_type == PT_DYNAMIC)
356 break;
357 }
358 if (i == ehdr.e_phnum) {
359 ps_plog("lx_ldb_init: no PT_DYNAMIC in executable");
360 free(lx_rd);
361 free(phdrs);
362 return (NULL);
363 }
364 ps_plog("lx_ldb_init: found PT_DYNAMIC phdr[%d] at: 0x%p",
365 i, (phdr_addr + ((char *)ph - (char *)phdrs)));

367 if ((dyn = malloc(ph->p_filesz)) == NULL) {
368 ps_plog("lx_ldb_init: couldn’t alloc for PT_DYNAMIC");
369 free(lx_rd);
370 free(phdrs);
371 return (NULL);
372 }

374 dyn_addr = addr + ph->p_offset;
375 dyn_count = ph->p_filesz / sizeof (Elf32_Dyn);
376 if (ps_pread(php, dyn_addr, dyn, ph->p_filesz) != PS_OK) {
377 ps_plog("lx_ldb_init: couldn’t read dynamic at 0x%p",
378 dyn_addr);
379 free(lx_rd);
380 free(phdrs);
381 free(dyn);
382 return (NULL);
383 }
384 ps_plog("lx_ldb_init: read %d dynamic headers at: 0x%p",
385 dyn_count, dyn_addr);

387 for (i = 0; i < dyn_count; i++) {
388 if (dyn[i].d_tag == DT_DEBUG) {
389 lx_rd->lr_rdebug = dyn[i].d_un.d_ptr;
390 break;

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 7

391 }
392 }
393 free(phdrs);
394 free(dyn);

396 if (lx_rd->lr_rdebug == 0) {
397 ps_plog("lx_ldb_init: no DT_DEBUG found in exe");
398 free(lx_rd);
399 return (NULL);
400 }
401 ps_plog("lx_ldb_init: found DT_DEBUG: 0x%p", lx_rd->lr_rdebug);

403 return ((rd_helper_data_t)lx_rd);
404 }

406 /*
407 * Given the address of an ELF object in the target, return its size and
408 * the proper link map ID.
409 */
410 static size_t
411 lx_elf_props32(struct ps_prochandle *php, uint32_t addr, psaddr_t *data_addr)
412 {
413 Elf32_Ehdr ehdr;
414 Elf32_Phdr *phdrs, *ph;
415 int i;
416 uint32_t min = (uint32_t)-1;
417 uint32_t max = 0;
418 size_t sz = NULL;

420 if (ps_pread(php, addr, &ehdr, sizeof (ehdr)) != PS_OK) {
421 ps_plog("lx_elf_props: Couldn’t read ELF header at 0x%p",
422 addr);
423 return (0);
424 }

426 if ((phdrs = malloc(ehdr.e_phnum * ehdr.e_phentsize)) == NULL)
427 return (0);

429 if (ps_pread(php, addr + ehdr.e_phoff, phdrs, ehdr.e_phnum *
430 ehdr.e_phentsize) != PS_OK) {
431 ps_plog("lx_elf_props: Couldn’t read program headers at 0x%p",
432 addr + ehdr.e_phoff);
433 return (0);
434 }

436 for (i = 0, ph = phdrs; i < ehdr.e_phnum; i++,
437 /*LINTED */
438 ph = (Elf32_Phdr *)((char *)ph + ehdr.e_phentsize)) {

440 if (ph->p_type != PT_LOAD)
441 continue;

443 if ((ph->p_flags & (PF_W | PF_R)) == (PF_W | PF_R)) {
444 *data_addr = ph->p_vaddr;
445 if (ehdr.e_type == ET_DYN)
446 *data_addr += addr;
447 if (*data_addr & (ph->p_align - 1))
448 *data_addr = *data_addr & (~(ph->p_align -1));
449 }

451 if (ph->p_vaddr < min)
452 min = ph->p_vaddr;

454 if (ph->p_vaddr > max) {
455 max = ph->p_vaddr;
456 sz = ph->p_memsz + max - min;

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 8

457 if (sz & (ph->p_align - 1))
458 sz = (sz & (~(ph->p_align - 1))) + ph->p_align;
459 }
460 }

462 free(phdrs);
463 return (sz);
464 }

466 static int
467 lx_ldb_loadobj_iter32(rd_helper_data_t rhd, rl_iter_f *cb, void *client_data)
468 {
469 lx_rd_t *lx_rd = (lx_rd_t *)rhd;
470 struct ps_prochandle *php = lx_rd->lr_php;
471 lx_r_debug_t r_debug;
472 lx_link_map_t map;
473 uint32_t p = NULL;
474 int rc;
475 rd_loadobj_t exec;

477 if ((rc = ps_pread(php, (psaddr_t)lx_rd->lr_rdebug, &r_debug,
478 sizeof (r_debug))) != PS_OK) {
479 ps_plog("lx_ldb_loadobj_iter: "
480 "Couldn’t read linux r_debug at 0x%p", lx_rd->lr_rdebug);
481 return (rc);
482 }

484 p = r_debug.r_map;

486 /*
487 * The first item on the link map list is for the executable, but it
488 * doesn’t give us any useful information about it. We need to
489 * synthesize a rd_loadobj_t for the client.
490 *
491 * Linux doesn’t give us the executable name, so we’ll get it from
492 * the AT_EXECNAME entry instead.
493 */
494 if ((rc = ps_pread(php, (psaddr_t)p, &map, sizeof (map))) != PS_OK) {
495 ps_plog("lx_ldb_loadobj_iter: "
496 "Couldn’t read linux link map at 0x%p", p);
497 return (rc);
498 }

500 bzero(&exec, sizeof (exec));
501 exec.rl_base = lx_rd->lr_exec;
502 exec.rl_dynamic = map.lxm_ld;
503 exec.rl_nameaddr = lx_ldb_getauxval32(php, AT_SUN_EXECNAME);
504 exec.rl_lmident = LM_ID_BASE;

506 exec.rl_bend = exec.rl_base +
507 lx_elf_props32(php, lx_rd->lr_exec, &exec.rl_data_base);

509 if ((*cb)(&exec, client_data) == 0) {
510 ps_plog("lx_ldb_loadobj_iter: "
511 "client callb failed for executable");
512 return (PS_ERR);
513 }

515 for (p = map.lxm_next; p != NULL; p = map.lxm_next) {
516 rd_loadobj_t obj;

518 if ((rc = ps_pread(php, (psaddr_t)p, &map, sizeof (map))) !=
519 PS_OK) {
520 ps_plog("lx_ldb_loadobj_iter: "
521 "Couldn’t read lk map at %p", p);
522 return (rc);

new/usr/src/lib/brand/lx/librtld_db/common/lx_librtld_db.c 9

523 }

525 /*
526 * The linux link map has less information than the Solaris one.
527 * We need to go fetch the missing information from the ELF
528 * headers.
529 */

531 obj.rl_nameaddr = (psaddr_t)map.lxm_name;
532 obj.rl_base = map.lxm_addr;
533 obj.rl_refnameaddr = (psaddr_t)map.lxm_name;
534 obj.rl_plt_base = NULL;
535 obj.rl_plt_size = 0;
536 obj.rl_lmident = LM_ID_BASE;

538 /*
539 * Ugh - we have to walk the ELF stuff, find the PT_LOAD
540 * sections, and calculate the end of the file’s mappings
541 * ourselves.
542 */

544 obj.rl_bend = map.lxm_addr +
545 lx_elf_props32(php, map.lxm_addr, &obj.rl_data_base);
546 obj.rl_padstart = obj.rl_base;
547 obj.rl_padend = obj.rl_bend;
548 obj.rl_dynamic = map.lxm_ld;
549 obj.rl_tlsmodid = 0;

551 ps_plog("lx_ldb_loadobj_iter: 0x%p to 0x%p",
552 obj.rl_base, obj.rl_bend);

554 if ((*cb)(&obj, client_data) == 0) {
555 ps_plog("lx_ldb_loadobj_iter: "
556 "Client callback failed on %s", map.lxm_name);
557 return (rc);
558 }
559 }
560 return (RD_OK);
561 }

563 /*
564 * Librtld_db plugin linkage struct.
565 *
566 * When we get loaded by librtld_db, it will look for the symbol below
567 * to find our plugin entry points.
568 */
569 rd_helper_ops_t RTLD_DB_BRAND_OPS = {
570 LM_ID_BRAND,
571 lx_ldb_init32,
572 lx_ldb_fini32,
573 lx_ldb_loadobj_iter32,
574 lx_ldb_get_dyns32
575 };
576 #endif /* ! codereview */

new/usr/src/lib/brand/lx/librtld_db/common/mapfile-vers 1

**
 1572 Tue Jan 14 16:16:59 2014
new/usr/src/lib/brand/lx/librtld_db/common/mapfile-vers
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # MAPFILE HEADER START
29 #
30 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
31 # Object versioning must comply with the rules detailed in
32 #
33 # usr/src/lib/README.mapfiles
34 #
35 # You should not be making modifications here until you’ve read the most current
36 # copy of that file. If you need help, contact a gatekeeper for guidance.
37 #
38 # MAPFILE HEADER END
39 #

41 {
42 global:
43 rtld_db_brand_ops32;
44 local:
45 *;
46 };

48 #Externally defined symbols
49 {
50 global:
51 ps_pauxv = NODIRECT PARENT;
52 ps_pdmodel = NODIRECT PARENT;
53 ps_pglobal_lookup = NODIRECT PARENT;
54 ps_pglobal_sym = NODIRECT PARENT;
55 ps_plog = NODIRECT PARENT;
56 ps_pread = NODIRECT PARENT;
57 ps_pwrite = NODIRECT PARENT;
58 };
59 #endif /* ! codereview */

new/usr/src/lib/brand/lx/librtld_db/i386/Makefile 1

**
 1022 Tue Jan 14 16:16:59 2014
new/usr/src/lib/brand/lx/librtld_db/i386/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 #ident "%Z%%M% %I% %E% SMI"
27 #

29 include ../Makefile.com

31 CLOBBERFILES = $(ROOTLIBDIR)/$(DYNLIB)

33 install: all $(ROOTLIBS)
34 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/Makefile 1

**
 1328 Tue Jan 14 16:16:59 2014
new/usr/src/lib/brand/lx/lx_brand/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 include ../../../Makefile.lib

31 default: all

33 SUBDIRS= $(MACH)

35 LINT_SUBDIRS= $(MACH)

37 all := TARGET= all
38 clean := TARGET= clean
39 clobber := TARGET= clobber
40 install := TARGET= install
41 lint := TARGET= lint
42 _msg := TARGET= _msg

44 .KEEP_STATE:

46 all install clean clobber _msg: $(SUBDIRS)

48 lint: $(LINT_SUBDIRS)

50 $(SUBDIRS): FRC
51 @cd $@; pwd; $(MAKE) $(TARGET)

53 FRC:
54 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/Makefile.com 1

**
 2351 Tue Jan 14 16:16:59 2014
new/usr/src/lib/brand/lx/lx_brand/Makefile.com
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # ident "%Z%%M% %I% %E% SMI"
26 #

28 LX_CMN = $(SRC)/common/brand/lx

30 LIBRARY = lx_brand.a
31 VERS = .1
32 COBJS = clock.o \
33 clone.o \
34 debug.o \
35 dir.o \
36 file.o \
37 fcntl.o \
38 fork.o \
39 id.o \
40 ioctl.o \
41 iovec.o \
42 lx_brand.o \
43 lx_thunk_server.o \
44 mem.o \
45 misc.o \
46 module.o \
47 mount.o \
48 open.o \
49 pgrp.o \
50 poll_select.o \
51 priority.o \
52 ptrace.o \
53 rlimit.o \
54 sched.o \
55 sendfile.o \
56 signal.o \
57 socket.o \
58 stat.o \
59 statfs.o \
60 sysctl.o \
61 sysv_ipc.o \

new/usr/src/lib/brand/lx/lx_brand/Makefile.com 2

62 time.o \
63 truncate.o \
64 wait.o

66 CMNOBJS = lx_signum.o
67 ASOBJS = lx_handler.o lx_runexe.o lx_crt.o
68 OBJECTS = $(CMNOBJS) $(COBJS) $(ASOBJS)

70 include ../../Makefile.lx
71 include ../../../../Makefile.lib

73 CSRCS = $(COBJS:%o=../common/%c) $(CMNOBJS:%o=$(LX_CMN)/%c)
74 ASSRCS = $(ASOBJS:%o=$(ISASRCDIR)/%s)
75 SRCS = $(CSRCS) $(ASSRCS)

77 SRCDIR = ../common
78 UTSBASE = ../../../../../uts

80 LIBS = $(DYNLIB)
81 LDLIBS += -lc -lsocket -lmapmalloc -lproc -lrtld_db
82 DYNFLAGS += -Wl,-e_start -Wl,-I/native/lib/ld.so.1 -M../common/mapfile
83 CFLAGS += $(CCVERBOSE)
84 CPPFLAGS += -D_REENTRANT -I../ -I$(UTSBASE)/common/brand/lx -I$(LX_CMN)
85 ASFLAGS = -P $(ASFLAGS_$(CURTYPE)) -D_ASM -I../ \
86 -I$(UTSBASE)/common/brand/lx

88 .KEEP_STATE:

90 all: $(LIBS)

92 lint: lintcheck

94 include ../../../../Makefile.targ

96 pics/%.o: $(ISASRCDIR)/%.s
97 $(COMPILE.s) -o $@ $<
98 $(POST_PROCESS_O)

100 pics/%.o: $(LX_CMN)/%.c
101 $(COMPILE.c) -o $@ $<
102 $(POST_PROCESS_O)
103 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/clock.c 1

**
 2994 Tue Jan 14 16:17:00 2014
new/usr/src/lib/brand/lx/lx_brand/common/clock.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <errno.h>
30 #include <string.h>
31 #include <time.h>
32 #include <sys/lx_misc.h>

34 /*
35 * Linux uses different values for it clock identifiers, so we have to do basic
36 * translations between the two. Thankfully, both Linux and Solaris implement
37 * the same POSIX SUSv3 clock types, so the semantics should be identical.
38 */

40 static int ltos_clock[] = {
41 CLOCK_REALTIME,
42 CLOCK_MONOTONIC,
43 CLOCK_PROCESS_CPUTIME_ID,
44 CLOCK_THREAD_CPUTIME_ID
45 };

47 #define LX_CLOCK_MAX (sizeof (ltos_clock) / sizeof (ltos_clock[0]))

49 int
50 lx_clock_gettime(int clock, struct timespec *tp)
51 {
52 struct timespec ts;

54 if (clock < 0 || clock > LX_CLOCK_MAX)
55 return (-EINVAL);

57 if (clock_gettime(ltos_clock[clock], &ts) < 0)
58 return (-errno);

60 return ((uucopy(&ts, tp, sizeof (struct timespec)) < 0) ? -EFAULT : 0);
61 }

new/usr/src/lib/brand/lx/lx_brand/common/clock.c 2

63 int
64 lx_clock_settime(int clock, struct timespec *tp)
65 {
66 struct timespec ts;

68 if (clock < 0 || clock > LX_CLOCK_MAX)
69 return (-EINVAL);

71 if (uucopy(tp, &ts, sizeof (struct timespec)) < 0)
72 return (-EFAULT);

74 return ((clock_settime(ltos_clock[clock], &ts) < 0) ? -errno : 0);
75 }

77 int
78 lx_clock_getres(int clock, struct timespec *tp)
79 {
80 struct timespec ts;

82 if (clock < 0 || clock > LX_CLOCK_MAX)
83 return (-EINVAL);

85 if (clock_getres(ltos_clock[clock], &ts) < 0)
86 return (-errno);

88 return ((uucopy(&ts, tp, sizeof (struct timespec)) < 0) ? -EFAULT : 0);
89 }

91 int
92 lx_clock_nanosleep(int clock, int flags, struct timespec *rqtp,
93 struct timespec *rmtp)
94 {
95 struct timespec rqt, rmt;

97 if (clock < 0 || clock > LX_CLOCK_MAX)
98 return (-EINVAL);

100 if (uucopy(rqtp, &rqt, sizeof (struct timespec)) < 0)
101 return (-EFAULT);

103 /* the TIMER_RELTIME and TIMER_ABSTIME flags are the same on Linux */
104 if (clock_nanosleep(ltos_clock[clock], flags, &rqt, &rmt) < 0)
105 return (-errno);

107 /*
108 * Only copy values to rmtp if the timer is TIMER_RELTIME and rmtp is
109 * non-NULL.
110 */
111 if (((flags & TIMER_RELTIME) == TIMER_RELTIME) && (rmtp != NULL) &&
112 (uucopy(&rmt, rmtp, sizeof (struct timespec)) < 0))
113 return (-EFAULT);

115 return (0);
116 }
117 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 1

**
 14435 Tue Jan 14 16:17:00 2014
new/usr/src/lib/brand/lx/lx_brand/common/clone.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <assert.h>
30 #include <errno.h>
31 #include <stdlib.h>
32 #include <signal.h>
33 #include <unistd.h>
34 #include <ucontext.h>
35 #include <thread.h>
36 #include <strings.h>
37 #include <libintl.h>
38 #include <sys/regset.h>
39 #include <sys/syscall.h>
40 #include <sys/inttypes.h>
41 #include <sys/param.h>
42 #include <sys/types.h>
43 #include <sys/segments.h>
44 #include <signal.h>
45 #include <sys/lx_misc.h>
46 #include <sys/lx_types.h>
47 #include <sys/lx_signal.h>
48 #include <sys/lx_syscall.h>
49 #include <sys/lx_brand.h>
50 #include <sys/lx_debug.h>
51 #include <sys/lx_thread.h>

53 #define LX_CSIGNAL 0x000000ff
54 #define LX_CLONE_VM 0x00000100
55 #define LX_CLONE_FS 0x00000200
56 #define LX_CLONE_FILES 0x00000400
57 #define LX_CLONE_SIGHAND 0x00000800
58 #define LX_CLONE_PID 0x00001000
59 #define LX_CLONE_PTRACE 0x00002000
60 #define LX_CLONE_VFORK 0x00004000
61 #define LX_CLONE_PARENT 0x00008000

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 2

62 #define LX_CLONE_THREAD 0x00010000
63 #define LX_CLONE_SYSVSEM 0x00040000
64 #define LX_CLONE_SETTLS 0x00080000
65 #define LX_CLONE_PARENT_SETTID 0x00100000
66 #define LX_CLONE_CHILD_CLEARTID 0x00200000
67 #define LX_CLONE_DETACH 0x00400000
68 #define LX_CLONE_CHILD_SETTID 0x01000000

70 #define SHARED_AS \
71 (LX_CLONE_VM | LX_CLONE_FS | LX_CLONE_FILES | LX_CLONE_SIGHAND)
72 #define CLONE_VFORK (LX_CLONE_VM | LX_CLONE_VFORK)
73 #define CLONE_TD (LX_CLONE_THREAD|LX_CLONE_DETACH)

75 #define IS_FORK(f) (((f) & SHARED_AS) == 0)
76 #define IS_VFORK(f) (((f) & CLONE_VFORK) == CLONE_VFORK)

78 #define LX_EXIT 1
79 #define LX_EXIT_GROUP 2

81 /*
82 * This is dicey. This seems to be an internal glibc structure, and not
83 * part of any external interface. Thus, it is subject to change without
84 * notice. FWIW, clone(2) itself seems to be an internal (or at least
85 * unstable) interface, since strace(1) shows it differently than the man
86 * page.
87 */
88 struct lx_desc
89 {
90 uint32_t entry_number;
91 uint32_t base_addr;
92 uint32_t limit;
93 uint32_t seg_32bit:1;
94 uint32_t contents:2;
95 uint32_t read_exec_only:1;
96 uint32_t limit_in_pages:1;
97 uint32_t seg_not_present:1;
98 uint32_t useable:1;
99 uint32_t empty:25;
100 };

102 struct clone_state {
103 void *c_retaddr; /* instr after clone()’s int80 */
104 int c_flags; /* flags to clone(2) */
105 int c_sig; /* signal to send on thread exit */
106 void *c_stk; /* %esp of new thread */
107 void *c_ptidp;
108 struct lx_desc *c_ldtinfo; /* thread-specific segment */
109 void *c_ctidp;
110 uintptr_t c_gs; /* Linux’s %gs */
111 sigset_t c_sigmask; /* signal mask */
112 lx_affmask_t c_affmask; /* CPU affinity mask */
113 volatile int *c_clone_res; /* pid/error returned to cloner */
114 };

116 extern void lx_setup_clone(uintptr_t, void *, void *);

118 /*
119 * Counter incremented when we vfork(2) ourselves, and decremented when the
120 * vfork(2)ed child exit(2)s or exec(2)s.
121 */
122 static int is_vforked = 0;

124 int
125 lx_exit(uintptr_t p1)
126 {
127 int ret, status = (int)p1;

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 3

128 lx_tsd_t *lx_tsd;

130 /*
131 * If we are a vfork(2)ed child, we need to exit as quickly and
132 * cleanly as possible to avoid corrupting our parent.
133 */
134 if (is_vforked != 0) {
135 is_vforked--;
136 _exit(status);
137 }

139 if ((ret = thr_getspecific(lx_tsd_key, (void **)&lx_tsd)) != 0)
140 lx_err_fatal(gettext(
141 "%s: unable to read thread-specific data: %s"),
142 "exit", strerror(ret));

144 assert(lx_tsd != 0);

146 lx_tsd->lxtsd_exit = LX_EXIT;
147 lx_tsd->lxtsd_exit_status = status;

149 /*
150 * Block all signals in the exit context to avoid taking any signals
151 * (to the degree possible) while exiting.
152 */
153 (void) sigfillset(&lx_tsd->lxtsd_exit_context.uc_sigmask);

155 /*
156 * This thread is exiting. Restore the state of the thread to
157 * what it was before we started running linux code.
158 */
159 (void) setcontext(&lx_tsd->lxtsd_exit_context);

161 /*
162 * If we returned from the setcontext(2), something is very wrong.
163 */
164 lx_err_fatal(gettext("%s: unable to set exit context: %s"),
165 "exit", strerror(errno));

167 /*NOTREACHED*/
168 return (0);
169 }

171 int
172 lx_group_exit(uintptr_t p1)
173 {
174 int ret, status = (int)p1;
175 lx_tsd_t *lx_tsd;

177 /*
178 * If we are a vfork(2)ed child, we need to exit as quickly and
179 * cleanly as possible to avoid corrupting our parent.
180 */
181 if (is_vforked != 0) {
182 is_vforked--;
183 _exit(status);
184 }

186 if ((ret = thr_getspecific(lx_tsd_key, (void **)&lx_tsd)) != 0)
187 lx_err_fatal(gettext(
188 "%s: unable to read thread-specific data: %s"),
189 "group_exit", strerror(ret));

191 assert(lx_tsd != 0);

193 lx_tsd->lxtsd_exit = LX_EXIT_GROUP;

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 4

194 lx_tsd->lxtsd_exit_status = status;

196 /*
197 * Block all signals in the exit context to avoid taking any signals
198 * (to the degree possible) while exiting.
199 */
200 (void) sigfillset(&lx_tsd->lxtsd_exit_context.uc_sigmask);

202 /*
203 * This thread is exiting. Restore the state of the thread to
204 * what it was before we started running linux code.
205 */
206 (void) setcontext(&lx_tsd->lxtsd_exit_context);

208 /*
209 * If we returned from the setcontext(2), something is very wrong.
210 */
211 lx_err_fatal(gettext("%s: unable to set exit context: %s"),
212 "group_exit", strerror(errno));

214 /*NOTREACHED*/
215 return (0);
216 }

218 static void *
219 clone_start(void *arg)
220 {
221 int rval;
222 struct clone_state *cs = (struct clone_state *)arg;
223 lx_tsd_t lx_tsd;

225 /*
226 * Let the kernel finish setting up all the needed state for this
227 * new thread.
228 *
229 * We already created the thread using the thr_create(3C) library
230 * call, so most of the work required to emulate lx_clone(2) has
231 * been done by the time we get to this point. Instead of creating
232 * a new brandsys(2) subcommand to perform the last few bits of
233 * bookkeeping, we just use the lx_clone() slot in the syscall
234 * table.
235 */
236 lx_debug("\tre-vectoring to lx kernel module to complete lx_clone()");
237 lx_debug("\tLX_SYS_clone(0x%x, 0x%p, 0x%p, 0x%p, 0x%p)",
238 cs->c_flags, cs->c_stk, cs->c_ptidp, cs->c_ldtinfo, cs->c_ctidp);

240 rval = syscall(SYS_brand, B_EMULATE_SYSCALL + LX_SYS_clone,
241 cs->c_flags, cs->c_stk, cs->c_ptidp, cs->c_ldtinfo, cs->c_ctidp,
242 NULL);

244 /*
245 * At this point the parent is waiting for cs->c_clone_res to go
246 * non-zero to indicate the thread has been cloned. The value set
247 * in cs->c_clone_res will be used for the return value from
248 * clone().
249 */
250 if (rval < 0) {
251 *(cs->c_clone_res) = -errno;
252 lx_debug("\tkernel clone failed, errno %d\n", errno);
253 return (NULL);
254 }

256 if (lx_sched_setaffinity(0, sizeof (cs->c_affmask),
257 (uintptr_t)&cs->c_affmask) != 0) {
258 *(cs->c_clone_res) = -errno;

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 5

260 lx_err_fatal(gettext(
261 "Unable to set affinity mask in child thread: %s"),
262 strerror(errno));
263 }

265 /* Initialize the thread specific data for this thread. */
266 bzero(&lx_tsd, sizeof (lx_tsd));
267 lx_tsd.lxtsd_gs = cs->c_gs;

269 /*
270 * Use the address of the stack-allocated lx_tsd as the
271 * per-thread storage area to cache various values for later
272 * use.
273 *
274 * This address is only used by this thread, so there is no
275 * danger of other threads using this storage area, nor of it
276 * being accessed once this stack frame has been freed.
277 */
278 if (thr_setspecific(lx_tsd_key, &lx_tsd) != 0) {
279 *(cs->c_clone_res) = -errno;
280 lx_err_fatal(
281 gettext("Unable to set thread-specific ptr for clone: %s"),
282 strerror(rval));
283 }

285 /*
286 * Save the current context of this thread.
287 *
288 * We’ll restore this context when this thread attempts to exit.
289 */
290 if (getcontext(&lx_tsd.lxtsd_exit_context) != 0) {
291 *(cs->c_clone_res) = -errno;

293 lx_err_fatal(gettext(
294 "Unable to initialize thread-specific exit context: %s"),
295 strerror(errno));
296 }

298 /*
299 * Do the final stack twiddling, reset %gs, and return to the
300 * clone(2) path.
301 */
302 if (lx_tsd.lxtsd_exit == 0) {
303 if (sigprocmask(SIG_SETMASK, &cs->c_sigmask, NULL) < 0) {
304 *(cs->c_clone_res) = -errno;

306 lx_err_fatal(gettext(
307 "Unable to release held signals for child "
308 "thread: %s"), strerror(errno));
309 }

311 /*
312 * Let the parent know that the clone has (effectively) been
313 * completed.
314 */
315 *(cs->c_clone_res) = rval;

317 lx_setup_clone(cs->c_gs, cs->c_retaddr, cs->c_stk);

319 /* lx_setup_clone() should never return. */
320 assert(0);
321 }

323 /*
324 * We are here because the Linux application called the exit() or
325 * exit_group() system call. In turn the brand library did a

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 6

326 * setcontext() to jump to the thread context state saved in
327 * getcontext(), above.
328 */
329 if (lx_tsd.lxtsd_exit == LX_EXIT)
330 thr_exit((void *)lx_tsd.lxtsd_exit_status);
331 else
332 exit(lx_tsd.lxtsd_exit_status);

334 assert(0);
335 /*NOTREACHED*/
336 }

338 int
339 lx_clone(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
340 uintptr_t p5)
341 {
342 struct clone_state *cs;
343 int flags = (int)p1;
344 void *cldstk = (void *)p2;
345 void *ptidp = (void *)p3;
346 struct lx_desc *ldtinfo = (void *)p4;
347 void *ctidp = (void *)p5;
348 thread_t tid;
349 volatile int clone_res;
350 int sig;
351 int rval;
352 int pid;
353 lx_regs_t *rp;
354 sigset_t sigmask;

356 if (flags & LX_CLONE_SETTLS) {
357 lx_debug("lx_clone(flags=0x%x stk=0x%p ptidp=0x%p ldt=0x%p "
358 "ctidp=0x%p", flags, cldstk, ptidp, ldtinfo, ctidp);
359 } else {
360 lx_debug("lx_clone(flags=0x%x stk=0x%p ptidp=0x%p)",
361 flags, cldstk, ptidp);
362 }

364 /*
365 * Only supported for pid 0 on Linux
366 */
367 if (flags & LX_CLONE_PID)
368 return (-EINVAL);

370 /*
371 * CLONE_THREAD requires CLONE_SIGHAND.
372 *
373 * CLONE_THREAD and CLONE_DETACHED must both be either set or cleared
374 * in kernel 2.4 and prior.
375 * In kernel 2.6 CLONE_DETACHED was dropped completely, so we no
376 * longer have this requirement.
377 */

379 if (flags & CLONE_TD) {
380 if (!(flags & LX_CLONE_SIGHAND))
381 return (-EINVAL);
382 if ((lx_get_kern_version() <= LX_KERN_2_4) &&
383 (flags & CLONE_TD) != CLONE_TD)
384 return (-EINVAL);
385 }

387 rp = lx_syscall_regs();

389 /* test if pointer passed by user are writable */
390 if (flags & LX_CLONE_PARENT_SETTID) {
391 if (uucopy(ptidp, &pid, sizeof (int)) != 0)

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 7

392 return (-EFAULT);
393 if (uucopy(&pid, ptidp, sizeof (int)) != 0)
394 return (-EFAULT);
395 }
396 if (flags & LX_CLONE_CHILD_SETTID) {
397 if (uucopy(ctidp, &pid, sizeof (int)) != 0)
398 return (-EFAULT);
399 if (uucopy(&pid, ctidp, sizeof (int)) != 0)
400 return (-EFAULT);
401 }

403 /* See if this is a fork() operation or a thr_create(). */
404 if (IS_FORK(flags) || IS_VFORK(flags)) {
405 if (flags & LX_CLONE_PARENT) {
406 lx_unsupported(gettext(
407 "clone(2) only supports CLONE_PARENT "
408 "for threads.\n"));
409 return (-ENOTSUP);
410 }

412 if (flags & LX_CLONE_PTRACE)
413 lx_ptrace_fork();

415 if (flags & LX_CLONE_VFORK) {
416 is_vforked++;
417 rval = vfork();
418 if (rval != 0)
419 is_vforked--;
420 } else {
421 rval = fork1();
422 if (rval == 0 && lx_is_rpm)
423 (void) sleep(lx_rpm_delay);
424 }

426 /*
427 * Since we’ve already forked, we can’t do much if uucopy fails,
428 * so we just ignore failure. Failure is unlikely since we’ve
429 * tested the memory before we did the fork.
430 */
431 if (rval > 0 && (flags & LX_CLONE_PARENT_SETTID)) {
432 (void) uucopy(&rval, ptidp, sizeof (int));
433 }

435 if (rval == 0 && (flags & LX_CLONE_CHILD_SETTID)) {
436 /*
437 * lx_getpid should not fail, and if it does, there’s
438 * not much we can do about it since we’ve already
439 * forked, so on failure, we just don’t copy the
440 * memory.
441 */
442 pid = lx_getpid();
443 if (pid >= 0)
444 (void) uucopy(&pid, ctidp, sizeof (int));
445 }

447 /* Parent just returns */
448 if (rval != 0)
449 return ((rval < 0) ? -errno : rval);

451 /*
452 * If provided, the child needs its new stack set up.
453 */
454 if (cldstk)
455 lx_setup_clone(rp->lxr_gs, (void *)rp->lxr_eip, cldstk);

457 return (0);

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 8

458 }

460 /*
461 * We have very restricted support.... only exactly these flags are
462 * supported
463 */
464 if (((flags & SHARED_AS) != SHARED_AS)) {
465 lx_unsupported(gettext(
466 "clone(2) requires that all or none of CLONE_VM "
467 "CLONE_FS, CLONE_FILES, and CLONE_SIGHAND be set.\n"));
468 return (-ENOTSUP);
469 }

471 if (cldstk == NULL) {
472 lx_unsupported(gettext(
473 "clone(2) requires the caller to allocate the "
474 "child’s stack.\n"));
475 return (-ENOTSUP);
476 }

478 /*
479 * If we want a signal-on-exit, ensure that the signal is valid.
480 */
481 if ((sig = ltos_signo[flags & LX_CSIGNAL]) == -1) {
482 lx_unsupported(gettext(
483 "clone(2) passed unsupported signal: %d"), sig);
484 return (-ENOTSUP);
485 }

487 /*
488 * To avoid malloc() here, we steal a part of the new thread’s
489 * stack to store all the info that thread might need for
490 * initialization. We also make it 64-bit aligned for good
491 * measure.
492 */
493 cs = (struct clone_state *)
494 ((p2 - sizeof (struct clone_state)) & -((uintptr_t)8));
495 cs->c_flags = flags;
496 cs->c_sig = sig;
497 cs->c_stk = cldstk;
498 cs->c_ptidp = ptidp;
499 cs->c_ldtinfo = ldtinfo;
500 cs->c_ctidp = ctidp;
501 cs->c_clone_res = &clone_res;
502 cs->c_gs = rp->lxr_gs;

504 if (lx_sched_getaffinity(0, sizeof (cs->c_affmask),
505 (uintptr_t)&cs->c_affmask) == -1)
506 lx_err_fatal(gettext(
507 "Unable to get affinity mask for parent thread: %s"),
508 strerror(errno));

510 /*
511 * We want the new thread to return directly to the return site for
512 * the system call.
513 */
514 cs->c_retaddr = (void *)rp->lxr_eip;
515 clone_res = 0;

517 (void) sigfillset(&sigmask);

519 /*
520 * Block all signals because the thread we create won’t be able to
521 * properly handle them until it’s fully set up.
522 */
523 if (sigprocmask(SIG_BLOCK, &sigmask, &cs->c_sigmask) < 0) {

new/usr/src/lib/brand/lx/lx_brand/common/clone.c 9

524 lx_debug("lx_clone sigprocmask() failed: %s", strerror(errno));
525 return (-errno);
526 }

528 rval = thr_create(NULL, NULL, clone_start, cs, THR_DETACHED, &tid);

530 /*
531 * Release any pending signals
532 */
533 (void) sigprocmask(SIG_SETMASK, &cs->c_sigmask, NULL);

535 /*
536 * Wait for the child to be created and have its tid assigned.
537 */
538 if (rval == 0) {
539 while (clone_res == 0)
540 ;

542 rval = clone_res;
543 }

545 return (rval);
546 }
547 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/debug.c 1

**
 3775 Tue Jan 14 16:17:00 2014
new/usr/src/lib/brand/lx/lx_brand/common/debug.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <assert.h>
29 #include <errno.h>
30 #include <fcntl.h>
31 #include <stdarg.h>
32 #include <stdio.h>
33 #include <stdlib.h>
34 #include <strings.h>
35 #include <thread.h>
36 #include <unistd.h>

38 #include <sys/modctl.h>
39 #include <sys/stat.h>
40 #include <sys/types.h>

42 #include <sys/lx_brand.h>
43 #include <sys/lx_debug.h>
44 #include <sys/lx_misc.h>

46 /* internal debugging state */
47 static char *lx_debug_path = NULL; /* debug output file path */
48 static char lx_debug_path_buf[MAXPATHLEN];

50 void
51 lx_debug_enable(void)
52 {
53 /* send all debugging output to /dev/tty */
54 lx_debug_path = "/dev/tty";
55 lx_debug("lx_debug: debugging output enabled: %s", lx_debug_path);
56 }

58 void
59 lx_debug_init(void)
60 {
61 if (getenv("LX_DEBUG") == NULL)

new/usr/src/lib/brand/lx/lx_brand/common/debug.c 2

62 return;

64 /*
65 * It’s OK to use this value without any locking, as all callers can
66 * use the return value to decide whether extra work should be done
67 * before calling lx_debug().
68 *
69 * If debugging is disabled after a routine calls this function it
70 * doesn’t really matter as lx_debug() will see debugging is disabled
71 * and will not output anything.
72 */
73 lx_debug_enabled = 1;

75 /* check if there’s a debug log file specified */
76 lx_debug_path = getenv("LX_DEBUG_FILE");
77 if (lx_debug_path == NULL) {
78 /* send all debugging output to /dev/tty */
79 lx_debug_path = "/dev/tty";
80 }

82 (void) strlcpy(lx_debug_path_buf, lx_debug_path,
83 sizeof (lx_debug_path_buf));
84 lx_debug_path = lx_debug_path_buf;

86 lx_debug("lx_debug: debugging output ENABLED to path: \"%s\"",
87 lx_debug_path);
88 }

90 void
91 lx_debug(const char *msg, ...)
92 {
93 va_list ap;
94 char buf[LX_MSG_MAXLEN + 1];
95 int rv, fd, n;
96 int errno_backup;

98 if (lx_debug_enabled == 0)
99 return;

101 errno_backup = errno;

103 /* prefix the message with pid/tid */
104 if ((n = snprintf(buf, sizeof (buf), "%u/%u: ",
105 getpid(), thr_self())) == -1) {
106 errno = errno_backup;
107 return;
108 }

110 /* format the message */
111 va_start(ap, msg);
112 rv = vsnprintf(&buf[n], sizeof (buf) - n, msg, ap);
113 va_end(ap);
114 if (rv == -1) {
115 errno = errno_backup;
116 return;
117 }

119 /* add a carrige return if there isn’t one already */
120 if ((buf[strlen(buf) - 1] != ’\n’) &&
121 (strlcat(buf, "\n", sizeof (buf)) >= sizeof (buf))) {
122 errno = errno_backup;
123 return;
124 }

126 /*
127 * Open the debugging output file. note that we don’t protect

new/usr/src/lib/brand/lx/lx_brand/common/debug.c 3

128 * ourselves against exec or fork1 here. if an mt process were
129 * to exec/fork1 while we’re doing this they’d end up with an
130 * extra open desciptor in their fd space. a’well. shouldn’t
131 * really matter.
132 */
133 if ((fd = open(lx_debug_path,
134 O_WRONLY|O_APPEND|O_CREAT|O_NDELAY|O_NOCTTY, 0666)) == -1) {
135 return;
136 }
137 (void) fchmod(fd, 0666);

139 /* we retry in case of EINTR */
140 do {
141 rv = write(fd, buf, strlen(buf));
142 } while ((rv == -1) && (errno == EINTR));
143 (void) fsync(fd);

145 (void) close(fd);
146 errno = errno_backup;
147 }
148 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/dir.c 1

**
 3976 Tue Jan 14 16:17:00 2014
new/usr/src/lib/brand/lx/lx_brand/common/dir.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <string.h>
29 #include <stddef.h>
30 #include <errno.h>
31 #include <unistd.h>
32 #include <assert.h>
33 #include <sys/types.h>
34 #include <sys/systm.h>
35 #include <sys/dirent.h>
36 #include <sys/lx_misc.h>
37 #include <sys/lx_debug.h>

39 #define LX_NAMEMAX 256

41 struct lx_dirent {
42 long d_ino; /* not l_ino_t */
43 long d_off;
44 ushort_t d_reclen;
45 char d_name[LX_NAMEMAX];
46 };

48 struct lx_dirent64 {
49 uint64_t d_ino;
50 int64_t d_off;
51 ushort_t d_reclen;
52 uchar_t d_type;
53 char d_name[LX_NAMEMAX];
54 };

56 #define LX_RECLEN(namelen) \
57 ((offsetof(struct lx_dirent64, d_name) + 1 + (namelen) + 7) & ~7)

59 /*
60 * Read in one dirent structure from fd into dirp.
61 * p3 (count) is ignored.

new/usr/src/lib/brand/lx/lx_brand/common/dir.c 2

62 */
63 /*ARGSUSED*/
64 int
65 lx_readdir(uintptr_t p1, uintptr_t p2, uintptr_t p3)
66 {
67 int fd = (int)p1;
68 struct lx_dirent *dirp = (struct lx_dirent *)p2;
69 uint_t count = sizeof (struct lx_dirent);
70 int rc = 0;
71 struct lx_dirent _ld;
72 struct dirent *sd = (struct dirent *)&_ld;

74 /*
75 * The return value from getdents is not applicable, as
76 * it might have squeezed more than one dirent in the buffer
77 * we provided.
78 *
79 * getdents() will deal with the case of dirp == NULL
80 */
81 if ((rc = getdents(fd, sd, count)) < 0)
82 return (-errno);

84 /*
85 * Set rc 1 (pass), or 0 (end of directory).
86 */
87 rc = (sd->d_reclen == 0) ? 0 : 1;

89 if (uucopy(sd, dirp, count) != 0)
90 return (-errno);

92 return (rc);
93 }

95 /*
96 * Read in dirent64 structures from p1 (fd) into p2 (buffer).
97 * p3 (count) is the size of the memory area.
98 */
99 int
100 lx_getdents64(uintptr_t p1, uintptr_t p2, uintptr_t p3)
101 {
102 int fd = (uint_t)p1;
103 void *buf = (void *)p2;
104 void *sbuf, *lbuf;
105 int lbufsz = (uint_t)p3;
106 int sbufsz;
107 int namelen;
108 struct dirent *sd;
109 struct lx_dirent64 *ld;
110 int bytes, rc;

112 if (lbufsz < sizeof (struct lx_dirent64))
113 return (-EINVAL);

115 /*
116 * The Linux dirent64 is bigger than the Solaris dirent64. To
117 * avoid inadvertently consuming more of the directory than we can
118 * pass back to the Linux app, we hand the kernel a smaller buffer
119 * than the app handed us.
120 */
121 sbufsz = (lbufsz / 32) * 24;

123 sbuf = SAFE_ALLOCA(sbufsz);
124 lbuf = SAFE_ALLOCA(lbufsz);
125 if (sbuf == NULL || lbuf == NULL)
126 return (-ENOMEM);

new/usr/src/lib/brand/lx/lx_brand/common/dir.c 3

128 if ((bytes = getdents(fd, sbuf, sbufsz)) < 0)
129 return (-errno);

131 /* munge the Solaris buffer to a linux buffer. */
132 sd = (struct dirent *)sbuf;
133 ld = (struct lx_dirent64 *)lbuf;
134 rc = 0;
135 while (bytes > 0) {
136 namelen = strlen(sd->d_name);
137 if (namelen >= LX_NAMEMAX)
138 namelen = LX_NAMEMAX - 1;
139 ld->d_ino = (uint64_t)sd->d_ino;
140 ld->d_off = (int64_t)sd->d_off;
141 ld->d_type = 0;

143 (void) strncpy(ld->d_name, sd->d_name, namelen);
144 ld->d_name[namelen] = 0;
145 ld->d_reclen = (ushort_t)LX_RECLEN(namelen);

147 bytes -= (int)sd->d_reclen;
148 rc += (int)ld->d_reclen;

150 sd = (struct dirent *)(void *)((caddr_t)sd + sd->d_reclen);
151 ld = (struct lx_dirent64 *)(void *)((caddr_t)ld + ld->d_reclen);
152 }

154 /* now copy the lbuf to the userland buffer */
155 assert(rc <= lbufsz);
156 if (uucopy(lbuf, buf, rc) != 0)
157 return (-EFAULT);

159 return (rc);
160 }
161 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/fcntl.c 1

**
 8042 Tue Jan 14 16:17:00 2014
new/usr/src/lib/brand/lx/lx_brand/common/fcntl.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

28 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <sys/types.h>
31 #include <sys/filio.h>
32 #include <unistd.h>
33 #include <fcntl.h>
34 #include <stropts.h>
35 #include <libintl.h>
36 #include <errno.h>
37 #include <string.h>

39 #include <sys/lx_fcntl.h>
40 #include <sys/lx_debug.h>
41 #include <sys/lx_misc.h>

43 static int lx_fcntl_com(int fd, int cmd, ulong_t arg);
44 static void ltos_flock(struct lx_flock *l, struct flock *s);
45 static void stol_flock(struct flock *s, struct lx_flock *l);
46 static void ltos_flock64(struct lx_flock64 *l, struct flock64 *s);
47 static void stol_flock64(struct flock64 *s, struct lx_flock64 *l);
48 static short ltos_type(short l_type);
49 static short stol_type(short l_type);
50 static int lx_fcntl_getfl(int fd);
51 static int lx_fcntl_setfl(int fd, ulong_t arg);

53 int
54 lx_dup2(uintptr_t p1, uintptr_t p2)
55 {
56 int oldfd = (int)p1;
57 int newfd = (int)p2;
58 int rc;

60 rc = fcntl(oldfd, F_DUP2FD, newfd);
61 return ((rc == -1) ? -errno : rc);

new/usr/src/lib/brand/lx/lx_brand/common/fcntl.c 2

62 }

64 int
65 lx_fcntl(uintptr_t p1, uintptr_t p2, uintptr_t p3)
66 {
67 int fd = (int)p1;
68 int cmd = (int)p2;
69 ulong_t arg = (ulong_t)p3;
70 struct lx_flock lxflk;
71 struct flock fl;
72 int lk = 0;
73 int rc;

75 /*
76 * The 64-bit fcntl commands must go through fcntl64().
77 */
78 if (cmd == LX_F_GETLK64 || cmd == LX_F_SETLK64 ||
79 cmd == LX_F_SETLKW64)
80 return (-EINVAL);

82 if (cmd == LX_F_SETSIG || cmd == LX_F_GETSIG || cmd == LX_F_SETLEASE ||
83 cmd == LX_F_GETLEASE) {
84 lx_unsupported(gettext("%s(): unsupported command: %d"),
85 "fcntl", cmd);
86 return (-ENOTSUP);
87 }

89 if (cmd == LX_F_GETLK || cmd == LX_F_SETLK ||
90 cmd == LX_F_SETLKW) {
91 if (uucopy((void *)p3, (void *)&lxflk,
92 sizeof (struct lx_flock)) != 0)
93 return (-errno);
94 lk = 1;
95 ltos_flock(&lxflk, &fl);
96 arg = (ulong_t)&fl;
97 }

99 rc = lx_fcntl_com(fd, cmd, arg);

101 if (lk)
102 stol_flock(&fl, (struct lx_flock *)p3);

104 return (rc);
105 }

107 int
108 lx_fcntl64(uintptr_t p1, uintptr_t p2, uintptr_t p3)
109 {
110 int fd = (int)p1;
111 int cmd = (int)p2;
112 struct lx_flock lxflk;
113 struct lx_flock64 lxflk64;
114 struct flock fl;
115 struct flock64 fl64;
116 int rc;

118 if (cmd == LX_F_SETSIG || cmd == LX_F_GETSIG || cmd == LX_F_SETLEASE ||
119 cmd == LX_F_GETLEASE) {
120 lx_unsupported(gettext("%s(): unsupported command: %d"),
121 "fcntl64", cmd);
122 return (-ENOTSUP);
123 }

125 if (cmd == LX_F_GETLK || cmd == LX_F_SETLK || cmd == LX_F_SETLKW) {
126 if (uucopy((void *)p3, (void *)&lxflk,
127 sizeof (struct lx_flock)) != 0)

new/usr/src/lib/brand/lx/lx_brand/common/fcntl.c 3

128 return (-errno);
129 ltos_flock(&lxflk, &fl);
130 rc = lx_fcntl_com(fd, cmd, (ulong_t)&fl);
131 stol_flock(&fl, (struct lx_flock *)p3);
132 } else if (cmd == LX_F_GETLK64 || cmd == LX_F_SETLKW64 || \
133 cmd == LX_F_SETLK64) {
134 if (uucopy((void *)p3, (void *)&lxflk64,
135 sizeof (struct lx_flock64)) != 0)
136 return (-errno);
137 ltos_flock64(&lxflk64, &fl64);
138 rc = lx_fcntl_com(fd, cmd, (ulong_t)&fl64);
139 stol_flock64(&fl64, (struct lx_flock64 *)p3);
140 } else {
141 rc = lx_fcntl_com(fd, cmd, (ulong_t)p3);
142 }

144 return (rc);
145 }

147 static int
148 lx_fcntl_com(int fd, int cmd, ulong_t arg)
149 {
150 int rc = 0;

152 switch (cmd) {
153 case LX_F_DUPFD:
154 rc = fcntl(fd, F_DUPFD, arg);
155 break;

157 case LX_F_GETFD:
158 rc = fcntl(fd, F_GETFD, 0);
159 break;

161 case LX_F_SETFD:
162 rc = fcntl(fd, F_SETFD, arg);
163 break;

165 case LX_F_GETFL:
166 rc = lx_fcntl_getfl(fd);
167 break;

169 case LX_F_SETFL:
170 rc = lx_fcntl_setfl(fd, arg);
171 break;

173 case LX_F_GETLK:
174 rc = fcntl(fd, F_GETLK, arg);
175 break;

177 case LX_F_SETLK:
178 rc = fcntl(fd, F_SETLK, arg);
179 break;

181 case LX_F_SETLKW:
182 rc = fcntl(fd, F_SETLKW, arg);
183 break;

185 case LX_F_GETLK64:
186 rc = fcntl(fd, F_GETLK64, arg);
187 break;

189 case LX_F_SETLK64:
190 rc = fcntl(fd, F_SETLK64, arg);
191 break;

193 case LX_F_SETLKW64:

new/usr/src/lib/brand/lx/lx_brand/common/fcntl.c 4

194 rc = fcntl(fd, F_SETLKW64, arg);
195 break;

197 case LX_F_SETOWN:
198 rc = fcntl(fd, F_SETOWN, arg);
199 break;

201 case LX_F_GETOWN:
202 rc = fcntl(fd, F_GETOWN, arg);
203 break;

205 default:
206 return (-EINVAL);
207 }

209 return ((rc == -1) ? -errno : rc);
210 }

213 #define LTOS_FLOCK(l, s) \
214 { \
215 s->l_type = ltos_type(l->l_type); \
216 s->l_whence = l->l_whence; \
217 s->l_start = l->l_start; \
218 s->l_len = l->l_len; \
219 s->l_sysid = 0; /* not defined in linux */ \
220 s->l_pid = (pid_t)l->l_pid; \
221 }

223 #define STOL_FLOCK(s, l) \
224 { \
225 l->l_type = stol_type(s->l_type); \
226 l->l_whence = s->l_whence; \
227 l->l_start = s->l_start; \
228 l->l_len = s->l_len; \
229 l->l_pid = (int)s->l_pid; \
230 }

232 static void
233 ltos_flock(struct lx_flock *l, struct flock *s)
234 {
235 LTOS_FLOCK(l, s)
236 }

238 static void
239 stol_flock(struct flock *s, struct lx_flock *l)
240 {
241 STOL_FLOCK(s, l)
242 }

244 static void
245 ltos_flock64(struct lx_flock64 *l, struct flock64 *s)
246 {
247 LTOS_FLOCK(l, s)
248 }

250 static void
251 stol_flock64(struct flock64 *s, struct lx_flock64 *l)
252 {
253 STOL_FLOCK(s, l)
254 }

256 static short
257 ltos_type(short l_type)
258 {
259 switch (l_type) {

new/usr/src/lib/brand/lx/lx_brand/common/fcntl.c 5

260 case LX_F_RDLCK:
261 return (F_RDLCK);
262 case LX_F_WRLCK:
263 return (F_WRLCK);
264 case LX_F_UNLCK:
265 return (F_UNLCK);
266 default:
267 return (-1);
268 }
269 }

271 static short
272 stol_type(short l_type)
273 {
274 switch (l_type) {
275 case F_RDLCK:
276 return (LX_F_RDLCK);
277 case F_WRLCK:
278 return (LX_F_WRLCK);
279 case F_UNLCK:
280 return (LX_F_UNLCK);
281 default:
282 /* can’t ever happen */
283 return (0);
284 }
285 }

287 int
288 lx_fcntl_getfl(int fd)
289 {
290 int retval;
291 int rc;

293 retval = fcntl(fd, F_GETFL, 0);

295 if ((retval & O_ACCMODE) == O_RDONLY)
296 rc = LX_O_RDONLY;
297 else if ((retval & O_ACCMODE) == O_WRONLY)
298 rc = LX_O_WRONLY;
299 else
300 rc = LX_O_RDWR;
301 /* O_NDELAY != O_NONBLOCK, so we need to check for both */
302 if (retval & O_NDELAY)
303 rc |= LX_O_NDELAY;
304 if (retval & O_NONBLOCK)
305 rc |= LX_O_NONBLOCK;
306 if (retval & O_APPEND)
307 rc |= LX_O_APPEND;
308 if (retval & O_SYNC)
309 rc |= LX_O_SYNC;
310 if (retval & O_LARGEFILE)
311 rc |= LX_O_LARGEFILE;
312 if (retval & FASYNC)
313 rc |= LX_O_ASYNC;

315 return (rc);
316 }

318 int
319 lx_fcntl_setfl(int fd, ulong_t arg)
320 {
321 int new_arg;

323 new_arg = 0;
324 /* LX_O_NDELAY == LX_O_NONBLOCK, so we only check for one */
325 if (arg & LX_O_NDELAY)

new/usr/src/lib/brand/lx/lx_brand/common/fcntl.c 6

326 new_arg |= O_NONBLOCK;
327 if (arg & LX_O_APPEND)
328 new_arg |= O_APPEND;
329 if (arg & LX_O_SYNC)
330 new_arg |= O_SYNC;
331 if (arg & LX_O_LARGEFILE)
332 new_arg |= O_LARGEFILE;
333 if (arg & LX_O_ASYNC)
334 new_arg |= FASYNC;

336 return ((fcntl(fd, F_SETFL, new_arg) == 0) ? 0 : -errno);
337 }

339 /*
340 * flock() applies or removes an advisory lock on the file
341 * associated with the file descriptor fd.
342 *
343 * Stolen verbatim from usr/src/ucblib/libucb/port/sys/flock.c
344 *
345 * operation is: LX_LOCK_SH, LX_LOCK_EX, LX_LOCK_UN, LX_LOCK_NB
346 */
347 int
348 lx_flock(uintptr_t p1, uintptr_t p2)
349 {
350 int fd = (int)p1;
351 int operation = (int)p2;
352 struct flock fl;
353 int cmd;
354 int ret;

356 /* In non-blocking lock, use F_SETLK for cmd, F_SETLKW otherwise */
357 if (operation & LX_LOCK_NB) {
358 cmd = F_SETLK;
359 operation &= ~LX_LOCK_NB; /* turn off this bit */
360 } else
361 cmd = F_SETLKW;

363 switch (operation) {
364 case LX_LOCK_UN:
365 fl.l_type = F_UNLCK;
366 break;
367 case LX_LOCK_SH:
368 fl.l_type = F_RDLCK;
369 break;
370 case LX_LOCK_EX:
371 fl.l_type = F_WRLCK;
372 break;
373 default:
374 return (-EINVAL);
375 }

377 fl.l_whence = 0;
378 fl.l_start = 0;
379 fl.l_len = 0;

381 ret = fcntl(fd, cmd, &fl);

383 if (ret == -1 && errno == EACCES)
384 return (-EWOULDBLOCK);

386 return ((ret == -1) ? -errno : ret);
387 }
388 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/file.c 1

**
 16742 Tue Jan 14 16:17:00 2014
new/usr/src/lib/brand/lx/lx_brand/common/file.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/fstyp.h>
28 #include <sys/fsid.h>

30 #include <errno.h>
31 #include <unistd.h>
32 #include <stdio.h>
33 #include <sys/types.h>
34 #include <sys/stat.h>
35 #include <sys/vnode.h>
36 #include <fcntl.h>
37 #include <string.h>
38 #include <utime.h>
39 #include <atomic.h>

41 #include <sys/lx_syscall.h>
42 #include <sys/lx_types.h>
43 #include <sys/lx_debug.h>
44 #include <sys/lx_misc.h>
45 #include <sys/lx_fcntl.h>

47 static int
48 install_checkpath(uintptr_t p1)
49 {
50 int saved_errno = errno;
51 char path[MAXPATHLEN];

53 /*
54 * The "dev" RPM package wants to modify /dev/pts, but /dev/pts is a
55 * lofs mounted copy of /native/dev/pts, so that won’t work.
56 *
57 * Instead, if we’re trying to modify /dev/pts from install mode, just
58 * act as if it succeded.
59 */
60 if (uucopystr((void *)p1, path, MAXPATHLEN) == -1)

new/usr/src/lib/brand/lx/lx_brand/common/file.c 2

61 return (-errno);

63 if (strcmp(path, "/dev/pts") == 0)
64 return (0);

66 errno = saved_errno;
67 return (-errno);
68 }

70 /*
71 * Convert linux LX_AT_* flags to solaris AT_* flags, while verifying allowed
72 * flags have been passed. This also allows EACCESS/REMOVEDIR to be translated
73 * correctly since on linux they have the same value.
74 */
75 int
76 ltos_at_flag(int lflag, int allow)
77 {
78 int sflag = 0;

80 if ((lflag & LX_AT_EACCESS) && (allow & AT_EACCESS)) {
81 lflag &= ~LX_AT_EACCESS;
82 sflag |= AT_EACCESS;
83 }

85 if ((lflag & LX_AT_REMOVEDIR) && (allow & AT_REMOVEDIR)) {
86 lflag &= ~LX_AT_REMOVEDIR;
87 sflag |= AT_REMOVEDIR;
88 }

90 if ((lflag & LX_AT_SYMLINK_NOFOLLOW) && (allow & AT_SYMLINK_NOFOLLOW)) {
91 lflag &= ~LX_AT_SYMLINK_NOFOLLOW;
92 sflag |= AT_SYMLINK_NOFOLLOW;
93 }

95 /* right now solaris doesn’t have a _FOLLOW flag, so use a fake one */
96 if ((lflag & LX_AT_SYMLINK_FOLLOW) && (allow & LX_AT_SYMLINK_FOLLOW)) {
97 lflag &= ~LX_AT_SYMLINK_FOLLOW;
98 sflag |= LX_AT_SYMLINK_FOLLOW;
99 }

101 /* if flag is not zero than some flags did not hit the above code */
102 if (lflag)
103 return (-EINVAL);

105 return (sflag);
106 }

109 /*
110 * Miscellaneous file-related system calls.
111 */

113 /*
114 * Linux creates half-duplex unnamed pipes and Solaris creates full-duplex
115 * pipes. Thus, to get the correct semantics, our simple pipe() system
116 * call actually needs to create a named pipe, do three opens, a close, and
117 * an unlink. This is woefully expensive. If performance becomes a real
118 * issue, we can implement a half-duplex pipe() in the brand module.
119 */
120 #define PIPENAMESZ 32 /* enough room for /tmp/.pipe.<pid>.<num> */

122 int
123 lx_pipe(uintptr_t p1)
124 {
125 static uint32_t pipecnt = 0;
126 int cnt;

new/usr/src/lib/brand/lx/lx_brand/common/file.c 3

127 char pipename[PIPENAMESZ];
128 int fds[3];
129 int r = 0;

131 fds[0] = -1;
132 fds[1] = -1;
133 fds[2] = -1;

135 /*
136 * Construct a name for the named pipe: /tmp/.pipe.<pid>.<++cnt>
137 */
138 cnt = atomic_inc_32_nv(&pipecnt);

140 (void) snprintf(pipename, PIPENAMESZ, "/tmp/.pipe.%d.%d",
141 getpid(), cnt);

143 if (mkfifo(pipename, 0600))
144 return (-errno);

146 /*
147 * To prevent either the read-only or write-only open from
148 * blocking, we first need to open the pipe for both reading and
149 * writing.
150 */
151 if (((fds[2] = open(pipename, O_RDWR)) < 0) ||
152 ((fds[0] = open(pipename, O_RDONLY)) < 0) ||
153 ((fds[1] = open(pipename, O_WRONLY)) < 0)) {
154 r = errno;
155 } else {
156 /*
157 * Copy the two one-way fds back to the app’s address
158 * space.
159 */
160 if (uucopy(fds, (void *)p1, 2 * sizeof (int)))
161 r = errno;
162 }

164 if (fds[2] >= 0)
165 (void) close(fds[2]);
166 (void) unlink(pipename);

168 if (r != 0) {
169 if (fds[0] >= 0)
170 (void) close(fds[0]);
171 if (fds[1] >= 0)
172 (void) close(fds[1]);
173 }

175 return (-r);
176 }

178 /*
179 * On Linux, even root cannot create a link to a directory, so we have to
180 * add an explicit check.
181 */
182 int
183 lx_link(uintptr_t p1, uintptr_t p2)
184 {
185 char *from = (char *)p1;
186 char *to = (char *)p2;
187 struct stat64 statbuf;

189 if ((stat64(from, &statbuf) == 0) && S_ISDIR(statbuf.st_mode))
190 return (-EPERM);

192 return (link(from, to) ? -errno : 0);

new/usr/src/lib/brand/lx/lx_brand/common/file.c 4

193 }

195 /*
196 * On Linux, an unlink of a directory returns EISDIR, not EPERM.
197 */
198 int
199 lx_unlink(uintptr_t p)
200 {
201 char *pathname = (char *)p;
202 struct stat64 statbuf;

204 if ((lstat64(pathname, &statbuf) == 0) && S_ISDIR(statbuf.st_mode))
205 return (-EISDIR);

207 return (unlink(pathname) ? -errno : 0);
208 }

210 int
211 lx_unlinkat(uintptr_t ext1, uintptr_t p1, uintptr_t p2)
212 {
213 int atfd = (int)ext1;
214 char *pathname = (char *)p1;
215 int flag = (int)p2;
216 struct stat64 statbuf;

218 if (atfd == LX_AT_FDCWD)
219 atfd = AT_FDCWD;

221 flag = ltos_at_flag(flag, AT_REMOVEDIR);
222 if (flag < 0)
223 return (-EINVAL);

225 if (!(flag & AT_REMOVEDIR)) {
226 /* Behave like unlink() */
227 if ((fstatat64(atfd, pathname, &statbuf, AT_SYMLINK_NOFOLLOW) ==
228 0) && S_ISDIR(statbuf.st_mode))
229 return (-EISDIR);
230 }

232 return (unlinkat(atfd, pathname, flag) ? -errno : 0);
233 }

235 /*
236 * fsync() and fdatasync() - On Solaris, these calls translate into a common
237 * fsync() syscall with a different parameter, so we layer on top of the librt
238 * functions instead.
239 */
240 int
241 lx_fsync(uintptr_t fd)
242 {
243 int fildes = (int)fd;
244 struct stat64 statbuf;

246 if ((fstat64(fildes, &statbuf) == 0) &&
247 (S_ISCHR(statbuf.st_mode) || S_ISFIFO(statbuf.st_mode)))
248 return (-EINVAL);

250 return (fsync((int)fd) ? -errno : 0);
251 }

253 int
254 lx_fdatasync(uintptr_t fd)
255 {
256 int fildes = (int)fd;
257 struct stat64 statbuf;

new/usr/src/lib/brand/lx/lx_brand/common/file.c 5

259 if ((fstat64(fildes, &statbuf) == 0) &&
260 (S_ISCHR(statbuf.st_mode) || S_ISFIFO(statbuf.st_mode)))
261 return (-EINVAL);

263 return (fdatasync((int)fd) ? -errno : 0);
264 }

266 /*
267 * Linux, unlike Solaris, ALWAYS resets the setuid and setgid bits on a
268 * chown/fchown regardless of whether it was done by root or not. Therefore,
269 * we must do extra work after each chown/fchown call to emulate this behavior.
270 */
271 #define SETUGID (S_ISUID | S_ISGID)

273 /*
274 * [lf]chown16() - Translate the uid/gid and pass onto the real functions.
275 */
276 int
277 lx_chown16(uintptr_t p1, uintptr_t p2, uintptr_t p3)
278 {
279 char *filename = (char *)p1;
280 struct stat64 statbuf;

282 if (chown(filename, LX_UID16_TO_UID32((lx_gid16_t)p2),
283 LX_GID16_TO_GID32((lx_gid16_t)p3)))
284 return (-errno);

286 if (stat64(filename, &statbuf) == 0) {
287 statbuf.st_mode &= ~S_ISUID;
288 if (statbuf.st_mode & S_IXGRP)
289 statbuf.st_mode &= ~S_ISGID;
290 (void) chmod(filename, (statbuf.st_mode & MODEMASK));
291 }

293 return (0);
294 }

296 int
297 lx_fchown16(uintptr_t p1, uintptr_t p2, uintptr_t p3)
298 {
299 int fd = (int)p1;
300 struct stat64 statbuf;

302 if (fchown(fd, LX_UID16_TO_UID32((lx_gid16_t)p2),
303 LX_GID16_TO_GID32((lx_gid16_t)p3)))
304 return (-errno);

306 if (fstat64(fd, &statbuf) == 0) {
307 statbuf.st_mode &= ~S_ISUID;
308 if (statbuf.st_mode & S_IXGRP)
309 statbuf.st_mode &= ~S_ISGID;
310 (void) fchmod(fd, (statbuf.st_mode & MODEMASK));
311 }

313 return (0);
314 }

316 int
317 lx_lchown16(uintptr_t p1, uintptr_t p2, uintptr_t p3)
318 {
319 return (lchown((char *)p1, LX_UID16_TO_UID32((lx_gid16_t)p2),
320 LX_GID16_TO_GID32((lx_gid16_t)p3)) ? -errno : 0);
321 }

323 int
324 lx_chown(uintptr_t p1, uintptr_t p2, uintptr_t p3)

new/usr/src/lib/brand/lx/lx_brand/common/file.c 6

325 {
326 char *filename = (char *)p1;
327 struct stat64 statbuf;
328 int ret;

330 ret = chown(filename, (uid_t)p2, (gid_t)p3);

332 if (ret < 0) {
333 /*
334 * If chown() failed and we’re in install mode, return success
335 * if the the reason we failed was because the source file
336 * didn’t actually exist or if we’re trying to modify /dev/pts.
337 */
338 if ((lx_install != 0) &&
339 ((errno == ENOENT) || (install_checkpath(p1) == 0)))
340 return (0);

342 return (-errno);
343 }

345 if (stat64(filename, &statbuf) == 0) {
346 statbuf.st_mode &= ~S_ISUID;
347 if (statbuf.st_mode & S_IXGRP)
348 statbuf.st_mode &= ~S_ISGID;
349 (void) chmod(filename, (statbuf.st_mode & MODEMASK));
350 }

352 return (0);
353 }

355 int
356 lx_fchown(uintptr_t p1, uintptr_t p2, uintptr_t p3)
357 {
358 int fd = (int)p1;
359 struct stat64 statbuf;

361 if (fchown(fd, (uid_t)p2, (gid_t)p3))
362 return (-errno);

364 if (fstat64(fd, &statbuf) == 0) {
365 statbuf.st_mode &= ~S_ISUID;
366 if (statbuf.st_mode & S_IXGRP)
367 statbuf.st_mode &= ~S_ISGID;
368 (void) fchmod(fd, (statbuf.st_mode & MODEMASK));
369 }

371 return (0);
372 }

374 int
375 lx_chmod(uintptr_t p1, uintptr_t p2)
376 {
377 int ret;

379 ret = chmod((const char *)p1, (mode_t)p2);

381 if (ret < 0) {
382 /*
383 * If chown() failed and we’re in install mode, return success
384 * if the the reason we failed was because the source file
385 * didn’t actually exist or if we’re trying to modify /dev/pts.
386 */
387 if ((lx_install != 0) &&
388 ((errno == ENOENT) || (install_checkpath(p1) == 0)))
389 return (0);

new/usr/src/lib/brand/lx/lx_brand/common/file.c 7

391 return (-errno);
392 }

394 return (0);
395 }

397 int
398 lx_utime(uintptr_t p1, uintptr_t p2)
399 {
400 int ret;

402 ret = utime((const char *)p1, (const struct utimbuf *)p2);

404 if (ret < 0) {
405 /*
406 * If chown() failed and we’re in install mode, return success
407 * if the the reason we failed was because the source file
408 * didn’t actually exist or if we’re trying to modify /dev/pts.
409 */
410 if ((lx_install != 0) &&
411 ((errno == ENOENT) || (install_checkpath(p1) == 0)))
412 return (0);

414 return (-errno);
415 }

417 return (0);
418 }

420 /*
421 * llseek() - The Linux implementation takes an additional parameter, which is
422 * the resulting position in the file.
423 */
424 int
425 lx_llseek(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
426 uintptr_t p5)
427 {
428 offset_t ret;
429 offset_t *res = (offset_t *)p4;

431 /* SEEK_DATA and SEEK_HOLE are only valid in Solaris */
432 if ((int)p5 > SEEK_END)
433 return (-EINVAL);

435 if ((ret = llseek((int)p1, LX_32TO64(p3, p2), p5)) < 0)
436 return (-errno);

438 *res = ret;
439 return (0);
440 }

442 /*
443 * seek() - When the resultant file offset cannot be represented in 32 bits,
444 * Linux performs the seek but Solaris doesn’t, though both set EOVERFLOW. We
445 * call llseek() and then check to see if we need to return EOVERFLOW.
446 */
447 int
448 lx_lseek(uintptr_t p1, uintptr_t p2, uintptr_t p3)
449 {
450 offset_t offset = (offset_t)(off_t)(p2); /* sign extend */
451 offset_t ret;
452 off_t ret32;

454 /* SEEK_DATA and SEEK_HOLE are only valid in Solaris */
455 if ((int)p3 > SEEK_END)
456 return (-EINVAL);

new/usr/src/lib/brand/lx/lx_brand/common/file.c 8

458 if ((ret = llseek((int)p1, offset, p3)) < 0)
459 return (-errno);

461 ret32 = (off_t)ret;
462 if ((offset_t)ret32 == ret)
463 return (ret32);
464 else
465 return (-EOVERFLOW);
466 }

468 /*
469 * Neither Solaris nor Linux actually returns anything to the caller, but glibc
470 * expects to see SOME value returned, so placate it and return 0.
471 */
472 int
473 lx_sync(void)
474 {
475 sync();
476 return (0);
477 }

479 int
480 lx_rmdir(uintptr_t p1)
481 {
482 int r;

484 r = rmdir((char *)p1);
485 if (r < 0)
486 return ((errno == EEXIST) ? -ENOTEMPTY : -errno);
487 return (0);
488 }

490 /*
491 * Exactly the same as Solaris’ sysfs(2), except Linux numbers their fs indices
492 * starting at 0, and Solaris starts at 1.
493 */
494 int
495 lx_sysfs(uintptr_t p1, uintptr_t p2, uintptr_t p3)
496 {
497 int option = (int)p1;
498 int res;

500 /*
501 * Linux actually doesn’t have #defines for these; their sysfs(2)
502 * man page literally defines the "option" field as being 1, 2 or 3,
503 * corresponding to Solaris’ GETFSIND, GETFSTYP and GETNFSTYP,
504 * respectively.
505 */
506 switch (option) {
507 case 1:
508 if ((res = sysfs(GETFSIND, (const char *)p2)) < 0)
509 return (-errno);

511 return (res - 1);

513 case 2:
514 if ((res = sysfs(GETFSTYP, (int)p2 + 1,
515 (char *)p3)) < 0)
516 return (-errno);

518 return (0);

520 case 3:
521 if ((res = sysfs(GETNFSTYP)) < 0)
522 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/file.c 9

524 return (res);

526 default:
527 break;
528 }

530 return (-EINVAL);
531 }

533 int
534 lx_faccessat(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4)
535 {
536 int atfd = (int)p1;
537 char *path = (char *)p2;
538 int mode = (mode_t)p3;
539 int flag = (int)p4;

541 if (atfd == LX_AT_FDCWD)
542 atfd = AT_FDCWD;

544 flag = ltos_at_flag(flag, AT_EACCESS);
545 if (flag < 0)
546 return (-EINVAL);

548 return (faccessat(atfd, path, mode, flag) ? -errno : 0);
549 }

551 int
552 lx_futimesat(uintptr_t p1, uintptr_t p2, uintptr_t p3)
553 {
554 int atfd = (int)p1;
555 char *path = (char *)p2;
556 struct timeval *times = (struct timeval *)p3;

558 if (atfd == LX_AT_FDCWD)
559 atfd = AT_FDCWD;

561 return (futimesat(atfd, path, times) ? -errno : 0);
562 }

565 /*
566 * Constructs an absolute path string in buf from the path of fd and the
567 * relative path string pointed to by "p1". This is required for emulating
568 * *at() system calls.
569 * Example:
570 * If the path of fd is "/foo/bar" and path is "etc" the string returned is
571 * "/foo/bar/etc", if the fd is a file fd then it fails with ENOTDIR.
572 * If path is absolute then no modifcations are made to it when copied.
573 */
574 static int
575 getpathat(int fd, uintptr_t p1, char *outbuf, size_t outbuf_size)
576 {
577 char pathbuf[MAXPATHLEN];
578 char fdpathbuf[MAXPATHLEN];
579 char *fdpath;
580 struct stat64 statbuf;

582 if (uucopystr((void *)p1, pathbuf, MAXPATHLEN) == -1)
583 return (-errno);

585 /* If the path is absolute then we can early out */
586 if ((pathbuf[0] == ’/’) || (fd == LX_AT_FDCWD)) {
587 (void) strlcpy(outbuf, pathbuf, outbuf_size);
588 return (0);

new/usr/src/lib/brand/lx/lx_brand/common/file.c 10

589 }

591 fdpath = lx_fd_to_path(fd, fdpathbuf, sizeof (fdpathbuf));
592 if (fdpath == NULL)
593 return (-EBADF);

595 if ((fstat64(fd, &statbuf) < 0))
596 return (-EBADF);

598 if (!S_ISDIR(statbuf.st_mode))
599 return (-ENOTDIR);

601 if (snprintf(outbuf, outbuf_size, "%s/%s", fdpath, pathbuf) >
602 (outbuf_size-1))
603 return (-ENAMETOOLONG);

605 return (0);
606 }

608 int
609 lx_mkdirat(uintptr_t p1, uintptr_t p2, uintptr_t p3)
610 {
611 int atfd = (int)p1;
612 mode_t mode = (mode_t)p3;
613 char pathbuf[MAXPATHLEN];
614 int ret;

616 ret = getpathat(atfd, p2, pathbuf, sizeof (pathbuf));
617 if (ret < 0)
618 return (ret);

620 return (mkdir(pathbuf, mode) ? -errno : 0);
621 }

623 int
624 lx_mknodat(uintptr_t ext1, uintptr_t p1, uintptr_t p2, uintptr_t p3)
625 {
626 int atfd = (int)ext1;
627 char pathbuf[MAXPATHLEN];
628 int ret;

630 ret = getpathat(atfd, p1, pathbuf, sizeof (pathbuf));
631 if (ret < 0)
632 return (ret);

634 return (lx_mknod((uintptr_t)pathbuf, p2, p3));
635 }

637 int
638 lx_symlinkat(uintptr_t p1, uintptr_t ext1, uintptr_t p2)
639 {
640 int atfd = (int)ext1;
641 char pathbuf[MAXPATHLEN];
642 int ret;

644 ret = getpathat(atfd, p2, pathbuf, sizeof (pathbuf));
645 if (ret < 0)
646 return (ret);

648 return (symlink((char *)p1, pathbuf) ? -errno : 0);
649 }

651 int
652 lx_linkat(uintptr_t ext1, uintptr_t p1, uintptr_t ext2, uintptr_t p2,
653 uintptr_t p3)
654 {

new/usr/src/lib/brand/lx/lx_brand/common/file.c 11

655 int atfd1 = (int)ext1;
656 int atfd2 = (int)ext2;
657 char pathbuf1[MAXPATHLEN];
658 char pathbuf2[MAXPATHLEN];
659 int ret;

661 /*
662 * The flag specifies whether the hardlink will point to a symlink or
663 * not, on solaris the default behaviour of link() is to dereference a
664 * symlink and there is no obvious way to trigger the other behaviour.
665 * So for now we just ignore this flag and act like link().
666 */
667 /* LINTED [set but not used in function] */
668 int flag = p3;

670 if (flag != p3)
671 return (flag); // workaround.

673 ret = getpathat(atfd1, p1, pathbuf1, sizeof (pathbuf1));
674 if (ret < 0)
675 return (ret);

677 ret = getpathat(atfd2, p2, pathbuf2, sizeof (pathbuf2));
678 if (ret < 0)
679 return (ret);

681 return (lx_link((uintptr_t)pathbuf1, (uintptr_t)pathbuf2));
682 }

684 int
685 lx_readlinkat(uintptr_t ext1, uintptr_t p1, uintptr_t p2, uintptr_t p3)
686 {
687 int atfd = (int)ext1;
688 char pathbuf[MAXPATHLEN];
689 int ret;

691 ret = getpathat(atfd, p1, pathbuf, sizeof (pathbuf));
692 if (ret < 0)
693 return (ret);

695 ret = readlink(pathbuf, (char *)p2, (size_t)p3);
696 if (ret < 0)
697 return (-errno);

699 return (ret);
700 }

702 int
703 lx_fchownat(uintptr_t ext1, uintptr_t p1, uintptr_t p2, uintptr_t p3,
704 uintptr_t p4)
705 {
706 int flag;
707 int atfd = (int)ext1;
708 char pathbuf[MAXPATHLEN];
709 int ret;

711 flag = ltos_at_flag(p4, AT_SYMLINK_NOFOLLOW);
712 if (flag < 0)
713 return (-EINVAL);

715 ret = getpathat(atfd, p1, pathbuf, sizeof (pathbuf));
716 if (ret < 0)
717 return (ret);

719 if (flag & AT_SYMLINK_NOFOLLOW)
720 return (lchown(pathbuf, (uid_t)p2, (gid_t)p3) ? -errno : 0);

new/usr/src/lib/brand/lx/lx_brand/common/file.c 12

721 else
722 return (lx_chown((uintptr_t)pathbuf, p2, p3));
723 }

725 int
726 lx_fchmodat(uintptr_t ext1, uintptr_t p1, uintptr_t p2, uintptr_t p3)
727 {
728 int atfd = (int)ext1;
729 char pathbuf[MAXPATHLEN];
730 int ret;

732 /*
733 * It seems that at least some versions of glibc do not set or clear
734 * the flags arg, so checking them will result in random behaviour.
735 */
736 /* LINTED [set but not used in function] */
737 int flag = p3;

739 if (flag != p3)
740 return (flag); // workaround.

742 ret = getpathat(atfd, p1, pathbuf, sizeof (pathbuf));
743 if (ret < 0)
744 return (ret);

746 return (lx_chmod((uintptr_t)pathbuf, p2));
747 }
748 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/fork.c 1

**
 1850 Tue Jan 14 16:17:01 2014
new/usr/src/lib/brand/lx/lx_brand/common/fork.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <errno.h>
30 #include <unistd.h>
31 #include <sys/lx_misc.h>

33 /*
34 * fork() and vfork()
35 *
36 * These cannot be pass thru system calls because we need libc to do its own
37 * initialization or else bad things will happen (i.e. ending up with a bad
38 * schedctl page). On Linux, there is no such thing as forkall(), so we use
39 * fork1() here.
40 */
41 int
42 lx_fork(void)
43 {
44 int ret = fork1();

46 if (ret == 0 && lx_is_rpm)
47 (void) sleep(lx_rpm_delay);

49 return (ret == -1 ? -errno : ret);
50 }

52 /*
53 * For vfork(), we have a serious problem because the child is not allowed to
54 * return from the current frame because it will corrupt the parent’s stack.
55 * Since the semantics of vfork() are rather ill-defined (other than "it’s
56 * faster than fork"), we should theoretically be safe by falling back to
57 * fork1().
58 */
59 int
60 lx_vfork(void)
61 {

new/usr/src/lib/brand/lx/lx_brand/common/fork.c 2

62 int ret = fork1();

64 return (ret == -1 ? -errno : ret);
65 }
66 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/id.c 1

**
 6526 Tue Jan 14 16:17:01 2014
new/usr/src/lib/brand/lx/lx_brand/common/id.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/errno.h>
32 #include <sys/zone.h>
33 #include <sys/lx_types.h>
34 #include <sys/lx_syscall.h>
35 #include <sys/cred_impl.h>
36 #include <sys/policy.h>
37 #include <sys/ucred.h>
38 #include <sys/syscall.h>
39 #include <alloca.h>
40 #include <errno.h>
41 #include <ucred.h>
42 #include <unistd.h>
43 #include <errno.h>
44 #include <string.h>
45 #include <sys/lx_misc.h>

47 int
48 lx_setuid16(uintptr_t uid)
49 {
50 return ((setuid(LX_UID16_TO_UID32((lx_uid16_t)uid))) ? -errno : 0);
51 }

53 int
54 lx_getuid16(void)
55 {
56 return ((int)LX_UID32_TO_UID16(getuid()));
57 }

59 int
60 lx_setgid16(uintptr_t gid)
61 {

new/usr/src/lib/brand/lx/lx_brand/common/id.c 2

62 return ((setgid(LX_GID16_TO_GID32((lx_gid16_t)gid))) ? -errno : 0);
63 }

65 int
66 lx_getgid16(void)
67 {
68 return ((int)LX_GID32_TO_GID16(getgid()));
69 }

71 int
72 lx_geteuid16(void)
73 {
74 return ((int)LX_UID32_TO_UID16(geteuid()));
75 }

77 int
78 lx_getegid16(void)
79 {
80 return ((int)LX_GID32_TO_GID16(getegid()));
81 }

83 int
84 lx_geteuid(void)
85 {
86 return ((int)geteuid());
87 }

89 int
90 lx_getegid(void)
91 {
92 return ((int)getegid());
93 }

95 int
96 lx_getresuid(uintptr_t ruid, uintptr_t euid, uintptr_t suid)
97 {
98 lx_uid_t lx_ruid, lx_euid, lx_suid;
99 ucred_t *cr;
100 size_t sz;

102 /*
103 * We allocate a ucred_t ourselves rather than call ucred_get(3C)
104 * because ucred_get() calls malloc(3C), which the brand library cannot
105 * use. Because we allocate the space with SAFE_ALLOCA(), there’s
106 * no need to free it when we’re done.
107 */
108 sz = ucred_size();
109 cr = (ucred_t *)SAFE_ALLOCA(sz);
110 if (cr == NULL)
111 return (-ENOMEM);

113 if (syscall(SYS_ucredsys, UCREDSYS_UCREDGET, P_MYID, cr) != 0)
114 return (-errno);

116 if (((lx_ruid = (lx_uid_t)ucred_getruid(cr)) == (lx_uid_t)-1) ||
117 ((lx_euid = (lx_uid_t)ucred_geteuid(cr)) == (lx_uid_t)-1) ||
118 ((lx_suid = (lx_uid_t)ucred_getsuid(cr)) == (lx_uid_t)-1)) {
119 return (-errno);
120 }

122 if (uucopy(&lx_ruid, (void *)ruid, sizeof (lx_uid_t)) != 0)
123 return (-errno);

125 if (uucopy(&lx_euid, (void *)euid, sizeof (lx_uid_t)) != 0)
126 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/id.c 3

128 return ((uucopy(&lx_suid, (void *)suid, sizeof (lx_uid_t)) != 0)
129 ? -errno : 0);
130 }

132 int
133 lx_getresuid16(uintptr_t ruid16, uintptr_t euid16, uintptr_t suid16)
134 {
135 lx_uid_t lx_ruid, lx_euid, lx_suid;
136 lx_uid16_t lx_ruid16, lx_euid16, lx_suid16;
137 int rv;

139 if ((rv = lx_getresuid((uintptr_t)&lx_ruid, (uintptr_t)&lx_euid,
140 (uintptr_t)&lx_suid)) != 0)
141 return (rv);

143 lx_ruid16 = LX_UID32_TO_UID16(lx_ruid);
144 lx_euid16 = LX_UID32_TO_UID16(lx_euid);
145 lx_suid16 = LX_UID32_TO_UID16(lx_suid);

147 if (uucopy(&lx_ruid16, (void *)ruid16, sizeof (lx_uid16_t)) != 0)
148 return (-errno);

150 if (uucopy(&lx_euid16, (void *)euid16, sizeof (lx_uid16_t)) != 0)
151 return (-errno);

153 return ((uucopy(&lx_suid16, (void *)suid16, sizeof (lx_uid16_t)) != 0)
154 ? -errno : 0);
155 }

157 int
158 lx_getresgid(uintptr_t rgid, uintptr_t egid, uintptr_t sgid)
159 {
160 ucred_t *cr;
161 lx_gid_t lx_rgid, lx_egid, lx_sgid;
162 size_t sz;

164 /*
165 * We allocate a ucred_t ourselves rather than call ucred_get(3C)
166 * because ucred_get() calls malloc(3C), which the brand library cannot
167 * use. Because we allocate the space with SAFE_ALLOCA(), there’s
168 * no need to free it when we’re done.
169 */
170 sz = ucred_size();
171 cr = (ucred_t *)SAFE_ALLOCA(sz);
172 if (cr == NULL)
173 return (-ENOMEM);

175 if (syscall(SYS_ucredsys, UCREDSYS_UCREDGET, P_MYID, cr) != 0)
176 return (-errno);

178 if (((lx_rgid = (lx_gid_t)ucred_getrgid(cr)) == (lx_gid_t)-1) ||
179 ((lx_egid = (lx_gid_t)ucred_getegid(cr)) == (lx_gid_t)-1) ||
180 ((lx_sgid = (lx_gid_t)ucred_getsgid(cr)) == (lx_gid_t)-1)) {
181 return (-errno);
182 }

184 if (uucopy(&lx_rgid, (void *)rgid, sizeof (lx_gid_t)) != 0)
185 return (-errno);

187 if (uucopy(&lx_egid, (void *)egid, sizeof (lx_gid_t)) != 0)
188 return (-errno);

190 return ((uucopy(&lx_sgid, (void *)sgid, sizeof (lx_gid_t)) != 0)
191 ? -errno : 0);
192 }

new/usr/src/lib/brand/lx/lx_brand/common/id.c 4

194 int
195 lx_getresgid16(uintptr_t rgid16, uintptr_t egid16, uintptr_t sgid16)
196 {
197 lx_gid_t lx_rgid, lx_egid, lx_sgid;
198 lx_gid16_t lx_rgid16, lx_egid16, lx_sgid16;
199 int rv;

201 if ((rv = lx_getresgid((uintptr_t)&lx_rgid, (uintptr_t)&lx_egid,
202 (uintptr_t)&lx_sgid)) != 0)
203 return (rv);

205 lx_rgid16 = LX_UID32_TO_UID16(lx_rgid);
206 lx_egid16 = LX_UID32_TO_UID16(lx_egid);
207 lx_sgid16 = LX_UID32_TO_UID16(lx_sgid);

209 if (uucopy(&lx_rgid16, (void *)rgid16, sizeof (lx_gid16_t)) != 0)
210 return (-errno);

212 if (uucopy(&lx_egid16, (void *)egid16, sizeof (lx_gid16_t)) != 0)
213 return (-errno);

215 return ((uucopy(&lx_sgid16, (void *)sgid16, sizeof (lx_gid16_t)) != 0)
216 ? -errno : 0);
217 }

219 int
220 lx_setreuid16(uintptr_t ruid, uintptr_t euid)
221 {
222 return ((setreuid(LX_UID16_TO_UID32((lx_uid16_t)ruid),
223 LX_UID16_TO_UID32((lx_uid16_t)euid))) ? -errno : 0);
224 }

226 int
227 lx_setregid16(uintptr_t rgid, uintptr_t egid)
228 {
229 return ((setregid(LX_UID16_TO_UID32((lx_gid16_t)rgid),
230 LX_UID16_TO_UID32((lx_gid16_t)egid))) ? -errno : 0);
231 }

233 /*
234 * The lx brand cannot support the setfs[ug]id16/setfs[ug]id calls as that
235 * would require significant rework of Solaris’ privilege mechanisms, so
236 * instead return the current effective [ug]id.
237 *
238 * In Linux, fsids track effective IDs, so returning the effective IDs works
239 * as a substitute; returning the current value also denotes failure of the
240 * call if the caller had specified something different. We don’t need to
241 * worry about setting error codes because the Linux calls don’t set any.
242 */
243 /*ARGSUSED*/
244 int
245 lx_setfsuid16(uintptr_t fsuid16)
246 {
247 return (lx_geteuid16());
248 }

250 /*ARGSUSED*/
251 int
252 lx_setfsgid16(uintptr_t fsgid16)
253 {
254 return (lx_getegid16());
255 }

257 /*ARGSUSED*/
258 int
259 lx_setfsuid(uintptr_t fsuid)

new/usr/src/lib/brand/lx/lx_brand/common/id.c 5

260 {
261 return (geteuid());
262 }

264 /*ARGSUSED*/
265 int
266 lx_setfsgid(uintptr_t fsgid)
267 {
268 return (getegid());
269 }
270 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 1

**
 73335 Tue Jan 14 16:17:01 2014
new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <assert.h>
30 #include <fcntl.h>
31 #include <sys/types.h>
32 #include <signal.h>
33 #include <sys/stat.h>
34 #include <unistd.h>
35 #include <limits.h>
36 #include <stdio.h>
37 #include <stdarg.h>
38 #include <stdlib.h>
39 #include <stropts.h>
40 #include <strings.h>
41 #include <thread.h>
42 #include <errno.h>
43 #include <libintl.h>
44 #include <sys/bitmap.h>
45 #include <sys/lx_autofs.h>
46 #include <sys/modctl.h>
47 #include <sys/filio.h>
48 #include <sys/termios.h>
49 #include <sys/termio.h>
50 #include <sys/sockio.h>
51 #include <net/if.h>
52 #include <net/if_arp.h>
53 #include <sys/ptms.h>
54 #include <sys/ldlinux.h>
55 #include <sys/lx_ptm.h>
56 #include <sys/lx_socket.h>
57 #include <sys/syscall.h>
58 #include <sys/brand.h>
59 #include <sys/lx_audio.h>
60 #include <sys/lx_ioctl.h>
61 #include <sys/lx_misc.h>

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 2

62 #include <sys/lx_debug.h>
63 #include <sys/ptyvar.h>
64 #include <sys/audio.h>
65 #include <sys/mixer.h>

67 /* Define _KERNEL to get the devt manipulation macros. */
68 #define _KERNEL
69 #include <sys/sysmacros.h>
70 #undef _KERNEL

72 /* Maximum number of modules on a stream that we can handle. */
73 #define MAX_STRMODS 10

75 /* Maximum buffer size for debugging messages. */
76 #define MSGBUF 1024

78 /* Structure used to define an ioctl translator. */
79 typedef struct ioc_cmd_translator {
80 int ict_lx_cmd;
81 char *ict_lx_cmd_str;
82 int ict_cmd;
83 char *ict_cmd_str;
84 int (*ict_func)(int fd, struct stat *stat,
85 int cmd, char *cmd_str, intptr_t arg);
86 } ioc_cmd_translator_t;

88 /*
89 * Structures used to associate a group of ioctl translators with
90 * a specific device.
91 */
92 typedef struct ioc_dev_translator {
93 char *idt_driver;
94 major_t idt_major;

96 /* Array of command translators. */
97 ioc_cmd_translator_t *idt_cmds;
98 } ioc_dev_translator_t;

100 /*
101 * Structures used to associate a group of ioctl translators with
102 * a specific filesystem.
103 */
104 typedef struct ioc_fs_translator {
105 char *ift_filesystem;

107 /* Array of command translators. */
108 ioc_cmd_translator_t *ift_cmds;
109 } ioc_fs_translator_t;

111 /* Structure used to define a unsupported ioctl error codes. */
112 typedef struct ioc_errno_translator {
113 int iet_lx_cmd;
114 char *iet_lx_cmd_str;
115 int iet_errno;
116 } ioc_errno_translator_t;

118 /* Structure used to convert oss format flags into Solaris options. */
119 typedef struct oss_fmt_translator {
120 int oft_oss_fmt;
121 int oft_encoding;
122 int oft_precision;
123 } oss_fmt_translator_t;

125 /* Translator forward declerations. */
126 static oss_fmt_translator_t oft_table[];
127 static ioc_cmd_translator_t ioc_translators_file[];

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 3

128 static ioc_cmd_translator_t ioc_translators_fifo[];
129 static ioc_cmd_translator_t ioc_translators_sock[];
130 static ioc_dev_translator_t ioc_translator_ptm;
131 static ioc_dev_translator_t *ioc_translators_dev[];
132 static ioc_fs_translator_t *ioc_translators_fs[];
133 static ioc_errno_translator_t ioc_translators_errno[];

135 /*
136 * Interface name table.
137 */
138 typedef struct ifname_map {
139 char im_linux[IFNAMSIZ];
140 char im_solaris[IFNAMSIZ];
141 struct ifname_map *im_next;
142 } ifname_map_t;

144 static ifname_map_t *ifname_map;
145 static mutex_t ifname_mtx;

147 /*
148 * Macros and structures to help convert integers to string
149 * values that they represent (for displaying in debug output).
150 */
151 #define I2S_ENTRY(x) { x, #x },
152 #define I2S_END { 0, NULL }

154 typedef struct int2str {
155 int i2s_int;
156 char *i2s_str;
157 } int2str_t;

159 static int2str_t st_mode_strings[] = {
160 I2S_ENTRY(S_IFIFO)
161 I2S_ENTRY(S_IFCHR)
162 I2S_ENTRY(S_IFDIR)
163 I2S_ENTRY(S_IFBLK)
164 I2S_ENTRY(S_IFREG)
165 I2S_ENTRY(S_IFLNK)
166 I2S_ENTRY(S_IFSOCK)
167 I2S_ENTRY(S_IFDOOR)
168 I2S_ENTRY(S_IFPORT)
169 I2S_END
170 };

172 static int2str_t oss_fmt_str[] = {
173 I2S_ENTRY(LX_OSS_AFMT_QUERY)
174 I2S_ENTRY(LX_OSS_AFMT_MU_LAW)
175 I2S_ENTRY(LX_OSS_AFMT_A_LAW)
176 I2S_ENTRY(LX_OSS_AFMT_IMA_ADPCM)
177 I2S_ENTRY(LX_OSS_AFMT_U8)
178 I2S_ENTRY(LX_OSS_AFMT_S16_LE)
179 I2S_ENTRY(LX_OSS_AFMT_S16_BE)
180 I2S_ENTRY(LX_OSS_AFMT_S8)
181 I2S_ENTRY(LX_OSS_AFMT_U16_LE)
182 I2S_ENTRY(LX_OSS_AFMT_U16_BE)
183 I2S_ENTRY(LX_OSS_AFMT_MPEG)
184 I2S_END
185 };

187 static void
188 lx_ioctl_msg(int fd, int cmd, char *lx_cmd_str, struct stat *stat, char *msg)
189 {
190 int errno_backup = errno;
191 char *path, path_buf[MAXPATHLEN];

193 assert(msg != NULL);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 4

195 if (lx_debug_enabled == 0)
196 return;

198 path = lx_fd_to_path(fd, path_buf, sizeof (path_buf));
199 if (path == NULL)
200 path = "?";

202 if (lx_cmd_str == NULL)
203 lx_cmd_str = "?";

205 /* Display the initial error message and extended ioctl information. */
206 lx_debug("\t%s", msg);
207 lx_debug("\tlx_ioctl(): cmd = 0x%x - %s, fd = %d - %s",
208 cmd, lx_cmd_str, fd, path);

210 /* Display information about the target file, if it’s available. */
211 if (stat != NULL) {
212 major_t fd_major = getmajor(stat->st_rdev);
213 minor_t fd_minor = getminor(stat->st_rdev);
214 int fd_mode = stat->st_mode & S_IFMT;
215 char *fd_mode_str = "unknown";
216 char buf[LX_MSG_MAXLEN];
217 int i;

219 /* Translate the file type bits into a string. */
220 for (i = 0; st_mode_strings[i].i2s_str != NULL; i++) {
221 if (fd_mode != st_mode_strings[i].i2s_int)
222 continue;
223 fd_mode_str = st_mode_strings[i].i2s_str;
224 break;
225 }

227 (void) snprintf(buf, sizeof (buf),
228 "\tlx_ioctl(): mode = %s", fd_mode_str);

230 if ((fd_mode == S_IFCHR) || (fd_mode == S_IFBLK)) {
231 char *fd_driver[MODMAXNAMELEN + 1];
232 int i;

234 /* This is a device so display the devt. */
235 i = strlen(buf);
236 (void) snprintf(buf + i, sizeof (buf) - i,
237 "; rdev = [%d, %d]", fd_major, fd_minor);

239 /* Try to display the drivers name. */
240 if (modctl(MODGETNAME,
241 fd_driver, sizeof (fd_driver), &fd_major) == 0)
242 i = strlen(buf);
243 (void) snprintf(buf + i, sizeof (buf) - i,
244 "; driver = %s", fd_driver);
245 }
246 lx_debug(buf);
247 }

249 /* Restore errno. */
250 errno = errno_backup;
251 }

253 static int
254 ldlinux_check(int fd)
255 {
256 struct str_mlist mlist[MAX_STRMODS];
257 struct str_list strlist;
258 int i;

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 5

260 /* Get the number of modules on the stream. */
261 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
262 fd, I_LIST, "I_LIST");
263 if ((i = ioctl(fd, I_LIST, (struct str_list *)NULL)) < 0) {
264 lx_debug("\tldlinux_check(): unable to count stream modules");
265 return (-errno);
266 }

268 /* Sanity check the number of modules on the stream. */
269 assert(i <= MAX_STRMODS);

271 /* Get the list of modules on the stream. */
272 strlist.sl_nmods = i;
273 strlist.sl_modlist = mlist;
274 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
275 fd, I_LIST, "I_LIST");
276 if (ioctl(fd, I_LIST, &strlist) < 0) {
277 lx_debug("\tldlinux_check(): unable to list stream modules");
278 return (-errno);
279 }

281 for (i = 0; i < strlist.sl_nmods; i++)
282 if (strcmp(strlist.sl_modlist[i].l_name, LDLINUX_MOD) == 0)
283 return (1);

285 return (0);
286 }

288 static int
289 ioctl_istr(int fd, int cmd, char *cmd_str, void *arg, int arg_len)
290 {
291 struct strioctl istr;

293 istr.ic_cmd = cmd;
294 istr.ic_len = arg_len;
295 istr.ic_timout = 0;
296 istr.ic_dp = arg;

298 lx_debug("\tioctl_istr(%d, 0x%x - %s, ...)", fd, cmd, cmd_str);
299 if (ioctl(fd, I_STR, &istr) < 0)
300 return (-1);
301 return (0);
302 }

304 /*
305 * Add an interface name mapping if it doesn’t already exist.
306 *
307 * Interfaces with IFF_LOOPBACK flag get renamed to loXXX.
308 * Interfaces with IFF_BROADCAST flag get renamed to ethXXX.
309 *
310 * Caller locks the name table.
311 */
312 static int
313 ifname_add(char *if_name, int if_flags)
314 {
315 static int eth_index = 0;
316 static int lo_index = 0;
317 ifname_map_t **im_pp;

319 for (im_pp = &ifname_map; *im_pp; im_pp = &(*im_pp)->im_next)
320 if (strncmp((*im_pp)->im_solaris, if_name, IFNAMSIZ) == 0)
321 return (0);

323 *im_pp = calloc(1, sizeof (ifname_map_t));
324 if (*im_pp == NULL)
325 return (-1);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 6

327 (void) strlcpy((*im_pp)->im_solaris, if_name, IFNAMSIZ);
328 if (if_flags & IFF_LOOPBACK) {
329 /* Loopback */
330 if (lo_index == 0)
331 (void) strlcpy((*im_pp)->im_linux, "lo", IFNAMSIZ);
332 else
333 (void) snprintf((*im_pp)->im_linux, IFNAMSIZ,
334 "lo:%d", lo_index);
335 lo_index++;
336 } else if (if_flags & IFF_BROADCAST) {
337 /* Assume ether if it has a broadcast address */
338 (void) snprintf((*im_pp)->im_linux, IFNAMSIZ,
339 "eth%d", eth_index);
340 eth_index++;
341 } else {
342 /* Do not translate unknown interfaces */
343 (void) strlcpy((*im_pp)->im_linux, if_name, IFNAMSIZ);
344 }

346 lx_debug("map interface %s -> %s", if_name, (*im_pp)->im_linux);

348 return (0);
349 }

351 static int
352 ifname_cmp(const void *p1, const void *p2)
353 {
354 struct ifreq *rp1 = (struct ifreq *)p1;
355 struct ifreq *rp2 = (struct ifreq *)p2;

357 return (strncmp(rp1->ifr_name, rp2->ifr_name, IFNAMSIZ));
358 }

360 /*
361 * (Re-)scan all interfaces and add them to the name table.
362 * Caller locks the name table.
363 */
364 static int
365 ifname_scan(void)
366 {
367 struct ifconf conf;
368 int i, fd, ifcount;

370 conf.ifc_buf = NULL;

372 if ((fd = socket(PF_INET, SOCK_DGRAM, 0)) < 0)
373 goto fail;
374 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd, SIOCGIFNUM, "SIOCGIFNUM");
375 if (ioctl(fd, SIOCGIFNUM, &ifcount) < 0) {
376 lx_debug("\tifname_scan(): unable to get number of interfaces");
377 goto fail;
378 }

380 conf.ifc_len = ifcount * sizeof (struct ifreq);
381 if ((conf.ifc_buf = calloc(ifcount, sizeof (struct ifreq))) == NULL)
382 goto fail;
383 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd, SIOCGIFCONF, "SIOCGIFCONF");
384 if (ioctl(fd, SIOCGIFCONF, &conf) < 0) {
385 lx_debug("\tifname_scan(): unable to get interfaces");
386 goto fail;
387 }

389 /* Get the interface flags */
390 for (i = 0; i < ifcount; i++) {
391 lx_debug("\tioctl(%d, 0x%x - %s, ...)",

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 7

392 fd, SIOCGIFFLAGS, "SIOCGIFFLAGS");
393 if (ioctl(fd, SIOCGIFFLAGS, &conf.ifc_req[i]) < 0) {
394 conf.ifc_req[i].ifr_flags = 0;
395 lx_debug("\tifname_scan(): unable to get flags for %s",
396 conf.ifc_req[i].ifr_name);
397 }
398 }

400 /*
401 * Sort the interfaces by name to preserve the order
402 * across reboots of this zone. Note that the order of
403 * interface names won’t be consistent across network
404 * configuration changes. ie. If network interfaces
405 * are added or removed from a zone (either dynamically
406 * or statically) the network interfaces names to physical
407 * network interface mappings that linux apps see may
408 * change.
409 */
410 qsort(conf.ifc_req, ifcount, sizeof (struct ifreq), ifname_cmp);

412 /* Add to the name table */
413 for (i = 0; i < ifcount; i++)
414 if (ifname_add(conf.ifc_req[i].ifr_name,
415 conf.ifc_req[i].ifr_flags) != 0)
416 goto fail;

418 (void) close(fd);
419 free(conf.ifc_buf);

421 return (0);

423 fail:
424 if (fd >= 0)
425 (void) close(fd);
426 if (conf.ifc_buf != NULL)
427 free(conf.ifc_buf);

429 return (-1);
430 }

432 static int
433 ifname_from_linux(char *name)
434 {
435 int pass;
436 ifname_map_t *im_p;

438 (void) mutex_lock(&ifname_mtx);

440 for (pass = 0; pass < 2; pass++) {
441 for (im_p = ifname_map; im_p; im_p = im_p->im_next)
442 if (strncmp(im_p->im_linux, name, IFNAMSIZ) == 0)
443 break;
444 if (im_p != NULL || (pass == 0 && ifname_scan() != 0))
445 break;
446 }

448 (void) mutex_unlock(&ifname_mtx);

450 if (im_p) {
451 (void) strlcpy(name, im_p->im_solaris, IFNAMSIZ);
452 return (0);
453 }

455 return (-1);
456 }

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 8

458 static int
459 ifname_from_solaris(char *name)
460 {
461 int pass;
462 ifname_map_t *im_p;

464 (void) mutex_lock(&ifname_mtx);

466 for (pass = 0; pass < 2; pass++) {
467 for (im_p = ifname_map; im_p; im_p = im_p->im_next)
468 if (strncmp(im_p->im_solaris, name, IFNAMSIZ) == 0)
469 break;
470 if (im_p != NULL || (pass == 0 && ifname_scan() != 0))
471 break;
472 }

474 (void) mutex_unlock(&ifname_mtx);

476 if (im_p) {
477 (void) strlcpy(name, im_p->im_linux, IFNAMSIZ);
478 return (0);
479 }

481 return (-1);
482 }

484 /*
485 * Called to initialize the ioctl translation subsystem.
486 */
487 int
488 lx_ioctl_init()
489 {
490 int i, ret;

492 /* Figure out the major numbers for our devices translators. */
493 for (i = 0; ioc_translators_dev[i] != NULL; i++) {
494 ioc_dev_translator_t *idt = ioc_translators_dev[i];

496 ret = modctl(MODGETMAJBIND,
497 idt->idt_driver, strlen(idt->idt_driver) + 1,
498 &idt->idt_major);

500 if (ret != 0) {
501 lx_err(gettext("%s%s) failed: %s\n"),
502 "lx_ioctl_init(): modctl(MODGETMAJBIND, ",
503 idt->idt_driver, strerror(errno));
504 lx_err(gettext("%s: %s translator disabled for: %s\n"),
505 "lx_ioctl_init()", "ioctl", idt->idt_driver);
506 idt->idt_major = (major_t)-1;
507 }
508 }

510 /* Create the interface name table */
511 if (ifname_scan() != 0)
512 lx_err("lx_ioctl_init(): ifname_scan() failed\n");

514 return (0);
515 }

517 static ioc_cmd_translator_t *
518 lx_ioctl_find_ict_cmd(ioc_cmd_translator_t *ict, int cmd)
519 {
520 assert(ict != NULL);
521 while ((ict != NULL) && (ict->ict_func != NULL)) {
522 if (cmd == ict->ict_lx_cmd)
523 return (ict);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 9

524 ict++;
525 }
526 return (NULL);
527 }

529 /*
530 * Main entry point for the ioctl translater.
531 */
532 int
533 lx_ioctl(uintptr_t p1, uintptr_t p2, uintptr_t p3)
534 {
535 int fd = (int)p1;
536 int cmd = (int)p2;
537 intptr_t arg = (uintptr_t)p3;
538 struct stat stat;
539 ioc_cmd_translator_t *ict = NULL;
540 ioc_errno_translator_t *iet = NULL;
541 major_t fd_major;
542 int i, ret;

544 if (fstat(fd, &stat) != 0) {
545 lx_ioctl_msg(fd, cmd, NULL, NULL,
546 "lx_ioctl(): fstat() failed");

548 /*
549 * Linux ioctl(2) is only documented to return EBADF, EFAULT,
550 * EINVAL or ENOTTY.
551 *
552 * EINVAL is documented to be "Request or argp is not valid",
553 * so it’s reasonable to force any errno that’s not EBADF,
554 * EFAULT or ENOTTY to be EINVAL.
555 */
556 if ((errno != EBADF) && (errno != EFAULT) && (errno != ENOTTY))
557 errno = EINVAL;

559 return (-errno); /* errno already set. */
560 }

562 switch (stat.st_mode & S_IFMT) {
563 default:
564 break;
565 case S_IFREG:
566 /* Use file translators. */
567 ict = ioc_translators_file;
568 break;

570 case S_IFSOCK:
571 /* Use socket translators. */
572 ict = ioc_translators_sock;
573 break;

575 case S_IFIFO:
576 /* Use fifo translators. */
577 ict = ioc_translators_fifo;
578 break;

580 case S_IFCHR:
581 fd_major = getmajor(stat.st_rdev);

583 /*
584 * Look through all the device translators to see if there
585 * is one for this device.
586 */
587 for (i = 0; ioc_translators_dev[i] != NULL; i++) {
588 if (fd_major != ioc_translators_dev[i]->idt_major)
589 continue;

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 10

591 /* We found a translator for this device. */
592 ict = ioc_translators_dev[i]->idt_cmds;
593 break;
594 }
595 break;
596 }

598 /*
599 * Search the selected translator group to see if we have a
600 * translator for this specific command.
601 */
602 if ((ict != NULL) &&
603 ((ict = lx_ioctl_find_ict_cmd(ict, cmd)) != NULL)) {
604 /* We found a translator for this command, invoke it. */
605 lx_ioctl_msg(fd, cmd, ict->ict_lx_cmd_str, &stat,
606 "lx_ioctl(): emulating ioctl");

608 ret = ict->ict_func(fd, &stat, ict->ict_cmd, ict->ict_cmd_str,
609 arg);

611 if ((ret < 0) && (ret != -EBADF) && (ret != -EFAULT) &&
612 (ret != -ENOTTY))
613 ret = -EINVAL;

615 return (ret);
616 }

618 /*
619 * If we didn’t find a file or device translator for this
620 * command then try to find a filesystem translator for
621 * this command.
622 */
623 for (i = 0; ioc_translators_fs[i] != NULL; i++) {
624 if (strcmp(stat.st_fstype,
625 ioc_translators_fs[i]->ift_filesystem) != 0)
626 continue;

628 /* We found a translator for this filesystem. */
629 ict = ioc_translators_fs[i]->ift_cmds;
630 break;
631 }

633 /*
634 * Search the selected translator group to see if we have a
635 * translator for this specific command.
636 */
637 if ((ict != NULL) &&
638 ((ict = lx_ioctl_find_ict_cmd(ict, cmd)) != NULL)) {
639 /* We found a translator for this command, invoke it. */
640 lx_ioctl_msg(fd, cmd, ict->ict_lx_cmd_str, &stat,
641 "lx_ioctl(): emulating ioctl");
642 ret = ict->ict_func(fd, &stat, ict->ict_cmd, ict->ict_cmd_str,
643 arg);

645 if ((ret < 0) && (ret != -EBADF) && (ret != -EFAULT) &&
646 (ret != -ENOTTY))
647 ret = -EINVAL;

649 return (ret);
650 }

652 /*
653 * No translator for this ioctl was found.
654 * Check if there is an errno translator.
655 */

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 11

656 for (iet = ioc_translators_errno; iet->iet_lx_cmd_str != NULL; iet++) {
657 if (cmd != iet->iet_lx_cmd)
658 continue;

660 /* We found a an errno translator for this ioctl. */
661 lx_ioctl_msg(fd, cmd, iet->iet_lx_cmd_str, &stat,
662 "lx_ioctl(): emulating errno");

664 ret = -iet->iet_errno;

666 if ((ret < 0) && (ret != -EBADF) && (ret != -EFAULT) &&
667 (ret != -ENOTTY))
668 ret = -EINVAL;

670 return (ret);
671 }

673 lx_ioctl_msg(fd, cmd, NULL, &stat,
674 "lx_ioctl(): unsupported linux ioctl");
675 lx_unsupported(gettext("lx_ioctl(): unsupported linux ioctl (%d)"),
676 cmd);
677 return (-EINVAL);
678 }

681 /*
682 * Ioctl translator functions.
683 */
684 /*
685 * Used by translators that want to explicitly return EINVAL for an
686 * ioctl(2) instead of having the translation framework do it implicitly.
687 * This allows us to indicate which unsupported ioctl(2)s should not
688 * trigger a SIGSYS when running in LX_STRICT mode.
689 */
690 /* ARGSUSED */
691 static int
692 ict_einval(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
693 {
694 return (-EINVAL);
695 }

697 static int
698 /*ARGSUSED*/
699 ict_pass(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
700 {
701 int ret;

703 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
704 fd, cmd, cmd_str);
705 ret = ioctl(fd, cmd, arg);
706 return (ret < 0 ? -errno : ret);
707 }

709 static int
710 /*ARGSUSED*/
711 ict_tcsbrkp(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
712 {
713 int ret, dur = 0;

715 assert(cmd == LX_TCSBRKP);
716 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
717 fd, TCSBRK, "TCSBRK");
718 ret = ioctl(fd, TCSBRK, (intptr_t)&dur);
719 return (ret < 0 ? -errno : ret);
720 }

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 12

722 static int
723 /*ARGSUSED*/
724 ict_sioifoob(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
725 {
726 int req, *reqp = (int *)arg;
727 int len, val;

729 assert(cmd == SIOCATMARK);

731 if (uucopy(reqp, &req, sizeof (req)) != 0)
732 return (-errno);

734 len = sizeof (val);

736 /*
737 * Linux expects a SIOCATMARK of a UDP socket to return EINVAL, while
738 * Solaris allows it.
739 */
740 if (getsockopt(fd, SOL_SOCKET, SO_TYPE, &val, &len) < 0) {
741 lx_debug("ict_siofmark: getsockopt failed, errno %d", errno);
742 return (-EINVAL);
743 }

745 if ((len != sizeof (val)) || (val != SOCK_STREAM))
746 return (-EINVAL);

748 if (ioctl(fd, cmd, &req) < 0)
749 return (-errno);

751 if (uucopy(&req, reqp, sizeof (req)) != 0)
752 return (-errno);

754 return (0);
755 }

757 static int
758 /*ARGSUSED*/
759 ict_sioifreq(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
760 {
761 struct ifreq req, *reqp = (struct ifreq *)arg;

763 assert(cmd == SIOCGIFFLAGS || cmd == SIOCSIFFLAGS ||
764 cmd == SIOCGIFADDR || cmd == SIOCSIFADDR ||
765 cmd == SIOCGIFDSTADDR || cmd == SIOCSIFDSTADDR ||
766 cmd == SIOCGIFBRDADDR || cmd == SIOCSIFBRDADDR ||
767 cmd == SIOCGIFNETMASK || cmd == SIOCSIFNETMASK ||
768 cmd == SIOCGIFMETRIC || cmd == SIOCSIFMETRIC ||
769 cmd == SIOCGIFMTU || cmd == SIOCSIFMTU);

771 /* Copy in the data */
772 if (uucopy(reqp, &req, sizeof (struct ifreq)) != 0)
773 return (-errno);

775 if (ifname_from_linux(req.ifr_name) < 0)
776 return (-EINVAL);

778 lx_debug("\tioctl(%d, 0x%x - %s, %.14s",
779 fd, cmd, cmd_str, req.ifr_name);

781 if (ioctl(fd, cmd, &req) < 0)
782 return (-errno);

784 if (ifname_from_solaris(req.ifr_name) < 0)
785 return (-EINVAL);

787 /* Copy out the data */

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 13

788 if (uucopy(&req, reqp, sizeof (struct ifreq)) != 0)
789 return (-errno);

791 return (0);
792 }

794 static int
795 /*ARGSUSED*/
796 ict_siocgifconf(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
797 {
798 struct ifconf conf, *confp = (struct ifconf *)arg;
799 int i, ifcount, ret;

801 assert(cmd == LX_SIOCGIFCONF);

803 /* Copy in the data. */
804 if (uucopy(confp, &conf, sizeof (conf)) != 0)
805 return (-errno);

807 if (conf.ifc_len == 0) {
808 /* They want to know how many interfaces there are. */
809 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
810 fd, SIOCGIFNUM, "SIOCGIFNUM");
811 if (ioctl(fd, SIOCGIFNUM, (intptr_t)&ifcount) < 0)
812 return (-errno);
813 conf.ifc_len = ifcount * sizeof (struct ifreq);

815 /* Check if we’re done. */
816 if (conf.ifc_buf == NULL) {
817 /* Copy out the data. */
818 if (uucopy(&conf, confp, sizeof (conf)) != 0)
819 return (-errno);
820 return (0);
821 }
822 }

824 /* Get interface configuration list. */
825 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd, SIOCGIFCONF, "SIOCGIFCONF");
826 ret = ioctl(fd, SIOCGIFCONF, &conf);
827 if (ret < 0)
828 return (-errno);

830 /* Rename interfaces to linux */
831 for (i = 0; i < conf.ifc_len / sizeof (struct ifreq); i++)
832 if (ifname_from_solaris(conf.ifc_req[i].ifr_name) < 0)
833 return (-EINVAL);

835 /* Copy out the data */
836 if (uucopy(&conf, confp, sizeof (conf)) != 0)
837 return (-errno);

839 return (0);
840 }

842 static int
843 /*ARGSUSED*/
844 ict_siocifhwaddr(int fd, struct stat *stat, int cmd, char *cmd_str,
845 intptr_t arg)
846 {
847 struct ifreq req, *reqp = (struct ifreq *)arg;
848 struct arpreq arpreq;

850 assert(cmd == LX_SIOCGIFHWADDR || cmd == LX_SIOCSIFHWADDR);

852 /* Copy in the data */
853 if (uucopy(reqp, &req, sizeof (struct ifreq)) != 0)

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 14

854 return (-errno);

856 lx_debug("\tioctl(%d, 0x%x - %s, lx %.14s)",
857 fd, cmd,
858 (cmd == LX_SIOCGIFHWADDR) ? "SIOCGIFHWADDR" : "SIOCSIFHWADDR",
859 req.ifr_name);

861 /*
862 * We’re not going to support SIOCSIFHWADDR, but we need to be
863 * able to check the result of the uucopy first to see if the command
864 * should have returned EFAULT.
865 */
866 if (cmd == LX_SIOCSIFHWADDR) {
867 lx_unsupported(gettext(
868 "lx_ioctl(): unsupported linux ioctl: %s"),
869 "SIOCSIFHWADDR");
870 return (-EINVAL);
871 }

873 if (strcmp(req.ifr_name, "lo") == 0 ||
874 strncmp(req.ifr_name, "lo:", 3) == 0) {
875 /* Abuse ifr_addr for linux ifr_hwaddr */
876 bzero(&req.ifr_addr, sizeof (struct sockaddr));
877 req.ifr_addr.sa_family = LX_ARPHRD_LOOPBACK;

879 /* Copy out the data */
880 if (uucopy(&req, reqp, sizeof (struct ifreq)) != 0)
881 return (-errno);

883 return (0);
884 }

886 if (ifname_from_linux(req.ifr_name) < 0)
887 return (-EINVAL);

889 lx_debug("\tioctl(%d, 0x%x - %s, %.14s)",
890 fd, SIOCGIFADDR, "SIOCGIFADDR", req.ifr_name);

892 if (ioctl(fd, SIOCGIFADDR, &req) < 0)
893 return (-errno);

895 bcopy(&req.ifr_addr, &arpreq.arp_pa, sizeof (struct sockaddr));

897 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd, SIOCGARP, "SIOCGARP");

899 if (ioctl(fd, SIOCGARP, &arpreq) < 0)
900 return (-errno);

902 if (ifname_from_solaris(req.ifr_name) < 0)
903 return (-EINVAL);

905 /* Abuse ifr_addr for linux ifr_hwaddr */
906 bcopy(&arpreq.arp_ha, &req.ifr_addr, sizeof (struct sockaddr));
907 if (strncmp(req.ifr_name, "eth", 3) == 0)
908 req.ifr_addr.sa_family = LX_ARPHRD_ETHER;
909 else
910 req.ifr_addr.sa_family = LX_ARPHRD_VOID;

912 /* Copy out the data */
913 if (uucopy(&req, reqp, sizeof (struct ifreq)) != 0)
914 return (-errno);

916 return (0);
917 }

919 static void

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 15

920 l2s_termios(struct lx_termios *l_tios, struct termios *s_tios)
921 {
922 assert((l_tios != NULL) && (s_tios != NULL));

924 bzero(s_tios, sizeof (*s_tios));

926 s_tios->c_iflag = l_tios->c_iflag;
927 s_tios->c_oflag = l_tios->c_oflag;
928 s_tios->c_cflag = l_tios->c_cflag;

930 s_tios->c_lflag = l_tios->c_lflag;
931 if (s_tios->c_lflag & ICANON) {
932 s_tios->c_cc[VEOF] = l_tios->c_cc[LX_VEOF];
933 s_tios->c_cc[VEOL] = l_tios->c_cc[LX_VEOL];
934 } else {
935 s_tios->c_cc[VMIN] = l_tios->c_cc[LX_VMIN];
936 s_tios->c_cc[VTIME] = l_tios->c_cc[LX_VTIME];
937 }

939 s_tios->c_cc[VEOL2] = l_tios->c_cc[LX_VEOL2];
940 s_tios->c_cc[VERASE] = l_tios->c_cc[LX_VERASE];
941 s_tios->c_cc[VKILL] = l_tios->c_cc[LX_VKILL];
942 s_tios->c_cc[VREPRINT] = l_tios->c_cc[LX_VREPRINT];
943 s_tios->c_cc[VLNEXT] = l_tios->c_cc[LX_VLNEXT];
944 s_tios->c_cc[VWERASE] = l_tios->c_cc[LX_VWERASE];
945 s_tios->c_cc[VINTR] = l_tios->c_cc[LX_VINTR];
946 s_tios->c_cc[VQUIT] = l_tios->c_cc[LX_VQUIT];
947 s_tios->c_cc[VSWTCH] = l_tios->c_cc[LX_VSWTC];
948 s_tios->c_cc[VSTART] = l_tios->c_cc[LX_VSTART];
949 s_tios->c_cc[VSTOP] = l_tios->c_cc[LX_VSTOP];
950 s_tios->c_cc[VSUSP] = l_tios->c_cc[LX_VSUSP];
951 s_tios->c_cc[VDISCARD] = l_tios->c_cc[LX_VDISCARD];
952 }

954 static void
955 l2s_termio(struct lx_termio *l_tio, struct termio *s_tio)
956 {
957 assert((l_tio != NULL) && (s_tio != NULL));

959 bzero(s_tio, sizeof (*s_tio));

961 s_tio->c_iflag = l_tio->c_iflag;
962 s_tio->c_oflag = l_tio->c_oflag;
963 s_tio->c_cflag = l_tio->c_cflag;

965 s_tio->c_lflag = l_tio->c_lflag;
966 if (s_tio->c_lflag & ICANON) {
967 s_tio->c_cc[VEOF] = l_tio->c_cc[LX_VEOF];
968 } else {
969 s_tio->c_cc[VMIN] = l_tio->c_cc[LX_VMIN];
970 s_tio->c_cc[VTIME] = l_tio->c_cc[LX_VTIME];
971 }

973 s_tio->c_cc[VINTR] = l_tio->c_cc[LX_VINTR];
974 s_tio->c_cc[VQUIT] = l_tio->c_cc[LX_VQUIT];
975 s_tio->c_cc[VERASE] = l_tio->c_cc[LX_VERASE];
976 s_tio->c_cc[VKILL] = l_tio->c_cc[LX_VKILL];
977 s_tio->c_cc[VSWTCH] = l_tio->c_cc[LX_VSWTC];
978 }

980 static void
981 termios2lx_cc(struct lx_termios *l_tios, struct lx_cc *lio)
982 {
983 assert((l_tios != NULL) && (lio != NULL));

985 bzero(lio, sizeof (*lio));

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 16

987 lio->veof = l_tios->c_cc[LX_VEOF];
988 lio->veol = l_tios->c_cc[LX_VEOL];
989 lio->vmin = l_tios->c_cc[LX_VMIN];
990 lio->vtime = l_tios->c_cc[LX_VTIME];
991 }

993 static void
994 termio2lx_cc(struct lx_termio *l_tio, struct lx_cc *lio)
995 {
996 assert((l_tio != NULL) && (lio != NULL));

998 bzero(lio, sizeof (*lio));

1000 lio->veof = l_tio->c_cc[LX_VEOF];
1001 lio->veol = 0;
1002 lio->vmin = l_tio->c_cc[LX_VMIN];
1003 lio->vtime = l_tio->c_cc[LX_VTIME];
1004 }

1006 static void
1007 s2l_termios(struct termios *s_tios, struct lx_termios *l_tios)
1008 {
1009 assert((s_tios != NULL) && (l_tios != NULL));

1011 bzero(l_tios, sizeof (*l_tios));

1013 l_tios->c_iflag = s_tios->c_iflag;
1014 l_tios->c_oflag = s_tios->c_oflag;
1015 l_tios->c_cflag = s_tios->c_cflag;
1016 l_tios->c_lflag = s_tios->c_lflag;

1018 if (s_tios->c_lflag & ICANON) {
1019 l_tios->c_cc[LX_VEOF] = s_tios->c_cc[VEOF];
1020 l_tios->c_cc[LX_VEOL] = s_tios->c_cc[VEOL];
1021 } else {
1022 l_tios->c_cc[LX_VMIN] = s_tios->c_cc[VMIN];
1023 l_tios->c_cc[LX_VTIME] = s_tios->c_cc[VTIME];
1024 }

1026 l_tios->c_cc[LX_VEOL2] = s_tios->c_cc[VEOL2];
1027 l_tios->c_cc[LX_VERASE] = s_tios->c_cc[VERASE];
1028 l_tios->c_cc[LX_VKILL] = s_tios->c_cc[VKILL];
1029 l_tios->c_cc[LX_VREPRINT] = s_tios->c_cc[VREPRINT];
1030 l_tios->c_cc[LX_VLNEXT] = s_tios->c_cc[VLNEXT];
1031 l_tios->c_cc[LX_VWERASE] = s_tios->c_cc[VWERASE];
1032 l_tios->c_cc[LX_VINTR] = s_tios->c_cc[VINTR];
1033 l_tios->c_cc[LX_VQUIT] = s_tios->c_cc[VQUIT];
1034 l_tios->c_cc[LX_VSWTC] = s_tios->c_cc[VSWTCH];
1035 l_tios->c_cc[LX_VSTART] = s_tios->c_cc[VSTART];
1036 l_tios->c_cc[LX_VSTOP] = s_tios->c_cc[VSTOP];
1037 l_tios->c_cc[LX_VSUSP] = s_tios->c_cc[VSUSP];
1038 l_tios->c_cc[LX_VDISCARD] = s_tios->c_cc[VDISCARD];
1039 }

1041 static void
1042 s2l_termio(struct termio *s_tio, struct lx_termio *l_tio)
1043 {
1044 assert((s_tio != NULL) && (l_tio != NULL));

1046 bzero(l_tio, sizeof (*l_tio));

1048 l_tio->c_iflag = s_tio->c_iflag;
1049 l_tio->c_oflag = s_tio->c_oflag;
1050 l_tio->c_cflag = s_tio->c_cflag;
1051 l_tio->c_lflag = s_tio->c_lflag;

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 17

1053 if (s_tio->c_lflag & ICANON) {
1054 l_tio->c_cc[LX_VEOF] = s_tio->c_cc[VEOF];
1055 } else {
1056 l_tio->c_cc[LX_VMIN] = s_tio->c_cc[VMIN];
1057 l_tio->c_cc[LX_VTIME] = s_tio->c_cc[VTIME];
1058 }

1060 l_tio->c_cc[LX_VINTR] = s_tio->c_cc[VINTR];
1061 l_tio->c_cc[LX_VQUIT] = s_tio->c_cc[VQUIT];
1062 l_tio->c_cc[LX_VERASE] = s_tio->c_cc[VERASE];
1063 l_tio->c_cc[LX_VKILL] = s_tio->c_cc[VKILL];
1064 l_tio->c_cc[LX_VSWTC] = s_tio->c_cc[VSWTCH];
1065 }

1067 static int
1068 /*ARGSUSED*/
1069 ict_tcsets(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
1070 {
1071 struct lx_termios l_tios, *l_tiosp = (struct lx_termios *)arg;
1072 struct termios s_tios;
1073 struct lx_cc lio;
1074 int ldlinux, ret;

1076 assert(cmd == TCSETS || cmd == TCSETSW || cmd == TCSETSF);

1078 /* Copy in the data. */
1079 if (uucopy(l_tiosp, &l_tios, sizeof (l_tios)) != 0)
1080 return (-errno);

1082 /*
1083 * The TIOCSETLD/TIOCGETLD ioctls are only supported by the
1084 * ldlinux strmod. So make sure the module exists on the
1085 * target stream before we invoke the ioctl.
1086 */
1087 if ((ldlinux = ldlinux_check(fd)) < 0)
1088 return (ldlinux);

1090 if (ldlinux == 1) {
1091 termios2lx_cc(&l_tios, &lio);
1092 if (ioctl_istr(fd, TIOCSETLD, "TIOCSETLD",
1093 &lio, sizeof (lio)) < 0)
1094 return (-errno);
1095 }

1097 l2s_termios(&l_tios, &s_tios);
1098 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1099 fd, cmd, cmd_str);
1100 ret = ioctl(fd, cmd, (intptr_t)&s_tios);
1101 return ((ret < 0) ? -errno : ret);
1102 }

1104 static int
1105 /*ARGSUSED*/
1106 ict_tcseta(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
1107 {
1108 struct lx_termio l_tio, *l_tiop = (struct lx_termio *)arg;
1109 struct termio s_tio;
1110 struct lx_cc lio;
1111 int ldlinux, ret;

1113 assert(cmd == TCSETA || cmd == TCSETAW || cmd == TCSETAF);

1115 /* Copy in the data. */
1116 if (uucopy(l_tiop, &l_tio, sizeof (l_tio)) != 0)
1117 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 18

1119 /*
1120 * The TIOCSETLD/TIOCGETLD ioctls are only supported by the
1121 * ldlinux strmod. So make sure the module exists on the
1122 * target stream before we invoke the ioctl.
1123 */
1124 if ((ldlinux = ldlinux_check(fd)) < 0)
1125 return (ldlinux);

1127 if (ldlinux == 1) {
1128 termio2lx_cc(&l_tio, &lio);
1129 if (ioctl_istr(fd, TIOCSETLD, "TIOCSETLD",
1130 &lio, sizeof (lio)) < 0)
1131 return (-errno);
1132 }

1134 l2s_termio(&l_tio, &s_tio);
1135 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1136 fd, cmd, cmd_str);
1137 ret = ioctl(fd, cmd, (intptr_t)&s_tio);
1138 return ((ret < 0) ? -errno : ret);
1139 }

1141 /*
1142 * The Solaris TIOCGPGRP ioctl does not have exactly the same semantics as
1143 * the Linux one. To mimic Linux semantics we have to do some extra work
1144 * normally done by the Solaris version of tcgetpgrp().
1145 */
1146 static int
1147 /*ARGSUSED*/
1148 ict_tiocgpgrp(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
1149 {
1150 pid_t ttysid, mysid;
1151 int ret;

1153 assert(cmd == LX_TIOCGPGRP);

1155 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1156 fd, TIOCGSID, "TIOCGSID");
1157 if (ioctl(fd, TIOCGSID, (intptr_t)&ttysid) < 0)
1158 return (-errno);
1159 if ((mysid = getsid(0)) < 0)
1160 return (-errno);
1161 if (mysid != ttysid)
1162 return (-ENOTTY);

1164 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1165 fd, TIOCGPGRP, "TIOCGPGRP");
1166 ret = ioctl(fd, TIOCGPGRP, arg);
1167 return ((ret < 0) ? -errno : ret);
1168 }

1170 static int
1171 /*ARGSUSED*/
1172 ict_sptlock(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
1173 {
1174 assert(cmd == LX_TIOCSPTLCK);

1176 /*
1177 * The success/fail return values are different between Linux
1178 * and Solaris. Linux expects 0 or -1. Solaris can return
1179 * positive number on success.
1180 */
1181 if (ioctl_istr(fd, UNLKPT, "UNLKPT", NULL, 0) < 0)
1182 return (-errno);
1183 return (0);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 19

1184 }

1186 static int
1187 /*ARGSUSED*/
1188 ict_gptn(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
1189 {
1190 int ptyno, *ptynop = (int *)arg;
1191 pt_own_t pto;

1193 assert(cmd == LX_TIOCGPTN);
1194 assert(getmajor(stat->st_rdev) == ioc_translator_ptm.idt_major);

1196 /* This operation is only valid for the lx_ptm device. */
1197 ptyno = LX_PTM_DEV_TO_PTS(stat->st_rdev);

1199 /*
1200 * We’d like to just use grantpt() directly, but we can’t since
1201 * it assumes the fd node that’s passed to it is a ptm node,
1202 * and in our case it’s an lx_ptm node. It also relies on
1203 * naming services to get the current process group name.
1204 * Hence we have to invoke the OWNERPT ioctl directly here.
1205 */
1206 pto.pto_ruid = getuid();
1207 pto.pto_rgid = getgid();
1208 if (ioctl_istr(fd, OWNERPT, "OWNERPT", &pto, sizeof (pto)) != 0)
1209 return (-EACCES);

1211 /* Copy out the data. */
1212 if (uucopy(&ptyno, ptynop, sizeof (ptyno)) != 0)
1213 return (-errno);

1215 return (0);
1216 }

1218 static int
1219 /*ARGSUSED*/
1220 ict_tiocgwinsz(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
1221 {
1222 struct winsize winsize, *winsizep = (struct winsize *)arg;

1224 assert(cmd == LX_TIOCGWINSZ);

1226 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd, TIOCGWINSZ, "TIOCGWINSZ");
1227 if (ioctl(fd, TIOCGWINSZ, arg) >= 0)
1228 return (0);
1229 if (errno != EINVAL)
1230 return (-errno);

1232 bzero(&winsize, sizeof (winsize));
1233 if (uucopy(&winsize, winsizep, sizeof (winsize)) != 0)
1234 return (-errno);

1236 return (0);
1237 }

1239 static int
1240 /*ARGSUSED*/
1241 ict_tcgets_emulate(int fd, struct stat *stat,
1242 int cmd, char *cmd_str, intptr_t arg)
1243 {
1244 struct lx_termios l_tios, *l_tiosp = (struct lx_termios *)arg;
1245 struct termios s_tios;

1247 assert(cmd == LX_TCGETS);

1249 if (syscall(SYS_brand, B_TTYMODES, &s_tios) < 0)

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 20

1250 return (-errno);

1252 /* Now munge the data to how Linux wants it. */
1253 s2l_termios(&s_tios, &l_tios);
1254 if (uucopy(&l_tios, l_tiosp, sizeof (l_tios)) != 0)
1255 return (-errno);

1257 return (0);
1258 }

1260 static int
1261 /*ARGSUSED*/
1262 ict_tcgets_native(int fd, struct stat *stat,
1263 int cmd, char *cmd_str, intptr_t arg)
1264 {
1265 struct lx_termios l_tios, *l_tiosp = (struct lx_termios *)arg;
1266 struct termios s_tios;
1267 struct lx_cc lio;
1268 int ldlinux;

1270 assert(cmd == LX_TCGETS);

1272 if ((ldlinux = ldlinux_check(fd)) < 0)
1273 return (ldlinux);

1275 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1276 fd, TCGETS, "TCGETS");
1277 if (ioctl(fd, TCGETS, (intptr_t)&s_tios) < 0)
1278 return (-errno);

1280 /* Now munge the data to how Linux wants it. */
1281 s2l_termios(&s_tios, &l_tios);

1283 /*
1284 * The TIOCSETLD/TIOCGETLD ioctls are only supported by the
1285 * ldlinux strmod. So make sure the module exists on the
1286 * target stream before we invoke the ioctl.
1287 */
1288 if (ldlinux != 0) {
1289 if (ioctl_istr(fd, TIOCGETLD, "TIOCGETLD",
1290 &lio, sizeof (lio)) < 0)
1291 return (-errno);

1293 l_tios.c_cc[LX_VEOF] = lio.veof;
1294 l_tios.c_cc[LX_VEOL] = lio.veol;
1295 l_tios.c_cc[LX_VMIN] = lio.vmin;
1296 l_tios.c_cc[LX_VTIME] = lio.vtime;
1297 }

1299 /* Copy out the data. */
1300 if (uucopy(&l_tios, l_tiosp, sizeof (l_tios)) != 0)
1301 return (-errno);

1303 return (0);
1304 }

1306 static int
1307 /*ARGSUSED*/
1308 ict_tcgeta(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
1309 {
1310 struct lx_termio l_tio, *l_tiop = (struct lx_termio *)arg;
1311 struct termio s_tio;
1312 struct lx_cc lio;
1313 int ldlinux;

1315 assert(cmd == LX_TCGETA);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 21

1317 if ((ldlinux = ldlinux_check(fd)) < 0)
1318 return (ldlinux);

1320 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1321 fd, TCGETA, "TCGETA");
1322 if (ioctl(fd, TCGETA, (intptr_t)&s_tio) < 0)
1323 return (-errno);

1325 /* Now munge the data to how Linux wants it. */
1326 s2l_termio(&s_tio, &l_tio);

1328 /*
1329 * The TIOCSETLD/TIOCGETLD ioctls are only supported by the
1330 * ldlinux strmod. So make sure the module exists on the
1331 * target stream before we invoke the ioctl.
1332 */
1333 if (ldlinux != 0) {
1334 if (ioctl_istr(fd, TIOCGETLD, "TIOCGETLD",
1335 &lio, sizeof (lio)) < 0)
1336 return (-errno);

1338 l_tio.c_cc[LX_VEOF] = lio.veof;
1339 l_tio.c_cc[LX_VMIN] = lio.vmin;
1340 l_tio.c_cc[LX_VTIME] = lio.vtime;
1341 }

1343 /* Copy out the data. */
1344 if (uucopy(&l_tio, l_tiop, sizeof (l_tio)) != 0)
1345 return (-errno);

1347 return (0);
1348 }

1350 static int
1351 /*ARGSUSED*/
1352 ict_tiocsctty(int fd, struct stat *stat, int cmd, char *cmd_str, intptr_t arg)
1353 {
1354 pid_t mysid, ttysid;

1356 if ((mysid = getsid(0)) < 0)
1357 return (-errno);

1359 /* Check if this fd is already our ctty. */
1360 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1361 fd, TIOCGSID, "TIOCGSID");
1362 if (ioctl(fd, TIOCGSID, (intptr_t)&ttysid) >= 0)
1363 if (mysid == ttysid)
1364 return (0);

1366 /*
1367 * Need to make sure we’re a session leader, otherwise the
1368 * TIOCSCTTY ioctl will fail.
1369 */
1370 if (mysid != getpid())
1371 (void) setpgrp();

1373 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1374 fd, TIOCSCTTY, "TIOCSCTTY");
1375 if (ioctl(fd, TIOCSCTTY, 0) < 0)
1376 return (-errno);
1377 return (0);
1378 }

1380 /*
1381 * /dev/dsp ioctl translators and support

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 22

1382 */
1383 static int
1384 i_is_dsp_dev(int fd)
1385 {
1386 int minor;

1388 /*
1389 * This is a cloning device so we have to ask the driver
1390 * what kind of minor node this is.
1391 */
1392 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1393 fd, LXA_IOC_GETMINORNUM, "LXA_IOC_GETMINORNUM");
1394 if (ioctl(fd, LXA_IOC_GETMINORNUM, &minor) < 0)
1395 return (-EINVAL);
1396 if (minor != LXA_MINORNUM_DSP)
1397 return (-EINVAL);
1398 return (0);
1399 }

1401 static int
1402 /*ARGSUSED*/
1403 ict_oss_sndctl_dsp_reset(int fd, struct stat *stat,
1404 int cmd, char *cmd_str, intptr_t arg)
1405 {
1406 int err;

1408 /* Ioctl is only supported on dsp audio devices. */
1409 if ((err = i_is_dsp_dev(fd)) != 0)
1410 return (err);

1412 /* Nothing to really do on Solaris. */
1413 return (0);
1414 }

1416 static void
1417 i_oss_fmt_str(char *buf, int buf_size, uint_t mask)
1418 {
1419 int i, first = 1;

1421 assert(buf != NULL);

1423 buf[0] = ’\0’;
1424 for (i = 0; oss_fmt_str[i].i2s_str != NULL; i++) {
1425 if ((oss_fmt_str[i].i2s_int != mask) &&
1426 ((oss_fmt_str[i].i2s_int & mask) == 0))
1427 continue;
1428 if (first)
1429 first = 0;
1430 else
1431 (void) strlcat(buf, " | ", buf_size);
1432 (void) strlcat(buf, oss_fmt_str[i].i2s_str, buf_size);
1433 }
1434 }

1436 static int
1437 /*ARGSUSED*/
1438 ict_oss_sndctl_dsp_getfmts(int fd, struct stat *stat,
1439 int cmd, char *cmd_str, intptr_t arg)
1440 {
1441 audio_info_t sa_info;
1442 char buf[MSGBUF];
1443 uint_t *maskp = (uint_t *)arg;
1444 uint_t mask = 0;
1445 int i, amode, err;

1447 assert(cmd == LX_OSS_SNDCTL_DSP_GETFMTS);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 23

1449 /* Ioctl is only supported on dsp audio devices. */
1450 if ((err = i_is_dsp_dev(fd)) != 0)
1451 return (err);

1453 /* We need to know the access mode for the file. */
1454 if ((amode = fcntl(fd, F_GETFL)) < 0)
1455 return (-EINVAL);
1456 amode &= O_ACCMODE;
1457 assert((amode == O_RDONLY) || (amode == O_WRONLY) || (amode == O_RDWR));

1459 /* Test to see what Linux oss formats the target device supports. */
1460 for (i = 0; oft_table[i].oft_oss_fmt != 0; i++) {

1462 /* Initialize the mode request. */
1463 AUDIO_INITINFO(&sa_info);

1465 /* Translate a Linux oss format into Solaris settings. */
1466 if ((amode == O_RDONLY) || (amode == O_RDWR)) {
1467 sa_info.record.encoding = oft_table[i].oft_encoding;
1468 sa_info.record.precision = oft_table[i].oft_precision;
1469 }
1470 if ((amode == O_WRONLY) || (amode == O_RDWR)) {
1471 sa_info.play.encoding = oft_table[i].oft_encoding;
1472 sa_info.play.precision = oft_table[i].oft_precision;
1473 }

1475 /* Send the request. */
1476 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1477 fd, AUDIO_SETINFO, "AUDIO_SETINFO");
1478 if (ioctl(fd, AUDIO_SETINFO, &sa_info) < 0)
1479 continue;

1481 /* This Linux oss format is supported. */
1482 mask |= oft_table[i].oft_oss_fmt;
1483 }

1485 if (lx_debug_enabled != 0) {
1486 i_oss_fmt_str(buf, sizeof (buf), mask);
1487 lx_debug("\toss formats supported = 0x%x (%s)", mask, buf);
1488 }
1489 if (uucopy(&mask, maskp, sizeof (mask)) != 0)
1490 return (-errno);
1491 return (0);
1492 }

1494 static int
1495 /*ARGSUSED*/
1496 ict_oss_sndctl_dsp_setfmts(int fd, struct stat *stat,
1497 int cmd, char *cmd_str, intptr_t arg)
1498 {
1499 audio_info_t sa_info;
1500 char buf[MSGBUF];
1501 uint_t *maskp = (uint_t *)arg;
1502 uint_t mask;
1503 int i, amode, err;

1505 assert(cmd == LX_OSS_SNDCTL_DSP_SETFMTS);

1507 /* Ioctl is only supported on dsp audio devices. */
1508 if ((err = i_is_dsp_dev(fd)) != 0)
1509 return (err);

1511 if (uucopy(maskp, &mask, sizeof (mask)) != 0)
1512 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 24

1514 if (lx_debug_enabled != 0) {
1515 i_oss_fmt_str(buf, sizeof (buf), mask);
1516 lx_debug("\toss formats request = 0x%x (%s)", mask, buf);
1517 }

1519 if ((mask == (uint_t)-1) || (mask == 0)) {
1520 lx_debug("\tXXX: possible oss formats query?");
1521 return (-EINVAL);
1522 }

1524 /* Check if multiple format bits were specified. */
1525 if (!BIT_ONLYONESET(mask))
1526 return (-EINVAL);

1528 /* Decode the oss format request into a native format. */
1529 for (i = 0; oft_table[i].oft_oss_fmt != 0; i++) {
1530 if (oft_table[i].oft_oss_fmt == mask)
1531 break;
1532 }
1533 if (oft_table[i].oft_oss_fmt == 0)
1534 return (-EINVAL);

1536 /* We need to know the access mode for the file. */
1537 if ((amode = fcntl(fd, F_GETFL)) < 0)
1538 return (-EINVAL);
1539 amode &= O_ACCMODE;
1540 assert((amode == O_RDONLY) || (amode == O_WRONLY) || (amode == O_RDWR));

1542 /* Initialize the mode request. */
1543 AUDIO_INITINFO(&sa_info);

1545 /* Translate the Linux oss request into a Solaris request. */
1546 if ((amode == O_RDONLY) || (amode == O_RDWR)) {
1547 sa_info.record.encoding = oft_table[i].oft_encoding;
1548 sa_info.record.precision = oft_table[i].oft_precision;
1549 }
1550 if ((amode == O_WRONLY) || (amode == O_RDWR)) {
1551 sa_info.play.encoding = oft_table[i].oft_encoding;
1552 sa_info.play.precision = oft_table[i].oft_precision;
1553 }

1555 /* Send the request. */
1556 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1557 fd, AUDIO_SETINFO, "AUDIO_SETINFO");
1558 return ((ioctl(fd, AUDIO_SETINFO, &sa_info) < 0) ? -errno : 0);
1559 }

1561 static int
1562 /*ARGSUSED*/
1563 ict_oss_sndctl_dsp_channels(int fd, struct stat *stat,
1564 int cmd, char *cmd_str, intptr_t arg)
1565 {
1566 audio_info_t sa_info;
1567 uint_t *channelsp = (uint_t *)arg;
1568 uint_t channels;
1569 int amode, err;

1571 assert((cmd == LX_OSS_SNDCTL_DSP_CHANNELS) ||
1572 (cmd == LX_OSS_SNDCTL_DSP_STEREO));

1574 /* Ioctl is only supported on dsp audio devices. */
1575 if ((err = i_is_dsp_dev(fd)) != 0)
1576 return (err);

1578 if (uucopy(channelsp, &channels, sizeof (channels)) != 0)
1579 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 25

1581 lx_debug("\toss %s request = 0x%x (%u)",
1582 (cmd == LX_OSS_SNDCTL_DSP_CHANNELS) ? "channel" : "stereo",
1583 channels, channels);

1585 if (channels == (uint_t)-1) {
1586 lx_debug("\tXXX: possible channel/stereo query?");
1587 return (-EINVAL);
1588 }

1590 if (cmd == LX_OSS_SNDCTL_DSP_STEREO) {
1591 /*
1592 * There doesn’t seem to be any documentation for
1593 * SNDCTL_DSP_STEREO. Looking at source that uses or
1594 * used this ioctl seems to indicate that the
1595 * functionality provided by this ioctl has been
1596 * subsumed by the SNDCTL_DSP_CHANNELS ioctl. It
1597 * seems that the only arguments ever passed to
1598 * the SNDCTL_DSP_STEREO. Ioctl are boolean values
1599 * of ’0’ or ’1’. Hence we’ll start out strict and
1600 * only support those values.
1601 *
1602 * Some online forum discussions about this ioctl
1603 * seemed to indicate that in case of success it
1604 * returns the "stereo" setting (ie, either
1605 * ’0’ for mono or ’1’ for stereo).
1606 */
1607 if ((channels != 0) && (channels != 1)) {
1608 lx_debug("\tinvalid stereo request");
1609 return (-EINVAL);
1610 }
1611 channels += 1;
1612 } else {
1613 /* Limit the system to one or two channels. */
1614 if ((channels != 1) && (channels != 2)) {
1615 lx_debug("\tinvalid channel request");
1616 return (-EINVAL);
1617 }
1618 }

1620 /* We need to know the access mode for the file. */
1621 if ((amode = fcntl(fd, F_GETFL)) < 0)
1622 return (-EINVAL);
1623 amode &= O_ACCMODE;
1624 assert((amode == O_RDONLY) || (amode == O_WRONLY) || (amode == O_RDWR));

1626 /* Initialize the channel request. */
1627 AUDIO_INITINFO(&sa_info);

1629 /* Translate the Linux oss request into a Solaris request. */
1630 if ((amode == O_RDONLY) || (amode == O_RDWR))
1631 sa_info.record.channels = channels;
1632 if ((amode == O_WRONLY) || (amode == O_RDWR))
1633 sa_info.play.channels = channels;

1635 /* Send the request. */
1636 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1637 fd, AUDIO_SETINFO, "AUDIO_SETINFO");
1638 if (ioctl(fd, AUDIO_SETINFO, &sa_info) < 0)
1639 return (-errno);

1641 if (cmd == LX_OSS_SNDCTL_DSP_STEREO)
1642 return (channels - 1);
1643 return (0);
1644 }

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 26

1646 static int
1647 /*ARGSUSED*/
1648 ict_oss_sndctl_dsp_speed(int fd, struct stat *stat,
1649 int cmd, char *cmd_str, intptr_t arg)
1650 {
1651 audio_info_t sa_info;
1652 uint_t *speedp = (uint_t *)arg;
1653 uint_t speed;
1654 int amode, err;

1656 assert(cmd == LX_OSS_SNDCTL_DSP_SPEED);

1658 /* Ioctl is only supported on dsp audio devices. */
1659 if ((err = i_is_dsp_dev(fd)) != 0)
1660 return (err);

1662 if (uucopy(speedp, &speed, sizeof (speed)) != 0)
1663 return (-errno);

1665 lx_debug("\toss speed request = 0x%x (%u)", speed, speed);

1667 if (speed == (uint_t)-1) {
1668 lx_debug("\tXXX: possible oss speed query?");
1669 return (-EINVAL);
1670 }

1672 /* We need to know the access mode for the file. */
1673 if ((amode = fcntl(fd, F_GETFL)) < 0)
1674 return (-EINVAL);
1675 amode &= O_ACCMODE;
1676 assert((amode == O_RDONLY) || (amode == O_WRONLY) || (amode == O_RDWR));

1678 /* Initialize the speed request. */
1679 AUDIO_INITINFO(&sa_info);

1681 /* Translate the Linux oss request into a Solaris request. */
1682 if ((amode == O_RDONLY) || (amode == O_RDWR))
1683 sa_info.record.sample_rate = speed;
1684 if ((amode == O_WRONLY) || (amode == O_RDWR))
1685 sa_info.play.sample_rate = speed;

1687 /* Send the request. */
1688 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1689 fd, AUDIO_SETINFO, "AUDIO_SETINFO");
1690 return ((ioctl(fd, AUDIO_SETINFO, &sa_info) < 0) ? -errno : 0);
1691 }

1693 static int
1694 /*ARGSUSED*/
1695 ict_oss_sndctl_dsp_getblksize(int fd, struct stat *stat,
1696 int cmd, char *cmd_str, intptr_t arg)
1697 {
1698 lxa_frag_info_t fi;
1699 uint_t *blksizep = (uint_t *)arg;
1700 uint_t blksize;
1701 int err;

1703 assert(cmd == LX_OSS_SNDCTL_DSP_GETBLKSIZE);

1705 /* Ioctl is only supported on dsp audio devices. */
1706 if ((err = i_is_dsp_dev(fd)) != 0)
1707 return (err);

1709 /* Query the current fragment count and size. */
1710 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1711 fd, LXA_IOC_GET_FRAG_INFO, "LXA_IOC_GET_FRAG_INFO");

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 27

1712 if (ioctl(fd, LXA_IOC_GET_FRAG_INFO, &fi) < 0)
1713 return (-errno);

1715 blksize = fi.lxa_fi_size;

1717 if (uucopy(&blksize, blksizep, sizeof (blksize)) != 0)
1718 return (-errno);
1719 return (0);
1720 }

1722 static int
1723 /*ARGSUSED*/
1724 ict_oss_sndctl_dsp_getspace(int fd, struct stat *stat,
1725 int cmd, char *cmd_str, intptr_t arg)
1726 {
1727 lx_oss_audio_buf_info_t *spacep = (lx_oss_audio_buf_info_t *)arg;
1728 lx_oss_audio_buf_info_t space;
1729 lxa_frag_info_t fi;
1730 int err;

1732 assert((cmd == LX_OSS_SNDCTL_DSP_GETOSPACE) ||
1733 (cmd == LX_OSS_SNDCTL_DSP_GETISPACE));

1735 /* Ioctl is only supported on dsp audio devices. */
1736 if ((err = i_is_dsp_dev(fd)) != 0)
1737 return (err);

1739 /* Query the current fragment count and size. */
1740 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1741 fd, LXA_IOC_GET_FRAG_INFO, "LXA_IOC_GET_FRAG_INFO");
1742 if (ioctl(fd, LXA_IOC_GET_FRAG_INFO, &fi) < 0)
1743 return (-errno);

1745 /* Return the current fragment count and size. */
1746 space.fragstotal = fi.lxa_fi_cnt;
1747 space.fragsize = fi.lxa_fi_size;

1749 /*
1750 * We’ll lie and tell applications that they can always write
1751 * out at least one fragment without blocking.
1752 */
1753 space.fragments = 1;
1754 space.bytes = space.fragsize;

1756 if (cmd == LX_OSS_SNDCTL_DSP_GETOSPACE)
1757 lx_debug("\toss get output space result = ");
1758 if (cmd == LX_OSS_SNDCTL_DSP_GETISPACE)
1759 lx_debug("\toss get input space result = ");

1761 lx_debug("\t\tbytes = 0x%x (%u), fragments = 0x%x (%u)",
1762 space.bytes, space.bytes, space.fragments, space.fragments);
1763 lx_debug("\t\tfragtotal = 0x%x (%u), fragsize = 0x%x (%u)",
1764 space.fragstotal, space.fragstotal,
1765 space.fragsize, space.fragsize);

1767 if (uucopy(&space, spacep, sizeof (space)) != 0)
1768 return (-errno);
1769 return (0);
1770 }

1772 static int
1773 /*ARGSUSED*/
1774 ict_oss_sndctl_dsp_setfragment(int fd, struct stat *stat,
1775 int cmd, char *cmd_str, intptr_t arg)
1776 {
1777 lxa_frag_info_t fi;

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 28

1778 uint_t *fraginfop = (uint_t *)arg;
1779 uint_t fraginfo, frag_size, frag_cnt;
1780 int err;

1782 assert(cmd == LX_OSS_SNDCTL_DSP_SETFRAGMENT);

1784 /* Ioctl is only supported on dsp audio devices. */
1785 if ((err = i_is_dsp_dev(fd)) != 0)
1786 return (err);

1788 if (uucopy(fraginfop, &fraginfo, sizeof (fraginfo)) != 0)
1789 return (-errno);

1791 /*
1792 * The argument to this ioctl is a 32-bit integer of the
1793 * format 0x MMMM SSSS where:
1794 * SSSS - requests a fragment size of 2^SSSS
1795 * MMMM - requests a maximum fragment count of 2^MMMM
1796 * if MMMM is 0x7fff then the application is requesting
1797 * no limits on the number of fragments.
1798 */

1800 frag_size = fraginfo & 0xffff;
1801 frag_cnt = fraginfo >> 16;

1803 lx_debug("\toss fragment request: "
1804 "power size = 0x%x (%u), power cnt = 0x%x (%u)",
1805 frag_size, frag_size, frag_cnt, frag_cnt);

1807 /* Limit the supported fragment size from 2^4 to 2^31. */
1808 if ((frag_size < 4) || (frag_size > 31))
1809 return (-EINVAL);

1811 /* Limit the number of fragments from 2^1 to 2^32. */
1812 if (((frag_cnt < 1) || (frag_cnt > 32)) && (frag_cnt != 0x7fff))
1813 return (-EINVAL);

1815 /* Expand the fragment values. */
1816 frag_size = 1 << frag_size;
1817 if ((frag_cnt == 32) || (frag_cnt == 0x7fff)) {
1818 frag_cnt = UINT_MAX;
1819 } else {
1820 frag_cnt = 1 << frag_cnt;
1821 }

1823 lx_debug("\toss fragment request: "
1824 "translated size = 0x%x (%u), translated cnt = 0x%x (%u)",
1825 frag_size, frag_size, frag_cnt, frag_cnt);

1827 fi.lxa_fi_size = frag_size;
1828 fi.lxa_fi_cnt = frag_cnt;

1830 /* Set the current fragment count and size. */
1831 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1832 fd, LXA_IOC_SET_FRAG_INFO, "LXA_IOC_SET_FRAG_INFO");
1833 return ((ioctl(fd, LXA_IOC_SET_FRAG_INFO, &fi) < 0) ? -errno : 0);
1834 }

1836 static int
1837 /*ARGSUSED*/
1838 ict_oss_sndctl_dsp_getcaps(int fd, struct stat *stat,
1839 int cmd, char *cmd_str, intptr_t arg)
1840 {
1841 uint_t *capsp = (uint_t *)arg;
1842 uint_t caps;
1843 int err;

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 29

1845 assert(cmd == LX_OSS_SNDCTL_DSP_GETCAPS);

1847 /* Ioctl is only supported on dsp audio devices. */
1848 if ((err = i_is_dsp_dev(fd)) != 0)
1849 return (err);

1851 /*
1852 * Report that we support mmap access
1853 * this is where things start to get fun.
1854 */
1855 caps = LX_OSS_DSP_CAP_MMAP | LX_OSS_DSP_CAP_TRIGGER;

1857 if (uucopy(&caps, capsp, sizeof (caps)) != 0)
1858 return (-errno);
1859 return (0);
1860 }

1862 static int
1863 /*ARGSUSED*/
1864 ict_oss_sndctl_dsp_settrigger(int fd, struct stat *stat,
1865 int cmd, char *cmd_str, intptr_t arg)
1866 {
1867 uint_t *triggerp = (uint_t *)arg;
1868 uint_t trigger;
1869 int err;

1871 assert(cmd == LX_OSS_SNDCTL_DSP_SETTRIGGER);

1873 /* Ioctl is only supported on dsp audio devices. */
1874 if ((err = i_is_dsp_dev(fd)) != 0)
1875 return (err);

1877 if (uucopy(triggerp, &trigger, sizeof (trigger)) != 0)
1878 return (-errno);

1880 lx_debug("\toss set trigger request = 0x%x (%u)",
1881 trigger, trigger);

1883 /* We only support two types of trigger requests. */
1884 if ((trigger != LX_OSS_PCM_DISABLE_OUTPUT) &&
1885 (trigger != LX_OSS_PCM_ENABLE_OUTPUT))
1886 return (-EINVAL);

1888 /*
1889 * We only support triggers on devices open for write access,
1890 * but we don’t need to check for that here since the driver will
1891 * verify this for us.
1892 */

1894 /* Send the trigger command to the audio device. */
1895 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1896 fd, LXA_IOC_MMAP_OUTPUT, "LXA_IOC_MMAP_OUTPUT");
1897 return ((ioctl(fd, LXA_IOC_MMAP_OUTPUT, &trigger) < 0) ? -errno : 0);
1898 }

1900 static int
1901 /*ARGSUSED*/
1902 ict_oss_sndctl_dsp_getoptr(int fd, struct stat *stat,
1903 int cmd, char *cmd_str, intptr_t arg)
1904 {
1905 static uint_t bytes = 0;
1906 lx_oss_count_info_t ci;
1907 lxa_frag_info_t fi;
1908 audio_info_t ai;
1909 int ptr, err;

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 30

1911 assert(cmd == LX_OSS_SNDCTL_DSP_GETOPTR);

1913 /* Ioctl is only supported on dsp audio devices. */
1914 if ((err = i_is_dsp_dev(fd)) != 0)
1915 return (err);

1917 /* Query the current fragment size. */
1918 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1919 fd, LXA_IOC_GET_FRAG_INFO, "LXA_IOC_GET_FRAG_INFO");
1920 if (ioctl(fd, LXA_IOC_GET_FRAG_INFO, &fi) < 0)
1921 return (-errno);

1923 /* Figure out how many samples have been played. */
1924 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1925 fd, AUDIO_GETINFO, "AUDIO_GETINFO");
1926 if (ioctl(fd, AUDIO_GETINFO, &ai) < 0)
1927 return (-errno);
1928 ci.bytes = ai.play.samples + ai.record.samples;

1930 /*
1931 * Figure out how many fragments of audio have gone out since
1932 * the last call to this ioctl.
1933 */
1934 ci.blocks = (ci.bytes - bytes) / fi.lxa_fi_size;
1935 bytes = ci.bytes;

1937 /* Figure out the current fragment offset for mmap audio output. */
1938 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1939 fd, LXA_IOC_MMAP_PTR, "LXA_IOC_MMAP_PTR");
1940 if (ioctl(fd, LXA_IOC_MMAP_PTR, &ptr) < 0) {
1941 /*
1942 * We really should return an error here, but some
1943 * application (*cough* *cough* flash) expect this
1944 * ioctl to work even if they haven’t mmaped the
1945 * device.
1946 */
1947 ci.ptr = 0;
1948 } else {
1949 ci.ptr = ptr;
1950 }

1952 lx_debug("\toss get output ptr result = ");
1953 lx_debug("\t\t"
1954 "bytes = 0x%x (%u), blocks = 0x%x (%u), ptr = 0x%x (%u)",
1955 ci.bytes, ci.bytes, ci.blocks, ci.blocks, ci.ptr, ci.ptr);

1957 if (uucopy(&ci, (void *)arg, sizeof (ci)) != 0)
1958 return (-errno);
1959 return (0);
1960 }

1962 static int
1963 /*ARGSUSED*/
1964 ict_oss_sndctl_dsp_sync(int fd, struct stat *stat,
1965 int cmd, char *cmd_str, intptr_t arg)
1966 {
1967 int amode, err;

1969 assert(cmd == LX_OSS_SNDCTL_DSP_SYNC);

1971 /* Ioctl is only supported on dsp audio devices. */
1972 if ((err = i_is_dsp_dev(fd)) != 0)
1973 return (err);

1975 /* We need to know the access mode for the file. */

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 31

1976 if ((amode = fcntl(fd, F_GETFL)) < 0)
1977 return (-EINVAL);
1978 amode &= O_ACCMODE;
1979 assert((amode == O_RDONLY) || (amode == O_WRONLY) || (amode == O_RDWR));

1981 /*
1982 * A sync is basically a noop for record only device.
1983 * We check for this here because on Linux a sync on a record
1984 * only device returns success immediately. But the Solaris
1985 * equivalent to a drain operation is a AUDIO_DRAIN, and if
1986 * it’s issued to a record only device it will fail and return
1987 * EINVAL.
1988 */
1989 if (amode == O_RDONLY)
1990 return (0);

1992 /* Drain any pending output. */
1993 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
1994 fd, AUDIO_DRAIN, "AUDIO_DRAIN");
1995 return ((ioctl(fd, AUDIO_DRAIN, NULL) < 0) ? -errno : 0);
1996 }

1998 /*
1999 * /dev/mixer ioctl translators and support
2000 *
2001 * There are some interesting things to take note of for supporting
2002 * /dev/mixer ioctls.
2003 *
2004 * 1) We report support for the following mixer resources:
2005 * VOLUME, PCM, MIC
2006 *
2007 * 2) We assume the following number of channels for each mixer resource:
2008 * VOLUME: 2 channels
2009 * PCM: 2 channels
2010 * MIC: 1 channel
2011 *
2012 * 3) OSS sets the gain on each channel independently but on Solaris
2013 * there is only one gain value and a balance value. So we need
2014 * to do some translation back and forth.
2015 *
2016 * 4) OSS assumes direct access to hardware but Solaris provides
2017 * virtualized audio device access (where everyone who opens /dev/audio
2018 * get a virtualized audio channel stream, all of which are merged
2019 * together by a software mixer before reaching the hardware). Hence
2020 * mapping OSS mixer resources to Solaris mixer resources takes some
2021 * work. VOLUME and Mic resources are mapped to the actual underlying
2022 * audio hardware resources. PCM resource are mapped to the virtual
2023 * audio channel output level. This mapping becomes more complicated
2024 * if there are no open audio output channels. In this case the
2025 * lx_audio device caches the PCM channels setting for us and applies
2026 * them to any new audio output channels that get opened. (This
2027 * is the reason that we don’t use AUDIO_SETINFO ioctls directly
2028 * but instead the lx_audio driver custom LXA_IOC_MIXER_SET_*
2029 * and LXA_IOC_MIXER_GET_* ioctls.) For more information see
2030 * the comments in lx_audio.c.
2031 */
2032 static int
2033 i_is_mixer_dev(int fd)
2034 {
2035 int minor;

2037 /*
2038 * This is a cloning device so we have to ask the driver
2039 * what kind of minor node this is.
2040 */
2041 lx_debug("\tioctl(%d, 0x%x - %s, ...)",

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 32

2042 fd, LXA_IOC_GETMINORNUM, "LXA_IOC_GETMINORNUM");
2043 if (ioctl(fd, LXA_IOC_GETMINORNUM, &minor) < 0)
2044 return (-EINVAL);
2045 if (minor != LXA_MINORNUM_MIXER)
2046 return (-EINVAL);
2047 return (0);
2048 }

2050 static int
2051 i_oss_mixer_ml_to_val(lxa_mixer_levels_t *ml, uint_t *val)
2052 {
2053 int range, val1, val2;

2055 /* Deal with the other easy case, both channels have the same level. */
2056 if (ml->lxa_ml_balance == AUDIO_MID_BALANCE) {
2057 *val = LX_OSS_MIXER_ENC2(
2058 LX_OSS_S2L_GAIN(ml->lxa_ml_gain),
2059 LX_OSS_S2L_GAIN(ml->lxa_ml_gain));
2060 assert(LX_OSS_MIXER_2CH_OK(*val));
2061 return (0);
2062 }

2064 /* Decode the balance/gain into two separate levels. */
2065 if (ml->lxa_ml_balance > AUDIO_MID_BALANCE) {
2066 val2 = ml->lxa_ml_gain;

2068 range = AUDIO_RIGHT_BALANCE - AUDIO_MID_BALANCE;
2069 val1 = AUDIO_RIGHT_BALANCE - ml->lxa_ml_balance;
2070 val1 = (val2 * val1) / range;
2071 } else {
2072 assert(ml->lxa_ml_balance < AUDIO_MID_BALANCE);
2073 val1 = ml->lxa_ml_gain;

2075 range = AUDIO_MID_BALANCE - AUDIO_LEFT_BALANCE;
2076 val2 = ml->lxa_ml_balance;
2077 val2 = (val1 * val2) / range;
2078 }

2080 *val = LX_OSS_MIXER_ENC2(LX_OSS_S2L_GAIN(val1),
2081 LX_OSS_S2L_GAIN(val2));
2082 return (0);
2083 }

2085 static int
2086 i_oss_mixer_val_to_ml(uint_t val, lxa_mixer_levels_t *ml_old,
2087 lxa_mixer_levels_t *ml)
2088 {
2089 int range, val1, val2;

2091 if (!LX_OSS_MIXER_2CH_OK(val))
2092 return (-EINVAL);

2094 val1 = LX_OSS_MIXER_DEC1(val);
2095 val2 = LX_OSS_MIXER_DEC2(val);

2097 /*
2098 * Deal with the easy case.
2099 * Both channels have the same non-zero level.
2100 */
2101 if ((val1 != 0) && (val1 == val2)) {
2102 ml->lxa_ml_gain = LX_OSS_L2S_GAIN(val1);
2103 ml->lxa_ml_balance = AUDIO_MID_BALANCE;
2104 return (0);
2105 }

2107 /* If both levels are zero, preserve the current balance setting. */

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 33

2108 if ((val1 == 0) && (val2 == 0)) {
2109 ml->lxa_ml_gain = 0;
2110 ml->lxa_ml_balance = ml_old->lxa_ml_balance;
2111 return (0);
2112 }

2114 /*
2115 * First set the gain to match the highest channel value volume.
2116 * Then use the balance to simulate lower volume on the second
2117 * channel.
2118 */
2119 if (val1 > val2) {
2120 ml->lxa_ml_gain = LX_OSS_L2S_GAIN(val1);

2122 range = AUDIO_MID_BALANCE - AUDIO_LEFT_BALANCE;
2123 ml->lxa_ml_balance = 0;
2124 ml->lxa_ml_balance += ((val2 * range) / val1);
2125 } else {
2126 assert(val1 < val2);

2128 ml->lxa_ml_gain = LX_OSS_L2S_GAIN(val2);

2130 range = AUDIO_RIGHT_BALANCE - AUDIO_MID_BALANCE;
2131 ml->lxa_ml_balance = AUDIO_RIGHT_BALANCE;
2132 ml->lxa_ml_balance -= ((val1 * range) / val2);
2133 }

2135 return (0);
2136 }

2138 static int
2139 /*ARGSUSED*/
2140 ict_oss_mixer_read_volume(int fd, struct stat *stat,
2141 int cmd, char *cmd_str, intptr_t arg)
2142 {
2143 lxa_mixer_levels_t ml;
2144 uint_t *valp = (uint_t *)arg;
2145 uint_t val;
2146 char *cmd_txt;
2147 int err, cmd_new;

2149 assert((cmd == LX_OSS_SOUND_MIXER_READ_VOLUME) ||
2150 (cmd == LX_OSS_SOUND_MIXER_READ_PCM));

2152 /* Ioctl is only supported on mixer audio devices. */
2153 if ((err = i_is_mixer_dev(fd)) != 0)
2154 return (err);

2156 if (cmd == LX_OSS_SOUND_MIXER_READ_VOLUME) {
2157 cmd_new = LXA_IOC_MIXER_GET_VOL;
2158 cmd_txt = "LXA_IOC_MIXER_GET_VOL";
2159 }
2160 if (cmd == LX_OSS_SOUND_MIXER_READ_PCM) {
2161 cmd_new = LXA_IOC_MIXER_GET_PCM;
2162 cmd_txt = "LXA_IOC_MIXER_GET_PCM";
2163 }

2165 /* Attempt to set the device output gain. */
2166 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd, cmd_new, cmd_txt);
2167 if (ioctl(fd, cmd_new, &ml) < 0)
2168 return (-errno);

2170 lx_debug("\tlx_audio mixer results, "
2171 "gain = 0x%x (%u), balance = 0x%x (%u)",
2172 ml.lxa_ml_gain, ml.lxa_ml_gain,
2173 ml.lxa_ml_balance, ml.lxa_ml_balance);

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 34

2175 assert(LXA_MIXER_LEVELS_OK(&ml));

2177 /* Translate the mixer levels struct to an OSS mixer value. */
2178 if ((err = i_oss_mixer_ml_to_val(&ml, &val)) != 0)
2179 return (err);
2180 assert(LX_OSS_MIXER_2CH_OK(val));

2182 lx_debug("\toss get mixer %s result = 0x%x (%u)",
2183 (cmd == LX_OSS_SOUND_MIXER_READ_VOLUME) ? "volume" : "pcm",
2184 val, val);

2186 if (uucopy(&val, valp, sizeof (val)) != 0)
2187 return (-errno);
2188 return (0);
2189 }

2191 static int
2192 /*ARGSUSED*/
2193 ict_oss_mixer_write_volume(int fd, struct stat *stat,
2194 int cmd, char *cmd_str, intptr_t arg)
2195 {
2196 lxa_mixer_levels_t ml, ml_old;
2197 uint_t *valp = (uint_t *)arg;
2198 uint_t val;
2199 char *cmd_txt;
2200 int err, cmd_new;

2202 assert((cmd == LX_OSS_SOUND_MIXER_WRITE_VOLUME) ||
2203 (cmd == LX_OSS_SOUND_MIXER_WRITE_PCM));

2205 /* Ioctl is only supported on mixer audio devices. */
2206 if ((err = i_is_mixer_dev(fd)) != 0)
2207 return (err);

2209 if (uucopy(valp, &val, sizeof (val)) != 0)
2210 return (-errno);

2212 if (cmd == LX_OSS_SOUND_MIXER_WRITE_VOLUME) {
2213 cmd_new = LXA_IOC_MIXER_SET_VOL;
2214 cmd_txt = "LXA_IOC_MIXER_SET_VOL";

2216 /* Attempt to get the device output gain. */
2217 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd,
2218 LXA_IOC_MIXER_GET_VOL, "LXA_IOC_MIXER_GET_VOL");
2219 if (ioctl(fd, LXA_IOC_MIXER_GET_VOL, &ml_old) < 0)
2220 return (-errno);
2221 }

2223 if (cmd == LX_OSS_SOUND_MIXER_WRITE_PCM) {
2224 cmd_new = LXA_IOC_MIXER_SET_PCM;
2225 cmd_txt = "LXA_IOC_MIXER_SET_PCM";

2227 /* Attempt to get the device output gain. */
2228 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd,
2229 LXA_IOC_MIXER_GET_PCM, "LXA_IOC_MIXER_GET_PCM");
2230 if (ioctl(fd, LXA_IOC_MIXER_GET_PCM, &ml_old) < 0)
2231 return (-errno);
2232 }

2234 lx_debug("\toss set mixer %s request = 0x%x (%u)",
2235 (cmd == LX_OSS_SOUND_MIXER_WRITE_VOLUME) ? "volume" : "pcm",
2236 val, val);

2238 /* Translate an OSS mixer value to mixer levels. */
2239 if ((err = i_oss_mixer_val_to_ml(val, &ml_old, &ml)) != 0)

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 35

2240 return (err);
2241 assert(LXA_MIXER_LEVELS_OK(&ml));

2243 lx_debug("\tlx_audio mixer request, "
2244 "gain = 0x%x (%u), balance = 0x%x (%u)",
2245 ml.lxa_ml_gain, ml.lxa_ml_gain,
2246 ml.lxa_ml_balance, ml.lxa_ml_balance);

2248 /* Attempt to set the device output gain. */
2249 lx_debug("\tioctl(%d, 0x%x - %s, ...)", fd, cmd_new, cmd_txt);
2250 if (ioctl(fd, cmd_new, &ml) < 0)
2251 return (-errno);

2253 return (0);
2254 }

2256 static int
2257 /*ARGSUSED*/
2258 ict_oss_mixer_read_mic(int fd, struct stat *stat,
2259 int cmd, char *cmd_str, intptr_t arg)
2260 {
2261 lxa_mixer_levels_t ml;
2262 uint_t *valp = (uint_t *)arg;
2263 uint_t val;
2264 int err;

2266 assert((cmd == LX_OSS_SOUND_MIXER_READ_MIC) ||
2267 (cmd == LX_OSS_SOUND_MIXER_READ_IGAIN));

2269 /* Ioctl is only supported on mixer audio devices. */
2270 if ((err = i_is_mixer_dev(fd)) != 0)
2271 return (err);

2273 /* Attempt to get the device input gain. */
2274 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
2275 fd, LXA_IOC_MIXER_GET_MIC, "LXA_IOC_MIXER_GET_MIC");
2276 if (ioctl(fd, LXA_IOC_MIXER_GET_MIC, &ml) < 0)
2277 return (-errno);

2279 /* Report the mixer as having two channels. */
2280 val = LX_OSS_MIXER_ENC2(
2281 LX_OSS_S2L_GAIN(ml.lxa_ml_gain),
2282 LX_OSS_S2L_GAIN(ml.lxa_ml_gain));

2284 if (cmd == LX_OSS_SOUND_MIXER_READ_MIC)
2285 lx_debug("\toss get mixer mic result = 0x%x (%u)", val, val);
2286 if (cmd == LX_OSS_SOUND_MIXER_READ_IGAIN)
2287 lx_debug("\toss get mixer igain result = 0x%x (%u)", val, val);

2289 if (uucopy(&val, valp, sizeof (val)) != 0)
2290 return (-errno);
2291 return (0);
2292 }

2294 static int
2295 /*ARGSUSED*/
2296 ict_oss_mixer_write_mic(int fd, struct stat *stat,
2297 int cmd, char *cmd_str, intptr_t arg)
2298 {
2299 lxa_mixer_levels_t ml;
2300 uint_t *valp = (uint_t *)arg;
2301 uint_t val;
2302 int err;

2304 assert((cmd == LX_OSS_SOUND_MIXER_WRITE_MIC) ||
2305 (cmd == LX_OSS_SOUND_MIXER_WRITE_IGAIN));

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 36

2307 /* Ioctl is only supported on mixer audio devices. */
2308 if ((err = i_is_mixer_dev(fd)) != 0)
2309 return (err);

2311 if (uucopy(valp, &val, sizeof (val)) != 0)
2312 return (-errno);

2314 if (cmd == LX_OSS_SOUND_MIXER_WRITE_MIC)
2315 lx_debug("\toss set mixer mic request = 0x%x (%u)", val, val);
2316 if (cmd == LX_OSS_SOUND_MIXER_WRITE_IGAIN)
2317 lx_debug("\toss set mixer igain request = 0x%x (%u)", val, val);

2319 /* The mic only supports one channel. */
2320 val = LX_OSS_MIXER_DEC1(val);

2322 ml.lxa_ml_balance = AUDIO_MID_BALANCE;
2323 ml.lxa_ml_gain = LX_OSS_L2S_GAIN(val);

2325 /* Attempt to set the device input gain. */
2326 lx_debug("\tioctl(%d, 0x%x - %s, ...)",
2327 fd, LXA_IOC_MIXER_SET_MIC, "LXA_IOC_MIXER_SET_MIC");
2328 if (ioctl(fd, LXA_IOC_MIXER_SET_MIC, &ml) < 0)
2329 return (-errno);

2331 return (0);
2332 }

2334 static int
2335 /*ARGSUSED*/
2336 ict_oss_mixer_read_devs(int fd, struct stat *stat,
2337 int cmd, char *cmd_str, intptr_t arg)
2338 {
2339 uint_t *resultp = (uint_t *)arg;
2340 uint_t result = 0;
2341 int err;

2343 if (cmd == LX_OSS_SOUND_MIXER_READ_DEVMASK) {
2344 /* Bitmap of all the mixer channels we supposedly support. */
2345 result = ((1 << LX_OSS_SM_PCM) |
2346 (1 << LX_OSS_SM_MIC) |
2347 (1 << LX_OSS_SM_VOLUME));
2348 }
2349 if (cmd == LX_OSS_SOUND_MIXER_READ_STEREODEVS) {
2350 /* Bitmap of the stereo mixer channels we supposedly support. */
2351 result = ((1 << LX_OSS_SM_PCM) |
2352 (1 << LX_OSS_SM_VOLUME));
2353 }
2354 if ((cmd == LX_OSS_SOUND_MIXER_READ_RECMASK) ||
2355 (cmd == LX_OSS_SOUND_MIXER_READ_RECSRC)) {
2356 /* Bitmap of the mixer input channels we supposedly support. */
2357 result = (1 << LX_OSS_SM_MIC);
2358 }
2359 assert(result != 0);

2361 /* Ioctl is only supported on mixer audio devices. */
2362 if ((err = i_is_mixer_dev(fd)) != 0)
2363 return (err);

2365 if (uucopy(&result, resultp, sizeof (result)) != 0)
2366 return (-errno);

2368 return (0);
2369 }

2371 /*

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 37

2372 * Audio ioctl conversion support structures.
2373 */
2374 static oss_fmt_translator_t oft_table[] = {
2375 { LX_OSS_AFMT_MU_LAW, AUDIO_ENCODING_ULAW, 8 },
2376 { LX_OSS_AFMT_A_LAW, AUDIO_ENCODING_ALAW, 8 },
2377 { LX_OSS_AFMT_S8, AUDIO_ENCODING_LINEAR, 8 },
2378 { LX_OSS_AFMT_U8, AUDIO_ENCODING_LINEAR8, 8 },
2379 { LX_OSS_AFMT_S16_NE, AUDIO_ENCODING_LINEAR, 16 },
2380 { 0, 0, 0 }
2381 };

2383 /*
2384 * Ioctl translator definitions.
2385 */

2387 /*
2388 * Defines to help with creating ioctl translators.
2389 *
2390 * IOC_CMD_TRANSLATOR_NONE - Ioctl has the same semantics and argument
2391 * values on Solaris and Linux but may have different command values.
2392 * (Macro assumes the symbolic Linux name assigned to the ioctl command
2393 * value is the same as the Solaris symbol but pre-pended with an "LX_")
2394 *
2395 * IOC_CMD_TRANSLATOR_PASS - Ioctl is a Linux specific ioctl and should
2396 * be passed through unmodified.
2397 *
2398 * IOC_CMD_TRANSLATOR_FILTER - Ioctl has the same command name on
2399 * Solaris and Linux and needs a translation function that is common to
2400 * more than one ioctl. (Macro assumes the symbolic Linux name assigned
2401 * to the ioctl command value is the same as the Solaris symbol but
2402 * pre-pended with an "LX_")
2403 *
2404 * IOC_CMD_TRANSLATOR_CUSTOM - Ioctl needs special handling via a
2405 * translation function.
2406 */
2407 #define IOC_CMD_TRANSLATOR_NONE(ioc_cmd_sym) \
2408 { (int)LX_##ioc_cmd_sym, "LX_" #ioc_cmd_sym, \
2409 ioc_cmd_sym, #ioc_cmd_sym, ict_pass },

2411 #define IOC_CMD_TRANSLATOR_PASS(ioc_cmd_sym) \
2412 { (int)ioc_cmd_sym, #ioc_cmd_sym, \
2413 ioc_cmd_sym, #ioc_cmd_sym, ict_pass },

2415 #define IOC_CMD_TRANSLATOR_FILTER(ioc_cmd_sym, ioct_handler) \
2416 { (int)LX_##ioc_cmd_sym, "LX_" #ioc_cmd_sym, \
2417 ioc_cmd_sym, #ioc_cmd_sym, ioct_handler },

2419 #define IOC_CMD_TRANSLATOR_CUSTOM(ioc_cmd_sym, ioct_handler) \
2420 { (int)ioc_cmd_sym, #ioc_cmd_sym, \
2421 (int)ioc_cmd_sym, #ioc_cmd_sym, ioct_handler },

2423 #define IOC_CMD_TRANSLATOR_END \
2424 { 0, NULL, 0, NULL, NULL }

2426 /* All files will need to support these ioctls. */
2427 #define IOC_CMD_TRANSLATORS_ALL \
2428 IOC_CMD_TRANSLATOR_NONE(FIONREAD) \
2429 IOC_CMD_TRANSLATOR_NONE(FIONBIO)

2431 /* Any files supporting streams semantics will need these ioctls. */
2432 #define IOC_CMD_TRANSLATORS_STREAMS \
2433 IOC_CMD_TRANSLATOR_NONE(TCXONC) \
2434 IOC_CMD_TRANSLATOR_NONE(TCFLSH) \
2435 IOC_CMD_TRANSLATOR_NONE(TIOCEXCL) \
2436 IOC_CMD_TRANSLATOR_NONE(TIOCNXCL) \
2437 IOC_CMD_TRANSLATOR_NONE(TIOCSPGRP) \

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 38

2438 IOC_CMD_TRANSLATOR_NONE(TIOCSTI) \
2439 IOC_CMD_TRANSLATOR_NONE(TIOCSWINSZ) \
2440 IOC_CMD_TRANSLATOR_NONE(TIOCMBIS) \
2441 IOC_CMD_TRANSLATOR_NONE(TIOCMBIC) \
2442 IOC_CMD_TRANSLATOR_NONE(TIOCMSET) \
2443 IOC_CMD_TRANSLATOR_NONE(TIOCSETD) \
2444 IOC_CMD_TRANSLATOR_NONE(FIOASYNC) \
2445 IOC_CMD_TRANSLATOR_NONE(FIOSETOWN) \
2446 IOC_CMD_TRANSLATOR_NONE(TCSBRK) \
2447 \
2448 IOC_CMD_TRANSLATOR_FILTER(TCSETS, ict_tcsets) \
2449 IOC_CMD_TRANSLATOR_FILTER(TCSETSW, ict_tcsets) \
2450 IOC_CMD_TRANSLATOR_FILTER(TCSETSF, ict_tcsets) \
2451 IOC_CMD_TRANSLATOR_FILTER(TCSETA, ict_tcseta) \
2452 IOC_CMD_TRANSLATOR_FILTER(TCSETAW, ict_tcseta) \
2453 IOC_CMD_TRANSLATOR_FILTER(TCSETAF, ict_tcseta) \
2454 \
2455 IOC_CMD_TRANSLATOR_CUSTOM(LX_TCSBRKP, ict_tcsbrkp)

2458 /*
2459 * Translators for non-device files.
2460 */
2461 static ioc_cmd_translator_t ioc_translators_file[] = {
2462 IOC_CMD_TRANSLATORS_ALL
2463 IOC_CMD_TRANSLATOR_END
2464 };

2466 static ioc_cmd_translator_t ioc_translators_fifo[] = {
2467 IOC_CMD_TRANSLATORS_ALL
2468 IOC_CMD_TRANSLATORS_STREAMS
2469 IOC_CMD_TRANSLATOR_END
2470 };

2472 static ioc_cmd_translator_t ioc_translators_sock[] = {
2473 IOC_CMD_TRANSLATORS_ALL

2475 IOC_CMD_TRANSLATOR_NONE(FIOASYNC)
2476 IOC_CMD_TRANSLATOR_NONE(FIOGETOWN)
2477 IOC_CMD_TRANSLATOR_NONE(FIOSETOWN)
2478 IOC_CMD_TRANSLATOR_NONE(SIOCSPGRP)
2479 IOC_CMD_TRANSLATOR_NONE(SIOCGPGRP)

2481 IOC_CMD_TRANSLATOR_FILTER(SIOCATMARK, ict_sioifoob)

2483 IOC_CMD_TRANSLATOR_FILTER(SIOCGIFFLAGS, ict_sioifreq)
2484 IOC_CMD_TRANSLATOR_FILTER(SIOCSIFFLAGS, ict_sioifreq)
2485 IOC_CMD_TRANSLATOR_FILTER(SIOCGIFADDR, ict_sioifreq)
2486 IOC_CMD_TRANSLATOR_FILTER(SIOCSIFADDR, ict_sioifreq)
2487 IOC_CMD_TRANSLATOR_FILTER(SIOCGIFDSTADDR, ict_sioifreq)
2488 IOC_CMD_TRANSLATOR_FILTER(SIOCSIFDSTADDR, ict_sioifreq)
2489 IOC_CMD_TRANSLATOR_FILTER(SIOCGIFBRDADDR, ict_sioifreq)
2490 IOC_CMD_TRANSLATOR_FILTER(SIOCSIFBRDADDR, ict_sioifreq)
2491 IOC_CMD_TRANSLATOR_FILTER(SIOCGIFNETMASK, ict_sioifreq)
2492 IOC_CMD_TRANSLATOR_FILTER(SIOCSIFNETMASK, ict_sioifreq)
2493 IOC_CMD_TRANSLATOR_FILTER(SIOCGIFMETRIC, ict_sioifreq)
2494 IOC_CMD_TRANSLATOR_FILTER(SIOCSIFMETRIC, ict_sioifreq)
2495 IOC_CMD_TRANSLATOR_FILTER(SIOCGIFMTU, ict_sioifreq)
2496 IOC_CMD_TRANSLATOR_FILTER(SIOCSIFMTU, ict_sioifreq)

2498 IOC_CMD_TRANSLATOR_CUSTOM(LX_SIOCGIFCONF, ict_siocgifconf)
2499 IOC_CMD_TRANSLATOR_CUSTOM(LX_SIOCGIFHWADDR, ict_siocifhwaddr)
2500 IOC_CMD_TRANSLATOR_CUSTOM(LX_SIOCSIFHWADDR, ict_siocifhwaddr)

2502 IOC_CMD_TRANSLATOR_END
2503 };

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 39

2505 /*
2506 * Translators for devices.
2507 */
2508 static ioc_cmd_translator_t ioc_cmd_translators_ptm[] = {
2509 IOC_CMD_TRANSLATORS_ALL
2510 IOC_CMD_TRANSLATORS_STREAMS

2512 IOC_CMD_TRANSLATOR_NONE(TIOCPKT)

2514 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCGPGRP, ict_tiocgpgrp)
2515 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCSPTLCK, ict_sptlock)
2516 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCGPTN, ict_gptn)
2517 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCGWINSZ, ict_tiocgwinsz)
2518 IOC_CMD_TRANSLATOR_CUSTOM(LX_TCGETS, ict_tcgets_emulate)

2520 IOC_CMD_TRANSLATOR_END
2521 };
2522 static ioc_dev_translator_t ioc_translator_ptm = {
2523 LX_PTM_DRV, /* idt_driver */
2524 0, /* idt_major */
2525 ioc_cmd_translators_ptm
2526 };

2528 static ioc_cmd_translator_t ioc_cmd_translators_pts[] = {
2529 IOC_CMD_TRANSLATORS_ALL
2530 IOC_CMD_TRANSLATORS_STREAMS

2532 IOC_CMD_TRANSLATOR_NONE(TIOCGETD)
2533 IOC_CMD_TRANSLATOR_NONE(TIOCGSID)
2534 IOC_CMD_TRANSLATOR_NONE(TIOCNOTTY)

2536 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCGPGRP, ict_tiocgpgrp)
2537 IOC_CMD_TRANSLATOR_CUSTOM(LX_TCGETS, ict_tcgets_native)
2538 IOC_CMD_TRANSLATOR_CUSTOM(LX_TCGETA, ict_tcgeta)
2539 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCGWINSZ, ict_tiocgwinsz)
2540 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCSCTTY, ict_tiocsctty)

2542 IOC_CMD_TRANSLATOR_END
2543 };
2544 static ioc_dev_translator_t ioc_translator_pts = {
2545 "pts", /* idt_driver */
2546 0, /* idt_major */
2547 ioc_cmd_translators_pts
2548 };

2550 static ioc_dev_translator_t ioc_translator_sy = {
2551 "sy", /* idt_driver */
2552 0, /* idt_major */

2554 /*
2555 * /dev/tty (which is implemented via the "sy" driver) is basically
2556 * a layered driver that passes on requests to the ctty for the
2557 * current process. Since ctty’s are currently always implemented
2558 * via the pts driver, we should make sure to support all the
2559 * same ioctls on the sy driver as we do on the pts driver.
2560 */
2561 ioc_cmd_translators_pts
2562 };

2564 static ioc_cmd_translator_t ioc_cmd_translators_zcons[] = {
2565 IOC_CMD_TRANSLATORS_ALL
2566 IOC_CMD_TRANSLATORS_STREAMS

2568 IOC_CMD_TRANSLATOR_NONE(TIOCNOTTY)

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 40

2570 IOC_CMD_TRANSLATOR_CUSTOM(LX_TCGETS, ict_tcgets_native)
2571 IOC_CMD_TRANSLATOR_CUSTOM(LX_TCGETA, ict_tcgeta)
2572 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCGWINSZ, ict_tiocgwinsz)
2573 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCSCTTY, ict_tiocsctty)

2575 IOC_CMD_TRANSLATOR_CUSTOM(LX_TIOCLINUX, ict_einval)

2577 IOC_CMD_TRANSLATOR_END
2578 };
2579 static ioc_dev_translator_t ioc_translator_zcons = {
2580 "zcons", /* idt_driver */
2581 0, /* idt_major */
2582 ioc_cmd_translators_zcons
2583 };

2585 static ioc_cmd_translator_t ioc_cmd_translators_lx_audio[] = {
2586 IOC_CMD_TRANSLATORS_ALL

2588 /* /dev/dsp ioctls */
2589 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_RESET,
2590 ict_oss_sndctl_dsp_reset)
2591 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_GETFMTS,
2592 ict_oss_sndctl_dsp_getfmts)
2593 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_SETFMTS,
2594 ict_oss_sndctl_dsp_setfmts)
2595 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_CHANNELS,
2596 ict_oss_sndctl_dsp_channels)
2597 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_STEREO,
2598 ict_oss_sndctl_dsp_channels)
2599 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_SPEED,
2600 ict_oss_sndctl_dsp_speed)
2601 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_GETBLKSIZE,
2602 ict_oss_sndctl_dsp_getblksize)
2603 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_SYNC,
2604 ict_oss_sndctl_dsp_sync)
2605 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_SETFRAGMENT,
2606 ict_oss_sndctl_dsp_setfragment)
2607 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_GETOSPACE,
2608 ict_oss_sndctl_dsp_getspace)
2609 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_GETCAPS,
2610 ict_oss_sndctl_dsp_getcaps)
2611 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_SETTRIGGER,
2612 ict_oss_sndctl_dsp_settrigger)
2613 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_GETOPTR,
2614 ict_oss_sndctl_dsp_getoptr)
2615 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SNDCTL_DSP_GETISPACE,
2616 ict_oss_sndctl_dsp_getspace)

2618 /* /dev/mixer level ioctls */
2619 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_READ_VOLUME,
2620 ict_oss_mixer_read_volume)
2621 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_READ_PCM,
2622 ict_oss_mixer_read_volume)
2623 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_READ_MIC,
2624 ict_oss_mixer_read_mic)
2625 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_READ_IGAIN,
2626 ict_oss_mixer_read_mic)
2627 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_WRITE_VOLUME,
2628 ict_oss_mixer_write_volume)
2629 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_WRITE_PCM,
2630 ict_oss_mixer_write_volume)
2631 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_WRITE_MIC,
2632 ict_oss_mixer_write_mic)
2633 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_WRITE_IGAIN,
2634 ict_oss_mixer_write_mic)

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 41

2636 /* /dev/mixer capability ioctls */
2637 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_READ_STEREODEVS,
2638 ict_oss_mixer_read_devs)
2639 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_READ_DEVMASK,
2640 ict_oss_mixer_read_devs)
2641 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_READ_RECMASK,
2642 ict_oss_mixer_read_devs)
2643 IOC_CMD_TRANSLATOR_CUSTOM(LX_OSS_SOUND_MIXER_READ_RECSRC,
2644 ict_oss_mixer_read_devs)

2646 IOC_CMD_TRANSLATOR_END
2647 };
2648 static ioc_dev_translator_t ioc_translator_lx_audio = {
2649 "lx_audio", /* idt_driver */
2650 0, /* idt_major */
2651 ioc_cmd_translators_lx_audio
2652 };

2654 /*
2655 * An array of all the device translators.
2656 */
2657 static ioc_dev_translator_t *ioc_translators_dev[] = {
2658 &ioc_translator_lx_audio,
2659 &ioc_translator_ptm,
2660 &ioc_translator_pts,
2661 &ioc_translator_sy,
2662 &ioc_translator_zcons,
2663 NULL
2664 };

2666 /*
2667 * Translators for filesystems.
2668 */
2669 static ioc_cmd_translator_t ioc_cmd_translators_autofs[] = {
2670 IOC_CMD_TRANSLATOR_PASS(LX_AUTOFS_IOC_READY)
2671 IOC_CMD_TRANSLATOR_PASS(LX_AUTOFS_IOC_FAIL)
2672 IOC_CMD_TRANSLATOR_PASS(LX_AUTOFS_IOC_CATATONIC)
2673 IOC_CMD_TRANSLATOR_END
2674 };

2676 static ioc_fs_translator_t ioc_translator_autofs = {
2677 LX_AUTOFS_NAME, /* ift_filesystem */
2678 ioc_cmd_translators_autofs
2679 };

2681 /*
2682 * An array of all the filesystem translators.
2683 */
2684 static ioc_fs_translator_t *ioc_translators_fs[] = {
2685 &ioc_translator_autofs,
2686 NULL
2687 };

2689 /*
2690 * Ioctl error translator definitions.
2691 */
2692 #define IOC_ERRNO_TRANSLATOR(iet_cmd_sym, iet_errno) \
2693 { (int)LX_##iet_cmd_sym, "LX_" #iet_cmd_sym, iet_errno },

2695 #define IOC_ERRNO_TRANSLATOR_END \
2696 { 0, NULL, 0 }

2698 static ioc_errno_translator_t ioc_translators_errno[] = {
2699 IOC_ERRNO_TRANSLATOR(TCGETS, ENOTTY)
2700 IOC_ERRNO_TRANSLATOR(TCSETS, ENOTTY)
2701 IOC_ERRNO_TRANSLATOR(TCSBRK, ENOTTY)

new/usr/src/lib/brand/lx/lx_brand/common/ioctl.c 42

2702 IOC_ERRNO_TRANSLATOR(TCXONC, ENOTTY)
2703 IOC_ERRNO_TRANSLATOR(TCFLSH, ENOTTY)
2704 IOC_ERRNO_TRANSLATOR(TIOCGPGRP, ENOTTY)
2705 IOC_ERRNO_TRANSLATOR(TIOCSPGRP, ENOTTY)
2706 IOC_ERRNO_TRANSLATOR(TIOCGWINSZ, ENOTTY)
2707 IOC_ERRNO_TRANSLATOR_END
2708 };

2710 int
2711 lx_vhangup(void)
2712 {
2713 if (geteuid() != 0)
2714 return (-EPERM);

2716 vhangup();

2718 return (0);
2719 }
2720 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/iovec.c 1

**
 5577 Tue Jan 14 16:17:01 2014
new/usr/src/lib/brand/lx/lx_brand/common/iovec.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <errno.h>
30 #include <unistd.h>
31 #include <sys/uio.h>
32 #include <fcntl.h>
33 #include <sys/types.h>
34 #include <sys/stat.h>
35 #include <alloca.h>
36 #include <string.h>
37 #include <sys/lx_syscall.h>
38 #include <sys/lx_misc.h>
39 #include <sys/lx_types.h>

41 static int
42 lx_is_directory(int fd)
43 {
44 struct stat64 sbuf;

46 if (fstat64(fd, &sbuf) < 0)
47 sbuf.st_mode = 0;

49 return ((sbuf.st_mode & S_IFMT) == S_IFDIR);
50 }

52 int
53 lx_read(uintptr_t p1, uintptr_t p2, uintptr_t p3)
54 {
55 int fd = (int)p1;
56 void *buf = (void *)p2;
57 size_t nbyte = (size_t)p3;
58 ssize_t ret;

60 if (lx_is_directory(fd))
61 return (-EISDIR);

new/usr/src/lib/brand/lx/lx_brand/common/iovec.c 2

63 if ((ret = read(fd, buf, nbyte)) < 0)
64 return (-errno);

66 return (ret);
67 }

69 int
70 lx_pread64(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4, uintptr_t p5)
71 {
72 int fd = (int)p1;
73 void *buf = (void *)p2;
74 size_t nbyte = (size_t)p3;
75 uintptr_t off_lo = p4;
76 uintptr_t off_hi = p5;
77 ssize_t ret;

79 if (lx_is_directory(fd))
80 return (-EISDIR);

82 ret = pread64(fd, buf, nbyte, (off64_t)LX_32TO64(off_lo, off_hi));

84 if (ret < 0)
85 return (-errno);

87 return (ret);
88 }

90 /*
91 * On Linux, the pwrite(2) system call behaves identically to Solaris except
92 * in the case of the file being opened with O_APPEND. In that case Linux’s
93 * pwrite(2) ignores the offset parameter and instead appends the data to the
94 * file without modifying the current seek pointer.
95 */
96 int
97 lx_pwrite64(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
98 uintptr_t p5)
99 {
100 int fd = (int)p1;
101 void *buf = (void *)p2;
102 size_t nbyte = (size_t)p3;
103 uintptr_t off_lo = p4;
104 uintptr_t off_hi = p5;
105 ssize_t ret;
106 int rval;
107 struct stat64 statbuf;

109 if ((rval = fcntl(fd, F_GETFL, 0)) < 0)
110 return (-errno);

112 if (!(rval & O_APPEND)) {
113 ret = pwrite64(fd, buf, nbyte,
114 (off64_t)LX_32TO64(off_lo, off_hi));
115 } else if ((ret = fstat64(fd, &statbuf)) == 0) {
116 ret = pwrite64(fd, buf, nbyte, statbuf.st_size);
117 }

119 if (ret < 0)
120 return (-errno);

122 return (ret);
123 }

125 /*
126 * Implementation of Linux readv() and writev() system calls.
127 *

new/usr/src/lib/brand/lx/lx_brand/common/iovec.c 3

128 * The Linux system calls differ from the Solaris system calls in a few key
129 * areas:
130 *
131 * - On Solaris, the maximum number of I/O vectors that can be passed to readv()
132 * or writev() is IOV_MAX (16). Linux has a much larger restriction (1024).
133 *
134 * - Passing 0 as a vector count is an error on Solaris, but on Linux results
135 * in a return value of 0. Even though the man page says the opposite.
136 *
137 * - If the Nth vector results in an error, Solaris will return an error code
138 * for the entire operation. Linux only returns an error if there has been
139 * no data transferred yet. Otherwise, it returns the number of bytes
140 * transferred up until that point.
141 *
142 * In order to accomodate these differences, we implement these functions as a
143 * series of ordinary read() or write() calls.
144 */

146 #define LX_IOV_MAX 1024 /* Also called MAX_IOVEC */

148 static int
149 lx_iovec_copy_and_check(const struct iovec *iovp, struct iovec *iov, int count)
150 {
151 int i;
152 ssize_t cnt = 0;

154 if (uucopy(iovp, (void *)iov, count * sizeof (struct iovec)) != 0)
155 return (-errno);

157 for (i = 0; i < count; i++) {
158 cnt += iov[i].iov_len;
159 if (iov[i].iov_len < 0 || cnt < 0)
160 return (-EINVAL);
161 }

163 return (0);
164 }

166 int
167 lx_readv(uintptr_t p1, uintptr_t p2, uintptr_t p3)
168 {
169 int fd = (int)p1;
170 const struct iovec *iovp = (const struct iovec *)p2;
171 int count = (int)p3;
172 struct iovec *iov;
173 ssize_t total = 0, ret;
174 int i;

176 if (count == 0)
177 return (0);

179 if (count < 0 || count > LX_IOV_MAX)
180 return (-EINVAL);

182 if (lx_is_directory(fd))
183 return (-EISDIR);

185 iov = SAFE_ALLOCA(count * sizeof (struct iovec));
186 if (iov == NULL)
187 return (-ENOMEM);
188 if ((ret = lx_iovec_copy_and_check(iovp, iov, count)) != 0)
189 return (ret);

191 for (i = 0; i < count; i++) {
192 ret = read(fd, iov[i].iov_base, iov[i].iov_len);

new/usr/src/lib/brand/lx/lx_brand/common/iovec.c 4

194 if (ret < 0) {
195 if (total > 0)
196 return (total);
197 return (-errno);
198 }

200 total += ret;
201 }

203 return (total);
204 }

206 int
207 lx_writev(uintptr_t p1, uintptr_t p2, uintptr_t p3)
208 {
209 int fd = (int)p1;
210 const struct iovec *iovp = (const struct iovec *)p2;
211 int count = (int)p3;
212 struct iovec *iov;
213 ssize_t total = 0, ret;
214 int i;

216 if (count == 0)
217 return (0);

219 if (count < 0 || count > LX_IOV_MAX)
220 return (-EINVAL);

222 iov = SAFE_ALLOCA(count * sizeof (struct iovec));
223 if (iov == NULL)
224 return (-ENOMEM);
225 if ((ret = lx_iovec_copy_and_check(iovp, iov, count)) != 0)
226 return (ret);

228 for (i = 0; i < count; i++) {
229 ret = write(fd, iov[i].iov_base, iov[i].iov_len);

231 if (ret < 0) {
232 if (total > 0)
233 return (total);
234 return (-errno);
235 }

237 total += ret;
238 }

240 return (total);
241 }
242 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 1

**
 39942 Tue Jan 14 16:17:01 2014
new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/types.h>
28 #include <sys/syscall.h>
29 #include <sys/utsname.h>
30 #include <sys/inttypes.h>
31 #include <sys/stat.h>
32 #include <sys/mman.h>
33 #include <sys/fstyp.h>
34 #include <sys/fsid.h>
35 #include <sys/systm.h>
36 #include <sys/auxv.h>
37 #include <sys/frame.h>
38 #include <sys/brand.h>

40 #include <assert.h>
41 #include <stdio.h>
42 #include <stdarg.h>
43 #include <stdlib.h>
44 #include <strings.h>
45 #include <unistd.h>
46 #include <errno.h>
47 #include <syslog.h>
48 #include <signal.h>
49 #include <fcntl.h>
50 #include <synch.h>
51 #include <libelf.h>
52 #include <libgen.h>
53 #include <pthread.h>
54 #include <utime.h>
55 #include <dirent.h>
56 #include <ucontext.h>
57 #include <libintl.h>
58 #include <locale.h>

60 #include <sys/lx_misc.h>

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 2

61 #include <sys/lx_debug.h>
62 #include <sys/lx_brand.h>
63 #include <sys/lx_types.h>
64 #include <sys/lx_stat.h>
65 #include <sys/lx_statfs.h>
66 #include <sys/lx_ioctl.h>
67 #include <sys/lx_signal.h>
68 #include <sys/lx_syscall.h>
69 #include <sys/lx_thread.h>
70 #include <sys/lx_thunk_server.h>

72 /*
73 * Map solaris errno to the linux equivalent.
74 */
75 static int stol_errno[] = {
76 0, 1, 2, 3, 4, 5, 6, 7, 8, 9,
77 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
78 20, 21, 22, 23, 24, 25, 26, 27, 28, 29,
79 30, 31, 32, 33, 34, 42, 43, 44, 45, 46,
80 47, 48, 49, 50, 51, 35, 47, 22, 38, 22, /* 49 */
81 52, 53, 54, 55, 56, 57, 58, 59, 22, 22,
82 61, 61, 62, 63, 64, 65, 66, 67, 68, 69,
83 70, 71, 22, 22, 72, 22, 22, 74, 36, 75,
84 76, 77, 78, 79, 80, 81, 82, 83, 84, 38,
85 40, 85, 86, 39, 87, 88, 89, 90, 91, 92, /* 99 */
86 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
87 22, 22, 22, 22, 22, 22, 22, 22, 22, 22,
88 93, 94, 95, 96, 97, 98, 99, 100, 101, 102,
89 103, 104, 105, 106, 107, 22, 22, 22, 22, 22,
90 22, 22, 22, 108, 109, 110, 111, 112, 113, 114, /* 149 */
91 115, 116
92 };

94 char lx_release[128];

96 /*
97 * Map a linux locale ending string to the solaris equivalent.
98 */
99 struct lx_locale_ending {
100 const char *linux_end; /* linux ending string */
101 const char *solaris_end; /* to transform with this string */
102 int le_size; /* linux ending string length */
103 int se_size; /* solaris ending string length */
104 };

106 #define l2s_locale(lname, sname) \
107 {(lname), (sname), sizeof ((lname)) - 1, sizeof ((sname)) - 1}

109 /*static struct lx_locale_ending lx_locales[] = {
110 l2s_locale(".utf8", ".UTF-8"),
111 l2s_locale(".utf8@euro", ".UTF-8"),
112 l2s_locale("@euro", ".ISO8859-15"),
113 l2s_locale(".iso885915", ".ISO8859-15"),
114 l2s_locale(".euckr", ".EUC"),
115 l2s_locale(".euctw", ".EUC"),
116 l2s_locale(".koi8r", ".KOI8-R"),
117 l2s_locale(".gb18030", ".GB18030"),
118 l2s_locale(".gbk", ".GBK"),
119 l2s_locale("@cyrillic", ".ISO8859-5")
120 };*/

122 #define MAXLOCALENAMELEN 30
123 #if !defined(TEXT_DOMAIN) /* should be defined by cc -D */
124 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it wasn’t */
125 #endif

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 3

127 /*
128 * This flag is part of the registration with the in-kernel brand module. It’s
129 * used in lx_handler() to determine if we should go back into the kernel after
130 * a system call in case the kernel needs to perform some post-syscall work
131 * like tracing for example.
132 */
133 int lx_traceflag;

135 #define NOSYS_NULL 1
136 #define NOSYS_NO_EQUIV 2
137 #define NOSYS_KERNEL 3
138 #define NOSYS_UNDOC 4
139 #define NOSYS_OBSOLETE 5

141 /*
142 * SYS_PASSTHRU denotes a system call we can just call on behalf of the
143 * branded process without having to translate the arguments.
144 *
145 * The restriction on this is that the call in question MUST return -1 to
146 * denote an error.
147 */
148 #define SYS_PASSTHRU 5

150 static char *nosys_msgs[] = {
151 "Either not yet done, or we haven’t come up with an excuse",
152 "No such Linux system call",
153 "No equivalent Solaris functionality",
154 "Reads/modifies Linux kernel state",
155 "Undocumented and/or rarely used system call",
156 "Unsupported, obsolete system call"
157 };

159 struct lx_sysent {
160 char *sy_name;
161 int (*sy_callc)();
162 char sy_flags;
163 char sy_narg;
164 };

166 static struct lx_sysent sysents[LX_NSYSCALLS + 1];

168 static uintptr_t stack_bottom;

170 int lx_install = 0; /* install mode enabled if non-zero */
171 boolean_t lx_is_rpm = B_FALSE;
172 int lx_rpm_delay = 1;
173 int lx_strict = 0; /* "strict" mode enabled if non-zero */
174 int lx_verbose = 0; /* verbose mode enabled if non-zero */
175 int lx_debug_enabled = 0; /* debugging output enabled if non-zero */

177 pid_t zoneinit_pid; /* zone init PID */

179 thread_key_t lx_tsd_key;

181 int
182 uucopy_unsafe(const void *src, void *dst, size_t n)
183 {
184 bcopy(src, dst, n);
185 return (0);
186 }

188 int
189 uucopystr_unsafe(const void *src, void *dst, size_t n)
190 {
191 (void) strncpy((char *)src, dst, n);
192 return (0);

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 4

193 }

195 static void
196 i_lx_msg(int fd, char *msg, va_list ap)
197 {
198 int i;
199 char buf[LX_MSG_MAXLEN];

201 /* LINTED [possible expansion issues] */
202 i = vsnprintf(buf, sizeof (buf), msg, ap);
203 buf[LX_MSG_MAXLEN - 1] = ’\0’;
204 if (i == -1)
205 return;

207 /* if debugging is enabled, send this message to debug output */
208 if (lx_debug_enabled != 0)
209 lx_debug(buf);

211 /*
212 * If we are trying to print to stderr, we also want to send the
213 * message to syslog.
214 */
215 if (fd == 2) {
216 syslog(LOG_ERR, "%s", buf);

218 /*
219 * We let the user choose whether or not to see these
220 * messages on the console.
221 */
222 if (lx_verbose == 0)
223 return;
224 }

226 /* we retry in case of EINTR */
227 do {
228 i = write(fd, buf, strlen(buf));
229 } while ((i == -1) && (errno == EINTR));
230 }

232 /*PRINTFLIKE1*/
233 void
234 lx_err(char *msg, ...)
235 {
236 va_list ap;

238 assert(msg != NULL);

240 va_start(ap, msg);
241 i_lx_msg(STDERR_FILENO, msg, ap);
242 va_end(ap);
243 }

245 /*
246 * This is just a non-zero exit value which also isn’t one that would allow
247 * us to easily detect if a branded process exited because of a recursive
248 * fatal error.
249 */
250 #define LX_ERR_FATAL 42

252 /*
253 * Our own custom version of abort(), this routine will be used in place
254 * of the one located in libc. The primary difference is that this version
255 * will first reset the signal handler for SIGABRT to SIG_DFL, ensuring the
256 * SIGABRT sent causes us to dump core and is not caught by a user program.
257 */
258 void

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 5

259 abort(void)
260 {
261 static int aborting = 0;

263 struct sigaction sa;
264 sigset_t sigmask;

266 /* watch out for recursive calls to this function */
267 if (aborting != 0)
268 exit(LX_ERR_FATAL);

270 aborting = 1;

272 /*
273 * Block all signals here to avoid taking any signals while exiting
274 * in an effort to avoid any strange user interaction with our death.
275 */
276 (void) sigfillset(&sigmask);
277 (void) sigprocmask(SIG_BLOCK, &sigmask, NULL);

279 /*
280 * Our own version of abort(3C) that we know will never call
281 * a user-installed SIGABRT handler first. We WANT to die.
282 *
283 * Do this by resetting the handler to SIG_DFL, and releasing any
284 * held SIGABRTs.
285 *
286 * If no SIGABRTs are pending, send ourselves one.
287 *
288 * The while loop is a bit of overkill, but abort(3C) does it to
289 * assure it never returns so we will as well.
290 */
291 (void) sigemptyset(&sa.sa_mask);
292 sa.sa_sigaction = SIG_DFL;
293 sa.sa_flags = 0;

295 for (;;) {
296 (void) sigaction(SIGABRT, &sa, NULL);
297 (void) sigrelse(SIGABRT);
298 (void) thr_kill(thr_self(), SIGABRT);
299 }

301 /*NOTREACHED*/
302 }

304 /*PRINTFLIKE1*/
305 void
306 lx_msg(char *msg, ...)
307 {
308 va_list ap;

310 assert(msg != NULL);
311 va_start(ap, msg);
312 i_lx_msg(STDOUT_FILENO, msg, ap);
313 va_end(ap);
314 }

316 /*PRINTFLIKE1*/
317 void
318 lx_err_fatal(char *msg, ...)
319 {
320 va_list ap;

322 assert(msg != NULL);

324 va_start(ap, msg);

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 6

325 i_lx_msg(STDERR_FILENO, msg, ap);
326 va_end(ap);
327 abort();
328 }

330 /*
331 * See if it is safe to alloca() sz bytes. Return 1 for yes, 0 for no.
332 */
333 int
334 lx_check_alloca(size_t sz)
335 {
336 uintptr_t sp = (uintptr_t)&sz;
337 uintptr_t end = sp - sz;

339 return ((end < sp) && (end >= stack_bottom));
340 }

342 /*PRINTFLIKE1*/
343 void
344 lx_unsupported(char *msg, ...)
345 {
346 va_list ap;

348 assert(msg != NULL);

350 /* send the msg to the error stream */
351 va_start(ap, msg);
352 i_lx_msg(STDERR_FILENO, msg, ap);
353 va_end(ap);

355 /*
356 * If the user doesn’t trust the application to responsibly
357 * handle ENOTSUP, we kill the application.
358 */
359 if (lx_strict)
360 (void) kill(getpid(), SIGSYS);
361 }

363 extern void lx_runexe(void *argv, int32_t entry);
364 int lx_init(int argc, char *argv[], char *envp[]);

366 static int
367 lx_emulate_args(lx_regs_t *rp, struct lx_sysent *s, uintptr_t *args)
368 {
369 /*
370 * If the system call takes 6 args, then libc has stashed them in
371 * memory at the address contained in %ebx. Except for some syscalls
372 * which store the 6th argument in %ebp.
373 */
374 if (s->sy_narg == 6 && !(s->sy_flags & EBP_HAS_ARG6)) {
375 if (uucopy((void *)rp->lxr_ebx, args,
376 sizeof (args[0]) * 6) != 0)
377 return (-stol_errno[errno]);
378 } else {
379 args[0] = rp->lxr_ebx;
380 args[1] = rp->lxr_ecx;
381 args[2] = rp->lxr_edx;
382 args[3] = rp->lxr_esi;
383 args[4] = rp->lxr_edi;
384 args[5] = rp->lxr_ebp;
385 }

387 return (0);
388 }

390 void

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 7

391 lx_emulate(lx_regs_t *rp)
392 {
393 struct lx_sysent *s;
394 uintptr_t args[6];
395 uintptr_t gs = rp->lxr_gs & 0xffff; /* %gs is only 16 bits */
396 int syscall_num, ret;

398 syscall_num = rp->lxr_eax;

400 /*
401 * lx_brand_int80_callback() ensures that the syscall_num is sane;
402 * Use it as is.
403 */
404 assert(syscall_num >= 0);
405 assert(syscall_num < (sizeof (sysents) / sizeof (sysents[0])));
406 s = &sysents[syscall_num];

408 if ((ret = lx_emulate_args(rp, s, args)) != 0)
409 goto out;

411 /*
412 * If the tracing flag is enabled we call into the brand-specific
413 * kernel module to handle the tracing activity (DTrace or ptrace).
414 * It would be tempting to perform DTrace activity in the brand
415 * module’s syscall trap callback, rather than having to return
416 * to the kernel here, but -- since argument encoding can vary
417 * according to the specific system call -- that would require
418 * replicating the knowledge of argument decoding in the kernel
419 * module as well as here in the brand library.
420 */
421 if (lx_traceflag != 0) {
422 /*
423 * Part of the ptrace "interface" is that on syscall entry
424 * %eax should be reported as -ENOSYS while the orig_eax
425 * field of the user structure needs to contain the actual
426 * system call number. If we end up stopping here, the
427 * controlling process will dig the lx_regs_t structure out of
428 * our stack.
429 */
430 rp->lxr_orig_eax = syscall_num;
431 rp->lxr_eax = -stol_errno[ENOSYS];

433 (void) syscall(SYS_brand, B_SYSENTRY, syscall_num, args);

435 /*
436 * The external tracer may have modified the arguments to this
437 * system call. Refresh the argument cache to account for this.
438 */
439 if ((ret = lx_emulate_args(rp, s, args)) != 0)
440 goto out;
441 }

443 if (s->sy_callc == NULL) {
444 lx_unsupported(gettext("unimplemented syscall #%d (%s): %s\n"),
445 syscall_num, s->sy_name, nosys_msgs[(int)s->sy_flags]);
446 ret = -stol_errno[ENOTSUP];
447 goto out;
448 }

450 if (lx_debug_enabled != 0) {
451 const char *fmt = NULL;

453 switch (s->sy_narg) {
454 case 0:
455 fmt = "calling %s()";
456 break;

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 8

457 case 1:
458 fmt = "calling %s(0x%p)";
459 break;
460 case 2:
461 fmt = "calling %s(0x%p, 0x%p)";
462 break;
463 case 3:
464 fmt = "calling %s(0x%p, 0x%p, 0x%p)";
465 break;
466 case 4:
467 fmt = "calling %s(0x%p, 0x%p, 0x%p, 0x%p)";
468 break;
469 case 5:
470 fmt = "calling %s(0x%p, 0x%p, 0x%p, 0x%p, 0x%p)";
471 break;
472 case 6:
473 fmt = "calling %s(0x%p, 0x%p, 0x%p, 0x%p, 0x%p, 0x%p)";
474 break;
475 }

477 lx_debug(fmt, s->sy_name, args[0], args[1], args[2], args[3],
478 args[4], args[5]);
479 }

481 if (gs != LWPGS_SEL) {
482 lx_tsd_t *lx_tsd;

484 /*
485 * While a %gs of 0 is technically legal (as long as the
486 * application never dereferences memory using %gs), Solaris
487 * has its own ideas as to how a zero %gs should be handled in
488 * _update_sregs(), such that any 32-bit user process with a
489 * %gs of zero running on a system with a 64-bit kernel will
490 * have its %gs hidden base register stomped on on return from
491 * a system call, leaving an incorrect base address in place
492 * until the next time %gs is actually reloaded (forcing a
493 * reload of the base address from the appropriate descriptor
494 * table.)
495 *
496 * Of course the kernel will once again stomp on THAT base
497 * address when returning from a system call, resulting in an
498 * an application segmentation fault.
499 *
500 * To avoid this situation, disallow a save of a zero %gs
501 * here in order to try and capture any Linux process that
502 * attempts to make a syscall with a zero %gs installed.
503 */
504 assert(gs != 0);

506 if ((ret = thr_getspecific(lx_tsd_key,
507 (void **)&lx_tsd)) != 0)
508 lx_err_fatal(gettext(
509 "%s: unable to read thread-specific data: %s"),
510 "lx_emulate", strerror(ret));

512 assert(lx_tsd != 0);

514 lx_tsd->lxtsd_gs = gs;

516 lx_debug("lx_emulate(): gsp 0x%p, saved gs: 0x%x", lx_tsd, gs);
517 }

519 if (s->sy_flags == SYS_PASSTHRU)
520 lx_debug("\tCalling Solaris %s()", s->sy_name);

522 ret = s->sy_callc(args[0], args[1], args[2], args[3], args[4], args[5]);

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 9

524 if (ret > -65536 && ret < 65536)
525 lx_debug("\t= %d", ret);
526 else
527 lx_debug("\t= 0x%x", ret);

529 if ((s->sy_flags == SYS_PASSTHRU) && (ret == -1)) {
530 ret = -stol_errno[errno];
531 } else {
532 /*
533 * If the return value is between -4096 and 0 we assume it’s an
534 * error, so we translate the Solaris error number into the
535 * Linux equivalent.
536 */
537 if (ret < 0 && ret > -4096) {
538 if (-ret >=
539 sizeof (stol_errno) / sizeof (stol_errno[0])) {
540 lx_debug("Invalid return value from emulated "
541 "syscall %d (%s): %d\n",
542 syscall_num, s->sy_name, ret);
543 assert(0);
544 }

546 ret = -stol_errno[-ret];
547 }
548 }

550 out:
551 /*
552 * %eax holds the return code from the system call.
553 */
554 rp->lxr_eax = ret;

556 /*
557 * If the trace flag is set, bounce into the kernel to let it do
558 * any necessary tracing (DTrace or ptrace).
559 */
560 if (lx_traceflag != 0) {
561 rp->lxr_orig_eax = syscall_num;
562 (void) syscall(SYS_brand, B_SYSRETURN, syscall_num, ret);
563 }
564 }

566 /* Transform the Linux locale name to make it look like a Solaris locale name */
567 /* static const char *
568 lx_translate_locale(char *translated_name_mem, int mem_size)
569 {
570 char *loc;
571 int i;
572 size_t len;

574 if ((loc = getenv("LC_ALL")) == NULL)
575 if ((loc = getenv("LANG")) == NULL)
576 return ("C");

578 if (strlcpy(translated_name_mem, loc, mem_size) >= mem_size)
579 return ("");

581 len = strlen(loc);

583 // replace the end of the locale name if it’s a known pattern
584 for (i = 0; i < sizeof (lx_locales) / sizeof (struct lx_locale_ending);
585 i++) {
586 if (len <= lx_locales[i].le_size)
587 continue;

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 10

589 if (strncmp(loc + len - lx_locales[i].le_size,
590 lx_locales[i].linux_end, lx_locales[i].le_size))
591 continue; // don’t match

593 if (len - lx_locales[i].le_size + lx_locales[i].se_size
594 >= mem_size)
595 return ("C"); // size too small for the new name

597 (void) strlcpy(translated_name_mem + len -
598 lx_locales[i].le_size, lx_locales[i].solaris_end,
599 lx_locales[i].se_size + 1);

601 return ((const char *)translated_name_mem);
602 }

604 // no match
605 return ("");
606 } */

608 static void
609 lx_close_fh(FILE *file)
610 {
611 int fd, fd_new;

613 if (file == NULL)
614 return;

616 if ((fd = fileno(file)) < 0)
617 return;

619 fd_new = dup(fd);
620 if (fd_new == -1)
621 return;

623 (void) fclose(file);
624 (void) dup2(fd_new, fd);
625 (void) close(fd_new);
626 }

629 extern int set_l10n_alternate_root(char *path);

631 /*ARGSUSED*/
632 int
633 lx_init(int argc, char *argv[], char *envp[])
634 {
635 char *r;
636 auxv_t *ap;
637 int *p, err;
638 lx_elf_data_t edp;
639 lx_brand_registration_t reg;
640 /* char locale_translated_name[MAXLOCALENAMELEN]; */
641 static lx_tsd_t lx_tsd;

644 /* Look up the PID that serves as init for this zone */
645 if ((err = lx_lpid_to_spid(1, &zoneinit_pid)) < 0)
646 lx_err_fatal(gettext(
647 "Unable to find PID for zone init process: %s"),
648 strerror(err));

650 /*
651 * Ubuntu init will fail if its TERM environment variable is not set
652 * so if we are running init, and TERM is not set, we set term and
653 * reexec so that the new environment variable is propagated to the
654 * linux application stack.

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 11

655 */
656 if ((getpid() == zoneinit_pid) && (getenv("TERM") == NULL)) {
657 if (setenv("TERM", "vt100", 1) < 0 || execv(argv[0], argv) < 0)
658 lx_err_fatal(gettext("failed to set TERM"));
659 }
660 /*
661 if ((set_l10n_alternate_root("/native") == 0) &&
662 (setlocale(LC_ALL, lx_translate_locale(locale_translated_name,
663 sizeof (locale_translated_name))) != NULL) &&
664 (bindtextdomain(TEXT_DOMAIN, "/native/usr/lib/locale") != NULL)) {
665 (void) textdomain(TEXT_DOMAIN);
666 }
667 */
668 stack_bottom = 2 * sysconf(_SC_PAGESIZE);

670 /*
671 * We need to shutdown all libc stdio. libc stdio normally goes to
672 * file descriptors, but since we’re actually part of a linux
673 * process we don’t own these file descriptors and we can’t make
674 * any assumptions about their state.
675 */
676 lx_close_fh(stdin);
677 lx_close_fh(stdout);
678 lx_close_fh(stderr);

680 lx_debug_init();

682 r = getenv("LX_RELEASE");
683 if (r == NULL) {
684 if (lx_get_kern_version() == LX_KERN_2_6)
685 (void) strlcpy(lx_release, LX_UNAME_RELEASE_2_6,
686 sizeof (lx_release));
687 else
688 (void) strlcpy(lx_release, LX_UNAME_RELEASE_2_4,
689 sizeof (lx_release));
690 } else {
691 (void) strlcpy(lx_release, r, 128);
692 }

694 lx_debug("lx_release: %s\n", lx_release);

696 /*
697 * Should we kill an application that attempts an unimplemented
698 * system call?
699 */
700 if (getenv("LX_STRICT") != NULL) {
701 lx_strict = 1;
702 lx_debug("STRICT mode enabled.\n");
703 }

705 /*
706 * Are we in install mode?
707 */
708 if (getenv("LX_INSTALL") != NULL) {
709 lx_install = 1;
710 lx_debug("INSTALL mode enabled.\n");
711 }

713 /*
714 * Should we attempt to send messages to the screen?
715 */
716 if (getenv("LX_VERBOSE") != NULL) {
717 lx_verbose = 1;
718 lx_debug("VERBOSE mode enabled.\n");
719 }

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 12

721 lx_debug("executing linux process: %s", argv[0]);
722 lx_debug("branding myself and setting handler to 0x%p",
723 (void *)lx_handler_table);

725 /*
726 * The version of rpm that ships with CentOS/RHEL 3.x has a race
727 * condition in it. If it creates a child process to run a
728 * post-install script, and that child process completes too
729 * quickly, it will disappear before the parent notices. This
730 * causes the parent to hang forever waiting for the already dead
731 * child to die. I’m sure there’s a Lazarus joke buried in here
732 * somewhere.
733 *
734 * Anyway, as a workaround, we make every child of an ’rpm’ process
735 * sleep for 1 second, giving the parent a chance to enter its
736 * wait-for-the-child-to-die loop. Thay may be the hackiest trick
737 * in all of our Linux emulation code - and that’s saying
738 * something.
739 */
740 if (strcmp("rpm", basename(argv[0])) == NULL)
741 lx_is_rpm = B_TRUE;

743 reg.lxbr_version = LX_VERSION;
744 reg.lxbr_handler = (void *)&lx_handler_table;
745 reg.lxbr_tracehandler = (void *)&lx_handler_trace_table;
746 reg.lxbr_traceflag = &lx_traceflag;

748 /*
749 * Register the address of the user-space handler with the lx
750 * brand module.
751 */
752 if (syscall(SYS_brand, B_REGISTER, ®))
753 lx_err_fatal(gettext("failed to brand the process"));

755 /*
756 * Download data about the lx executable from the kernel.
757 */
758 if (syscall(SYS_brand, B_ELFDATA, (void *)&edp))
759 lx_err_fatal(gettext(
760 "failed to get required ELF data from the kernel"));

762 if (lx_ioctl_init() != 0)
763 lx_err_fatal(gettext("failed to setup the %s translator"),
764 "ioctl");

766 if (lx_stat_init() != 0)
767 lx_err_fatal(gettext("failed to setup the %s translator"),
768 "stat");

770 if (lx_statfs_init() != 0)
771 lx_err_fatal(gettext("failed to setup the %s translator"),
772 "statfs");

774 /*
775 * Find the aux vector on the stack.
776 */
777 p = (int *)envp;
778 while (*p != NULL)
779 p++;
780 /*
781 * p is now pointing at the 0 word after the environ pointers. After
782 * that is the aux vectors.
783 */
784 p++;
785 for (ap = (auxv_t *)p; ap->a_type != 0; ap++) {
786 switch (ap->a_type) {

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 13

787 case AT_BASE:
788 ap->a_un.a_val = edp.ed_base;
789 break;
790 case AT_ENTRY:
791 ap->a_un.a_val = edp.ed_entry;
792 break;
793 case AT_PHDR:
794 ap->a_un.a_val = edp.ed_phdr;
795 break;
796 case AT_PHENT:
797 ap->a_un.a_val = edp.ed_phent;
798 break;
799 case AT_PHNUM:
800 ap->a_un.a_val = edp.ed_phnum;
801 break;
802 default:
803 break;
804 }
805 }

807 /* Do any thunk server initalization. */
808 lxt_server_init(argc, argv);

810 /* Setup signal handler information. */
811 if (lx_siginit())
812 lx_err_fatal(gettext(
813 "failed to initialize lx signals for the branded process"));

815 /* Setup thread-specific data area for managing linux threads. */
816 if ((err = thr_keycreate(&lx_tsd_key, NULL)) != 0)
817 lx_err_fatal(
818 gettext("%s failed: %s"), "thr_keycreate(lx_tsd_key)",
819 strerror(err));

821 lx_debug("thr_keycreate created lx_tsd_key (%d)", lx_tsd_key);

823 /* Initialize the thread specific data for this thread. */
824 bzero(&lx_tsd, sizeof (lx_tsd));
825 lx_tsd.lxtsd_gs = LWPGS_SEL;

827 if ((err = thr_setspecific(lx_tsd_key, &lx_tsd)) != 0)
828 lx_err_fatal(gettext(
829 "Unable to initialize thread-specific data: %s"),
830 strerror(err));

832 /*
833 * Save the current context of this thread.
834 * We’ll restore this context when this thread attempts to exit.
835 */
836 if (getcontext(&lx_tsd.lxtsd_exit_context) != 0)
837 lx_err_fatal(gettext(
838 "Unable to initialize thread-specific exit context: %s"),
839 strerror(errno));

841 if (lx_tsd.lxtsd_exit == 0) {
842 lx_runexe(argv, edp.ed_ldentry);
843 /* lx_runexe() never returns. */
844 assert(0);
845 }

847 /*
848 * We are here because the Linux application called the exit() or
849 * exit_group() system call. In turn the brand library did a
850 * setcontext() to jump to the thread context state we saved above.
851 */
852 if (lx_tsd.lxtsd_exit == 1)

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 14

853 thr_exit((void *)lx_tsd.lxtsd_exit_status);
854 else
855 exit(lx_tsd.lxtsd_exit_status);

857 assert(0);

859 /*NOTREACHED*/
860 return (0);
861 }

863 /*
864 * Walk back through the stack until we find the lx_emulate() frame.
865 */
866 lx_regs_t *
867 lx_syscall_regs(void)
868 {
869 /* LINTED - alignment */
870 struct frame *fr = (struct frame *)_getfp();

872 while (fr->fr_savpc != (uintptr_t)&lx_emulate_done) {
873 fr = (struct frame *)fr->fr_savfp;
874 assert(fr->fr_savpc != NULL);
875 }

877 return ((lx_regs_t *)((uintptr_t *)fr)[2]);
878 }

880 int
881 lx_lpid_to_spair(pid_t lpid, pid_t *spid, lwpid_t *slwp)
882 {
883 pid_t pid;
884 lwpid_t tid;

886 if (lpid == 0) {
887 pid = getpid();
888 tid = thr_self();
889 } else {
890 if (syscall(SYS_brand, B_LPID_TO_SPAIR, lpid, &pid, &tid) < 0)
891 return (-errno);

893 /*
894 * If the returned pid is -1, that indicates we tried to
895 * look up the PID for init, but that process no longer
896 * exists.
897 */
898 if (pid == -1)
899 return (-ESRCH);
900 }

902 if (uucopy(&pid, spid, sizeof (pid_t)) != 0)
903 return (-errno);

905 if (uucopy(&tid, slwp, sizeof (lwpid_t)) != 0)
906 return (-errno);

908 return (0);
909 }

911 int
912 lx_lpid_to_spid(pid_t lpid, pid_t *spid)
913 {
914 lwpid_t slwp;

916 return (lx_lpid_to_spair(lpid, spid, &slwp));
917 }

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 15

919 char *
920 lx_fd_to_path(int fd, char *buf, int buf_size)
921 {
922 char path_proc[MAXPATHLEN];
923 pid_t pid;
924 int n;

926 assert((buf != NULL) && (buf_size >= 0));

928 if (fd < 0)
929 return (NULL);

931 if ((pid = getpid()) == -1)
932 return (NULL);

934 (void) snprintf(path_proc, MAXPATHLEN,
935 "/native/proc/%d/path/%d", pid, fd);

937 if ((n = readlink(path_proc, buf, buf_size - 1)) == -1)
938 return (NULL);
939 buf[n] = ’\0’;

941 return (buf);
942 }

944 /*
945 * Create a translation routine that jumps to a particular emulation
946 * module syscall.
947 */
948 #define IN_KERNEL_SYSCALL(name, num) \
949 int \
950 lx_##name(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4, \
951 uintptr_t p5, uintptr_t p6) \
952 { \
953 int r; \
954 lx_debug("\tsyscall %d re-vectoring to lx kernel module " \
955 "for " #name "()", num); \
956 r = syscall(SYS_brand, B_EMULATE_SYSCALL + num, p1, p2, \
957 p3, p4, p5, p6); \
958 return ((r == -1) ? -errno : r); \
959 }

961 IN_KERNEL_SYSCALL(kill, 37)
962 IN_KERNEL_SYSCALL(brk, 45)
963 IN_KERNEL_SYSCALL(ustat, 62)
964 IN_KERNEL_SYSCALL(getppid, 64)
965 IN_KERNEL_SYSCALL(sysinfo, 116)
966 IN_KERNEL_SYSCALL(modify_ldt, 123)
967 IN_KERNEL_SYSCALL(adjtimex, 124)
968 IN_KERNEL_SYSCALL(setresuid16, 164)
969 IN_KERNEL_SYSCALL(setresgid16, 170)
970 IN_KERNEL_SYSCALL(setresuid, 208)
971 IN_KERNEL_SYSCALL(setresgid, 210)
972 IN_KERNEL_SYSCALL(gettid, 224)
973 IN_KERNEL_SYSCALL(tkill, 238)
974 IN_KERNEL_SYSCALL(futex, 240)
975 IN_KERNEL_SYSCALL(set_thread_area, 243)
976 IN_KERNEL_SYSCALL(get_thread_area, 244)
977 IN_KERNEL_SYSCALL(set_tid_address, 258)

979 static struct lx_sysent sysents[] = {
980 {"nosys", NULL, NOSYS_NULL, 0}, /* 0 */
981 {"exit", lx_exit, 0, 1}, /* 1 */
982 {"fork", lx_fork, 0, 0}, /* 2 */
983 {"read", lx_read, 0, 3}, /* 3 */
984 {"write", write, SYS_PASSTHRU, 3}, /* 4 */

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 16

985 {"open", lx_open, 0, 3}, /* 5 */
986 {"close", close, SYS_PASSTHRU, 1}, /* 6 */
987 {"waitpid", lx_waitpid, 0, 3}, /* 7 */
988 {"creat", creat, SYS_PASSTHRU, 2}, /* 8 */
989 {"link", lx_link, 0, 2}, /* 9 */
990 {"unlink", lx_unlink, 0, 1}, /* 10 */
991 {"execve", lx_execve, 0, 3}, /* 11 */
992 {"chdir", chdir, SYS_PASSTHRU, 1}, /* 12 */
993 {"time", lx_time, 0, 1}, /* 13 */
994 {"mknod", lx_mknod, 0, 3}, /* 14 */
995 {"chmod", lx_chmod, 0, 2}, /* 15 */
996 {"lchown16", lx_lchown16, 0, 3}, /* 16 */
997 {"break", NULL, NOSYS_OBSOLETE, 0}, /* 17 */
998 {"stat", NULL, NOSYS_OBSOLETE, 0}, /* 18 */
999 {"lseek", lx_lseek, 0, 3}, /* 19 */

1000 {"getpid", lx_getpid, 0, 0}, /* 20 */
1001 {"mount", lx_mount, 0, 5}, /* 21 */
1002 {"umount", lx_umount, 0, 1}, /* 22 */
1003 {"setuid16", lx_setuid16, 0, 1}, /* 23 */
1004 {"getuid16", lx_getuid16, 0, 0}, /* 24 */
1005 {"stime", stime, SYS_PASSTHRU, 1}, /* 25 */
1006 {"ptrace", lx_ptrace, 0, 4}, /* 26 */
1007 {"alarm", (int (*)())alarm, SYS_PASSTHRU, 1}, /* 27 */
1008 {"fstat", NULL, NOSYS_OBSOLETE, 0}, /* 28 */
1009 {"pause", pause, SYS_PASSTHRU, 0}, /* 29 */
1010 {"utime", lx_utime, 0, 2}, /* 30 */
1011 {"stty", NULL, NOSYS_OBSOLETE, 0}, /* 31 */
1012 {"gtty", NULL, NOSYS_OBSOLETE, 0}, /* 32 */
1013 {"access", access, SYS_PASSTHRU, 2}, /* 33 */
1014 {"nice", nice, SYS_PASSTHRU, 1}, /* 34 */
1015 {"ftime", NULL, NOSYS_OBSOLETE, 0}, /* 35 */
1016 {"sync", lx_sync, 0, 0}, /* 36 */
1017 {"kill", lx_kill, 0, 2}, /* 37 */
1018 {"rename", lx_rename, 0, 2}, /* 38 */
1019 {"mkdir", mkdir, SYS_PASSTHRU, 2}, /* 39 */
1020 {"rmdir", lx_rmdir, 0, 1}, /* 40 */
1021 {"dup", dup, SYS_PASSTHRU, 1}, /* 41 */
1022 {"pipe", lx_pipe, 0, 1}, /* 42 */
1023 {"times", lx_times, 0, 1}, /* 43 */
1024 {"prof", NULL, NOSYS_OBSOLETE, 0}, /* 44 */
1025 {"brk", lx_brk, 0, 1}, /* 45 */
1026 {"setgid16", lx_setgid16, 0, 1}, /* 46 */
1027 {"getgid16", lx_getgid16, 0, 0}, /* 47 */
1028 {"signal", lx_signal, 0, 2}, /* 48 */
1029 {"geteuid16", lx_geteuid16, 0, 0}, /* 49 */
1030 {"getegid16", lx_getegid16, 0, 0}, /* 50 */
1031 {"acct", NULL, NOSYS_NO_EQUIV, 0}, /* 51 */
1032 {"umount2", lx_umount2, 0, 2}, /* 52 */
1033 {"lock", NULL, NOSYS_OBSOLETE, 0}, /* 53 */
1034 {"ioctl", lx_ioctl, 0, 3}, /* 54 */
1035 {"fcntl", lx_fcntl, 0, 3}, /* 55 */
1036 {"mpx", NULL, NOSYS_OBSOLETE, 0}, /* 56 */
1037 {"setpgid", lx_setpgid, 0, 2}, /* 57 */
1038 {"ulimit", NULL, NOSYS_OBSOLETE, 0}, /* 58 */
1039 {"olduname", NULL, NOSYS_OBSOLETE, 0}, /* 59 */
1040 {"umask", (int (*)())umask, SYS_PASSTHRU, 1}, /* 60 */
1041 {"chroot", chroot, SYS_PASSTHRU, 1}, /* 61 */
1042 {"ustat", lx_ustat, 0, 2}, /* 62 */
1043 {"dup2", lx_dup2, 0, 2}, /* 63 */
1044 {"getppid", lx_getppid, 0, 0}, /* 64 */
1045 {"getpgrp", lx_getpgrp, 0, 0}, /* 65 */
1046 {"setsid", lx_setsid, 0, 0}, /* 66 */
1047 {"sigaction", lx_sigaction, 0, 3}, /* 67 */
1048 {"sgetmask", NULL, NOSYS_OBSOLETE, 0}, /* 68 */
1049 {"ssetmask", NULL, NOSYS_OBSOLETE, 0}, /* 69 */
1050 {"setreuid16", lx_setreuid16, 0, 2}, /* 70 */

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 17

1051 {"setregid16", lx_setregid16, 0, 2}, /* 71 */
1052 {"sigsuspend", lx_sigsuspend, 0, 1}, /* 72 */
1053 {"sigpending", lx_sigpending, 0, 1}, /* 73 */
1054 {"sethostname", lx_sethostname, 0, 2}, /* 74 */
1055 {"setrlimit", lx_setrlimit, 0, 2}, /* 75 */
1056 {"getrlimit", lx_oldgetrlimit, 0, 2}, /* 76 */
1057 {"getrusage", lx_getrusage, 0, 2}, /* 77 */
1058 {"gettimeofday", lx_gettimeofday, 0, 2}, /* 78 */
1059 {"settimeofday", lx_settimeofday, 0, 2}, /* 79 */
1060 {"getgroups16", lx_getgroups16, 0, 2}, /* 80 */
1061 {"setgroups16", lx_setgroups16, 0, 2}, /* 81 */
1062 {"select", NULL, NOSYS_OBSOLETE, 0}, /* 82 */
1063 {"symlink", symlink, SYS_PASSTHRU, 2}, /* 83 */
1064 {"oldlstat", NULL, NOSYS_OBSOLETE, 0}, /* 84 */
1065 {"readlink", readlink, SYS_PASSTHRU, 3}, /* 85 */
1066 {"uselib", NULL, NOSYS_KERNEL, 0}, /* 86 */
1067 {"swapon", NULL, NOSYS_KERNEL, 0}, /* 87 */
1068 {"reboot", lx_reboot, 0, 4}, /* 88 */
1069 {"readdir", lx_readdir, 0, 3}, /* 89 */
1070 {"mmap", lx_mmap, 0, 6}, /* 90 */
1071 {"munmap", munmap, SYS_PASSTHRU, 2}, /* 91 */
1072 {"truncate", lx_truncate, 0, 2}, /* 92 */
1073 {"ftruncate", lx_ftruncate, 0, 2}, /* 93 */
1074 {"fchmod", fchmod, SYS_PASSTHRU, 2}, /* 94 */
1075 {"fchown16", lx_fchown16, 0, 3}, /* 95 */
1076 {"getpriority", lx_getpriority, 0, 2}, /* 96 */
1077 {"setpriority", lx_setpriority, 0, 3}, /* 97 */
1078 {"profil", NULL, NOSYS_NO_EQUIV, 0}, /* 98 */
1079 {"statfs", lx_statfs, 0, 2}, /* 99 */
1080 {"fstatfs", lx_fstatfs, 0, 2}, /* 100 */
1081 {"ioperm", NULL, NOSYS_NO_EQUIV, 0}, /* 101 */
1082 {"socketcall", lx_socketcall, 0, 2}, /* 102 */
1083 {"syslog", NULL, NOSYS_KERNEL, 0}, /* 103 */
1084 {"setitimer", lx_setitimer, 0, 3}, /* 104 */
1085 {"getitimer", getitimer, SYS_PASSTHRU, 2}, /* 105 */
1086 {"stat", lx_stat, 0, 2}, /* 106 */
1087 {"lstat", lx_lstat, 0, 2}, /* 107 */
1088 {"fstat", lx_fstat, 0, 2}, /* 108 */
1089 {"uname", NULL, NOSYS_OBSOLETE, 0}, /* 109 */
1090 {"oldiopl", NULL, NOSYS_NO_EQUIV, 0}, /* 110 */
1091 {"vhangup", lx_vhangup, 0, 0}, /* 111 */
1092 {"idle", NULL, NOSYS_NO_EQUIV, 0}, /* 112 */
1093 {"vm86old", NULL, NOSYS_OBSOLETE, 0}, /* 113 */
1094 {"wait4", lx_wait4, 0, 4}, /* 114 */
1095 {"swapoff", NULL, NOSYS_KERNEL, 0}, /* 115 */
1096 {"sysinfo", lx_sysinfo, 0, 1}, /* 116 */
1097 {"ipc", lx_ipc, 0, 5}, /* 117 */
1098 {"fsync", lx_fsync, 0, 1}, /* 118 */
1099 {"sigreturn", lx_sigreturn, 0, 1}, /* 119 */
1100 {"clone", lx_clone, 0, 5}, /* 120 */
1101 {"setdomainname", lx_setdomainname, 0, 2}, /* 121 */
1102 {"uname", lx_uname, 0, 1}, /* 122 */
1103 {"modify_ldt", lx_modify_ldt, 0, 3}, /* 123 */
1104 {"adjtimex", lx_adjtimex, 0, 1}, /* 124 */
1105 {"mprotect", lx_mprotect, 0, 3}, /* 125 */
1106 {"sigprocmask", lx_sigprocmask, 0, 3}, /* 126 */
1107 {"create_module", NULL, NOSYS_KERNEL, 0}, /* 127 */
1108 {"init_module", NULL, NOSYS_KERNEL, 0}, /* 128 */
1109 {"delete_module", NULL, NOSYS_KERNEL, 0}, /* 129 */
1110 {"get_kernel_syms", NULL, NOSYS_KERNEL, 0}, /* 130 */
1111 {"quotactl", NULL, NOSYS_KERNEL, 0}, /* 131 */
1112 {"getpgid", lx_getpgid, 0, 1}, /* 132 */
1113 {"fchdir", fchdir, SYS_PASSTHRU, 1}, /* 133 */
1114 {"bdflush", NULL, NOSYS_KERNEL, 0}, /* 134 */
1115 {"sysfs", lx_sysfs, 0, 3}, /* 135 */
1116 {"personality", lx_personality, 0, 1}, /* 136 */

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 18

1117 {"afs_syscall", NULL, NOSYS_KERNEL, 0}, /* 137 */
1118 {"setfsuid16", lx_setfsuid16, 0, 1}, /* 138 */
1119 {"setfsgid16", lx_setfsgid16, 0, 1}, /* 139 */
1120 {"llseek", lx_llseek, 0, 5}, /* 140 */
1121 {"getdents", getdents, SYS_PASSTHRU, 3}, /* 141 */
1122 {"select", lx_select, 0, 5}, /* 142 */
1123 {"flock", lx_flock, 0, 2}, /* 143 */
1124 {"msync", lx_msync, 0, 3}, /* 144 */
1125 {"readv", lx_readv, 0, 3}, /* 145 */
1126 {"writev", lx_writev, 0, 3}, /* 146 */
1127 {"getsid", lx_getsid, 0, 1}, /* 147 */
1128 {"fdatasync", lx_fdatasync, 0, 1}, /* 148 */
1129 {"sysctl", lx_sysctl, 0, 1}, /* 149 */
1130 {"mlock", lx_mlock, 0, 2}, /* 150 */
1131 {"munlock", lx_munlock, 0, 2}, /* 151 */
1132 {"mlockall", lx_mlockall, 0, 1}, /* 152 */
1133 {"munlockall", lx_munlockall, 0, 0}, /* 153 */
1134 {"sched_setparam", lx_sched_setparam, 0, 2}, /* 154 */
1135 {"sched_getparam", lx_sched_getparam, 0, 2}, /* 155 */
1136 {"sched_setscheduler", lx_sched_setscheduler, 0, 3}, /* 156 */
1137 {"sched_getscheduler", lx_sched_getscheduler, 0, 1}, /* 157 */
1138 {"sched_yield", (int (*)())yield, SYS_PASSTHRU, 0}, /* 158 */
1139 {"sched_get_priority_max", lx_sched_get_priority_max, 0, 1}, /* 159 */
1140 {"sched_get_priority_min", lx_sched_get_priority_min, 0, 1}, /* 160 */
1141 {"sched_rr_get_interval", lx_sched_rr_get_interval, 0, 2}, /* 161 */
1142 {"nanosleep", nanosleep, SYS_PASSTHRU, 2}, /* 162 */
1143 {"mremap", NULL, NOSYS_NO_EQUIV, 0}, /* 163 */
1144 {"setresuid16", lx_setresuid16, 0, 3}, /* 164 */
1145 {"getresuid16", lx_getresuid16, 0, 3}, /* 165 */
1146 {"vm86", NULL, NOSYS_NO_EQUIV, 0}, /* 166 */
1147 {"query_module", lx_query_module, NOSYS_KERNEL, 5}, /* 167 */
1148 {"poll", lx_poll, 0, 3}, /* 168 */
1149 {"nfsservctl", NULL, NOSYS_KERNEL, 0}, /* 169 */
1150 {"setresgid16", lx_setresgid16, 0, 3}, /* 170 */
1151 {"getresgid16", lx_getresgid16, 0, 3}, /* 171 */
1152 {"prctl", NULL, NOSYS_UNDOC, 0}, /* 172 */
1153 {"rt_sigreturn", lx_rt_sigreturn, 0, 0}, /* 173 */
1154 {"rt_sigaction", lx_rt_sigaction, 0, 4}, /* 174 */
1155 {"rt_sigprocmask", lx_rt_sigprocmask, 0, 4}, /* 175 */
1156 {"rt_sigpending", lx_rt_sigpending, 0, 2}, /* 176 */
1157 {"rt_sigtimedwait", lx_rt_sigtimedwait, 0, 4}, /* 177 */
1158 {"sigqueueinfo", NULL, NOSYS_UNDOC, 0}, /* 178 */
1159 {"rt_sigsuspend", lx_rt_sigsuspend, 0, 2}, /* 179 */
1160 {"pread64", lx_pread64, 0, 5}, /* 180 */
1161 {"pwrite64", lx_pwrite64, 0, 5}, /* 181 */
1162 {"chown16", lx_chown16, 0, 3}, /* 182 */
1163 {"getcwd", lx_getcwd, 0, 2}, /* 183 */
1164 {"capget", NULL, NOSYS_NO_EQUIV, 0}, /* 184 */
1165 {"capset", NULL, NOSYS_NO_EQUIV, 0}, /* 185 */
1166 {"sigaltstack", lx_sigaltstack, 0, 2}, /* 186 */
1167 {"sendfile", lx_sendfile, 0, 4}, /* 187 */
1168 {"getpmsg", NULL, NOSYS_OBSOLETE, 0}, /* 188 */
1169 {"putpmsg", NULL, NOSYS_OBSOLETE, 0}, /* 189 */
1170 {"vfork", lx_vfork, 0, 0}, /* 190 */
1171 {"getrlimit", lx_getrlimit, 0, 2}, /* 191 */
1172 {"mmap2", lx_mmap2, EBP_HAS_ARG6, 6}, /* 192 */
1173 {"truncate64", lx_truncate64, 0, 3}, /* 193 */
1174 {"ftruncate64", lx_ftruncate64, 0, 3}, /* 194 */
1175 {"stat64", lx_stat64, 0, 2}, /* 195 */
1176 {"lstat64", lx_lstat64, 0, 2}, /* 196 */
1177 {"fstat64", lx_fstat64, 0, 2}, /* 197 */
1178 {"lchown", lchown, SYS_PASSTHRU, 3}, /* 198 */
1179 {"getuid", (int (*)())getuid, SYS_PASSTHRU, 0}, /* 199 */
1180 {"getgid", (int (*)())getgid, SYS_PASSTHRU, 0}, /* 200 */
1181 {"geteuid", lx_geteuid, 0, 0}, /* 201 */
1182 {"getegid", lx_getegid, 0, 0}, /* 202 */

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 19

1183 {"setreuid", setreuid, SYS_PASSTHRU, 0}, /* 203 */
1184 {"setregid", setregid, SYS_PASSTHRU, 0}, /* 204 */
1185 {"getgroups", getgroups, SYS_PASSTHRU, 2}, /* 205 */
1186 {"setgroups", lx_setgroups, 0, 2}, /* 206 */
1187 {"fchown", lx_fchown, 0, 3}, /* 207 */
1188 {"setresuid", lx_setresuid, 0, 3}, /* 208 */
1189 {"getresuid", lx_getresuid, 0, 3}, /* 209 */
1190 {"setresgid", lx_setresgid, 0, 3}, /* 210 */
1191 {"getresgid", lx_getresgid, 0, 3}, /* 211 */
1192 {"chown", lx_chown, 0, 3}, /* 212 */
1193 {"setuid", setuid, SYS_PASSTHRU, 1}, /* 213 */
1194 {"setgid", setgid, SYS_PASSTHRU, 1}, /* 214 */
1195 {"setfsuid", lx_setfsuid, 0, 1}, /* 215 */
1196 {"setfsgid", lx_setfsgid, 0, 1}, /* 216 */
1197 {"pivot_root", NULL, NOSYS_KERNEL, 0}, /* 217 */
1198 {"mincore", mincore, SYS_PASSTHRU, 3}, /* 218 */
1199 {"madvise", lx_madvise, 0, 3}, /* 219 */
1200 {"getdents64", lx_getdents64, 0, 3}, /* 220 */
1201 {"fcntl64", lx_fcntl64, 0, 3}, /* 221 */
1202 {"tux", NULL, NOSYS_NO_EQUIV, 0}, /* 222 */
1203 {"security", NULL, NOSYS_NO_EQUIV, 0}, /* 223 */
1204 {"gettid", lx_gettid, 0, 0}, /* 224 */
1205 {"readahead", NULL, NOSYS_NO_EQUIV, 0}, /* 225 */
1206 {"setxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 226 */
1207 {"lsetxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 227 */
1208 {"fsetxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 228 */
1209 {"getxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 229 */
1210 {"lgetxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 230 */
1211 {"fgetxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 231 */
1212 {"listxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 232 */
1213 {"llistxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 233 */
1214 {"flistxattr", NULL, NOSYS_NO_EQUIV, 0}, /* 234 */
1215 {"removexattr", NULL, NOSYS_NO_EQUIV, 0}, /* 235 */
1216 {"lremovexattr", NULL, NOSYS_NO_EQUIV, 0}, /* 236 */
1217 {"fremovexattr", NULL, NOSYS_NO_EQUIV, 0}, /* 237 */
1218 {"tkill", lx_tkill, 0, 2}, /* 238 */
1219 {"sendfile64", lx_sendfile64, 0, 4}, /* 239 */
1220 {"futex", lx_futex, EBP_HAS_ARG6, 6}, /* 240 */
1221 {"sched_setaffinity", lx_sched_setaffinity, 0, 3}, /* 241 */
1222 {"sched_getaffinity", lx_sched_getaffinity, 0, 3}, /* 242 */
1223 {"set_thread_area", lx_set_thread_area, 0, 1}, /* 243 */
1224 {"get_thread_area", lx_get_thread_area, 0, 1}, /* 244 */
1225 {"io_setup", NULL, NOSYS_NO_EQUIV, 0}, /* 245 */
1226 {"io_destroy", NULL, NOSYS_NO_EQUIV, 0}, /* 246 */
1227 {"io_getevents", NULL, NOSYS_NO_EQUIV, 0}, /* 247 */
1228 {"io_submit", NULL, NOSYS_NO_EQUIV, 0}, /* 248 */
1229 {"io_cancel", NULL, NOSYS_NO_EQUIV, 0}, /* 249 */
1230 {"fadvise64", NULL, NOSYS_UNDOC, 0}, /* 250 */
1231 {"nosys", NULL, 0, 0}, /* 251 */
1232 {"group_exit", lx_group_exit, 0, 1}, /* 252 */
1233 {"lookup_dcookie", NULL, NOSYS_NO_EQUIV, 0}, /* 253 */
1234 {"epoll_create", NULL, NOSYS_NO_EQUIV, 0}, /* 254 */
1235 {"epoll_ctl", NULL, NOSYS_NO_EQUIV, 0}, /* 255 */
1236 {"epoll_wait", NULL, NOSYS_NO_EQUIV, 0}, /* 256 */
1237 {"remap_file_pages", NULL, NOSYS_NO_EQUIV, 0}, /* 257 */
1238 {"set_tid_address", lx_set_tid_address, 0, 1}, /* 258 */
1239 {"timer_create", NULL, NOSYS_UNDOC, 0}, /* 259 */
1240 {"timer_settime", NULL, NOSYS_UNDOC, 0}, /* 260 */
1241 {"timer_gettime", NULL, NOSYS_UNDOC, 0}, /* 261 */
1242 {"timer_getoverrun", NULL, NOSYS_UNDOC, 0}, /* 262 */
1243 {"timer_delete", NULL, NOSYS_UNDOC, 0}, /* 263 */
1244 {"clock_settime", lx_clock_settime, 0, 2}, /* 264 */
1245 {"clock_gettime", lx_clock_gettime, 0, 2}, /* 265 */
1246 {"clock_getres", lx_clock_getres, 0, 2}, /* 266 */
1247 {"clock_nanosleep", lx_clock_nanosleep, 0, 4}, /* 267 */
1248 {"statfs64", lx_statfs64, 0, 2}, /* 268 */

new/usr/src/lib/brand/lx/lx_brand/common/lx_brand.c 20

1249 {"fstatfs64", lx_fstatfs64, 0, 2}, /* 269 */
1250 {"tgkill", lx_tgkill, 0, 3}, /* 270 */

1252 /* The following system calls only exist in kernel 2.6 and greater */
1253 {"utimes", utimes, SYS_PASSTHRU, 2}, /* 271 */
1254 {"fadvise64_64", NULL, NOSYS_NULL, 0}, /* 272 */
1255 {"vserver", NULL, NOSYS_NULL, 0}, /* 273 */
1256 {"mbind", NULL, NOSYS_NULL, 0}, /* 274 */
1257 {"get_mempolicy", NULL, NOSYS_NULL, 0}, /* 275 */
1258 {"set_mempolicy", NULL, NOSYS_NULL, 0}, /* 276 */
1259 {"mq_open", NULL, NOSYS_NULL, 0}, /* 277 */
1260 {"mq_unlink", NULL, NOSYS_NULL, 0}, /* 278 */
1261 {"mq_timedsend", NULL, NOSYS_NULL, 0}, /* 279 */
1262 {"mq_timedreceive", NULL, NOSYS_NULL, 0}, /* 280 */
1263 {"mq_notify", NULL, NOSYS_NULL, 0}, /* 281 */
1264 {"mq_getsetattr", NULL, NOSYS_NULL, 0}, /* 282 */
1265 {"kexec_load", NULL, NOSYS_NULL, 0}, /* 283 */
1266 {"waitid", lx_waitid, 0, 4}, /* 284 */
1267 {"sys_setaltroot", NULL, NOSYS_NULL, 0}, /* 285 */
1268 {"add_key", NULL, NOSYS_NULL, 0}, /* 286 */
1269 {"request_key", NULL, NOSYS_NULL, 0}, /* 287 */
1270 {"keyctl", NULL, NOSYS_NULL, 0}, /* 288 */
1271 {"ioprio_set", NULL, NOSYS_NULL, 0}, /* 289 */
1272 {"ioprio_get", NULL, NOSYS_NULL, 0}, /* 290 */
1273 {"inotify_init", NULL, NOSYS_NULL, 0}, /* 291 */
1274 {"inotify_add_watch", NULL, NOSYS_NULL, 0}, /* 292 */
1275 {"inotify_rm_watch", NULL, NOSYS_NULL, 0}, /* 293 */
1276 {"migrate_pages", NULL, NOSYS_NULL, 0}, /* 294 */
1277 {"openat", lx_openat, 0, 4}, /* 295 */
1278 {"mkdirat", lx_mkdirat, 0, 3}, /* 296 */
1279 {"mknodat", lx_mknodat, 0, 4}, /* 297 */
1280 {"fchownat", lx_fchownat, 0, 5}, /* 298 */
1281 {"futimesat", lx_futimesat, 0, 3}, /* 299 */
1282 {"fstatat64", lx_fstatat64, 0, 4}, /* 300 */
1283 {"unlinkat", lx_unlinkat, 0, 3}, /* 301 */
1284 {"renameat", lx_renameat, 0, 4}, /* 302 */
1285 {"linkat", lx_linkat, 0, 5}, /* 303 */
1286 {"symlinkat", lx_symlinkat, 0, 3}, /* 304 */
1287 {"readlinkat", lx_readlinkat, 0, 4}, /* 305 */
1288 {"fchmodat", lx_fchmodat, 0, 4}, /* 306 */
1289 {"faccessat", lx_faccessat, 0, 4}, /* 307 */
1290 {"pselect6", NULL, NOSYS_NULL, 0}, /* 308 */
1291 {"ppoll", NULL, NOSYS_NULL, 0}, /* 309 */
1292 {"unshare", NULL, NOSYS_NULL, 0}, /* 310 */
1293 {"set_robust_list", NULL, NOSYS_NULL, 0}, /* 311 */
1294 {"get_robust_list", NULL, NOSYS_NULL, 0}, /* 312 */
1295 {"splice", NULL, NOSYS_NULL, 0}, /* 313 */
1296 {"sync_file_range", NULL, NOSYS_NULL, 0}, /* 314 */
1297 {"tee", NULL, NOSYS_NULL, 0}, /* 315 */
1298 {"vmsplice", NULL, NOSYS_NULL, 0}, /* 316 */
1299 {"move_pages", NULL, NOSYS_NULL, 0}, /* 317 */
1300 };
1301 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 1

**
 31875 Tue Jan 14 16:17:02 2014
new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 /*
30 * The BrandZ Linux thunking server.
31 *
32 * The interfaces defined in this file form the server side of a bridge
33 * to allow native solaris process to access Linux services. Currently
34 * the Linux services that is made accessible by these interfaces here
35 * are:
36 * - Linux host <-> address naming services
37 * - Linux service <-> port naming services
38 * - Linux syslog
39 *
40 * Access to all these services is provided through a doors server.
41 * Currently the only client of these interfaces and the process that
42 * initially starts up the doors server is lx_thunk.so.
43 *
44 * lx_thunk.so is a native solaris library that is loaded into native
45 * solaris process that need to run inside a Linux zone and have access
46 * to Linux services. When lx_thunk.so receives a request that requires
47 * accessing Linux services it creates a "thunk server" process by
48 * forking and executing the following shell script (which runs as
49 * a native /bin/sh Linux process):
50 * /native/usr/lib/brand/lx/lx_thunk
51 *
52 * The first and only thing this shell script attempts to do is re-exec
53 * itself. The brand library will detect when this script attempts to
54 * re-exec itself and take control of the process. The exec() system
55 * call made by the Linux shell will never return.
56 *
57 * At this point the process becomes a "thunk server" process.
58 * The first thing it does is a bunch of initialization:
59 *
60 * - Sanity check that a file descriptor based communication mechanism
61 * needed talk to the parent process is correctly initialized.

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 2

62 *
63 * - Verify that two predetermined file descriptors are FIFOs.
64 * These FIFOs will be used to establish communications with
65 * the client program that spawned us and which will be sending
66 * us requests.
67 *
68 * - Use existing debugging libraries (libproc.so, librtld_db.so,
69 * and the BrandZ lx plug-in to librtld_db.so) and /native/proc to
70 * walk the Linux link maps in our own address space to determine
71 * the address of the Linux dlsym() function.
72 *
73 * - Use the native Linux dlsym() function to look up other symbols
74 * (for both functions and variables) that we will need access
75 * to service thunking requests.
76 *
77 * - Create a doors server and notify the parent process that we
78 * are ready to service requests.
79 *
80 * - Enter a service loop and wait for requests.
81 *
82 * At this point the lx_thunk process is ready to service door
83 * based requests. When door service request is received the
84 * following happens inside the lx_thunk process:
85 *
86 * - The doors server function is is invoked on a new solaris thread
87 * that the kernel injects into the lx_thunk process. We sanity
88 * check the incoming request, place it on a service queue, and
89 * wait for notification that the request has been completed.
90 *
91 * - A Linux thread takes this request off the service queue
92 * and dispatches it to a service function that will:
93 * - Decode the request.
94 * - Handle the request by invoking native Linux interfaces.
95 * - Encode the results for the request.
96 *
97 * - The Linux thread then notifies the requesting doors server
98 * thread that the request has been completed and goes to sleep
99 * until it receives another request.
100 *
101 * - the solaris door server thread returns the results of the
102 * operation to the caller.
103 *
104 * Notes:
105 *
106 * - The service request hand off operation from the solaris doors thread to
107 * the "Linux thread" is required because only "Linux threads" can call
108 * into Linux code. In this context a "Linux thread" is a thread that
109 * is either the initial thread of a Linux process or a thread that was
110 * created by calling the Linux version of thread_create(). The reason
111 * for this restriction is that any thread that invokes Linux code needs
112 * to have been initialized in the Linux threading libraries and have
113 * things like Linux thread local storage properly setup.
114 *
115 * But under solaris all door server threads are created and destroyed
116 * dynamically. This means that when a doors server function is invoked,
117 * it is invoked via a thread that hasn’t been initialized in the Linux
118 * environment and there for can’t call directly into Linux code.
119 *
120 * - Currently when a thunk server process is starting up, it communicated
121 * with it’s parent via two FIFOs. These FIFOs are setup by the
122 * lx_thunk.so library. After creating the FIFOs and starting the lx_thunk
123 * server, lx_thunk.so writes the name of the file that the door should
124 * be attached to to the first pipe. The lx_thunk server reads in this
125 * value, initialized the server, fattach()s it to the file request by
126 * lx_thunk.so and does a write to the second FIFO to let lx_thunk.so
127 * know that the server is ready to take requests.

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 3

128 *
129 * This negotiation could be simplified to use only use one FIFO.
130 * lx_thunk.so would attempt to read from the FIFO and the lx_thunk
131 * server process could send the new door server file descriptor
132 * to this process via an I_SENDFD ioctl (see streamio.7I).
133 *
134 * - The lx_thunk server process will exit when the client process
135 * that it’s handling requests for exists. (ie, when there are no
136 * more open file handles to the doors server.)
137 */

139 #include <assert.h>
140 #include <door.h>
141 #include <errno.h>
142 #include <libproc.h>
143 #include <stdio.h>
144 #include <stdlib.h>
145 #include <strings.h>
146 #include <sys/lx_debug.h>
147 #include <sys/lx_misc.h>
148 #include <sys/lx_thread.h>
149 #include <sys/lx_thunk_server.h>
150 #include <sys/varargs.h>
151 #include <thread.h>
152 #include <unistd.h>

154 /*
155 * Generic interfaces used for looking up and calling Linux functions.
156 */
157 typedef struct __lx_handle_dlsym *lx_handle_dlsym_t;
158 typedef struct __lx_handle_sym *lx_handle_sym_t;

160 uintptr_t lx_call0(lx_handle_sym_t);
161 uintptr_t lx_call1(lx_handle_sym_t, uintptr_t);
162 uintptr_t lx_call2(lx_handle_sym_t, uintptr_t, uintptr_t);
163 uintptr_t lx_call3(lx_handle_sym_t, uintptr_t, uintptr_t, uintptr_t);
164 uintptr_t lx_call4(lx_handle_sym_t, uintptr_t, uintptr_t, uintptr_t,
165 uintptr_t);
166 uintptr_t lx_call5(lx_handle_sym_t, uintptr_t, uintptr_t, uintptr_t,
167 uintptr_t, uintptr_t);
168 uintptr_t lx_call6(lx_handle_sym_t, uintptr_t, uintptr_t, uintptr_t,
169 uintptr_t, uintptr_t, uintptr_t);
170 uintptr_t lx_call7(lx_handle_sym_t, uintptr_t, uintptr_t, uintptr_t,
171 uintptr_t, uintptr_t, uintptr_t, uintptr_t);
172 uintptr_t lx_call8(lx_handle_sym_t, uintptr_t, uintptr_t, uintptr_t,
173 uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);

175 /*
176 * Flag indicating if this process is destined to become a thunking
177 * server process.
178 */
179 static int lxt_server_processes = 0;

181 /*
182 * Linux function call defines and handles.
183 */
184 static lx_handle_dlsym_t lxh_init = NULL;

186 #define LXTH_GETHOSTBYNAME_R 0
187 #define LXTH_GETHOSTBYADDR_R 1
188 #define LXTH_GETSERVBYNAME_R 2
189 #define LXTH_GETSERVBYPORT_R 3
190 #define LXTH_OPENLOG 4
191 #define LXTH_SYSLOG 5
192 #define LXTH_CLOSELOG 6
193 #define LXTH_PROGNAME 7

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 4

195 static struct lxt_handles {
196 int lxth_index;
197 char *lxth_name;
198 lx_handle_sym_t lxth_handle;
199 } lxt_handles[] = {
200 { LXTH_GETHOSTBYNAME_R, "gethostbyname_r", NULL },
201 { LXTH_GETHOSTBYADDR_R, "gethostbyaddr_r", NULL },
202 { LXTH_GETSERVBYNAME_R, "getservbyname_r", NULL },
203 { LXTH_GETSERVBYPORT_R, "getservbyport_r", NULL },
204 { LXTH_OPENLOG, "openlog", NULL },
205 { LXTH_SYSLOG, "syslog", NULL },
206 { LXTH_CLOSELOG, "closelog", NULL },
207 { LXTH_PROGNAME, "__progname", NULL },
208 { -1, NULL, NULL },
209 };

211 /*
212 * Door server operations dispatch functions and table.
213 *
214 * When the doors server get’s a request for a particlar operation
215 * this dispatch table controls what function will be invoked to
216 * service the request. The function is invoked via Linux thread
217 * so that it can call into native Linux code if necessary.
218 */
219 static void lxt_server_gethost(lxt_server_arg_t *request, size_t request_size,
220 char **door_result, size_t *door_result_size);
221 static void lxt_server_getserv(lxt_server_arg_t *request, size_t request_size,
222 char **door_result, size_t *door_result_size);
223 static void lxt_server_openlog(lxt_server_arg_t *request, size_t request_size,
224 char **door_result, size_t *door_result_size);
225 static void lxt_server_syslog(lxt_server_arg_t *request, size_t request_size,
226 char **door_result, size_t *door_result_size);
227 static void lxt_server_closelog(lxt_server_arg_t *request, size_t request_size,
228 char **door_result, size_t *door_result_size);

230 typedef void (*lxt_op_func_t)(lxt_server_arg_t *request, size_t request_size,
231 char **door_result, size_t *door_result_size);

233 static struct lxt_operations {
234 int lxto_index;
235 lxt_op_func_t lxto_fp;
236 } lxt_operations[] = {
237 { LXT_SERVER_OP_PING, NULL },
238 { LXT_SERVER_OP_NAME2HOST, lxt_server_gethost },
239 { LXT_SERVER_OP_ADDR2HOST, lxt_server_gethost },
240 { LXT_SERVER_OP_NAME2SERV, lxt_server_getserv },
241 { LXT_SERVER_OP_PORT2SERV, lxt_server_getserv },
242 { LXT_SERVER_OP_OPENLOG, lxt_server_openlog },
243 { LXT_SERVER_OP_SYSLOG, lxt_server_syslog },
244 { LXT_SERVER_OP_CLOSELOG, lxt_server_closelog },
245 };

247 /*
248 * Structures for passing off requests from doors threads (which are
249 * solaris threads) to a Linux thread that that can handle them.
250 */
251 typedef struct lxt_req {
252 lxt_server_arg_t *lxtr_request;
253 size_t lxtr_request_size;
254 char *lxtr_result;
255 size_t lxtr_result_size;
256 int lxtr_complete;
257 cond_t lxtr_complete_cv;
258 } lxt_req_t;

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 5

260 static mutex_t lxt_req_lock = DEFAULTMUTEX;
261 static cond_t lxt_req_cv = DEFAULTCV;
262 static lxt_req_t *lxt_req_ptr = NULL;

264 static mutex_t lxt_pid_lock = DEFAULTMUTEX;
265 static pid_t lxt_pid = NULL;

267 /*
268 * Interfaces used to call from lx_brand.so into Linux code.
269 */
270 typedef struct lookup_cb_arg {
271 struct ps_prochandle *lca_ph;
272 caddr_t lca_ptr;
273 } lookup_cb_arg_t;

275 static int
276 /*ARGSUSED*/
277 lookup_cb(void *data, const prmap_t *pmp, const char *object)
278 {
279 lookup_cb_arg_t *lcap = (lookup_cb_arg_t *)data;
280 prsyminfo_t si;
281 GElf_Sym sym;

283 if (Pxlookup_by_name(lcap->lca_ph,
284 LM_ID_BASE, object, "dlsym", &sym, &si) != 0)
285 return (0);

287 if (sym.st_shndx == SHN_UNDEF)
288 return (0);

290 /*
291 * XXX: we should be more paranoid and verify that the symbol
292 * we just looked up is libdl.so.2‘dlsym
293 */
294 lcap->lca_ptr = (caddr_t)(uintptr_t)sym.st_value;
295 return (1);
296 }

298 lx_handle_dlsym_t
299 lx_call_init(void)
300 {
301 struct ps_prochandle *ph;
302 lookup_cb_arg_t lca;
303 extern int __libc_threaded;
304 int err;

306 lx_debug("lx_call_init(): looking up Linux dlsym");

308 /*
309 * The handle is really the address of the Linux "dlsym" function.
310 * Once we have this address we can call into the Linux "dlsym"
311 * function to lookup other functions. It’s the initial lookup
312 * of "dlsym" that’s difficult. To do this we’ll leverage the
313 * brand support that we added to librtld_db. We’re going
314 * to fire up a seperate native solaris process that will
315 * attach to us via libproc/librtld_db and lookup the symbol
316 * for us.
317 */

319 /* Make sure we’re single threaded. */
320 if (__libc_threaded) {
321 lx_debug("lx_call_init() fail: "
322 "process must be single threaded");
323 return (NULL);
324 }

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 6

326 /* Tell libproc.so where the real procfs is mounted. */
327 Pset_procfs_path("/native/proc");

329 /* Tell librtld_db.so where the real /native is */
330 (void) rd_ctl(RD_CTL_SET_HELPPATH, "/native");

332 /* Grab ourselves but don’t stop ourselves. */
333 if ((ph = Pgrab(getpid(),
334 PGRAB_FORCE | PGRAB_RDONLY | PGRAB_NOSTOP, &err)) == NULL) {
335 lx_debug("lx_call_init() fail: Pgrab failed: %s",
336 Pgrab_error(err));
337 return (NULL);
338 }

340 lca.lca_ph = ph;
341 if (Pobject_iter(ph, lookup_cb, &lca) == -1) {
342 lx_debug("lx_call_init() fail: couldn’t find Linux dlsym");
343 return (NULL);
344 }

346 lx_debug("lx_call_init(): Linux dlsym = 0x%p", lca.lca_ptr);
347 return ((lx_handle_dlsym_t)lca.lca_ptr);
348 }

350 #define LX_RTLD_DEFAULT ((void *)0)
351 #define LX_RTLD_NEXT ((void *) -1l)

353 lx_handle_sym_t
354 lx_call_dlsym(lx_handle_dlsym_t lxh_dlsym, const char *str)
355 {
356 lx_handle_sym_t result;
357 lx_debug("lx_call_dlsym: calling Linux dlsym for: %s", str);
358 result = (lx_handle_sym_t)lx_call2((lx_handle_sym_t)lxh_dlsym,
359 (uintptr_t)LX_RTLD_DEFAULT, (uintptr_t)str);
360 lx_debug("lx_call_dlsym: Linux sym: \"%s\" = 0x%p", str, result);
361 return (result);
362 }

364 static uintptr_t
365 /*ARGSUSED*/
366 lx_call(lx_handle_sym_t lx_ch, uintptr_t p1, uintptr_t p2,
367 uintptr_t p3, uintptr_t p4, uintptr_t p5, uintptr_t p6, uintptr_t p7,
368 uintptr_t p8)
369 {
370 typedef uintptr_t (*fp8_t)(uintptr_t, uintptr_t, uintptr_t,
371 uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
372 lx_regs_t *rp;
373 uintptr_t ret;
374 fp8_t lx_funcp = (fp8_t)lx_ch;
375 long cur_gs;

377 rp = lx_syscall_regs();

379 lx_debug("lx_call: calling to Linux code at 0x%p", lx_ch);
380 lx_debug("lx_call: loading Linux gs, rp = 0x%p, gs = 0x%p",
381 rp, rp->lxr_gs);

383 lx_swap_gs(rp->lxr_gs, &cur_gs);
384 ret = lx_funcp(p1, p2, p3, p4, p5, p6, p7, p8);
385 lx_swap_gs(cur_gs, &rp->lxr_gs);

387 lx_debug("lx_call: returned from Linux code at 0x%p (%p)", lx_ch, ret);
388 lx_debug("lx_call: restored solaris gs 0x%p", cur_gs);
389 return (ret);
390 }

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 7

392 uintptr_t
393 lx_call0(lx_handle_sym_t lx_ch)
394 {
395 return (lx_call(lx_ch, 0, 0, 0, 0, 0, 0, 0, 0));
396 }

398 uintptr_t
399 lx_call1(lx_handle_sym_t lx_ch, uintptr_t p1)
400 {
401 return (lx_call(lx_ch, p1, 0, 0, 0, 0, 0, 0, 0));
402 }

404 uintptr_t
405 lx_call2(lx_handle_sym_t lx_ch, uintptr_t p1, uintptr_t p2)
406 {
407 return (lx_call(lx_ch, p1, p2, 0, 0, 0, 0, 0, 0));
408 }

410 uintptr_t
411 lx_call3(lx_handle_sym_t lx_ch, uintptr_t p1, uintptr_t p2, uintptr_t p3)
412 {
413 return (lx_call(lx_ch, p1, p2, p3, 0, 0, 0, 0, 0));
414 }

416 uintptr_t
417 lx_call4(lx_handle_sym_t lx_ch, uintptr_t p1, uintptr_t p2, uintptr_t p3,
418 uintptr_t p4)
419 {
420 return (lx_call(lx_ch, p1, p2, p3, p4, 0, 0, 0, 0));
421 }

423 uintptr_t
424 lx_call5(lx_handle_sym_t lx_ch, uintptr_t p1, uintptr_t p2, uintptr_t p3,
425 uintptr_t p4, uintptr_t p5)
426 {
427 return (lx_call(lx_ch, p1, p2, p3, p4, p5, 0, 0, 0));
428 }

430 uintptr_t
431 lx_call6(lx_handle_sym_t lx_ch, uintptr_t p1, uintptr_t p2, uintptr_t p3,
432 uintptr_t p4, uintptr_t p5, uintptr_t p6)
433 {
434 return (lx_call(lx_ch, p1, p2, p3, p4, p5, p6, 0, 0));
435 }

437 uintptr_t
438 lx_call7(lx_handle_sym_t lx_ch, uintptr_t p1, uintptr_t p2, uintptr_t p3,
439 uintptr_t p4, uintptr_t p5, uintptr_t p6, uintptr_t p7)
440 {
441 return (lx_call(lx_ch, p1, p2, p3, p4, p5, p6, p7, 0));
442 }

444 uintptr_t
445 lx_call8(lx_handle_sym_t lx_ch, uintptr_t p1, uintptr_t p2, uintptr_t p3,
446 uintptr_t p4, uintptr_t p5, uintptr_t p6, uintptr_t p7, uintptr_t p8)
447 {
448 return (lx_call(lx_ch, p1, p2, p3, p4, p5, p6, p7, p8));
449 }

451 /*
452 * Linux Thunking Interfaces - Server Side
453 */
454 static int
455 lxt_gethost_arg_check(lxt_gethost_arg_t *x, int x_size)
456 {
457 if (x_size != sizeof (*x) + x->lxt_gh_buf_len - 1)

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 8

458 return (-1);

460 if ((x->lxt_gh_token_len < 0) || (x->lxt_gh_buf_len < 0))
461 return (-1);

463 /* Token and buf should use up all the storage. */
464 if ((x->lxt_gh_token_len + x->lxt_gh_buf_len) != x->lxt_gh_storage_len)
465 return (-1);

467 return (0);
468 }

470 static void
471 lxt_server_gethost(lxt_server_arg_t *request, size_t request_size,
472 char **door_result, size_t *door_result_size)
473 {
474 lxt_gethost_arg_t *data;
475 struct hostent *result, *rv;
476 int token_len, buf_len, type, data_size, i;
477 char *token, *buf;
478 int h_errnop;

480 assert((request->lxt_sa_op == LXT_SERVER_OP_NAME2HOST) ||
481 (request->lxt_sa_op == LXT_SERVER_OP_ADDR2HOST));

483 /*LINTED*/
484 data = (lxt_gethost_arg_t *)&request->lxt_sa_data[0];
485 data_size = request_size - sizeof (*request) - 1;

487 if (!lxt_gethost_arg_check(data, data_size)) {
488 lx_debug("lxt_server_gethost: invalid request");
489 *door_result = NULL;
490 *door_result_size = 0;
491 return;
492 }

494 /* Unpack the arguments. */
495 type = data->lxt_gh_type;
496 token = &data->lxt_gh_storage[0];
497 token_len = data->lxt_gh_token_len;
498 result = &data->lxt_gh_result;
499 buf = &data->lxt_gh_storage[data->lxt_gh_token_len];
500 buf_len = data->lxt_gh_buf_len - data->lxt_gh_token_len;

502 if (request->lxt_sa_op == LXT_SERVER_OP_NAME2HOST) {
503 (void) lx_call6(lxt_handles[LXTH_GETHOSTBYNAME_R].lxth_handle,
504 (uintptr_t)token, (uintptr_t)result,
505 (uintptr_t)buf, buf_len, (uintptr_t)&rv,
506 (uintptr_t)&h_errnop);
507 } else {
508 (void) lx_call8(lxt_handles[LXTH_GETHOSTBYADDR_R].lxth_handle,
509 (uintptr_t)token, token_len, type, (uintptr_t)result,
510 (uintptr_t)buf, buf_len, (uintptr_t)&rv,
511 (uintptr_t)&h_errnop);
512 }

514 if (rv == NULL) {
515 /* the lookup failed */
516 request->lxt_sa_success = 0;
517 request->lxt_sa_errno = errno;
518 data->lxt_gh_h_errno = h_errnop;
519 *door_result = (char *)request;
520 *door_result_size = request_size;
521 return;
522 }
523 request->lxt_sa_success = 1;

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 9

524 request->lxt_sa_errno = 0;
525 data->lxt_gh_h_errno = 0;

527 /*
528 * The result structure that we would normally return contains a
529 * bunch of pointers, but those pointers are useless to our caller
530 * since they are in a different address space. So before returning
531 * we’ll convert all the result pointers into offsets. The caller
532 * can then map the offsets back into pointers.
533 */
534 for (i = 0; result->h_aliases[i] != NULL; i++) {
535 result->h_aliases[i] =
536 LXT_PTR_TO_OFFSET(result->h_aliases[i], buf);
537 }
538 for (i = 0; result->h_addr_list[i] != NULL; i++) {
539 result->h_addr_list[i] =
540 LXT_PTR_TO_OFFSET(result->h_addr_list[i], buf);
541 }
542 result->h_name = LXT_PTR_TO_OFFSET(result->h_name, buf);
543 result->h_aliases = LXT_PTR_TO_OFFSET(result->h_aliases, buf);
544 result->h_addr_list = LXT_PTR_TO_OFFSET(result->h_addr_list, buf);

546 *door_result = (char *)request;
547 *door_result_size = request_size;
548 }

550 static int
551 lxt_getserv_arg_check(lxt_getserv_arg_t *x, int x_size)
552 {
553 if (x_size != sizeof (*x) + x->lxt_gs_buf_len - 1)
554 return (-1);

556 if ((x->lxt_gs_token_len < 0) || (x->lxt_gs_buf_len < 0))
557 return (-1);

559 /* Token and buf should use up all the storage. */
560 if ((x->lxt_gs_token_len + x->lxt_gs_buf_len) != x->lxt_gs_storage_len)
561 return (-1);

563 return (0);
564 }

566 static void
567 lxt_server_getserv(lxt_server_arg_t *request, size_t request_size,
568 char **door_result, size_t *door_result_size)
569 {
570 lxt_getserv_arg_t *data;
571 struct servent *result, *rv;
572 int token_len, buf_len, data_size, i, port;
573 char *token, *buf, *proto = NULL;

575 assert((request->lxt_sa_op == LXT_SERVER_OP_NAME2SERV) ||
576 (request->lxt_sa_op == LXT_SERVER_OP_PORT2SERV));

578 /*LINTED*/
579 data = (lxt_getserv_arg_t *)&request->lxt_sa_data[0];
580 data_size = request_size - sizeof (*request) - 1;

582 if (!lxt_getserv_arg_check(data, data_size)) {
583 lx_debug("lxt_server_getserv: invalid request");
584 *door_result = NULL;
585 *door_result_size = 0;
586 return;
587 }

589 /* Unpack the arguments. */

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 10

590 token = &data->lxt_gs_storage[0];
591 token_len = data->lxt_gs_token_len;
592 result = &data->lxt_gs_result;
593 buf = &data->lxt_gs_storage[data->lxt_gs_token_len];
594 buf_len = data->lxt_gs_buf_len - data->lxt_gs_token_len;
595 if (strlen(data->lxt_gs_proto) > 0)
596 proto = data->lxt_gs_proto;

598 /* Do more sanity checks */
599 if ((request->lxt_sa_op == LXT_SERVER_OP_PORT2SERV) &&
600 (token_len != sizeof (int))) {
601 lx_debug("lxt_server_getserv: invalid request");
602 *door_result = NULL;
603 *door_result_size = 0;
604 return;
605 }

607 if (request->lxt_sa_op == LXT_SERVER_OP_NAME2SERV) {
608 (void) lx_call6(lxt_handles[LXTH_GETSERVBYNAME_R].lxth_handle,
609 (uintptr_t)token, (uintptr_t)proto, (uintptr_t)result,
610 (uintptr_t)buf, buf_len, (uintptr_t)&rv);
611 } else {
612 bcopy(token, &port, sizeof (int));
613 (void) lx_call6(lxt_handles[LXTH_GETSERVBYPORT_R].lxth_handle,
614 port, (uintptr_t)proto, (uintptr_t)result,
615 (uintptr_t)buf, buf_len, (uintptr_t)&rv);
616 }

618 if (rv == NULL) {
619 /* the lookup failed */
620 request->lxt_sa_success = 0;
621 request->lxt_sa_errno = errno;
622 *door_result = (char *)request;
623 *door_result_size = request_size;
624 return;
625 }
626 request->lxt_sa_success = 1;
627 request->lxt_sa_errno = 0;

629 /*
630 * The result structure that we would normally return contains a
631 * bunch of pointers, but those pointers are useless to our caller
632 * since they are in a different address space. So before returning
633 * we’ll convert all the result pointers into offsets. The caller
634 * can then map the offsets back into pointers.
635 */
636 for (i = 0; result->s_aliases[i] != NULL; i++) {
637 result->s_aliases[i] =
638 LXT_PTR_TO_OFFSET(result->s_aliases[i], buf);
639 }
640 result->s_proto = LXT_PTR_TO_OFFSET(result->s_proto, buf);
641 result->s_aliases = LXT_PTR_TO_OFFSET(result->s_aliases, buf);
642 result->s_name = LXT_PTR_TO_OFFSET(result->s_name, buf);

644 *door_result = (char *)request;
645 *door_result_size = request_size;
646 }

648 static void
649 /*ARGSUSED*/
650 lxt_server_openlog(lxt_server_arg_t *request, size_t request_size,
651 char **door_result, size_t *door_result_size)
652 {
653 lxt_openlog_arg_t *data;
654 int data_size;
655 static char ident[128];

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 11

657 assert(request->lxt_sa_op == LXT_SERVER_OP_OPENLOG);

659 /*LINTED*/
660 data = (lxt_openlog_arg_t *)&request->lxt_sa_data[0];
661 data_size = request_size - sizeof (*request);

663 if (data_size != sizeof (*data)) {
664 lx_debug("lxt_server_openlog: invalid request");
665 *door_result = NULL;
666 *door_result_size = 0;
667 return;
668 }

670 /*
671 * Linux expects that the ident pointer passed to openlog()
672 * points to a static string that won’t go away. Linux
673 * saves the pointer and references with syslog() is called.
674 * Hence we’ll make a local copy of the ident string here.
675 */
676 (void) mutex_lock(&lxt_pid_lock);
677 (void) strlcpy(ident, data->lxt_ol_ident, sizeof (ident));
678 (void) mutex_unlock(&lxt_pid_lock);

680 /* Call Linx openlog(). */
681 (void) lx_call3(lxt_handles[LXTH_OPENLOG].lxth_handle,
682 (uintptr_t)ident, data->lxt_ol_logopt, data->lxt_ol_facility);

684 request->lxt_sa_success = 1;
685 request->lxt_sa_errno = 0;
686 *door_result = (char *)request;
687 *door_result_size = request_size;
688 }

690 static void
691 /*ARGSUSED*/
692 lxt_server_syslog(lxt_server_arg_t *request, size_t request_size,
693 char **door_result, size_t *door_result_size)
694 {
695 lxt_syslog_arg_t *data;
696 int data_size;
697 char *progname_ptr_new;
698 char *progname_ptr_old;

700 assert(request->lxt_sa_op == LXT_SERVER_OP_SYSLOG);

702 /*LINTED*/
703 data = (lxt_syslog_arg_t *)&request->lxt_sa_data[0];
704 data_size = request_size - sizeof (*request);

706 if (data_size != sizeof (*data)) {
707 lx_debug("lxt_server_openlog: invalid request");
708 *door_result = NULL;
709 *door_result_size = 0;
710 return;
711 }
712 progname_ptr_new = data->lxt_sl_progname;

714 (void) mutex_lock(&lxt_pid_lock);

716 /*
717 * Ensure the message has the correct pid.
718 * We do this by telling our getpid() system call to return a
719 * different value.
720 */
721 lxt_pid = data->lxt_sl_pid;

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 12

723 /*
724 * Ensure the message has the correct program name.
725 * Normally instead of a program name an "ident" string is
726 * used, this is the string passed to openlog(). But if
727 * openlog() wasn’t called before syslog() then Linux
728 * syslog() will attempt to use the program name as
729 * the ident string, and the program name is determined
730 * by looking at the __progname variable. So we’ll just
731 * update the Linux __progname variable while we do the
732 * call.
733 */
734 (void) uucopy(lxt_handles[LXTH_PROGNAME].lxth_handle,
735 &progname_ptr_old, sizeof (char *));
736 (void) uucopy(&progname_ptr_new,
737 lxt_handles[LXTH_PROGNAME].lxth_handle, sizeof (char *));

739 /* Call Linux syslog(). */
740 (void) lx_call2(lxt_handles[LXTH_SYSLOG].lxth_handle,
741 data->lxt_sl_priority, (uintptr_t)data->lxt_sl_message);

743 /* Restore pid and program name. */
744 (void) uucopy(&progname_ptr_old,
745 lxt_handles[LXTH_PROGNAME].lxth_handle, sizeof (char *));
746 lxt_pid = NULL;

748 (void) mutex_unlock(&lxt_pid_lock);

750 request->lxt_sa_success = 1;
751 request->lxt_sa_errno = 0;
752 *door_result = (char *)request;
753 *door_result_size = request_size;
754 }

756 static void
757 /*ARGSUSED*/
758 lxt_server_closelog(lxt_server_arg_t *request, size_t request_size,
759 char **door_result, size_t *door_result_size)
760 {
761 int data_size;

763 assert(request->lxt_sa_op == LXT_SERVER_OP_CLOSELOG);

765 data_size = request_size - sizeof (*request);
766 if (data_size != 0) {
767 lx_debug("lxt_server_closelog: invalid request");
768 *door_result = NULL;
769 *door_result_size = 0;
770 return;
771 }

773 /* Call Linux closelog(). */
774 (void) lx_call0(lxt_handles[LXTH_CLOSELOG].lxth_handle);

776 request->lxt_sa_success = 1;
777 request->lxt_sa_errno = 0;
778 *door_result = (char *)request;
779 *door_result_size = request_size;
780 }

782 static void
783 /*ARGSUSED*/
784 lxt_server(void *cookie, char *argp, size_t request_size,
785 door_desc_t *dp, uint_t n_desc)
786 {
787 /*LINTED*/

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 13

788 lxt_server_arg_t *request = (lxt_server_arg_t *)argp;
789 lxt_req_t lxt_req;
790 char *door_path = cookie;

792 /* Check if there’s no callers left */
793 if (argp == DOOR_UNREF_DATA) {
794 (void) fdetach(door_path);
795 (void) unlink(door_path);
796 lx_debug("lxt_thunk_server: no clients, exiting");
797 exit(0);
798 }

800 /* Sanity check the incomming request. */
801 if (request_size < sizeof (*request)) {
802 /* the lookup failed */
803 lx_debug("lxt_thunk_server: invalid request size");
804 (void) door_return(NULL, 0, NULL, 0);
805 return;
806 }

808 if ((request->lxt_sa_op < LXT_SERVER_OP_MIN) ||
809 (request->lxt_sa_op > LXT_SERVER_OP_MAX)) {
810 lx_debug("lxt_thunk_server: invalid request op");
811 (void) door_return(NULL, 0, NULL, 0);
812 return;
813 }

815 /* Handle ping requests immediatly, return here. */
816 if (request->lxt_sa_op == LXT_SERVER_OP_PING) {
817 lx_debug("lxt_thunk_server: handling ping request");
818 request->lxt_sa_success = 1;
819 (void) door_return((char *)request, request_size, NULL, 0);
820 return;
821 }

823 lx_debug("lxt_thunk_server: hand off request to Linux thread, "
824 "request = 0x%p", request);

826 /* Pack the request up so we can pass it to a Linux thread. */
827 lxt_req.lxtr_request = request;
828 lxt_req.lxtr_request_size = request_size;
829 lxt_req.lxtr_result = NULL;
830 lxt_req.lxtr_result_size = 0;
831 lxt_req.lxtr_complete = 0;
832 (void) cond_init(&lxt_req.lxtr_complete_cv, USYNC_THREAD, NULL);

834 /* Pass the request onto a Linux thread. */
835 (void) mutex_lock(&lxt_req_lock);
836 while (lxt_req_ptr != NULL)
837 (void) cond_wait(&lxt_req_cv, &lxt_req_lock);
838 lxt_req_ptr = &lxt_req;
839 (void) cond_broadcast(&lxt_req_cv);

841 /* Wait for the request to be completed. */
842 while (lxt_req.lxtr_complete == 0)
843 (void) cond_wait(&lxt_req.lxtr_complete_cv, &lxt_req_lock);
844 assert(lxt_req_ptr != &lxt_req);
845 (void) mutex_unlock(&lxt_req_lock);

847 lx_debug("lxt_thunk_server: hand off request completed, "
848 "request = 0x%p", request);

850 /*
851 * If door_return() is successfull it never returns, so if we made
852 * it here there was some kind of error, but there’s nothing we can
853 * really do about it.

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 14

854 */
855 (void) door_return(
856 lxt_req.lxtr_result, lxt_req.lxtr_result_size, NULL, 0);
857 }

859 static void
860 lxt_server_loop(void)
861 {
862 lxt_req_t *lxt_req;
863 lxt_server_arg_t *request;
864 size_t request_size;
865 char *door_result;
866 size_t door_result_size;

868 for (;;) {
869 /* Wait for a request from a doors server thread. */
870 (void) mutex_lock(&lxt_req_lock);
871 while (lxt_req_ptr == NULL)
872 (void) cond_wait(&lxt_req_cv, &lxt_req_lock);

874 /* We got a request, get a local pointer to it. */
875 lxt_req = lxt_req_ptr;
876 lxt_req_ptr = NULL;
877 (void) cond_broadcast(&lxt_req_cv);
878 (void) mutex_unlock(&lxt_req_lock);

880 /* Get a pointer to the request. */
881 request = lxt_req->lxtr_request;
882 request_size = lxt_req->lxtr_request_size;

884 lx_debug("lxt_server_loop: Linux thread request recieved, "
885 "request = %p", request);

887 /* Dispatch the request. */
888 assert((request->lxt_sa_op > LXT_SERVER_OP_PING) ||
889 (request->lxt_sa_op < LXT_SERVER_OP_MAX));
890 lxt_operations[request->lxt_sa_op].lxto_fp(
891 request, request_size, &door_result, &door_result_size);

893 lx_debug("lxt_server_loop: Linux thread request completed, "
894 "request = %p", request);

896 (void) mutex_lock(&lxt_req_lock);

898 /* Set the result pointers for the calling door thread. */
899 lxt_req->lxtr_result = door_result;
900 lxt_req->lxtr_result_size = door_result_size;

902 /* Let the door thread know we’re done. */
903 lxt_req->lxtr_complete = 1;
904 (void) cond_signal(&lxt_req->lxtr_complete_cv);

906 (void) mutex_unlock(&lxt_req_lock);
907 }
908 /*NOTREACHED*/
909 }

911 static void
912 lxt_server_enter(int fifo1_wr, int fifo2_rd)
913 {
914 struct stat stat;
915 char door_path[MAXPATHLEN];
916 int i, dfd, junk = 0;

918 /*
919 * Do some sanity checks. Make sure we’ve got the fifos

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 15

920 * we need passed to us on the correct file descriptors.
921 */
922 if ((fstat(fifo1_wr, &stat) != 0) ||
923 ((stat.st_mode & S_IFMT) != S_IFIFO) ||
924 (fstat(fifo2_rd, &stat) != 0) ||
925 ((stat.st_mode & S_IFMT) != S_IFIFO)) {
926 lx_err("lx_thunk server aborting, can’t contact parent");
927 exit(-1);
928 }

930 /*
931 * Get the initial Linux call handle so we can invoke other
932 * Linux calls.
933 */
934 lxh_init = lx_call_init();
935 if (lxh_init == NULL) {
936 lx_err("lx_thunk server aborting, failed Linux call init");
937 exit(-1);
938 }

940 /* Now lookup other Linux symbols we’ll need access to. */
941 for (i = 0; lxt_handles[i].lxth_name != NULL; i++) {
942 assert(lxt_handles[i].lxth_index == i);
943 if ((lxt_handles[i].lxth_handle = lx_call_dlsym(lxh_init,
944 lxt_handles[i].lxth_name)) == NULL) {
945 lx_err("lx_thunk server aborting, "
946 "failed Linux symbol lookup: %s",
947 lxt_handles[i].lxth_name);
948 exit(-1);
949 }
950 }

952 /* get the path to the door server */
953 if (read(fifo2_rd, door_path, sizeof (door_path)) < 0) {
954 lx_err("lxt_server_enter: failed to get door path");
955 exit(-1);
956 }
957 (void) close(fifo2_rd);

959 /* Create the door server. */
960 if ((dfd = door_create(lxt_server, door_path,
961 DOOR_UNREF | DOOR_REFUSE_DESC | DOOR_NO_CANCEL)) < 0) {
962 lx_err("lxt_server_enter: door_create() failed");
963 exit(-1);
964 }

966 /* Attach the door to a file system path. */
967 (void) fdetach(door_path);
968 if (fattach(dfd, door_path) < 0) {
969 lx_err("lxt_server_enter: fattach() failed");
970 exit(-1);
971 }

973 /* The door server is ready, signal this via a fifo write */
974 (void) write(fifo1_wr, &junk, 1);
975 (void) close(fifo1_wr);

977 lx_debug("lxt_server_enter: doors server initialized");
978 lxt_server_loop();
979 /*NOTREACHED*/
980 }

982 void
983 lxt_server_exec_check(void)
984 {
985 if (lxt_server_processes == 0)

new/usr/src/lib/brand/lx/lx_brand/common/lx_thunk_server.c 16

986 return;

988 /*
989 * We’re a thunk server process, so we take over control of
990 * the current Linux process here.
991 */
992 lx_debug("lx_thunk server initalization starting");
993 lxt_server_enter(LXT_SERVER_FIFO_WR_FD, LXT_SERVER_FIFO_RD_FD);
994 /*NOTREACHED*/
995 }

997 void
998 lxt_server_init(int argc, char *argv[])
999 {

1000 /*
1001 * The thunk server process is a shell script named LXT_SERVER_BINARY.
1002 * It is executed without any parameters. Since it’s a shell script
1003 * the arguments passed to the shell’s main entry point are:
1004 * 1) the name of the shell
1005 * 2) the name of the script to execute
1006 *
1007 * So to check if we’re the thunk server process we first check
1008 * for the expected number of arduments and then we’ll look at
1009 * the second parameter to see if it’s LXT_SERVER_BINARY.
1010 */
1011 if ((argc != 2) ||
1012 (strcmp(argv[1], LXT_SERVER_BINARY) != 0))
1013 return;

1015 lxt_server_processes = 1;
1016 lx_debug("lx_thunk server detected, delaying initalization");
1017 }

1019 int
1020 lxt_server_pid(int *pid)
1021 {
1022 if (lxt_server_processes == 0)
1023 return (0);
1024 *pid = lxt_pid;
1025 return (1);
1026 }
1027 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/mapfile 1

**
 1349 Tue Jan 14 16:17:02 2014
new/usr/src/lib/brand/lx/lx_brand/common/mapfile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # MAPFILE HEADER START
29 #
30 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
31 # Object versioning must comply with the rules detailed in
32 #
33 # usr/src/lib/README.mapfiles
34 #
35 # You should not be making modifications here until you’ve read the most current
36 # copy of that file. If you need help, contact a gatekeeper for guidance.
37 #
38 # MAPFILE HEADER END
39 #

41 #
42 # Scope everything local -- our .init section is our only public interface.
43 #
44 {
45 local:
46 *;
47 };
48 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/mapfile-vers 1

**
 1349 Tue Jan 14 16:17:02 2014
new/usr/src/lib/brand/lx/lx_brand/common/mapfile-vers
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # MAPFILE HEADER START
29 #
30 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
31 # Object versioning must comply with the rules detailed in
32 #
33 # usr/src/lib/README.mapfiles
34 #
35 # You should not be making modifications here until you’ve read the most current
36 # copy of that file. If you need help, contact a gatekeeper for guidance.
37 #
38 # MAPFILE HEADER END
39 #

41 #
42 # Scope everything local -- our .init section is our only public interface.
43 #
44 {
45 local:
46 *;
47 };
48 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/mem.c 1

**
 5360 Tue Jan 14 16:17:02 2014
new/usr/src/lib/brand/lx/lx_brand/common/mem.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <errno.h>
29 #include <unistd.h>
30 #include <sys/mman.h>
31 #include <sys/param.h>
32 #include <sys/lx_debug.h>
33 #include <sys/lx_misc.h>

35 /*
36 * There are two forms of mmap, mmap() and mmap2(). The only difference is that
37 * the final argument to mmap2() specifies the number of pages, not bytes.
38 * Linux has a number of additional flags, but they are all deprecated. We also
39 * ignore the MAP_GROWSDOWN flag, which has no equivalent on Solaris.
40 *
41 * The Linux mmap() returns ENOMEM in some cases where Solaris returns
42 * EOVERFLOW, so we translate the errno as necessary.
43 */

45 int pagesize; /* needed for mmap2() */

47 #define LX_MAP_ANONYMOUS 0x00020
48 #define LX_MAP_NORESERVE 0x04000

50 static int
51 ltos_mmap_flags(int flags)
52 {
53 int new_flags;

55 new_flags = flags & (MAP_TYPE | MAP_FIXED);
56 if (flags & LX_MAP_ANONYMOUS)
57 new_flags |= MAP_ANONYMOUS;
58 if (flags & LX_MAP_NORESERVE)
59 new_flags |= MAP_NORESERVE;

61 return (new_flags);

new/usr/src/lib/brand/lx/lx_brand/common/mem.c 2

62 }

64 static int
65 mmap_common(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
66 uintptr_t p5, off64_t p6)
67 {
68 void *addr = (void *)p1;
69 size_t len = p2;
70 int prot = p3;
71 int flags = p4;
72 int fd = p5;
73 off64_t off = p6;
74 void *ret;

76 if (lx_debug_enabled != 0) {
77 char *path, path_buf[MAXPATHLEN];

79 path = lx_fd_to_path(fd, path_buf, sizeof (path_buf));
80 if (path == NULL)
81 path = "?";

83 lx_debug("\tmmap_common(): fd = %d - %s", fd, path);
84 }

86 /*
87 * Under Linux, the file descriptor is ignored when mapping zfod
88 * anonymous memory, On Solaris, we want the fd set to -1 for the
89 * same functionality.
90 */
91 if (flags & LX_MAP_ANONYMOUS)
92 fd = -1;

94 /*
95 * This is totally insane. The NOTES section in the linux mmap(2) man
96 * page claims that on some architectures, read protection may
97 * automatically include exec protection. It has been observed on a
98 * native linux system that the /proc/<pid>/maps file does indeed
99 * show that segments mmap’d from userland (such as libraries mapped in
100 * by the dynamic linker) all have exec the permission set, even for
101 * data segments.
102 */
103 if (prot & PROT_READ)
104 prot |= PROT_EXEC;

106 ret = mmap64(addr, len, prot, ltos_mmap_flags(flags), fd, off);

108 if (ret == MAP_FAILED)
109 return (errno == EOVERFLOW ? -ENOMEM : -errno);
110 else
111 return ((int)ret);
112 }

114 int
115 lx_mmap(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
116 uintptr_t p5, uintptr_t p6)
117 {
118 return (mmap_common(p1, p2, p3, p4, p5, (off64_t)p6));
119 }

121 int
122 lx_mmap2(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
123 uintptr_t p5, uintptr_t p6)
124 {
125 if (pagesize == 0)
126 pagesize = sysconf(_SC_PAGESIZE);

new/usr/src/lib/brand/lx/lx_brand/common/mem.c 3

128 return (mmap_common(p1, p2, p3, p4, p5, (off64_t)p6 * pagesize));
129 }

132 /*
133 * The locking family of system calls, as well as msync(), are identical. On
134 * Solaris, they are layered on top of the memcntl syscall, so they cannot be
135 * pass-thru.
136 */
137 int
138 lx_mlock(uintptr_t addr, uintptr_t len)
139 {
140 uintptr_t addr1 = addr & PAGEMASK;
141 uintptr_t len1 = len + (addr & PAGEOFFSET);

143 return (mlock((void *)addr1, (size_t)len1) ? -errno : 0);
144 }

146 int
147 lx_mlockall(uintptr_t flags)
148 {
149 return (mlockall(flags) ? -errno : 0);
150 }

152 int
153 lx_munlock(uintptr_t addr, uintptr_t len)
154 {
155 uintptr_t addr1 = addr & PAGEMASK;
156 uintptr_t len1 = len + (addr & PAGEOFFSET);

158 return (munlock((void *)addr1, (size_t)len1) ? -errno : 0);
159 }

161 int
162 lx_munlockall(void)
163 {
164 return (munlockall() ? -errno : 0);
165 }

167 int
168 lx_msync(uintptr_t addr, uintptr_t len, uintptr_t flags)
169 {
170 return (msync((void *)addr, (size_t)len, flags) ? -errno : 0);
171 }

173 /*
174 * Solaris recognizes more flags than Linux, so we don’t want to inadvertently
175 * use what would be an invalid flag on Linux. Linux also allows the length to
176 * be zero, while Solaris does not.
177 */
178 int
179 lx_madvise(uintptr_t start, uintptr_t len, uintptr_t advice)
180 {
181 if (len == 0)
182 return (0);

184 switch (advice) {
185 case MADV_NORMAL:
186 case MADV_RANDOM:
187 case MADV_SEQUENTIAL:
188 case MADV_WILLNEED:
189 case MADV_DONTNEED:
190 return (madvise((void *)start, len, advice) ? -errno : 0);

192 default:
193 return (-EINVAL);

new/usr/src/lib/brand/lx/lx_brand/common/mem.c 4

194 }
195 }

197 /*
198 * mprotect() is identical except that we ignore the Linux flags PROT_GROWSDOWN
199 * and PROT_GROWSUP, which have no equivalent on Solaris.
200 */
201 #define LX_PROT_GROWSDOWN 0x01000000
202 #define LX_PROT_GROWSUP 0x02000000

204 int
205 lx_mprotect(uintptr_t start, uintptr_t len, uintptr_t prot)
206 {
207 prot &= ~(LX_PROT_GROWSUP | LX_PROT_GROWSDOWN);

209 return (mprotect((void *)start, len, prot) ? -errno : 0);
210 }
211 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 1

**
 12520 Tue Jan 14 16:17:02 2014
new/usr/src/lib/brand/lx/lx_brand/common/misc.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <assert.h>
27 #include <alloca.h>
28 #include <errno.h>
29 #include <fcntl.h>
30 #include <strings.h>
31 #include <macros.h>
32 #include <sys/brand.h>
33 #include <sys/reboot.h>
34 #include <sys/stat.h>
35 #include <sys/syscall.h>
36 #include <sys/sysmacros.h>
37 #include <sys/systeminfo.h>
38 #include <sys/types.h>
39 #include <sys/lx_types.h>
40 #include <sys/lx_debug.h>
41 #include <sys/lx_misc.h>
42 #include <sys/lx_stat.h>
43 #include <sys/lx_syscall.h>
44 #include <sys/lx_thunk_server.h>
45 #include <sys/lx_fcntl.h>
46 #include <unistd.h>
47 #include <libintl.h>
48 #include <zone.h>

50 extern int sethostname(char *, int);

52 /* ARGUSED */
53 int
54 lx_rename(uintptr_t p1, uintptr_t p2)
55 {
56 int ret;

58 ret = rename((const char *)p1, (const char *)p2);

60 if (ret < 0) {

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 2

61 /*
62 * If rename(2) failed and we’re in install mode, return
63 * success if the the reason we failed was either because the
64 * source file didn’t actually exist or if it was because we
65 * tried to rename it to be the name of a device currently in
66 * use (resulting in an EBUSY.)
67 *
68 * To help install along further, if the failure was due
69 * to an EBUSY, delete the original file so we don’t leave
70 * extra files lying around.
71 */
72 if (lx_install != 0) {
73 if (errno == ENOENT)
74 return (0);

76 if (errno == EBUSY) {
77 (void) unlink((const char *)p1);
78 return (0);
79 }
80 }

82 return (-errno);
83 }

85 return (0);
86 }

88 int
89 lx_renameat(uintptr_t ext1, uintptr_t p1, uintptr_t ext2, uintptr_t p2)
90 {
91 int ret;
92 int atfd1 = (int)ext1;
93 int atfd2 = (int)ext2;

95 if (atfd1 == LX_AT_FDCWD)
96 atfd1 = AT_FDCWD;

98 if (atfd2 == LX_AT_FDCWD)
99 atfd2 = AT_FDCWD;

101 ret = renameat(atfd1, (const char *)p1, atfd2, (const char *)p2);

103 if (ret < 0) {
104 /* see lx_rename() for why we check lx_install */
105 if (lx_install != 0) {
106 if (errno == ENOENT)
107 return (0);

109 if (errno == EBUSY) {
110 (void) unlinkat(ext1, (const char *)p1, 0);
111 return (0);
112 }
113 }

115 return (-errno);
116 }

118 return (0);
119 }

121 /*ARGSUSED*/
122 int
123 lx_reboot(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4)
124 {
125 int magic = (int)p1;
126 int magic2 = (int)p2;

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 3

127 uint_t flag = (int)p3;
128 int rc;

130 if (magic != LINUX_REBOOT_MAGIC1)
131 return (-EINVAL);
132 if (magic2 != LINUX_REBOOT_MAGIC2 && magic2 != LINUX_REBOOT_MAGIC2A &&
133 magic2 != LINUX_REBOOT_MAGIC2B && magic2 != LINUX_REBOOT_MAGIC2C &&
134 magic2 != LINUX_REBOOT_MAGIC2D)
135 return (-EINVAL);

137 if (geteuid() != 0)
138 return (-EPERM);

140 switch (flag) {
141 case LINUX_REBOOT_CMD_CAD_ON:
142 case LINUX_REBOOT_CMD_CAD_OFF:
143 /* ignored */
144 rc = 0;
145 break;
146 case LINUX_REBOOT_CMD_POWER_OFF:
147 case LINUX_REBOOT_CMD_HALT:
148 rc = reboot(RB_HALT, NULL);
149 break;
150 case LINUX_REBOOT_CMD_RESTART:
151 case LINUX_REBOOT_CMD_RESTART2:
152 /* RESTART2 may need more work */
153 lx_msg(gettext("Restarting system.\n"));
154 rc = reboot(RB_AUTOBOOT, NULL);
155 break;
156 default:
157 return (-EINVAL);
158 }

160 return ((rc == -1) ? -errno : rc);
161 }

163 /*
164 * getcwd() - Linux syscall semantics are slightly different; we need to return
165 * the length of the pathname copied (+ 1 for the terminating NULL byte.)
166 */
167 int
168 lx_getcwd(uintptr_t p1, uintptr_t p2)
169 {
170 char *buf;
171 size_t buflen = (size_t)p2;
172 size_t copylen, local_len;
173 size_t len = 0;

175 if ((getcwd((char *)p1, (size_t)p2)) == NULL)
176 return (-errno);

178 /*
179 * We need the length of the pathname getcwd() copied but we never want
180 * to dereference a Linux pointer for any reason.
181 *
182 * Thus, to get the string length we will uucopy() up to copylen bytes
183 * at a time into a local buffer and will walk each chunk looking for
184 * the string-terminating NULL byte.
185 *
186 * We can use strlen() to find the length of the string in the
187 * local buffer by delimiting the buffer with a NULL byte in the
188 * last element that will never be overwritten.
189 */
190 copylen = min(buflen, MAXPATHLEN + 1);
191 buf = SAFE_ALLOCA(copylen + 1);
192 if (buf == NULL)

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 4

193 return (-ENOMEM);
194 buf[copylen] = ’\0’;

196 for (;;) {
197 if (uucopy((char *)p1 + len, buf, copylen) != 0)
198 return (-errno);

200 local_len = strlen(buf);
201 len += local_len;

203 /*
204 * If the strlen() is less than copylen, we found the
205 * real end of the string -- not the NULL byte used to
206 * delimit the end of our buffer.
207 */
208 if (local_len != copylen)
209 break;

211 /* prepare to check the next chunk of the string */
212 buflen -= copylen;
213 copylen = min(buflen, copylen);
214 }

216 return (len + 1);
217 }

219 int
220 lx_get_kern_version(void)
221 {
222 /*
223 * Since this function is called quite often, and zone_getattr is slow,
224 * we cache the kernel version in kvers_cache. -1 signifies that no
225 * value has yet been cached.
226 */
227 static int kvers_cache = -1;
228 /* dummy variable for use in zone_getattr */
229 int kvers;

231 if (kvers_cache != -1)
232 return (kvers_cache);
233 if (zone_getattr(getzoneid(), LX_KERN_VERSION_NUM, &kvers, sizeof (int))
234 != sizeof (int))
235 return (kvers_cache = LX_KERN_2_4);
236 else
237 return (kvers_cache = kvers);
238 }

240 int
241 lx_uname(uintptr_t p1)
242 {
243 struct lx_utsname *un = (struct lx_utsname *)p1;
244 char buf[LX_SYS_UTS_LN + 1];

246 if (gethostname(un->nodename, sizeof (un->nodename)) == -1)
247 return (-errno);

249 (void) strlcpy(un->sysname, LX_UNAME_SYSNAME, LX_SYS_UTS_LN);
250 (void) strlcpy(un->release, lx_release, LX_SYS_UTS_LN);
251 (void) strlcpy(un->version, LX_UNAME_VERSION, LX_SYS_UTS_LN);
252 (void) strlcpy(un->machine, LX_UNAME_MACHINE, LX_SYS_UTS_LN);
253 if ((sysinfo(SI_SRPC_DOMAIN, buf, LX_SYS_UTS_LN) < 0))
254 un->domainname[0] = ’\0’;
255 else
256 (void) strlcpy(un->domainname, buf, LX_SYS_UTS_LN);

258 return (0);

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 5

259 }

261 /*
262 * {get,set}groups16() - Handle the conversion between 16-bit Linux gids and
263 * 32-bit Solaris gids.
264 */
265 int
266 lx_getgroups16(uintptr_t p1, uintptr_t p2)
267 {
268 int count = (int)p1;
269 lx_gid16_t *grouplist = (lx_gid16_t *)p2;
270 gid_t *grouplist32;
271 int ret;
272 int i;

274 grouplist32 = SAFE_ALLOCA(count * sizeof (gid_t));
275 if (grouplist32 == NULL)
276 return (-ENOMEM);
277 if ((ret = getgroups(count, grouplist32)) < 0)
278 return (-errno);

280 for (i = 0; i < ret; i++)
281 grouplist[i] = LX_GID32_TO_GID16(grouplist32[i]);

283 return (ret);
284 }

286 int
287 lx_setgroups16(uintptr_t p1, uintptr_t p2)
288 {
289 int count = (int)p1;
290 lx_gid16_t *grouplist = (lx_gid16_t *)p2;
291 gid_t *grouplist32;
292 int i;

294 grouplist32 = SAFE_ALLOCA(count * sizeof (gid_t));
295 if (grouplist32 == NULL)
296 return (-ENOMEM);
297 for (i = 0; i < count; i++)
298 grouplist32[i] = LX_GID16_TO_GID32(grouplist[i]);

300 return (setgroups(count, grouplist32) ? -errno : 0);
301 }

303 /*
304 * personality() - Solaris doesn’t support Linux personalities, but we have to
305 * emulate enough to show that we support the basic personality.
306 */
307 #define LX_PER_LINUX 0x0

309 int
310 lx_personality(uintptr_t p1)
311 {
312 int per = (int)p1;

314 switch (per) {
315 case -1:
316 /* Request current personality */
317 return (LX_PER_LINUX);
318 case LX_PER_LINUX:
319 return (0);
320 default:
321 return (-EINVAL);
322 }
323 }

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 6

325 /*
326 * mknod() - Since we don’t have the SYS_CONFIG privilege within a zone, the
327 * only mode we have to support is S_IFIFO. We also have to distinguish between
328 * an invalid type and insufficient privileges.
329 */
330 #define LX_S_IFMT 0170000
331 #define LX_S_IFDIR 0040000
332 #define LX_S_IFCHR 0020000
333 #define LX_S_IFBLK 0060000
334 #define LX_S_IFREG 0100000
335 #define LX_S_IFIFO 0010000
336 #define LX_S_IFLNK 0120000
337 #define LX_S_IFSOCK 0140000

339 /*ARGSUSED*/
340 int
341 lx_mknod(uintptr_t p1, uintptr_t p2, uintptr_t p3)
342 {
343 char *path = (char *)p1;
344 lx_dev_t lx_dev = (lx_dev_t)p3;
345 struct sockaddr_un sockaddr;
346 struct stat statbuf;
347 mode_t mode, type;
348 dev_t dev;
349 int fd;

351 type = ((mode_t)p2 & LX_S_IFMT);
352 mode = ((mode_t)p2 & 07777);

354 switch (type) {
355 case 0:
356 case LX_S_IFREG:
357 /* create a regular file */
358 if (stat(path, &statbuf) == 0)
359 return (-EEXIST);

361 if (errno != ENOENT)
362 return (-errno);

364 if ((fd = creat(path, mode)) < 0)
365 return (-errno);

367 (void) close(fd);
368 return (0);

370 case LX_S_IFSOCK:
371 /*
372 * Create a UNIX domain socket.
373 *
374 * Most programmers aren’t even aware you can do this.
375 *
376 * Note you can also do this via Solaris’ mknod(2), but
377 * Linux allows anyone who can create a UNIX domain
378 * socket via bind(2) to create one via mknod(2);
379 * Solaris requires the caller to be privileged.
380 */
381 if ((fd = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
382 return (-errno);

384 if (stat(path, &statbuf) == 0)
385 return (-EEXIST);

387 if (errno != ENOENT)
388 return (-errno);

390 if (uucopy(path, &sockaddr.sun_path,

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 7

391 sizeof (sockaddr.sun_path)) < 0)
392 return (-errno);

394 /* assure NULL termination of sockaddr.sun_path */
395 sockaddr.sun_path[sizeof (sockaddr.sun_path) - 1] = ’\0’;
396 sockaddr.sun_family = AF_UNIX;

398 if (bind(fd, (struct sockaddr *)&sockaddr,
399 strlen(sockaddr.sun_path) +
400 sizeof (sockaddr.sun_family)) < 0)
401 return (-errno);

403 (void) close(fd);
404 return (0);

406 case LX_S_IFIFO:
407 dev = 0;
408 break;

410 case LX_S_IFCHR:
411 case LX_S_IFBLK:
412 /*
413 * The "dev" RPM package wants to create all possible Linux
414 * device nodes, so just report its mknod()s as having
415 * succeeded if we’re in install mode.
416 */
417 if (lx_install != 0) {
418 lx_debug("lx_mknod: install mode spoofed creation of "
419 "Linux device [%lld, %lld]\n",
420 LX_GETMAJOR(lx_dev), LX_GETMINOR(lx_dev));

422 return (0);
423 }

425 dev = makedevice(LX_GETMAJOR(lx_dev), LX_GETMINOR(lx_dev));
426 break;

428 default:
429 return (-EINVAL);
430 }

432 return (mknod(path, mode | type, dev) ? -errno : 0);
433 }

435 int
436 lx_sethostname(uintptr_t p1, uintptr_t p2)
437 {
438 char *name = (char *)p1;
439 int len = (size_t)p2;

441 return (sethostname(name, len) ? -errno : 0);
442 }

444 int
445 lx_setdomainname(uintptr_t p1, uintptr_t p2)
446 {
447 char *name = (char *)p1;
448 int len = (size_t)p2;
449 long rval;

451 if (len < 0 || len >= LX_SYS_UTS_LN)
452 return (-EINVAL);

454 rval = sysinfo(SI_SET_SRPC_DOMAIN, name, len);

456 return ((rval < 0) ? -errno : 0);

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 8

457 }

459 int
460 lx_getpid(void)
461 {
462 int pid;

464 /* First call the thunk server hook. */
465 if (lxt_server_pid(&pid) != 0)
466 return (pid);

468 pid = syscall(SYS_brand, B_EMULATE_SYSCALL + 20);
469 return ((pid == -1) ? -errno : pid);
470 }

472 int
473 lx_execve(uintptr_t p1, uintptr_t p2, uintptr_t p3)
474 {
475 char *filename = (char *)p1;
476 char **argv = (char **)p2;
477 char **envp = (char **)p3;
478 char *nullist[] = { NULL };
479 char path[64];

481 /* First call the thunk server hook. */
482 lxt_server_exec_check();

484 /* Get a copy of the executable we’re trying to run */
485 path[0] = ’\0’;
486 (void) uucopystr(filename, path, sizeof (path));

488 /* Check if we’re trying to run a native binary */
489 if (strncmp(path, "/native/usr/lib/brand/lx/lx_native",
490 sizeof (path)) == 0) {
491 /* Skip the first element in the argv array */
492 argv++;

494 /*
495 * The name of the new program to execute was the first
496 * parameter passed to lx_native.
497 */
498 if (uucopy(argv, &filename, sizeof (char *)) != 0)
499 return (-errno);

501 (void) syscall(SYS_brand, B_EXEC_NATIVE, filename, argv, envp,
502 NULL, NULL, NULL);
503 return (-errno);
504 }

506 if (argv == NULL)
507 argv = nullist;

509 /* This is a normal exec call. */
510 (void) execve(filename, argv, envp);

512 return (-errno);
513 }

515 int
516 lx_setgroups(uintptr_t p1, uintptr_t p2)
517 {
518 int ng = (int)p1;
519 gid_t *glist = NULL;
520 int i, r;

522 lx_debug("\tlx_setgroups(%d, 0x%p", ng, p2);

new/usr/src/lib/brand/lx/lx_brand/common/misc.c 9

524 if (ng > 0) {
525 if ((glist = (gid_t *)SAFE_ALLOCA(ng * sizeof (gid_t))) == NULL)
526 return (-ENOMEM);

528 if (uucopy((void *)p2, glist, ng * sizeof (gid_t)) != 0)
529 return (-errno);

531 /*
532 * Linux doesn’t check the validity of the group IDs, but
533 * Solaris does. Change any invalid group IDs to a known, valid
534 * value (yuck).
535 */
536 for (i = 0; i < ng; i++) {
537 if (glist[i] > MAXUID)
538 glist[i] = MAXUID;
539 }
540 }

542 r = syscall(SYS_brand, B_EMULATE_SYSCALL + LX_SYS_setgroups32,
543 ng, glist);

545 return ((r == -1) ? -errno : r);
546 }
547 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/module.c 1

**
 2128 Tue Jan 14 16:17:03 2014
new/usr/src/lib/brand/lx/lx_brand/common/module.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 /*
30 * We don’t support Linux modules, but we have to emulate enough of the system
31 * calls to show that we don’t have any modules installed.
32 */

34 #include <errno.h>
35 #include <sys/types.h>
36 #include <sys/lx_misc.h>

38 /*
39 * For query_module(), we provide an empty list of modules, and return ENOENT
40 * on any request for a specific module.
41 */
42 #define LX_QM_MODULES 1
43 #define LX_QM_DEPS 2
44 #define LX_QM_REFS 3
45 #define LX_QM_SYMBOLS 4
46 #define LX_QM_INFO 5

48 /*ARGSUSED*/
49 int
50 lx_query_module(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
51 uintptr_t p5)
52 {
53 /*
54 * parameter p1 is the ’name’ argument.
55 */
56 int which = (int)p2;
57 char *buf = (char *)p3;
58 size_t bufsize = (size_t)p4;
59 size_t *ret = (size_t *)p5;

61 switch (which) {

new/usr/src/lib/brand/lx/lx_brand/common/module.c 2

62 case 0:
63 /*
64 * Special case: always return 0
65 */
66 return (0);

68 case LX_QM_MODULES:
69 /*
70 * Generate an empty list of modules.
71 */
72 if (bufsize && buf)
73 buf[0] = ’\0’;
74 if (ret)
75 *ret = 0;
76 return (0);

78 case LX_QM_DEPS:
79 case LX_QM_REFS:
80 case LX_QM_SYMBOLS:
81 case LX_QM_INFO:
82 /*
83 * Any requests for specific module information return ENOENT.
84 */
85 return (-ENOENT);

87 default:
88 return (-EINVAL);
89 }
90 }
91 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 1

**
 20423 Tue Jan 14 16:17:03 2014
new/usr/src/lib/brand/lx/lx_brand/common/mount.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <alloca.h>
30 #include <assert.h>
31 #include <ctype.h>
32 #include <fcntl.h>
33 #include <errno.h>
34 #include <signal.h>
35 #include <string.h>
36 #include <strings.h>
37 #include <nfs/mount.h>
38 #include <sys/types.h>
39 #include <sys/mount.h>
40 #include <sys/param.h>
41 #include <sys/stat.h>
42 #include <sys/types.h>
43 #include <unistd.h>

45 #include <sys/lx_autofs.h>
46 #include <sys/lx_debug.h>
47 #include <sys/lx_misc.h>
48 #include <sys/lx_mount.h>

50 /*
51 * support definitions
52 */
53 union fh_buffer {
54 struct nfs_fid fh2;
55 struct nfs_fh3 fh3;
56 char fh_data[NFS3_FHSIZE + 2];
57 };

59 typedef enum mount_opt_type {
60 MOUNT_OPT_INVALID = 0,
61 MOUNT_OPT_NORMAL = 1, /* option value: none */

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 2

62 MOUNT_OPT_UINT = 2 /* option value: unsigned int */
63 } mount_opt_type_t;

65 typedef struct mount_opt {
66 char *mo_name;
67 mount_opt_type_t mo_type;
68 } mount_opt_t;

71 /*
72 * Globals
73 */
74 mount_opt_t lofs_options[] = {
75 { NULL, MOUNT_OPT_INVALID }
76 };

78 mount_opt_t lx_proc_options[] = {
79 { NULL, MOUNT_OPT_INVALID }
80 };

82 mount_opt_t lx_autofs_options[] = {
83 { LX_MNTOPT_FD, MOUNT_OPT_UINT },
84 { LX_MNTOPT_PGRP, MOUNT_OPT_UINT },
85 { LX_MNTOPT_MINPROTO, MOUNT_OPT_UINT },
86 { LX_MNTOPT_MAXPROTO, MOUNT_OPT_UINT },
87 };

90 /*
91 * i_lx_opt_verify() - Check the mount options.
92 *
93 * You might wonder why we’re being so strict about the mount options
94 * we allow. The reason is that normally all mount option verification
95 * is done by the Solaris userland mount command. Once mount options
96 * are passed to the kernel, invalid options are simply ignored. So
97 * if we actually want to catch requests for functionality that we
98 * don’t support, or if we want to make sure that we don’t randomly
99 * enable options that we haven’t check to make sure they have the
100 * same syntax on Linux and Solaris, we need to reject any options
101 * we don’t know to be ok here.
102 */
103 static int
104 i_lx_opt_verify(char *opts, mount_opt_t *mop)
105 {
106 int opts_len = strlen(opts);
107 char *opts_tmp, *opt;
108 int opt_len, i;

110 assert((opts != NULL) && (mop != NULL));

112 /* If no options were specified, there’s no problem. */
113 if (opts_len == 0)
114 return (1);

116 /* If no options are allowed, fail. */
117 if (mop[0].mo_name == NULL)
118 return (0);

120 /* Don’t accept leading or trailing ’,’. */
121 if ((opts[0] == ’,’) || (opts[opts_len] == ’,’))
122 return (0);

124 /* Don’t accept sequential ’,’. */
125 for (i = 1; i < opts_len; i++)
126 if ((opts[i - 1] == ’,’) && (opts[i] == ’,’))
127 return (0);

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 3

129 /*
130 * We’re going to use strtok() which modifies the target
131 * string so make a temporary copy.
132 */
133 opts_tmp = SAFE_ALLOCA(opts_len);
134 if (opts_tmp == NULL)
135 return (-1);
136 bcopy(opts, opts_tmp, opts_len + 1);

138 /* Verify each prop one at a time. */
139 opt = strtok(opts_tmp, ",");
140 opt_len = strlen(opt);
141 for (;;) {

143 /* Check for matching option/value pair. */
144 for (i = 0; mop[i].mo_name != NULL; i++) {
145 char *ovalue;
146 int ovalue_len, mo_len;

148 /* If the options is too short don’t bother comparing */
149 mo_len = strlen(mop[i].mo_name);
150 if (opt_len < mo_len) {
151 /* Keep trying to find a match. */
152 continue;
153 }

155 /* Compare the option to an allowed option. */
156 if (strncmp(mop[i].mo_name, opt, mo_len) != 0) {
157 /* Keep trying to find a match. */
158 continue;
159 }

161 if (mop[i].mo_type == MOUNT_OPT_NORMAL) {
162 /* The option doesn’t take a value. */
163 if (opt_len == mo_len) {
164 /* This option is ok. */
165 break;
166 } else {
167 /* Keep trying to find a match. */
168 continue;
169 }
170 }

172 /* This options takes a value. */
173 if ((opt_len == mo_len) || (opt[mo_len] != ’=’)) {
174 /* Keep trying to find a match. */
175 continue;
176 }

178 /* We have an option match. Verify option value. */
179 ovalue = &opt[mo_len] + 1;
180 ovalue_len = strlen(ovalue);

182 /* Value can’t be zero length string. */
183 if (ovalue_len == 0)
184 return (0);

186 if (mop[i].mo_type == MOUNT_OPT_UINT) {
187 int j;
188 /* Verify that value is an unsigned int. */
189 for (j = 0; j < ovalue_len; j++)
190 if (!isdigit(ovalue[j]))
191 return (0);
192 } else {
193 /* Unknown option type specified. */

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 4

194 assert(0);
195 }

197 /* The option is ok. */
198 break;
199 }

201 /* If there were no matches this is an unsupported option. */
202 if (mop[i].mo_name == NULL)
203 return (0);

205 /* This option is ok, move onto the next option. */
206 if ((opt = strtok(NULL, ",")) == NULL)
207 break;
208 opt_len = strlen(opt);
209 };

211 /* We verified all the options. */
212 return (1);
213 }

215 static int
216 i_add_option(char *option, char *buf, size_t buf_size)
217 {
218 char *fmt_str = NULL;

220 assert((option != NULL) && (strlen(option) > 0));
221 assert((buf != NULL) && (buf_size > 0));

223 if (buf[0] == ’\0’) {
224 fmt_str = "%s";
225 } else {
226 fmt_str = ",%s";
227 }

229 buf_size -= strlen(buf);
230 buf += strlen(buf);

232 /*LINTED*/
233 if (snprintf(buf, buf_size, fmt_str, option) > (buf_size - 1))
234 return (-EOVERFLOW);
235 return (0);
236 }

238 static int
239 i_add_option_int(char *option, int val, char *buf, size_t buf_size)
240 {
241 char *fmt_str = NULL;

243 assert((option != NULL) && (strlen(option) > 0));
244 assert((buf != NULL) && (buf_size > 0));

246 if (buf[0] == ’\0’) {
247 fmt_str = "%s=%d";
248 } else {
249 fmt_str = ",%s=%d";
250 }

252 buf_size -= strlen(buf);
253 buf += strlen(buf);

255 /*LINTED*/
256 if (snprintf(buf, buf_size, fmt_str, option, val) > (buf_size - 1))
257 return (-EOVERFLOW);
258 return (0);
259 }

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 5

261 static int
262 i_make_nfs_args(lx_nfs_mount_data_t *lx_nmd, struct nfs_args *nfs_args,
263 struct netbuf *nfs_args_addr, struct knetconfig *nfs_args_knconf,
264 union fh_buffer *nfs_args_fh, struct sec_data *nfs_args_secdata,
265 char *fstype, char *options, int options_size)
266 {
267 struct stat statbuf;
268 int i, rv, use_tcp;

270 /* Sanity check the incomming Linux request. */
271 if ((lx_nmd->nmd_rsize < 0) || (lx_nmd->nmd_wsize < 0) ||
272 (lx_nmd->nmd_timeo < 0) || (lx_nmd->nmd_retrans < 0) ||
273 (lx_nmd->nmd_acregmin < 0) || (lx_nmd->nmd_acregmax < 0) ||
274 (lx_nmd->nmd_acdirmax < 0)) {
275 return (-EINVAL);
276 }

278 /*
279 * Additional sanity checks of incomming request.
280 *
281 * Some of the sanity checks below should probably return
282 * EINVAL (or some other error code) instead or ENOTSUP,
283 * but without experiminting on Linux to see how it
284 * deals with certain strange values there is no way
285 * to really know what we should return, hence we return
286 * ENOTSUP to tell us that eventually if we see some
287 * application hitting the problem we can go to a real
288 * Linux system, figure out how it deals with the situation
289 * and update our code to handle it in the same fashion.
290 */
291 if (lx_nmd->nmd_version != 4) {
292 lx_unsupported("unsupported nfs mount request, "
293 "unrecognized NFS mount structure: %d\n",
294 lx_nmd->nmd_version);
295 return (-ENOTSUP);
296 }
297 if ((lx_nmd->nmd_flags & ~LX_NFS_MOUNT_SUPPORTED) != 0) {
298 lx_unsupported("unsupported nfs mount request, "
299 "flags: 0x%x\n", lx_nmd->nmd_flags);
300 return (-ENOTSUP);
301 }
302 if (lx_nmd->nmd_addr.sin_family != AF_INET) {
303 lx_unsupported("unsupported nfs mount request, "
304 "transport address family: 0x%x\n",
305 lx_nmd->nmd_addr.sin_family);
306 return (-ENOTSUP);
307 }
308 for (i = 0; i < LX_NMD_MAXHOSTNAMELEN; i++) {
309 if (lx_nmd->nmd_hostname[i] == ’\0’)
310 break;
311 }
312 if (i == 0) {
313 lx_unsupported("unsupported nfs mount request, "
314 "no hostname specified\n");
315 return (-ENOTSUP);
316 }
317 if (i == LX_NMD_MAXHOSTNAMELEN) {
318 lx_unsupported("unsupported nfs mount request, "
319 "hostname not terminated\n");
320 return (-ENOTSUP);
321 }
322 if (lx_nmd->nmd_namlen < i) {
323 lx_unsupported("unsupported nfs mount request, "
324 "invalid namlen value: 0x%x\n", lx_nmd->nmd_namlen);
325 return (-ENOTSUP);

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 6

326 }
327 if (lx_nmd->nmd_bsize != 0) {
328 lx_unsupported("unsupported nfs mount request, "
329 "bsize value: 0x%x\n", lx_nmd->nmd_bsize);
330 return (-ENOTSUP);
331 }

333 /* Initialize and clear the output structure pointers passed in. */
334 bzero(nfs_args, sizeof (*nfs_args));
335 bzero(nfs_args_addr, sizeof (*nfs_args_addr));
336 bzero(nfs_args_knconf, sizeof (*nfs_args_knconf));
337 bzero(nfs_args_fh, sizeof (*nfs_args_fh));
338 bzero(nfs_args_secdata, sizeof (*nfs_args_secdata));
339 nfs_args->addr = nfs_args_addr;
340 nfs_args->knconf = nfs_args_knconf;
341 nfs_args->fh = (caddr_t)nfs_args_fh;
342 nfs_args->nfs_ext_u.nfs_extB.secdata = nfs_args_secdata;

344 /* Check if we’re using tcp. */
345 use_tcp = (lx_nmd->nmd_flags & LX_NFS_MOUNT_TCP) ? 1 : 0;

347 /*
348 * These seem to be the default flags used by Solaris for v2 and v3
349 * nfs mounts.
350 *
351 * Don’t bother with NFSMNT_TRYRDMA since we always specify a
352 * transport (either udp or tcp).
353 */
354 nfs_args->flags = NFSMNT_NEWARGS | NFSMNT_KNCONF | NFSMNT_INT |
355 NFSMNT_HOSTNAME;

357 /* Translate some Linux mount flags into Solaris mount flags. */
358 if (lx_nmd->nmd_flags & LX_NFS_MOUNT_SOFT)
359 nfs_args->flags |= NFSMNT_SOFT;
360 if (lx_nmd->nmd_flags & LX_NFS_MOUNT_INTR)
361 nfs_args->flags |= NFSMNT_INT;
362 if (lx_nmd->nmd_flags & LX_NFS_MOUNT_POSIX)
363 nfs_args->flags |= NFSMNT_POSIX;
364 if (lx_nmd->nmd_flags & LX_NFS_MOUNT_NOCTO)
365 nfs_args->flags |= NFSMNT_NOCTO;
366 if (lx_nmd->nmd_flags & LX_NFS_MOUNT_NOAC)
367 nfs_args->flags |= NFSMNT_NOAC;
368 if (lx_nmd->nmd_flags & LX_NFS_MOUNT_NONLM)
369 nfs_args->flags |= NFSMNT_LLOCK;

371 if ((lx_nmd->nmd_flags & LX_NFS_MOUNT_VER3) != 0) {
372 (void) strcpy(fstype, "nfs3");
373 if ((rv = i_add_option_int("vers", 3,
374 options, options_size)) != 0)
375 return (rv);

377 if (lx_nmd->nmd_root.lx_fh3_length >
378 sizeof (nfs_args_fh->fh3.fh3_u.data)) {
379 lx_unsupported("unsupported nfs mount request, "
380 "nfs file handle length: 0x%x\n",
381 lx_nmd->nmd_root.lx_fh3_length);
382 return (-ENOTSUP);
383 }

385 /* Set the v3 file handle info. */
386 nfs_args_fh->fh3.fh3_length = lx_nmd->nmd_root.lx_fh3_length;
387 bcopy(&lx_nmd->nmd_root.lx_fh3_data,
388 nfs_args_fh->fh3.fh3_u.data,
389 lx_nmd->nmd_root.lx_fh3_length);
390 } else {
391 /*

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 7

392 * Assume nfs v2. Note that this could also be a v1
393 * mount request but there doesn’t seem to be any difference
394 * in the parameters passed to the Linux mount system
395 * call for v1 or v2 mounts so there is no way of really
396 * knowing.
397 */
398 (void) strcpy(fstype, "nfs");
399 if ((rv = i_add_option_int("vers", 2,
400 options, options_size)) != 0)
401 return (rv);

403 /* Solaris seems to add this flag when using v2. */
404 nfs_args->flags |= NFSMNT_SECDEFAULT;

406 /* Set the v2 file handle info. */
407 bcopy(&lx_nmd->nmd_old_root,
408 nfs_args_fh, sizeof (nfs_args_fh->fh2));
409 }

411 /*
412 * We can’t use getnetconfig() here because there is no netconfig
413 * database in linux.
414 */
415 nfs_args_knconf->knc_protofmly = "inet";
416 if (use_tcp) {
417 /*
418 * TCP uses NC_TPI_COTS_ORD semantics.
419 * See /etc/netconfig.
420 */
421 nfs_args_knconf->knc_semantics = NC_TPI_COTS_ORD;
422 nfs_args_knconf->knc_proto = "tcp";
423 if ((rv = i_add_option("proto=tcp",
424 options, options_size)) != 0)
425 return (rv);
426 if (stat("/dev/tcp", &statbuf) != 0)
427 return (-errno);
428 nfs_args_knconf->knc_rdev = statbuf.st_rdev;
429 } else {
430 /*
431 * Assume UDP. UDP uses NC_TPI_CLTS semantics.
432 * See /etc/netconfig.
433 */
434 nfs_args_knconf->knc_semantics = NC_TPI_CLTS;
435 nfs_args_knconf->knc_proto = "udp";
436 if ((rv = i_add_option("proto=udp",
437 options, options_size)) != 0)
438 return (rv);
439 if (stat("/dev/udp", &statbuf) != 0)
440 return (-errno);
441 nfs_args_knconf->knc_rdev = statbuf.st_rdev;
442 }

444 /* Set the server address. */
445 nfs_args_addr->maxlen = nfs_args_addr->len =
446 sizeof (struct sockaddr_in);
447 nfs_args_addr->buf = (char *)&lx_nmd->nmd_addr;

449 /* Set the server hostname string. */
450 nfs_args->hostname = lx_nmd->nmd_hostname;

452 /* Translate Linux nfs mount parameters into Solaris mount options. */
453 if (lx_nmd->nmd_rsize != LX_NMD_DEFAULT_RSIZE) {
454 if ((rv = i_add_option_int("rsize", lx_nmd->nmd_rsize,
455 options, options_size)) != 0)
456 return (rv);
457 nfs_args->rsize = lx_nmd->nmd_rsize;

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 8

458 nfs_args->flags |= NFSMNT_RSIZE;
459 }
460 if (lx_nmd->nmd_wsize != LX_NMD_DEFAULT_WSIZE) {
461 if ((rv = i_add_option_int("wsize", lx_nmd->nmd_wsize,
462 options, options_size)) != 0)
463 return (rv);
464 nfs_args->wsize = lx_nmd->nmd_wsize;
465 nfs_args->flags |= NFSMNT_WSIZE;
466 }
467 if ((rv = i_add_option_int("timeo", lx_nmd->nmd_timeo,
468 options, options_size)) != 0)
469 return (rv);
470 nfs_args->timeo = lx_nmd->nmd_timeo;
471 nfs_args->flags |= NFSMNT_TIMEO;
472 if ((rv = i_add_option_int("retrans", lx_nmd->nmd_retrans,
473 options, options_size)) != 0)
474 return (rv);
475 nfs_args->retrans = lx_nmd->nmd_retrans;
476 nfs_args->flags |= NFSMNT_RETRANS;
477 if ((rv = i_add_option_int("acregmin", lx_nmd->nmd_acregmin,
478 options, options_size)) != 0)
479 return (rv);
480 nfs_args->acregmin = lx_nmd->nmd_acregmin;
481 nfs_args->flags |= NFSMNT_ACREGMIN;
482 if ((rv = i_add_option_int("acregmax", lx_nmd->nmd_acregmax,
483 options, options_size)) != 0)
484 return (rv);
485 nfs_args->acregmax = lx_nmd->nmd_acregmax;
486 nfs_args->flags |= NFSMNT_ACREGMAX;
487 if ((rv = i_add_option_int("acdirmin", lx_nmd->nmd_acdirmin,
488 options, options_size)) != 0)
489 return (rv);
490 nfs_args->acdirmin = lx_nmd->nmd_acdirmin;
491 nfs_args->flags |= NFSMNT_ACDIRMIN;
492 if ((rv = i_add_option_int("acdirmax", lx_nmd->nmd_acdirmax,
493 options, options_size)) != 0)
494 return (rv);
495 nfs_args->acdirmax = lx_nmd->nmd_acdirmax;
496 nfs_args->flags |= NFSMNT_ACDIRMAX;

498 /* We only support nfs with a security type of AUTH_SYS. */
499 nfs_args->nfs_args_ext = NFS_ARGS_EXTB;
500 nfs_args_secdata->secmod = AUTH_SYS;
501 nfs_args_secdata->rpcflavor = AUTH_SYS;
502 nfs_args_secdata->flags = 0;
503 nfs_args_secdata->uid = 0;
504 nfs_args_secdata->data = NULL;
505 nfs_args->nfs_ext_u.nfs_extB.next = NULL;

507 /*
508 * The Linux nfs mount command seems to pass an open socket fd
509 * to the kernel during the mount system call. We don’t need
510 * this fd on Solaris so just close it.
511 */
512 (void) close(lx_nmd->nmd_fd);

514 return (0);
515 }

517 int
518 lx_mount(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
519 uintptr_t p5)
520 {
521 /* Linux input arguments. */
522 const char *sourcep = (const char *)p1;
523 const char *targetp = (const char *)p2;

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 9

524 const char *fstypep = (const char *)p3;
525 unsigned int flags = (unsigned int)p4;
526 const void *datap = (const void *)p5;

528 /* Variables needed for all mounts. */
529 char source[MAXPATHLEN], target[MAXPATHLEN];
530 char fstype[MAXPATHLEN], options[MAXPATHLEN];
531 int sflags, rv;

533 /* Variables needed for nfs mounts. */
534 lx_nfs_mount_data_t lx_nmd;
535 struct nfs_args nfs_args;
536 struct netbuf nfs_args_addr;
537 struct knetconfig nfs_args_knconf;
538 union fh_buffer nfs_args_fh;
539 struct sec_data nfs_args_secdata;
540 char *sdataptr = NULL;
541 int sdatalen = 0;

543 /* Initialize Solaris mount arguments. */
544 sflags = MS_OPTIONSTR;
545 options[0] = ’\0’;
546 sdatalen = 0;

548 /* Copy in parameters that are always present. */
549 rv = uucopystr((void *)sourcep, &source, sizeof (source));
550 if ((rv == -1) || (rv == sizeof (source)))
551 return (-EFAULT);

553 rv = uucopystr((void *)targetp, &target, sizeof (target));
554 if ((rv == -1) || (rv == sizeof (target)))
555 return (-EFAULT);

557 rv = uucopystr((void *)fstypep, &fstype, sizeof (fstype));
558 if ((rv == -1) || (rv == sizeof (fstype)))
559 return (-EFAULT);

561 lx_debug("\tlinux mount source: %s", source);
562 lx_debug("\tlinux mount target: %s", target);
563 lx_debug("\tlinux mount fstype: %s", fstype);

565 /* Make sure we support the requested mount flags. */
566 if ((flags & ~LX_MS_SUPPORTED) != 0) {
567 lx_unsupported(
568 "unsupported mount flags: 0x%x", flags);
569 return (-ENOTSUP);
570 }

572 /* Do filesystem specific mount work. */
573 if (flags & LX_MS_BIND) {

575 /* If MS_BIND is set, we turn this into a lofs mount. */
576 (void) strcpy(fstype, "lofs");

578 /* Copy in Linux mount options. */
579 if (datap != NULL) {
580 rv = uucopystr((void *)datap,
581 options, sizeof (options));
582 if ((rv == -1) || (rv == sizeof (options)))
583 return (-EFAULT);
584 }
585 lx_debug("\tlinux mount options: \"%s\"", options);

587 /* Verify Linux mount options. */
588 if (i_lx_opt_verify(options, lofs_options) == 0) {
589 lx_unsupported("unsupported lofs mount options");

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 10

590 return (-ENOTSUP);
591 }
592 } else if (strcmp(fstype, "proc") == 0) {

594 /* Translate proc mount requests to lx_proc requests. */
595 (void) strcpy(fstype, "lx_proc");

597 /* Copy in Linux mount options. */
598 if (datap != NULL) {
599 rv = uucopystr((void *)datap,
600 options, sizeof (options));
601 if ((rv == -1) || (rv == sizeof (options)))
602 return (-EFAULT);
603 }
604 lx_debug("\tlinux mount options: \"%s\"", options);

606 /* Verify Linux mount options. */
607 if (i_lx_opt_verify(options, lx_proc_options) == 0) {
608 lx_unsupported("unsupported lx_proc mount options");
609 return (-ENOTSUP);
610 }
611 } else if (strcmp(fstype, "autofs") == 0) {

613 /* Translate proc mount requests to lx_afs requests. */
614 (void) strcpy(fstype, LX_AUTOFS_NAME);

616 /* Copy in Linux mount options. */
617 if (datap != NULL) {
618 rv = uucopystr((void *)datap,
619 options, sizeof (options));
620 if ((rv == -1) || (rv == sizeof (options)))
621 return (-EFAULT);
622 }
623 lx_debug("\tlinux mount options: \"%s\"", options);

625 /* Verify Linux mount options. */
626 if (i_lx_opt_verify(options, lx_autofs_options) == 0) {
627 lx_unsupported("unsupported lx_autofs mount options");
628 return (-ENOTSUP);
629 }
630 } else if (strcmp(fstype, "nfs") == 0) {

632 /*
633 * Copy in Linux mount options. Note that for Linux
634 * nfs mounts the mount options pointer (which normally
635 * points to a string) points to a structure.
636 */
637 if (uucopy((void *)datap, &lx_nmd, sizeof (lx_nmd)) < 0)
638 return (-errno);

640 /*
641 * For Solaris nfs mounts, the kernel expects a special
642 * strucutre, but a pointer to this structure is passed
643 * in via an extra parameter (sdataptr below.)
644 */
645 if ((rv = i_make_nfs_args(&lx_nmd, &nfs_args,
646 &nfs_args_addr, &nfs_args_knconf, &nfs_args_fh,
647 &nfs_args_secdata, fstype,
648 options, sizeof (options))) != 0)
649 return (rv);

651 /*
652 * For nfs mounts we need to tell the mount system call
653 * to expect extra parameters.
654 */
655 sflags |= MS_DATA;

new/usr/src/lib/brand/lx/lx_brand/common/mount.c 11

656 sdataptr = (char *)&nfs_args;
657 sdatalen = sizeof (nfs_args);
658 } else {
659 lx_unsupported(
660 "unsupported mount filesystem type: %s", fstype);
661 return (-ENOTSUP);
662 }

664 /* Convert some Linux flags to Solaris flags. */
665 if (flags & LX_MS_RDONLY)
666 sflags |= MS_RDONLY;
667 if (flags & LX_MS_NOSUID)
668 sflags |= MS_NOSUID;
669 if (flags & LX_MS_REMOUNT)
670 sflags |= MS_REMOUNT;

672 /* Convert some Linux flags to Solaris option strings. */
673 if ((flags & LX_MS_NODEV) &&
674 ((rv = i_add_option("nodev", options, sizeof (options))) != 0))
675 return (rv);
676 if ((flags & LX_MS_NOEXEC) &&
677 ((rv = i_add_option("noexec", options, sizeof (options))) != 0))
678 return (rv);
679 if ((flags & LX_MS_NOATIME) &&
680 ((rv = i_add_option("noatime", options, sizeof (options))) != 0))
681 return (rv);

683 lx_debug("\tsolaris mount fstype: %s", fstype);
684 lx_debug("\tsolaris mount options: \"%s\"", options);

686 return (mount(source, target, sflags, fstype, sdataptr, sdatalen,
687 options, sizeof (options)) ? -errno : 0);
688 }

690 /*
691 * umount() is identical, though it is implemented on top of umount2() in
692 * Solaris so it cannot be a pass-thru system call.
693 */
694 int
695 lx_umount(uintptr_t p1)
696 {
697 return (umount((char *)p1) ? -errno : 0);
698 }

700 /*
701 * The Linux umount2() system call is identical but has a different value for
702 * MNT_FORCE (the logical equivalent to MS_FORCE).
703 */
704 #define LX_MNT_FORCE 0x1

706 int
707 lx_umount2(uintptr_t p1, uintptr_t p2)
708 {
709 char *path = (char *)p1;
710 int flags = 0;

712 if (p2 & ~LX_MNT_FORCE)
713 return (-EINVAL);

715 if (p2 & LX_MNT_FORCE)
716 flags |= MS_FORCE;

718 return (umount2(path, flags) ? -errno : 0);
719 }
720 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/open.c 1

**
 4355 Tue Jan 14 16:17:03 2014
new/usr/src/lib/brand/lx/lx_brand/common/open.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/types.h>
28 #include <sys/stat.h>
29 #include <sys/inttypes.h>
30 #include <unistd.h>
31 #include <fcntl.h>
32 #include <errno.h>
33 #include <libintl.h>
34 #include <stdio.h>

36 #include <sys/lx_types.h>
37 #include <sys/lx_debug.h>
38 #include <sys/lx_syscall.h>
39 #include <sys/lx_fcntl.h>
40 #include <sys/lx_misc.h>

42 static int
43 ltos_open_flags(uintptr_t p2)
44 {
45 int flags;

47 if ((p2 & O_ACCMODE) == LX_O_RDONLY)
48 flags = O_RDONLY;
49 else if ((p2 & O_ACCMODE) == LX_O_WRONLY)
50 flags = O_WRONLY;
51 else
52 flags = O_RDWR;

54 if (p2 & LX_O_CREAT) {
55 flags |= O_CREAT;
56 }

58 if (p2 & LX_O_EXCL)
59 flags |= O_EXCL;
60 if (p2 & LX_O_NOCTTY)
61 flags |= O_NOCTTY;

new/usr/src/lib/brand/lx/lx_brand/common/open.c 2

62 if (p2 & LX_O_TRUNC)
63 flags |= O_TRUNC;
64 if (p2 & LX_O_APPEND)
65 flags |= O_APPEND;
66 if (p2 & LX_O_NONBLOCK)
67 flags |= O_NONBLOCK;
68 if (p2 & LX_O_SYNC)
69 flags |= O_SYNC;
70 if (p2 & LX_O_LARGEFILE)
71 flags |= O_LARGEFILE;
72 if (p2 & LX_O_NOFOLLOW)
73 flags |= O_NOFOLLOW;

75 /*
76 * Linux uses the LX_O_DIRECT flag to do raw, synchronous I/O to the
77 * device backing the fd in question. Solaris doesn’t have similar
78 * functionality, but we can attempt to simulate it using the flags
79 * (O_RSYNC|O_SYNC) and directio(3C).
80 *
81 * The LX_O_DIRECT flag also requires that the transfer size and
82 * alignment of I/O buffers be a multiple of the logical block size for
83 * the underlying file system, but frankly there isn’t an easy way to
84 * support that functionality without doing something like adding an
85 * fcntl(2) flag to denote LX_O_DIRECT mode.
86 *
87 * Since LX_O_DIRECT is merely a performance advisory, we’ll just
88 * emulate what we can and trust that the only applications expecting
89 * an error when performing I/O from a misaligned buffer or when
90 * passing a transfer size is not a multiple of the underlying file
91 * system block size will be test suites.
92 */
93 if (p2 & LX_O_DIRECT)
94 flags |= (O_RSYNC|O_SYNC);

96 return (flags);
97 }

99 static int
100 lx_open_postprocess(int fd, uintptr_t p2)
101 {
102 struct stat64 statbuf;

104 /*
105 * Check the file type AFTER opening the file to avoid a race condition
106 * where the file we want to open could change types between a stat64()
107 * and an open().
108 */
109 if (p2 & LX_O_DIRECTORY) {
110 if (fstat64(fd, &statbuf) < 0) {
111 int ret = -errno;

113 (void) close(fd);
114 return (ret);
115 } else if (!S_ISDIR(statbuf.st_mode)) {
116 (void) close(fd);
117 return (-ENOTDIR);
118 }
119 }

121 if (p2 & LX_O_DIRECT)
122 (void) directio(fd, DIRECTIO_ON);

124 /*
125 * Set the ASYNC flag if passsed.
126 */
127 if (p2 & LX_O_ASYNC) {

new/usr/src/lib/brand/lx/lx_brand/common/open.c 3

128 if (fcntl(fd, F_SETFL, FASYNC) < 0) {
129 int ret = -errno;

131 (void) close(fd);
132 return (ret);
133 }
134 }

136 return (fd);
137 }

139 int
140 lx_openat(uintptr_t ext1, uintptr_t p1, uintptr_t p2, uintptr_t p3)
141 {
142 int atfd = (int)ext1;
143 int flags, fd;
144 mode_t mode = 0;
145 char *path = (char *)p1;

147 if (atfd == LX_AT_FDCWD)
148 atfd = AT_FDCWD;

150 flags = ltos_open_flags(p2);

152 if (flags & O_CREAT) {
153 mode = (mode_t)p3;
154 }

156 lx_debug("\topenat(%d, %s, 0%o, 0%o)", atfd, path, flags, mode);

158 if ((fd = openat(atfd, path, flags, mode)) < 0)
159 return (-errno);

161 return (lx_open_postprocess(fd, p2));
162 }

164 int
165 lx_open(uintptr_t p1, uintptr_t p2, uintptr_t p3)
166 {
167 int flags, fd;
168 mode_t mode = 0;
169 char *path = (char *)p1;

171 flags = ltos_open_flags(p2);

173 if (flags & O_CREAT) {
174 mode = (mode_t)p3;
175 }

177 lx_debug("\topen(%s, 0%o, 0%o)", path, flags, mode);

179 if ((fd = open(path, flags, mode)) < 0)
180 return (-errno);

182 return (lx_open_postprocess(fd, p2));
183 }
184 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/pgrp.c 1

**
 3004 Tue Jan 14 16:17:03 2014
new/usr/src/lib/brand/lx/lx_brand/common/pgrp.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <sys/types.h>
30 #include <unistd.h>
31 #include <errno.h>
32 #include <sys/lx_misc.h>

34 int
35 lx_getpgrp(void)
36 {
37 int ret;

39 ret = getpgrp();

41 /*
42 * If the pgrp is that of the init process, return the value Linux
43 * expects.
44 */
45 if (ret == zoneinit_pid)
46 return (LX_INIT_PGID);

48 return ((ret == -1) ? -errno : ret);
49 }

51 int
52 lx_getpgid(uintptr_t p1)
53 {
54 pid_t spid;
55 int pid = (int)p1;
56 int ret;

58 if (pid < 0)
59 return (-ESRCH);

61 /*

new/usr/src/lib/brand/lx/lx_brand/common/pgrp.c 2

62 * If the supplied pid matches that of the init process, return
63 * the pgid Linux expects.
64 */
65 if (pid == zoneinit_pid)
66 return (LX_INIT_PGID);

68 if ((ret = lx_lpid_to_spid(pid, &spid)) < 0)
69 return (ret);

71 ret = getpgid(spid);

73 /*
74 * If the pgid is that of the init process, return the value Linux
75 * expects.
76 */
77 if (ret == zoneinit_pid)
78 return (LX_INIT_PGID);

80 return ((ret == -1) ? -errno : ret);
81 }

83 int
84 lx_setpgid(uintptr_t p1, uintptr_t p2)
85 {
86 pid_t pid = (pid_t)p1;
87 pid_t pgid = (pid_t)p2;
88 pid_t spid, spgid;
89 int ret;

91 if (pid < 0)
92 return (-ESRCH);

94 if (pgid < 0)
95 return (-EINVAL);

97 if ((ret = lx_lpid_to_spid(pid, &spid)) < 0)
98 return (ret);

100 if (pgid == 0)
101 spgid = spid;
102 else if ((ret = lx_lpid_to_spid(pgid, &spgid)) < 0)
103 return (ret);

105 ret = setpgid(spid, spgid);

107 return ((ret == 0) ? 0 : -errno);
108 }

110 int
111 lx_getsid(uintptr_t p1)
112 {
113 pid_t spid;
114 int pid = (int)p1;
115 int ret;

117 if (pid < 0)
118 return (-ESRCH);

120 /*
121 * If the supplied matches that of the init process, return the value
122 * Linux expects.
123 */
124 if (pid == zoneinit_pid)
125 return (LX_INIT_SID);

127 if ((ret = lx_lpid_to_spid(pid, &spid)) < 0)

new/usr/src/lib/brand/lx/lx_brand/common/pgrp.c 3

128 return (ret);

130 ret = getsid(spid);

132 /*
133 * If the sid is that of the init process, return the value Linux
134 * expects.
135 */
136 if (ret == zoneinit_pid)
137 return (LX_INIT_SID);

139 return ((ret == -1) ? -errno : ret);
140 }

142 int
143 lx_setsid(void)
144 {
145 int ret;

147 ret = setsid();

149 /*
150 * If the pgid is that of the init process, return the value Linux
151 * expects.
152 */
153 if (ret == zoneinit_pid)
154 return (LX_INIT_SID);

156 return ((ret == -1) ? -errno : ret);
157 }
158 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/poll_select.c 1

**
 5629 Tue Jan 14 16:17:03 2014
new/usr/src/lib/brand/lx/lx_brand/common/poll_select.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <assert.h>
30 #include <unistd.h>
31 #include <fcntl.h>
32 #include <errno.h>
33 #include <stdio.h>
34 #include <stdlib.h>
35 #include <alloca.h>
36 #include <signal.h>
37 #include <strings.h>
38 #include <sys/param.h>
39 #include <sys/brand.h>
40 #include <sys/poll.h>
41 #include <sys/syscall.h>
42 #include <sys/lx_debug.h>
43 #include <sys/lx_poll.h>
44 #include <sys/lx_syscall.h>
45 #include <sys/lx_brand.h>
46 #include <sys/lx_misc.h>

48 extern int select_large_fdset(int nfds, fd_set *in0, fd_set *out0, fd_set *ex0,
49 struct timeval *tv);

51 int
52 lx_select(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4,
53 uintptr_t p5)
54 {
55 int nfds = (int)p1;
56 fd_set *rfdsp = NULL;
57 fd_set *wfdsp = NULL;
58 fd_set *efdsp = NULL;
59 struct timeval tv, *tvp = NULL;
60 int fd_set_len = howmany(nfds, 8);

new/usr/src/lib/brand/lx/lx_brand/common/poll_select.c 2

61 int r;
62 hrtime_t start = NULL, end;

64 lx_debug("\tselect(%d, 0x%p, x%p, 0x%p. 0x%p, 0x%p)",
65 nfds, rfdsp, wfdsp, efdsp, tvp);

67 if (nfds > 0) {
68 if (p2 != NULL) {
69 rfdsp = SAFE_ALLOCA(fd_set_len);
70 if (rfdsp == NULL)
71 return (-ENOMEM);
72 if (uucopy((void *)p2, rfdsp, fd_set_len) != 0)
73 return (-errno);
74 }
75 if (p3 != NULL) {
76 wfdsp = SAFE_ALLOCA(fd_set_len);
77 if (wfdsp == NULL)
78 return (-ENOMEM);
79 if (uucopy((void *)p3, wfdsp, fd_set_len) != 0)
80 return (-errno);
81 }
82 if (p4 != NULL) {
83 efdsp = SAFE_ALLOCA(fd_set_len);
84 if (efdsp == NULL)
85 return (-ENOMEM);
86 if (uucopy((void *)p4, efdsp, fd_set_len) != 0)
87 return (-errno);
88 }
89 }
90 if (p5 != NULL) {
91 tvp = &tv;
92 if (uucopy((void *)p5, &tv, sizeof (tv)) != 0)
93 return (-errno);
94 start = gethrtime();
95 }

97 if (nfds >= FD_SETSIZE)
98 r = select_large_fdset(nfds, rfdsp, wfdsp, efdsp, tvp);
99 else
100 r = select(nfds, rfdsp, wfdsp, efdsp, tvp);
101 if (r < 0)
102 return (-errno);

104 if (tvp != NULL) {
105 long long tv_total;

107 /*
108 * Linux updates the timeval parameter for select() calls
109 * with the amount of time that left before the select
110 * would have timed out.
111 */
112 end = gethrtime();
113 tv_total = (tv.tv_sec * MICROSEC) + tv.tv_usec;
114 tv_total -= ((end - start) / (NANOSEC / MICROSEC));
115 if (tv_total < 0) {
116 tv.tv_sec = 0;
117 tv.tv_usec = 0;
118 } else {
119 tv.tv_sec = tv_total / MICROSEC;
120 tv.tv_usec = tv_total % MICROSEC;
121 }

123 if (uucopy(&tv, (void *)p5, sizeof (tv)) != 0)
124 return (-errno);
125 }

new/usr/src/lib/brand/lx/lx_brand/common/poll_select.c 3

127 if ((rfdsp != NULL) && (uucopy(rfdsp, (void *)p2, fd_set_len) != 0))
128 return (-errno);
129 if ((wfdsp != NULL) && (uucopy(wfdsp, (void *)p3, fd_set_len) != 0))
130 return (-errno);
131 if ((efdsp != NULL) && (uucopy(efdsp, (void *)p4, fd_set_len) != 0))
132 return (-errno);

134 return (r);
135 }

137 int
138 lx_poll(uintptr_t p1, uintptr_t p2, uintptr_t p3)
139 {
140 struct pollfd *lfds, *sfds;
141 nfds_t nfds = (nfds_t)p2;
142 int fds_size, i, rval, revents;

144 /*
145 * Note: we are assuming that the Linux and Solaris pollfd
146 * structures are identical. Copy in the linux poll structure.
147 */
148 fds_size = sizeof (struct pollfd) * nfds;
149 lfds = (struct pollfd *)SAFE_ALLOCA(fds_size);
150 if (lfds == NULL)
151 return (-ENOMEM);
152 if (uucopy((void *)p1, lfds, fds_size) != 0)
153 return (-errno);

155 /*
156 * The poll system call modifies the poll structures passed in
157 * so we’ll need to make an exra copy of them.
158 */
159 sfds = (struct pollfd *)SAFE_ALLOCA(fds_size);
160 if (sfds == NULL)
161 return (-ENOMEM);

163 /* Convert the Linux events bitmask into the Solaris equivalent. */
164 for (i = 0; i < nfds; i++) {
165 /*
166 * If the caller is polling for an unsupported event, we
167 * have to bail out.
168 */
169 if (lfds[i].events & ~LX_POLL_SUPPORTED_EVENTS) {
170 lx_unsupported("unsupported poll events requested: "
171 "events=0x%x", lfds[i].events);
172 return (-ENOTSUP);
173 }

175 sfds[i].fd = lfds[i].fd;
176 sfds[i].events = lfds[i].events & LX_POLL_COMMON_EVENTS;
177 if (lfds[i].events & LX_POLLWRNORM)
178 sfds[i].events |= POLLWRNORM;
179 if (lfds[i].events & LX_POLLWRBAND)
180 sfds[i].events |= POLLWRBAND;
181 sfds[i].revents = 0;
182 }

184 lx_debug("\tpoll(0x%p, %u, %d)", sfds, nfds, (int)p3);

186 if ((rval = poll(sfds, nfds, (int)p3)) < 0)
187 return (-errno);

189 /* Convert the Solaris revents bitmask into the Linux equivalent */
190 for (i = 0; i < nfds; i++) {
191 revents = sfds[i].revents & LX_POLL_COMMON_EVENTS;
192 if (sfds[i].revents & POLLWRBAND)

new/usr/src/lib/brand/lx/lx_brand/common/poll_select.c 4

193 revents |= LX_POLLWRBAND;

195 /*
196 * Be carefull because on solaris POLLOUT and POLLWRNORM
197 * are defined to the same values but on linux they
198 * are not.
199 */
200 if (sfds[i].revents & POLLOUT) {
201 if ((lfds[i].events & LX_POLLOUT) == 0)
202 revents &= ~LX_POLLOUT;
203 if (lfds[i].events & LX_POLLWRNORM)
204 revents |= LX_POLLWRNORM;
205 }

207 lfds[i].revents = revents;
208 }

210 /* Copy out the results */
211 if (uucopy(lfds, (void *)p1, fds_size) != 0)
212 return (-errno);

214 return (rval);
215 }
216 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/priority.c 1

**
 2215 Tue Jan 14 16:17:03 2014
new/usr/src/lib/brand/lx/lx_brand/common/priority.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <errno.h>
30 #include <sys/types.h>
31 #include <sys/lx_debug.h>
32 #include <sys/lx_misc.h>
33 #include <sys/lx_syscall.h>
34 #include <sys/lx_types.h>
35 #include <sys/resource.h>
36 #include <sys/lx_misc.h>

38 int
39 lx_getpriority(uintptr_t p1, uintptr_t p2)
40 {
41 uint_t which = (int)p1;
42 id_t who = (id_t)p2;
43 int ret;

45 /*
46 * The only valid values for ’which’ are positive integers, and unlike
47 * Solaris, linux doesn’t support anything past PRIO_USER.
48 */
49 if (which > PRIO_USER)
50 return (-EINVAL);

52 lx_debug("\tgetpriority(%d, %d)", which, who);

54 errno = 0;

56 if ((which == PRIO_PROCESS) && (who == 1))
57 who = zoneinit_pid;

59 ret = getpriority(which, who);
60 if (ret == -1 && errno != 0)
61 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/priority.c 2

63 /*
64 * The return value of the getpriority syscall is biased by 20 to avoid
65 * returning negative values when successful.
66 */
67 return (20 - ret);
68 }

70 int
71 lx_setpriority(uintptr_t p1, uintptr_t p2, uintptr_t p3)
72 {
73 int which = (int)p1;
74 id_t who = (id_t)p2;
75 int prio = (int)p3;
76 int rval;

78 if (which > PRIO_USER)
79 return (-EINVAL);

81 lx_debug("\tsetpriority(%d, %d, %d)", which, who, prio);

83 if ((which == PRIO_PROCESS) && (who == 1))
84 who = zoneinit_pid;

86 rval = setpriority(which, who, prio);

88 return ((rval == -1) ? -errno : rval);
89 }
90 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 1

**
 50402 Tue Jan 14 16:17:04 2014
new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <errno.h>
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/lx_misc.h>
31 #include <sys/lx_debug.h>
32 #include <sys/lx_syscall.h>
33 #include <sys/lx_signal.h>
34 #include <sys/lx_thread.h>
35 #include <sys/lwp.h>
36 #include <unistd.h>
37 #include <fcntl.h>
38 #include <procfs.h>
39 #include <sys/frame.h>
40 #include <strings.h>
41 #include <signal.h>
42 #include <stddef.h>
43 #include <stdlib.h>
44 #include <sys/wait.h>
45 #include <sys/auxv.h>
46 #include <thread.h>
47 #include <pthread.h>
48 #include <synch.h>
49 #include <elf.h>
50 #include <ieeefp.h>
51 #include <assert.h>
52 #include <libintl.h>

54 /*
55 * Linux ptrace compatibility.
56 *
57 * The brand support for ptrace(2) is built on top of the Solaris /proc
58 * interfaces, mounted at /native/proc in the zone. This gets quite
59 * complicated due to the way ptrace works and the Solaris realization of the
60 * Linux threading model.

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 2

61 *
62 * ptrace can only interact with a process if we are tracing it, and it is
63 * currently stopped. There are two ways a process can begin tracing another
64 * process:
65 *
66 * PTRACE_TRACEME
67 *
68 * A child process can use PTRACE_TRACEME to indicate that it wants to be
69 * traced by the parent. This sets the ptrace compatibility flag in /proc
70 * which causes ths ptrace consumer to be notified through the wait(2)
71 * system call of events of interest. PTRACE_TRACEME is typically used by
72 * the debugger by forking a process, using PTRACE_TRACEME, and finally
73 * doing an exec of the specified program.
74 *
75 *
76 * PTRACE_ATTACH
77 *
78 * We can attach to a process using PTRACE_ATTACH. This is considerably
79 * more complicated than the previous case. On Linux, the traced process is
80 * effectively reparented to the ptrace consumer so that event notification
81 * can go through the normal wait(2) system call. Solaris has no such
82 * ability to reparent a process (nor should it) so some trickery was
83 * required.
84 *
85 * When the ptrace consumer uses PTRACE_ATTACH it forks a monitor child
86 * process. The monitor enables the /proc ptrace flag for itself and uses
87 * the native /proc mechanisms to observe the traced process and wait for
88 * events of interest. When the traced process stops, the monitor process
89 * sends itself a SIGTRAP thus rousting its parent process (the ptrace
90 * consumer) out of wait(2). We then translate the process id and status
91 * code from wait(2) to those of the traced process.
92 *
93 * To detach from the process we just have to clean up tracing flags and
94 * clean up the monitor.
95 *
96 * ptrace can only interact with a process if we have traced it, and it is
97 * currently stopped (see is_traced()). For threads, there’s no way to
98 * distinguish whether ptrace() has been called for all threads or some
99 * subset. Since most clients will be tracing all threads, and erroneously
100 * allowing ptrace to access a non-traced thread is non-fatal (or at least
101 * would be fatal on linux), we ignore this aspect of the problem.
102 */

104 #define LX_PTRACE_TRACEME 0
105 #define LX_PTRACE_PEEKTEXT 1
106 #define LX_PTRACE_PEEKDATA 2
107 #define LX_PTRACE_PEEKUSER 3
108 #define LX_PTRACE_POKETEXT 4
109 #define LX_PTRACE_POKEDATA 5
110 #define LX_PTRACE_POKEUSER 6
111 #define LX_PTRACE_CONT 7
112 #define LX_PTRACE_KILL 8
113 #define LX_PTRACE_SINGLESTEP 9
114 #define LX_PTRACE_GETREGS 12
115 #define LX_PTRACE_SETREGS 13
116 #define LX_PTRACE_GETFPREGS 14
117 #define LX_PTRACE_SETFPREGS 15
118 #define LX_PTRACE_ATTACH 16
119 #define LX_PTRACE_DETACH 17
120 #define LX_PTRACE_GETFPXREGS 18
121 #define LX_PTRACE_SETFPXREGS 19
122 #define LX_PTRACE_SYSCALL 24

124 /*
125 * This corresponds to the user_i387_struct Linux structure.
126 */

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 3

127 typedef struct lx_user_fpregs {
128 long lxuf_cwd;
129 long lxuf_swd;
130 long lxuf_twd;
131 long lxuf_fip;
132 long lxuf_fcs;
133 long lxuf_foo;
134 long lxuf_fos;
135 long lxuf_st_space[20];
136 } lx_user_fpregs_t;

138 /*
139 * This corresponds to the user_fxsr_struct Linux structure.
140 */
141 typedef struct lx_user_fpxregs {
142 uint16_t lxux_cwd;
143 uint16_t lxux_swd;
144 uint16_t lxux_twd;
145 uint16_t lxux_fop;
146 long lxux_fip;
147 long lxux_fcs;
148 long lxux_foo;
149 long lxux_fos;
150 long lxux_mxcsr;
151 long lxux_reserved;
152 long lxux_st_space[32];
153 long lxux_xmm_space[32];
154 long lxux_padding[56];
155 } lx_user_fpxregs_t;

157 /*
158 * This corresponds to the user_regs_struct Linux structure.
159 */
160 typedef struct lx_user_regs {
161 long lxur_ebx;
162 long lxur_ecx;
163 long lxur_edx;
164 long lxur_esi;
165 long lxur_edi;
166 long lxur_ebp;
167 long lxur_eax;
168 long lxur_xds;
169 long lxur_xes;
170 long lxur_xfs;
171 long lxur_xgs;
172 long lxur_orig_eax;
173 long lxur_eip;
174 long lxur_xcs;
175 long lxur_eflags;
176 long lxur_esp;
177 long lxur_xss;
178 } lx_user_regs_t;

180 typedef struct lx_user {
181 lx_user_regs_t lxu_regs;
182 int lxu_fpvalid;
183 lx_user_fpregs_t lxu_i387;
184 ulong_t lxu_tsize;
185 ulong_t lxu_dsize;
186 ulong_t lxu_ssize;
187 ulong_t lxu_start_code;
188 ulong_t lxu_start_stack;
189 long lxu_signal;
190 int lxu_reserved;
191 lx_user_regs_t *lxu_ar0;
192 lx_user_fpregs_t *lxu_fpstate;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 4

193 ulong_t lxu_magic;
194 char lxu_comm[32];
195 int lxu_debugreg[8];
196 } lx_user_t;

198 typedef struct ptrace_monitor_map {
199 struct ptrace_monitor_map *pmm_next; /* next pointer */
200 pid_t pmm_monitor; /* monitor child process */
201 pid_t pmm_target; /* traced Linux pid */
202 pid_t pmm_pid; /* Solaris pid */
203 lwpid_t pmm_lwpid; /* Solaris lwpid */
204 uint_t pmm_exiting; /* detached */
205 } ptrace_monitor_map_t;

207 typedef struct ptrace_state_map {
208 struct ptrace_state_map *psm_next; /* next pointer */
209 pid_t psm_pid; /* Solaris pid */
210 uintptr_t psm_debugreg[8]; /* debug registers */
211 } ptrace_state_map_t;

213 static ptrace_monitor_map_t *ptrace_monitor_map = NULL;
214 static ptrace_state_map_t *ptrace_state_map = NULL;
215 static mutex_t ptrace_map_mtx = DEFAULTMUTEX;

217 extern void *_START_;

219 static sigset_t blockable_sigs;

221 #pragma init(ptrace_init)
222 void
223 ptrace_init(void)
224 {
225 (void) sigfillset(&blockable_sigs);
226 (void) sigdelset(&blockable_sigs, SIGKILL);
227 (void) sigdelset(&blockable_sigs, SIGSTOP);
228 }

230 /*
231 * Given a pid, open the named file under /native/proc/<pid>/name using the
232 * given mode.
233 */
234 static int
235 open_procfile(pid_t pid, int mode, const char *name)
236 {
237 char path[MAXPATHLEN];

239 (void) snprintf(path, sizeof (path), "/native/proc/%d/%s", pid, name);

241 return (open(path, mode));
242 }

244 /*
245 * Given a pid and lwpid, open the named file under
246 * /native/proc/<pid>/<lwpid>/name using the given mode.
247 */
248 static int
249 open_lwpfile(pid_t pid, lwpid_t lwpid, int mode, const char *name)
250 {
251 char path[MAXPATHLEN];

253 (void) snprintf(path, sizeof (path), "/native/proc/%d/lwp/%d/%s",
254 pid, lwpid, name);

256 return (open(path, mode));
257 }

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 5

259 static int
260 get_status(pid_t pid, pstatus_t *psp)
261 {
262 int fd;

264 if ((fd = open_procfile(pid, O_RDONLY, "status")) < 0)
265 return (-ESRCH);

267 if (read(fd, psp, sizeof (pstatus_t)) != sizeof (pstatus_t)) {
268 (void) close(fd);
269 return (-EIO);
270 }

272 (void) close(fd);

274 return (0);
275 }

277 static int
278 get_lwpstatus(pid_t pid, lwpid_t lwpid, lwpstatus_t *lsp)
279 {
280 int fd;

282 if ((fd = open_lwpfile(pid, lwpid, O_RDONLY, "lwpstatus")) < 0)
283 return (-ESRCH);

285 if (read(fd, lsp, sizeof (lwpstatus_t)) != sizeof (lwpstatus_t)) {
286 (void) close(fd);
287 return (-EIO);
288 }

290 (void) close(fd);

292 return (0);
293 }

295 static uintptr_t
296 syscall_regs(int fd, uintptr_t fp, pid_t pid)
297 {
298 uintptr_t addr, done;
299 struct frame fr;
300 auxv_t auxv;
301 int afd;
302 Elf32_Phdr phdr;

304 /*
305 * Try to walk the stack looking for a return address that corresponds
306 * to the traced process’s lx_emulate_done symbol. This relies on the
307 * fact that the brand library in the traced process is the same as the
308 * brand library in this process (indeed, this is true of all processes
309 * in a given branded zone).
310 */

312 /*
313 * Find the base address for the brand library in the traced process
314 * by grabbing the AT_PHDR auxv entry, reading in the program header
315 * at that location and subtracting off the p_vaddr member. We use
316 * this to compute the location of lx_emulate done in the traced
317 * process.
318 */
319 if ((afd = open_procfile(pid, O_RDONLY, "auxv")) < 0)
320 return (0);

322 do {
323 if (read(afd, &auxv, sizeof (auxv)) != sizeof (auxv)) {
324 (void) close(afd);

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 6

325 return (0);
326 }
327 } while (auxv.a_type != AT_PHDR);

329 (void) close(afd);

331 if (pread(fd, &phdr, sizeof (phdr), auxv.a_un.a_val) != sizeof (phdr)) {
332 lx_debug("failed to read brand library’s phdr");
333 return (0);
334 }

336 addr = auxv.a_un.a_val - phdr.p_vaddr;
337 done = (uintptr_t)&lx_emulate_done - (uintptr_t)&_START_ + addr;

339 fr.fr_savfp = fp;

341 do {
342 addr = fr.fr_savfp;
343 if (pread(fd, &fr, sizeof (fr), addr) != sizeof (fr)) {
344 lx_debug("ptrace read failed for stack walk");
345 return (0);
346 }

348 if (addr >= fr.fr_savfp) {
349 lx_debug("ptrace stack not monotonically increasing "
350 "%p %p (%p)", addr, fr.fr_savfp, done);
351 return (0);
352 }
353 } while (fr.fr_savpc != done);

355 /*
356 * The first argument to lx_emulate is known to be an lx_regs_t
357 * structure and the ABI specifies that it will be placed on the stack
358 * immediately preceeding the return address.
359 */
360 addr += sizeof (fr);
361 if (pread(fd, &addr, sizeof (addr), addr) != sizeof (addr)) {
362 lx_debug("ptrace stack failed to read register set address");
363 return (0);
364 }

366 return (addr);
367 }

369 static int
370 getregs(pid_t pid, lwpid_t lwpid, lx_user_regs_t *rp)
371 {
372 lwpstatus_t status;
373 uintptr_t addr;
374 int fd, ret;

376 if ((ret = get_lwpstatus(pid, lwpid, &status)) != 0)
377 return (ret);

379 if ((fd = open_procfile(pid, O_RDONLY, "as")) < 0)
380 return (-ESRCH);

382 /*
383 * If we find the syscall regs (and are therefore in an emulated
384 * syscall, use the register set at given address. Otherwise, use the
385 * registers as reported by /proc.
386 */
387 if ((addr = syscall_regs(fd, status.pr_reg[EBP], pid)) != 0) {
388 lx_regs_t regs;

390 if (pread(fd, ®s, sizeof (regs), addr) != sizeof (regs)) {

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 7

391 (void) close(fd);
392 lx_debug("ptrace failed to read register set");
393 return (-EIO);
394 }

396 (void) close(fd);

398 rp->lxur_ebx = regs.lxr_ebx;
399 rp->lxur_ecx = regs.lxr_ecx;
400 rp->lxur_edx = regs.lxr_edx;
401 rp->lxur_esi = regs.lxr_esi;
402 rp->lxur_edi = regs.lxr_edi;
403 rp->lxur_ebp = regs.lxr_ebp;
404 rp->lxur_eax = regs.lxr_eax;
405 rp->lxur_xds = status.pr_reg[DS];
406 rp->lxur_xes = status.pr_reg[ES];
407 rp->lxur_xfs = status.pr_reg[FS];
408 rp->lxur_xgs = regs.lxr_gs;
409 rp->lxur_orig_eax = regs.lxr_orig_eax;
410 rp->lxur_eip = regs.lxr_eip;
411 rp->lxur_xcs = status.pr_reg[CS];
412 rp->lxur_eflags = status.pr_reg[EFL];
413 rp->lxur_esp = regs.lxr_esp;
414 rp->lxur_xss = status.pr_reg[SS];

416 } else {
417 (void) close(fd);

419 rp->lxur_ebx = status.pr_reg[EBX];
420 rp->lxur_ecx = status.pr_reg[ECX];
421 rp->lxur_edx = status.pr_reg[EDX];
422 rp->lxur_esi = status.pr_reg[ESI];
423 rp->lxur_edi = status.pr_reg[EDI];
424 rp->lxur_ebp = status.pr_reg[EBP];
425 rp->lxur_eax = status.pr_reg[EAX];
426 rp->lxur_xds = status.pr_reg[DS];
427 rp->lxur_xes = status.pr_reg[ES];
428 rp->lxur_xfs = status.pr_reg[FS];
429 rp->lxur_xgs = status.pr_reg[GS];
430 rp->lxur_orig_eax = 0;
431 rp->lxur_eip = status.pr_reg[EIP];
432 rp->lxur_xcs = status.pr_reg[CS];
433 rp->lxur_eflags = status.pr_reg[EFL];
434 rp->lxur_esp = status.pr_reg[UESP];
435 rp->lxur_xss = status.pr_reg[SS];

437 /*
438 * If the target process has just returned from exec, it’s not
439 * going to be sitting in the emulation function. In that case
440 * we need to manually fake up the values for %eax and orig_eax
441 * to indicate a successful return and that the traced process
442 * had called execve (respectively).
443 */
444 if (status.pr_why == PR_SYSEXIT &&
445 status.pr_what == SYS_execve) {
446 rp->lxur_eax = 0;
447 rp->lxur_orig_eax = LX_SYS_execve;
448 }
449 }

451 return (0);
452 }

454 static int
455 setregs(pid_t pid, lwpid_t lwpid, const lx_user_regs_t *rp)
456 {

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 8

457 long ctl[1 + sizeof (prgregset_t) / sizeof (long)];
458 lwpstatus_t status;
459 uintptr_t addr;
460 int fd, ret;

462 if ((ret = get_lwpstatus(pid, lwpid, &status)) != 0)
463 return (ret);

465 if ((fd = open_procfile(pid, O_RDWR, "as")) < 0)
466 return (-ESRCH);

468 /*
469 * If we find the syscall regs (and are therefore in an emulated
470 * syscall, modify the register set at given address and set the
471 * remaining registers through the /proc interface. Otherwise just use
472 * the /proc interface to set register values;
473 */
474 if ((addr = syscall_regs(fd, status.pr_reg[EBP], pid)) != 0) {
475 lx_regs_t regs;

477 regs.lxr_ebx = rp->lxur_ebx;
478 regs.lxr_ecx = rp->lxur_ecx;
479 regs.lxr_edx = rp->lxur_edx;
480 regs.lxr_esi = rp->lxur_esi;
481 regs.lxr_edi = rp->lxur_edi;
482 regs.lxr_ebp = rp->lxur_ebp;
483 regs.lxr_eax = rp->lxur_eax;
484 regs.lxr_gs = rp->lxur_xgs;
485 regs.lxr_orig_eax = rp->lxur_orig_eax;
486 regs.lxr_eip = rp->lxur_eip;
487 regs.lxr_esp = rp->lxur_esp;

489 if (pwrite(fd, ®s, sizeof (regs), addr) != sizeof (regs)) {
490 (void) close(fd);
491 lx_debug("ptrace failed to write register set");
492 return (-EIO);
493 }

495 (void) close(fd);

497 status.pr_reg[DS] = rp->lxur_xds;
498 status.pr_reg[ES] = rp->lxur_xes;
499 status.pr_reg[FS] = rp->lxur_xfs;
500 status.pr_reg[CS] = rp->lxur_xcs;
501 status.pr_reg[EFL] = rp->lxur_eflags;
502 status.pr_reg[SS] = rp->lxur_xss;

504 } else {
505 (void) close(fd);

507 status.pr_reg[EBX] = rp->lxur_ebx;
508 status.pr_reg[ECX] = rp->lxur_ecx;
509 status.pr_reg[EDX] = rp->lxur_edx;
510 status.pr_reg[ESI] = rp->lxur_esi;
511 status.pr_reg[EDI] = rp->lxur_edi;
512 status.pr_reg[EBP] = rp->lxur_ebp;
513 status.pr_reg[EAX] = rp->lxur_eax;
514 status.pr_reg[DS] = rp->lxur_xds;
515 status.pr_reg[ES] = rp->lxur_xes;
516 status.pr_reg[FS] = rp->lxur_xfs;
517 status.pr_reg[GS] = rp->lxur_xgs;
518 status.pr_reg[EIP] = rp->lxur_eip;
519 status.pr_reg[CS] = rp->lxur_xcs;
520 status.pr_reg[EFL] = rp->lxur_eflags;
521 status.pr_reg[UESP] = rp->lxur_esp;
522 status.pr_reg[SS] = rp->lxur_xss;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 9

523 status.pr_reg[SS] = rp->lxur_xss;
524 }

526 if ((fd = open_lwpfile(pid, lwpid, O_WRONLY, "lwpctl")) < 0)
527 return (-ESRCH);

529 ctl[0] = PCSREG;
530 bcopy(status.pr_reg, &ctl[1], sizeof (prgregset_t));

532 if (write(fd, &ctl, sizeof (ctl)) != sizeof (ctl)) {
533 (void) close(fd);
534 return (-EIO);
535 }

537 (void) close(fd);

539 return (0);
540 }

542 static int
543 getfpregs(pid_t pid, lwpid_t lwpid, lx_user_fpregs_t *rp)
544 {
545 lwpstatus_t status;
546 struct _fpstate *fp;
547 char *data;
548 int ret, i;

550 if ((ret = get_lwpstatus(pid, lwpid, &status)) != 0)
551 return (ret);

553 fp = (struct _fpstate *)&status.pr_fpreg.fp_reg_set.fpchip_state;

555 rp->lxuf_cwd = fp->cw;
556 rp->lxuf_swd = fp->sw;
557 rp->lxuf_twd = fp->tag;
558 rp->lxuf_fip = fp->ipoff;
559 rp->lxuf_fcs = fp->cssel;
560 rp->lxuf_foo = fp->dataoff;
561 rp->lxuf_fos = fp->datasel;

563 /*
564 * The Linux structure uses 10 bytes per floating-point register.
565 */
566 data = (char *)&rp->lxuf_st_space[0];
567 for (i = 0; i < 8; i++) {
568 bcopy(&fp->_st[i], data, 10);
569 data += 10;
570 }

572 return (0);
573 }

575 static int
576 setfpregs(pid_t pid, lwpid_t lwpid, const lx_user_fpregs_t *rp)
577 {
578 lwpstatus_t status;
579 struct {
580 long cmd;
581 prfpregset_t regs;
582 } ctl;
583 struct _fpstate *fp = (struct _fpstate *)&ctl.regs;
584 char *data;
585 int ret, i, fd;

587 if ((ret = get_lwpstatus(pid, lwpid, &status)) != 0)
588 return (ret);

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 10

590 bcopy(&status.pr_fpreg, &ctl.regs, sizeof (ctl.regs));

592 fp->cw = rp->lxuf_cwd;
593 fp->sw = rp->lxuf_swd;
594 fp->tag = rp->lxuf_twd;
595 fp->ipoff = rp->lxuf_fip;
596 fp->cssel = rp->lxuf_fcs;
597 fp->dataoff = rp->lxuf_foo;
598 fp->datasel = rp->lxuf_fos;

600 /*
601 * The Linux structure uses 10 bytes per floating-point register.
602 */
603 data = (char *)&rp->lxuf_st_space[0];
604 for (i = 0; i < 8; i++) {
605 bcopy(data, &fp->_st[i], 10);
606 data += 10;
607 }

609 if ((fd = open_lwpfile(pid, lwpid, O_WRONLY, "lwpctl")) < 0)
610 return (-ESRCH);

612 ctl.cmd = PCSFPREG;
613 if (write(fd, &ctl, sizeof (ctl)) != sizeof (ctl)) {
614 (void) close(fd);
615 return (-EIO);
616 }

618 (void) close(fd);

620 return (0);
621 }

624 static int
625 getfpxregs(pid_t pid, lwpid_t lwpid, lx_user_fpxregs_t *rp)
626 {
627 lwpstatus_t status;
628 struct _fpstate *fp;
629 int ret, i;

631 if ((ret = get_lwpstatus(pid, lwpid, &status)) != 0)
632 return (ret);

634 fp = (struct _fpstate *)&status.pr_fpreg.fp_reg_set.fpchip_state;

636 rp->lxux_cwd = (uint16_t)fp->cw;
637 rp->lxux_swd = (uint16_t)fp->sw;
638 rp->lxux_twd = (uint16_t)fp->tag;
639 rp->lxux_fop = (uint16_t)(fp->cssel >> 16);
640 rp->lxux_fip = fp->ipoff;
641 rp->lxux_fcs = (uint16_t)fp->cssel;
642 rp->lxux_foo = fp->dataoff;
643 rp->lxux_fos = fp->datasel;
644 rp->lxux_mxcsr = status.pr_fpreg.fp_reg_set.fpchip_state.mxcsr;

646 bcopy(fp->xmm, rp->lxux_xmm_space, sizeof (rp->lxux_xmm_space));
647 bzero(rp->lxux_st_space, sizeof (rp->lxux_st_space));
648 for (i = 0; i < 8; i++) {
649 bcopy(&fp->_st[i], &rp->lxux_st_space[i * 4],
650 sizeof (fp->_st[i]));
651 }

653 return (0);
654 }

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 11

656 static int
657 setfpxregs(pid_t pid, lwpid_t lwpid, const lx_user_fpxregs_t *rp)
658 {
659 lwpstatus_t status;
660 struct {
661 long cmd;
662 prfpregset_t regs;
663 } ctl;
664 struct _fpstate *fp = (struct _fpstate *)&ctl.regs;
665 int ret, i, fd;

667 if ((ret = get_lwpstatus(pid, lwpid, &status)) != 0)
668 return (ret);

670 bcopy(&status.pr_fpreg, &ctl.regs, sizeof (ctl.regs));

672 fp->cw = rp->lxux_cwd;
673 fp->sw = rp->lxux_swd;
674 fp->tag = rp->lxux_twd;
675 fp->ipoff = rp->lxux_fip;
676 fp->cssel = rp->lxux_fcs | (rp->lxux_fop << 16);
677 fp->dataoff = rp->lxux_foo;
678 fp->datasel = rp->lxux_fos;

680 bcopy(rp->lxux_xmm_space, fp->xmm, sizeof (rp->lxux_xmm_space));
681 for (i = 0; i < 8; i++) {
682 bcopy(&rp->lxux_st_space[i * 4], &fp->_st[i],
683 sizeof (fp->_st[i]));
684 }

686 if ((fd = open_lwpfile(pid, lwpid, O_WRONLY, "lwpctl")) < 0)
687 return (-ESRCH);

689 ctl.cmd = PCSFPREG;
690 if (write(fd, &ctl, sizeof (ctl)) != sizeof (ctl)) {
691 (void) close(fd);
692 return (-EIO);
693 }

695 (void) close(fd);

697 return (0);
698 }

700 /*
701 * Solaris does not allow a process to manipulate its own or some
702 * other process’s debug registers. Linux ptrace(2) allows this
703 * and gdb manipulates them for its watchpoint implementation.
704 *
705 * We keep a pseudo set of debug registers for each traced process
706 * and map their contents into the appropriate PCWATCH /proc
707 * operations when they are activated by gdb.
708 *
709 * To understand how the debug registers work on x86 machines,
710 * see section 13.1 of the AMD x86-64 Architecture Programmer’s
711 * Manual, Volume 2, System Programming.
712 */
713 static uintptr_t *
714 debug_registers(pid_t pid)
715 {
716 ptrace_state_map_t *p;

718 (void) mutex_lock(&ptrace_map_mtx);
719 for (p = ptrace_state_map; p != NULL; p = p->psm_next) {
720 if (p->psm_pid == pid)

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 12

721 break;
722 }
723 if (p == NULL && (p = malloc(sizeof (*p))) != NULL) {
724 bzero(p, sizeof (*p));
725 p->psm_pid = pid;
726 p->psm_next = ptrace_state_map;
727 p->psm_debugreg[6] = 0xffff0ff0; /* read as ones */
728 ptrace_state_map = p;
729 }
730 (void) mutex_unlock(&ptrace_map_mtx);
731 return (p != NULL? p->psm_debugreg : NULL);
732 }

734 static void
735 free_debug_registers(pid_t pid)
736 {
737 ptrace_state_map_t **pp;
738 ptrace_state_map_t *p;

740 /* ASSERT(MUTEX_HELD(&ptrace_map_mtx) */
741 for (pp = &ptrace_state_map; (p = *pp) != NULL; pp = &p->psm_next) {
742 if (p->psm_pid == pid) {
743 *pp = p->psm_next;
744 free(p);
745 break;
746 }
747 }
748 }

750 static int
751 setup_watchpoints(pid_t pid, uintptr_t *debugreg)
752 {
753 int dr7 = debugreg[7];
754 int lrw;
755 int fd;
756 size_t size = NULL;
757 prwatch_t prwatch[4];
758 int nwatch;
759 int i;
760 int wflags = NULL;
761 int error;
762 struct {
763 long req;
764 prwatch_t prwatch;
765 } ctl;

767 /* find all watched areas */
768 if ((fd = open_procfile(pid, O_RDONLY, "watch")) < 0)
769 return (-ESRCH);
770 nwatch = read(fd, prwatch, sizeof (prwatch)) / sizeof (prwatch_t);
771 (void) close(fd);
772 if ((fd = open_procfile(pid, O_WRONLY, "ctl")) < 0)
773 return (-ESRCH);
774 /* clear all watched areas */
775 for (i = 0; i < nwatch; i++) {
776 ctl.req = PCWATCH;
777 ctl.prwatch = prwatch[i];
778 ctl.prwatch.pr_wflags = 0;
779 if (write(fd, &ctl, sizeof (ctl)) != sizeof (ctl)) {
780 error = -errno;
781 (void) close(fd);
782 return (error);
783 }
784 }
785 /* establish all new watched areas */
786 for (i = 0; i < 4; i++) {

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 13

787 if ((dr7 & (1 << (2 * i))) == 0) /* enabled? */
788 continue;
789 lrw = (dr7 >> (16 + (4 * i))) & 0xf;
790 switch (lrw >> 2) { /* length */
791 case 0: size = 1; break;
792 case 1: size = 2; break;
793 case 2: size = 8; break;
794 case 3: size = 4; break;
795 }
796 switch (lrw & 0x3) { /* mode */
797 case 0: wflags = WA_EXEC; break;
798 case 1: wflags = WA_WRITE; break;
799 case 2: continue;
800 case 3: wflags = WA_READ | WA_WRITE; break;
801 }
802 ctl.req = PCWATCH;
803 ctl.prwatch.pr_vaddr = debugreg[i];
804 ctl.prwatch.pr_size = size;
805 ctl.prwatch.pr_wflags = wflags | WA_TRAPAFTER;
806 if (write(fd, &ctl, sizeof (ctl)) != sizeof (ctl)) {
807 error = -errno;
808 (void) close(fd);
809 return (error);
810 }
811 }
812 (void) close(fd);
813 return (0);
814 }

816 /*
817 * Returns TRUE if the process is traced, FALSE otherwise. This is only true
818 * if the process is currently stopped, and has been traced using PTRACE_TRACEME
819 * or PTRACE_ATTACH.
820 */
821 static int
822 is_traced(pid_t pid)
823 {
824 ptrace_monitor_map_t *p;
825 pstatus_t status;

827 if (get_status(pid, &status) != 0)
828 return (0);

830 if ((status.pr_flags & PR_PTRACE) &&
831 (status.pr_ppid == getpid()) &&
832 (status.pr_lwp.pr_flags & PR_ISTOP))
833 return (1);

835 (void) mutex_lock(&ptrace_map_mtx);
836 for (p = ptrace_monitor_map; p != NULL; p = p->pmm_next) {
837 if (p->pmm_target == pid) {
838 (void) mutex_unlock(&ptrace_map_mtx);
839 return (1);
840 }
841 }
842 (void) mutex_unlock(&ptrace_map_mtx);

844 return (0);
845 }

847 static int
848 ptrace_trace_common(int fd)
849 {
850 struct {
851 long cmd;
852 union {

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 14

853 long flags;
854 sigset_t signals;
855 fltset_t faults;
856 } arg;
857 } ctl;
858 size_t size;

860 ctl.cmd = PCSTRACE;
861 prfillset(&ctl.arg.signals);
862 size = sizeof (long) + sizeof (sigset_t);
863 if (write(fd, &ctl, size) != size)
864 return (-1);

866 ctl.cmd = PCSFAULT;
867 premptyset(&ctl.arg.faults);
868 size = sizeof (long) + sizeof (fltset_t);
869 if (write(fd, &ctl, size) != size)
870 return (-1);

872 ctl.cmd = PCUNSET;
873 ctl.arg.flags = PR_FORK;
874 size = sizeof (long) + sizeof (long);
875 if (write(fd, &ctl, size) != size)
876 return (-1);

878 return (0);
879 }

881 /*
882 * Notify that parent that we wish to be traced. This is the equivalent of:
883 *
884 * 1. Stop on all signals, and nothing else
885 * 2. Turn off inherit-on-fork flag
886 * 3. Set ptrace compatible flag
887 *
888 * If we are not the main thread, then the client is trying to request behavior
889 * by which one of its own thread is to be traced. We don’t support this mode
890 * of operation.
891 */
892 static int
893 ptrace_traceme(void)
894 {
895 int fd, ret;
896 int error;
897 long ctl[2];
898 pstatus_t status;
899 pid_t pid = getpid();

901 if (_lwp_self() != 1) {
902 lx_unsupported(gettext(
903 "thread %d calling PTRACE_TRACEME is unsupported"),
904 _lwp_self());
905 return (-ENOTSUP);
906 }

908 if ((ret = get_status(pid, &status)) != 0)
909 return (ret);

911 /*
912 * Why would a process try to do this twice? I’m not sure, but there’s
913 * a conformance test which wants this to fail just so.
914 */
915 if (status.pr_flags & PR_PTRACE)
916 return (-EPERM);

918 if ((fd = open_procfile(pid, O_WRONLY, "ctl")) < 0)

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 15

919 return (-errno);

921 ctl[0] = PCSET;
922 ctl[1] = PR_PTRACE;
923 error = 0;
924 if (write(fd, ctl, sizeof (ctl)) != sizeof (ctl) ||
925 ptrace_trace_common(fd) != 0)
926 error = -errno;

928 (void) close(fd);
929 return (error);
930 }

932 /*
933 * Read a word of data from the given address. Because this is a process-wide
934 * action, we don’t need the lwpid.
935 */
936 static int
937 ptrace_peek(pid_t pid, uintptr_t addr, int *ret)
938 {
939 int fd, data;

941 if (!is_traced(pid))
942 return (-ESRCH);

944 if ((fd = open_procfile(pid, O_RDONLY, "as")) < 0)
945 return (-ESRCH);

947 if (pread(fd, &data, sizeof (data), addr) != sizeof (data)) {
948 (void) close(fd);
949 return (-EIO);
950 }

952 (void) close(fd);

954 if (uucopy(&data, ret, sizeof (data)) != 0)
955 return (-errno);

957 return (0);
958 }

960 #define LX_USER_BOUND(m) \
961 (offsetof(lx_user_t, m) + sizeof (((lx_user_t *)NULL)->m))

963 static int
964 ptrace_peek_user(pid_t pid, lwpid_t lwpid, uintptr_t off, int *ret)
965 {
966 int err, data;
967 uintptr_t *debugreg;
968 int dreg;

970 if (!is_traced(pid))
971 return (-ESRCH);

973 /*
974 * The offset specified by the user is an offset into the Linux
975 * user structure (seriously). Rather than constructing a full
976 * user structure, we figure out which part of the user structure
977 * the offset is in, and fill in just that component.
978 */
979 if (off < LX_USER_BOUND(lxu_regs)) {
980 lx_user_regs_t regs;

982 if ((err = getregs(pid, lwpid, ®s)) != 0)
983 return (err);

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 16

985 data = *(int *)((uintptr_t)®s + off -
986 offsetof(lx_user_t, lxu_regs));

988 } else if (off < LX_USER_BOUND(lxu_fpvalid)) {
989 lx_err(gettext("offset = %lu\n"), off);
990 assert(0);
991 } else if (off < LX_USER_BOUND(lxu_i387)) {
992 lx_user_fpregs_t regs;

994 if ((err = getfpregs(pid, lwpid, ®s)) != 0)
995 return (err);

997 data = *(int *)((uintptr_t)®s + off -
998 offsetof(lx_user_t, lxu_i387));

1000 } else if (off < LX_USER_BOUND(lxu_tsize)) {
1001 lx_err(gettext("offset = %lu\n"), off);
1002 assert(0);
1003 } else if (off < LX_USER_BOUND(lxu_dsize)) {
1004 lx_err(gettext("offset = %lu\n"), off);
1005 assert(0);
1006 } else if (off < LX_USER_BOUND(lxu_ssize)) {
1007 lx_err(gettext("offset = %lu\n"), off);
1008 assert(0);
1009 } else if (off < LX_USER_BOUND(lxu_start_code)) {
1010 lx_err(gettext("offset = %lu\n"), off);
1011 assert(0);
1012 } else if (off < LX_USER_BOUND(lxu_start_stack)) {
1013 lx_err(gettext("offset = %lu\n"), off);
1014 assert(0);
1015 } else if (off < LX_USER_BOUND(lxu_signal)) {
1016 lx_err(gettext("offset = %lu\n"), off);
1017 assert(0);
1018 } else if (off < LX_USER_BOUND(lxu_reserved)) {
1019 lx_err(gettext("offset = %lu\n"), off);
1020 assert(0);
1021 } else if (off < LX_USER_BOUND(lxu_ar0)) {
1022 lx_err(gettext("offset = %lu\n"), off);
1023 assert(0);
1024 } else if (off < LX_USER_BOUND(lxu_fpstate)) {
1025 lx_err(gettext("offset = %lu\n"), off);
1026 assert(0);
1027 } else if (off < LX_USER_BOUND(lxu_magic)) {
1028 lx_err(gettext("offset = %lu\n"), off);
1029 assert(0);
1030 } else if (off < LX_USER_BOUND(lxu_comm)) {
1031 lx_err(gettext("offset = %lu\n"), off);
1032 assert(0);
1033 } else if (off < LX_USER_BOUND(lxu_debugreg)) {
1034 dreg = (off - offsetof(lx_user_t, lxu_debugreg)) / sizeof (int);
1035 if (dreg == 4) /* aliased */
1036 dreg = 6;
1037 else if (dreg == 5) /* aliased */
1038 dreg = 7;
1039 if ((debugreg = debug_registers(pid)) != NULL)
1040 data = debugreg[dreg];
1041 else
1042 data = 0;
1043 } else {
1044 lx_unsupported(gettext(
1045 "unsupported ptrace %s user offset: 0x%x\n"), "peek", off);
1046 assert(0);
1047 return (-ENOTSUP);
1048 }

1050 if (uucopy(&data, ret, sizeof (data)) != 0)

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 17

1051 return (-errno);

1053 return (0);
1054 }

1056 /*
1057 * Write a word of data to the given address. Because this is a process-wide
1058 * action, we don’t need the lwpid. Returns EINVAL if the address is not
1059 * word-aligned.
1060 */
1061 static int
1062 ptrace_poke(pid_t pid, uintptr_t addr, int data)
1063 {
1064 int fd;

1066 if (!is_traced(pid))
1067 return (-ESRCH);

1069 if (addr & 0x3)
1070 return (-EINVAL);

1072 if ((fd = open_procfile(pid, O_WRONLY, "as")) < 0)
1073 return (-ESRCH);

1075 if (pwrite(fd, &data, sizeof (data), addr) != sizeof (data)) {
1076 (void) close(fd);
1077 return (-EIO);
1078 }

1080 (void) close(fd);
1081 return (0);
1082 }

1084 static int
1085 ptrace_poke_user(pid_t pid, lwpid_t lwpid, uintptr_t off, int data)
1086 {
1087 lx_user_regs_t regs;
1088 int err = 0;
1089 uintptr_t *debugreg;
1090 int dreg;

1092 if (!is_traced(pid))
1093 return (-ESRCH);

1095 if (off & 0x3)
1096 return (-EINVAL);

1098 if (off < offsetof(lx_user_t, lxu_regs) + sizeof (lx_user_regs_t)) {
1099 if ((err = getregs(pid, lwpid, ®s)) != 0)
1100 return (err);
1101 *(int *)((uintptr_t)®s + off -
1102 offsetof(lx_user_t, lxu_regs)) = data;
1103 return (setregs(pid, lwpid, ®s));
1104 }

1106 if (off >= offsetof(lx_user_t, lxu_debugreg) &&
1107 off < offsetof(lx_user_t, lxu_debugreg) + 8 * sizeof (int)) {
1108 dreg = (off - offsetof(lx_user_t, lxu_debugreg)) / sizeof (int);
1109 if (dreg == 4) /* aliased */
1110 dreg = 6;
1111 else if (dreg == 5) /* aliased */
1112 dreg = 7;
1113 if ((debugreg = debug_registers(pid)) != NULL) {
1114 debugreg[dreg] = data;
1115 if (dreg == 7)
1116 err = setup_watchpoints(pid, debugreg);

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 18

1117 }
1118 return (err);
1119 }

1121 lx_unsupported(gettext("unsupported ptrace %s user offset: 0x%x\n"),
1122 "poke", off);
1123 assert(0);
1124 return (-ENOTSUP);
1125 }

1127 static int
1128 ptrace_cont_common(int fd, int sig, int run, int step)
1129 {
1130 long ctl[1 + 1 + sizeof (siginfo_t) / sizeof (long) + 2];
1131 long *ctlp = ctl;
1132 size_t size;

1134 assert(0 <= sig && sig < LX_NSIG);
1135 assert(!step || run);

1137 /*
1138 * Clear the current signal.
1139 */
1140 *ctlp++ = PCCSIG;

1142 /*
1143 * Send a signal if one was specified.
1144 */
1145 if (sig != 0 && sig != LX_SIGSTOP) {
1146 siginfo_t *infop;

1148 *ctlp++ = PCSSIG;
1149 infop = (siginfo_t *)ctlp;
1150 bzero(infop, sizeof (siginfo_t));
1151 infop->si_signo = ltos_signo[sig];

1153 ctlp += sizeof (siginfo_t) / sizeof (long);
1154 }

1156 /*
1157 * If run is true, set the lwp running.
1158 */
1159 if (run) {
1160 *ctlp++ = PCRUN;
1161 *ctlp++ = step ? PRSTEP : 0;
1162 }

1164 size = (char *)ctlp - (char *)&ctl[0];
1165 assert(size <= sizeof (ctl));

1167 if (write(fd, ctl, size) != size) {
1168 lx_debug("failed to continue %s", strerror(errno));
1169 return (-EIO);
1170 }

1172 return (0);
1173 }

1175 static int
1176 ptrace_cont_monitor(ptrace_monitor_map_t *p)
1177 {
1178 long ctl[2];
1179 int fd;

1181 fd = open_procfile(p->pmm_monitor, O_WRONLY, "ctl");
1182 if (fd < 0) {

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 19

1183 lx_debug("failed to open monitor ctl %d",
1184 errno);
1185 return (-EIO);
1186 }

1188 ctl[0] = PCRUN;
1189 ctl[1] = PRCSIG;
1190 if (write(fd, ctl, sizeof (ctl)) != sizeof (ctl)) {
1191 (void) close(fd);
1192 return (-EIO);
1193 }

1195 (void) close(fd);

1197 return (0);
1198 }

1200 static int
1201 ptrace_cont(pid_t lxpid, pid_t pid, lwpid_t lwpid, int sig, int step)
1202 {
1203 ptrace_monitor_map_t *p;
1204 uintptr_t *debugreg;
1205 int fd, ret;

1207 if (!is_traced(pid))
1208 return (-ESRCH);

1210 if (sig < 0 || sig >= LX_NSIG)
1211 return (-EINVAL);

1213 if ((fd = open_lwpfile(pid, lwpid, O_WRONLY, "lwpctl")) < 0)
1214 return (-ESRCH);

1216 if ((ret = ptrace_cont_common(fd, sig, 1, step)) != 0) {
1217 (void) close(fd);
1218 return (ret);
1219 }

1221 (void) close(fd);

1223 /* kludge: use debugreg[4] to remember the single-step flag */
1224 if ((debugreg = debug_registers(pid)) != NULL)
1225 debugreg[4] = step;

1227 /*
1228 * Check for a monitor and get it moving if we find it. If any of the
1229 * /proc operations fail, we’re kind of sunk so just return an error.
1230 */
1231 (void) mutex_lock(&ptrace_map_mtx);
1232 for (p = ptrace_monitor_map; p != NULL; p = p->pmm_next) {
1233 if (p->pmm_target == lxpid) {
1234 if ((ret = ptrace_cont_monitor(p)) != 0)
1235 return (ret);
1236 break;
1237 }
1238 }
1239 (void) mutex_unlock(&ptrace_map_mtx);

1241 return (0);
1242 }

1244 /*
1245 * If a monitor exists for this traced process, dispose of it.
1246 * First turn off its ptrace flag so we won’t be notified of its
1247 * impending demise. We ignore errors for this step since they
1248 * indicate only that the monitor has been damaged due to pilot

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 20

1249 * error. Then kill the monitor, and wait for it. If the wait
1250 * succeeds we can dispose of the corpse, otherwise another thread’s
1251 * wait call has collected it and we need to set a flag in the
1252 * structure so that if can be picked up in wait.
1253 */
1254 static void
1255 monitor_kill(pid_t lxpid, pid_t pid)
1256 {
1257 ptrace_monitor_map_t *p, **pp;
1258 pid_t mpid;
1259 int fd;
1260 long ctl[2];

1262 (void) mutex_lock(&ptrace_map_mtx);
1263 free_debug_registers(pid);
1264 for (pp = &ptrace_monitor_map; (p = *pp) != NULL; pp = &p->pmm_next) {
1265 if (p->pmm_target == lxpid) {
1266 mpid = p->pmm_monitor;
1267 if ((fd = open_procfile(mpid, O_WRONLY, "ctl")) >= 0) {
1268 ctl[0] = PCUNSET;
1269 ctl[1] = PR_PTRACE;
1270 (void) write(fd, ctl, sizeof (ctl));
1271 (void) close(fd);
1272 }

1274 (void) kill(mpid, SIGKILL);

1276 if (waitpid(mpid, NULL, 0) == mpid) {
1277 *pp = p->pmm_next;
1278 free(p);
1279 } else {
1280 p->pmm_exiting = 1;
1281 }

1283 break;
1284 }
1285 }
1286 (void) mutex_unlock(&ptrace_map_mtx);
1287 }

1289 static int
1290 ptrace_kill(pid_t lxpid, pid_t pid)
1291 {
1292 int ret;

1294 if (!is_traced(pid))
1295 return (-ESRCH);

1297 ret = kill(pid, SIGKILL);

1299 /* kill off the monitor process, if any */
1300 monitor_kill(lxpid, pid);

1302 return (ret);
1303 }

1305 static int
1306 ptrace_step(pid_t lxpid, pid_t pid, lwpid_t lwpid, int sig)
1307 {
1308 return (ptrace_cont(lxpid, pid, lwpid, sig, 1));
1309 }

1311 static int
1312 ptrace_getregs(pid_t pid, lwpid_t lwpid, uintptr_t addr)
1313 {
1314 lx_user_regs_t regs;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 21

1315 int ret;

1317 if (!is_traced(pid))
1318 return (-ESRCH);

1320 if ((ret = getregs(pid, lwpid, ®s)) != 0)
1321 return (ret);

1323 if (uucopy(®s, (void *)addr, sizeof (regs)) != 0)
1324 return (-errno);

1326 return (0);
1327 }

1329 static int
1330 ptrace_setregs(pid_t pid, lwpid_t lwpid, uintptr_t addr)
1331 {
1332 lx_user_regs_t regs;

1334 if (!is_traced(pid))
1335 return (-ESRCH);

1337 if (uucopy((void *)addr, ®s, sizeof (regs)) != 0)
1338 return (-errno);

1340 return (setregs(pid, lwpid, ®s));
1341 }

1343 static int
1344 ptrace_getfpregs(pid_t pid, lwpid_t lwpid, uintptr_t addr)
1345 {
1346 lx_user_fpregs_t regs;
1347 int ret;

1349 if (!is_traced(pid))
1350 return (-ESRCH);

1352 if ((ret = getfpregs(pid, lwpid, ®s)) != 0)
1353 return (ret);

1355 if (uucopy(®s, (void *)addr, sizeof (regs)) != 0)
1356 return (-errno);

1358 return (0);
1359 }

1361 static int
1362 ptrace_setfpregs(pid_t pid, lwpid_t lwpid, uintptr_t addr)
1363 {
1364 lx_user_fpregs_t regs;

1366 if (!is_traced(pid))
1367 return (-ESRCH);

1369 if (uucopy((void *)addr, ®s, sizeof (regs)) != 0)
1370 return (-errno);

1372 return (setfpregs(pid, lwpid, ®s));
1373 }

1375 static int
1376 ptrace_getfpxregs(pid_t pid, lwpid_t lwpid, uintptr_t addr)
1377 {
1378 lx_user_fpxregs_t regs;
1379 int ret;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 22

1381 if (!is_traced(pid))
1382 return (-ESRCH);

1384 if ((ret = getfpxregs(pid, lwpid, ®s)) != 0)
1385 return (ret);

1387 if (uucopy(®s, (void *)addr, sizeof (regs)) != 0)
1388 return (-errno);

1390 return (0);
1391 }

1393 static int
1394 ptrace_setfpxregs(pid_t pid, lwpid_t lwpid, uintptr_t addr)
1395 {
1396 lx_user_fpxregs_t regs;

1398 if (!is_traced(pid))
1399 return (-ESRCH);

1401 if (uucopy((void *)addr, ®s, sizeof (regs)) != 0)
1402 return (-errno);

1404 return (setfpxregs(pid, lwpid, ®s));
1405 }

1407 static void __NORETURN
1408 ptrace_monitor(int fd)
1409 {
1410 struct {
1411 long cmd;
1412 union {
1413 long flags;
1414 sigset_t signals;
1415 fltset_t faults;
1416 } arg;
1417 } ctl;
1418 size_t size;
1419 int monfd;
1420 int rv;

1422 monfd = open_procfile(getpid(), O_WRONLY, "ctl");

1424 ctl.cmd = PCSTRACE; /* trace only SIGTRAP */
1425 premptyset(&ctl.arg.signals);
1426 praddset(&ctl.arg.signals, SIGTRAP);
1427 size = sizeof (long) + sizeof (sigset_t);
1428 (void) write(monfd, &ctl, size); /* can’t fail */

1430 ctl.cmd = PCSFAULT;
1431 premptyset(&ctl.arg.faults);
1432 size = sizeof (long) + sizeof (fltset_t);
1433 (void) write(monfd, &ctl, size); /* can’t fail */

1435 ctl.cmd = PCUNSET;
1436 ctl.arg.flags = PR_FORK;
1437 size = sizeof (long) + sizeof (long);
1438 (void) write(monfd, &ctl, size); /* can’t fail */

1440 ctl.cmd = PCSET; /* wait()able by the parent */
1441 ctl.arg.flags = PR_PTRACE;
1442 size = sizeof (long) + sizeof (long);
1443 (void) write(monfd, &ctl, size); /* can’t fail */

1445 (void) close(monfd);

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 23

1447 ctl.cmd = PCWSTOP;
1448 size = sizeof (long);

1450 for (;;) {
1451 /*
1452 * Wait for the traced process to stop.
1453 */
1454 if (write(fd, &ctl, size) != size) {
1455 rv = (errno == ENOENT)? 0 : 1;
1456 lx_debug("monitor failed to wait for LWP to stop: %s",
1457 strerror(errno));
1458 _exit(rv);
1459 }

1461 lx_debug("monitor caught traced LWP");

1463 /*
1464 * Pull the ptrace trigger by sending ourself a SIGTRAP. This
1465 * will cause this, the monitor process, to stop which will
1466 * cause the parent’s waitid(2) call to return this process
1467 * id. In lx_wait(), we remap the monitor process’s pid and
1468 * status to those of the traced LWP. When the parent process
1469 * uses ptrace to resume the traced LWP, it will additionally
1470 * restart this process.
1471 */
1472 (void) _lwp_kill(_lwp_self(), SIGTRAP);

1474 lx_debug("monitor was resumed");
1475 }
1476 }

1478 static int
1479 ptrace_attach_common(int fd, pid_t lxpid, pid_t pid, lwpid_t lwpid, int run)
1480 {
1481 pid_t child;
1482 ptrace_monitor_map_t *p;
1483 sigset_t unblock;
1484 pstatus_t status;
1485 long ctl[1 + sizeof (sysset_t) / sizeof (long) + 2];
1486 long *ctlp = ctl;
1487 size_t size;
1488 sysset_t *sysp;
1489 int ret;

1491 /*
1492 * We’re going to need this structure so better to fail now before its
1493 * too late to turn back.
1494 */
1495 if ((p = malloc(sizeof (ptrace_monitor_map_t))) == NULL)
1496 return (-EIO);

1498 if ((ret = get_status(pid, &status)) != 0) {
1499 free(p);
1500 return (ret);
1501 }

1503 /*
1504 * If this process is already traced, bail.
1505 */
1506 if (status.pr_flags & PR_PTRACE) {
1507 free(p);
1508 return (-EPERM);
1509 }

1511 /*
1512 * Turn on the appropriate tracing flags. It’s exceedingly unlikely

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 24

1513 * that this operation will fail; any failure would probably be due
1514 * to another /proc consumer mucking around.
1515 */
1516 if (ptrace_trace_common(fd) != 0) {
1517 free(p);
1518 return (-EIO);
1519 }

1521 /*
1522 * Native ptrace automatically catches processes when they exec so we
1523 * have to do that explicitly here.
1524 */
1525 *ctlp++ = PCSEXIT;
1526 sysp = (sysset_t *)ctlp;
1527 ctlp += sizeof (sysset_t) / sizeof (long);
1528 premptyset(sysp);
1529 praddset(sysp, SYS_execve);
1530 if (run) {
1531 *ctlp++ = PCRUN;
1532 *ctlp++ = 0;
1533 }

1535 size = (char *)ctlp - (char *)&ctl[0];

1537 if (write(fd, ctl, size) != size) {
1538 free(p);
1539 return (-EIO);
1540 }

1542 /*
1543 * Spawn the monitor proceses to notify this process of events of
1544 * interest in the traced process. We block signals here both so
1545 * we’re not interrupted during this operation and so that the
1546 * monitor process doesn’t accept signals.
1547 */
1548 (void) sigprocmask(SIG_BLOCK, &blockable_sigs, &unblock);
1549 if ((child = fork1()) == 0)
1550 ptrace_monitor(fd);
1551 (void) sigprocmask(SIG_SETMASK, &unblock, NULL);

1553 if (child == -1) {
1554 lx_debug("failed to fork monitor process\n");
1555 free(p);
1556 return (-EIO);
1557 }

1559 p->pmm_monitor = child;
1560 p->pmm_target = lxpid;
1561 p->pmm_pid = pid;
1562 p->pmm_lwpid = lwpid;
1563 p->pmm_exiting = 0;

1565 (void) mutex_lock(&ptrace_map_mtx);
1566 p->pmm_next = ptrace_monitor_map;
1567 ptrace_monitor_map = p;
1568 (void) mutex_unlock(&ptrace_map_mtx);

1570 return (0);
1571 }

1573 static int
1574 ptrace_attach(pid_t lxpid, pid_t pid, lwpid_t lwpid)
1575 {
1576 int fd, ret;
1577 long ctl;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 25

1579 /*
1580 * Linux doesn’t let you trace process 1 -- go figure.
1581 */
1582 if (lxpid == 1)
1583 return (-EPERM);

1585 if ((fd = open_lwpfile(pid, lwpid, O_WRONLY | O_EXCL, "lwpctl")) < 0)
1586 return (errno == EBUSY ? -EPERM : -ESRCH);

1588 ctl = PCSTOP;
1589 if (write(fd, &ctl, sizeof (ctl)) != sizeof (ctl)) {
1590 lx_err(gettext("failed to stop %d/%d\n"), (int)pid, (int)lwpid);
1591 assert(0);
1592 }

1594 ret = ptrace_attach_common(fd, lxpid, pid, lwpid, 0);

1596 (void) close(fd);

1598 return (ret);
1599 }

1601 static int
1602 ptrace_detach(pid_t lxpid, pid_t pid, lwpid_t lwpid, int sig)
1603 {
1604 long ctl[2];
1605 int fd, ret;

1607 if (!is_traced(pid))
1608 return (-ESRCH);

1610 if (sig < 0 || sig >= LX_NSIG)
1611 return (-EINVAL);

1613 if ((fd = open_lwpfile(pid, lwpid, O_WRONLY, "lwpctl")) < 0)
1614 return (-ESRCH);

1616 /*
1617 * The /proc ptrace flag may not be set, but we clear it
1618 * unconditionally since doing so doesn’t hurt anything.
1619 */
1620 ctl[0] = PCUNSET;
1621 ctl[1] = PR_PTRACE;
1622 if (write(fd, ctl, sizeof (ctl)) != sizeof (ctl)) {
1623 (void) close(fd);
1624 return (-EIO);
1625 }

1627 /*
1628 * Clear the brand-specific system call tracing flag to ensure that
1629 * the target doesn’t stop unexpectedly some time in the future.
1630 */
1631 if ((ret = syscall(SYS_brand, B_PTRACE_SYSCALL, pid, lwpid, 0)) != 0) {
1632 (void) close(fd);
1633 return (-ret);
1634 }

1636 /* kill off the monitor process, if any */
1637 monitor_kill(lxpid, pid);

1639 /*
1640 * Turn on the run-on-last-close flag so that all tracing flags will be
1641 * cleared when we close the control file descriptor.
1642 */
1643 ctl[0] = PCSET;
1644 ctl[1] = PR_RLC;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 26

1645 if (write(fd, ctl, sizeof (ctl)) != sizeof (ctl)) {
1646 (void) close(fd);
1647 return (-EIO);
1648 }

1650 /*
1651 * Clear the current signal (if any) and possibly send the traced
1652 * process a new signal.
1653 */
1654 ret = ptrace_cont_common(fd, sig, 0, 0);

1656 (void) close(fd);

1658 return (ret);
1659 }

1661 static int
1662 ptrace_syscall(pid_t lxpid, pid_t pid, lwpid_t lwpid, int sig)
1663 {
1664 int ret;

1666 if (!is_traced(pid))
1667 return (-ESRCH);

1669 if ((ret = syscall(SYS_brand, B_PTRACE_SYSCALL, pid, lwpid, 1)) != 0)
1670 return (-ret);

1672 return (ptrace_cont(lxpid, pid, lwpid, sig, 0));
1673 }

1675 int
1676 lx_ptrace(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4)
1677 {
1678 pid_t pid, lxpid = (pid_t)p2;
1679 lwpid_t lwpid;

1681 if ((p1 != LX_PTRACE_TRACEME) &&
1682 (lx_lpid_to_spair(lxpid, &pid, &lwpid) < 0))
1683 return (-ESRCH);

1685 switch (p1) {
1686 case LX_PTRACE_TRACEME:
1687 return (ptrace_traceme());

1689 case LX_PTRACE_PEEKTEXT:
1690 case LX_PTRACE_PEEKDATA:
1691 return (ptrace_peek(pid, p3, (int *)p4));

1693 case LX_PTRACE_PEEKUSER:
1694 return (ptrace_peek_user(pid, lwpid, p3, (int *)p4));

1696 case LX_PTRACE_POKETEXT:
1697 case LX_PTRACE_POKEDATA:
1698 return (ptrace_poke(pid, p3, (int)p4));

1700 case LX_PTRACE_POKEUSER:
1701 return (ptrace_poke_user(pid, lwpid, p3, (int)p4));

1703 case LX_PTRACE_CONT:
1704 return (ptrace_cont(lxpid, pid, lwpid, (int)p4, 0));

1706 case LX_PTRACE_KILL:
1707 return (ptrace_kill(lxpid, pid));

1709 case LX_PTRACE_SINGLESTEP:
1710 return (ptrace_step(lxpid, pid, lwpid, (int)p4));

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 27

1712 case LX_PTRACE_GETREGS:
1713 return (ptrace_getregs(pid, lwpid, p4));

1715 case LX_PTRACE_SETREGS:
1716 return (ptrace_setregs(pid, lwpid, p4));

1718 case LX_PTRACE_GETFPREGS:
1719 return (ptrace_getfpregs(pid, lwpid, p4));

1721 case LX_PTRACE_SETFPREGS:
1722 return (ptrace_setfpregs(pid, lwpid, p4));

1724 case LX_PTRACE_ATTACH:
1725 return (ptrace_attach(lxpid, pid, lwpid));

1727 case LX_PTRACE_DETACH:
1728 return (ptrace_detach(lxpid, pid, lwpid, (int)p4));

1730 case LX_PTRACE_GETFPXREGS:
1731 return (ptrace_getfpxregs(pid, lwpid, p4));

1733 case LX_PTRACE_SETFPXREGS:
1734 return (ptrace_setfpxregs(pid, lwpid, p4));

1736 case LX_PTRACE_SYSCALL:
1737 return (ptrace_syscall(lxpid, pid, lwpid, (int)p4));

1739 default:
1740 return (-EINVAL);
1741 }
1742 }

1744 void
1745 lx_ptrace_fork(void)
1746 {
1747 /*
1748 * Send a special signal (that has no Linux equivalent) to indicate
1749 * that we’re in this particularly special case. The signal will be
1750 * ignored by this process, but noticed by /proc consumers tracing
1751 * this process.
1752 */
1753 (void) _lwp_kill(_lwp_self(), SIGWAITING);
1754 }

1756 static void
1757 ptrace_catch_fork(pid_t pid, int monitor)
1758 {
1759 long ctl[14 + 2 * sizeof (sysset_t) / sizeof (long)];
1760 long *ctlp;
1761 sysset_t *sysp;
1762 size_t size;
1763 pstatus_t ps;
1764 pid_t child;
1765 int fd, err;

1767 /*
1768 * If any of this fails, we’re really sunk since the child
1769 * will be stuck in the middle of lx_ptrace_fork().
1770 * Fortunately it’s practically assured to succeed unless
1771 * something is seriously wrong on the system.
1772 */
1773 if ((fd = open_procfile(pid, O_WRONLY, "ctl")) < 0) {
1774 lx_debug("lx_catch_fork: failed to control %d",
1775 (int)pid);
1776 return;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 28

1777 }

1779 /*
1780 * Turn off the /proc PR_PTRACE flag so the parent doesn’t get
1781 * spurious wake ups while we’re working our dark magic. Arrange to
1782 * catch the process when it exits from fork, and turn on the /proc
1783 * inherit-on-fork flag so we catcht the child as well. We then run
1784 * the process, wait for it to stop on the fork1(2) call and reset
1785 * the tracing flags to their original state.
1786 */
1787 ctlp = ctl;
1788 *ctlp++ = PCCSIG;
1789 if (!monitor) {
1790 *ctlp++ = PCUNSET;
1791 *ctlp++ = PR_PTRACE;
1792 }
1793 *ctlp++ = PCSET;
1794 *ctlp++ = PR_FORK;
1795 *ctlp++ = PCSEXIT;
1796 sysp = (sysset_t *)ctlp;
1797 ctlp += sizeof (sysset_t) / sizeof (long);
1798 premptyset(sysp);
1799 praddset(sysp, SYS_forksys); /* fork1() is forksys(0, 0) */
1800 *ctlp++ = PCRUN;
1801 *ctlp++ = 0;
1802 *ctlp++ = PCWSTOP;
1803 if (!monitor) {
1804 *ctlp++ = PCSET;
1805 *ctlp++ = PR_PTRACE;
1806 }
1807 *ctlp++ = PCUNSET;
1808 *ctlp++ = PR_FORK;
1809 *ctlp++ = PCSEXIT;
1810 sysp = (sysset_t *)ctlp;
1811 ctlp += sizeof (sysset_t) / sizeof (long);
1812 premptyset(sysp);
1813 if (monitor)
1814 praddset(sysp, SYS_execve);

1816 size = (char *)ctlp - (char *)&ctl[0];
1817 assert(size <= sizeof (ctl));

1819 if (write(fd, ctl, size) != size) {
1820 (void) close(fd);
1821 lx_debug("lx_catch_fork: failed to set %d running",
1822 (int)pid);
1823 return;
1824 }

1826 /*
1827 * Get the status so we can find the value returned from fork1() --
1828 * the child process’s pid.
1829 */
1830 if (get_status(pid, &ps) != 0) {
1831 (void) close(fd);
1832 lx_debug("lx_catch_fork: failed to get status for %d",
1833 (int)pid);
1834 return;
1835 }

1837 child = (pid_t)ps.pr_lwp.pr_reg[R_R0];

1839 /*
1840 * We’re done with the parent -- off you go.
1841 */
1842 ctl[0] = PCRUN;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 29

1843 ctl[1] = 0;
1844 size = 2 * sizeof (long);

1846 if (write(fd, ctl, size) != size) {
1847 (void) close(fd);
1848 lx_debug("lx_catch_fork: failed to set %d running",
1849 (int)pid);
1850 return;
1851 }

1853 (void) close(fd);

1855 /*
1856 * If fork1(2) failed, we’re done.
1857 */
1858 if (child < 0) {
1859 lx_debug("lx_catch_fork: fork1 failed");
1860 return;
1861 }

1863 /*
1864 * Now we need to screw with the child process.
1865 */
1866 if ((fd = open_lwpfile(child, 1, O_WRONLY, "lwpctl")) < 0) {
1867 lx_debug("lx_catch_fork: failed to control %d",
1868 (int)child);
1869 return;
1870 }

1872 ctlp = ctl;
1873 *ctlp++ = PCUNSET;
1874 *ctlp++ = PR_FORK;
1875 *ctlp++ = PCSEXIT;
1876 sysp = (sysset_t *)ctlp;
1877 ctlp += sizeof (sysset_t) / sizeof (long);
1878 premptyset(sysp);
1879 size = (char *)ctlp - (char *)&ctl[0];

1881 if (write(fd, ctl, size) != size) {
1882 (void) close(fd);
1883 lx_debug("lx_catch_fork: failed to clear trace flags for %d",
1884 (int)child);
1885 return;
1886 }

1888 /*
1889 * Now treat the child as though we had attached to it explicitly.
1890 */
1891 err = ptrace_attach_common(fd, child, child, 1, 1);
1892 assert(err == 0);

1894 (void) close(fd);
1895 }

1897 static void
1898 set_dr6(pid_t pid, siginfo_t *infop)
1899 {
1900 uintptr_t *debugreg;
1901 uintptr_t addr;
1902 uintptr_t base;
1903 size_t size = NULL;
1904 int dr7;
1905 int lrw;
1906 int i;

1908 if ((debugreg = debug_registers(pid)) == NULL)

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 30

1909 return;

1911 debugreg[6] = 0xffff0ff0; /* read as ones */
1912 switch (infop->si_code) {
1913 case TRAP_TRACE:
1914 debugreg[6] |= 0x4000; /* single-step */
1915 break;
1916 case TRAP_RWATCH:
1917 case TRAP_WWATCH:
1918 case TRAP_XWATCH:
1919 dr7 = debugreg[7];
1920 addr = (uintptr_t)infop->si_addr;
1921 for (i = 0; i < 4; i++) {
1922 if ((dr7 & (1 << (2 * i))) == 0) /* enabled? */
1923 continue;
1924 lrw = (dr7 >> (16 + (4 * i))) & 0xf;
1925 switch (lrw >> 2) { /* length */
1926 case 0: size = 1; break;
1927 case 1: size = 2; break;
1928 case 2: size = 8; break;
1929 case 3: size = 4; break;
1930 }
1931 base = debugreg[i];
1932 if (addr >= base && addr < base + size)
1933 debugreg[6] |= (1 << i);
1934 }
1935 /*
1936 * Were we also attempting a single-step?
1937 * (kludge: we use debugreg[4] for this flag.)
1938 */
1939 if (debugreg[4])
1940 debugreg[6] |= 0x4000;
1941 break;
1942 default:
1943 break;
1944 }
1945 }

1947 /*
1948 * This is called from the emulation of the wait4 and waitpid system call to
1949 * take into account the monitor processes which we spawn to observe other
1950 * processes from ptrace_attach().
1951 */
1952 int
1953 lx_ptrace_wait(siginfo_t *infop)
1954 {
1955 ptrace_monitor_map_t *p, **pp;
1956 pid_t lxpid, pid = infop->si_pid;
1957 lwpid_t lwpid;
1958 int fd;
1959 pstatus_t status;

1961 /*
1962 * If the process observed by waitid(2) corresponds to the monitor
1963 * process for a traced thread, we need to rewhack the siginfo_t to
1964 * look like it came from the traced thread with the flags set
1965 * according to the current state.
1966 */
1967 (void) mutex_lock(&ptrace_map_mtx);
1968 for (pp = &ptrace_monitor_map; (p = *pp) != NULL; pp = &p->pmm_next) {
1969 if (p->pmm_monitor == pid) {
1970 assert(infop->si_code == CLD_EXITED ||
1971 infop->si_code == CLD_KILLED ||
1972 infop->si_code == CLD_DUMPED ||
1973 infop->si_code == CLD_TRAPPED);
1974 goto found;

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 31

1975 }
1976 }
1977 (void) mutex_unlock(&ptrace_map_mtx);

1979 /*
1980 * If the traced process got a SIGWAITING, we must be in the middle
1981 * of a clone(2) with CLONE_PTRACE set.
1982 */
1983 if (infop->si_code == CLD_TRAPPED && infop->si_status == SIGWAITING) {
1984 ptrace_catch_fork(pid, 0);
1985 return (-1);
1986 }

1988 if (get_status(pid, &status) == 0 &&
1989 (status.pr_lwp.pr_flags & PR_STOPPED) &&
1990 status.pr_lwp.pr_why == PR_SIGNALLED &&
1991 status.pr_lwp.pr_info.si_signo == SIGTRAP)
1992 set_dr6(pid, &status.pr_lwp.pr_info);

1994 return (0);

1996 found:
1997 /*
1998 * If the monitor is in the exiting state, ignore the event and free
1999 * the monitor structure if the monitor has exited. By returning -1 we
2000 * indicate to the caller that this was a spurious return from
2001 * waitid(2) and that it should ignore the result and try again.
2002 */
2003 if (p->pmm_exiting) {
2004 if (infop->si_code == CLD_EXITED ||
2005 infop->si_code == CLD_KILLED ||
2006 infop->si_code == CLD_DUMPED) {
2007 *pp = p->pmm_next;
2008 (void) mutex_unlock(&ptrace_map_mtx);
2009 free(p);
2010 }
2011 return (-1);
2012 }

2014 lxpid = p->pmm_target;
2015 pid = p->pmm_pid;
2016 lwpid = p->pmm_lwpid;
2017 (void) mutex_unlock(&ptrace_map_mtx);

2019 /*
2020 * If we can’t find the traced process, kill off its monitor.
2021 */
2022 if ((fd = open_lwpfile(pid, lwpid, O_RDONLY, "lwpstatus")) < 0) {
2023 assert(errno == ENOENT);
2024 monitor_kill(lxpid, pid);
2025 infop->si_code = CLD_EXITED;
2026 infop->si_status = 0;
2027 infop->si_pid = lxpid;
2028 return (0);
2029 }

2031 if (read(fd, &status.pr_lwp, sizeof (status.pr_lwp)) !=
2032 sizeof (status.pr_lwp)) {
2033 lx_err(gettext("read lwpstatus failed %d %s"),
2034 fd, strerror(errno));
2035 assert(0);
2036 }

2038 (void) close(fd);

2040 /*

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 32

2041 * If the traced process isn’t stopped, this is a truly spurious
2042 * event probably caused by another /proc consumer tracing the
2043 * monitor.
2044 */
2045 if (!(status.pr_lwp.pr_flags & PR_STOPPED)) {
2046 (void) ptrace_cont_monitor(p);
2047 return (-1);
2048 }

2050 switch (status.pr_lwp.pr_why) {
2051 case PR_SIGNALLED:
2052 /*
2053 * If the traced process got a SIGWAITING, we must be in the
2054 * middle of a clone(2) with CLONE_PTRACE set.
2055 */
2056 if (status.pr_lwp.pr_what == SIGWAITING) {
2057 ptrace_catch_fork(lxpid, 1);
2058 (void) ptrace_cont_monitor(p);
2059 return (-1);
2060 }
2061 infop->si_code = CLD_TRAPPED;
2062 infop->si_status = status.pr_lwp.pr_what;
2063 if (status.pr_lwp.pr_info.si_signo == SIGTRAP)
2064 set_dr6(pid, &status.pr_lwp.pr_info);
2065 break;

2067 case PR_REQUESTED:
2068 /*
2069 * Make it look like the traced process stopped on an
2070 * event of interest.
2071 */
2072 infop->si_code = CLD_TRAPPED;
2073 infop->si_status = SIGTRAP;
2074 break;

2076 case PR_JOBCONTROL:
2077 /*
2078 * Ignore this as it was probably caused by another /proc
2079 * consumer tracing the monitor.
2080 */
2081 (void) ptrace_cont_monitor(p);
2082 return (-1);

2084 case PR_SYSEXIT:
2085 /*
2086 * Processes traced via a monitor (rather than using the
2087 * native Solaris ptrace support) explicitly trace returns
2088 * from exec system calls since it’s an implicit ptrace
2089 * trace point. Accordingly we need to present a process
2090 * in that state as though it had reached the ptrace trace
2091 * point.
2092 */
2093 if (status.pr_lwp.pr_what == SYS_execve) {
2094 infop->si_code = CLD_TRAPPED;
2095 infop->si_status = SIGTRAP;
2096 break;
2097 }

2099 /*FALLTHROUGH*/

2101 case PR_SYSENTRY:
2102 case PR_FAULTED:
2103 case PR_SUSPENDED:
2104 default:
2105 lx_err(gettext("didn’t expect %d (%d %d)"),
2106 status.pr_lwp.pr_why,

new/usr/src/lib/brand/lx/lx_brand/common/ptrace.c 33

2107 status.pr_lwp.pr_what, status.pr_lwp.pr_flags);
2108 assert(0);
2109 }

2111 infop->si_pid = lxpid;

2113 return (0);
2114 }
2115 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/rlimit.c 1

**
 5835 Tue Jan 14 16:17:04 2014
new/usr/src/lib/brand/lx/lx_brand/common/rlimit.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <errno.h>
29 #include <strings.h>
30 #include <sys/types.h>
31 #include <sys/systm.h>
32 #include <sys/resource.h>
33 #include <sys/sysconfig.h>
34 #include <sys/lx_types.h>
35 #include <sys/lx_misc.h>

37 #define LX_RLIMIT_RSS 5
38 #define LX_RLIMIT_NPROC 6
39 #define LX_RLIMIT_MEMLOCK 8
40 #define LX_RLIMIT_LOCKS 10
41 #define LX_RLIMIT_NLIMITS 11

43 /*
44 * Linux supports many of the same resources that we do, but the numbering
45 * is slightly different. This table is used to translate Linux resource
46 * limit keys into their Solaris equivalents.
47 */
48 static int ltos_resource[LX_RLIMIT_NLIMITS] = {
49 RLIMIT_CPU,
50 RLIMIT_FSIZE,
51 RLIMIT_DATA,
52 RLIMIT_STACK,
53 RLIMIT_CORE,
54 -1, /* RSS */
55 -1, /* NPROC */
56 RLIMIT_NOFILE,
57 -1, /* MEMLOCK */
58 RLIMIT_AS,
59 -1 /* LOCKS */
60 };

new/usr/src/lib/brand/lx/lx_brand/common/rlimit.c 2

62 #define NLIMITS (sizeof (ltos_resource) / sizeof (int))

64 /*
65 * Magic values Linux uses to indicate infinity
66 */
67 #define LX_RLIM_INFINITY_O (0x7fffffffUL)
68 #define LX_RLIM_INFINITY_N (0xffffffffUL)

70 /*
71 * Array to store the rlimits that we track but do not enforce.
72 */
73 static struct rlimit fake_limits[NLIMITS] = {
74 0, 0,
75 0, 0,
76 0, 0,
77 0, 0,
78 0, 0,
79 RLIM_INFINITY, RLIM_INFINITY, /* LX_RLIM_RSS */
80 RLIM_INFINITY, RLIM_INFINITY, /* LX_RLIM_NPROC */
81 0, 0,
82 RLIM_INFINITY, RLIM_INFINITY, /* LX_RLIM_MEMLOCK */
83 0, 0,
84 RLIM_INFINITY, RLIM_INFINITY /* LX_RLIM_LOCKS */
85 };

87 static int
88 lx_getrlimit_common(int resource, struct rlimit *rlp, int inf)
89 {
90 int rv;
91 int sresource;
92 struct rlimit rl;

94 if (resource < 0 || resource >= LX_RLIMIT_NLIMITS)
95 return (-EINVAL);

97 sresource = ltos_resource[resource];

99 if (sresource == -1) {
100 switch (resource) {
101 case LX_RLIMIT_MEMLOCK:
102 case LX_RLIMIT_RSS:
103 case LX_RLIMIT_LOCKS:
104 case LX_RLIMIT_NPROC:
105 rl.rlim_max = fake_limits[resource].rlim_max;
106 rl.rlim_cur = fake_limits[resource].rlim_cur;
107 if (rl.rlim_cur == RLIM_INFINITY)
108 rl.rlim_cur = inf;
109 if (rl.rlim_max == RLIM_INFINITY)
110 rl.rlim_max = inf;
111 if ((uucopy(&rl, rlp, sizeof (rl))) != 0)
112 return (-errno);
113 return (0);
114 default:
115 lx_unsupported("Unsupported resource type %d\n",
116 resource);
117 return (-ENOTSUP);
118 }
119 } else {
120 rv = getrlimit(sresource, rlp);
121 }

123 if (rv < 0)
124 return (-errno);

126 if (rlp->rlim_cur == RLIM_INFINITY)
127 rlp->rlim_cur = inf;

new/usr/src/lib/brand/lx/lx_brand/common/rlimit.c 3

129 if (rlp->rlim_max == RLIM_INFINITY)
130 rlp->rlim_max = inf;

132 return (0);
133 }

135 /*
136 * This is the ’new’ getrlimit, variously called getrlimit or ugetrlimit
137 * in Linux headers and code. The only difference between this and the old
138 * getrlimit (variously called getrlimit or old_getrlimit) is the value of
139 * RLIM_INFINITY, which is smaller for the older version. Modern code will
140 * use this version by default.
141 */
142 int
143 lx_getrlimit(uintptr_t p1, uintptr_t p2)
144 {
145 int resource = (int)p1;
146 struct rlimit *rlp = (struct rlimit *)p2;

148 return (lx_getrlimit_common(resource, rlp, LX_RLIM_INFINITY_N));
149 }

151 /*
152 * This is the ’old’ getrlimit, variously called getrlimit or old_getrlimit
153 * in Linux headers and code. The only difference between this and the new
154 * getrlimit (variously called getrlimit or ugetrlimit) is the value of
155 * RLIM_INFINITY, which is smaller for the older version.
156 */
157 int
158 lx_oldgetrlimit(uintptr_t p1, uintptr_t p2)
159 {
160 int resource = (int)p1;
161 struct rlimit *rlp = (struct rlimit *)p2;

163 return (lx_getrlimit_common(resource, rlp, LX_RLIM_INFINITY_O));
164 }

166 int
167 lx_setrlimit(uintptr_t p1, uintptr_t p2)
168 {
169 int resource = (int)p1;
170 struct rlimit *rlp = (struct rlimit *)p2;
171 struct rlimit rl;
172 int rv, sresource;

174 if (resource < 0 || resource >= LX_RLIMIT_NLIMITS)
175 return (-EINVAL);

177 sresource = ltos_resource[resource];

179 if (sresource == -1) {
180 if (uucopy((void *)p2, &rl, sizeof (rl)) != 0)
181 return (-errno);

183 switch (resource) {
184 case LX_RLIMIT_MEMLOCK:
185 case LX_RLIMIT_RSS:
186 case LX_RLIMIT_LOCKS:
187 case LX_RLIMIT_NPROC:
188 if (rl.rlim_max != LX_RLIM_INFINITY_N &&
189 (rl.rlim_cur == LX_RLIM_INFINITY_N ||
190 rl.rlim_cur > rl.rlim_max))
191 return (-EINVAL);
192 if (rl.rlim_max == LX_RLIM_INFINITY_N)
193 fake_limits[resource].rlim_max = RLIM_INFINITY;

new/usr/src/lib/brand/lx/lx_brand/common/rlimit.c 4

194 else
195 fake_limits[resource].rlim_max = rl.rlim_max;
196 if (rl.rlim_cur == LX_RLIM_INFINITY_N)
197 fake_limits[resource].rlim_cur = RLIM_INFINITY;
198 else
199 fake_limits[resource].rlim_cur = rl.rlim_cur;
200 return (0);
201 }

203 lx_unsupported("Unsupported resource type %d\n", resource);
204 return (-ENOTSUP);
205 }

207 rv = setrlimit(sresource, rlp);

209 return (rv < 0 ? -errno : 0);
210 }

212 /*
213 * We lucked out here. Linux and Solaris have exactly the same
214 * rusage structures.
215 */
216 int
217 lx_getrusage(uintptr_t p1, uintptr_t p2)
218 {
219 int who = (int)p1;
220 struct rusage *rup = (struct rusage *)p2;
221 int rv, swho;

223 if (who == LX_RUSAGE_SELF)
224 swho = _RUSAGESYS_GETRUSAGE;
225 else if (who == LX_RUSAGE_CHILDREN)
226 swho = _RUSAGESYS_GETRUSAGE_CHLD;
227 else
228 return (-EINVAL);

230 rv = getrusage(swho, rup);

232 return (rv < 0 ? -errno : 0);
233 }
234 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 1

**
 14761 Tue Jan 14 16:17:04 2014
new/usr/src/lib/brand/lx/lx_brand/common/sched.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <sys/types.h>
30 #include <sys/cred_impl.h>
31 #include <sys/ucred.h>
32 #include <ucred.h>
33 #include <stdlib.h>
34 #include <signal.h>
35 #include <errno.h>
36 #include <sched.h>
37 #include <strings.h>
38 #include <pthread.h>
39 #include <time.h>
40 #include <thread.h>
41 #include <alloca.h>
42 #include <unistd.h>
43 #include <sys/syscall.h>
44 #include <sys/lx_syscall.h>
45 #include <sys/lx_debug.h>
46 #include <sys/lx_brand.h>
47 #include <sys/lx_misc.h>
48 #include <sys/lx_sched.h>

50 /* Linux only has three valid policies, SCHED_FIFO, SCHED_RR and SCHED_OTHER */
51 static int
52 validate_policy(int policy)
53 {
54 switch (policy) {
55 case LX_SCHED_FIFO:
56 return (SCHED_FIFO);

58 case LX_SCHED_RR:
59 return (SCHED_RR);

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 2

61 case LX_SCHED_OTHER:
62 return (SCHED_OTHER);

64 default:
65 lx_debug("validate_policy: illegal policy: %d", policy);
66 return (-EINVAL);
67 }
68 }

70 /*
71 * Check to see if we have the permissions to set scheduler parameters and
72 * policy, based on Linux’ demand that such commands fail with errno set to
73 * EPERM if the current euid is not the euid or ruid of the process in
74 * question.
75 */
76 static int
77 check_schedperms(pid_t pid)
78 {
79 size_t sz;
80 ucred_t *cr;
81 uid_t euid;

83 euid = geteuid();

85 if (pid == getpid()) {
86 /*
87 * If we’re the process to be checked, simply check the euid
88 * against our ruid.
89 */
90 if (euid != getuid())
91 return (-EPERM);

93 return (0);
94 }

96 /*
97 * We allocate a ucred_t ourselves rather than call ucred_get(3C)
98 * because ucred_get() calls malloc(3C), which the brand library cannot
99 * use. Because we allocate the space with SAFE_ALLOCA(), there’s
100 * no need to free it when we’re done.
101 */
102 sz = ucred_size();
103 cr = (ucred_t *)SAFE_ALLOCA(sz);

105 if (cr == NULL)
106 return (-ENOMEM);

108 /*
109 * If we can’t access the process’ credentials, fail with errno EPERM
110 * as the call would not have succeeded anyway.
111 */
112 if (syscall(SYS_ucredsys, UCREDSYS_UCREDGET, pid, cr) != 0)
113 return ((errno == EACCES) ? -EPERM : -errno);

115 if ((euid != ucred_geteuid(cr)) && (euid != ucred_getruid(cr)))
116 return (-EPERM);

118 return (0);
119 }

121 static int
122 ltos_sparam(int policy, struct lx_sched_param *lsp, struct sched_param *sp)
123 {
124 struct lx_sched_param ls;
125 int smin = sched_get_priority_min(policy);
126 int smax = sched_get_priority_max(policy);

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 3

128 if (uucopy(lsp, &ls, sizeof (struct lx_sched_param)) != 0)
129 return (-errno);

131 bzero(sp, sizeof (struct sched_param));

133 /*
134 * Linux has a fixed priority range, 0 - 99, which we need to convert to
135 * Solaris’s dynamic range. Linux considers lower numbers to be
136 * higher priority, so we’ll invert the priority within Solaris’s range.
137 *
138 * The formula to convert between ranges is:
139 *
140 * L * (smax - smin)
141 * S = ----------------- + smin
142 * (lmax - lmin)
143 *
144 * where S is the Solaris equivalent of the linux priority L.
145 *
146 * To invert the priority, we use:
147 * S’ = smax - S + smin
148 *
149 * Together, these two formulas become:
150 *
151 * L * (smax - smin)
152 * S = smax - ----------------- + 2smin
153 * 99
154 */
155 sp->sched_priority = smax -
156 ((ls.lx_sched_prio * (smax - smin)) / LX_PRI_MAX) + 2*smin;

158 lx_debug("ltos_sparam: linux prio %d = Solaris prio %d "
159 "(Solaris range %d,%d)\n", ls.lx_sched_prio, sp->sched_priority,
160 smin, smax);

162 return (0);
163 }

165 static int
166 stol_sparam(int policy, struct sched_param *sp, struct lx_sched_param *lsp)
167 {
168 struct lx_sched_param ls;
169 int smin = sched_get_priority_min(policy);
170 int smax = sched_get_priority_max(policy);

172 if (policy == SCHED_OTHER) {
173 /*
174 * In Linux, the only valid SCHED_OTHER scheduler priority is 0
175 */
176 ls.lx_sched_prio = 0;
177 } else {
178 /*
179 * Convert Solaris’s dynamic, inverted priority range to the
180 * fixed Linux range of 1 - 99.
181 *
182 * The formula is (see above):
183 *
184 * (smax - s + 2smin) * 99
185 * l = -----------------------
186 * smax - smin
187 */
188 ls.lx_sched_prio = ((smax - sp->sched_priority + 2*smin) *
189 LX_PRI_MAX) / (smax - smin);
190 }

192 lx_debug("stol_sparam: Solaris prio %d = linux prio %d "

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 4

193 "(Solaris range %d,%d)\n", sp->sched_priority, ls.lx_sched_prio,
194 smin, smax);

196 return ((uucopy(&ls, lsp, sizeof (struct lx_sched_param)) != 0)
197 ? -errno : 0);
198 }

200 #define BITINDEX(ind) (ind / (sizeof (ulong_t) * 8))
201 #define BITSHIFT(ind) (1 << (ind % (sizeof (ulong_t) * 8)))

203 /* ARGSUSED */
204 int
205 lx_sched_getaffinity(uintptr_t pid, uintptr_t len, uintptr_t maskp)
206 {
207 int sz;
208 ulong_t *lmask, *zmask;
209 int i;

211 sz = syscall(SYS_brand, B_GET_AFFINITY_MASK, pid, len, maskp);
212 if (sz == -1)
213 return (-errno);

215 /*
216 * If the target LWP hasn’t ever had an affinity mask set, the kernel
217 * will return a mask of all 0’s. If that is the case we must build a
218 * default mask that has all valid bits turned on.
219 */
220 lmask = SAFE_ALLOCA(sz);
221 zmask = SAFE_ALLOCA(sz);
222 if (lmask == NULL || zmask == NULL)
223 return (-ENOMEM);

225 bzero(zmask, sz);

227 if (uucopy((void *)maskp, lmask, sz) != 0)
228 return (-EFAULT);

230 if (bcmp(lmask, zmask, sz) != 0)
231 return (sz);

233 for (i = 0; i < sz * 8; i++) {
234 if (p_online(i, P_STATUS) != -1) {
235 lmask[BITINDEX(i)] |= BITSHIFT(i);
236 }
237 }

239 if (uucopy(lmask, (void *)maskp, sz) != 0)
240 return (-EFAULT);

242 return (sz);
243 }

245 /* ARGSUSED */
246 int
247 lx_sched_setaffinity(uintptr_t pid, uintptr_t len, uintptr_t maskp)
248 {
249 int ret;
250 int sz;
251 int i;
252 int found;
253 ulong_t *lmask;
254 pid_t s_pid;
255 lwpid_t s_tid;
256 processorid_t cpuid = NULL;

258 if ((pid_t)pid < 0)

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 5

259 return (-EINVAL);

261 if (lx_lpid_to_spair(pid, &s_pid, &s_tid) < 0)
262 return (-ESRCH);

264 /*
265 * We only support setting affinity masks for threads in
266 * the calling process.
267 */
268 if (s_pid != getpid())
269 return (-EPERM);

271 /*
272 * First, get the minimum bitmask size from the kernel.
273 */
274 sz = syscall(SYS_brand, B_GET_AFFINITY_MASK, 0, 0, 0);
275 if (sz == -1)
276 return (-errno);

278 lmask = SAFE_ALLOCA(sz);
279 if (lmask == NULL)
280 return (-ENOMEM);

282 if (uucopy((void *)maskp, lmask, sz) != 0)
283 return (-EFAULT);

285 /*
286 * Make sure the mask contains at least one processor that is
287 * physically on the system. Reduce the user’s mask to the set of
288 * physically present CPUs. Keep track of how many valid
289 * bits are set in the user’s mask.
290 */

292 for (found = 0, i = 0; i < sz * 8; i++) {
293 if (p_online(i, P_STATUS) == -1) {
294 /*
295 * This CPU doesn’t exist, so clear this bit from
296 * the user’s mask.
297 */
298 lmask[BITINDEX(i)] &= ~BITSHIFT(i);
299 continue;
300 }

302 if ((lmask[BITINDEX(i)] & BITSHIFT(i)) == BITSHIFT(i)) {
303 found++;
304 cpuid = i;
305 }
306 }

308 if (found == 0) {
309 lx_debug("\tlx_sched_setaffinity: mask has no present CPUs\n");
310 return (-EINVAL);
311 }

313 /*
314 * If only one bit is set, bind the thread to that procesor;
315 * otherwise, clear the binding.
316 */
317 if (found == 1) {
318 lx_debug("\tlx_sched_setaffinity: binding thread %d to cpu%d\n",
319 s_tid, cpuid);
320 if (processor_bind(P_LWPID, s_tid, cpuid, NULL) != 0)
321 /*
322 * It could be that the requested processor is offline,
323 * so we’ll just abandon our good-natured attempt to
324 * bind to it.

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 6

325 */
326 lx_debug("couldn’t bind LWP %d to cpu %d: %s\n", s_tid,
327 cpuid, strerror(errno));
328 } else {
329 lx_debug("\tlx_sched_setaffinity: clearing thr %d binding\n",
330 s_tid);
331 if (processor_bind(P_LWPID, s_tid, PBIND_NONE, NULL) != 0) {
332 lx_debug("couldn’t clear CPU binding for LWP %d: %s\n",
333 s_tid, strerror(errno));
334 }
335 }

337 /*
338 * Finally, ask the kernel to make a note of our current (though fairly
339 * meaningless) affinity mask.
340 */
341 ret = syscall(SYS_brand, B_SET_AFFINITY_MASK, pid, sz, lmask);

343 return ((ret == 0) ? 0 : -errno);
344 }

346 int
347 lx_sched_getparam(uintptr_t pid, uintptr_t param)
348 {
349 int policy, ret;
350 pid_t s_pid;
351 lwpid_t s_tid;

353 struct sched_param sp;

355 if (((pid_t)pid < 0) || (param == NULL))
356 return (-EINVAL);

358 if (lx_lpid_to_spair((pid_t)pid, &s_pid, &s_tid) < 0)
359 return (-ESRCH);

361 /*
362 * If we’re attempting to get information on our own process, we can
363 * get data on a per-thread basis; if not, punt and use the specified
364 * pid.
365 */
366 if (s_pid == getpid()) {
367 if ((ret = pthread_getschedparam(s_tid, &policy, &sp)) != 0)
368 return (-ret);
369 } else {
370 if (sched_getparam(s_pid, &sp) == -1)
371 return (-errno);

373 if ((policy = sched_getscheduler(s_pid)) < 0)
374 return (-errno);
375 }

377 return (stol_sparam(policy, &sp, (struct lx_sched_param *)param));
378 }

380 int
381 lx_sched_setparam(uintptr_t pid, uintptr_t param)
382 {
383 int err, policy;
384 pid_t s_pid;
385 lwpid_t s_tid;
386 struct lx_sched_param lp;
387 struct sched_param sp;

389 if (((pid_t)pid < 0) || (param == NULL))
390 return (-EINVAL);

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 7

392 if (lx_lpid_to_spair((pid_t)pid, &s_pid, &s_tid) < 0)
393 return (-ESRCH);

395 if (s_pid == getpid()) {
396 struct sched_param dummy;

398 if ((err = pthread_getschedparam(s_tid, &policy, &dummy)) != 0)
399 return (-err);
400 } else
401 if ((policy = sched_getscheduler(s_pid)) < 0)
402 return (-errno);

404 lx_debug("sched_setparam(): current policy %d", policy);

406 if (uucopy((void *)param, &lp, sizeof (lp)) != 0)
407 return (-errno);

409 /*
410 * In Linux, the only valid SCHED_OTHER scheduler priority is 0
411 */
412 if ((policy == SCHED_OTHER) && (lp.lx_sched_prio != 0))
413 return (-EINVAL);

415 if ((err = ltos_sparam(policy, (struct lx_sched_param *)&lp,
416 &sp)) != 0)
417 return (err);

419 /*
420 * Check if we’re allowed to change the scheduler for the process.
421 *
422 * If we’re operating on a thread, we can’t just call
423 * pthread_setschedparam() because as all threads reside within a
424 * single Solaris process, Solaris will allow the modification
425 *
426 * If we’re operating on a process, we can’t just call sched_setparam()
427 * because Solaris will allow the call to succeed if the scheduler
428 * parameters do not differ from those being installed, but Linux wants
429 * the call to fail.
430 */
431 if ((err = check_schedperms(s_pid)) != 0)
432 return (err);

434 if (s_pid == getpid())
435 return (((err = pthread_setschedparam(s_tid, policy, &sp)) != 0)
436 ? -err : 0);

438 return ((sched_setparam(s_pid, &sp) == -1) ? -errno : 0);
439 }

441 int
442 lx_sched_rr_get_interval(uintptr_t pid, uintptr_t timespec)
443 {
444 struct timespec ts;
445 pid_t s_pid;

447 if ((pid_t)pid < 0)
448 return (-EINVAL);

450 if (lx_lpid_to_spid((pid_t)pid, &s_pid) < 0)
451 return (-ESRCH);

453 if (uucopy((struct timespec *)timespec, &ts,
454 sizeof (struct timespec)) != 0)
455 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 8

457 return ((sched_rr_get_interval(s_pid, &ts) == -1) ? -errno : 0);
458 }

460 int
461 lx_sched_getscheduler(uintptr_t pid)
462 {
463 int policy, rv;
464 pid_t s_pid;
465 lwpid_t s_tid;

467 if ((pid_t)pid < 0)
468 return (-EINVAL);

470 if (lx_lpid_to_spair((pid_t)pid, &s_pid, &s_tid) < 0)
471 return (-ESRCH);

473 if (s_pid == getpid()) {
474 struct sched_param dummy;

476 if ((rv = pthread_getschedparam(s_tid, &policy, &dummy)) != 0)
477 return (-rv);
478 } else
479 if ((policy = sched_getscheduler(s_pid)) < 0)
480 return (-errno);

482 /*
483 * Linux only supports certain policies; avoid confusing apps with
484 * alien policies.
485 */
486 switch (policy) {
487 case SCHED_FIFO:
488 return (LX_SCHED_FIFO);
489 case SCHED_OTHER:
490 return (LX_SCHED_OTHER);
491 case SCHED_RR:
492 return (LX_SCHED_RR);
493 default:
494 break;
495 }

497 return (LX_SCHED_OTHER);
498 }

500 int
501 lx_sched_setscheduler(uintptr_t pid, uintptr_t policy, uintptr_t param)
502 {
503 int rt_pol;
504 int rv;
505 pid_t s_pid;
506 lwpid_t s_tid;
507 struct lx_sched_param lp;

509 struct sched_param sp;

511 if (((pid_t)pid < 0) || (param == NULL))
512 return (-EINVAL);

514 if ((rt_pol = validate_policy((int)policy)) < 0)
515 return (rt_pol);

517 if ((rv = ltos_sparam(policy, (struct lx_sched_param *)param,
518 &sp)) != 0)
519 return (rv);

521 if (uucopy((void *)param, &lp, sizeof (lp)) != 0)
522 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 9

524 /*
525 * In Linux, the only valid SCHED_OTHER scheduler priority is 0
526 */
527 if ((rt_pol == LX_SCHED_OTHER) && (lp.lx_sched_prio != 0))
528 return (-EINVAL);

530 if (lx_lpid_to_spair((pid_t)pid, &s_pid, &s_tid) < 0)
531 return (-ESRCH);

533 /*
534 * Check if we’re allowed to change the scheduler for the process.
535 *
536 * If we’re operating on a thread, we can’t just call
537 * pthread_setschedparam() because as all threads reside within a
538 * single Solaris process, Solaris will allow the modification.
539 *
540 * If we’re operating on a process, we can’t just call
541 * sched_setscheduler() because Solaris will allow the call to succeed
542 * if the scheduler and scheduler parameters do not differ from those
543 * being installed, but Linux wants the call to fail.
544 */
545 if ((rv = check_schedperms(s_pid)) != 0)
546 return (rv);

548 if (s_pid == getpid()) {
549 struct sched_param param;
550 int pol;

552 if ((pol = sched_getscheduler(s_pid)) != 0)
553 return (-errno);

555 /*
556 * sched_setscheduler() returns the previous scheduling policy
557 * on success, so call pthread_getschedparam() to get the
558 * current thread’s scheduling policy and return that if the
559 * call to pthread_setschedparam() succeeds.
560 */
561 if ((rv = pthread_getschedparam(s_tid, &pol, ¶m)) != 0)
562 return (-rv);

564 return (((rv = pthread_setschedparam(s_tid, rt_pol, &sp)) != 0)
565 ? -rv : pol);
566 }

568 return (((rv = sched_setscheduler(s_pid, rt_pol, &sp)) == -1)
569 ? -errno : rv);
570 }

572 int
573 lx_sched_get_priority_min(uintptr_t policy)
574 {
575 /*
576 * In Linux, the only valid SCHED_OTHER scheduler priority is 0.
577 * Linux scheduling priorities are not alterable, so there is no
578 * Solaris translation necessary.
579 */
580 switch (policy) {
581 case LX_SCHED_FIFO:
582 case LX_SCHED_RR:
583 return (LX_SCHED_PRIORITY_MIN_RRFIFO);
584 case LX_SCHED_OTHER:
585 return (LX_SCHED_PRIORITY_MIN_OTHER);
586 default:
587 break;
588 }

new/usr/src/lib/brand/lx/lx_brand/common/sched.c 10

589 return (-EINVAL);
590 }

592 int
593 lx_sched_get_priority_max(uintptr_t policy)
594 {
595 /*
596 * In Linux, the only valid SCHED_OTHER scheduler priority is 0
597 * Linux scheduling priorities are not alterable, so there is no
598 * Solaris translation necessary.
599 */
600 switch (policy) {
601 case LX_SCHED_FIFO:
602 case LX_SCHED_RR:
603 return (LX_SCHED_PRIORITY_MAX_RRFIFO);
604 case LX_SCHED_OTHER:
605 return (LX_SCHED_PRIORITY_MAX_OTHER);
606 default:
607 break;
608 }
609 return (-EINVAL);
610 }
611 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/sendfile.c 1

**
 2468 Tue Jan 14 16:17:04 2014
new/usr/src/lib/brand/lx/lx_brand/common/sendfile.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 /*
30 * lx_sendfile() and lx_sendfile64() are just branded versions of the
31 * library calls available in the Solaris libsendfile (see sendfile(3EXT)).
32 */

34 #include <sys/types.h>
35 #include <sys/syscall.h>
36 #include <sys/sendfile.h>
37 #include <string.h>
38 #include <errno.h>
39 #include <sys/lx_misc.h>

41 int
42 lx_sendfile(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4)
43 {
44 sysret_t rval;
45 off_t off = 0;
46 off_t *offp = (off_t *)p3;
47 int error;
48 struct sendfilevec sfv;
49 size_t xferred;
50 size_t sz = (size_t)p4;

52 if (sz > 0 && uucopy(offp, &off, sizeof (off)) != 0)
53 return (-errno);

55 sfv.sfv_fd = p2;
56 sfv.sfv_flag = 0;
57 sfv.sfv_off = off;
58 sfv.sfv_len = sz;
59 error = __systemcall(&rval, SYS_sendfilev, SENDFILEV, p1, &sfv,
60 1, &xferred);

new/usr/src/lib/brand/lx/lx_brand/common/sendfile.c 2

62 if (error == 0 && xferred > 0) {
63 off += xferred;
64 error = uucopy(&off, offp, sizeof (off));
65 }

67 return (error ? -error : (int)rval.sys_rval1);
68 }

70 int
71 lx_sendfile64(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4)
72 {
73 sysret_t rval;
74 off64_t off = 0;
75 off64_t *offp = (off64_t *)p3;
76 size_t sz = (size_t)p4;
77 int error;
78 struct sendfilevec64 sfv;
79 size_t xferred;

81 if (sz > 0 && uucopy(offp, &off, sizeof (off)) != 0)
82 return (-errno);

84 sfv.sfv_fd = p2;
85 sfv.sfv_flag = 0;
86 sfv.sfv_off = off;
87 sfv.sfv_len = sz;
88 error = __systemcall(&rval, SYS_sendfilev, SENDFILEV64, p1, &sfv,
89 1, &xferred);

91 if (error == 0 && xferred > 0) {
92 off += xferred;
93 error = uucopy(&off, offp, sizeof (off));
94 }

96 return (error ? -error : (int)rval.sys_rval1);
97 }
98 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 1

**
 51074 Tue Jan 14 16:17:04 2014
new/usr/src/lib/brand/lx/lx_brand/common/signal.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <sys/types.h>
30 #include <sys/param.h>
31 #include <sys/segments.h>
32 #include <sys/lx_types.h>
33 #include <sys/lx_brand.h>
34 #include <sys/lx_misc.h>
35 #include <sys/lx_debug.h>
36 #include <sys/lx_signal.h>
37 #include <sys/lx_syscall.h>
38 #include <sys/lx_thread.h>
39 #include <assert.h>
40 #include <errno.h>
41 #include <signal.h>
42 #include <stdlib.h>
43 #include <string.h>
44 #include <strings.h>
45 #include <thread.h>
46 #include <ucontext.h>
47 #include <unistd.h>
48 #include <stdio.h>
49 #include <libintl.h>
50 #include <ieeefp.h>

52 /*
53 * Delivering signals to a Linux process is complicated by differences in
54 * signal numbering, stack structure and contents, and the action taken when a
55 * signal handler exits. In addition, many signal-related structures, such as
56 * sigset_ts, vary between Solaris and Linux.
57 *
58 * To support user-level signal handlers, the brand uses a double layer of
59 * indirection to process and deliver signals to branded threads.
60 *

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 2

61 * When a Linux process sends a signal using the kill(2) system call, we must
62 * translate the signal into the Solaris equivalent before handing control off
63 * to the standard signalling mechanism. When a signal is delivered to a Linux
64 * process, we translate the signal number from Solaris to back to Linux.
65 * Translating signals both at generation and delivery time ensures both that
66 * Solaris signals are sent properly to Linux applications and that signals’
67 * default behavior works as expected.
68 *
69 * In a normal Solaris process, signal delivery is interposed on for any thread
70 * registering a signal handler by libc. Libc needs to do various bits of magic
71 * to provide thread-safe critical regions, so it registers its own handler,
72 * named sigacthandler(), using the sigaction(2) system call. When a signal is
73 * received, sigacthandler() is called, and after some processing, libc turns
74 * around and calls the user’s signal handler via a routine named
75 * call_user_handler().
76 *
77 * Adding a Linux branded thread to the mix complicates things somewhat.
78 *
79 * First, when a thread receives a signal, it may be running with a Linux value
80 * in the x86 %gs segment register as opposed to the value Solaris threads
81 * expect; if control were passed directly to Solaris code, such as libc’s
82 * sigacthandler(), that code would experience a segmentation fault the first
83 * time it tried to dereference a memory location using %gs.
84 *
85 * Second, the signal number translation referenced above must take place.
86 * Further, as was the case with Solaris libc, before the Linux signal handler
87 * is called, the value of the %gs segment register MUST be restored to the
88 * value Linux code expects.
89 *
90 * This need to translate signal numbers and manipulate the %gs register means
91 * that while with standard Solaris libc, following a signal from generation to
92 * delivery looks something like:
93 *
94 * kernel ->
95 * sigacthandler() ->
96 * call_user_handler() ->
97 * user signal handler
98 *
99 * while for the brand’s Linux threads, this would look like:
100 *
101 * kernel ->
102 * lx_sigacthandler() ->
103 * sigacthandler() ->
104 * call_user_handler() ->
105 * lx_call_user_handler() ->
106 * Linux user signal handler
107 *
108 * The new addtions are:
109 *
110 * lx_sigacthandler
111 * ================
112 * This routine is responsible for setting the %gs segment register to the
113 * value Solaris code expects, and jumping to Solaris’ libc signal
114 * interposition handler, sigacthandler().
115 *
116 * lx_call_user_handler
117 * ====================
118 * This routine is responsible for translating Solaris signal numbers to
119 * their Linux equivalents, building a Linux signal stack based on the
120 * information Solaris has provided, and passing the stack to the
121 * registered Linux signal handler. It is, in effect, the Linux thread
122 * equivalent to libc’s call_user_handler().
123 *
124 * Installing lx_sigacthandler() is a bit tricky, as normally libc’s
125 * sigacthandler() routine is hidden from user programs. To facilitate this, a
126 * new private function was added to libc, setsigaction():

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 3

127 *
128 * void setsigacthandler(void (*new_handler)(int, siginfo_t *, void *),
129 * void (**old_handler)(int, siginfo_t *, void *))
130 *
131 * The routine works by modifying the per-thread data structure libc already
132 * keeps that keeps track of the address of its own interposition handler with
133 * the address passed in; the old handler’s address is set in the pointer
134 * pointed to by the second argument, if it is non-NULL, mimicking the behavior
135 * of sigaction() itself. Once setsigacthandler() has been executed, all
136 * future branded threads this thread may create will automatically have the
137 * proper interposition handler installed as the result of a normal
138 * sigaction() call.
139 *
140 * Note that none of this interposition is necessary unless a Linux thread
141 * registers a user signal handler, as the default action for all signals is the
142 * same between Solaris and Linux save for one signal, SIGPWR. For this reason,
143 * the brand ALWAYS installs its own internal signal handler for SIGPWR that
144 * translates the action to the Linux default, to terminate the process.
145 * (Solaris’ default action is to ignore SIGPWR.)
146 *
147 * It is also important to note that when signals are not translated, the brand
148 * relies upon code interposing upon the wait(2) system call to translate
149 * signals to their proper values for any Linux threads retrieving the status
150 * of others. So while the Solaris signal number for a particular signal is set
151 * in a process’ data structures (and would be returned as the result of say,
152 * WTERMSIG()), the brand’s interposiiton upon wait(2) is responsible for
153 * translating the value WTERMSIG() would return from a Solaris signal number
154 * to the appropriate Linux value.
155 *
156 * The process of returning to an interrupted thread of execution from a user
157 * signal handler is entirely different between Solaris and Linux. While
158 * Solaris generally expects to set the context to the interrupted one on a
159 * normal return from a signal handler, in the normal case Linux instead calls
160 * code that calls a specific Linux system call, sigreturn(2). Thus when a
161 * Linux signal handler completes execution, instead of returning through what
162 * would in libc be a call to setcontext(2), the sigreturn(2) Linux system call
163 * is responsible for accomplishing much the same thing.
164 *
165 * This trampoline code looks something like this:
166 *
167 * pop %eax
168 * mov LX_SYS_rt_sigreturn, %eax
169 * int $0x80
170 *
171 * so when the Linux user signal handler is eventually called, the stack looks
172 * like this (in the case of an "lx_sigstack" stack:
173 *
174 * ===
175 * | Pointer to actual trampoline code (in code segment) |
176 * ===
177 * | Linux signal number |
178 * ===
179 * | Pointer to Linux siginfo_t (or NULL) |
180 * ===
181 * | Pointer to Linux ucontext_t (or NULL) |
182 * ===
183 * | Linux siginfo_t |
184 * ===
185 * | Linux ucontext_t |
186 * ===
187 * | Linux struct _fpstate |
188 * ===
189 * | Trampoline code (marker for gdb, not really executed) |
190 * ===
191 *
192 * The brand takes the approach of intercepting the Linux sigreturn(2) system

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 4

193 * call in order to turn it into the return through the libc call stack that
194 * Solaris expects. This is done by the lx_sigreturn() and lx_rt_sigreturn()
195 * routines, which remove the Linux signal frame from the stack and pass the
196 * resulting stack pointer to another routine, lx_sigreturn_tolibc(), which
197 * makes libc believe the user signal handler it had called returned.
198 *
199 * (Note that the trampoline code actually lives in a proper executable segment
200 * and not on the stack, but gdb checks for the exact code sequence of the
201 * trampoline code on the stack to determine whether it is in a signal stack
202 * frame or not. Really.)
203 *
204 * When control then returns to libc’s call_user_handler() routine, a
205 * setcontext(2) will be done that (in most cases) returns the thread executing
206 * the code back to the location originally interrupted by receipt of the
207 * signal.
208 */

210 /*
211 * Two flavors of Linux signal stacks:
212 *
213 * lx_sigstack - used for "modern" signal handlers, in practice those
214 * that have the sigaction(2) flag SA_SIGINFO set
215 *
216 * lx_oldsigstack - used for legacy signal handlers, those that do not have
217 * the sigaction(2) flag SA_SIGINFO set or that were setup via
218 * the signal(2) call.
219 *
220 * NOTE: Since these structures will be placed on the stack and stack math will
221 * be done with their sizes, they must be word aligned in size (32 bits)
222 * so the stack remains word aligned per the i386 ABI.
223 */
224 struct lx_sigstack {
225 void (*retaddr)(); /* address of real lx_rt_sigreturn code */
226 int sig; /* signal number */
227 lx_siginfo_t *sip; /* points to "si" if valid, NULL if not */
228 lx_ucontext_t *ucp; /* points to "uc" if valid, NULL if not */
229 lx_siginfo_t si; /* saved signal information */
230 lx_ucontext_t uc; /* saved user context */
231 lx_fpstate_t fpstate; /* saved FP state */
232 char trampoline[8]; /* code for trampoline to lx_rt_sigreturn() */
233 };

235 struct lx_oldsigstack {
236 void (*retaddr)(); /* address of real lx_sigreturn code */
237 int sig; /* signal number */
238 lx_sigcontext_t sigc; /* saved user context */
239 lx_fpstate_t fpstate; /* saved FP state */
240 int sig_extra; /* signal mask for signals [32 .. NSIG - 1] */
241 char trampoline[8]; /* code for trampoline to lx_sigreturn() */
242 };

244 /*
245 * libc_sigacthandler is set to the address of the libc signal interposition
246 * routine, sigacthandler().
247 */
248 void (*libc_sigacthandler)(int, siginfo_t *, void*);

250 /*
251 * The lx_sighandlers structure needs to be a global due to the semantics of
252 * clone().
253 *
254 * If CLONE_SIGHAND is set, the calling process and child share signal
255 * handlers, and if either calls sigaction(2) it should change the behavior
256 * in the other thread. Each thread does, however, have its own signal mask
257 * and set of pending signals.
258 *

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 5

259 * If CLONE_SIGHAND is not set, the child process should inherit a copy of
260 * the signal handlers at the time of the clone() but later calls to
261 * sigaction(2) should only affect the individual thread calling it.
262 *
263 * This maps perfectly to a thr_create(3C) thread semantic in the first
264 * case and a fork(2)-type semantic in the second case. By making
265 * lx_sighandlers global, we automatically get the correct behavior.
266 */
267 static lx_sighandlers_t lx_sighandlers;

269 /*
270 * stol_stack() and ltos_stack() convert between Solaris and Linux stack_t
271 * structures.
272 *
273 * These routines are needed because although the two structures have the same
274 * contents, their contents are declared in a different order, so the content
275 * of the structures cannot be copied with a simple bcopy().
276 */
277 static void
278 stol_stack(stack_t *fr, lx_stack_t *to)
279 {
280 to->ss_sp = fr->ss_sp;
281 to->ss_flags = fr->ss_flags;
282 to->ss_size = fr->ss_size;
283 }

285 static void
286 ltos_stack(lx_stack_t *fr, stack_t *to)
287 {
288 to->ss_sp = fr->ss_sp;
289 to->ss_flags = fr->ss_flags;
290 to->ss_size = fr->ss_size;
291 }

293 static int
294 ltos_sigset(lx_sigset_t *lx_sigsetp, sigset_t *s_sigsetp)
295 {
296 lx_sigset_t l;
297 int lx_sig, sig;

299 if (uucopy(lx_sigsetp, &l, sizeof (lx_sigset_t)) != 0)
300 return (-errno);

302 (void) sigemptyset(s_sigsetp);

304 for (lx_sig = 1; lx_sig < LX_NSIG; lx_sig++) {
305 if (lx_sigismember(&l, lx_sig) &&
306 ((sig = ltos_signo[lx_sig]) > 0))
307 (void) sigaddset(s_sigsetp, sig);
308 }

310 return (0);
311 }

313 static int
314 stol_sigset(sigset_t *s_sigsetp, lx_sigset_t *lx_sigsetp)
315 {
316 lx_sigset_t l;
317 int sig, lx_sig;

319 bzero(&l, sizeof (lx_sigset_t));

321 for (sig = 1; sig < NSIG; sig++) {
322 if (sigismember(s_sigsetp, sig) &&
323 ((lx_sig = stol_signo[sig]) > 0))
324 lx_sigaddset(&l, lx_sig);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 6

325 }

327 return ((uucopy(&l, lx_sigsetp, sizeof (lx_sigset_t)) != 0)
328 ? -errno : 0);
329 }

331 static int
332 ltos_osigset(lx_osigset_t *lx_osigsetp, sigset_t *s_sigsetp)
333 {
334 lx_osigset_t lo;
335 int lx_sig, sig;

337 if (uucopy(lx_osigsetp, &lo, sizeof (lx_osigset_t)) != 0)
338 return (-errno);

340 (void) sigemptyset(s_sigsetp);

342 for (lx_sig = 1; lx_sig <= OSIGSET_NBITS; lx_sig++)
343 if ((lo & OSIGSET_BITSET(lx_sig)) &&
344 ((sig = ltos_signo[lx_sig]) > 0))
345 (void) sigaddset(s_sigsetp, sig);

347 return (0);
348 }

350 static int
351 stol_osigset(sigset_t *s_sigsetp, lx_osigset_t *lx_osigsetp)
352 {
353 lx_osigset_t lo = 0;
354 int lx_sig, sig;

356 /*
357 * Note that an lx_osigset_t can only represent the signals from
358 * [1 .. OSIGSET_NBITS], so even though a signal may be present in the
359 * Solaris sigset_t, it may not be representable as a bit in the
360 * lx_osigset_t.
361 */
362 for (sig = 1; sig < NSIG; sig++)
363 if (sigismember(s_sigsetp, sig) &&
364 ((lx_sig = stol_signo[sig]) > 0) &&
365 (lx_sig <= OSIGSET_NBITS))
366 lo |= OSIGSET_BITSET(lx_sig);

368 return ((uucopy(&lo, lx_osigsetp, sizeof (lx_osigset_t)) != 0)
369 ? -errno : 0);
370 }

372 static int
373 stol_sigcode(int si_code)
374 {
375 switch (si_code) {
376 case SI_USER:
377 return (LX_SI_USER);
378 case SI_LWP:
379 return (LX_SI_TKILL);
380 case SI_QUEUE:
381 return (LX_SI_QUEUE);
382 case SI_TIMER:
383 return (LX_SI_TIMER);
384 case SI_ASYNCIO:
385 return (LX_SI_ASYNCIO);
386 case SI_MESGQ:
387 return (LX_SI_MESGQ);
388 default:
389 return (si_code);
390 }

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 7

391 }

393 int
394 stol_siginfo(siginfo_t *siginfop, lx_siginfo_t *lx_siginfop)
395 {
396 lx_siginfo_t lx_siginfo;

398 bzero(&lx_siginfo, sizeof (*lx_siginfop));

400 if ((lx_siginfo.lsi_signo = stol_signo[siginfop->si_signo]) <= 0) {
401 errno = EINVAL;
402 return (-1);
403 }

405 lx_siginfo.lsi_code = stol_sigcode(siginfop->si_code);
406 lx_siginfo.lsi_errno = siginfop->si_errno;

408 switch (lx_siginfo.lsi_signo) {
409 /*
410 * Semantics ARE defined for SIGKILL, but since
411 * we can’t catch it, we can’t translate it. :-(
412 */
413 case LX_SIGPOLL:
414 lx_siginfo.lsi_band = siginfop->si_band;
415 lx_siginfo.lsi_fd = siginfop->si_fd;
416 break;

418 case LX_SIGCHLD:
419 lx_siginfo.lsi_pid = siginfop->si_pid;
420 lx_siginfo.lsi_status = siginfop->si_status;
421 lx_siginfo.lsi_utime = siginfop->si_utime;
422 lx_siginfo.lsi_stime = siginfop->si_stime;

424 break;

426 case LX_SIGILL:
427 case LX_SIGBUS:
428 case LX_SIGFPE:
429 lx_siginfo.lsi_addr = siginfop->si_addr;
430 break;

432 default:
433 lx_siginfo.lsi_pid = siginfop->si_pid;
434 lx_siginfo.lsi_uid =
435 LX_UID32_TO_UID16(siginfop->si_uid);
436 break;
437 }

439 return ((uucopy(&lx_siginfo, lx_siginfop, sizeof (lx_siginfo_t)) != 0)
440 ? -errno : 0);
441 }

443 static void
444 stol_fpstate(fpregset_t *fpr, lx_fpstate_t *lfpr)
445 {
446 struct _fpstate *fpsp = (struct _fpstate *)fpr;
447 size_t copy_len;

449 /*
450 * The Solaris struct _fpstate and lx_fpstate_t are identical from the
451 * beginning of the structure to the lx_fpstate_t "magic" field, so
452 * just bcopy() those entries.
453 */
454 copy_len = (size_t)&(((lx_fpstate_t *)0)->magic);
455 bcopy(fpsp, lfpr, copy_len);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 8

457 /*
458 * These fields are all only significant for the first 16 bits.
459 */
460 lfpr->cw &= 0xffff; /* x87 control word */
461 lfpr->tag &= 0xffff; /* x87 tag word */
462 lfpr->cssel &= 0xffff; /* cs selector */
463 lfpr->datasel &= 0xffff; /* ds selector */

465 /*
466 * Linux wants the x87 status word field to contain the value of the
467 * x87 saved exception status word.
468 */
469 lfpr->sw = lfpr->status & 0xffff; /* x87 status word */

471 lfpr->mxcsr = fpsp->mxcsr;

473 if (fpsp->mxcsr != 0) {
474 /*
475 * Linux uses the "magic" field to denote whether the XMM
476 * registers contain legal data or not. Since we can’t get to
477 * %cr4 from userland to check the status of the OSFXSR bit,
478 * check the mxcsr field to see if it’s 0, which it should
479 * never be on a system with the OXFXSR bit enabled.
480 */
481 lfpr->magic = LX_X86_FXSR_MAGIC;
482 bcopy(fpsp->xmm, lfpr->_xmm, sizeof (lfpr->_xmm));
483 } else {
484 lfpr->magic = LX_X86_FXSR_NONE;
485 }
486 }

488 static void
489 ltos_fpstate(lx_fpstate_t *lfpr, fpregset_t *fpr)
490 {
491 struct _fpstate *fpsp = (struct _fpstate *)fpr;
492 size_t copy_len;

494 /*
495 * The lx_fpstate_t and Solaris struct _fpstate are identical from the
496 * beginning of the structure to the struct _fpstate "mxcsr" field, so
497 * just bcopy() those entries.
498 *
499 * Note that we do NOT have to propogate changes the user may have made
500 * to the "status" word back to the "sw" word, unlike the way we have
501 * to deal with processing the ESP and UESP register values on return
502 * from a signal handler.
503 */
504 copy_len = (size_t)&(((struct _fpstate *)0)->mxcsr);
505 bcopy(lfpr, fpsp, copy_len);

507 /*
508 * These fields are all only significant for the first 16 bits.
509 */
510 fpsp->cw &= 0xffff; /* x87 control word */
511 fpsp->sw &= 0xffff; /* x87 status word */
512 fpsp->tag &= 0xffff; /* x87 tag word */
513 fpsp->cssel &= 0xffff; /* cs selector */
514 fpsp->datasel &= 0xffff; /* ds selector */
515 fpsp->status &= 0xffff; /* saved status */

517 fpsp->mxcsr = lfpr->mxcsr;

519 if (lfpr->magic == LX_X86_FXSR_MAGIC)
520 bcopy(lfpr->_xmm, fpsp->xmm, sizeof (fpsp->xmm));
521 }

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 9

523 /*
524 * The brand needs a lx version of this because the format of the lx stack_t
525 * differs from the Solaris stack_t not really in content but in ORDER,
526 * so we can’t simply pass pointers and expect things to work (sigh...)
527 */
528 int
529 lx_sigaltstack(uintptr_t nsp, uintptr_t osp)
530 {
531 lx_stack_t ls;
532 stack_t newsstack, oldsstack;
533 stack_t *nssp = (nsp ? &newsstack : NULL);
534 stack_t *ossp = (osp ? &oldsstack : NULL);

536 if (nsp) {
537 if (uucopy((void *)nsp, &ls, sizeof (lx_stack_t)) != 0)
538 return (-errno);

540 if ((ls.ss_flags & LX_SS_DISABLE) == 0 &&
541 ls.ss_size < LX_MINSIGSTKSZ)
542 return (-ENOMEM);

544 newsstack.ss_sp = (int *)ls.ss_sp;
545 newsstack.ss_size = (long)ls.ss_size;
546 newsstack.ss_flags = ls.ss_flags;
547 }

549 if (sigaltstack(nssp, ossp) != 0)
550 return (-errno);

552 if (osp) {
553 ls.ss_sp = (void *)oldsstack.ss_sp;
554 ls.ss_size = (size_t)oldsstack.ss_size;
555 ls.ss_flags = oldsstack.ss_flags;

557 if (uucopy(&ls, (void *)osp, sizeof (lx_stack_t)) != 0)
558 return (-errno);
559 }

561 return (0);
562 }

564 /*
565 * The following routines are needed because sigset_ts and siginfo_ts are
566 * different in format between Linux and Solaris.
567 *
568 * Note that there are two different lx_sigset structures, lx_sigset_ts and
569 * lx_osigset_ts:
570 *
571 * + An lx_sigset_t is the equivalent of a Solaris sigset_t and supports
572 * more than 32 signals.
573 *
574 * + An lx_osigset_t is simply a uint32_t, so it by definition only supports
575 * 32 signals.
576 *
577 * When there are two versions of a routine, one prefixed with lx_rt_ and
578 * one prefixed with lx_ alone, in GENERAL the lx_rt_ routines deal with
579 * lx_sigset_ts while the lx_ routines deal with lx_osigset_ts. Unfortunately,
580 * this is not always the case (e.g. lx_sigreturn() vs. lx_rt_sigreturn())
581 */
582 int
583 lx_sigpending(uintptr_t sigpend)
584 {
585 sigset_t sigpendset;

587 if (sigpending(&sigpendset) != 0)
588 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 10

590 return (stol_osigset(&sigpendset, (lx_osigset_t *)sigpend));
591 }

593 int
594 lx_rt_sigpending(uintptr_t sigpend, uintptr_t setsize)
595 {
596 sigset_t sigpendset;

598 if ((size_t)setsize != sizeof (lx_sigset_t))
599 return (-EINVAL);

601 if (sigpending(&sigpendset) != 0)
602 return (-errno);

604 return (stol_sigset(&sigpendset, (lx_sigset_t *)sigpend));
605 }

607 /*
608 * Create a common routine to encapsulate all of the sigprocmask code,
609 * as the only difference between lx_sigprocmask() and lx_rt_sigprocmask()
610 * is the usage of lx_osigset_ts vs. lx_sigset_ts, as toggled in the code by
611 * the setting of the "sigset_type" flag.
612 */
613 static int
614 lx_sigprocmask_common(uintptr_t how, uintptr_t l_setp, uintptr_t l_osetp,
615 uintptr_t sigset_type)
616 {
617 int err;
618 sigset_t set, oset;
619 sigset_t *s_setp = NULL;
620 sigset_t *s_osetp;

622 if (l_setp) {
623 switch (how) {
624 case LX_SIG_BLOCK:
625 how = SIG_BLOCK;
626 break;

628 case LX_SIG_UNBLOCK:
629 how = SIG_UNBLOCK;
630 break;

632 case LX_SIG_SETMASK:
633 how = SIG_SETMASK;
634 break;

636 default:
637 return (-EINVAL);
638 }

640 s_setp = &set;

642 if (sigset_type == USE_SIGSET)
643 err = ltos_sigset((lx_sigset_t *)l_setp, s_setp);
644 else
645 err = ltos_osigset((lx_osigset_t *)l_setp, s_setp);

647 if (err != 0)
648 return (err);
649 }

651 s_osetp = (l_osetp ? &oset : NULL);

653 /*
654 * In a multithreaded environment, a call to sigprocmask(2) should

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 11

655 * only affect the current thread’s signal mask so we don’t need to
656 * explicitly call thr_sigsetmask(3C) here.
657 */
658 if (sigprocmask(how, s_setp, s_osetp) != 0)
659 return (-errno);

661 if (l_osetp) {
662 if (sigset_type == USE_SIGSET)
663 err = stol_sigset(s_osetp, (lx_sigset_t *)l_osetp);
664 else
665 err = stol_osigset(s_osetp, (lx_osigset_t *)l_osetp);

667 if (err != 0) {
668 /*
669 * Encountered a fault while writing to the old signal
670 * mask buffer, so unwind the signal mask change made
671 * above.
672 */
673 (void) sigprocmask(how, s_osetp, (sigset_t *)NULL);
674 return (err);
675 }
676 }

678 return (0);
679 }

681 int
682 lx_sigprocmask(uintptr_t how, uintptr_t setp, uintptr_t osetp)
683 {
684 return (lx_sigprocmask_common(how, setp, osetp, USE_OSIGSET));
685 }

687 int
688 lx_sgetmask(void)
689 {
690 lx_osigset_t oldmask;

692 return ((lx_sigprocmask_common(SIG_SETMASK, NULL, (uintptr_t)&oldmask,
693 USE_OSIGSET) != 0) ? -errno : (int)oldmask);
694 }

696 int
697 lx_ssetmask(uintptr_t sigmask)
698 {
699 lx_osigset_t newmask, oldmask;

701 newmask = (lx_osigset_t)sigmask;

703 return ((lx_sigprocmask_common(SIG_SETMASK, (uintptr_t)&newmask,
704 (uintptr_t)&oldmask, USE_OSIGSET) != 0) ? -errno : (int)oldmask);
705 }

707 int
708 lx_rt_sigprocmask(uintptr_t how, uintptr_t setp, uintptr_t osetp,
709 uintptr_t setsize)
710 {
711 if ((size_t)setsize != sizeof (lx_sigset_t))
712 return (-EINVAL);

714 return (lx_sigprocmask_common(how, setp, osetp, USE_SIGSET));
715 }

717 int
718 lx_sigsuspend(uintptr_t set)
719 {
720 sigset_t s_set;

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 12

722 if (ltos_osigset((lx_osigset_t *)set, &s_set) != 0)
723 return (-errno);

725 return ((sigsuspend(&s_set) == -1) ? -errno : 0);
726 }

728 int
729 lx_rt_sigsuspend(uintptr_t set, uintptr_t setsize)
730 {
731 sigset_t s_set;

733 if ((size_t)setsize != sizeof (lx_sigset_t))
734 return (-EINVAL);

736 if (ltos_sigset((lx_sigset_t *)set, &s_set) != 0)
737 return (-errno);

739 return ((sigsuspend(&s_set) == -1) ? -errno : 0);
740 }

742 int
743 lx_sigwaitinfo(uintptr_t set, uintptr_t sinfo)
744 {
745 lx_osigset_t *setp = (lx_osigset_t *)set;
746 lx_siginfo_t *sinfop = (lx_siginfo_t *)sinfo;

748 sigset_t s_set;
749 siginfo_t s_sinfo, *s_sinfop;
750 int rc;

752 if (ltos_osigset(setp, &s_set) != 0)
753 return (-errno);

755 s_sinfop = (sinfop == NULL) ? NULL : &s_sinfo;

757 if ((rc = sigwaitinfo(&s_set, s_sinfop)) == -1)
758 return (-errno);

760 if (s_sinfop == NULL)
761 return (rc);

763 return ((stol_siginfo(s_sinfop, sinfop) != 0) ? -errno : rc);
764 }

766 int
767 lx_rt_sigwaitinfo(uintptr_t set, uintptr_t sinfo, uintptr_t setsize)
768 {
769 sigset_t s_set;
770 siginfo_t s_sinfo, *s_sinfop;
771 int rc;

773 lx_sigset_t *setp = (lx_sigset_t *)set;
774 lx_siginfo_t *sinfop = (lx_siginfo_t *)sinfo;

776 if ((size_t)setsize != sizeof (lx_sigset_t))
777 return (-EINVAL);

779 if (ltos_sigset(setp, &s_set) != 0)
780 return (-errno);

782 s_sinfop = (sinfop == NULL) ? NULL : &s_sinfo;

784 if ((rc = sigwaitinfo(&s_set, s_sinfop)) == -1)
785 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 13

787 if (s_sinfop == NULL)
788 return (rc);

790 return ((stol_siginfo(s_sinfop, sinfop) != 0) ? -errno : rc);
791 }

793 int
794 lx_sigtimedwait(uintptr_t set, uintptr_t sinfo, uintptr_t toutp)
795 {
796 sigset_t s_set;
797 siginfo_t s_sinfo, *s_sinfop;
798 int rc;

800 lx_osigset_t *setp = (lx_osigset_t *)set;
801 lx_siginfo_t *sinfop = (lx_siginfo_t *)sinfo;

803 if (ltos_osigset(setp, &s_set) != 0)
804 return (-errno);

806 s_sinfop = (sinfop == NULL) ? NULL : &s_sinfo;

808 if ((rc = sigtimedwait(&s_set, s_sinfop,
809 (struct timespec *)toutp)) == -1)
810 return (-errno);

812 if (s_sinfop == NULL)
813 return (rc);

815 return ((stol_siginfo(s_sinfop, sinfop) != 0) ? -errno : rc);
816 }

818 int
819 lx_rt_sigtimedwait(uintptr_t set, uintptr_t sinfo, uintptr_t toutp,
820 uintptr_t setsize)
821 {
822 sigset_t s_set;
823 siginfo_t s_sinfo, *s_sinfop;
824 int rc;

826 lx_sigset_t *setp = (lx_sigset_t *)set;
827 lx_siginfo_t *sinfop = (lx_siginfo_t *)sinfo;

829 if ((size_t)setsize != sizeof (lx_sigset_t))
830 return (-EINVAL);

832 if (ltos_sigset(setp, &s_set) != 0)
833 return (-errno);

835 s_sinfop = (sinfop == NULL) ? NULL : &s_sinfo;

837 if ((rc = sigtimedwait(&s_set, s_sinfop,
838 (struct timespec *)toutp)) == -1)
839 return (-errno);

841 if (s_sinfop == NULL)
842 return (rc);

844 return ((stol_siginfo(s_sinfop, sinfop) != 0) ? -errno : rc);
845 }

847 /*
848 * Intercept the Linux sigreturn() syscall to turn it into the return through
849 * the libc call stack that Solaris expects.
850 *
851 * When control returns to libc’s call_user_handler() routine, a setcontext(2)
852 * will be done that returns thread execution to the point originally

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 14

853 * interrupted by receipt of the signal.
854 */
855 int
856 lx_sigreturn(void)
857 {
858 struct lx_oldsigstack *lx_ossp;
859 lx_sigset_t lx_sigset;
860 lx_regs_t *rp;
861 ucontext_t *ucp;
862 uintptr_t sp;

864 rp = lx_syscall_regs();

866 /*
867 * NOTE: The sp saved in the context is eight bytes off of where we
868 * need it to be.
869 */
870 sp = (uintptr_t)rp->lxr_esp - 8;

872 /*
873 * At this point, the stack pointer should point to the struct
874 * lx_oldsigstack that lx_build_old_signal_frame() constructed and
875 * placed on the stack. We need to reference it a bit later, so
876 * save a pointer to it before incrementing our copy of the sp.
877 */
878 lx_ossp = (struct lx_oldsigstack *)sp;
879 sp += sizeof (struct lx_oldsigstack);

881 /*
882 * lx_sigdeliver() pushes LX_SIGRT_MAGIC on the stack before it
883 * creates the struct lx_oldsigstack.
884 *
885 * If we don’t find it here, the stack’s been corrupted and we need to
886 * kill ourselves.
887 */
888 if (*(uint32_t *)sp != LX_SIGRT_MAGIC)
889 lx_err_fatal(gettext(
890 "sp @ 0x%p, expected 0x%x, found 0x%x!"),
891 sp, LX_SIGRT_MAGIC, *(uint32_t *)sp);

893 sp += sizeof (uint32_t);

895 /*
896 * For signal mask handling to be done properly, this call needs to
897 * return to the libc routine that originally called the signal handler
898 * rather than directly set the context back to the place the signal
899 * interrupted execution as the original Linux code would do.
900 *
901 * Here *sp points to the Solaris ucontext_t, so we need to copy
902 * machine registers the Linux signal handler may have modified
903 * back to the Solaris version.
904 */
905 ucp = (ucontext_t *)(*(uint32_t *)sp);

907 /*
908 * General registers copy across as-is, except Linux expects that
909 * changes made to uc_mcontext.gregs[ESP] will be reflected when the
910 * interrupted thread resumes execution after the signal handler. To
911 * emulate this behavior, we must modify uc_mcontext.gregs[UESP] to
912 * match uc_mcontext.gregs[ESP] as Solaris will restore the UESP
913 * value to ESP.
914 */
915 lx_ossp->sigc.sc_esp_at_signal = lx_ossp->sigc.sc_esp;
916 bcopy(&lx_ossp->sigc, &ucp->uc_mcontext, sizeof (gregset_t));

918 /* copy back FP regs if present */

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 15

919 if (lx_ossp->sigc.sc_fpstate != NULL)
920 ltos_fpstate(&lx_ossp->fpstate, &ucp->uc_mcontext.fpregs);

922 /* convert Linux signal mask back to its Solaris equivalent */
923 bzero(&lx_sigset, sizeof (lx_sigset_t));
924 lx_sigset.__bits[0] = lx_ossp->sigc.sc_mask;
925 lx_sigset.__bits[1] = lx_ossp->sig_extra;
926 (void) ltos_sigset(&lx_sigset, &ucp->uc_sigmask);

928 /*
929 * At this point sp contains the value of the stack pointer when
930 * lx_call_user_handler() was called.
931 *
932 * Pop one more value off the stack and pass the new sp to
933 * lx_sigreturn_tolibc(), which will in turn manipulate the x86
934 * registers to make it appear to libc’s call_user_handler() as if the
935 * handler it had called returned.
936 */
937 sp += sizeof (uint32_t);
938 lx_debug("calling lx_sigreturn_tolibc(0x%p)", sp);
939 lx_sigreturn_tolibc(sp);

941 /*NOTREACHED*/
942 return (0);
943 }

945 int
946 lx_rt_sigreturn(void)
947 {
948 struct lx_sigstack *lx_ssp;
949 lx_regs_t *rp;
950 lx_ucontext_t *lx_ucp;
951 ucontext_t *ucp;
952 uintptr_t sp;

954 rp = lx_syscall_regs();

956 /*
957 * NOTE: Because of some silly compatibility measures done in the
958 * signal trampoline code to make sure it uses the _exact same_
959 * instruction sequence Linux does, we have to manually "pop"
960 * one extra four byte instruction off the stack here before
961 * passing the stack address to the syscall because the
962 * trampoline code isn’t allowed to do it.
963 *
964 * No, I’m not kidding.
965 *
966 * The sp saved in the context is eight bytes off of where we
967 * need it to be, so the need to pop the extra four byte
968 * instruction means we need to subtract a net four bytes from
969 * the sp before "popping" the struct lx_sigstack off the stack.
970 * This will yield the value the stack pointer had before
971 * lx_sigdeliver() created the stack frame for the Linux signal
972 * handler.
973 */
974 sp = (uintptr_t)rp->lxr_esp - 4;

976 /*
977 * At this point, the stack pointer should point to the struct
978 * lx_sigstack that lx_build_signal_frame() constructed and
979 * placed on the stack. We need to reference it a bit later, so
980 * save a pointer to it before incrementing our copy of the sp.
981 */
982 lx_ssp = (struct lx_sigstack *)sp;
983 sp += sizeof (struct lx_sigstack);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 16

985 /*
986 * lx_sigdeliver() pushes LX_SIGRT_MAGIC on the stack before it
987 * creates the struct lx_sigstack (and possibly struct lx_fpstate_t).
988 *
989 * If we don’t find it here, the stack’s been corrupted and we need to
990 * kill ourselves.
991 */
992 if (*(uint32_t *)sp != LX_SIGRT_MAGIC)
993 lx_err_fatal(gettext("sp @ 0x%p, expected 0x%x, found 0x%x!"),
994 sp, LX_SIGRT_MAGIC, *(uint32_t *)sp);

996 sp += sizeof (uint32_t);

998 /*
999 * For signal mask handling to be done properly, this call needs to

1000 * return to the libc routine that originally called the signal handler
1001 * rather than directly set the context back to the place the signal
1002 * interrupted execution as the original Linux code would do.
1003 *
1004 * Here *sp points to the Solaris ucontext_t, so we need to copy
1005 * machine registers the Linux signal handler may have modified
1006 * back to the Solaris version.
1007 */
1008 ucp = (ucontext_t *)(*(uint32_t *)sp);

1010 lx_ucp = lx_ssp->ucp;

1012 if (lx_ucp != NULL) {
1013 /*
1014 * General registers copy across as-is, except Linux expects
1015 * that changes made to uc_mcontext.gregs[ESP] will be reflected
1016 * when the interrupted thread resumes execution after the
1017 * signal handler. To emulate this behavior, we must modify
1018 * uc_mcontext.gregs[UESP] to match uc_mcontext.gregs[ESP] as
1019 * Solaris will restore the UESP value to ESP.
1020 */
1021 lx_ucp->uc_sigcontext.sc_esp_at_signal =
1022 lx_ucp->uc_sigcontext.sc_esp;
1023 bcopy(&lx_ucp->uc_sigcontext, &ucp->uc_mcontext.gregs,
1024 sizeof (gregset_t));

1026 if (lx_ucp->uc_sigcontext.sc_fpstate != NULL)
1027 ltos_fpstate(lx_ucp->uc_sigcontext.sc_fpstate,
1028 &ucp->uc_mcontext.fpregs);

1030 /*
1031 * Convert the Linux signal mask and stack back to their
1032 * Solaris equivalents.
1033 */
1034 (void) ltos_sigset(&lx_ucp->uc_sigmask, &ucp->uc_sigmask);
1035 ltos_stack(&lx_ucp->uc_stack, &ucp->uc_stack);
1036 }

1038 /*
1039 * At this point sp contains the value of the stack pointer when
1040 * lx_call_user_handler() was called.
1041 *
1042 * Pop one more value off the stack and pass the new sp to
1043 * lx_sigreturn_tolibc(), which will in turn manipulate the x86
1044 * registers to make it appear to libc’s call_user_handler() as if the
1045 * handler it had called returned.
1046 */
1047 sp += sizeof (uint32_t);
1048 lx_debug("calling lx_sigreturn_tolibc(0x%p)", sp);
1049 lx_sigreturn_tolibc(sp);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 17

1051 /*NOTREACHED*/
1052 return (0);
1053 }

1055 /*
1056 * Build signal frame for processing for "old" (legacy) Linux signals
1057 */
1058 static void
1059 lx_build_old_signal_frame(int lx_sig, siginfo_t *sip, void *p, void *sp)
1060 {
1061 extern void lx_sigreturn_tramp();

1063 lx_sigset_t lx_sigset;
1064 ucontext_t *ucp = (ucontext_t *)p;
1065 struct lx_sigaction *lxsap;
1066 struct lx_oldsigstack *lx_ossp = sp;

1068 lx_debug("building old signal frame for lx sig %d at 0x%p", lx_sig, sp);

1070 lx_ossp->sig = lx_sig;
1071 lxsap = &lx_sighandlers.lx_sa[lx_sig];
1072 lx_debug("lxsap @ 0x%p", lxsap);

1074 if (lxsap && (lxsap->lxsa_flags & LX_SA_RESTORER) &&
1075 lxsap->lxsa_restorer) {
1076 lx_ossp->retaddr = lxsap->lxsa_restorer;
1077 lx_debug("lxsa_restorer exists @ 0x%p", lx_ossp->retaddr);
1078 } else {
1079 lx_ossp->retaddr = lx_sigreturn_tramp;
1080 lx_debug("lx_ossp->retaddr set to 0x%p", lx_sigreturn_tramp);
1081 }

1083 lx_debug("osf retaddr = 0x%p", lx_ossp->retaddr);

1085 /* convert Solaris signal mask and stack to their Linux equivalents */
1086 (void) stol_sigset(&ucp->uc_sigmask, &lx_sigset);
1087 lx_ossp->sigc.sc_mask = lx_sigset.__bits[0];
1088 lx_ossp->sig_extra = lx_sigset.__bits[1];

1090 /*
1091 * General registers copy across as-is, except Linux expects that
1092 * uc_mcontext.gregs[ESP] == uc_mcontext.gregs[UESP] on receipt of a
1093 * signal.
1094 */
1095 bcopy(&ucp->uc_mcontext, &lx_ossp->sigc, sizeof (gregset_t));
1096 lx_ossp->sigc.sc_esp = lx_ossp->sigc.sc_esp_at_signal;

1098 /*
1099 * cr2 contains the faulting address, and Linux only sets cr2 for a
1100 * a segmentation fault.
1101 */
1102 lx_ossp->sigc.sc_cr2 = (((lx_sig == LX_SIGSEGV) && (sip)) ?
1103 (uintptr_t)sip->si_addr : 0);

1105 /* convert FP regs if present */
1106 if (ucp->uc_flags & UC_FPU) {
1107 stol_fpstate(&ucp->uc_mcontext.fpregs, &lx_ossp->fpstate);
1108 lx_ossp->sigc.sc_fpstate = &lx_ossp->fpstate;
1109 } else {
1110 lx_ossp->sigc.sc_fpstate = NULL;
1111 }

1113 /*
1114 * Believe it or not, gdb wants to SEE the trampoline code on the
1115 * bottom of the stack to determine whether the stack frame belongs to
1116 * a signal handler, even though this code is no longer actually

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 18

1117 * called.
1118 *
1119 * You can’t make this stuff up.
1120 */
1121 bcopy((void *)lx_sigreturn_tramp, lx_ossp->trampoline,
1122 sizeof (lx_ossp->trampoline));
1123 }

1125 /*
1126 * Build signal frame for processing for modern Linux signals
1127 */
1128 static void
1129 lx_build_signal_frame(int lx_sig, siginfo_t *sip, void *p, void *sp)
1130 {
1131 extern void lx_rt_sigreturn_tramp();

1133 lx_ucontext_t *lx_ucp;
1134 ucontext_t *ucp = (ucontext_t *)p;
1135 struct lx_sigstack *lx_ssp = sp;
1136 struct lx_sigaction *lxsap;

1138 lx_debug("building signal frame for lx sig %d at 0x%p", lx_sig, sp);

1140 lx_ucp = &lx_ssp->uc;
1141 lx_ssp->ucp = lx_ucp;
1142 lx_ssp->sig = lx_sig;

1144 lxsap = &lx_sighandlers.lx_sa[lx_sig];
1145 lx_debug("lxsap @ 0x%p", lxsap);

1147 if (lxsap && (lxsap->lxsa_flags & LX_SA_RESTORER) &&
1148 lxsap->lxsa_restorer) {
1149 lx_ssp->retaddr = lxsap->lxsa_restorer;
1150 lx_debug("lxsa_restorer exists @ 0x%p", lx_ssp->retaddr);
1151 } else {
1152 lx_ssp->retaddr = lx_rt_sigreturn_tramp;
1153 lx_debug("lx_ssp->retaddr set to 0x%p", lx_rt_sigreturn_tramp);
1154 }

1156 /* Linux has these fields but always clears them to 0 */
1157 lx_ucp->uc_flags = 0;
1158 lx_ucp->uc_link = NULL;

1160 /* convert Solaris signal mask and stack to their Linux equivalents */
1161 (void) stol_sigset(&ucp->uc_sigmask, &lx_ucp->uc_sigmask);
1162 stol_stack(&ucp->uc_stack, &lx_ucp->uc_stack);

1164 /*
1165 * General registers copy across as-is, except Linux expects that
1166 * uc_mcontext.gregs[ESP] == uc_mcontext.gregs[UESP] on receipt of a
1167 * signal.
1168 */
1169 bcopy(&ucp->uc_mcontext, &lx_ucp->uc_sigcontext, sizeof (gregset_t));
1170 lx_ucp->uc_sigcontext.sc_esp = lx_ucp->uc_sigcontext.sc_esp_at_signal;

1172 /*
1173 * cr2 contains the faulting address, which Linux only sets for a
1174 * a segmentation fault.
1175 */
1176 lx_ucp->uc_sigcontext.sc_cr2 = ((lx_sig == LX_SIGSEGV) && (sip)) ?
1177 (uintptr_t)sip->si_addr : 0;

1179 /*
1180 * Point the lx_siginfo_t pointer to the signal stack’s lx_siginfo_t
1181 * if there was a Solaris siginfo_t to convert, otherwise set it to
1182 * NULL.

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 19

1183 */
1184 if ((sip) && (stol_siginfo(sip, &lx_ssp->si) == 0))
1185 lx_ssp->sip = &lx_ssp->si;
1186 else
1187 lx_ssp->sip = NULL;

1189 /* convert FP regs if present */
1190 if (ucp->uc_flags & UC_FPU) {
1191 /*
1192 * Copy FP regs to the appropriate place in the the lx_sigstack
1193 * structure.
1194 */
1195 stol_fpstate(&ucp->uc_mcontext.fpregs, &lx_ssp->fpstate);
1196 lx_ucp->uc_sigcontext.sc_fpstate = &lx_ssp->fpstate;
1197 } else
1198 lx_ucp->uc_sigcontext.sc_fpstate = NULL;

1200 /*
1201 * Believe it or not, gdb wants to SEE the trampoline code on the
1202 * bottom of the stack to determine whether the stack frame belongs to
1203 * a signal handler, even though this code is no longer actually
1204 * called.
1205 *
1206 * You can’t make this stuff up.
1207 */
1208 bcopy((void *)lx_rt_sigreturn_tramp, lx_ssp->trampoline,
1209 sizeof (lx_ssp->trampoline));
1210 }

1212 /*
1213 * This is the second level interposition handler for Linux signals.
1214 */
1215 static void
1216 lx_call_user_handler(int sig, siginfo_t *sip, void *p)
1217 {
1218 void (*user_handler)();
1219 void (*stk_builder)();

1221 lx_tsd_t *lx_tsd;
1222 struct lx_sigaction *lxsap;
1223 ucontext_t *ucp = (ucontext_t *)p;
1224 uintptr_t gs;
1225 size_t stksize;
1226 int err, lx_sig;

1228 /*
1229 * If Solaris signal has no Linux equivalent, effectively
1230 * ignore it.
1231 */
1232 if ((lx_sig = stol_signo[sig]) == -1) {
1233 lx_debug("caught solaris signal %d, no Linux equivalent", sig);
1234 return;
1235 }

1237 lx_debug("interpose caught solaris signal %d, translating to Linux "
1238 "signal %d", sig, lx_sig);

1240 lxsap = &lx_sighandlers.lx_sa[lx_sig];
1241 lx_debug("lxsap @ 0x%p", lxsap);

1243 if ((sig == SIGPWR) && (lxsap->lxsa_handler == SIG_DFL)) {
1244 /* Linux SIG_DFL for SIGPWR is to terminate */
1245 exit(LX_SIGPWR | 0x80);
1246 }

1248 if ((lxsap->lxsa_handler == SIG_DFL) ||

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 20

1249 (lxsap->lxsa_handler == SIG_IGN))
1250 lx_err_fatal(gettext("%s set to %s? How?!?!?"),
1251 "lxsa_handler",
1252 ((lxsap->lxsa_handler == SIG_DFL) ? "SIG_DFL" : "SIG_IGN"),
1253 lxsap->lxsa_handler);

1255 if ((err = thr_getspecific(lx_tsd_key, (void **)&lx_tsd)) != 0)
1256 lx_err_fatal(gettext(
1257 "%s: unable to read thread-specific data: %s"),
1258 "lx_call_user_handler", strerror(err));

1260 assert(lx_tsd != 0);

1262 gs = lx_tsd->lxtsd_gs & 0xffff; /* gs is only 16 bits */

1264 /*
1265 * Any zero %gs value should be caught when a save is attempted in
1266 * lx_emulate(), but this extra check will catch any zero values due to
1267 * bugs in the library.
1268 */
1269 assert(gs != 0);

1271 if (lxsap->lxsa_flags & LX_SA_SIGINFO) {
1272 stksize = sizeof (struct lx_sigstack);
1273 stk_builder = lx_build_signal_frame;
1274 } else {
1275 stksize = sizeof (struct lx_oldsigstack);
1276 stk_builder = lx_build_old_signal_frame;
1277 }

1279 user_handler = lxsap->lxsa_handler;

1281 lx_debug("delivering %d (lx %d) to handler at 0x%p with gs 0x%x", sig,
1282 lx_sig, lxsap->lxsa_handler, gs);

1284 if (lxsap->lxsa_flags & LX_SA_RESETHAND)
1285 lxsap->lxsa_handler = SIG_DFL;

1287 /*
1288 * lx_sigdeliver() doesn’t return, so it relies on the Linux
1289 * signal handlers to clean up the stack, reset the current
1290 * signal mask and return to the code interrupted by the signal.
1291 */
1292 lx_sigdeliver(lx_sig, sip, ucp, stksize, stk_builder, user_handler, gs);
1293 }

1295 /*
1296 * Common routine to modify sigaction characteristics of a thread.
1297 *
1298 * We shouldn’t need any special locking code here as we actually use
1299 * libc’s sigaction() to do all the real work, so its thread locking should
1300 * take care of any issues for us.
1301 */
1302 static int
1303 lx_sigaction_common(int lx_sig, struct lx_sigaction *lxsp,
1304 struct lx_sigaction *olxsp)
1305 {
1306 struct lx_sigaction *lxsap;
1307 struct sigaction sa;

1309 if (lx_sig <= 0 || lx_sig >= LX_NSIG)
1310 return (-EINVAL);

1312 lxsap = &lx_sighandlers.lx_sa[lx_sig];
1313 lx_debug("&lx_sighandlers.lx_sa[%d] = 0x%p", lx_sig, lxsap);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 21

1315 if ((olxsp != NULL) &&
1316 ((uucopy(lxsap, olxsp, sizeof (struct lx_sigaction))) != 0))
1317 return (-errno);

1319 if (lxsp != NULL) {
1320 int err, sig;
1321 struct lx_sigaction lxsa;
1322 sigset_t new_set, oset;

1324 if (uucopy(lxsp, &lxsa, sizeof (struct lx_sigaction)) != 0)
1325 return (-errno);

1327 if ((sig = ltos_signo[lx_sig]) != -1) {
1328 /*
1329 * Block this signal while messing with its dispostion
1330 */
1331 (void) sigemptyset(&new_set);
1332 (void) sigaddset(&new_set, sig);

1334 if (sigprocmask(SIG_BLOCK, &new_set, &oset) < 0) {
1335 err = errno;
1336 lx_debug("unable to block signal %d: %s", sig,
1337 strerror(err));
1338 return (-err);
1339 }

1341 /*
1342 * We don’t really need the old signal disposition at
1343 * this point, but this weeds out signals that would
1344 * cause sigaction() to return an error before we change
1345 * anything other than the current signal mask.
1346 */
1347 if (sigaction(sig, NULL, &sa) < 0) {
1348 err = errno;
1349 lx_debug("sigaction() to get old "
1350 "disposition for signal %d failed: "
1351 "%s", sig, strerror(err));
1352 (void) sigprocmask(SIG_SETMASK, &oset, NULL);
1353 return (-err);
1354 }

1356 if ((lxsa.lxsa_handler != SIG_DFL) &&
1357 (lxsa.lxsa_handler != SIG_IGN)) {
1358 sa.sa_handler = lx_call_user_handler;

1360 /*
1361 * The interposition signal handler needs the
1362 * information provided via the SA_SIGINFO flag.
1363 */
1364 sa.sa_flags = SA_SIGINFO;

1366 if (lxsa.lxsa_flags & LX_SA_NOCLDSTOP)
1367 sa.sa_flags |= SA_NOCLDSTOP;
1368 if (lxsa.lxsa_flags & LX_SA_NOCLDWAIT)
1369 sa.sa_flags |= SA_NOCLDWAIT;
1370 if (lxsa.lxsa_flags & LX_SA_ONSTACK)
1371 sa.sa_flags |= SA_ONSTACK;
1372 if (lxsa.lxsa_flags & LX_SA_RESTART)
1373 sa.sa_flags |= SA_RESTART;
1374 if (lxsa.lxsa_flags & LX_SA_NODEFER)
1375 sa.sa_flags |= SA_NODEFER;

1377 /*
1378 * Can’t use RESETHAND with SIGPWR due to
1379 * different default actions between Linux
1380 * and Solaris.

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 22

1381 */
1382 if ((sig != SIGPWR) &&
1383 (lxsa.lxsa_flags & LX_SA_RESETHAND))
1384 sa.sa_flags |= SA_RESETHAND;

1386 if (ltos_sigset(&lxsa.lxsa_mask,
1387 &sa.sa_mask) != 0) {
1388 err = errno;
1389 (void) sigprocmask(SIG_SETMASK, &oset,
1390 NULL);
1391 return (-err);
1392 }

1394 lx_debug("interposing handler @ 0x%p for "
1395 "signal %d (lx %d), flags 0x%x",
1396 lxsa.lxsa_handler, sig, lx_sig,
1397 lxsa.lxsa_flags);

1399 if (sigaction(sig, &sa, NULL) < 0) {
1400 err = errno;
1401 lx_debug("sigaction() to set new "
1402 "disposition for signal %d failed: "
1403 "%s", sig, strerror(err));
1404 (void) sigprocmask(SIG_SETMASK, &oset,
1405 NULL);
1406 return (-err);
1407 }
1408 } else if ((sig != SIGPWR) ||
1409 ((sig == SIGPWR) &&
1410 (lxsa.lxsa_handler == SIG_IGN))) {
1411 /*
1412 * There’s no need to interpose for SIG_DFL or
1413 * SIG_IGN so just call libc’s sigaction(), but
1414 * don’t allow SIG_DFL for SIGPWR due to
1415 * differing default actions between Linux and
1416 * Solaris.
1417 *
1418 * Get the previous disposition first so things
1419 * like sa_mask and sa_flags are preserved over
1420 * a transition to SIG_DFL or SIG_IGN, which is
1421 * what Linux expects.
1422 */

1424 sa.sa_handler = lxsa.lxsa_handler;

1426 if (sigaction(sig, &sa, NULL) < 0) {
1427 err = errno;
1428 lx_debug("sigaction(%d, %s) failed: %s",
1429 sig, ((sa.sa_handler == SIG_DFL) ?
1430 "SIG_DFL" : "SIG_IGN"),
1431 strerror(err));
1432 (void) sigprocmask(SIG_SETMASK, &oset,
1433 NULL);
1434 return (-err);
1435 }
1436 }
1437 } else {
1438 lx_debug("Linux signal with no kill support "
1439 "specified: %d", lx_sig);
1440 }

1442 /*
1443 * Save the new disposition for the signal in the global
1444 * lx_sighandlers structure.
1445 */
1446 bcopy(&lxsa, lxsap, sizeof (struct lx_sigaction));

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 23

1448 /*
1449 * Reset the signal mask to what we came in with if
1450 * we were modifying a kill-supported signal.
1451 */
1452 if (sig != -1)
1453 (void) sigprocmask(SIG_SETMASK, &oset, NULL);
1454 }

1456 return (0);
1457 }

1459 int
1460 lx_sigaction(uintptr_t lx_sig, uintptr_t actp, uintptr_t oactp)
1461 {
1462 int val;
1463 struct lx_sigaction sa, osa;
1464 struct lx_sigaction *sap, *osap;
1465 struct lx_osigaction *osp;

1467 sap = (actp ? &sa : NULL);
1468 osap = (oactp ? &osa : NULL);

1470 /*
1471 * If we have a source pointer, convert source lxsa_mask from
1472 * lx_osigset_t to lx_sigset_t format.
1473 */
1474 if (sap) {
1475 osp = (struct lx_osigaction *)actp;
1476 sap->lxsa_handler = osp->lxsa_handler;

1478 bzero(&sap->lxsa_mask, sizeof (lx_sigset_t));

1480 for (val = 1; val <= OSIGSET_NBITS; val++)
1481 if (osp->lxsa_mask & OSIGSET_BITSET(val))
1482 (void) lx_sigaddset(&sap->lxsa_mask, val);

1484 sap->lxsa_flags = osp->lxsa_flags;
1485 sap->lxsa_restorer = osp->lxsa_restorer;
1486 }

1488 if ((val = lx_sigaction_common(lx_sig, sap, osap)))
1489 return (val);

1491 /*
1492 * If we have a save pointer, convert the old lxsa_mask from
1493 * lx_sigset_t to lx_osigset_t format.
1494 */
1495 if (osap) {
1496 osp = (struct lx_osigaction *)oactp;

1498 osp->lxsa_handler = osap->lxsa_handler;

1500 bzero(&osp->lxsa_mask, sizeof (osp->lxsa_mask));
1501 for (val = 1; val <= OSIGSET_NBITS; val++)
1502 if (lx_sigismember(&osap->lxsa_mask, val))
1503 osp->lxsa_mask |= OSIGSET_BITSET(val);

1505 osp->lxsa_flags = osap->lxsa_flags;
1506 osp->lxsa_restorer = osap->lxsa_restorer;
1507 }

1509 return (0);
1510 }

1512 int

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 24

1513 lx_rt_sigaction(uintptr_t lx_sig, uintptr_t actp, uintptr_t oactp,
1514 uintptr_t setsize)
1515 {
1516 /*
1517 * The "new" rt_sigaction call checks the setsize
1518 * parameter.
1519 */
1520 if ((size_t)setsize != sizeof (lx_sigset_t))
1521 return (-EINVAL);

1523 return (lx_sigaction_common(lx_sig, (struct lx_sigaction *)actp,
1524 (struct lx_sigaction *)oactp));
1525 }

1527 /*
1528 * Convert signal syscall to a call to the lx_sigaction() syscall
1529 */
1530 int
1531 lx_signal(uintptr_t lx_sig, uintptr_t handler)
1532 {
1533 struct sigaction act;
1534 struct sigaction oact;
1535 int rc;

1537 /*
1538 * Use sigaction to mimic SYSV signal() behavior; glibc will
1539 * actually call sigaction(2) itself, so we’re really reaching
1540 * back for signal(2) semantics here.
1541 */
1542 bzero(&act, sizeof (act));
1543 act.sa_handler = (void (*)())handler;
1544 act.sa_flags = SA_RESETHAND | SA_NODEFER;

1546 rc = lx_sigaction(lx_sig, (uintptr_t)&act, (uintptr_t)&oact);
1547 return ((rc == 0) ? ((int)oact.sa_handler) : rc);
1548 }

1550 int
1551 lx_tgkill(uintptr_t tgid, uintptr_t pid, uintptr_t sig)
1552 {
1553 if (((pid_t)tgid <= 0) || ((pid_t)pid <= 0))
1554 return (-EINVAL);

1556 if (tgid != pid) {
1557 lx_unsupported(gettext(
1558 "BrandZ tgkill(2) does not support gid != pid\n"));
1559 return (-ENOTSUP);
1560 }

1562 /*
1563 * Pad the lx_tkill() call with NULLs to match the IN_KERNEL_SYSCALL
1564 * prototype generated for it by IN_KERNEL_SYSCALL in lx_brand.c.
1565 */
1566 return (lx_tkill(pid, sig, NULL, NULL, NULL, NULL));
1567 }

1569 /*
1570 * This C routine to save the passed %gs value into the thread-specific save
1571 * area is called by the assembly routine lx_sigacthandler.
1572 */
1573 void
1574 lx_sigsavegs(uintptr_t signalled_gs)
1575 {
1576 lx_tsd_t *lx_tsd;
1577 int err;

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 25

1579 signalled_gs &= 0xffff; /* gs is only 16 bits */

1581 /*
1582 * While a %gs of 0 is technically legal (as long as the application
1583 * never dereferences memory using %gs), Solaris has its own ideas as
1584 * to how a zero %gs should be handled in _update_sregs(), such that
1585 * any 32-bit user process with a %gs of zero running on a system with
1586 * a 64-bit kernel will have its %gs hidden base register stomped on on
1587 * return from a system call, leaving an incorrect base address in
1588 * place until the next time %gs is actually reloaded (forcing a reload
1589 * of the base address from the appropriate descriptor table.)
1590 *
1591 * Of course the kernel will once again stomp on THAT base address when
1592 * returning from a system call, resulting in an application
1593 * segmentation fault.
1594 *
1595 * To avoid this situation, disallow a save of a zero %gs here in order
1596 * to try and capture any Linux process that takes a signal with a zero
1597 * %gs installed.
1598 */
1599 assert(signalled_gs != 0);

1601 if (signalled_gs != LWPGS_SEL) {
1602 if ((err = thr_getspecific(lx_tsd_key,
1603 (void **)&lx_tsd)) != 0)
1604 lx_err_fatal(gettext(
1605 "%s: unable to read thread-specific data: %s"),
1606 "sigsavegs", strerror(err));

1608 assert(lx_tsd != 0);

1610 lx_tsd->lxtsd_gs = signalled_gs;

1612 lx_debug("lx_sigsavegs(): gsp 0x%p, saved gs: 0x%x\n",
1613 lx_tsd, signalled_gs);
1614 }
1615 }

1617 int
1618 lx_siginit(void)
1619 {
1620 extern void set_setcontext_enforcement(int);
1621 extern void lx_sigacthandler(int, siginfo_t *, void *);

1623 struct sigaction sa;
1624 sigset_t new_set, oset;
1625 int lx_sig, sig;

1627 /*
1628 * Block all signals possible while setting up the signal imposition
1629 * mechanism.
1630 */
1631 (void) sigfillset(&new_set);

1633 if (sigprocmask(SIG_BLOCK, &new_set, &oset) < 0)
1634 lx_err_fatal(gettext("unable to block signals while setting up "
1635 "imposition mechanism: %s"), strerror(errno));

1637 /*
1638 * Ignore any signals that have no Linux analog so that those
1639 * signals cannot be sent to Linux processes from the global zone
1640 */
1641 for (sig = 1; sig < NSIG; sig++)
1642 if (stol_signo[sig] < 0)
1643 (void) sigignore(sig);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 26

1645 /*
1646 * As mentioned previously, when a user signal handler is installed
1647 * via sigaction(), libc interposes on the mechanism by actually
1648 * installing an internal routine sigacthandler() as the signal
1649 * handler. On receipt of the signal, libc does some thread-related
1650 * processing via sigacthandler(), then calls the registered user
1651 * signal handler on behalf of the user.
1652 *
1653 * We need to interpose on that mechanism to make sure the correct
1654 * %gs segment register value is installed before the libc routine
1655 * is called, otherwise the libc code will die with a segmentation
1656 * fault.
1657 *
1658 * The private libc routine setsigacthandler() will set our
1659 * interposition routine, lx_sigacthandler(), as the default
1660 * "sigacthandler" routine for all new signal handlers for this
1661 * thread.
1662 */
1663 setsigacthandler(lx_sigacthandler, &libc_sigacthandler);
1664 lx_debug("lx_sigacthandler installed, libc_sigacthandler = 0x%p",
1665 libc_sigacthandler);

1667 /*
1668 * Mark any signals that are ignored as ignored in our interposition
1669 * handler array
1670 */
1671 for (lx_sig = 1; lx_sig < LX_NSIG; lx_sig++) {
1672 if (((sig = ltos_signo[lx_sig]) != -1) &&
1673 (sigaction(sig, NULL, &sa) < 0))
1674 lx_err_fatal(gettext("unable to determine previous "
1675 "disposition for signal %d: %s"),
1676 sig, strerror(errno));

1678 if (sa.sa_handler == SIG_IGN) {
1679 lx_debug("marking signal %d (lx %d) as SIG_IGN",
1680 sig, lx_sig);
1681 lx_sighandlers.lx_sa[lx_sig].lxsa_handler = SIG_IGN;
1682 }
1683 }

1685 /*
1686 * Have our interposition handler handle SIGPWR to start with,
1687 * as it has a default action of terminating the process in Linux
1688 * but its default is to be ignored in Solaris.
1689 */
1690 (void) sigemptyset(&sa.sa_mask);
1691 sa.sa_sigaction = lx_call_user_handler;
1692 sa.sa_flags = SA_SIGINFO;

1694 if (sigaction(SIGPWR, &sa, NULL) < 0)
1695 lx_err_fatal(gettext("%s failed: %s"), "sigaction(SIGPWR)",
1696 strerror(errno));

1698 /*
1699 * Solaris’ libc forces certain register values in the ucontext_t
1700 * used to restore a post-signal user context to be those Solaris
1701 * expects; however that is not what we want to happen if the signal
1702 * was taken while branded code was executing, so we must disable
1703 * that behavior.
1704 */
1705 set_setcontext_enforcement(0);

1707 /*
1708 * Reset the signal mask to what we came in with
1709 */
1710 (void) sigprocmask(SIG_SETMASK, &oset, NULL);

new/usr/src/lib/brand/lx/lx_brand/common/signal.c 27

1712 lx_debug("interposition handler setup for SIGPWR");
1713 return (0);
1714 }
1715 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 1

**
 40838 Tue Jan 14 16:17:05 2014
new/usr/src/lib/brand/lx/lx_brand/common/socket.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <unistd.h>
28 #include <fcntl.h>
29 #include <errno.h>
30 #include <signal.h>
31 #include <stdio.h>
32 #include <stdlib.h>
33 #include <libintl.h>
34 #include <strings.h>
35 #include <alloca.h>
36 #include <ucred.h>

38 #include <sys/param.h>
39 #include <sys/brand.h>
40 #include <sys/syscall.h>
41 #include <sys/socket.h>
42 #include <sys/socketvar.h>
43 #include <sys/un.h>
44 #include <netinet/tcp.h>
45 #include <netinet/igmp.h>
46 #include <sys/types.h>
47 #include <sys/stat.h>
48 #include <sys/lx_debug.h>
49 #include <sys/lx_syscall.h>
50 #include <sys/lx_socket.h>
51 #include <sys/lx_brand.h>
52 #include <sys/lx_misc.h>

54 /*
55 * This string is used to prefix all abstract namespace unix sockets, ie all
56 * abstract namespace sockets are converted to regular sockets in the /tmp
57 * directory with .ABSK_ prefixed to their names.
58 */
59 #define ABST_PRFX "/tmp/.ABSK_"
60 #define ABST_PRFX_LEN 11

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 2

62 static int lx_socket(ulong_t *);
63 static int lx_bind(ulong_t *);
64 static int lx_connect(ulong_t *);
65 static int lx_listen(ulong_t *);
66 static int lx_accept(ulong_t *);
67 static int lx_getsockname(ulong_t *);
68 static int lx_getpeername(ulong_t *);
69 static int lx_socketpair(ulong_t *);
70 static int lx_send(ulong_t *);
71 static int lx_recv(ulong_t *);
72 static int lx_sendto(ulong_t *);
73 static int lx_recvfrom(ulong_t *);
74 static int lx_shutdown(ulong_t *);
75 static int lx_setsockopt(ulong_t *);
76 static int lx_getsockopt(ulong_t *);
77 static int lx_sendmsg(ulong_t *);
78 static int lx_recvmsg(ulong_t *);

80 typedef int (*sockfn_t)(ulong_t *);

82 static struct {
83 sockfn_t s_fn; /* Function implementing the subcommand */
84 int s_nargs; /* Number of arguments the function takes */
85 } sockfns[] = {
86 lx_socket, 3,
87 lx_bind, 3,
88 lx_connect, 3,
89 lx_listen, 2,
90 lx_accept, 3,
91 lx_getsockname, 3,
92 lx_getpeername, 3,
93 lx_socketpair, 4,
94 lx_send, 4,
95 lx_recv, 4,
96 lx_sendto, 6,
97 lx_recvfrom, 6,
98 lx_shutdown, 2,
99 lx_setsockopt, 5,
100 lx_getsockopt, 5,
101 lx_sendmsg, 3,
102 lx_recvmsg, 3
103 };

105 /*
106 * What follows are a series of tables we use to translate Linux constants
107 * into equivalent Solaris constants and back again. I wish this were
108 * cleaner, more programmatic, and generally nicer. Sadly, life is messy,
109 * and Unix networking even more so.
110 */
111 static const int ltos_family[LX_AF_MAX + 1] = {
112 AF_UNSPEC, AF_UNIX, AF_INET, AF_CCITT, AF_IPX,
113 AF_APPLETALK, AF_NOTSUPPORTED, AF_OSI, AF_NOTSUPPORTED,
114 AF_X25, AF_INET6, AF_CCITT, AF_DECnet,
115 AF_802, AF_POLICY, AF_KEY, AF_ROUTE,
116 AF_NOTSUPPORTED, AF_NOTSUPPORTED, AF_NOTSUPPORTED, AF_NOTSUPPORTED,
117 AF_NOTSUPPORTED, AF_SNA, AF_NOTSUPPORTED, AF_NOTSUPPORTED,
118 AF_NOTSUPPORTED, AF_NOTSUPPORTED, AF_NOTSUPPORTED, AF_NOTSUPPORTED,
119 AF_NOTSUPPORTED, AF_NOTSUPPORTED, AF_NOTSUPPORTED, AF_NOTSUPPORTED
120 };

122 #define LTOS_FAMILY(d) ((d) <= LX_AF_MAX ? ltos_family[(d)] : AF_INVAL)

124 static const int ltos_socktype[LX_SOCK_PACKET + 1] = {
125 SOCK_NOTSUPPORTED, SOCK_STREAM, SOCK_DGRAM, SOCK_RAW,
126 SOCK_RDM, SOCK_SEQPACKET, SOCK_NOTSUPPORTED, SOCK_NOTSUPPORTED,

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 3

127 SOCK_NOTSUPPORTED, SOCK_NOTSUPPORTED, SOCK_NOTSUPPORTED
128 };

130 #define LTOS_SOCKTYPE(t) \
131 ((t) <= LX_SOCK_PACKET ? ltos_socktype[(t)] : SOCK_INVAL)

133 /*
134 * Linux socket option type definitions
135 *
136 * The protocol ‘levels‘ are well defined (see in.h) The option values are
137 * not so well defined. Linux often uses different values to Solaris
138 * although they mean the same thing. For example, IP_TOS in Linux is
139 * defined as value 1 but in Solaris it is defined as value 3. This table
140 * maps all the Protocol levels to their options and maps them between
141 * Linux and Solaris and vice versa. Hence the reason for the complexity.
142 */

144 typedef struct lx_proto_opts {
145 const int *proto; /* Linux to Solaris mapping table */
146 int maxentries; /* max entries in this table */
147 } lx_proto_opts_t;

149 #define OPTNOTSUP -1 /* we don’t support it */

151 static const int ltos_ip_sockopts[LX_IP_DROP_MEMBERSHIP + 1] = {
152 OPTNOTSUP, IP_TOS, IP_TTL, IP_HDRINCL,
153 IP_OPTIONS, OPTNOTSUP, IP_RECVOPTS, IP_RETOPTS,
154 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
155 IP_RECVTTL, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
156 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
157 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
158 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
159 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
160 IP_MULTICAST_IF, IP_MULTICAST_TTL, IP_MULTICAST_LOOP,
161 IP_ADD_MEMBERSHIP, IP_DROP_MEMBERSHIP
162 };

164 static const int ltos_tcp_sockopts[LX_TCP_QUICKACK + 1] = {
165 OPTNOTSUP, TCP_NODELAY, TCP_MAXSEG, OPTNOTSUP,
166 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
167 TCP_KEEPALIVE, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
168 OPTNOTSUP
169 };

171 static const int ltos_igmp_sockopts[IGMP_MTRACE + 1] = {
172 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
173 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
174 IGMP_MINLEN, OPTNOTSUP, OPTNOTSUP, /* XXX: was IGMP_TIMER_SCALE */
175 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
176 OPTNOTSUP, OPTNOTSUP, IGMP_MEMBERSHIP_QUERY,
177 IGMP_V1_MEMBERSHIP_REPORT, IGMP_DVMRP,
178 IGMP_PIM, OPTNOTSUP, IGMP_V2_MEMBERSHIP_REPORT,
179 IGMP_V2_LEAVE_GROUP, OPTNOTSUP, OPTNOTSUP,
180 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
181 IGMP_MTRACE_RESP, IGMP_MTRACE
182 };

184 static const int ltos_socket_sockopts[LX_SO_ACCEPTCONN + 1] = {
185 OPTNOTSUP, SO_DEBUG, SO_REUSEADDR, SO_TYPE,
186 SO_ERROR, SO_DONTROUTE, SO_BROADCAST, SO_SNDBUF,
187 SO_RCVBUF, SO_KEEPALIVE, SO_OOBINLINE, OPTNOTSUP,
188 OPTNOTSUP, SO_LINGER, OPTNOTSUP, OPTNOTSUP,
189 OPTNOTSUP, OPTNOTSUP, SO_RCVLOWAT, SO_SNDLOWAT,
190 SO_RCVTIMEO, SO_SNDTIMEO, OPTNOTSUP, OPTNOTSUP,
191 OPTNOTSUP, OPTNOTSUP, OPTNOTSUP, OPTNOTSUP,
192 OPTNOTSUP, OPTNOTSUP, SO_ACCEPTCONN

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 4

193 };

195 #define PROTO_SOCKOPTS(opts) \
196 { (opts), sizeof ((opts)) / sizeof ((opts)[0]) }

198 /*
199 * The main Linux to Solaris protocol to options mapping table
200 * IPPROTO_TAB_SIZE can be set up to IPPROTO_MAX. All entries above
201 * IPPROTO_TAB_SIZE are in effect not implemented,
202 */

204 #define IPPROTO_TAB_SIZE 8

206 static const lx_proto_opts_t ltos_proto_opts[IPPROTO_TAB_SIZE] = {
207 /* IPPROTO_IP 0 */
208 PROTO_SOCKOPTS(ltos_ip_sockopts),
209 /* SOL_SOCKET 1 */
210 PROTO_SOCKOPTS(ltos_socket_sockopts),
211 /* IPPROTO_IGMP 2 */
212 PROTO_SOCKOPTS(ltos_igmp_sockopts),
213 /* NOT IMPLEMENTED 3 */
214 { NULL, 0 },
215 /* NOT IMPLEMENTED 4 */
216 { NULL, 0 },
217 /* NOT IMPLEMENTED 5 */
218 { NULL, 0 },
219 /* IPPROTO_TCP 6 */
220 PROTO_SOCKOPTS(ltos_tcp_sockopts),
221 /* NOT IMPLEMENTED 7 */
222 { NULL, 0 }
223 };

225 /*
226 * Lifted from socket.h, since these definitions are contained within
227 * _KERNEL guards.
228 */
229 #define _CMSG_HDR_ALIGNMENT 4
230 #define _CMSG_HDR_ALIGN(x) (((uintptr_t)(x) + _CMSG_HDR_ALIGNMENT - 1) & \
231 ~(_CMSG_HDR_ALIGNMENT - 1))
232 #define CMSG_FIRSTHDR(m) \
233 (((m)->msg_controllen < sizeof (struct cmsghdr)) ? \
234 (struct cmsghdr *)0 : (struct cmsghdr *)((m)->msg_control))

236 #define CMSG_NXTHDR(m, c) \
237 (((c) == 0) ? CMSG_FIRSTHDR(m) : \
238 ((((uintptr_t)_CMSG_HDR_ALIGN((char *)(c) + \
239 ((struct cmsghdr *)(c))->cmsg_len) + sizeof (struct cmsghdr)) > \
240 (((uintptr_t)((struct lx_msghdr *)(m))->msg_control) + \
241 ((uintptr_t)((struct lx_msghdr *)(m))->msg_controllen))) ? \
242 ((struct cmsghdr *)0) : \
243 ((struct cmsghdr *)_CMSG_HDR_ALIGN((char *)(c) + \
244 ((struct cmsghdr *)(c))->cmsg_len))))

246 #define LX_TO_SOL 1
247 #define SOL_TO_LX 2

249 static int
250 convert_cmsgs(int direction, struct lx_msghdr *msg, char *caller)
251 {
252 struct cmsghdr *cmsg, *last;
253 int err = 0;

255 cmsg = CMSG_FIRSTHDR(msg);
256 while (cmsg != NULL && err == 0) {
257 if (direction == LX_TO_SOL) {
258 if (cmsg->cmsg_level == LX_SOL_SOCKET) {

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 5

259 cmsg->cmsg_level = SOL_SOCKET;
260 if (cmsg->cmsg_type == LX_SCM_RIGHTS)
261 cmsg->cmsg_type = SCM_RIGHTS;
262 else if (cmsg->cmsg_type == LX_SCM_CRED)
263 cmsg->cmsg_type = SCM_UCRED;
264 else
265 err = ENOTSUP;
266 } else {
267 err = ENOTSUP;
268 }
269 } else {
270 if (cmsg->cmsg_level == SOL_SOCKET) {
271 cmsg->cmsg_level = LX_SOL_SOCKET;
272 if (cmsg->cmsg_type == SCM_RIGHTS)
273 cmsg->cmsg_type = LX_SCM_RIGHTS;
274 else if (cmsg->cmsg_type == SCM_UCRED)
275 cmsg->cmsg_type = LX_SCM_CRED;
276 else
277 err = ENOTSUP;
278 } else {
279 err = ENOTSUP;
280 }
281 }

283 last = cmsg;
284 cmsg = CMSG_NXTHDR(msg, last);
285 }
286 if (err)
287 lx_unsupported("Unsupported socket control message in %s\n.",
288 caller);

290 return (err);
291 }

293 /*
294 * If inaddr is an abstract namespace unix socket, this function expects addr
295 * to have enough memory to hold the expanded socket name, ie it must be of
296 * size *len + ABST_PRFX_LEN.
297 */
298 static int
299 convert_sockaddr(struct sockaddr *addr, socklen_t *len,
300 struct sockaddr *inaddr, socklen_t inlen)
301 {
302 sa_family_t family;
303 int lx_in6_len;
304 int size;
305 int i, orig_len;

307 /*
308 * Note that if the buffer at inaddr is ever smaller than inlen bytes,
309 * we may erroneously return EFAULT rather than a possible EINVAL
310 * as the copy comes before the various checks as to whether inlen
311 * is of the proper length for the socket type.
312 *
313 * This isn’t an issue at present because all callers to this routine
314 * do meet that constraint.
315 */
316 if ((ssize_t)inlen < 0)
317 return (-EINVAL);
318 if (uucopy(inaddr, addr, inlen) != 0)
319 return (-errno);

321 family = LTOS_FAMILY(addr->sa_family);

323 switch (family) {
324 case (sa_family_t)AF_NOTSUPPORTED:

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 6

325 return (-EPROTONOSUPPORT);
326 case (sa_family_t)AF_INVAL:
327 return (-EAFNOSUPPORT);
328 case AF_INET:
329 size = sizeof (struct sockaddr);

331 if (inlen < size)
332 return (-EINVAL);

334 *len = size;
335 break;

337 case AF_INET6:
338 /*
339 * The Solaris sockaddr_in6 has one more 32-bit
340 * field than the Linux version.
341 */
342 size = sizeof (struct sockaddr_in6);
343 lx_in6_len = size - sizeof (uint32_t);

345 if (inlen != lx_in6_len)
346 return (-EINVAL);

348 *len = (sizeof (struct sockaddr_in6));
349 bzero((char *)addr + lx_in6_len, sizeof (uint32_t));
350 break;

352 case AF_UNIX:
353 if (inlen > sizeof (struct sockaddr_un))
354 return (-EINVAL);

356 *len = inlen;

358 /*
359 * Linux supports abstract unix sockets, which are
360 * simply sockets that do not exist on the file system.
361 * These sockets are denoted by beginning the path with
362 * a NULL character. To support these, we strip out the
363 * leading NULL character and change the path to point
364 * to a real place in /tmp directory, by prepending
365 * ABST_PRFX and replacing all illegal characters with
366 * ’_’.
367 */
368 if (addr->sa_data[0] == ’\0’) {

370 /*
371 * inlen is the entire size of the sockaddr_un
372 * data structure, including the sun_family, so
373 * we need to subtract this out. We subtract
374 * 1 since we want to overwrite the leadin NULL
375 * character, and thus do not include it in the
376 * length.
377 */
378 orig_len = inlen - sizeof (addr->sa_family) - 1;

380 /*
381 * Since abstract paths can contain illegal
382 * filename characters, we simply replace these
383 * with ’_’
384 */
385 for (i = 1; i < orig_len + 1; i++) {
386 if (addr->sa_data[i] == ’\0’ ||
387 addr->sa_data[i] == ’/’)
388 addr->sa_data[i] = ’_’;
389 }

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 7

391 /*
392 * prepend ABST_PRFX to file name, minus the
393 * leading NULL character. This places the
394 * socket as a hidden file in the /tmp
395 * directory.
396 */
397 (void) memmove(addr->sa_data + ABST_PRFX_LEN,
398 addr->sa_data + 1, orig_len);
399 bcopy(ABST_PRFX, addr->sa_data, ABST_PRFX_LEN);

401 /*
402 * Since abstract socket paths may not be NULL
403 * terminated, we must explicitly NULL terminate
404 * our string.
405 */
406 addr->sa_data[orig_len + ABST_PRFX_LEN] = ’\0’;

408 /*
409 * Make len reflect the new len of our string.
410 * Although we removed the NULL character at the
411 * beginning of the string, we added a NULL
412 * character to the end, so the net gain in
413 * length is simply ABST_PRFX_LEN.
414 */
415 *len = inlen + ABST_PRFX_LEN;
416 }
417 break;

419 default:
420 *len = inlen;
421 }

423 addr->sa_family = family;
424 return (0);
425 }

427 static int
428 convert_sock_args(int in_dom, int in_type, int in_protocol, int *out_dom,
429 int *out_type)
430 {
431 int domain, type;

433 if (in_dom < 0 || in_type < 0 || in_protocol < 0)
434 return (-EINVAL);

436 domain = LTOS_FAMILY(in_dom);
437 if (domain == AF_NOTSUPPORTED || domain == AF_UNSPEC)
438 return (-EAFNOSUPPORT);
439 if (domain == AF_INVAL)
440 return (-EINVAL);

442 type = LTOS_SOCKTYPE(in_type);
443 if (type == SOCK_NOTSUPPORTED)
444 return (-ESOCKTNOSUPPORT);
445 if (type == SOCK_INVAL)
446 return (-EINVAL);

448 /*
449 * Linux does not allow the app to specify IP Protocol for raw
450 * sockets. Solaris does, so bail out here.
451 */
452 if (type == SOCK_RAW && in_protocol == IPPROTO_IP)
453 return (-ESOCKTNOSUPPORT);

455 *out_dom = domain;
456 *out_type = type;

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 8

457 return (0);
458 }

460 static int
461 convert_sockflags(int lx_flags)
462 {
463 int solaris_flags = 0;

465 if (lx_flags & LX_MSG_OOB)
466 solaris_flags |= MSG_OOB;

468 if (lx_flags & LX_MSG_PEEK)
469 solaris_flags |= MSG_PEEK;

471 if (lx_flags & LX_MSG_DONTROUTE)
472 solaris_flags |= MSG_DONTROUTE;

474 if (lx_flags & LX_MSG_CTRUNC)
475 solaris_flags |= MSG_CTRUNC;

477 if (lx_flags & LX_MSG_TRUNC)
478 solaris_flags |= MSG_TRUNC;

480 if (lx_flags & LX_MSG_WAITALL)
481 solaris_flags |= MSG_WAITALL;

483 if (lx_flags & LX_MSG_DONTWAIT)
484 solaris_flags |= MSG_DONTWAIT;

486 if (lx_flags & LX_MSG_EOR)
487 solaris_flags |= MSG_EOR;

489 if (lx_flags & LX_MSG_PROXY)
490 lx_unsupported("socket operation with MSG_PROXY flag set");

492 if (lx_flags & LX_MSG_FIN)
493 lx_unsupported("socket operation with MSG_FIN flag set");

495 if (lx_flags & LX_MSG_SYN)
496 lx_unsupported("socket operation with MSG_SYN flag set");

498 if (lx_flags & LX_MSG_CONFIRM)
499 lx_unsupported("socket operation with MSG_CONFIRM set");

501 if (lx_flags & LX_MSG_RST)
502 lx_unsupported("socket operation with MSG_RST flag set");

504 if (lx_flags & LX_MSG_MORE)
505 lx_unsupported("socket operation with MSG_MORE flag set");

507 return (solaris_flags);
508 }

510 static int
511 lx_socket(ulong_t *args)
512 {
513 int domain;
514 int type;
515 int protocol = (int)args[2];
516 int fd;
517 int err;

519 err = convert_sock_args((int)args[0], (int)args[1], protocol,
520 &domain, &type);
521 if (err != 0)
522 return (err);

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 9

524 lx_debug("\tsocket(%d, %d, %d)", domain, type, protocol);

526 /* Right now IPv6 sockets don’t work */
527 if (domain == AF_INET6)
528 return (-EAFNOSUPPORT);

530 /*
531 * Clients of the auditing subsystem used by CentOS 4 and 5 expect to
532 * be able to create AF_ROUTE SOCK_RAW sockets to communicate with the
533 * auditing daemons. Failure to create these sockets will cause login,
534 * ssh and useradd, amoung other programs to fail. To trick these
535 * programs into working, we convert the socket domain and type to
536 * something that we do support. Then when sendto is called on these
537 * sockets, we return an error code. See lx_sendto.
538 */
539 if (domain == AF_ROUTE && type == SOCK_RAW) {
540 domain = AF_INET;
541 type = SOCK_STREAM;
542 protocol = 0;
543 }

545 fd = socket(domain, type, protocol);
546 if (fd >= 0)
547 return (fd);

549 if (errno == EPROTONOSUPPORT)
550 return (-ESOCKTNOSUPPORT);

552 return (-errno);
553 }

555 static int
556 lx_bind(ulong_t *args)
557 {
558 int sockfd = (int)args[0];
559 struct stat64 statbuf;
560 struct sockaddr *name, oldname;
561 socklen_t len;
562 int r, r2, ret, tmperrno;
563 int abst_sock;
564 struct stat sb;

566 if (uucopy((struct sockaddr *)args[1], &oldname,
567 sizeof (struct sockaddr)) != 0)
568 return (-errno);

570 /*
571 * Handle Linux abstract sockets, which are UNIX sockets whose path
572 * begins with a NULL character.
573 */
574 abst_sock = (oldname.sa_family == AF_UNIX) &&
575 (oldname.sa_data[0] == ’\0’);

577 /*
578 * convert_sockaddr will expand the socket path if it is abstract, so
579 * we need to allocate extra memory for it now.
580 */
581 if ((name = SAFE_ALLOCA((socklen_t)args[2] +
582 abst_sock * ABST_PRFX_LEN)) == NULL)
583 return (-EINVAL);

585 if ((r = convert_sockaddr(name, &len, (struct sockaddr *)args[1],
586 (socklen_t)args[2])) < 0)
587 return (r);

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 10

589 /*
590 * Linux abstract namespace unix sockets are simply socket that do not
591 * exist on the filesystem. We emulate them by changing their paths
592 * in covert_sockaddr so that they point real files names on the
593 * filesystem. Because in Linux they do not exist on the filesystem
594 * applications do not have to worry about deleting files, however in
595 * our filesystem based emulation we do. To solve this problem, we first
596 * check to see if the socket already exists before we create one. If it
597 * does we attempt to connect to it to see if it is in use, or just
598 * left over from a previous lx_bind call. If we are unable to connect,
599 * we assume it is not in use and remove the file, then continue on
600 * as if the file never existed.
601 */
602 if (abst_sock && stat(name->sa_data, &sb) == 0 &&
603 S_ISSOCK(sb.st_mode)) {
604 if ((r2 = socket(AF_UNIX, SOCK_STREAM, 0)) < 0)
605 return (-ENOSR);
606 ret = connect(r2, name, len);
607 tmperrno = errno;
608 if (close(r2) < 0)
609 return (-EINVAL);

611 /*
612 * if we can’t connect to the socket, assume no one is using it
613 * and remove it, otherwise assume it is in use and return
614 * EADDRINUSE.
615 */
616 if ((ret < 0) && (tmperrno == ECONNREFUSED)) {
617 if (unlink(name->sa_data) < 0) {
618 return (-EADDRINUSE);
619 }
620 } else {
621 return (-EADDRINUSE);
622 }
623 }

625 lx_debug("\tbind(%d, 0x%p, %d)", sockfd, name, len);

627 if (name->sa_family == AF_UNIX)
628 lx_debug("\t\tAF_UNIX, path = %s", name->sa_data);

630 r = bind(sockfd, name, len);

632 /*
633 * Linux returns EADDRINUSE for attempts to bind to UNIX domain
634 * sockets that aren’t sockets.
635 */
636 if ((r < 0) && (errno == EINVAL) && (name->sa_family == AF_UNIX) &&
637 ((stat64(name->sa_data, &statbuf) == 0) &&
638 (!S_ISSOCK(statbuf.st_mode))))
639 return (-EADDRINUSE);

641 return ((r < 0) ? -errno : r);
642 }

644 static int
645 lx_connect(ulong_t *args)
646 {
647 int sockfd = (int)args[0];
648 struct sockaddr *name, oldname;
649 socklen_t len;
650 int r;
651 int abst_sock;

653 if (uucopy((struct sockaddr *)args[1], &oldname,
654 sizeof (struct sockaddr)) != 0)

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 11

655 return (-errno);

658 /* Handle Linux abstract sockets */
659 abst_sock = (oldname.sa_family == AF_UNIX) &&
660 (oldname.sa_data[0] == ’\0’);

662 /*
663 * convert_sockaddr will expand the socket path, if it is abstract, so
664 * we need to allocate extra memory for it now.
665 */
666 if ((name = SAFE_ALLOCA((socklen_t)args[2] +
667 abst_sock * ABST_PRFX_LEN)) == NULL)
668 return (-EINVAL);

670 if ((r = convert_sockaddr(name, &len, (struct sockaddr *)args[1],
671 (socklen_t)args[2])) < 0)
672 return (r);

674 lx_debug("\tconnect(%d, 0x%p, %d)", sockfd, name, len);

676 if (name->sa_family == AF_UNIX)
677 lx_debug("\t\tAF_UNIX, path = %s", name->sa_data);

679 r = connect(sockfd, name, len);

681 return ((r < 0) ? -errno : r);
682 }

684 static int
685 lx_listen(ulong_t *args)
686 {
687 int sockfd = (int)args[0];
688 int backlog = (int)args[1];
689 int r;

691 lx_debug("\tlisten(%d, %d)", sockfd, backlog);
692 r = listen(sockfd, backlog);

694 return ((r < 0) ? -errno : r);
695 }

697 static int
698 lx_accept(ulong_t *args)
699 {
700 int sockfd = (int)args[0];
701 struct sockaddr *name = (struct sockaddr *)args[1];
702 socklen_t namelen = 0;
703 int r;

705 lx_debug("\taccept(%d, 0x%p, 0x%p", sockfd, args[1], args[2]);

707 /*
708 * The Linux man page says that -1 is returned and errno is set to
709 * EFAULT if the "name" address is bad, but it is silent on what to
710 * set errno to if the "namelen" address is bad. Experimentation
711 * shows that Linux (at least the 2.4.21 kernel in CentOS) actually
712 * sets errno to EINVAL in both cases.
713 *
714 * Note that we must first check the name pointer, as the Linux
715 * docs state nothing is copied out if the "name" pointer is NULL.
716 * If it is NULL, we don’t care about the namelen pointer’s value
717 * or about dereferencing it.
718 *
719 * Happily, Solaris’ accept(3SOCKET) treats NULL name pointers and
720 * zero namelens the same way.

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 12

721 */
722 if ((name != NULL) &&
723 (uucopy((void *)args[2], &namelen, sizeof (socklen_t)) != 0))
724 return ((errno == EFAULT) ? -EINVAL : -errno);

726 lx_debug("\taccept namelen = %d", namelen);

728 if ((r = accept(sockfd, name, &namelen)) < 0)
729 return ((errno == EFAULT) ? -EINVAL : -errno);

731 lx_debug("\taccept namelen returned %d bytes", namelen);

733 /*
734 * In Linux, accept()ed sockets do not inherit anything set by
735 * fcntl(), so filter those out.
736 */
737 if (fcntl(r, F_SETFL, 0) < 0)
738 return (-errno);

740 /*
741 * Once again, a bad "namelen" address sets errno to EINVAL, not
742 * EFAULT. If namelen was zero, there’s no need to copy a zero back
743 * out.
744 *
745 * Logic might dictate that we should check if we can write to
746 * the namelen pointer earlier so we don’t accept a pending connection
747 * only to fail the call because we can’t write the namelen value back
748 * out. However, testing shows Linux does indeed fail the call after
749 * accepting the connection so we must behave in a compatible manner.
750 */
751 if ((name != NULL) && (namelen != 0) &&
752 (uucopy(&namelen, (void *)args[2], sizeof (socklen_t)) != 0))
753 return ((errno == EFAULT) ? -EINVAL : -errno);

755 return (r);
756 }

758 static int
759 lx_getsockname(ulong_t *args)
760 {
761 int sockfd = (int)args[0];
762 struct sockaddr *name = NULL;
763 socklen_t namelen, namelen_orig;

765 if (uucopy((void *)args[2], &namelen, sizeof (socklen_t)) != 0)
766 return (-errno);
767 namelen_orig = namelen;

769 lx_debug("\tgetsockname(%d, 0x%p, 0x%p (=%d))",
770 sockfd, args[1], args[2], namelen);

772 if (namelen > 0) {
773 if ((name = SAFE_ALLOCA(namelen)) == NULL)
774 return (-EINVAL);
775 bzero(name, namelen);
776 }

778 if ((getsockname(sockfd, name, &namelen)) < 0)
779 return (-errno);

781 /*
782 * If the name that getsockname() want’s to return is larger
783 * than namelen, getsockname() will copy out the maximum amount
784 * of data possible and then update namelen to indicate the
785 * actually size of all the data that it wanted to copy out.
786 */

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 13

787 if (uucopy(name, (void *)args[1], namelen_orig) != 0)
788 return (-errno);
789 if (uucopy(&namelen, (void *)args[2], sizeof (socklen_t)) != 0)
790 return (-errno);

792 return (0);
793 }

795 static int
796 lx_getpeername(ulong_t *args)
797 {
798 int sockfd = (int)args[0];
799 struct sockaddr *name;
800 socklen_t namelen;

802 if (uucopy((void *)args[2], &namelen, sizeof (socklen_t)) != 0)
803 return (-errno);

805 lx_debug("\tgetpeername(%d, 0x%p, 0x%p (=%d))",
806 sockfd, args[1], args[2], namelen);

808 /*
809 * Linux returns EFAULT in this case, even if the namelen parameter
810 * is 0. This check will not catch other illegal addresses, but
811 * the benefit catching a non-null illegal address here is not
812 * worth the cost of another system call.
813 */
814 if ((void *)args[1] == NULL)
815 return (-EFAULT);

817 if ((name = SAFE_ALLOCA(namelen)) == NULL)
818 return (-EINVAL);
819 if ((getpeername(sockfd, name, &namelen)) < 0)
820 return (-errno);

822 if (uucopy(name, (void *)args[1], namelen) != 0)
823 return (-errno);

825 if (uucopy(&namelen, (void *)args[2], sizeof (socklen_t)) != 0)
826 return (-errno);

828 return (0);
829 }

831 static int
832 lx_socketpair(ulong_t *args)
833 {
834 int domain;
835 int type;
836 int protocol = (int)args[2];
837 int *sv = (int *)args[3];
838 int fds[2];
839 int r;

841 r = convert_sock_args((int)args[0], (int)args[1], protocol,
842 &domain, &type);
843 if (r != 0)
844 return (r);

846 lx_debug("\tsocketpair(%d, %d, %d, 0x%p)", domain, type, protocol, sv);

848 r = socketpair(domain, type, protocol, fds);

850 if (r == 0) {
851 if (uucopy(fds, sv, sizeof (fds)) != 0) {
852 r = errno;

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 14

853 (void) close(fds[0]);
854 (void) close(fds[1]);
855 return (-r);
856 }
857 return (0);
858 }

860 if (errno == EPROTONOSUPPORT)
861 return (-ESOCKTNOSUPPORT);

863 return (-errno);
864 }

866 static ssize_t
867 lx_send(ulong_t *args)
868 {
869 int sockfd = (int)args[0];
870 void *buf = (void *)args[1];
871 size_t len = (size_t)args[2];
872 int flags = (int)args[3];
873 ssize_t r;

875 int nosigpipe = flags & LX_MSG_NOSIGNAL;
876 struct sigaction newact, oact;

878 lx_debug("\tsend(%d, 0x%p, 0x%d, 0x%x)", sockfd, buf, len, flags);

880 flags = convert_sockflags(flags);

882 /*
883 * If nosigpipe is set, we want to emulate the Linux action of
884 * not sending a SIGPIPE to the caller if the remote socket has
885 * already been closed.
886 *
887 * As SIGPIPE is a directed signal sent only to the thread that
888 * performed the action, we can emulate this behavior by momentarily
889 * resetting the action for SIGPIPE to SIG_IGN, performing the socket
890 * call, and resetting the action back to its previous value.
891 */
892 if (nosigpipe) {
893 newact.sa_handler = SIG_IGN;
894 newact.sa_flags = 0;
895 (void) sigemptyset(&newact.sa_mask);

897 if (sigaction(SIGPIPE, &newact, &oact) < 0)
898 lx_err_fatal(gettext(
899 "%s: could not ignore SIGPIPE to emulate "
900 "LX_MSG_NOSIGNAL"), "send()");
901 }

903 r = send(sockfd, buf, len, flags);

905 if ((nosigpipe) && (sigaction(SIGPIPE, &oact, NULL) < 0))
906 lx_err_fatal(
907 gettext("%s: could not reset SIGPIPE handler to "
908 "emulate LX_MSG_NOSIGNAL"), "send()");

910 return ((r < 0) ? -errno : r);
911 }

913 static ssize_t
914 lx_recv(ulong_t *args)
915 {
916 int sockfd = (int)args[0];
917 void *buf = (void *)args[1];
918 size_t len = (size_t)args[2];

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 15

919 int flags = (int)args[3];
920 ssize_t r;

922 int nosigpipe = flags & LX_MSG_NOSIGNAL;
923 struct sigaction newact, oact;

925 lx_debug("\trecv(%d, 0x%p, 0x%d, 0x%x)", sockfd, buf, len, flags);

927 flags = convert_sockflags(flags);

929 /*
930 * If nosigpipe is set, we want to emulate the Linux action of
931 * not sending a SIGPIPE to the caller if the remote socket has
932 * already been closed.
933 *
934 * As SIGPIPE is a directed signal sent only to the thread that
935 * performed the action, we can emulate this behavior by momentarily
936 * resetting the action for SIGPIPE to SIG_IGN, performing the socket
937 * call, and resetting the action back to its previous value.
938 */
939 if (nosigpipe) {
940 newact.sa_handler = SIG_IGN;
941 newact.sa_flags = 0;
942 (void) sigemptyset(&newact.sa_mask);

944 if (sigaction(SIGPIPE, &newact, &oact) < 0)
945 lx_err_fatal(gettext(
946 "%s: could not ignore SIGPIPE to emulate "
947 "LX_MSG_NOSIGNAL"), "recv()");
948 }

950 r = recv(sockfd, buf, len, flags);

952 if ((nosigpipe) && (sigaction(SIGPIPE, &oact, NULL) < 0))
953 lx_err_fatal(
954 gettext("%s: could not reset SIGPIPE handler to "
955 "emulate LX_MSG_NOSIGNAL"), "recv()");

957 return ((r < 0) ? -errno : r);
958 }

960 static ssize_t
961 lx_sendto(ulong_t *args)
962 {
963 int sockfd = (int)args[0];
964 void *buf = (void *)args[1];
965 size_t len = (size_t)args[2];
966 int flags = (int)args[3];
967 struct sockaddr *to = NULL, oldto;
968 socklen_t tolen = 0;
969 ssize_t r;
970 int abst_sock;

972 int nosigpipe = flags & LX_MSG_NOSIGNAL;
973 struct sigaction newact, oact;

975 if ((args[4] != NULL) && (args[5] > 0)) {
976 if (uucopy((struct sockaddr *)args[4], &oldto,
977 sizeof (struct sockaddr)) != 0)
978 return (-errno);

980 /* Handle Linux abstract sockets */
981 abst_sock = (oldto.sa_family == AF_UNIX) &&
982 (oldto.sa_data[0] == ’\0’);

984 /*

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 16

985 * convert_sockaddr will expand the socket path, if it is
986 * abstract, so we need to allocate extra memory for it now.
987 */
988 if ((to = SAFE_ALLOCA(args[5] + abst_sock * ABST_PRFX_LEN))
989 == NULL)
990 return (-EINVAL);

992 if ((r = convert_sockaddr(to, &tolen,
993 (struct sockaddr *)args[4], (socklen_t)args[5])) < 0)
994 return (r);
995 }

998 lx_debug("\tsendto(%d, 0x%p, 0x%d, 0x%x, 0x%x, %d)", sockfd, buf, len,
999 flags, to, tolen);

1001 flags = convert_sockflags(flags);

1003 /* return this error to make auditing subsystem happy */
1004 if (to && to->sa_family == AF_ROUTE) {
1005 return (-ECONNREFUSED);
1006 }

1008 /*
1009 * If nosigpipe is set, we want to emulate the Linux action of
1010 * not sending a SIGPIPE to the caller if the remote socket has
1011 * already been closed.
1012 *
1013 * As SIGPIPE is a directed signal sent only to the thread that
1014 * performed the action, we can emulate this behavior by momentarily
1015 * resetting the action for SIGPIPE to SIG_IGN, performing the socket
1016 * call, and resetting the action back to its previous value.
1017 */
1018 if (nosigpipe) {
1019 newact.sa_handler = SIG_IGN;
1020 newact.sa_flags = 0;
1021 (void) sigemptyset(&newact.sa_mask);

1023 if (sigaction(SIGPIPE, &newact, &oact) < 0)
1024 lx_err_fatal(gettext(
1025 "%s: could not ignore SIGPIPE to emulate "
1026 "LX_MSG_NOSIGNAL"), "sendto()");
1027 }

1029 r = sendto(sockfd, buf, len, flags, to, tolen);

1031 if ((nosigpipe) && (sigaction(SIGPIPE, &oact, NULL) < 0))
1032 lx_err_fatal(
1033 gettext("%s: could not reset SIGPIPE handler to "
1034 "emulate LX_MSG_NOSIGNAL"), "sendto()");

1036 if (r < 0) {
1037 /*
1038 * according to the man page and LTP, the expected error in
1039 * this case is EPIPE.
1040 */
1041 if (errno == ENOTCONN)
1042 return (-EPIPE);
1043 else
1044 return (-errno);
1045 }
1046 return (r);
1047 }

1049 static ssize_t
1050 lx_recvfrom(ulong_t *args)

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 17

1051 {
1052 int sockfd = (int)args[0];
1053 void *buf = (void *)args[1];
1054 size_t len = (size_t)args[2];
1055 int flags = (int)args[3];
1056 struct sockaddr *from = (struct sockaddr *)args[4];
1057 socklen_t *from_lenp = (socklen_t *)args[5];
1058 ssize_t r;

1060 int nosigpipe = flags & LX_MSG_NOSIGNAL;
1061 struct sigaction newact, oact;

1063 lx_debug("\trecvfrom(%d, 0x%p, 0x%d, 0x%x, 0x%x, 0x%p)", sockfd, buf,
1064 len, flags, from, from_lenp);

1066 flags = convert_sockflags(flags);

1068 /*
1069 * If nosigpipe is set, we want to emulate the Linux action of
1070 * not sending a SIGPIPE to the caller if the remote socket has
1071 * already been closed.
1072 *
1073 * As SIGPIPE is a directed signal sent only to the thread that
1074 * performed the action, we can emulate this behavior by momentarily
1075 * resetting the action for SIGPIPE to SIG_IGN, performing the socket
1076 * call, and resetting the action back to its previous value.
1077 */
1078 if (nosigpipe) {
1079 newact.sa_handler = SIG_IGN;
1080 newact.sa_flags = 0;
1081 (void) sigemptyset(&newact.sa_mask);

1083 if (sigaction(SIGPIPE, &newact, &oact) < 0)
1084 lx_err_fatal(gettext(
1085 "%s: could not ignore SIGPIPE to emulate "
1086 "LX_MSG_NOSIGNAL"), "recvfrom()");
1087 }

1089 r = recvfrom(sockfd, buf, len, flags, from, from_lenp);

1091 if ((nosigpipe) && (sigaction(SIGPIPE, &oact, NULL) < 0))
1092 lx_err_fatal(
1093 gettext("%s: could not reset SIGPIPE handler to "
1094 "emulate LX_MSG_NOSIGNAL"), "recvfrom()");

1096 return ((r < 0) ? -errno : r);
1097 }

1099 static int
1100 lx_shutdown(ulong_t *args)
1101 {
1102 int sockfd = (int)args[0];
1103 int how = (int)args[1];
1104 int r;

1106 lx_debug("\tshutdown(%d, %d)", sockfd, how);
1107 r = shutdown(sockfd, how);

1109 return ((r < 0) ? -errno : r);
1110 }

1112 static int
1113 lx_setsockopt(ulong_t *args)
1114 {
1115 int sockfd = (int)args[0];
1116 int level = (int)args[1];

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 18

1117 int optname = (int)args[2];
1118 void *optval = (void *)args[3];
1119 int optlen = (int)args[4];
1120 int internal_opt;
1121 int r;

1123 lx_debug("\tsetsockopt(%d, %d, %d, 0x%p, %d)", sockfd, level, optname,
1124 optval, optlen);

1126 /*
1127 * The kernel returns EFAULT for all invalid addresses except NULL,
1128 * for which it returns EINVAL. Linux wants EFAULT for NULL too.
1129 */
1130 if (optval == NULL)
1131 return (-EFAULT);

1133 /*
1134 * Do a table lookup of the Solaris equivalent of the given option
1135 */
1136 if (level < IPPROTO_IP || level >= IPPROTO_TAB_SIZE)
1137 return (-ENOPROTOOPT);

1139 if (ltos_proto_opts[level].maxentries == 0 ||
1140 optname <= 0 || optname >= (ltos_proto_opts[level].maxentries))
1141 return (-ENOPROTOOPT);

1143 /*
1144 * Linux sets this option when it wants to send credentials over a
1145 * socket. Currently we just ignore it to make Linux programs happy.
1146 */
1147 if ((level == LX_SOL_SOCKET) && (optname == LX_SO_PASSCRED))
1148 return (0);

1151 if ((level == IPPROTO_TCP) && (optname == LX_TCP_CORK)) {
1152 /*
1153 * TCP_CORK is a Linux-only option that instructs the TCP
1154 * stack not to send out partial frames. Solaris doesn’t
1155 * include this option but some apps require it. So, we do
1156 * our best to emulate the option by disabling TCP_NODELAY.
1157 * If the app requests that we disable TCP_CORK, we just
1158 * ignore it since enabling TCP_NODELAY may be
1159 * overcompensating.
1160 */
1161 optname = TCP_NODELAY;
1162 if (optlen != sizeof (int))
1163 return (-EINVAL);
1164 if (uucopy(optval, &internal_opt, sizeof (int)) != 0)
1165 return (-errno);
1166 if (internal_opt == 0)
1167 return (0);
1168 internal_opt = 1;
1169 optval = &internal_opt;
1170 } else {
1171 optname = ltos_proto_opts[level].proto[optname];

1173 if (optname == OPTNOTSUP)
1174 return (-ENOPROTOOPT);
1175 }

1177 if (level == LX_SOL_SOCKET)
1178 level = SOL_SOCKET;

1180 r = setsockopt(sockfd, level, optname, optval, optlen);

1182 return ((r < 0) ? -errno : r);

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 19

1183 }

1185 static int
1186 lx_getsockopt(ulong_t *args)
1187 {
1188 int sockfd = (int)args[0];
1189 int level = (int)args[1];
1190 int optname = (int)args[2];
1191 void *optval = (void *)args[3];
1192 int *optlenp = (int *)args[4];
1193 int r;

1195 lx_debug("\tgetsockopt(%d, %d, %d, 0x%p, 0x%p)", sockfd, level, optname,
1196 optval, optlenp);

1198 /*
1199 * According to the Linux man page, a NULL optval should indicate
1200 * (as in Solaris) that no return value is expected. Instead, it
1201 * actually triggers an EFAULT error.
1202 */
1203 if (optval == NULL)
1204 return (-EFAULT);

1206 /*
1207 * Do a table lookup of the Solaris equivalent of the given option
1208 */
1209 if (level < IPPROTO_IP || level >= IPPROTO_TAB_SIZE)
1210 return (-EOPNOTSUPP);

1212 if (ltos_proto_opts[level].maxentries == 0 ||
1213 optname <= 0 || optname >= (ltos_proto_opts[level].maxentries))
1214 return (-ENOPROTOOPT);

1216 if (((level == LX_SOL_SOCKET) && (optname == LX_SO_PASSCRED)) ||
1217 ((level == IPPROTO_TCP) && (optname == LX_TCP_CORK))) {
1218 /*
1219 * Linux sets LX_SO_PASSCRED when it wants to send credentials
1220 * over a socket. Since we do not support it, it is never set
1221 * and we return 0.
1222 *
1223 * We don’t support TCP_CORK but some apps rely on it. So,
1224 * rather than return an error we just return 0. This
1225 * isn’t exactly a lie, since this option really isn’t set,
1226 * but it’s not the whole truth either. Fortunately, we
1227 * aren’t under oath.
1228 */
1229 r = 0;
1230 if (uucopy(&r, optval, sizeof (int)) != 0)
1231 return (-errno);
1232 r = sizeof (int);
1233 if (uucopy(&r, optlenp, sizeof (int)) != 0)
1234 return (-errno);
1235 return (0);
1236 }
1237 if ((level == LX_SOL_SOCKET) && (optname == LX_SO_PEERCRED)) {
1238 struct lx_ucred lx_ucred;
1239 ucred_t *ucp;

1241 /*
1242 * We don’t support SO_PEERCRED, but we do have equivalent
1243 * functionality in getpeerucred() so invoke that here.
1244 */

1246 /* Verify there’s going to be enough room for the results. */
1247 if (uucopy(optlenp, &r, sizeof (int)) != 0)
1248 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 20

1249 if (r < sizeof (struct lx_ucred))
1250 return (-EOVERFLOW);

1252 /*
1253 * We allocate a ucred_t ourselves rather than allow
1254 * getpeerucred() to do it for us because getpeerucred()
1255 * uses malloc(3C) and we’d rather use SAFE_ALLOCA().
1256 */
1257 if ((ucp = (ucred_t *)SAFE_ALLOCA(ucred_size())) == NULL)
1258 return (-ENOMEM);

1260 /* Get the credential for the remote end of this socket. */
1261 if (getpeerucred(sockfd, &ucp) != 0)
1262 return (-errno);
1263 if (((lx_ucred.lxu_pid = ucred_getpid(ucp)) == -1) ||
1264 ((lx_ucred.lxu_uid = ucred_geteuid(ucp)) == (uid_t)-1) ||
1265 ((lx_ucred.lxu_gid = ucred_getegid(ucp)) == (gid_t)-1)) {
1266 return (-errno);
1267 }

1269 /* Copy out the results. */
1270 if ((uucopy(&lx_ucred, optval, sizeof (lx_ucred))) != 0)
1271 return (-errno);
1272 r = sizeof (lx_ucred);
1273 if ((uucopy(&r, optlenp, sizeof (int))) != 0)
1274 return (-errno);
1275 return (0);
1276 }

1278 optname = ltos_proto_opts[level].proto[optname];

1280 if (optname == OPTNOTSUP)
1281 return (-ENOPROTOOPT);

1283 if (level == LX_SOL_SOCKET)
1284 level = SOL_SOCKET;

1286 r = getsockopt(sockfd, level, optname, optval, optlenp);

1288 return ((r < 0) ? -errno : r);
1289 }

1291 /*
1292 * libc routines that issue these system calls. We bypass the libsocket
1293 * wrappers since they explicitly turn off the MSG_XPG_2 flag we need for
1294 * Linux compatibility.
1295 */
1296 extern int _so_sendmsg();
1297 extern int _so_recvmsg();

1299 static int
1300 lx_sendmsg(ulong_t *args)
1301 {
1302 int sockfd = (int)args[0];
1303 struct lx_msghdr msg;
1304 struct cmsghdr *cmsg;
1305 int flags = (int)args[2];
1306 int r;

1308 int nosigpipe = flags & LX_MSG_NOSIGNAL;
1309 struct sigaction newact, oact;

1311 lx_debug("\tsendmsg(%d, 0x%p, 0x%x)", sockfd, (void *)args[1], flags);

1313 flags = convert_sockflags(flags);

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 21

1315 if ((uucopy((void *)args[1], &msg, sizeof (msg))) != 0)
1316 return (-errno);

1318 /*
1319 * If there are control messages bundled in this message, we need
1320 * to convert them from Linux to Solaris.
1321 */
1322 if (msg.msg_control != NULL) {
1323 if (msg.msg_controllen == 0) {
1324 cmsg = NULL;
1325 } else {
1326 cmsg = SAFE_ALLOCA(msg.msg_controllen);
1327 if (cmsg == NULL)
1328 return (-EINVAL);
1329 }
1330 if ((uucopy(msg.msg_control, cmsg, msg.msg_controllen)) != 0)
1331 return (-errno);
1332 msg.msg_control = cmsg;
1333 if ((r = convert_cmsgs(LX_TO_SOL, &msg, "sendmsg()")) != 0)
1334 return (-r);
1335 }

1337 /*
1338 * If nosigpipe is set, we want to emulate the Linux action of
1339 * not sending a SIGPIPE to the caller if the remote socket has
1340 * already been closed.
1341 *
1342 * As SIGPIPE is a directed signal sent only to the thread that
1343 * performed the action, we can emulate this behavior by momentarily
1344 * resetting the action for SIGPIPE to SIG_IGN, performing the socket
1345 * call, and resetting the action back to its previous value.
1346 */
1347 if (nosigpipe) {
1348 newact.sa_handler = SIG_IGN;
1349 newact.sa_flags = 0;
1350 (void) sigemptyset(&newact.sa_mask);

1352 if (sigaction(SIGPIPE, &newact, &oact) < 0)
1353 lx_err_fatal(gettext(
1354 "%s: could not ignore SIGPIPE to emulate "
1355 "LX_MSG_NOSIGNAL"), "sendmsg()");
1356 }

1358 r = _so_sendmsg(sockfd, (struct msghdr *)&msg, flags | MSG_XPG4_2);

1360 if ((nosigpipe) && (sigaction(SIGPIPE, &oact, NULL) < 0))
1361 lx_err_fatal(
1362 gettext("%s: could not reset SIGPIPE handler to "
1363 "emulate LX_MSG_NOSIGNAL"), "sendmsg()");

1365 if (r < 0) {
1366 /*
1367 * according to the man page and LTP, the expected error in
1368 * this case is EPIPE.
1369 */
1370 if (errno == ENOTCONN)
1371 return (-EPIPE);
1372 else
1373 return (-errno);
1374 }

1376 return (r);
1377 }

1379 static int
1380 lx_recvmsg(ulong_t *args)

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 22

1381 {
1382 int sockfd = (int)args[0];
1383 struct lx_msghdr msg;
1384 struct lx_msghdr *msgp = (struct lx_msghdr *)args[1];
1385 struct cmsghdr *cmsg = NULL;
1386 int flags = (int)args[2];
1387 int r, err;

1389 int nosigpipe = flags & LX_MSG_NOSIGNAL;
1390 struct sigaction newact, oact;

1392 lx_debug("\trecvmsg(%d, 0x%p, 0x%x)", sockfd, (void *)args[1], flags);

1394 flags = convert_sockflags(flags);

1396 if ((uucopy(msgp, &msg, sizeof (msg))) != 0)
1397 return (-errno);

1399 /*
1400 * If we are expecting to have to convert any control messages,
1401 * then we should receive them into our address space instead of
1402 * the app’s.
1403 */
1404 if (msg.msg_control != NULL) {
1405 cmsg = msg.msg_control;
1406 if (msg.msg_controllen == 0) {
1407 msg.msg_control = NULL;
1408 } else {
1409 msg.msg_control = SAFE_ALLOCA(msg.msg_controllen);
1410 if (msg.msg_control == NULL)
1411 return (-EINVAL);
1412 }
1413 }

1415 /*
1416 * If nosigpipe is set, we want to emulate the Linux action of
1417 * not sending a SIGPIPE to the caller if the remote socket has
1418 * already been closed.
1419 *
1420 * As SIGPIPE is a directed signal sent only to the thread that
1421 * performed the action, we can emulate this behavior by momentarily
1422 * resetting the action for SIGPIPE to SIG_IGN, performing the socket
1423 * call, and resetting the action back to its previous value.
1424 */
1425 if (nosigpipe) {
1426 newact.sa_handler = SIG_IGN;
1427 newact.sa_flags = 0;
1428 (void) sigemptyset(&newact.sa_mask);

1430 if (sigaction(SIGPIPE, &newact, &oact) < 0)
1431 lx_err_fatal(gettext(
1432 "%s: could not ignore SIGPIPE to emulate "
1433 "LX_MSG_NOSIGNAL"), "recvmsg()");
1434 }

1436 r = _so_recvmsg(sockfd, (struct msghdr *)&msg, flags | MSG_XPG4_2);

1438 if ((nosigpipe) && (sigaction(SIGPIPE, &oact, NULL) < 0))
1439 lx_err_fatal(
1440 gettext("%s: could not reset SIGPIPE handler to "
1441 "emulate LX_MSG_NOSIGNAL"), "recvmsg()");

1443 if (r >= 0 && msg.msg_control != NULL) {
1444 /*
1445 * If there are control messages bundled in this message,
1446 * we need to convert them from Linux to Solaris.

new/usr/src/lib/brand/lx/lx_brand/common/socket.c 23

1447 */
1448 if ((err = convert_cmsgs(SOL_TO_LX, &msg, "recvmsg()")) != 0)
1449 return (-err);

1451 if ((uucopy(msg.msg_control, cmsg, msg.msg_controllen)) != 0)
1452 return (-errno);
1453 }

1455 /*
1456 * A handful of the values in the msghdr are set by the recvmsg()
1457 * call, so copy their values back to the caller. Rather than iterate,
1458 * just copy the whole structure back.
1459 */
1460 if (uucopy(&msg, msgp, sizeof (msg)) != 0)
1461 return (-errno);

1463 return ((r < 0) ? -errno : r);
1464 }

1466 int
1467 lx_socketcall(uintptr_t p1, uintptr_t p2)
1468 {
1469 int subcmd = (int)p1 - 1; /* subcommands start at 1 - not 0 */
1470 ulong_t args[6];
1471 int r;

1473 if (subcmd < 0 || subcmd >= LX_RECVMSG)
1474 return (-EINVAL);

1476 /*
1477 * Copy the arguments to the subcommand in from the app’s address
1478 * space, returning EFAULT if we get a bogus pointer.
1479 */
1480 if (uucopy((void *)p2, args,
1481 sockfns[subcmd].s_nargs * sizeof (ulong_t)))
1482 return (-errno);

1484 r = (sockfns[subcmd].s_fn)(args);

1486 return (r);
1487 }
1488 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 1

**
 13443 Tue Jan 14 16:17:05 2014
new/usr/src/lib/brand/lx/lx_brand/common/stat.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * when a stat() is done for a non-device file, the devt returned
28 * via the stat is the devt of the device backing the filesystem which
29 * contains the file the stat was performed on. these devts are currently
30 * untranslated. if this turns out to cause problems in the future then
31 * we might want to add more devt translators to convert sd and cmdk
32 * devts into linux devts that normally represent disks.
33 *
34 * XXX this may not be the best place to have the devt translation code.
35 * devt translation will also be needed for /proc fs support, which will
36 * probably be done in the kernel. we may need to move this code into
37 * the kernel and add a brand syscall to do the translation for us. this
38 * will need to be worked out before putback.
39 */

41 #include <assert.h>
42 #include <errno.h>
43 #include <stdio.h>
44 #include <strings.h>
45 #include <unistd.h>
46 #include <libintl.h>
47 #include <sys/fcntl.h>
48 #include <sys/stat.h>
49 #include <sys/types.h>
50 #include <sys/lx_types.h>
51 #include <sys/lx_stat.h>
52 #include <sys/lx_misc.h>
53 #include <sys/lx_debug.h>
54 #include <sys/lx_ptm.h>
55 #include <sys/lx_audio.h>
56 #include <sys/lx_fcntl.h>
57 #include <sys/modctl.h>

59 /* define _KERNEL to get the devt manipulation macros */
60 #define _KERNEL
61 #include <sys/sysmacros.h>

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 2

62 #undef _KERNEL

65 #define LX_PTS_MAJOR_MIN 136
66 #define LX_PTS_MAJOR_MAX 143
67 #define LX_PTS_MAX \
68 ((LX_PTS_MAJOR_MAX - LX_PTS_MAJOR_MIN + 1) * LX_MINORMASK)

70 #define LX_PTM_MAJOR 5
71 #define LX_PTM_MINOR 2

73 /* values for dt_type */
74 #define DTT_INVALID 0
75 #define DTT_LIST 1
76 #define DTT_CUSTOM 2

78 /* convience macros for access the dt_minor union */
79 #define dt_list dt_minor.dtm_list
80 #define dt_custom dt_minor.dtm_custom

82 /*
83 * structure used to define devt translators
84 */
85 typedef struct minor_translator {
86 char *mt_path; /* solaris minor node path */
87 minor_t mt_minor; /* solaris minor node number */
88 int mt_lx_major; /* linux major node number */
89 int mt_lx_minor; /* linux minor node number */
90 } minor_translator_t;

92 typedef struct devt_translator {
93 char *dt_driver; /* solaris driver name */
94 major_t dt_major; /* solaris driver number */

96 /* dt_type dictates how we intrepret dt_minor */
97 int dt_type;
98 union {
99 uintptr_t dtm_foo; /* required to compile */
100 minor_translator_t *dtm_list;
101 int (*dtm_custom)(dev_t, lx_dev_t *, int);
102 } dt_minor;
103 } devt_translator_t;

106 /*
107 * forward declerations
108 */
109 static devt_translator_t devt_translators[];

111 /*
112 * called to initialize the devt translation subsystem
113 */
114 int
115 lx_stat_init()
116 {
117 minor_translator_t *mt;
118 struct stat st;
119 major_t major;
120 char *driver;
121 int i, j, ret;

123 for (i = 0; devt_translators[i].dt_driver != NULL; i++) {

125 assert(devt_translators[i].dt_type != DTT_INVALID);

127 /* figure out the major numbers for our devt translators */

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 3

128 driver = devt_translators[i].dt_driver;
129 ret = modctl(MODGETMAJBIND,
130 driver, strlen(driver) + 1, &major);
131 if (ret != 0) {
132 lx_err(gettext("%s%s) failed: %s\n"),
133 "lx_stat_init(): modctl(MODGETMAJBIND, ",
134 driver, strerror(errno));
135 lx_err(gettext("%s: %s translator disabled for: %s\n"),
136 "lx_stat_init()", "devt", driver);
137 devt_translators[i].dt_major = (major_t)-1;
138 continue;
139 }

141 /* save the major node value */
142 devt_translators[i].dt_major = major;

144 /* if this translator doesn’t use a list mapping we’re done. */
145 if (devt_translators[i].dt_type != DTT_LIST)
146 continue;

148 /* for each device listed, lookup the minor node number */
149 mt = devt_translators[i].dt_list;
150 for (j = 0; mt[j].mt_path != NULL; j++) {

152 /* stat the device */
153 ret = stat(mt[j].mt_path, &st);
154 if (ret != 0) {
155 lx_err(gettext("%s%s) failed: %s\n"),
156 "lx_stat_init(): stat(",
157 mt[j].mt_path, strerror(errno));
158 lx_err(gettext(
159 "%s: %s translator disabled for: %s\n"),
160 "lx_stat_init()", "devt",
161 mt[j].mt_path);
162 st.st_rdev = NODEV;
163 } else {
164 /* make sure the major node matches */
165 assert(getmajor(st.st_rdev) == major);
166 assert(mt[j].mt_minor < LX_MINORMASK);
167 }

169 /* save the minor node value */
170 mt[j].mt_minor = getminor(st.st_rdev);
171 }
172 }
173 return (0);
174 }

176 static int
177 /*ARGSUSED*/
178 pts_devt_translator(dev_t dev, lx_dev_t *jdev, int fd)
179 {
180 minor_t min = getminor(dev);
181 int lx_maj;
182 int lx_min;

184 /*
185 * linux has a really small minor number name space (8 bits).
186 * so if pts devices are limited to one major number you could
187 * only have 256 of them. linux addresses this issue by using
188 * multiple major numbers for pts devices.
189 */
190 if (min >= LX_PTS_MAX)
191 return (EOVERFLOW);

193 lx_maj = LX_PTS_MAJOR_MIN + (min / LX_MINORMASK);

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 4

194 lx_min = min % LX_MINORMASK;

196 *jdev = LX_MAKEDEVICE(lx_maj, lx_min);
197 return (0);
198 }

201 static int
202 /*ARGSUSED*/
203 ptm_devt_translator(dev_t dev, lx_dev_t *jdev, int fd)
204 {
205 *jdev = LX_MAKEDEVICE(LX_PTM_MAJOR, LX_PTM_MINOR);
206 return (0);
207 }

209 static int
210 audio_devt_translator(dev_t dev, lx_dev_t *jdev, int fd)
211 {
212 int s_minor, l_minor;

214 if (fd == -1) {
215 s_minor = getminor(dev);
216 } else {
217 /*
218 * this is a cloning device so we have to ask the driver
219 * what kind of minor node this is
220 */
221 if (ioctl(fd, LXA_IOC_GETMINORNUM, &s_minor) < 0)
222 return (-EINVAL);
223 }

225 switch (s_minor) {
226 case LXA_MINORNUM_DSP:
227 l_minor = 3;
228 break;
229 case LXA_MINORNUM_MIXER:
230 l_minor = 0;
231 break;
232 default:
233 return (-EINVAL);
234 }

236 *jdev = LX_MAKEDEVICE(14, l_minor);
237 return (0);
238 }

240 static void
241 s2l_dev_report(dev_t dev, lx_dev_t jdev)
242 {
243 major_t maj;
244 minor_t min;
245 int lx_maj, lx_min;

247 if (lx_debug_enabled == 0)
248 return;

250 maj = getmajor(dev);
251 min = getminor(dev);

253 lx_maj = LX_GETMAJOR(jdev);
254 lx_min = LX_GETMINOR(jdev);

256 lx_debug("\ttranslated devt [%d, %d] -> [%d, %d]",
257 maj, min, lx_maj, lx_min);
258 }

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 5

260 static int
261 s2l_devt(dev_t dev, lx_dev_t *jdev, int fd)
262 {
263 minor_translator_t *mt;
264 int i, j, err;
265 major_t maj = getmajor(dev);
266 minor_t min = getminor(dev);

268 /* look for a devt translator for this major number */
269 for (i = 0; devt_translators[i].dt_driver != NULL; i++) {
270 if (devt_translators[i].dt_major == maj)
271 break;
272 }
273 if (devt_translators[i].dt_driver != NULL) {

275 /* try to translate the solaris devt to a linux devt */
276 switch (devt_translators[i].dt_type) {
277 case DTT_LIST:
278 mt = devt_translators[i].dt_list;
279 for (j = 0; mt[j].mt_path != NULL; j++) {
280 if (mt[j].mt_minor == min) {
281 assert(mt[j].mt_minor < LX_MINORMASK);

283 /* found a translation */
284 *jdev = LX_MAKEDEVICE(
285 mt[j].mt_lx_major,
286 mt[j].mt_lx_minor);
287 s2l_dev_report(dev, *jdev);
288 return (0);
289 }
290 }
291 break;

293 case DTT_CUSTOM:
294 err = devt_translators[i].dt_custom(dev, jdev, fd);
295 if (err == 0)
296 s2l_dev_report(dev, *jdev);
297 return (err);
298 break;
299 }
300 }

302 /* we don’t have a translator for this device */
303 *jdev = LX_MAKEDEVICE(maj, min);
304 return (0);
305 }

307 static int
308 stat_convert(uintptr_t lx_statp, struct stat *s, int fd)
309 {
310 struct lx_stat buf;
311 lx_dev_t st_dev, st_rdev;
312 int err;

314 if ((err = s2l_devt(s->st_dev, &st_dev, fd)) != 0)
315 return (err);
316 if ((err = s2l_devt(s->st_rdev, &st_rdev, fd)) != 0)
317 return (err);

319 if ((st_dev > USHRT_MAX) || (st_rdev > USHRT_MAX) ||
320 (s->st_nlink > USHRT_MAX) || (s->st_size > ULONG_MAX))
321 return (-EOVERFLOW);

323 /* Linux seems to report a 0 st_size for all block devices */
324 if ((s->st_mode & S_IFMT) == S_IFBLK)
325 s->st_size = 0;

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 6

327 bzero(&buf, sizeof (buf));
328 buf.st_dev = st_dev;
329 buf.st_rdev = st_rdev;
330 buf.st_ino = s->st_ino;
331 buf.st_mode = s->st_mode;
332 buf.st_nlink = s->st_nlink;
333 buf.st_uid = LX_UID32_TO_UID16(s->st_uid);
334 buf.st_gid = LX_GID32_TO_GID16(s->st_gid);
335 buf.st_size = s->st_size;
336 buf.st_blksize = s->st_blksize;
337 buf.st_blocks = s->st_blocks;
338 buf.st_atime.ts_sec = s->st_atim.tv_sec;
339 buf.st_atime.ts_nsec = s->st_atim.tv_nsec;
340 buf.st_ctime.ts_sec = s->st_ctim.tv_sec;
341 buf.st_ctime.ts_nsec = s->st_ctim.tv_nsec;
342 buf.st_mtime.ts_sec = s->st_mtim.tv_sec;
343 buf.st_mtime.ts_nsec = s->st_mtim.tv_nsec;

345 if (uucopy(&buf, (void *)lx_statp, sizeof (buf)) != 0)
346 return (-errno);

348 return (0);
349 }

351 static int
352 stat64_convert(uintptr_t lx_statp, struct stat64 *s, int fd)
353 {
354 struct lx_stat64 buf;
355 lx_dev_t st_dev, st_rdev;
356 int err;

358 if ((err = s2l_devt(s->st_dev, &st_dev, fd)) != 0)
359 return (err);
360 if ((err = s2l_devt(s->st_rdev, &st_rdev, fd)) != 0)
361 return (err);

363 /* Linux seems to report a 0 st_size for all block devices */
364 if ((s->st_mode & S_IFMT) == S_IFBLK)
365 s->st_size = 0;

367 bzero(&buf, sizeof (buf));
368 buf.st_dev = st_dev;
369 buf.st_rdev = st_rdev;
370 buf.st_small_ino = (lx_ino_t)(s->st_ino & UINT_MAX);
371 buf.st_ino = (lx_ino64_t)s->st_ino;
372 buf.st_mode = s->st_mode;
373 buf.st_nlink = s->st_nlink;
374 buf.st_uid = s->st_uid;
375 buf.st_gid = s->st_gid;
376 buf.st_size = s->st_size;
377 buf.st_blksize = s->st_blksize;
378 buf.st_blocks = s->st_blocks;
379 buf.st_atime.ts_sec = s->st_atim.tv_sec;
380 buf.st_atime.ts_nsec = s->st_atim.tv_nsec;
381 buf.st_ctime.ts_sec = s->st_ctim.tv_sec;
382 buf.st_ctime.ts_nsec = s->st_ctim.tv_nsec;
383 buf.st_mtime.ts_sec = s->st_mtim.tv_sec;
384 buf.st_mtime.ts_nsec = s->st_mtim.tv_nsec;

386 if (uucopy(&buf, (void *)lx_statp, sizeof (buf)) != 0)
387 return (-errno);

389 return (0);
390 }

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 7

392 int
393 lx_stat(uintptr_t p1, uintptr_t p2)
394 {
395 char *path = (char *)p1;
396 struct stat sbuf;

398 lx_debug("\tstat(%s, ...)", path);
399 if (stat(path, &sbuf))
400 return (-errno);

402 return (stat_convert(p2, &sbuf, -1));
403 }

406 int
407 lx_fstat(uintptr_t p1, uintptr_t p2)
408 {
409 int fd = (int)p1;
410 struct stat sbuf;
411 char *path, path_buf[MAXPATHLEN];

413 if (lx_debug_enabled != 0) {
414 path = lx_fd_to_path(fd, path_buf, sizeof (path_buf));
415 if (path == NULL)
416 path = "?";

418 lx_debug("\tfstat(%d - %s, ...)", fd, path);
419 }
420 if (fstat(fd, &sbuf))
421 return (-errno);

423 return (stat_convert(p2, &sbuf, fd));
424 }

427 int
428 lx_lstat(uintptr_t p1, uintptr_t p2)
429 {
430 char *path = (char *)p1;
431 struct stat sbuf;

433 lx_debug("\tlstat(%s, ...)", path);
434 if (lstat(path, &sbuf))
435 return (-errno);

437 return (stat_convert(p2, &sbuf, -1));
438 }

440 int
441 lx_stat64(uintptr_t p1, uintptr_t p2)
442 {
443 char *path = (char *)p1;
444 struct stat64 sbuf;

446 lx_debug("\tstat64(%s, ...)", path);
447 if (stat64(path, &sbuf))
448 return (-errno);

450 return (stat64_convert(p2, &sbuf, -1));
451 }

454 int
455 lx_fstat64(uintptr_t p1, uintptr_t p2)
456 {
457 int fd = (int)p1;

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 8

458 struct stat64 sbuf;
459 char *path, path_buf[MAXPATHLEN];

461 if (lx_debug_enabled != 0) {
462 path = lx_fd_to_path(fd, path_buf, sizeof (path_buf));
463 if (path == NULL)
464 path = "?";

466 lx_debug("\tfstat64(%d - %s, ...)", fd, path);
467 }
468 if (fstat64(fd, &sbuf))
469 return (-errno);

471 return (stat64_convert(p2, &sbuf, fd));
472 }

474 int
475 lx_fstatat64(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4)
476 {
477 int atfd = (int)p1;
478 const char *path = (const char *)p2;
479 int flag;
480 struct stat64 sbuf;

482 if (atfd == LX_AT_FDCWD)
483 atfd = AT_FDCWD;

485 flag = ltos_at_flag(p4, AT_SYMLINK_NOFOLLOW);
486 if (flag < 0)
487 return (-EINVAL);

489 if (fstatat64(atfd, path, &sbuf, flag))
490 return (-errno);

492 return (stat64_convert(p3, &sbuf, -1));
493 }

496 int
497 lx_lstat64(uintptr_t p1, uintptr_t p2)
498 {
499 char *path = (char *)p1;
500 struct stat64 sbuf;

502 lx_debug("\tlstat64(%s, ...)", path);
503 if (lstat64(path, &sbuf))
504 return (-errno);

506 return (stat64_convert(p2, &sbuf, -1));
507 }

509 /*
510 * devt translator definitions
511 */
512 #define MINOR_TRANSLATOR(path, lx_major, lx_minor) \
513 { path, 0, lx_major, lx_minor }

515 #define MINOR_TRANSLATOR_END \
516 { NULL, 0, 0, 0 }

518 #define DEVT_TRANSLATOR(drv, flags, i) \
519 { drv, 0, flags, (uintptr_t)i }

521 /*
522 * translators for devts
523 */

new/usr/src/lib/brand/lx/lx_brand/common/stat.c 9

524 static minor_translator_t mtranslator_mm[] = {
525 MINOR_TRANSLATOR("/dev/null", 1, 3),
526 MINOR_TRANSLATOR("/dev/zero", 1, 5),
527 MINOR_TRANSLATOR_END
528 };
529 static minor_translator_t mtranslator_random[] = {
530 MINOR_TRANSLATOR("/dev/random", 1, 8),
531 MINOR_TRANSLATOR("/dev/urandom", 1, 9),
532 MINOR_TRANSLATOR_END
533 };
534 static minor_translator_t mtranslator_sy[] = {
535 MINOR_TRANSLATOR("/dev/tty", 5, 0),
536 MINOR_TRANSLATOR_END
537 };
538 static minor_translator_t mtranslator_zcons[] = {
539 MINOR_TRANSLATOR("/dev/console", 5, 1),
540 MINOR_TRANSLATOR_END
541 };
542 static devt_translator_t devt_translators[] = {
543 DEVT_TRANSLATOR("mm", DTT_LIST, &mtranslator_mm),
544 DEVT_TRANSLATOR("random", DTT_LIST, &mtranslator_random),
545 DEVT_TRANSLATOR("sy", DTT_LIST, &mtranslator_sy),
546 DEVT_TRANSLATOR("zcons", DTT_LIST, &mtranslator_zcons),
547 DEVT_TRANSLATOR(LX_AUDIO_DRV, DTT_CUSTOM, audio_devt_translator),
548 DEVT_TRANSLATOR(LX_PTM_DRV, DTT_CUSTOM, ptm_devt_translator),
549 DEVT_TRANSLATOR("pts", DTT_CUSTOM, pts_devt_translator),
550 DEVT_TRANSLATOR(NULL, 0, 0)
551 };
552 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/statfs.c 1

**
 7811 Tue Jan 14 16:17:05 2014
new/usr/src/lib/brand/lx/lx_brand/common/statfs.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <assert.h>
29 #include <errno.h>
30 #include <libintl.h>
31 #include <string.h>
32 #include <strings.h>
33 #include <sys/types.h>
34 #include <sys/statvfs.h>
35 #include <sys/param.h>

37 #include <sys/lx_debug.h>
38 #include <sys/lx_misc.h>
39 #include <sys/lx_statfs.h>

41 /*
42 * these defines must exist before we include regexp.h, see regexp(5)
43 */
44 #define RE_SIZE 1024
45 #define INIT char *sp = instring;
46 #define GETC() (*sp++)
47 #define PEEKC() (*sp)
48 #define UNGETC(c) (--sp)
49 #define RETURN(c) return (NULL);
50 #define ERROR(c) return ((char *)c);

52 /*
53 * for regular expressions we’re using regexp(5).
54 *
55 * we’d really prefer to use some other nicer regular expressions
56 * interfaces (like regcmp(3c), regcomp(3c), or re_comp(3c)) but we
57 * can’t because all these other interfaces rely on the ability
58 * to allocate memory via libc malloc()/calloc() calls, which
59 * we can’t really do here.
60 *
61 * we could optionally use regexpr(3gen) but we don’t since the

new/usr/src/lib/brand/lx/lx_brand/common/statfs.c 2

62 * interfaces there are incredibly similar to the regexp(5)
63 * interfaces we’re already using and we’d have the added
64 * requirement of linking against libgen.
65 *
66 * another option that was considered is fnmatch(3c) but the
67 * limited pattern expansion capability of this interface would
68 * force us to include more patterns to check against.
69 */
70 #include <regexp.h>

72 static struct lx_ftype_path {
73 char *lfp_path;
74 char lfp_re[RE_SIZE];
75 int lfp_magic;
76 char *lfp_magic_str;
77 } ftype_path_list[] = {
78 { "^/dev/pts$", "",
79 LX_DEVPTS_SUPER_MAGIC, "LX_DEVPTS_SUPER_MAGIC" },
80 { "^/dev/pts/$", "",
81 LX_DEVPTS_SUPER_MAGIC, "LX_DEVPTS_SUPER_MAGIC" },
82 { "^/dev/pts/[0-9][0-9]*$", "",
83 LX_DEVPTS_SUPER_MAGIC, "LX_DEVPTS_SUPER_MAGIC" },
84 { NULL, "",
85 0, NULL }
86 };

88 /*
89 * For lack of linux equivalents, we present lofs and zfs as being ufs.
90 */
91 static struct lx_ftype_name {
92 const char *lfn_name;
93 int lfn_magic;
94 char *lfn_magic_str;
95 } ftype_name_list[] = {
96 { "hsfs", LX_ISOFS_SUPER_MAGIC, "LX_ISOFS_SUPER_MAGIC" },
97 { "nfs", LX_NFS_SUPER_MAGIC, "LX_NFS_SUPER_MAGIC" },
98 { "pcfs", LX_MSDOS_SUPER_MAGIC, "LX_MSDOS_SUPER_MAGIC" },
99 { "lx_proc", LX_PROC_SUPER_MAGIC, "LX_PROC_SUPER_MAGIC" },
100 { "ufs", LX_UFS_MAGIC, "LX_UFS_MAGIC" },
101 { "lofs", LX_UFS_MAGIC, "LX_UFS_MAGIC" },
102 { "zfs", LX_UFS_MAGIC, "LX_UFS_MAGIC" },
103 { NULL, 0, NULL }
104 };

106 int
107 lx_statfs_init()
108 {
109 int i;
110 char *rv;

112 for (i = 0; ftype_path_list[i].lfp_path != NULL; i++) {
113 rv = compile(
114 ftype_path_list[i].lfp_path,
115 ftype_path_list[i].lfp_re,
116 ftype_path_list[i].lfp_re + RE_SIZE, ’\0’);
117 if (rv == NULL)
118 continue;

120 lx_debug("lx_statfs_init compile(\"%s\") failed",
121 ftype_path_list[i].lfp_path);
122 return (1);
123 }
124 return (0);
125 }

127 static int

new/usr/src/lib/brand/lx/lx_brand/common/statfs.c 3

128 stol_type(const char *path, const char *name)
129 {
130 int i;
131 lx_debug("\tstol_type(\"%s\", \"%s\")\n", path == NULL ? "NULL" : path,
132 name == NULL ? "NULL" : name);

134 if (path != NULL) {
135 char userpath[MAXPATHLEN];

137 if (uucopystr(path, userpath, MAXPATHLEN) == -1)
138 return (-errno);

140 for (i = 0; ftype_path_list[i].lfp_path != NULL; i++) {
141 if (step(userpath, ftype_path_list[i].lfp_re) == 0)
142 continue;

144 /* got a match on the fs path */
145 lx_debug("\ttranslated f_type to 0x%x - %s",
146 ftype_path_list[i].lfp_magic,
147 ftype_path_list[i].lfp_magic_str);
148 return (ftype_path_list[i].lfp_magic);
149 }
150 }

152 assert(name != NULL);
153 for (i = 0; ftype_name_list[i].lfn_name != NULL; i++) {
154 if (strcmp(name, ftype_name_list[i].lfn_name) == 0) {

156 /* got a match on the fs name */
157 lx_debug("\ttranslated f_type to 0x%x - %s",
158 ftype_name_list[i].lfn_magic,
159 ftype_name_list[i].lfn_magic_str);
160 return (ftype_name_list[i].lfn_magic);
161 }
162 }

164 /* we don’t know what the fs type is so just set it to 0 */
165 return (0);
166 }

168 /*
169 * The Linux statfs() is similar to the Solaris statvfs() call, the main
170 * difference being the use of a numeric ’f_type’ identifier instead of the
171 * ’f_basetype’ string.
172 */
173 static int
174 stol_statfs(const char *path, struct lx_statfs *l, struct statvfs *s)
175 {
176 int type;

178 if ((type = stol_type(path, s->f_basetype)) < 0)
179 return (type);

181 l->f_type = type;
182 l->f_bsize = s->f_bsize;
183 l->f_blocks = s->f_blocks;
184 l->f_bfree = s->f_bfree;
185 l->f_bavail = s->f_bavail;
186 l->f_files = s->f_files;
187 l->f_ffree = s->f_ffree;
188 l->f_fsid = s->f_fsid;
189 l->f_namelen = s->f_namemax;
190 l->f_frsize = s->f_frsize;
191 bzero(&(l->f_spare), sizeof (l->f_spare));

193 return (0);

new/usr/src/lib/brand/lx/lx_brand/common/statfs.c 4

194 }

196 static int
197 stol_statfs64(const char *path, struct lx_statfs64 *l, struct statvfs64 *s)
198 {
199 int type;

201 if ((type = stol_type(path, s->f_basetype)) < 0)
202 return (type);

204 l->f_type = type;
205 l->f_bsize = s->f_bsize;
206 l->f_blocks = s->f_blocks;
207 l->f_bfree = s->f_bfree;
208 l->f_bavail = s->f_bavail;
209 l->f_files = s->f_files;
210 l->f_ffree = s->f_ffree;
211 l->f_fsid = s->f_fsid;
212 l->f_namelen = s->f_namemax;
213 l->f_frsize = s->f_frsize;
214 bzero(&(l->f_spare), sizeof (l->f_spare));

216 return (0);
217 }

219 int
220 lx_statfs(uintptr_t p1, uintptr_t p2)
221 {
222 const char *path = (const char *)p1;
223 struct lx_statfs lxfs, *fs = (struct lx_statfs *)p2;
224 struct statvfs vfs;
225 int err;

227 lx_debug("\tfstatvfs(%s, 0x%p)", path, fs);
228 if (statvfs(path, &vfs) != 0)
229 return (-errno);

231 if ((err = stol_statfs(path, &lxfs, &vfs)) != 0)
232 return (err);

234 if (uucopy(&lxfs, fs, sizeof (struct lx_statfs)) != 0)
235 return (-errno);

237 return (0);
238 }

240 int
241 lx_fstatfs(uintptr_t p1, uintptr_t p2)
242 {
243 struct lx_statfs lxfs, *fs = (struct lx_statfs *)p2;
244 struct statvfs vfs;
245 char *path, path_buf[MAXPATHLEN];
246 int fd = (int)p1;
247 int err;

249 lx_debug("\tfstatvfs(%d, 0x%p)", fd, fs);
250 if (fstatvfs(fd, &vfs) != 0)
251 return (-errno);

253 path = lx_fd_to_path(fd, path_buf, sizeof (path_buf));

255 if ((err = stol_statfs(path, &lxfs, &vfs)) != 0)
256 return (err);

258 if (uucopy(&lxfs, fs, sizeof (struct lx_statfs)) != 0)
259 return (-errno);

new/usr/src/lib/brand/lx/lx_brand/common/statfs.c 5

261 return (0);
262 }

264 /* ARGSUSED */
265 int
266 lx_statfs64(uintptr_t p1, uintptr_t p2, uintptr_t p3)
267 {
268 const char *path = (const char *)p1;
269 struct lx_statfs64 lxfs, *fs = (struct lx_statfs64 *)p3;
270 struct statvfs64 vfs;
271 int err;

273 lx_debug("\tstatvfs64(%s, %d, 0x%p)", path, p2, fs);
274 if (statvfs64(path, &vfs) != 0)
275 return (-errno);

277 if ((err = stol_statfs64(path, &lxfs, &vfs)) != 0)
278 return (err);

280 if (uucopy(&lxfs, fs, sizeof (struct lx_statfs64)) != 0)
281 return (-errno);

283 return (0);
284 }

286 /* ARGSUSED */
287 int
288 lx_fstatfs64(uintptr_t p1, uintptr_t p2, uintptr_t p3)
289 {
290 struct lx_statfs64 lxfs, *fs = (struct lx_statfs64 *)p3;
291 struct statvfs64 vfs;
292 char *path, path_buf[MAXPATHLEN];
293 int fd = (int)p1;
294 int err;

296 lx_debug("\tfstatvfs64(%d, %d, 0x%p)", fd, p2, fs);
297 if (fstatvfs64(fd, &vfs) != 0)
298 return (-errno);

300 path = lx_fd_to_path(fd, path_buf, sizeof (path_buf));

302 if ((err = stol_statfs64(path, &lxfs, &vfs)) != 0)
303 return (err);

305 if (uucopy(&lxfs, fs, sizeof (struct lx_statfs64)) != 0)
306 return (-errno);

308 return (0);
309 }
310 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/sysctl.c 1

**
 3557 Tue Jan 14 16:17:05 2014
new/usr/src/lib/brand/lx/lx_brand/common/sysctl.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <alloca.h>
29 #include <errno.h>
30 #include <stdio.h>
31 #include <string.h>
32 #include <sys/lx_syscall.h>
33 #include <sys/lx_misc.h>
34 #include <sys/lx_debug.h>

36 /*
37 * sysctl() implementation. The full set of possible values is incredibly
38 * large; we only implement the bare minimum here, namely basic kernel
39 * information.
40 *
41 * For the moment, we also print out debugging messages if the application
42 * attempts to write or access any other values, so we can tell if we are not
43 * supporting something we should be.
44 */

46 struct lx_sysctl_args {
47 int *name;
48 int nlen;
49 void *oldval;
50 size_t *oldlenp;
51 void *newval;
52 size_t newlen;
53 };

55 #define LX_CTL_KERN 1

57 #define LX_KERN_OSTYPE 1
58 #define LX_KERN_OSRELEASE 2
59 #define LX_KERN_OSREV 3
60 #define LX_KERN_VERSION 4

new/usr/src/lib/brand/lx/lx_brand/common/sysctl.c 2

62 int
63 lx_sysctl(uintptr_t raw)
64 {
65 struct lx_sysctl_args args;
66 int name[2];
67 size_t oldlen;
68 char *namebuf;

70 if (uucopy((void *)raw, &args, sizeof (args)) < 0)
71 return (-EFAULT);

73 /*
74 * We only allow [CTL_KERN, KERN_*] pairs, so reject anything that
75 * doesn’t have exactly two values starting with LX_CTL_KERN.
76 */
77 if (args.nlen != 2)
78 return (-ENOTDIR);

80 if (uucopy(args.name, name, sizeof (name)) < 0)
81 return (-EFAULT);

83 if (name[0] != LX_CTL_KERN) {
84 lx_debug("sysctl: read of [%d, %d] unsupported",
85 name[0], name[1]);
86 return (-ENOTDIR);
87 }

89 /* We don’t support writing new sysctl values. */
90 if ((args.newval != NULL) || (args.newlen != 0)) {
91 lx_debug("sysctl: write of [%d, %d] unsupported",
92 name[0], name[1]);
93 return (-EPERM);
94 }

96 /*
97 * It may seem silly, but passing in a NULL oldval pointer and not
98 * writing any new values is a perfectly legal thing to do and should
99 * succeed.
100 */
101 if (args.oldval == NULL)
102 return (0);

104 /*
105 * Likewise, Linux specifies that setting a non-NULL oldval but a
106 * zero *oldlenp should result in an errno of EFAULT.
107 */
108 if ((uucopy(args.oldlenp, &oldlen, sizeof (oldlen)) < 0) ||
109 (oldlen == 0))
110 return (-EFAULT);

112 namebuf = SAFE_ALLOCA(oldlen);
113 if (namebuf == NULL)
114 return (-ENOMEM);

116 switch (name[1]) {
117 case LX_KERN_OSTYPE:
118 (void) strlcpy(namebuf, LX_UNAME_SYSNAME, oldlen);
119 break;
120 case LX_KERN_OSRELEASE:
121 (void) strlcpy(namebuf, lx_release, oldlen);
122 break;
123 case LX_KERN_VERSION:
124 (void) strlcpy(namebuf, LX_UNAME_VERSION, oldlen);
125 break;
126 default:
127 lx_debug("sysctl: read of [CTL_KERN, %d] unsupported", name[1]);

new/usr/src/lib/brand/lx/lx_brand/common/sysctl.c 3

128 return (-ENOTDIR);
129 }

131 oldlen = strlen(namebuf);

133 if ((uucopy(namebuf, args.oldval, oldlen) < 0) ||
134 (uucopy(&oldlen, args.oldlenp, sizeof (oldlen)) < 0))
135 return (-EFAULT);

137 return (0);
138 }
139 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 1

**
 19815 Tue Jan 14 16:17:05 2014
new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <errno.h>
29 #include <unistd.h>
30 #include <strings.h>
31 #include <rctl.h>
32 #include <alloca.h>
33 #include <values.h>
34 #include <sys/syscall.h>
35 #include <sys/msg.h>
36 #include <sys/ipc.h>
37 #include <sys/sem.h>
38 #include <sys/shm.h>
39 #include <sys/stat.h>
40 #include <sys/types.h>
41 #include <sys/lx_debug.h>
42 #include <sys/lx_types.h>
43 #include <sys/lx_sysv_ipc.h>
44 #include <sys/lx_misc.h>
45 #include <sys/lx_syscall.h>

47 #define SLOT_SEM 0
48 #define SLOT_SHM 1
49 #define SLOT_MSG 2

51 static int
52 get_rctlval(rctlblk_t *rblk, char *name)
53 {
54 rctl_qty_t r;

56 if (getrctl(name, NULL, rblk, RCTL_FIRST) == -1)
57 return (-errno);

59 r = rctlblk_get_value(rblk);
60 if (r > MAXINT)

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 2

61 return (-EOVERFLOW);
62 return (r);
63 }

65 /*
66 * Given a slot number and a maximum number of ids to extract from the
67 * kernel, return the msgid in the provided slot.
68 */
69 static int
70 slot_to_id(int type, int slot)
71 {
72 uint_t nids, max;
73 int *idbuf = NULL;
74 int r = 0;

76 nids = 0;
77 for (;;) {
78 switch (type) {
79 case SLOT_SEM:
80 r = semids(idbuf, nids, &max);
81 break;
82 case SLOT_SHM:
83 r = shmids(idbuf, nids, &max);
84 break;
85 case SLOT_MSG:
86 r = msgids(idbuf, nids, &max);
87 break;
88 }

90 if (r < 0)
91 return (-errno);

93 if (max == 0)
94 return (-EINVAL);

96 if (max <= nids)
97 return (idbuf[slot]);

99 nids = max;
100 if ((idbuf = (int *)SAFE_ALLOCA(sizeof (int) * nids)) == NULL)
101 return (-ENOMEM);
102 }
103 }

105 /*
106 * Semaphore operations.
107 */
108 static int
109 lx_semget(key_t key, int nsems, int semflg)
110 {
111 int sol_flag;
112 int r;

114 lx_debug("\nsemget(%d, %d, %d)\n", key, nsems, semflg);
115 sol_flag = semflg & S_IAMB;
116 if (semflg & LX_IPC_CREAT)
117 sol_flag |= IPC_CREAT;
118 if (semflg & LX_IPC_EXCL)
119 sol_flag |= IPC_EXCL;

121 r = semget(key, nsems, sol_flag);
122 return ((r < 0) ? -errno : r);
123 }

125 static int
126 lx_semop(int semid, struct sembuf *sops, size_t nsops)

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 3

127 {
128 int r;

130 lx_debug("\nsemop(%d, 0x%p, %u)\n", semid, sops, nsops);
131 if (nsops == 0)
132 return (-EINVAL);

134 r = semop(semid, sops, nsops);
135 return ((r < 0) ? -errno : r);
136 }

138 static int
139 lx_semctl_ipcset(int semid, void *buf)
140 {
141 struct lx_semid_ds semds;
142 struct semid_ds sol_semds;
143 int r;

145 if (uucopy(buf, &semds, sizeof (semds)))
146 return (-errno);

148 bzero(&sol_semds, sizeof (sol_semds));
149 sol_semds.sem_perm.uid = semds.sem_perm.uid;
150 sol_semds.sem_perm.gid = semds.sem_perm.gid;
151 sol_semds.sem_perm.mode = semds.sem_perm.mode;

153 r = semctl(semid, 0, IPC_SET, &sol_semds);
154 return ((r < 0) ? -errno : r);
155 }

157 static int
158 lx_semctl_ipcstat(int semid, void *buf)
159 {
160 struct lx_semid_ds semds;
161 struct semid_ds sol_semds;

163 if (semctl(semid, 0, IPC_STAT, &sol_semds) != 0)
164 return (-errno);

166 bzero(&semds, sizeof (semds));
167 semds.sem_perm.key = sol_semds.sem_perm.key;
168 semds.sem_perm.seq = sol_semds.sem_perm.seq;
169 semds.sem_perm.uid = sol_semds.sem_perm.uid;
170 semds.sem_perm.gid = sol_semds.sem_perm.gid;
171 semds.sem_perm.cuid = sol_semds.sem_perm.cuid;
172 semds.sem_perm.cgid = sol_semds.sem_perm.cgid;

174 /* Linux only uses the bottom 9 bits */
175 semds.sem_perm.mode = sol_semds.sem_perm.mode & S_IAMB;
176 semds.sem_otime = sol_semds.sem_otime;
177 semds.sem_ctime = sol_semds.sem_ctime;
178 semds.sem_nsems = sol_semds.sem_nsems;

180 if (uucopy(&semds, buf, sizeof (semds)))
181 return (-errno);

183 return (0);
184 }

186 static int
187 lx_semctl_ipcinfo(void *buf)
188 {
189 struct lx_seminfo i;
190 rctlblk_t *rblk;
191 int rblksz;
192 uint_t nids;

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 4

193 int idbuf;

195 rblksz = rctlblk_size();
196 if ((rblk = (rctlblk_t *)SAFE_ALLOCA(rblksz)) == NULL)
197 return (-ENOMEM);

199 bzero(&i, sizeof (i));
200 if ((i.semmni = get_rctlval(rblk, "project.max-sem-ids")) < 0)
201 return (i.semmni);
202 if ((i.semmsl = get_rctlval(rblk, "process.max-sem-nsems")) < 0)
203 return (i.semmsl);
204 if ((i.semopm = get_rctlval(rblk, "process.max-sem-ops")) < 0)
205 return (i.semopm);

207 /*
208 * We don’t have corresponding rctls for these fields. The values
209 * are taken from the formulas used to derive the defaults listed
210 * in the Linux header file. We’re lying, but trying to be
211 * coherent about it.
212 */
213 i.semmap = i.semmni;
214 i.semmns = i.semmni * i.semmsl;
215 i.semmnu = INT_MAX;
216 i.semume = INT_MAX;
217 i.semvmx = LX_SEMVMX;
218 if (semids(&idbuf, 0, &nids) < 0)
219 return (-errno);
220 i.semusz = nids;
221 i.semaem = INT_MAX;

223 if (uucopy(&i, buf, sizeof (i)) != 0)
224 return (-errno);

226 return (nids);
227 }

229 static int
230 lx_semctl_semstat(int slot, void *buf)
231 {
232 int r, semid;

234 semid = slot_to_id(SLOT_SEM, slot);
235 if (semid < 0)
236 return (semid);

238 r = lx_semctl_ipcstat(semid, buf);
239 return (r < 0 ? r : semid);
240 }

242 /*
243 * For the SETALL operation, we have to examine each of the semaphore
244 * values to be sure it is legal.
245 */
246 static int
247 lx_semctl_setall(int semid, union lx_semun *arg)
248 {
249 struct semid_ds semds;
250 ushort_t *vals;
251 int i, sz, r;

253 /*
254 * Find out how many semaphores are involved, reserve enough
255 * memory for an internal copy of the array, and then copy it in
256 * from the process.
257 */
258 if (semctl(semid, 0, IPC_STAT, &semds) != 0)

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 5

259 return (-errno);
260 sz = semds.sem_nsems * sizeof (ushort_t);
261 if ((vals = SAFE_ALLOCA(sz)) == NULL)
262 return (-ENOMEM);
263 if (uucopy(arg->sems, vals, sz))
264 return (-errno);

266 /* Validate each of the values. */
267 for (i = 0; i < semds.sem_nsems; i++)
268 if (vals[i] > LX_SEMVMX)
269 return (-ERANGE);

271 r = semctl(semid, 0, SETALL, arg->sems);

273 return ((r < 0) ? -errno : r);
274 }

276 static int
277 lx_semctl(int semid, int semnum, int cmd, void *ptr)
278 {
279 union lx_semun arg;
280 int rval;
281 int opt = cmd & ~LX_IPC_64;
282 int use_errno = 0;

284 lx_debug("\nsemctl(%d, %d, %d, 0x%p)\n", semid, semnum, cmd, ptr);

286 /*
287 * The final arg to semctl() is a pointer to a union. For some
288 * commands we can hand that pointer directly to the kernel. For
289 * these commands, we need to extract an argument from the union
290 * before calling into the kernel.
291 */
292 if (opt == LX_SETVAL || opt == LX_SETALL || opt == LX_GETALL ||
293 opt == LX_IPC_SET || opt == LX_IPC_STAT || opt == LX_SEM_STAT ||
294 opt == LX_IPC_INFO || opt == LX_SEM_INFO)
295 if (uucopy(ptr, &arg, sizeof (arg)))
296 return (-errno);

298 switch (opt) {
299 case LX_GETVAL:
300 use_errno = 1;
301 rval = semctl(semid, semnum, GETVAL, NULL);
302 break;
303 case LX_SETVAL:
304 if (arg.val > LX_SEMVMX) {
305 rval = -ERANGE;
306 break;
307 }
308 use_errno = 1;
309 rval = semctl(semid, semnum, SETVAL, arg.val);
310 break;
311 case LX_GETPID:
312 use_errno = 1;
313 rval = semctl(semid, semnum, GETPID, NULL);
314 break;
315 case LX_GETNCNT:
316 use_errno = 1;
317 rval = semctl(semid, semnum, GETNCNT, NULL);
318 break;
319 case LX_GETZCNT:
320 use_errno = 1;
321 rval = semctl(semid, semnum, GETZCNT, NULL);
322 break;
323 case LX_GETALL:
324 use_errno = 1;

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 6

325 rval = semctl(semid, semnum, GETALL, arg.sems);
326 break;
327 case LX_SETALL:
328 rval = lx_semctl_setall(semid, &arg);
329 break;
330 case LX_IPC_RMID:
331 use_errno = 1;
332 rval = semctl(semid, semnum, IPC_RMID, NULL);
333 break;
334 case LX_SEM_STAT:
335 rval = lx_semctl_semstat(semid, arg.semds);
336 break;
337 case LX_IPC_STAT:
338 rval = lx_semctl_ipcstat(semid, arg.semds);
339 break;

341 case LX_IPC_SET:
342 rval = lx_semctl_ipcset(semid, arg.semds);
343 break;

345 case LX_IPC_INFO:
346 case LX_SEM_INFO:
347 rval = lx_semctl_ipcinfo(arg.semds);
348 break;

350 default:
351 rval = -EINVAL;
352 }

354 if (use_errno == 1 && rval < 0)
355 return (-errno);
356 return (rval);
357 }

359 /*
360 * msg operations.
361 */
362 static int
363 lx_msgget(key_t key, int flag)
364 {
365 int sol_flag;
366 int r;

368 lx_debug("\tlx_msgget(%d, %d)\n", key, flag);

370 sol_flag = flag & S_IAMB;
371 if (flag & LX_IPC_CREAT)
372 sol_flag |= IPC_CREAT;
373 if (flag & LX_IPC_EXCL)
374 sol_flag |= IPC_EXCL;

376 r = msgget(key, sol_flag);
377 return (r < 0 ? -errno : r);
378 }

380 static int
381 lx_msgsnd(int id, struct msgbuf *buf, size_t sz, int flag)
382 {
383 int sol_flag = 0;
384 int r;

386 lx_debug("\tlx_msgsnd(%d, 0x%p, %d, %d)\n", id, buf, sz, flag);

388 if (flag & LX_IPC_NOWAIT)
389 sol_flag |= IPC_NOWAIT;

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 7

391 if (((ssize_t)sz < 0) || (sz > LX_MSGMAX))
392 return (-EINVAL);

394 r = msgsnd(id, buf, sz, sol_flag);
395 return (r < 0 ? -errno : r);
396 }

398 static int
399 lx_msgrcv(int id, struct msgbuf *buf, size_t sz, int flag)
400 {
401 int sol_flag = 0;
402 struct {
403 void *msgp;
404 long msgtype;
405 } args;
406 int r;

408 /*
409 * Rather than passing 5 args into ipc(2) directly, glibc passes 4
410 * args and uses the buf argument to point to a structure
411 * containing two args: a pointer to the message and the message
412 * type.
413 */
414 if (uucopy(buf, &args, sizeof (args)))
415 return (-errno);

417 lx_debug("\tlx_msgrcv(%d, 0x%p, %d, %d, %ld, %d)\n",
418 id, args.msgp, sz, args.msgtype, flag);

420 /*
421 * Check for a negative sz parameter.
422 *
423 * Unlike msgsnd(2), the Linux man page does not specify that
424 * msgrcv(2) should return EINVAL if (sz > MSGMAX), only if (sz < 0).
425 */
426 if ((ssize_t)sz < 0)
427 return (-EINVAL);

429 if (flag & LX_MSG_NOERROR)
430 sol_flag |= MSG_NOERROR;
431 if (flag & LX_IPC_NOWAIT)
432 sol_flag |= IPC_NOWAIT;

434 r = msgrcv(id, args.msgp, sz, args.msgtype, sol_flag);
435 return (r < 0 ? -errno : r);
436 }

438 static int
439 lx_msgctl_ipcstat(int msgid, void *buf)
440 {
441 struct lx_msqid_ds msgids;
442 struct msqid_ds sol_msgids;
443 int r;

445 r = msgctl(msgid, IPC_STAT, &sol_msgids);
446 if (r < 0)
447 return (-errno);

449 bzero(&msgids, sizeof (msgids));
450 msgids.msg_perm.key = sol_msgids.msg_perm.key;
451 msgids.msg_perm.seq = sol_msgids.msg_perm.seq;
452 msgids.msg_perm.uid = sol_msgids.msg_perm.uid;
453 msgids.msg_perm.gid = sol_msgids.msg_perm.gid;
454 msgids.msg_perm.cuid = sol_msgids.msg_perm.cuid;
455 msgids.msg_perm.cgid = sol_msgids.msg_perm.cgid;

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 8

457 /* Linux only uses the bottom 9 bits */
458 msgids.msg_perm.mode = sol_msgids.msg_perm.mode & S_IAMB;

460 msgids.msg_stime = sol_msgids.msg_stime;
461 msgids.msg_rtime = sol_msgids.msg_rtime;
462 msgids.msg_ctime = sol_msgids.msg_ctime;
463 msgids.msg_qbytes = sol_msgids.msg_qbytes;
464 msgids.msg_cbytes = sol_msgids.msg_cbytes;
465 msgids.msg_qnum = sol_msgids.msg_qnum;
466 msgids.msg_lspid = sol_msgids.msg_lspid;
467 msgids.msg_lrpid = sol_msgids.msg_lrpid;

469 if (uucopy(&msgids, buf, sizeof (msgids)))
470 return (-errno);

472 return (0);
473 }

475 static int
476 lx_msgctl_ipcinfo(int cmd, void *buf)
477 {
478 struct lx_msginfo m;
479 rctlblk_t *rblk;
480 int idbuf, rblksz, msgseg, maxmsgs;
481 uint_t nids;
482 int rval;

484 rblksz = rctlblk_size();
485 if ((rblk = (rctlblk_t *)SAFE_ALLOCA(rblksz)) == NULL)
486 return (-ENOMEM);

488 bzero(&m, sizeof (m));
489 if ((m.msgmni = get_rctlval(rblk, "project.max-msg-ids")) < 0)
490 return (m.msgmni);
491 if ((m.msgmnb = get_rctlval(rblk, "process.max-msg-qbytes")) < 0)
492 return (m.msgmnb);

494 if (cmd == LX_IPC_INFO) {
495 if ((maxmsgs = get_rctlval(rblk,
496 "process.max-msg-messages")) < 0)
497 return (maxmsgs);
498 m.msgtql = maxmsgs * m.msgmni;
499 m.msgmap = m.msgmnb;
500 m.msgpool = m.msgmax * m.msgmnb;
501 rval = 0;
502 } else {
503 if (msgids(&idbuf, 0, &nids) < 0)
504 return (-errno);
505 m.msgpool = nids;

507 /*
508 * For these fields, we can’t even come up with a good fake
509 * approximation. These are listed as ’obsolete’ or
510 * ’unused’ in the header files, so hopefully nobody is
511 * relying on them anyway.
512 */
513 m.msgtql = INT_MAX;
514 m.msgmap = INT_MAX;
515 rval = nids;
516 }

518 /*
519 * We don’t have corresponding rctls for these fields. The values
520 * are taken from the formulas used to derive the defaults listed
521 * in the Linux header file. We’re lying, but trying to be
522 * coherent about it.

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 9

523 */
524 m.msgmax = m.msgmnb;
525 m.msgssz = 16;
526 msgseg = (m.msgpool * 1024) / m.msgssz;
527 m.msgseg = (msgseg > 0xffff) ? 0xffff : msgseg;

529 if (uucopy(&m, buf, sizeof (m)))
530 return (-errno);
531 return (rval);
532 }

534 static int
535 lx_msgctl_ipcset(int msgid, void *buf)
536 {
537 struct lx_msqid_ds msgids;
538 struct msqid_ds sol_msgids;
539 int r;

541 if (uucopy(buf, &msgids, sizeof (msgids)))
542 return (-errno);

544 bzero(&sol_msgids, sizeof (sol_msgids));
545 sol_msgids.msg_perm.uid = LX_UID16_TO_UID32(msgids.msg_perm.uid);
546 sol_msgids.msg_perm.gid = LX_UID16_TO_UID32(msgids.msg_perm.gid);

548 /* Linux only uses the bottom 9 bits */
549 sol_msgids.msg_perm.mode = msgids.msg_perm.mode & S_IAMB;
550 sol_msgids.msg_qbytes = msgids.msg_qbytes;

552 r = msgctl(msgid, IPC_SET, &sol_msgids);
553 return (r < 0 ? -errno : r);
554 }

556 static int
557 lx_msgctl_msgstat(int slot, void *buf)
558 {
559 int r, msgid;

561 lx_debug("msgstat(%d, 0x%p)\n", slot, buf);

563 msgid = slot_to_id(SLOT_MSG, slot);

565 if (msgid < 0)
566 return (msgid);

568 r = lx_msgctl_ipcstat(msgid, buf);
569 return (r < 0 ? r : msgid);
570 }

572 /*
573 * Split off the various msgctl’s here
574 */
575 static int
576 lx_msgctl(int msgid, int cmd, void *buf)
577 {
578 int r;

580 lx_debug("\tlx_msgctl(%d, %d, 0x%p)\n", msgid, cmd, buf);
581 switch (cmd & ~LX_IPC_64) {
582 case LX_IPC_RMID:
583 r = msgctl(msgid, IPC_RMID, NULL);
584 if (r < 0)
585 r = -errno;
586 break;
587 case LX_IPC_SET:
588 r = lx_msgctl_ipcset(msgid, buf);

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 10

589 break;
590 case LX_IPC_STAT:
591 r = lx_msgctl_ipcstat(msgid, buf);
592 break;
593 case LX_MSG_STAT:
594 r = lx_msgctl_msgstat(msgid, buf);
595 break;

597 case LX_IPC_INFO:
598 case LX_MSG_INFO:
599 r = lx_msgctl_ipcinfo(cmd, buf);
600 break;

602 default:
603 r = -EINVAL;
604 break;
605 }

607 return (r);
608 }

610 /*
611 * shm-related operations.
612 */
613 static int
614 lx_shmget(key_t key, size_t size, int flag)
615 {
616 int sol_flag;
617 int r;

619 lx_debug("\tlx_shmget(%d, %d, %d)\n", key, size, flag);

621 sol_flag = flag & S_IAMB;
622 if (flag & LX_IPC_CREAT)
623 sol_flag |= IPC_CREAT;
624 if (flag & LX_IPC_EXCL)
625 sol_flag |= IPC_EXCL;

627 r = shmget(key, size, sol_flag);
628 return (r < 0 ? -errno : r);
629 }

631 static int
632 lx_shmat(int shmid, void *addr, int flags, void **rval)
633 {
634 int sol_flags;
635 void *ptr;

637 lx_debug("\tlx_shmat(%d, 0x%p, %d, 0%o)\n", shmid, addr, flags);

639 sol_flags = 0;
640 if (flags & LX_SHM_RDONLY)
641 sol_flags |= SHM_RDONLY;
642 if (flags & LX_SHM_RND)
643 sol_flags |= SHM_RND;
644 if ((flags & LX_SHM_REMAP) && (addr == NULL))
645 return (-EINVAL);

647 ptr = shmat(shmid, addr, sol_flags);
648 if (ptr == (void *)-1)
649 return (-errno);
650 if (uucopy(&ptr, rval, sizeof (ptr)) != 0)
651 return (-errno);

653 return (0);
654 }

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 11

656 static int
657 lx_shmctl_ipcinfo(void *buf)
658 {
659 struct lx_shminfo s;
660 rctlblk_t *rblk;
661 int rblksz;

663 rblksz = rctlblk_size();
664 if ((rblk = (rctlblk_t *)SAFE_ALLOCA(rblksz)) == NULL)
665 return (-ENOMEM);

667 bzero(&s, sizeof (s));
668 if ((s.shmmni = get_rctlval(rblk, "project.max-shm-ids")) < 0)
669 return (s.shmmni);
670 if ((s.shmmax = get_rctlval(rblk, "project.max-shm-memory")) < 0)
671 return (s.shmmax);

673 /*
674 * We don’t have corresponding rctls for these fields. The values
675 * are taken from the formulas used to derive the defaults listed
676 * in the Linux header file. We’re lying, but trying to be
677 * coherent about it.
678 */
679 s.shmmin = 1;
680 s.shmseg = INT_MAX;
681 s.shmall = s.shmmax / getpagesize();

683 if (uucopy(&s, buf, sizeof (s)))
684 return (-errno);

686 return (0);
687 }

689 static int
690 lx_shmctl_ipcstat(int shmid, void *buf)
691 {
692 struct lx_shmid_ds shmds;
693 struct shmid_ds sol_shmds;

695 if (shmctl(shmid, IPC_STAT, &sol_shmds) != 0)
696 return (-errno);

698 bzero(&shmds, sizeof (shmds));
699 shmds.shm_perm.key = sol_shmds.shm_perm.key;
700 shmds.shm_perm.seq = sol_shmds.shm_perm.seq;
701 shmds.shm_perm.uid = sol_shmds.shm_perm.uid;
702 shmds.shm_perm.gid = sol_shmds.shm_perm.gid;
703 shmds.shm_perm.cuid = sol_shmds.shm_perm.cuid;
704 shmds.shm_perm.cgid = sol_shmds.shm_perm.cgid;
705 shmds.shm_perm.mode = sol_shmds.shm_perm.mode & S_IAMB;
706 if (sol_shmds.shm_lkcnt > 0)
707 shmds.shm_perm.mode |= LX_SHM_LOCKED;
708 shmds.shm_segsz = sol_shmds.shm_segsz;
709 shmds.shm_atime = sol_shmds.shm_atime;
710 shmds.shm_dtime = sol_shmds.shm_dtime;
711 shmds.shm_ctime = sol_shmds.shm_ctime;
712 shmds.shm_cpid = sol_shmds.shm_cpid;
713 shmds.shm_lpid = sol_shmds.shm_lpid;
714 shmds.shm_nattch = (ushort_t)sol_shmds.shm_nattch;

716 if (uucopy(&shmds, buf, sizeof (shmds)))
717 return (-errno);

719 return (0);
720 }

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 12

722 static int
723 lx_shmctl_ipcset(int shmid, void *buf)
724 {
725 struct lx_shmid_ds shmds;
726 struct shmid_ds sol_shmds;
727 int r;

729 if (uucopy(buf, &shmds, sizeof (shmds)))
730 return (-errno);

732 bzero(&sol_shmds, sizeof (sol_shmds));
733 sol_shmds.shm_perm.uid = shmds.shm_perm.uid;
734 sol_shmds.shm_perm.gid = shmds.shm_perm.gid;
735 sol_shmds.shm_perm.mode = shmds.shm_perm.mode & S_IAMB;

737 r = shmctl(shmid, IPC_SET, &sol_shmds);
738 return (r < 0 ? -errno : r);
739 }

741 /*
742 * Build and return a shm_info structure. We only return the bare
743 * essentials required by ipcs. The rest of the info is not readily
744 * available.
745 */
746 static int
747 lx_shmctl_shminfo(void *buf)
748 {
749 struct lx_shm_info shminfo;
750 uint_t nids;
751 int idbuf;

753 bzero(&shminfo, sizeof (shminfo));

755 if (shmids(&idbuf, 0, &nids) < 0)
756 return (-errno);

758 shminfo.used_ids = nids;
759 if (uucopy(&shminfo, buf, sizeof (shminfo)) != 0)
760 return (-errno);

762 return (nids);
763 }

765 static int
766 lx_shmctl_shmstat(int slot, void *buf)
767 {
768 int r, shmid;

770 lx_debug("shmctl_shmstat(%d, 0x%p)\n", slot, buf);
771 shmid = slot_to_id(SLOT_SHM, slot);
772 if (shmid < 0)
773 return (shmid);

775 r = lx_shmctl_ipcstat(shmid, buf);
776 return (r < 0 ? r : shmid);
777 }

779 static int
780 lx_shmctl(int shmid, int cmd, void *buf)
781 {
782 int r;
783 int use_errno = 0;

785 lx_debug("\tlx_shmctl(%d, %d, 0x%p)\n", shmid, cmd, buf);
786 switch (cmd & ~LX_IPC_64) {

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 13

787 case LX_IPC_RMID:
788 use_errno = 1;
789 r = shmctl(shmid, IPC_RMID, NULL);
790 break;

792 case LX_IPC_SET:
793 r = lx_shmctl_ipcset(shmid, buf);
794 break;

796 case LX_IPC_STAT:
797 r = lx_shmctl_ipcstat(shmid, buf);
798 break;

800 case LX_IPC_INFO:
801 r = lx_shmctl_ipcinfo(buf);
802 break;

804 case LX_SHM_LOCK:
805 use_errno = 1;
806 r = shmctl(shmid, SHM_LOCK, NULL);
807 break;

809 case LX_SHM_UNLOCK:
810 use_errno = 1;
811 r = shmctl(shmid, SHM_UNLOCK, NULL);
812 break;

814 case LX_SHM_INFO:
815 r = lx_shmctl_shminfo(buf);
816 break;

818 case LX_SHM_STAT:
819 r = lx_shmctl_shmstat(shmid, buf);
820 break;
821 default:
822 r = -EINVAL;
823 break;
824 }

826 if (use_errno == 1 && r < 0)
827 return (-errno);

829 return (r);
830 }

832 /*
833 * Under Linux, glibc funnels all of the sysv IPC operations into this
834 * single ipc(2) system call. We need to blow that up and filter the
835 * remnants into the proper Solaris system calls.
836 */
837 int
838 lx_ipc(uintptr_t cmd, uintptr_t arg1, uintptr_t arg2, uintptr_t arg3,
839 uintptr_t arg4)
840 {
841 int r;
842 void *bufptr = (void *)arg4;

844 lx_debug("lx_ipc(%d, %d, %d, %d, 0x%p, %d)\n",
845 cmd, arg1, arg2, arg3, bufptr, arg4);

847 switch (cmd) {
848 case LX_MSGGET:
849 r = lx_msgget((key_t)arg1, (int)arg2);
850 break;
851 case LX_MSGSND:
852 r = lx_msgsnd((int)arg1, bufptr, (size_t)arg2, (int)arg3);

new/usr/src/lib/brand/lx/lx_brand/common/sysv_ipc.c 14

853 break;
854 case LX_MSGRCV:
855 r = lx_msgrcv((int)arg1, bufptr, (size_t)arg2, (int)arg3);
856 break;
857 case LX_MSGCTL:
858 r = lx_msgctl((int)arg1, (int)arg2, bufptr);
859 break;
860 case LX_SEMCTL:
861 r = lx_semctl((int)arg1, (size_t)arg2, (int)arg3, bufptr);
862 break;
863 case LX_SEMOP:
864 /*
865 * ’struct sembuf’ is the same on Linux and Solaris, so we
866 * pass bufptr straight through.
867 */
868 r = lx_semop((int)arg1, bufptr, (size_t)arg2);
869 break;
870 case LX_SEMGET:
871 r = lx_semget((int)arg1, (size_t)arg2, (int)arg3);
872 break;
873 case LX_SHMAT:
874 r = lx_shmat((int)arg1, bufptr, (size_t)arg2, (void *)arg3);
875 break;
876 case LX_SHMDT:
877 r = shmdt(bufptr);
878 if (r < 0)
879 r = -errno;
880 break;
881 case LX_SHMGET:
882 r = lx_shmget((int)arg1, (size_t)arg2, (int)arg3);
883 break;
884 case LX_SHMCTL:
885 r = lx_shmctl((int)arg1, (int)arg2, bufptr);
886 break;

888 default:
889 r = -EINVAL;
890 }

892 return (r);
893 }
894 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/time.c 1

**
 4903 Tue Jan 14 16:17:05 2014
new/usr/src/lib/brand/lx/lx_brand/common/time.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <errno.h>
30 #include <time.h>
31 #include <string.h>
32 #include <strings.h>
33 #include <sys/times.h>
34 #include <sys/lx_syscall.h>
35 #include <sys/lx_misc.h>

37 /*
38 * time() - This cannot be passthrough because on Linux a bad buffer will
39 * set errno to EFAULT, and on Solaris the failure mode is documented
40 * as "undefined."
41 *
42 * (At present, Solaris’ time(2) will segmentation fault, as the call
43 * is simply a libc wrapper atop the time() syscall that will
44 * dereference the passed pointer if it is non-zero.)
45 */
46 int
47 lx_time(uintptr_t p1)
48 {
49 time_t ret = time((time_t *)0);

51 if ((ret == (time_t)-1) ||
52 ((p1 != 0) && (uucopy(&ret, (time_t *)p1, sizeof (ret)) != 0)))
53 return (-errno);

55 return (ret);
56 }

58 /*
59 * times() - The Linux implementation avoids writing to NULL, while Solaris
60 * returns EFAULT.
61 */

new/usr/src/lib/brand/lx/lx_brand/common/time.c 2

62 int
63 lx_times(uintptr_t p1)
64 {
65 clock_t ret;
66 struct tms buf, *tp = (struct tms *)p1;

68 ret = times(&buf);

70 if ((ret == -1) ||
71 ((tp != NULL) && uucopy((void *)&buf, tp, sizeof (buf)) != 0))
72 return (-errno);

74 return ((ret == -1) ? -errno : ret);
75 }

77 /*
78 * setitimer() - the Linux implementation can handle tv_usec values greater
79 * than 1,000,000 where Solaris would return EINVAL.
80 *
81 * There’s still an issue here where Linux can handle a
82 * tv_sec value greater than 100,000,000 but Solaris cannot,
83 * but that would also mean setting an interval timer to fire
84 * over _three years_ in the future so it’s unlikely anything
85 * other than Linux test suites will trip over it.
86 */
87 int
88 lx_setitimer(uintptr_t p1, uintptr_t p2, uintptr_t p3)
89 {
90 struct itimerval itv;
91 struct itimerval *itp = (struct itimerval *)p2;

93 if (itp != NULL) {
94 if (uucopy(itp, &itv, sizeof (itv)) != 0)
95 return (-errno);

97 /*
98 * Adjust any tv_usec fields >= 1,000,000 by adding any whole
99 * seconds so indicated to tv_sec and leaving tv_usec as the
100 * remainder.
101 */
102 if (itv.it_interval.tv_usec >= MICROSEC) {
103 itv.it_interval.tv_sec +=
104 itv.it_interval.tv_usec / MICROSEC;

106 itv.it_interval.tv_usec %= MICROSEC;
107 }
108 if (itv.it_value.tv_usec >= MICROSEC) {
109 itv.it_value.tv_sec +=
110 itv.it_value.tv_usec / MICROSEC;

112 itv.it_value.tv_usec %= MICROSEC;
113 }

115 itp = &itv;
116 }

118 return ((setitimer((int)p1, itp, (struct itimerval *)p3) != 0) ?
119 -errno : 0);
120 }

122 /*
123 * NOTE: The Linux man pages state this structure is obsolete and is
124 * unsupported, so it is declared here for sizing purposes only.
125 */
126 struct lx_timezone {
127 int tz_minuteswest; /* minutes W of Greenwich */

new/usr/src/lib/brand/lx/lx_brand/common/time.c 3

128 int tz_dsttime; /* type of dst correction */
129 };

131 /*
132 * lx_gettimeofday() and lx_settimeofday() are implemented here rather than
133 * as pass-through calls to Solaris’ libc due to the need to return EFAULT
134 * for a bad buffer rather than die with a segmentation fault.
135 */
136 int
137 lx_gettimeofday(uintptr_t p1, uintptr_t p2)
138 {
139 struct timeval tv;
140 struct lx_timezone tz;

142 bzero(&tz, sizeof (tz));
143 (void) gettimeofday(&tv, NULL);

145 if ((p1 != NULL) &&
146 (uucopy(&tv, (struct timeval *)p1, sizeof (tv)) < 0))
147 return (-errno);

149 /*
150 * The Linux man page states use of the second parameter is obsolete,
151 * but gettimeofday(2) should still return EFAULT if it is set
152 * to a bad non-NULL pointer (sigh...)
153 */
154 if ((p2 != NULL) &&
155 (uucopy(&tz, (struct lx_timezone *)p2, sizeof (tz)) < 0))
156 return (-errno);

158 return (0);
159 }

161 int
162 lx_settimeofday(uintptr_t p1, uintptr_t p2)
163 {
164 struct timeval tv;
165 struct lx_timezone tz;

167 if ((p1 != NULL) &&
168 (uucopy((struct timeval *)p1, &tv, sizeof (tv)) < 0))
169 return (-errno);

171 /*
172 * The Linux man page states use of the second parameter is obsolete,
173 * but settimeofday(2) should still return EFAULT if it is set
174 * to a bad non-NULL pointer (sigh...)
175 */
176 if ((p2 != NULL) &&
177 (uucopy((struct lx_timezone *)p2, &tz, sizeof (tz)) < 0))
178 return (-errno);

180 if ((p1 != NULL) && (settimeofday(&tv, NULL) < 0))
181 return (-errno);

183 return (0);
184 }
185 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/truncate.c 1

**
 1766 Tue Jan 14 16:17:06 2014
new/usr/src/lib/brand/lx/lx_brand/common/truncate.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <errno.h>
30 #include <unistd.h>
31 #include <sys/lx_types.h>
32 #include <sys/lx_misc.h>

34 /*
35 * On Solaris, truncate() and ftruncate() are implemented in libc, so these are
36 * layered on those interfaces.
37 */

39 int
40 lx_truncate(uintptr_t path, uintptr_t length)
41 {
42 return (truncate((const char *)path, (off_t)length) == 0 ? 0 : -errno);
43 }

45 int
46 lx_ftruncate(uintptr_t fd, uintptr_t length)
47 {
48 return (ftruncate((int)fd, (off_t)length) == 0 ? 0 : -errno);
49 }

51 int
52 lx_truncate64(uintptr_t path, uintptr_t length_lo, uintptr_t length_hi)
53 {
54 return (truncate64((const char *)path,
55 LX_32TO64(length_lo, length_hi)) == 0 ? 0 : -errno);
56 }

58 int
59 lx_ftruncate64(uintptr_t fd, uintptr_t length_lo, uintptr_t length_hi)
60 {
61 return (ftruncate64((int)fd,

new/usr/src/lib/brand/lx/lx_brand/common/truncate.c 2

62 LX_32TO64(length_lo, length_hi)) == 0 ? 0 : -errno);
63 }
64 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/common/wait.c 1

**
 7834 Tue Jan 14 16:17:06 2014
new/usr/src/lib/brand/lx/lx_brand/common/wait.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 /*
30 * wait() family of functions.
31 *
32 * The first minor difference between the Linux and Solaris family of wait()
33 * calls is that the values for WNOHANG and WUNTRACED are different. Solaris
34 * also has additional options (WCONTINUED, WNOWAIT) which should be flagged as
35 * invalid on Linux. Thankfully, the exit status values are identical between
36 * the two implementations.
37 *
38 * Things get very different and very complicated when we introduce the Linux
39 * threading model. Under linux, both threads and child processes are
40 * represented as processes. However, the behavior of wait() with respect to
41 * each child varies according to the flags given to clone()
42 *
43 * SIGCHLD The SIGCHLD signal should be sent on termination
44 * CLONE_THREAD The child shares the same thread group as the parent
45 * CLONE_DETACHED The parent receives no notification when the child exits
46 *
47 * The following flags control the Linux behavior w.r.t. the above attributes:
48 *
49 * __WALL Wait on all children, regardless of type
50 * __WCLONE Wait only on non-SIGCHLD children
51 * __WNOTHREAD Don’t wait on children of other threads in this group
52 *
53 * The following chart shows whether wait() returns when the child exits:
54 *
55 * default __WCLONE __WALL
56 * no SIGCHLD - X X
57 * SIGCHLD X - X
58 *
59 * The following chart shows whether wait() returns when the grandchild exits:
60 *
61 * default __WNOTHREAD

new/usr/src/lib/brand/lx/lx_brand/common/wait.c 2

62 * no CLONE_THREAD - -
63 * CLONE_THREAD X -
64 *
65 * The CLONE_DETACHED flag is universal - when the child exits, no state is
66 * stored and wait() has no effect.
67 *
68 * XXX Support the above combination of options, or some reasonable subset that
69 * covers at least fork() and pthread_create().
70 */

72 #include <errno.h>
73 #include <sys/wait.h>
74 #include <sys/lx_types.h>
75 #include <sys/lx_signal.h>
76 #include <sys/lx_misc.h>
77 #include <sys/lx_syscall.h>
78 #include <sys/times.h>
79 #include <strings.h>
80 #include <unistd.h>
81 #include <assert.h>

83 /*
84 * Convert between Linux options and Solaris options, returning -1 if any
85 * invalid flags are found.
86 */
87 #define LX_WNOHANG 0x1
88 #define LX_WUNTRACED 0x2

90 #define LX_WNOTHREAD 0x20000000
91 #define LX_WALL 0x40000000
92 #define LX_WCLONE 0x80000000

94 #define LX_P_ALL 0x0
95 #define LX_P_PID 0x1
96 #define LX_P_GID 0x2

98 static int
99 ltos_options(uintptr_t options)
100 {
101 int newoptions = 0;

103 if (((options) & ~(LX_WNOHANG | LX_WUNTRACED | LX_WNOTHREAD |
104 LX_WALL | LX_WCLONE)) != 0) {
105 return (-1);
106 }
107 /* XXX implement LX_WNOTHREAD, LX_WALL, LX_WCLONE */

109 if (options & LX_WNOHANG)
110 newoptions |= WNOHANG;
111 if (options & LX_WUNTRACED)
112 newoptions |= WUNTRACED;

114 return (newoptions);
115 }

117 static int
118 lx_wstat(int code, int status)
119 {
120 int stat = 0;

122 switch (code) {
123 case CLD_EXITED:
124 stat = status << 8;
125 break;
126 case CLD_DUMPED:
127 stat = stol_signo[status];

new/usr/src/lib/brand/lx/lx_brand/common/wait.c 3

128 assert(stat != -1);
129 stat |= WCOREFLG;
130 break;
131 case CLD_KILLED:
132 stat = stol_signo[status];
133 assert(stat != -1);
134 break;
135 case CLD_TRAPPED:
136 case CLD_STOPPED:
137 stat = stol_signo[status];
138 assert(stat != -1);
139 stat <<= 8;
140 stat |= WSTOPFLG;
141 break;
142 case CLD_CONTINUED:
143 stat = WCONTFLG;
144 break;
145 }

147 return (stat);
148 }

150 /* wrapper to make solaris waitid work properly with ptrace */
151 static int
152 lx_waitid_helper(idtype_t idtype, id_t id, siginfo_t *info, int options)
153 {
154 do {
155 /*
156 * It’s possible that we return EINVAL here if the idtype is
157 * P_PID or P_PGID and id is out of bounds for a valid pid or
158 * pgid, but Linux expects to see ECHILD. No good way occurs to
159 * handle this so we’ll punt for now.
160 */
161 if (waitid(idtype, id, info, options) < 0)
162 return (-errno);

164 /*
165 * If the WNOHANG flag was specified and no child was found
166 * return 0.
167 */
168 if ((options & WNOHANG) && info->si_pid == 0)
169 return (0);

171 /*
172 * It’s possible that we may have a spurious return for one of
173 * the child processes created by the ptrace subsystem. If
174 * that’s the case, we simply try again.
175 */
176 } while (lx_ptrace_wait(info) == -1);
177 return (0);
178 }

180 int
181 lx_wait4(uintptr_t p1, uintptr_t p2, uintptr_t p3, uintptr_t p4)
182 {
183 siginfo_t info = { 0 };
184 struct rusage ru = { 0 };
185 idtype_t idtype;
186 id_t id;
187 int options, status = 0;
188 pid_t pid = (pid_t)p1;
189 int rval;

191 if ((options = ltos_options(p3)) == -1)
192 return (-EINVAL);

new/usr/src/lib/brand/lx/lx_brand/common/wait.c 4

194 /*
195 * While not listed as a valid return code, Linux’s wait4(2) does,
196 * in fact, get an EFAULT if either the status pointer or rusage
197 * pointer is invalid. Since a failed waitpid should leave child
198 * process in a state where a future wait4(2) will succeed, we
199 * check them by copying out the values their buffers originally
200 * contained. (We need to do this as a failed system call should
201 * never affect the contents of a passed buffer.)
202 *
203 * This will fail if the buffers in question are write-only.
204 */
205 if ((void *)p2 != NULL &&
206 ((uucopy((void *)p2, &status, sizeof (status)) != 0) ||
207 (uucopy(&status, (void *)p2, sizeof (status)) != 0)))
208 return (-EFAULT);

210 if ((void *)p4 != NULL) {
211 if ((uucopy((void *)p4, &ru, sizeof (ru)) != 0) ||
212 (uucopy(&ru, (void *)p4, sizeof (ru)) != 0))
213 return (-EFAULT);
214 }

216 if (pid < -1) {
217 idtype = P_PGID;
218 id = -pid;
219 } else if (pid == -1) {
220 idtype = P_ALL;
221 id = 0;
222 } else if (pid == 0) {
223 idtype = P_PGID;
224 id = getpgrp();
225 } else {
226 idtype = P_PID;
227 id = pid;
228 }

230 options |= WEXITED | WTRAPPED;

232 if ((rval = lx_waitid_helper(idtype, id, &info, options)) < 0)
233 return (rval);
234 /*
235 * If the WNOHANG flag was specified and no child was found return 0.
236 */
237 if ((options & WNOHANG) && info.si_pid == 0)
238 return (0);

240 status = lx_wstat(info.si_code, info.si_status);

242 /*
243 * Unfortunately if this attempt to copy out either the status or the
244 * rusage fails, the process will be in an inconsistent state as
245 * subsequent calls to wait for the same child will fail where they
246 * should succeed on a Linux system. This, however, is rather
247 * unlikely since we tested the validity of both above.
248 */
249 if (p2 != NULL && uucopy(&status, (void *)p2, sizeof (status)) != 0)
250 return (-EFAULT);

252 if (p4 != NULL && (rval = lx_getrusage(LX_RUSAGE_CHILDREN, p4)) != 0)
253 return (rval);

255 return (info.si_pid);
256 }

258 int
259 lx_waitpid(uintptr_t p1, uintptr_t p2, uintptr_t p3)

new/usr/src/lib/brand/lx/lx_brand/common/wait.c 5

260 {
261 return (lx_wait4(p1, p2, p3, NULL));
262 }

264 int
265 lx_waitid(uintptr_t idtype, uintptr_t id, uintptr_t infop, uintptr_t opt)
266 {
267 int rval, options;
268 siginfo_t s_infop = {0};
269 if ((options = ltos_options(opt)) == -1)
270 return (-1);
271 switch (idtype) {
272 case LX_P_ALL:
273 idtype = P_ALL;
274 break;
275 case LX_P_PID:
276 idtype = P_PID;
277 break;
278 case LX_P_GID:
279 idtype = P_GID;
280 break;
281 default:
282 return (-EINVAL);
283 }
284 if ((rval = lx_waitid_helper(idtype, (id_t)id, &s_infop, options)) < 0)
285 return (rval);

287 return (stol_siginfo(&s_infop, (lx_siginfo_t *)infop));
288 }
289 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/i386/Makefile 1

**
 1387 Tue Jan 14 16:17:06 2014
new/usr/src/lib/brand/lx/lx_brand/i386/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # ident "%Z%%M% %I% %E% SMI"
26 #
27 # lib/brand/lx/i386/Makefile

29 ISASRCDIR=.

31 ASFLAGS += -P -D_ASM

33 include ../Makefile.com

35 POFILE= lx_brand.po
36 MSGFILES= $(CSRCS)

38 ASSYMDEP_OBJS = lx_handler.o

40 $(ASSYMDEP_OBJS:%=pics/%): assym.h

42 OFFSETS = ../$(MACH)/offsets.in

44 assym.h: $(OFFSETS)
45 $(OFFSETS_CREATE) $(CTF_FLAGS) < $(OFFSETS) > $@

47 CLOBBERFILES += assym.h

49 install: all $(ROOTLIBS)

51 $(POFILE): $(MSGFILES)
52 $(BUILDPO.msgfiles)

54 _msg: $(MSGDOMAINPOFILE)

56 include $(SRC)/Makefile.msg.targ
57 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/i386/lx_crt.s 1

**
 1681 Tue Jan 14 16:17:06 2014
new/usr/src/lib/brand/lx/lx_brand/i386/lx_crt.s
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ident "%Z%%M% %I% %E% SMI"

29 #include <sys/asm_linkage.h>

31 #if defined(lint)

33 void
34 _start(void)
35 {
36 }

38 #else /* lint */

40 /*
41 * C language startup routine for the lx brand shared library.
42 */
43 ENTRY_NP(_start)
44 pushl $0 / Build a stack frame. retpc = NULL
45 pushl $0 / fp = NULL
46 movl %esp, %ebp / first stack frame

48 /*
49 * Calculate the location of the envp array by adding the size of
50 * the argv array to the start of the argv array.
51 */
52 movl 8(%ebp), %eax / argc in %eax
53 leal 16(%ebp,%eax,4), %edx / envp in %edx
54 andl $-16, %esp
55 pushl %edx / push envp
56 leal 12(%ebp),%edx / compute &argv[0]
57 pushl %edx / push argv
58 pushl %eax / push argc
59 call lx_init
60 /*
61 * lx_init will never return.

new/usr/src/lib/brand/lx/lx_brand/i386/lx_crt.s 2

62 */
63 SET_SIZE(_start)

65 #endif /* lint */
66 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/i386/lx_handler.s 1

**
 10796 Tue Jan 14 16:17:06 2014
new/usr/src/lib/brand/lx/lx_brand/i386/lx_handler.s
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <sys/asm_linkage.h>
29 #include <sys/regset.h>
30 #include <sys/segments.h>
31 #include <sys/syscall.h>
32 #include <sys/lx_brand.h>

34 #if defined(_ASM)
35 #include <sys/lx_signal.h>
36 #include <sys/lx_syscall.h>
37 #endif /* _ASM */

39 #include "assym.h"

41 #define PIC_SETUP(r) \
42 call 9f; \
43 9: popl r; \
44 addl $_GLOBAL_OFFSET_TABLE_ + [. - 9b], r

46 /*
47 * Each JMP must occupy 16 bytes
48 */
49 #define JMP \
50 pushl $_CONST(. - lx_handler_table); \
51 jmp lx_handler; \
52 .align 16;

54 #define JMP4 JMP; JMP; JMP; JMP
55 #define JMP16 JMP4; JMP4; JMP4; JMP4
56 #define JMP64 JMP16; JMP16; JMP16; JMP16
57 #define JMP256 JMP64; JMP64; JMP64; JMP64

59 /*
60 * Alternate jump table that turns on lx_traceflag before proceeding with
61 * the normal emulation routine.

new/usr/src/lib/brand/lx/lx_brand/i386/lx_handler.s 2

62 */
63 #define TJMP \
64 pushl $_CONST(. - lx_handler_trace_table); \
65 jmp lx_handler_trace; \
66 .align 16;

68 #define TJMP4 TJMP; TJMP; TJMP; TJMP
69 #define TJMP16 TJMP4; TJMP4; TJMP4; TJMP4
70 #define TJMP64 TJMP16; TJMP16; TJMP16; TJMP16
71 #define TJMP256 TJMP64; TJMP64; TJMP64; TJMP64

73
74 #if defined(lint)

76 #include <sys/types.h>
77 #include <sys/regset.h>
78 #include <sys/signal.h>

80 void
81 lx_handler_table(void)
82 {}

84 void
85 lx_handler(void)
86 {}

88 /* ARGSUSED */
89 void
90 lx_setup_clone(uintptr_t gs, void *retaddr, void *stk)
91 {}

93 /* ARGSUSED */
94 void
95 lx_sigdeliver(int sig, siginfo_t *sip, void *p, size_t stacksz,
96 void (*stack_frame_builder)(void), void (*lx_sighandler)(void),
97 uintptr_t gs)
98 {}

100 /* ARGSUSED */
101 void
102 lx_sigacthandler(int sig, siginfo_t *s, void *p)
103 {}

105 void
106 lx_sigreturn_tramp(void)
107 {}

109 void
110 lx_rt_sigreturn_tramp(void)
111 {}

113 /* ARGSUSED */
114 void
115 lx_sigreturn_tolibc(uintptr_t sp)
116 {}

118 #else /* lint */

120 /*
121 * On entry to this table, %eax will hold the return address. The
122 * location where we enter the table is a function of the system
123 * call number. The table needs the same alignment as the individual
124 * entries.
125 */
126 .align 16
127 ENTRY_NP(lx_handler_trace_table)

new/usr/src/lib/brand/lx/lx_brand/i386/lx_handler.s 3

128 TJMP256
129 TJMP64
130 SET_SIZE(lx_handler_trace_table)

132 .align 16
133 ENTRY_NP(lx_handler_table)
134 JMP256
135 JMP64
136 SET_SIZE(lx_handler_table)

138 ENTRY_NP(lx_handler_trace)
139 pushl %esi
140 PIC_SETUP(%esi)
141 movl lx_traceflag@GOT(%esi), %esi
142 movl $1, (%esi)
143 popl %esi
144 /*
145 * While we could just fall through to lx_handler(), we "tail-call" it
146 * instead to make ourselves a little more comprehensible to trace
147 * tools.
148 */
149 jmp lx_handler
150 SET_SIZE(lx_handler_trace)
151
152 ALTENTRY(lx_handler)
153 /*
154 * %ebp isn’t always going to be a frame pointer on Linux, but when
155 * it is, saving it here lets us have a coherent stack backtrace.
156 */
157 pushl %ebp

159 /*
160 * Fill in a lx_regs_t structure on the stack.
161 */
162 subl $SIZEOF_LX_REGS_T, %esp

164 /*
165 * Save %ebp and then fill it with what would be its usual value as
166 * the frame pointer. The value we save for %esp needs to be the
167 * stack pointer at the time of the interrupt so we need to skip the
168 * saved %ebp and (what will be) the return address.
169 */
170 movl %ebp, LXR_EBP(%esp)
171 movl %esp, %ebp
172 addl $_CONST(SIZEOF_LX_REGS_T), %ebp
173 movl %ebp, LXR_ESP(%esp)
174 addl $_CONST(_MUL(CPTRSIZE, 2)), LXR_ESP(%esp)

176 movl $0, LXR_GS(%esp)
177 movw %gs, LXR_GS(%esp)
178 movl %edi, LXR_EDI(%esp)
179 movl %esi, LXR_ESI(%esp)
180 movl %ebx, LXR_EBX(%esp)
181 movl %edx, LXR_EDX(%esp)
182 movl %ecx, LXR_ECX(%esp)
183 movl %eax, LXR_EIP(%esp)

185 /*
186 * The kernel drops us into the middle of one of the tables above
187 * that then pushes that table offset onto the stack, and calls into
188 * lx_handler. That offset indicates the system call number while
189 * %eax holds the return address for the system call. We replace the
190 * value on the stack with the return address, and use the value to
191 * compute the system call number by dividing by the table entry size.
192 */
193 xchgl CPTRSIZE(%ebp), %eax

new/usr/src/lib/brand/lx/lx_brand/i386/lx_handler.s 4

194 shrl $4, %eax
195 movl %eax, LXR_EAX(%esp)

197 /*
198 * Switch to the Solaris libc’s %gs.
199 */
200 movl $LWPGS_SEL, %ebx
201 movw %bx, %gs

203 /*
204 * Call lx_emulate() whose only argument is a pointer to the
205 * lx_regs_t structure we’ve placed on the stack.
206 */
207 pushl %esp
208 call lx_emulate

210 /*
211 * We use this global symbol to identify this return site when
212 * walking the stack backtrace. It needs to remain immediately
213 * after the call to lx_emulate().
214 */
215 ALTENTRY(lx_emulate_done)

217 /*
218 * Clean up the argument to lx_emulate().
219 */
220 addl $4, %esp

222 /*
223 * Restore the saved register state; we get %ebp, %esp and %esp from
224 * the ordinary locations rather than the saved state.
225 */
226 movl LXR_EDI(%esp), %edi
227 movl LXR_ESI(%esp), %esi
228 movl LXR_EBX(%esp), %ebx
229 movl LXR_EDX(%esp), %edx
230 movl LXR_ECX(%esp), %ecx
231 movl LXR_EAX(%esp), %eax
232 movw LXR_GS(%esp), %gs

234 addl $SIZEOF_LX_REGS_T, %esp

236 movl %ebp, %esp
237 popl %ebp
238 ret
239 SET_SIZE(lx_handler)

241 ENTRY_NP(lx_swap_gs)
242 push %eax /* save the current eax value */
243 movl 0xc(%esp),%eax /* 2nd param is a pointer */
244 movw %gs,(%eax) /* use the pointer to save current gs */
245 movl 0x8(%esp),%eax /* first parameter is the new gs value */
246 movw %ax, %gs /* switch to the new gs value */
247 pop %eax /* restore eax */
248 ret
249 SET_SIZE(lx_swap_gs)

251 ENTRY_NP(lx_setup_clone)
252 xorl %ebp, %ebp /* terminating stack */
253 popl %edx /* eat the start_clone() return address */
254 popl %gs /* Switch back to the Linux libc’s %gs */
255 popl %edx /* Linux clone() return address */
256 popl %esp /* New stack pointer */
257 xorl %eax, %eax /* child returns 0 to SYS_clone() */
258 jmp *%edx /* return to Linux app. */
259 SET_SIZE(lx_setup_clone)

new/usr/src/lib/brand/lx/lx_brand/i386/lx_handler.s 5

261 /*
262 * lx_sigdeliver(sig, siginfo_t *, ucontext_t *, stack_size,
263 * stack_build_routine, signal_handler, glibc_gs)
264 *
265 * This routine allocates stack space for the Linux signal stack,
266 * calls a routine to build the signal stack and then calls the Linux
267 * signal handler. This is written in assembly because of the way
268 * we need to directly manipulate the stack and pass the resulting
269 * stack to the signal handler with the Linux signal stack on top.
270 *
271 * When the Linux signal handler is called, the stack will look
272 * like this:
273 *
274 * ===
275 * | Linux signal frame built by lx_stackbuilder() |
276 * ===
277 * | LX_SIGRT_MAGIC |
278 * ===
279 * | %ebp |
280 * ===
281 */
282 ENTRY_NP(lx_sigdeliver)
283 pushl %ebp
284 movl %esp, %ebp
285 movl 16(%ebp), %edx /* pointer to Solaris ucontext_t */
286 pushl %edx /* save ucontext_t ptr for later */
287 pushl $LX_SIGRT_MAGIC /* marker value for lx_(rt)_sigreturn */

289 subl 20(%ebp), %esp /* create stack buffer */
290 pushl %esp /* push stack pointer */
291 pushl %edx /* push pointer to ucontext_t */
292 pushl 12(%ebp) /* push pointer to siginfo_t */
293 pushl 8(%ebp) /* push signal number */
294 call *24(%ebp) /* lx_stackbuilder(sig, sip, ucp, sp) */
295 add $16, %esp /* remove args from stack */
296 movw 32(%ebp), %gs /* only low 16 bits are used */

298 mov 4(%ebp),%eax /* fetch old %ebp from stack */
299 mov 28(%ebp), %edx /* get address of Linux handler */
300 mov %eax, %ebp /* restore old %ebp */
301 jmp *%edx /* jmp to the Linux signal handler */
302 SET_SIZE(lx_sigdeliver)

304 /*
305 * Due to the nature of signals, we need to be able to force the %gs
306 * value to that used by Solaris by running any Solaris code.
307 *
308 * This routine does that, then calls a C routine that will save the
309 * %gs value at the time of the signal off into a thread-specific data
310 * structure. Finally, we trampoline to the libc code that would
311 * normally interpose itself before calling a signal handler.
312 *
313 * The libc routine that calls user signal handlers ends with a
314 * setcontext, so we would never return here even if we used a call
315 * rather than a jmp.
316 *
317 * %esi is used for the PIC as it is guaranteed by the 386 ABI to
318 * survive the call to lx_sigsavegs. The downside is we must also
319 * preserve its value for our caller.
320 *
321 * Note that because lx_sigsavegs and libc_sigacthandler are externs,
322 * they need to be dereferenced via the GOT.
323 *
324 * IMPORTANT: Because libc apparently gets upset if extra data is
325 * left on its stack, this routine needs to be crafted

new/usr/src/lib/brand/lx/lx_brand/i386/lx_handler.s 6

326 * in assembly so that the jmp to the libc interposer
327 * doesn’t leave any cruft lying around.
328 */
329 ENTRY_NP(lx_sigacthandler)
330 pushl %esi /* save %esi */
331 pushl %gs /* push the Linux %gs */
332 pushl $LWPGS_SEL
333 popl %gs /* install the Solaris %gs */

335 PIC_SETUP(%esi)
336 movl lx_sigsavegs@GOT(%esi), %eax
337 call *%eax /* save the Linux %gs */
338 movl libc_sigacthandler@GOT(%esi), %eax
339 add $4, %esp /* clear Linux %gs from stack */
340 popl %esi /* restore %esi */
341 jmp *(%eax) /* jmp to libc’s interposer */
342 SET_SIZE(lx_sigacthandler)

344 /*
345 * Trampoline code is called by the return at the end of a Linux
346 * signal handler to return control to the interrupted application
347 * via the lx_sigreturn() or lx_rt_sigreturn() syscalls.
348 *
349 * (lx_sigreturn() is called for legacy signal handling, and
350 * lx_rt_sigreturn() is called for "new"-style signals.)
351 *
352 * These two routines must consist of the EXACT code sequences below
353 * as gdb looks at the sequence of instructions a routine will return
354 * to determine whether it is in a signal handler or not.
355 */
356 ENTRY_NP(lx_sigreturn_tramp)
357 popl %eax
358 movl $LX_SYS_sigreturn, %eax
359 int $0x80
360 SET_SIZE(lx_sigreturn_tramp)

362 ENTRY_NP(lx_rt_sigreturn_tramp)
363 movl $LX_SYS_rt_sigreturn, %eax
364 int $0x80
365 SET_SIZE(lx_rt_sigreturn_tramp)

367 /*
368 * Manipulate the stack in the way necessary for it to appear to libc
369 * that the signal handler it invoked via call_user_handler() is
370 * returning.
371 */
372 ENTRY_NP(lx_sigreturn_tolibc)
373 movl 4(%esp), %esp /* set %esp to passed value */
374 popl %ebp /* restore proper %ebp */
375 ret /* return to libc interposer */
376 SET_SIZE(lx_sigreturn_tolibc)
377 #endif /* lint */
378 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/i386/lx_runexe.s 1

**
 1586 Tue Jan 14 16:17:07 2014
new/usr/src/lib/brand/lx/lx_brand/i386/lx_runexe.s
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ident "%Z%%M% %I% %E% SMI"

29 #include <sys/asm_linkage.h>

31 #if defined(lint)

33 /*ARGSUSED*/
34 void
35 lx_runexe(void *argv, int32_t entry)
36 {
37 }

39 #else /* lint */

41 /*
42 * Set our stack pointer, clear the general registers,
43 * and jump to the brand linker’s entry point.
44 */
45 ENTRY_NP(lx_runexe)
46 movl 4(%esp), %eax / %eax = &argv[0]
47 movl 8(%esp), %ebx / Brand linker’s entry point in %ebx
48 subl $4, %eax / Top of stack - must point at argc
49 movl %eax, %esp / Set %esp to what linkers expect

51 movl $0, %eax
52 movl $0, %ecx
53 movl $0, %edx
54 movl $0, %esi
55 movl $0, %edi
56 movl $0, %ebp

58 jmp *%ebx / And away we go...
59 SET_SIZE(lx_runexe)

61 #endif /* lint */

new/usr/src/lib/brand/lx/lx_brand/i386/lx_runexe.s 2

62 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/i386/offsets.in 1

**
 1092 Tue Jan 14 16:17:07 2014
new/usr/src/lib/brand/lx/lx_brand/i386/offsets.in
Bring back LX zones.
**

1 \
2 \ Copyright 2006 Sun Microsystems, Inc. All rights reserved.
3 \ Use is subject to license terms.
4 \
5 \ CDDL HEADER START
6 \
7 \ The contents of this file are subject to the terms of the
8 \ Common Development and Distribution License (the "License").
9 \ You may not use this file except in compliance with the License.
10 \
11 \ You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
12 \ or http://www.opensolaris.org/os/licensing.
13 \ See the License for the specific language governing permissions
14 \ and limitations under the License.
15 \
16 \ When distributing Covered Code, include this CDDL HEADER in each
17 \ file and include the License file at usr/src/OPENSOLARIS.LICENSE.
18 \ If applicable, add the following below this CDDL HEADER, with the
19 \ fields enclosed by brackets "[]" replaced with your own identifying
20 \ information: Portions Copyright [yyyy] [name of copyright owner]
21 \
22 \ CDDL HEADER END
23 \

25 #pragma ident "%Z%%M% %I% %E% SMI"

27 #include <sys/lx_brand.h>

29 lx_regs_t SIZEOF_LX_REGS_T
30 lxr_gs
31 lxr_edi
32 lxr_esi
33 lxr_ebp
34 lxr_esp
35 lxr_ebx
36 lxr_edx
37 lxr_ecx
38 lxr_eax
39 lxr_eip
40 lxr_orig_eax
41 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_debug.h 1

**
 1351 Tue Jan 14 16:17:07 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_debug.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _LX_DEBUG_H
27 #define _LX_DEBUG_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 /* initialize the debugging subsystem */
36 extern void lx_debug_init(void);

38 /* printf() style debug message functionality */
39 extern void lx_debug(const char *, ...);

41 /* set non-zero if the debugging subsystem is enabled */
42 extern int lx_debug_enabled;

44 #ifdef __cplusplus
45 }
46 #endif

48 #endif /* _LX_DEBUG_H */
49 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_fcntl.h 1

**
 2633 Tue Jan 14 16:17:07 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_fcntl.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_FCNTL_H
27 #define _SYS_LX_FCNTL_H

29 #ifdef __cplusplus
30 extern "C" {
31 #endif

33 /*
34 * Lx open/fcntl flags
35 */
36 #define LX_O_RDONLY 00
37 #define LX_O_WRONLY 01
38 #define LX_O_RDWR 02
39 #define LX_O_CREAT 0100
40 #define LX_O_EXCL 0200
41 #define LX_O_NOCTTY 0400
42 #define LX_O_TRUNC 01000
43 #define LX_O_APPEND 02000
44 #define LX_O_NONBLOCK 04000
45 #define LX_O_NDELAY LX_O_NONBLOCK
46 #define LX_O_SYNC 010000
47 #define LX_O_FSYNC LX_O_SYNC
48 #define LX_O_ASYNC 020000
49 #define LX_O_DIRECT 040000
50 #define LX_O_LARGEFILE 0100000
51 #define LX_O_DIRECTORY 0200000
52 #define LX_O_NOFOLLOW 0400000

54 #define LX_F_DUPFD 0
55 #define LX_F_GETFD 1
56 #define LX_F_SETFD 2
57 #define LX_F_GETFL 3
58 #define LX_F_SETFL 4
59 #define LX_F_GETLK 5
60 #define LX_F_SETLK 6
61 #define LX_F_SETLKW 7

new/usr/src/lib/brand/lx/lx_brand/sys/lx_fcntl.h 2

62 #define LX_F_SETOWN 8
63 #define LX_F_GETOWN 9
64 #define LX_F_SETSIG 10
65 #define LX_F_GETSIG 11

67 #define LX_F_GETLK64 12
68 #define LX_F_SETLK64 13
69 #define LX_F_SETLKW64 14

71 #define LX_F_SETLEASE 1024
72 #define LX_F_GETLEASE 1025
73 #define LX_F_NOTIFY 1026

75 #define LX_F_RDLCK 0
76 #define LX_F_WRLCK 1
77 #define LX_F_UNLCK 2

79 /*
80 * Lx flock codes.
81 */
82 #define LX_NAME_MAX 255
83 #define LX_LOCK_SH 1 /* shared */
84 #define LX_LOCK_EX 2 /* exclusive */
85 #define LX_LOCK_NB 4 /* non-blocking */
86 #define LX_LOCK_UN 8 /* unlock */

88 #define LX_AT_FDCWD -100
89 #define LX_AT_EACCESS 512
90 #define LX_AT_REMOVEDIR 512
91 #define LX_AT_SYMLINK_NOFOLLOW 256
92 #define LX_AT_SYMLINK_FOLLOW 1024

94 struct lx_flock {
95 short l_type;
96 short l_whence;
97 long l_start;
98 long l_len;
99 int l_pid;
100 };

102 struct lx_flock64 {
103 short l_type;
104 short l_whence;
105 long long l_start;
106 long long l_len;
107 int l_pid;
108 };

110 #ifdef __cplusplus
111 }
112 #endif

114 #endif /* _SYS_LX_FCNTL_H */
115 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_ioctl.h 1

**
 11182 Tue Jan 14 16:17:07 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_ioctl.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_IOCTL_H
27 #define _SYS_LX_IOCTL_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 extern int lx_ioctl_init(void);

37 /*
38 * LX_NCC must be different from LX_NCCS since while the termio and termios
39 * structures may look similar they are fundamentally different sizes and
40 * have different members.
41 */
42 #define LX_NCC 8
43 #define LX_NCCS 19

45 struct lx_termio {
46 unsigned short c_iflag; /* input mode flags */
47 unsigned short c_oflag; /* output mode flags */
48 unsigned short c_cflag; /* control mode flags */
49 unsigned short c_lflag; /* local mode flags */
50 unsigned char c_line; /* line discipline */
51 unsigned char c_cc[LX_NCC]; /* control characters */
52 };

54 struct lx_termios {
55 uint32_t c_iflag; /* input mode flags */
56 uint32_t c_oflag; /* output mode flags */
57 uint32_t c_cflag; /* control mode flags */
58 uint32_t c_lflag; /* local mode flags */
59 unsigned char c_line; /* line discipline */
60 unsigned char c_cc[LX_NCCS]; /* control characters */
61 };

new/usr/src/lib/brand/lx/lx_brand/sys/lx_ioctl.h 2

63 /*
64 * c_cc characters which are valid for lx_termio and lx_termios
65 */
66 #define LX_VINTR 0
67 #define LX_VQUIT 1
68 #define LX_VERASE 2
69 #define LX_VKILL 3
70 #define LX_VEOF 4
71 #define LX_VTIME 5
72 #define LX_VMIN 6
73 #define LX_VSWTC 7

75 /*
76 * c_cc characters which are valid for lx_termios
77 */
78 #define LX_VSTART 8
79 #define LX_VSTOP 9
80 #define LX_VSUSP 10
81 #define LX_VEOL 11
82 #define LX_VREPRINT 12
83 #define LX_VDISCARD 13
84 #define LX_VWERASE 14
85 #define LX_VLNEXT 15
86 #define LX_VEOL2 16

88 /*
89 * Sound formats
90 */
91 #define LX_AFMT_QUERY 0x00000000
92 #define LX_AFMT_MU_LAW 0x00000001
93 #define LX_AFMT_A_LAW 0x00000002
94 #define LX_AFMT_IMA_ADPCM 0x00000004
95 #define LX_AFMT_U8 0x00000008
96 #define LX_AFMT_S16_LE 0x00000010
97 #define LX_AFMT_S16_BE 0x00000020
98 #define LX_AFMT_S8 0x00000040
99 #define LX_AFMT_U16_LE 0x00000080
100 #define LX_AFMT_U16_BE 0x00000100
101 #define LX_AFMT_MPEG 0x00000200
102 #define LX_AFMT_AC3 0x00000400

104 /*
105 * Supported ioctls
106 */
107 #define LX_TCGETS 0x5401
108 #define LX_TCSETS 0x5402
109 #define LX_TCSETSW 0x5403
110 #define LX_TCSETSF 0x5404
111 #define LX_TCGETA 0x5405
112 #define LX_TCSETA 0x5406
113 #define LX_TCSETAW 0x5407
114 #define LX_TCSETAF 0x5408
115 #define LX_TCSBRK 0x5409
116 #define LX_TCXONC 0x540a
117 #define LX_TCFLSH 0x540b
118 #define LX_TIOCEXCL 0x540c
119 #define LX_TIOCNXCL 0x540d
120 #define LX_TIOCSCTTY 0x540e
121 #define LX_TIOCGPGRP 0x540f
122 #define LX_TIOCSPGRP 0x5410
123 #define LX_TIOCOUTQ 0x5411
124 #define LX_TIOCSTI 0x5412
125 #define LX_TIOCGWINSZ 0x5413
126 #define LX_TIOCSWINSZ 0x5414
127 #define LX_TIOCMGET 0x5415

new/usr/src/lib/brand/lx/lx_brand/sys/lx_ioctl.h 3

128 #define LX_TIOCMBIS 0x5416
129 #define LX_TIOCMBIC 0x5417
130 #define LX_TIOCMSET 0x5418
131 #define LX_TIOCGSOFTCAR 0x5419
132 #define LX_TIOCSSOFTCAR 0x541a
133 #define LX_FIONREAD 0x541b
134 #define LX_TIOCPKT 0x5420
135 #define LX_FIONBIO 0x5421
136 #define LX_TIOCNOTTY 0x5422
137 #define LX_TIOCSETD 0x5423
138 #define LX_TIOCGETD 0x5424
139 #define LX_TCSBRKP 0x5425
140 #define LX_TIOCGSID 0x5429
141 #define LX_TIOCGPTN 0x80045430
142 #define LX_TIOCSPTLCK 0x40045431
143 #define LX_FIONCLEX 0x5450
144 #define LX_FIOCLEX 0x5451
145 #define LX_FIOASYNC 0x5452
146 #define LX_FIOSETOWN 0x8901
147 #define LX_SIOCSPGRP 0x8902
148 #define LX_FIOGETOWN 0x8903
149 #define LX_SIOCGPGRP 0x8904
150 #define LX_SIOCATMARK 0x8905
151 #define LX_SIOCGIFCONF 0x8912
152 #define LX_SIOCGIFFLAGS 0x8913
153 #define LX_SIOCSIFFLAGS 0x8914
154 #define LX_SIOCGIFADDR 0x8915
155 #define LX_SIOCSIFADDR 0x8916
156 #define LX_SIOCGIFDSTADDR 0x8917
157 #define LX_SIOCSIFDSTADDR 0x8918
158 #define LX_SIOCGIFBRDADDR 0x8919
159 #define LX_SIOCSIFBRDADDR 0x891a
160 #define LX_SIOCGIFNETMASK 0x891b
161 #define LX_SIOCSIFNETMASK 0x891c
162 #define LX_SIOCGIFMETRIC 0x891d
163 #define LX_SIOCSIFMETRIC 0x891e
164 #define LX_SIOCGIFMEM 0x891f
165 #define LX_SIOCSIFMEM 0x8920
166 #define LX_SIOCGIFMTU 0x8921
167 #define LX_SIOCSIFMTU 0x8922
168 #define LX_SIOCSIFHWADDR 0x8924
169 #define LX_SIOCGIFHWADDR 0x8927

171 /*
172 * /dev/dsp ioctls - supported
173 */
174 #define LX_OSS_SNDCTL_DSP_RESET 0x5000
175 #define LX_OSS_SNDCTL_DSP_SYNC 0x5001
176 #define LX_OSS_SNDCTL_DSP_SPEED 0xc0045002
177 #define LX_OSS_SNDCTL_DSP_STEREO 0xc0045003
178 #define LX_OSS_SNDCTL_DSP_GETBLKSIZE 0xc0045004
179 #define LX_OSS_SNDCTL_DSP_SETFMTS 0xc0045005
180 #define LX_OSS_SNDCTL_DSP_CHANNELS 0xc0045006
181 #define LX_OSS_SNDCTL_DSP_SETFRAGMENT 0xc004500a
182 #define LX_OSS_SNDCTL_DSP_GETFMTS 0x8004500b
183 #define LX_OSS_SNDCTL_DSP_GETOSPACE 0x8010500c
184 #define LX_OSS_SNDCTL_DSP_GETCAPS 0x8004500f
185 #define LX_OSS_SNDCTL_DSP_SETTRIGGER 0x40045010
186 #define LX_OSS_SNDCTL_DSP_GETOPTR 0x800c5012
187 #define LX_OSS_SNDCTL_DSP_GETISPACE 0x8010500d

189 /*
190 * support for /dev/dsp SNDCTL_DSP_GETFMTS and SNDCTL_DSP_SETFMTS
191 */
192 #define LX_OSS_AFMT_QUERY 0x0000
193 #define LX_OSS_AFMT_MU_LAW 0x0001

new/usr/src/lib/brand/lx/lx_brand/sys/lx_ioctl.h 4

194 #define LX_OSS_AFMT_A_LAW 0x0002
195 #define LX_OSS_AFMT_IMA_ADPCM 0x0004
196 #define LX_OSS_AFMT_U8 0x0008
197 #define LX_OSS_AFMT_S16_LE 0x0010
198 #define LX_OSS_AFMT_S16_BE 0x0020
199 #define LX_OSS_AFMT_S8 0x0040
200 #define LX_OSS_AFMT_U16_LE 0x0080
201 #define LX_OSS_AFMT_U16_BE 0x0100
202 #define LX_OSS_AFMT_MPEG 0x0200

204 #ifdef _LITTLE_ENDIAN
205 #define LX_OSS_AFMT_S16_NE LX_OSS_AFMT_S16_LE
206 #define LX_OSS_AFMT_U16_NE LX_OSS_AFMT_U16_LE
207 #elif defined(_BIG_ENDIAN)
208 #define LX_OSS_AFMT_S16_NE LX_OSS_AFMT_S16_BE
209 #define LX_OSS_AFMT_U16_NE LX_OSS_AFMT_U16_BE
210 #else /* _LITTLE_ENDIAN */
211 #error NO ENDIAN defined.
212 #endif /* _LITTLE_ENDIAN */

214 /*
215 * support for /dev/dsp SNDCTL_DSP_GETISPACE and SNDCTL_DSP_GETOSPACE
216 */
217 typedef struct lx_oss_audio_buf_info {
218 int fragments; /* fragments that can be rd/wr without blocking */
219 int fragstotal; /* total number of fragments allocated for buffering */
220 int fragsize; /* size of fragments, same as SNDCTL_DSP_GETBLKSIZE */
221 int bytes; /* what can be rd/wr immediatly without blocking */
222 } lx_oss_audio_buf_info_t;

224 /*
225 * support for /dev/dsp SNDCTL_DSP_GETOPTR
226 */
227 typedef struct lx_oss_count_info {
228 /* # of bytes processed since opening the device */
229 int bytes;

231 /*
232 * # of fragment transitions since last call to this function.
233 * only valid for mmap acess mode.
234 */
235 int blocks;

237 /*
238 * byte offset of the current recording/playback position from
239 * the beginning of the audio buffer. only valid for mmap access
240 * mode.
241 */
242 int ptr;
243 } lx_oss_count_info_t;

245 /*
246 * support for /dev/dsp SNDCTL_DSP_GETCAPS
247 */
248 #define LX_OSS_DSP_CAP_TRIGGER 0x1000
249 #define LX_OSS_DSP_CAP_MMAP 0x2000

251 /*
252 * support for /dev/dsp/ SNDCTL_DSP_SETTRIGGER
253 */
254 #define LX_OSS_PCM_DISABLE_OUTPUT 0
255 #define LX_OSS_PCM_ENABLE_OUTPUT 2

257 /*
258 * /dev/mixer ioctl macros
259 */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_ioctl.h 5

260 #define LX_OSS_SM_NRDEVICES 25
261 #define LX_OSS_SM_READ(x) (0x80044d00 | (x))
262 #define LX_OSS_SM_WRITE(x) (0xc0044d00 | (x))

264 /*
265 * /dev/mixer ioctls - supported
266 */
267 #define LX_OSS_SOUND_MIXER_READ_VOLUME LX_OSS_SM_READ(LX_OSS_SM_VOLUME)
268 #define LX_OSS_SOUND_MIXER_READ_PCM LX_OSS_SM_READ(LX_OSS_SM_PCM)
269 #define LX_OSS_SOUND_MIXER_READ_MIC LX_OSS_SM_READ(LX_OSS_SM_MIC)
270 #define LX_OSS_SOUND_MIXER_READ_IGAIN LX_OSS_SM_READ(LX_OSS_SM_IGAIN)
271 #define LX_OSS_SOUND_MIXER_WRITE_VOLUME LX_OSS_SM_WRITE(LX_OSS_SM_VOLUME)
272 #define LX_OSS_SOUND_MIXER_WRITE_PCM LX_OSS_SM_WRITE(LX_OSS_SM_PCM)
273 #define LX_OSS_SOUND_MIXER_WRITE_MIC LX_OSS_SM_WRITE(LX_OSS_SM_MIC)
274 #define LX_OSS_SOUND_MIXER_WRITE_IGAIN LX_OSS_SM_WRITE(LX_OSS_SM_IGAIN)
275 #define LX_OSS_SOUND_MIXER_READ_STEREODEVS LX_OSS_SM_READ(LX_OSS_SM_STEREODEVS)
276 #define LX_OSS_SOUND_MIXER_READ_RECMASK LX_OSS_SM_READ(LX_OSS_SM_RECMASK)
277 #define LX_OSS_SOUND_MIXER_READ_DEVMASK LX_OSS_SM_READ(LX_OSS_SM_DEVMASK)
278 #define LX_OSS_SOUND_MIXER_READ_RECSRC LX_OSS_SM_READ(LX_OSS_SM_RECSRC)

280 /*
281 * /dev/mixer channels
282 */
283 #define LX_OSS_SM_VOLUME 0
284 #define LX_OSS_SM_BASS 1
285 #define LX_OSS_SM_TREBLE 2
286 #define LX_OSS_SM_SYNTH 3
287 #define LX_OSS_SM_PCM 4
288 #define LX_OSS_SM_SPEAKER 5
289 #define LX_OSS_SM_LINE 6
290 #define LX_OSS_SM_MIC 7
291 #define LX_OSS_SM_CD 8
292 #define LX_OSS_SM_MIX 9
293 #define LX_OSS_SM_PCM2 10
294 #define LX_OSS_SM_REC 11
295 #define LX_OSS_SM_IGAIN 12
296 #define LX_OSS_SM_OGAIN 13
297 #define LX_OSS_SM_LINE1 14
298 #define LX_OSS_SM_LINE2 15
299 #define LX_OSS_SM_LINE3 16
300 #define LX_OSS_SM_DIGITAL1 17
301 #define LX_OSS_SM_DIGITAL2 18
302 #define LX_OSS_SM_DIGITAL3 19
303 #define LX_OSS_SM_PHONEIN 20
304 #define LX_OSS_SM_PHONEOUT 21
305 #define LX_OSS_SM_VIDEO 22
306 #define LX_OSS_SM_RADIO 23
307 #define LX_OSS_SM_MONITOR 24

309 /*
310 * /dev/mixer operations
311 */
312 #define LX_OSS_SM_STEREODEVS 251
313 #define LX_OSS_SM_CAPS 252
314 #define LX_OSS_SM_RECMASK 253
315 #define LX_OSS_SM_DEVMASK 254
316 #define LX_OSS_SM_RECSRC 255

318 /*
319 * /dev/mixer value conversion macros
320 *
321 * solaris expects gain level on a scale of 0 - 255
322 * oss expects gain level on a scale of 0 - 100
323 *
324 * oss also encodes multiple channels volume values in a single int,
325 * one channel value per byte.

new/usr/src/lib/brand/lx/lx_brand/sys/lx_ioctl.h 6

326 */
327 #define LX_OSS_S2L_GAIN(v) (((v) * 100) / 255)
328 #define LX_OSS_L2S_GAIN(v) (((v) * 255) / 100)
329 #define LX_OSS_MIXER_DEC1(v) ((v) & 0xff)
330 #define LX_OSS_MIXER_DEC2(v) (((v) >> 8) & 0xff)
331 #define LX_OSS_MIXER_ENC2(v1, v2) (((v2) << 8) | (v1))

333 /*
334 * /dev/mixer value verification macros
335 */
336 #define LX_OSS_MIXER_VCHECK(x) (((int)(x) >= 0) && ((int)(x) <= 100))
337 #define LX_OSS_MIXER_1CH_OK(x) ((((x) & ~0xff) == 0) && \
338 LX_OSS_MIXER_VCHECK(LX_OSS_MIXER_DEC1(x)))
339 #define LX_OSS_MIXER_2CH_OK(x) ((((x) & ~0xffff) == 0) && \
340 LX_OSS_MIXER_VCHECK(LX_OSS_MIXER_DEC1(x)) && \
341 LX_OSS_MIXER_VCHECK(LX_OSS_MIXER_DEC2(x)))

343 /*
344 * Unsupported ioctls (NOT a comprehensive list)
345 */
346 #define LX_TIOCLINUX 0x541c
347 #define LX_TIOCCONS 0x541d
348 #define LX_TIOCGSERIAL 0x541e
349 #define LX_TIOCSSERIAL 0x541f
350 #define LX_TIOCTTYGSTRUCT 0x5426
351 #define LX_TIOCSERCONFIG 0x5453
352 #define LX_TIOCSERGWILD 0x5454
353 #define LX_TIOCSERSWILD 0x5455
354 #define LX_TIOCGLCKTRMIOS 0x5456
355 #define LX_TIOCSLCKTRMIOS 0x5457
356 #define LX_TIOCSERGSTRUCT 0x5458
357 #define LX_TIOCSERGETLSR 0x5459
358 #define LX_TIOCSERGETMULTI 0x545a
359 #define LX_TIOCSERSETMULTI 0x545b
360 #define LX_OLD_SIOCGIFHWADDR 0x8923
361 #define LX_SIOCSIFENCAP 0x8926
362 #define LX_SIOCGIFSLAVE 0x8929
363 #define LX_SIOCSIFSLAVE 0x8930
364 #define LX_SIOCADDMULTI 0x8931
365 #define LX_SIOCDELMULTI 0x8932
366 #define LX_SIOCADDRTOLD 0x8940
367 #define LX_SIOCDELRTOLD 0x8941
368 #define LX_SIOCGIFTXQLEN 0x8942
369 #define LX_SIOCDARP 0x8950
370 #define LX_SIOCGARP 0x8951
371 #define LX_SIOCSARP 0x8952
372 #define LX_SIOCDRARP 0x8960
373 #define LX_SIOCGRARP 0x8961
374 #define LX_SIOCSRARP 0x8962
375 #define LX_SIOCGIFMAP 0x8970
376 #define LX_SIOCSIFMAP 0x8971

378 #ifdef __cplusplus
379 }
380 #endif

382 #endif /* _SYS_LX_IOCTL_H */
383 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_misc.h 1

**
 4248 Tue Jan 14 16:17:07 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_misc.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _SYS_LX_H
28 #define _SYS_LX_H

30 #include <stdio.h>
31 #include <alloca.h>
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/lwp.h>

36 #include <sys/lx_brand.h>

38 #ifdef __cplusplus
39 extern "C" {
40 #endif

42 extern char lx_release[128];
43 extern pid_t zoneinit_pid;

45 /*
46 * Support for the unfortunate RPM race condition workaround.
47 */
48 extern int lx_rpm_delay;
49 extern boolean_t lx_is_rpm;

51 /*
52 * Values Linux expects for init
53 */
54 #define LX_INIT_PGID 0
55 #define LX_INIT_SID 0
56 #define LX_INIT_PID 1

58 /*
59 * Codes to reboot(2).
60 */
61 #define LINUX_REBOOT_MAGIC1 0xfee1dead

new/usr/src/lib/brand/lx/lx_brand/sys/lx_misc.h 2

62 #define LINUX_REBOOT_MAGIC2 672274793
63 #define LINUX_REBOOT_MAGIC2A 85072278
64 #define LINUX_REBOOT_MAGIC2B 369367448
65 #define LINUX_REBOOT_MAGIC2C 537993216

67 /*
68 * This was observed as coming from Red Hat’s init process, but it’s not in
69 * their reboot(2) man page.
70 */
71 #define LINUX_REBOOT_MAGIC2D 0x28121969

73 #define LINUX_REBOOT_CMD_RESTART 0x1234567
74 #define LINUX_REBOOT_CMD_HALT 0xcdef0123
75 #define LINUX_REBOOT_CMD_POWER_OFF 0x4321fedc
76 #define LINUX_REBOOT_CMD_RESTART2 0xa1b2c3d4
77 #define LINUX_REBOOT_CMD_CAD_ON 0x89abcdef
78 #define LINUX_REBOOT_CMD_CAD_OFF 0

80 /*
81 * the maximum length of messages to be output with lx_msg(), lx_err(),
82 * lx_debug(), or lx_unsupported().
83 */
84 #define LX_MSG_MAXLEN (128 + MAXPATHLEN)

86 /*
87 * Linux scheduler priority ranges.
88 */
89 #define LX_SCHED_PRIORITY_MIN_OTHER 0
90 #define LX_SCHED_PRIORITY_MAX_OTHER 0
91 #define LX_SCHED_PRIORITY_MIN_RRFIFO 1
92 #define LX_SCHED_PRIORITY_MAX_RRFIFO 99

94 /*
95 * Constants to indicate who getrusage() should return information about.
96 */
97 #define LX_RUSAGE_SELF 0
98 #define LX_RUSAGE_CHILDREN (-1)

100 /*
101 * normally we never want to write to stderr or stdout because it’s unsafe
102 * to make assumptions about the underlying file descriptors. to protect
103 * against writes to these file descriptors we go ahead and close them
104 * our brand process initalization code. but there are still occasions
105 * where we are willing to make assumptions about our file descriptors
106 * and write to them. at thes times we should use one lx_msg() or
107 * lx_msg_error()
108 */
109 extern void lx_msg(char *, ...);
110 extern void lx_err(char *, ...);
111 extern void lx_err_fatal(char *, ...);
112 extern void lx_unsupported(char *, ...);

114 struct ucontext;

116 extern void lx_handler_table(void);
117 extern void lx_handler_trace_table(void);
118 extern void lx_emulate_done(void);
119 extern lx_regs_t *lx_syscall_regs(void);

121 extern char *lx_fd_to_path(int fd, char *buf, int buf_size);
122 extern int lx_lpid_to_spair(pid_t, pid_t *, lwpid_t *);
123 extern int lx_lpid_to_spid(pid_t, pid_t *);

125 extern int lx_ptrace_wait(siginfo_t *);
126 extern void lx_ptrace_fork(void);

new/usr/src/lib/brand/lx/lx_brand/sys/lx_misc.h 3

128 extern int lx_get_kern_version(void);

130 extern int lx_check_alloca(size_t);
131 #define SAFE_ALLOCA(sz) (lx_check_alloca(sz) ? alloca(sz) : NULL)

133 extern int ltos_at_flag(int lflag, int allow);

135 /*
136 * NO_UUCOPY disables calls to the uucopy* system calls to help with
137 * debugging brand library accesses to linux application memory.
138 */
139 #ifdef NO_UUCOPY

141 int uucopy_unsafe(const void *src, void *dst, size_t n);
142 int uucopystr_unsafe(const void *src, void *dst, size_t n);

144 #define uucopy(src, dst, n) uucopy_unsafe((src), (dst), (n))
145 #define uucopystr(src, dst, n) uucopystr_unsafe((src), (dst), (n))

147 #endif /* NO_UUCOPY */

149 #ifdef __cplusplus
150 }
151 #endif

153 #endif /* _SYS_LX_H */
154 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_mount.h 1

**
 4195 Tue Jan 14 16:17:08 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_mount.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _LX_MOUNT_H
27 #define _LX_MOUNT_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #include <rpc/rpc.h>
36 #include <nfs/nfs.h>

38 /*
39 * mount() is significantly different between Linux and Solaris. The main
40 * difference is between the set of flags. Some flags on Linux can be
41 * translated to a Solaris equivalent, some are converted to a
42 * filesystem-specific option, while others have no equivalent whatsoever.
43 */
44 #define LX_MS_MGC_VAL 0xC0ED0000
45 #define LX_MS_RDONLY 0x00000001
46 #define LX_MS_NOSUID 0x00000002
47 #define LX_MS_NODEV 0x00000004
48 #define LX_MS_NOEXEC 0x00000008
49 #define LX_MS_SYNCHRONOUS 0x00000010
50 #define LX_MS_REMOUNT 0x00000020
51 #define LX_MS_MANDLOCK 0x00000040
52 #define LX_MS_NOATIME 0x00000400
53 #define LX_MS_NODIRATIME 0x00000800
54 #define LX_MS_BIND 0x00001000
55 #define LX_MS_SUPPORTED (LX_MS_MGC_VAL | \
56 LX_MS_RDONLY | LX_MS_NOSUID | \
57 LX_MS_NODEV | LX_MS_NOEXEC | \
58 LX_MS_REMOUNT | LX_MS_NOATIME | \
59 LX_MS_BIND)

61 /*

new/usr/src/lib/brand/lx/lx_brand/sys/lx_mount.h 2

62 * support for nfs mounts
63 */
64 #define LX_NMD_MAXHOSTNAMELEN 256

66 #define LX_NFS_MOUNT_SOFT 0x00000001
67 #define LX_NFS_MOUNT_INTR 0x00000002
68 #define LX_NFS_MOUNT_SECURE 0x00000004
69 #define LX_NFS_MOUNT_POSIX 0x00000008
70 #define LX_NFS_MOUNT_NOCTO 0x00000010
71 #define LX_NFS_MOUNT_NOAC 0x00000020
72 #define LX_NFS_MOUNT_TCP 0x00000040
73 #define LX_NFS_MOUNT_VER3 0x00000080
74 #define LX_NFS_MOUNT_KERBEROS 0x00000100
75 #define LX_NFS_MOUNT_NONLM 0x00000200
76 #define LX_NFS_MOUNT_BROKEN_SUID 0x00000400
77 #define LX_NFS_MOUNT_SUPPORTED (LX_NFS_MOUNT_SOFT | \
78 LX_NFS_MOUNT_INTR | \
79 LX_NFS_MOUNT_POSIX | \
80 LX_NFS_MOUNT_NOCTO | \
81 LX_NFS_MOUNT_NOAC | \
82 LX_NFS_MOUNT_TCP | \
83 LX_NFS_MOUNT_VER3 | \
84 LX_NFS_MOUNT_NONLM)

86 #define LX_NMD_DEFAULT_RSIZE 0
87 #define LX_NMD_DEFAULT_WSIZE 0

89 /*
90 * the nfs v3 file handle structure definitions are _almost_ the same
91 * on linux and solaris. the key difference are:
92 *
93 * 1) on linux fh3_length is an unsigned short where as on solaris it’s
94 * an int.
95 *
96 * 2) on linux the file handle data doesn’t 32 bit members, so the structure
97 * is not 32 bit aligned. (where as on solaris it is.)
98 *
99 * so rather than defining a structure that would allow us to intrepret
100 * all the contents of the nfs v3 file handle here, we decide to treate
101 * the file handle as an array of chars. this works just fine since it
102 * avoids the alignment issues and the actual file handle handle contects
103 * are defined by the nfs specification so they are common across solaris
104 * and linux. we do the same thing for nfs v2 file handles.
105 */
106 struct lx_nfs_fh2 {
107 unsigned char lx_fh_data[NFS_FHSIZE];
108 } lx_nfs_fh2;

110 struct lx_nfs_fh3 {
111 unsigned short lx_fh3_length;
112 unsigned char lx_fh3_data[NFS3_FHSIZE];
113 } lx_nfs_fh3;

115 typedef struct lx_nfs_mount_data {
116 int nmd_version;
117 int nmd_fd;
118 struct lx_nfs_fh2 nmd_old_root;
119 int nmd_flags;
120 int nmd_rsize;
121 int nmd_wsize;
122 int nmd_timeo;
123 int nmd_retrans;
124 int nmd_acregmin;
125 int nmd_acregmax;
126 int nmd_acdirmin;
127 int nmd_acdirmax;

new/usr/src/lib/brand/lx/lx_brand/sys/lx_mount.h 3

128 struct sockaddr_in nmd_addr;
129 char nmd_hostname[LX_NMD_MAXHOSTNAMELEN];
130 int nmd_namlen;
131 uint_t nmd_bsize;
132 struct lx_nfs_fh3 nmd_root;
133 } lx_nfs_mount_data_t;

135 #ifdef __cplusplus
136 }
137 #endif

139 #endif /* _LX_MOUNT_H */
140 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_poll.h 1

**
 1726 Tue Jan 14 16:17:08 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_poll.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_POLL_H
27 #define _SYS_LX_POLL_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 /*
36 * These events are identical between Linux and Solaris
37 */
38 #define LX_POLLIN 0x001
39 #define LX_POLLPRI 0x002
40 #define LX_POLLOUT 0x004
41 #define LX_POLLERR 0x008
42 #define LX_POLLHUP 0x010
43 #define LX_POLLNVAL 0x020
44 #define LX_POLLRDNORM 0x040
45 #define LX_POLLRDBAND 0x080

47 #define LX_POLL_COMMON_EVENTS (LX_POLLIN | LX_POLLPRI | LX_POLLOUT | \
48 LX_POLLERR | LX_POLLHUP | LX_POLLNVAL | LX_POLLRDNORM | LX_POLLRDBAND)

50 /*
51 * These events differ between Linux and Solaris
52 */
53 #define LX_POLLWRNORM 0x100
54 #define LX_POLLWRBAND 0x200

56 #define LX_POLL_SUPPORTED_EVENTS \
57 (LX_POLL_COMMON_EVENTS | LX_POLLWRNORM | LX_POLLWRBAND)

59 #ifdef __cplusplus
60 }
61 #endif

new/usr/src/lib/brand/lx/lx_brand/sys/lx_poll.h 2

63 #endif /* _SYS_LX_POLL_H */
64 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_signal.h 1

**
 7213 Tue Jan 14 16:17:08 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_signal.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_SIGNAL_H
27 #define _SYS_LX_SIGNAL_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #if !defined(_ASM)
32 #include <sys/lx_types.h>
33 #include <lx_signum.h>

35 #endif /* !defined(_ASM) */

37 #ifdef __cplusplus
38 extern "C" {
39 #endif

41 /*
42 * Linux sigaction flags
43 */
44 #define LX_SA_NOCLDSTOP 0x00000001
45 #define LX_SA_NOCLDWAIT 0x00000002
46 #define LX_SA_SIGINFO 0x00000004
47 #define LX_SA_RESTORER 0x04000000
48 #define LX_SA_ONSTACK 0x08000000
49 #define LX_SA_RESTART 0x10000000
50 #define LX_SA_NODEFER 0x40000000
51 #define LX_SA_RESETHAND 0x80000000
52 #define LX_SA_NOMASK LX_SA_NODEFER
53 #define LX_SA_ONESHOT LX_SA_RESETHAND

55 #define LX_SIG_BLOCK 0
56 #define LX_SIG_UNBLOCK 1
57 #define LX_SIG_SETMASK 2

59 #define LX_MINSIGSTKSZ 2048
60 #define LX_SS_ONSTACK 1
61 #define LX_SS_DISABLE 2

new/usr/src/lib/brand/lx/lx_brand/sys/lx_signal.h 2

63 #define LX_SIGRT_MAGIC 0xdeadf00d

65 #if !defined(_ASM)

67 /*
68 * NOTE: Linux uses different definitions for sigset_ts and sigaction_ts
69 * depending on whether the definition is for user space or the kernel.
70 *
71 * The definitions below MUST correspond to the Linux kernel versions,
72 * as glibc will do the necessary translation from the Linux user
73 * versions.
74 */
75 typedef struct {
76 ulong_t __bits[LX_NSIG_WORDS];
77 } lx_sigset_t;

79 #define LX_NBITS (sizeof (ulong_t) * NBBY)
80 #define lx_sigmask(n) (1UL << (((n) - 1) % LX_NBITS))
81 #define lx_sigword(n) (((ulong_t)((n) - 1))>>5)
82 #define lx_sigismember(s, n) (lx_sigmask(n) & (s)->__bits[lx_sigword(n)])
83 #define lx_sigaddset(s, n) ((s)->__bits[lx_sigword(n)] |= lx_sigmask(n))

85 typedef struct lx_sigaction {
86 void (*lxsa_handler)();
87 int lxsa_flags;
88 void (*lxsa_restorer)(void);
89 lx_sigset_t lxsa_mask;
90 } lx_sigaction_t;

92 typedef uint32_t lx_osigset_t;

94 #define OSIGSET_NBITS (sizeof (lx_osigset_t) * NBBY)
95 #define OSIGSET_BITSET(sig) (1U << (((sig) - 1) % OSIGSET_NBITS))

97 /*
98 * Flag settings to determine whether common routines should operate on
99 * lx_sigset_ts or lx_osigset_ts.
100 */
101 #define USE_OSIGSET 0
102 #define USE_SIGSET 1

104 typedef struct lx_osigaction {
105 void (*lxsa_handler)();
106 lx_osigset_t lxsa_mask;
107 int lxsa_flags;
108 void (*lxsa_restorer)(void);
109 } lx_osigaction_t;

111 #define LX_SI_MAX_SIZE 128
112 #define LX_SI_PAD_SIZE ((LX_SI_MAX_SIZE/sizeof (int)) - 3)

114 typedef struct lx_siginfo {
115 int lsi_signo;
116 int lsi_errno;
117 int lsi_code;
118 union {
119 int _pad[LX_SI_PAD_SIZE];

121 struct {
122 pid_t _pid;
123 lx_uid16_t _uid;
124 } _kill;

126 struct {
127 uint_t _timer1;

new/usr/src/lib/brand/lx/lx_brand/sys/lx_signal.h 3

128 uint_t _timer2;
129 } _timer;

131 struct {
132 pid_t _pid; /* sender’s pid */
133 lx_uid16_t _uid; /* sender’s uid */
134 union sigval _sigval;
135 } _rt;

137 struct {
138 pid_t _pid; /* which child */
139 lx_uid16_t _uid; /* sender’s uid */
140 int _status; /* exit code */
141 clock_t _utime;
142 clock_t _stime;
143 } _sigchld;

145 struct {
146 void *_addr; /* faulting insn/memory ref. */
147 } _sigfault;

149 struct {
150 int _band; /* POLL_IN,POLL_OUT,POLL_MSG */
151 int _fd;
152 } _sigpoll;
153 } _sifields;
154 } lx_siginfo_t;

156 /*
157 * lx_siginfo_t lsi_code values
158 *
159 * LX_SI_ASYNCNL: Sent by asynch name lookup completion
160 * LX_SI_TKILL: Sent by tkill
161 * LX_SI_SIGIO: Sent by queued SIGIO
162 * LX_SI_ASYNCIO: Sent by asynchronous I/O completion
163 * LX_SI_MESGQ: Sent by real time message queue state change
164 * LX_SI_TIMER: Sent by timer expiration
165 * LX_SI_QUEUE: Sent by sigqueue
166 * LX_SI_USER: Sent by kill, sigsend, raise, etc.
167 * LX_SI_KERNEL: Sent by kernel
168 *
169 * At present, LX_SI_ASYNCNL and LX_SI_SIGIO are unused by BrandZ.
170 */
171 #define LX_SI_ASYNCNL (-60)
172 #define LX_SI_TKILL (-6)
173 #define LX_SI_SIGIO (-5)
174 #define LX_SI_ASYNCIO (-4)
175 #define LX_SI_MESGQ (-3)
176 #define LX_SI_TIMER (-2)
177 #define LX_SI_QUEUE (-1)
178 #define LX_SI_USER (0)
179 #define LX_SI_KERNEL (0x80)

181 typedef struct lx_sighandlers {
182 struct lx_sigaction lx_sa[LX_NSIG];
183 } lx_sighandlers_t;

185 typedef struct lx_sigaltstack {
186 void *ss_sp;
187 int ss_flags;
188 size_t ss_size;
189 } lx_stack_t;

191 struct lx_fpreg {
192 ushort_t significand[4];
193 ushort_t exponent;

new/usr/src/lib/brand/lx/lx_brand/sys/lx_signal.h 4

194 };

196 struct lx_fpxreg {
197 ushort_t significand[4];
198 ushort_t exponent;
199 ushort_t padding[3];
200 };

202 struct lx_xmmreg {
203 uint32_t element[4];
204 };

206 #define LX_X86_FXSR_MAGIC 0x0000
207 #define LX_X86_FXSR_NONE 0xffff

209 typedef struct lx_fpstate {
210 /* Regular FPU environment */
211 ulong_t cw;
212 ulong_t sw;
213 ulong_t tag;
214 ulong_t ipoff;
215 ulong_t cssel;
216 ulong_t dataoff;
217 ulong_t datasel;
218 struct lx_fpreg _st[8];
219 ushort_t status;
220 ushort_t magic; /* 0xffff = regular FPU data */

222 /* FXSR FPU environment */
223 ulong_t _fxsr_env[6]; /* env is ignored */
224 ulong_t mxcsr;
225 ulong_t reserved;
226 struct lx_fpxreg _fxsr_st[8]; /* reg data is ignored */
227 struct lx_xmmreg _xmm[8];
228 ulong_t padding[56];
229 } lx_fpstate_t;

231 typedef struct lx_sigcontext {
232 ulong_t sc_gs;
233 ulong_t sc_fs;
234 ulong_t sc_es;
235 ulong_t sc_ds;
236 ulong_t sc_edi;
237 ulong_t sc_esi;
238 ulong_t sc_ebp;
239 ulong_t sc_esp;
240 ulong_t sc_ebx;
241 ulong_t sc_edx;
242 ulong_t sc_ecx;
243 ulong_t sc_eax;
244 ulong_t sc_trapno;
245 ulong_t sc_err;
246 ulong_t sc_eip;
247 ulong_t sc_cs;
248 ulong_t sc_eflags;
249 ulong_t sc_esp_at_signal;
250 ulong_t sc_ss;
251 lx_fpstate_t *sc_fpstate;
252 ulong_t sc_mask;
253 ulong_t sc_cr2;
254 } lx_sigcontext_t;

256 typedef struct lx_ucontext {
257 ulong_t uc_flags;
258 struct lx_ucontext *uc_link;
259 lx_stack_t uc_stack;

new/usr/src/lib/brand/lx/lx_brand/sys/lx_signal.h 5

260 lx_sigcontext_t uc_sigcontext;
261 lx_sigset_t uc_sigmask;
262 } lx_ucontext_t;

264 #define LX_SI_MAX_SIZE 128
265 #define LX_SI_PAD_SIZE ((LX_SI_MAX_SIZE/sizeof (int)) - 3)

267 #define lsi_pid _sifields._kill._pid
268 #define lsi_uid _sifields._kill._uid
269 #define lsi_status _sifields._sigchld._status
270 #define lsi_utime _sifields._sigchld._utime
271 #define lsi_stime _sifields._sigchld._stime
272 #define lsi_value _sifields._rt._sigval
273 #define lsi_int _sifields._rt._sigval.sivalx_int
274 #define lsi_ptr _sifields._rt._sigval.sivalx_ptr
275 #define lsi_addr _sifields._sigfault._addr
276 #define lsi_band _sifields._sigpoll._band
277 #define lsi_fd _sifields._sigpoll._fd

279 extern const int ltos_signo[];
280 extern const int stol_signo[];

282 extern void setsigacthandler(void (*)(int, siginfo_t *, void *),
283 void (**)(int, siginfo_t *, void *));

285 extern int lx_siginit(void);

287 extern void lx_sigreturn_tolibc(uintptr_t);
288 extern void lx_sigdeliver(int, siginfo_t *, void *, size_t, void (*)(),
289 void (*)(), uintptr_t);

291 extern int stol_siginfo(siginfo_t *siginfop, lx_siginfo_t *lx_siginfop);

293 #endif /* !defined(_ASM) */

295 #ifdef __cplusplus
296 }
297 #endif

299 #endif /* _SYS_LX_SIGNAL_H */
300 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_socket.h 1

**
 7857 Tue Jan 14 16:17:08 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_socket.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_SOCKET_H
27 #define _SYS_LX_SOCKET_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #include <sys/lx_types.h>

37 /*
38 * Linux address family definitions
39 * Some of these are not supported
40 */
41 #define LX_AF_UNSPEC 0 /* Unspecified */
42 #define LX_AF_UNIX 1 /* local file/pipe name */
43 #define LX_AF_INET 2 /* IP protocol family */
44 #define LX_AF_AX25 3 /* Amateur Radio AX.25 */
45 #define LX_AF_IPX 4 /* Novell Internet Protocol */
46 #define LX_AF_APPLETALK 5 /* Appletalk */
47 #define LX_AF_NETROM 6 /* Amateur radio */
48 #define LX_AF_BRIDGE 7 /* Multiprotocol bridge */
49 #define LX_AF_ATMPVC 8 /* ATM PVCs */
50 #define LX_AF_X25 9 /* X.25 */
51 #define LX_AF_INET6 10 /* IPV 6 */
52 #define LX_AF_ROSE 11 /* Amateur Radio X.25 */
53 #define LX_AF_DECnet 12 /* DECnet */
54 #define LX_AF_NETBEUI 13 /* 802.2LLC */
55 #define LX_AF_SECURITY 14 /* Security callback */
56 #define LX_AF_KEY 15 /* key management */
57 #define LX_AF_ROUTE 16 /* Alias to emulate 4.4BSD */
58 #define LX_AF_PACKET 17 /* Packet family */
59 #define LX_AF_ASH 18 /* Ash ? */
60 #define LX_AF_ECONET 19 /* Acorn Econet */
61 #define LX_AF_ATMSVC 20 /* ATM SVCs */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_socket.h 2

62 #define LX_AF_SNA 22 /* Linux SNA */
63 #define LX_AF_IRDA 23 /* IRDA sockets */
64 #define LX_AF_PPPOX 24 /* PPPoX sockets */
65 #define LX_AF_WANPIPE 25 /* Wanpipe API sockets */
66 #define LX_AF_BLUETOOTH 31 /* Bluetooth sockets */
67 #define LX_AF_MAX 32 /* MAX socket type */

69 #define AF_NOTSUPPORTED -1
70 #define AF_INVAL -2

72 /*
73 * Linux ARP protocol hardware identifiers
74 */
75 #define LX_ARPHRD_ETHER 1 /* Ethernet */
76 #define LX_ARPHRD_LOOPBACK 772 /* Loopback */
77 #define LX_ARPHRD_VOID 0xffff /* Unknown */

79 /*
80 * Linux socket type definitions
81 */
82 #define LX_SOCK_STREAM 1 /* Connection-based byte streams */
83 #define LX_SOCK_DGRAM 2 /* Connectionless, datagram */
84 #define LX_SOCK_RAW 3 /* Raw protocol interface */
85 #define LX_SOCK_RDM 4 /* Reliably-delivered message */
86 #define LX_SOCK_SEQPACKET 5 /* Sequenced packet stream */
87 #define LX_SOCK_PACKET 10 /* Linux specific */
88 #define LX_SOCK_MAX 11

90 #define SOCK_NOTSUPPORTED -1
91 #define SOCK_INVAL -2

93 /*
94 * Options for use with [gs]etsockopt at the IP level.
95 * IPPROTO_IP
96 */
97 #define LX_IP_TOS 1
98 #define LX_IP_TTL 2
99 #define LX_IP_HDRINCL 3
100 #define LX_IP_OPTIONS 4
101 #define LX_IP_ROUTER_ALERT 5
102 #define LX_IP_RECVOPTS 6
103 #define LX_IP_RETOPTS 7
104 #define LX_IP_PKTINFO 8
105 #define LX_IP_PKTOPTIONS 9
106 #define LX_IP_MTU_DISCOVER 10
107 #define LX_IP_RECVERR 11
108 #define LX_IP_RECVTTL 12
109 #define LX_IP_RECVTOS 13
110 #define LX_IP_MTU 14
111 #define LX_IP_FREEBIND 15
112 #define LX_IP_MULTICAST_IF 32
113 #define LX_IP_MULTICAST_TTL 33
114 #define LX_IP_MULTICAST_LOOP 34
115 #define LX_IP_ADD_MEMBERSHIP 35
116 #define LX_IP_DROP_MEMBERSHIP 36

118 /*
119 * Options for use with [gs]etsockopt at the TCP level.
120 * IPPROTO_TCP
121 */
122 #define LX_TCP_NODELAY 1 /* Don’t delay send to coalesce packets */
123 #define LX_TCP_MAXSEG 2 /* Set maximum segment size */
124 #define LX_TCP_CORK 3 /* Control sending of partial frames */
125 #define LX_TCP_KEEPIDLE 4 /* Start keeplives after this period */
126 #define LX_TCP_KEEPINTVL 5 /* Interval between keepalives */
127 #define LX_TCP_KEEPCNT 6 /* Number of keepalives before death */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_socket.h 3

128 #define LX_TCP_SYNCNT 7 /* Number of SYN retransmits */
129 #define LX_TCP_LINGER2 8 /* Life time of orphaned FIN-WAIT-2 state */
130 #define LX_TCP_DEFER_ACCEPT 9 /* Wake up listener only when data arrive */
131 #define LX_TCP_WINDOW_CLAMP 10 /* Bound advertised window */
132 #define LX_TCP_INFO 11 /* Information about this connection. */
133 #define LX_TCP_QUICKACK 12 /* Bock/reenable quick ACKs. */

135 /*
136 * Options for use with [gs]etsockopt at the IGMP level.
137 * IPPROTO_IGMP
138 */
139 #define LX_IGMP_MINLEN 8
140 #define LX_IGMP_MAX_HOST_REPORT_DELAY 10
141 #define LX_IGMP_HOST_MEMBERSHIP_QUERY 0x11
142 #define LX_IGMP_HOST_MEMBERSHIP_REPORT 0x12
143 #define LX_IGMP_DVMRP 0x13
144 #define LX_IGMP_PIM 0x14
145 #define LX_IGMP_TRACE 0x15
146 #define LX_IGMP_HOST_NEW_MEMBERSHIP_REPORT 0x16
147 #define LX_IGMP_HOST_LEAVE_MESSAGE 0x17
148 #define LX_IGMP_MTRACE_RESP 0x1e
149 #define LX_IGMP_MTRACE 0x1f

151 /*
152 * Options for use with [gs]etsockopt at the SOL_SOCKET level.
153 */
154 #define LX_SOL_SOCKET 1

156 #define LX_SCM_RIGHTS 1
157 #define LX_SCM_CRED 2

159 #define LX_SO_DEBUG 1
160 #define LX_SO_REUSEADDR 2
161 #define LX_SO_TYPE 3
162 #define LX_SO_ERROR 4
163 #define LX_SO_DONTROUTE 5
164 #define LX_SO_BROADCAST 6
165 #define LX_SO_SNDBUF 7
166 #define LX_SO_RCVBUF 8
167 #define LX_SO_KEEPALIVE 9
168 #define LX_SO_OOBINLINE 10
169 #define LX_SO_NO_CHECK 11
170 #define LX_SO_PRIORITY 12
171 #define LX_SO_LINGER 13
172 #define LX_SO_BSDCOMPAT 14
173 /* To add :#define LX_SO_REUSEPORT 15 */
174 #define LX_SO_PASSCRED 16
175 #define LX_SO_PEERCRED 17
176 #define LX_SO_RCVLOWAT 18
177 #define LX_SO_SNDLOWAT 19
178 #define LX_SO_RCVTIMEO 20
179 #define LX_SO_SNDTIMEO 21
180 /* Security levels - as per NRL IPv6 - don’t actually do anything */
181 #define LX_SO_SECURITY_AUTHENTICATION 22
182 #define LX_SO_SECURITY_ENCRYPTION_TRANSPORT 23
183 #define LX_SO_SECURITY_ENCRYPTION_NETWORK 24
184 #define LX_SO_BINDTODEVICE 25
185 /* Socket filtering */
186 #define LX_SO_ATTACH_FILTER 26
187 #define LX_SO_DETACH_FILTER 27
188 #define LX_SO_PEERNAME 28
189 #define LX_SO_TIMESTAMP 29
190 #define LX_SCM_TIMESTAMP LX_SO_TIMESTAMP
191 #define LX_SO_ACCEPTCONN 30

193 /*

new/usr/src/lib/brand/lx/lx_brand/sys/lx_socket.h 4

194 * Linux socketcall indices.
195 * These constitute all 17 socket related system calls
196 *
197 * These system calls are called via a single system call socketcall().
198 * The first arg being the endex of the system call type
199 */
200 #define LX_SOCKET 1
201 #define LX_BIND 2
202 #define LX_CONNECT 3
203 #define LX_LISTEN 4
204 #define LX_ACCEPT 5
205 #define LX_GETSOCKNAME 6
206 #define LX_GETPEERNAME 7
207 #define LX_SOCKETPAIR 8
208 #define LX_SEND 9
209 #define LX_RECV 10
210 #define LX_SENDTO 11
211 #define LX_RECVFROM 12
212 #define LX_SHUTDOWN 13
213 #define LX_SETSOCKOPT 14
214 #define LX_GETSOCKOPT 15
215 #define LX_SENDMSG 16
216 #define LX_RECVMSG 17

218 /*
219 * Linux socket flags for use with recv(2)/send(2)/recvmsg(2)/sendmsg(2)
220 */
221 #define LX_MSG_OOB 1
222 #define LX_MSG_PEEK 2
223 #define LX_MSG_DONTROUTE 4
224 #define LX_MSG_CTRUNC 8
225 #define LX_MSG_PROXY 0x10
226 #define LX_MSG_TRUNC 0x20
227 #define LX_MSG_DONTWAIT 0x40
228 #define LX_MSG_EOR 0x80
229 #define LX_MSG_WAITALL 0x100
230 #define LX_MSG_FIN 0x200
231 #define LX_MSG_SYN 0x400
232 #define LX_MSG_CONFIRM 0x800
233 #define LX_MSG_RST 0x1000
234 #define LX_MSG_ERRQUEUE 0x2000
235 #define LX_MSG_NOSIGNAL 0x4000
236 #define LX_MSG_MORE 0x8000

238 struct lx_msghdr {
239 void *msg_name; /* optional address */
240 socklen_t msg_namelen; /* size of address */
241 struct iovec *msg_iov; /* scatter/gather array */
242 int msg_iovlen; /* # elements in msg_iov */
243 void *msg_control; /* ancillary data */
244 socklen_t msg_controllen; /* ancillary data buffer len */
245 int msg_flags; /* flags on received message */
246 };

248 struct lx_ucred {
249 pid_t lxu_pid;
250 lx_uid_t lxu_uid;
251 lx_gid_t lxu_gid;
252 };

254 #ifdef __cplusplus
255 }
256 #endif

258 #endif /* _SYS_LX_SOCKET_H */
259 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_stat.h 1

**
 2337 Tue Jan 14 16:17:08 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_stat.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_STAT_H
27 #define _SYS_LX_STAT_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #include <sys/lx_types.h>
36 #include <sys/stat.h>

38 #define LX_MAJORSHIFT 8
39 #define LX_MINORMASK ((1 << LX_MAJORSHIFT) - 1)
40 #define LX_MAKEDEVICE(lx_maj, lx_min) \
41 ((lx_dev_t)((lx_maj) << LX_MAJORSHIFT | ((lx_min) & LX_MINORMASK)))

43 #define LX_GETMAJOR(lx_dev) ((lx_dev) >> LX_MAJORSHIFT)
44 #define LX_GETMINOR(lx_dev) ((lx_dev) & LX_MINORMASK)

46 #undef st_atime
47 #undef st_mtime
48 #undef st_ctime

50 struct lx_stat {
51 lx_dev16_t st_dev;
52 uint16_t st_pad1;
53 lx_ino_t st_ino;
54 lx_mode16_t st_mode;
55 uint16_t st_nlink;
56 lx_uid16_t st_uid;
57 lx_gid16_t st_gid;
58 lx_dev16_t st_rdev;
59 uint16_t st_pad2;
60 lx_off_t st_size;
61 lx_blksize_t st_blksize;

new/usr/src/lib/brand/lx/lx_brand/sys/lx_stat.h 2

62 lx_blkcnt_t st_blocks;
63 struct lx_timespec st_atime;
64 struct lx_timespec st_mtime;
65 struct lx_timespec st_ctime;
66 uint32_t st_pad3;
67 uint32_t st_pad4;
68 };

70 struct lx_stat64 {
71 lx_dev_t st_dev;
72 uint32_t st_pad1;
73 lx_ino_t st_small_ino;
74 lx_mode_t st_mode;
75 uint_t st_nlink;
76 lx_uid_t st_uid;
77 lx_gid_t st_gid;
78 lx_dev_t st_rdev;
79 uint32_t st_pad2;
80 lx_off64_t st_size;
81 lx_blksize_t st_blksize;
82 lx_blkcnt64_t st_blocks;
83 struct lx_timespec st_atime;
84 struct lx_timespec st_mtime;
85 struct lx_timespec st_ctime;
86 lx_ino64_t st_ino;
87 };

89 extern int lx_stat_init(void);

91 #ifdef __cplusplus
92 }
93 #endif

95 #endif /* _SYS_LX_STAT_H */
96 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_statfs.h 1

**
 1881 Tue Jan 14 16:17:09 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_statfs.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _LX_STATFS_H
27 #define _LX_STATFS_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 extern int lx_statfs_init(void);

37 struct lx_statfs {
38 int f_type;
39 int f_bsize;
40 ulong_t f_blocks;
41 ulong_t f_bfree;
42 ulong_t f_bavail;
43 ulong_t f_files;
44 ulong_t f_ffree;
45 u_longlong_t f_fsid;
46 int f_namelen;
47 int f_frsize;
48 int f_spare[5];
49 };

51 struct lx_statfs64 {
52 int f_type;
53 int f_bsize;
54 u_longlong_t f_blocks;
55 u_longlong_t f_bfree;
56 u_longlong_t f_bavail;
57 u_longlong_t f_files;
58 u_longlong_t f_ffree;
59 u_longlong_t f_fsid;
60 int f_namelen;
61 int f_frsize;

new/usr/src/lib/brand/lx/lx_brand/sys/lx_statfs.h 2

62 int f_spare[5];
63 };

65 /*
66 * These magic values are taken mostly from statfs(2).
67 */
68 #define LX_ISOFS_SUPER_MAGIC 0x9660
69 #define LX_NFS_SUPER_MAGIC 0x6969
70 #define LX_MSDOS_SUPER_MAGIC 0x4d44
71 #define LX_PROC_SUPER_MAGIC 0x9fa0
72 #define LX_UFS_MAGIC 0x00011954
73 #define LX_DEVPTS_SUPER_MAGIC 0x1cd1

75 #ifdef __cplusplus
76 }
77 #endif

79 #endif /* _LX_STATFS_H */
80 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 1

**
 18562 Tue Jan 14 16:17:09 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _SYS_LX_SYSCALL_H
28 #define _SYS_LX_SYSCALL_H

30 #if !defined(_ASM)

32 #include <sys/types.h>
33 #include <sys/procset.h>

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 extern int lx_install;

41 extern int lx_openat(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
42 extern int lx_mkdirat(uintptr_t, uintptr_t, uintptr_t);
43 extern int lx_mknodat(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
44 extern int lx_fchownat(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
45 extern int lx_futimesat(uintptr_t, uintptr_t, uintptr_t);
46 extern int lx_fstatat64(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
47 extern int lx_unlinkat(uintptr_t, uintptr_t, uintptr_t);
48 extern int lx_renameat(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
49 extern int lx_linkat(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
50 extern int lx_symlinkat(uintptr_t, uintptr_t, uintptr_t);
51 extern int lx_readlinkat(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
52 extern int lx_fchmodat(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
53 extern int lx_faccessat(uintptr_t, uintptr_t, uintptr_t, uintptr_t);

55 extern int lx_stat(uintptr_t, uintptr_t);
56 extern int lx_fstat(uintptr_t, uintptr_t);
57 extern int lx_lstat(uintptr_t, uintptr_t);
58 extern int lx_stat64(uintptr_t, uintptr_t);
59 extern int lx_fstat64(uintptr_t, uintptr_t);
60 extern int lx_lstat64(uintptr_t, uintptr_t);
61 extern int lx_fcntl(uintptr_t, uintptr_t, uintptr_t);

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 2

62 extern int lx_fcntl64(uintptr_t, uintptr_t, uintptr_t);
63 extern int lx_flock(uintptr_t, uintptr_t);
64 extern int lx_open(uintptr_t, uintptr_t, uintptr_t);
65 extern int lx_readdir(uintptr_t, uintptr_t, uintptr_t);
66 extern int lx_getdents64(uintptr_t, uintptr_t, uintptr_t);
67 extern int lx_getpid(void);
68 extern int lx_execve(uintptr_t, uintptr_t, uintptr_t);
69 extern int lx_dup2(uintptr_t, uintptr_t);
70 extern int lx_ioctl(uintptr_t, uintptr_t, uintptr_t);
71 extern int lx_vhangup(void);

73 extern int lx_read(uintptr_t, uintptr_t, uintptr_t);
74 extern int lx_readv(uintptr_t, uintptr_t, uintptr_t);
75 extern int lx_writev(uintptr_t, uintptr_t, uintptr_t);
76 extern int lx_pread64(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
77 extern int lx_pwrite64(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);

79 extern int lx_socketcall(uintptr_t, uintptr_t);
80 extern int lx_select(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
81 extern int lx_poll(uintptr_t, uintptr_t, uintptr_t);
82 extern int lx_oldgetrlimit(uintptr_t, uintptr_t);
83 extern int lx_getrlimit(uintptr_t, uintptr_t);
84 extern int lx_setrlimit(uintptr_t, uintptr_t);
85 extern int lx_gettimeofday(uintptr_t, uintptr_t);
86 extern int lx_settimeofday(uintptr_t, uintptr_t);
87 extern int lx_getrusage(uintptr_t, uintptr_t);
88 extern int lx_mknod(uintptr_t, uintptr_t, uintptr_t);

90 extern int lx_getpgrp(void);
91 extern int lx_getpgid(uintptr_t);
92 extern int lx_setpgid(uintptr_t, uintptr_t);
93 extern int lx_getsid(uintptr_t);
94 extern int lx_setsid(void);
95 extern int lx_setgroups(uintptr_t, uintptr_t);

98 extern int lx_waitpid(uintptr_t, uintptr_t, uintptr_t);
99 extern int lx_waitid(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
100 extern int lx_wait4(uintptr_t, uintptr_t, uintptr_t, uintptr_t);

102 extern int lx_getuid16(void);
103 extern int lx_getgid16(void);
104 extern int lx_geteuid16(void);
105 extern int lx_getegid16(void);
106 extern int lx_geteuid(void);
107 extern int lx_getegid(void);
108 extern int lx_getresuid16(uintptr_t, uintptr_t, uintptr_t);
109 extern int lx_getresgid16(uintptr_t, uintptr_t, uintptr_t);
110 extern int lx_getresuid(uintptr_t, uintptr_t, uintptr_t);
111 extern int lx_getresgid(uintptr_t, uintptr_t, uintptr_t);

113 extern int lx_setuid16(uintptr_t);
114 extern int lx_setreuid16(uintptr_t, uintptr_t);
115 extern int lx_setregid16(uintptr_t, uintptr_t);
116 extern int lx_setgid16(uintptr_t);
117 extern int lx_setfsuid16(uintptr_t);
118 extern int lx_setfsgid16(uintptr_t);

120 extern int lx_setfsuid(uintptr_t);
121 extern int lx_setfsgid(uintptr_t);

123 extern int lx_clock_settime(int, struct timespec *);
124 extern int lx_clock_gettime(int, struct timespec *);
125 extern int lx_clock_getres(int, struct timespec *);
126 extern int lx_clock_nanosleep(int, int flags, struct timespec *,
127 struct timespec *);

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 3

129 extern int lx_truncate(uintptr_t, uintptr_t);
130 extern int lx_ftruncate(uintptr_t, uintptr_t);
131 extern int lx_truncate64(uintptr_t, uintptr_t, uintptr_t);
132 extern int lx_ftruncate64(uintptr_t, uintptr_t, uintptr_t);

134 extern int lx_sysctl(uintptr_t);
135 extern int lx_fsync(uintptr_t);
136 extern int lx_fdatasync(uintptr_t);
137 extern int lx_pipe(uintptr_t);
138 extern int lx_link(uintptr_t, uintptr_t);
139 extern int lx_unlink(uintptr_t);
140 extern int lx_rmdir(uintptr_t);
141 extern int lx_chown16(uintptr_t, uintptr_t, uintptr_t);
142 extern int lx_fchown16(uintptr_t, uintptr_t, uintptr_t);
143 extern int lx_lchown16(uintptr_t, uintptr_t, uintptr_t);
144 extern int lx_chown(uintptr_t, uintptr_t, uintptr_t);
145 extern int lx_fchown(uintptr_t, uintptr_t, uintptr_t);
146 extern int lx_chmod(uintptr_t, uintptr_t);
147 extern int lx_rename(uintptr_t, uintptr_t);
148 extern int lx_utime(uintptr_t, uintptr_t);
149 extern int lx_llseek(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
150 extern int lx_lseek(uintptr_t, uintptr_t, uintptr_t);
151 extern int lx_sysfs(uintptr_t, uintptr_t, uintptr_t);

153 extern int lx_getcwd(uintptr_t, uintptr_t);
154 extern int lx_uname(uintptr_t);
155 extern int lx_reboot(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
156 extern int lx_getgroups16(uintptr_t, uintptr_t);
157 extern int lx_setgroups16(uintptr_t, uintptr_t);
158 extern int lx_personality(uintptr_t);

160 extern int lx_query_module(uintptr_t, uintptr_t, uintptr_t, uintptr_t,
161 uintptr_t);

163 extern int lx_time(uintptr_t);
164 extern int lx_times(uintptr_t);
165 extern int lx_setitimer(uintptr_t, uintptr_t, uintptr_t);

167 extern int lx_clone(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
168 extern int lx_exit(uintptr_t);
169 extern int lx_group_exit(uintptr_t);

171 extern int lx_mlock(uintptr_t, uintptr_t);
172 extern int lx_mlockall(uintptr_t);
173 extern int lx_munlock(uintptr_t, uintptr_t);
174 extern int lx_munlockall(void);
175 extern int lx_msync(uintptr_t, uintptr_t, uintptr_t);
176 extern int lx_madvise(uintptr_t, uintptr_t, uintptr_t);
177 extern int lx_mprotect(uintptr_t, uintptr_t, uintptr_t);
178 extern int lx_mmap(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
179 uintptr_t);
180 extern int lx_mmap2(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
181 uintptr_t);

183 extern int lx_mount(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);
184 extern int lx_umount(uintptr_t);
185 extern int lx_umount2(uintptr_t, uintptr_t);

187 extern int lx_statfs(uintptr_t, uintptr_t);
188 extern int lx_fstatfs(uintptr_t, uintptr_t);
189 extern int lx_statfs64(uintptr_t, uintptr_t, uintptr_t);
190 extern int lx_fstatfs64(uintptr_t, uintptr_t, uintptr_t);

192 extern int lx_sigreturn(void);
193 extern int lx_rt_sigreturn(void);

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 4

194 extern int lx_signal(uintptr_t, uintptr_t);
195 extern int lx_sigaction(uintptr_t, uintptr_t, uintptr_t);
196 extern int lx_rt_sigaction(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
197 extern int lx_sigaltstack(uintptr_t, uintptr_t);
198 extern int lx_sigpending(uintptr_t);
199 extern int lx_rt_sigpending(uintptr_t, uintptr_t);
200 extern int lx_sigprocmask(uintptr_t, uintptr_t, uintptr_t);
201 extern int lx_rt_sigprocmask(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
202 extern int lx_sigsuspend(uintptr_t);
203 extern int lx_rt_sigsuspend(uintptr_t, uintptr_t);
204 extern int lx_sigwaitinfo(uintptr_t, uintptr_t);
205 extern int lx_rt_sigwaitinfo(uintptr_t, uintptr_t, uintptr_t);
206 extern int lx_sigtimedwait(uintptr_t, uintptr_t, uintptr_t);
207 extern int lx_rt_sigtimedwait(uintptr_t, uintptr_t, uintptr_t, uintptr_t);

209 extern int lx_sync(void);

211 extern int lx_futex(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
212 uintptr_t);

214 extern int lx_tkill(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
215 uintptr_t);
216 extern int lx_tgkill(uintptr_t, uintptr_t, uintptr_t);

218 extern int lx_sethostname(uintptr_t, uintptr_t);
219 extern int lx_setdomainname(uintptr_t, uintptr_t);

221 extern int lx_sendfile(uintptr_t, uintptr_t, uintptr_t, uintptr_t);
222 extern int lx_sendfile64(uintptr_t, uintptr_t, uintptr_t, uintptr_t);

224 extern int lx_fork(void);
225 extern int lx_vfork(void);
226 extern int lx_exec(uintptr_t, uintptr_t, uintptr_t);

228 extern int lx_getpriority(uintptr_t, uintptr_t);
229 extern int lx_setpriority(uintptr_t, uintptr_t, uintptr_t);

231 extern int lx_ptrace(uintptr_t, uintptr_t, uintptr_t, uintptr_t);

233 extern int lx_sched_getaffinity(uintptr_t, uintptr_t, uintptr_t);
234 extern int lx_sched_setaffinity(uintptr_t, uintptr_t, uintptr_t);
235 extern int lx_sched_getparam(uintptr_t, uintptr_t);
236 extern int lx_sched_setparam(uintptr_t, uintptr_t);
237 extern int lx_sched_rr_get_interval(uintptr_t pid, uintptr_t);
238 extern int lx_sched_getscheduler(uintptr_t);
239 extern int lx_sched_setscheduler(uintptr_t, uintptr_t, uintptr_t);
240 extern int lx_sched_get_priority_min(uintptr_t);
241 extern int lx_sched_get_priority_max(uintptr_t);

243 extern int lx_keyctl(void);

245 extern int lx_ipc(uintptr_t, uintptr_t, uintptr_t, uintptr_t, uintptr_t);

247 #endif /* !defined(_ASM) */

249 #define EBP_HAS_ARG6 0x01

251 /*
252 * Linux syscall numbers
253 */
254 #define LX_SYS_exit 1
255 #define LX_SYS_fork 2
256 #define LX_SYS_read 3
257 #define LX_SYS_write 4
258 #define LX_SYS_open 5
259 #define LX_SYS_close 6

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 5

260 #define LX_SYS_waitpid 7
261 #define LX_SYS_creat 8
262 #define LX_SYS_link 9
263 #define LX_SYS_unlink 10
264 #define LX_SYS_execve 11
265 #define LX_SYS_chdir 12
266 #define LX_SYS_time 13
267 #define LX_SYS_mknod 14
268 #define LX_SYS_chmod 15
269 #define LX_SYS_lchown 16
270 #define LX_SYS_break 17
271 #define LX_SYS_oldstat 18
272 #define LX_SYS_lseek 19
273 #define LX_SYS_getpid 20
274 #define LX_SYS_mount 21
275 #define LX_SYS_umount 22
276 #define LX_SYS_setuid 23
277 #define LX_SYS_getuid 24
278 #define LX_SYS_stime 25
279 #define LX_SYS_ptrace 26
280 #define LX_SYS_alarm 27
281 #define LX_SYS_oldfstat 28
282 #define LX_SYS_pause 29
283 #define LX_SYS_utime 30
284 #define LX_SYS_stty 31
285 #define LX_SYS_gtty 32
286 #define LX_SYS_access 33
287 #define LX_SYS_nice 34
288 #define LX_SYS_ftime 35
289 #define LX_SYS_sync 36
290 #define LX_SYS_kill 37
291 #define LX_SYS_rename 38
292 #define LX_SYS_mkdir 39
293 #define LX_SYS_rmdir 40
294 #define LX_SYS_dup 41
295 #define LX_SYS_pipe 42
296 #define LX_SYS_times 43
297 #define LX_SYS_prof 44
298 #define LX_SYS_brk 45
299 #define LX_SYS_setgid 46
300 #define LX_SYS_getgid 47
301 #define LX_SYS_signal 48
302 #define LX_SYS_geteuid 49
303 #define LX_SYS_getegid 50
304 #define LX_SYS_acct 51
305 #define LX_SYS_umount2 52
306 #define LX_SYS_lock 53
307 #define LX_SYS_ioctl 54
308 #define LX_SYS_fcntl 55
309 #define LX_SYS_mpx 56
310 #define LX_SYS_setpgid 57
311 #define LX_SYS_ulimit 58
312 #define LX_SYS_oldolduname 59
313 #define LX_SYS_umask 60
314 #define LX_SYS_chroot 61
315 #define LX_SYS_ustat 62
316 #define LX_SYS_dup2 63
317 #define LX_SYS_getppid 64
318 #define LX_SYS_getpgrp 65
319 #define LX_SYS_setsid 66
320 #define LX_SYS_sigaction 67
321 #define LX_SYS_sgetmask 68
322 #define LX_SYS_ssetmask 69
323 #define LX_SYS_setreuid 70
324 #define LX_SYS_setregid 71
325 #define LX_SYS_sigsuspend 72

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 6

326 #define LX_SYS_sigpending 73
327 #define LX_SYS_sethostname 74
328 #define LX_SYS_setrlimit 75
329 #define LX_SYS_getrlimit 76
330 #define LX_SYS_getrusage 77
331 #define LX_SYS_gettimeofday 78
332 #define LX_SYS_settimeofday 79
333 #define LX_SYS_getgroups 80
334 #define LX_SYS_setgroups 81
335 #define LX_SYS_select 82
336 #define LX_SYS_symlink 83
337 #define LX_SYS_oldlstat 84
338 #define LX_SYS_readlink 85
339 #define LX_SYS_uselib 86
340 #define LX_SYS_swapon 87
341 #define LX_SYS_reboot 88
342 #define LX_SYS_readdir 89
343 #define LX_SYS_mmap 90
344 #define LX_SYS_munmap 91
345 #define LX_SYS_truncate 92
346 #define LX_SYS_ftruncate 93
347 #define LX_SYS_fchmod 94
348 #define LX_SYS_fchown 95
349 #define LX_SYS_getpriority 96
350 #define LX_SYS_setpriority 97
351 #define LX_SYS_profil 98
352 #define LX_SYS_statfs 99
353 #define LX_SYS_fstatfs 100
354 #define LX_SYS_ioperm 101
355 #define LX_SYS_socketcall 102
356 #define LX_SYS_syslog 103
357 #define LX_SYS_setitimer 104
358 #define LX_SYS_getitimer 105
359 #define LX_SYS_stat 106
360 #define LX_SYS_lstat 107
361 #define LX_SYS_fstat 108
362 #define LX_SYS_olduname 109
363 #define LX_SYS_iopl 110
364 #define LX_SYS_vhangup 111
365 #define LX_SYS_idle 112
366 #define LX_SYS_vm86old 113
367 #define LX_SYS_wait4 114
368 #define LX_SYS_swapoff 115
369 #define LX_SYS_sysinfo 116
370 #define LX_SYS_ipc 117
371 #define LX_SYS_fsync 118
372 #define LX_SYS_sigreturn 119
373 #define LX_SYS_clone 120
374 #define LX_SYS_setdomainname 121
375 #define LX_SYS_uname 122
376 #define LX_SYS_modify_ldt 123
377 #define LX_SYS_adjtimex 124
378 #define LX_SYS_mprotect 125
379 #define LX_SYS_sigprocmask 126
380 #define LX_SYS_create_module 127
381 #define LX_SYS_init_module 128
382 #define LX_SYS_delete_module 129
383 #define LX_SYS_get_kernel_syms 130
384 #define LX_SYS_quotactl 131
385 #define LX_SYS_getpgid 132
386 #define LX_SYS_fchdir 133
387 #define LX_SYS_sysfs 135
388 #define LX_SYS_setfsuid 138
389 #define LX_SYS_setfsgid 139
390 #define LX_SYS_llseek 140
391 #define LX_SYS_getdents 141

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 7

392 #define LX_SYS_newselect 142
393 #define LX_SYS_flock 143
394 #define LX_SYS_msync 144
395 #define LX_SYS_readv 145
396 #define LX_SYS_writev 146
397 #define LX_SYS_getsid 147
398 #define LX_SYS_fdatasync 148
399 #define LX_SYS_sysctl 149
400 #define LX_SYS_mlock 150
401 #define LX_SYS_munlock 151
402 #define LX_SYS_mlockall 152
403 #define LX_SYS_munlockall 153
404 #define LX_SYS_sched_setparam 154
405 #define LX_SYS_sched_getparam 155
406 #define LX_SYS_sched_setscheduler 156
407 #define LX_SYS_sched_getscheduler 157
408 #define LX_SYS_sched_yield 158
409 #define LX_SYS_sched_get_priority_max 159
410 #define LX_SYS_sched_get_priority_min 160
411 #define LX_SYS_sched_rr_get_interval 161
412 #define LX_SYS_nanosleep 162
413 #define LX_SYS_mremap 163
414 #define LX_SYS_setresuid 164
415 #define LX_SYS_getresuid 165
416 #define LX_SYS_poll 168
417 #define LX_SYS_setresgid 170
418 #define LX_SYS_getresgid 171
419 #define LX_SYS_prctl 172
420 #define LX_SYS_rt_sigreturn 173
421 #define LX_SYS_rt_sigaction 174
422 #define LX_SYS_rt_sigprocmask 175
423 #define LX_SYS_rt_sigpending 176
424 #define LX_SYS_rt_sigtimedwait 177
425 #define LX_SYS_rt_sigqueueinfo 178
426 #define LX_SYS_rt_sigsuspend 179
427 #define LX_SYS_pread 180
428 #define LX_SYS_pwrite 181
429 #define LX_SYS_chown 182
430 #define LX_SYS_getcwd 183
431 #define LX_SYS_capget 184
432 #define LX_SYS_capset 185
433 #define LX_SYS_sigaltstack 186
434 #define LX_SYS_sendfile 187
435 #define LX_SYS_getpmsg 188
436 #define LX_SYS_putpmsg 189
437 #define LX_SYS_vfork 190
438 #define LX_SYS_ugetrlimit 191
439 #define LX_SYS_mmap2 192
440 #define LX_SYS_truncate64 193
441 #define LX_SYS_ftruncate64 194
442 #define LX_SYS_stat64 195
443 #define LX_SYS_lstat64 196
444 #define LX_SYS_fstat64 197
445 #define LX_SYS_lchown32 198
446 #define LX_SYS_getuid32 199
447 #define LX_SYS_getgid32 200
448 #define LX_SYS_geteuid32 201
449 #define LX_SYS_getegid32 202
450 #define LX_SYS_setreuid32 203
451 #define LX_SYS_setregid32 204
452 #define LX_SYS_getgroups32 205
453 #define LX_SYS_setgroups32 206
454 #define LX_SYS_fchown32 207
455 #define LX_SYS_setresuid32 208
456 #define LX_SYS_getresuid32 209
457 #define LX_SYS_setresgid32 210

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 8

458 #define LX_SYS_getresgid32 211
459 #define LX_SYS_chown32 212
460 #define LX_SYS_setuid32 213
461 #define LX_SYS_setgid32 214
462 #define LX_SYS_setfsuid32 215
463 #define LX_SYS_setfsgid32 216
464 #define LX_SYS_mincore 218
465 #define LX_SYS_madvise 219
466 #define LX_SYS_getdents64 220
467 #define LX_SYS_fcntl64 221
468 #define LX_SYS_gettid 224
469 #define LX_SYS_readahead 225
470 #define LX_SYS_setxattr 226
471 #define LX_SYS_lsetxattr 227
472 #define LX_SYS_fsetxattr 228
473 #define LX_SYS_getxattr 229
474 #define LX_SYS_lgetxattr 230
475 #define LX_SYS_fgetxattr 231
476 #define LX_SYS_listxattr 232
477 #define LX_SYS_llistxattr 233
478 #define LX_SYS_flistxattr 234
479 #define LX_SYS_removexattr 235
480 #define LX_SYS_lremovexattr 236
481 #define LX_SYS_fremovexattr 237
482 #define LX_SYS_tkill 238
483 #define LX_SYS_sendfile64 239
484 #define LX_SYS_futex 240
485 #define LX_SYS_sched_setaffinity 241
486 #define LX_SYS_sched_getaffinity 242
487 #define LX_SYS_set_thread_area 243
488 #define LX_SYS_get_thread_area 244
489 #define LX_SYS_fadvise64 250
490 #define LX_SYS_exit_group 252
491 #define LX_SYS_remap_file_pages 257
492 #define LX_SYS_set_tid_address 258
493 #define LX_SYS_timer_create 259
494 #define LX_SYS_timer_settime 260
495 #define LX_SYS_timer_gettime 261
496 #define LX_SYS_timer_getoverrun 262
497 #define LX_SYS_timer_delete 263
498 #define LX_SYS_clock_settime 264
499 #define LX_SYS_clock_gettime 265
500 #define LX_SYS_clock_getres 266
501 #define LX_SYS_clock_nanosleep 267
502 #define LX_SYS_tgkill 270
503 /* the following syscalls are for 2.6 and later kernels */
504 #define LX_SYS_utimes 271
505 #define LX_SYS_fadvise64_64 272
506 #define LX_SYS_vserver 273
507 #define LX_SYS_mbind 274
508 #define LX_SYS_get_mempolicyd 275
509 #define LX_SYS_set_mempolicy 276
510 #define LX_SYS_mq_open 277
511 #define LX_SYS_mq_unlink 278
512 #define LX_SYS_mq_timedsend 279
513 #define LX_SYS_mq_timedreceive 280
514 #define LX_SYS_mq_notify 281
515 #define LX_SYS_mq_getsetattr 282
516 #define LX_SYS_kexec_load 283
517 #define LX_SYS_waitid 284
518 #define LX_SYS_setaltroot 285
519 #define LX_SYS_add_key 286
520 #define LX_SYS_request_key 287
521 #define LX_SYS_keyctl 288
522 #define LX_SYS_ioprio_set 289
523 #define LX_SYS_ioprio_get 290

new/usr/src/lib/brand/lx/lx_brand/sys/lx_syscall.h 9

524 #define LX_SYS_inotify_init 291
525 #define LX_SYS_inotify_add_watch 292
526 #define LX_SYS_inotify_rm_watch 293
527 #define LX_SYS_migrate_pages 294
528 #define LX_SYS_openat 295
529 #define LX_SYS_mkdirat 296
530 #define LX_SYS_mknodat 297
531 #define LX_SYS_fchownat 298
532 #define LX_SYS_futimesat 299
533 #define LX_SYS_fstatat64 300
534 #define LX_SYS_unlinkat 301
535 #define LX_SYS_renameat 302
536 #define LX_SYS_linkat 303
537 #define LX_SYS_symlinkat 304
538 #define LX_SYS_readlinkat 305
539 #define LX_SYS_fchmodat 306
540 #define LX_SYS_faccessat 307
541 #define LX_SYS_pselect6 308
542 #define LX_SYS_ppoll 309
543 #define LX_SYS_unshare 310
544 #define LX_SYS_set_robust_list 311
545 #define LX_SYS_get_robust_list 312
546 #define LX_SYS_splice 313
547 #define LX_SYS_sync_file_range 314
548 #define LX_SYS_tee 315
549 #define LX_SYS_vmsplice 316
550 #define LX_SYS_move_pages 317

552 #ifdef __cplusplus
553 }
554 #endif

556 #endif /* _SYS_LX_SYSCALL_H */
557 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_sysv_ipc.h 1

**
 3967 Tue Jan 14 16:17:09 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_sysv_ipc.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _LX_SYSV_IPC_H
28 #define _LX_SYSV_IPC_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 /*
37 * msg-related definitions.
38 */
39 #define LX_IPC_CREAT 00001000
40 #define LX_IPC_EXCL 00002000
41 #define LX_IPC_NOWAIT 00004000

43 #define LX_IPC_RMID 0
44 #define LX_IPC_SET 1
45 #define LX_IPC_STAT 2
46 #define LX_IPC_INFO 3

48 #define LX_IPC_64 0x0100

50 #define LX_SEMOP 1
51 #define LX_SEMGET 2
52 #define LX_SEMCTL 3
53 #define LX_MSGSND 11
54 #define LX_MSGRCV 12
55 #define LX_MSGGET 13
56 #define LX_MSGCTL 14
57 #define LX_SHMAT 21
58 #define LX_SHMDT 22
59 #define LX_SHMGET 23
60 #define LX_SHMCTL 24

new/usr/src/lib/brand/lx/lx_brand/sys/lx_sysv_ipc.h 2

62 #define LX_MSG_STAT 11
63 #define LX_MSG_INFO 12

65 #define LX_MSG_NOERROR 010000

67 /*
68 * Linux hard codes the maximum msgbuf length to be 8192 bytes. Really.
69 */
70 #define LX_MSGMAX 8192

72 struct lx_ipc_perm {
73 key_t key;
74 uid_t uid;
75 uid_t gid;
76 uid_t cuid;
77 uid_t cgid;
78 ushort_t mode;
79 ushort_t _pad1;
80 ushort_t seq;
81 ushort_t _pad2;
82 ulong_t _unused1;
83 ulong_t _unused2;
84 };

86 struct lx_msqid_ds {
87 struct lx_ipc_perm msg_perm;
88 time_t msg_stime;
89 ulong_t _unused1;
90 time_t msg_rtime;
91 ulong_t _unused2;
92 time_t msg_ctime;
93 ulong_t _unused3;
94 ulong_t msg_cbytes;
95 ulong_t msg_qnum;
96 ulong_t msg_qbytes;
97 pid_t msg_lspid;
98 pid_t msg_lrpid;
99 ulong_t _unused4;
100 ulong_t _unused5;
101 };

103 struct lx_msginfo {
104 int msgpool;
105 int msgmap;
106 int msgmax;
107 int msgmnb;
108 int msgmni;
109 int msgssz;
110 int msgtql;
111 ushort_t msgseg;
112 };

114 /*
115 * semaphore-related definitions.
116 */
117 #define LX_GETPID 11
118 #define LX_GETVAL 12
119 #define LX_GETALL 13
120 #define LX_GETNCNT 14
121 #define LX_GETZCNT 15
122 #define LX_SETVAL 16
123 #define LX_SETALL 17
124 #define LX_SEM_STAT 18
125 #define LX_SEM_INFO 19
126 #define LX_SEM_UNDO 0x1000
127 #define LX_SEMVMX 32767

new/usr/src/lib/brand/lx/lx_brand/sys/lx_sysv_ipc.h 3

129 struct lx_semid_ds {
130 struct lx_ipc_perm sem_perm;
131 time_t sem_otime;
132 ulong_t _unused1;
133 time_t sem_ctime;
134 ulong_t _unused2;
135 ulong_t sem_nsems;
136 ulong_t _unused3;
137 ulong_t _unused4;
138 };

140 struct lx_seminfo {
141 int semmap;
142 int semmni;
143 int semmns;
144 int semmnu;
145 int semmsl;
146 int semopm;
147 int semume;
148 int semusz;
149 int semvmx;
150 int semaem;
151 };

153 union lx_semun {
154 int val;
155 struct lx_semid_ds *semds;
156 ushort_t *sems;
157 struct lx_seminfo *info;
158 uintptr_t dummy;
159 };

161 /*
162 * shm-related definitions
163 */
164 #define LX_SHM_LOCKED 02000
165 #define LX_SHM_RDONLY 010000
166 #define LX_SHM_RND 020000
167 #define LX_SHM_REMAP 040000

169 #define LX_SHM_LOCK 11
170 #define LX_SHM_UNLOCK 12
171 #define LX_SHM_STAT 13
172 #define LX_SHM_INFO 14

174 struct lx_shmid_ds {
175 struct lx_ipc_perm shm_perm;
176 size_t shm_segsz;
177 time_t shm_atime;
178 ulong_t _unused1;
179 time_t shm_dtime;
180 ulong_t _unused2;
181 time_t shm_ctime;
182 ulong_t _unused3;
183 pid_t shm_cpid;
184 pid_t shm_lpid;
185 ushort_t shm_nattch;
186 ulong_t _unused4;
187 ulong_t _unused5;
188 };

190 struct lx_shm_info {
191 int used_ids;
192 ulong_t shm_tot;
193 ulong_t shm_rss;

new/usr/src/lib/brand/lx/lx_brand/sys/lx_sysv_ipc.h 4

194 ulong_t shm_swp;
195 ulong_t swap_attempts;
196 ulong_t swap_successes;
197 };

199 struct lx_shminfo {
200 int shmmax;
201 int shmmin;
202 int shmmni;
203 int shmseg;
204 int shmall;
205 };

207 #ifdef __cplusplus
208 }
209 #endif

211 #endif /* _LX_SYSV_IPC_H */
212 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_thread.h 1

**
 1378 Tue Jan 14 16:17:09 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_thread.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _SYS_LX_THREAD_H
28 #define _SYS_LX_THREAD_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 #include <thread.h>

38 typedef struct lx_tsd {
39 uintptr_t lxtsd_gs;
40 int lxtsd_exit;
41 int lxtsd_exit_status;
42 ucontext_t lxtsd_exit_context;
43 } lx_tsd_t;

45 extern thread_key_t lx_tsd_key; /* thread-specific Linux %gs value */

47 extern void lx_swap_gs(long, long *);

49 #ifdef __cplusplus
50 }
51 #endif

53 #endif /* _SYS_LX_THREAD_H */
54 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_thunk_server.h 1

**
 3867 Tue Jan 14 16:17:09 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_thunk_server.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _LX_THUNK_SERVER_H
28 #define _LX_THUNK_SERVER_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 #include <netdb.h>
37 #include <procfs.h>

39 /*
40 * Binary that should be exec’d to start up the thunking server
41 */
42 #define LXT_SERVER_BINARY "/native/usr/lib/brand/lx/lx_thunk"

44 /*
45 * When the thunking server is started it will need to communicate
46 * to the client via two fifos. These fifos will be passed to the
47 * thunking server via the following file descriptors:
48 */
49 #define LXT_SERVER_FIFO_RD_FD 3
50 #define LXT_SERVER_FIFO_WR_FD 4

52 /*
53 * Operations supported by the thunking server
54 */
55 #define LXT_SERVER_OP_MIN 0
56 #define LXT_SERVER_OP_PING 0
57 #define LXT_SERVER_OP_NAME2HOST 1
58 #define LXT_SERVER_OP_ADDR2HOST 2
59 #define LXT_SERVER_OP_NAME2SERV 3
60 #define LXT_SERVER_OP_PORT2SERV 4
61 #define LXT_SERVER_OP_OPENLOG 5

new/usr/src/lib/brand/lx/lx_brand/sys/lx_thunk_server.h 2

62 #define LXT_SERVER_OP_SYSLOG 6
63 #define LXT_SERVER_OP_CLOSELOG 7
64 #define LXT_SERVER_OP_MAX 8

66 /*
67 * Macros used to translate pointer into offsets for when they are
68 * being transmitted between the client and server processes.
69 *
70 * NOTE: We’re going to add 1 to every offset value. The reason
71 * for this is that some of the pointers we’re converting to offsets are
72 * stored in NULL terminated arrays, and if one of the members of
73 * one of these arrays happened to be at the beginning of the storage
74 * buffer it would have an offset of 0 and when the client tries to
75 * translate the offsets back into pointers it wouldn’t be able
76 * to differentiate between the 0 offset from the end of the array.
77 */
78 #define LXT_PTR_TO_OFFSET(ptr, base) \
79 ((void *)((uintptr_t)(ptr) - (uintptr_t)(base) + 1))
80 #define LXT_OFFSET_TO_PTR(offset, base) \
81 ((void *)((uintptr_t)(offset) + (uintptr_t)(base) - 1))

83 /*
84 * Structures passed to the thunking server via door calls
85 */
86 typedef struct lxt_server_arg {
87 int lxt_sa_op;
88 int lxt_sa_success;
89 int lxt_sa_errno;
90 char lxt_sa_data[1];
91 } lxt_server_arg_t;

93 typedef struct lxt_gethost_arg {
94 struct hostent lxt_gh_result;

96 int lxt_gh_h_errno;

98 int lxt_gh_type;
99 int lxt_gh_token_len;
100 int lxt_gh_buf_len;

102 int lxt_gh_storage_len;
103 char lxt_gh_storage[1];
104 } lxt_gethost_arg_t;

106 typedef struct lxt_getserv_arg {
107 struct servent lxt_gs_result;

109 int lxt_gs_token_len;
110 int lxt_gs_buf_len;
111 char lxt_gs_proto[5];

113 int lxt_gs_storage_len;
114 char lxt_gs_storage[1];
115 } lxt_getserv_arg_t;

117 typedef struct lxt_openlog_arg {
118 int lxt_ol_logopt;
119 int lxt_ol_facility;
120 char lxt_ol_ident[128];
121 } lxt_openlog_arg_t;

123 typedef struct lxt_syslog_arg {
124 int lxt_sl_priority;
125 pid_t lxt_sl_pid;
126 char lxt_sl_progname[PRFNSZ];
127 char lxt_sl_message[1024];

new/usr/src/lib/brand/lx/lx_brand/sys/lx_thunk_server.h 3

128 } lxt_syslog_arg_t;

131 /*
132 * Functions called by the brand library to manage startup of the
133 * thunk server process.
134 */
135 void lxt_server_init(int, char *[]);
136 int lxt_server_pid(int *pid);
137 void lxt_server_exec_check(void);

139 #ifdef __cplusplus
140 }
141 #endif

143 #endif /* _LX_THUNK_SERVER_H */
144 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_brand/sys/lx_types.h 1

**
 3293 Tue Jan 14 16:17:09 2014
new/usr/src/lib/brand/lx/lx_brand/sys/lx_types.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_TYPES_H
27 #define _SYS_LX_TYPES_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #define SHRT_MIN (-32768) /* min value of a "short int" */
36 #define SHRT_MAX 32767 /* max value of a "short int" */
37 #define USHRT_MAX 65535 /* max of "unsigned short int" */
38 #define INT_MIN (-2147483647-1) /* min value of an "int" */
39 #define INT_MAX 2147483647 /* max value of an "int" */
40 #define UINT_MAX 4294967295U /* max value of an "unsigned int" */
41 #define LONG_MIN (-2147483647L-1L)
42 /* min value of a "long int" */
43 #define LONG_MAX 2147483647L /* max value of a "long int" */
44 #define ULONG_MAX 4294967295UL /* max of "unsigned long int" */

46 #define LX_SYS_UTS_LN 65

48 struct lx_utsname {
49 char sysname[LX_SYS_UTS_LN];
50 char nodename[LX_SYS_UTS_LN];
51 char release[LX_SYS_UTS_LN];
52 char version[LX_SYS_UTS_LN];
53 char machine[LX_SYS_UTS_LN];
54 char domainname[LX_SYS_UTS_LN];
55 };

57 typedef uint64_t lx_dev_t;
58 typedef uint16_t lx_dev16_t;
59 typedef uint32_t lx_ino_t;
60 typedef uint64_t lx_ino64_t;
61 typedef uint32_t lx_uid_t;

new/usr/src/lib/brand/lx/lx_brand/sys/lx_types.h 2

62 typedef uint16_t lx_uid16_t;
63 typedef uint32_t lx_gid_t;
64 typedef uint16_t lx_gid16_t;
65 typedef uint32_t lx_off_t;
66 typedef uint64_t lx_off64_t;
67 typedef uint32_t lx_blksize_t;
68 typedef uint32_t lx_blkcnt_t;
69 typedef uint64_t lx_blkcnt64_t;
70 typedef ulong_t lx_mode_t;
71 typedef uint16_t lx_mode16_t;

73 #define LX_UID16_TO_UID32(uid16) \
74 (((uid16) == (lx_uid16_t)-1) ? ((lx_uid_t)-1) : (lx_uid_t)(uid16))

76 #define LX_GID16_TO_GID32(gid16) \
77 (((gid16) == (lx_gid16_t)-1) ? ((lx_gid_t)-1) : (lx_gid_t)(gid16))

79 /* Overflow values default to NFS nobody. */

81 #define UID16_OVERFLOW ((lx_uid16_t)65534)
82 #define GID16_OVERFLOW ((lx_gid16_t)65534)

84 /*
85 * All IDs with high word non-zero are converted to default overflow values to
86 * avoid inadvertent truncation to zero (root) (!).
87 */
88 #define LX_UID32_TO_UID16(uid32) \
89 ((((uid32) & 0xffff0000) == 0) ? ((lx_uid16_t)(uid32)) : \
90 (((uid32) == ((lx_uid_t)-1)) ? ((lx_uid16_t)-1) : UID16_OVERFLOW))

92 #define LX_GID32_TO_GID16(gid32) \
93 ((((gid32) & 0xffff0000) == 0) ? ((lx_gid16_t)(gid32)) : \
94 (((gid32) == ((lx_gid_t)-1)) ? ((lx_gid16_t)-1) : GID16_OVERFLOW))

96 struct lx_timespec {
97 time_t ts_sec;
98 long ts_nsec;
99 };

101 #define LX_32TO64(lo, hi) \
102 ((uint64_t)((uint64_t)(lo) | ((uint64_t)(hi) << 32)))

104 #ifdef __cplusplus
105 }
106 #endif

108 #endif /* _SYS_LX_TYPES_H */
109 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_nametoaddr/Makefile 1

**
 1356 Tue Jan 14 16:17:10 2014
new/usr/src/lib/brand/lx/lx_nametoaddr/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 include ../../../Makefile.lib

31 SUBDIRS = $(MACH)
32 $(BUILD64)SUBDIRS += $(MACH64)

34 LINT_SUBDIRS = $(MACH)
35 $(BUILD64)LINT_SUBDIRS += $(MACH64)

37 all := TARGET= all
38 clean := TARGET= clean
39 clobber := TARGET= clobber
40 install := TARGET= install
41 lint := TARGET= lint

43 .KEEP_STATE:

45 all install clean clobber: $(SUBDIRS)

47 lint: $(LINT_SUBDIRS)

49 $(SUBDIRS): FRC
50 @cd $@; pwd; $(MAKE) $(TARGET)

52 FRC:
53 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_nametoaddr/Makefile.com 1

**
 1702 Tue Jan 14 16:17:10 2014
new/usr/src/lib/brand/lx/lx_nametoaddr/Makefile.com
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 LIBRARY = lx_nametoaddr.a
30 VERS = .1

32 COBJS = lx_nametoaddr.o
33 OBJECTS = $(COBJS)

35 include ../../../../Makefile.lib
36 include ../../Makefile.lx

38 MAPFILES = ../common/mapfile-vers
39 MAPOPTS = $(MAPFILES:%=-M%)

41 CSRCS = $(COBJS:%o=../common/%c)
42 SRCS = $(CSRCS)

44 SRCDIR = ../common
45 LX_THUNK = ../../lx_thunk

47 ASFLAGS += -P -D_ASM
48 LDLIBS += -lc -lnsl
49 CFLAGS += $(CCVERBOSE)
50 CPPFLAGS += -D_REENTRANT -I../ -I$(LX_THUNK)
51 DYNFLAGS += $(MAPOPTS) ’-R$$ORIGIN’

53 LIBS = $(DYNLIB)

55 LINTFLAGS += $(LX_THUNK)/$(MACH)/llib-llx_thunk.ln
56 LINTFLAGS64 += $(LX_THUNK)/$(MACH64)/llib-llx_thunk.ln

58 CLEANFILES = $(DYNLIB)
59 ROOTLIBDIR = $(ROOT)/usr/lib/brand/lx
60 ROOTLIBDIR64 = $(ROOT)/usr/lib/brand/lx/$(MACH64)

new/usr/src/lib/brand/lx/lx_nametoaddr/Makefile.com 2

62 .KEEP_STATE:

64 all: $(DYNLIB)

66 lint: lintcheck

68 include ../../../../Makefile.targ
69 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_nametoaddr/amd64/Makefile 1

**
 1137 Tue Jan 14 16:17:10 2014
new/usr/src/lib/brand/lx/lx_nametoaddr/amd64/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 include ../Makefile.com
30 include $(SRC)/lib/Makefile.lib.64

32 DYNFLAGS += $(LX_THUNK)/$(MACH64)/lx_thunk.so.1
33 CLOBBERFILES = $(ROOTLIBDIR64)/$(DYNLIB) $(ROOTLIBDIR64)/$(LINTLIB)

35 install: all $(ROOTLIBS64)
36 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c 1

**
 13251 Tue Jan 14 16:17:10 2014
new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 /*
30 * BrandZ lx name services translation library.
31 *
32 * This library is specified as the default name services translation
33 * library in a custom netconfig(4) file that is only used when running
34 * native solaris processes in a Linux branded zone.
35 *
36 * What this means it that when a native solaris process runs in a
37 * Linux branded zone and issues a name service request to libnsl.so
38 * (either directly or indirectly via any libraries the program may
39 * be linked against) libnsl.so will dlopen(3c) this library and call
40 * into it to service these requests.
41 *
42 * This library is in turn linked against lx_thunk.so and will attempt
43 * to call interfaces in lx_thunk.so to resolve these requests. The
44 * functions that are called in lx_thunk.so are designed to have the
45 * same signature and behavior as the existing solaris name service
46 * interfaces. The name services interfaces we call are:
47 *
48 * Native Interface -> lx_thunk.so Interface
49 * ---------------- -> ---------------------
50 * gethostbyname_r -> lxt_gethostbyname_r
51 * gethostbyaddr_r -> lxt_gethostbyaddr_r
52 * getservbyname_r -> lxt_getservbyname_r
53 * getservbyport_r -> lxt_getservbyport_r
54 *
55 * This library also uses one additional interface from lx_thunk.so:
56 * lxt_debug
57 * Information debugging messages are sent to lx_thunk.so via this
58 * interface and that library can decided if it wants to drop the
59 * messages or output them somewhere.
60 */

new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c 2

62 #include <assert.h>
63 #include <dlfcn.h>
64 #include <errno.h>
65 #include <fcntl.h>
66 #include <netdb.h>
67 #include <netdir.h>
68 #include <nss_dbdefs.h>
69 #include <rpc/clnt.h>
70 #include <stdarg.h>
71 #include <stdio.h>
72 #include <stdlib.h>
73 #include <string.h>
74 #include <strings.h>
75 #include <sys/mman.h>
76 #include <sys/stat.h>
77 #include <sys/types.h>
78 #include <sys/varargs.h>
79 #include <sys/wait.h>
80 #include <thread.h>
81 #include <tiuser.h>
82 #include <unistd.h>
83 #include <sys/lx_thunk.h>

86 /*
87 * Private nametoaddr library interfaces.
88 */
89 static int
90 netconfig_is_ipv4(struct netconfig *config)
91 {
92 int i;
93 /*
94 * If we look at the rpc services registered on a Linux system
95 * (this can be done via rpcinfo(1M)) for both on the loopback
96 * interface and on any remote interfaces we only see services
97 * registered for tcp and udp. So here we’ll limit our support
98 * to these transports.
99 */
100 char *ipv4_netids[] = {
101 "tcp",
102 "udp",
103 NULL
104 };

106 for (i = 0; ipv4_netids[i] != NULL; i++) {
107 if (strcmp(ipv4_netids[i], config->nc_netid) == 0)
108 return (1);
109 }
110 return (0);
111 }

113 /*
114 * Public nametoaddr library interfaces.
115 *
116 * These are the functional entry points that libnsl will lookup (via
117 * the symbol names) when it loads this nametoaddr translation library.
118 */

120 /*
121 * _netdir_getbyname() returns all of the addresses for
122 * a specified host and service.
123 */
124 struct nd_addrlist *
125 _netdir_getbyname(struct netconfig *netconfigp,
126 struct nd_hostserv *nd_hostservp)

new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c 3

127 {
128 struct nd_addrlist *rp = NULL;
129 struct netbuf *nbp = NULL;
130 struct sockaddr_in *sap = NULL;
131 struct hostent n2h_result;
132 struct servent n2s_result;
133 char *n2h_buf = NULL, *n2s_buf = NULL;
134 int h_errno, i, host_self = 0, r_count;
135 int n2h_count = 0, n2s_count = 0;

137 lxt_debug("_netdir_getbyname: request recieved\n");

139 /* Make sure this is an ipv4 request. */
140 if (!netconfig_is_ipv4(netconfigp)) {
141 _nderror = ND_BADARG;
142 goto fail;
143 }

145 /* Allocate memory for the queries. */
146 if (((n2h_buf = malloc(NSS_BUFLEN_HOSTS)) == NULL) ||
147 ((n2s_buf = malloc(NSS_BUFLEN_SERVICES)) == NULL))
148 goto malloc_fail;

150 /* Check if the host name specified is HOST_SELF. */
151 if (strcmp(nd_hostservp->h_host, HOST_SELF) == 0)
152 host_self = 1;

154 /*
155 * If the hostname specified is HOST_SELF, the we’re just
156 * just doing a service lookup so don’t bother with trying
157 * to lookup the host name.
158 */
159 if (!host_self) {
160 /* Resolve the hostname. */
161 lxt_debug("_netdir_getbyname: "
162 "resolving host name: %s\n", nd_hostservp->h_host);
163 if (lxt_gethostbyname_r(nd_hostservp->h_host, &n2h_result,
164 n2h_buf, NSS_BUFLEN_HOSTS, &h_errno) == NULL) {
165 if (errno == ERANGE) {
166 _nderror = ND_SYSTEM;
167 } else if (h_errno == HOST_NOT_FOUND) {
168 _nderror = ND_NOHOST;
169 } else if (h_errno == TRY_AGAIN) {
170 _nderror = ND_TRY_AGAIN;
171 } else if (h_errno == NO_RECOVERY) {
172 _nderror = ND_NO_RECOVERY;
173 } else if (h_errno == NO_DATA) {
174 _nderror = ND_NO_DATA;
175 } else {
176 _nderror = ND_SYSTEM;
177 }
178 goto fail;
179 }
180 while (n2h_result.h_addr_list[n2h_count++] != NULL);
181 n2h_count--;
182 }

184 if (nd_hostservp->h_serv != NULL) {
185 /* Resolve the service name */
186 lxt_debug("_netdir_getbyname: "
187 "resolving service name: %s\n", nd_hostservp->h_serv);
188 if (lxt_getservbyname_r(nd_hostservp->h_serv,
189 netconfigp->nc_proto, &n2s_result,
190 n2s_buf, NSS_BUFLEN_SERVICES) == NULL) {
191 _nderror = ND_SYSTEM;
192 goto fail;

new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c 4

193 }
194 n2s_count = 1;
195 }

197 /* Make sure we got some results. */
198 if ((n2h_count + n2s_count) == 0) {
199 lxt_debug("_netdir_getbyname: no results!\n");
200 goto exit;
201 }
202 r_count = (n2h_count != 0) ? n2h_count : 1;

204 /*
205 * Allocate the return buffers. These buffers will be free’d
206 * by libnsl‘netdir_free(), so we need to allocate them in the
207 * way that libnsl‘netdir_free() expects.
208 */
209 if (((rp = calloc(1, sizeof (struct nd_addrlist))) == NULL) ||
210 ((nbp = calloc(1, sizeof (struct netbuf) * r_count)) == NULL) ||
211 ((sap = calloc(1, sizeof (struct sockaddr_in) * r_count)) == NULL))
212 goto malloc_fail;

214 /* Initialize the structures we’re going to return. */
215 rp->n_cnt = r_count;
216 rp->n_addrs = nbp;
217 for (i = 0; i < r_count; i++) {

219 /* Initialize the netbuf. */
220 nbp[i].maxlen = nbp[i].len = sizeof (struct sockaddr_in);
221 nbp[i].buf = (char *)&sap[i];

223 /* Initialize the sockaddr_in. */
224 sap[i].sin_family = AF_INET;

226 /* If we looked up any host address copy them out. */
227 if (!host_self)
228 bcopy(n2h_result.h_addr_list[i], &sap[i].sin_addr,
229 sizeof (sap[i].sin_addr));

231 /* If we looked up any service ports copy them out. */
232 if (nd_hostservp->h_serv != NULL)
233 sap[i].sin_port = n2s_result.s_port;
234 }

236 /* We’re finally done. */
237 lxt_debug("_netdir_getbyname: success\n");
238 return (rp);

240 malloc_fail:
241 _nderror = ND_NOMEM;

243 fail:
244 lxt_debug("_netdir_getbyname: failed!\n");

246 exit:
247 if (n2h_buf == NULL)
248 free(n2h_buf);
249 if (n2s_buf == NULL)
250 free(n2s_buf);
251 if (rp == NULL)
252 free(rp);
253 if (nbp == NULL)
254 free(nbp);
255 if (sap == NULL)
256 free(sap);
257 return (NULL);
258 }

new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c 5

260 /*
261 * _netdir_getbyaddr() takes an address (hopefully obtained from
262 * someone doing a _netdir_getbyname()) and returns all hosts with
263 * that address.
264 */
265 struct nd_hostservlist *
266 /*ARGSUSED*/
267 _netdir_getbyaddr(struct netconfig *netconfigp, struct netbuf *nbp)
268 {
269 struct nd_hostservlist *rp = NULL;
270 struct nd_hostserv *hsp = NULL;
271 struct sockaddr_in *sap;
272 struct servent p2s_result;
273 struct hostent a2h_result;
274 char *a2h_buf = NULL, *p2s_buf = NULL;
275 int h_errno, i;
276 int r_count = 0;
277 int a2h_count = 0, p2s_count = 0;

279 lxt_debug("_netdir_getbyaddr: request recieved\n");

281 /* Make sure this is an ipv4 request. */
282 if (!netconfig_is_ipv4(netconfigp)) {
283 _nderror = ND_BADARG;
284 goto fail;
285 }

287 /*
288 * Make sure the netbuf contains one struct sockaddr_in of
289 * type AF_INET.
290 */
291 if ((nbp->len != sizeof (struct sockaddr_in)) ||
292 (nbp->len < nbp->maxlen)) {
293 _nderror = ND_BADARG;
294 goto fail;
295 }
296 /*LINTED*/
297 sap = (struct sockaddr_in *)nbp->buf;
298 if (sap->sin_family != AF_INET) {
299 _nderror = ND_BADARG;
300 goto fail;
301 }

303 /* Allocate memory for the queries. */
304 if (((a2h_buf = malloc(NSS_BUFLEN_HOSTS)) == NULL) ||
305 ((p2s_buf = malloc(NSS_BUFLEN_SERVICES)) == NULL))
306 goto malloc_fail;

308 if (sap->sin_addr.s_addr != INADDR_ANY) {
309 lxt_debug("_netdir_getbyaddr: "
310 "resolving host address: 0x%x\n", sap->sin_addr.s_addr);
311 if (lxt_gethostbyaddr_r((char *)&sap->sin_addr.s_addr,
312 sizeof (sap->sin_addr.s_addr), AF_INET,
313 &a2h_result, a2h_buf, NSS_BUFLEN_HOSTS,
314 &h_errno) == NULL) {
315 if (errno == ERANGE) {
316 _nderror = ND_SYSTEM;
317 } else if (h_errno == HOST_NOT_FOUND) {
318 _nderror = ND_NOHOST;
319 } else if (h_errno == TRY_AGAIN) {
320 _nderror = ND_TRY_AGAIN;
321 } else if (h_errno == NO_RECOVERY) {
322 _nderror = ND_NO_RECOVERY;
323 } else if (h_errno == NO_DATA) {
324 _nderror = ND_NO_DATA;

new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c 6

325 } else {
326 _nderror = ND_SYSTEM;
327 }
328 goto fail;
329 }
330 while (a2h_result.h_aliases[a2h_count++] != NULL);
331 /*
332 * We need to count a2h_result.h_name as a valid name for
333 * for the address we just looked up. Of course a2h_count
334 * is actually over estimated by one, so instead of
335 * decrementing it here we’ll just leave it as it to
336 * account for a2h_result.h_name.
337 */
338 }

340 if (sap->sin_port != 0) {
341 lxt_debug("_netdir_getbyaddr: "
342 "resolving service port: 0x%x\n", sap->sin_port);
343 if (lxt_getservbyport_r(sap->sin_port,
344 netconfigp->nc_proto, &p2s_result,
345 p2s_buf, NSS_BUFLEN_SERVICES) == NULL) {
346 _nderror = ND_SYSTEM;
347 goto fail;
348 }
349 p2s_count = 1;
350 }

352 /* Make sure we got some results. */
353 if ((a2h_count + p2s_count) == 0) {
354 lxt_debug("_netdir_getbyaddr: no results!\n");
355 goto exit;
356 }
357 r_count = (a2h_count != 0) ? a2h_count : 1;

359 /*
360 * Allocate the return buffers. These buffers will be free’d
361 * by libnsl‘netdir_free(), so we need to allocate them in the
362 * way that libnsl‘netdir_free() expects.
363 */
364 if (((rp = calloc(1, sizeof (struct nd_hostservlist))) == NULL) ||
365 ((hsp = calloc(1, sizeof (struct nd_hostserv) * r_count)) == NULL))
366 goto malloc_fail;

368 lxt_debug("_netdir_getbyaddr: hahaha0 - %d\n", r_count);
369 rp->h_cnt = r_count;
370 rp->h_hostservs = hsp;
371 for (i = 0; i < r_count; i++) {
372 /* If we looked up any host names copy them out. */
373 lxt_debug("_netdir_getbyaddr: hahaha1 - %d\n", r_count);
374 if ((a2h_count > 0) && (i == 0) &&
375 ((hsp[i].h_host = strdup(a2h_result.h_name)) == NULL))
376 goto malloc_fail;

378 if ((a2h_count > 0) && (i > 0) &&
379 ((hsp[i].h_host =
380 strdup(a2h_result.h_aliases[i - 1])) == NULL))
381 goto malloc_fail;

383 lxt_debug("_netdir_getbyaddr: hahaha2 - %d\n", r_count);
384 /* If we looked up any service names copy them out. */
385 if ((p2s_count > 0) &&
386 ((hsp[i].h_serv = strdup(p2s_result.s_name)) == NULL))
387 goto malloc_fail;
388 lxt_debug("_netdir_getbyaddr: hahaha3 - %d\n", r_count);
389 }

new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c 7

391 /* We’re finally done. */
392 lxt_debug("_netdir_getbyaddr: success\n");
393 return (rp);

395 malloc_fail:
396 _nderror = ND_NOMEM;

398 fail:
399 lxt_debug("_netdir_getbyaddr: failed!\n");

401 exit:
402 if (a2h_buf == NULL)
403 free(a2h_buf);
404 if (p2s_buf == NULL)
405 free(p2s_buf);
406 if (rp == NULL)
407 free(rp);
408 if (hsp != NULL) {
409 for (i = 0; i < r_count; i++) {
410 if (hsp[i].h_host != NULL)
411 free(hsp[i].h_host);
412 if (hsp[i].h_serv != NULL)
413 free(hsp[i].h_serv);
414 }
415 free(hsp);
416 }
417 return (NULL);
418 }

420 char *
421 /* ARGSUSED */
422 _taddr2uaddr(struct netconfig *netconfigp, struct netbuf *nbp)
423 {
424 extern char *inet_ntoa_r();

426 struct sockaddr_in *sa;
427 char tmp[RPC_INET6_MAXUADDRSIZE];
428 unsigned short myport;

430 if (netconfigp == NULL || nbp == NULL || nbp->buf == NULL) {
431 _nderror = ND_BADARG;
432 return (NULL);
433 }

435 if (strcmp(netconfigp->nc_protofmly, NC_INET) != 0) {
436 /* we only support inet address translation */
437 assert(0);
438 _nderror = ND_SYSTEM;
439 return (NULL);
440 }

442 /* LINTED pointer cast */
443 sa = (struct sockaddr_in *)(nbp->buf);
444 myport = ntohs(sa->sin_port);
445 (void) inet_ntoa_r(sa->sin_addr, tmp);

447 (void) sprintf(tmp + strlen(tmp), ".%d.%d",
448 myport >> 8, myport & 255);
449 return (strdup(tmp)); /* Doesn’t return static data ! */
450 }

452 /*
453 * _uaddr2taddr() translates a universal address back into a
454 * netaddr structure. Since the universal address is a string,
455 * put that into the TLI buffer (making sure to change all \ddd
456 * characters back and strip off the trailing \0 character).

new/usr/src/lib/brand/lx/lx_nametoaddr/common/lx_nametoaddr.c 8

457 */
458 struct netbuf *
459 /* ARGSUSED */
460 _uaddr2taddr(struct netconfig *netconfigp, char *uaddr)
461 {
462 assert(0);
463 _nderror = ND_SYSTEM;
464 return (NULL);
465 }

467 /*
468 * _netdir_options() is a "catch-all" routine that does
469 * transport specific things. The only thing that these
470 * routines have to worry about is ND_MERGEADDR.
471 */
472 int
473 /* ARGSUSED */
474 _netdir_options(struct netconfig *netconfigp, int option, int fd, void *par)
475 {
476 assert(0);
477 _nderror = ND_SYSTEM;
478 return (0);
479 }
480 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_nametoaddr/common/mapfile-vers 1

**
 1388 Tue Jan 14 16:17:10 2014
new/usr/src/lib/brand/lx/lx_nametoaddr/common/mapfile-vers
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # MAPFILE HEADER START
29 #
30 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
31 # Object versioning must comply with the rules detailed in
32 #
33 # usr/src/lib/README.mapfiles
34 #
35 # You should not be making modifications here until you’ve read the most current
36 # copy of that file. If you need help, contact a gatekeeper for guidance.
37 #
38 # MAPFILE HEADER END
39 #

41 SUNWprivate_1.1 {
42 global:
43 _netdir_getbyname;
44 _netdir_getbyaddr;
45 _taddr2uaddr;
46 _uaddr2taddr;
47 _netdir_options;

49 local:
50 *;
51 };
52 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_nametoaddr/i386/Makefile 1

**
 1094 Tue Jan 14 16:17:11 2014
new/usr/src/lib/brand/lx/lx_nametoaddr/i386/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 include ../Makefile.com

31 DYNFLAGS += $(LX_THUNK)/$(MACH)/lx_thunk.so.1
32 CLOBBERFILES = $(ROOTLIBDIR)/$(DYNLIB) $(ROOTLIBDIR)/$(LINTLIB)

34 install: all $(ROOTLIBS)
35 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_support/Makefile 1

**
 1368 Tue Jan 14 16:17:11 2014
new/usr/src/lib/brand/lx/lx_support/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 PROG = lx_support
27 PROGS = $(PROG)
28 OBJS = lx_support

30 all: $(PROG)

32 include ../Makefile.lx
33 include $(SRC)/cmd/Makefile.cmd

35 # override the install directory
36 ROOTBIN = $(ROOTBRANDDIR)
37 CLOBBERFILES = $(OBJS) $(ROOTPROGS)

39 UTSBASE = $(SRC)/uts

41 CFLAGS += $(CCVERBOSE)
42 CPPFLAGS += -D_REENTRANT -I$(UTSBASE)/common/brand/lx
43 LDLIBS += -lzonecfg

45 .KEEP_STATE:

47 install: all $(ROOTPROGS)

49 clean:
50 $(RM) $(PROG) $(OBJS)

52 lint: lint_PROG

54 include $(SRC)/cmd/Makefile.targ
55 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_support/lx_support.c 1

**
 16511 Tue Jan 14 16:17:11 2014
new/usr/src/lib/brand/lx/lx_support/lx_support.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * lx_support is a small cli utility used to perform some brand-specific
28 * tasks when booting, halting, or verifying a zone. This utility is not
29 * intended to be called by users - it is intended to be invoked by the
30 * zones utilities.
31 */

33 #include <ctype.h>
34 #include <errno.h>
35 #include <fcntl.h>
36 #include <libgen.h>
37 #include <limits.h>
38 #include <stdarg.h>
39 #include <stdio.h>
40 #include <stdlib.h>
41 #include <string.h>
42 #include <strings.h>
43 #include <stropts.h>
44 #include <sys/ioccom.h>
45 #include <sys/stat.h>
46 #include <sys/systeminfo.h>
47 #include <sys/types.h>
48 #include <sys/varargs.h>
49 #include <unistd.h>
50 #include <libintl.h>
51 #include <locale.h>

53 #include <libzonecfg.h>
54 #include <sys/lx_audio.h>
55 #include <sys/lx_brand.h>

57 static void lxs_err(char *msg, ...) __NORETURN;
58 static void usage(void) __NORETURN;

60 #define CP_CMD "/usr/bin/cp"

new/usr/src/lib/brand/lx/lx_support/lx_support.c 2

61 #define MOUNT_CMD "/sbin/mount"

63 #define LXA_AUDIO_DEV "/dev/brand/lx/audio_devctl"
64 #define INTSTRLEN 32
65 #define KVSTRLEN 10

67 static char *bname = NULL;
68 static char *zonename = NULL;
69 static char *zoneroot = NULL;

71 #if !defined(TEXT_DOMAIN) /* should be defined by cc -D */
72 #define TEXT_DOMAIN "SYS_TEST" /* Use this only if it wasn’t */
73 #endif

75 static void
76 lxs_err(char *msg, ...)
77 {
78 char buf[1024];
79 va_list ap;

81 va_start(ap, msg);
82 /*LINTED*/
83 (void) vsnprintf(buf, sizeof (buf), msg, ap);
84 va_end(ap);

86 (void) printf("%s error: %s\n", bname, buf);

88 exit(1);
89 /*NOTREACHED*/
90 }

92 /*
93 * The Linux init(1M) command requires communication over the /dev/initctl
94 * FIFO. Since any attempt to create a file in /dev will fail, we must
95 * create it here.
96 */
97 static void
98 lxs_make_initctl()
99 {
100 char cmdbuf[ARG_MAX];
101 char path[MAXPATHLEN];
102 char special[MAXPATHLEN];
103 struct stat buf;
104 int err;

106 if (snprintf(special, sizeof (special), "%s/dev/initctl", zoneroot) >=
107 sizeof (special))
108 lxs_err("%s: %s", gettext("Failed to create /dev/initctl"),
109 gettext("zoneroot is too long"));

111 if (snprintf(path, sizeof (path), "%s/root/dev/initctl", zoneroot) >=
112 sizeof (path))
113 lxs_err("%s: %s", gettext("Failed to create /dev/initctl"),
114 gettext("zoneroot is too long"));

116 /* create the actual fifo as <zoneroot>/dev/initctl */
117 if (stat(special, &buf) != 0) {
118 err = errno;
119 if (err != ENOENT)
120 lxs_err("%s: %s",
121 gettext("Failed to create /dev/initctl"),
122 strerror(err));
123 if (mkfifo(special, 0644) < 0) {
124 err = errno;
125 lxs_err("%s: %s",
126 gettext("Failed to create /dev/initctl"),

new/usr/src/lib/brand/lx/lx_support/lx_support.c 3

127 strerror(err));
128 }
129 } else {
130 if ((buf.st_mode & S_IFIFO) == 0)
131 lxs_err("%s: %s",
132 gettext("Failed to create /dev/initctl"),
133 gettext("It already exists, and is not a FIFO."));
134 }

136 /*
137 * now lofs mount the <zoneroot>/dev/initctl fifo onto
138 * <zoneroot>/root/dev/initctl
139 */
140 if (snprintf(cmdbuf, sizeof (cmdbuf), "%s -F lofs %s %s", MOUNT_CMD,
141 special, path) >= sizeof (cmdbuf))
142 lxs_err("%s: %s", gettext("Failed to lofs mount /dev/initctl"),
143 gettext("zoneroot is too long"));

145 if (system(cmdbuf) < 0) {
146 err = errno;
147 lxs_err("%s: %s", gettext("Failed to lofs mount /dev/initctl"),
148 strerror(err));
149 }
150 }

152 /*
153 * fsck gets really confused when run inside a zone. Removing this file
154 * prevents it from running
155 */
156 static void
157 lxs_remove_autofsck()
158 {
159 char path[MAXPATHLEN];
160 int err;

162 if (snprintf(path, MAXPATHLEN, "%s/root/.autofsck", zoneroot) >=
163 MAXPATHLEN)
164 lxs_err("%s: %s", gettext("Failed to remove /.autofsck"),
165 gettext("zoneroot is too long"));

167 if (unlink(path) < 0) {
168 err = errno;
169 if (err != ENOENT)
170 lxs_err("%s: %s",
171 gettext("Failed to remove /.autofsck"),
172 strerror(err));
173 }
174 }

176 /*
177 * Extract any lx-supported attributes from the zone configuration file.
178 */
179 static void
180 lxs_getattrs(zone_dochandle_t zdh, boolean_t *restart, boolean_t *audio,
181 char **idev, char **odev, char **kvers)
182 {
183 struct zone_attrtab attrtab;
184 int err;

186 /* initialize the attribute iterator */
187 if (zonecfg_setattrent(zdh) != Z_OK) {
188 zonecfg_fini_handle(zdh);
189 lxs_err(gettext("error accessing zone configuration"));
190 }

192 *idev = (char *)malloc(INTSTRLEN);

new/usr/src/lib/brand/lx/lx_support/lx_support.c 4

193 *odev = (char *)malloc(INTSTRLEN);
194 *kvers = (char *)malloc(KVSTRLEN);
195 if (*idev == NULL || *odev == NULL || *kvers == NULL)
196 lxs_err(gettext("out of memory"));

198 *audio = B_FALSE;
199 *restart = B_FALSE;
200 bzero(*idev, INTSTRLEN);
201 bzero(*odev, INTSTRLEN);
202 bzero(*kvers, KVSTRLEN);
203 while ((err = zonecfg_getattrent(zdh, &attrtab)) == Z_OK) {
204 if ((strcmp(attrtab.zone_attr_name, "init-restart") == 0) &&
205 (zonecfg_get_attr_boolean(&attrtab, restart) != Z_OK))
206 lxs_err(gettext("invalid type for zone attribute: %s"),
207 attrtab.zone_attr_name);
208 if ((strcmp(attrtab.zone_attr_name, "audio") == 0) &&
209 (zonecfg_get_attr_boolean(&attrtab, audio) != Z_OK))
210 lxs_err(gettext("invalid type for zone attribute: %s"),
211 attrtab.zone_attr_name);
212 if ((strcmp(attrtab.zone_attr_name, "audio-inputdev") == 0) &&
213 (zonecfg_get_attr_string(&attrtab, *idev,
214 INTSTRLEN) != Z_OK))
215 lxs_err(gettext("invalid type for zone attribute: %s"),
216 attrtab.zone_attr_name);
217 if ((strcmp(attrtab.zone_attr_name, "audio-outputdev") == 0) &&
218 (zonecfg_get_attr_string(&attrtab, *odev,
219 INTSTRLEN) != Z_OK))
220 lxs_err(gettext("invalid type for zone attribute: %s"),
221 attrtab.zone_attr_name);
222 if ((strcmp(attrtab.zone_attr_name, "kernel-version") == 0) &&
223 (zonecfg_get_attr_string(&attrtab, *kvers,
224 KVSTRLEN) != Z_OK))
225 lxs_err(gettext("invalid type for zone attribute: %s"),
226 attrtab.zone_attr_name);
227 }

229 if (strlen(*kvers) == 0) {
230 free(*kvers);
231 *kvers = NULL;
232 }

234 /* some kind of error while looking up attributes */
235 if (err != Z_NO_ENTRY)
236 lxs_err(gettext("error accessing zone configuration"));
237 }

239 static int
240 lxs_iodev_ok(char *dev)
241 {
242 int i, j;

244 if ((j = strlen(dev)) == 0)
245 return (1);
246 if (strcmp(dev, "default") == 0)
247 return (1);
248 if (strcmp(dev, "none") == 0)
249 return (1);
250 for (i = 0; i < j; i++) {
251 if (!isdigit(dev[i]))
252 return (0);
253 }
254 return (1);
255 }

257 /*
258 * The audio configuration settings are read from the zone configuration

new/usr/src/lib/brand/lx/lx_support/lx_support.c 5

259 * file. Audio configuration is specified via the following attributes
260 * (settable via zonecfg):
261 * attr name: audio
262 * attr type: boolean
263 *
264 * attr name: audio-inputdev
265 * attr type: string
266 * attr values: "none" | [0-9]+
267 *
268 * attr name: audio-outputdev
269 * attr type: string
270 * attr values: "none" | [0-9]+
271 *
272 * The user can enable linux brand audio device (ie /dev/dsp and /dev/mixer)
273 * for a zone by setting the "audio" attribute to true. (The absence of
274 * this attribute leads to an assumed value of false.)
275 *
276 * If the "audio" attribute is set to true and "audio-inputdev" and
277 * "audio-outputdev" are not set, then when a linux applications access
278 * audio devices these access will be mapped to the system default audio
279 * device, ie /dev/audio and/dev/audioctl.
280 *
281 * If "audio-inputdev" is set to none, then audio input will be disabled.
282 * If "audio-inputdev" is set to an integer, then when a Linux application
283 * attempts to access audio devices these access will be mapped to
284 * /dev/sound/<audio-inputdev attribute value>. The same behavior will
285 * apply to the "audio-outputdev" attribute for linux audio output
286 * device accesses.
287 *
288 * If "audio-inputdev" or "audio-outputdev" exist but the audio attribute
289 * is missing (or set to false) audio will not be enabled for the zone.
290 */
291 static void
292 lxs_init_audio(char *idev, char *odev)
293 {
294 int err, fd;
295 lxa_zone_reg_t lxa_zr;

297 /* sanity check the input and output device properties */
298 if (!lxs_iodev_ok(idev))
299 lxs_err(gettext("invalid value for zone attribute: %s"),
300 "audio-inputdev");

302 if (!lxs_iodev_ok(odev))
303 lxs_err(gettext("invalid value for zone attribute: %s"),
304 "audio-outputdev");

306 /* initialize the zone name in the ioctl request */
307 bzero(&lxa_zr, sizeof (lxa_zr));
308 (void) strlcpy(lxa_zr.lxa_zr_zone_name, zonename,
309 sizeof (lxa_zr.lxa_zr_zone_name));

311 /* initialize the input device property in the ioctl request */
312 (void) strlcpy(lxa_zr.lxa_zr_inputdev, idev,
313 sizeof (lxa_zr.lxa_zr_inputdev));
314 if (lxa_zr.lxa_zr_inputdev[0] == ’\0’) {
315 /*
316 * if no input device was specified, set the input device
317 * to "default"
318 */
319 (void) strlcpy(lxa_zr.lxa_zr_inputdev, "default",
320 sizeof (lxa_zr.lxa_zr_inputdev));
321 }

323 /* initialize the output device property in the ioctl request */
324 (void) strlcpy(lxa_zr.lxa_zr_outputdev, odev,

new/usr/src/lib/brand/lx/lx_support/lx_support.c 6

325 sizeof (lxa_zr.lxa_zr_outputdev));
326 if (lxa_zr.lxa_zr_outputdev[0] == ’\0’) {
327 /*
328 * if no output device was specified, set the output device
329 * to "default"
330 */
331 (void) strlcpy(lxa_zr.lxa_zr_outputdev, "default",
332 sizeof (lxa_zr.lxa_zr_outputdev));
333 }

335 /* open the audio device control node */
336 if ((fd = open(LXA_AUDIO_DEV, O_RDWR)) < 0)
337 lxs_err(gettext("error accessing lx_audio device"));

339 /* enable audio for this zone */
340 err = ioctl(fd, LXA_IOC_ZONE_REG, &lxa_zr);
341 (void) close(fd);
342 if (err != 0)
343 lxs_err(gettext("error configuring lx_audio device"));
344 }

346 static int
347 lxs_boot()
348 {
349 zoneid_t zoneid;
350 zone_dochandle_t zdh;
351 boolean_t audio, restart;
352 char *idev, *odev, *kvers;
353 int kversnum;

355 lxs_make_initctl();
356 lxs_remove_autofsck();

358 if ((zdh = zonecfg_init_handle()) == NULL)
359 lxs_err(gettext("unable to initialize zone handle"));

361 if (zonecfg_get_handle((char *)zonename, zdh) != Z_OK) {
362 zonecfg_fini_handle(zdh);
363 lxs_err(gettext("unable to load zone configuration"));
364 }

366 /* Extract any relevant attributes from the config file. */
367 lxs_getattrs(zdh, &restart, &audio, &idev, &odev, &kvers);
368 zonecfg_fini_handle(zdh);

370 /* Configure the zone’s audio support (if any). */
371 if (audio == B_TRUE)
372 lxs_init_audio(idev, odev);

374 /*
375 * Let the kernel know whether or not this zone’s init process
376 * should be automatically restarted on its death.
377 */
378 if ((zoneid = getzoneidbyname(zonename)) < 0)
379 lxs_err(gettext("unable to get zoneid"));
380 if (zone_setattr(zoneid, LX_ATTR_RESTART_INIT, &restart,
381 sizeof (boolean_t)) == -1)
382 lxs_err(gettext("error setting zone’s restart_init property"));

384 if ((kvers != NULL) && (strcmp(kvers, "2.6") == 0))
385 kversnum = LX_KERN_2_6;
386 else
387 kversnum = LX_KERN_2_4;

389 if (zone_setattr(zoneid, LX_KERN_VERSION_NUM, &kversnum,
390 sizeof (int)) < 0)

new/usr/src/lib/brand/lx/lx_support/lx_support.c 7

391 lxs_err(gettext("unable to set kernel version"));

393 return (0);
394 }

396 static int
397 lxs_halt()
398 {
399 lxa_zone_reg_t lxa_zr;
400 int fd, rv;

402 /*
403 * We don’t bother to check if audio is configured for this zone
404 * before issuing a request to unconfigure it. There’s no real
405 * reason to do this, it would require looking up the xml zone and
406 * brand configuration information (which could have been changed
407 * since the zone was booted), and it would involve more library
408 * calls there by increasing chances for failure.
409 */

411 /* initialize the zone name in the ioctl request */
412 bzero(&lxa_zr, sizeof (lxa_zr));
413 (void) strlcpy(lxa_zr.lxa_zr_zone_name, zonename,
414 sizeof (lxa_zr.lxa_zr_zone_name));

416 /* open the audio device control node */
417 if ((fd = open(LXA_AUDIO_DEV, O_RDWR)) < 0)
418 lxs_err(gettext("error accessing lx_audio device"));

420 /*
421 * disable audio for this zone
422 *
423 * we ignore ENOENT errors here because it’s possible that
424 * audio is not configured for this zone. (either it was
425 * already unconfigured or someone could have added the
426 * audio resource to this zone after it was booted.)
427 */
428 rv = ioctl(fd, LXA_IOC_ZONE_UNREG, &lxa_zr);
429 (void) close(fd);
430 if ((rv == 0) || (errno == ENOENT))
431 return (0);
432 lxs_err(gettext("error unconfiguring lx_audio device: %s"),
433 strerror(errno));
434 /*NOTREACHED*/
435 }

437 static int
438 lxs_verify(char *xmlfile)
439 {
440 zone_dochandle_t handle;
441 /* struct zone_fstab fstab; */
442 struct zone_dstab dstab;
443 struct zone_devtab devtab;
444 boolean_t audio, restart;
445 char *idev, *odev, *kvers;
446 zone_iptype_t iptype;
447 char hostidp[HW_HOSTID_LEN];

449 if ((handle = zonecfg_init_handle()) == NULL)
450 lxs_err(gettext("internal libzonecfg.so.1 error"), 0);

452 if (zonecfg_get_xml_handle(xmlfile, handle) != Z_OK) {
453 zonecfg_fini_handle(handle);
454 lxs_err(gettext("zonecfg provided an invalid XML file"));
455 }

new/usr/src/lib/brand/lx/lx_support/lx_support.c 8

457 /*
458 * Check to see whether the zone has any inherit-pkg-dirs
459 * configured.
460 */
461 /* if (zonecfg_setipdent(handle) != Z_OK) {
462 zonecfg_fini_handle(handle);
463 lxs_err(gettext("zonecfg provided an invalid XML file"));
464 }

466 if (zonecfg_getipdent(handle, &fstab) == Z_OK) {
467 zonecfg_fini_handle(handle);
468 lxs_err(gettext("lx zones do not support inherit-pkg-dirs"));
469 }
470 */
471 /*
472 * Check to see whether the zone has any ZFS datasets configured.
473 */
474 if (zonecfg_setdsent(handle) != Z_OK) {
475 zonecfg_fini_handle(handle);
476 lxs_err(gettext("zonecfg provided an invalid XML file"));
477 }

479 if (zonecfg_getdsent(handle, &dstab) == Z_OK) {
480 zonecfg_fini_handle(handle);
481 lxs_err(gettext("lx zones do not support ZFS datasets"));
482 }

484 /*
485 * Check to see whether the zone has any devices configured.
486 */
487 if (zonecfg_setdevent(handle) != Z_OK) {
488 zonecfg_fini_handle(handle);
489 lxs_err(gettext("zonecfg provided an invalid XML file"));
490 }

492 if (zonecfg_getdevent(handle, &devtab) == Z_OK) {
493 zonecfg_fini_handle(handle);
494 lxs_err(gettext("lx zones do not support added devices"));
495 }

497 /*
498 * Check to see whether the zone has ip-type configured as exclusive
499 */
500 if (zonecfg_get_iptype(handle, &iptype) != Z_OK) {
501 zonecfg_fini_handle(handle);
502 lxs_err(gettext("zonecfg provided an invalid XML file"));
503 }

505 if (iptype == ZS_EXCLUSIVE) {
506 zonecfg_fini_handle(handle);
507 lxs_err(gettext("lx zones do not support an ’exclusive’ "
508 "ip-type"));
509 }

511 /*
512 * Check to see whether the zone has hostid emulation enabled.
513 */
514 if (zonecfg_get_hostid(handle, hostidp, sizeof (hostidp)) == Z_OK) {
515 zonecfg_fini_handle(handle);
516 lxs_err(gettext("lx zones do not support hostid emulation"));
517 }

519 /* Extract any relevant attributes from the config file. */
520 lxs_getattrs(handle, &restart, &audio, &idev, &odev, &kvers);
521 zonecfg_fini_handle(handle);

new/usr/src/lib/brand/lx/lx_support/lx_support.c 9

523 if (audio) {
524 /* sanity check the input and output device properties */
525 if (!lxs_iodev_ok(idev))
526 lxs_err(gettext("invalid value for zone attribute: %s"),
527 "audio-inputdev");

529 if (!lxs_iodev_ok(odev))
530 lxs_err(gettext("invalid value for zone attribute: %s"),
531 "audio-outputdev");
532 }
533 if (kvers) {
534 if ((strcmp(kvers, "2.4")) != 0 && (strcmp(kvers, "2.6") != 0))
535 lxs_err(gettext("invalid value for zone attribute: %s"),
536 "kernel-version");
537 }
538 return (0);
539 }

541 static void
542 usage()
543 {

545 (void) fprintf(stderr,
546 gettext("usage:\t%s boot <zoneroot> <zonename>\n"), bname);
547 (void) fprintf(stderr,
548 gettext(" \t%s halt <zoneroot> <zonename>\n"), bname);
549 (void) fprintf(stderr,
550 gettext(" \t%s verify <xml file>\n\n"), bname);
551 exit(1);
552 }

554 int
555 main(int argc, char *argv[])
556 {
557 (void) setlocale(LC_ALL, "");
558 (void) textdomain(TEXT_DOMAIN);

560 bname = basename(argv[0]);

562 if (argc < 3)
563 usage();

565 if (strcmp(argv[1], "boot") == 0) {
566 if (argc != 4)
567 lxs_err(gettext("usage: %s %s <zoneroot> <zonename>"),
568 bname, argv[1]);
569 zoneroot = argv[2];
570 zonename = argv[3];
571 return (lxs_boot());
572 }

574 if (strcmp(argv[1], "halt") == 0) {
575 if (argc != 4)
576 lxs_err(gettext("usage: %s %s <zoneroot> <zonename>"),
577 bname, argv[1]);
578 zoneroot = argv[2];
579 zonename = argv[3];
580 return (lxs_halt());
581 }

583 if (strcmp(argv[1], "verify") == 0) {
584 if (argc != 3)
585 lxs_err(gettext("usage: %s verify <xml file>"),
586 bname);
587 return (lxs_verify(argv[2]));
588 }

new/usr/src/lib/brand/lx/lx_support/lx_support.c 10

590 usage();
591 /*NOTREACHED*/
592 }
593 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_thunk/Makefile 1

**
 1356 Tue Jan 14 16:17:11 2014
new/usr/src/lib/brand/lx/lx_thunk/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 include ../../../Makefile.lib

31 SUBDIRS = $(MACH)
32 $(BUILD64)SUBDIRS += $(MACH64)

34 LINT_SUBDIRS = $(MACH)
35 $(BUILD64)LINT_SUBDIRS += $(MACH64)

37 all := TARGET= all
38 clean := TARGET= clean
39 clobber := TARGET= clobber
40 install := TARGET= install
41 lint := TARGET= lint

43 .KEEP_STATE:

45 all install clean clobber: $(SUBDIRS)

47 lint: $(LINT_SUBDIRS)

49 $(SUBDIRS): FRC
50 @cd $@; pwd; $(MAKE) $(TARGET)

52 FRC:
53 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_thunk/Makefile.com 1

**
 1836 Tue Jan 14 16:17:11 2014
new/usr/src/lib/brand/lx/lx_thunk/Makefile.com
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 LIBRARY = lx_thunk.a
30 VERS = .1

32 COBJS = lx_thunk.o
33 OBJECTS = $(COBJS)

35 include ../../../../Makefile.lib
36 include ../../Makefile.lx

38 #
39 # Since our name doesn’t start with "lib", Makefile.lib incorrectly
40 # calculates LIBNAME. Therefore, we set it here.
41 #
42 LIBNAME = lx_thunk

44 MAPFILES = ../common/mapfile-vers
45 MAPOPTS = $(MAPFILES:%=-M%)

47 CSRCS = $(COBJS:%o=../common/%c)
48 SRCS = $(CSRCS)

50 SRCDIR = ../common
51 UTSBASE = ../../../../../uts

53 ASFLAGS += -P -D_ASM
54 LDLIBS += -lc
55 CFLAGS += $(CCVERBOSE)
56 CPPFLAGS += -D_REENTRANT -I../ -I ../../lx_brand \
57 -I$(UTSBASE)/common/brand/lx

59 # lx_think.so.1 interposes on a number of libc.so.1 routines.
60 DYNFLAGS += $(MAPOPTS) $(ZINTERPOSE)

new/usr/src/lib/brand/lx/lx_thunk/Makefile.com 2

62 LIBS = $(DYNLIB)

64 CLEANFILES = $(DYNLIB)
65 ROOTLIBDIR = $(ROOT)/usr/lib/brand/lx
66 ROOTLIBDIR64 = $(ROOT)/usr/lib/brand/lx/$(MACH64)

68 .KEEP_STATE:

70 all: $(DYNLIB)

72 lint: $(LINTLIB) lintcheck

74 include ../../../../Makefile.targ
75 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_thunk/amd64/Makefile 1

**
 1089 Tue Jan 14 16:17:11 2014
new/usr/src/lib/brand/lx/lx_thunk/amd64/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 include ../Makefile.com
30 include $(SRC)/lib/Makefile.lib.64

32 CLOBBERFILES = $(ROOTLIBDIR64)/$(DYNLIB) $(ROOTLIBDIR64)/$(LINTLIB)

34 install: all $(ROOTLIBS64)
35 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 1

**
 31455 Tue Jan 14 16:17:12 2014
new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 /*
30 * The BrandZ Linux thunking library.
31 *
32 * The interfaces defined in this file form the client side of a bridge
33 * to allow native Solaris process to access Linux services. Currently
34 * the Linux services that is made accessible by these interfaces here
35 * are:
36 * - Linux host <-> address naming services
37 * - Linux service <-> port naming services
38 * - Linux syslog
39 *
40 * Currently, to use this library it must be LD_PRELOADed into the
41 * application that needs to access Linux services. Once loaded
42 * Linux services are accessed by the client application in two
43 * different ways:
44 *
45 * - Direct library calls:
46 * lxt_gethostbyname_r
47 * lxt_gethostbyaddr_r
48 * lxt_getservbyname_r
49 * lxt_getservbyport_r
50 * lxt_debug
51 *
52 * These library functions are used by the BrandZ lx name services
53 * translation library (lx_nametoaddr.so) to handle libnsl.so name
54 * service requests.
55 *
56 * - Intercepted library calls:
57 * openlog(3c)
58 * syslog(3c)
59 * vsyslog(3c)
60 * closelog(3c)

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 2

61 *
62 * Via the LD_PRELOAD mechanism this library interposes itself on
63 * these interfaces and when the application calls these interfaces
64 * (either directly or indirectly via any libraries the program may
65 * be linked against) this library intercepts the request and passes
66 * it onto a Linux process to handle the request.
67 *
68 * Once this library receives a request that needs to be serviced by a
69 * Linux process, it packs up that request and attempts to send it
70 * to a doors server. The door server interfaces are defined in
71 * lx_thunk_server.h. If the doors server is not running or not
72 * responding, this library will attempt to spawn a new doors server
73 * by forking and executing the following shell script (which runs as
74 * a native /bin/sh Linux process):
75 * /native/usr/lib/brand/lx/lx_thunk
76 *
77 * Notes:
78 * - This library also intercepts the following system calls:
79 * close(2) - We intercept close(2) to prevent the caller from
80 * accidentally closing any of the file descriptors we
81 * need to do our work.
82 *
83 * setppriv(2) - We intercept setppriv(2) to prevent a process
84 * from dropping any of the privileges we’ll need to create
85 * a new lx_thunk server process and to deal with service
86 * requests.
87 *
88 * - To facilitate the running of native Solaris programs and libraries
89 * when this library is preloaded into an application it will chroot()
90 * into /native. This way the Solaris application and libraries can
91 * access files via their expected paths and we can avoid having to
92 * either do path mapping or modifying all libraries to make them
93 * aware of "/native" so that they can pre-pend it to all their
94 * filesystem operations.
95 *
96 * - This library can only be used with processes that are initially
97 * run by root in a zone. The reason is that we use the chroot()
98 * system call and this requires the PRIV_PROC_CHROOT privilege,
99 * which non-root users don’t have.
100 */

102 #include <alloca.h>
103 #include <assert.h>
104 #include <dlfcn.h>
105 #include <door.h>
106 #include <errno.h>
107 #include <fcntl.h>
108 #include <netdb.h>
109 #include <netdir.h>
110 #include <priv.h>
111 #include <stdarg.h>
112 #include <stdio.h>
113 #include <stdlib.h>
114 #include <string.h>
115 #include <strings.h>
116 #include <synch.h>
117 #include <sys/brand.h>
118 #include <sys/fcntl.h>
119 #include <sys/lx_thunk_server.h>
120 #include <sys/lx_thunk.h>
121 #include <sys/mman.h>
122 #include <sys/priv_impl.h>
123 #include <sys/stat.h>
124 #include <sys/syscall.h>
125 #include <sys/types.h>
126 #include <sys/wait.h>

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 3

127 #include <thread.h>
128 #include <unistd.h>
129 #include <sys/varargs.h>

131 #define LXT_DOOR_DIR "/tmp"
132 #define LXT_DOOR_PREFIX "lxt"
133 #define LXT_MSG_MAXLEN (128 + MAXPATHLEN)

135 #pragma init(init)

137 typedef uintptr_t (*fp1_t)(uintptr_t);
138 typedef uintptr_t (*fp3_t)(uintptr_t, uintptr_t, uintptr_t);

140 static char *lxt_debug_path = NULL; /* debug output file path */
141 static char lxt_debug_path_buf[MAXPATHLEN];
142 static int root_fd;
143 static int debug_fd = -1;

145 void lxt_debug(const char *msg, ...);

147 void
148 init(void)
149 {
150 if (getenv("LX_DEBUG") != NULL) {

152 /* check if there’s a debug log file specified */
153 lxt_debug_path = getenv("LX_DEBUG_FILE");
154 if (lxt_debug_path == NULL) {
155 /* send all debugging output to /dev/tty */
156 lxt_debug_path = "/dev/tty";
157 }

159 (void) strlcpy(lxt_debug_path_buf, lxt_debug_path,
160 sizeof (lxt_debug_path_buf));
161 lxt_debug_path = lxt_debug_path_buf;

163 /*
164 * Open the debugging output file. We need to open it
165 * and hold it open because we’re going to call chroot()
166 * in just a second, so we won’t be able to open it later.
167 */
168 if ((debug_fd = open(lxt_debug_path,
169 O_WRONLY|O_APPEND|O_CREAT|O_NDELAY|O_NOCTTY,
170 0666)) != -1) {
171 (void) fchmod(debug_fd, 0666);
172 }
173 }
174 lxt_debug("lxt_init: executing native process");

176 /* Get a fd that points to the root directory */
177 if ((root_fd = open("/", O_RDONLY)) < 0) {
178 lxt_debug("lxt_init(): "
179 "failed to open root directory: %s", strerror(errno));
180 exit(-1);
181 }

183 /*
184 * Now, so that we can avoid having to do path mapping,
185 * just chdir() and chroot() into /native.
186 */
187 if (chdir("/native") != 0) {
188 lxt_debug("lxt_init(): "
189 "failed to chdir to /native: %s", strerror(errno));
190 exit(-1);
191 }
192 if (chroot("/native") != 0) {

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 4

193 lxt_debug("lxt_init(): "
194 "failed to chroot to /native: %s", strerror(errno));
195 exit(-1);
196 }
197 }

199 /*
200 * Linux Thunking Interfaces - Client Side
201 */
202 static mutex_t lxt_door_lock = DEFAULTMUTEX;
203 static int lxt_door_fd = -1;

205 static void
206 lxt_server_exec(int fifo_wr, int fifo_rd)
207 {
208 extern const char **environ;
209 char *nullist[] = { NULL };

211 lxt_debug("lxt_server_exec: server starting");

213 /*
214 * First we need to dup our fifos to the file descriptors
215 * the brand library is expecting them to be at.
216 */

218 /* Check if the write fifo needs to be moved aside */
219 if ((fifo_wr == LXT_SERVER_FIFO_RD_FD) &&
220 ((fifo_wr = dup(fifo_wr)) < 0))
221 return;

223 /* Check if the read fifo needs to be moved aside */
224 if ((fifo_rd == LXT_SERVER_FIFO_WR_FD) &&
225 ((fifo_rd = dup(fifo_rd)) < 0))
226 return;

228 if ((fifo_wr != LXT_SERVER_FIFO_WR_FD) &&
229 (dup2(fifo_wr, LXT_SERVER_FIFO_WR_FD) < 0))
230 return;
231 if ((fifo_rd != LXT_SERVER_FIFO_RD_FD) &&
232 (dup2(fifo_rd, LXT_SERVER_FIFO_RD_FD) < 0))
233 return;

235 /*
236 * We’re about to execute a native Linux process.
237 * Since we’ve been loaded into a Solaris process with
238 * LD_PRELOAD and LD_LIBRARY_PATH we should clear these
239 * variables from the environment before calling exec.
240 */
241 (void) unsetenv("LD_PRELOAD");
242 (void) unsetenv("LD_LIBRARY_PATH");

244 /*
245 * Now we need to exec the thunk server process. This is a
246 * branded Linux process that will act as a doors server and
247 * service our requests to perform native Linux operations.
248 * Since we’re currently running as a native Solaris process
249 * to start up the server we’ll use the brand system call to
250 * the kernel that the target of the exec will be a branded
251 * process.
252 */
253 lxt_debug("lxt_server_exec: execing as Linux process");
254 (void) syscall(SYS_brand, B_EXEC_BRAND,
255 LXT_SERVER_BINARY, nullist, environ);
256 }

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 5

259 static void *
260 lxt_door_waitpid(void *arg)
261 {
262 pid_t child_pid = (pid_t)(uintptr_t)arg;
263 int stat;

265 (void) waitpid(child_pid, &stat, 0);
266 return (NULL);
267 }

269 static char *
270 lxt_door_mkfifo()
271 {
272 char *path;

274 for (;;) {
275 path = tempnam(LXT_DOOR_DIR, LXT_DOOR_PREFIX);
276 if (path == NULL)
277 return (NULL);
278 if (mkfifo(path, S_IWUSR | S_IRUSR) != 0) {
279 if (errno != EEXIST) {
280 free(path);
281 return (NULL);
282 }
283 /* This file path exists, pick a new name. */
284 free(path);
285 continue;
286 }
287 /* We successfully created the fifo */
288 break;
289 }
290 return (path);
291 }

293 static void
294 lxt_door_init()
295 {
296 char *fifo1_path = NULL, *fifo2_path = NULL;
297 char fifo1_path_native[MAXPATHLEN];
298 int fifo1_rd = -1, fifo1_wr = -1;
299 int fifo2_rd = -1, fifo2_wr = -1;
300 int junk;
301 pid_t child_pid;
302 thread_t tid;

304 lxt_debug("lxt_door_init: preparint to start server");

306 /* Create two new fifos. */
307 if (((fifo1_path = lxt_door_mkfifo()) == NULL) ||
308 ((fifo2_path = lxt_door_mkfifo()) == NULL))
309 goto fail;

311 (void) snprintf(fifo1_path_native, sizeof (fifo1_path_native),
312 "/native%s", fifo1_path);

314 /*
315 * Open both fifos for reading and writing. We have to open
316 * the read side of the fifo first (because the write side will
317 * fail to open if there is no reader) and we have to use the
318 * O_NONBLOCK flag (because the read open with hang without it).
319 */
320 if (((fifo1_rd = open(fifo1_path, O_RDONLY | O_NONBLOCK)) < 0) ||
321 ((fifo1_wr = open(fifo1_path, O_WRONLY)) < 0) ||
322 ((fifo2_rd = open(fifo2_path, O_RDONLY | O_NONBLOCK)) < 0) ||
323 ((fifo2_wr = open(fifo2_path, O_WRONLY)) < 0))
324 goto fail;

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 6

326 /*
327 * Now we have to close the read side of fifo1 and fifo2 and re-open
328 * them without the O_NONBLOCK flag. This is because we’re using
329 * the fifos for synchronization and when we actually try to read
330 * from them we want to block.
331 */
332 (void) close(fifo1_rd);
333 if ((fifo1_rd = open(fifo1_path, O_RDONLY)) < 0)
334 goto fail;
335 (void) close(fifo2_rd);
336 if ((fifo2_rd = open(fifo2_path, O_RDONLY)) < 0)
337 goto fail;

339 /*
340 * Once fifo2 is opened no one will ever need to open it again
341 * so delete it now.
342 */
343 (void) unlink(fifo2_path);
344 free(fifo2_path);
345 fifo2_path = NULL;

347 /* Attempt to fork and start the door server */
348 lxt_debug("lxt_door_init: starting server");
349 switch (child_pid = fork1()) {
350 case -1:
351 /* fork1() failed. */
352 goto fail;
353 case 0:
354 /* Child process - new door server. */
355 (void) close(fifo1_rd);
356 (void) close(fifo2_wr);

358 /* Need to chroot back to the real root directory */
359 if (fchroot(root_fd) != 0) {
360 lxt_debug("lxt_server_exec: "
361 "failed fchroot(\"/\"): %s", strerror(errno));
362 exit(-1);
363 }
364 (void) close(root_fd);

366 /* Start the server */
367 lxt_server_exec(fifo1_wr, fifo2_rd);
368 lxt_debug("lxt_server_exec: server init failed");
369 exit(-1);
370 /*NOTREACHED*/
371 }
372 /* Parent process - door client. */

374 /*
375 * fifo2 is used to send the door path to the child.
376 * (We can’t simply pass it via the address space since the
377 * child will need to exec.) We’ll write the name of the door
378 * file to fifo2 before we close the read end of the fifo2 so
379 * that if the child has exited for some reason we won’t get
380 * a SIGPIPE. Note that we’re reusing the name of fifo1 as
381 * the door path. Also note that we’ve pre-pended /native
382 * to the fifo/door path. The reason is that we’re chroot’ed
383 * to /native, but when the thunking server executes it will
384 * be chroot’ed back to the real root directory.
385 */
386 (void) write(fifo2_wr,
387 fifo1_path_native, strlen(fifo1_path_native) + 1);
388 (void) close(fifo2_wr);
389 (void) close(fifo2_rd);

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 7

391 /*
392 * Start up a thread that will perfom a waitpid() on the child
393 * door server process. We do this because if the calling
394 * application that is using our interfaces is forking it’s own
395 * children and using wait(), then it won’t expect to see our
396 * children. We take advantage of the fact that if there are
397 * wait() and a waitpid() calls in progress at the same time
398 * when a child exists, preference will be given to any
399 * waitpid() calls that are explicity waiting for that child.
400 * There is of course a window of time where the child could
401 * exit after we’ve forked it but before we’ve called waitpid()
402 * where another wait() in this process could collect the result.
403 * There’s nothing we can really do to prevent this short of
404 * stopping all the other threads in this process.
405 */
406 (void) thr_create(NULL, 0,
407 lxt_door_waitpid, (void *)(uintptr_t)child_pid, THR_DAEMON, &tid);

409 /*
410 * fifo1 is used for the child process to signal us that the
411 * door server is ready to take requests.
412 */
413 (void) close(fifo1_wr);
414 (void) read(fifo1_rd, &junk, 1);
415 (void) close(fifo1_rd);

417 /* If there was a door that was open, close it now. */

419 if (lxt_door_fd >= 0)
420 (void) close(lxt_door_fd);
421 /*
422 * The server should be started up by now and fattach()ed the door
423 * server to the fifo/door path. so if we re-open that path now we
424 * should get a fd to the door server.
425 */
426 lxt_door_fd = open(fifo1_path, O_RDWR);

428 lxt_debug("lxt_door_init: new server door = %d", lxt_door_fd);

430 /* We don’t need the fifo/door anymore so delete it. */
431 (void) unlink(fifo1_path);
432 free(fifo1_path);
433 return;

435 fail:
436 if (fifo1_path != NULL)
437 (void) unlink(fifo1_path);
438 if (fifo2_path != NULL)
439 (void) unlink(fifo2_path);
440 if (fifo1_rd != -1)
441 (void) close(fifo1_rd);
442 if (fifo1_wr != -1)
443 (void) close(fifo1_wr);
444 if (fifo2_rd != -1)
445 (void) close(fifo2_rd);
446 if (fifo2_wr != -1)
447 (void) close(fifo2_wr);
448 }

450 static int
451 lxt_door_call(door_arg_t *door_arg, int lock_held)
452 {
453 int fd;

455 if (!lock_held)
456 (void) mutex_lock(&lxt_door_lock);

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 8

458 /* Get a copy of lxt_door_fd */
459 fd = lxt_door_fd;

461 if (!lock_held)
462 (void) mutex_unlock(&lxt_door_lock);

464 if (fd == -1) {
465 lxt_debug("lxt_door_call: no door available");
466 return (-1);
467 }

469 if (door_call(fd, door_arg) != 0) {
470 lxt_debug("lxt_door_call: call failed");
471 return (-1);
472 }
473 if (door_arg->rbuf == NULL) {
474 lxt_debug("lxt_door_call: call returned NULL");
475 return (-1);
476 }
477 return (0);
478 }

480 static int
481 lxt_door_request(door_arg_t *door_arg)
482 {
483 door_arg_t door_ping;
484 lxt_server_arg_t ping_request, *ping_result;
485 int rv, ping_success = 0;

487 /* First just try the door call. */
488 lxt_debug("lxt_door_request: calling server");
489 if (lxt_door_call(door_arg, 0) == 0)
490 return (0);

492 /* Prepare a door server ping request. */
493 bzero(&door_ping, sizeof (door_ping));
494 bzero(&ping_request, sizeof (ping_request));
495 door_ping.data_ptr = (char *)&ping_request;
496 door_ping.data_size = sizeof (ping_request);
497 ping_request.lxt_sa_op = LXT_SERVER_OP_PING;

499 (void) mutex_lock(&lxt_door_lock);

501 /* Ping the doors server. */
502 lxt_debug("lxt_door_request: pinging server");
503 if (lxt_door_call(&door_ping, 1) == 0) {
504 /*LINTED*/
505 ping_result = (lxt_server_arg_t *)door_ping.rbuf;
506 ping_success = ping_result->lxt_sa_success;
507 (void) munmap(door_ping.rbuf, door_ping.rsize);
508 }

510 if (!ping_success) {
511 /* The server is not responding so start up a new one. */
512 lxt_door_init();
513 }
514 (void) mutex_unlock(&lxt_door_lock);

516 /* Retry the original request */
517 lxt_debug("lxt_door_request: calling server, retry");
518 if ((rv = lxt_door_call(door_arg, 0)) == 0)
519 return (0);
520 return (rv);
521 }

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 9

523 static struct hostent *
524 lxt_gethost(int op, const char *token, int token_len, int type,
525 struct hostent *result, char *buf, int buf_len, int *h_errnop)
526 {
527 door_arg_t door_arg;
528 lxt_gethost_arg_t *data;
529 lxt_server_arg_t *request;
530 int request_size, errno_tmp, i;

532 lxt_debug("lxt_gethost: request caught");

534 request_size = sizeof (*request) + sizeof (*data) +
535 token_len + buf_len - 1;
536 if ((request = calloc(1, request_size)) == NULL) {
537 lxt_debug("lxt_gethost: calloc() failed");
538 *h_errnop = TRY_AGAIN;
539 return (NULL);
540 }
541 /*LINTED*/
542 data = (lxt_gethost_arg_t *)&request->lxt_sa_data[0];

544 /* Initialize the server request. */
545 request->lxt_sa_op = op;
546 data->lxt_gh_type = type;
547 data->lxt_gh_token_len = token_len;
548 data->lxt_gh_buf_len = buf_len;
549 data->lxt_gh_storage_len = token_len + token_len;
550 bcopy(token, &data->lxt_gh_storage[0], token_len);

552 /* Initialize door_call() arguments. */
553 bzero(&door_arg, sizeof (door_arg));
554 door_arg.data_ptr = (char *)request;
555 door_arg.data_size = request_size;

557 if (lxt_door_request(&door_arg) != 0) {
558 lxt_debug("lxt_gethost: door_call() failed");
559 /* Don’t know what caused the error so clear errno. */
560 errno = 0;
561 *h_errnop = ND_SYSTEM;
562 free(request);
563 return (NULL);
564 }

566 free(request);

568 if (door_arg.rbuf == NULL) {
569 lxt_debug("lxt_gethost: door_call() returned NULL");
570 /* Don’t know what caused the error so clear errno. */
571 errno = 0;
572 *h_errnop = ND_SYSTEM;
573 return (NULL);
574 }

576 /*LINTED*/
577 request = (lxt_server_arg_t *)door_arg.rbuf;
578 /*LINTED*/
579 data = (lxt_gethost_arg_t *)&request->lxt_sa_data[0];

581 /* Check if the remote procedure call failed */
582 if (!request->lxt_sa_success) {
583 lxt_debug("lxt_gethost: remote function call failed");
584 errno_tmp = request->lxt_sa_errno;
585 *h_errnop = data->lxt_gh_h_errno;
586 (void) munmap(door_arg.rbuf, door_arg.rsize);
587 errno = errno_tmp;
588 return (NULL);

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 10

589 }

591 /* Copy out the results and output buffer. */
592 bcopy(&data->lxt_gh_result, result, sizeof (*result));
593 bcopy(&data->lxt_gh_storage[token_len], buf, buf_len);
594 (void) munmap(door_arg.rbuf, door_arg.rsize);

596 /* Now go through the results and convert all offsets to pointers */
597 result->h_name = LXT_OFFSET_TO_PTR(result->h_name, buf);
598 result->h_aliases = LXT_OFFSET_TO_PTR(result->h_aliases, buf);
599 result->h_addr_list = LXT_OFFSET_TO_PTR(result->h_addr_list, buf);
600 for (i = 0; result->h_aliases[i] != NULL; i++) {
601 result->h_aliases[i] =
602 LXT_OFFSET_TO_PTR(result->h_aliases[i], buf);
603 }
604 for (i = 0; result->h_addr_list[i] != NULL; i++) {
605 result->h_addr_list[i] =
606 LXT_OFFSET_TO_PTR(result->h_addr_list[i], buf);
607 }

609 return (result);
610 }

612 static struct servent *
613 lxt_getserv(int op, const char *token, const int token_len, const char *proto,
614 struct servent *result, char *buf, int buf_len)
615 {
616 door_arg_t door_arg;
617 lxt_getserv_arg_t *data;
618 lxt_server_arg_t *request;
619 int request_size, errno_tmp, i;

621 lxt_debug("lxt_getserv: request caught");

623 request_size = sizeof (*request) + sizeof (*data) +
624 token_len + buf_len - 1;
625 if ((request = calloc(1, request_size)) == NULL) {
626 lxt_debug("lxt_getserv: calloc() failed");
627 return (NULL);
628 }
629 /*LINTED*/
630 data = (lxt_getserv_arg_t *)&request->lxt_sa_data[0];

632 /* Initialize the server request. */
633 request->lxt_sa_op = op;
634 data->lxt_gs_token_len = token_len;
635 data->lxt_gs_buf_len = buf_len;
636 data->lxt_gs_storage_len = token_len + token_len;
637 bcopy(token, &data->lxt_gs_storage[0], token_len);

639 bzero(data->lxt_gs_proto, sizeof (data->lxt_gs_proto));
640 if (proto != NULL)
641 (void) strncpy(data->lxt_gs_proto, proto,
642 sizeof (data->lxt_gs_proto));

644 /* Initialize door_call() arguments. */
645 bzero(&door_arg, sizeof (door_arg));
646 door_arg.data_ptr = (char *)request;
647 door_arg.data_size = request_size;

649 /* Call the doors server */
650 if (lxt_door_request(&door_arg) != 0) {
651 lxt_debug("lxt_getserv: door_call() failed");
652 /* Don’t know what caused the error so clear errno */
653 errno = 0;
654 free(request);

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 11

655 return (NULL);
656 }
657 free(request);

659 if (door_arg.rbuf == NULL) {
660 lxt_debug("lxt_getserv: door_call() returned NULL");
661 /* Don’t know what caused the error so clear errno */
662 errno = 0;
663 return (NULL);
664 }
665 /*LINTED*/
666 request = (lxt_server_arg_t *)door_arg.rbuf;
667 /*LINTED*/
668 data = (lxt_getserv_arg_t *)&request->lxt_sa_data[0];

670 /* Check if the remote procedure call failed */
671 if (!request->lxt_sa_success) {
672 lxt_debug("lxt_getserv: remote function call failed");
673 errno_tmp = request->lxt_sa_errno;
674 (void) munmap(door_arg.rbuf, door_arg.rsize);
675 errno = errno_tmp;
676 return (NULL);
677 }

679 /* Copy out the results and output buffer. */
680 bcopy(&data->lxt_gs_result, result, sizeof (*result));
681 bcopy(&data->lxt_gs_storage[token_len], buf, buf_len);
682 (void) munmap(door_arg.rbuf, door_arg.rsize);

684 /*
685 * Now go through the results and convert all offsets to pointers.
686 * See the comments in lxt_server_getserv() for why we need
687 * to subtract 1 from each offset.
688 */
689 result->s_name = LXT_OFFSET_TO_PTR(result->s_name, buf);
690 result->s_proto = LXT_OFFSET_TO_PTR(result->s_proto, buf);
691 result->s_aliases = LXT_OFFSET_TO_PTR(result->s_aliases, buf);
692 for (i = 0; result->s_aliases[i] != NULL; i++) {
693 result->s_aliases[i] =
694 LXT_OFFSET_TO_PTR(result->s_aliases[i], buf);
695 }

697 return (result);
698 }

700 static void
701 lxt_openlog(const char *ident, int logopt, int facility)
702 {
703 door_arg_t door_arg;
704 lxt_openlog_arg_t *data;
705 lxt_server_arg_t *request;
706 int request_size;

708 request_size = sizeof (*request) + sizeof (*data);
709 if ((request = calloc(1, request_size)) == NULL) {
710 lxt_debug("lxt_openlog: calloc() failed");
711 return;
712 }
713 /*LINTED*/
714 data = (lxt_openlog_arg_t *)&request->lxt_sa_data[0];

716 /* Initialize the server request. */
717 request->lxt_sa_op = LXT_SERVER_OP_OPENLOG;
718 data->lxt_ol_facility = facility;
719 data->lxt_ol_logopt = logopt;
720 (void) strlcpy(data->lxt_ol_ident, ident, sizeof (data->lxt_ol_ident));

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 12

722 /* Initialize door_call() arguments. */
723 bzero(&door_arg, sizeof (door_arg));
724 door_arg.data_ptr = (char *)request;
725 door_arg.data_size = request_size;

727 /* Call the doors server */
728 if (lxt_door_request(&door_arg) != 0) {
729 lxt_debug("lxt_openlog: door_call() failed");
730 free(request);
731 return;
732 }
733 free(request);

735 if (door_arg.rbuf == NULL) {
736 lxt_debug("lxt_openlog: door_call() returned NULL");
737 return;
738 }

740 /*LINTED*/
741 request = (lxt_server_arg_t *)door_arg.rbuf;

743 /* Check if the remote procedure call failed */
744 if (!request->lxt_sa_success) {
745 lxt_debug("lxt_openlog: remote function call failed");
746 }
747 (void) munmap(door_arg.rbuf, door_arg.rsize);
748 }

750 static void
751 lxt_vsyslog(int priority, const char *message, va_list va)
752 {
753 door_arg_t door_arg;
754 lxt_syslog_arg_t *data;
755 lxt_server_arg_t *request;
756 psinfo_t p;
757 char procfile[PRFNSZ], *buf = NULL, *estr;
758 int buf_len, buf_i, estr_len, request_size, procfd;
759 int i, key, err_count = 0, tok_count = 0;
760 int errno_backup = errno;

762 /*
763 * Here we’re going to use vsnprintf() to expand the message
764 * string passed in before we hand it off to a Linux process.
765 * Before we can call vsnprintf() we’ll need to do modify the
766 * string to deal with certain special tokens.
767 *
768 * syslog() supports a special ’%m’ format token that expands to
769 * the error message string associated with the current value
770 * of errno. Unfortunatly if we pass this token to vsnprintf()
771 * it will choke so we need to expand that token manually here.
772 *
773 * We also need to expand any "%%" characters into "%%%%".
774 * The reason is that we’ll be calling vsnprintf() which will
775 * translate "%%%%" back to "%%", which is safe to pass to the
776 * Linux version if syslog. If we didn’t do this then vsnprintf()
777 * would translate "%%" to "%" and then the Linux syslog would
778 * attempt to intrepret "%" and whatever character follows it
779 * as a printf format style token.
780 */
781 for (key = i = 0; message[i] != ’\0’; i++) {
782 if (!key && message[i] == ’%’) {
783 key = 1;
784 continue;
785 }
786 if (key && message[i] == ’%’)

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 13

787 tok_count++;
788 if (key && message[i] == ’m’)
789 err_count++;
790 key = 0;
791 }

793 /* We found some tokens that we need to expand. */
794 if (err_count || tok_count) {
795 estr = strerror(errno_backup);
796 estr_len = strlen(estr);
797 assert(estr_len >= 2);

799 /* Allocate a buffer to hold the expanded string. */
800 buf_len = i + 1 +
801 (tok_count * 2) + (err_count * (estr_len - 2));
802 if ((buf = calloc(1, buf_len)) == NULL) {
803 lxt_debug("lxt_vsyslog: calloc() failed");
804 return;
805 }

807 /* Finally, expand %% and %m. */
808 for (key = buf_i = i = 0; message[i] != ’\0’; i++) {
809 assert(buf_i < buf_len);
810 if (!key && message[i] == ’%’) {
811 buf[buf_i++] = ’%’;
812 key = 1;
813 continue;
814 }
815 if (key && message[i] == ’m’) {
816 (void) bcopy(estr, &buf[buf_i - 1], estr_len);
817 buf_i += estr_len - 1;
818 } else if (key && message[i] == ’%’) {
819 (void) bcopy("%%%%", &buf[buf_i - 1], 4);
820 buf_i += 4 - 1;
821 } else {
822 buf[buf_i++] = message[i];
823 }
824 key = 0;
825 }
826 assert(buf[buf_i] == ’\0’);
827 assert(buf_i == (buf_len - 1));

829 /* Use the expanded buffer as our format string. */
830 message = buf;
831 }

833 /* Allocate the request we’re going to send to the server */
834 request_size = sizeof (*request) + sizeof (*data);
835 if ((request = calloc(1, request_size)) == NULL) {
836 lxt_debug("lxt_vsyslog: calloc() failed");
837 return;
838 }

840 /*LINTED*/
841 data = (lxt_syslog_arg_t *)&request->lxt_sa_data[0];

843 /* Initialize the server request. */
844 request->lxt_sa_op = LXT_SERVER_OP_SYSLOG;
845 data->lxt_sl_priority = priority;
846 data->lxt_sl_pid = getpid();
847 (void) vsnprintf(data->lxt_sl_message, sizeof (data->lxt_sl_message),
848 message, va);

850 /* If we did token expansion then free the intermediate buffer. */
851 if (err_count || tok_count)
852 free(buf);

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 14

854 /* Add the current program name into the request */
855 (void) sprintf(procfile, "/proc/%u/psinfo", (int)getpid());
856 /* (void) sprintf(procfile, "/native/proc/%u/psinfo", (int)getpid()); */
857 if ((procfd = open(procfile, O_RDONLY)) >= 0) {
858 if (read(procfd, &p, sizeof (psinfo_t)) >= 0) {
859 (void) strncpy(data->lxt_sl_progname, p.pr_fname,
860 sizeof (data->lxt_sl_progname));
861 }
862 (void) close(procfd);
863 }

865 /* Initialize door_call() arguments. */
866 bzero(&door_arg, sizeof (door_arg));
867 door_arg.data_ptr = (char *)request;
868 door_arg.data_size = request_size;

870 /* Call the doors server */
871 if (lxt_door_request(&door_arg) != 0) {
872 lxt_debug("lxt_vsyslog: door_call() failed");
873 free(request);
874 return;
875 }
876 free(request);

878 if (door_arg.rbuf == NULL) {
879 lxt_debug("lxt_vsyslog: door_call() returned NULL");
880 return;
881 }

883 /*LINTED*/
884 request = (lxt_server_arg_t *)door_arg.rbuf;

886 /* Check if the remote procedure call failed */
887 if (!request->lxt_sa_success) {
888 lxt_debug("lxt_vsyslog: remote function call failed");
889 }
890 (void) munmap(door_arg.rbuf, door_arg.rsize);
891 }

893 static void
894 lxt_closelog(void)
895 {
896 door_arg_t door_arg;
897 lxt_server_arg_t *request;
898 int request_size;

900 request_size = sizeof (*request);
901 if ((request = calloc(1, request_size)) == NULL) {
902 lxt_debug("lxt_closelog: calloc() failed");
903 return;
904 }

906 /* Initialize the server request. */
907 request->lxt_sa_op = LXT_SERVER_OP_CLOSELOG;

909 /* Initialize door_call() arguments. */
910 bzero(&door_arg, sizeof (door_arg));
911 door_arg.data_ptr = (char *)request;
912 door_arg.data_size = request_size;

914 /* Call the doors server */
915 if (lxt_door_request(&door_arg) != 0) {
916 lxt_debug("lxt_closelog: door_call() failed");
917 free(request);
918 return;

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 15

919 }
920 free(request);

922 if (door_arg.rbuf == NULL) {
923 lxt_debug("lxt_closelog: door_call() returned NULL");
924 return;
925 }

927 /*LINTED*/
928 request = (lxt_server_arg_t *)door_arg.rbuf;

930 /* Check if the remote procedure call failed */
931 if (!request->lxt_sa_success) {
932 lxt_debug("lxt_closelog: remote function call failed");
933 }
934 (void) munmap(door_arg.rbuf, door_arg.rsize);
935 }

937 static void
938 lxt_pset_keep(priv_op_t op, priv_ptype_t type, priv_set_t *pset,
939 const char *priv)
940 {
941 if (priv_ismember(pset, priv) == B_TRUE) {
942 if (op == PRIV_OFF) {
943 (void) priv_delset(pset, priv);
944 lxt_debug("lxt_pset_keep: "
945 "preventing drop of \"%s\" from \"%s\" set",
946 priv, type);
947 }
948 } else {
949 if (op == PRIV_SET) {
950 (void) priv_addset(pset, priv);
951 lxt_debug("lxt_pset_keep: "
952 "preventing drop of \"%s\" from \"%s\" set",
953 priv, type);
954 }
955 }
956 }

958 /*
959 * Public interfaces - used by lx_nametoaddr
960 */
961 void
962 lxt_vdebug(const char *msg, va_list va)
963 {
964 char buf[LXT_MSG_MAXLEN + 1];
965 int rv, n;

967 if (debug_fd == -1)
968 return;

970 /* Prefix the message with pid/tid. */
971 if ((n = snprintf(buf, sizeof (buf), "%u/%u: ",
972 getpid(), thr_self())) == -1)
973 return;

975 /* Format the message. */
976 if (vsnprintf(&buf[n], sizeof (buf) - n, msg, va) == -1)
977 return;

979 /* Add a carrige return if there isn’t one already. */
980 if ((buf[strlen(buf) - 1] != ’\n’) &&
981 (strlcat(buf, "\n", sizeof (buf)) >= sizeof (buf)))
982 return;

984 /* We retry in case of EINTR */

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 16

985 do {
986 rv = write(debug_fd, buf, strlen(buf));
987 } while ((rv == -1) && (errno == EINTR));
988 }

990 void
991 lxt_debug(const char *msg, ...)
992 {
993 va_list va;
994 int errno_backup;

996 if (debug_fd == -1)
997 return;

999 errno_backup = errno;
1000 va_start(va, msg);
1001 lxt_vdebug(msg, va);
1002 va_end(va);
1003 errno = errno_backup;
1004 }

1006 struct hostent *
1007 lxt_gethostbyaddr_r(const char *addr, int addr_len, int type,
1008 struct hostent *result, char *buf, int buf_len, int *h_errnop)
1009 {
1010 lxt_debug("lxt_gethostbyaddr_r: request recieved");
1011 return (lxt_gethost(LXT_SERVER_OP_ADDR2HOST,
1012 addr, addr_len, type, result, buf, buf_len, h_errnop));
1013 }

1015 struct hostent *
1016 lxt_gethostbyname_r(const char *name,
1017 struct hostent *result, char *buf, int buf_len, int *h_errnop)
1018 {
1019 lxt_debug("lxt_gethostbyname_r: request recieved");
1020 return (lxt_gethost(LXT_SERVER_OP_NAME2HOST,
1021 name, strlen(name) + 1, 0, result, buf, buf_len, h_errnop));
1022 }

1024 struct servent *
1025 lxt_getservbyport_r(int port, const char *proto,
1026 struct servent *result, char *buf, int buf_len)
1027 {
1028 lxt_debug("lxt_getservbyport_r: request recieved");
1029 return (lxt_getserv(LXT_SERVER_OP_PORT2SERV,
1030 (const char *)&port, sizeof (int), proto, result, buf, buf_len));
1031 }

1033 struct servent *
1034 lxt_getservbyname_r(const char *name, const char *proto,
1035 struct servent *result, char *buf, int buf_len)
1036 {
1037 lxt_debug("lxt_getservbyname_r: request recieved");
1038 return (lxt_getserv(LXT_SERVER_OP_NAME2SERV,
1039 name, strlen(name) + 1, proto, result, buf, buf_len));
1040 }

1042 /*
1043 * "Public" interfaces - used to override public existing interfaces
1044 */
1045 #pragma weak _close = close
1046 int
1047 close(int fd)
1048 {
1049 static fp1_t fp = NULL;

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 17

1051 /*
1052 * Don’t let the process close our file descriptor that points
1053 * back to the root directory.
1054 */
1055 if (fd == root_fd)
1056 return (0);
1057 if (fd == debug_fd)
1058 return (0);

1060 if (fp == NULL)
1061 fp = (fp1_t)dlsym(RTLD_NEXT, "close");
1062 return (fp((uintptr_t)fd));
1063 }

1065 int
1066 _setppriv(priv_op_t op, priv_ptype_t type, const priv_set_t *pset)
1067 {
1068 static fp3_t fp = NULL;
1069 priv_set_t *pset_new;
1070 int rv;

1072 lxt_debug("_setppriv: request caught");

1074 if (fp == NULL)
1075 fp = (fp3_t)dlsym(RTLD_NEXT, "_setppriv");

1077 while ((pset_new = priv_allocset()) == NULL)
1078 (void) sleep(1);

1080 priv_copyset(pset, pset_new);
1081 lxt_pset_keep(op, type, pset_new, PRIV_PROC_EXEC);
1082 lxt_pset_keep(op, type, pset_new, PRIV_PROC_FORK);
1083 lxt_pset_keep(op, type, pset_new, PRIV_PROC_CHROOT);
1084 lxt_pset_keep(op, type, pset_new, PRIV_FILE_DAC_READ);
1085 lxt_pset_keep(op, type, pset_new, PRIV_FILE_DAC_WRITE);
1086 lxt_pset_keep(op, type, pset_new, PRIV_FILE_DAC_SEARCH);

1088 rv = fp(op, (uintptr_t)type, (uintptr_t)pset_new);
1089 priv_freeset(pset_new);
1090 return (rv);
1091 }

1093 void
1094 openlog(const char *ident, int logopt, int facility)
1095 {
1096 lxt_debug("openlog: request caught");
1097 lxt_openlog(ident, logopt, facility);
1098 }

1100 void
1101 syslog(int priority, const char *message, ...)
1102 {
1103 va_list va;

1105 lxt_debug("syslog: request caught");
1106 va_start(va, message);
1107 lxt_vsyslog(priority, message, va);
1108 va_end(va);
1109 }

1111 void
1112 vsyslog(int priority, const char *message, va_list va)
1113 {
1114 lxt_debug("vsyslog: request caught");
1115 lxt_vsyslog(priority, message, va);
1116 }

new/usr/src/lib/brand/lx/lx_thunk/common/lx_thunk.c 18

1118 void
1119 closelog(void)
1120 {
1121 lxt_debug("closelog: request caught");
1122 lxt_closelog();
1123 }
1124 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_thunk/common/mapfile-vers 1

**
 1481 Tue Jan 14 16:17:12 2014
new/usr/src/lib/brand/lx/lx_thunk/common/mapfile-vers
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # MAPFILE HEADER START
29 #
30 # WARNING: STOP NOW. DO NOT MODIFY THIS FILE.
31 # Object versioning must comply with the rules detailed in
32 #
33 # usr/src/lib/README.mapfiles
34 #
35 # You should not be making modifications here until you’ve read the most current
36 # copy of that file. If you need help, contact a gatekeeper for guidance.
37 #
38 # MAPFILE HEADER END
39 #

41 SUNWprivate_1.1 {
42 global:
43 lxt_vdebug;
44 lxt_debug;
45 lxt_gethostbyaddr_r;
46 lxt_gethostbyname_r;
47 lxt_getservbyport_r;
48 lxt_getservbyname_r;
49 _close;
50 _setppriv;
51 openlog;
52 syslog;
53 vsyslog;
54 closelog;

56 local:
57 *;
58 };
59 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_thunk/i386/Makefile 1

**
 1048 Tue Jan 14 16:17:12 2014
new/usr/src/lib/brand/lx/lx_thunk/i386/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 include ../Makefile.com

31 CLOBBERFILES = $(ROOTLIBDIR)/$(DYNLIB) $(ROOTLIBDIR)/$(LINTLIB)

33 install: all $(ROOTLIBS)
34 #endif /* ! codereview */

new/usr/src/lib/brand/lx/lx_thunk/sys/lx_thunk.h 1

**
 1831 Tue Jan 14 16:17:12 2014
new/usr/src/lib/brand/lx/lx_thunk/sys/lx_thunk.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _LX_THUNK_H
28 #define _LX_THUNK_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 struct hostent *lxt_gethostbyaddr_r(const char *addr, int addr_len, int type,
37 struct hostent *result, char *buf, int buf_len, int *h_errnop);
38 struct hostent *lxt_gethostbyname_r(const char *name,
39 struct hostent *result, char *buf, int buf_len, int *h_errnop);
40 struct servent *lxt_getservbyport_r(int port, const char *proto,
41 struct servent *result, char *buf, int buf_len);
42 struct servent *lxt_getservbyname_r(const char *name, const char *proto,
43 struct servent *result, char *buf, int buf_len);

45 void openlog(const char *ident, int logopt, int facility);
46 void syslog(int priority, const char *message, ...);
47 void closelog(void);

49 void lxt_debug(const char *msg, ...);
50 void lxt_vdebug(const char *msg, va_list va);

52 #ifdef __cplusplus
53 }
54 #endif

56 #endif /* _LX_THUNK_H */
57 #endif /* ! codereview */

new/usr/src/lib/brand/lx/netfiles/Makefile 1

**
 1227 Tue Jan 14 16:17:12 2014
new/usr/src/lib/brand/lx/netfiles/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 TXTS = etc_netconfig etc_default_nfs
30 NFS_DFL = ../../../../cmd/fs.d/nfs/etc/nfs.dfl

32 all: $(TXTS)

34 include ../Makefile.lx

36 lint:

38 install: $(ROOTTXTS)

40 clean:
41 -$(RM) etc_default_nfs

43 clobber: clean
44 -$(RM) $(ROOTXMLDOCS) $(ROOTTXTS)

46 etc_default_nfs: $(NFS_DFL)
47 $(RM) $@
48 $(CP) $(NFS_DFL) $@
49 #endif /* ! codereview */

new/usr/src/lib/brand/lx/netfiles/etc_netconfig 1

**
 1555 Tue Jan 14 16:17:13 2014
new/usr/src/lib/brand/lx/netfiles/etc_netconfig
Bring back LX zones.
**

1 # CDDL HEADER START
2 #
3 # The contents of this file are subject to the terms of the
4 # Common Development and Distribution License (the "License").
5 # You may not use this file except in compliance with the License.
6 #
7 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
8 # or http://www.opensolaris.org/os/licensing.
9 # See the License for the specific language governing permissions
10 # and limitations under the License.
11 #
12 # When distributing Covered Code, include this CDDL HEADER in each
13 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
14 # If applicable, add the following below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [name of copyright owner]
17 #
18 # CDDL HEADER END
19 #
20 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
21 # Use is subject to license terms.
22 #
23 # ident "%Z%%M% %I% %E% SMI"
24 #
25 # The "Network Configuration" File.
26 #
27 # Each entry is of the form:
28 #
29 # <network_id> <semantics> <flags> <protofamily> <protoname> \
30 # <device> <nametoaddr_libs>
31 #
32 # For running solaris daemons in a linux zone we use this non-default
33 # /etc/netconfig. The reason is that all name resolution has to be
34 # done linux name service interfaces. To do this we specify a custom
35 # nametoaddr library that libnsl will invoke to do name service lookups.
36 #
37 udp tpi_clts v inet udp /dev/udp lx_nametoaddr.so.1
38 tcp tpi_cots_ord v inet tcp /dev/tcp lx_nametoaddr.so.1
39 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/Makefile 1

**
 1618 Tue Jan 14 16:17:13 2014
new/usr/src/lib/brand/lx/zone/Makefile
Final fixups and bugfixes
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 PROGS = lx_install lx_distro_install lx_init_zone
30 SUBDIRS = distros
31 XMLDOCS = config.xml platform.xml
32 TEMPLATES = SUNWlx.xml SUNWlx26.xml

34 all: $(PROGS)

36 include $(SRC)/cmd/Makefile.cmd
37 include ../Makefile.lx

39 all := TARGET= all
40 install := TARGET= install
41 clobber := TARGET= clobber

43 POFILES= $(PROGS:%=%.po)
44 POFILE= lx_zone.po

46 $(POFILE): $(POFILES)
47 $(RM) $@
48 $(BUILDPO.pofiles)

50 _msg: $(MSGDOMAINPOFILE)

52 install: $(PROGS) $(ROOTXMLDOCS) $(ROOTTEMPLATES) $(ROOTPROGS) $(SUBDIRS)

54 lint:

56 clean:
57 -$(RM) $(PROGS)

59 clobber: clean $(SUBDIRS)
60 -$(RM) $(ROOTXMLDOCS) $(ROOTPROGS) $(ROOTTEMPLATES)

new/usr/src/lib/brand/lx/zone/Makefile 2

62 $(SUBDIRS): FRC
63 @cd $@; pwd; $(MAKE) $(TARGET)

65 FRC:

67 include $(SRC)/Makefile.msg.targ
68 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/SUNWlx.xml 1

**
 1173 Tue Jan 14 16:17:13 2014
new/usr/src/lib/brand/lx/zone/SUNWlx.xml
Bring back LX zones.
**

1 <?xml version="1.0"?>

3 <!--
4 Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 Use is subject to license terms.

7 CDDL HEADER START

9 The contents of this file are subject to the terms of the
10 Common Development and Distribution License (the "License").
11 You may not use this file except in compliance with the License.

13 You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
14 or http://www.opensolaris.org/os/licensing.
15 See the License for the specific language governing permissions
16 and limitations under the License.

18 When distributing Covered Code, include this CDDL HEADER in each
19 file and include the License file at usr/src/OPENSOLARIS.LICENSE.
20 If applicable, add the following below this CDDL HEADER, with the
21 fields enclosed by brackets "[]" replaced with your own identifying
22 information: Portions Copyright [yyyy] [name of copyright owner]

24 CDDL HEADER END

26 ident "%Z%%M% %I% %E% SMI"

28 DO NOT EDIT THIS FILE. Use zonecfg(1M) instead.
29 -->

31 <!DOCTYPE zone PUBLIC "-//Sun Microsystems Inc//DTD Zones//EN" "file:///usr/shar

33 <zone name="default" zonepath="" autoboot="false" brand="lx">
34 </zone>
35 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/SUNWlx26.xml 1

**
 1231 Tue Jan 14 16:17:13 2014
new/usr/src/lib/brand/lx/zone/SUNWlx26.xml
Final fixups and bugfixes
**

1 <?xml version="1.0"?>

3 <!--
4 Copyright 2006 Sun Microsystems, Inc. All rights reserved.
5 Use is subject to license terms.

7 CDDL HEADER START

9 The contents of this file are subject to the terms of the
10 Common Development and Distribution License (the "License").
11 You may not use this file except in compliance with the License.

13 You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
14 or http://www.opensolaris.org/os/licensing.
15 See the License for the specific language governing permissions
16 and limitations under the License.

18 When distributing Covered Code, include this CDDL HEADER in each
19 file and include the License file at usr/src/OPENSOLARIS.LICENSE.
20 If applicable, add the following below this CDDL HEADER, with the
21 fields enclosed by brackets "[]" replaced with your own identifying
22 information: Portions Copyright [yyyy] [name of copyright owner]

24 CDDL HEADER END

26 ident "%Z%%M% %I% %E% SMI"

28 DO NOT EDIT THIS FILE. Use zonecfg(1M) instead.
29 -->

31 <!DOCTYPE zone PUBLIC "-//Sun Microsystems Inc//DTD Zones//EN" "file:///usr/shar

33 <zone name="default" zonepath="" autoboot="false" brand="lx">
34 <attr name="kernel-version" type="string" value="2.6"/>
35 </zone>
36 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/config.xml 1

**
 3806 Tue Jan 14 16:17:13 2014
new/usr/src/lib/brand/lx/zone/config.xml
Bring back LX zones.
**

1 <?xml version="1.0"?>

3 <!--
4 CDDL HEADER START

6 The contents of this file are subject to the terms of the
7 Common Development and Distribution License (the "License").
8 You may not use this file except in compliance with the License.

10 You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
11 or http://www.opensolaris.org/os/licensing.
12 See the License for the specific language governing permissions
13 and limitations under the License.

15 When distributing Covered Code, include this CDDL HEADER in each
16 file and include the License file at usr/src/OPENSOLARIS.LICENSE.
17 If applicable, add the following below this CDDL HEADER, with the
18 fields enclosed by brackets "[]" replaced with your own identifying
19 information: Portions Copyright [yyyy] [name of copyright owner]

21 CDDL HEADER END

23 Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.

25 DO NOT EDIT THIS FILE.
26 -->

28 <!DOCTYPE brand PUBLIC "-//Sun Microsystems Inc//DTD Brands//EN"
29 "file:///usr/share/lib/xml/dtd/brand.dtd.1">

31 <brand name="lx">
32 <modname>lx_brand</modname>

34 <initname>/sbin/init</initname>
35 <login_cmd>/bin/login -h zone:%Z %u</login_cmd>
36 <forcedlogin_cmd>/bin/login -h zone:%Z -f %u</forcedlogin_cmd>
37 <user_cmd>/usr/bin/getent passwd %u</user_cmd>

39 <install>/usr/lib/brand/lx/lx_install %z %R</install>
40 <installopts>d:hsvX</installopts>
41 <boot>/usr/lib/brand/lx/lx_support boot %R %z</boot>
42 <halt>/usr/lib/brand/lx/lx_support halt %R %z</halt>
43 <verify_cfg>/usr/lib/brand/lx/lx_support verify</verify_cfg>
44 <verify_adm></verify_adm>
45 <postclone></postclone>
46 <postinstall></postinstall>

48 <privilege set="default" name="contract_event" />
49 <privilege set="default" name="contract_identity" />
50 <privilege set="default" name="contract_observer" />
51 <privilege set="default" name="file_chown" />
52 <privilege set="default" name="file_chown_self" />
53 <privilege set="default" name="file_dac_execute" />
54 <privilege set="default" name="file_dac_read" />
55 <privilege set="default" name="file_dac_search" />
56 <privilege set="default" name="file_dac_write" />
57 <privilege set="default" name="file_owner" />
58 <privilege set="default" name="file_setid" />
59 <privilege set="default" name="ipc_dac_read" />
60 <privilege set="default" name="ipc_dac_write" />
61 <privilege set="default" name="ipc_owner" />

new/usr/src/lib/brand/lx/zone/config.xml 2

62 <privilege set="default" name="net_bindmlp" />
63 <privilege set="default" name="net_icmpaccess" />
64 <privilege set="default" name="net_mac_aware" />
65 <privilege set="default" name="net_privaddr" />
66 <privilege set="default" name="proc_chroot" />
67 <privilege set="default" name="sys_audit" />
68 <privilege set="default" name="proc_audit" />
69 <privilege set="default" name="proc_lock_memory" />
70 <privilege set="default" name="proc_owner" />
71 <privilege set="default" name="proc_setid" />
72 <privilege set="default" name="proc_taskid" />
73 <privilege set="default" name="sys_acct" />
74 <privilege set="default" name="sys_admin" />
75 <privilege set="default" name="sys_mount" />
76 <privilege set="default" name="sys_nfs" />
77 <privilege set="default" name="sys_resource" />

79 <privilege set="prohibited" name="dtrace_kernel" />
80 <privilege set="prohibited" name="proc_zone" />
81 <privilege set="prohibited" name="sys_config" />
82 <privilege set="prohibited" name="sys_devices" />
83 <privilege set="prohibited" name="sys_ip_config" />
84 <privilege set="prohibited" name="sys_linkdir" />
85 <privilege set="prohibited" name="sys_net_config" />
86 <privilege set="prohibited" name="sys_res_config" />
87 <privilege set="prohibited" name="sys_suser_compat" />
88 <privilege set="prohibited" name="xvm_control" />
89 <privilege set="prohibited" name="virt_manage" />

91 <privilege set="required" name="proc_exec" />
92 <privilege set="required" name="proc_fork" />
93 <privilege set="required" name="sys_mount" />
94 </brand>
95 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/Makefile 1

**
 1348 Tue Jan 14 16:17:13 2014
new/usr/src/lib/brand/lx/zone/distros/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 include ../../Makefile.lx

29 DISTROS = centos35.distro centos36.distro centos37.distro \
30 centos38.distro rhel35.distro rhel36.distro rhel37.distro \
31 rhel38.distro rhel_centos_common

33 ROOTDISTRODIR= $(ROOTBRANDDIR)/distros
34 ROOTDISTROS= $(DISTROS:%=$(ROOTDISTRODIR)/%)

36 $(ROOTDISTROS) := FILEMODE = 444

38 $(ROOTDISTRODIR):
39 $(INS.dir)

41 $(ROOTDISTRODIR)/%: %
42 $(INS.file)

44 install: $(ROOTDISTROS)

46 lint clean all:

48 clobber:
49 -$(RM) $(ROOTDISTROS)

51 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/centos35.distro 1

**
 2270 Tue Jan 14 16:17:14 2014
new/usr/src/lib/brand/lx/zone/distros/centos35.distro
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # Installation information for the CentOS 3.5 distribution disc set:
29 #
30 # + Serial number (as found in the disc set’s .discinfo file)
31 # + Version Name
32 # + Order CDs holding the distribution must be installed in
33 # + MB of disk space required to hold a full install of the distribution
34 #
35 distro_serial=1118161135.08
36 distro_version="3.5"
37 set -A distro_cdorder 1 2 3

39 distro_mb_required=500

41 # Include the common_<cluster>_* definitions.
42 . ${distro_dir}/rhel_centos_common

44 # Define the CentOS 3.5 deltas from the common cluster lists
45 delta_miniroot_rpms=centos-release
46 delta_core_rpms="centos-yumconf centos-yumcache yum"
47 delta_server_rpms=$delta_core_rpms
48 delta_desktop_rpms="$delta_server_rpms \
49 mozilla \
50 mozilla-chat \
51 mozilla-dom-inspector \
52 mozilla-js-debugger \
53 mozilla-mail \
54 mozilla-nspr \
55 mozilla-nss \
56 openoffice.org-style-gnome"
57 delta_developer_rpms=$delta_desktop_rpms
58 delta_all_rpms=$delta_developer_rpms

60 # Define the final cluster lists for the installer
61 distro_miniroot_rpms="$common_miniroot_rpms $delta_miniroot_rpms"

new/usr/src/lib/brand/lx/zone/distros/centos35.distro 2

62 distro_core_rpms="$common_core_rpms $delta_core_rpms"
63 distro_server_rpms="$common_server_rpms $delta_server_rpms"
64 distro_desktop_rpms="$common_desktop_rpms $delta_desktop_rpms"
65 distro_developer_rpms="$common_developer_rpms $delta_developer_rpms"
66 distro_all_rpms="$common_all_rpms $delta_all_rpms"
67 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/centos36.distro 1

**
 2292 Tue Jan 14 16:17:14 2014
new/usr/src/lib/brand/lx/zone/distros/centos36.distro
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # Installation information for the CentOS 3.6 distribution disc set:
29 #
30 # + Serial number (as found in the disc set’s .discinfo file)
31 # + Version Name
32 # + Order CDs holding the distribution must be installed in
33 # + MB of disk space required to hold a full install of the distribution
34 #
35 distro_serial=1130453594.8
36 distro_version="3.6"
37 set -A distro_cdorder 1 2 3

39 distro_mb_required=500

41 # Include the common_<cluster>_* definitions.
42 . ${distro_dir}/rhel_centos_common

44 # Define the CentOS 3.6 deltas from the common cluster lists
45 delta_miniroot_rpms=centos-release
46 delta_core_rpms="centos-yumconf centos-yumcache yum"
47 delta_server_rpms=$delta_core_rpms
48 delta_desktop_rpms="$delta_server_rpms \
49 mozilla \
50 mozilla-chat \
51 mozilla-dom-inspector \
52 mozilla-js-debugger \
53 mozilla-mail \
54 mozilla-nspr \
55 mozilla-nss \
56 openoffice.org-style-gnome"
57 delta_developer_rpms="$delta_desktop_rpms gd-progs"
58 delta_all_rpms="$delta_developer_rpms emacs-nox"

60 # Define the final cluster lists for the installer
61 distro_miniroot_rpms="$common_miniroot_rpms $delta_miniroot_rpms"

new/usr/src/lib/brand/lx/zone/distros/centos36.distro 2

62 distro_core_rpms="$common_core_rpms $delta_core_rpms"
63 distro_server_rpms="$common_server_rpms $delta_server_rpms"
64 distro_desktop_rpms="$common_desktop_rpms $delta_desktop_rpms"
65 distro_developer_rpms="$common_developer_rpms $delta_developer_rpms"
66 distro_all_rpms="$common_all_rpms $delta_all_rpms"
67 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/centos37.distro 1

**
 2327 Tue Jan 14 16:17:14 2014
new/usr/src/lib/brand/lx/zone/distros/centos37.distro
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # Installation information for the CentOS 3.7 distribution disc set:
29 #
30 # + Serial number (as found in the disc set’s .discinfo file)
31 # + Version Name
32 # + Order CDs holding the distribution must be installed in
33 # + MB of disk space required to hold a full install of the distribution
34 #
35 distro_serial=1144177644.47
36 distro_version="3.7"
37 set -A distro_cdorder 1 2 3

39 distro_mb_required=500

41 # Include the common_<cluster>_* definitions.
42 . ${distro_dir}/rhel_centos_common

44 # Define the CentOS 3.7 deltas from the common cluster lists
45 delta_miniroot_rpms=centos-release
46 delta_core_rpms="centos-yumconf centos-yumcache yum"
47 delta_server_rpms="$delta_core_rpms nss_db-compat sendmail-doc qt-config"
48 delta_desktop_rpms="$delta_server_rpms \
49 mozilla \
50 mozilla-chat \
51 mozilla-dom-inspector \
52 mozilla-js-debugger \
53 mozilla-mail \
54 mozilla-nspr \
55 mozilla-nss"
56 delta_developer_rpms="$delta_desktop_rpms gd-progs ruby-docs irb ruby-tcltk"
57 delta_all_rpms="$delta_developer_rpms emacs-nox"

59 # Define the final cluster lists for the installer
60 distro_miniroot_rpms="$common_miniroot_rpms $delta_miniroot_rpms"
61 distro_core_rpms="$common_core_rpms $delta_core_rpms"

new/usr/src/lib/brand/lx/zone/distros/centos37.distro 2

62 distro_server_rpms="$common_server_rpms $delta_server_rpms"
63 distro_desktop_rpms="$common_desktop_rpms $delta_desktop_rpms"
64 distro_developer_rpms="$common_developer_rpms $delta_developer_rpms"
65 distro_all_rpms="$common_all_rpms $delta_all_rpms"
66 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/centos38.distro 1

**
 2518 Tue Jan 14 16:17:14 2014
new/usr/src/lib/brand/lx/zone/distros/centos38.distro
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # Installation information for the CentOS 3.8 distribution disc set:
29 #
30 # + Serial number (as found in the disc set’s .discinfo file)
31 # + Version Name
32 # + Order CDs holding the distribution must be installed in
33 # + MB of disk space required to hold a full install of the distribution
34 #
35 distro_serial=1155307611.42
36 distro_version="3.8"
37 set -A distro_cdorder 1 2 3

39 distro_mb_required=500

41 # Include the common_<cluster>_* definitions.
42 . ${distro_dir}/rhel_centos_common

44 # Define the CentOS 3.8 deltas from the common cluster lists
45 delta_miniroot_rpms=centos-release
46 delta_core_rpms="centos-yumconf centos-yumcache yum"
47 delta_server_rpms="$delta_core_rpms nss_db-compat sendmail-doc qt-config"
48 delta_desktop_rpms="$delta_server_rpms \
49 expectk \
50 seamonkey \
51 seamonkey-chat \
52 seamonkey-mail \
53 seamonkey-nspr \
54 seamonkey-nss \
55 tcl-html \
56 tcllib"
57 delta_developer_rpms="$delta_desktop_rpms \
58 gd-progs \
59 freetype-demos \
60 freetype-utils \
61 glibc-debug \

new/usr/src/lib/brand/lx/zone/distros/centos38.distro 2

62 irb \
63 python-docs \
64 ruby-docs \
65 ruby-tcltk \
66 seamonkey-dom-inspector \
67 seamonkey-js-debugger \
68 seamonkey-devel \
69 seamonkey-nspr-devel \
70 seamonkey-nss-devel"
71 delta_all_rpms="$delta_developer_rpms emacs-nox"

73 # Define the final cluster lists for the installer
74 distro_miniroot_rpms="$common_miniroot_rpms $delta_miniroot_rpms"
75 distro_core_rpms="$common_core_rpms $delta_core_rpms"
76 distro_server_rpms="$common_server_rpms $delta_server_rpms"
77 distro_desktop_rpms="$common_desktop_rpms $delta_desktop_rpms"
78 distro_developer_rpms="$common_developer_rpms $delta_developer_rpms"
79 distro_all_rpms="$common_all_rpms $delta_all_rpms"
80 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/rhel35.distro 1

**
 2804 Tue Jan 14 16:17:14 2014
new/usr/src/lib/brand/lx/zone/distros/rhel35.distro
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # Installation information for the RHEL 3 Update 5 distribution disc set:
29 #
30 # + Serial number (as found in the disc set’s .discinfo file)
31 # + Version Name
32 # + Order CDs holding the distribution must be installed in
33 # + MB of disk space required to hold a full install of the distribution
34 #
35 distro_serial=1115874580.003298
36 distro_version="Update 5"
37 set -A distro_cdorder 2 3 4 1

39 distro_mb_required=500

41 # Include the common_<cluster>_* definitions.
42 . ${distro_dir}/rhel_centos_common

44 # Define the RHEL 3.5 deltas from the common cluster lists
45 delta_miniroot_rpms=redhat-release
46 delta_core_rpms=""
47 delta_server_rpms=$delta_core_rpms
48 delta_desktop_rpms="$delta_server_rpms \
49 mozilla \
50 mozilla-chat \
51 mozilla-dom-inspector \
52 mozilla-js-debugger \
53 mozilla-mail \
54 mozilla-nspr \
55 mozilla-nss \
56 openoffice.org-style-gnome"
57 delta_developer_rpms=$delta_desktop_rpms
58 delta_all_rpms="$delta_developer_rpms comps"

60 # Define the final cluster lists for the installer
61 distro_miniroot_rpms="$common_miniroot_rpms $delta_miniroot_rpms"

new/usr/src/lib/brand/lx/zone/distros/rhel35.distro 2

62 distro_core_rpms="$common_core_rpms $delta_core_rpms"
63 distro_server_rpms="$common_server_rpms $delta_server_rpms"
64 distro_desktop_rpms="$common_desktop_rpms $delta_desktop_rpms"
65 distro_developer_rpms="$common_developer_rpms $delta_developer_rpms"
66 distro_all_rpms="$common_all_rpms $delta_all_rpms"

68 #
69 # List of packages missing from the "WS" personality of this distribution
70 # as compared to the "AS" personality.
71 #
72 distro_WS_missing="amanda-server \
73 caching-nameserver \
74 finger-server \
75 freeradius \
76 inews \
77 inn \
78 krb5-server \
79 netdump-server \
80 openldap-servers \
81 pxe \
82 quagga \
83 radvd \
84 redhat-config-bind \
85 samba-swat \
86 tftp-server \
87 tux \
88 vsftpd \
89 ypserv \
90 arptables_jf \
91 mtx \
92 redhat-config-netboot"

94 #
95 # No packages are missing from the "ES" personality as compared to the "AS"
96 # personality.
97 #
98 unset distro_ES_missing
99 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/rhel36.distro 1

**
 2810 Tue Jan 14 16:17:15 2014
new/usr/src/lib/brand/lx/zone/distros/rhel36.distro
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # Installation information for the RHEL 3 Update 6 distribution disc set:
29 #
30 # + Serial number (as found in the disc set’s .discinfo file)
31 # + Version Name
32 # + Order CDs holding the distribution must be installed in
33 # + MB of disk space required to hold a full install of the distribution
34 #
35 distro_serial=1127323691.616555
36 distro_version="Update 6"
37 set -A distro_cdorder 2 3 4 1

39 distro_mb_required=500

41 # Include the common_<cluster>_* definitions.
42 . ${distro_dir}/rhel_centos_common

44 # Define the RHEL 3.6 deltas from the common cluster lists
45 delta_miniroot_rpms=redhat-release
46 delta_core_rpms=""
47 delta_server_rpms=$delta_core_rpms
48 delta_desktop_rpms="$delta_server_rpms \
49 mozilla \
50 mozilla-chat \
51 mozilla-dom-inspector \
52 mozilla-js-debugger \
53 mozilla-mail \
54 mozilla-nspr \
55 mozilla-nss \
56 openoffice.org-style-gnome"
57 delta_developer_rpms="$delta_desktop_rpms gd-progs"
58 delta_all_rpms="$delta_developer_rpms emacs-nox comps"

60 # Define the final cluster lists for the installer
61 distro_miniroot_rpms="$common_miniroot_rpms $delta_miniroot_rpms"

new/usr/src/lib/brand/lx/zone/distros/rhel36.distro 2

62 distro_core_rpms="$common_core_rpms $delta_core_rpms"
63 distro_server_rpms="$common_server_rpms $delta_server_rpms"
64 distro_desktop_rpms="$common_desktop_rpms $delta_desktop_rpms"
65 distro_developer_rpms="$common_developer_rpms $delta_developer_rpms"
66 distro_all_rpms="$common_all_rpms $delta_all_rpms"

68 #
69 # List of packages missing from the "WS" personality of this distribution
70 # as compared to the "AS" personality.
71 #
72 distro_WS_missing="amanda-server \
73 caching-nameserver \
74 finger-server \
75 freeradius \
76 inews \
77 inn \
78 netdump-server \
79 openldap-servers \
80 pxe \
81 quagga \
82 radvd \
83 redhat-config-bind \
84 samba-swat \
85 tftp-server \
86 tux \
87 vsftpd \
88 ypserv \
89 arptables_jf \
90 mtx \
91 redhat-config-netboot"

93 #
94 # No packages are missing from the "ES" personality as compared to the "AS"
95 # personality.
96 #
97 unset distro_ES_missing
98 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/rhel37.distro 1

**
 2844 Tue Jan 14 16:17:15 2014
new/usr/src/lib/brand/lx/zone/distros/rhel37.distro
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # Installation information for the RHEL 3 Update 7 distribution disc set:
29 #
30 # + Serial number (as found in the disc set’s .discinfo file)
31 # + Version Name
32 # + Order CDs holding the distribution must be installed in
33 # + MB of disk space required to hold a full install of the distribution
34 #
35 distro_serial=1141679045.364586
36 distro_version="Update 7"
37 set -A distro_cdorder 2 3 4 1

39 distro_mb_required=500

41 # Include the common_<cluster>_* definitions.
42 . ${distro_dir}/rhel_centos_common

44 # Define the RHEL 3.7 deltas from the common cluster lists
45 delta_miniroot_rpms=redhat-release
46 delta_core_rpms=""
47 delta_server_rpms="$delta_core_rpms nss_db-compat sendmail-doc qt-config"
48 delta_desktop_rpms="$delta_server_rpms \
49 mozilla \
50 mozilla-chat \
51 mozilla-dom-inspector \
52 mozilla-js-debugger \
53 mozilla-mail \
54 mozilla-nspr \
55 mozilla-nss"
56 delta_developer_rpms="$delta_desktop_rpms gd-progs ruby-docs irb ruby-tcltk"
57 delta_all_rpms="$delta_developer_rpms emacs-nox comps"

59 # Define the final cluster lists for the installer
60 distro_miniroot_rpms="$common_miniroot_rpms $delta_miniroot_rpms"
61 distro_core_rpms="$common_core_rpms $delta_core_rpms"

new/usr/src/lib/brand/lx/zone/distros/rhel37.distro 2

62 distro_server_rpms="$common_server_rpms $delta_server_rpms"
63 distro_desktop_rpms="$common_desktop_rpms $delta_desktop_rpms"
64 distro_developer_rpms="$common_developer_rpms $delta_developer_rpms"
65 distro_all_rpms="$common_all_rpms $delta_all_rpms"

67 #
68 # List of packages missing from the "WS" personality of this distribution
69 # as compared to the "AS" personality.
70 #
71 distro_WS_missing="amanda-server \
72 caching-nameserver \
73 finger-server \
74 freeradius \
75 inews \
76 inn \
77 netdump-server \
78 openldap-servers \
79 pxe \
80 quagga \
81 radvd \
82 redhat-config-bind \
83 samba-swat \
84 tftp-server \
85 tux \
86 vsftpd \
87 ypserv \
88 arptables_jf \
89 mtx \
90 redhat-config-netboot"

92 #
93 # No packages are missing from the "ES" personality as compared to the "AS"
94 # personality.
95 #
96 unset distro_ES_missing
97 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/rhel38.distro 1

**
 3125 Tue Jan 14 16:17:15 2014
new/usr/src/lib/brand/lx/zone/distros/rhel38.distro
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # Installation information for the RHEL 3 Update 8 distribution disc set:
29 #
30 # + Serial number (as found in the disc set’s .discinfo file)
31 # + Version Name
32 # + Order CDs holding the distribution must be installed in
33 # + MB of disk space required to hold a full install of the distribution
34 #
35 distro_serial=1152738297.776178
36 distro_version="Update 8"
37 set -A distro_cdorder 2 3 4 1

39 distro_mb_required=500

41 # Include the common_<cluster>_* definitions.
42 . ${distro_dir}/rhel_centos_common

44 # Define the RHEL 3.8 deltas from the common cluster lists
45 delta_miniroot_rpms=redhat-release
46 delta_core_rpms=""
47 delta_server_rpms="$delta_core_rpms nss_db-compat sendmail-doc qt-config"
48 delta_desktop_rpms="$delta_server_rpms \
49 seamonkey \
50 seamonkey-chat \
51 seamonkey-mail \
52 seamonkey-nspr \
53 seamonkey-nss"
54 delta_developer_rpms="$delta_desktop_rpms \
55 gd-progs \
56 irb \
57 ruby-docs \
58 ruby-tcltk \
59 seamonkey-dom-inspector \
60 seamonkey-js-debugger \
61 seamonkey-devel \

new/usr/src/lib/brand/lx/zone/distros/rhel38.distro 2

62 seamonkey-nspr-devel \
63 seamonkey-nss-devel"
64 delta_all_rpms="$delta_developer_rpms emacs-nox comps"

66 # Define the final cluster lists for the installer
67 distro_miniroot_rpms="$common_miniroot_rpms $delta_miniroot_rpms"
68 distro_core_rpms="$common_core_rpms $delta_core_rpms"
69 distro_server_rpms="$common_server_rpms $delta_server_rpms"
70 distro_desktop_rpms="$common_desktop_rpms $delta_desktop_rpms"
71 distro_developer_rpms="$common_developer_rpms $delta_developer_rpms"
72 distro_all_rpms="$common_all_rpms $delta_all_rpms"

74 #
75 # List of packages missing from the "WS" personality of this distribution
76 # as compared to the "AS" personality.
77 #
78 distro_WS_missing="amanda-server \
79 caching-nameserver \
80 finger-server \
81 freeradius \
82 inews \
83 inn \
84 netdump-server \
85 openldap-servers \
86 pxe \
87 quagga \
88 radvd \
89 redhat-config-bind \
90 samba-swat \
91 tftp-server \
92 tux \
93 vsftpd \
94 ypserv \
95 arptables_jf \
96 mtx \
97 redhat-config-netboot"

99 #
100 # No packages are missing from the "ES" personality as compared to the "AS"
101 # personality.
102 #
103 unset distro_ES_missing

105 #
106 # Identify the packages that need to be set aside for installation after
107 # all the other packages are installed.
108 #
109 deferred_rpms="openoffice.org openoffice.org-i18n openoffice.org-libs"
110 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 1

**
 15489 Tue Jan 14 16:17:15 2014
new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
22 # Use is subject to license terms.
23 #
24 # ident "%Z%%M% %I% %E% SMI"
25 #

27 #
28 # This file contains the basic cluster contents shared by all of the
29 # Linux distros we support. Each distro has its own .distro file that
30 # expands on the basic cluster lists provided here.
31 #

33 #
34 # Required packages for the install miniroot, these are the minimum packages a
35 # system must have installed in order to run rpm (which is then used from
36 # within the zone to perform the balance of the installation.)
37 #
38 common_miniroot_rpms="SysVinit \
39 basesystem \
40 bash \
41 beecrypt \
42 bzip2-libs \
43 coreutils \
44 elfutils \
45 elfutils-libelf \
46 filesystem \
47 glibc \
48 glibc-common \
49 gpm \
50 initscripts \
51 iptables \
52 iptables-ipv6 \
53 kernel-utils \
54 laus-libs \
55 libacl \
56 libattr \
57 libgcc \
58 libtermcap \
59 ncurses \
60 pam \
61 popt \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 2

62 rpm \
63 rpm-libs \
64 setup \
65 termcap \
66 zlib"

68 #
69 # This starts a listing of RPMs comprising a variety of install package options
70 # for a distribution.
71 #
72 # The supported package clusters are:
73 #
74 # + core
75 # + server
76 # + desktop
77 # + developer
78 # + system
79 #
80 # The RPMs needed to install each cluster are listed in the shell variable
81 #
82 # distro_<level>_rpms
83 #
84 # This file provides "common_<level>_rpms", which are lists of the packages
85 # in each cluster that are common to all distros.
86 #
87 # The package names are listed alphabetically for readability. rpm will
88 # reorder the list to ensure that each package’s dependencies are installed
89 # before it is.
90 #
91 # Note: Since the distro_install script uses a regular expression to expand
92 # RPM package names to filenames, there may be some tweaking required to
93 # guarantee a unique match between a package name and a corresponding RPM
94 # file on the install media.
95 #
96 # One such example below is the package "XFree86-4." The official name of
97 # the package is "XFree86," but the regular expression in the script
98 # matches that package name to the XFree86-100dpi-fonts and
99 # XFree86-75dpi-fonts package RPMs in addition to the proper XFree86 RPM.
100 # Therefore the "XFree86" package name was modified to be "XFree86-4",
101 # which does result in a unique package name to RPM file match.
102 #
103 common_core_rpms="GConf2 \
104 Glide3 \
105 ORBit \
106 ORBit2 \
107 XFree86-Mesa-libGL \
108 XFree86-Mesa-libGLU \
109 XFree86-libs \
110 XFree86-libs-data \
111 Xaw3d \
112 ash \
113 at \
114 atk \
115 audiofile \
116 autofs \
117 bc \
118 binutils \
119 bonobo-activation \
120 bzip2 \
121 chkconfig \
122 compat-pwdb \
123 cpio \
124 cpp \
125 cracklib \
126 cracklib-dicts \
127 crontabs \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 3

128 cups-libs \
129 cyrus-sasl \
130 cyrus-sasl-md5 \
131 db4 \
132 desktop-file-utils \
133 dev \
134 diffutils \
135 diskdumputils \
136 e2fsprogs \
137 ed \
138 ethtool \
139 expat \
140 file \
141 findutils \
142 finger \
143 fontconfig \
144 freetype \
145 ftp \
146 gail \
147 gawk \
148 gdbm \
149 gdk-pixbuf \
150 gettext \
151 glib \
152 glib2 \
153 glibc-headers \
154 glibc-kernheaders \
155 gmp \
156 gnupg \
157 grep \
158 groff \
159 gtk+ \
160 gtk2 \
161 gzip \
162 hesiod \
163 hwdata \
164 indexhtml \
165 info \
166 iproute \
167 iputils \
168 kernel \
169 kernel-BOOT \
170 krb5-libs \
171 krb5-workstation \
172 kudzu \
173 laus \
174 less \
175 libaio \
176 libart_lgpl \
177 libbonobo \
178 libcap \
179 libgcj \
180 libgcj-ssa \
181 libglade2 \
182 libgnomecanvas \
183 libjpeg \
184 libmng \
185 libogg \
186 libpng \
187 libpng10 \
188 libstdc++ \
189 libtiff \
190 libtool-libs \
191 libungif \
192 libusb \
193 libuser \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 4

194 libvorbis \
195 libwnck \
196 libxml \
197 libxml2 \
198 libxml2-python \
199 libxslt \
200 linc \
201 lockdev \
202 logrotate \
203 losetup \
204 lsof \
205 lvm \
206 lynx \
207 m4 \
208 mailcap \
209 make \
210 man \
211 man-pages \
212 mingetty \
213 mkinitrd \
214 mkisofs \
215 mktemp \
216 modutils \
217 mount \
218 mtools \
219 nc \
220 net-snmp \
221 net-snmp-libs \
222 net-tools \
223 netdump \
224 newt \
225 nfs-utils \
226 nscd \
227 nss_db \
228 nss_ldap \
229 ntp \
230 ntsysv \
231 openldap \
232 openssh \
233 openssh-clients \
234 openssh-server \
235 openssl \
236 pango \
237 passwd \
238 patch \
239 pax \
240 pcre \
241 pdksh \
242 perl \
243 perl-CGI \
244 perl-DateManip \
245 perl-Filter \
246 perl-HTML-Parser \
247 perl-HTML-Tagset \
248 perl-Parse-Yapp \
249 perl-URI \
250 perl-XML-Dumper \
251 perl-XML-Encoding \
252 perl-XML-Grove \
253 perl-XML-Parser \
254 perl-XML-Twig \
255 perl-libwww-perl \
256 perl-libxml-enno \
257 perl-libxml-perl \
258 portmap \
259 procmail \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 5

260 procps \
261 psacct \
262 psmisc \
263 pspell \
264 pygtk2 \
265 pygtk2-libglade \
266 python \
267 pyxf86config \
268 readline \
269 redhat-logos \
270 redhat-menus \
271 rhpl \
272 rpm-python \
273 rpmdb-redhat \
274 rsh \
275 rsync \
276 rusers \
277 rwho \
278 sed \
279 setarch \
280 sgml-common \
281 shadow-utils \
282 slang \
283 startup-notification \
284 sudo \
285 sysklogd \
286 syslinux \
287 tar \
288 tcl \
289 tcp_wrappers \
290 tcsh \
291 telnet \
292 time \
293 traceroute \
294 ttmkfdir \
295 tzdata \
296 units \
297 unix2dos \
298 unzip \
299 usermode \
300 utempter \
301 util-linux \
302 vim-common \
303 vim-minimal \
304 vixie-cron \
305 wget \
306 which \
307 words \
308 xinetd \
309 xml-common \
310 yp-tools \
311 ypbind \
312 zip"

314 common_server_rpms="$common_core_rpms \
315 4Suite \
316 MyODBC \
317 MySQL-python \
318 Omni \
319 Omni-foomatic \
320 PyXML \
321 VFlib2 \
322 XFree86-4 \
323 XFree86-base-fonts \
324 XFree86-font-utils \
325 XFree86-truetype-fonts \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 6

326 XFree86-xauth \
327 XFree86-xdm \
328 XFree86-xfs \
329 acl \
330 alchemist \
331 amanda \
332 amanda-server \
333 arts \
334 aspell \
335 aspell-config \
336 at-spi \
337 authd \
338 bcel \
339 bind \
340 bind-chroot \
341 bind-libs \
342 bind-utils \
343 bitmap-fonts \
344 caching-nameserver \
345 chkfontpath \
346 commons-beanutils \
347 commons-collections \
348 commons-digester \
349 commons-logging \
350 commons-modeler \
351 compat-db \
352 compat-libstdc++ \
353 crypto-utils \
354 cup-v10k \
355 cups \
356 curl \
357 cyrus-sasl-gssapi \
358 cyrus-sasl-plain \
359 dhcp \
360 distcache \
361 distcache-devel \
362 esound \
363 expect \
364 fam \
365 finger-server \
366 foomatic \
367 freeradius \
368 gd \
369 ghostscript \
370 ghostscript-fonts \
371 gimp-print \
372 gnome-libs \
373 gnome-mime-data \
374 gnome-python2 \
375 gnome-python2-bonobo \
376 gnome-python2-canvas \
377 gnome-python2-gtkhtml2 \
378 gnome-vfs2 \
379 gnuplot \
380 gtkhtml2 \
381 htmlview \
382 httpd \
383 hwcrypto \
384 imap \
385 imap-utils \
386 imlib \
387 inews \
388 inn \
389 jakarta-regexp \
390 krb5-server \
391 krbafs \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 7

392 libIDL \
393 libbonoboui \
394 libdbi \
395 libdbi-dbd-mysql \
396 libgnome \
397 libgnomeprint22 \
398 libgnomeprintui22 \
399 libgnomeui \
400 libgsf \
401 libole2 \
402 logwatch \
403 mailman \
404 mailx \
405 mod_auth_mysql \
406 mod_auth_pgsql \
407 mod_authz_ldap \
408 mod_perl \
409 mod_python \
410 mod_ssl \
411 mpage \
412 mtr \
413 mx \
414 mx4j \
415 mysql \
416 mysql-bench \
417 mysql-devel \
418 net-snmp-utils \
419 netdump-server \
420 newt-perl \
421 openldap-servers \
422 openssl-perl \
423 pam_krb5 \
424 perl-DBD-MySQL \
425 perl-DBD-Pg \
426 perl-DBI \
427 perl-DB_File \
428 perl-Digest-HMAC \
429 perl-Digest-SHA1 \
430 perl-Net-DNS \
431 perl-Time-HiRes \
432 php \
433 php-imap \
434 php-ldap \
435 php-mysql \
436 php-odbc \
437 php-pgsql \
438 pnm2ppa \
439 postfix \
440 postgresql-odbc \
441 pxe \
442 pyorbit \
443 qt \
444 qt-MySQL \
445 qt-ODBC \
446 quagga \
447 radvd \
448 rdist \
449 redhat-config-bind \
450 redhat-config-httpd \
451 redhat-config-printer \
452 redhat-config-printer-gui \
453 redhat-config-samba \
454 redhat-config-securitylevel \
455 redhat-config-securitylevel-tui \
456 redhat-config-services \
457 redhat-java-rpm-scripts \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 8

458 redhat-switch-mail \
459 redhat-switch-mail-gnome \
460 rh-postgresql \
461 rh-postgresql-contrib \
462 rh-postgresql-docs \
463 rh-postgresql-jdbc \
464 rh-postgresql-libs \
465 rh-postgresql-python \
466 rh-postgresql-server \
467 rh-postgresql-tcl \
468 rh-postgresql-test \
469 rhdb-utils \
470 rsh-server \
471 rusers-server \
472 samba \
473 samba-client \
474 samba-common \
475 samba-swat \
476 sendmail \
477 sendmail-cf \
478 slocate \
479 spamassassin \
480 squid \
481 squirrelmail \
482 switchdesk \
483 sysreport \
484 telnet-server \
485 tftp-server \
486 tmpwatch \
487 tux \
488 unixODBC \
489 unixODBC-kde \
490 urw-fonts \
491 usermode-gtk \
492 vsftpd \
493 webalizer \
494 xalan-j \
495 xerces-j \
496 xinitrc \
497 ypserv"

499 common_desktop_rpms="$common_server_rpms \
500 Canna-libs \
501 FreeWnn-libs \
502 Gtk-Perl \
503 ImageMagick \
504 ImageMagick-perl \
505 SDL \
506 XFree86-100dpi-fonts \
507 XFree86-75dpi-fonts \
508 XFree86-Xnest \
509 XFree86-Xvfb \
510 XFree86-doc \
511 XFree86-tools \
512 XFree86-twm \
513 a2ps \
514 am-utils \
515 amanda-client \
516 anacron \
517 apel-xemacs \
518 aumix \
519 authconfig \
520 authconfig-gtk \
521 autorun \
522 cdparanoia-alpha9.8 \
523 cdparanoia-libs-alpha9.8 \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 9

524 cdrecord \
525 cipe \
526 ckermit \
527 comps-extras \
528 control-center \
529 ctags \
530 desktop-backgrounds-basic \
531 desktop-printing \
532 dialog \
533 docbook-dtds \
534 docbook-style-dsssl \
535 docbook-style-xsl \
536 docbook-utils \
537 docbook-utils-pdf \
538 dtach \
539 dvd+rw-tools \
540 dvdrecord \
541 eel2 \
542 elinks \
543 enscript \
544 eog \
545 evolution \
546 evolution-connector \
547 fetchmail \
548 file-roller \
549 firstboot \
550 fontilus \
551 gaim \
552 gconf-editor \
553 gdm \
554 gedit \
555 gftp \
556 ggv \
557 gimp \
558 gimp-data-extras \
559 gimp-perl \
560 gimp-print-cups \
561 gimp-print-plugin \
562 gimp-print-utils \
563 gnome-applets \
564 gnome-audio \
565 gnome-desktop \
566 gnome-games \
567 gnome-icon-theme \
568 gnome-media \
569 gnome-panel \
570 gnome-pilot \
571 gnome-python2-applet \
572 gnome-session \
573 gnome-spell \
574 gnome-system-monitor \
575 gnome-terminal \
576 gnome-themes \
577 gnome-user-docs \
578 gnome-utils \
579 gnome-vfs2-extras \
580 gnomemeeting \
581 gphoto2 \
582 gsl \
583 gstreamer \
584 gstreamer-plugins \
585 gstreamer-tools \
586 gtk-engines \
587 gtk2-engines \
588 gtkam \
589 gtkam-gimp \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 10

590 gtkglarea \
591 gtkhtml3 \
592 guile \
593 hotplug \
594 hpijs \
595 hpoj \
596 htdig \
597 hwbrowser \
598 intltool \
599 itcl \
600 jadetex \
601 kdeaddons \
602 kdeartwork \
603 kdebase \
604 kdegames \
605 kdegraphics \
606 kdelibs \
607 kdemultimedia \
608 kdenetwork \
609 kdepim \
610 kdeutils \
611 lftp \
612 libao \
613 libf2c \
614 libgail-gnome \
615 libgal2 \
616 libghttp \
617 libglade \
618 libgtop2 \
619 libmrproject \
620 libpcap \
621 libraw1394 \
622 librsvg2 \
623 libsoup \
624 linuxdoc-tools \
625 lm_sensors \
626 magicdev \
627 metacity \
628 mikmod \
629 mrproject \
630 mrtg \
631 mutt \
632 nautilus \
633 nautilus-cd-burner \
634 nautilus-media \
635 netpbm \
636 netpbm-progs \
637 open \
638 openh323 \
639 openjade \
640 openldap-clients \
641 openmotif \
642 openmotif21 \
643 openoffice.org \
644 openoffice.org-i18n \
645 openoffice.org-libs \
646 openssh-askpass \
647 openssh-askpass-gnome \
648 parted \
649 passivetex \
650 perl-PDL \
651 perl-SGMLSpm \
652 perl-suidperl \
653 pilot-link \
654 printman \
655 psutils \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 11

656 pwlib \
657 pyOpenSSL \
658 python-optik \
659 redhat-artwork \
660 redhat-config-date \
661 redhat-config-keyboard \
662 redhat-config-kickstart \
663 redhat-config-language \
664 redhat-config-mouse \
665 redhat-config-network \
666 redhat-config-network-tui \
667 redhat-config-nfs \
668 redhat-config-packages \
669 redhat-config-proc \
670 redhat-config-rootpassword \
671 redhat-config-soundcard \
672 redhat-config-users \
673 redhat-config-xfree86 \
674 redhat-logviewer \
675 rhn-applet \
676 rhnlib \
677 sane-backends \
678 sane-frontends \
679 screen \
680 scrollkeeper \
681 shapecfg \
682 sharutils \
683 sox \
684 star \
685 switchdesk-gnome \
686 switchdesk-kde \
687 sysstat \
688 talk \
689 tclx \
690 tetex \
691 tetex-afm \
692 tetex-dvips \
693 tetex-fonts \
694 tetex-latex \
695 tetex-xdvi \
696 tix \
697 tk \
698 tkinter \
699 transfig \
700 ttfprint \
701 umb-scheme \
702 up2date \
703 up2date-gnome \
704 usbutils \
705 uucp \
706 vim-enhanced \
707 vlock \
708 vnc \
709 vnc-server \
710 vorbis-tools \
711 vte \
712 w3c-libwww \
713 xchat \
714 xdelta \
715 xemacs \
716 xemacs-el \
717 xemacs-info \
718 xfig \
719 xhtml1-dtds \
720 xloadimage \
721 xmltex \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 12

722 xmlto \
723 xmms \
724 xpdf \
725 xsane \
726 xsane-gimp \
727 xscreensaver \
728 xsri \
729 xterm \
730 yelp \
731 zsh"

733 common_developer_rpms="$common_desktop_rpms \
734 ElectricFence \
735 GConf2-devel \
736 ORBit-devel \
737 ORBit2-devel \
738 SDL-devel \
739 XFree86-devel \
740 ant \
741 ant-libs \
742 arts-devel \
743 at-spi-devel \
744 atk-devel \
745 audiofile-devel \
746 autoconf \
747 autoconf213 \
748 automake \
749 automake14 \
750 automake15 \
751 bison \
752 blas \
753 bonobo-activation-devel \
754 bug-buddy \
755 byacc \
756 cdecl \
757 cproto \
758 crash \
759 cscope \
760 cups-devel \
761 cvs \
762 ddd \
763 dejagnu \
764 dev86 \
765 diffstat \
766 doxygen \
767 eel2-devel \
768 emacs \
769 emacs-el \
770 emacs-leim \
771 esound-devel \
772 flex \
773 fontconfig-devel \
774 freetype-devel \
775 gail-devel \
776 gcc \
777 gcc-c++ \
778 gcc-c++-ssa \
779 gcc-g77 \
780 gcc-g77-ssa \
781 gcc-gnat \
782 gcc-java \
783 gcc-java-ssa \
784 gcc-objc \
785 gcc-objc-ssa \
786 gcc-ssa \
787 gd-devel \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 13

788 gdb \
789 gdk-pixbuf-devel \
790 gdk-pixbuf-gnome \
791 glade2 \
792 glib-devel \
793 glib2-devel \
794 glibc-devel \
795 glibc-profile \
796 glibc-utils \
797 gnome-desktop-devel \
798 gnome-libs-devel \
799 gnome-vfs2-devel \
800 gperf \
801 gtk+-devel \
802 gtk-doc \
803 gtk2-devel \
804 gtkhtml2-devel \
805 httpd-devel \
806 im-sdk \
807 imlib-devel \
808 indent \
809 jaf \
810 javamail \
811 joe \
812 jpackage-utils \
813 junit \
814 kdebase-devel \
815 kdegraphics-devel \
816 kdelibs-devel \
817 kdenetwork-devel \
818 kdepim-devel \
819 kdesdk \
820 kdesdk-devel \
821 kdeutils-devel \
822 kdevelop \
823 kdoc \
824 kernel-doc \
825 kernel-source \
826 lam \
827 lapack \
828 lha \
829 libIDL-devel \
830 libacl-devel \
831 libart_lgpl-devel \
832 libattr-devel \
833 libbonobo-devel \
834 libbonoboui-devel \
835 libgcc-ssa \
836 libgcj-devel \
837 libgcj-ssa-devel \
838 libglade2-devel \
839 libgnat \
840 libgnome-devel \
841 libgnomecanvas-devel \
842 libgnomeprint22-devel \
843 libgnomeprintui22-devel \
844 libgnomeui-devel \
845 libjpeg-devel \
846 libmng-devel \
847 libmudflap \
848 libmudflap-devel \
849 libobjc \
850 libole2-devel \
851 libpng-devel \
852 librsvg2-devel \
853 libstdc++-devel \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 14

854 libstdc++-ssa \
855 libstdc++-ssa-devel \
856 libtiff-devel \
857 libtool \
858 libungif-devel \
859 libxml2-devel \
860 libxslt-devel \
861 linc-devel \
862 ltrace \
863 memprof \
864 nasm \
865 ncurses-devel \
866 nedit \
867 netpbm-devel \
868 openmotif-devel \
869 oprofile \
870 pango-devel \
871 patchutils \
872 pcre-devel \
873 perl-CPAN \
874 perl-Crypt-SSLeay \
875 pilot-link-devel \
876 pkgconfig \
877 pstack \
878 pygtk2-devel \
879 python-devel \
880 python-tools \
881 qt-designer \
882 qt-devel \
883 rcs \
884 redhat-rpm-config \
885 rpm-build \
886 ruby \
887 ruby-libs \
888 ruby-mode \
889 sane-backends-devel \
890 sip \
891 sip-devel \
892 splint \
893 startup-notification-devel \
894 strace \
895 swig \
896 texinfo \
897 tora \
898 vim-X11 \
899 vte-devel \
900 zlib-devel"

902 common_all_rpms="$common_developer_rpms \
903 Canna
904 FreeWnn \
905 ImageMagick-c++-5.5.6 \
906 Wnn6-SDK \
907 ami \
908 amtu \
909 anaconda \
910 anaconda-help \
911 anaconda-images \
912 anaconda-product \
913 anaconda-runtime \
914 apmd \
915 arptables_jf \
916 attr \
917 bg5ps \
918 bitmap-fonts-cjk \
919 bogl \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 15

920 bogl-bterm \
921 bootparamd \
922 booty \
923 bridge-utils \
924 busybox \
925 busybox-anaconda \
926 compat-gcc \
927 compat-gcc-c++ \
928 compat-glibc-7.x \
929 compat-libstdc++-devel \
930 compat-slang \
931 db4-java \
932 db4-utils \
933 dbskkd-cdb \
934 desktop-backgrounds-extra \
935 devlabel \
936 dhclient \
937 dietlibc \
938 dos2unix \
939 dosfstools \
940 dump \
941 eject \
942 emacspeak \
943 ethereal \
944 ethereal-gnome \
945 fbset \
946 festival \
947 grub \
948 h2ps \
949 hdparm \
950 ipsec-tools \
951 irda-utils \
952 iscsi-initiator-utils \
953 isdn4k-utils \
954 jfsutils \
955 jisksp14 \
956 jisksp16 \
957 jwhois \
958 kappa20 \
959 kbd \
960 kernel-pcmcia-cs \
961 knm_new \
962 kon2 \
963 kon2-fonts \
964 libtabe \
965 libwvstreams \
966 lilo \
967 linuxwacom \
968 lslk \
969 mdadm \
970 mgetty \
971 minicom \
972 mkbootdisk \
973 mt-st \
974 mtx \
975 nano \
976 ncompress \
977 net-snmp-perl \
978 netconfig \
979 nhpf \
980 nmap \
981 octave \
982 openssl096b \
983 pam_passwdqc \
984 pam_smb \
985 pinfo \

new/usr/src/lib/brand/lx/zone/distros/rhel_centos_common 16

986 ppp \
987 prelink \
988 psgml \
989 pvm \
990 quota \
991 rdate \
992 rdesktop \
993 redhat-config-netboot \
994 rhgb \
995 rmt \
996 rootfiles \
997 rp-pppoe \
998 schedutils \
999 setserial \

1000 setuptool \
1001 sg3_utils \
1002 skkdic \
1003 skkinput
1004 specspo \
1005 stunnel \
1006 tcpdump \
1007 tftp \
1008 tn5250 \
1009 tsclient \
1010 vconfig \
1011 wireless-tools \
1012 wvdial \
1013 x3270 \
1014 x3270-text \
1015 x3270-x11 \
1016 xcin"
1017 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 1

**
 67442 Tue Jan 14 16:17:15 2014
new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh
Bring back LX zones.
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 #
27 # This script is called from /usr/lib/brand/lx/lx_install.
28 #
29 # options passed down from lx_install:
30 # -z $ZONENAME
31 # -r $LINUX_ROOT
32 #
33 # options passed down from zoneadm -z <zone-name> install
34 # -d <Linux-archives-dir>
35 # [core | server | desktop | development | all]
36 #
37 # The desktop cluster will be installed by default.
38 #

40 # Restrict executables to /bin, /usr/bin and /usr/sbin
41 PATH=/bin:/usr/bin:/usr/sbin
42 export PATH

45 # Setup i18n output
46 TEXTDOMAIN="SUNW_OST_OSCMD"
47 export TEXTDOMAIN

49 # Log passed arguments to file descriptor 2
50 log()
51 {
52 [[-n $logfile]] && echo "$@" >&2
53 }

55 #
56 # Send the provided printf()-style arguments to the screen and to the
57 # logfile.
58 #
59 screenlog()
60 {
61 typeset fmt="$1"

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 2

62 shift

64 printf "$fmt\n" "$@"
65 [[-n $logfile]] && printf "$fmt\n" "$@" >&2
66 }

68 # Print and log provided text if the shell variable "verbose_mode" is set
69 verbose()
70 {
71 [[-n $verbose_mode]] && echo "$@"
72 [[-n $logfile]] && [[-n $verbose_mode]] && echo "$@" >&2
73 }

75 #
76 # Print to the screen if the shell variable "verbose_mode" is set, but always
77 # send the output to the log.
78 #
79 verboselog()
80 {
81 [[-n $verbose_mode]] && echo "$@"
82 [[-n $logfile]] && echo "$@" >&2
83 }

85 bad_rpmdir=$(gettext "’%s’ is not a valid RPM directory!")

87 mb_req=$(gettext "(%s MB required, %s MB available)")
88 no_space=$(gettext "Not enough free space available in ’%s’")

90 inst_clust=$(gettext "Installing cluster ’%s’")
91 unknown_clust=$(gettext "ERROR: Unknown cluster name: ’%s’")

93 unknown_media=$(gettext "Unknown or unreadable media loaded in %s")

95 eject_fail=$(gettext "Attempt to eject ’%s’ failed.")

97 lofi_failed=$(gettext "Attempt to add ’%s’ as lofi device FAILED.")
98 lofs_failed=$(gettext "Attempt to lofs mount ’%s’ on ’%s’ FAILED.")

100 media_spec=$(gettext "the provided media (%s)")

102 distro_mediafail=\
103 $(gettext "Attempt to determine Linux distribution from\n %s FAILED.")

105 mini_bootfail=$(gettext "Attempt to boot miniroot for zone ’%s’ FAILED.")
106 mini_copyfail=$(gettext "Attempt to copy miniroot for zone ’%s’ FAILED.")
107 mini_initfail=$(gettext "Attempt to initialize miniroot for zone ’%s’ FAILED.")
108 mini_instfail=$(gettext "Attempt to install RPM ’%s’ to miniroot FAILED.")
109 mini_mediafail=$(gettext "Install of zone ’%s’ miniroot from\n %s FAILED.")
110 mini_setfail=$(gettext "Attempt to setup miniroot for zone ’%s’ FAILED.")

112 mini_mntfsfail=\
113 $(gettext "Attempt to mount miniroot filesystems for zone ’%s’ FAILED.")

115 rpm_initfail=\
116 $(gettext "Attempt to initialize RPM database for zone ’%s’ FAILED.")

118 symlink_failed=$(gettext "Attempt to symbolically link ’%s’ to ’%s’ FAILED.")

120 discinfo_nofile=$(gettext "ERROR: Discinfo file ’%s’ not found!")
121 discinfo_notreadable=$(gettext "ERROR: Discinfo file ’%s’: not readable!")
122 discinfo_wrongarch=\
123 $(gettext "ERROR: ’%s’: disc architecture is ’%s’; install requires ’i386’!")

125 wrong_serial=$(gettext "Incorrect serial number found on provided %s.")
126 wrong_ser_expect=$(gettext " (found #%s, expected #%s)")

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 3

128 wrong_cd=$(gettext "Incorrect CD inserted (found %s, wanted %s)")

130 zone_initrootfail=\
131 $(gettext "Attempt to initialize root filesystem for zone ’%s’ FAILED.")

133 zone_haltfail=$(gettext "Unable to halt zone ’%s’!")
134 zone_instfail=$(gettext "Install of zone ’%s’ from ’%s’ FAILED ’%s’.")
135 zone_mediafail=$(gettext "Install of zone ’%s’ from\n %s FAILED.")

137 zone_rootfail=\
138 $(gettext "ERROR: The specified zone root directory ’%s’ could not be created.")
139 zone_rootsub=\
140 $(gettext "ERROR: The specified zone root subdirectory ’%s’ does not exist.")

142 mk_mntfail=$(gettext "Could not create the mount directory ’%s’")
143 mountfail=$(gettext "Mount of ’%s’ on ’%s’ FAILED.")

145 insert_discmsg=\
146 $(gettext "Please insert %s, or a\n %s DVD in the removable media")

148 mount_proper_iso1=$(gettext "Please mount the ISO for %s or a")
149 mount_proper_iso2=$(gettext "%s DVD on device ’%s’")

151 silent_nodisc=$(gettext "ERROR: Cannot install from CDs in silent mode.")
152 silent_nolofi=\
153 $(gettext "ERROR: Cannot install from lofi-based CD ISOs in silent mode.")

155 install_msg=$(gettext "Installing zone ’%s’ from\n %s.")
156 install_ndiscs=\
157 $(gettext "You will need CDs 1 - %s (or the equivalent DVD) to")
158 install_nisos=\
159 $(gettext "You will need ISO images representing CDs 1 - %s (or the equivalent")

161 locate_npkgs=$(gettext "Attempting to locate %s packages...")

163 install_one_rpm=$(gettext "Installing 1 %spackage.")
164 install_nrpms_few=\
165 $(gettext "Installing %s %spackages; this may take a few minutes...")
166 install_nrpms_several=\
167 $(gettext "Installing %s %spackages; this may take several minutes...")

169 install_longwait=\
170 $(gettext "NOTE: There may be a long delay before you see further output.")

172 install_defmkfail=$(gettext "Could not create the temporary directory ’%s’")
173 install_defcpfail=$(gettext "Could not make a local copy of deferred RPM ’%s’")
174 install_dist=$(gettext "Installing distribution ’%s’...")
175 install_zonefail=$(gettext "Attempt to install zone ’%s’ FAILED.")

177 no_distropath=$(gettext "ERROR: Distribution path ’%s’ doesn’t exist.")

179 install_done=$(gettext "Installation of %s to zone\n ’%s’ completed %s.")
180 install_failed=$(gettext "Installation of %s to zone\n ’%s’ FAILED %s.")

182 eject_final_msg=\
183 $(gettext "Would you like the system to eject the %sinstall %s when")
184 eject_final_prompt=$(gettext "installation of ’%s’ is complete? (%s)")
185 eject_final_status=$(gettext "The %sinstall %s %s be ejected.")

187 #
188 # Get the device underlying a specified mounted file system and return it in
189 # the shell variable "mount_dev"
190 #
191 # Returns 0 on success, 1 on failure.
192 #
193 get_mountdev()

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 4

194 {
195 typeset mount_dir="$1"
196 typeset device
197 unset mount_dev

199 #
200 # Obtain information on the specified mounted device.
201 #
202 device=‘{ df -k "$mount_dir" | egrep "^/" ; } 2>/dev/null‘ || return 1
203 mount_dev=$(echo $device | awk -e ’{print $1}’ 2>/dev/null)

205 [["‘echo $mount_dev | cut -c 1‘" = "/"]] && return 0

207 unset mount_dev
208 return 1
209 }

211 #
212 # Get the directory name a specified device is mounted as and return it in
213 # the shell variable "mount_dir"
214 #
215 # Returns 0 on success, 1 on failre.
216 #
217 get_mountdir()
218 {
219 typeset mount_dev="$1"
220 typeset dir
221 unset mount_dir

223 [[-b "$mount_dev"]] || return 1

225 #
226 # Obtain information on the specified mounted device.
227 #
228 dir=‘{ df -k "$mount_dev" | egrep "^/" ; } 2>/dev/null‘ || return 1
229 mount_dir=$(echo $dir | awk -e ’{print $6}’ 2>/dev/null)

231 [["‘echo $mount_dir | cut -c 1‘" = "/"]] && return 0

233 unset mount_dir
234 return 1
235 }

237 #
238 # Check the free disk space of the passed filesystem against the passed
239 # argument.
240 #
241 # Returns 0 on success, 1 on failure.
242 #
243 check_mbfree()
244 {
245 typeset dir="$1"
246 typeset mb_required=$2

248 #
249 # Return free space in partition containing passed argument in MB
250 #
251 typeset mbfree=‘{ LC_ALL=C df -k "$dir" | \
252 egrep -v Filesystem ; } 2>/dev/null‘ || return 1
253 mbfree=$(echo $mbfree | awk -e ’{print $4}’ 2>/dev/null)

255 ((mbfree /= 1024))
256 if ((mbfree < mb_required)); then
257 screenlog "$no_space" "$zoneroot"
258 screenlog "$mb_req" "$mb_required" "$mb_free"
259 return 1

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 5

260 fi
261 return 0
262 }

264 #
265 # Find packages by attempting to expand passed RPM names to their full filenames
266 # in the passed RPM directory.
267 #
268 # Arguments:
269 #
270 # Argument 1: Path to mounted install media
271 # Arguments [2 - n]: RPM names to process
272 #
273 # The expanded filenames are returned in the shell array "rpm_names."
274 #
275 # For example:
276 #
277 # find_packages /mnt/iso dev kernel tetex redhat-menus
278 #
279 # would return something like:
280 #
281 # rpms_found[0]: dev-3.3.12.3-1.centos.0.i386.rpm
282 # rpms_found[1]: kernel-2.4.21-32.EL.i586.rpm
283 # rpms_found[2]: tetex-1.0.7-67.7.i386.rpm
284 # rpms_found[3]: redhat-menus-0.39-1.noarch.rpm
285 #
286 # The routine returns 0 on success, 1 on an error.
287 #
288 find_packages()
289 {
290 typeset found=0
291 typeset left=0

293 typeset rpmdir="$1/$rd_rpmdir"
294 typeset curdir=${PWD:=$(pwd)}

296 typeset arch
297 typeset procinfo
298 typeset rpmglob
299 typeset rpmfile

301 unset rpms_found
302 unset rpms_left

304 shift
305 cd "$rpmdir"

307 typeset rpmcheck="$(echo *.rpm)"

309 if [["$rpmcheck" = "*.rpm"]]; then
310 screenlog "$bad_rpmdir" "$rpmdir"
311 cd "$curdir"
312 return 1
313 fi

315 #
316 # If the miniroot is booted, and the archs list isn’t already set,
317 # ask the zone’s rpm command for the list of compatible architectures.
318 #
319 if [[-n $miniroot_booted && -z $archs]]; then
320 procinfo=$(zlogin "$zonename" /bin/rpm --showrc | \
321 grep "^compatible archs")

323 [[$? -eq 0]] &&
324 archs=$(echo $procinfo | sed ’s/^compatible archs : //’)

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 6

326 [[-n $archs]] &&
327 log "RPM-reported compatible architectures: $archs"
328 fi

330 #
331 # Either the miniroot isn’t booted or asking rpm for the information
332 # failed for some reason, so make some reasonable assumptions.
333 #
334 if [[-z $archs]]; then
335 procinfo=$(LC_ALL=C psrinfo -vp | grep family)

337 #
338 # Check for additional processor capabilities
339 #
340 if [["$procinfo" = *" family 6 "* ||
341 "$procinfo" = *" family 15 "* ||
342 "$procinfo" = *" family 16 "* ||
343 "$procinfo" = *" family 17 "*]]; then
344 if [["$procinfo" = *AuthenticAMD*]]; then
345 #
346 # Linux gives "athlon" packages precedence
347 # over "i686" packages, so duplicate that
348 # here.
349 #
350 archs="athlon i686"
351 else
352 archs="i686"
353 fi
354 fi

356 archs="$archs i586 i486 i386 noarch"

358 log "Derived compatible architectures: $archs"
359 fi

361 verboselog "RPM source directory:\n \"$rpmdir\"\n"

363 if [[$# -eq 1]]; then
364 msg=$(gettext "Attempting to locate 1 package...")
365 screenlog "$msg"
366 else
367 screenlog "$locate_npkgs" "$#"
368 fi

370 for rpm in "$@"; do
371 #
372 # Search for the appropriate RPM, using the compatible
373 # architecture list contained in "archs" to look for the best
374 # match.
375 #
376 # For example, if the processor is an i686, and the rpm is
377 # "glibc", the script will look for the files (in order):
378 #
379 # glibc[.-][0-9]*.i686.rpm
380 # glibc[.-][0-9]*.i586.rpm
381 # glibc[.-][0-9]*.i486.rpm
382 # glibc[.-][0-9]*.i386.rpm
383 # glibc[.-][0-9]*.noarch.rpm
384 # glibc[.-][0-9]*.fat.rpm
385 #
386 # and will stop when it finds the first match.
387 #
388 # TODO: Once the miniroot is booted, we should verify that
389 # the rpm name has been expanded to "$rpmfile" properly
390 # by comparing "$rpm" and the output of:
391 #

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 7

392 # zlogin -z <zone> /bin/rpm --qf ’%{NAME}’ -qp $rpmfile
393 #
394 for arch in $archs; do
395 #
396 # Use the filename globbing functionality of ksh’s
397 # echo command to search for the file we want.
398 #
399 # If no matching file is found, echo will simply
400 # return the passed string.
401 #
402 rpmglob="$rpm[.-][0-9]*.$arch.rpm"
403 rpmfile="$(echo $rpmglob)"

405 [["$rpmfile" != "$rpmglob"]] && break

407 unset rpmfile
408 done

410 if [[-z $rpmfile]]; then
411 rpms_left[$left]="$rpm"
412 ((left += 1))
413 else
414 rpms_found[$found]="$rpmfile"
415 ((found += 1))
416 fi
417 done

419 cd "$curdir"
420 log "\"$rpmdir\": matched $found of $# packages."
421 log "\"$rpmdir\": $left RPMs remaining."
422 return 0
423 }

425 #
426 # Build the rpm lists used to install a machine.
427 #
428 # The first argument is the number of discs in the distribution. The
429 # second, optional, argument is the metacluster to install.
430 #
431 # The array "distro_rpm[]" is built from the individual package RPM arrays
432 # read in from an individual distribution definition file.
433 #
434 build_rpm_list()
435 {
436 # Default to a desktop installation
437 typeset cluster=desktop
438 typeset cnt=0
439 typeset pkgs

441 for clust in "$@"; do
442 ((cnt += 1))
443 case $clust in
444 core) cluster=core ;;
445 desk*) cluster=desktop ;;
446 serv*) cluster=server ;;
447 dev*) cluster=developer ;;
448 all) cluster=all
449 break;;
450 *) screenlog "$unknown_clust" "$clust"
451 exit $ZONE_SUBPROC_USAGE ;;
452 esac
453 done

455 if [$cnt -gt 1]; then
456 msg=$(gettext "Too many install clusters specified")
457 screenlog "$msg"

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 8

458 exit $ZONE_SUBPROC_USAGE
459 fi

461 screenlog "$inst_clust" $cluster

463 case $cluster in
464 core) distro_rpms=$distro_core_rpms ;;
465 desktop) distro_rpms=$distro_desktop_rpms ;;
466 server) distro_rpms=$distro_server_rpms ;;
467 developer) distro_rpms=$distro_developer_rpms ;;
468 all) distro_rpms=$distro_all_rpms ;;
469 esac

471 # The RPMs in the miniroot must all be installed properly as well
472 distro_rpms="$distro_miniroot_rpms $distro_rpms"
473 }

475 #
476 # Install the "miniroot" minimal Linux environment that is booted single-user
477 # to complete the install.
478 #
479 # This works by doing feeding the RPM list needed for the installation one
480 # by one to rpm2cpio(1).
481 #
482 # Usage:
483 # install_miniroot <mounted media dir> <names of RPMS to install>
484 #
485 #
486 install_miniroot()
487 {
488 typeset mediadir="$1"
489 typeset rpm

491 shift

493 #
494 # There’s a quirk in our version of ksh that sometimes resets the
495 # trap handler for the shell. Since RPM operations will be the
496 # longest part of any given install, make sure that an interrupt while
497 # the command is running will bring the miniroot down and clean up
498 # the interrupted install.
499 #
500 trap trap_cleanup INT

502 if [[$# -eq 1]]; then
503 msg=$(gettext "Installing %s miniroot package...")
504 else
505 msg=$(gettext "Installing %s miniroot packages...")
506 fi

508 screenlog "\n$msg" "$#"

510 for rpm in "$@"; do
511 verboselog "\nInstalling \"$rpm\" to miniroot at\n" \
512 " \"$zoneroot\"..."

514 rpm2cpio "$mediadir/$rd_rpmdir/$rpm" | \
515 (cd "$rootdir" && cpio -idu) 1>&2

517 if [[$? -ne 0]]; then
518 screenlog "$mini_instfail" "$rpm"
519 return 1
520 fi
521 done

523 screenlog ""

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 9

524 return 0
525 }

527 #
528 # Install the zone from the mounted disc image by feeding a list of RPMs to
529 # install from this image to RPM running on the zone via zlogin(1).
530 #
531 # Usage:
532 # install_zone <path to mounted install media> [<names of RPMS to install>]
533 #
534 # If the caller doesn’t supply a list of RPMs to install, we install any
535 # we previously stashed away in the deferred RPMs directory.
536 #
537 install_zone()
538 {
539 #
540 # Convert the passed install media pathname to a zone-relative path
541 # by stripping $rootpath from the head of the path.
542 #
543 typeset zonerpmdir="${1##$rootdir}/$rd_rpmdir"

545 typeset defdir="$rootdir/var/lx_install/deferred_rpms"
546 typeset mounted_root="$1"
547 typeset rpmopts="-i"

549 typeset defer
550 typeset deferred_found
551 typeset install_rpms
552 typeset nrpms
553 typeset rpm
554 typeset rpmerr

556 shift

558 #
559 # If the caller provided a list of RPMs, determine which of them
560 # should be installed now, and which should be deferred until
561 # later.
562 #
563 if [[$# -gt 0]]; then
564 if [[-n $deferred_rpms]]; then
565 [[-d $defdir]] || if ! mkdir -p $defdir; then
566 screenlog "$install_defmkfail" "$mntdir"
567 return 1
568 fi

570 msg=$(gettext "Checking for deferred packages...")
571 screenlog "$msg"

573 find_packages "$mounted_root" $deferred_rpms
574 deferred_found="${rpms_found[@]}"
575 numdeferred=${#rpms_found[@]}
576 else
577 deferred_found=""
578 fi

580 install_rpms="$@"
581 nrpms=$#

583 #
584 # If this distro has any deferred RPMs, we want to simply
585 # copy them into the zone instead of installing them. We
586 # then remove them from the list of RPMs to be installed on
587 # this pass.
588 #
589 for rpm in $deferred_found; do

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 10

590 if echo "$install_rpms" | egrep -s "$rpm"; then
591 verboselog "Deferring installation of \"$rpm\""

593 #
594 # Remove the RPM from the install_rpms list
595 # and append it to the deferred_saved array
596 #
597 install_rpms=$(echo "$install_rpms " |
598 sed "s/ $rpm / /g")

600 # remove trailing spaces, if any
601 install_rpms=${install_rpms%%+()}

603 deferred_saved[${#deferred_saved[@]}]="$rpm"

605 if ! cp "$mounted_root/$rd_rpmdir/$rpm" \
606 "$defdir"; then
607 screenlog "$install_defcpfail" "$rpm"
608 return 1
609 fi
610 fi

612 #
613 # If we’ve deferred the installation of EVERYTHING,
614 # simply return success
615 #
616 [[-z $install_rpms]] && return 0
617 done

619 [[-n $deferred_found]] & verbose ""
620 elif [[-z $deferred_saved]]; then
621 # There are no deferred RPMs to install, so we’re done.
622 return 0
623 else
624 # Install the RPMs listed in the deferred_saved array
625 install_rpms=${deferred_saved[@]}
626 nrpms=${#deferred_saved[@]}
627 zonerpmdir=/var/lx_install/deferred_rpms
628 defer="deferred "
629 fi

631 #
632 # There’s a quirk in our version of ksh that sometimes resets the
633 # trap handler for the shell. Since RPM operations will be the
634 # longest part of any given install, make sure that an interrupt while
635 # the command is running will bring the miniroot down and clean up
636 # the interrupted install.
637 #
638 trap trap_cleanup INT

640 #
641 # Print a message depending on how many RPMS we have to install.
642 #
643 # 25 RPMS seems like a reasonable boundary between when an install may
644 # take a "few" or "several" minutes; this may be tuned if needed.
645 #
646 screenlog ""

648 if [[$nrpms -eq 1]]; then
649 screenlog "$install_one_rpm" "$defer"
650 elif [[$nrpms -lt 25]]; then
651 screenlog "$install_nrpms_few" "$nrpms" "$defer"
652 else
653 screenlog "$install_nrpms_several" "$nrpms" "$defer"

655 #

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 11

656 # For installs of over 600 packages or so, it can take rpm a
657 # really, REALLY long time to output anything, even when
658 # running in verbose mode.
659 #
660 # For example, when doing an "all" install from a DVD or DVD
661 # ISO, depending on the speed of the optical drive and the
662 # speed of the machine’s CPU(s), it may be up to TEN MINUTES or
663 # MORE before rpm prints out its "Processing..." message even
664 # though it is, in fact, processing the entire package list,
665 # checking for dependencies (something it is unfortunately
666 # entirely silent about.)
667 #
668 # Since the user might otherwise think the install was hung
669 # when running in verbose mode, warn them that it could be
670 # quite a while before they see any further output from the
671 # installer.
672 #
673 #
674 [[$nrpms -gt 600]] && verbose "$install_longwait"
675 fi

677 log ""
678 log "Installing: $install_rpms"
679 log ""
680 log "NOTE: Any messages appearing below prefixed with \"warning:\""
681 log " and/or that do not cause the installer to abort the"
682 log " installation process may safely be ignored."
683 log ""

685 echo

687 # If verbose mode is selected, run rpm in verbose mode as well.
688 [[-n $verbose_mode]] && rpmopts="-ivh"

690 #
691 # LX_INSTALL must be defined when running this command in order to
692 # enable switches built into various emulated system calls to allow
693 # the dev package (which may not actually write to /dev) to function.
694 #
695 zlogin "$zonename" "(cd "$zonerpmdir" ; LX_INSTALL=1 \
696 /bin/rpm $rpmopts --force --aid --nosignature --root /a \
697 $install_rpms)"

699 rpmerr=$?

701 if [[$rpmerr -ne 0]]; then
702 log ""
703 log "Zone rpm install command exited abnormally, code $rpmerr"
704 log ""

706 screenlog "$zone_instfail" "$zonename" "$zonerpmdir" "$rpmerr"
707 return 1
708 fi

710 log ""
711 log "$nrpms package(s) installed."

713 return 0
714 }

716 #
717 # Attempt to unmount all file systems passed on the command line
718 #
719 # Returns 0 if all umounts succeeded, otherwise the number of umount failures
720 #
721 umount_list()

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 12

722 {
723 typeset failures=0
724 typeset mounted

726 unset umount_failures

728 for mounted in "$@"; do
729 if ! umount "$mounted"; then
730 umount_failures="$umount_failures $mounted"
731 ((failures += 1))
732 fi
733 done

735 return $failures
736 }

738 #
739 #
740 # Set up lofi mounts required for chroot(1M) to work on a new root directory
741 # located in /a within a zone.
742 #
743 newroot_lofimnt()
744 {
745 typeset dev
746 typeset mounted
747 typeset target

749 unset newroot_mounted

751 #
752 # /usr and /lib get lofs mounted in the zone on /native read-only
753 #
754 # $zoneroot/dev gets lofs mounted on /native/dev read/write to allow
755 # the use of native devices.
756 #
757 mount -F lofs -r /lib "$rootdir/a/native/lib" || return 1
758 newroot_mounted="$rootdir/a/native/lib"

760 if ! mount -F lofs -r /usr "$rootdir/a/native/usr"; then
761 umount "$rootdir/a/native/lib"
762 unset newroot_mounted
763 return 1
764 fi

766 newroot_mounted="$newroot_mounted $rootdir/a/native/usr"

768 if ! mount -F lofs "$zoneroot/root/native/dev" \
769 "$rootdir/a/native/dev"; then
770 umount_list $newroot_mounted
771 unset newroot_mounted
772 return 1
773 fi

775 newroot_mounted="$newroot_mounted $rootdir/a/native/dev"

777 #
778 # This is a bit ugly; to provide device access within the chrooted
779 # environment RPM will use for its install, we will create the same
780 # symlinks "$rootdir/dev" contains in the new dev directory, and will
781 # lofs mount the balance of "$rootdir/dev" into the same locations in
782 # /dev in the new filesystem we’re installing to.
783 #
784 for dev in "$zoneroot"/root/dev/*
785 do
786 if [["$dev" = "$zoneroot/root/dev/*"]]; then
787 log "ERROR: No files found in $zoneroot/root/dev"

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 13

788 umount_list $newroot_mounted
789 return 1
790 fi

792 target="$rootdir/a/dev/$(basename $dev)"

794 #
795 # If the device file is a symbolic link, create a new link
796 # in the target directory with the same source.
797 #
798 # If the device file is any other file or directory, lofs
799 # mount it from the device directory into the target directory.
800 #
801 if [[-h $dev]]; then
802 typeset source=$(LC_ALL=C file -h "$dev")

804 #
805 # Remove extraneous text from the output of file(1) so
806 # we’re left only with the target path of the symbolic
807 # link.
808 #
809 source="${source##*link to }"

811 [[-a "$target"]] && /bin/rm -f "$target"

813 if ! ln -s "$source" "$target"; then
814 screenlog "$symlink_failed" "$source" "$target"
815 umount_list $newroot_mounted
816 unset newroot_mounted
817 return 1
818 fi
819 else
820 [[! -a "$target"]] && touch "$target"

822 if ! mount -F lofs "$dev" "$target"; then
823 screenlog "$lofs_failed" "$dev" "$target"
824 umount_list $newroot_mounted
825 unset newroot_mounted
826 return 1
827 fi

829 newroot_mounted="$newroot_mounted $target"
830 fi

832 done

834 return 0
835 }

837 #
838 # Replace the root directory of a zone with the duplicate previously created
839 # in the zone’s /a directory.
840 #
841 replace_miniroot()
842 {
843 #
844 # The zoneadm halt will automatically unmount any file systems
845 # mounted via lofs in the zone, so that saves us from having to
846 # methodically unmount each one.
847 #
848 if ! zoneadm -z "$zonename" halt; then
849 screenlog "$zone_haltfail" "$zonename"
850 return 1
851 fi

853 unset miniroot_booted

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 14

854 unset newroot_mounted

856 [[-d "$zoneroot/a"]] && rm -rf "$zoneroot/a"
857 [[-d "$zoneroot/oldroot"]] && rm -rf "$zoneroot/oldroot"

859 #
860 # Copy the logfile or we’ll lose all details of the install into the
861 # new root directory, so strip "$zoneroot" off the pathname of the
862 # current logfile and use it to generate the pathname of the log file
863 # in the new root directory.
864 #
865 [[-n $logfile && -f "$logfile"]] &&
866 cp "$logfile" "$rootdir/a${logfile##$rootdir}"

868 mv -f "$rootdir/a" "$zoneroot/a" || return 1
869 mv -f "$rootdir" "$zoneroot/oldroot" || return 1
870 mv -f "$zoneroot/a" "$rootdir" || return 1

872 #
873 # After the directory munging above, we’ve moved the new copy of the
874 # logfile atop the logfile we WERE writing to, so if we don’t reopen
875 # the logfile here the shell will continue writing to the old logfile’s
876 # inode, meaning we would lose all log information from this point on.
877 #
878 [[-n $logfile]] && exec 2>>"$logfile"

880 rm -rf "$zoneroot/oldroot"

882 #
883 # Remove the contents of the /dev directory created by the install.
884 #
885 # We don’t technically need to do this, but the zone infrastructure
886 # will mount $zoneroot/dev atop $rootdir/dev anyway, hiding its
887 # contents so we may as well clean up after ourselves.
888 #
889 # The extra checks are some basic paranoia due to the potentially
890 # dangerous nature of this command but are not intended to catch all
891 # malicious cases
892 #
893 [["$rootdir" != "" && "$rootdir" != "/"]] && rm -rf "$rootdir"/dev/*

895 return 0
896 }

898 setup_miniroot()
899 {
900 unset miniroot_booted

902 if ! "$cwd/lx_init_zone" "$rootdir" mini; then
903 screenlog "$mini_initfail" "$zonename"
904 return 1
905 fi

907 if ! copy_miniroot; then
908 screenlog "$mini_copyfail" "$zonename"
909 return 1
910 fi

912 #
913 # zoneadm gets upset if the zone root directory is group or world
914 # readable or executable, so make sure it isn’t before proceeding.
915 #
916 chmod 0700 "$zoneroot"

918 msg=$(gettext "Booting zone miniroot...")
919 screenlog "$msg"

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 15

921 if ! zoneadm -z "$zonename" boot -f; then
922 screenlog "$mini_bootfail" "$zonename"
923 return 1
924 fi

926 miniroot_booted=1

928 #
929 # Now that the miniroot is booted, unset the compatible architecture
930 # list that find_packages was using for the miniroot so that it will
931 # get the list from rpm for the full install.
932 #
933 unset archs

935 #
936 # Mount all the filesystems needed to install the new root
937 # directory.
938 #
939 if ! newroot_lofimnt; then
940 screenlog "$mini_mntfsfail" "$zonename"

942 if [[-n $newroot_mounted]]; then
943 umount_list $newroot_mounted
944 unset newroot_mounted
945 fi
946 return 1
947 fi

949 #
950 # Attempt to initialize the RPM database for the new zone
951 #
952 if ! zlogin "$zonename" /bin/rpm --initdb --root /a; then
953 screenlog "$rpm_initfail" "$zonename"
954 return 1
955 fi

957 msg=$(gettext "Miniroot zone setup complete.")
958 screenlog "$msg"
959 return 0
960 }

962 finish_install()
963 {
964 #
965 # Perform some last cleanup tasks on the newly installed zone.
966 #
967 # Note that the zlogin commands aren’t checked for errors, as the
968 # newly installed zone will still boot even if the commands fail.
969 #
970 typeset file

972 typeset defdir=$rootdir/var/lx_install/deferred_rpms

974 msg=$(gettext "Completing installation; this may take a few minutes.")
975 screenlog "$msg"

977 if [[-d $defdir]]; then
978 rm -f $defdir/*.rpm
979 rmdir $defdir
980 fi

982 # Run ldconfig in the new root
983 zlogin "$zonename" /usr/sbin/chroot /a \
984 /sbin/ldconfig -f /etc/ld.so.conf

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 16

986 #
987 # Create the /etc/shadow and /etc/gshadow files if they don’t already
988 # exist
989 #
990 [[-a "$rootdir/a/etc/shadow"]] ||
991 zlogin "$zonename" /usr/sbin/chroot /a /usr/sbin/pwconv

993 [[-a "$rootdir/a/etc/gshadow"]] ||
994 zlogin "$zonename" /usr/sbin/chroot /a /usr/sbin/grpconv

996 #
997 # Make sure all init.d and rc[0-6].d links are set up properly.
998 #
999 for file in ‘ls "$rootdir/a/etc/init.d"‘; do

1000 zlogin "$zonename" /usr/sbin/chroot /a \
1001 /sbin/chkconfig --del $file > /dev/null 2>&1

1003 zlogin "$zonename" /usr/sbin/chroot /a \
1004 /sbin/chkconfig --add $file > /dev/null 2>&1
1005 done

1007 replace_miniroot

1009 rmdir -ps "$media_mntdir"

1011 if ! "$cwd/lx_init_zone" "$rootdir"; then
1012 screenlog "$zone_initrootfail" "$zonename"
1013 return 1
1014 fi

1016 return 0
1017 }

1019 #
1020 # Duplicate the installed "miniroot" image in a subdirectory of the base
1021 # directory of the zone.
1022 #
1023 # This is done so that a new root directory can be created that will be used
1024 # as the root of a chrooted directory that RPM running on the zone will install
1025 # into.
1026 #
1027 copy_miniroot()
1028 {
1029 #
1030 # Create the directory $zoneroot/a if it doesn’t already exist
1031 #
1032 [[-d "$zoneroot/a"]] ||
1033 { mkdir -p "$zoneroot/a" || return 1 ; }

1035 msg=$(gettext "Duplicating miniroot; this may take a few minutes...")
1036 screenlog "$msg"

1038 #
1039 # Duplicate the miniroot to /a, but don’t copy over any /etc/rc.d or
1040 # lxsave_ files.
1041 #
1042 (cd "$rootdir"; find . -print | egrep -v "/etc/rc\.d|lxsave_" | \
1043 cpio -pdm ../a)

1045 [[-d "$rootdir/a"]] && rm -rf "$rootdir/a" 2>/dev/null
1046 mv -f "$zoneroot/a" "$rootdir/a" || return 1

1048 return 0
1049 }

1051 #

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 17

1052 # Read the first six lines of the .discinfo file from the root of the passed
1053 # disc directory (which should either be a mounted disc or ISO file.)
1054 #
1055 # The read lines will be used to set appropriate shell variables on success:
1056 #
1057 # rd_line[0]: Disc Set Serial Number (sets rd_serial)
1058 # rd_line[1]: Distribution Release Name (sets rd_release)
1059 # rd_line[2]: Distribution Architecture (sets rd_arch)
1060 # rd_line[3]: Disc Number$[s] in Distribution (sets rd_cdnum)
1061 # rd_line[4]: "base" directory for disc (currently unused)
1062 # rd_line[5]: RPM directory for disc (sets rd_rpmdir)
1063 #
1064 # Returns 0 on success, 1 on failure.
1065 #
1066 read_discinfo()
1067 {
1068 typeset rd_file="$1/.discinfo"

1070 unset rd_arch
1071 unset rd_cdnum
1072 unset rd_disctype
1073 unset rd_pers
1074 unset rd_release
1075 unset rd_rpmdir
1076 unset rd_serial

1078 #
1079 # If more than one argument was passed to read_discinfo, the second
1080 # is a flag meaning that we should NOT print a warning message if
1081 # we don’t find a .discinfo file, as this is just a test to see if
1082 # a distribution ISO is already mounted on the passed mount point.
1083 #
1084 if [[! -f "$rd_file"]]; then
1085 [[$# -eq 1]] &&
1086 screenlog "$discinfo_nofile" "$rd_file"
1087 return 1
1088 fi

1090 verbose "Attempting to read \"$rd_file\"..."

1092 if [[! -r "$rd_file"]]; then
1093 screenlog "$discinfo_notreadable" "$rd_file"
1094 return 1
1095 fi

1097 typeset rd_line
1098 typeset linenum=0

1100 while read -r rd_line[$linenum]; do
1101 #
1102 # If .discinfo architecture isn’t "i386," fail here as
1103 # we only support i386 distros at this time.
1104 #
1105 if [[$linenum = 2 && "${rd_line[2]}" != "i386"]]; then
1106 screenlog "$discinfo_wrongarch" "$rd_file" \
1107 "${rd_line[2]}"
1108 return 1
1109 fi

1111 #
1112 # We’ve successfully read the first six lines of .discinfo
1113 # into $rd_line, so do the appropriate shell variable munging.
1114 #
1115 if ((linenum == 5)); then
1116 rd_serial=${rd_line[0]}
1117 rd_release=${rd_line[1]}

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 18

1119 # CentOS names their releases "final"
1120 [["$rd_release" = "final"]] && rd_release="CentOS"

1122 #
1123 # Line four of the .discinfo file contains either a
1124 # single disc number for a CD or a comma delimited list
1125 # representing the CDs contained on a particular DVD.
1126 #
1127 rd_cdnum=${rd_line[3]}

1129 if [["$rd_cdnum" = *,*]]; then
1130 rd_disctype="DVD"
1131 else
1132 rd_disctype="CD"
1133 fi

1135 rd_rpmdir=${rd_line[5]}

1137 #
1138 # If the specified RPM directory doesn’t exist, this is
1139 # not a valid binary RPM disc (it’s most likely a
1140 # source RPM disc), so don’t add it to the list of
1141 # valid ISO files.
1142 #
1143 [[! -d "$1/$rd_rpmdir"]] && return 1

1145 if [["$rd_cdnum" = "1" &&
1146 "$rd_release" = "Red Hat"*]]; then
1147 typeset rh_glob

1149 #
1150 # If this is a Red Hat release, get its
1151 # personality name from the name of the
1152 # redhat-release RPM package.
1153 #
1154 # Start by looking for the file
1155 # "redhat-release-*.rpm" in the directory
1156 # RedHat/RPMS of the ISO we’re examining by
1157 # using ksh’s "echo" command to handle
1158 # filename globbing.
1159 #
1160 # If no matching file is found, echo will
1161 # simply return the passed string.
1162 #
1163 rh_glob="$1/RedHat/RPMS/redhat-release-*.rpm"
1164 rd_pers="$(echo $rh_glob)"

1166 if [["$rd_pers" != "$rh_glob"]]; then
1167 #
1168 # An appropriate file was found, so
1169 # extract the personality type from the
1170 # filename.
1171 #
1172 # For example, the presence of the file:
1173 #
1174 # redhat-release-3WS-13.5.1.i386.rpm
1175 #
1176 # would indicate the ISO either
1177 # represents a "WS" personality CD or
1178 # a "WS" installation DVD.
1179 #
1180 # Start the extraction by deleting the
1181 # pathname up to the personality type.
1182 #
1183 rh_glob="*/redhat-release-[0-9]"

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 19

1184 rd_pers="${rd_pers##$rh_glob}"

1186 #
1187 # Now remove the trailing portion of the
1188 # pathname to leave only the personality
1189 # type, such as "WS" or "ES."
1190 #
1191 rd_pers="${rd_pers%%-*\.rpm}"
1192 else
1193 unset rd_pers
1194 fi
1195 fi

1197 return 0
1198 fi

1200 ((linenum += 1))
1201 done < "$rd_file"

1203 #
1204 # The file didn’t have at least six lines, so indicate that parsing
1205 # failed.
1206 #
1207 return 1
1208 }

1210 #
1211 # Mount install media within the zone.
1212 #
1213 # The media will be mounted at $zoneroot/root/media, either via a loopback
1214 # mount (if it’s a managed removable disc) or directly (if the media is an ISO
1215 # file or if the specified filename is a block device.)
1216 #
1217 # Returns 0 on success, 1 on failure, 2 if no disc was available
1218 #
1219 mount_install_media()
1220 {
1221 typeset device="$1"
1222 typeset mount_err

1224 unset removable
1225 unset zone_mounted

1227 [[-z $mntdir]] && return 1

1229 [[-d $mntdir]] || if ! mkdir -p $mntdir; then
1230 screenlog "$mk_mntfail" "$mntdir"
1231 unset mntdir
1232 return 1
1233 fi

1235 if [["$install_media" = "disc" && "$managed_removable" = "1"]]; then
1236 #
1237 # The removable disc device is an automatically managed one,
1238 # so just wait for the device mounter to notice a disc has been
1239 # inserted into the drive and for the disc to appear at the
1240 # mount point.
1241 #
1242 typeset mount_interval=2
1243 typeset mount_timeout=10
1244 typeset mount_timer=0

1246 typeset nickname=$(basename $device)

1248 eject -q "$nickname" > /dev/null 2>&1 || return 2
1249 removable="$nickname"

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 20

1251 #
1252 # Double check that the device was mounted. If it wasn’t, that
1253 # usually means the disc in the drive isn’t in a format we can
1254 # read or the physical disc is unreadable in some way.
1255 #
1256 # The mount_timer loop is needed because the "eject -q" above
1257 # may report a disc is available before the mounter associated
1258 # with the drive actually gets around to mounting the device,
1259 # so we need to give it a chance to do so. The mount_interval
1260 # allows us to short-circuit the timer loop as soon as the
1261 # device is mounted.
1262 #
1263 while ((mount_timer < mount_timeout)); do
1264 [[-d "$device"]] && break

1266 sleep $mount_interval
1267 ((mount_timer += mount_interval))
1268 done

1270 if [[! -d "$device"]]; then
1271 screenlog "\n$unknown_media" "$device"
1272 return 2
1273 fi

1275 mount -F lofs -r "$device" "$mntdir"
1276 mount_err=$?
1277 else
1278 #
1279 # Attempt to mount the media manually.
1280 #
1281 # First, make sure the passed device name really IS a device.
1282 #
1283 [[-b "$device"]] || return 2

1285 #
1286 # Now check to see if the device is already mounted and lofi
1287 # mount the existing mount point into the zone if it is.
1288 #
1289 if get_mountdir "$device"; then
1290 mount -F lofs -r "$mount_dir" "$mntdir"
1291 mount_err=$?
1292 else
1293 [["$install_media" = "disc"]] && removable="$device"

1295 # It wasn’t mounted, so go ahead and try to do so.
1296 mount -F hsfs -r "$device" "$mntdir"
1297 mount_err=$?
1298 fi

1300 # A mount_err of 33 means no suitable media was found
1301 ((mount_err == 33)) && return 2
1302 fi

1304 if ((mount_err != 0)); then
1305 screenlog "$mountfail" "$device" "$mntdir"
1306 unset mntdir
1307 return 1
1308 fi

1310 zone_mounted="$mntdir"
1311 verbose "Mount of \"$device\" on \"$mntdir\" succeeded."
1312 return 0
1313 }

1315 # Eject the disc mounted on the passed directory name

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 21

1316 eject_removable_disc()
1317 {
1318 screenlog ""
1319 verbose " (Attempting to eject ’$removable’... \c"

1321 if [[-n $zone_mounted]]; then
1322 umount "$zone_mounted"
1323 unset zone_mounted
1324 fi

1326 if ! eject "$removable"; then
1327 verbose "failed.)\n"
1328 screenlog "$eject_fail" "$removable"

1330 msg=$(gettext "Please eject the disc manually.")
1331 screenlog "$msg"
1332 else
1333 verbose "done.)\n"
1334 fi

1336 unset removable
1337 }

1339 #
1340 # Ask for the user to provide a disc or ISO.
1341 #
1342 # Returns 0 on success, 1 on failure.
1343 #
1344 prompt_for_media()
1345 {
1346 # No prompting is allowed in silent mode.
1347 if [[-n $silent_mode]]; then
1348 log "$silent_err_msg"
1349 return 1
1350 fi

1352 if [["$1" != ""]]; then
1353 msg="$release_name, CD $1"
1354 else
1355 typeset disc=$(gettext "disc")

1357 msg=$(gettext "any")
1358 msg="$msg $release_name $disc"
1359 fi

1361 if [["$install_media" = "disc"]]; then
1362 screenlog "$insert_discmsg" "$msg" "$release_name"

1364 msg=$(gettext "drive and press <RETURN>.")
1365 screenlog " $msg"

1367 [[-n $removable]] && eject_removable_disc
1368 else
1369 if [[-n $zone_mounted]]; then
1370 umount "$mntdir"
1371 unset zone_mounted
1372 fi

1374 #
1375 # This is only be printed in the case of a user
1376 # specifying a device name as an install medium.
1377 # This is handy for testing the installer or if the user
1378 # has ISOs stored in some strange way that somehow
1379 # breaks the "install from ISO" mechanism, as ISOs
1380 # can be manually added using lofiadm(1M) command and
1381 # the resulting lofi device name passed to the

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 22

1382 # installer.
1383 #
1384 screenlog "$mount_proper_iso1" "$msg"
1385 screenlog " $mount_proper_iso2" "$release_name" "$mntdev"

1387 msg=$(gettext "and press <RETURN>.")
1388 screenlog " $msg"
1389 fi

1391 read && return 0
1392
1393 return 1
1394 }

1396 #
1397 # Get a particular CD of a multi-disc set.
1398 #
1399 # This basically works by doing the following:
1400 #
1401 # 1) Mount the disc
1402 # 2) Read the disc’s .discinfo file to see which CD it is or represents
1403 # 3) If it doesn’t contain the desired CD, ask the user for a disc
1404 # containing the CD we wanted.
1405 #
1406 # Returns 0 on success, 1 on failure.
1407 #
1408 get_cd()
1409 {
1410 typeset mntdev="$1"

1412 typeset cdnum
1413 typeset discname
1414 typeset enter
1415 typeset mount_err
1416 typeset prompted

1419 if [[$# -eq 2]]; then
1420 # Caller specified a particular CD to look for
1421 cdnum="$2"
1422 discname="$release_name, CD $cdnum"
1423 else
1424 # Caller wanted any disc
1425 discname="a $release_name disc"
1426 fi

1428 verboselog "\nChecking for $discname on device"
1429 verboselog " \"$mntdev\"\n"

1431 while :; do
1432 # Check to see if a distro disc is already mounted
1433 mntdir="$media_mntdir"

1435 unset rd_disctype
1436 if ! read_discinfo "$mntdir" "test"; then
1437 mount_install_media "$mntdev"
1438 mount_err=$?

1440 #
1441 # If the mount succeeded, continue on in the main
1442 # script
1443 #
1444 if ((mount_err == 0)); then
1445 read_discinfo "$mntdir"
1446 elif ((mount_err == 2)); then
1447 # No medium was found, so prompt for one.

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 23

1448 prompt_for_media "$cdnum" && prompted=1 continue

1450 unset mntdir
1451 return 1
1452 else
1453 # mount failed
1454 unset mntdir
1455 return 1
1456 fi
1457 fi

1459 if [[-n $distro_serial &&
1460 "$rd_serial" != "$distro_serial"]]; then
1461 screenlog "$wrong_serial" "$install_disctype"
1462 screenlog " $wrong_ser_expect" "$rd_serial" \
1463 "$distro_serial"

1465 #
1466 # If we’re installing from ISOs, don’t prompt the user
1467 # if the wrong serial number is present, as there’s
1468 # nothing they can do about it.
1469 #
1470 [["$install_media" = "ISO"]] && return 1

1472 prompt_for_media "$cdnum" && continue

1474 umount "$mntdir"
1475 unset zone_mountdir
1476 return 1
1477 fi

1479 #
1480 # Make sure that the mounted media is CD $cdnum.
1481 #
1482 # If it is, return to the caller, otherwise eject the
1483 # disc and try again.
1484 #
1485 if [["$rd_disctype" = "CD"]]; then
1486 verboselog "Found CD #$rd_cdnum," \
1487 "Serial #$rd_serial"
1488 verboselog "Release Name \"$rd_release\""

1490 [[-n $rd_pers]] &&
1491 verboselog "Detected RedHat Personality" \
1492 "\"$rd_pers\""

1494 verboselog ""

1496 # If we didn’t care which CD it was, return success
1497 [["$cdnum" = ""]] && return 0

1499 # Return if the CD number read is a match
1500 [["$rd_cdnum" = "$cdnum"]] && return 0
1501 else
1502 verboselog "\nFound DVD (representing CDs" \
1503 "$rd_cdnum), Serial #$rd_serial"
1504 verboselog "Release Name \"$rd_release\"\n"

1506 [[-n $rd_pers]] &&
1507 verboselog "Detected RedHat Personality" \
1508 "\"$rd_pers\""

1510 verboselog ""

1512 # If we didn’t care which CD it was, return success
1513 [["$cdnum" = ""]] && return 0

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 24

1515 #
1516 # Since a DVD represents multiple CDs, make sure the
1517 # DVD inserted represents the CD we want.
1518 #
1519 { echo "$rd_cdnum," | egrep -s "$cdnum," ; } &&
1520 return 0
1521 fi

1523 if [[-n $prompted]]; then
1524 if [["$rd_disctype" = "CD"]]; then
1525 screenlog "$wrong_cd" "$rd_cdnum" "$cdnum"
1526 else
1527 msg=$(gettext "Incorrect DVD inserted.")
1528 screenlog "$msg"

1530 log "(DVD represented CDs $rd_cdnum," \
1531 " wanted CD $cdnum)"
1532 fi
1533 fi

1535 #
1536 # If we’re installing from ISOs, don’t prompt the user if the
1537 # wrong CD is mounted, as there’s nothing they can do about it.
1538 #
1539 [["$install_media" = "ISO"]] && return 1

1541 prompt_for_media "$cdnum" && prompted=1 && continue

1543 umount "$mntdir"
1544 unset zone_mountdir
1545 return 1
1546 done
1547 }

1549 #
1550 # Find out which distro the mounted disc belongs to by comparing the
1551 # mounted disc’s serial number against those contained in the various
1552 # distro files.
1553 #
1554 # When a match is found, the shell variable "distro_file" will be set to
1555 # the name of the matching file. Since that will have been the last file
1556 # sourced by the shell, there’s no need for the caller to do it again; the
1557 # variable is only set in case it’s of some use later.
1558 #
1559 # Returns 0 on success, 1 on failure.
1560 #
1561 get_disc_distro()
1562 {
1563 typeset distro
1564 typeset distro_files="$(echo $distro_dir/*.distro)"

1566 unset distro_file
1567
1568 [["$distro_files" = "$distro_dir/*.distro"]] && return 1

1570 for distro in $distro_files; do
1571 [[! -f "$distro"]] && continue
1572
1573 verbose "Checking for disc distro \"$distro\"..."

1575 . "$distro" > /dev/null

1577 [["$rd_serial" != "$distro_serial"]] && continue

1579 distro_file="$distro"

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 25

1580 release_name="$rd_release $distro_version"
1581 distro_ncds=${#distro_cdorder[@]}

1583 return 0
1584 done

1586 return 1
1587 }

1589 #
1590 # Iterate through the install media to install the miniroot and full zone
1591 #
1592 # The install media may be physical discs, a lofi mounted ISO file, or
1593 # iso files located in a directory specified by the user.
1594 #
1595 # All installations, regardless of media type, use a CD as their basic media
1596 # unit. DVDs or ISOs representing DVDs actually contain multiple "CDs" of
1597 # installation packages.
1598 #
1599 # The variable "distro_ncds," as set elsewhere, represents the number
1600 # of CDs required to install the distribution. Whether the installation
1601 # actually requires multiple physical discs or ISOs depends upon their content.
1602 #
1603 # Returns 0 on success, 1 on failure.
1604 #
1605 iterate_media()
1606 {
1607 typeset cdnum=1
1608 typeset cds
1609 typeset disc_rpms
1610 typeset err_media
1611 typeset err_msg
1612 typeset install_type="$1"
1613 typeset ldevs
1614 typeset mountdev
1615 typeset rh_pers

1617 shift

1619 if [["$install_type" = "miniroot"]]; then
1620 typeset i

1622 disc_rpms=$distro_miniroot_rpms
1623 err_msg="$mini_mediafail"

1625 # For miniroot installs, ask for CDs in numerical order
1626 cds[0]="zero_pad"

1628 for i in ${distro_cdorder[@]}; do
1629 cds[$cdnum]=$cdnum
1630 ((cdnum += 1))
1631 done

1633 cdnum=1
1634 else
1635 disc_rpms=$distro_rpms
1636 err_msg="$zone_mediafail"

1638 #
1639 # For full zone installs, ask for CDs in the order RPM needs
1640 # to find the packages.
1641 #
1642 set -A cds "zero_pad" ${distro_cdorder[@]}
1643 fi

1645 if [["$install_media" = "ISO"]]; then

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 26

1646 set -A ldevs "zero_pad" "$@"
1647 else
1648 mountdev="$1"
1649 err_media="$release_name, CD ${cds[$cdnum]} (or DVD)"
1650 fi

1652 unset rpms_left_save

1654 while ((cdnum <= distro_ncds)); do
1655 [[-z ${cds[$cdnum]}]] && ((cdnum += 1)) && continue

1657 if [["$install_media" = "ISO"]]; then
1658 typeset isonum="${cds[$cdnum]}"

1660 #
1661 # If this routine was called with a single ISO device
1662 # name, it must be a DVD, so refer to that one lofi
1663 # device (and associated ISO pathname)
1664 #
1665 [[$# -eq 1]] && isonum=1

1667 err_media="ISO \"${iso_pathnames[$isonum]}\""
1668 mountdev="${ldevs[$isonum]}"
1669 fi

1671 #
1672 # If the disc needed in the install order isn’t the one in
1673 # the drive, ask for the correct one.
1674 #
1675 if ! get_cd "$mountdev" "${cds[$cdnum]}"; then
1676 screenlog "$err_msg" "$zonename" "$err_media"
1677 return 1
1678 fi

1680 # set the RedHat personality type, if applicable
1681 [[-n $rd_pers && -z $rh_pers]] && rh_pers=$rd_pers

1683 #
1684 # We now know the actual type of media being used, so
1685 # modify the "err_media" string accordingly.
1686 #
1687 if [["$install_media" = "disc"]]; then
1688 if [["$rd_disctype" = "DVD"]]; then
1689 err_media="$release_name DVD"
1690 else
1691 err_media="$release_name, CD ${cds[$cdnum]}"
1692 fi
1693 fi

1695 find_packages "$mntdir" $disc_rpms

1697 #
1698 # Save a copy of $rpms_left. Other functions clobber it.
1699 #
1700 rpms_left_save="${rpms_left[@]}"

1702 if [[-n $rpms_found]]; then
1703 if [["$install_type" = "miniroot"]]; then
1704 verboselog "\nInstalling miniroot from"
1705 verboselog " $err_media...\n"

1707 if ! install_miniroot "$mntdir" \
1708 "${rpms_found[@]}"; then
1709 screenlog "$err_msg" "$zonename" \
1710 "$err_media"
1711 return 1

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 27

1712 fi
1713 else
1714 screenlog "\n$install_msg\n" "$zonename" \
1715 "$err_media"

1717 if ! install_zone "$mntdir" \
1718 ${rpms_found[@]}; then
1719 screenlog "$err_msg" "$zonename" \
1720 "$err_media"
1721 return 1
1722 fi
1723 fi

1725 #
1726 # Mark installation from this CD (or ISO representing
1727 # this CD) as completed.
1728 #
1729 if [["$rd_disctype" = "CD"]]; then
1730 unset cds[$cdnum]
1731 fi
1732 fi

1734 # A DVD install takes a single disc, so stop iterating
1735 [["$rd_disctype" = "DVD"]] && break

1737 # If there are no RPMs left, we’re done.
1738 [[-z $rpms_left_save]] && break

1740 disc_rpms="$rpms_left_save"
1741 ((cdnum += 1))

1743 if [["$install_media" != "ISO"]]; then
1744 #
1745 # modify the err_media variable to reflect the next
1746 # CD in the sequence
1747 #
1748 err_media="$release_name, CD ${cds[$cdnum]}"
1749 else
1750 # Unmount the last used ISO if appropriate
1751 if [[-n $zone_mounted]]; then
1752 umount "$zone_mounted"
1753 unset zone_mounted
1754 fi
1755 fi
1756 done

1758 if [[-n $zone_mounted]]; then
1759 umount "$zone_mounted"
1760 unset zone_mounted
1761 fi

1763 if [[-n $rpms_left_save]]; then
1764 #
1765 # Uh oh - there were RPMS we couldn’t locate. This COULD
1766 # indicate a failed installation, but we need to check for
1767 # a RedHat personality "missing" list first.
1768 #
1769 if [[-n $rh_pers && "$rh_pers" != "AS"]]; then
1770 typeset missing

1772 if [[$rh_pers = "WS"]]; then
1773 missing="$distro_WS_missing"
1774 elif [[$rh_pers = "ES"]]; then
1775 missing="$distro_ES_missing"
1776 fi

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 28

1778 #
1779 # If any packages left in "rpm_left_save" appear in the
1780 # list of packages expected to be missing from this
1781 # personality, remove them from the "rpm_left_save"
1782 # list.
1783 #
1784 if [[-n $missing]]; then
1785 typeset pkg

1787 for pkg in $missing
1788 do
1789 rpm_left_save=$(echo "$rpm_left_save " |
1790 sed "s/$pkg //g")

1792 #
1793 # If all of the packages in
1794 # "rpm_left_save" appeared in this
1795 # personality’s list of "expected
1796 # missing" packages, then the
1797 # installation completed successfully.
1798 #
1799 [[-z ${rpm_left_save%%+()}]] &&
1800 return 0
1801 done
1802 fi
1803 fi

1805 log "\nERROR: Unable to locate some needed packages:\n" \
1806 " ${rpms_left_save%%+()}\n"
1807 screenlog "$err_msg" "$zonename"
1808 return 1
1809 fi

1811 return 0
1812 }

1814 #
1815 # Install a zone from installation media
1816 #
1817 # Returns 0 on success, 1 on failure
1818 #
1819 install_from_media()
1820 {
1821 msg=$(gettext "Installing miniroot for zone ’%s’.")
1822 screenlog "$msg" "$zonename"

1824 iterate_media "miniroot" $@ || return 1

1826 if ! setup_miniroot; then
1827 screenlog "$mini_setfail" "$zonename"
1828 return 1
1829 fi

1831 msg=$(gettext "Performing full install for zone ’%s’.")

1833 screenlog "\n$msg" "$zonename"

1835 iterate_media "full" $@ || return 1

1837 #
1838 # Attempt to install deferred RPMS, if any
1839 #
1840 if [[-n $deferred_rpms]]; then
1841 if ! install_zone ""; then
1842 return 1
1843 fi

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 29

1844 fi

1846 finish_install
1847 return $?
1848 }

1850 #
1851 # Add an entry to the valid distro list.
1852 #
1853 # The passed argument is the ISO type ("CD Set" or "DVD")
1854 #
1855 add_to_distro_list()
1856 {
1857 typeset name

1859 distro_file[${#distro_file[@]}]="$distro"

1861 name="$release_name"
1862 [[-n $redhat_pers]] && name="$name $redhat_pers"

1864 select_name[${#select_name[@]}]="$name ($1)"
1865 release[${#release[@]}]="$release_name"
1866 iso_set[${#iso_set[@]}]="${iso_names[@]}"
1867 verboselog "Distro \"$name\" ($1) found."
1868 }

1870 #
1871 # Find out which distros we have ISO files to support
1872 #
1873 # Do this by cycling through the distro directory and reading each distro
1874 # file in turn looking for:
1875 #
1876 # 1) The number of discs in a distribution
1877 # 2) The serial number of the distribution
1878 # 3) The name of the distribution
1879 #
1880 # Based on this, we can determine based on the ISO files available which
1881 # distributions, if any, we have a complete set of files to support.
1882 #
1883 # The function returns the supported isos in the array "iso_set."
1884 #
1885 validate_iso_distros()
1886 {
1887 typeset cd
1888 typeset disctype
1889 typeset index
1890 typeset iso
1891 typeset ncds
1892 typeset pers
1893 typeset pers_cd
1894 typeset pers_index
1895 typeset serial

1897 typeset distro_files="$(echo $distro_dir/*.distro)"
1898 typeset nisos=${#iso_filename[@]}

1900 unset distro_file
1901 unset iso_set
1902 unset release
1903 unset select_name

1905 if [["$distro_files" = "$distro_dir/*.distro"]]; then
1906 msg=$(gettext "Unable to find any distro files!")
1907 screenlog "$msg"
1908 return
1909 fi

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 30

1911 for distro in $distro_files; do
1912 #
1913 # We’re done if we’ve already processed all available ISO files
1914 # or if there were none in the first place.
1915 #
1916 ((${#iso_filename[@]} == 0)) && break

1918 [[! -f $distro]] && continue

1920 . "$distro" > /dev/null
1921 ncds=${#distro_cdorder[@]}

1923 unset iso_names
1924 unset pers
1925 unset pers_cd

1927 verbose "\nChecking ISOs against distro file \"$distro\"..."

1929 index=0

1931 while ((index < nisos)); do
1932 #
1933 # If the filename has been nulled out, it’s already
1934 # been found as part of a distro, so continue to the
1935 # next one.
1936 #
1937 if [[-z ${iso_filename[$index]}]]; then
1938 ((index += 1))
1939 continue
1940 fi

1942 iso="${iso_filename[$index]}"
1943 serial="${iso_serial[$index]}"
1944 release_name="${iso_release[$index]}"
1945 redhat_pers="${iso_pers[$index]}"

1947 verbose " ISO \"$iso\":"

1949 #
1950 # If the serial number doesn’t match that for
1951 # this distro, check other ISOs
1952 #
1953 if [["$serial" != "$distro_serial"]]; then
1954 ((index += 1))
1955 continue
1956 fi

1958 verbose " Serial #$serial"
1959 verbose " Release Name \"$release_name\""

1961 [[-n ${iso_pers[$index]}]] &&
1962 verbose " RedHat Personality \"$redhat_pers\""

1964 if [["${iso_disctype[$index]}" = "CD"]]; then
1965 disctype="CD #"
1966 cd="${iso_cdnum[$index]}"
1967 else
1968 disctype="DVD, representing CDs #"
1969 cd=0
1970 fi

1972 verbose " ${disctype}${iso_cdnum[$index]}\n"

1974 #
1975 # Once we’ve matched a particular distro, don’t check

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 31

1976 # this ISO to see if it’s part of any other.
1977 #
1978 unset iso_filename[$index]

1980 iso_names[$cd]="$iso"

1982 #
1983 # A DVD-based distro consists of one and ONLY one disc,
1984 # so process it now.
1985 #
1986 if [["${iso_disctype[$index]}" = "DVD"]]; then
1987 typeset dvd_discs=",${iso_cdnum[$index]}"

1989 cd=1
1990 while ((cd <= ncds)); do
1991 dvd_discs=$(echo "$dvd_discs" |
1992 sed "s/,$cd//")
1993 ((cd += 1))
1994 done

1996 #
1997 # If no CDs are left in $dvd_discs, the DVD
1998 # was a complete distribution, so add it to
1999 # the valid distro list.
2000 #
2001 if [[-z $dvd_discs]]; then
2002 add_to_distro_list "DVD"
2003 unset iso_names[$cd]
2004 fi
2005 elif [[-n ${iso_pers[$index]}]]; then
2006 #
2007 # If this is a RedHat personality CD, save off
2008 # some extra information about it so we can
2009 # discern between mutiple personality discs
2010 # later, if needed.
2011 #
2012 pers[${#pers[@]}]=${iso_pers[$index]}
2013 pers_cd[${#pers_cd[@]}]="$iso"
2014 fi

2016 ((index += 1))
2017 done

2019 #
2020 # Check to see if we have ISOs representing a full CD set.
2021 # If we don’t, don’t mark this as an available distro.
2022 #
2023 ((${#iso_names[@]} != $ncds)) && continue

2025 relase_name="$release_name $distro_version"
2026
2027 if [[-z ${pers[@]}]]; then
2028 #
2029 # If there were no personality discs, just add this
2030 # ISO set to the distro list.
2031 #
2032 unset redhat_pers
2033 add_to_distro_list "CD Set"
2034 else
2035 #
2036 # If a valid CD-based distro was found and there are
2037 # RedHat personality discs for that distro present,
2038 # create entries for each personality in the available
2039 # distro list.
2040 #
2041 pers_index=0

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 32

2043 while ((pers_index < ${#pers[@]})); do
2044 redhat_pers=${pers[$pers_index]}

2046 if [[-n ${pers_cd[$pers_index]}]]; then
2047 #
2048 # RedHat personality discs are always
2049 # disc 1 of a CD set, so if we found a
2050 # valid personality disc for this set,
2051 # set the disc 1 entry for this distro
2052 # to the ISO for the proper personality
2053 # disc.
2054 #
2055 iso_names[1]="${pers_cd[$pers_index]}"
2056 add_to_distro_list "CD Set"
2057 fi

2059 ((pers_index += 1))
2060 done
2061 fi
2062 done
2063 }

2065 #
2066 # Do a lofi add for the passed filename and set lofi_dev to the lofi
2067 # device name lofiadm created for it (e.g. "/dev/lofi/1".)
2068 #
2069 # If the passed filename already has a lofi device name, simply set lofi_dir
2070 # to the existing device name.
2071 #
2072 # Returns 0 on success, 1 on failure.
2073 #
2074 lofi_add()
2075 {
2076 typeset filename="$1"

2078 lofi_dev=$(lofiadm "$filename" 2>/dev/null) && return 0
2079 lofi_dev=$(lofiadm -a "$filename") && return 0

2081 screenlog "$lofi_failed" "$filename"
2082 return 1
2083 }

2085 #
2086 # Delete the lofi device name passed in.
2087 #
2088 # Returns 0 on success, 1 on failure.
2089 #
2090 lofi_del()
2091 {
2092 typeset dev="$1"

2094 [["$dev" != /dev/lofi/*]] && return 1

2096 if lofiadm -d "$dev" 2>/dev/null; then
2097 [[-n $lofi_dev]] && unset lofi_dev
2098 return 0
2099 fi

2101 return 1
2102 }

2104 #
2105 # Mount the lofi device name passed in.
2106 #
2107 # Set the variable mntdir to the directory on which the lofi device is

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 33

2108 # mounted.
2109 #
2110 # Returns 0 on success, 1 on failure.
2111 #
2112 lofi_mount()
2113 {
2114 typeset lofidev="$1"
2115 typeset mntpoint="$2"

2117 #
2118 # Check to see if the lofi device is already mounted and return
2119 # the existing mount point if it is.
2120 #
2121 get_mountdir "$lofidev" && { mntdir="$mount_dir" ; return 0 ; }

2123 unset mntdir
2124 if [[! -d "$mntpoint"]]; then
2125 if ! mkdir -p "$mntpoint"; then
2126 log "Could not create mountpoint \"$mntpoint\"!\n"
2127 return 1
2128 fi
2129 lofi_created="$mntpoint"
2130 fi

2132 verbose "Attempting mount of device \"$lofidev\""
2133 verbose " on directory \"$mntpoint\"... \c"

2135 if ! mount -F hsfs -r "$lofidev" "$mntpoint" 2>/dev/null; then
2136 verbose "FAILED."
2137 [[-n $lofi_created]] && rmdir -ps "$lofi_created" &&
2138 unset lofi_created
2139 return 1
2140 fi

2142 mntdir="$mntpoint"
2143 verbose "succeeded."
2144 return 0
2145 }

2147 #
2148 # Unmount the lofi device name passed in, and remove the device mount point
2149 # after unmounting the device.
2150 #
2151 # Returns 0 on success, 1 on failure.
2152 #
2153 lofi_umount()
2154 {
2155 typeset mntdev="$1"

2157 #
2158 # If the directory name passed wasn’t mounted to begin with,
2159 # just return success.
2160 #
2161 get_mountdir "$mntdev" || return 0

2163 verbose "Unmounting device \"$mntdev\"... \c"

2165 if ! umount "$mntdev" ; then
2166 verbose "FAILED."
2167 return 1
2168 fi

2170 verbose "succeeded."
2171 return 0
2172 }

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 34

2174 # Scan the passed list of ISOs.
2175 scan_isos()
2176 {
2177 typeset iso
2178 typeset index=0

2180 unset iso_serial
2181 unset iso_release
2182 unset iso_cdnum
2183 unset iso_disctype
2184 unset iso_filename
2185 unset iso_pers

2187 for iso in "$@"; do
2188 verbose "Checking possible ISO\n \"$iso\"..."

2190 if lofi_add "$iso"; then
2191 verbose " added as lofi device \"$lofi_dev\""
2192 if lofi_mount "$lofi_dev" "/tmp/lxiso"; then
2193 if read_discinfo "$mntdir"; then
2194 iso_release[$index]="$rd_release"
2195 iso_serial[$index]="$rd_serial"
2196 iso_cdnum[$index]="$rd_cdnum"
2197 iso_disctype[$index]="$rd_disctype"

2199 [[-n $rd_pers]] &&
2200 iso_pers[$index]="$rd_pers"

2202 iso_filename[$index]="$iso"
2203 ((index += 1))
2204 fi
2205 lofi_umount "$lofi_dev"
2206 else
2207 verbose " not a usable ISO image."
2208 log "Unable to mount \"$lofi_dev\" (\"$iso\")"
2209 fi

2211 lofi_del "$lofi_dev"
2212 else
2213 verbose " not a valid ISO image."
2214 fi
2215 done
2216 }

2218 #
2219 # Prompt the user with the first argument, then make a menu selection
2220 # from the balance.
2221 #
2222 # This is effectively similar to the ksh "select" function, except it
2223 # outputs to stdout.
2224 #
2225 # Shell variables set:
2226 # choice - set to the menu number selected
2227 # selection - set to the menu text selected
2228 #
2229 pick_one()
2230 {
2231 typeset menu_items
2232 typeset menu_index
2233 typeset reply

2235 typeset prompt="$1"
2236 shift

2238 unset choice

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 35

2240 set -A menu_items "$@"

2242 until [[-n $choice]]; do
2243 menu_index=1
2244
2245 echo "\n$prompt\n"

2247 for f in "${menu_items[@]}"; do
2248 echo "$menu_index) $f"
2249 ((menu_index += 1))
2250 done

2252 echo "\n$(gettext "Please select") (1-$#): " "\c"
2253 read reply
2254 echo

2256 [[-z $reply]] && echo && continue

2258 #
2259 # Reprint menu selections if the answer was not a number in
2260 # range of the menu items available
2261 #
2262 [[$reply != +([0-9])]] && continue
2263 ((reply < 1)) || ((reply > $#)) && continue

2265 choice=$reply
2266 selection=${menu_items[((choice - 1))]}
2267 done
2268 }

2270 #
2271 # Select a distribution to install from the arguments passed and set
2272 # "ndsitro" to the value chosen - 1 (so it may be used as an array index.)
2273 #
2274 # The routine will automatically return with ndisto set to 0 if only one
2275 # argument is passed.
2276 #
2277 select_distro()
2278 {
2279 unset choice
2280 unset ndistro

2282 if (($# > 1)); then
2283 if [[-n $silent_mode]]; then
2284 typeset dist

2286 log "ERROR: multiple distrubutions present in ISO" \
2287 "directory but silent install"
2288 log " mode specified. Distros available:"
2289 for dist in "$@"; do
2290 log " \"$dist\""
2291 done
2292 return 1
2293 fi

2295 pick_one \
2296 "$(gettext "Which distro would you like to install?")" \
2297 "$@"
2298 fi

2300 #
2301 # Covers both the cases of when only one distro name is passed
2302 # to the routine as well as when an EOF is sent to the distribution
2303 # selection prompt.
2304 #
2305 if [[-z $choice]]; then

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 36

2306 screenlog "$install_dist" "$1"
2307 ndistro=0
2308 else
2309 screenlog "$install_dist" "$selection"
2310 ndistro=$((choice - 1))
2311 fi

2313 return 0
2314 }

2316 #
2317 # Install a zone from discs or manually lofi-mounted ISOs.
2318 #
2319 # Return 0 on success, 1 on failure
2320 #
2321 do_disc_install()
2322 {
2323 typeset path="$1"

2325 typeset eject_final="N"
2326 typeset install_status

2328 #
2329 # Get a disc, it doesn’t matter which one.
2330 #
2331 # We don’t know which distro this may be yet, so we can’t yet
2332 # ask for the first disc in the install order.
2333 #
2334 if ! get_cd "$path"; then
2335 if [[-z $silent_mode]]; then
2336 typeset distro_disc=\
2337 $(gettext "a supported Linux distribution disc")

2339 screenlog "\n$distro_mediafail" "$distro_disc ($path)"
2340 fi
2341 return 1
2342 fi

2344 if [[-n $silent_mode && "$rd_disctype" = "CD"]]; then
2345 log "$silent_err_msg"
2346 return 1
2347 fi

2349 if ! get_disc_distro "$mntdir"; then
2350 msg=$(gettext "Unable to find a supported Linux release on")
2351 screenlog "$msg"
2352 screenlog " $media_spec" "$path"
2353 umount "$mntdir" > /dev/null 2>&1
2354 return 1
2355 fi

2357 check_mbfree $zoneroot $distro_mb_required || return 1
2358 build_rpm_list $install_packages

2360 echo

2362 if [["$install_media" = "disc"]]; then
2363 #
2364 # If we’re in interactive mode, ask the user if they want the
2365 # disc ejected when the installation is complete.
2366 #
2367 # Silent mode installs will require the user to manually run
2368 # eject(1).
2369 #
2370 if [[-n $removable && -z $silent_mode]]; then
2371 typeset ans

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 37

2372 typeset disc
2373 typeset status
2374 typeset which=""

2376 disc="$rd_disctype"
2377 [["$disc" = "CD"]] && which=$(gettext "final ")

2379 #
2380 # Ask the user if they want the install disc ejected
2381 # when the installation is complete. Any answer but
2382 # "n" or "N" is taken to mean yes, eject it.
2383 #
2384 eject_final="Y"
2385 status=$(gettext "WILL")

2387 screenlog "$eject_final_msg" "$which" "$disc"
2388 screenlog " $eject_final_prompt" "$zonename" "[y]/n"

2390 read ans && [["$ans" = [Nn]*]] && eject_final="N" &&
2391 status=$(gettext "will NOT")

2393 screenlog "\n$eject_final_status\n" "$which" "$disc" \
2394 "$status"
2395 fi

2397 screenlog "$install_ndiscs" "$distro_ncds"

2399 msg=$(gettext "install %s.")
2400 screenlog "$msg" "$release_name"
2401 else
2402 screenlog "$install_nisos" "$distro_ncds"

2404 msg=$(gettext "DVD) to install %s.")
2405 screenlog "$msg" "$release_name"
2406 fi

2408 install_from_media "$path"
2409 install_status=$?

2411 [["$eject_final" = "Y"]] && eject_removable_disc

2413 return $install_status
2414 }

2416 #
2417 # Install a zone using the list of ISO files passed as arguments to this
2418 # function.
2419 #
2420 # Return 0 on success, 1 on failure.
2421 #
2422 do_iso_install()
2423 {
2424 typeset install_status
2425 typeset iso_path
2426 typeset ldev

2428 msg=$(gettext "Checking for valid Linux distribution ISO images...")
2429 screenlog "\n$msg"

2431 scan_isos "$@"

2433 if [[-z ${iso_filename[@]}]]; then
2434 msg=$(gettext "No valid ISO images available or mountable.")
2435 screenlog "\n$msg"
2436 return 1
2437 fi

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 38

2438
2439 validate_iso_distros

2441 if [[-z ${release[@]}]]; then
2442 msg=$(gettext "No supported Linux distributions found.")
2443 screenlog "\n$msg"
2444 return 1
2445 fi

2447 select_distro "${select_name[@]}" || return 1
2448 unset select_name

2450 . ${distro_file[$ndistro]} > /dev/null
2451 distro_ncds=${#distro_cdorder[@]}

2453 check_mbfree $zoneroot $distro_mb_required || return 1
2454 build_rpm_list $install_packages

2456 unset lofi_devs

2458 verboselog ""
2459 for iso_path in ${iso_set[$ndistro]}; do
2460 if ! lofi_add "$iso_path"; then
2461 for ldev in $lofi_devs; do
2462 lofi_del "$ldev"
2463 done
2464 return 1
2465 fi

2467 verboselog "Added \"$iso_path\""
2468 verboselog " as \"$lofi_dev\""
2469 lofi_devs="$lofi_devs $lofi_dev"
2470 done

2472 release_name="${release[$ndistro]}"

2474 set -A iso_pathnames "zero_pad" ${iso_set[$ndistro]}
2475 install_from_media $lofi_devs
2476 install_status=$?

2478 for ldev in $lofi_devs; do
2479 lofi_del "$ldev"
2480 done

2482 unset lofi_devs
2483 return $install_status
2484 }

2486 # Clean up on interrupt
2487 trap_cleanup()
2488 {
2489 cd "$cwd"

2491 msg=$(gettext "Interrupt received, cleaning up partial install...")
2492 screenlog "$msg"

2494 [[-n $miniroot_booted]] && zoneadm -z "$zonename" halt &&
2495 unset miniroot_booted && unset newroot_mounted

2497 #
2498 # OK, why a sync here? Because certain commands may have written data
2499 # to mounted file systems before the interrupt, and given just the right
2500 # timing there may be buffered data not yet sent to the disk or the
2501 # system may still be writing data to the disk. Either way, the umount
2502 # will then fail because the system will still see the mounted
2503 # filesystems as busy.

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 39

2504 #
2505 sync

2507 if [[-n $newroot_mounted]]; then
2508 umount_list $newroot_mounted
2509 unset newroot_mounted
2510 fi

2512 if [[-n $zone_mounted]]; then
2513 umount "$zone_mounted"
2514 unset zone_mounted
2515 fi

2517 #
2518 # Normally, this isn’t needed but there is a window where mntdir is set
2519 # before zone_mounted, so account for that case.
2520 #
2521 if [[-n $mntdir]]; then
2522 umount "$mntdir"
2523 unset mntdir
2524 fi

2526 [[-n $lofi_dev]] && lofi_del "$lofi_dev"

2528 if [[-n $lofi_devs]]; then
2529 typeset ldev

2531 for ldev in $lofi_devs
2532 do
2533 lofi_del "$ldev"
2534 done

2536 unset lofi_devs
2537 fi

2539 [[-n $lofi_created]] && rmdir -ps "$lofi_created" &&
2540 unset lofi_created

2542 msg=$(gettext "Installation aborted.")
2543 screenlog "$msg"
2544 exit $ZONE_SUBPROC_FATAL
2545 }

2547 #
2548 # Start of main script
2549 #
2550 cwd=$(dirname "$0")
2551 distro_dir="$cwd/distros"

2553 unset deferred_saved
2554 unset distro_path
2555 unset logfile
2556 unset msg
2557 unset newroot_mounted
2558 unset silent_err_msg
2559 unset silent_mode
2560 unset verbose_mode
2561 unset zone_mounted
2562 unset zoneroot
2563 unset zonename

2565 #
2566 # Exit values used by the script, as #defined in <sys/zone.h>
2567 #
2568 # ZONE_SUBPROC_OK
2569 # ===============

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 40

2570 # Installation was successful
2571 #
2572 # ZONE_SUBPROC_USAGE
2573 # ==================
2574 # Improper arguments were passed, so print a usage message before exiting
2575 #
2576 # ZONE_SUBPROC_NOTCOMPLETE
2577 # ========================
2578 # Installation did not complete, but another installation attempt can be
2579 # made without an uninstall
2580 #
2581 # ZONE_SUBPROC_FATAL
2582 # ==================
2583 # Installation failed and an uninstall will be required before another
2584 # install can be attempted
2585 #
2586 ZONE_SUBPROC_OK=0
2587 ZONE_SUBPROC_USAGE=253
2588 ZONE_SUBPROC_NOTCOMPLETE=254
2589 ZONE_SUBPROC_FATAL=255

2591 #
2592 # Process and set up various global option variables:
2593 #
2594 # distro_path - Path containing files that make up the distribution
2595 # (e.g. a directory containing ISO files or a disc device)
2596 # logfile - Name (if any) of the install log file
2597 # zoneroot - Root directory for the zone to install
2598 # zonename - Name of the zone to install
2599 #
2600 while getopts ’svxd:l:r:z:’ opt; do
2601 case $opt in
2602 s) silent_mode=1; unset verbose_mode;;
2603 v) verbose_mode=1; unset silent_mode;;
2604 x) set -x;;
2605 d) distro_path="$OPTARG";;
2606 l) logfile="$OPTARG";;
2607 r) zoneroot="$OPTARG";;
2608 z) zonename="$OPTARG";;
2609 esac
2610 done
2611 shift OPTIND-1

2613 distro_path=${distro_path:=/cdrom/cdrom0}

2615 install_packages="$@"

2617 [[-n $silent_mode]] && exec 1>/dev/null

2619 if [[-z $zonename]]; then
2620 msg=$(gettext "ERROR: Cannot install - no zone name was specified")
2621 screenlog "$msg"
2622 echo
2623 exit $ZONE_SUBPROC_NOTCOMPLETE
2624 fi

2626 if [[-z $zoneroot]]; then
2627 msg=$(gettext "ERROR: Cannot install - no zone root directory was")
2628 screenlog "$msg"

2630 msg=$(gettext "specified.")
2631 screenlog " $msg"
2632 echo
2633 exit $ZONE_SUBPROC_NOTCOMPLETE
2634 fi

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 41

2636 # Make sure the specified zone root directory exists
2637 [[-d "$zoneroot"]] || mkdir -m 0700 -p "$zoneroot"

2639 if [[! -d "$zoneroot"]]; then
2640 screenlog "$zone_rootfail" "$zoneroot"
2641 echo
2642 exit $ZONE_SUBPROC_NOTCOMPLETE
2643 fi

2645 rootdir="$zoneroot/root"

2647 # Make sure the specified zone root subdirectory exists
2648 [[-d "$rootdir"]] || mkdir -p "$rootdir"

2650 if [[! -d "$rootdir"]]; then
2651 screenlog "$zone_rootsub" "$rootdir"
2652 echo
2653 exit $ZONE_SUBPROC_NOTCOMPLETE
2654 fi

2656 media_mntdir="$rootdir/media"

2658 if [[-n $logfile]]; then
2659 # If a log file was specified, log information regarding the install
2660 log "\nInstallation started ‘date‘"
2661 log "Installing from path \"$distro_path\""
2662 else
2663 # Redirect stderr to /dev/null if silent mode is specified.
2664 [[-n $silent_mode]] && exec 2>/dev/null
2665 fi

2667 distro_path=${distro_path:=$default_distro_path}

2669 # From this point on, call trap_cleanup() on interrupt (^C)
2670 trap trap_cleanup INT

2672 verbose "Installing zone \"$zonename\" at root \"$zoneroot\""
2673 release_name="supported Linux distribution"

2675 #
2676 # Based on the pathname, attempt to determine whether this will be a disc or
2677 # lofi-based install or one using ISOs.
2678 #
2679 if [["$distro_path" = /cdrom/* || "$distro_path" = /media/* ||
2680 "$distro_path" = /dev/dsk/* || "$distro_path" = /dev/lofi/*]]; then
2681 if [["$distro_path" = /dev/lofi/*]]; then
2682 silent_err_msg="$silent_nolofi"
2683 install_media="lofi"
2684 else
2685 silent_err_msg="$silent_nodisc"
2686 install_media="disc"
2687 fi

2689 if [["$distro_path" = /cdrom/* || "$distro_path" = /media/*]]; then
2690 managed_removable=1
2691 else
2692 managed_removable=0
2693 fi

2695 log "Installing zone \"$zonename\" at root \"$zoneroot\""
2696 verboselog " Attempting ${install_media}-based install via:"
2697 verboselog " \"$distro_path\""

2699 do_disc_install "$distro_path"
2700 else
2701 typeset dir_start

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 42

2702 typeset dir_file

2704 dir_start=$(dirname "$distro_path" | cut -c 1)

2706 [["$dir_start" != "/"]] && distro_path="${PWD:=$(pwd)}/$distro_path"

2708 if [[! -d "$distro_path"]]; then
2709 screenlog "$no_distropath" "$distro_path"
2710 echo
2711 exit $ZONE_SUBPROC_NOTCOMPLETE
2712 fi

2714 log "Installing zone \"$zonename\" at root \"$zoneroot\""
2715 verboselog " Attempting ISO-based install from directory:"
2716 verboselog " \"$distro_path\""

2718 unset iso_files

2720 for dir_file in $distro_path/*; do
2721 #
2722 # Skip this file if it’s not a regular file or isn’t readable
2723 #
2724 [[! -f $dir_file || ! -r $dir_file]] && continue

2726 #
2727 # If it’s an hsfs file, it’s an ISO, so add it to the possible
2728 # distro ISO list
2729 #
2730 filetype=$(LC_ALL=C fstyp $dir_file 2>/dev/null) &&
2731 [["$filetype" = "hsfs"]] &&
2732 iso_files="$iso_files $dir_file"
2733 done

2735 install_media="ISO"
2736 do_iso_install $iso_files
2737 fi

2739 if [[$? -ne 0]]; then
2740 cd "$cwd"

2742 [[-n $miniroot_booted]] && zoneadm -z "$zonename" halt &&
2743 unset miniroot_booted && unset newroot_mounted

2745 if [[-n $zone_mounted]]; then
2746 umount "$zone_mounted"
2747 unset zone_mounted
2748 fi

2750 if [[-n $newroot_mounted]]; then
2751 umount_list $newroot_mounted
2752 unset newroot_mounted
2753 fi

2755 screenlog "\n$install_failed\n" "$release_name" "$zonename" "‘date‘"

2757 msg=$(gettext "Cleaning up after failed install...")
2758 screenlog "$msg"

2760 #
2761 # The extra checks are some basic paranoia due to the potentially
2762 # dangerous nature of these commands but are not intended to catch all
2763 # malicious cases.
2764 #
2765 [[-d "$zoneroot/a"]] && rm -rf "$zoneroot/a"

2767 exit $ZONE_SUBPROC_FATAL

new/usr/src/lib/brand/lx/zone/lx_distro_install.ksh 43

2768 fi

2770 screenlog "$install_done" "$release_name" "$zonename" "‘date‘"

2772 exit $ZONE_SUBPROC_OK
2773 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 1

**
 17594 Tue Jan 14 16:17:15 2014
new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh
Bring back LX zones.
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 # Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # ident "%Z%%M% %I% %E% SMI"
26 #

28 #
29 # This script contains various routines used to post-process a zone for use
30 # with BrandZ after it has been installed from RPM media or a tar image.
31 #
32 # Briefly, there are three main jobs we need to do:
33 #
34 # 1) Create any needed directories and symlinks BrandZ needs but that the
35 # Linux install may not create
36 #
37 # 2) Modify rc scripts to shut off services that don’t apply to a zone
38 # or that wish to access hardware directly
39 #
40 # 3) Modify various Linux system files for use within a zone environment
41 #

43 #
44 # Restrict executables to /bin and /usr/bin
45 #
46 PATH=/bin:/usr/bin
47 export PATH

49 #
50 # Sends output to a log file via redirection of stderr.
51 #
52 # This script assumes its caller has already performed the redirection to the
53 # logfile.
54 #
55 log()
56 {
57 echo "$@" >&2
58 }

60 #
61 # Setup i18n output

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 2

62 #
63 TEXTDOMAIN="SUNW_OST_OSCMD"
64 export TEXTDOMAIN

66 cmd_failed=$(gettext "%s failed! Aborting installation...")
67 cmd2_failed=$(gettext "%s of ’%s’ to ’%s’ failed!")
68 create_failed=$(gettext "Could not create new file ’%s’!")
69 disable_failed=$(gettext "Attempt to disable entries in ’%s’ failed!")
70 install_aborted=$(gettext "Aborting installation...")
71 install_noroot=$(gettext "Installation root directory ’%s’ does not exist.")
72 ln_fail=$(gettext "Unable to symlink ’%s’ to ’%s’!")
73 mkdir_fail=$(gettext "Unable to create the directory ’%s’")
74 mod_failed=$(gettext -n "Attempt to modify entries in ’%s’ failed!")

76 usage=$(gettext "usage: %s <install_root> [mini]")

78 #
79 # Output an internationalized string followed by a carriage return
80 #
81 i18n_echo()
82 {
83 typeset fmt="$1"
84 shift

86 printf "$fmt\n" "$@"
87 }

89 #
90 # Routine to make a full path out of a supplied path
91 #
92 fullpath()
93 {
94 typeset path="$1"

96 echo $path | egrep -s "^/" || path="${PWD:=$(pwd)}/$path"
97 echo $path
98 }

100 #
101 # Routine to create directories and handle errors
102 #
103 makedir()
104 {
105 typeset dirname=$(fullpath "$1")
106 typeset mode=""

108 [[$# -eq 2]] && mode="-m $2"

110 [[-d "$dirname"]] && return

112 if ! mkdir $mode -p "$dirname"; then
113 log "Unable to create the directory \"$dirname\"!"
114 i18n_echo "$mkdir_fail" "$dirname"
115 echo $(gettext "Aborting installation...")
116 exit 1
117 fi
118 }

120 #
121 # Routine to create initial symlinks and handle errors
122 #
123 symlink()
124 {
125 typeset src="$1"
126 typeset dst=$(fullpath "$2")

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 3

128 [[-e "$dst" || -h "$dst"]] && rm -f "$dst"
129
130 if ! ln -s "$src" "$dst"; then
131 log "Unable to symlink \"$src\" to \"$dst\"!"
132 i18n_echo "$ln_fail" "$src" "$dst"
133 echo $(gettext "Aborting installation...")
134 exit 1
135 fi
136 }

138 #
139 # Install a file using "ln -s"
140 #
141 # Returns 0 on success, 1 on failure.
142 #
143 install_ln()
144 {
145 typeset source="$1"
146 typeset target=$(fullpath "$2")

148 log " Installing \"$target\""

150 mv -f "$target" "$target.$tag" 2>/dev/null

152 if ! ln -s "$source" "$target"; then
153 log ""
154 log "Attempt to install $target FAILED."
155 return 1
156 fi

158 return 0
159 }

162 #
163 # Enable NFS servers and the NFS lock daemon for a particular zone.
164 #
165 enable_nfs_services()
166 {
167 log "Non-miniroot install; enabing NFS servers and NFS lock daemon"

169 #
170 # Setup files required for NFS:
171 #
172 # /native/etc/netconfig
173 # /native/etc/default/nfs
174 #
175 # These two files are treated as read-only in lx branded zones.
176 # To enfore this restriction we will read-only lofs mount them
177 # into the zone from the global zone. For these lofs mounts to
178 # work we’ll need to create empty directories now that will serve
179 # as mount points later.
180 #
181 # /sbin/rpc.statd
182 # /sbin/rpc.lockd
183 #
184 # These files are symlinks to scripts supplied by the lx brand
185 # that will start up the solaris nfs daemons.
186 #
187 if { ! makedir native/etc/netconfig ||
188 ! makedir native/etc/default/nfs ; }; then
189 log "Aborting NFS setup..."
190 log ""
191 return
192 fi

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 4

194 if { ! install_ln ../native/usr/lib/brand/lx/lx_lockd sbin/rpc.lockd ||
195 ! install_ln ../native/usr/lib/brand/lx/lx_statd \
196 sbin/rpc.statd ; }; then
197 log "Aborting NFS setup..."
198 log ""
199 return
200 fi

202 #
203 # update /etc/services for NFS
204 #
205 log ""
206 log "Adding lockd entry to \"$install_root/etc/services\"..."

208 cp -p $install_root/etc/services $install_root/etc/services.$tag

210 #
211 # Brackets in the sed script below contain a space followed by a tab
212 #
213 cat $install_root/etc/services.$tag |
214 sed ’s:\(111\/..p[][]*\):\1rpcbind :’ |
215 cat > $install_root/etc/services

217 cat >> $install_root/etc/services <<-EOF
218 lockd 4045/udp # NFS lock daemon/manager
219 lockd 4045/tcp # NFS lock daemon/manager
220 EOF

222 #
223 # Modify /etc/init.d/nfslock to enable the USERLAND_LOCKD option and to
224 # find some commands in alternate locations.
225 #
226 log ""
227 log "Modifying \"$install_root/etc/init.d/nfslock\"..."
228 cp -p etc/init.d/nfslock etc/init.d/nfslock.$tag
229 cat etc/init.d/nfslock.$tag |
230 sed ’
231 s/USERLAND_LOCKD=$/USERLAND_LOCKD="yes"/
232 s/killproc rpc.statd/killproc statd/
233 s/status rpc.statd/status statd/
234 s/pidof rpc.statd/pidof statd/
235 ’ |
236 cat > etc/init.d/nfslock
237 }

239 #
240 # The main script starts here.
241 #
242 # The syntax is:
243 #
244 # lx_init_zone <rootdir> [mini]
245 #
246 # Where:
247 # <rootdir> is the root of the zone directory to be modified
248 #
249 # [mini] is an optional second argument that signifies whether this is
250 # to be a miniroot install; if it is, NFS services are not enabled
251 # in the processed zone
252 #
253 unset is_miniroot
254 unset install_root

256 install_root="$1"

258 tag="lxsave_$(date +%m.%d.%Y@%T)"

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 5

260 if (($# < 1 || $# > 2)); then
261 i18n_echo "$usage" "$0"
262 exit 1
263 fi

265 (($# == 2)) && is_miniroot=1

267 if [[! -d "$install_root"]]; then
268 i18n_echo "$install_noroot" "$install_root"
269 echo $(gettext "** Installation aborted **")
270 exit 1
271 fi

273 cd "$install_root"

275 log ""
276 log "Initial lx_brand environment modification started ‘date‘"
277 log "Making needed directories in \"$install_root\"."
278 echo $(gettext "Setting up the initial lx brand environment.")

280 #
281 # Make various directories in /native that are needed to boot an lx branded
282 # zone.
283 #
284 makedir native/dev
285 makedir native/etc/default
286 makedir native/etc/svc/volatile
287 makedir native/lib
288 makedir native/proc
289 makedir native/tmp 1777
290 makedir native/usr
291 makedir native/var

293 #
294 # Make various other directories needed for the lx brand
295 #
296 makedir mnt
297 makedir opt
298 makedir usr/local/bin
299 makedir usr/local/include
300 makedir usr/local/lib
301 makedir usr/local/sbin
302 makedir usr/local/share
303 makedir usr/local/src

305 makedir dev 0755
306 makedir tmp 1777
307 makedir proc 0555
308 makedir boot 0755

310 #
311 # zlogin requires that these utilities live in places other than their
312 # Linux defaults, so create appropriate links for them here.
313 #
314 # XX - The need for these links may go away in the future if zlogin is
315 # appropriately modified
316 #
317 symlink /bin/sh sbin/sh
318 symlink /bin/su usr/bin/su
319 symlink /native/usr/lib/ld.so.1 usr/lib/ld.so.1

321 libpam_so="$(echo lib/libpam.so.0.*)"
322 libpam_misc="$(echo lib/libpam_misc.so.0.*)"
323 libpamc_so="$(echo lib/libpamc.so.0.*)"

325 symlink "/$libpam_so" lib/libpam.so.0

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 6

326 symlink "/$libpam_misc" lib/libpam_misc.so.0
327 symlink "/$libpamc_so" lib/libpamc.so.0

329 log ""
330 log "Modifying system configuration in \"$install_root\""

332 #
333 # Create a /var/ld/ld.config that will point to /native/lib for our Solaris
334 # libraries.
335 #
336 log "Creating \"$install_root/var/ld/ld.config\"..."

338 makedir var/ld

340 if ! crle -c var/ld/ld.config -l /native/lib:/native/usr/lib \
341 -s /native/lib/secure:/native/usr/lib/secure; then
342 log "\tCreation of \"$install_root/var/ld/ld.config\" failed!"
343 i18n_echo "$cmd_failed" "crle"
344 exit 1
345 fi

347 log ""
348 log "Modifying \"$install_root/etc/fstab\"..."

350 mv -f etc/fstab etc/fstab.$tag 2>/dev/null

352 cat > etc/fstab <<- EOF
353 none / ufs defaults 1 1
354 none /proc proc defaults 0 0
355 EOF

357 if [[$? -ne 0]]; then
358 log "Could not create new \"$install_root/etc/fstab\"!"
359 i18n_echo "$create_failed" "$install_root/etc/fstab"
360 exit 1
361 fi

363 #
364 # The default /etc/inittab spawns mingetty on each of the virtual consoles
365 # as well as xdm on the X console. Since we don’t have virtual consoles nor
366 # an X console, spawn a single mingetty on /dev/console instead.
367 #
368 # Don’t bother changing the file if it looks like we already did.
369 #
370 if ! egrep -s "Disabled by lx brand" etc/inittab; then
371 log "Modifying: \"$install_root/etc/inittab\"..."

373 tmpfile=/tmp/inittab.$$

375 sed ’s/^[1-6]:/# Disabled by lx brand: &/
376 s/^id:5:initdefault:/id:3:initdefault: # Modified by lx brand: &/’ \
377 etc/inittab > $tmpfile

379 #
380 # Don’t bother with further alterations if the sed above failed...
381 #
382 if [[$? -eq 0]]; then
383 egrep -s "console login for lx brand" etc/inittab
384 if [[$? -ne 0]]; then
385 cat >> $tmpfile <<- EOF

387 #
388 # console login for lx brand
389 #
390 1:2345:respawn:/sbin/mingetty console
391 EOF

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 7

393 #
394 # Only install the new inittab if the append
395 # above succeeded.
396 #
397 if [[$? -eq 0]]; then
398 #
399 # Attempt to save off the original inittab
400 # before moving over the modified version.
401 #
402 mv -f etc/inittab etc/inittab.$tag 2>/dev/null

404 mv -f $tmpfile etc/inittab

406 if [[$? -ne 0]]; then
407 log "mv of \"$tmpfile\" to" \
408 "\"$installroot/etc/inittab\"" \
409 "failed!"
410 i18n_echo "$cmd2_failed" "mv" \
411 "$tmpfile" \
412 "$installroot/etc/inittab"
413 i18n_echo "$install_aborted"
414 exit 1
415 else
416 chmod 644 etc/inittab
417 fi
418 fi
419 fi

421 else
422 log "Attempt to disable entries in" \
423 "\"$install_root/etc/inittab\" failed!"
424 i18n_echo "$disable_failed" "$install_root/etc/inittab"
425 i18n_echo "$install_aborted"
426 exit 1
427 fi
428 fi

430 if [[! -e "$install_root/etc/hosts"]]; then
431 log ""
432 log "Creating: \"$install_root/etc/hosts\"..."

434 cat > "$install_root/etc/hosts" <<-_EOF_
435 127.0.0.1 localhost
436 _EOF_
437 fi

439 #
440 # User must configure various brand-specific items to enable networking, so
441 # boot the system non-networked.
442 #
443 log ""
444 log "Modifying: \"$install_root/etc/sysconfig/network\"..."

446 mv -f etc/sysconfig/network etc/sysconfig/network.$tag 2>/dev/null

448 cat > etc/sysconfig/network <<- EOF
449 NETWORKING="no"
450 #
451 # To enable networking, change the "no" above to "yes" and
452 # uncomment and fill in the following parameters.
453 #
454 # If you are specifying a hostname by name rather than by IP address,
455 # be sure the system can resolve the name properly via the use of a
456 # name service and/or the proper name files, as specified by
457 # nsswitch.conf. See nsswitch.conf(5) for further details.

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 8

458 #
459 # HOSTNAME=your_hostname_here
460 #
461 EOF

463 if [[$? -ne 0]]; then
464 log "Could not create new \"$install_root/etc/sysconfig/network\"!"
465 i18n_echo "$create_failed" "$install_root/etc/sysconfig/network"
466 i18n_echo "$install_aborted"
467 exit 1
468 fi

470 if [[-a etc/sysconfig/syslog]]; then
471 #
472 # By default, syslogd will attempt to create a socket in /dev/log, but
473 # /dev is not be writable. Instead, modify /etc/sysconfig/syslog to
474 # tell it to use /var/run/syslog instead, and make /dev/log a symlink
475 # to /var/run/syslog.
476 #
477 log ""
478 log "Modifying: \"$install_root/etc/sysconfig/syslog\"..."

480 tmpfile=/tmp/lx_sc.syslog.$$

482 sed ’s@\(SYSLOGD_OPTIONS="-m 0\)"@\1 -p /var/run/syslog"@’ \
483 etc/sysconfig/syslog > $tmpfile

485 #
486 # Only install the new sysconfig/syslog if the edit above succeeded.
487 #
488 if [[$? -eq 0]]; then
489 #
490 # Attempt to save off the original syslog before moving over
491 # the modified version.
492 #
493 mv -f etc/sysconfig/syslog etc/sysconfig/syslog.$tag 2>/dev/null

495 if ! mv -f $tmpfile etc/sysconfig/syslog; then
496 log "mv of \"$tmpfile\" to" \
497 "\"$installroot/etc/sysconfig/syslog\" failed!"
498 i18n_echo "$cmd2_failed" "mv" "$tmpfile" \
499 "$installroot/etc/sysconfig/syslog"
500 i18n_echo "$install_aborted"
501 exit 1
502 else
503 chmod 755 etc/sysconfig/syslog
504 fi
505 else
506 log "Attempt to modify entries in" \
507 "\"$install_root/sysconfig/syslog\" failed!"
508 i18n_echo "$mod_failed" "$install_root/sysconfig/syslog"
509 i18n_echo "$install_aborted"
510 exit 1
511 fi
512 fi

514 if [[$? -ne 0]]; then
515 log "Could not create new \"$install_root/etc/sysconfig/syslog\"!"
516 i18n_echo "$create_failed" "$install_root/etc/sysconfig/syslog"
517 i18n_echo "$install_aborted"
518 exit 1
519 fi

521 #
522 # /etc/rc.d/init.d/keytable tries to load a physical keyboard map, which won’t
523 # work in a zone. If we remove etc/sysconfig/keyboard, it won’t try this at all.

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 9

524 #
525 mv -f etc/sysconfig/keyboard etc/sysconfig/keyboard.$tag 2>/dev/null

527 #
528 # /etc/rc.d/init.d/gpm tries to configure the console mouse for cut-and-paste
529 # text operations, which we don’t support. Removing this file disables the
530 # mouse configuration.
531 #
532 mv -f etc/sysconfig/mouse etc/sysconfig/mouse.$tag 2>/dev/null

534 #
535 # The following scripts attempt to start services or otherwise configure
536 # the system in ways incompatible with zones, so don’t execute them at boot
537 # time.
538 #
539 log ""
540 log "Modifying \"$install_root/etc/rc.d/init.d\" to disable any"
541 log " services not supported by BrandZ:"
542 unsupported_services="
543 kudzu
544 microcode_ctl
545 network
546 random
547 pcmcia
548 isdn
549 iptables
550 ip6tables
551 iscsi
552 psacct
553 gpm
554 irda
555 smartd
556 rawdevices
557 netdump
558 hpoj
559 mdmonitor
560 mdmpd
561 irqbalance
562 "

564 for file in $unsupported_services; do
565 if [[-a "etc/rc.d/init.d/$file"]]; then

567 if mv -f "etc/rc.d/init.d/$file" "etc/rc.d/init.d/$file.$tag"; then
568 log " + Moved script \"etc/rc.d/init.d/$file\" to"
569 log " \"etc/rc.d/init.d/$file.$tag\""
570 fi
571 fi

573 rc_files="$(echo etc/rc.d/rc[0-6].d/[SK]+([0-9])$file)"

575 if [["$rc_files" != "etc/rc.d/rc[0-6].d/[SK]+([0-9])$file"]]; then
576 for file in $rc_files; do
577 if [[-h "$file"]]; then
578 rm -f "$file" &&
579 log " + Removed symbolic link \"$file\""
580 else
581 rm -f "$file" &&
582 log " + Removed script \"$file\""
583 fi
584 done
585 fi
586 done

588 #
589 # There is a lot of stuff in the standard halt and reboot scripts that we

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 10

590 # have no business running in a zone. Fortunately, the stuff we want to
591 # skip is all in one contiguous chunk.
592 #
593 # Don’t bother to modify the file if it looks like we already did.
594 #
595 if ! egrep -s "Disabled by lx brand" etc/rc.d/init.d/halt; then
596 log ""
597 log "Modifying \"$install_root/etc/rc.d/init.d/halt\" for operation"
598 log " within a zone..."
599 awk ’BEGIN {skip = ""}
600 /^# Save mixer/ {skip = "# Disabled by lx brand: "}
601 /halt.local/ {skip = ""}
602 /./ {print skip $0}’ etc/rc.d/init.d/halt > /tmp/halt.$$

604 if [[$? -eq 0]]; then
605 mv -f etc/rc.d/init.d/halt etc/rc.d/init.d/halt.$tag 2>/dev/null
606 mv -f /tmp/halt.$$ etc/rc.d/init.d/halt
607 chmod 755 etc/rc.d/init.d/halt
608 else
609 log "Attempt to modify \"$install_root/etc/rc.d/init.d/halt\"" \
610 "FAILED"
611 log "Continuing with balance of zone setup..."
612 fi
613 fi

615 #
616 # Fix up /etc/rc.d/rc.sysinit:
617 #
618 # 1) /sbin/hwclock requires the iopl() system call, which BrandZ won’t support.
619 # Since the hardware clock cannot be set from within a zone, we comment out
620 # the line.
621 #
622 # 2) Disable dmesg commands, since we don’t implement klogctl
623 #
624 # 3) Disable initlog and the mount of /dev/pts
625 #
626 # 4) Don’t touch /dev/tty* in order to start virtual terminals, as that won’t
627 # work from within a zone.
628 #
629 # 5) Don’t try to check the root filesystem (/) as there is no associated
630 # physical device, and any attempt to run fsck will fail.
631 #
632 # Don’t modify the rc.sysinit file if it looks like we already did.
633 #
634 if ! egrep -s "Disabled by lx brand" etc/rc.d/rc.sysinit; then
635 log ""
636 log "Modifying: \"$install_root/etc/rc.d/rc.sysinit\"..."
637 log ""

639 tmpfile=/tmp/lx_rc.sysinit.$$

641 sed ’s@^/sbin/hwclock@# Disabled by lx brand: &@
642 s@^HOSTTYPE=@HOSTTYPE=\"s390\" # Spoofed for lx brand: &@
643 s@/bin/dmesg -n@: # Disabled by lx brand: &@
644 s@^dmesg -s@# Disabled by lx brand: &@
645 s@initlog -c \"fsck@: # Disabled by lx brand: &@
646 s@^.*mount .* /dev/pts$@# Disabled by lx brand: &@’ \
647 etc/rc.d/rc.sysinit > $tmpfile

649 #
650 # Only install the new rc.sysinit if the edit above succeeded.
651 #
652 if [[$? -eq 0]]; then
653 #
654 # Attempt to save off the original rc.sysinit
655 # before moving over the modified version.

new/usr/src/lib/brand/lx/zone/lx_init_zone.ksh 11

656 #
657 mv -f etc/rc.d/rc.sysinit etc/rc.d/rc.sysinit.$tag 2>/dev/null

659 if ! mv -f $tmpfile etc/rc.d/rc.sysinit; then
660 log "mv of \"$tmpfile\" to" \
661 "\"$installroot/etc/rc.d/rc.sysinit\" failed!"
662 i18n_echo "$cmd2_failed" "mv" "$tmpfile" \
663 "$installroot/etc/rc.d/rc.sysinit"
664 i18n_echo "$install_aborted"
665 exit 1
666 else
667 chmod 755 etc/rc.d/rc.sysinit
668 fi
669 else
670 log "Attempt to modify entries in" \
671 "\"$install_root/rc.d/rc.sysinit\" failed!"
672 i18n_echo "$mod_failed" "$install_root/rc.d/rc.sysinit"
673 i18n_echo "$install_aborted"
674 exit 1
675 fi
676 fi

678 if [[-z $is_miniroot]]; then
679 enable_nfs_services || log "NFS services were not properly enabled."
680 fi

682 log ""
683 log "System configuration modifications complete ‘date‘"
684 log ""
685 i18n_echo "System configuration modifications complete."
686 exit 0
687 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/lx_install.ksh 1

**
 15415 Tue Jan 14 16:17:16 2014
new/usr/src/lib/brand/lx/zone/lx_install.ksh
Bring back LX zones.
**

1 #!/bin/ksh -p
2 #
3 # CDDL HEADER START
4 #
5 # The contents of this file are subject to the terms of the
6 # Common Development and Distribution License (the "License").
7 # You may not use this file except in compliance with the License.
8 #
9 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10 # or http://www.opensolaris.org/os/licensing.
11 # See the License for the specific language governing permissions
12 # and limitations under the License.
13 #
14 # When distributing Covered Code, include this CDDL HEADER in each
15 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16 # If applicable, add the following below this CDDL HEADER, with the
17 # fields enclosed by brackets "[]" replaced with your own identifying
18 # information: Portions Copyright [yyyy] [name of copyright owner]
19 #
20 # CDDL HEADER END
21 #
22 #
23 # Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 # Restrict executables to /bin, /usr/bin, /usr/sbin and /usr/sfw/bin
28 PATH=/bin:/usr/bin:/usr/sbin:/usr/sfw/bin

30 export PATH

32 # Setup i18n output
33 TEXTDOMAIN="SUNW_OST_OSCMD"
34 export TEXTDOMAIN

36 # Log passed arguments to file descriptor 2
37 log()
38 {
39 [[-n $logfile]] && echo "$@" >&2
40 }

42 #
43 # Send the provided printf()-style arguments to the screen and to the
44 # logfile.
45 #
46 screenlog()
47 {
48 typeset fmt="$1"
49 shift

51 printf "$fmt\n" "$@"
52 [[-n $logfile]] && printf "$fmt\n" "$@" >&2
53 }

55 # Print and log provided text if the shell variable "verbose_mode" is set
56 verbose()
57 {
58 [[-n $verbose_mode]] && echo "$@"
59 [[-n $logfile]] && [[-n $verbose_mode]] && echo "$@" >&2
60 }

new/usr/src/lib/brand/lx/zone/lx_install.ksh 2

62 unsupported_cpu=\
63 $(gettext "ERROR: Cannot install branded zone: processor must be %s-compatible")

65 cmd_not_found=$(gettext "Required command ’%s’ cannot be found!")
66 cmd_not_exec=$(gettext "Required command ’%s’ not executable!")
67 zone_initfail=$(gettext "Attempt to initialize zone ’%s’ FAILED.")
68 path_abs=$(gettext "Pathname specified to -d ’%s’ must be absolute.")

70 cmd_h=$(gettext "%s -z <zone name> %s -h")
71 cmd_full=\
72 $(gettext "%s -z <zone name> %s [-v | -s] [-d <dir>|<device>] [<cluster> ...]")

74 both_modes=$(gettext "%s: error: cannot select both silent and verbose modes")

76 not_found=$(gettext "%s: error: file or directory not found.")

78 wrong_type=\
79 $(gettext "%s: error: must be a gzip, bzip2, .Z or uncompressed tar archive.")

81 not_readable=$(gettext "Cannot read file ’%s’")

83 no_install=$(gettext "Could not create install directory ’%s’")
84 no_log=$(gettext "Could not create log directory ’%s’")
85 no_logfile=$(gettext "Could not create log file ’%s’")

87 root_full=$(gettext "Zonepath root %s exists and contains data; remove or move a

89 install_zone=$(gettext "Installing zone ’%s’ at root directory ’%s’")
90 install_from=$(gettext "from archive ’%s’")

92 install_fail=$(gettext "Installation of zone ’%s’ FAILED.")
93 see_log=$(gettext "See the log file:\n ’%s’\nfor details.")

95 install_abort=$(gettext "Installation of zone ’%s’ aborted.")
96 install_good=$(gettext "Installation of zone ’%s’ completed successfully.")

98 # Check if commands passed in exist and are executable.
99 check_cmd()
100 {
101 for cmd in "$@"; do
102 if [[! -f $cmd]]; then
103 screenlog "$cmd_not_found" "$cmd"
104 screenlog "$install_abort" "$zonename"
105 exit $ZONE_SUBPROC_NOTCOMPLETE
106 fi

108 if [[! -x $cmd]]; then
109 screenlog "$cmd_not_exec" "$cmd"
110 screenlog "$install_abort" "$zonename"
111 exit $ZONE_SUBPROC_NOTCOMPLETE
112 fi
113 done
114 }

116 # Post process as tarball-installed zone for use by BrandZ.
117 init_tarzone()
118 {
119 typeset rootdir="$1"

121 if ! $branddir/lx_init_zone "$rootdir"; then
122 screenlog "$zone_initfail" "$zonename"
123 return 1
124 fi
125 }

127 # Clean up on interrupt

new/usr/src/lib/brand/lx/zone/lx_install.ksh 3

128 trap_cleanup()
129 {
130 msg=$(gettext "Installation cancelled due to interrupt.")

132 screenlog "$msg"
133 exit $int_code
134 }

136 #
137 # Output the usage message.
138 #
139 # This is done this way due to limitations in the way gettext strings are
140 # extracted from shell scripts and processed. Use of this somewhat awkward
141 # syntax allows us to produce longer lines of text than otherwise would be
142 # possible without wrapping lines across more than one line of code.
143 #
144 usage()
145 {
146 int_code=$ZONE_SUBPROC_USAGE

148 echo $(gettext "Usage:")
149 printf " $cmd_h\n" "zoneadm" "install"
150 printf " $cmd_full\n" "zoneadm" "install"

152 echo

154 echo $(gettext "The installer will attempt to use the default system") \
155 $(gettext "removable disc device if <archive dir> is not") \
156 $(gettext "specified.") | fmt -80

158 echo

160 echo $(gettext "<cluster> specifies which package cluster you wish") \
161 $(gettext "to install.") | fmt -80

163 echo
164 echo $(gettext "The ’desktop’ cluster will be installed by default.")
165 echo
166 echo $(gettext "The available clusters are:")
167 echo " + core"
168 echo " + server"
169 echo " + desktop"
170 echo " + development"
171 echo " + all"
172 echo

174 echo $(gettext "Each cluster includes all of the clusters preceding") \
175 $(gettext "it, so the ’server’ cluster includes the ’core’") \
176 $(gettext "cluster, the ’desktop’ cluster includes the ’core’") \
177 $(gettext "and ’server’ clusters, and so on.") | fmt -80

179 echo
180 echo $(gettext "Examples")
181 echo "========"

183 echo $(gettext "Example 1: Install a base Linux system from CDs or a") \
184 $(gettext "DVD using the system default removable disc device:") |
185 fmt -80

187 echo
188 echo " # zoneadm -z myzone install"
189 echo

191 echo $(gettext "Example 2: Install the ’server’ cluster from CDs or") \
192 $(gettext "a DVD via an alternative removable disc device:") |
193 fmt -80

new/usr/src/lib/brand/lx/zone/lx_install.ksh 4

195 echo
196 echo " # zoneadm -z myzone install -d /cdrom/cdrom1 server"
197 echo

199 echo $(gettext "Example 3: Install the desktop Linux environment") \
200 $(gettext "from an ISO image made available as ’/dev/lofi/1’ by") \
201 $(gettext "use of lofiadm(1M):") | fmt -80

203 echo
204 echo " # zoneadm -z myzone install -d /dev/lofi/1 desktop"
205 echo

207 echo $(gettext "Example 4: Install the entire Linux environment from") \
208 $(gettext "ISO images located in the directory") \
209 "’/export/centos_3.8/isos’:" | fmt -80

211 echo
212 echo " # zoneadm -z myzone install -d /export/centos_3.8/isos all"
213 echo

215 echo $(gettext "Example 5: Install from a compressed tar archive of") \
216 $(gettext "an existing Linux installation (a tar ball) with") \
217 $(gettext "verbose output regarding the progress of the") \
218 $(gettext "installation:") | fmt -80

220 echo
221 echo " # zoneadm -z myzone install -v -d /tmp/linux_full.tar.gz"
222 echo

224 echo $(gettext "Example 6: Install from a compressed tar archive of") \
225 $(gettext "an existing Linux installation (a tar ball) with NO") \
226 $(gettext "output regarding the progress of the installation") \
227 $(gettext "(silent mode.)") | fmt -80

229 echo

231 echo $(gettext "NOTE: Silent mode is only recommended for use by") \
232 $(gettext "shell scripts and other non-interactive programs:") |
233 fmt -80

235 echo
236 echo " # zoneadm -z myzone install -d /tmp/linux_full.tar.gz -s"
237 echo

239 exit $int_code
240 }

242 #
243 # The main body of the script starts here.
244 #
245 # This script should never be called directly by a user but rather should
246 # only be called by zoneadm to install a BrandZ Linux zone.
247 #

249 #
250 # Exit values used by the script, as #defined in <sys/zone.h>
251 #
252 # ZONE_SUBPROC_OK
253 # ===============
254 # Installation was successful
255 #
256 # ZONE_SUBPROC_USAGE
257 # ==================
258 # Improper arguments were passed, so print a usage message before exiting
259 #

new/usr/src/lib/brand/lx/zone/lx_install.ksh 5

260 # ZONE_SUBPROC_NOTCOMPLETE
261 # ========================
262 # Installation did not complete, but another installation attempt can be
263 # made without an uninstall
264 #
265 # ZONE_SUBPROC_FATAL
266 # ==================
267 # Installation failed and an uninstall will be required before another
268 # install can be attempted
269 #
270 ZONE_SUBPROC_OK=0
271 ZONE_SUBPROC_USAGE=253
272 ZONE_SUBPROC_NOTCOMPLETE=254
273 ZONE_SUBPROC_FATAL=255

275 #
276 # An unspecified exit or interrupt should exit with ZONE_SUBPROC_NOTCOMPLETE,
277 # meaning a user will not need to do an uninstall before attempting another
278 # install.
279 #
280 int_code=$ZONE_SUBPROC_NOTCOMPLETE

282 trap trap_cleanup INT

284 # If we weren’t passed at least two arguments, exit now.
285 [[$# -lt 2]] && usage

287 #
288 # This script is always started with a full path so we can extract the
289 # brand directory name here.
290 #
291 branddir=$(dirname "$0")
292 zonename="$1"
293 zoneroot="$2"

295 install_root="$zoneroot/root"
296 logdir="$install_root/var/log"

298 shift; shift # remove zonename and zoneroot from arguments array

300 unset gtaropts
301 unset install_opts
302 unset install_src
303 unset msg
304 unset silent_mode
305 unset verbose_mode

307 while getopts "d:hsvX" opt
308 do
309 case "$opt" in
310 h) usage;;
311 s) silent_mode=1;;
312 v) verbose_mode=1;;
313 d) install_src="$OPTARG" ;;
314 X) install_opts="$install_opts -x" ;;
315 *) usage;;
316 esac
317 done
318 shift OPTIND-1

320 # Providing more than one passed argument generates a usage message
321 if [[$# -gt 1]]; then
322 msg=$(gettext "ERROR: Too many arguments provided:")

324 screenlog "$msg"
325 screenlog " \"%s\"" "$@"

new/usr/src/lib/brand/lx/zone/lx_install.ksh 6

326 screenlog ""
327 usage
328 fi

330 # Validate any free-form arguments
331 if [[$# -eq 1 && "$1" != "core" && "$1" != "server" && "$1" != "desktop" &&
332 "$1" != "development" && "$1" != "all"]]; then
333 msg=$(gettext "ERROR: Unknown cluster name specified: %s")

335 screenlog "$msg" "\"$1\""
336 screenlog ""
337 usage
338 fi

340 # The install can’t be both verbose AND silent...
341 if [[-n $silent_mode && -n $verbose_mode]]; then
342 screenlog "$both_modes" "zoneadm install"
343 screenlog ""
344 usage
345 fi

347 #
348 # Validate that we’re running on a i686-compatible CPU; abort the zone
349 # installation now if we’re not.
350 #
351 procinfo=$(LC_ALL=C psrinfo -vp | grep family)

353 #
354 # All x86 processors in CPUID families 6, 15, 16 or 17 should be
355 # i686-compatible, assuming third party processor vendors follow AMD and
356 # Intel’s lead.
357 #
358 if [["$procinfo" != *" x86 "*]] ||
359 [["$procinfo" != *" family 6 "* && "$procinfo" != *" family 15 "* &&
360 "$procinfo" != *" family 16 "* && "$procinfo" != *" family 17 "*]] ; then
361 screenlog "$unsupported_cpu" "i686"
362 exit $int_code
363 fi

365 if [[-n $install_src]]; then
366 #
367 # Validate $install_src.
368 #
369 # If install_src is a directory, assume it contains ISO images to
370 # install from, otherwise treat the argument as if it points to a tar
371 # ball file.
372 #
373 if [["‘echo $install_src | cut -c 1‘" != "/"]]; then
374 screenlog "$path_abs" "$install_src"
375 exit $int_code
376 fi

378 if [[! -a "$install_src"]]; then
379 screenlog "$not_found" "$install_src"
380 screenlog "$install_abort" "$zonename"
381 exit $int_code
382 fi

384 if [[! -r "$install_src"]]; then
385 screenlog "$not_readable" "$install_src"
386 screenlog "$install_abort" "$zonename"
387 exit $int_code
388 fi

390 #
391 # If install_src is a block device, a directory, a possible device

new/usr/src/lib/brand/lx/zone/lx_install.ksh 7

392 # created via lofiadm(1M), or the directory used by a standard volume
393 # management daemon, pass it on to the secondary install script.
394 #
395 # Otherwise, validate the passed filename to prepare for a tar ball
396 # install.
397 #
398 if [[! -b "$install_src" && ! -d "$install_src" &&
399 "$install_src" != /dev/lofi/* && "$install_src" != /cdrom/* &&
400 "$install_src" != /media/*]]; then
401 if [[! -f "$install_src"]]; then
402 screenlog "$wrong_type" "$install_src"
403 screenlog "$install_abort" "$zonename"
404 exit $int_code
405 fi

407 filetype=‘{ LC_ALL=C file $install_src |
408 awk ’{print $2}’ ; } 2>/dev/null‘

410 if [["$filetype" = "gzip"]]; then
411 verbose "\"$install_src\": \"gzip\" archive"
412 gtaropts="-xz"
413 elif [["$filetype" = "bzip2"]]; then
414 verbose "\"$install_src\": \"bzip2\" archive"
415 gtaropts="-xj"
416 elif [["$filetype" = "compressed"]]; then
417 verbose "\"$install_src\": Lempel-Ziv" \
418 "compressed (\".Z\") archive."
419 gtaropts="-xZ"
420 elif [["$filetype" = "USTAR"]]; then
421 verbose "\"$install_src\":" \
422 "uncompressed (\"tar\") archive."
423 gtaropts="-x"
424 else
425 screenlog "$wrong_type" "$install_src"
426 screenlog "$install_abort" "$zonename"
427 exit $int_code
428 fi
429 fi
430 fi

432 #
433 # Start silent operation and pass the flag to prepare pass the flag to
434 # the ISO installer, if needed.
435 #
436 if [[-n $silent_mode]]
437 then
438 exec 1>/dev/null
439 install_opts="$install_opts -s"
440 fi

442 #
443 # If verbose mode was specified, pass the verbose flag to lx_distro_install
444 # for ISO or disc installations and to gtar for tarball-based installs.
445 #
446 if [[-n $verbose_mode]]
447 then
448 echo $(gettext "Verbose output mode enabled.")
449 install_opts="$install_opts -v"
450 [[-n $gtaropts]] && gtaropts="${gtaropts}v"
451 fi

453 [[-n $gtaropts]] && gtaropts="${gtaropts}f"

455 if [[! -d "$install_root"]]
456 then
457 if ! mkdir -p "$install_root" 2>/dev/null; then

new/usr/src/lib/brand/lx/zone/lx_install.ksh 8

458 screenlog "$no_install" "$install_root"
459 exit $int_code
460 fi
461 fi

463 #
464 # Check for a non-empty root.
465 #
466 cnt=‘ls $install_root | wc -l‘
467 if [$cnt -ne 0]; then
468 screenlog "$root_full" "$install_root"
469 exit $int_code
470 fi

472 if [[! -d "$logdir"]]
473 then
474 if ! mkdir -p "$logdir" 2>/dev/null; then
475 screenlog "$no_log" "$logdir"
476 exit $int_code
477 fi
478 fi

480 logfile="${logdir}/$zonename.install.$$.log"

482 if ! > $logfile; then
483 screenlog "$no_logfile" "$logfile"
484 exit $int_code
485 fi

487 # Redirect stderr to the log file to automatically log any error messages
488 exec 2>>"$logfile"

490 #
491 # From here on out, an unspecified exit or interrupt should exit with
492 # ZONE_SUBPROC_FATAL, meaning a user will need to do an uninstall before
493 # attempting another install, as we’ve modified the directories we were going
494 # to install to in some way.
495 #
496 int_code=$ZONE_SUBPROC_FATAL

498 log "Installation started for zone \"$zonename\" ‘/usr/bin/date‘"

500 if [[-n $gtaropts]]; then
501 check_cmd /usr/sfw/bin/gtar $branddir/lx_init_zone

503 screenlog "$install_zone" "$zonename" "$zoneroot"
504 screenlog "$install_from" "$install_src"
505 echo
506 echo $(gettext "This process may take several minutes.")
507 echo

509 if ! (cd "$install_root" && gtar "$gtaropts" "$install_src") ; then
510 log "Error: extraction from tar archive failed."
511 else
512 if ! [[-d "${install_root}/bin" &&
513 -d "${install_root}/sbin"]]; then
514 log "Error: improper or incomplete tar archive."
515 else
516 $branddir/lx_init_zone "$install_root" &&
517 init_tarzone "$install_root"

519 #
520 # Emit the same code from here whether we’re
521 # interrupted or exiting normally.
522 #
523 int_code=$?

new/usr/src/lib/brand/lx/zone/lx_install.ksh 9

524 fi
525 fi

527 if [[$int_code -eq ZONE_SUBPROC_OK]]; then
528 log "Tar install completed for zone ’$zonename’ ‘date‘."
529 else
530 log "Tar install failed for zone \"$zonename\" ‘date‘."

532 fi
533 else
534 check_cmd $branddir/lx_distro_install

536 $branddir/lx_distro_install -z "$zonename" -r "$zoneroot" \
537 -d "$install_src" -l "$logfile" $install_opts "$@"

539 #
540 # Emit the same code from here whether we’re interrupted or exiting
541 # normally.
542 #
543 int_code=$?

545 [[$int_code -eq $ZONE_SUBPROC_USAGE]] && usage
546 fi

548 if [[$int_code -ne $ZONE_SUBPROC_OK]]; then
549 screenlog ""
550 screenlog "$install_fail" "$zonename"
551 screenlog ""

553 #
554 # Only make a reference to the log file if one will exist after
555 # zoneadm exits.
556 #
557 [[$int_code -ne $ZONE_SUBPROC_NOTCOMPLETE]] &&
558 screenlog "$see_log" "$logfile"

560 exit $int_code
561 fi

563 #
564 # After the install completes, we’ve likely moved a new copy of the logfile into
565 # place atop the logfile we WERE writing to, so if we don’t reopen the logfile
566 # here the shell will continue writing to the old logfile’s inode, meaning we
567 # would lose all log information from this point on.
568 #
569 exec 2>>"$logfile"

571 screenlog ""
572 screenlog "$install_good" "$zonename"
573 screenlog ""

575 echo $(gettext "Details saved to log file:")
576 echo " \"$logfile\""
577 echo

579 exit $ZONE_SUBPROC_OK
580 #endif /* ! codereview */

new/usr/src/lib/brand/lx/zone/platform.xml 1

**
 3090 Tue Jan 14 16:17:16 2014
new/usr/src/lib/brand/lx/zone/platform.xml
Bring back LX zones.
**

1 <?xml version="1.0"?>

3 <!--
4 CDDL HEADER START

6 The contents of this file are subject to the terms of the
7 Common Development and Distribution License (the "License").
8 You may not use this file except in compliance with the License.

10 You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
11 or http://www.opensolaris.org/os/licensing.
12 See the License for the specific language governing permissions
13 and limitations under the License.

15 When distributing Covered Code, include this CDDL HEADER in each
16 file and include the License file at usr/src/OPENSOLARIS.LICENSE.
17 If applicable, add the following below this CDDL HEADER, with the
18 fields enclosed by brackets "[]" replaced with your own identifying
19 information: Portions Copyright [yyyy] [name of copyright owner]

21 CDDL HEADER END

23 Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 Use is subject to license terms.

26 ident "%Z%%M% %I% %E% SMI"

28 DO NOT EDIT THIS FILE.
29 -->

31 <!DOCTYPE platform PUBLIC "-//Sun Microsystems Inc//Zones Platform//EN"
32 "file:///usr/share/lib/xml/dtd/zone_platform.dtd.1">

34 <platform name="lx" allow-exclusive-ip="false">
35 <!-- Global filesystems to mount when booting the zone -->
36 <global_mount special="/dev" directory="/native/dev" type="dev"
37 opt="attrdir=%R/dev" />
38 <global_mount special="/lib" directory="/native/lib"
39 opt="ro" type="lofs" />
40 <global_mount special="/usr/lib" directory="/native/usr/lib"
41 opt="ro" type="lofs" />
42 <global_mount special="/usr/lib/brand/lx/etc_default_nfs"
43 directory="/native/etc/default/nfs" type="lofs" opt="ro" />
44 <global_mount special="/usr/lib/brand/lx/etc_netconfig"
45 directory="/native/etc/netconfig" type="lofs" opt="ro" />

47 <!-- Local filesystems to mount when booting the zone -->
48 <mount special="/native/dev" directory="/dev" type="lofs" />
49 <mount special="proc" directory="/native/proc" type="proc" />
50 <mount special="swap" directory="/native/etc/svc/volatile"
51 type="tmpfs" />
52 <mount special="swap" directory="/native/tmp" type="tmpfs" />

54 <!-- Devices to create under /dev -->
55 <device match="null" />
56 <device match="pts/*" />
57 <device match="random" />
58 <device match="tcp" />
59 <device match="tcp6" />
60 <device match="tty" />
61 <device match="udp" />

new/usr/src/lib/brand/lx/zone/platform.xml 2

62 <device match="udp6" />
63 <device match="urandom" />
64 <device match="zero" />

66 <!-- Renamed devices to create under /dev -->
67 <device match="brand/lx/ptmx" name="ptmx" />
68 <device match="zcons/%z/zoneconsole" name="console" />

70 <!-- Audio devices to create under /dev -->
71 <device match="brand/lx/dsp" name="dsp" />
72 <device match="brand/lx/mixer" name="mixer" />

74 <!-- Symlinks to create under /dev -->
75 <symlink source="fd" target="../proc/self/fd" />
76 <symlink source="log" target="/var/run/syslog" />
77 <symlink source="stderr" target="../proc/self/fd/2" />
78 <symlink source="stdin" target="../proc/self/fd/0" />
79 <symlink source="stdout" target="../proc/self/fd/1" />
80 <symlink source="systty" target="console" />

82 <!-- Create a mount point for for the /dev/initctl fifo -->
83 <device match="null" name="initctl" />

85 </platform>
86 #endif /* ! codereview */

new/usr/src/pkg/manifests/SUNWlx.mf 1

**
 1154 Tue Jan 14 16:17:16 2014
new/usr/src/pkg/manifests/SUNWlx.mf
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
25 #

27 set name=pkg.fmri value=pkg:/SUNWlx@0.5.11,5.11-0.133
28 set name=pkg.renamed value=true
26 # Was renamed to system/zones/brand/lx, both now obsolete.

28 set name=pkg.fmri value=pkg:/SUNWlx@0.5.11,5.11-0.143
29 set name=pkg.obsolete value=true
29 set name=variant.arch value=i386
30 set name=variant.opensolaris.zone value=global value=nonglobal
31 depend fmri=pkg:/system/zones/brand/lx@0.5.11,5.11-0.133 type=require
32 #endif /* ! codereview */

new/usr/src/pkg/manifests/system-zones-brand-lx.mf 1

**
 5606 Tue Jan 14 16:17:16 2014
new/usr/src/pkg/manifests/system-zones-brand-lx.mf
Final fixups and bugfixes
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
23 # Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
25 #

27 #
28 # This package will install successfully into any zone, global or
29 # non-global. The files, directories, links, and hardlinks, however,
30 # will only be installed into the global zone.
31 #
32 <include global_zone_only_component>
33 set name=pkg.fmri value=pkg:/system/zones/brand/lx@$(PKGVERS)
34 set name=pkg.description value="Support for the ’lx’ Brand"
35 set name=pkg.summary value="lx Brand"
36 set name=info.classification \
37 value="org.opensolaris.category.2008:Applications/System Utilities"
26 set name=pkg.fmri value=pkg:/system/zones/brand/lx@0.5.11,5.11-0.143
27 set name=pkg.obsolete value=true
38 set name=variant.arch value=i386
39 dir path=etc group=sys
40 dir path=etc/zones group=sys
41 dir path=usr group=sys
42 dir path=usr/kernel group=sys
43 dir path=usr/kernel/brand group=sys
44 dir path=usr/kernel/brand/$(ARCH64) group=sys
45 dir path=usr/kernel/drv group=sys
46 dir path=usr/kernel/drv/$(ARCH64) group=sys
47 dir path=usr/kernel/dtrace group=sys
48 dir path=usr/kernel/dtrace/$(ARCH64) group=sys
49 dir path=usr/kernel/fs group=sys
50 dir path=usr/kernel/fs/$(ARCH64) group=sys
51 dir path=usr/kernel/strmod group=sys
52 dir path=usr/kernel/strmod/$(ARCH64) group=sys
53 dir path=usr/lib
54 dir path=usr/lib/brand
55 dir path=usr/lib/brand/lx
56 dir path=usr/lib/brand/lx/$(ARCH64)

new/usr/src/pkg/manifests/system-zones-brand-lx.mf 2

57 dir path=usr/lib/brand/lx/distros
58 dir path=usr/lib/devfsadm group=sys
59 dir path=usr/lib/devfsadm/linkmod group=sys
60 driver name=lx_audio
61 driver name=lx_ptm perms="lx_ptmajor 0666 root sys"
62 driver name=lx_systrace perms="* 0644 root sys"
63 file path=etc/zones/SUNWlx.xml mode=0444
64 file path=etc/zones/SUNWlx26.xml mode=0444
65 file path=usr/kernel/brand/$(ARCH64)/lx_brand group=sys mode=0755
66 file path=usr/kernel/brand/lx_brand group=sys mode=0755
67 file path=usr/kernel/drv/$(ARCH64)/lx_audio group=sys
68 file path=usr/kernel/drv/$(ARCH64)/lx_ptm group=sys
69 file path=usr/kernel/drv/$(ARCH64)/lx_systrace group=sys
70 file path=usr/kernel/drv/lx_audio group=sys
71 file path=usr/kernel/drv/lx_audio.conf group=sys
72 file path=usr/kernel/drv/lx_ptm group=sys
73 file path=usr/kernel/drv/lx_ptm.conf group=sys
74 file path=usr/kernel/drv/lx_systrace group=sys
75 file path=usr/kernel/drv/lx_systrace.conf group=sys
76 file path=usr/kernel/fs/$(ARCH64)/lx_afs group=sys mode=0755
77 file path=usr/kernel/fs/$(ARCH64)/lx_proc group=sys mode=0755
78 file path=usr/kernel/fs/lx_afs group=sys mode=0755
79 file path=usr/kernel/fs/lx_proc group=sys mode=0755
80 file path=usr/kernel/strmod/$(ARCH64)/ldlinux group=sys mode=0755
81 file path=usr/kernel/strmod/ldlinux group=sys mode=0755
82 file path=usr/lib/brand/lx/$(ARCH64)/lx_librtld_db.so.1
83 file path=usr/lib/brand/lx/$(ARCH64)/lx_nametoaddr.so.1
84 file path=usr/lib/brand/lx/$(ARCH64)/lx_thunk.so.1
85 file path=usr/lib/brand/lx/config.xml mode=0444
86 file path=usr/lib/brand/lx/distros/centos35.distro mode=0444
87 file path=usr/lib/brand/lx/distros/centos36.distro mode=0444
88 file path=usr/lib/brand/lx/distros/centos37.distro mode=0444
89 file path=usr/lib/brand/lx/distros/centos38.distro mode=0444
90 file path=usr/lib/brand/lx/distros/rhel35.distro mode=0444
91 file path=usr/lib/brand/lx/distros/rhel36.distro mode=0444
92 file path=usr/lib/brand/lx/distros/rhel37.distro mode=0444
93 file path=usr/lib/brand/lx/distros/rhel38.distro mode=0444
94 file path=usr/lib/brand/lx/distros/rhel_centos_common mode=0444
95 file path=usr/lib/brand/lx/etc_default_nfs group=sys mode=0444
96 file path=usr/lib/brand/lx/etc_netconfig group=sys mode=0444
97 file path=usr/lib/brand/lx/lx_distro_install mode=0755
98 file path=usr/lib/brand/lx/lx_init_zone mode=0755
99 file path=usr/lib/brand/lx/lx_install mode=0755
100 file path=usr/lib/brand/lx/lx_librtld_db.so.1
101 file path=usr/lib/brand/lx/lx_lockd mode=0755
102 file path=usr/lib/brand/lx/lx_nametoaddr.so.1
103 file path=usr/lib/brand/lx/lx_native mode=0755
104 file path=usr/lib/brand/lx/lx_statd mode=0755
105 file path=usr/lib/brand/lx/lx_support mode=0755
106 file path=usr/lib/brand/lx/lx_thunk mode=0755
107 file path=usr/lib/brand/lx/lx_thunk.so.1
108 file path=usr/lib/brand/lx/platform.xml mode=0444
109 file path=usr/lib/devfsadm/linkmod/SUNW_lx_link_$(ARCH).so group=sys
110 file path=usr/lib/lx_brand.so.1
111 hardlink path=usr/kernel/dtrace/$(ARCH64)/lx_systrace \
112 target=../../../kernel/drv/$(ARCH64)/lx_systrace
113 hardlink path=usr/kernel/dtrace/lx_systrace \
114 target=../../kernel/drv/lx_systrace
115 legacy pkg=SUNWlxr arch=$(ARCH) category=system \
116 desc="Support for the ’lx’ Brand" \
117 hotline="Please contact your local service provider" \
118 name="lx Brand (Root)" vendor="Sun Microsystems, Inc." \
119 version=11.11,REV=2009.11.11
120 legacy pkg=SUNWlxu arch=$(ARCH) category=system \
121 desc="Support for the ’lx’ Brand" \
122 hotline="Please contact your local service provider" \

new/usr/src/pkg/manifests/system-zones-brand-lx.mf 3

123 name="lx Brand (Usr)" vendor="Sun Microsystems, Inc." \
124 version=11.11,REV=2009.11.11
125 license cr_Sun license=cr_Sun
126 license lic_CDDL license=lic_CDDL
127 link path=usr/lib/brand/lx/64 target=$(ARCH64)
128 #endif /* ! codereview */

new/usr/src/uts/common/Makefile.files 1

**
 44221 Tue Jan 14 16:17:17 2014
new/usr/src/uts/common/Makefile.files
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1991, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
25 # Copyright (c) 2013 by Delphix. All rights reserved.
26 # Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
27 #

29 #
30 # This Makefile defines all file modules for the directory uts/common
31 # and its children. These are the source files which may be considered
32 # common to all SunOS systems.

34 i386_CORE_OBJS += \
35 atomic.o \
36 avintr.o \
37 pic.o

39 sparc_CORE_OBJS +=

41 COMMON_CORE_OBJS += \
42 beep.o \
43 bitset.o \
44 bp_map.o \
45 brand.o \
46 cpucaps.o \
47 cmt.o \
48 cmt_policy.o \
49 cpu.o \
50 cpu_event.o \
51 cpu_intr.o \
52 cpu_pm.o \
53 cpupart.o \
54 cap_util.o \
55 disp.o \
56 group.o \
57 kstat_fr.o \
58 iscsiboot_prop.o \
59 lgrp.o \
60 lgrp_topo.o \
61 mmapobj.o \

new/usr/src/uts/common/Makefile.files 2

62 mutex.o \
63 page_lock.o \
64 page_retire.o \
65 panic.o \
66 param.o \
67 pg.o \
68 pghw.o \
69 putnext.o \
70 rctl_proc.o \
71 rwlock.o \
72 seg_kmem.o \
73 softint.o \
74 string.o \
75 strtol.o \
76 strtoul.o \
77 strtoll.o \
78 strtoull.o \
79 thread_intr.o \
80 vm_page.o \
81 vm_pagelist.o \
82 zlib_obj.o \
83 clock_tick.o

85 CORE_OBJS += $(COMMON_CORE_OBJS) $($(MACH)_CORE_OBJS)

87 ZLIB_OBJS = zutil.o zmod.o zmod_subr.o \
88 adler32.o crc32.o deflate.o inffast.o \
89 inflate.o inftrees.o trees.o

91 GENUNIX_OBJS += \
92 access.o \
93 acl.o \
94 acl_common.o \
95 adjtime.o \
96 alarm.o \
97 aio_subr.o \
98 auditsys.o \
99 audit_core.o \
100 audit_zone.o \
101 audit_memory.o \
102 autoconf.o \
103 avl.o \
104 bdev_dsort.o \
105 bio.o \
106 bitmap.o \
107 blabel.o \
108 brandsys.o \
109 bz2blocksort.o \
110 bz2compress.o \
111 bz2decompress.o \
112 bz2randtable.o \
113 bz2bzlib.o \
114 bz2crctable.o \
115 bz2huffman.o \
116 callb.o \
117 callout.o \
118 chdir.o \
119 chmod.o \
120 chown.o \
121 cladm.o \
122 class.o \
123 clock.o \
124 clock_highres.o \
125 clock_realtime.o\
126 close.o \
127 compress.o \

new/usr/src/uts/common/Makefile.files 3

128 condvar.o \
129 conf.o \
130 console.o \
131 contract.o \
132 copyops.o \
133 core.o \
134 corectl.o \
135 cred.o \
136 cs_stubs.o \
137 dacf.o \
138 dacf_clnt.o \
139 damap.o \
140 cyclic.o \
141 ddi.o \
142 ddifm.o \
143 ddi_hp_impl.o \
144 ddi_hp_ndi.o \
145 ddi_intr.o \
146 ddi_intr_impl.o \
147 ddi_intr_irm.o \
148 ddi_nodeid.o \
149 ddi_periodic.o \
150 devcfg.o \
151 devcache.o \
152 device.o \
153 devid.o \
154 devid_cache.o \
155 devid_scsi.o \
156 devid_smp.o \
157 devpolicy.o \
158 disp_lock.o \
159 dnlc.o \
160 driver.o \
161 dumpsubr.o \
162 driver_lyr.o \
163 dtrace_subr.o \
164 errorq.o \
165 etheraddr.o \
166 evchannels.o \
167 exacct.o \
168 exacct_core.o \
169 exec.o \
170 exit.o \
171 fbio.o \
172 fcntl.o \
173 fdbuffer.o \
174 fdsync.o \
175 fem.o \
176 ffs.o \
177 fio.o \
178 flock.o \
179 fm.o \
180 fork.o \
181 vpm.o \
182 fs_reparse.o \
183 fs_subr.o \
184 fsflush.o \
185 ftrace.o \
186 getcwd.o \
187 getdents.o \
188 getloadavg.o \
189 getpagesizes.o \
190 getpid.o \
191 gfs.o \
192 rusagesys.o \
193 gid.o \

new/usr/src/uts/common/Makefile.files 4

194 groups.o \
195 grow.o \
196 hat_refmod.o \
197 id32.o \
198 id_space.o \
199 inet_ntop.o \
200 instance.o \
201 ioctl.o \
202 ip_cksum.o \
203 issetugid.o \
204 ippconf.o \
205 kcpc.o \
206 kdi.o \
207 kiconv.o \
208 klpd.o \
209 kmem.o \
210 ksyms_snapshot.o \
211 l_strplumb.o \
212 labelsys.o \
213 link.o \
214 list.o \
215 lockstat_subr.o \
216 log_sysevent.o \
217 logsubr.o \
218 lookup.o \
219 lseek.o \
220 ltos.o \
221 lwp.o \
222 lwp_create.o \
223 lwp_info.o \
224 lwp_self.o \
225 lwp_sobj.o \
226 lwp_timer.o \
227 lwpsys.o \
228 main.o \
229 mmapobjsys.o \
230 memcntl.o \
231 memstr.o \
232 lgrpsys.o \
233 mkdir.o \
234 mknod.o \
235 mount.o \
236 move.o \
237 msacct.o \
238 multidata.o \
239 nbmlock.o \
240 ndifm.o \
241 nice.o \
242 netstack.o \
243 ntptime.o \
244 nvpair.o \
245 nvpair_alloc_system.o \
246 nvpair_alloc_fixed.o \
247 fnvpair.o \
248 octet.o \
249 open.o \
250 p_online.o \
251 pathconf.o \
252 pathname.o \
253 pause.o \
254 serializer.o \
255 pci_intr_lib.o \
256 pci_cap.o \
257 pcifm.o \
258 pgrp.o \
259 pgrpsys.o \

new/usr/src/uts/common/Makefile.files 5

260 pid.o \
261 pkp_hash.o \
262 policy.o \
263 poll.o \
264 pool.o \
265 pool_pset.o \
266 port_subr.o \
267 ppriv.o \
268 printf.o \
269 priocntl.o \
270 priv.o \
271 priv_const.o \
272 proc.o \
273 procset.o \
274 processor_bind.o \
275 processor_info.o \
276 profil.o \
277 project.o \
278 qsort.o \
279 rctl.o \
280 rctlsys.o \
281 readlink.o \
282 refstr.o \
283 rename.o \
284 resolvepath.o \
285 retire_store.o \
286 process.o \
287 rlimit.o \
288 rmap.o \
289 rw.o \
290 rwstlock.o \
291 sad_conf.o \
292 sid.o \
293 sidsys.o \
294 sched.o \
295 schedctl.o \
296 sctp_crc32.o \
297 seg_dev.o \
298 seg_kp.o \
299 seg_kpm.o \
300 seg_map.o \
301 seg_vn.o \
302 seg_spt.o \
303 semaphore.o \
304 sendfile.o \
305 session.o \
306 share.o \
307 shuttle.o \
308 sig.o \
309 sigaction.o \
310 sigaltstack.o \
311 signotify.o \
312 sigpending.o \
313 sigprocmask.o \
314 sigqueue.o \
315 sigsendset.o \
316 sigsuspend.o \
317 sigtimedwait.o \
318 sleepq.o \
319 sock_conf.o \
320 space.o \
321 sscanf.o \
322 stat.o \
323 statfs.o \
324 statvfs.o \
325 stol.o \

new/usr/src/uts/common/Makefile.files 6

326 str_conf.o \
327 strcalls.o \
328 stream.o \
329 streamio.o \
330 strext.o \
331 strsubr.o \
332 strsun.o \
333 subr.o \
334 sunddi.o \
335 sunmdi.o \
336 sunndi.o \
337 sunpci.o \
338 sunpm.o \
339 sundlpi.o \
340 suntpi.o \
341 swap_subr.o \
342 swap_vnops.o \
343 symlink.o \
344 sync.o \
345 sysclass.o \
346 sysconfig.o \
347 sysent.o \
348 sysfs.o \
349 systeminfo.o \
350 task.o \
351 taskq.o \
352 tasksys.o \
353 time.o \
354 timer.o \
355 times.o \
356 timers.o \
357 thread.o \
358 tlabel.o \
359 tnf_res.o \
360 turnstile.o \
361 tty_common.o \
362 u8_textprep.o \
363 uadmin.o \
364 uconv.o \
365 ucredsys.o \
366 uid.o \
367 umask.o \
368 umount.o \
369 uname.o \
370 unix_bb.o \
371 unlink.o \
372 urw.o \
373 utime.o \
374 utssys.o \
375 uucopy.o \
376 vfs.o \
377 vfs_conf.o \
378 vmem.o \
379 vm_anon.o \
380 vm_as.o \
381 vm_meter.o \
382 vm_pageout.o \
383 vm_pvn.o \
384 vm_rm.o \
385 vm_seg.o \
386 vm_subr.o \
387 vm_swap.o \
388 vm_usage.o \
389 vnode.o \
390 vuid_queue.o \
391 vuid_store.o \

new/usr/src/uts/common/Makefile.files 7

392 waitq.o \
393 watchpoint.o \
394 yield.o \
395 scsi_confdata.o \
396 xattr.o \
397 xattr_common.o \
398 xdr_mblk.o \
399 xdr_mem.o \
400 xdr.o \
401 xdr_array.o \
402 xdr_refer.o \
403 xhat.o \
404 zone.o

406 #
407 # Stubs for the stand-alone linker/loader
408 #
409 sparc_GENSTUBS_OBJS = \
410 kobj_stubs.o

412 i386_GENSTUBS_OBJS =

414 COMMON_GENSTUBS_OBJS =

416 GENSTUBS_OBJS += $(COMMON_GENSTUBS_OBJS) $($(MACH)_GENSTUBS_OBJS)

418 #
419 # DTrace and DTrace Providers
420 #
421 DTRACE_OBJS += dtrace.o dtrace_isa.o dtrace_asm.o

423 SDT_OBJS += sdt_subr.o

425 PROFILE_OBJS += profile.o

427 SYSTRACE_OBJS += systrace.o

429 LX_SYSTRACE_OBJS += lx_systrace.o

431 #endif /* ! codereview */
432 LOCKSTAT_OBJS += lockstat.o

434 FASTTRAP_OBJS += fasttrap.o fasttrap_isa.o

436 DCPC_OBJS += dcpc.o

438 #
439 # Driver (pseudo-driver) Modules
440 #
441 IPP_OBJS += ippctl.o

443 AUDIO_OBJS += audio_client.o audio_ddi.o audio_engine.o \
444 audio_fltdata.o audio_format.o audio_ctrl.o \
445 audio_grc3.o audio_output.o audio_input.o \
446 audio_oss.o audio_sun.o

448 AUDIOEMU10K_OBJS += audioemu10k.o

450 AUDIOENS_OBJS += audioens.o

452 AUDIOVIA823X_OBJS += audiovia823x.o

454 AUDIOVIA97_OBJS += audiovia97.o

456 AUDIO1575_OBJS += audio1575.o

new/usr/src/uts/common/Makefile.files 8

458 AUDIO810_OBJS += audio810.o

460 AUDIOCMI_OBJS += audiocmi.o

462 AUDIOCMIHD_OBJS += audiocmihd.o

464 AUDIOHD_OBJS += audiohd.o

466 AUDIOIXP_OBJS += audioixp.o

468 AUDIOLS_OBJS += audiols.o

470 AUDIOP16X_OBJS += audiop16x.o

472 AUDIOPCI_OBJS += audiopci.o

474 AUDIOSOLO_OBJS += audiosolo.o

476 AUDIOTS_OBJS += audiots.o

478 AC97_OBJS += ac97.o ac97_ad.o ac97_alc.o ac97_cmi.o

480 BLKDEV_OBJS += blkdev.o

482 CARDBUS_OBJS += cardbus.o cardbus_hp.o cardbus_cfg.o

484 CONSKBD_OBJS += conskbd.o

486 CONSMS_OBJS += consms.o

488 OLDPTY_OBJS += tty_ptyconf.o

490 PTC_OBJS += tty_pty.o

492 PTSL_OBJS += tty_pts.o

494 PTM_OBJS += ptm.o

496 LX_PTM_OBJS += lx_ptm.o

498 LX_AUDIO_OBJS += lx_audio.o
499 #endif /* ! codereview */

501 MII_OBJS += mii.o mii_cicada.o mii_natsemi.o mii_intel.o mii_qualsemi.o \
502 mii_marvell.o mii_realtek.o mii_other.o

504 PTS_OBJS += pts.o

506 PTY_OBJS += ptms_conf.o

508 SAD_OBJS += sad.o

510 MD4_OBJS += md4.o md4_mod.o

512 MD5_OBJS += md5.o md5_mod.o

514 SHA1_OBJS += sha1.o sha1_mod.o

516 SHA2_OBJS += sha2.o sha2_mod.o

518 IPGPC_OBJS += classifierddi.o classifier.o filters.o trie.o table.o \
519 ba_table.o

521 DSCPMK_OBJS += dscpmk.o dscpmkddi.o

523 DLCOSMK_OBJS += dlcosmk.o dlcosmkddi.o

new/usr/src/uts/common/Makefile.files 9

525 FLOWACCT_OBJS += flowacctddi.o flowacct.o

527 TOKENMT_OBJS += tokenmt.o tokenmtddi.o

529 TSWTCL_OBJS += tswtcl.o tswtclddi.o

531 ARP_OBJS += arpddi.o

533 ICMP_OBJS += icmpddi.o

535 ICMP6_OBJS += icmp6ddi.o

537 RTS_OBJS += rtsddi.o

539 IP_ICMP_OBJS = icmp.o icmp_opt_data.o
540 IP_RTS_OBJS = rts.o rts_opt_data.o
541 IP_TCP_OBJS = tcp.o tcp_fusion.o tcp_opt_data.o tcp_sack.o tcp_stats.o \
542 tcp_misc.o tcp_timers.o tcp_time_wait.o tcp_tpi.o tcp_output.o \
543 tcp_input.o tcp_socket.o tcp_bind.o tcp_cluster.o tcp_tunables.o
544 IP_UDP_OBJS = udp.o udp_opt_data.o udp_tunables.o udp_stats.o
545 IP_SCTP_OBJS = sctp.o sctp_opt_data.o sctp_output.o \
546 sctp_init.o sctp_input.o sctp_cookie.o \
547 sctp_conn.o sctp_error.o sctp_snmp.o \
548 sctp_tunables.o sctp_shutdown.o sctp_common.o \
549 sctp_timer.o sctp_heartbeat.o sctp_hash.o \
550 sctp_bind.o sctp_notify.o sctp_asconf.o \
551 sctp_addr.o tn_ipopt.o tnet.o ip_netinfo.o \
552 sctp_misc.o
553 IP_ILB_OBJS = ilb.o ilb_nat.o ilb_conn.o ilb_alg_hash.o ilb_alg_rr.o

555 IP_OBJS += igmp.o ipmp.o ip.o ip6.o ip6_asp.o ip6_if.o ip6_ire.o \
556 ip6_rts.o ip_if.o ip_ire.o ip_listutils.o ip_mroute.o \
557 ip_multi.o ip2mac.o ip_ndp.o ip_rts.o ip_srcid.o \
558 ipddi.o ipdrop.o mi.o nd.o tunables.o optcom.o snmpcom.o \
559 ipsec_loader.o spd.o ipclassifier.o inet_common.o ip_squeue.o \
560 squeue.o ip_sadb.o ip_ftable.o proto_set.o radix.o ip_dummy.o \
561 ip_helper_stream.o ip_tunables.o \
562 ip_output.o ip_input.o ip6_input.o ip6_output.o ip_arp.o \
563 conn_opt.o ip_attr.o ip_dce.o \
564 $(IP_ICMP_OBJS) \
565 $(IP_RTS_OBJS) \
566 $(IP_TCP_OBJS) \
567 $(IP_UDP_OBJS) \
568 $(IP_SCTP_OBJS) \
569 $(IP_ILB_OBJS)

571 IP6_OBJS += ip6ddi.o

573 HOOK_OBJS += hook.o

575 NETI_OBJS += neti_impl.o neti_mod.o neti_stack.o

577 KEYSOCK_OBJS += keysockddi.o keysock.o keysock_opt_data.o

579 IPNET_OBJS += ipnet.o ipnet_bpf.o

581 SPDSOCK_OBJS += spdsockddi.o spdsock.o spdsock_opt_data.o

583 IPSECESP_OBJS += ipsecespddi.o ipsecesp.o

585 IPSECAH_OBJS += ipsecahddi.o ipsecah.o sadb.o

587 SPPP_OBJS += sppp.o sppp_dlpi.o sppp_mod.o s_common.o

589 SPPPTUN_OBJS += sppptun.o sppptun_mod.o

new/usr/src/uts/common/Makefile.files 10

591 SPPPASYN_OBJS += spppasyn.o spppasyn_mod.o

593 SPPPCOMP_OBJS += spppcomp.o spppcomp_mod.o deflate.o bsd-comp.o vjcompress.o \
594 zlib.o

596 TCP_OBJS += tcpddi.o

598 TCP6_OBJS += tcp6ddi.o

600 NCA_OBJS += ncaddi.o

602 SDP_SOCK_MOD_OBJS += sockmod_sdp.o socksdp.o socksdpsubr.o

604 SCTP_SOCK_MOD_OBJS += sockmod_sctp.o socksctp.o socksctpsubr.o

606 PFP_SOCK_MOD_OBJS += sockmod_pfp.o

608 RDS_SOCK_MOD_OBJS += sockmod_rds.o

610 RDS_OBJS += rdsddi.o rdssubr.o rds_opt.o rds_ioctl.o

612 RDSIB_OBJS += rdsib.o rdsib_ib.o rdsib_cm.o rdsib_ep.o rdsib_buf.o \
613 rdsib_debug.o rdsib_sc.o

615 RDSV3_OBJS += af_rds.o rdsv3_ddi.o bind.o loop.o threads.o connection.o \
616 transport.o cong.o sysctl.o message.o rds_recv.o send.o \
617 stats.o info.o page.o rdma_transport.o ib_ring.o ib_rdma.o \
618 ib_recv.o ib.o ib_send.o ib_sysctl.o ib_stats.o ib_cm.o \
619 rdsv3_sc.o rdsv3_debug.o rdsv3_impl.o rdma.o rdsv3_af_thr.o

621 ISER_OBJS += iser.o iser_cm.o iser_cq.o iser_ib.o iser_idm.o \
622 iser_resource.o iser_xfer.o

624 UDP_OBJS += udpddi.o

626 UDP6_OBJS += udp6ddi.o

628 SY_OBJS += gentty.o

630 TCO_OBJS += ticots.o

632 TCOO_OBJS += ticotsord.o

634 TCL_OBJS += ticlts.o

636 TL_OBJS += tl.o

638 DUMP_OBJS += dump.o

640 BPF_OBJS += bpf.o bpf_filter.o bpf_mod.o bpf_dlt.o bpf_mac.o

642 CLONE_OBJS += clone.o

644 CN_OBJS += cons.o

646 DLD_OBJS += dld_drv.o dld_proto.o dld_str.o dld_flow.o

648 DLS_OBJS += dls.o dls_link.o dls_mod.o dls_stat.o dls_mgmt.o

650 GLD_OBJS += gld.o gldutil.o

652 MAC_OBJS += mac.o mac_bcast.o mac_client.o mac_datapath_setup.o mac_flow.o
653 mac_hio.o mac_mod.o mac_ndd.o mac_provider.o mac_sched.o \
654 mac_protect.o mac_soft_ring.o mac_stat.o mac_util.o

new/usr/src/uts/common/Makefile.files 11

656 MAC_6TO4_OBJS += mac_6to4.o

658 MAC_ETHER_OBJS += mac_ether.o

660 MAC_IPV4_OBJS += mac_ipv4.o

662 MAC_IPV6_OBJS += mac_ipv6.o

664 MAC_WIFI_OBJS += mac_wifi.o

666 MAC_IB_OBJS += mac_ib.o

668 IPTUN_OBJS += iptun_dev.o iptun_ctl.o iptun.o

670 AGGR_OBJS += aggr_dev.o aggr_ctl.o aggr_grp.o aggr_port.o \
671 aggr_send.o aggr_recv.o aggr_lacp.o

673 SOFTMAC_OBJS += softmac_main.o softmac_ctl.o softmac_capab.o \
674 softmac_dev.o softmac_stat.o softmac_pkt.o softmac_fp.o

676 NET80211_OBJS += net80211.o net80211_proto.o net80211_input.o \
677 net80211_output.o net80211_node.o net80211_crypto.o \
678 net80211_crypto_none.o net80211_crypto_wep.o net80211_ioctl.o \
679 net80211_crypto_tkip.o net80211_crypto_ccmp.o \
680 net80211_ht.o

682 VNIC_OBJS += vnic_ctl.o vnic_dev.o

684 SIMNET_OBJS += simnet.o

686 IB_OBJS += ibnex.o ibnex_ioctl.o ibnex_hca.o

688 IBCM_OBJS += ibcm_impl.o ibcm_sm.o ibcm_ti.o ibcm_utils.o ibcm_path.o \
689 ibcm_arp.o ibcm_arp_link.o

691 IBDM_OBJS += ibdm.o

693 IBDMA_OBJS += ibdma.o

695 IBMF_OBJS += ibmf.o ibmf_impl.o ibmf_dr.o ibmf_wqe.o ibmf_ud_dest.o ibmf_mod.
696 ibmf_send.o ibmf_recv.o ibmf_handlers.o ibmf_trans.o \
697 ibmf_timers.o ibmf_msg.o ibmf_utils.o ibmf_rmpp.o \
698 ibmf_saa.o ibmf_saa_impl.o ibmf_saa_utils.o ibmf_saa_events.o

700 IBTL_OBJS += ibtl_impl.o ibtl_util.o ibtl_mem.o ibtl_handlers.o ibtl_qp.o \
701 ibtl_cq.o ibtl_wr.o ibtl_hca.o ibtl_chan.o ibtl_cm.o \
702 ibtl_mcg.o ibtl_ibnex.o ibtl_srq.o ibtl_part.o

704 TAVOR_OBJS += tavor.o tavor_agents.o tavor_cfg.o tavor_ci.o tavor_cmd.o \
705 tavor_cq.o tavor_event.o tavor_ioctl.o tavor_misc.o \
706 tavor_mr.o tavor_qp.o tavor_qpmod.o tavor_rsrc.o \
707 tavor_srq.o tavor_stats.o tavor_umap.o tavor_wr.o

709 HERMON_OBJS += hermon.o hermon_agents.o hermon_cfg.o hermon_ci.o hermon_cmd.o \
710 hermon_cq.o hermon_event.o hermon_ioctl.o hermon_misc.o \
711 hermon_mr.o hermon_qp.o hermon_qpmod.o hermon_rsrc.o \
712 hermon_srq.o hermon_stats.o hermon_umap.o hermon_wr.o \
713 hermon_fcoib.o hermon_fm.o

715 DAPLT_OBJS += daplt.o

717 SOL_OFS_OBJS += sol_cma.o sol_ib_cma.o sol_uobj.o \
718 sol_ofs_debug_util.o sol_ofs_gen_util.o \
719 sol_kverbs.o

721 SOL_UCMA_OBJS += sol_ucma.o

new/usr/src/uts/common/Makefile.files 12

723 SOL_UVERBS_OBJS += sol_uverbs.o sol_uverbs_comp.o sol_uverbs_event.o \
724 sol_uverbs_hca.o sol_uverbs_qp.o

726 SOL_UMAD_OBJS += sol_umad.o

728 KSTAT_OBJS += kstat.o

730 KSYMS_OBJS += ksyms.o

732 INSTANCE_OBJS += inst_sync.o

734 IWSCN_OBJS += iwscons.o

736 LOFI_OBJS += lofi.o LzmaDec.o

738 FSSNAP_OBJS += fssnap.o

740 FSSNAPIF_OBJS += fssnap_if.o

742 MM_OBJS += mem.o

744 PHYSMEM_OBJS += physmem.o

746 OPTIONS_OBJS += options.o

748 WINLOCK_OBJS += winlockio.o

750 PM_OBJS += pm.o
751 SRN_OBJS += srn.o

753 PSEUDO_OBJS += pseudonex.o

755 RAMDISK_OBJS += ramdisk.o

757 LLC1_OBJS += llc1.o

759 USBKBM_OBJS += usbkbm.o

761 USBWCM_OBJS += usbwcm.o

763 BOFI_OBJS += bofi.o

765 HID_OBJS += hid.o

767 HWA_RC_OBJS += hwarc.o

769 USBSKEL_OBJS += usbskel.o

771 USBVC_OBJS += usbvc.o usbvc_v4l2.o

773 HIDPARSER_OBJS += hidparser.o

775 USB_AC_OBJS += usb_ac.o

777 USB_AS_OBJS += usb_as.o

779 USB_AH_OBJS += usb_ah.o

781 USBMS_OBJS += usbms.o

783 USBPRN_OBJS += usbprn.o

785 UGEN_OBJS += ugen.o

787 USBSER_OBJS += usbser.o usbser_rseq.o

new/usr/src/uts/common/Makefile.files 13

789 USBSACM_OBJS += usbsacm.o

791 USBSER_KEYSPAN_OBJS += usbser_keyspan.o keyspan_dsd.o keyspan_pipe.o

793 USBS49_FW_OBJS += keyspan_49fw.o

795 USBSPRL_OBJS += usbser_pl2303.o pl2303_dsd.o

797 WUSB_CA_OBJS += wusb_ca.o

799 USBFTDI_OBJS += usbser_uftdi.o uftdi_dsd.o

801 USBECM_OBJS += usbecm.o

803 WC_OBJS += wscons.o vcons.o

805 VCONS_CONF_OBJS += vcons_conf.o

807 SCSI_OBJS += scsi_capabilities.o scsi_confsubr.o scsi_control.o \
808 scsi_data.o scsi_fm.o scsi_hba.o scsi_reset_notify.o \
809 scsi_resource.o scsi_subr.o scsi_transport.o scsi_watch.o \
810 smp_transport.o

812 SCSI_VHCI_OBJS += scsi_vhci.o mpapi_impl.o scsi_vhci_tpgs.o

814 SCSI_VHCI_F_SYM_OBJS += sym.o

816 SCSI_VHCI_F_TPGS_OBJS += tpgs.o

818 SCSI_VHCI_F_ASYM_SUN_OBJS += asym_sun.o

820 SCSI_VHCI_F_SYM_HDS_OBJS += sym_hds.o

822 SCSI_VHCI_F_TAPE_OBJS += tape.o

824 SCSI_VHCI_F_TPGS_TAPE_OBJS += tpgs_tape.o

826 SGEN_OBJS += sgen.o

828 SMP_OBJS += smp.o

830 SATA_OBJS += sata.o

832 USBA_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o genconsole.o \
833 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
834 usba_devdb.o usba10_calls.o usba_ugen.o whcdi.o wa.o
835 USBA_WITHOUT_WUSB_OBJS += hcdi.o usba.o usbai.o hubdi.o parser.o gencons
836 usbai_pipe_mgmt.o usbai_req.o usbai_util.o usbai_register.o \
837 usba_devdb.o usba10_calls.o usba_ugen.o

839 USBA10_OBJS += usba10.o

841 RSM_OBJS += rsm.o rsmka_pathmanager.o rsmka_util.o

843 RSMOPS_OBJS += rsmops.o

845 S1394_OBJS += t1394.o t1394_errmsg.o s1394.o s1394_addr.o s1394_asynch.o \
846 s1394_bus_reset.o s1394_cmp.o s1394_csr.o s1394_dev_disc.o \
847 s1394_fa.o s1394_fcp.o \
848 s1394_hotplug.o s1394_isoch.o s1394_misc.o h1394.o nx1394.o

850 HCI1394_OBJS += hci1394.o hci1394_async.o hci1394_attach.o hci1394_buf.o \
851 hci1394_csr.o hci1394_detach.o hci1394_extern.o \
852 hci1394_ioctl.o hci1394_isoch.o hci1394_isr.o \
853 hci1394_ixl_comp.o hci1394_ixl_isr.o hci1394_ixl_misc.o \

new/usr/src/uts/common/Makefile.files 14

854 hci1394_ixl_update.o hci1394_misc.o hci1394_ohci.o \
855 hci1394_q.o hci1394_s1394if.o hci1394_tlabel.o \
856 hci1394_tlist.o hci1394_vendor.o

858 AV1394_OBJS += av1394.o av1394_as.o av1394_async.o av1394_cfgrom.o \
859 av1394_cmp.o av1394_fcp.o av1394_isoch.o av1394_isoch_chan.o \
860 av1394_isoch_recv.o av1394_isoch_xmit.o av1394_list.o \
861 av1394_queue.o

863 DCAM1394_OBJS += dcam.o dcam_frame.o dcam_param.o dcam_reg.o \
864 dcam_ring_buff.o

866 SCSA1394_OBJS += hba.o sbp2_driver.o sbp2_bus.o

868 SBP2_OBJS += cfgrom.o sbp2.o

870 PMODEM_OBJS += pmodem.o pmodem_cis.o cis.o cis_callout.o cis_handlers.o cis_para

872 DSW_OBJS += dsw.o dsw_dev.o ii_tree.o

874 NCALL_OBJS += ncall.o \
875 ncall_stub.o

877 RDC_OBJS += rdc.o \
878 rdc_dev.o \
879 rdc_io.o \
880 rdc_clnt.o \
881 rdc_prot_xdr.o \
882 rdc_svc.o \
883 rdc_bitmap.o \
884 rdc_health.o \
885 rdc_subr.o \
886 rdc_diskq.o

888 RDCSRV_OBJS += rdcsrv.o

890 RDCSTUB_OBJS += rdc_stub.o

892 SDBC_OBJS += sd_bcache.o \
893 sd_bio.o \
894 sd_conf.o \
895 sd_ft.o \
896 sd_hash.o \
897 sd_io.o \
898 sd_misc.o \
899 sd_pcu.o \
900 sd_tdaemon.o \
901 sd_trace.o \
902 sd_iob_impl0.o \
903 sd_iob_impl1.o \
904 sd_iob_impl2.o \
905 sd_iob_impl3.o \
906 sd_iob_impl4.o \
907 sd_iob_impl5.o \
908 sd_iob_impl6.o \
909 sd_iob_impl7.o \
910 safestore.o \
911 safestore_ram.o

913 NSCTL_OBJS += nsctl.o \
914 nsc_cache.o \
915 nsc_disk.o \
916 nsc_dev.o \
917 nsc_freeze.o \
918 nsc_gen.o \
919 nsc_mem.o \

new/usr/src/uts/common/Makefile.files 15

920 nsc_ncallio.o \
921 nsc_power.o \
922 nsc_resv.o \
923 nsc_rmspin.o \
924 nsc_solaris.o \
925 nsc_trap.o \
926 nsc_list.o
927 UNISTAT_OBJS += spuni.o \
928 spcs_s_k.o

930 NSKERN_OBJS += nsc_ddi.o \
931 nsc_proc.o \
932 nsc_raw.o \
933 nsc_thread.o \
934 nskernd.o

936 SV_OBJS += sv.o

938 PMCS_OBJS += pmcs_attach.o pmcs_ds.o pmcs_intr.o pmcs_nvram.o pmcs_sata.o \
939 pmcs_scsa.o pmcs_smhba.o pmcs_subr.o pmcs_fwlog.o

941 PMCS8001FW_C_OBJS += pmcs_fw_hdr.o
942 PMCS8001FW_OBJS += $(PMCS8001FW_C_OBJS) SPCBoot.o ila.o firmware.o

944 #
945 # Build up defines and paths.

947 ST_OBJS += st.o st_conf.o

949 EMLXS_OBJS += emlxs_clock.o emlxs_dfc.o emlxs_dhchap.o emlxs_diag.o \
950 emlxs_download.o emlxs_dump.o emlxs_els.o emlxs_event.o \
951 emlxs_fcf.o emlxs_fcp.o emlxs_fct.o emlxs_hba.o emlxs_ip.o \
952 emlxs_mbox.o emlxs_mem.o emlxs_msg.o emlxs_node.o \
953 emlxs_pkt.o emlxs_sli3.o emlxs_sli4.o emlxs_solaris.o \
954 emlxs_thread.o

956 EMLXS_FW_OBJS += emlxs_fw.o

958 OCE_OBJS += oce_buf.o oce_fm.o oce_gld.o oce_hw.o oce_intr.o oce_main.o \
959 oce_mbx.o oce_mq.o oce_queue.o oce_rx.o oce_stat.o oce_tx.o \
960 oce_utils.o

962 FCT_OBJS += discovery.o fct.o

964 QLT_OBJS += 2400.o 2500.o 8100.o qlt.o qlt_dma.o

966 SRPT_OBJS += srpt_mod.o srpt_ch.o srpt_cm.o srpt_ioc.o srpt_stp.o

968 FCOE_OBJS += fcoe.o fcoe_eth.o fcoe_fc.o

970 FCOET_OBJS += fcoet.o fcoet_eth.o fcoet_fc.o

972 FCOEI_OBJS += fcoei.o fcoei_eth.o fcoei_lv.o

974 ISCSIT_SHARED_OBJS += \
975 iscsit_common.o

977 ISCSIT_OBJS += $(ISCSIT_SHARED_OBJS) \
978 iscsit.o iscsit_tgt.o iscsit_sess.o iscsit_login.o \
979 iscsit_text.o iscsit_isns.o iscsit_radiusauth.o \
980 iscsit_radiuspacket.o iscsit_auth.o iscsit_authclient.o

982 PPPT_OBJS += alua_ic_if.o pppt.o pppt_msg.o pppt_tgt.o

984 STMF_OBJS += lun_map.o stmf.o

new/usr/src/uts/common/Makefile.files 16

986 STMF_SBD_OBJS += sbd.o sbd_scsi.o sbd_pgr.o sbd_zvol.o

988 SYSMSG_OBJS += sysmsg.o

990 SES_OBJS += ses.o ses_sen.o ses_safte.o ses_ses.o

992 TNF_OBJS += tnf_buf.o tnf_trace.o tnf_writer.o trace_init.o \
993 trace_funcs.o tnf_probe.o tnf.o

995 LOGINDMUX_OBJS += logindmux.o

997 DEVINFO_OBJS += devinfo.o

999 DEVPOLL_OBJS += devpoll.o

1001 DEVPOOL_OBJS += devpool.o

1003 I8042_OBJS += i8042.o

1005 KB8042_OBJS += \
1006 at_keyprocess.o \
1007 kb8042.o \
1008 kb8042_keytables.o

1010 MOUSE8042_OBJS += mouse8042.o

1012 FDC_OBJS += fdc.o

1014 ASY_OBJS += asy.o

1016 ECPP_OBJS += ecpp.o

1018 VUIDM3P_OBJS += vuidmice.o vuidm3p.o

1020 VUIDM4P_OBJS += vuidmice.o vuidm4p.o

1022 VUIDM5P_OBJS += vuidmice.o vuidm5p.o

1024 VUIDPS2_OBJS += vuidmice.o vuidps2.o

1026 HPCSVC_OBJS += hpcsvc.o

1028 PCIE_MISC_OBJS += pcie.o pcie_fault.o pcie_hp.o pciehpc.o pcishpc.o pcie_pwr.o p

1030 PCIHPNEXUS_OBJS += pcihp.o

1032 OPENEEPR_OBJS += openprom.o

1034 RANDOM_OBJS += random.o

1036 PSHOT_OBJS += pshot.o

1038 GEN_DRV_OBJS += gen_drv.o

1040 TCLIENT_OBJS += tclient.o

1042 TPHCI_OBJS += tphci.o

1044 TVHCI_OBJS += tvhci.o

1046 EMUL64_OBJS += emul64.o emul64_bsd.o

1048 FCP_OBJS += fcp.o

1050 FCIP_OBJS += fcip.o

new/usr/src/uts/common/Makefile.files 17

1052 FCSM_OBJS += fcsm.o

1054 FCTL_OBJS += fctl.o

1056 FP_OBJS += fp.o

1058 QLC_OBJS += ql_api.o ql_debug.o ql_hba_fru.o ql_init.o ql_iocb.o ql_ioctl.o \
1059 ql_isr.o ql_mbx.o ql_nx.o ql_xioctl.o ql_fw_table.o

1061 QLC_FW_2200_OBJS += ql_fw_2200.o

1063 QLC_FW_2300_OBJS += ql_fw_2300.o

1065 QLC_FW_2400_OBJS += ql_fw_2400.o

1067 QLC_FW_2500_OBJS += ql_fw_2500.o

1069 QLC_FW_6322_OBJS += ql_fw_6322.o

1071 QLC_FW_8100_OBJS += ql_fw_8100.o

1073 QLGE_OBJS += qlge.o qlge_dbg.o qlge_flash.o qlge_fm.o qlge_gld.o qlge_mpi.o

1075 ZCONS_OBJS += zcons.o

1077 NV_SATA_OBJS += nv_sata.o

1079 SI3124_OBJS += si3124.o

1081 AHCI_OBJS += ahci.o

1083 PCIIDE_OBJS += pci-ide.o

1085 PCEPP_OBJS += pcepp.o

1087 CPC_OBJS += cpc.o

1089 CPUID_OBJS += cpuid_drv.o

1091 SYSEVENT_OBJS += sysevent.o

1093 BL_OBJS += bl.o

1095 DRM_OBJS += drm_sunmod.o drm_kstat.o drm_agpsupport.o \
1096 drm_auth.o drm_bufs.o drm_context.o drm_dma.o \
1097 drm_drawable.o drm_drv.o drm_fops.o drm_ioctl.o drm_irq.o \
1098 drm_lock.o drm_memory.o drm_msg.o drm_pci.o drm_scatter.o \
1099 drm_cache.o drm_gem.o drm_mm.o ati_pcigart.o

1101 FM_OBJS += devfm.o devfm_machdep.o

1103 RTLS_OBJS += rtls.o

1105 #
1106 # exec modules
1107 #
1108 AOUTEXEC_OBJS +=aout.o

1110 ELFEXEC_OBJS += elf.o elf_notes.o old_notes.o

1112 INTPEXEC_OBJS +=intp.o

1114 SHBINEXEC_OBJS +=shbin.o

1116 JAVAEXEC_OBJS +=java.o

new/usr/src/uts/common/Makefile.files 18

1118 #
1119 # file system modules
1120 #
1121 AUTOFS_OBJS += auto_vfsops.o auto_vnops.o auto_subr.o auto_xdr.o auto_sys.o

1123 CACHEFS_OBJS += cachefs_cnode.o cachefs_cod.o \
1124 cachefs_dir.o cachefs_dlog.o cachefs_filegrp.o \
1125 cachefs_fscache.o cachefs_ioctl.o cachefs_log.o \
1126 cachefs_module.o \
1127 cachefs_noopc.o cachefs_resource.o \
1128 cachefs_strict.o \
1129 cachefs_subr.o cachefs_vfsops.o \
1130 cachefs_vnops.o

1132 DCFS_OBJS += dc_vnops.o

1134 DEVFS_OBJS += devfs_subr.o devfs_vfsops.o devfs_vnops.o

1136 DEV_OBJS += sdev_subr.o sdev_vfsops.o sdev_vnops.o \
1137 sdev_ptsops.o sdev_zvolops.o sdev_comm.o \
1138 sdev_profile.o sdev_ncache.o sdev_netops.o \
1139 sdev_ipnetops.o \
1140 sdev_vtops.o

1142 CTFS_OBJS += ctfs_all.o ctfs_cdir.o ctfs_ctl.o ctfs_event.o \
1143 ctfs_latest.o ctfs_root.o ctfs_sym.o ctfs_tdir.o ctfs_tmpl.o

1145 OBJFS_OBJS += objfs_vfs.o objfs_root.o objfs_common.o \
1146 objfs_odir.o objfs_data.o

1148 FDFS_OBJS += fdops.o

1150 FIFO_OBJS += fifosubr.o fifovnops.o

1152 PIPE_OBJS += pipe.o

1154 HSFS_OBJS += hsfs_node.o hsfs_subr.o hsfs_vfsops.o hsfs_vnops.o \
1155 hsfs_susp.o hsfs_rrip.o hsfs_susp_subr.o

1157 LOFS_OBJS += lofs_subr.o lofs_vfsops.o lofs_vnops.o

1159 NAMEFS_OBJS += namevfs.o namevno.o

1161 NFS_OBJS += nfs_client.o nfs_common.o nfs_dump.o \
1162 nfs_subr.o nfs_vfsops.o nfs_vnops.o \
1163 nfs_xdr.o nfs_sys.o nfs_strerror.o \
1164 nfs3_vfsops.o nfs3_vnops.o nfs3_xdr.o \
1165 nfs_acl_vnops.o nfs_acl_xdr.o nfs4_vfsops.o \
1166 nfs4_vnops.o nfs4_xdr.o nfs4_idmap.o \
1167 nfs4_shadow.o nfs4_subr.o \
1168 nfs4_attr.o nfs4_rnode.o nfs4_client.o \
1169 nfs4_acache.o nfs4_common.o nfs4_client_state.o \
1170 nfs4_callback.o nfs4_recovery.o nfs4_client_secinfo.o \
1171 nfs4_client_debug.o nfs_stats.o \
1172 nfs4_acl.o nfs4_stub_vnops.o nfs_cmd.o

1174 NFSSRV_OBJS += nfs_server.o nfs_srv.o nfs3_srv.o \
1175 nfs_acl_srv.o nfs_auth.o nfs_auth_xdr.o \
1176 nfs_export.o nfs_log.o nfs_log_xdr.o \
1177 nfs4_srv.o nfs4_state.o nfs4_srv_attr.o \
1178 nfs4_srv_ns.o nfs4_db.o nfs4_srv_deleg.o \
1179 nfs4_deleg_ops.o nfs4_srv_readdir.o nfs4_dispatch.o

1181 SMBSRV_SHARED_OBJS += \
1182 smb_inet.o \
1183 smb_match.o \

new/usr/src/uts/common/Makefile.files 19

1184 smb_msgbuf.o \
1185 smb_oem.o \
1186 smb_string.o \
1187 smb_utf8.o \
1188 smb_door_legacy.o \
1189 smb_xdr.o \
1190 smb_token.o \
1191 smb_token_xdr.o \
1192 smb_sid.o \
1193 smb_native.o \
1194 smb_netbios_util.o

1196 SMBSRV_OBJS += $(SMBSRV_SHARED_OBJS) \
1197 smb_acl.o \
1198 smb_alloc.o \
1199 smb_close.o \
1200 smb_common_open.o \
1201 smb_common_transact.o \
1202 smb_create.o \
1203 smb_delete.o \
1204 smb_directory.o \
1205 smb_dispatch.o \
1206 smb_echo.o \
1207 smb_fem.o \
1208 smb_find.o \
1209 smb_flush.o \
1210 smb_fsinfo.o \
1211 smb_fsops.o \
1212 smb_init.o \
1213 smb_kdoor.o \
1214 smb_kshare.o \
1215 smb_kutil.o \
1216 smb_lock.o \
1217 smb_lock_byte_range.o \
1218 smb_locking_andx.o \
1219 smb_logoff_andx.o \
1220 smb_mangle_name.o \
1221 smb_mbuf_marshaling.o \
1222 smb_mbuf_util.o \
1223 smb_negotiate.o \
1224 smb_net.o \
1225 smb_node.o \
1226 smb_nt_cancel.o \
1227 smb_nt_create_andx.o \
1228 smb_nt_transact_create.o \
1229 smb_nt_transact_ioctl.o \
1230 smb_nt_transact_notify_change.o \
1231 smb_nt_transact_quota.o \
1232 smb_nt_transact_security.o \
1233 smb_odir.o \
1234 smb_ofile.o \
1235 smb_open_andx.o \
1236 smb_opipe.o \
1237 smb_oplock.o \
1238 smb_pathname.o \
1239 smb_print.o \
1240 smb_process_exit.o \
1241 smb_query_fileinfo.o \
1242 smb_read.o \
1243 smb_rename.o \
1244 smb_sd.o \
1245 smb_seek.o \
1246 smb_server.o \
1247 smb_session.o \
1248 smb_session_setup_andx.o \
1249 smb_set_fileinfo.o \

new/usr/src/uts/common/Makefile.files 20

1250 smb_signing.o \
1251 smb_tree.o \
1252 smb_trans2_create_directory.o \
1253 smb_trans2_dfs.o \
1254 smb_trans2_find.o \
1255 smb_tree_connect.o \
1256 smb_unlock_byte_range.o \
1257 smb_user.o \
1258 smb_vfs.o \
1259 smb_vops.o \
1260 smb_vss.o \
1261 smb_write.o \
1262 smb_write_raw.o

1264 PCFS_OBJS += pc_alloc.o pc_dir.o pc_node.o pc_subr.o \
1265 pc_vfsops.o pc_vnops.o

1267 PROC_OBJS += prcontrol.o prioctl.o prsubr.o prusrio.o \
1268 prvfsops.o prvnops.o

1270 MNTFS_OBJS += mntvfsops.o mntvnops.o

1272 SHAREFS_OBJS += sharetab.o sharefs_vfsops.o sharefs_vnops.o

1274 SPEC_OBJS += specsubr.o specvfsops.o specvnops.o

1276 SOCK_OBJS += socksubr.o sockvfsops.o sockparams.o \
1277 socksyscalls.o socktpi.o sockstr.o \
1278 sockcommon_vnops.o sockcommon_subr.o \
1279 sockcommon_sops.o sockcommon.o \
1280 sock_notsupp.o socknotify.o \
1281 nl7c.o nl7curi.o nl7chttp.o nl7clogd.o \
1282 nl7cnca.o sodirect.o sockfilter.o

1284 TMPFS_OBJS += tmp_dir.o tmp_subr.o tmp_tnode.o tmp_vfsops.o \
1285 tmp_vnops.o

1287 UDFS_OBJS += udf_alloc.o udf_bmap.o udf_dir.o \
1288 udf_inode.o udf_subr.o udf_vfsops.o \
1289 udf_vnops.o

1291 UFS_OBJS += ufs_alloc.o ufs_bmap.o ufs_dir.o ufs_xattr.o \
1292 ufs_inode.o ufs_subr.o ufs_tables.o ufs_vfsops.o \
1293 ufs_vnops.o quota.o quotacalls.o quota_ufs.o \
1294 ufs_filio.o ufs_lockfs.o ufs_thread.o ufs_trans.o \
1295 ufs_acl.o ufs_panic.o ufs_directio.o ufs_log.o \
1296 ufs_extvnops.o ufs_snap.o lufs.o lufs_thread.o \
1297 lufs_log.o lufs_map.o lufs_top.o lufs_debug.o
1298 VSCAN_OBJS += vscan_drv.o vscan_svc.o vscan_door.o

1300 NSMB_OBJS += smb_conn.o smb_dev.o smb_iod.o smb_pass.o \
1301 smb_rq.o smb_sign.o smb_smb.o smb_subrs.o \
1302 smb_time.o smb_tran.o smb_trantcp.o smb_usr.o \
1303 subr_mchain.o

1305 SMBFS_COMMON_OBJS += smbfs_ntacl.o
1306 SMBFS_OBJS += smbfs_vfsops.o smbfs_vnops.o smbfs_node.o \
1307 smbfs_acl.o smbfs_client.o smbfs_smb.o \
1308 smbfs_subr.o smbfs_subr2.o \
1309 smbfs_rwlock.o smbfs_xattr.o \
1310 $(SMBFS_COMMON_OBJS)

1313 #
1314 # LVM modules
1315 #

new/usr/src/uts/common/Makefile.files 21

1316 MD_OBJS += md.o md_error.o md_ioctl.o md_mddb.o md_names.o \
1317 md_med.o md_rename.o md_subr.o

1319 MD_COMMON_OBJS = md_convert.o md_crc.o md_revchk.o

1321 MD_DERIVED_OBJS = metamed_xdr.o meta_basic_xdr.o

1323 SOFTPART_OBJS += sp.o sp_ioctl.o

1325 STRIPE_OBJS += stripe.o stripe_ioctl.o

1327 HOTSPARES_OBJS += hotspares.o

1329 RAID_OBJS += raid.o raid_ioctl.o raid_replay.o raid_resync.o raid_hotspare.o

1331 MIRROR_OBJS += mirror.o mirror_ioctl.o mirror_resync.o

1333 NOTIFY_OBJS += md_notify.o

1335 TRANS_OBJS += mdtrans.o trans_ioctl.o trans_log.o

1337 ZFS_COMMON_OBJS += \
1338 arc.o \
1339 bplist.o \
1340 bpobj.o \
1341 bptree.o \
1342 dbuf.o \
1343 ddt.o \
1344 ddt_zap.o \
1345 dmu.o \
1346 dmu_diff.o \
1347 dmu_send.o \
1348 dmu_object.o \
1349 dmu_objset.o \
1350 dmu_traverse.o \
1351 dmu_tx.o \
1352 dnode.o \
1353 dnode_sync.o \
1354 dsl_bookmark.o \
1355 dsl_dir.o \
1356 dsl_dataset.o \
1357 dsl_deadlist.o \
1358 dsl_destroy.o \
1359 dsl_pool.o \
1360 dsl_synctask.o \
1361 dsl_userhold.o \
1362 dmu_zfetch.o \
1363 dsl_deleg.o \
1364 dsl_prop.o \
1365 dsl_scan.o \
1366 zfeature.o \
1367 gzip.o \
1368 lz4.o \
1369 lzjb.o \
1370 metaslab.o \
1371 range_tree.o \
1372 refcount.o \
1373 rrwlock.o \
1374 sa.o \
1375 sha256.o \
1376 spa.o \
1377 spa_config.o \
1378 spa_errlog.o \
1379 spa_history.o \
1380 spa_misc.o \
1381 space_map.o \

new/usr/src/uts/common/Makefile.files 22

1382 space_reftree.o \
1383 txg.o \
1384 uberblock.o \
1385 unique.o \
1386 vdev.o \
1387 vdev_cache.o \
1388 vdev_file.o \
1389 vdev_label.o \
1390 vdev_mirror.o \
1391 vdev_missing.o \
1392 vdev_queue.o \
1393 vdev_raidz.o \
1394 vdev_root.o \
1395 zap.o \
1396 zap_leaf.o \
1397 zap_micro.o \
1398 zfs_byteswap.o \
1399 zfs_debug.o \
1400 zfs_fm.o \
1401 zfs_fuid.o \
1402 zfs_sa.o \
1403 zfs_znode.o \
1404 zil.o \
1405 zio.o \
1406 zio_checksum.o \
1407 zio_compress.o \
1408 zio_inject.o \
1409 zle.o \
1410 zrlock.o

1412 ZFS_SHARED_OBJS += \
1413 zfeature_common.o \
1414 zfs_comutil.o \
1415 zfs_deleg.o \
1416 zfs_fletcher.o \
1417 zfs_namecheck.o \
1418 zfs_prop.o \
1419 zpool_prop.o \
1420 zprop_common.o

1422 ZFS_OBJS += \
1423 $(ZFS_COMMON_OBJS) \
1424 $(ZFS_SHARED_OBJS) \
1425 vdev_disk.o \
1426 zfs_acl.o \
1427 zfs_ctldir.o \
1428 zfs_dir.o \
1429 zfs_ioctl.o \
1430 zfs_log.o \
1431 zfs_onexit.o \
1432 zfs_replay.o \
1433 zfs_rlock.o \
1434 zfs_vfsops.o \
1435 zfs_vnops.o \
1436 zvol.o

1438 ZUT_OBJS += \
1439 zut.o

1441 #
1442 # streams modules
1443 #
1444 BUFMOD_OBJS += bufmod.o

1446 CONNLD_OBJS += connld.o

new/usr/src/uts/common/Makefile.files 23

1448 DEDUMP_OBJS += dedump.o

1450 DRCOMPAT_OBJS += drcompat.o

1452 LDLINUX_OBJS += ldlinux.o

1454 LDTERM_OBJS += ldterm.o uwidth.o

1456 PCKT_OBJS += pckt.o

1458 PFMOD_OBJS += pfmod.o

1460 PTEM_OBJS += ptem.o

1462 REDIRMOD_OBJS += strredirm.o

1464 TIMOD_OBJS += timod.o

1466 TIRDWR_OBJS += tirdwr.o

1468 TTCOMPAT_OBJS +=ttcompat.o

1470 LOG_OBJS += log.o

1472 PIPEMOD_OBJS += pipemod.o

1474 RPCMOD_OBJS += rpcmod.o clnt_cots.o clnt_clts.o \
1475 clnt_gen.o clnt_perr.o mt_rpcinit.o rpc_calmsg.o \
1476 rpc_prot.o rpc_sztypes.o rpc_subr.o rpcb_prot.o \
1477 svc.o svc_clts.o svc_gen.o svc_cots.o \
1478 rpcsys.o xdr_sizeof.o clnt_rdma.o svc_rdma.o \
1479 xdr_rdma.o rdma_subr.o xdrrdma_sizeof.o

1481 KLMMOD_OBJS += klmmod.o \
1482 nlm_impl.o \
1483 nlm_rpc_handle.o \
1484 nlm_dispatch.o \
1485 nlm_rpc_svc.o \
1486 nlm_client.o \
1487 nlm_service.o \
1488 nlm_prot_clnt.o \
1489 nlm_prot_xdr.o \
1490 nlm_rpc_clnt.o \
1491 nsm_addr_clnt.o \
1492 nsm_addr_xdr.o \
1493 sm_inter_clnt.o \
1494 sm_inter_xdr.o

1496 KLMOPS_OBJS += klmops.o

1498 TLIMOD_OBJS += tlimod.o t_kalloc.o t_kbind.o t_kclose.o \
1499 t_kconnect.o t_kfree.o t_kgtstate.o t_kopen.o \
1500 t_krcvudat.o t_ksndudat.o t_kspoll.o t_kunbind.o \
1501 t_kutil.o

1503 RLMOD_OBJS += rlmod.o

1505 TELMOD_OBJS += telmod.o

1507 CRYPTMOD_OBJS += cryptmod.o

1509 KB_OBJS += kbd.o keytables.o

1511 #
1512 # ID mapping module
1513 #

new/usr/src/uts/common/Makefile.files 24

1514 IDMAP_OBJS += idmap_mod.o idmap_kapi.o idmap_xdr.o idmap_cache.o

1516 #
1517 # scheduling class modules
1518 #
1519 SDC_OBJS += sysdc.o

1521 RT_OBJS += rt.o
1522 RT_DPTBL_OBJS += rt_dptbl.o

1524 TS_OBJS += ts.o
1525 TS_DPTBL_OBJS += ts_dptbl.o

1527 IA_OBJS += ia.o

1529 FSS_OBJS += fss.o

1531 FX_OBJS += fx.o
1532 FX_DPTBL_OBJS += fx_dptbl.o

1534 #
1535 # Inter-Process Communication (IPC) modules
1536 #
1537 IPC_OBJS += ipc.o

1539 IPCMSG_OBJS += msg.o

1541 IPCSEM_OBJS += sem.o

1543 IPCSHM_OBJS += shm.o

1545 #
1546 # bignum module
1547 #
1548 COMMON_BIGNUM_OBJS += bignum_mod.o bignumimpl.o

1550 BIGNUM_OBJS += $(COMMON_BIGNUM_OBJS) $(BIGNUM_PSR_OBJS)

1552 #
1553 # kernel cryptographic framework
1554 #
1555 KCF_OBJS += kcf.o kcf_callprov.o kcf_cbufcall.o kcf_cipher.o kcf_crypto.o \
1556 kcf_cryptoadm.o kcf_ctxops.o kcf_digest.o kcf_dual.o \
1557 kcf_keys.o kcf_mac.o kcf_mech_tabs.o kcf_miscapi.o \
1558 kcf_object.o kcf_policy.o kcf_prov_lib.o kcf_prov_tabs.o \
1559 kcf_sched.o kcf_session.o kcf_sign.o kcf_spi.o kcf_verify.o \
1560 kcf_random.o modes.o ecb.o cbc.o ctr.o ccm.o gcm.o \
1561 fips_random.o

1563 CRYPTOADM_OBJS += cryptoadm.o

1565 CRYPTO_OBJS += crypto.o

1567 DPROV_OBJS += dprov.o

1569 DCA_OBJS += dca.o dca_3des.o dca_debug.o dca_dsa.o dca_kstat.o dca_rng.o \
1570 dca_rsa.o

1572 AESPROV_OBJS += aes.o aes_impl.o aes_modes.o

1574 ARCFOURPROV_OBJS += arcfour.o arcfour_crypt.o

1576 BLOWFISHPROV_OBJS += blowfish.o blowfish_impl.o

1578 ECCPROV_OBJS += ecc.o ec.o ec2_163.o ec2_mont.o ecdecode.o ecl_mult.o \
1579 ecp_384.o ecp_jac.o ec2_193.o ecl.o ecp_192.o ecp_521.o \

new/usr/src/uts/common/Makefile.files 25

1580 ecp_jm.o ec2_233.o ecl_curve.o ecp_224.o ecp_aff.o \
1581 ecp_mont.o ec2_aff.o ec_naf.o ecl_gf.o ecp_256.o mp_gf2m.o \
1582 mpi.o mplogic.o mpmontg.o mpprime.o oid.o \
1583 secitem.o ec2_test.o ecp_test.o

1585 RSAPROV_OBJS += rsa.o rsa_impl.o pkcs1.o

1587 SWRANDPROV_OBJS += swrand.o

1589 #
1590 # kernel SSL
1591 #
1592 KSSL_OBJS += kssl.o ksslioctl.o

1594 KSSL_SOCKFIL_MOD_OBJS += ksslfilter.o ksslapi.o ksslrec.o

1596 #
1597 # misc. modules
1598 #

1600 C2AUDIT_OBJS += adr.o audit.o audit_event.o audit_io.o \
1601 audit_path.o audit_start.o audit_syscalls.o audit_token.o \
1602 audit_mem.o

1604 PCIC_OBJS += pcic.o

1606 RPCSEC_OBJS += secmod.o sec_clnt.o sec_svc.o sec_gen.o \
1607 auth_des.o auth_kern.o auth_none.o auth_loopb.o\
1608 authdesprt.o authdesubr.o authu_prot.o \
1609 key_call.o key_prot.o svc_authu.o svcauthdes.o

1611 RPCSEC_GSS_OBJS += rpcsec_gssmod.o rpcsec_gss.o rpcsec_gss_misc.o \
1612 rpcsec_gss_utils.o svc_rpcsec_gss.o

1614 CONSCONFIG_OBJS += consconfig.o

1616 CONSCONFIG_DACF_OBJS += consconfig_dacf.o consplat.o

1618 TEM_OBJS += tem.o tem_safe.o 6x10.o 7x14.o 12x22.o

1620 KBTRANS_OBJS += \
1621 kbtrans.o \
1622 kbtrans_keytables.o \
1623 kbtrans_polled.o \
1624 kbtrans_streams.o \
1625 usb_keytables.o

1627 KGSSD_OBJS += gssd_clnt_stubs.o gssd_handle.o gssd_prot.o \
1628 gss_display_name.o gss_release_name.o gss_import_name.o \
1629 gss_release_buffer.o gss_release_oid_set.o gen_oids.o gssdmod.o

1631 KGSSD_DERIVED_OBJS = gssd_xdr.o

1633 KGSS_DUMMY_OBJS += dmech.o

1635 KSOCKET_OBJS += ksocket.o ksocket_mod.o

1637 CRYPTO= cksumtypes.o decrypt.o encrypt.o encrypt_length.o etypes.o \
1638 nfold.o verify_checksum.o prng.o block_size.o make_checksum.o\
1639 checksum_length.o hmac.o default_state.o mandatory_sumtype.o

1641 # crypto/des
1642 CRYPTO_DES= f_cbc.o f_cksum.o f_parity.o weak_key.o d3_cbc.o ef_crypto.o

1644 CRYPTO_DK= checksum.o derive.o dk_decrypt.o dk_encrypt.o

new/usr/src/uts/common/Makefile.files 26

1646 CRYPTO_ARCFOUR= k5_arcfour.o

1648 # crypto/enc_provider
1649 CRYPTO_ENC= des.o des3.o arcfour_provider.o aes_provider.o

1651 # crypto/hash_provider
1652 CRYPTO_HASH= hash_kef_generic.o hash_kmd5.o hash_crc32.o hash_ksha1.o

1654 # crypto/keyhash_provider
1655 CRYPTO_KEYHASH= descbc.o k5_kmd5des.o k_hmac_md5.o

1657 # crypto/crc32
1658 CRYPTO_CRC32= crc32.o

1660 # crypto/old
1661 CRYPTO_OLD= old_decrypt.o old_encrypt.o

1663 # crypto/raw
1664 CRYPTO_RAW= raw_decrypt.o raw_encrypt.o

1666 K5_KRB= kfree.o copy_key.o \
1667 parse.o init_ctx.o \
1668 ser_adata.o ser_addr.o \
1669 ser_auth.o ser_cksum.o \
1670 ser_key.o ser_princ.o \
1671 serialize.o unparse.o \
1672 ser_actx.o

1674 K5_OS= timeofday.o toffset.o \
1675 init_os_ctx.o c_ustime.o

1677 SEAL= seal.o unseal.o

1679 MECH= delete_sec_context.o \
1680 import_sec_context.o \
1681 gssapi_krb5.o \
1682 k5seal.o k5unseal.o k5sealv3.o \
1683 ser_sctx.o \
1684 sign.o \
1685 util_crypt.o \
1686 util_validate.o util_ordering.o \
1687 util_seqnum.o util_set.o util_seed.o \
1688 wrap_size_limit.o verify.o

1692 MECH_GEN= util_token.o

1695 KGSS_KRB5_OBJS += krb5mech.o \
1696 $(MECH) $(SEAL) $(MECH_GEN) \
1697 $(CRYPTO) $(CRYPTO_DES) $(CRYPTO_DK) $(CRYPTO_ARCFOUR) \
1698 $(CRYPTO_ENC) $(CRYPTO_HASH) \
1699 $(CRYPTO_KEYHASH) $(CRYPTO_CRC32) \
1700 $(CRYPTO_OLD) \
1701 $(CRYPTO_RAW) $(K5_KRB) $(K5_OS)

1703 DES_OBJS += des_crypt.o des_impl.o des_ks.o des_soft.o

1705 DLBOOT_OBJS += bootparam_xdr.o nfs_dlinet.o scan.o

1707 KRTLD_OBJS += kobj_bootflags.o getoptstr.o \
1708 kobj.o kobj_kdi.o kobj_lm.o kobj_subr.o

1710 MOD_OBJS += modctl.o modsubr.o modsysfile.o modconf.o modhash.o

new/usr/src/uts/common/Makefile.files 27

1712 STRPLUMB_OBJS += strplumb.o

1714 CPR_OBJS += cpr_driver.o cpr_dump.o \
1715 cpr_main.o cpr_misc.o cpr_mod.o cpr_stat.o \
1716 cpr_uthread.o

1718 PROF_OBJS += prf.o

1720 SE_OBJS += se_driver.o

1722 SYSACCT_OBJS += acct.o

1724 ACCTCTL_OBJS += acctctl.o

1726 EXACCTSYS_OBJS += exacctsys.o

1728 KAIO_OBJS += aio.o

1730 PCMCIA_OBJS += pcmcia.o cs.o cis.o cis_callout.o cis_handlers.o cis_params.o

1732 BUSRA_OBJS += busra.o

1734 PCS_OBJS += pcs.o

1736 PSET_OBJS += pset.o

1738 OHCI_OBJS += ohci.o ohci_hub.o ohci_polled.o

1740 UHCI_OBJS += uhci.o uhciutil.o uhcitgt.o uhcihub.o uhcipolled.o

1742 EHCI_OBJS += ehci.o ehci_hub.o ehci_xfer.o ehci_intr.o ehci_util.o ehci_polled.o

1744 HUBD_OBJS += hubd.o

1746 USB_MID_OBJS += usb_mid.o

1748 USB_IA_OBJS += usb_ia.o

1750 UWBA_OBJS += uwba.o uwbai.o

1752 SCSA2USB_OBJS += scsa2usb.o usb_ms_bulkonly.o usb_ms_cbi.o

1754 HWAHC_OBJS += hwahc.o hwahc_util.o

1756 WUSB_DF_OBJS += wusb_df.o
1757 WUSB_FWMOD_OBJS += wusb_fwmod.o

1759 IPF_OBJS += ip_fil_solaris.o fil.o solaris.o ip_state.o ip_frag.o ip_nat.o \
1760 ip_proxy.o ip_auth.o ip_pool.o ip_htable.o ip_lookup.o \
1761 ip_log.o misc.o ip_compat.o ip_nat6.o drand48.o

1763 IPD_OBJS += ipd.o

1765 IBD_OBJS += ibd.o ibd_cm.o

1767 EIBNX_OBJS += enx_main.o enx_hdlrs.o enx_ibt.o enx_log.o enx_fip.o \
1768 enx_misc.o enx_q.o enx_ctl.o

1770 EOIB_OBJS += eib_adm.o eib_chan.o eib_cmn.o eib_ctl.o eib_data.o \
1771 eib_fip.o eib_ibt.o eib_log.o eib_mac.o eib_main.o \
1772 eib_rsrc.o eib_svc.o eib_vnic.o

1774 DLPISTUB_OBJS += dlpistub.o

1776 SDP_OBJS += sdpddi.o

new/usr/src/uts/common/Makefile.files 28

1778 TRILL_OBJS += trill.o

1780 CTF_OBJS += ctf_create.o ctf_decl.o ctf_error.o ctf_hash.o ctf_labels.o \
1781 ctf_lookup.o ctf_open.o ctf_types.o ctf_util.o ctf_subr.o ctf_mod.o

1783 SMBIOS_OBJS += smb_error.o smb_info.o smb_open.o smb_subr.o smb_dev.o

1785 RPCIB_OBJS += rpcib.o

1787 KMDB_OBJS += kdrv.o

1789 AFE_OBJS += afe.o

1791 BGE_OBJS += bge_main2.o bge_chip2.o bge_kstats.o bge_log.o bge_ndd.o \
1792 bge_atomic.o bge_mii.o bge_send.o bge_recv2.o bge_mii_5906.o

1794 DMFE_OBJS += dmfe_log.o dmfe_main.o dmfe_mii.o

1796 EFE_OBJS += efe.o

1798 ELXL_OBJS += elxl.o

1800 HME_OBJS += hme.o

1802 IXGB_OBJS += ixgb.o ixgb_atomic.o ixgb_chip.o ixgb_gld.o ixgb_kstats.o \
1803 ixgb_log.o ixgb_ndd.o ixgb_rx.o ixgb_tx.o ixgb_xmii.o

1805 NGE_OBJS += nge_main.o nge_atomic.o nge_chip.o nge_ndd.o nge_kstats.o \
1806 nge_log.o nge_rx.o nge_tx.o nge_xmii.o

1808 PCN_OBJS += pcn.o

1810 RGE_OBJS += rge_main.o rge_chip.o rge_ndd.o rge_kstats.o rge_log.o rge_rxtx.o

1812 URTW_OBJS += urtw.o

1814 ARN_OBJS += arn_hw.o arn_eeprom.o arn_mac.o arn_calib.o arn_ani.o arn_phy.o arn_
1815 arn_main.o arn_recv.o arn_xmit.o arn_rc.o

1817 ATH_OBJS += ath_aux.o ath_main.o ath_osdep.o ath_rate.o

1819 ATU_OBJS += atu.o

1821 IPW_OBJS += ipw2100_hw.o ipw2100.o

1823 IWI_OBJS += ipw2200_hw.o ipw2200.o

1825 IWH_OBJS += iwh.o

1827 IWK_OBJS += iwk2.o

1829 IWP_OBJS += iwp.o

1831 MWL_OBJS += mwl.o

1833 MWLFW_OBJS += mwlfw_mode.o

1835 WPI_OBJS += wpi.o

1837 RAL_OBJS += rt2560.o ral_rate.o

1839 RUM_OBJS += rum.o

1841 RWD_OBJS += rt2661.o

1843 RWN_OBJS += rt2860.o

new/usr/src/uts/common/Makefile.files 29

1845 UATH_OBJS += uath.o

1847 UATHFW_OBJS += uathfw_mod.o

1849 URAL_OBJS += ural.o

1851 RTW_OBJS += rtw.o smc93cx6.o rtwphy.o rtwphyio.o

1853 ZYD_OBJS += zyd.o zyd_usb.o zyd_hw.o zyd_fw.o

1855 MXFE_OBJS += mxfe.o

1857 MPTSAS_OBJS += mptsas.o mptsas_impl.o mptsas_init.o mptsas_raid.o mptsas_smhba.o

1859 SFE_OBJS += sfe.o sfe_util.o

1861 BFE_OBJS += bfe.o

1863 BRIDGE_OBJS += bridge.o

1865 IDM_SHARED_OBJS += base64.o

1867 IDM_OBJS += $(IDM_SHARED_OBJS) \
1868 idm.o idm_impl.o idm_text.o idm_conn_sm.o idm_so.o

1870 VR_OBJS += vr.o

1872 ATGE_OBJS += atge_main.o atge_l1e.o atge_mii.o atge_l1.o atge_l1c.o

1874 YGE_OBJS = yge.o

1876 #
1877 # Build up defines and paths.
1878 #
1879 LINT_DEFS += -Dunix

1881 #
1882 # This duality can be removed when the native and target compilers
1883 # are the same (or at least recognize the same command line syntax!)
1884 # It is a bug in the current compilation system that the assember
1885 # can’t process the -Y I, flag.
1886 #
1887 NATIVE_INC_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common
1888 AS_INC_PATH += $(INC_PATH) -I$(UTSBASE)/common
1889 INCLUDE_PATH += $(INC_PATH) $(CCYFLAG)$(UTSBASE)/common

1891 PCIEB_OBJS += pcieb.o

1893 # Chelsio N110 10G NIC driver module
1894 #
1895 CH_OBJS = ch.o glue.o pe.o sge.o

1897 CH_COM_OBJS = ch_mac.o ch_subr.o cspi.o espi.o ixf1010.o mc3.o mc4.o mc5.o \
1898 mv88e1xxx.o mv88x201x.o my3126.o pm3393.o tp.o ulp.o \
1899 vsc7321.o vsc7326.o xpak.o

1901 #
1902 # Chelsio Terminator 4 10G NIC nexus driver module
1903 #
1904 CXGBE_FW_OBJS = t4_fw.o t4_cfg.o
1905 CXGBE_COM_OBJS = t4_hw.o common.o
1906 CXGBE_NEX_OBJS = t4_nexus.o t4_sge.o t4_mac.o t4_ioctl.o shared.o \
1907 t4_l2t.o adapter.o osdep.o

1909 #

new/usr/src/uts/common/Makefile.files 30

1910 # Chelsio Terminator 4 10G NIC driver module
1911 #
1912 CXGBE_OBJS = cxgbe.o

1914 #
1915 # PCI strings file
1916 #
1917 PCI_STRING_OBJS = pci_strings.o

1919 NET_DACF_OBJS += net_dacf.o

1921 #
1922 # Xframe 10G NIC driver module
1923 #
1924 XGE_OBJS = xge.o xgell.o

1926 XGE_HAL_OBJS = xgehal-channel.o xgehal-fifo.o xgehal-ring.o xgehal-config.o \
1927 xgehal-driver.o xgehal-mm.o xgehal-stats.o xgehal-device.o \
1928 xge-queue.o xgehal-mgmt.o xgehal-mgmtaux.o

1930 #
1931 # e1000/igb common objs
1932 #
1933 # Historically e1000g and igb had separate copies of all of the common
1934 # code. At this time while they are now sharing the same copy of it, they
1935 # are building it into their own modules which is due to the differences
1936 # in the osdep and debug portions of their code.
1937 #
1938 E1000API_OBJS += e1000_80003es2lan.o e1000_82540.o e1000_82541.o e1000_82542.o \
1939 e1000_82543.o e1000_82571.o e1000_api.o e1000_ich8lan.o \
1940 e1000_mac.o e1000_manage.o e1000_nvm.o e1000_phy.o \
1941 e1000_82575.o e1000_i210.o e1000_mbx.o e1000_vf.o

1943 #
1944 # e1000g module
1945 #
1946 E1000G_OBJS += e1000g_debug.o e1000g_main.o e1000g_alloc.o \
1947 e1000g_tx.o e1000g_rx.o e1000g_stat.o \
1948 e1000g_osdep.o e1000g_workarounds.o
1949

1951 #
1952 # Intel 82575 1G NIC driver module
1953 #
1954 IGB_OBJS = igb_buf.o igb_debug.o igb_gld.o igb_log.o igb_main.o \
1955 igb_rx.o igb_stat.o igb_tx.o igb_osdep.o

1957 #
1958 # Intel Pro/100 NIC driver module
1959 #
1960 IPRB_OBJS = iprb.o

1962 #
1963 # Intel 10GbE PCIE NIC driver module
1964 #
1965 IXGBE_OBJS = ixgbe_82598.o ixgbe_82599.o ixgbe_api.o \
1966 ixgbe_common.o ixgbe_phy.o \
1967 ixgbe_buf.o ixgbe_debug.o ixgbe_gld.o \
1968 ixgbe_log.o ixgbe_main.o \
1969 ixgbe_osdep.o ixgbe_rx.o ixgbe_stat.o \
1970 ixgbe_tx.o ixgbe_x540.o ixgbe_mbx.o

1972 #
1973 # NIU 10G/1G driver module
1974 #
1975 NXGE_OBJS = nxge_mac.o nxge_ipp.o nxge_rxdma.o \

new/usr/src/uts/common/Makefile.files 31

1976 nxge_txdma.o nxge_txc.o nxge_main.o \
1977 nxge_hw.o nxge_fzc.o nxge_virtual.o \
1978 nxge_send.o nxge_classify.o nxge_fflp.o \
1979 nxge_fflp_hash.o nxge_ndd.o nxge_kstats.o \
1980 nxge_zcp.o nxge_fm.o nxge_espc.o nxge_hv.o \
1981 nxge_hio.o nxge_hio_guest.o nxge_intr.o

1983 NXGE_NPI_OBJS = \
1984 npi.o npi_mac.o npi_ipp.o \
1985 npi_txdma.o npi_rxdma.o npi_txc.o \
1986 npi_zcp.o npi_espc.o npi_fflp.o \
1987 npi_vir.o

1989 NXGE_HCALL_OBJS = \
1990 nxge_hcall.o

1992 #
1993 # Virtio modules
1994 #

1996 # Virtio core
1997 VIRTIO_OBJS = virtio.o

1999 # Virtio block driver
2000 VIOBLK_OBJS = vioblk.o

2002 #
2003 # kiconv modules
2004 #
2005 KICONV_EMEA_OBJS += kiconv_emea.o

2007 KICONV_JA_OBJS += kiconv_ja.o

2009 KICONV_KO_OBJS += kiconv_cck_common.o kiconv_ko.o

2011 KICONV_SC_OBJS += kiconv_cck_common.o kiconv_sc.o

2013 KICONV_TC_OBJS += kiconv_cck_common.o kiconv_tc.o

2015 #
2016 # AAC module
2017 #
2018 AAC_OBJS = aac.o aac_ioctl.o

2020 #
2021 # sdcard modules
2022 #
2023 SDA_OBJS = sda_cmd.o sda_host.o sda_init.o sda_mem.o sda_mod.o sda_slot.o
2024 SDHOST_OBJS = sdhost.o

2026 #
2027 # hxge 10G driver module
2028 #
2029 HXGE_OBJS = hxge_main.o hxge_vmac.o hxge_send.o \
2030 hxge_txdma.o hxge_rxdma.o hxge_virtual.o \
2031 hxge_fm.o hxge_fzc.o hxge_hw.o hxge_kstats.o \
2032 hxge_ndd.o hxge_pfc.o \
2033 hpi.o hpi_vmac.o hpi_rxdma.o hpi_txdma.o \
2034 hpi_vir.o hpi_pfc.o

2036 #
2037 # MEGARAID_SAS module
2038 #
2039 MEGA_SAS_OBJS = megaraid_sas.o

2041 #

new/usr/src/uts/common/Makefile.files 32

2042 # MR_SAS module
2043 #
2044 MR_SAS_OBJS = ld_pd_map.o mr_sas.o mr_sas_tbolt.o mr_sas_list.o

2046 #
2047 # CPQARY3 module
2048 #
2049 CPQARY3_OBJS = cpqary3.o cpqary3_noe.o cpqary3_talk2ctlr.o \
2050 cpqary3_isr.o cpqary3_transport.o cpqary3_mem.o \
2051 cpqary3_scsi.o cpqary3_util.o cpqary3_ioctl.o \
2052 cpqary3_bd.o

2054 #
2055 # ISCSI_INITIATOR module
2056 #
2057 ISCSI_INITIATOR_OBJS = chap.o iscsi_io.o iscsi_thread.o \
2058 iscsi_ioctl.o iscsid.o iscsi.o \
2059 iscsi_login.o isns_client.o iscsiAuthClient.o \
2060 iscsi_lun.o iscsiAuthClientGlue.o \
2061 iscsi_net.o nvfile.o iscsi_cmd.o \
2062 iscsi_queue.o persistent.o iscsi_conn.o \
2063 iscsi_sess.o radius_auth.o iscsi_crc.o \
2064 iscsi_stats.o radius_packet.o iscsi_doorclt.o \
2065 iscsi_targetparam.o utils.o kifconf.o

2067 #
2068 # ntxn 10Gb/1Gb NIC driver module
2069 #
2070 NTXN_OBJS = unm_nic_init.o unm_gem.o unm_nic_hw.o unm_ndd.o \
2071 unm_nic_main.o unm_nic_isr.o unm_nic_ctx.o niu.o

2073 #
2074 # Myricom 10Gb NIC driver module
2075 #
2076 MYRI10GE_OBJS = myri10ge.o myri10ge_lro.o

2078 # nulldriver module
2079 #
2080 NULLDRIVER_OBJS = nulldriver.o

2082 TPM_OBJS = tpm.o tpm_hcall.o

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 1

**
 39786 Tue Jan 14 16:17:17 2014
new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <fs/fs_subr.h>
30 #include <sys/atomic.h>
31 #include <sys/cmn_err.h>
32 #include <sys/dirent.h>
33 #include <sys/fs/fifonode.h>
34 #include <sys/modctl.h>
35 #include <sys/mount.h>
36 #include <sys/policy.h>
37 #include <sys/sunddi.h>

39 #include <sys/sysmacros.h>
40 #include <sys/vfs.h>
41 #include <sys/vfs_opreg.h>

43 #include <sys/lx_autofs_impl.h>

45 /*
46 * External functions
47 */
48 extern uintptr_t space_fetch(char *key);
49 extern int space_store(char *key, uintptr_t ptr);

51 /*
52 * Globals
53 */
54 static vfsops_t *lx_autofs_vfsops;
55 static vnodeops_t *lx_autofs_vn_ops = NULL;
56 static int lx_autofs_fstype;
57 static major_t lx_autofs_major;
58 static minor_t lx_autofs_minor = 0;

60 /*

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 2

61 * Support functions
62 */
63 static void
64 i_strfree(char *str)
65 {
66 kmem_free(str, strlen(str) + 1);
67 }

69 static char *
70 i_strdup(char *str)
71 {
72 int n = strlen(str);
73 char *ptr = kmem_alloc(n + 1, KM_SLEEP);
74 bcopy(str, ptr, n + 1);
75 return (ptr);
76 }

78 static int
79 i_str_to_int(char *str, int *val)
80 {
81 long res;

83 if (str == NULL)
84 return (-1);

86 if ((ddi_strtol(str, NULL, 10, &res) != 0) ||
87 (res < INT_MIN) || (res > INT_MAX))
88 return (-1);

90 *val = res;
91 return (0);
92 }

94 static void
95 i_stack_init(list_t *lp)
96 {
97 list_create(lp,
98 sizeof (stack_elem_t), offsetof(stack_elem_t, se_list));
99 }

101 static void
102 i_stack_fini(list_t *lp)
103 {
104 ASSERT(list_head(lp) == NULL);
105 list_destroy(lp);
106 }

108 static void
109 i_stack_push(list_t *lp, caddr_t ptr1, caddr_t ptr2, caddr_t ptr3)
110 {
111 stack_elem_t *se;

113 se = kmem_alloc(sizeof (*se), KM_SLEEP);
114 se->se_ptr1 = ptr1;
115 se->se_ptr2 = ptr2;
116 se->se_ptr3 = ptr3;
117 list_insert_head(lp, se);
118 }

120 static int
121 i_stack_pop(list_t *lp, caddr_t *ptr1, caddr_t *ptr2, caddr_t *ptr3)
122 {
123 stack_elem_t *se;

125 if ((se = list_head(lp)) == NULL)
126 return (-1);

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 3

127 list_remove(lp, se);
128 if (ptr1 != NULL)
129 *ptr1 = se->se_ptr1;
130 if (ptr2 != NULL)
131 *ptr2 = se->se_ptr2;
132 if (ptr3 != NULL)
133 *ptr3 = se->se_ptr3;
134 kmem_free(se, sizeof (*se));
135 return (0);
136 }

138 static vnode_t *
139 fifo_peer_vp(vnode_t *vp)
140 {
141 fifonode_t *fnp = VTOF(vp);
142 fifonode_t *fn_dest = fnp->fn_dest;
143 return (FTOV(fn_dest));
144 }

146 static vnode_t *
147 i_vn_alloc(vfs_t *vfsp, vnode_t *uvp)
148 {
149 lx_autofs_vfs_t *data = vfsp->vfs_data;
150 vnode_t *vp, *vp_old;

152 /* Allocate a new vnode structure in case we need it. */
153 vp = vn_alloc(KM_SLEEP);
154 vn_setops(vp, lx_autofs_vn_ops);
155 VN_SET_VFS_TYPE_DEV(vp, vfsp, uvp->v_type, uvp->v_rdev);
156 vp->v_data = uvp;
157 ASSERT(vp->v_count == 1);

159 /*
160 * Take a hold on the vfs structure. This is how unmount will
161 * determine if there are any active vnodes in the file system.
162 */
163 VFS_HOLD(vfsp);

165 /*
166 * Check if we already have a vnode allocated for this underlying
167 * vnode_t.
168 */
169 mutex_enter(&data->lav_lock);
170 if (mod_hash_find(data->lav_vn_hash,
171 (mod_hash_key_t)uvp, (mod_hash_val_t *)&vp_old) != 0) {

173 /*
174 * Didn’t find an existing node.
175 * Add this node to the hash and return.
176 */
177 VERIFY(mod_hash_insert(data->lav_vn_hash,
178 (mod_hash_key_t)uvp,
179 (mod_hash_val_t)vp) == 0);
180 mutex_exit(&data->lav_lock);
181 return (vp);
182 }

184 /* Get a hold on the existing vnode and free up the one we allocated. */
185 VN_HOLD(vp_old);
186 mutex_exit(&data->lav_lock);

188 /* Free up the new vnode we allocated. */
189 VN_RELE(uvp);
190 VFS_RELE(vfsp);
191 vn_invalid(vp);
192 vn_free(vp);

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 4

194 return (vp_old);
195 }

197 static void
198 i_vn_free(vnode_t *vp)
199 {
200 vfs_t *vfsp = vp->v_vfsp;
201 lx_autofs_vfs_t *data = vfsp->vfs_data;
202 vnode_t *uvp = vp->v_data;
203 vnode_t *vp_tmp;

205 ASSERT(MUTEX_HELD((&data->lav_lock)));
206 ASSERT(MUTEX_HELD((&vp->v_lock)));

208 ASSERT(vp->v_count == 0);

210 /* We’re about to free this vnode so take it out of the hash. */
211 (void) mod_hash_remove(data->lav_vn_hash,
212 (mod_hash_key_t)uvp, (mod_hash_val_t)&vp_tmp);

214 /*
215 * No one else can lookup this vnode any more so there’s no need
216 * to hold locks.
217 */
218 mutex_exit(&data->lav_lock);
219 mutex_exit(&vp->v_lock);

221 /* Release the underlying vnode. */
222 VN_RELE(uvp);
223 VFS_RELE(vfsp);
224 vn_invalid(vp);
225 vn_free(vp);
226 }

228 static lx_autofs_lookup_req_t *
229 i_lalr_alloc(lx_autofs_vfs_t *data, int *dup_request, char *nm)
230 {
231 lx_autofs_lookup_req_t *lalr, *lalr_dup;

233 /* Pre-allocate a new automounter request before grabbing locks. */
234 lalr = kmem_zalloc(sizeof (*lalr), KM_SLEEP);
235 mutex_init(&lalr->lalr_lock, NULL, MUTEX_DEFAULT, NULL);
236 cv_init(&lalr->lalr_cv, NULL, CV_DEFAULT, NULL);
237 lalr->lalr_ref = 1;
238 lalr->lalr_pkt.lap_protover = LX_AUTOFS_PROTO_VERSION;

240 /* Assign a unique id for this request. */
241 lalr->lalr_pkt.lap_id = id_alloc(data->lav_ids);

243 /*
244 * The token expected by the linux automount is the name of
245 * the directory entry to look up. (And not the entire
246 * path that is being accessed.)
247 */
248 lalr->lalr_pkt.lap_name_len = strlen(nm);
249 if (lalr->lalr_pkt.lap_name_len >
250 (sizeof (lalr->lalr_pkt.lap_name) - 1)) {
251 zcmn_err(getzoneid(), CE_NOTE,
252 "invalid autofs lookup: \"%s\"", nm);
253 id_free(data->lav_ids, lalr->lalr_pkt.lap_id);
254 kmem_free(lalr, sizeof (*lalr));
255 return (NULL);
256 }
257 (void) strlcpy(lalr->lalr_pkt.lap_name, nm,
258 sizeof (lalr->lalr_pkt.lap_name));

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 5

260 /* Check for an outstanding request for this path. */
261 mutex_enter(&data->lav_lock);
262 if (mod_hash_find(data->lav_path_hash,
263 (mod_hash_key_t)nm, (mod_hash_val_t *)&lalr_dup) == 0) {
264 /*
265 * There’s already an outstanding request for this
266 * path so we don’t need a new one.
267 */
268 id_free(data->lav_ids, lalr->lalr_pkt.lap_id);
269 kmem_free(lalr, sizeof (*lalr));
270 lalr = lalr_dup;

272 /* Bump the ref count on the old request. */
273 atomic_add_int(&lalr->lalr_ref, 1);

275 *dup_request = 1;
276 } else {
277 /* Add it to the hashes. */
278 VERIFY(mod_hash_insert(data->lav_id_hash,
279 (mod_hash_key_t)(uintptr_t)lalr->lalr_pkt.lap_id,
280 (mod_hash_val_t)lalr) == 0);
281 VERIFY(mod_hash_insert(data->lav_path_hash,
282 (mod_hash_key_t)i_strdup(nm),
283 (mod_hash_val_t)lalr) == 0);

285 *dup_request = 0;
286 }
287 mutex_exit(&data->lav_lock);

289 return (lalr);
290 }

292 static lx_autofs_lookup_req_t *
293 i_lalr_find(lx_autofs_vfs_t *data, int id)
294 {
295 lx_autofs_lookup_req_t *lalr;

297 /* Check for an outstanding request for this id. */
298 mutex_enter(&data->lav_lock);
299 if (mod_hash_find(data->lav_id_hash, (mod_hash_key_t)(uintptr_t)id,
300 (mod_hash_val_t *)&lalr) != 0) {
301 mutex_exit(&data->lav_lock);
302 return (NULL);
303 }
304 atomic_add_int(&lalr->lalr_ref, 1);
305 mutex_exit(&data->lav_lock);
306 return (lalr);
307 }

309 static void
310 i_lalr_complete(lx_autofs_vfs_t *data, lx_autofs_lookup_req_t *lalr)
311 {
312 lx_autofs_lookup_req_t *lalr_tmp;

314 /* Remove this request from the hashes so no one can look it up. */
315 mutex_enter(&data->lav_lock);
316 (void) mod_hash_remove(data->lav_id_hash,
317 (mod_hash_key_t)(uintptr_t)lalr->lalr_pkt.lap_id,
318 (mod_hash_val_t)&lalr_tmp);
319 (void) mod_hash_remove(data->lav_path_hash,
320 (mod_hash_key_t)lalr->lalr_pkt.lap_name,
321 (mod_hash_val_t)&lalr_tmp);
322 mutex_exit(&data->lav_lock);

324 /* Mark this requst as complete and wakeup anyone waiting on it. */

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 6

325 mutex_enter(&lalr->lalr_lock);
326 lalr->lalr_complete = 1;
327 cv_broadcast(&lalr->lalr_cv);
328 mutex_exit(&lalr->lalr_lock);
329 }

331 static void
332 i_lalr_release(lx_autofs_vfs_t *data, lx_autofs_lookup_req_t *lalr)
333 {
334 ASSERT(!MUTEX_HELD(&lalr->lalr_lock));
335 if (atomic_add_int_nv(&lalr->lalr_ref, -1) > 0)
336 return;
337 ASSERT(lalr->lalr_ref == 0);
338 id_free(data->lav_ids, lalr->lalr_pkt.lap_id);
339 kmem_free(lalr, sizeof (*lalr));
340 }

342 static void
343 i_lalr_abort(lx_autofs_vfs_t *data, lx_autofs_lookup_req_t *lalr)
344 {
345 lx_autofs_lookup_req_t *lalr_tmp;

347 /*
348 * This is a little tricky. We’re aborting the wait for this
349 * request. So if anyone else is waiting for this request we
350 * can’t free it, but if no one else is waiting for the request
351 * we should free it.
352 */
353 mutex_enter(&data->lav_lock);
354 if (atomic_add_int_nv(&lalr->lalr_ref, -1) > 0) {
355 mutex_exit(&data->lav_lock);
356 return;
357 }
358 ASSERT(lalr->lalr_ref == 0);

360 /* Remove this request from the hashes so no one can look it up. */
361 (void) mod_hash_remove(data->lav_id_hash,
362 (mod_hash_key_t)(uintptr_t)lalr->lalr_pkt.lap_id,
363 (mod_hash_val_t)&lalr_tmp);
364 (void) mod_hash_remove(data->lav_path_hash,
365 (mod_hash_key_t)lalr->lalr_pkt.lap_name,
366 (mod_hash_val_t)&lalr_tmp);
367 mutex_exit(&data->lav_lock);

369 /* It’s ok to free this now because the ref count was zero. */
370 id_free(data->lav_ids, lalr->lalr_pkt.lap_id);
371 kmem_free(lalr, sizeof (*lalr));
372 }

374 static int
375 i_fifo_lookup(pid_t pgrp, int fd, file_t **fpp_wr, file_t **fpp_rd)
376 {
377 proc_t *prp;
378 uf_info_t *fip;
379 uf_entry_t *ufp_wr, *ufp_rd = NULL;
380 file_t *fp_wr, *fp_rd = NULL;
381 vnode_t *vp_wr, *vp_rd;
382 int i;

384 /*
385 * sprlock() is zone aware, so assuming this mount call was
386 * initiated by a process in a zone, if it tries to specify
387 * a pgrp outside of it’s zone this call will fail.
388 *
389 * Also, we want to grab hold of the main automounter process
390 * and its going to be the group leader for pgrp, so its

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 7

391 * pid will be equal to pgrp.
392 */
393 prp = sprlock(pgrp);
394 if (prp == NULL)
395 return (-1);
396 mutex_exit(&prp->p_lock);

398 /* Now we want to access the processes open file descriptors. */
399 fip = P_FINFO(prp);
400 mutex_enter(&fip->fi_lock);

402 /* Sanity check fifo write fd. */
403 if (fd >= fip->fi_nfiles) {
404 mutex_exit(&fip->fi_lock);
405 mutex_enter(&prp->p_lock);
406 sprunlock(prp);
407 return (-1);
408 }

410 /* Get a pointer to the write fifo. */
411 UF_ENTER(ufp_wr, fip, fd);
412 if (((fp_wr = ufp_wr->uf_file) == NULL) ||
413 ((vp_wr = fp_wr->f_vnode) == NULL) || (vp_wr->v_type != VFIFO)) {
414 /* Invalid fifo fd. */
415 UF_EXIT(ufp_wr);
416 mutex_exit(&fip->fi_lock);
417 mutex_enter(&prp->p_lock);
418 sprunlock(prp);
419 return (-1);
420 }

422 /*
423 * Now we need to find the read end of the fifo (for reasons
424 * explained below.) We assume that the read end of the fifo
425 * is in the same process as the write end.
426 */
427 vp_rd = fifo_peer_vp(fp_wr->f_vnode);
428 for (i = 0; i < fip->fi_nfiles; i++) {
429 UF_ENTER(ufp_rd, fip, i);
430 if (((fp_rd = ufp_rd->uf_file) != NULL) &&
431 (fp_rd->f_vnode == vp_rd))
432 break;
433 UF_EXIT(ufp_rd);
434 }
435 if (i == fip->fi_nfiles) {
436 /* Didn’t find it. */
437 UF_EXIT(ufp_wr);
438 mutex_exit(&fip->fi_lock);
439 mutex_enter(&prp->p_lock);
440 sprunlock(prp);
441 return (-1);
442 }

444 /*
445 * We need to drop fi_lock before we can try to acquire f_tlock
446 * the good news is that the file pointers are protected because
447 * we’re still holding uf_lock.
448 */
449 mutex_exit(&fip->fi_lock);

451 /*
452 * Here we bump the open counts on the fifos. The reason
453 * that we do this is because when we go to write to the
454 * fifo we want to ensure that they are actually open (and
455 * not in the process of being closed) without having to
456 * stop the automounter. (If the write end of the fifo

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 8

457 * were closed and we tried to write to it we would panic.
458 * If the read end of the fifo was closed and we tried to
459 * write to the other end, the process that invoked the
460 * lookup operation would get an unexpected SIGPIPE.)
461 */
462 mutex_enter(&fp_wr->f_tlock);
463 fp_wr->f_count++;
464 ASSERT(fp_wr->f_count >= 2);
465 mutex_exit(&fp_wr->f_tlock);

467 mutex_enter(&fp_rd->f_tlock);
468 fp_rd->f_count++;
469 ASSERT(fp_rd->f_count >= 2);
470 mutex_exit(&fp_rd->f_tlock);

472 /* Release all our locks. */
473 UF_EXIT(ufp_wr);
474 UF_EXIT(ufp_rd);
475 mutex_enter(&prp->p_lock);
476 sprunlock(prp);

478 /* Return the file pointers. */
479 *fpp_rd = fp_rd;
480 *fpp_wr = fp_wr;
481 return (0);
482 }

484 static uint_t
485 /*ARGSUSED*/
486 i_fifo_close_cb(mod_hash_key_t key, mod_hash_val_t *val, void *arg)
487 {
488 int *id = (int *)arg;
489 /* Return the key and terminate the walk. */
490 *id = (uintptr_t)key;
491 return (MH_WALK_TERMINATE);
492 }

494 static void
495 i_fifo_close(lx_autofs_vfs_t *data)
496 {
497 /*
498 * Close the fifo to prevent any future requests from
499 * getting sent to the automounter.
500 */
501 mutex_enter(&data->lav_lock);
502 if (data->lav_fifo_wr != NULL) {
503 (void) closef(data->lav_fifo_wr);
504 data->lav_fifo_wr = NULL;
505 }
506 if (data->lav_fifo_rd != NULL) {
507 (void) closef(data->lav_fifo_rd);
508 data->lav_fifo_rd = NULL;
509 }
510 mutex_exit(&data->lav_lock);

512 /*
513 * Wakeup any threads currently waiting for the automounter
514 * note that it’s possible for multiple threads to have entered
515 * this function and to be doing the work below simultaneously.
516 */
517 for (;;) {
518 lx_autofs_lookup_req_t *lalr;
519 int id;

521 /* Lookup the first entry in the hash. */
522 id = -1;

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 9

523 mod_hash_walk(data->lav_id_hash,
524 i_fifo_close_cb, &id);
525 if (id == -1) {
526 /* No more id’s in the hash. */
527 break;
528 }
529 if ((lalr = i_lalr_find(data, id)) == NULL) {
530 /* Someone else beat us to it. */
531 continue;
532 }

534 /* Mark the request as compleate and release it. */
535 i_lalr_complete(data, lalr);
536 i_lalr_release(data, lalr);
537 }
538 }

540 static int
541 i_fifo_verify_rd(lx_autofs_vfs_t *data)
542 {
543 proc_t *prp;
544 uf_info_t *fip;
545 uf_entry_t *ufp_rd = NULL;
546 file_t *fp_rd = NULL;
547 vnode_t *vp_rd;
548 int i;

550 ASSERT(MUTEX_HELD((&data->lav_lock)));

552 /* Check if we’ve already been shut down. */
553 if (data->lav_fifo_wr == NULL) {
554 ASSERT(data->lav_fifo_rd == NULL);
555 return (-1);
556 }
557 vp_rd = fifo_peer_vp(data->lav_fifo_wr->f_vnode);

559 /*
560 * sprlock() is zone aware, so assuming this mount call was
561 * initiated by a process in a zone, if it tries to specify
562 * a pgrp outside of it’s zone this call will fail.
563 *
564 * Also, we want to grab hold of the main automounter process
565 * and its going to be the group leader for pgrp, so its
566 * pid will be equal to pgrp.
567 */
568 prp = sprlock(data->lav_pgrp);
569 if (prp == NULL)
570 return (-1);
571 mutex_exit(&prp->p_lock);

573 /* Now we want to access the processes open file descriptors. */
574 fip = P_FINFO(prp);
575 mutex_enter(&fip->fi_lock);

577 /*
578 * Now we need to find the read end of the fifo (for reasons
579 * explained below.) We assume that the read end of the fifo
580 * is in the same process as the write end.
581 */
582 for (i = 0; i < fip->fi_nfiles; i++) {
583 UF_ENTER(ufp_rd, fip, i);
584 if (((fp_rd = ufp_rd->uf_file) != NULL) &&
585 (fp_rd->f_vnode == vp_rd))
586 break;
587 UF_EXIT(ufp_rd);
588 }

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 10

589 if (i == fip->fi_nfiles) {
590 /* Didn’t find it. */
591 mutex_exit(&fip->fi_lock);
592 mutex_enter(&prp->p_lock);
593 sprunlock(prp);
594 return (-1);
595 }

597 /*
598 * Seems the automounter still has the read end of the fifo
599 * open, we’re done here. Release all our locks and exit.
600 */
601 mutex_exit(&fip->fi_lock);
602 UF_EXIT(ufp_rd);
603 mutex_enter(&prp->p_lock);
604 sprunlock(prp);

606 return (0);
607 }

609 static int
610 i_fifo_write(lx_autofs_vfs_t *data, lx_autofs_pkt_t *lap)
611 {
612 struct uio uio;
613 struct iovec iov;
614 file_t *fp_wr, *fp_rd;
615 int error;

617 /*
618 * The catch here is we need to make sure _we_ don’t close
619 * the the fifo while writing to it. (Another thread could come
620 * along and realize the automounter process is gone and close
621 * the fifo. To do this we bump the open count before we
622 * write to the fifo.
623 */
624 mutex_enter(&data->lav_lock);
625 if (data->lav_fifo_wr == NULL) {
626 ASSERT(data->lav_fifo_rd == NULL);
627 mutex_exit(&data->lav_lock);
628 return (ENOENT);
629 }
630 fp_wr = data->lav_fifo_wr;
631 fp_rd = data->lav_fifo_rd;

633 /* Bump the open count on the write fifo. */
634 mutex_enter(&fp_wr->f_tlock);
635 fp_wr->f_count++;
636 mutex_exit(&fp_wr->f_tlock);

638 /* Bump the open count on the read fifo. */
639 mutex_enter(&fp_rd->f_tlock);
640 fp_rd->f_count++;
641 mutex_exit(&fp_rd->f_tlock);

643 mutex_exit(&data->lav_lock);

645 iov.iov_base = (caddr_t)lap;
646 iov.iov_len = sizeof (*lap);
647 uio.uio_iov = &iov;
648 uio.uio_iovcnt = 1;
649 uio.uio_loffset = 0;
650 uio.uio_segflg = (short)UIO_SYSSPACE;
651 uio.uio_resid = sizeof (*lap);
652 uio.uio_llimit = 0;
653 uio.uio_fmode = FWRITE | FNDELAY | FNONBLOCK;

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 11

655 error = VOP_WRITE(fp_wr->f_vnode, &uio, 0, kcred, NULL);
656 (void) closef(fp_wr);
657 (void) closef(fp_rd);

659 /*
660 * After every write we verify that the automounter still has
661 * these files open.
662 */
663 mutex_enter(&data->lav_lock);
664 if (i_fifo_verify_rd(data) != 0) {
665 /*
666 * Something happened to the automounter.
667 * Close down the communication pipe we setup.
668 */
669 mutex_exit(&data->lav_lock);
670 i_fifo_close(data);
671 if (error != 0)
672 return (error);
673 return (ENOENT);
674 }
675 mutex_exit(&data->lav_lock);

677 return (error);
678 }

680 static int
681 i_bs_readdir(vnode_t *dvp, list_t *dir_stack, list_t *file_stack)
682 {
683 struct iovec iov;
684 struct uio uio;
685 dirent64_t *dp, *dbuf;
686 vnode_t *vp;
687 size_t dlen, dbuflen;
688 int eof, error, ndirents = 64;
689 char *nm;

691 dlen = ndirents * (sizeof (*dbuf));
692 dbuf = kmem_alloc(dlen, KM_SLEEP);

694 uio.uio_iov = &iov;
695 uio.uio_iovcnt = 1;
696 uio.uio_segflg = UIO_SYSSPACE;
697 uio.uio_fmode = 0;
698 uio.uio_extflg = UIO_COPY_CACHED;
699 uio.uio_loffset = 0;
700 uio.uio_llimit = MAXOFFSET_T;

702 eof = 0;
703 error = 0;
704 while (!error && !eof) {
705 uio.uio_resid = dlen;
706 iov.iov_base = (char *)dbuf;
707 iov.iov_len = dlen;

709 (void) VOP_RWLOCK(dvp, V_WRITELOCK_FALSE, NULL);
710 if (VOP_READDIR(dvp, &uio, kcred, &eof, NULL, 0) != 0) {
711 VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL);
712 kmem_free(dbuf, dlen);
713 return (-1);
714 }
715 VOP_RWUNLOCK(dvp, V_WRITELOCK_FALSE, NULL);

717 if ((dbuflen = dlen - uio.uio_resid) == 0) {
718 /* We’re done. */
719 break;
720 }

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 12

722 for (dp = dbuf; ((intptr_t)dp < (intptr_t)dbuf + dbuflen);
723 dp = (dirent64_t *)((intptr_t)dp + dp->d_reclen)) {

725 nm = dp->d_name;

727 if (strcmp(nm, ".") == 0 || strcmp(nm, "..") == 0)
728 continue;

730 if (VOP_LOOKUP(dvp, nm, &vp, NULL, 0, NULL, kcred,
731 NULL, NULL, NULL) != 0) {
732 kmem_free(dbuf, dlen);
733 return (-1);
734 }
735 if (vp->v_type == VDIR) {
736 if (dir_stack != NULL) {
737 i_stack_push(dir_stack, (caddr_t)dvp,
738 (caddr_t)vp, i_strdup(nm));
739 } else {
740 VN_RELE(vp);
741 }
742 } else {
743 if (file_stack != NULL) {
744 i_stack_push(file_stack, (caddr_t)dvp,
745 (caddr_t)vp, i_strdup(nm));
746 } else {
747 VN_RELE(vp);
748 }
749 }
750 }
751 }
752 kmem_free(dbuf, dlen);
753 return (0);
754 }

756 static void
757 i_bs_destroy(vnode_t *dvp, char *path)
758 {
759 list_t search_stack;
760 list_t dir_stack;
761 list_t file_stack;
762 vnode_t *pdvp, *vp;
763 char *dpath, *fpath;
764 int ret;

766 if (VOP_LOOKUP(dvp, path, &vp, NULL, 0, NULL, kcred,
767 NULL, NULL, NULL) != 0) {
768 /* A directory entry with this name doesn’t actually exist. */
769 return;
770 }

772 if ((vp->v_type & VDIR) == 0) {
773 /* Easy, the directory entry is a file so delete it. */
774 VN_RELE(vp);
775 (void) VOP_REMOVE(dvp, path, kcred, NULL, 0);
776 return;
777 }

779 /*
780 * The directory entry is a subdirectory, now we have a bit more
781 * work to do. (We’ll have to recurse into the sub directory.)
782 * It would have been much easier to do this recursively but kernel
783 * stacks are notoriously small.
784 */
785 i_stack_init(&search_stack);
786 i_stack_init(&dir_stack);

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 13

787 i_stack_init(&file_stack);

789 /* Save our newfound subdirectory into a list. */
790 i_stack_push(&search_stack, (caddr_t)dvp, (caddr_t)vp, i_strdup(path));

792 /* Do a recursive depth first search into the subdirectories. */
793 while (i_stack_pop(&search_stack,
794 (caddr_t *)&pdvp, (caddr_t *)&dvp, &dpath) == 0) {

796 /* Get a list of the subdirectories in this directory. */
797 if (i_bs_readdir(dvp, &search_stack, NULL) != 0)
798 goto exit;

800 /* Save the current directory a separate stack. */
801 i_stack_push(&dir_stack, (caddr_t)pdvp, (caddr_t)dvp, dpath);
802 }

804 /*
805 * Now dir_stack contains a list of directories, the deepest paths
806 * are at the top of the list. So let’s go through and process them.
807 */
808 while (i_stack_pop(&dir_stack,
809 (caddr_t *)&pdvp, (caddr_t *)&dvp, &dpath) == 0) {

811 /* Get a list of the files in this directory. */
812 if (i_bs_readdir(dvp, NULL, &file_stack) != 0) {
813 VN_RELE(dvp);
814 i_strfree(dpath);
815 goto exit;
816 }

818 /* Delete all the files in this directory. */
819 while (i_stack_pop(&file_stack,
820 NULL, (caddr_t *)&vp, &fpath) == 0) {
821 VN_RELE(vp)
822 ret = VOP_REMOVE(dvp, fpath, kcred, NULL, 0);
823 i_strfree(fpath);
824 if (ret != 0) {
825 i_strfree(dpath);
826 goto exit;
827 }
828 }

830 /* Delete this directory. */
831 VN_RELE(dvp);
832 ret = VOP_RMDIR(pdvp, dpath, pdvp, kcred, NULL, 0);
833 i_strfree(dpath);
834 if (ret != 0)
835 goto exit;
836 }

838 exit:
839 while (
840 (i_stack_pop(&search_stack, NULL, (caddr_t *)&vp, &path) == 0) ||
841 (i_stack_pop(&dir_stack, NULL, (caddr_t *)&vp, &path) == 0) ||
842 (i_stack_pop(&file_stack, NULL, (caddr_t *)&vp, &path) == 0)) {
843 VN_RELE(vp);
844 i_strfree(path);
845 }
846 i_stack_fini(&search_stack);
847 i_stack_fini(&dir_stack);
848 i_stack_fini(&file_stack);
849 }

851 static vnode_t *
852 i_bs_create(vnode_t *dvp, char *bs_name)

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 14

853 {
854 vnode_t *vp;
855 vattr_t vattr;

857 /*
858 * After looking at the mkdir syscall path it seems we don’t need
859 * to initialize all of the vattr_t structure.
860 */
861 bzero(&vattr, sizeof (vattr));
862 vattr.va_type = VDIR;
863 vattr.va_mode = 0755; /* u+rwx,og=rx */
864 vattr.va_mask = AT_TYPE|AT_MODE;

866 if (VOP_MKDIR(dvp, bs_name, &vattr, &vp, kcred, NULL, 0, NULL) != 0)
867 return (NULL);
868 return (vp);
869 }

871 static int
872 i_automounter_call(vnode_t *dvp, char *nm)
873 {
874 lx_autofs_lookup_req_t *lalr;
875 lx_autofs_vfs_t *data;
876 int error, dup_request;

878 /* Get a pointer to the vfs mount data. */
879 data = dvp->v_vfsp->vfs_data;

881 /* The automounter only support queries in the root directory. */
882 if (dvp != data->lav_root)
883 return (ENOENT);

885 /*
886 * Check if the current process is in the automounters process
887 * group. (If it is, the current process is either the autmounter
888 * itself or one of it’s forked child processes.) If so, don’t
889 * redirect this lookup back into the automounter because we’ll
890 * hang.
891 */
892 mutex_enter(&pidlock);
893 if (data->lav_pgrp == curproc->p_pgrp) {
894 mutex_exit(&pidlock);
895 return (ENOENT);
896 }
897 mutex_exit(&pidlock);

899 /* Verify that the automount process pipe still exists. */
900 mutex_enter(&data->lav_lock);
901 if (data->lav_fifo_wr == NULL) {
902 ASSERT(data->lav_fifo_rd == NULL);
903 mutex_exit(&data->lav_lock);
904 return (ENOENT);
905 }
906 mutex_exit(&data->lav_lock);

908 /* Allocate an automounter request structure. */
909 if ((lalr = i_lalr_alloc(data, &dup_request, nm)) == NULL)
910 return (ENOENT);

912 /*
913 * If we were the first one to allocate this request then we
914 * need to send it to the automounter.
915 */
916 if ((!dup_request) &&
917 ((error = i_fifo_write(data, &lalr->lalr_pkt)) != 0)) {
918 /*

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 15

919 * Unable to send the request to the automounter.
920 * Unblock any other threads waiting on the request
921 * and release the request.
922 */
923 i_lalr_complete(data, lalr);
924 i_lalr_release(data, lalr);
925 return (error);
926 }

928 /* Wait for someone to signal us that this request has compleated. */
929 mutex_enter(&lalr->lalr_lock);
930 while (!lalr->lalr_complete) {
931 if (cv_wait_sig(&lalr->lalr_cv, &lalr->lalr_lock) == 0) {
932 /* We got a signal, abort this lookup. */
933 mutex_exit(&lalr->lalr_lock);
934 i_lalr_abort(data, lalr);
935 return (EINTR);
936 }
937 }
938 mutex_exit(&lalr->lalr_lock);
939 i_lalr_release(data, lalr);

941 return (0);
942 }

944 static int
945 i_automounter_ioctl(vnode_t *vp, int cmd, intptr_t arg)
946 {
947 lx_autofs_vfs_t *data = (lx_autofs_vfs_t *)vp->v_vfsp->vfs_data;

949 /*
950 * Be strict.
951 * We only accept ioctls from the automounter process group.
952 */
953 mutex_enter(&pidlock);
954 if (data->lav_pgrp != curproc->p_pgrp) {
955 mutex_exit(&pidlock);
956 return (ENOENT);
957 }
958 mutex_exit(&pidlock);

960 if ((cmd == LX_AUTOFS_IOC_READY) || (cmd == LX_AUTOFS_IOC_FAIL)) {
961 lx_autofs_lookup_req_t *lalr;
962 int id = arg;

964 /*
965 * We don’t actually care if the request failed or succeeded.
966 * We do the same thing either way.
967 */
968 if ((lalr = i_lalr_find(data, id)) == NULL)
969 return (ENXIO);

971 /* Mark the request as compleate and release it. */
972 i_lalr_complete(data, lalr);
973 i_lalr_release(data, lalr);
974 return (0);
975 }
976 if (cmd == LX_AUTOFS_IOC_CATATONIC) {
977 /* The automounter is shutting down. */
978 i_fifo_close(data);
979 return (0);
980 }
981 return (ENOTSUP);
982 }

984 static int

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 16

985 i_parse_mntopt(vfs_t *vfsp, lx_autofs_vfs_t *data)
986 {
987 char *fd_str, *pgrp_str, *minproto_str, *maxproto_str;
988 int fd, pgrp, minproto, maxproto;
989 file_t *fp_wr, *fp_rd;

991 /* Require all options to be present. */
992 if ((vfs_optionisset(vfsp, LX_MNTOPT_FD, &fd_str) != 1) ||
993 (vfs_optionisset(vfsp, LX_MNTOPT_PGRP, &pgrp_str) != 1) ||
994 (vfs_optionisset(vfsp, LX_MNTOPT_MINPROTO, &minproto_str) != 1) ||
995 (vfs_optionisset(vfsp, LX_MNTOPT_MAXPROTO, &maxproto_str) != 1))
996 return (EINVAL);

998 /* Get the values for each parameter. */
999 if ((i_str_to_int(fd_str, &fd) != 0) ||

1000 (i_str_to_int(pgrp_str, &pgrp) != 0) ||
1001 (i_str_to_int(minproto_str, &minproto) != 0) ||
1002 (i_str_to_int(maxproto_str, &maxproto) != 0))
1003 return (EINVAL);

1005 /*
1006 * We support v2 of the linux kernel automounter protocol.
1007 * Make sure the mount request we got indicates support
1008 * for this version of the protocol.
1009 */
1010 if ((minproto > 2) || (maxproto < 2))
1011 return (EINVAL);

1013 /*
1014 * Now we need to lookup the fifos we’ll be using
1015 * to talk to the userland automounter process.
1016 */
1017 if (i_fifo_lookup(pgrp, fd, &fp_wr, &fp_rd) != 0)
1018 return (EINVAL);

1020 /* Save the mount options and fifo pointers. */
1021 data->lav_fd = fd;
1022 data->lav_pgrp = pgrp;
1023 data->lav_fifo_rd = fp_rd;
1024 data->lav_fifo_wr = fp_wr;
1025 return (0);
1026 }

1028 /*
1029 * VFS entry points
1030 */
1031 static int
1032 lx_autofs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1033 {
1034 lx_autofs_vfs_t *data;
1035 dev_t dev;
1036 char name[40];
1037 int error;

1039 if (secpolicy_fs_mount(cr, mvp, vfsp) != 0)
1040 return (EPERM);

1042 if (mvp->v_type != VDIR)
1043 return (ENOTDIR);

1045 if ((uap->flags & MS_OVERLAY) == 0 &&
1046 (mvp->v_count > 1 || (mvp->v_flag & VROOT)))
1047 return (EBUSY);

1049 /* We don’t support mountes in the global zone. */
1050 if (getzoneid() == GLOBAL_ZONEID)

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 17

1051 return (EPERM);

1053 /* We don’t support mounting on top of ourselves. */
1054 if (vn_matchops(mvp, lx_autofs_vn_ops))
1055 return (EPERM);

1057 /* Allocate a vfs struct. */
1058 data = kmem_zalloc(sizeof (lx_autofs_vfs_t), KM_SLEEP);

1060 /* Parse mount options. */
1061 if ((error = i_parse_mntopt(vfsp, data)) != 0) {
1062 kmem_free(data, sizeof (lx_autofs_vfs_t));
1063 return (error);
1064 }

1066 /* Initialize the backing store. */
1067 i_bs_destroy(mvp, LX_AUTOFS_BS_DIR);
1068 if ((data->lav_bs_vp = i_bs_create(mvp, LX_AUTOFS_BS_DIR)) == NULL) {
1069 kmem_free(data, sizeof (lx_autofs_vfs_t));
1070 return (EBUSY);
1071 }
1072 data->lav_bs_name = LX_AUTOFS_BS_DIR;

1074 /* We have to hold the underlying vnode we’re mounted on. */
1075 data->lav_mvp = mvp;
1076 VN_HOLD(mvp);

1078 /* Initialize vfs fields */
1079 vfsp->vfs_bsize = DEV_BSIZE;
1080 vfsp->vfs_fstype = lx_autofs_fstype;
1081 vfsp->vfs_data = data;

1083 /* Invent a dev_t (sigh) */
1084 do {
1085 dev = makedevice(lx_autofs_major,
1086 atomic_add_32_nv(&lx_autofs_minor, 1) & L_MAXMIN32);
1087 } while (vfs_devismounted(dev));
1088 vfsp->vfs_dev = dev;
1089 vfs_make_fsid(&vfsp->vfs_fsid, dev, lx_autofs_fstype);

1091 /* Create an id space arena for automounter requests. */
1092 (void) snprintf(name, sizeof (name), "lx_autofs_id_%d",
1093 getminor(vfsp->vfs_dev));
1094 data->lav_ids = id_space_create(name, 1, INT_MAX);

1096 /* Create hashes to keep track of automounter requests. */
1097 mutex_init(&data->lav_lock, NULL, MUTEX_DEFAULT, NULL);
1098 (void) snprintf(name, sizeof (name), "lx_autofs_path_hash_%d",
1099 getminor(vfsp->vfs_dev));
1100 data->lav_path_hash = mod_hash_create_strhash(name,
1101 LX_AUTOFS_VFS_PATH_HASH_SIZE, mod_hash_null_valdtor);
1102 (void) snprintf(name, sizeof (name), "lx_autofs_id_hash_%d",
1103 getminor(vfsp->vfs_dev));
1104 data->lav_id_hash = mod_hash_create_idhash(name,
1105 LX_AUTOFS_VFS_ID_HASH_SIZE, mod_hash_null_valdtor);

1107 /* Create a hash to keep track of vnodes. */
1108 (void) snprintf(name, sizeof (name), "lx_autofs_vn_hash_%d",
1109 getminor(vfsp->vfs_dev));
1110 data->lav_vn_hash = mod_hash_create_ptrhash(name,
1111 LX_AUTOFS_VFS_VN_HASH_SIZE, mod_hash_null_valdtor,
1112 sizeof (vnode_t));

1114 /* Create root vnode */
1115 data->lav_root = i_vn_alloc(vfsp, data->lav_bs_vp);
1116 data->lav_root->v_flag |=

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 18

1117 VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT;

1119 return (0);
1120 }

1122 static int
1123 lx_autofs_unmount(vfs_t *vfsp, int flag, struct cred *cr)
1124 {
1125 lx_autofs_vfs_t *data;

1127 if (secpolicy_fs_unmount(cr, vfsp) != 0)
1128 return (EPERM);

1130 /* We do not currently support forced unmounts. */
1131 if (flag & MS_FORCE)
1132 return (ENOTSUP);

1134 /*
1135 * We should never have a reference count of less than 2: one for the
1136 * caller, one for the root vnode.
1137 */
1138 ASSERT(vfsp->vfs_count >= 2);

1140 /* If there are any outstanding vnodes, we can’t unmount. */
1141 if (vfsp->vfs_count > 2)
1142 return (EBUSY);

1144 /* Check for any remaining holds on the root vnode. */
1145 data = vfsp->vfs_data;
1146 ASSERT(data->lav_root->v_vfsp == vfsp);
1147 if (data->lav_root->v_count > 1)
1148 return (EBUSY);

1150 /* Close the fifo to the automount process. */
1151 if (data->lav_fifo_wr != NULL)
1152 (void) closef(data->lav_fifo_wr);
1153 if (data->lav_fifo_rd != NULL)
1154 (void) closef(data->lav_fifo_rd);

1156 /*
1157 * We have to release our hold on our root vnode before we can
1158 * delete the backing store. (Since the root vnode is linked
1159 * to the backing store.)
1160 */
1161 VN_RELE(data->lav_root);

1163 /* Cleanup the backing store. */
1164 i_bs_destroy(data->lav_mvp, data->lav_bs_name);
1165 VN_RELE(data->lav_mvp);

1167 /* Cleanup out remaining data structures. */
1168 mod_hash_destroy_strhash(data->lav_path_hash);
1169 mod_hash_destroy_idhash(data->lav_id_hash);
1170 mod_hash_destroy_ptrhash(data->lav_vn_hash);
1171 id_space_destroy(data->lav_ids);
1172 kmem_free(data, sizeof (lx_autofs_vfs_t));

1174 return (0);
1175 }

1177 static int
1178 lx_autofs_root(vfs_t *vfsp, vnode_t **vpp)
1179 {
1180 lx_autofs_vfs_t *data = vfsp->vfs_data;

1182 *vpp = data->lav_root;

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 19

1183 VN_HOLD(*vpp);

1185 return (0);
1186 }

1188 static int
1189 lx_autofs_statvfs(vfs_t *vfsp, statvfs64_t *sp)
1190 {
1191 lx_autofs_vfs_t *data = vfsp->vfs_data;
1192 vnode_t *urvp = data->lav_root->v_data;
1193 dev32_t d32;
1194 int error;

1196 if ((error = VFS_STATVFS(urvp->v_vfsp, sp)) != 0)
1197 return (error);

1199 /* Update some of values before returning. */
1200 (void) cmpldev(&d32, vfsp->vfs_dev);
1201 sp->f_fsid = d32;
1202 (void) strlcpy(sp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name,
1203 sizeof (sp->f_basetype));
1204 sp->f_flag = vf_to_stf(vfsp->vfs_flag);
1205 bzero(sp->f_fstr, sizeof (sp->f_fstr));
1206 return (0);
1207 }

1209 static const fs_operation_def_t lx_autofs_vfstops[] = {
1210 { VFSNAME_MOUNT, { .vfs_mount = lx_autofs_mount } },
1211 { VFSNAME_UNMOUNT, { .vfs_unmount = lx_autofs_unmount } },
1212 { VFSNAME_ROOT, { .vfs_root = lx_autofs_root } },
1213 { VFSNAME_STATVFS, { .vfs_statvfs = lx_autofs_statvfs } },
1214 { NULL, NULL }
1215 };

1217 /*
1218 * VOP entry points - simple passthrough
1219 *
1220 * For most VOP entry points we can simply pass the request on to
1221 * the underlying filesystem we’re mounted on.
1222 */
1223 static int
1224 lx_autofs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
1225 caller_context_t *ctp)
1226 {
1227 vnode_t *uvp = vp->v_data;
1228 return (VOP_CLOSE(uvp, flag, count, offset, cr, ctp));
1229 }

1231 static int
1232 lx_autofs_readdir(vnode_t *vp, uio_t *uiop, cred_t *cr, int *eofp,
1233 caller_context_t *ctp, int flags)
1234 {
1235 vnode_t *uvp = vp->v_data;
1236 return (VOP_READDIR(uvp, uiop, cr, eofp, ctp, flags));
1237 }

1239 static int
1240 lx_autofs_access(vnode_t *vp, int mode, int flags, cred_t *cr,
1241 caller_context_t *ctp)
1242 {
1243 vnode_t *uvp = vp->v_data;
1244 return (VOP_ACCESS(uvp, mode, flags, cr, ctp));
1245 }

1247 static int
1248 lx_autofs_rwlock(struct vnode *vp, int write_lock, caller_context_t *ctp)

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 20

1249 {
1250 vnode_t *uvp = vp->v_data;
1251 return (VOP_RWLOCK(uvp, write_lock, ctp));
1252 }

1254 static void
1255 lx_autofs_rwunlock(struct vnode *vp, int write_lock, caller_context_t *ctp)
1256 {
1257 vnode_t *uvp = vp->v_data;
1258 VOP_RWUNLOCK(uvp, write_lock, ctp);
1259 }

1261 /*ARGSUSED*/
1262 static int
1263 lx_autofs_rmdir(vnode_t *dvp, char *nm, vnode_t *cdir, cred_t *cr,
1264 caller_context_t *ctp, int flags)
1265 {
1266 vnode_t *udvp = dvp->v_data;

1268 /*
1269 * cdir is the calling processes current directory.
1270 * If cdir is lx_autofs vnode then get its real underlying
1271 * vnode ptr. (It seems like the only thing cdir is
1272 * ever used for is to make sure the user doesn’t delete
1273 * their current directory.)
1274 */
1275 if (vn_matchops(cdir, lx_autofs_vn_ops)) {
1276 vnode_t *ucdir = cdir->v_data;
1277 return (VOP_RMDIR(udvp, nm, ucdir, cr, ctp, flags));
1278 }

1280 return (VOP_RMDIR(udvp, nm, cdir, cr, ctp, flags));
1281 }

1283 /*
1284 * VOP entry points - special passthrough
1285 *
1286 * For some VOP entry points we will first pass the request on to
1287 * the underlying filesystem we’re mounted on. If there’s an error
1288 * then we immediately return the error, but if the request succeeds
1289 * we have to do some extra work before returning.
1290 */
1291 static int
1292 lx_autofs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ctp)
1293 {
1294 vnode_t *ovp = *vpp;
1295 vnode_t *uvp = ovp->v_data;
1296 int error;

1298 if ((error = VOP_OPEN(&uvp, flag, cr, ctp)) != 0)
1299 return (error);

1301 /* Check for clone opens. */
1302 if (uvp == ovp->v_data)
1303 return (0);

1305 /* Deal with clone opens by returning a new vnode. */
1306 *vpp = i_vn_alloc(ovp->v_vfsp, uvp);
1307 VN_RELE(ovp);
1308 return (0);
1309 }

1311 static int
1312 lx_autofs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
1313 caller_context_t *ctp)
1314 {

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 21

1315 vnode_t *uvp = vp->v_data;
1316 int error;

1318 if ((error = VOP_GETATTR(uvp, vap, flags, cr, ctp)) != 0)
1319 return (error);

1321 /* Update the attributes with our filesystem id. */
1322 vap->va_fsid = vp->v_vfsp->vfs_dev;
1323 return (0);
1324 }

1326 static int
1327 lx_autofs_mkdir(vnode_t *dvp, char *nm, struct vattr *vap, vnode_t **vpp,
1328 cred_t *cr, caller_context_t *ctp, int flags, vsecattr_t *vsecp)
1329 {
1330 vnode_t *udvp = dvp->v_data;
1331 vnode_t *uvp = NULL;
1332 int error;

1334 if ((error = VOP_MKDIR(udvp, nm, vap, &uvp, cr,
1335 ctp, flags, vsecp)) != 0)
1336 return (error);

1338 /* Update the attributes with our filesystem id. */
1339 vap->va_fsid = dvp->v_vfsp->vfs_dev;

1341 /* Allocate a new vnode. */
1342 *vpp = i_vn_alloc(dvp->v_vfsp, uvp);
1343 return (0);
1344 }

1346 /*
1347 * VOP entry points - custom
1348 */
1349 /*ARGSUSED*/
1350 static void
1351 lx_autofs_inactive(struct vnode *vp, struct cred *cr, caller_context_t *ctp)
1352 {
1353 lx_autofs_vfs_t *data = vp->v_vfsp->vfs_data;

1355 /*
1356 * We need to hold the vfs lock because if we’re going to free
1357 * this vnode we have to prevent anyone from looking it up
1358 * in the vnode hash.
1359 */
1360 mutex_enter(&data->lav_lock);
1361 mutex_enter(&vp->v_lock);

1363 if (vp->v_count < 1) {
1364 panic("lx_autofs_inactive: bad v_count");
1365 /*NOTREACHED*/
1366 }

1368 /* Drop the temporary hold by vn_rele now. */
1369 if (--vp->v_count > 0) {
1370 mutex_exit(&vp->v_lock);
1371 mutex_exit(&data->lav_lock);
1372 return;
1373 }

1375 /*
1376 * No one should have been blocked on this lock because we’re
1377 * about to free this vnode.
1378 */
1379 i_vn_free(vp);
1380 }

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 22

1382 static int
1383 lx_autofs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1384 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ctp,
1385 int *direntflags, pathname_t *realpnp)
1386 {
1387 vnode_t *udvp = dvp->v_data;
1388 vnode_t *uvp = NULL;
1389 int error;

1391 /* First try to lookup if this path component already exitst. */
1392 if ((error = VOP_LOOKUP(udvp, nm, &uvp, pnp, flags, rdir, cr, ctp,
1393 direntflags, realpnp)) == 0) {
1394 *vpp = i_vn_alloc(dvp->v_vfsp, uvp);
1395 return (0);
1396 }

1398 /* Only query the automounter if the path does not exist. */
1399 if (error != ENOENT)
1400 return (error);

1402 /* Refer the lookup to the automounter. */
1403 if ((error = i_automounter_call(dvp, nm)) != 0)
1404 return (error);

1406 /* Retry the lookup operation. */
1407 if ((error = VOP_LOOKUP(udvp, nm, &uvp, pnp, flags, rdir, cr, ctp,
1408 direntflags, realpnp)) == 0) {
1409 *vpp = i_vn_alloc(dvp->v_vfsp, uvp);
1410 return (0);
1411 }
1412 return (error);
1413 }

1415 /*ARGSUSED*/
1416 static int
1417 lx_autofs_ioctl(vnode_t *vp, int cmd, intptr_t arg, int mode, cred_t *cr,
1418 int *rvalp, caller_context_t *ctp)
1419 {
1420 vnode_t *uvp = vp->v_data;

1422 /* Intercept certain ioctls. */
1423 switch ((uint_t)cmd) {
1424 case LX_AUTOFS_IOC_READY:
1425 case LX_AUTOFS_IOC_FAIL:
1426 case LX_AUTOFS_IOC_CATATONIC:
1427 case LX_AUTOFS_IOC_EXPIRE:
1428 case LX_AUTOFS_IOC_PROTOVER:
1429 case LX_AUTOFS_IOC_SETTIMEOUT:
1430 return (i_automounter_ioctl(vp, cmd, arg));
1431 }

1433 /* Pass any remaining ioctl on. */
1434 return (VOP_IOCTL(uvp, cmd, arg, mode, cr, rvalp, ctp));
1435 }

1437 /*
1438 * VOP entry points definitions
1439 */
1440 static const fs_operation_def_t lx_autofs_tops_root[] = {
1441 { VOPNAME_OPEN, { .vop_open = lx_autofs_open } },
1442 { VOPNAME_CLOSE, { .vop_close = lx_autofs_close } },
1443 { VOPNAME_IOCTL, { .vop_ioctl = lx_autofs_ioctl } },
1444 { VOPNAME_RWLOCK, { .vop_rwlock = lx_autofs_rwlock } },
1445 { VOPNAME_RWUNLOCK, { .vop_rwunlock = lx_autofs_rwunlock } },
1446 { VOPNAME_GETATTR, { .vop_getattr = lx_autofs_getattr } },

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 23

1447 { VOPNAME_ACCESS, { .vop_access = lx_autofs_access } },
1448 { VOPNAME_READDIR, { .vop_readdir = lx_autofs_readdir } },
1449 { VOPNAME_LOOKUP, { .vop_lookup = lx_autofs_lookup } },
1450 { VOPNAME_INACTIVE, { .vop_inactive = lx_autofs_inactive } },
1451 { VOPNAME_MKDIR, { .vop_mkdir = lx_autofs_mkdir } },
1452 { VOPNAME_RMDIR, { .vop_rmdir = lx_autofs_rmdir } },
1453 { NULL }
1454 };

1456 /*
1457 * lx_autofs_init() gets invoked via the mod_install() call in
1458 * this modules _init() routine. Therefor, the code that cleans
1459 * up the structures we allocate below is actually found in
1460 * our _fini() routine.
1461 */
1462 /* ARGSUSED */
1463 static int
1464 lx_autofs_init(int fstype, char *name)
1465 {
1466 int error;

1468 if ((lx_autofs_major =
1469 (major_t)space_fetch(LX_AUTOFS_SPACE_KEY_UDEV)) == 0) {

1471 if ((lx_autofs_major = getudev()) == (major_t)-1) {
1472 cmn_err(CE_WARN, "lx_autofs_init: "
1473 "can’t get unique device number");
1474 return (EAGAIN);
1475 }

1477 if (space_store(LX_AUTOFS_SPACE_KEY_UDEV,
1478 (uintptr_t)lx_autofs_major) != 0) {
1479 cmn_err(CE_WARN, "lx_autofs_init: "
1480 "can’t save unique device number");
1481 return (EAGAIN);
1482 }
1483 }

1485 lx_autofs_fstype = fstype;
1486 if ((error = vfs_setfsops(
1487 fstype, lx_autofs_vfstops, &lx_autofs_vfsops)) != 0) {
1488 cmn_err(CE_WARN, "lx_autofs_init: bad vfs ops template");
1489 return (error);
1490 }

1492 if ((error = vn_make_ops("lx_autofs vnode ops",
1493 lx_autofs_tops_root, &lx_autofs_vn_ops)) != 0) {
1494 VERIFY(vfs_freevfsops_by_type(fstype) == 0);
1495 lx_autofs_vn_ops = NULL;
1496 return (error);
1497 }

1499 return (0);
1500 }

1503 /*
1504 * Module linkage
1505 */
1506 static mntopt_t lx_autofs_mntopt[] = {
1507 { LX_MNTOPT_FD, NULL, 0, MO_HASVALUE },
1508 { LX_MNTOPT_PGRP, NULL, 0, MO_HASVALUE },
1509 { LX_MNTOPT_MINPROTO, NULL, 0, MO_HASVALUE },
1510 { LX_MNTOPT_MAXPROTO, NULL, 0, MO_HASVALUE }
1511 };

new/usr/src/uts/common/brand/lx/autofs/lx_autofs.c 24

1513 static mntopts_t lx_autofs_mntopts = {
1514 sizeof (lx_autofs_mntopt) / sizeof (mntopt_t),
1515 lx_autofs_mntopt
1516 };

1518 static vfsdef_t vfw = {
1519 VFSDEF_VERSION,
1520 LX_AUTOFS_NAME,
1521 lx_autofs_init,
1522 VSW_HASPROTO | VSW_VOLATILEDEV,
1523 &lx_autofs_mntopts
1524 };

1526 extern struct mod_ops mod_fsops;

1528 static struct modlfs modlfs = {
1529 &mod_fsops, "linux autofs filesystem", &vfw
1530 };

1532 static struct modlinkage modlinkage = {
1533 MODREV_1, (void *)&modlfs, NULL
1534 };

1536 int
1537 _init(void)
1538 {
1539 return (mod_install(&modlinkage));
1540 }

1542 int
1543 _info(struct modinfo *modinfop)
1544 {
1545 return (mod_info(&modlinkage, modinfop));
1546 }

1548 int
1549 _fini(void)
1550 {
1551 int error;

1553 if ((error = mod_remove(&modlinkage)) != 0)
1554 return (error);

1556 if (lx_autofs_vn_ops != NULL) {
1557 vn_freevnodeops(lx_autofs_vn_ops);
1558 lx_autofs_vn_ops = NULL;
1559 }

1561 /*
1562 * In our init routine, if we get an error after calling
1563 * vfs_setfsops() we cleanup by calling vfs_freevfsops_by_type().
1564 * But we don’t need to call vfs_freevfsops_by_type() here
1565 * because the fs framework did this for us as part of the
1566 * mod_remove() call above.
1567 */
1568 return (0);
1569 }
1570 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.c 1

**
 9240 Tue Jan 14 16:17:17 2014
new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

28 #include <sys/modctl.h>
29 #include <sys/ddi.h>
30 #include <sys/sunddi.h>
31 #include <sys/stat.h>
32 #include <sys/conf.h>
33 #include <sys/frame.h>
34 #include <sys/dtrace.h>
35 #include <sys/dtrace_impl.h>

37 #include <sys/lx_impl.h>

39 #define LX_SYSTRACE_SHIFT 16
40 #define LX_SYSTRACE_ISENTRY(x) ((int)(x) >> LX_SYSTRACE_SHIFT)
41 #define LX_SYSTRACE_SYSNUM(x) ((int)(x) & ((1 << LX_SYSTRACE_SHIFT) - 1))
42 #define LX_SYSTRACE_ENTRY(id) ((1 << LX_SYSTRACE_SHIFT) | (id))
43 #define LX_SYSTRACE_RETURN(id) (id)

45 #define LX_SYSTRACE_ENTRY_AFRAMES 2
46 #define LX_SYSTRACE_RETURN_AFRAMES 4

48 typedef struct lx_systrace_sysent {
49 const char *lss_name;
50 dtrace_id_t lss_entry;
51 dtrace_id_t lss_return;
52 } lx_systrace_sysent_t;

54 static dev_info_t *lx_systrace_devi;
55 static dtrace_provider_id_t lx_systrace_id;
56 static kmutex_t lx_systrace_lock;
57 static uint_t lx_systrace_nenabled;

59 static int lx_systrace_nsysent;
60 static lx_systrace_sysent_t *lx_systrace_sysent;

new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.c 2

62 /*ARGSUSED*/
63 static void
64 lx_systrace_entry(ulong_t sysnum, ulong_t arg0, ulong_t arg1, ulong_t arg2,
65 ulong_t arg3, ulong_t arg4, ulong_t arg5)
66 {
67 dtrace_id_t id;

69 if (sysnum >= lx_systrace_nsysent)
70 return;

72 if ((id = lx_systrace_sysent[sysnum].lss_entry) == DTRACE_IDNONE)
73 return;

75 dtrace_probe(id, arg0, arg1, arg2, arg3, arg4);
76 }

78 /*ARGSUSED*/
79 static void
80 lx_systrace_return(ulong_t sysnum, ulong_t arg0, ulong_t arg1, ulong_t arg2,
81 ulong_t arg3, ulong_t arg4, ulong_t arg5)
82 {
83 dtrace_id_t id;

85 if (sysnum >= lx_systrace_nsysent)
86 return;

88 if ((id = lx_systrace_sysent[sysnum].lss_return) == DTRACE_IDNONE)
89 return;

91 dtrace_probe(id, arg0, arg1, arg2, arg3, arg4);
92 }

94 /*ARGSUSED*/
95 static void
96 lx_systrace_provide(void *arg, const dtrace_probedesc_t *desc)
97 {
98 int i;

100 if (desc != NULL)
101 return;

103 for (i = 0; i < lx_systrace_nsysent; i++) {
104 if (dtrace_probe_lookup(lx_systrace_id, NULL,
105 lx_systrace_sysent[i].lss_name, "entry") != 0)
106 continue;

108 (void) dtrace_probe_create(lx_systrace_id, NULL,
109 lx_systrace_sysent[i].lss_name, "entry",
110 LX_SYSTRACE_ENTRY_AFRAMES,
111 (void *)((uintptr_t)LX_SYSTRACE_ENTRY(i)));

113 (void) dtrace_probe_create(lx_systrace_id, NULL,
114 lx_systrace_sysent[i].lss_name, "return",
115 LX_SYSTRACE_RETURN_AFRAMES,
116 (void *)((uintptr_t)LX_SYSTRACE_RETURN(i)));

118 lx_systrace_sysent[i].lss_entry = DTRACE_IDNONE;
119 lx_systrace_sysent[i].lss_return = DTRACE_IDNONE;
120 }
121 }

123 /*ARGSUSED*/
124 static int
125 lx_systrace_enable(void *arg, dtrace_id_t id, void *parg)
126 {
127 int sysnum = LX_SYSTRACE_SYSNUM((uintptr_t)parg);

new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.c 3

129 ASSERT(sysnum < lx_systrace_nsysent);

131 mutex_enter(&lx_systrace_lock);
132 if (lx_systrace_nenabled++ == 0)
133 lx_brand_systrace_enable();
134 mutex_exit(&lx_systrace_lock);

136 if (LX_SYSTRACE_ISENTRY((uintptr_t)parg)) {
137 lx_systrace_sysent[sysnum].lss_entry = id;
138 } else {
139 lx_systrace_sysent[sysnum].lss_return = id;
140 }
141 return (0);
142 }

144 /*ARGSUSED*/
145 static void
146 lx_systrace_disable(void *arg, dtrace_id_t id, void *parg)
147 {
148 int sysnum = LX_SYSTRACE_SYSNUM((uintptr_t)parg);

150 ASSERT(sysnum < lx_systrace_nsysent);

152 if (LX_SYSTRACE_ISENTRY((uintptr_t)parg)) {
153 lx_systrace_sysent[sysnum].lss_entry = DTRACE_IDNONE;
154 } else {
155 lx_systrace_sysent[sysnum].lss_return = DTRACE_IDNONE;
156 }

158 mutex_enter(&lx_systrace_lock);
159 if (--lx_systrace_nenabled == 0)
160 lx_brand_systrace_disable();
161 mutex_exit(&lx_systrace_lock);
162 }

164 /*ARGSUSED*/
165 static void
166 lx_systrace_destroy(void *arg, dtrace_id_t id, void *parg)
167 {
168 }

170 /*ARGSUSED*/
171 static uint64_t
172 lx_systrace_getarg(void *arg, dtrace_id_t id, void *parg, int argno,
173 int aframes)
174 {
175 struct frame *fp = (struct frame *)dtrace_getfp();
176 uintptr_t *stack;
177 uint64_t val = 0;
178 int i;

180 if (argno >= 6)
181 return (0);

183 /*
184 * Walk the four frames down the stack to the entry or return callback.
185 * Our callback calls dtrace_probe() which calls dtrace_dif_variable()
186 * which invokes this function to get the extended arguments. We get
187 * the frame pointer in via call to dtrace_getfp() above which makes for
188 * four frames.
189 */
190 for (i = 0; i < 4; i++) {
191 fp = (struct frame *)fp->fr_savfp;
192 }

new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.c 4

194 stack = (uintptr_t *)&fp[1];

196 /*
197 * Skip the first argument to the callback -- the system call number.
198 */
199 argno++;

201 #ifdef __amd64
202 /*
203 * On amd64, the first 6 arguments are passed in registers while
204 * subsequent arguments are on the stack.
205 */
206 argno -= 6;
207 #endif

209 DTRACE_CPUFLAG_SET(CPU_DTRACE_NOFAULT);
210 val = stack[argno];
211 DTRACE_CPUFLAG_CLEAR(CPU_DTRACE_NOFAULT);

213 return (val);
214 }

217 static const dtrace_pattr_t lx_systrace_attr = {
218 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
219 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_UNKNOWN },
220 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
221 { DTRACE_STABILITY_EVOLVING, DTRACE_STABILITY_EVOLVING, DTRACE_CLASS_COMMON },
222 { DTRACE_STABILITY_PRIVATE, DTRACE_STABILITY_PRIVATE, DTRACE_CLASS_ISA },
223 };

225 static dtrace_pops_t lx_systrace_pops = {
226 lx_systrace_provide,
227 NULL,
228 lx_systrace_enable,
229 lx_systrace_disable,
230 NULL,
231 NULL,
232 NULL,
233 lx_systrace_getarg,
234 NULL,
235 lx_systrace_destroy
236 };

238 static int
239 lx_systrace_attach(dev_info_t *devi, ddi_attach_cmd_t cmd)
240 {
241 int i;

243 switch (cmd) {
244 case DDI_ATTACH:
245 break;
246 case DDI_RESUME:
247 return (DDI_SUCCESS);
248 default:
249 return (DDI_FAILURE);
250 }

252 if (ddi_create_minor_node(devi, "lx_systrace", S_IFCHR,
253 0, DDI_PSEUDO, NULL) == DDI_FAILURE ||
254 dtrace_register("lx-syscall", &lx_systrace_attr,
255 DTRACE_PRIV_KERNEL, 0, &lx_systrace_pops, NULL,
256 &lx_systrace_id) != 0) {
257 ddi_remove_minor_node(devi, NULL);
258 return (DDI_FAILURE);
259 }

new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.c 5

261 ddi_report_dev(devi);
262 lx_systrace_devi = devi;

264 /*
265 * Count up the lx_brand system calls.
266 */
267 for (i = 0; lx_sysent[i].sy_callc != NULL; i++)
268 continue;

270 /*
271 * Initialize our corresponding table.
272 */
273 lx_systrace_sysent = kmem_zalloc(i * sizeof (lx_systrace_sysent_t),
274 KM_SLEEP);
275 lx_systrace_nsysent = i;

277 for (i = 0; i < lx_systrace_nsysent; i++) {
278 lx_systrace_sysent[i].lss_name = lx_sysent[i].sy_name;
279 lx_systrace_sysent[i].lss_entry = DTRACE_IDNONE;
280 lx_systrace_sysent[i].lss_return = DTRACE_IDNONE;
281 }

283 /*
284 * Install probe triggers.
285 */
286 lx_systrace_entry_ptr = lx_systrace_entry;
287 lx_systrace_return_ptr = lx_systrace_return;

289 return (DDI_SUCCESS);
290 }

292 /*ARGSUSED*/
293 static int
294 lx_systrace_detach(dev_info_t *devi, ddi_detach_cmd_t cmd)
295 {
296 switch (cmd) {
297 case DDI_DETACH:
298 break;
299 case DDI_SUSPEND:
300 return (DDI_SUCCESS);
301 default:
302 return (DDI_FAILURE);
303 }

305 if (dtrace_unregister(lx_systrace_id) != 0)
306 return (DDI_FAILURE);

308 /*
309 * Free table.
310 */
311 kmem_free(lx_systrace_sysent, lx_systrace_nsysent *
312 sizeof (lx_systrace_sysent_t));
313 lx_systrace_sysent = NULL;
314 lx_systrace_nsysent = 0;

316 /*
317 * Reset probe triggers.
318 */
319 lx_systrace_entry_ptr = NULL;
320 lx_systrace_return_ptr = NULL;

322 return (DDI_SUCCESS);
323 }

325 /*ARGSUSED*/

new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.c 6

326 static int
327 lx_systrace_open(dev_t *devp, int flag, int otyp, cred_t *cred_p)
328 {
329 return (0);
330 }

332 static struct cb_ops lx_systrace_cb_ops = {
333 lx_systrace_open, /* open */
334 nodev, /* close */
335 nulldev, /* strategy */
336 nulldev, /* print */
337 nodev, /* dump */
338 nodev, /* read */
339 nodev, /* write */
340 nodev, /* ioctl */
341 nodev, /* devmap */
342 nodev, /* mmap */
343 nodev, /* segmap */
344 nochpoll, /* poll */
345 ddi_prop_op, /* cb_prop_op */
346 0, /* streamtab */
347 D_NEW | D_MP /* Driver compatibility flag */
348 };

350 static struct dev_ops lx_systrace_ops = {
351 DEVO_REV, /* devo_rev */
352 0, /* refcnt */
353 ddi_getinfo_1to1, /* get_dev_info */
354 nulldev, /* identify */
355 nulldev, /* probe */
356 lx_systrace_attach, /* attach */
357 lx_systrace_detach, /* detach */
358 nodev, /* reset */
359 &lx_systrace_cb_ops, /* driver operations */
360 NULL, /* bus operations */
361 nodev, /* dev power */
362 ddi_quiesce_not_needed, /* quiesce */
363 };

365 /*
366 * Module linkage information for the kernel.
367 */
368 static struct modldrv modldrv = {
369 &mod_driverops, /* module type (this is a pseudo driver) */
370 "Linux Brand System Call Tracing", /* name of module */
371 &lx_systrace_ops /* driver ops */
372 };

374 static struct modlinkage modlinkage = {
375 MODREV_1,
376 (void *)&modldrv,
377 NULL
378 };

380 int
381 _init(void)
382 {
383 return (mod_install(&modlinkage));
384 }

386 int
387 _info(struct modinfo *modinfop)
388 {
389 return (mod_info(&modlinkage, modinfop));
390 }

new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.c 7

392 int
393 _fini(void)
394 {
395 return (mod_remove(&modlinkage));
396 }
397 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.conf 1

**
 976 Tue Jan 14 16:17:17 2014
new/usr/src/uts/common/brand/lx/dtrace/lx_systrace.conf
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

27 name="lx_systrace" parent="pseudo" instance=0;
28 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/io/ldlinux.c 1

**
 6169 Tue Jan 14 16:17:18 2014
new/usr/src/uts/common/brand/lx/io/ldlinux.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <sys/ddi.h>
29 #include <sys/cmn_err.h>
30 #include <sys/modctl.h>
31 #include <sys/ptms.h>
32 #include <sys/stropts.h>
33 #include <sys/strsun.h>
34 #include <sys/sunddi.h>

36 #include <sys/ldlinux.h>

39 /*
40 * ldlinuxopen - open routine gets called when the module gets pushed onto the
41 * stream.
42 */
43 /* ARGSUSED */
44 static int
45 ldlinuxopen(
46 queue_t *q, /* pointer to the read side queue */
47 dev_t *devp, /* pointer to stream tail’s dev */
48 int oflag, /* the user open(2) supplied flags */
49 int sflag, /* open state flag */
50 cred_t *credp) /* credentials */
51 {
52 struct ldlinux *tp; /* ldlinux entry for this module */
53 mblk_t *mop;
54 struct stroptions *sop;
55 struct termios *termiosp;
56 int len;

58 if (sflag != MODOPEN)
59 return (EINVAL);

61 if (q->q_ptr != NULL) {

new/usr/src/uts/common/brand/lx/io/ldlinux.c 2

62 /* It’s already attached. */
63 return (0);
64 }

66 mop = allocb(sizeof (struct stroptions), BPRI_MED);
67 if (mop == NULL)
68 return (ENOSR);
69 mop->b_datap->db_type = M_SETOPTS;
70 mop->b_wptr += sizeof (struct stroptions);
71 sop = (struct stroptions *)mop->b_rptr;
72 sop->so_flags = SO_ISTTY;

74 /*
75 * Allocate state structure.
76 */
77 tp = kmem_alloc(sizeof (*tp), KM_SLEEP);

79 /* Stash a pointer to our private data in q_ptr. */
80 q->q_ptr = WR(q)->q_ptr = tp;

82 /*
83 * Get termios defaults. These are stored as
84 * a property in the "options" node.
85 */
86 if (ddi_getlongprop(DDI_DEV_T_ANY, ddi_root_node(), 0, "ttymodes",
87 (caddr_t)&termiosp, &len) == DDI_PROP_SUCCESS &&
88 len == sizeof (struct termios)) {
89 if (termiosp->c_lflag & ICANON) {
90 tp->veof = termiosp->c_cc[VEOF];
91 tp->veol = termiosp->c_cc[VEOL];
92 tp->vmin = 1;
93 tp->vtime = 0;
94 } else {
95 tp->veof = 0;
96 tp->veol = 0;
97 tp->vmin = termiosp->c_cc[VMIN];
98 tp->vtime = termiosp->c_cc[VTIME];
99 }
100 kmem_free(termiosp, len);
101 } else {
102 /*
103 * winge winge winge...
104 */
105 cmn_err(CE_WARN,
106 "ldlinuxopen: Couldn’t get ttymodes property!");
107 bzero(tp, sizeof (*tp));
108 }

110 tp->state = 0;

112 /*
113 * Commit to the open and send the M_SETOPTS off to the stream head.
114 */
115 qprocson(q);
116 putnext(q, mop);

118 return (0);
119 }

122 /*
123 * ldlinuxclose - This routine gets called when the module gets
124 * popped off of the stream.
125 */
126 /* ARGSUSED */
127 static int

new/usr/src/uts/common/brand/lx/io/ldlinux.c 3

128 ldlinuxclose(queue_t *q, int flag, cred_t *credp)
129 {
130 struct ldlinux *tp;

132 qprocsoff(q);
133 tp = q->q_ptr;
134 kmem_free(tp, sizeof (*tp));
135 q->q_ptr = WR(q)->q_ptr = NULL;
136 return (0);
137 }

140 static void
141 do_ioctl(queue_t *q, mblk_t *mp)
142 {
143 struct ldlinux *tp = q->q_ptr;
144 struct iocblk *iocp = (struct iocblk *)mp->b_rptr;
145 struct lx_cc *cb;
146 mblk_t *tmp;
147 int error;

149 switch (iocp->ioc_cmd) {
150 case TIOCSETLD:
151 /* prepare caller supplied data for access */
152 error = miocpullup(mp, sizeof (struct lx_cc));
153 if (error != 0) {
154 miocnak(q, mp, 0, error);
155 return;
156 }

158 /* get a pointer to the caller supplied data */
159 cb = (struct lx_cc *)mp->b_cont->b_rptr;

161 /* save caller supplied data in our per-stream cache */
162 tp->veof = cb->veof;
163 tp->veol = cb->veol;
164 tp->vmin = cb->vmin;
165 tp->vtime = cb->vtime;

167 /* initialize and send a reply indicating that we’re done */
168 miocack(q, mp, 0, 0);
169 return;

171 case TIOCGETLD:
172 /* allocate a reply message */
173 if ((tmp = allocb(sizeof (struct lx_cc), BPRI_MED)) == NULL) {
174 miocnak(q, mp, 0, ENOSR);
175 return;
176 }

178 /* initialize the reply message */
179 mioc2ack(mp, tmp, sizeof (struct lx_cc), 0);

181 /* get a pointer to the reply data */
182 cb = (struct lx_cc *)mp->b_cont->b_rptr;

184 /* copy data from our per-stream cache into the reply data */
185 cb->veof = tp->veof;
186 cb->veol = tp->veol;
187 cb->vmin = tp->vmin;
188 cb->vtime = tp->vtime;

190 /* send the reply indicating that we’re done */
191 qreply(q, mp);
192 return;

new/usr/src/uts/common/brand/lx/io/ldlinux.c 4

194 case PTSSTTY:
195 tp->state |= ISPTSTTY;
196 break;

198 default:
199 break;
200 }

202 putnext(q, mp);
203 }

206 /*
207 * ldlinuxput - Module read and write queue put procedure.
208 */
209 static void
210 ldlinuxput(queue_t *q, mblk_t *mp)
211 {
212 struct ldlinux *tp = q->q_ptr;

214 switch (DB_TYPE(mp)) {
215 default:
216 break;
217 case M_IOCTL:
218 if ((q->q_flag & QREADR) == 0) {
219 do_ioctl(q, mp);
220 return;
221 }
222 break;

224 case M_FLUSH:
225 /*
226 * Handle read and write flushes.
227 */
228 if ((((q->q_flag & QREADR) != 0) && (*mp->b_rptr & FLUSHR)) ||
229 (((q->q_flag & QREADR) == 0) && (*mp->b_rptr & FLUSHW))) {
230 if ((tp->state & ISPTSTTY) && (*mp->b_rptr & FLUSHBAND))
231 flushband(q, *(mp->b_rptr + 1), FLUSHDATA);
232 else
233 flushq(q, FLUSHDATA);
234 }
235 break;
236 }
237 putnext(q, mp);
238 }

241 static struct module_info ldlinux_info = {
242 LDLINUX_MODID,
243 LDLINUX_MOD,
244 0,
245 INFPSZ,
246 0,
247 0
248 };

250 static struct qinit ldlinuxinit = {
251 (int (*)()) ldlinuxput,
252 NULL,
253 ldlinuxopen,
254 ldlinuxclose,
255 NULL,
256 &ldlinux_info
257 };

259 static struct streamtab ldlinuxinfo = {

new/usr/src/uts/common/brand/lx/io/ldlinux.c 5

260 &ldlinuxinit,
261 &ldlinuxinit
262 };

264 /*
265 * Module linkage information for the kernel.
266 */
267 static struct fmodsw fsw = {
268 LDLINUX_MOD,
269 &ldlinuxinfo,
270 D_MTQPAIR | D_MP
271 };

273 static struct modlstrmod modlstrmod = {
274 &mod_strmodops, "termios extensions for lx brand", &fsw
275 };

277 static struct modlinkage modlinkage = {
278 MODREV_1, &modlstrmod, NULL
279 };

281 int
282 _init()
283 {
284 return (mod_install(&modlinkage));
285 }

287 int
288 _fini()
289 {
290 return (mod_remove(&modlinkage));
291 }

293 int
294 _info(struct modinfo *modinfop)
295 {
296 return (mod_info(&modlinkage, modinfop));
297 }
298 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/io/lx_audio.c 1

**
 53819 Tue Jan 14 16:17:18 2014
new/usr/src/uts/common/brand/lx/io/lx_audio.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

27 #include <sys/audio.h>
28 #include <sys/conf.h>
29 #include <sys/debug.h>
30 #include <sys/disp.h>
31 #include <sys/ddi.h>
32 #include <sys/file.h>
33 #include <sys/id_space.h>
34 #include <sys/kmem.h>
35 #include <sys/lx_audio.h>
36 #include <sys/mixer.h>
37 #include <sys/modhash.h>
38 #include <sys/stat.h>
39 #include <sys/sunddi.h>
40 #include <sys/sunldi.h>
41 #include <sys/sysmacros.h>
42 #include <sys/stropts.h>
43 #include <sys/types.h>
44 #include <sys/zone.h>

46 /* Properties used by the lx_audio driver */
47 #define LXA_PROP_INPUTDEV "inputdev"
48 #define LXA_PROP_OUTPUTDEV "outputdev"

50 /* default device paths used by this driver */
51 #define LXA_DEV_DEFAULT "/dev/audio"
52 #define LXA_DEV_CUSTOM_DIR "/dev/sound/"

54 /* maximum possible number of concurrent opens of this driver */
55 #define LX_AUDIO_MAX_OPENS 1024

57 /*
58 * these are default fragment size and fragment count values.
59 * these values were chosen to make quake work well on my
60 * laptop: 2Ghz Pentium M + NVIDIA GeForce Go 6400.

new/usr/src/uts/common/brand/lx/io/lx_audio.c 2

61 *
62 * for reference:
63 * - 1 sec of stereo output at 44Khz is about 171 Kb of data
64 * - 1 sec of mono output at 8Khz is about 8Kb of data
65 */
66 #define LXA_OSS_FRAG_SIZE (1024) /* 1/8 sec at 8Khz mono */
67 #define LXA_OSS_FRAG_CNT (1024 * 2)

69 /* maximum ammount of fragment memory we’ll allow a process to mmap */
70 #define LXA_OSS_FRAG_MEM (1024 * 1024 * 2) /* 2Mb */

72 /* forward declarations */
73 typedef struct lxa_state lxa_state_t;
74 typedef struct lxa_zstate lxa_zstate_t;

76 /*
77 * Structure and enum declarations
78 */
79 typedef enum {
80 LXA_TYPE_INVALID = 0,
81 LXA_TYPE_AUDIO = 1, /* audio device */
82 LXA_TYPE_AUDIOCTL = 2 /* audio control/mixer device */
83 } lxa_dev_type_t;

85 struct lxa_zstate {
86 char *lxa_zs_zonename;

88 /*
89 * we could store the input/output audio device setting here,
90 * but instead we’re keeing them as device node properties
91 * so that a user can easily see the audio configuration for
92 * a zone via prtconf.
93 */

95 /*
96 * OSS doesn’t support multiple opens of the audio device.
97 * (multiple opens of the mixer device are supported.)
98 * so here we’ll keep a pointer to any open input/output
99 * streams. (OSS does support two opens if one is for input
100 * and the other is for output.)
101 */
102 lxa_state_t *lxa_zs_istate;
103 lxa_state_t *lxa_zs_ostate;

105 /*
106 * we need to cache channel gain and balance. channel gain and
107 * balance map to PCM volume in OSS, which are supposedly a property
108 * of the underlying hardware. but in solaris, channels are
109 * implemented in software and only exist when an audio device
110 * is actually open. (each open returns a unique channel.) OSS
111 * apps will expect consistent PCM volume set/get operations to
112 * work even if no audio device is open. hence, if no underlying
113 * device is open we need to cache the gain and balance setting.
114 */
115 lxa_mixer_levels_t lxa_zs_pcm_levels;
116 };

118 struct lxa_state {
119 lxa_zstate_t *lxas_zs; /* zone state pointer */

121 dev_t lxas_dev_old; /* dev_t used to open the device */
122 dev_t lxas_dev_new; /* new dev_t assigned to an open */
123 int lxas_flags; /* original flags passed to open */
124 lxa_dev_type_t lxas_type; /* type of device that was opened */

126 int lxas_devs_same; /* input and output device the same? */

new/usr/src/uts/common/brand/lx/io/lx_audio.c 3

128 /* input device variables */
129 ldi_handle_t lxas_idev_lh; /* ldi handle for access */
130 int lxas_idev_flags; /* flags used for open */

132 /* output device variables */
133 ldi_handle_t lxas_odev_lh; /* ldi handle for access */
134 int lxas_odev_flags; /* flags used for open */

136 /*
137 * since we support multiplexing of devices we need to remember
138 * certain parameters about the devices
139 */
140 uint_t lxas_hw_features;
141 uint_t lxas_sw_features;

143 uint_t lxas_frag_size;
144 uint_t lxas_frag_cnt;

146 /*
147 * members needed to support mmap device access. note that to
148 * simplifly things we only support one mmap access per open.
149 */
150 ddi_umem_cookie_t lxas_umem_cookie;
151 char *lxas_umem_ptr;
152 size_t lxas_umem_len;
153 kthread_t *lxas_mmap_thread;
154 int lxas_mmap_thread_running;
155 int lxas_mmap_thread_exit;
156 int lxas_mmap_thread_frag;
157 };

159 /*
160 * Global variables
161 */
162 dev_info_t *lxa_dip = NULL;
163 kmutex_t lxa_lock;
164 id_space_t *lxa_minor_id = NULL;
165 mod_hash_t *lxa_state_hash = NULL;
166 mod_hash_t *lxa_zstate_hash = NULL;
167 size_t lxa_state_hash_size = 15;
168 size_t lxa_zstate_hash_size = 15;
169 size_t lxa_registered_zones = 0;

171 /*
172 * function declarations
173 */
174 static void lxa_mmap_output_disable(lxa_state_t *);

176 /*
177 * functions
178 */
179 static void
180 lxa_state_close(lxa_state_t *lxa_state)
181 {
182 lxa_zstate_t *lxa_zs = lxa_state->lxas_zs;
183 minor_t minor = getminor(lxa_state->lxas_dev_new);

185 /* disable any mmap output that might still be going on */
186 lxa_mmap_output_disable(lxa_state);

188 /*
189 * if this was the active input/output device, unlink it from
190 * the global zone state so that other opens of the audio device
191 * can now succeed.
192 */

new/usr/src/uts/common/brand/lx/io/lx_audio.c 4

193 mutex_enter(&lxa_lock);
194 if (lxa_zs->lxa_zs_istate == lxa_state)
195 lxa_zs->lxa_zs_istate = NULL;
196 if (lxa_zs->lxa_zs_ostate == lxa_state) {
197 lxa_zs->lxa_zs_ostate = NULL;
198 }
199 mutex_exit(&lxa_lock);

201 /* remove this state structure from the hash (if it’s there) */
202 (void) mod_hash_remove(lxa_state_hash,
203 (mod_hash_key_t)(uintptr_t)minor, (mod_hash_val_t *)&lxa_state);

205 /* close any audio device that we have open */
206 if (lxa_state->lxas_idev_lh != NULL)
207 (void) ldi_close(lxa_state->lxas_idev_lh,
208 lxa_state->lxas_idev_flags, kcred);
209 if (lxa_state->lxas_odev_lh != NULL)
210 (void) ldi_close(lxa_state->lxas_odev_lh,
211 lxa_state->lxas_odev_flags, kcred);

213 /* free up any memory allocated by mmaps */
214 if (lxa_state->lxas_umem_cookie != NULL)
215 ddi_umem_free(lxa_state->lxas_umem_cookie);

217 /* release the id associated with this state structure */
218 id_free(lxa_minor_id, minor);

220 kmem_free(lxa_state, sizeof (*lxa_state));
221 }

223 static char *
224 getzonename(void)
225 {
226 return (curproc->p_zone->zone_name);
227 }

229 static char *
230 lxa_devprop_name(char *zname, char *pname)
231 {
232 char *zpname;
233 int n;

235 ASSERT((pname != NULL) && (zname != NULL));

237 /* prepend the zone name to the property name */
238 n = snprintf(NULL, 0, "%s_%s", zname, pname) + 1;
239 zpname = kmem_alloc(n, KM_SLEEP);
240 (void) snprintf(zpname, n, "%s_%s", zname, pname);

242 return (zpname);
243 }

245 static int
246 lxa_devprop_verify(char *pval)
247 {
248 int n;

250 ASSERT(pval != NULL);

252 if (strcmp(pval, "default") == 0)
253 return (0);

255 /* make sure the value is an integer */
256 for (n = 0; pval[n] != ’\0’; n++) {
257 if ((pval[n] < ’0’) && (pval[n] > ’9’)) {
258 return (-1);

new/usr/src/uts/common/brand/lx/io/lx_audio.c 5

259 }
260 }

262 return (0);
263 }

265 static char *
266 lxa_devprop_lookup(char *zname, char *pname, lxa_dev_type_t lxa_type)
267 {
268 char *zprop_name, *pval;
269 char *dev_path;
270 int n, rv;

272 ASSERT((pname != NULL) && (zname != NULL));
273 ASSERT((lxa_type == LXA_TYPE_AUDIO) || (lxa_type == LXA_TYPE_AUDIOCTL));

275 zprop_name = lxa_devprop_name(zname, pname);

277 /* attempt to lookup the property */
278 rv = ddi_prop_lookup_string(DDI_DEV_T_ANY, lxa_dip,
279 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM, zprop_name, &pval);
280 strfree(zprop_name);

282 if (rv != DDI_PROP_SUCCESS)
283 return (NULL);

285 if (lxa_devprop_verify(pval) != 0) {
286 ddi_prop_free(pval);
287 return (NULL);
288 }

290 if (strcmp(pval, "none") == 0) {
291 /* there is no audio device specified */
292 return (NULL);
293 } else if (strcmp(pval, "default") == 0) {
294 /* use the default audio device on the system */
295 dev_path = strdup(LXA_DEV_DEFAULT);
296 } else {
297 /* a custom audio device was specified, generate a path */
298 n = snprintf(NULL, 0, "%s%s", LXA_DEV_CUSTOM_DIR, pval) + 1;
299 dev_path = kmem_alloc(n, KM_SLEEP);
300 (void) snprintf(dev_path, n, "%s%s", LXA_DEV_CUSTOM_DIR, pval);
301 }
302 ddi_prop_free(pval);

304 /*
305 * if this is an audio control device so we need to append
306 * "ctl" to the path
307 */
308 if (lxa_type == LXA_TYPE_AUDIOCTL) {
309 char *tmp;
310 n = snprintf(NULL, 0, "%s%s", dev_path, "ctl") + 1;
311 tmp = kmem_alloc(n, KM_SLEEP);
312 (void) snprintf(tmp, n, "%s%s", dev_path, "ctl");
313 strfree(dev_path);
314 dev_path = tmp;
315 }

317 return (dev_path);
318 }

320 static int
321 lxa_dev_getfeatures(lxa_state_t *lxa_state)
322 {
323 audio_info_t ai_idev, ai_odev;
324 int n, rv;

new/usr/src/uts/common/brand/lx/io/lx_audio.c 6

326 /* set a default fragment size */
327 lxa_state->lxas_frag_size = LXA_OSS_FRAG_SIZE;
328 lxa_state->lxas_frag_cnt = LXA_OSS_FRAG_CNT;

330 /* get info for the currently open audio devices */
331 if ((lxa_state->lxas_idev_lh != NULL) &&
332 ((rv = ldi_ioctl(lxa_state->lxas_idev_lh,
333 AUDIO_GETINFO, (intptr_t)&ai_idev, FKIOCTL, kcred, &n)) != 0))
334 return (rv);
335 if ((lxa_state->lxas_odev_lh != NULL) &&
336 ((rv = ldi_ioctl(lxa_state->lxas_odev_lh,
337 AUDIO_GETINFO, (intptr_t)&ai_odev, FKIOCTL, kcred, &n)) != 0))
338 return (rv);

340 /* if we’re only open for reading or writing then it’s easy */
341 if (lxa_state->lxas_idev_lh == NULL) {
342 lxa_state->lxas_sw_features = ai_odev.sw_features;
343 lxa_state->lxas_hw_features = ai_odev.hw_features;
344 return (0);
345 } else if (lxa_state->lxas_odev_lh == NULL) {
346 lxa_state->lxas_sw_features = ai_idev.sw_features;
347 lxa_state->lxas_hw_features = ai_idev.hw_features;
348 return (0);
349 }

351 /*
352 * well if we’re open for reading and writing but the underlying
353 * device is the same then it’s also pretty easy
354 */
355 if (lxa_state->lxas_devs_same) {
356 if ((ai_odev.sw_features != ai_idev.sw_features) ||
357 (ai_odev.hw_features != ai_idev.hw_features)) {
358 zcmn_err(getzoneid(), CE_WARN, "lx_audio error: "
359 "audio device reported inconsistent features");
360 return (EIO);
361 }
362 lxa_state->lxas_sw_features = ai_odev.sw_features;
363 lxa_state->lxas_hw_features = ai_odev.hw_features;
364 return (0);
365 }

367 /*
368 * figure out which software features we’re going to support.
369 * we will report a feature as supported if both the input
370 * and output device support it.
371 */
372 lxa_state->lxas_sw_features = 0;
373 n = ai_idev.sw_features & ai_odev.sw_features;
374 if (n & AUDIO_SWFEATURE_MIXER)
375 lxa_state->lxas_sw_features |= AUDIO_SWFEATURE_MIXER;

377 /*
378 * figure out which hardware features we’re going to support.
379 * for a first pass we will report a feature as supported if
380 * both the input and output device support it.
381 */
382 lxa_state->lxas_hw_features = 0;
383 n = ai_idev.hw_features & ai_odev.hw_features;
384 if (n & AUDIO_HWFEATURE_MSCODEC)
385 lxa_state->lxas_hw_features |= AUDIO_HWFEATURE_MSCODEC;

387 /*
388 * if we made it here then we have different audio input and output
389 * devices. this will allow us to report support for additional
390 * hardware features that may not supported by just the input or

new/usr/src/uts/common/brand/lx/io/lx_audio.c 7

391 * output device alone.
392 */

394 /* always report tha we support both playback and recording */
395 lxa_state->lxas_hw_features =
396 AUDIO_HWFEATURE_PLAY | AUDIO_HWFEATURE_RECORD;

398 /* always report full duplex support */
399 lxa_state->lxas_hw_features = AUDIO_HWFEATURE_DUPLEX;

401 /* never report that we have input to output loopback support */
402 ASSERT((lxa_state->lxas_hw_features & AUDIO_HWFEATURE_IN2OUT) == 0);
403 return (0);
404 }

406 static int
407 lxa_dev_open(lxa_state_t *lxa_state)
408 {
409 char *idev, *odev;
410 int flags, rv;
411 ldi_handle_t lh;
412 ldi_ident_t li = NULL;

414 ASSERT((lxa_state->lxas_type == LXA_TYPE_AUDIO) ||
415 (lxa_state->lxas_type == LXA_TYPE_AUDIOCTL));

417 /*
418 * check if we have configuration properties for this zone.
419 * if we don’t then audio isn’t supported in this zone.
420 */
421 idev = lxa_devprop_lookup(getzonename(), LXA_PROP_INPUTDEV,
422 lxa_state->lxas_type);
423 odev = lxa_devprop_lookup(getzonename(), LXA_PROP_OUTPUTDEV,
424 lxa_state->lxas_type);

426 /* make sure there is at least one device to read from or write to */
427 if ((idev == NULL) && (odev == NULL))
428 return (ENODEV);

430 /* see if the input and output devices are actually the same device */
431 if (((idev != NULL) && (odev != NULL)) &&
432 (strcmp(idev, odev) == 0))
433 lxa_state->lxas_devs_same = 1;

435 /* we don’t respect FEXCL */
436 flags = lxa_state->lxas_flags & ~FEXCL;
437 if (lxa_state->lxas_type == LXA_TYPE_AUDIO) {
438 /*
439 * if we’re opening audio devices then we need to muck
440 * with the FREAD/FWRITE flags.
441 *
442 * certain audio device may only support input or output
443 * (but not both.) so if we’re multiplexing input/output
444 * to different devices we need to make sure we don’t try
445 * and open the output device for reading and the input
446 * device for writing.
447 *
448 * if we’re using the same device for input/output we still
449 * need to do this because some audio devices won’t let
450 * themselves be opened multiple times for read access.
451 */
452 lxa_state->lxas_idev_flags = flags & ~FWRITE;
453 lxa_state->lxas_odev_flags = flags & ~FREAD;

455 /* make sure we have devices to read from and write to */
456 if (((flags & FREAD) && (idev == NULL)) ||

new/usr/src/uts/common/brand/lx/io/lx_audio.c 8

457 ((flags & FWRITE) && (odev == NULL))) {
458 rv = ENODEV;
459 goto out;
460 }
461 } else {
462 lxa_state->lxas_idev_flags = lxa_state->lxas_odev_flags = flags;
463 }

465 /* get an ident to open the devices */
466 if (ldi_ident_from_dev(lxa_state->lxas_dev_new, &li) != 0) {
467 rv = ENODEV;
468 goto out;
469 }

471 /* open the input device */
472 lxa_state->lxas_idev_lh = NULL;
473 if (((lxa_state->lxas_type == LXA_TYPE_AUDIOCTL) ||
474 (lxa_state->lxas_idev_flags & FREAD)) &&
475 (idev != NULL)) {
476 rv = ldi_open_by_name(idev, lxa_state->lxas_idev_flags,
477 kcred, &lh, li);
478 if (rv != 0) {
479 zcmn_err(getzoneid(), CE_WARN, "lxa_open_dev: "
480 "unable to open audio device: %s", idev);
481 zcmn_err(getzoneid(), CE_WARN, "lxa_open_dev: "
482 "possible zone audio configuration error");
483 goto out;
484 }
485 lxa_state->lxas_idev_lh = lh;
486 }

488 /* open the output device */
489 lxa_state->lxas_odev_lh = NULL;
490 if (((lxa_state->lxas_type == LXA_TYPE_AUDIOCTL) ||
491 (lxa_state->lxas_odev_flags & FWRITE)) &&
492 (odev != NULL)) {
493 rv = ldi_open_by_name(odev, lxa_state->lxas_odev_flags,
494 kcred, &lh, li);
495 if (rv != 0) {
496 /*
497 * If this open failed and we previously opened an
498 * input device, it is the responsibility of the
499 * caller to close that device after we return
500 * failure here.
501 */
502 zcmn_err(getzoneid(), CE_WARN, "lxa_open_dev: "
503 "unable to open audio device: %s", odev);
504 zcmn_err(getzoneid(), CE_WARN, "lxa_open_dev: "
505 "possible zone audio configuration error");
506 goto out;
507 }
508 lxa_state->lxas_odev_lh = lh;
509 }

511 /* free up stuff */
512 out:
513 if (li != NULL)
514 ldi_ident_release(li);
515 if (idev != NULL)
516 strfree(idev);
517 if (odev != NULL)
518 strfree(odev);

520 return (rv);
521 }

new/usr/src/uts/common/brand/lx/io/lx_audio.c 9

523 void
524 lxa_mmap_thread_exit(lxa_state_t *lxa_state)
525 {
526 mutex_enter(&lxa_lock);
527 lxa_state->lxas_mmap_thread = NULL;
528 lxa_state->lxas_mmap_thread_frag = 0;
529 lxa_state->lxas_mmap_thread_running = 0;
530 lxa_state->lxas_mmap_thread_exit = 0;
531 mutex_exit(&lxa_lock);
532 thread_exit();
533 /*NOTREACHED*/
534 }

536 void
537 lxa_mmap_thread(lxa_state_t *lxa_state)
538 {
539 struct uio uio, uio_null;
540 iovec_t iovec, iovec_null;
541 uint_t bytes_per_sec, usec_per_frag, ticks_per_frag;
542 int rv, junk, eof, retry;
543 audio_info_t ai;

545 /* we better be setup for writing to the output device */
546 ASSERT((lxa_state->lxas_flags & FWRITE) != 0);
547 ASSERT(lxa_state->lxas_odev_lh != NULL);

549 /* setup a uio to output one fragment */
550 uio.uio_iov = &iovec;
551 uio.uio_iovcnt = 1;
552 uio.uio_offset = 0;
553 uio.uio_segflg = UIO_SYSSPACE;
554 uio.uio_fmode = 0;
555 uio.uio_extflg = 0;
556 uio.uio_llimit = MAXOFFSET_T;

558 /* setup a uio to output a eof (a fragment with a length of 0) */
559 uio_null.uio_iov = &iovec_null;
560 uio_null.uio_iov->iov_len = 0;
561 uio_null.uio_iov->iov_base = NULL;
562 uio_null.uio_iovcnt = 1;
563 uio_null.uio_offset = 0;
564 uio_null.uio_segflg = UIO_SYSSPACE;
565 uio_null.uio_fmode = 0;
566 uio_null.uio_extflg = 0;
567 uio_null.uio_llimit = MAXOFFSET_T;
568 uio_null.uio_resid = 0;

570 lxa_mmap_thread_top:
571 ASSERT(!MUTEX_HELD(&lxa_lock));

573 /* first drain any pending audio output */
574 if ((rv = ldi_ioctl(lxa_state->lxas_odev_lh,
575 AUDIO_DRAIN, NULL, FKIOCTL, kcred, &junk)) != 0) {
576 cmn_err(CE_WARN, "lxa_mmap_thread: "
577 "AUDIO_DRAIN failed, aborting audio output");
578 lxa_mmap_thread_exit(lxa_state);
579 /*NOTREACHED*/
580 }

582 /*
583 * we depend on the ai.play.eof value to keep track of
584 * audio output progress so reset it here.
585 */
586 AUDIO_INITINFO(&ai);
587 ai.play.eof = 0;
588 if ((rv = ldi_ioctl(lxa_state->lxas_odev_lh,

new/usr/src/uts/common/brand/lx/io/lx_audio.c 10

589 AUDIO_SETINFO, (intptr_t)&ai, FKIOCTL, kcred, &junk)) != 0) {
590 cmn_err(CE_WARN, "lxa_mmap_thread: "
591 "AUDIO_SETINFO failed, aborting audio output");
592 lxa_mmap_thread_exit(lxa_state);
593 /*NOTREACHED*/
594 }

596 /*
597 * we’re going to need to know the sampling rate and number
598 * of output channels to estimate how long we can sleep between
599 * requests.
600 */
601 if ((rv = ldi_ioctl(lxa_state->lxas_odev_lh, AUDIO_GETINFO,
602 (intptr_t)&ai, FKIOCTL, kcred, &junk)) != 0) {
603 cmn_err(CE_WARN, "lxa_mmap_thread: "
604 "AUDIO_GETINFO failed, aborting audio output");
605 lxa_mmap_thread_exit(lxa_state);
606 /*NOTREACHED*/
607 }

609 /* estimate how many ticks it takes to output a fragment of data */
610 bytes_per_sec = (ai.play.sample_rate * ai.play.channels *
611 ai.play.precision) / 8;
612 usec_per_frag = MICROSEC * lxa_state->lxas_frag_size / bytes_per_sec;
613 ticks_per_frag = drv_usectohz(usec_per_frag);

615 /* queue up three fragments of of data into the output stream */
616 eof = 3;

618 /* sanity check the eof value */
619 ASSERT(ai.play.eof == 0);
620 ai.play.eof = 0;

622 /* we always start audio output at fragment 0 */
623 mutex_enter(&lxa_lock);
624 lxa_state->lxas_mmap_thread_frag = 0;

626 /*
627 * we shouldn’t have allowed the mapping if it isn’t a multiple
628 * of the fragment size
629 */
630 ASSERT((lxa_state->lxas_umem_len % lxa_state->lxas_frag_size) == 0);

632 while (!lxa_state->lxas_mmap_thread_exit) {
633 size_t start, end;

635 /*
636 * calculate the start and ending offsets of the next
637 * fragment to output
638 */
639 start = lxa_state->lxas_mmap_thread_frag *
640 lxa_state->lxas_frag_size;
641 end = start + lxa_state->lxas_frag_size;

643 ASSERT(start < lxa_state->lxas_umem_len);
644 ASSERT(end <= lxa_state->lxas_umem_len);

646 /* setup the uio to output one fragment of audio */
647 uio.uio_resid = end - start;
648 uio.uio_iov->iov_len = end - start;
649 uio.uio_iov->iov_base = &lxa_state->lxas_umem_ptr[start];

651 /* increment the current fragment index */
652 lxa_state->lxas_mmap_thread_frag =
653 (lxa_state->lxas_mmap_thread_frag + 1) %
654 (lxa_state->lxas_umem_len / lxa_state->lxas_frag_size);

new/usr/src/uts/common/brand/lx/io/lx_audio.c 11

656 /* drop the audio lock before actually outputting data */
657 mutex_exit(&lxa_lock);

659 /*
660 * write the fragment of audio data to the device stream
661 * then write a eof to the stream to tell the device to
662 * increment ai.play.eof when it’s done processing the
663 * fragment we just wrote
664 */
665 if ((rv = ldi_write(lxa_state->lxas_odev_lh,
666 &uio, kcred)) != 0) {
667 cmn_err(CE_WARN, "lxa_mmap_thread: "
668 "ldi_write() failed (%d), "
669 "resetting audio output", rv);
670 goto lxa_mmap_thread_top;
671 }
672 if ((rv = ldi_write(lxa_state->lxas_odev_lh,
673 &uio_null, kcred)) != 0) {
674 cmn_err(CE_WARN, "lxa_mmap_thread: "
675 "ldi_write(eof) failed (%d), "
676 "resetting audio output", rv);
677 goto lxa_mmap_thread_top;
678 }

680 /*
681 * we want to avoid buffer underrun so ensure that
682 * there is always at least one fragment of data in the
683 * output stream.
684 */
685 mutex_enter(&lxa_lock);
686 if (--eof > 0) {
687 continue;
688 }

690 /*
691 * now we wait until the audio device has finished outputting
692 * at least one fragment of data.
693 */
694 retry = 0;
695 while (!lxa_state->lxas_mmap_thread_exit && (eof == 0)) {
696 uint_t ai_eof_old = ai.play.eof;

698 mutex_exit(&lxa_lock);

700 /*
701 * delay for the number of ticks it takes
702 * to output one fragment of data
703 */
704 if (ticks_per_frag > 0)
705 delay(ticks_per_frag);

707 /* check if we’ve managed to output any fragments */
708 if ((rv = ldi_ioctl(lxa_state->lxas_odev_lh,
709 AUDIO_GETINFO, (intptr_t)&ai,
710 FKIOCTL, kcred, &junk)) != 0) {
711 cmn_err(CE_WARN, "lxa_mmap_thread: "
712 "AUDIO_GETINFO failed (%d), "
713 "resetting audio output", rv);
714 /* re-start mmap audio output */
715 goto lxa_mmap_thread_top;
716 }

718 if (ai_eof_old == ai.play.eof) {
719 /* institute a random retry limit */
720 if (retry++ < 100) {

new/usr/src/uts/common/brand/lx/io/lx_audio.c 12

721 mutex_enter(&lxa_lock);
722 continue;
723 }
724 cmn_err(CE_WARN, "lxa_mmap_thread: "
725 "output stalled, "
726 "resetting audio output");
727 /* re-start mmap audio output */
728 goto lxa_mmap_thread_top;
729 }

731 if (ai.play.eof > ai_eof_old) {
732 eof = ai.play.eof - ai_eof_old;
733 } else {
734 /* eof counter wrapped around */
735 ASSERT(ai_eof_old < ai.play.eof);
736 eof = ai.play.eof + (ai_eof_old - UINTMAX_MAX);
737 }
738 /* we’re done with this loop so re-aquire the lock */
739 ASSERT(eof != 0);
740 mutex_enter(&lxa_lock);
741 }
742 }
743 mutex_exit(&lxa_lock);
744 lxa_mmap_thread_exit(lxa_state);
745 /*NOTREACHED*/
746 }

748 static void
749 lxa_mmap_output_disable(lxa_state_t *lxa_state)
750 {
751 kt_did_t tid;

753 mutex_enter(&lxa_lock);

755 /* if the output thread isn’t running there’s nothing to do */
756 if (lxa_state->lxas_mmap_thread_running == 0) {
757 mutex_exit(&lxa_lock);
758 return;
759 }

761 /* tell the pcm mmap output thread to exit */
762 lxa_state->lxas_mmap_thread_exit = 1;

764 /* wait for the mmap output thread to exit */
765 tid = lxa_state->lxas_mmap_thread->t_did;
766 mutex_exit(&lxa_lock);
767 thread_join(tid);
768 }

770 static void
771 lxa_mmap_output_enable(lxa_state_t *lxa_state)
772 {
773 mutex_enter(&lxa_lock);

775 /* if the output thread is already running there’s nothing to do */
776 if (lxa_state->lxas_mmap_thread_running != 0) {
777 mutex_exit(&lxa_lock);
778 return;
779 }

781 /* setup output state */
782 lxa_state->lxas_mmap_thread_running = 1;
783 lxa_state->lxas_mmap_thread_exit = 0;
784 lxa_state->lxas_mmap_thread_frag = 0;

786 /* kick off a thread to do the mmap pcm output */

new/usr/src/uts/common/brand/lx/io/lx_audio.c 13

787 lxa_state->lxas_mmap_thread = thread_create(NULL, 0,
788 (void (*)())lxa_mmap_thread, lxa_state,
789 0, &p0, TS_RUN, minclsyspri);
790 ASSERT(lxa_state->lxas_mmap_thread != NULL);

792 mutex_exit(&lxa_lock);
793 }

795 static int
796 lxa_ioc_mmap_output(lxa_state_t *lxa_state, intptr_t arg, int mode)
797 {
798 uint_t trigger;

800 /* we only support output via mmap */
801 if ((lxa_state->lxas_flags & FWRITE) == 0)
802 return (EINVAL);

804 /* if the user hasn’t mmap the device then there’s nothing to do */
805 if (lxa_state->lxas_umem_cookie == NULL)
806 return (EINVAL);

808 /* copy in the request */
809 if (ddi_copyin((void *)arg, &trigger, sizeof (trigger), mode) != 0)
810 return (EFAULT);

812 /* a zero value disables output */
813 if (trigger == 0) {
814 lxa_mmap_output_disable(lxa_state);
815 return (0);
816 }

818 /* a non-zero value enables output */
819 lxa_mmap_output_enable(lxa_state);
820 return (0);
821 }

823 static int
824 lxa_ioc_mmap_ptr(lxa_state_t *lxa_state, intptr_t arg, int mode)
825 {
826 int ptr;

828 /* we only support output via mmap */
829 if ((lxa_state->lxas_flags & FWRITE) == 0)
830 return (EINVAL);

832 /* if the user hasn’t mmap the device then there’s nothing to do */
833 if (lxa_state->lxas_umem_cookie == NULL)
834 return (EINVAL);

836 /* if the output thread isn’t running then there’s nothing to do */
837 if (lxa_state->lxas_mmap_thread_running == 0)
838 return (EINVAL);

840 mutex_enter(&lxa_lock);
841 ptr = lxa_state->lxas_mmap_thread_frag * lxa_state->lxas_frag_size;
842 mutex_exit(&lxa_lock);

844 if (ddi_copyout(&ptr, (void *)arg, sizeof (ptr), mode) != 0)
845 return (EFAULT);

847 return (0);
848 }

850 static int
851 lxa_ioc_get_frag_info(lxa_state_t *lxa_state, intptr_t arg, int mode)
852 {

new/usr/src/uts/common/brand/lx/io/lx_audio.c 14

853 lxa_frag_info_t fi;

855 fi.lxa_fi_size = lxa_state->lxas_frag_size;
856 fi.lxa_fi_cnt = lxa_state->lxas_frag_cnt;

858 if (ddi_copyout(&fi, (void *)arg, sizeof (fi), mode) != 0)
859 return (EFAULT);

861 return (0);
862 }

864 static int
865 lxa_ioc_set_frag_info(lxa_state_t *lxa_state, intptr_t arg, int mode)
866 {
867 lxa_frag_info_t fi;

869 /* if the device is mmaped we can’t change the fragment settings */
870 if (lxa_state->lxas_umem_cookie != NULL)
871 return (EINVAL);

873 /* copy in the request */
874 if (ddi_copyin((void *)arg, &fi, sizeof (fi), mode) != 0)
875 return (EFAULT);

877 /* do basic bounds checking */
878 if ((fi.lxa_fi_cnt == 0) || (fi.lxa_fi_size < 16))
879 return (EINVAL);

881 /* don’t accept size values less than 16 */

883 lxa_state->lxas_frag_size = fi.lxa_fi_size;
884 lxa_state->lxas_frag_cnt = fi.lxa_fi_cnt;

886 return (0);
887 }

889 static int
890 lxa_audio_drain(lxa_state_t *lxa_state)
891 {
892 int junk;

894 /* only applies to output buffers */
895 if (lxa_state->lxas_odev_lh == NULL)
896 return (EINVAL);

898 /* can’t fail so ignore the return value */
899 (void) ldi_ioctl(lxa_state->lxas_odev_lh, AUDIO_DRAIN, NULL,
900 FKIOCTL, kcred, &junk);
901 return (0);
902 }

904 /*
905 * lxa_audio_info_merge() usage notes:
906 *
907 * - it’s important to make sure NOT to get the ai_idev and ai_odev
908 * parameters mixed up when calling lxa_audio_info_merge().
909 *
910 * - it’s important for the caller to make sure that AUDIO_GETINFO
911 * was called for the input device BEFORE the output device. (see
912 * the comments for merging the monitor_gain setting to see why.)
913 */
914 static void
915 lxa_audio_info_merge(lxa_state_t *lxa_state,
916 audio_info_t *ai_idev, audio_info_t *ai_odev, audio_info_t *ai_merged)
917 {
918 /* if we’re not setup for output return the intput device info */

new/usr/src/uts/common/brand/lx/io/lx_audio.c 15

919 if (lxa_state->lxas_odev_lh == NULL) {
920 *ai_merged = *ai_idev;
921 return;
922 }

924 /* if we’re not setup for input return the output device info */
925 if (lxa_state->lxas_idev_lh == NULL) {
926 *ai_merged = *ai_odev;
927 return;
928 }

930 /* get record values from the input device */
931 ai_merged->record = ai_idev->record;

933 /* get play values from the output device */
934 ai_merged->play = ai_odev->play;

936 /* muting status only matters for the output device */
937 ai_merged->output_muted = ai_odev->output_muted;

939 /* we don’t support device reference counts, always return 1 */
940 ai_merged->ref_cnt = 1;

942 /*
943 * for supported hw/sw features report the combined feature
944 * set we calcuated out earlier.
945 */
946 ai_merged->hw_features = lxa_state->lxas_hw_features;
947 ai_merged->sw_features = lxa_state->lxas_sw_features;

949 if (!lxa_state->lxas_devs_same) {
950 /*
951 * if the input and output devices are different
952 * physical devices then we don’t support input to
953 * output loopback so we always report the input
954 * to output loopback gain to be zero.
955 */
956 ai_merged->monitor_gain = 0;
957 } else {
958 /*
959 * the intput and output devices are actually the
960 * same physical device. hence it probably supports
961 * intput to output loopback. regardless we should
962 * pass back the intput to output gain reported by
963 * the device. when we pick a value to passback we
964 * use the output device value since that was
965 * the most recently queried. (we base this
966 * decision on the assumption that io gain is
967 * actually hardware setting in the device and
968 * hence if it is changed on one open instance of
969 * the device the change will be visable to all
970 * other instances of the device.)
971 */
972 ai_merged->monitor_gain = ai_odev->monitor_gain;
973 }

975 /*
976 * for currently enabled software features always return the
977 * merger of the two. (of course the enabled software features
978 * for the input and output devices should alway be the same,
979 * so if it isn’t complain.)
980 */
981 if (ai_idev->sw_features_enabled != ai_odev->sw_features_enabled)
982 zcmn_err(getzoneid(), CE_WARN, "lx_audio: "
983 "unexpected sofware feature state");
984 ai_merged->sw_features_enabled =

new/usr/src/uts/common/brand/lx/io/lx_audio.c 16

985 ai_idev->sw_features_enabled & ai_odev->sw_features_enabled;
986 }

988 static int
989 lxa_audio_setinfo(lxa_state_t *lxa_state, int cmd, intptr_t arg,
990 int mode)
991 {
992 audio_info_t ai, ai_null, ai_idev, ai_odev;
993 int rv, junk;

995 /* copy in the request */
996 if (ddi_copyin((void *)arg, &ai, sizeof (ai), mode) != 0)
997 return (EFAULT);

999 /*
1000 * if the caller is attempting to enable a software feature that
1001 * we didn’t report as supported the return an error
1002 */
1003 if ((ai.sw_features_enabled != -1) &&
1004 (ai.sw_features_enabled & ~lxa_state->lxas_sw_features))
1005 return (EINVAL);

1007 /*
1008 * if a process has mmaped this device then we don’t allow
1009 * changes to the play.eof field (since mmap output depends
1010 * on this field.
1011 */
1012 if ((lxa_state->lxas_umem_cookie != NULL) &&
1013 (ai.play.eof != -1))
1014 return (EIO);

1016 /* initialize the new requests */
1017 AUDIO_INITINFO(&ai_null);
1018 ai_idev = ai_odev = ai;

1020 /* remove audio input settings from the output device request */
1021 ai_odev.record = ai_null.record;

1023 /* remove audio output settings from the input device request */
1024 ai_idev.play = ai_null.play;
1025 ai_idev.output_muted = ai_null.output_muted;

1027 /* apply settings to the intput device */
1028 if ((lxa_state->lxas_idev_lh != NULL) &&
1029 ((rv = ldi_ioctl(lxa_state->lxas_idev_lh, cmd,
1030 (intptr_t)&ai_idev, FKIOCTL, kcred, &junk)) != 0))
1031 return (rv);

1033 /* apply settings to the output device */
1034 if ((lxa_state->lxas_odev_lh != NULL) &&
1035 ((rv = ldi_ioctl(lxa_state->lxas_odev_lh, cmd,
1036 (intptr_t)&ai_odev, FKIOCTL, kcred, &junk)) != 0))
1037 return (rv);

1039 /*
1040 * a AUDIO_SETINFO call performs an implicit AUDIO_GETINFO to
1041 * return values (see the coments in audioio.h.) so we need
1042 * to combine the values returned from the input and output
1043 * device back into the users buffer.
1044 */
1045 lxa_audio_info_merge(lxa_state, &ai_idev, &ai_odev, &ai);

1047 /* copyout the results */
1048 if (ddi_copyout(&ai, (void *)arg, sizeof (ai), mode) != 0) {
1049 return (EFAULT);
1050 }

new/usr/src/uts/common/brand/lx/io/lx_audio.c 17

1052 return (0);
1053 }

1055 static int
1056 lxa_audio_getinfo(lxa_state_t *lxa_state, intptr_t arg, int mode)
1057 {
1058 audio_info_t ai, ai_idev, ai_odev;
1059 int rv, junk;

1061 /* get the settings from the input device */
1062 if ((lxa_state->lxas_idev_lh != NULL) &&
1063 ((rv = ldi_ioctl(lxa_state->lxas_idev_lh, AUDIO_GETINFO,
1064 (intptr_t)&ai_idev, FKIOCTL, kcred, &junk)) != 0))
1065 return (rv);

1067 /* get the settings from the output device */
1068 if ((lxa_state->lxas_odev_lh != NULL) &&
1069 ((rv = ldi_ioctl(lxa_state->lxas_odev_lh, AUDIO_GETINFO,
1070 (intptr_t)&ai_odev, FKIOCTL, kcred, &junk)) != 0))
1071 return (rv);

1073 /*
1074 * we need to combine the values returned from the input
1075 * and output device back into a single user buffer.
1076 */
1077 lxa_audio_info_merge(lxa_state, &ai_idev, &ai_odev, &ai);

1079 /* copyout the results */
1080 if (ddi_copyout(&ai, (void *)arg, sizeof (ai), mode) != 0)
1081 return (EFAULT);

1083 return (0);
1084 }

1086 static int
1087 lxa_mixer_ai_from_lh(ldi_handle_t lh, audio_info_t *ai)
1088 {
1089 int rv, junk;

1091 ASSERT((lh != NULL) && (ai != NULL));

1093 /* get the device state and channel state */
1094 rv = ldi_ioctl(lh, AUDIO_GETINFO, (intptr_t)ai, FKIOCTL, kcred, &junk);

1096 return (rv);
1097 }

1099 static int
1100 lxa_mixer_get_ai(lxa_state_t *lxa_state, audio_info_t *ai)
1101 {
1102 audio_info_t ai_idev, ai_odev;
1103 int rv;

1105 /* if there is no input device, query the output device */
1106 if (lxa_state->lxas_idev_lh == NULL)
1107 return (lxa_mixer_ai_from_lh(lxa_state->lxas_odev_lh, ai));

1109 /* if there is no ouput device, query the intput device */
1110 if (lxa_state->lxas_odev_lh == NULL)
1111 return (lxa_mixer_ai_from_lh(lxa_state->lxas_idev_lh, ai));

1113 /*
1114 * now get the audio_info and channel information for the
1115 * underlying output device.
1116 */

new/usr/src/uts/common/brand/lx/io/lx_audio.c 18

1117 if ((rv = lxa_mixer_ai_from_lh(lxa_state->lxas_idev_lh,
1118 &ai_idev)) != 0)
1119 return (rv);
1120 if ((rv = lxa_mixer_ai_from_lh(lxa_state->lxas_odev_lh,
1121 &ai_odev)) != 0)
1122 return (rv);

1124 /* now merge the audio_info structures */
1125 lxa_audio_info_merge(lxa_state, &ai_idev, &ai_odev, ai);
1126 return (0);
1127 }

1129 static int
1130 lxa_mixer_get_common(lxa_state_t *lxa_state, int cmd, intptr_t arg, int mode)
1131 {
1132 lxa_mixer_levels_t lxa_ml;
1133 audio_info_t ai;
1134 int rv;

1136 ASSERT(lxa_state->lxas_type == LXA_TYPE_AUDIOCTL);

1138 if ((rv = lxa_mixer_get_ai(lxa_state, &ai)) != 0)
1139 return (rv);

1141 switch (cmd) {
1142 case LXA_IOC_MIXER_GET_VOL:
1143 lxa_ml.lxa_ml_gain = ai.play.gain;
1144 lxa_ml.lxa_ml_balance = ai.play.balance;
1145 break;
1146 case LXA_IOC_MIXER_GET_MIC:
1147 lxa_ml.lxa_ml_gain = ai.record.gain;
1148 lxa_ml.lxa_ml_balance = ai.record.balance;
1149 break;
1150 }

1152 if (ddi_copyout(&lxa_ml, (void *)arg, sizeof (lxa_ml), mode) != 0)
1153 return (EFAULT);
1154 return (0);
1155 }

1157 static int
1158 lxa_mixer_set_common(lxa_state_t *lxa_state, int cmd, intptr_t arg, int mode)
1159 {
1160 lxa_mixer_levels_t lxa_ml;
1161 audio_info_t ai;

1163 ASSERT(lxa_state->lxas_type == LXA_TYPE_AUDIOCTL);

1165 /* get the new mixer settings */
1166 if (ddi_copyin((void *)arg, &lxa_ml, sizeof (lxa_ml), mode) != 0)
1167 return (EFAULT);

1169 /* sanity check the mixer settings */
1170 if (!LXA_MIXER_LEVELS_OK(&lxa_ml))
1171 return (EINVAL);

1173 /* initialize an audio_info struct with the new settings */
1174 AUDIO_INITINFO(&ai);
1175 switch (cmd) {
1176 case LXA_IOC_MIXER_SET_VOL:
1177 ai.play.gain = lxa_ml.lxa_ml_gain;
1178 ai.play.balance = lxa_ml.lxa_ml_balance;
1179 break;
1180 case LXA_IOC_MIXER_SET_MIC:
1181 ai.record.gain = lxa_ml.lxa_ml_gain;
1182 ai.record.balance = lxa_ml.lxa_ml_balance;

new/usr/src/uts/common/brand/lx/io/lx_audio.c 19

1183 break;
1184 }

1186 return (lxa_audio_setinfo(lxa_state, AUDIO_SETINFO, (intptr_t)&ai,
1187 FKIOCTL));
1188 }

1190 static int
1191 lxa_mixer_get_pcm(lxa_state_t *lxa_state, intptr_t arg, int mode)
1192 {
1193 ASSERT(lxa_state->lxas_type == LXA_TYPE_AUDIOCTL);

1195 /* simply return the cached pcm mixer settings */
1196 mutex_enter(&lxa_lock);
1197 if (ddi_copyout(&lxa_state->lxas_zs->lxa_zs_pcm_levels, (void *)arg,
1198 sizeof (lxa_state->lxas_zs->lxa_zs_pcm_levels), mode) != 0) {
1199 mutex_exit(&lxa_lock);
1200 return (EFAULT);
1201 }
1202 mutex_exit(&lxa_lock);
1203 return (0);
1204 }

1206 static int
1207 lxa_mixer_set_pcm(lxa_state_t *lxa_state, intptr_t arg, int mode)
1208 {
1209 lxa_mixer_levels_t lxa_ml;
1210 int rv;

1212 ASSERT(lxa_state->lxas_type == LXA_TYPE_AUDIOCTL);

1214 /* get the new mixer settings */
1215 if (ddi_copyin((void *)arg, &lxa_ml, sizeof (lxa_ml), mode) != 0)
1216 return (EFAULT);

1218 /* sanity check the mixer settings */
1219 if (!LXA_MIXER_LEVELS_OK(&lxa_ml))
1220 return (EINVAL);

1222 mutex_enter(&lxa_lock);

1224 /* if there is an active output channel, update it */
1225 if (lxa_state->lxas_zs->lxa_zs_ostate != NULL) {
1226 audio_info_t ai;

1228 /* initialize an audio_info struct with the new settings */
1229 AUDIO_INITINFO(&ai);
1230 ai.play.gain = lxa_ml.lxa_ml_gain;
1231 ai.play.balance = lxa_ml.lxa_ml_balance;

1233 if ((rv = lxa_audio_setinfo(lxa_state->lxas_zs->lxa_zs_ostate,
1234 AUDIO_SETINFO, (intptr_t)&ai, FKIOCTL)) != 0) {
1235 mutex_exit(&lxa_lock);
1236 return (rv);
1237 }
1238 }

1240 /* update the cached mixer settings */
1241 lxa_state->lxas_zs->lxa_zs_pcm_levels = lxa_ml;

1243 mutex_exit(&lxa_lock);
1244 return (0);
1245 }

1247 static int
1248 lxa_zone_reg(intptr_t arg, int mode)

new/usr/src/uts/common/brand/lx/io/lx_audio.c 20

1249 {
1250 lxa_zone_reg_t lxa_zr;
1251 lxa_zstate_t *lxa_zs = NULL;
1252 char *idev_name = NULL, *odev_name = NULL, *pval = NULL;
1253 int i, junk;

1255 if (ddi_copyin((void *)arg, &lxa_zr, sizeof (lxa_zr), mode) != 0)
1256 return (EFAULT);

1258 /* make sure that zone_name is a valid string */
1259 for (i = 0; i < sizeof (lxa_zr.lxa_zr_zone_name); i++)
1260 if (lxa_zr.lxa_zr_zone_name[i] == ’\0’)
1261 break;
1262 if (i == sizeof (lxa_zr.lxa_zr_zone_name))
1263 return (EINVAL);

1265 /* make sure that inputdev is a valid string */
1266 for (i = 0; i < sizeof (lxa_zr.lxa_zr_inputdev); i++)
1267 if (lxa_zr.lxa_zr_inputdev[i] == ’\0’)
1268 break;
1269 if (i == sizeof (lxa_zr.lxa_zr_inputdev))
1270 return (EINVAL);

1272 /* make sure it’s a valid inputdev property value */
1273 if (lxa_devprop_verify(lxa_zr.lxa_zr_inputdev) != 0)
1274 return (EINVAL);

1276 /* make sure that outputdev is a valid string */
1277 for (i = 0; i < sizeof (lxa_zr.lxa_zr_outputdev); i++)
1278 if (lxa_zr.lxa_zr_outputdev[i] == ’\0’)
1279 break;
1280 if (i == sizeof (lxa_zr.lxa_zr_outputdev))
1281 return (EINVAL);

1283 /* make sure it’s a valid outputdev property value */
1284 if (lxa_devprop_verify(lxa_zr.lxa_zr_outputdev) != 0)
1285 return (EINVAL);

1287 /* get the property names */
1288 idev_name = lxa_devprop_name(lxa_zr.lxa_zr_zone_name,
1289 LXA_PROP_INPUTDEV);
1290 odev_name = lxa_devprop_name(lxa_zr.lxa_zr_zone_name,
1291 LXA_PROP_OUTPUTDEV);

1293 /*
1294 * allocate and initialize a zone state structure
1295 * since the audio device can’t possibly be opened yet
1296 * (since we’re setting it up now and the zone isn’t booted
1297 * yet) assign some some resonable default pcm channel settings.
1298 * also, default to one mixer channel.
1299 */
1300 lxa_zs = kmem_zalloc(sizeof (*lxa_zs), KM_SLEEP);
1301 lxa_zs->lxa_zs_zonename = strdup(lxa_zr.lxa_zr_zone_name);
1302 lxa_zs->lxa_zs_pcm_levels.lxa_ml_gain = AUDIO_MID_GAIN;
1303 lxa_zs->lxa_zs_pcm_levels.lxa_ml_balance = AUDIO_MID_BALANCE;

1305 mutex_enter(&lxa_lock);

1307 /*
1308 * make sure this zone isn’t already registered
1309 * a zone is registered with properties for that zone exist
1310 * or there is a zone state structure for that zone
1311 */
1312 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, lxa_dip,
1313 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
1314 idev_name, &pval) == DDI_PROP_SUCCESS) {

new/usr/src/uts/common/brand/lx/io/lx_audio.c 21

1315 goto err_unlock;
1316 }
1317 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, lxa_dip,
1318 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
1319 odev_name, &pval) == DDI_PROP_SUCCESS) {
1320 goto err_unlock;
1321 }
1322 if (mod_hash_find(lxa_zstate_hash,
1323 (mod_hash_key_t)lxa_zs->lxa_zs_zonename,
1324 (mod_hash_val_t *)&junk) == 0)
1325 goto err_unlock;

1327 /*
1328 * create the new properties and insert the zone state structure
1329 * into the global hash
1330 */
1331 if (ddi_prop_update_string(DDI_DEV_T_NONE, lxa_dip,
1332 idev_name, lxa_zr.lxa_zr_inputdev) != DDI_PROP_SUCCESS)
1333 goto err_prop_remove;
1334 if (ddi_prop_update_string(DDI_DEV_T_NONE, lxa_dip,
1335 odev_name, lxa_zr.lxa_zr_outputdev) != DDI_PROP_SUCCESS)
1336 goto err_prop_remove;
1337 if (mod_hash_insert(lxa_zstate_hash,
1338 (mod_hash_key_t)lxa_zs->lxa_zs_zonename,
1339 (mod_hash_val_t)lxa_zs) != 0)
1340 goto err_prop_remove;

1342 /* success! */
1343 lxa_registered_zones++;
1344 mutex_exit(&lxa_lock);

1346 /* cleanup */
1347 strfree(idev_name);
1348 strfree(odev_name);
1349 return (0);

1351 err_prop_remove:
1352 (void) ddi_prop_remove(DDI_DEV_T_NONE, lxa_dip, idev_name);
1353 (void) ddi_prop_remove(DDI_DEV_T_NONE, lxa_dip, odev_name);

1355 err_unlock:
1356 mutex_exit(&lxa_lock);

1358 if (lxa_zs != NULL) {
1359 strfree(lxa_zs->lxa_zs_zonename);
1360 kmem_free(lxa_zs, sizeof (*lxa_zs));
1361 }
1362 if (pval != NULL)
1363 ddi_prop_free(pval);
1364 if (idev_name != NULL)
1365 strfree(idev_name);
1366 if (odev_name != NULL)
1367 strfree(odev_name);
1368 return (EIO);
1369 }

1371 static int
1372 lxa_zone_unreg(intptr_t arg, int mode)
1373 {
1374 lxa_zone_reg_t lxa_zr;
1375 lxa_zstate_t *lxa_zs = NULL;
1376 char *idev_name = NULL, *odev_name = NULL, *pval = NULL;
1377 int rv, i;

1379 if (ddi_copyin((void *)arg, &lxa_zr, sizeof (lxa_zr), mode) != 0)
1380 return (EFAULT);

new/usr/src/uts/common/brand/lx/io/lx_audio.c 22

1382 /* make sure that zone_name is a valid string */
1383 for (i = 0; i < sizeof (lxa_zr.lxa_zr_zone_name); i++)
1384 if (lxa_zr.lxa_zr_zone_name[i] == ’\0’)
1385 break;
1386 if (i == sizeof (lxa_zr.lxa_zr_zone_name))
1387 return (EINVAL);

1389 /* get the property names */
1390 idev_name = lxa_devprop_name(lxa_zr.lxa_zr_zone_name,
1391 LXA_PROP_INPUTDEV);
1392 odev_name = lxa_devprop_name(lxa_zr.lxa_zr_zone_name,
1393 LXA_PROP_OUTPUTDEV);

1395 mutex_enter(&lxa_lock);

1397 if (lxa_registered_zones <= 0) {
1398 rv = ENOENT;
1399 goto err_unlock;
1400 }

1402 /* make sure this zone is actually registered */
1403 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, lxa_dip,
1404 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
1405 idev_name, &pval) != DDI_PROP_SUCCESS) {
1406 rv = ENOENT;
1407 goto err_unlock;
1408 }
1409 ddi_prop_free(pval);
1410 pval = NULL;
1411 if (ddi_prop_lookup_string(DDI_DEV_T_ANY, lxa_dip,
1412 DDI_PROP_DONTPASS | DDI_PROP_NOTPROM,
1413 odev_name, &pval) != DDI_PROP_SUCCESS) {
1414 rv = ENOENT;
1415 goto err_unlock;
1416 }
1417 ddi_prop_free(pval);
1418 pval = NULL;
1419 if (mod_hash_find(lxa_zstate_hash,
1420 (mod_hash_key_t)lxa_zr.lxa_zr_zone_name,
1421 (mod_hash_val_t *)&lxa_zs) != 0) {
1422 rv = ENOENT;
1423 goto err_unlock;
1424 }
1425 ASSERT(strcmp(lxa_zr.lxa_zr_zone_name, lxa_zs->lxa_zs_zonename) == 0);

1427 /*
1428 * if the audio device is currently in use then refuse to
1429 * unregister the zone
1430 */
1431 if ((lxa_zs->lxa_zs_ostate != NULL) ||
1432 (lxa_zs->lxa_zs_ostate != NULL)) {
1433 rv = EBUSY;
1434 goto err_unlock;
1435 }

1437 /* success! cleanup zone config state */
1438 (void) ddi_prop_remove(DDI_DEV_T_NONE, lxa_dip, idev_name);
1439 (void) ddi_prop_remove(DDI_DEV_T_NONE, lxa_dip, odev_name);

1441 /*
1442 * note, the action of removing the zone state structure from the
1443 * hash will automatically free lxa_zs->lxa_zs_zonename.
1444 *
1445 * the reason for this is that we used lxa_zs->lxa_zs_zonename
1446 * as the hash key and by default mod_hash_create_strhash() uses

new/usr/src/uts/common/brand/lx/io/lx_audio.c 23

1447 * mod_hash_strkey_dtor() as a the hash key destructor. (which
1448 * free’s the key for us.
1449 */
1450 (void) mod_hash_remove(lxa_zstate_hash,
1451 (mod_hash_key_t)lxa_zr.lxa_zr_zone_name,
1452 (mod_hash_val_t *)&lxa_zs);
1453 lxa_registered_zones--;
1454 mutex_exit(&lxa_lock);

1456 /* cleanup */
1457 kmem_free(lxa_zs, sizeof (*lxa_zs));
1458 strfree(idev_name);
1459 strfree(odev_name);
1460 return (0);

1462 err_unlock:
1463 mutex_exit(&lxa_lock);

1465 if (pval != NULL)
1466 ddi_prop_free(pval);
1467 if (idev_name != NULL)
1468 strfree(idev_name);
1469 if (odev_name != NULL)
1470 strfree(odev_name);
1471 return (rv);
1472 }

1474 static int
1475 lxa_ioctl_devctl(int cmd, intptr_t arg, int mode)
1476 {
1477 /* devctl ioctls are only allowed from the global zone */
1478 ASSERT(getzoneid() == 0);
1479 if (getzoneid() != 0)
1480 return (EINVAL);

1482 switch (cmd) {
1483 case LXA_IOC_ZONE_REG:
1484 return (lxa_zone_reg(arg, mode));
1485 case LXA_IOC_ZONE_UNREG:
1486 return (lxa_zone_unreg(arg, mode));
1487 }

1489 return (EINVAL);
1490 }

1492 static int
1493 /*ARGSUSED*/
1494 lxa_open(dev_t *devp, int flags, int otyp, cred_t *credp)
1495 {
1496 lxa_dev_type_t open_type = LXA_TYPE_INVALID;
1497 lxa_zstate_t *lxa_zs;
1498 lxa_state_t *lxa_state;
1499 minor_t minor;
1500 int rv;

1502 if (getminor(*devp) == LXA_MINORNUM_DEVCTL) {
1503 /*
1504 * this is a devctl node, it exists to administer this
1505 * pseudo driver so it doesn’t actually need access to
1506 * any underlying audio devices. hence there is nothing
1507 * really to do here. course, this driver should
1508 * only be administered from the global zone.
1509 */
1510 ASSERT(getzoneid() == 0);
1511 if (getzoneid() != 0)
1512 return (EINVAL);

new/usr/src/uts/common/brand/lx/io/lx_audio.c 24

1513 return (0);
1514 }

1516 /* lookup the zone state structure */
1517 if (mod_hash_find(lxa_zstate_hash, (mod_hash_key_t)getzonename(),
1518 (mod_hash_val_t *)&lxa_zs) != 0) {
1519 return (EIO);
1520 }

1522 /* determine what type of device was opened */
1523 switch (getminor(*devp)) {
1524 case LXA_MINORNUM_DSP:
1525 open_type = LXA_TYPE_AUDIO;
1526 break;
1527 case LXA_MINORNUM_MIXER:
1528 open_type = LXA_TYPE_AUDIOCTL;
1529 break;
1530 default:
1531 return (EINVAL);
1532 }
1533 ASSERT(open_type != LXA_TYPE_INVALID);

1535 /* all other opens are clone opens so get a new minor node */
1536 minor = id_alloc(lxa_minor_id);

1538 /* allocate and initialize the new lxa_state structure */
1539 lxa_state = kmem_zalloc(sizeof (*lxa_state), KM_SLEEP);
1540 lxa_state->lxas_zs = lxa_zs;
1541 lxa_state->lxas_dev_old = *devp;
1542 lxa_state->lxas_dev_new = makedevice(getmajor(*devp), minor);
1543 lxa_state->lxas_flags = flags;
1544 lxa_state->lxas_type = open_type;

1546 /* initialize the input and output device */
1547 if (((rv = lxa_dev_open(lxa_state)) != 0) ||
1548 ((rv = lxa_dev_getfeatures(lxa_state)) != 0)) {
1549 lxa_state_close(lxa_state);
1550 return (rv);
1551 }

1553 /*
1554 * save this audio statue structure into a hash indexed
1555 * by it’s minor device number. (this will provide a convient
1556 * way to lookup the state structure on future operations.)
1557 */
1558 if (mod_hash_insert(lxa_state_hash, (mod_hash_key_t)(uintptr_t)minor,
1559 (mod_hash_val_t)lxa_state) != 0) {
1560 lxa_state_close(lxa_state);
1561 return (EIO);
1562 }

1564 mutex_enter(&lxa_lock);

1566 /* apply the currently cached zone PCM mixer levels */
1567 if ((lxa_state->lxas_type == LXA_TYPE_AUDIO) &&
1568 (lxa_state->lxas_odev_lh != NULL)) {
1569 audio_info_t ai;

1571 AUDIO_INITINFO(&ai);
1572 ai.play.gain = lxa_zs->lxa_zs_pcm_levels.lxa_ml_gain;
1573 ai.play.balance = lxa_zs->lxa_zs_pcm_levels.lxa_ml_balance;

1575 if ((rv = lxa_audio_setinfo(lxa_state,
1576 AUDIO_SETINFO, (intptr_t)&ai, FKIOCTL)) != 0) {
1577 mutex_exit(&lxa_lock);
1578 lxa_state_close(lxa_state);

new/usr/src/uts/common/brand/lx/io/lx_audio.c 25

1579 return (rv);
1580 }
1581 }

1583 /*
1584 * we only allow one active open of the input or output device.
1585 * check here for duplicate opens
1586 */
1587 if (lxa_state->lxas_type == LXA_TYPE_AUDIO) {
1588 if ((lxa_state->lxas_idev_lh != NULL) &&
1589 (lxa_zs->lxa_zs_istate != NULL)) {
1590 mutex_exit(&lxa_lock);
1591 lxa_state_close(lxa_state);
1592 return (EBUSY);
1593 }
1594 if ((lxa_state->lxas_odev_lh != NULL) &&
1595 (lxa_zs->lxa_zs_ostate != NULL)) {
1596 mutex_exit(&lxa_lock);
1597 lxa_state_close(lxa_state);
1598 return (EBUSY);
1599 }

1601 /* not a duplicate open, update the global zone state */
1602 if (lxa_state->lxas_idev_lh != NULL)
1603 lxa_zs->lxa_zs_istate = lxa_state;
1604 if (lxa_state->lxas_odev_lh != NULL)
1605 lxa_zs->lxa_zs_ostate = lxa_state;
1606 }
1607 mutex_exit(&lxa_lock);

1609 /* make sure to return our newly allocated dev_t */
1610 *devp = lxa_state->lxas_dev_new;
1611 return (0);
1612 }

1614 static int
1615 /*ARGSUSED*/
1616 lxa_close(dev_t dev, int flags, int otyp, cred_t *credp)
1617 {
1618 lxa_state_t *lxa_state;
1619 minor_t minor = getminor(dev);

1621 /* handle devctl minor nodes (these nodes don’t have a handle */
1622 if (getminor(dev) == LXA_MINORNUM_DEVCTL)
1623 return (0);

1625 /* get the handle for this device */
1626 if (mod_hash_find(lxa_state_hash, (mod_hash_key_t)(uintptr_t)minor,
1627 (mod_hash_val_t *)&lxa_state) != 0)
1628 return (EINVAL);

1630 lxa_state_close(lxa_state);
1631 return (0);
1632 }

1634 static int
1635 /*ARGSUSED*/
1636 lxa_read(dev_t dev, struct uio *uiop, cred_t *credp)
1637 {
1638 lxa_state_t *lxa_state;
1639 minor_t minor = getminor(dev);
1640 int rv;

1642 /* get the handle for this device */
1643 if (mod_hash_find(lxa_state_hash, (mod_hash_key_t)(uintptr_t)minor,
1644 (mod_hash_val_t *)&lxa_state) != 0)

new/usr/src/uts/common/brand/lx/io/lx_audio.c 26

1645 return (EINVAL);

1647 /*
1648 * if a process has mmaped this device then we don’t allow
1649 * any more reads or writes to the device
1650 */
1651 if (lxa_state->lxas_umem_cookie != NULL)
1652 return (EIO);

1654 /* we can’t do a read if there is no input device */
1655 if (lxa_state->lxas_idev_lh == NULL)
1656 return (EBADF);

1658 /* pass the request on */
1659 while (uiop->uio_resid != 0) {
1660 rv = ldi_read(lxa_state->lxas_idev_lh, uiop, kcred);
1661 if ((rv != 0) || (uiop->uio_fmode & (FNONBLOCK|FNDELAY))) {
1662 break;
1663 }
1664 }
1665 return (rv);
1666 }

1668 static int
1669 /*ARGSUSED*/
1670 lxa_write(dev_t dev, struct uio *uiop, cred_t *credp)
1671 {
1672 lxa_state_t *lxa_state;
1673 minor_t minor = getminor(dev);
1674 int rv;

1676 /* get the handle for this device */
1677 if (mod_hash_find(lxa_state_hash, (mod_hash_key_t)(uintptr_t)minor,
1678 (mod_hash_val_t *)&lxa_state) != 0)
1679 return (EINVAL);

1681 /*
1682 * if a process has mmaped this device then we don’t allow
1683 * any more reads or writes to the device
1684 */
1685 if (lxa_state->lxas_umem_cookie != NULL)
1686 return (EIO);

1688 /* we can’t do a write if there is no output device */
1689 if (lxa_state->lxas_odev_lh == NULL)
1690 return (EBADF);

1692 /* pass the request on */
1693 while (uiop->uio_resid != 0) {
1694 rv = ldi_write(lxa_state->lxas_odev_lh, uiop, kcred);
1695 if ((rv != 0) || (uiop->uio_fmode & (FNONBLOCK|FNDELAY))) {
1696 break;
1697 }
1698 }
1699 return (rv);
1700 }

1702 static int
1703 /*ARGSUSED*/
1704 lxa_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
1705 int *rvalp)
1706 {
1707 lxa_state_t *lxa_state;
1708 minor_t minor = getminor(dev);

1710 /* handle devctl minor nodes (these nodes don’t have a handle */

new/usr/src/uts/common/brand/lx/io/lx_audio.c 27

1711 if (getminor(dev) == LXA_MINORNUM_DEVCTL)
1712 return (lxa_ioctl_devctl(cmd, arg, mode));

1714 /* get the handle for this device */
1715 if (mod_hash_find(lxa_state_hash, (mod_hash_key_t)(uintptr_t)minor,
1716 (mod_hash_val_t *)&lxa_state) != 0)
1717 return (EINVAL);

1719 ASSERT((lxa_state->lxas_type == LXA_TYPE_AUDIO) ||
1720 (lxa_state->lxas_type == LXA_TYPE_AUDIOCTL));

1722 switch (cmd) {
1723 case LXA_IOC_GETMINORNUM:
1724 {
1725 int minornum = getminor(lxa_state->lxas_dev_old);
1726 if (ddi_copyout(&minornum, (void *)arg,
1727 sizeof (minornum), mode) != 0)
1728 return (EFAULT);
1729 }
1730 return (0);
1731 }

1733 if (lxa_state->lxas_type == LXA_TYPE_AUDIO) {
1734 /* deal with native ioctl */
1735 switch (cmd) {
1736 case LXA_IOC_MMAP_OUTPUT:
1737 return (lxa_ioc_mmap_output(lxa_state, arg, mode));
1738 case LXA_IOC_MMAP_PTR:
1739 return (lxa_ioc_mmap_ptr(lxa_state, arg, mode));
1740 case LXA_IOC_GET_FRAG_INFO:
1741 return (lxa_ioc_get_frag_info(lxa_state, arg, mode));
1742 case LXA_IOC_SET_FRAG_INFO:
1743 return (lxa_ioc_set_frag_info(lxa_state, arg, mode));
1744 }

1746 /* deal with layered ioctls */
1747 switch (cmd) {
1748 case AUDIO_DRAIN:
1749 return (lxa_audio_drain(lxa_state));
1750 case AUDIO_SETINFO:
1751 return (lxa_audio_setinfo(lxa_state,
1752 AUDIO_SETINFO, arg, mode));
1753 case AUDIO_GETINFO:
1754 return (lxa_audio_getinfo(lxa_state, arg, mode));
1755 }
1756 }

1758 if (lxa_state->lxas_type == LXA_TYPE_AUDIOCTL) {
1759 /* deal with native ioctl */
1760 switch (cmd) {
1761 case LXA_IOC_MIXER_GET_VOL:
1762 return (lxa_mixer_get_common(lxa_state,
1763 cmd, arg, mode));
1764 case LXA_IOC_MIXER_SET_VOL:
1765 return (lxa_mixer_set_common(lxa_state,
1766 cmd, arg, mode));
1767 case LXA_IOC_MIXER_GET_MIC:
1768 return (lxa_mixer_get_common(lxa_state,
1769 cmd, arg, mode));
1770 case LXA_IOC_MIXER_SET_MIC:
1771 return (lxa_mixer_set_common(lxa_state,
1772 cmd, arg, mode));
1773 case LXA_IOC_MIXER_GET_PCM:
1774 return (lxa_mixer_get_pcm(lxa_state, arg, mode));
1775 case LXA_IOC_MIXER_SET_PCM:
1776 return (lxa_mixer_set_pcm(lxa_state, arg, mode));

new/usr/src/uts/common/brand/lx/io/lx_audio.c 28

1777 }

1779 }

1781 return (EINVAL);
1782 }

1784 static int
1785 /*ARGSUSED*/
1786 lxa_devmap(dev_t dev, devmap_cookie_t dhp,
1787 offset_t off, size_t len, size_t *maplen, uint_t model)
1788 {
1789 lxa_state_t *lxa_state;
1790 minor_t minor = getminor(dev);
1791 ddi_umem_cookie_t umem_cookie;
1792 void *umem_ptr;
1793 int rv;

1795 /* get the handle for this device */
1796 if (mod_hash_find(lxa_state_hash, (mod_hash_key_t)(uintptr_t)minor,
1797 (mod_hash_val_t *)&lxa_state) != 0)
1798 return (EINVAL);

1800 /* we only support mmaping of audio devices */
1801 if (lxa_state->lxas_type != LXA_TYPE_AUDIO)
1802 return (EINVAL);

1804 /* we only support output via mmap */
1805 if ((lxa_state->lxas_flags & FWRITE) == 0)
1806 return (EINVAL);

1808 /* sanity check the amount of memory the user is allocating */
1809 if ((len == 0) ||
1810 (len > LXA_OSS_FRAG_MEM) ||
1811 ((len % lxa_state->lxas_frag_size) != 0))
1812 return (EINVAL);

1814 /* allocate and clear memory to mmap */
1815 umem_ptr = ddi_umem_alloc(len, DDI_UMEM_NOSLEEP, &umem_cookie);
1816 if (umem_ptr == NULL)
1817 return (ENOMEM);
1818 bzero(umem_ptr, len);

1820 /* setup the memory mappings */
1821 rv = devmap_umem_setup(dhp, lxa_dip, NULL, umem_cookie, 0, len,
1822 PROT_USER | PROT_READ | PROT_WRITE, 0, NULL);
1823 if (rv != 0) {
1824 ddi_umem_free(umem_cookie);
1825 return (EIO);
1826 }

1828 mutex_enter(&lxa_lock);

1830 /* we only support one mmap per open */
1831 if (lxa_state->lxas_umem_cookie != NULL) {
1832 ASSERT(lxa_state->lxas_umem_ptr != NULL);
1833 mutex_exit(&lxa_lock);
1834 ddi_umem_free(umem_cookie);
1835 return (EBUSY);
1836 }
1837 ASSERT(lxa_state->lxas_umem_ptr == NULL);

1839 *maplen = len;
1840 lxa_state->lxas_umem_len = len;
1841 lxa_state->lxas_umem_ptr = umem_ptr;
1842 lxa_state->lxas_umem_cookie = umem_cookie;

new/usr/src/uts/common/brand/lx/io/lx_audio.c 29

1843 mutex_exit(&lxa_lock);
1844 return (0);
1845 }

1847 static int
1848 /*ARGSUSED*/
1849 lxa_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
1850 {
1851 int instance = ddi_get_instance(dip);

1853 if (cmd != DDI_ATTACH)
1854 return (DDI_FAILURE);

1856 ASSERT(instance == 0);
1857 if (instance != 0)
1858 return (DDI_FAILURE);

1860 lxa_dip = dip;
1861 mutex_init(&lxa_lock, NULL, MUTEX_DEFAULT, NULL);

1863 /* create our minor nodes */
1864 if (ddi_create_minor_node(dip, LXA_MINORNAME_DEVCTL, S_IFCHR,
1865 LXA_MINORNUM_DEVCTL, DDI_PSEUDO, 0) != DDI_SUCCESS)
1866 return (DDI_FAILURE);

1868 if (ddi_create_minor_node(dip, LXA_MINORNAME_DSP, S_IFCHR,
1869 LXA_MINORNUM_DSP, DDI_PSEUDO, 0) != DDI_SUCCESS)
1870 return (DDI_FAILURE);

1872 if (ddi_create_minor_node(dip, LXA_MINORNAME_MIXER, S_IFCHR,
1873 LXA_MINORNUM_MIXER, DDI_PSEUDO, 0) != DDI_SUCCESS)
1874 return (DDI_FAILURE);

1876 /* allocate our data structures */
1877 lxa_minor_id = id_space_create("lxa_minor_id",
1878 LXA_MINORNUM_COUNT, LX_AUDIO_MAX_OPENS);
1879 lxa_state_hash = mod_hash_create_idhash("lxa_state_hash",
1880 lxa_state_hash_size, mod_hash_null_valdtor);
1881 lxa_zstate_hash = mod_hash_create_strhash("lxa_zstate_hash",
1882 lxa_zstate_hash_size, mod_hash_null_valdtor);

1884 return (DDI_SUCCESS);
1885 }

1887 static int
1888 /*ARGSUSED*/
1889 lxa_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)
1890 {
1891 if (cmd != DDI_DETACH)
1892 return (DDI_FAILURE);

1894 ASSERT(!MUTEX_HELD(&lxa_lock));
1895 if (lxa_registered_zones > 0)
1896 return (DDI_FAILURE);

1898 mod_hash_destroy_idhash(lxa_state_hash);
1899 mod_hash_destroy_idhash(lxa_zstate_hash);
1900 id_space_destroy(lxa_minor_id);
1901 lxa_state_hash = NULL;
1902 lxa_dip = NULL;

1904 return (DDI_SUCCESS);
1905 }

1907 static int
1908 /*ARGSUSED*/

new/usr/src/uts/common/brand/lx/io/lx_audio.c 30

1909 lxa_getinfo(dev_info_t *dip, ddi_info_cmd_t infocmd, void *arg, void **resultp)
1910 {
1911 switch (infocmd) {
1912 case DDI_INFO_DEVT2DEVINFO:
1913 *resultp = lxa_dip;
1914 return (DDI_SUCCESS);

1916 case DDI_INFO_DEVT2INSTANCE:
1917 *resultp = (void *)0;
1918 return (DDI_SUCCESS);
1919 }
1920 return (DDI_FAILURE);
1921 }

1923 /*
1924 * Driver flags
1925 */
1926 static struct cb_ops lxa_cb_ops = {
1927 lxa_open, /* open */
1928 lxa_close, /* close */
1929 nodev, /* strategy */
1930 nodev, /* print */
1931 nodev, /* dump */
1932 lxa_read, /* read */
1933 lxa_write, /* write */
1934 lxa_ioctl, /* ioctl */
1935 lxa_devmap, /* devmap */
1936 nodev, /* mmap */
1937 ddi_devmap_segmap, /* segmap */
1938 nochpoll, /* chpoll */
1939 ddi_prop_op, /* prop_op */
1940 NULL, /* cb_str */
1941 D_NEW | D_MP | D_DEVMAP,
1942 CB_REV,
1943 NULL,
1944 NULL
1945 };

1947 static struct dev_ops lxa_ops = {
1948 DEVO_REV,
1949 0,
1950 lxa_getinfo,
1951 nulldev,
1952 nulldev,
1953 lxa_attach,
1954 lxa_detach,
1955 nodev,
1956 &lxa_cb_ops,
1957 NULL,
1958 NULL,
1959 ddi_quiesce_not_needed, /* quiesce */
1960 };

1962 /*
1963 * Module linkage information for the kernel.
1964 */
1965 static struct modldrv modldrv = {
1966 &mod_driverops, /* type of module */
1967 "linux audio driver", /* description of module */
1968 &lxa_ops /* driver ops */
1969 };

1971 static struct modlinkage modlinkage = {
1972 MODREV_1,
1973 &modldrv,
1974 NULL

new/usr/src/uts/common/brand/lx/io/lx_audio.c 31

1975 };

1977 /*
1978 * standard module entry points
1979 */
1980 int
1981 _init(void)
1982 {
1983 return (mod_install(&modlinkage));
1984 }

1986 int
1987 _fini(void)
1988 {
1989 return (mod_remove(&modlinkage));
1990 }

1992 int
1993 _info(struct modinfo *modinfop)
1994 {
1995 return (mod_info(&modlinkage, modinfop));
1996 }
1997 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/io/lx_audio.conf 1

**
 973 Tue Jan 14 16:17:18 2014
new/usr/src/uts/common/brand/lx/io/lx_audio.conf
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

27 name="lx_audio" parent="pseudo" instance=0;
28 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 1

**
 31891 Tue Jan 14 16:17:18 2014
new/usr/src/uts/common/brand/lx/io/lx_ptm.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

27 /*
28 * This driver attempts to emulate some of the the behaviors of
29 * Linux terminal devices (/dev/ptmx and /dev/pts/[0-9][0-9]*) on Solaris
30 *
31 * It does this by layering over the /dev/ptmx device and intercepting
32 * opens to it.
33 *
34 * This driver makes the following assumptions about the way the ptm/pts
35 * drivers on Solaris work:
36 *
37 * - all opens of the /dev/ptmx device node return a unique dev_t.
38 *
39 * - the dev_t minor node value for each open ptm instance corrospondes
40 * to it’s associated slave terminal device number. ie. the path to
41 * the slave terminal device associated with an open ptm instance
42 * who’s dev_t minor node vaue is 5, is /dev/pts/5.
43 *
44 * - the ptm driver always allocates the lowest numbered slave terminal
45 * device possible.
46 */

48 #include <sys/conf.h>
49 #include <sys/ddi.h>
50 #include <sys/devops.h>
51 #include <sys/file.h>
52 #include <sys/filio.h>
53 #include <sys/kstr.h>
54 #include <sys/ldlinux.h>
55 #include <sys/lx_ptm.h>
56 #include <sys/modctl.h>
57 #include <sys/pathname.h>
58 #include <sys/ptms.h>
59 #include <sys/ptyvar.h>
60 #include <sys/stat.h>
61 #include <sys/stropts.h>

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 2

62 #include <sys/sunddi.h>
63 #include <sys/sunldi.h>
64 #include <sys/sysmacros.h>
65 #include <sys/types.h>

67 #define LP_PTM_PATH "/dev/ptmx"
68 #define LP_PTS_PATH "/dev/pts/"
69 #define LP_PTS_DRV_NAME "pts"
70 #define LP_PTS_USEC_DELAY (5 * 1000) /* 5 ms */
71 #define LP_PTS_USEC_DELAY_MAX (5 * MILLISEC) /* 5 ms */

73 /*
74 * this driver is layered on top of the ptm driver. we’d like to
75 * make this drivers minor name space a mirror of the ptm drivers
76 * namespace, but we can’t actually do this. the reason is that the
77 * ptm driver is opened via the clone driver. there for no minor nodes
78 * of the ptm driver are actually accessible via the filesystem.
79 * since we’re not a streams device we can’t be opened by the clone
80 * driver. there for we need to have at least minor node accessible
81 * via the filesystem so that consumers can open it. we use the device
82 * node with a minor number of 0 for this purpose. what this means is
83 * that minor node 0 can’t be used to map ptm minor node 0. since this
84 * minor node is now reserved we need to shift our ptm minor node
85 * mappings by one. ie. a ptm minor node with a value of 0 will
86 * corrospond to our minor node with a value of 1. these mappings are
87 * managed with the following macros.
88 */
89 #define DEVT_TO_INDEX(x) LX_PTM_DEV_TO_PTS(x)
90 #define INDEX_TO_MINOR(x) ((x) + 1)

92 /*
93 * grow our layered handle array by the same size increment that the ptm
94 * driver uses to grow the pty device space - PTY_MAXDELTA
95 */
96 #define LP_PTY_INC 128

98 /*
99 * lx_ptm_ops contains state information about outstanding operations on the
100 * underlying master terminal device. Currently we only track information
101 * for read operations.
102 *
103 * Note that this data has not been rolled directly into the lx_ptm_handle
104 * structure because we can’t put mutex’s of condition variables into
105 * lx_ptm_handle structure. The reason is that the array of lx_ptm_handle
106 * structures linked to from the global lx_ptm state can be resized
107 * dynamically, and when it’s resized, the new array is at a different
108 * memory location and the old array memory is discarded. Mutexs and cvs
109 * are accessed based off their address, so if this array was re-sized while
110 * there were outstanding operations on any mutexs or cvs in the array
111 * then the system would tip over. In the future the lx_ptm_handle structure
112 * array should probably be replaced with either an array of pointers to
113 * lx_ptm_handle structures or some other kind of data structure containing
114 * pointers to lx_ptm_handle structures. Then the lx_ptm_ops structure
115 * could be folded directly into the lx_ptm_handle structures. (This will
116 * also require the definition of a new locking mechanism to protect the
117 * contents of lx_ptm_handle structures.)
118 */
119 typedef struct lx_ptm_ops {
120 int lpo_rops;
121 kcondvar_t lpo_rops_cv;
122 kmutex_t lpo_rops_lock;
123 } lx_ptm_ops_t;

125 /*
126 * Every open of the master terminal device in a zone results in a new
127 * lx_ptm_handle handle allocation. These handles are stored in an array

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 3

128 * hanging off the lx_ptm_state structure.
129 */
130 typedef struct lx_ptm_handle {
131 /* Device handle to the underlying real /dev/ptmx master terminal. */
132 ldi_handle_t lph_handle;

134 /* Flag to indicate if TIOCPKT mode has been enabled. */
135 int lph_pktio;

137 /* Number of times the slave device has been opened/closed. */
138 int lph_eofed;

140 /* Callback handler in the ptm driver to check if slave is open. */
141 ptmptsopencb_t lph_ppocb;

143 /* Pointer to state for operations on underlying device. */
144 lx_ptm_ops_t *lph_lpo;
145 } lx_ptm_handle_t;

147 /*
148 * Global state for the lx_ptm driver.
149 */
150 typedef struct lx_ptm_state {
151 /* lx_ptm device devinfo pointer */
152 dev_info_t *lps_dip;

154 /* LDI ident used to open underlying real /dev/ptmx master terminals. */
155 ldi_ident_t lps_li;

157 /* pts drivers major number */
158 major_t lps_pts_major;

160 /* rw lock used to manage access and growth of lps_lh_array */
161 krwlock_t lps_lh_rwlock;

163 /* number of elements in lps_lh_array */
164 uint_t lps_lh_count;

166 /* Array of handles to underlying real /dev/ptmx master terminals. */
167 lx_ptm_handle_t *lps_lh_array;
168 } lx_ptm_state_t;

170 /* Pointer to the lx_ptm global state structure. */
171 static lx_ptm_state_t lps;

173 /*
174 * List of modules to be autopushed onto slave terminal devices when they
175 * are opened in an lx branded zone.
176 */
177 static char *lx_pts_mods[] = {
178 "ptem",
179 "ldterm",
180 "ttcompat",
181 LDLINUX_MOD,
182 NULL
183 };

185 static void
186 lx_ptm_lh_grow(uint_t index)
187 {
188 uint_t new_lh_count, old_lh_count;
189 lx_ptm_handle_t *new_lh_array, *old_lh_array;

191 /*
192 * allocate a new array. we drop the rw lock on the array so that
193 * readers can still access devices in case our memory allocation

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 4

194 * blocks.
195 */
196 new_lh_count = MAX(lps.lps_lh_count + LP_PTY_INC, index + 1);
197 new_lh_array =
198 kmem_zalloc(sizeof (lx_ptm_handle_t) * new_lh_count, KM_SLEEP);

200 /*
201 * double check that we still actually need to increase the size
202 * of the array
203 */
204 rw_enter(&lps.lps_lh_rwlock, RW_WRITER);
205 if (index < lps.lps_lh_count) {
206 /* someone beat us to it so there’s nothing more to do */
207 rw_exit(&lps.lps_lh_rwlock);
208 kmem_free(new_lh_array,
209 sizeof (lx_ptm_handle_t) * new_lh_count);
210 return;
211 }

213 /* copy the existing data into the new array */
214 ASSERT((lps.lps_lh_count != 0) || (lps.lps_lh_array == NULL));
215 ASSERT((lps.lps_lh_count == 0) || (lps.lps_lh_array != NULL));
216 if (lps.lps_lh_count != 0) {
217 bcopy(lps.lps_lh_array, new_lh_array,
218 sizeof (lx_ptm_handle_t) * lps.lps_lh_count);
219 }

221 /* save info on the old array */
222 old_lh_array = lps.lps_lh_array;
223 old_lh_count = lps.lps_lh_count;

225 /* install the new array */
226 lps.lps_lh_array = new_lh_array;
227 lps.lps_lh_count = new_lh_count;

229 rw_exit(&lps.lps_lh_rwlock);

231 /* free the old array */
232 if (old_lh_array != NULL) {
233 kmem_free(old_lh_array,
234 sizeof (lx_ptm_handle_t) * old_lh_count);
235 }
236 }

238 static void
239 lx_ptm_lh_insert(uint_t index, ldi_handle_t lh)
240 {
241 lx_ptm_ops_t *lpo;

243 ASSERT(lh != NULL);

245 /* Allocate and initialize the ops structure */
246 lpo = kmem_zalloc(sizeof (lx_ptm_ops_t), KM_SLEEP);
247 mutex_init(&lpo->lpo_rops_lock, NULL, MUTEX_DEFAULT, NULL);
248 cv_init(&lpo->lpo_rops_cv, NULL, CV_DEFAULT, NULL);

250 rw_enter(&lps.lps_lh_rwlock, RW_WRITER);

252 /* check if we need to grow the size of the layered handle array */
253 if (index >= lps.lps_lh_count) {
254 rw_exit(&lps.lps_lh_rwlock);
255 lx_ptm_lh_grow(index);
256 rw_enter(&lps.lps_lh_rwlock, RW_WRITER);
257 }

259 ASSERT(index < lps.lps_lh_count);

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 5

260 ASSERT(lps.lps_lh_array[index].lph_handle == NULL);
261 ASSERT(lps.lps_lh_array[index].lph_pktio == 0);
262 ASSERT(lps.lps_lh_array[index].lph_eofed == 0);
263 ASSERT(lps.lps_lh_array[index].lph_lpo == NULL);

265 /* insert the new handle and return */
266 lps.lps_lh_array[index].lph_handle = lh;
267 lps.lps_lh_array[index].lph_pktio = 0;
268 lps.lps_lh_array[index].lph_eofed = 0;
269 lps.lps_lh_array[index].lph_lpo = lpo;

271 rw_exit(&lps.lps_lh_rwlock);
272 }

274 static ldi_handle_t
275 lx_ptm_lh_remove(uint_t index)
276 {
277 ldi_handle_t lh;

279 rw_enter(&lps.lps_lh_rwlock, RW_WRITER);

281 ASSERT(index < lps.lps_lh_count);
282 ASSERT(lps.lps_lh_array[index].lph_handle != NULL);
283 ASSERT(lps.lps_lh_array[index].lph_lpo->lpo_rops == 0);
284 ASSERT(!MUTEX_HELD(&lps.lps_lh_array[index].lph_lpo->lpo_rops_lock));

286 /* free the write handle */
287 kmem_free(lps.lps_lh_array[index].lph_lpo, sizeof (lx_ptm_ops_t));
288 lps.lps_lh_array[index].lph_lpo = NULL;

290 /* remove the handle and return it */
291 lh = lps.lps_lh_array[index].lph_handle;
292 lps.lps_lh_array[index].lph_handle = NULL;
293 lps.lps_lh_array[index].lph_pktio = 0;
294 lps.lps_lh_array[index].lph_eofed = 0;
295 rw_exit(&lps.lps_lh_rwlock);
296 return (lh);
297 }

299 static void
300 lx_ptm_lh_get_ppocb(uint_t index, ptmptsopencb_t *ppocb)
301 {
302 rw_enter(&lps.lps_lh_rwlock, RW_WRITER);

304 ASSERT(index < lps.lps_lh_count);
305 ASSERT(lps.lps_lh_array[index].lph_handle != NULL);

307 *ppocb = lps.lps_lh_array[index].lph_ppocb;
308 rw_exit(&lps.lps_lh_rwlock);
309 }

311 static void
312 lx_ptm_lh_set_ppocb(uint_t index, ptmptsopencb_t *ppocb)
313 {
314 rw_enter(&lps.lps_lh_rwlock, RW_WRITER);

316 ASSERT(index < lps.lps_lh_count);
317 ASSERT(lps.lps_lh_array[index].lph_handle != NULL);

319 lps.lps_lh_array[index].lph_ppocb = *ppocb;
320 rw_exit(&lps.lps_lh_rwlock);
321 }

323 static ldi_handle_t
324 lx_ptm_lh_lookup(uint_t index)
325 {

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 6

326 ldi_handle_t lh;

328 rw_enter(&lps.lps_lh_rwlock, RW_READER);

330 ASSERT(index < lps.lps_lh_count);
331 ASSERT(lps.lps_lh_array[index].lph_handle != NULL);

333 /* return the handle */
334 lh = lps.lps_lh_array[index].lph_handle;
335 rw_exit(&lps.lps_lh_rwlock);
336 return (lh);
337 }

339 static lx_ptm_ops_t *
340 lx_ptm_lpo_lookup(uint_t index)
341 {
342 lx_ptm_ops_t *lpo;

344 rw_enter(&lps.lps_lh_rwlock, RW_READER);

346 ASSERT(index < lps.lps_lh_count);
347 ASSERT(lps.lps_lh_array[index].lph_lpo != NULL);

349 /* return the handle */
350 lpo = lps.lps_lh_array[index].lph_lpo;
351 rw_exit(&lps.lps_lh_rwlock);
352 return (lpo);
353 }

355 static int
356 lx_ptm_lh_pktio_get(uint_t index)
357 {
358 int pktio;

360 rw_enter(&lps.lps_lh_rwlock, RW_READER);

362 ASSERT(index < lps.lps_lh_count);
363 ASSERT(lps.lps_lh_array[index].lph_handle != NULL);

365 /* return the pktio state */
366 pktio = lps.lps_lh_array[index].lph_pktio;
367 rw_exit(&lps.lps_lh_rwlock);
368 return (pktio);
369 }

371 static void
372 lx_ptm_lh_pktio_set(uint_t index, int pktio)
373 {
374 rw_enter(&lps.lps_lh_rwlock, RW_WRITER);

376 ASSERT(index < lps.lps_lh_count);
377 ASSERT(lps.lps_lh_array[index].lph_handle != NULL);

379 /* set the pktio state */
380 lps.lps_lh_array[index].lph_pktio = pktio;
381 rw_exit(&lps.lps_lh_rwlock);
382 }

384 static int
385 lx_ptm_lh_eofed_get(uint_t index)
386 {
387 int eofed;

389 rw_enter(&lps.lps_lh_rwlock, RW_READER);

391 ASSERT(index < lps.lps_lh_count);

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 7

392 ASSERT(lps.lps_lh_array[index].lph_handle != NULL);

394 /* return the eofed state */
395 eofed = lps.lps_lh_array[index].lph_eofed;
396 rw_exit(&lps.lps_lh_rwlock);
397 return (eofed);
398 }

400 static void
401 lx_ptm_lh_eofed_set(uint_t index)
402 {
403 rw_enter(&lps.lps_lh_rwlock, RW_WRITER);

405 ASSERT(index < lps.lps_lh_count);
406 ASSERT(lps.lps_lh_array[index].lph_handle != NULL);

408 /* set the eofed state */
409 lps.lps_lh_array[index].lph_eofed++;
410 rw_exit(&lps.lps_lh_rwlock);
411 }

413 static int
414 lx_ptm_read_start(dev_t dev)
415 {
416 lx_ptm_ops_t *lpo = lx_ptm_lpo_lookup(DEVT_TO_INDEX(dev));

418 mutex_enter(&lpo->lpo_rops_lock);
419 ASSERT(lpo->lpo_rops >= 0);

421 /* Wait for other read operations to finish */
422 while (lpo->lpo_rops != 0) {
423 if (cv_wait_sig(&lpo->lpo_rops_cv, &lpo->lpo_rops_lock) == 0) {
424 mutex_exit(&lpo->lpo_rops_lock);
425 return (-1);
426 }
427 }

429 /* Start a read operation */
430 VERIFY(++lpo->lpo_rops == 1);
431 mutex_exit(&lpo->lpo_rops_lock);
432 return (0);
433 }

435 static void
436 lx_ptm_read_end(dev_t dev)
437 {
438 lx_ptm_ops_t *lpo = lx_ptm_lpo_lookup(DEVT_TO_INDEX(dev));

440 mutex_enter(&lpo->lpo_rops_lock);
441 ASSERT(lpo->lpo_rops >= 0);

443 /* End a read operation */
444 VERIFY(--lpo->lpo_rops == 0);
445 cv_signal(&lpo->lpo_rops_cv);

447 mutex_exit(&lpo->lpo_rops_lock);
448 }

450 static int
451 lx_ptm_pts_isopen(dev_t dev)
452 {
453 ptmptsopencb_t ppocb;

455 lx_ptm_lh_get_ppocb(DEVT_TO_INDEX(dev), &ppocb);
456 return (ppocb.ppocb_func(ppocb.ppocb_arg));
457 }

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 8

459 static void
460 lx_ptm_eof_read(ldi_handle_t lh)
461 {
462 struct uio uio;
463 iovec_t iov;
464 char junk[1];

466 /*
467 * We can remove any EOF message from the head of the stream by
468 * doing a zero byte read from the stream.
469 */
470 iov.iov_len = 0;
471 iov.iov_base = junk;
472 uio.uio_iovcnt = 1;
473 uio.uio_iov = &iov;
474 uio.uio_resid = iov.iov_len;
475 uio.uio_offset = 0;
476 uio.uio_segflg = UIO_SYSSPACE;
477 uio.uio_fmode = 0;
478 uio.uio_extflg = 0;
479 uio.uio_llimit = MAXOFFSET_T;
480 (void) ldi_read(lh, &uio, kcred);
481 }

483 static int
484 lx_ptm_eof_drop_1(dev_t dev, int *rvalp)
485 {
486 ldi_handle_t lh = lx_ptm_lh_lookup(DEVT_TO_INDEX(dev));
487 int err, msg_size, msg_count;

489 *rvalp = 0;

491 /*
492 * Check if there is an EOF message (represented by a zero length
493 * data message) at the head of the stream. Note that the
494 * I_NREAD ioctl is a streams framework ioctl so it will succeed
495 * even if there have been previous write errors on this stream.
496 */
497 if ((err = ldi_ioctl(lh, I_NREAD, (intptr_t)&msg_size,
498 FKIOCTL, kcred, &msg_count)) != 0)
499 return (err);

501 if ((msg_count == 0) || (msg_size != 0)) {
502 /* No EOF message found */
503 return (0);
504 }

506 /* Record the fact that the slave device has been closed. */
507 lx_ptm_lh_eofed_set(DEVT_TO_INDEX(dev));

509 /* drop the EOF */
510 lx_ptm_eof_read(lh);
511 *rvalp = 1;
512 return (0);
513 }

515 static int
516 lx_ptm_eof_drop(dev_t dev, int *rvalp)
517 {
518 int rval, err;

520 if (rvalp != NULL)
521 *rvalp = 0;
522 for (;;) {
523 if ((err = lx_ptm_eof_drop_1(dev, &rval)) != 0)

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 9

524 return (err);
525 if (rval == 0)
526 return (0);
527 if (rvalp != NULL)
528 *rvalp = 1;
529 }
530 }

532 static int
533 lx_ptm_data_check(dev_t dev, int ignore_eof, int *rvalp)
534 {
535 ldi_handle_t lh = lx_ptm_lh_lookup(DEVT_TO_INDEX(dev));
536 int err;

538 *rvalp = 0;
539 if (ignore_eof) {
540 int size, rval;

542 if ((err = ldi_ioctl(lh, FIONREAD, (intptr_t)&size,
543 FKIOCTL, kcred, &rval)) != 0)
544 return (err);
545 if (size != 0)
546 *rvalp = 1;
547 } else {
548 int msg_size, msg_count;

550 if ((err = ldi_ioctl(lh, I_NREAD, (intptr_t)&msg_size,
551 FKIOCTL, kcred, &msg_count)) != 0)
552 return (err);
553 if (msg_count != 0)
554 *rvalp = 1;
555 }
556 return (0);
557 }

559 static int
560 lx_ptm_attach(dev_info_t *dip, ddi_attach_cmd_t cmd)
561 {
562 int err;

564 if (cmd != DDI_ATTACH)
565 return (DDI_FAILURE);

567 if (ddi_create_minor_node(dip, LX_PTM_MINOR_NODE, S_IFCHR,
568 ddi_get_instance(dip), DDI_PSEUDO, 0) != DDI_SUCCESS)
569 return (DDI_FAILURE);

571 err = ldi_ident_from_dip(dip, &lps.lps_li);
572 if (err != 0) {
573 ddi_remove_minor_node(dip, ddi_get_name(dip));
574 return (DDI_FAILURE);
575 }

577 lps.lps_dip = dip;
578 lps.lps_pts_major = ddi_name_to_major(LP_PTS_DRV_NAME);

580 rw_init(&lps.lps_lh_rwlock, NULL, RW_DRIVER, NULL);
581 lps.lps_lh_count = 0;
582 lps.lps_lh_array = NULL;

584 return (DDI_SUCCESS);
585 }

587 /*ARGSUSED*/
588 static int
589 lx_ptm_detach(dev_info_t *dip, ddi_detach_cmd_t cmd)

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 10

590 {
591 if (cmd != DDI_DETACH)
592 return (DDI_FAILURE);

594 ldi_ident_release(lps.lps_li);
595 lps.lps_dip = NULL;

597 ASSERT((lps.lps_lh_count != 0) || (lps.lps_lh_array == NULL));
598 ASSERT((lps.lps_lh_count == 0) || (lps.lps_lh_array != NULL));
599 if (lps.lps_lh_array != NULL) {
600 kmem_free(lps.lps_lh_array,
601 sizeof (lx_ptm_handle_t) * lps.lps_lh_count);
602 lps.lps_lh_array = NULL;
603 lps.lps_lh_count = 0;
604 }

606 return (DDI_SUCCESS);
607 }

609 /*ARGSUSED*/
610 static int
611 lx_ptm_open(dev_t *devp, int flag, int otyp, cred_t *credp)
612 {
613 struct strioctl iocb;
614 ptmptsopencb_t ppocb = { NULL, NULL };
615 ldi_handle_t lh;
616 major_t maj, our_major = getmajor(*devp);
617 minor_t min, lastmin;
618 uint_t index, anchor = 1;
619 dev_t ptm_dev;
620 int err, rval = 0;

622 /*
623 * Don’t support the FNDELAY flag and FNONBLOCK until we either
624 * find a Linux app that opens /dev/ptmx with the O_NDELAY
625 * or O_NONBLOCK flags explicitly, or until we create test cases
626 * to determine how reads of master terminal devices opened with
627 * these flags behave in different situations on Linux. Supporting
628 * these flags will involve enhancing our read implementation
629 * and changing the way it deals with EOF notifications.
630 */
631 if (flag & (FNDELAY | FNONBLOCK))
632 return (ENOTSUP);

634 /*
635 * we’re layered on top of the ptm driver so open that driver
636 * first. (note that we’re opening /dev/ptmx in the global
637 * zone, not ourselves in the Linux zone.)
638 */
639 err = ldi_open_by_name(LP_PTM_PATH, flag, credp, &lh, lps.lps_li);
640 if (err != 0)
641 return (err);

643 /* get the devt returned by the ptmx open */
644 err = ldi_get_dev(lh, &ptm_dev);
645 if (err != 0) {
646 (void) ldi_close(lh, flag, credp);
647 return (err);
648 }

650 /*
651 * we’re a cloning driver so here’s well change the devt that we
652 * return. the ptmx is also a cloning driver so we’ll just use
653 * it’s minor number as our minor number (it already manages it’s
654 * minor name space so no reason to duplicate the effort.)
655 */

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 11

656 index = getminor(ptm_dev);
657 *devp = makedevice(our_major, INDEX_TO_MINOR(index));

659 /* Get a callback function to query if the pts device is open. */
660 iocb.ic_cmd = PTMPTSOPENCB;
661 iocb.ic_timout = 0;
662 iocb.ic_len = sizeof (ppocb);
663 iocb.ic_dp = (char *)&ppocb;

665 err = ldi_ioctl(lh, I_STR, (intptr_t)&iocb, FKIOCTL, kcred, &rval);
666 if ((err != 0) || (rval != 0)) {
667 (void) ldi_close(lh, flag, credp);
668 return (EIO); /* XXX return something else here? */
669 }
670 ASSERT(ppocb.ppocb_func != NULL);

672 /*
673 * now setup autopush for the terminal slave device. this is
674 * necessary so that when a Linux program opens the device we
675 * can push required strmod modules onto the stream. in Solaris
676 * this is normally done by the application that actually
677 * allocates the terminal.
678 */
679 maj = lps.lps_pts_major;
680 min = index;
681 lastmin = 0;
682 err = kstr_autopush(SET_AUTOPUSH, &maj, &min, &lastmin,
683 &anchor, lx_pts_mods);
684 if (err != 0) {
685 (void) ldi_close(lh, flag, credp);
686 return (EIO); /* XXX return something else here? */
687 }

689 /* save off this layered handle for future accesses */
690 lx_ptm_lh_insert(index, lh);
691 lx_ptm_lh_set_ppocb(index, &ppocb);
692 return (0);
693 }

695 /*ARGSUSED*/
696 static int
697 lx_ptm_close(dev_t dev, int flag, int otyp, cred_t *credp)
698 {
699 ldi_handle_t lh;
700 major_t maj;
701 minor_t min, lastmin;
702 uint_t index;
703 int err;

705 index = DEVT_TO_INDEX(dev);

707 /*
708 * we must cleanup all the state associated with this major/minor
709 * terminal pair before actually closing the ptm master device.
710 * this is required because once the close of the ptm device is
711 * complete major/minor terminal pair is immediatly available for
712 * re-use in any zone.
713 */

715 /* free up our saved reference for this layered handle */
716 lh = lx_ptm_lh_remove(index);

718 /* unconfigure autopush for the associated terminal slave device */
719 maj = lps.lps_pts_major;
720 min = index;
721 lastmin = 0;

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 12

722 do {
723 /*
724 * we loop here because we don’t want to release this ptm
725 * node if autopush can’t be disabled on the associated
726 * slave device because then bad things could happen if
727 * another brand were to get this terminal allocated
728 * to them.
729 *
730 * XXX should we ever give up?
731 */
732 err = kstr_autopush(CLR_AUTOPUSH, &maj, &min, &lastmin,
733 0, NULL);
734 } while (err != 0);

736 err = ldi_close(lh, flag, credp);

738 /*
739 * note that we don’t have to bother with changing the permissions
740 * on the associated slave device here. the reason is that no one
741 * can actually open the device untill it’s associated master
742 * device is re-opened, which will result in the permissions on
743 * it being reset.
744 */
745 return (err);
746 }

748 static int
749 lx_ptm_read_loop(dev_t dev, struct uio *uiop, cred_t *credp, int *loop)
750 {
751 ldi_handle_t lh = lx_ptm_lh_lookup(DEVT_TO_INDEX(dev));
752 int err, rval;
753 struct uio uio = *uiop;

755 *loop = 0;

757 /*
758 * Here’s another way that Linux master terminals behave differently
759 * from Solaris master terminals. If you do a read on a Linux
760 * master terminal (that was opened witout NDELAY and NONBLOCK)
761 * who’s corrosponding slave terminal is currently closed and
762 * has been opened and closed at least once, Linux return -1 and
763 * set errno to EIO where as Solaris blocks.
764 */
765 if (lx_ptm_lh_eofed_get(DEVT_TO_INDEX(dev))) {
766 /* Slave has been opened and closed at least once. */
767 if (lx_ptm_pts_isopen(dev) == 0) {
768 /*
769 * Slave is closed. Make sure that data is avaliable
770 * before attempting a read.
771 */
772 if ((err = lx_ptm_data_check(dev, 0, &rval)) != 0)
773 return (err);

775 /* If there is no data available then return. */
776 if (rval == 0)
777 return (EIO);
778 }
779 }

781 /* Actually do the read operation. */
782 if ((err = ldi_read(lh, uiop, credp)) != 0)
783 return (err);

785 /* If read returned actual data then return. */
786 if (uio.uio_resid != uiop->uio_resid)
787 return (0);

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 13

789 /*
790 * This was a zero byte read (ie, an EOF). This indicates
791 * that the slave terinal device has been closed. Record
792 * the fact that the slave device has been closed and retry
793 * the read operation.
794 */
795 lx_ptm_lh_eofed_set(DEVT_TO_INDEX(dev));
796 *loop = 1;
797 return (0);
798 }

800 static int
801 lx_ptm_read(dev_t dev, struct uio *uiop, cred_t *credp)
802 {
803 int pktio = lx_ptm_lh_pktio_get(DEVT_TO_INDEX(dev));
804 int err, loop;
805 struct uio uio;
806 struct iovec iovp;

808 ASSERT(uiop->uio_iovcnt > 0);

810 /*
811 * If packet mode has been enabled (via TIOCPKT) we need to pad
812 * all read requests with a leading byte that indicates any
813 * relevant control status information.
814 */
815 if (pktio != 0) {
816 /*
817 * We’d like to write the control information into
818 * the current buffer but we can’t yet. We don’t
819 * want to modify userspace memory here only to have
820 * the read operation fail later. So instead
821 * what we’ll do here is read one character from the
822 * beginning of the memory pointed to by the uio
823 * structure. This will advance the output pointer
824 * by one. Then when the read completes successfully
825 * we can update the byte that we passed over. Before
826 * we do the read make a copy of the current uiop and
827 * iovec structs so we can write to them later.
828 */
829 uio = *uiop;
830 iovp = *uiop->uio_iov;
831 uio.uio_iov = &iovp;

833 if (uwritec(uiop) == -1)
834 return (EFAULT);
835 }

837 do {
838 /*
839 * Before we actually attempt a read operation we need
840 * to make sure there’s some buffer space to actually
841 * read in some data. We do this because if we’re in
842 * pktio mode and the caller only requested one byte,
843 * then we’ve already used up that one byte and we
844 * don’t want to pass this read request. Doing a 0
845 * byte read (unless there is a problem with the stream
846 * head) always returns succcess. Normally when a streams
847 * read returns 0 bytes we interpret that as an EOF on
848 * the stream (ie, the slave side has been opened and
849 * closed) and we ignore it and re-try the read operation.
850 * So if we pass on a 0 byte read here lx_ptm_read_loop()
851 * will tell us to loop around and we’ll end up in an
852 * infinite loop.
853 */

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 14

854 if (uiop->uio_resid == 0)
855 break;

857 /*
858 * Serialize all reads. We need to do this so that we can
859 * properly emulate the behavior of master terminals on Linux.
860 * In reality this serializaion should not pose any kind of
861 * performance problem since it would be very strange to have
862 * multiple threads trying to read from the same master
863 * terminal device concurrently.
864 */
865 if (lx_ptm_read_start(dev) != 0)
866 return (EINTR);

868 err = lx_ptm_read_loop(dev, uiop, credp, &loop);
869 lx_ptm_read_end(dev);
870 if (err != 0)
871 return (err);
872 } while (loop != 0);

874 if (pktio != 0) {
875 uint8_t pktio_data = TIOCPKT_DATA;

877 /*
878 * Note that the control status information we
879 * pass back is faked up in the sense that we
880 * don’t actually report any events, we always
881 * report a status of 0.
882 */
883 if (uiomove(&pktio_data, 1, UIO_READ, &uio) != 0)
884 return (EFAULT);
885 }

887 return (0);
888 }

890 static int
891 lx_ptm_write(dev_t dev, struct uio *uiop, cred_t *credp)
892 {
893 ldi_handle_t lh = lx_ptm_lh_lookup(DEVT_TO_INDEX(dev));
894 int err;

896 err = ldi_write(lh, uiop, credp);

898 return (err);
899 }

901 static int
902 lx_ptm_ioctl(dev_t dev, int cmd, intptr_t arg, int mode, cred_t *credp,
903 int *rvalp)
904 {
905 ldi_handle_t lh = lx_ptm_lh_lookup(DEVT_TO_INDEX(dev));
906 int err;

908 /*
909 * here we need to make sure that we never allow the
910 * I_SETSIG and I_ESETSIG ioctls to pass through. we
911 * do this because we can’t support them.
912 *
913 * the native Solaris ptm device supports these ioctls because
914 * they are streams framework ioctls and all streams devices
915 * support them by default. these ioctls cause the current
916 * process to be registered with a stream and receive signals
917 * when certain stream events occur.
918 *
919 * a problem arises with cleanup of these registrations

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 15

920 * for layered drivers.
921 *
922 * normally the streams framework is notified whenever a
923 * process closes any reference to a stream and it goes ahead
924 * and cleans up these registrations. but actual device drivers
925 * are not notified when a process performs a close operation
926 * unless the process is closing the last opened reference to
927 * the device on the entire system.
928 *
929 * so while we could pass these ioctls on and allow processes
930 * to register for signal delivery, we would never receive
931 * any notification when those processes exit (or close a
932 * stream) and we wouldn’t be able to unregister them.
933 *
934 * luckily these operations are streams specific and Linux
935 * doesn’t support streams devices. so it doesn’t actually
936 * seem like we need to support these ioctls. if it turns
937 * out that we do need to support them for some reason in
938 * the future, the current driver model will have to be
939 * enhanced to better support streams device layering.
940 */
941 if ((cmd == I_SETSIG) || (cmd == I_ESETSIG))
942 return (EINVAL);

944 /*
945 * here we fake up support for TIOCPKT. Linux applications expect
946 * /etc/ptmx to support this ioctl, but on Solaris it doesn’t.
947 * (it is supported on older bsd style ptys.) so we’ll fake
948 * up support for it here.
949 *
950 * the reason that this ioctl is emulated here instead of in
951 * userland is that this ioctl affects the results returned
952 * from read() operations. if this ioctl was emulated in
953 * userland the brand library would need to intercept all
954 * read operations and check to see if pktio was enabled
955 * for the fd being read from. since this ioctl only needs
956 * to be supported on the ptmx device it makes more sense
957 * to support it here where we can easily update the results
958 * returned for read() operations performed on ourselves.
959 */
960 if (cmd == TIOCPKT) {
961 int pktio;

963 if (ddi_copyin((void *)arg, &pktio, sizeof (pktio),
964 mode) != DDI_SUCCESS)
965 return (EFAULT);

967 if (pktio == 0)
968 lx_ptm_lh_pktio_set(DEVT_TO_INDEX(dev), 0);
969 else
970 lx_ptm_lh_pktio_set(DEVT_TO_INDEX(dev), 1);

972 return (0);
973 }

975 err = ldi_ioctl(lh, cmd, arg, mode, credp, rvalp);

977 return (err);
978 }

980 static int
981 lx_ptm_poll_loop(dev_t dev, short events, int anyyet, short *reventsp,
982 struct pollhead **phpp, int *loop)
983 {
984 ldi_handle_t lh = lx_ptm_lh_lookup(DEVT_TO_INDEX(dev));
985 short reventsp2;

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 16

986 int err, rval;

988 *loop = 0;

990 /*
991 * If the slave device has been opened and closed at least
992 * once and the slave device is currently closed, then poll
993 * always needs to returns immediatly.
994 */
995 if ((lx_ptm_lh_eofed_get(DEVT_TO_INDEX(dev)) != 0) &&
996 (lx_ptm_pts_isopen(dev) == 0)) {
997 /* In this case always return POLLHUP */
998 *reventsp = POLLHUP;

1000 /*
1001 * Check if there really is data on the stream.
1002 * If so set the correct return flags.
1003 */
1004 if ((err = lx_ptm_data_check(dev, 1, &rval)) != 0) {
1005 /* Something went wrong. */
1006 return (err);
1007 }
1008 if (rval != 0)
1009 *reventsp |= (events & (POLLIN | POLLRDNORM));

1011 /*
1012 * Is the user checking for writability? Note that for ptm
1013 * devices Linux seems to ignore the POLLWRBAND write flag.
1014 */
1015 if ((events & POLLWRNORM) == 0)
1016 return (0);

1018 /*
1019 * To check if the stream is writable we have to actually
1020 * call poll, but make sure to set anyyet to 1 to prevent
1021 * the streams framework from setting up callbacks.
1022 */
1023 if ((err = ldi_poll(lh, POLLWRNORM, 1, &reventsp2, NULL)) != 0)
1024 return (err);

1026 *reventsp |= (reventsp2 & POLLWRNORM);
1027 } else {
1028 int lockstate;

1030 /* The slave device is open, do the poll */
1031 if ((err = ldi_poll(lh, events, anyyet, reventsp, phpp)) != 0)
1032 return (err);

1034 /*
1035 * Drop any leading EOFs on the stream.
1036 *
1037 * Note that we have to use pollunlock() here to avoid
1038 * recursive mutex enters in the poll framework. The
1039 * reason is that if there is an EOF message on the stream
1040 * then the act of reading from the queue to remove the
1041 * message can cause the ptm drivers event service
1042 * routine to be invoked, and if there is no open
1043 * slave device then the ptm driver may generate
1044 * error messages and put them on the stream. This
1045 * in turn will generate a poll event and the poll
1046 * framework will try to invoke any poll callbacks
1047 * associated with the stream. In the process of
1048 * doing that the poll framework will try to aquire
1049 * locks that we are already holding. So we need to
1050 * drop those locks here before we do our read.
1051 */

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 17

1052 lockstate = pollunlock();
1053 err = lx_ptm_eof_drop(dev, &rval);
1054 pollrelock(lockstate);
1055 if (err)
1056 return (err);

1058 /* If no EOF was dropped then return */
1059 if (rval == 0)
1060 return (0);

1062 /*
1063 * An EOF was removed from the stream. Retry the entire
1064 * poll operation from the top because polls on the ptm
1065 * device should behave differently now.
1066 */
1067 *loop = 1;
1068 }
1069 return (0);
1070 }

1072 static int
1073 lx_ptm_poll(dev_t dev, short events, int anyyet, short *reventsp,
1074 struct pollhead **phpp)
1075 {
1076 int loop, err;

1078 do {
1079 /* Serialize ourself wrt read operations. */
1080 if (lx_ptm_read_start(dev) != 0)
1081 return (EINTR);

1083 err = lx_ptm_poll_loop(dev,
1084 events, anyyet, reventsp, phpp, &loop);
1085 lx_ptm_read_end(dev);
1086 if (err != 0)
1087 return (err);
1088 } while (loop != 0);
1089 return (0);
1090 }

1092 static struct cb_ops lx_ptm_cb_ops = {
1093 lx_ptm_open, /* open */
1094 lx_ptm_close, /* close */
1095 nodev, /* strategy */
1096 nodev, /* print */
1097 nodev, /* dump */
1098 lx_ptm_read, /* read */
1099 lx_ptm_write, /* write */
1100 lx_ptm_ioctl, /* ioctl */
1101 nodev, /* devmap */
1102 nodev, /* mmap */
1103 nodev, /* segmap */
1104 lx_ptm_poll, /* chpoll */
1105 ddi_prop_op, /* prop_op */
1106 NULL, /* cb_str */
1107 D_NEW | D_MP,
1108 CB_REV,
1109 NULL,
1110 NULL
1111 };

1113 static struct dev_ops lx_ptm_ops = {
1114 DEVO_REV,
1115 0,
1116 ddi_getinfo_1to1,
1117 nulldev,

new/usr/src/uts/common/brand/lx/io/lx_ptm.c 18

1118 nulldev,
1119 lx_ptm_attach,
1120 lx_ptm_detach,
1121 nodev,
1122 &lx_ptm_cb_ops,
1123 NULL,
1124 NULL,
1125 ddi_quiesce_not_needed, /* quiesce */
1126 };

1128 static struct modldrv modldrv = {
1129 &mod_driverops, /* type of module */
1130 "Linux master terminal driver", /* description of module */
1131 &lx_ptm_ops /* driver ops */
1132 };

1134 static struct modlinkage modlinkage = {
1135 MODREV_1,
1136 &modldrv,
1137 NULL
1138 };

1140 int
1141 _init(void)
1142 {
1143 return (mod_install(&modlinkage));
1144 }

1146 int
1147 _info(struct modinfo *modinfop)
1148 {
1149 return (mod_info(&modlinkage, modinfop));
1150 }

1152 int
1153 _fini(void)
1154 {
1155 return (mod_remove(&modlinkage));
1156 }
1157 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/io/lx_ptm.conf 1

**
 971 Tue Jan 14 16:17:18 2014
new/usr/src/uts/common/brand/lx/io/lx_ptm.conf
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

27 name="lx_ptm" parent="pseudo" instance=0;
28 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/os/lx_brand.c 1

**
 24113 Tue Jan 14 16:17:19 2014
new/usr/src/uts/common/brand/lx/os/lx_brand.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #include <sys/types.h>
28 #include <sys/kmem.h>
29 #include <sys/errno.h>
30 #include <sys/thread.h>
31 #include <sys/systm.h>
32 #include <sys/syscall.h>
33 #include <sys/proc.h>
34 #include <sys/modctl.h>
35 #include <sys/cmn_err.h>
36 #include <sys/model.h>
37 #include <sys/exec.h>
38 #include <sys/lx_impl.h>
39 #include <sys/machbrand.h>
40 #include <sys/lx_syscalls.h>
41 #include <sys/lx_pid.h>
42 #include <sys/lx_futex.h>
43 #include <sys/lx_brand.h>
44 #include <sys/termios.h>
45 #include <sys/sunddi.h>
46 #include <sys/ddi.h>
47 #include <sys/vnode.h>
48 #include <sys/pathname.h>
49 #include <sys/auxv.h>
50 #include <sys/priv.h>
51 #include <sys/regset.h>
52 #include <sys/privregs.h>
53 #include <sys/archsystm.h>
54 #include <sys/zone.h>
55 #include <sys/brand.h>

57 int lx_debug = 0;

59 void lx_init_brand_data(zone_t *);
60 void lx_free_brand_data(zone_t *);

new/usr/src/uts/common/brand/lx/os/lx_brand.c 2

61 void lx_setbrand(proc_t *);
62 int lx_getattr(zone_t *, int, void *, size_t *);
63 int lx_setattr(zone_t *, int, void *, size_t);
64 int lx_brandsys(int, int64_t *, uintptr_t, uintptr_t, uintptr_t,
65 uintptr_t, uintptr_t, uintptr_t);
66 int lx_get_kern_version(void);
67 void lx_set_kern_version(zone_t *, int);
68 void lx_copy_procdata(proc_t *, proc_t *);

70 extern void lx_setrval(klwp_t *, int, int);
71 extern void lx_proc_exit(proc_t *, klwp_t *);
72 extern void lx_exec();
73 extern int lx_initlwp(klwp_t *);
74 extern void lx_forklwp(klwp_t *, klwp_t *);
75 extern void lx_exitlwp(klwp_t *);
76 extern void lx_freelwp(klwp_t *);
77 extern greg_t lx_fixsegreg(greg_t, model_t);
78 extern int lx_sched_affinity(int, uintptr_t, int, uintptr_t, int64_t *);

80 int lx_systrace_brand_enabled;

82 lx_systrace_f *lx_systrace_entry_ptr;
83 lx_systrace_f *lx_systrace_return_ptr;

85 static int lx_systrace_enabled;

87 static int lx_elfexec(struct vnode *vp, struct execa *uap, struct uarg *args,
88 struct intpdata *idata, int level, long *execsz, int setid,
89 caddr_t exec_file, struct cred *cred, int brand_action);

91 /* lx brand */
92 struct brand_ops lx_brops = {
93 lx_init_brand_data,
94 lx_free_brand_data,
95 lx_brandsys,
96 lx_setbrand,
97 lx_getattr,
98 lx_setattr,
99 lx_copy_procdata,
100 lx_proc_exit,
101 lx_exec,
102 lx_setrval,
103 lx_initlwp,
104 lx_forklwp,
105 lx_freelwp,
106 lx_exitlwp,
107 lx_elfexec,
108 NULL,
109 NULL,
110 NSIG,
111 };

113 struct brand_mach_ops lx_mops = {
114 NULL,
115 lx_brand_int80_callback,
116 NULL,
117 NULL,
118 NULL,
119 lx_fixsegreg,
120 };

122 struct brand lx_brand = {
123 BRAND_VER_1,
124 "lx",
125 &lx_brops,
126 &lx_mops

new/usr/src/uts/common/brand/lx/os/lx_brand.c 3

127 };

129 static struct modlbrand modlbrand = {
130 &mod_brandops, "lx brand", &lx_brand
131 };

133 static struct modlinkage modlinkage = {
134 MODREV_1, (void *)&modlbrand, NULL
135 };

137 void
138 lx_proc_exit(proc_t *p, klwp_t *lwp)
139 {
140 zone_t *z = p->p_zone;

142 ASSERT(p->p_brand != NULL);
143 ASSERT(p->p_brand_data != NULL);

145 /*
146 * If init is dying and we aren’t explicitly shutting down the zone
147 * or the system, then Solaris is about to restart init. The Linux
148 * init is not designed to handle a restart, which it interprets as
149 * a reboot. To give it a sane environment in which to run, we
150 * reboot the zone.
151 */
152 if (p->p_pid == z->zone_proc_initpid) {
153 if (z->zone_boot_err == 0 &&
154 z->zone_restart_init &&
155 zone_status_get(z) < ZONE_IS_SHUTTING_DOWN &&
156 zone_status_get(global_zone) < ZONE_IS_SHUTTING_DOWN)
157 (void) zone_kadmin(A_REBOOT, 0, NULL, CRED());
158 }
159 lx_exitlwp(lwp);
160 kmem_free(p->p_brand_data, sizeof (struct lx_proc_data));
161 p->p_brand_data = NULL;
162 }

164 void
165 lx_setbrand(proc_t *p)
166 {
167 kthread_t *t = p->p_tlist;
168 int err;

170 ASSERT(p->p_brand_data == NULL);
171 ASSERT(ttolxlwp(curthread) == NULL);

173 p->p_brand_data = kmem_zalloc(sizeof (struct lx_proc_data), KM_SLEEP);

175 /*
176 * This routine can only be called for single-threaded processes.
177 * Since lx_initlwp() can only fail if we run out of PIDs for
178 * multithreaded processes, we know that this can never fail.
179 */
180 err = lx_initlwp(t->t_lwp);
181 ASSERT(err == 0);
182 }

184 /* ARGSUSED */
185 int
186 lx_setattr(zone_t *zone, int attr, void *buf, size_t bufsize)
187 {
188 boolean_t val;
189 int num;

191 if (attr == LX_ATTR_RESTART_INIT) {
192 if (bufsize > sizeof (boolean_t))

new/usr/src/uts/common/brand/lx/os/lx_brand.c 4

193 return (ERANGE);
194 if (copyin(buf, &val, sizeof (val)) != 0)
195 return (EFAULT);
196 if (val != B_TRUE && val != B_FALSE)
197 return (EINVAL);
198 zone->zone_restart_init = val;
199 return (0);
200 } else if (attr == LX_KERN_VERSION_NUM) {
201 if (bufsize > sizeof (int))
202 return (ERANGE);
203 if (copyin(buf, &num, sizeof (num)) != 0)
204 return (EFAULT);
205 lx_set_kern_version(zone, num);
206 return (0);
207 }
208 return (EINVAL);
209 }

211 /* ARGSUSED */
212 int
213 lx_getattr(zone_t *zone, int attr, void *buf, size_t *bufsize)
214 {
215 int num;
216 if (attr == LX_ATTR_RESTART_INIT) {
217 if (*bufsize < sizeof (boolean_t))
218 return (ERANGE);
219 if (copyout(&zone->zone_restart_init, buf,
220 sizeof (boolean_t)) != 0)
221 return (EFAULT);
222 *bufsize = sizeof (boolean_t);
223 return (0);
224 } else if (attr == LX_KERN_VERSION_NUM) {
225 if (*bufsize < sizeof (int))
226 return (ERANGE);
227 num = lx_get_kern_version();
228 if (copyout(&num, buf, sizeof (int)) != 0)
229 return (EFAULT);
230 *bufsize = sizeof (int);
231 return (0);
232 }
233 return (-EINVAL);
234 }

236 /*
237 * Enable ptrace system call tracing for the given LWP. This is done by
238 * both setting the flag in that LWP’s brand data (in the kernel) and setting
239 * the process-wide trace flag (in the brand library of the traced process).
240 */
241 static int
242 lx_ptrace_syscall_set(pid_t pid, id_t lwpid, int set)
243 {
244 proc_t *p;
245 kthread_t *t;
246 klwp_t *lwp;
247 lx_proc_data_t *lpdp;
248 lx_lwp_data_t *lldp;
249 uintptr_t addr;
250 int ret, flag = 1;

252 if ((p = sprlock(pid)) == NULL)
253 return (ESRCH);

255 if (priv_proc_cred_perm(curproc->p_cred, p, NULL, VWRITE) != 0) {
256 sprunlock(p);
257 return (EPERM);
258 }

new/usr/src/uts/common/brand/lx/os/lx_brand.c 5

260 if ((t = idtot(p, lwpid)) == NULL || (lwp = ttolwp(t)) == NULL) {
261 sprunlock(p);
262 return (ESRCH);
263 }

265 if ((lpdp = p->p_brand_data) == NULL ||
266 (lldp = lwp->lwp_brand) == NULL) {
267 sprunlock(p);
268 return (ESRCH);
269 }

271 if (set) {
272 /*
273 * Enable the ptrace flag for this LWP and this process. Note
274 * that we will turn off the LWP’s ptrace flag, but we don’t
275 * turn off the process’s ptrace flag.
276 */
277 lldp->br_ptrace = 1;
278 lpdp->l_ptrace = 1;

280 addr = lpdp->l_traceflag;

282 mutex_exit(&p->p_lock);

284 /*
285 * This can fail only in some rare corner cases where the
286 * process is exiting or we’re completely out of memory. In
287 * these cases, it’s sufficient to return an error to the ptrace
288 * consumer and leave the process-wide flag set.
289 */
290 ret = uwrite(p, &flag, sizeof (flag), addr);

292 mutex_enter(&p->p_lock);

294 /*
295 * If we couldn’t set the trace flag, unset the LWP’s ptrace
296 * flag as there ptrace consumer won’t expect this LWP to stop.
297 */
298 if (ret != 0)
299 lldp->br_ptrace = 0;
300 } else {
301 lldp->br_ptrace = 0;
302 ret = 0;
303 }

305 sprunlock(p);

307 if (ret != 0)
308 ret = EIO;

310 return (ret);
311 }

313 static void
314 lx_ptrace_fire(void)
315 {
316 kthread_t *t = curthread;
317 klwp_t *lwp = ttolwp(t);
318 lx_lwp_data_t *lldp = lwp->lwp_brand;

320 /*
321 * The ptrace flag only applies until the next event is encountered
322 * for the given LWP. If it’s set, turn off the flag and poke the
323 * controlling process by raising a signal.
324 */

new/usr/src/uts/common/brand/lx/os/lx_brand.c 6

325 if (lldp->br_ptrace) {
326 lldp->br_ptrace = 0;
327 tsignal(t, SIGTRAP);
328 }
329 }

331 void
332 lx_brand_systrace_enable(void)
333 {
334 extern void lx_brand_int80_enable(void);

336 ASSERT(!lx_systrace_enabled);

338 lx_brand_int80_enable();

340 lx_systrace_enabled = 1;
341 }

343 void
344 lx_brand_systrace_disable(void)
345 {
346 extern void lx_brand_int80_disable(void);

348 ASSERT(lx_systrace_enabled);

350 lx_brand_int80_disable();

352 lx_systrace_enabled = 0;
353 }

355 void
356 lx_init_brand_data(zone_t *zone)
357 {
358 lx_zone_data_t *data;
359 ASSERT(zone->zone_brand == &lx_brand);
360 ASSERT(zone->zone_brand_data == NULL);
361 data = (lx_zone_data_t *)kmem_zalloc(sizeof (lx_zone_data_t), KM_SLEEP);
362 /*
363 * Set the default lxzd_kernel_version to LX_KERN_2_4.
364 * This can be changed by a call to setattr() during zone boot.
365 */
366 data->lxzd_kernel_version = LX_KERN_2_4;
367 data->lxzd_max_syscall = LX_NSYSCALLS_2_4;
368 zone->zone_brand_data = data;
369 }

371 void
372 lx_free_brand_data(zone_t *zone)
373 {
374 kmem_free(zone->zone_brand_data, sizeof (lx_zone_data_t));
375 }

377 /*
378 * Get the addresses of the user-space system call handler and attach it to
379 * the proc structure. Returning 0 indicates success; the value returned
380 * by the system call is the value stored in rval. Returning a non-zero
381 * value indicates a failure; the value returned is used to set errno, -1
382 * is returned from the syscall and the contents of rval are ignored. To
383 * set errno and have the syscall return a value other than -1 we can
384 * manually set errno and rval and return 0.
385 */
386 int
387 lx_brandsys(int cmd, int64_t *rval, uintptr_t arg1, uintptr_t arg2,
388 uintptr_t arg3, uintptr_t arg4, uintptr_t arg5, uintptr_t arg6)
389 {
390 kthread_t *t = curthread;

new/usr/src/uts/common/brand/lx/os/lx_brand.c 7

391 proc_t *p = ttoproc(t);
392 lx_proc_data_t *pd;
393 int linux_call;
394 struct termios *termios;
395 uint_t termios_len;
396 int error;
397 lx_brand_registration_t reg;

399 /*
400 * There is one operation that is suppored for non-branded
401 * process. B_EXEC_BRAND. This is the equilivant of an
402 * exec call, but the new process that is created will be
403 * a branded process.
404 */
405 if (cmd == B_EXEC_BRAND) {
406 ASSERT(p->p_zone != NULL);
407 ASSERT(p->p_zone->zone_brand == &lx_brand);
408 return (exec_common(
409 (char *)arg1, (const char **)arg2, (const char **)arg3,
410 EBA_BRAND));
411 }

413 /* For all other operations this must be a branded process. */
414 if (p->p_brand == NULL)
415 return (set_errno(ENOSYS));

417 ASSERT(p->p_brand == &lx_brand);
418 ASSERT(p->p_brand_data != NULL);

420 switch (cmd) {
421 case B_REGISTER:
422 if (p->p_model == DATAMODEL_NATIVE) {
423 if (copyin((void *)arg1, ®, sizeof (reg)) != 0) {
424 lx_print("Failed to copyin brand registration "
425 "at 0x%p\n", (void *)arg1);
426 return (EFAULT);
427 }
428 #ifdef _LP64
429 } else {
430 lx_brand_registration32_t reg32;

432 if (copyin((void *)arg1, ®32, sizeof (reg32)) != 0) {
433 lx_print("Failed to copyin brand registration "
434 "at 0x%p\n", (void *)arg1);
435 return (EFAULT);
436 }

438 reg.lxbr_version = (uint_t)reg32.lxbr_version;
439 reg.lxbr_handler =
440 (void *)(uintptr_t)reg32.lxbr_handler;
441 reg.lxbr_tracehandler =
442 (void *)(uintptr_t)reg32.lxbr_tracehandler;
443 reg.lxbr_traceflag =
444 (void *)(uintptr_t)reg32.lxbr_traceflag;
445 #endif
446 }

448 if (reg.lxbr_version != LX_VERSION_1) {
449 lx_print("Invalid brand library version (%u)\n",
450 reg.lxbr_version);
451 return (EINVAL);
452 }

454 lx_print("Assigning brand 0x%p and handler 0x%p to proc 0x%p\n",
455 (void *)&lx_brand, (void *)reg.lxbr_handler, (void *)p);
456 pd = p->p_brand_data;

new/usr/src/uts/common/brand/lx/os/lx_brand.c 8

457 pd->l_handler = (uintptr_t)reg.lxbr_handler;
458 pd->l_tracehandler = (uintptr_t)reg.lxbr_tracehandler;
459 pd->l_traceflag = (uintptr_t)reg.lxbr_traceflag;
460 *rval = 0;
461 return (0);
462 case B_TTYMODES:
463 /* This is necessary for emulating TCGETS ioctls. */
464 if (ddi_prop_lookup_byte_array(DDI_DEV_T_ANY, ddi_root_node(),
465 DDI_PROP_NOTPROM, "ttymodes", (uchar_t **)&termios,
466 &termios_len) != DDI_SUCCESS)
467 return (EIO);

469 ASSERT(termios_len == sizeof (*termios));

471 if (copyout(&termios, (void *)arg1, sizeof (termios)) != 0) {
472 ddi_prop_free(termios);
473 return (EFAULT);
474 }

476 ddi_prop_free(termios);
477 *rval = 0;
478 return (0);

480 case B_ELFDATA:
481 pd = curproc->p_brand_data;
482 if (copyout(&pd->l_elf_data, (void *)arg1,
483 sizeof (lx_elf_data_t)) != 0) {
484 (void) set_errno(EFAULT);
485 return (*rval = -1);
486 }
487 *rval = 0;
488 return (0);

490 case B_EXEC_NATIVE:
491 error = exec_common(
492 (char *)arg1, (const char **)arg2, (const char **)arg3,
493 EBA_NATIVE);
494 if (error) {
495 (void) set_errno(error);
496 return (*rval = -1);
497 }
498 return (*rval = 0);

500 case B_LPID_TO_SPAIR:
501 /*
502 * Given a Linux pid as arg1, return the Solaris pid in arg2 and
503 * the Solaris LWP in arg3. We also translate pid 1 (which is
504 * hardcoded in many applications) to the zone’s init process.
505 */
506 {
507 pid_t s_pid;
508 id_t s_tid;

510 if ((pid_t)arg1 == 1) {
511 s_pid = p->p_zone->zone_proc_initpid;
512 /* handle the dead/missing init(1M) case */
513 if (s_pid == -1)
514 s_pid = 1;
515 s_tid = 1;
516 } else if (lx_lpid_to_spair((pid_t)arg1, &s_pid,
517 &s_tid) < 0)
518 return (ESRCH);

520 if (copyout(&s_pid, (void *)arg2,
521 sizeof (s_pid)) != 0 ||
522 copyout(&s_tid, (void *)arg3, sizeof (s_tid)) != 0)

new/usr/src/uts/common/brand/lx/os/lx_brand.c 9

523 return (EFAULT);

525 *rval = 0;
526 return (0);
527 }

529 case B_PTRACE_SYSCALL:
530 *rval = lx_ptrace_syscall_set((pid_t)arg1, (id_t)arg2,
531 (int)arg3);
532 return (0);

534 case B_SYSENTRY:
535 if (lx_systrace_enabled) {
536 uint32_t args[6];

538 ASSERT(lx_systrace_entry_ptr != NULL);

540 if (copyin((void *)arg2, args, sizeof (args)) != 0)
541 return (EFAULT);

543 (*lx_systrace_entry_ptr)(arg1, args[0], args[1],
544 args[2], args[3], args[4], args[5]);
545 }

547 lx_ptrace_fire();

549 pd = p->p_brand_data;

551 /*
552 * If neither DTrace not ptrace are interested in tracing
553 * this process any more, turn off the trace flag.
554 */
555 if (!lx_systrace_enabled && !pd->l_ptrace)
556 (void) suword32((void *)pd->l_traceflag, 0);

558 *rval = 0;
559 return (0);

561 case B_SYSRETURN:
562 if (lx_systrace_enabled) {
563 ASSERT(lx_systrace_return_ptr != NULL);

565 (*lx_systrace_return_ptr)(arg1, arg2, arg2, 0, 0, 0, 0);
566 }

568 lx_ptrace_fire();

570 pd = p->p_brand_data;

572 /*
573 * If neither DTrace not ptrace are interested in tracing
574 * this process any more, turn off the trace flag.
575 */
576 if (!lx_systrace_enabled && !pd->l_ptrace)
577 (void) suword32((void *)pd->l_traceflag, 0);

579 *rval = 0;
580 return (0);

582 case B_SET_AFFINITY_MASK:
583 case B_GET_AFFINITY_MASK:
584 /*
585 * Retrieve or store the CPU affinity mask for the
586 * requested linux pid.
587 *
588 * arg1 is a linux PID (0 means curthread).

new/usr/src/uts/common/brand/lx/os/lx_brand.c 10

589 * arg2 is the size of the given mask.
590 * arg3 is the address of the affinity mask.
591 */
592 return (lx_sched_affinity(cmd, arg1, arg2, arg3, rval));

594 default:
595 linux_call = cmd - B_EMULATE_SYSCALL;
596 /*
597 * Only checking against highest syscall number for all kernel
598 * versions, since check for specific kernel version is done
599 * in userland prior to this call, and duplicating logic would
600 * be redundant.
601 */
602 if (linux_call >= 0 && linux_call < LX_NSYSCALLS) {
603 *rval = lx_emulate_syscall(linux_call, arg1, arg2,
604 arg3, arg4, arg5, arg6);
605 return (0);
606 }
607 }

609 return (EINVAL);
610 }

612 int
613 lx_get_zone_kern_version(zone_t *zone)
614 {
615 return (((lx_zone_data_t *)zone->zone_brand_data)->lxzd_kernel_version);
616 }

618 int
619 lx_get_kern_version()
620 {
621 return (lx_get_zone_kern_version(curzone));
622 }

624 void
625 lx_set_kern_version(zone_t *zone, int vers)
626 {
627 lx_zone_data_t *lxzd = (lx_zone_data_t *)zone->zone_brand_data;

629 lxzd->lxzd_kernel_version = vers;
630 if (vers == LX_KERN_2_6)
631 lxzd->lxzd_max_syscall = LX_NSYSCALLS_2_6;
632 }

634 /*
635 * Copy the per-process brand data from a parent proc to a child.
636 */
637 void
638 lx_copy_procdata(proc_t *child, proc_t *parent)
639 {
640 lx_proc_data_t *cpd, *ppd;

642 ppd = parent->p_brand_data;

644 ASSERT(ppd != NULL);

646 cpd = kmem_alloc(sizeof (lx_proc_data_t), KM_SLEEP);
647 *cpd = *ppd;

649 child->p_brand_data = cpd;
650 }

652 /*
653 * Currently, only 32-bit branded ELF executables are supported.
654 */

new/usr/src/uts/common/brand/lx/os/lx_brand.c 11

655 #if defined(_LP64)
656 #define elfexec elf32exec
657 #define mapexec_brand mapexec32_brand
658 #endif /* _LP64 */

660 /*
661 * Exec routine called by elfexec() to load 32-bit Linux binaries.
662 */
663 static int
664 lx_elfexec(struct vnode *vp, struct execa *uap, struct uarg *args,
665 struct intpdata *idata, int level, long *execsz, int setid,
666 caddr_t exec_file, struct cred *cred, int brand_action)
667 {
668 int error;
669 vnode_t *nvp;
670 auxv32_t phdr_auxv32[3] = {
671 { AT_SUN_BRAND_LX_PHDR, 0 },
672 { AT_SUN_BRAND_AUX2, 0 },
673 { AT_SUN_BRAND_AUX3, 0 }
674 };
675 Elf32_Ehdr ehdr;
676 Elf32_Addr uphdr_vaddr;
677 intptr_t voffset;
678 int interp;
679 int i;
680 struct execenv env;
681 struct user *up = PTOU(ttoproc(curthread));
682 lx_elf_data_t *edp =
683 &((lx_proc_data_t *)ttoproc(curthread)->p_brand_data)->l_elf_data;

685 ASSERT(ttoproc(curthread)->p_brand == &lx_brand);
686 ASSERT(ttoproc(curthread)->p_brand_data != NULL);

688 /*
689 * Set the brandname and library name for the new process so that
690 * elfexec() puts them onto the stack.
691 */
692 args->brandname = LX_BRANDNAME;
693 args->emulator = LX_LIB_PATH;

695 /*
696 * We will exec the brand library, and map in the linux linker and the
697 * linux executable.
698 */
699 if ((error = lookupname(LX_LIB_PATH, UIO_SYSSPACE, FOLLOW, NULLVPP,
700 &nvp))) {
701 uprintf("%s: not found.", LX_LIB);
702 return (error);
703 }

705 if ((error = elfexec(nvp, uap, args, idata, level + 1, execsz, setid,
706 exec_file, cred, brand_action))) {
707 VN_RELE(nvp);
708 return (error);
709 }
710 VN_RELE(nvp);

712 bzero(&env, sizeof (env));

714 if ((error = mapexec_brand(vp, args, &ehdr, &uphdr_vaddr, &voffset,
715 exec_file, &interp, &env.ex_bssbase, &env.ex_brkbase,
716 &env.ex_brksize, NULL)))
717 return (error);

719 /*
720 * Save off the important properties of the lx executable. The brand

new/usr/src/uts/common/brand/lx/os/lx_brand.c 12

721 * library will ask us for this data later, when it is ready to set
722 * things up for the lx executable.
723 */
724 edp->ed_phdr = (uphdr_vaddr == -1) ? voffset + ehdr.e_phoff :
725 voffset + uphdr_vaddr;
726 edp->ed_entry = voffset + ehdr.e_entry;
727 edp->ed_phent = ehdr.e_phentsize;
728 edp->ed_phnum = ehdr.e_phnum;

730 if (interp) {
731 if (ehdr.e_type == ET_DYN) {
732 /*
733 * This is a shared object executable, so we need to
734 * pick a reasonable place to put the heap. Just don’t
735 * use the first page.
736 */
737 env.ex_brkbase = (caddr_t)PAGESIZE;
738 env.ex_bssbase = (caddr_t)PAGESIZE;
739 }

741 /*
742 * If the program needs an interpreter (most do), map it in and
743 * store relevant information about it in the aux vector, where
744 * the brand library can find it.
745 */
746 if ((error = lookupname(LX_LINKER, UIO_SYSSPACE, FOLLOW, NULLVPP
747 &nvp))) {
748 uprintf("%s: not found.", LX_LINKER);
749 return (error);
750 }
751 if ((error = mapexec_brand(nvp, args, &ehdr, &uphdr_vaddr,
752 &voffset, exec_file, &interp, NULL, NULL, NULL, NULL))) {
753 VN_RELE(nvp);
754 return (error);
755 }
756 VN_RELE(nvp);

758 /*
759 * Now that we know the base address of the brand’s linker,
760 * place it in the aux vector.
761 */
762 edp->ed_base = voffset;
763 edp->ed_ldentry = voffset + ehdr.e_entry;
764 } else {
765 /*
766 * This program has no interpreter. The lx brand library will
767 * jump to the address in the AT_SUN_BRAND_LDENTRY aux vector,
768 * so in this case, put the entry point of the main executable
769 * there.
770 */
771 if (ehdr.e_type == ET_EXEC) {
772 /*
773 * An executable with no interpreter, this must be a
774 * statically linked executable, which means we loaded
775 * it at the address specified in the elf header, in
776 * which case the e_entry field of the elf header is an
777 * absolute address.
778 */
779 edp->ed_ldentry = ehdr.e_entry;
780 edp->ed_entry = ehdr.e_entry;
781 } else {
782 /*
783 * A shared object with no interpreter, we use the
784 * calculated address from above.
785 */
786 edp->ed_ldentry = edp->ed_entry;

new/usr/src/uts/common/brand/lx/os/lx_brand.c 13

788 /*
789 * In all situations except an ET_DYN elf object with no
790 * interpreter, we want to leave the brk and base
791 * values set by mapexec_brand alone. Normally when
792 * running ET_DYN objects on Solaris (most likely
793 * /lib/ld.so.1) the kernel sets brk and base to 0 since
794 * it doesn’t know where to put the heap, and later the
795 * linker will call brk() to initialize the heap in:
796 * usr/src/cmd/sgs/rtld/common/setup.c:setup()
797 * after it has determined where to put it. (This
798 * decision is made after the linker loads and inspects
799 * elf properties of the target executable being run.)
800 *
801 * So for ET_DYN Linux executables, we also don’t know
802 * where the heap should go, so we’ll set the brk and
803 * base to 0. But in this case the Solaris linker will
804 * not initialize the heap, so when the Linux linker
805 * starts running there is no heap allocated. This
806 * seems to be ok on Linux 2.4 based systems because the
807 * Linux linker/libc fall back to using mmap() to
808 * allocate memory. But on 2.6 systems, running
809 * applications by specifying them as command line
810 * arguments to the linker results in segfaults for an
811 * as yet undetermined reason (which seems to indicatej
812 * that a more permanent fix for heap initalization in
813 * these cases may be necessary).
814 */
815 if (ehdr.e_type == ET_DYN) {
816 env.ex_bssbase = (caddr_t)0;
817 env.ex_brkbase = (caddr_t)0;
818 env.ex_brksize = 0;
819 }
820 }

822 }

824 env.ex_vp = vp;
825 setexecenv(&env);

827 /*
828 * We don’t need to copy this stuff out. It is only used by our
829 * tools to locate the lx linker’s debug section. But we should at
830 * least try to keep /proc’s view of the aux vector consistent with
831 * what’s on the process stack.
832 */
833 phdr_auxv32[0].a_un.a_val = edp->ed_phdr;

835 /*
836 * Linux 2.6 programs such as ps will print an error message if the
837 * following aux entry is missing
838 */
839 if (lx_get_kern_version() >= LX_KERN_2_6) {
840 phdr_auxv32[1].a_type = AT_CLKTCK;
841 phdr_auxv32[1].a_un.a_val = hz;
842 }

844 if (copyout(&phdr_auxv32, args->auxp_brand,
845 sizeof (phdr_auxv32)) == -1)
846 return (EFAULT);

848 /*
849 * /proc uses the AT_ENTRY aux vector entry to deduce
850 * the location of the executable in the address space. The user
851 * structure contains a copy of the aux vector that needs to have those
852 * entries patched with the values of the real lx executable (they

new/usr/src/uts/common/brand/lx/os/lx_brand.c 14

853 * currently contain the values from the lx brand library that was
854 * elfexec’d, above).
855 *
856 * For live processes, AT_BASE is used to locate the linker segment,
857 * which /proc and friends will later use to find Solaris symbols
858 * (such as rtld_db_preinit). However, for core files, /proc uses
859 * AT_ENTRY to find the right segment to label as the executable.
860 * So we set AT_ENTRY to be the entry point of the linux executable,
861 * but leave AT_BASE to be the address of the Solaris linker.
862 */
863 for (i = 0; i < __KERN_NAUXV_IMPL; i++) {
864 if (up->u_auxv[i].a_type == AT_ENTRY)
865 up->u_auxv[i].a_un.a_val = edp->ed_entry;
866 if (up->u_auxv[i].a_type == AT_SUN_BRAND_LX_PHDR)
867 up->u_auxv[i].a_un.a_val = edp->ed_phdr;
868 }

870 return (0);
871 }

873 int
874 _init(void)
875 {
876 int err = 0;

878 /* pid/tid conversion hash tables */
879 lx_pid_init();

881 /* for lx_futex() */
882 lx_futex_init();

884 err = mod_install(&modlinkage);
885 if (err != 0) {
886 cmn_err(CE_WARN, "Couldn’t install lx brand module");

888 /*
889 * This looks drastic, but it should never happen. These
890 * two data structures should be completely free-able until
891 * they are used by Linux processes. Since the brand
892 * wasn’t loaded there should be no Linux processes, and
893 * thus no way for these data structures to be modified.
894 */
895 lx_pid_fini();
896 if (lx_futex_fini())
897 panic("lx brand module cannot be loaded or unloaded.");
898 }
899 return (err);
900 }

902 int
903 _info(struct modinfo *modinfop)
904 {
905 return (mod_info(&modlinkage, modinfop));
906 }

908 int
909 _fini(void)
910 {
911 int err;
912 int futex_done = 0;

914 /*
915 * If there are any zones using this brand, we can’t allow it to be
916 * unloaded.
917 */
918 if (brand_zone_count(&lx_brand))

new/usr/src/uts/common/brand/lx/os/lx_brand.c 15

919 return (EBUSY);

921 lx_pid_fini();

923 if ((err = lx_futex_fini()) != 0)
924 goto done;
925 futex_done = 1;

927 err = mod_remove(&modlinkage);

929 done:
930 if (err) {
931 /*
932 * If we can’t unload the module, then we have to get it
933 * back into a sane state.
934 */
935 lx_pid_init();

937 if (futex_done)
938 lx_futex_init();

940 }

942 return (err);
943 }
944 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/os/lx_misc.c 1

**
 8557 Tue Jan 14 16:17:19 2014
new/usr/src/uts/common/brand/lx/os/lx_misc.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <sys/errno.h>
27 #include <sys/systm.h>
28 #include <sys/archsystm.h>
29 #include <sys/privregs.h>
30 #include <sys/exec.h>
31 #include <sys/lwp.h>
32 #include <sys/sem.h>
33 #include <sys/brand.h>
34 #include <sys/lx_brand.h>
35 #include <sys/lx_pid.h>
36 #include <sys/lx_futex.h>

38 /* Linux specific functions and definitions */
39 void lx_setrval(klwp_t *, int, int);
40 void lx_exec();
41 int lx_initlwp(klwp_t *);
42 void lx_forklwp(klwp_t *, klwp_t *);
43 void lx_exitlwp(klwp_t *);
44 void lx_freelwp(klwp_t *);
45 static void lx_save(klwp_t *);
46 static void lx_restore(klwp_t *);
47 extern void lx_ptrace_free(proc_t *);

49 /*
50 * Set the return code for the forked child, always zero
51 */
52 /*ARGSUSED*/
53 void
54 lx_setrval(klwp_t *lwp, int v1, int v2)
55 {
56 lwptoregs(lwp)->r_r0 = 0;
57 }

59 /*
60 * Reset process state on exec(2)
61 */

new/usr/src/uts/common/brand/lx/os/lx_misc.c 2

62 void
63 lx_exec()
64 {
65 klwp_t *lwp = ttolwp(curthread);
66 struct lx_lwp_data *lwpd = lwptolxlwp(lwp);
67 int err;

69 /*
70 * There are two mutually exclusive special cases we need to
71 * address. First, if this was a native process prior to this
72 * exec(), then this lwp won’t have its brand-specific data
73 * initialized and it won’t be assigned a Linux PID yet. Second,
74 * if this was a multi-threaded Linux process and this lwp wasn’t
75 * the main lwp, then we need to make its Solaris and Linux PIDS
76 * match.
77 */
78 if (lwpd == NULL) {
79 err = lx_initlwp(lwp);
80 /*
81 * Only possible failure from this routine should be an
82 * inability to allocate a new PID. Since single-threaded
83 * processes don’t need a new PID, we should never hit this
84 * error.
85 */
86 ASSERT(err == 0);
87 lwpd = lwptolxlwp(lwp);
88 } else if (curthread->t_tid != 1) {
89 lx_pid_reassign(curthread);
90 }

92 installctx(lwptot(lwp), lwp, lx_save, lx_restore, NULL, NULL, lx_save,
93 NULL);

95 /*
96 * clear out the tls array
97 */
98 bzero(lwpd->br_tls, sizeof (lwpd->br_tls));

100 /*
101 * reset the tls entries in the gdt
102 */
103 kpreempt_disable();
104 lx_restore(lwp);
105 kpreempt_enable();
106 }

108 void
109 lx_exitlwp(klwp_t *lwp)
110 {
111 struct lx_lwp_data *lwpd = lwptolxlwp(lwp);
112 proc_t *p;
113 kthread_t *t;
114 sigqueue_t *sqp = NULL;
115 pid_t ppid;
116 id_t ptid;

118 if (lwpd == NULL)
119 return; /* second time thru’ */

121 if (lwpd->br_clear_ctidp != NULL) {
122 (void) suword32(lwpd->br_clear_ctidp, 0);
123 (void) lx_futex((uintptr_t)lwpd->br_clear_ctidp, FUTEX_WAKE, 1,
124 NULL, NULL, 0);
125 }

127 if (lwpd->br_signal != 0) {

new/usr/src/uts/common/brand/lx/os/lx_misc.c 3

128 /*
129 * The first thread in a process doesn’t cause a signal to
130 * be sent when it exits. It was created by a fork(), not
131 * a clone(), so the parent should get signalled when the
132 * process exits.
133 */
134 if (lwpd->br_ptid == -1)
135 goto free;

137 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);
138 /*
139 * If br_ppid is 0, it means this is a CLONE_PARENT thread,
140 * so the signal goes to the parent process - not to a
141 * specific thread in this process.
142 */
143 p = lwptoproc(lwp);
144 if (lwpd->br_ppid == 0) {
145 mutex_enter(&p->p_lock);
146 ppid = p->p_ppid;
147 t = NULL;
148 } else {
149 /*
150 * If we have been reparented to init or if our
151 * parent thread is gone, then nobody gets
152 * signaled.
153 */
154 if ((lx_lwp_ppid(lwp, &ppid, &ptid) == 1) ||
155 (ptid == -1))
156 goto free;

158 mutex_enter(&pidlock);
159 if ((p = prfind(ppid)) == NULL || p->p_stat == SIDL) {
160 mutex_exit(&pidlock);
161 goto free;
162 }
163 mutex_enter(&p->p_lock);
164 mutex_exit(&pidlock);

166 if ((t = idtot(p, ptid)) == NULL) {
167 mutex_exit(&p->p_lock);
168 goto free;
169 }
170 }

172 sqp->sq_info.si_signo = lwpd->br_signal;
173 sqp->sq_info.si_code = lwpd->br_exitwhy;
174 sqp->sq_info.si_status = lwpd->br_exitwhat;
175 sqp->sq_info.si_pid = lwpd->br_pid;
176 sqp->sq_info.si_uid = crgetruid(CRED());
177 sigaddqa(p, t, sqp);
178 mutex_exit(&p->p_lock);
179 sqp = NULL;
180 }

182 free:
183 if (sqp)
184 kmem_free(sqp, sizeof (sigqueue_t));

186 lx_freelwp(lwp);
187 }

189 void
190 lx_freelwp(klwp_t *lwp)
191 {
192 struct lx_lwp_data *lwpd = lwptolxlwp(lwp);

new/usr/src/uts/common/brand/lx/os/lx_misc.c 4

194 if (lwpd != NULL) {
195 (void) removectx(lwptot(lwp), lwp, lx_save, lx_restore,
196 NULL, NULL, lx_save, NULL);
197 if (lwpd->br_pid != 0)
198 lx_pid_rele(lwptoproc(lwp)->p_pid,
199 lwptot(lwp)->t_tid);

201 lwp->lwp_brand = NULL;
202 kmem_free(lwpd, sizeof (struct lx_lwp_data));
203 }
204 }

206 int
207 lx_initlwp(klwp_t *lwp)
208 {
209 struct lx_lwp_data *lwpd;
210 struct lx_lwp_data *plwpd;
211 kthread_t *tp = lwptot(lwp);

213 lwpd = kmem_zalloc(sizeof (struct lx_lwp_data), KM_SLEEP);
214 lwpd->br_exitwhy = CLD_EXITED;
215 lwpd->br_lwp = lwp;
216 lwpd->br_clear_ctidp = NULL;
217 lwpd->br_set_ctidp = NULL;
218 lwpd->br_signal = 0;
219 /*
220 * lwpd->br_affinitymask was zeroed by kmem_zalloc().
221 */

223 /*
224 * The first thread in a process has ppid set to the parent
225 * process’s pid, and ptid set to -1. Subsequent threads in the
226 * process have their ppid set to the pid of the thread that
227 * created them, and their ptid to that thread’s tid.
228 */
229 if (tp->t_next == tp) {
230 lwpd->br_ppid = tp->t_procp->p_ppid;
231 lwpd->br_ptid = -1;
232 } else if (ttolxlwp(curthread) != NULL) {
233 plwpd = ttolxlwp(curthread);
234 bcopy(plwpd->br_tls, lwpd->br_tls, sizeof (lwpd->br_tls));
235 lwpd->br_ppid = plwpd->br_pid;
236 lwpd->br_ptid = curthread->t_tid;
237 } else {
238 /*
239 * Oddball case: the parent thread isn’t a Linux process.
240 */
241 lwpd->br_ppid = 0;
242 lwpd->br_ptid = -1;
243 }
244 lwp->lwp_brand = lwpd;

246 if (lx_pid_assign(tp)) {
247 kmem_free(lwpd, sizeof (struct lx_lwp_data));
248 lwp->lwp_brand = NULL;
249 return (-1);
250 }
251 lwpd->br_tgid = lwpd->br_pid;

253 installctx(lwptot(lwp), lwp, lx_save, lx_restore, NULL, NULL,
254 lx_save, NULL);

256 return (0);
257 }

259 /*

new/usr/src/uts/common/brand/lx/os/lx_misc.c 5

260 * There is no need to have any locking for either the source or
261 * destination struct lx_lwp_data structs. This is always run in the
262 * thread context of the source thread, and the destination thread is
263 * always newly created and not referred to from anywhere else.
264 */
265 void
266 lx_forklwp(klwp_t *srclwp, klwp_t *dstlwp)
267 {
268 struct lx_lwp_data *src = srclwp->lwp_brand;
269 struct lx_lwp_data *dst = dstlwp->lwp_brand;

271 dst->br_ppid = src->br_pid;
272 dst->br_ptid = lwptot(srclwp)->t_tid;
273 bcopy(src->br_tls, dst->br_tls, sizeof (dst->br_tls));

275 /*
276 * copy only these flags
277 */
278 dst->br_lwp_flags = src->br_lwp_flags & BR_CPU_BOUND;
279 dst->br_clone_args = NULL;
280 }

282 /*
283 * When switching a Linux process off the CPU, clear its GDT entries.
284 */
285 /* ARGSUSED */
286 static void
287 lx_save(klwp_t *t)
288 {
289 int i;

291 #if defined(__amd64)
292 reset_sregs();
293 #endif
294 for (i = 0; i < LX_TLSNUM; i++)
295 gdt_update_usegd(GDT_TLSMIN + i, &null_udesc);
296 }

298 /*
299 * When switching a Linux process on the CPU, set its GDT entries.
300 */
301 static void
302 lx_restore(klwp_t *t)
303 {
304 struct lx_lwp_data *lwpd = lwptolxlwp(t);
305 user_desc_t *tls;
306 int i;

308 ASSERT(lwpd);

310 tls = lwpd->br_tls;
311 for (i = 0; i < LX_TLSNUM; i++)
312 gdt_update_usegd(GDT_TLSMIN + i, &tls[i]);
313 }

315 void
316 lx_set_gdt(int entry, user_desc_t *descrp)
317 {

319 gdt_update_usegd(entry, descrp);
320 }

322 void
323 lx_clear_gdt(int entry)
324 {
325 gdt_update_usegd(entry, &null_udesc);

new/usr/src/uts/common/brand/lx/os/lx_misc.c 6

326 }

328 longlong_t
329 lx_nosys()
330 {
331 return (set_errno(ENOSYS));
332 }

334 longlong_t
335 lx_opnotsupp()
336 {
337 return (set_errno(EOPNOTSUPP));
338 }

340 /*
341 * Brand-specific routine to check if given non-Solaris standard segment
342 * register values should be modified to other values.
343 */
344 /*ARGSUSED*/
345 greg_t
346 lx_fixsegreg(greg_t sr, model_t datamodel)
347 {
348 ASSERT(sr == (sr & 0xffff));

350 /*
351 * Force the SR into the LDT in ring 3 for 32-bit processes.
352 *
353 * 64-bit processes get the null GDT selector since they are not
354 * allowed to have a private LDT.
355 */
356 #if defined(__amd64)
357 return (datamodel == DATAMODEL_ILP32 ? (sr | SEL_TI_LDT | SEL_UPL) : 0);
358 #elif defined(__i386)
359 datamodel = datamodel; /* datamodel currently unused for 32-bit */
360 return (sr | SEL_TI_LDT | SEL_UPL);
361 #endif /* __amd64 */
362 }
363 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/os/lx_pid.c 1

**
 8381 Tue Jan 14 16:17:19 2014
new/usr/src/uts/common/brand/lx/os/lx_pid.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #include <sys/types.h>
27 #include <sys/param.h>
28 #include <sys/sysmacros.h>
29 #include <sys/bitmap.h>
30 #include <sys/var.h>
31 #include <sys/thread.h>
32 #include <sys/proc.h>
33 #include <sys/brand.h>
34 #include <sys/zone.h>
35 #include <sys/lx_brand.h>
36 #include <sys/lx_pid.h>

38 #define LINUX_PROC_FACTOR 8 /* factor down the hash table by this */
39 static int hash_len = 4; /* desired average hash chain length */
40 static int hash_size; /* no of buckets in the hash table */

42 static struct lx_pid **stol_pid_hash;
43 static struct lx_pid **ltos_pid_hash;

45 #define LTOS_HASH(pid) ((pid) & (hash_size - 1))
46 #define STOL_HASH(pid, tid) (((pid) + (tid)) & (hash_size - 1))

48 static kmutex_t hash_lock;

50 static void
51 lx_pid_insert_hash(struct lx_pid *lpidp)
52 {
53 int shash = STOL_HASH(lpidp->s_pid, lpidp->s_tid);
54 int lhash = LTOS_HASH(lpidp->l_pid);

56 ASSERT(MUTEX_HELD(&hash_lock));

58 lpidp->stol_next = stol_pid_hash[shash];
59 stol_pid_hash[shash] = lpidp;

new/usr/src/uts/common/brand/lx/os/lx_pid.c 2

61 lpidp->ltos_next = ltos_pid_hash[lhash];
62 ltos_pid_hash[lhash] = lpidp;
63 }

65 static struct lx_pid *
66 lx_pid_remove_hash(pid_t pid, id_t tid)
67 {
68 struct lx_pid **hpp;
69 struct lx_pid *lpidp = NULL;

71 ASSERT(MUTEX_HELD(&hash_lock));

73 hpp = &stol_pid_hash[STOL_HASH(pid, tid)];
74 while (*hpp) {
75 if ((*hpp)->s_pid == pid && (*hpp)->s_tid == tid) {
76 lpidp = *hpp;
77 *hpp = (*hpp)->stol_next;
78 break;
79 }
80 hpp = &(*hpp)->stol_next;
81 }

83 /*
84 * when called during error recovery the pid may already
85 * be released
86 */
87 if (lpidp == NULL)
88 return (NULL);

90 hpp = <os_pid_hash[LTOS_HASH(lpidp->l_pid)];
91 while (*hpp) {
92 if (*hpp == lpidp) {
93 *hpp = lpidp->ltos_next;
94 break;
95 }
96 hpp = &(*hpp)->ltos_next;
97 }

99 return (lpidp);
100 }

102 struct pid * pid_find(pid_t pid);

104 /*
105 * given a solaris pid/tid pair, create a linux pid
106 */
107 int
108 lx_pid_assign(kthread_t *t)
109 {
110 proc_t *p = ttoproc(t);
111 pid_t s_pid = p->p_pid;
112 id_t s_tid = t->t_tid;
113 struct pid *pidp;
114 struct lx_pid *lpidp;
115 lx_lwp_data_t *lwpd = ttolxlwp(t);
116 pid_t newpid;

118 if (p->p_lwpcnt > 0) {
119 /*
120 * Allocate a pid for any thread other than the first
121 */
122 if ((newpid = pid_allocate(p, 0, 0)) < 0)
123 return (-1);

125 pidp = pid_find(newpid);
126 } else {

new/usr/src/uts/common/brand/lx/os/lx_pid.c 3

127 pidp = NULL;
128 newpid = s_pid;
129 }

131 lpidp = kmem_alloc(sizeof (struct lx_pid), KM_SLEEP);
132 lpidp->l_pid = newpid;
133 lpidp->s_pid = s_pid;
134 lpidp->s_tid = s_tid;
135 lpidp->l_pidp = pidp;
136 lpidp->l_start = t->t_start;

138 /*
139 * now put the pid into the linux-solaris and solaris-linux
140 * conversion hash tables
141 */
142 mutex_enter(&hash_lock);
143 lx_pid_insert_hash(lpidp);
144 mutex_exit(&hash_lock);

146 lwpd->br_pid = newpid;

148 return (0);
149 }

151 /*
152 * If we are exec()ing the process, this thread’s tid is about to be reset
153 * to 1. Make sure the Linux PID bookkeeping reflects that change.
154 */
155 void
156 lx_pid_reassign(kthread_t *t)
157 {
158 proc_t *p = ttoproc(t);
159 struct pid *old_pidp;
160 struct lx_pid *lpidp;

162 ASSERT(p->p_lwpcnt == 1);

164 mutex_enter(&hash_lock);

166 /*
167 * Clean up all the traces of this thread’s ’fake’ Linux PID.
168 */
169 lpidp = lx_pid_remove_hash(p->p_pid, t->t_tid);
170 ASSERT(lpidp != NULL);
171 old_pidp = lpidp->l_pidp;
172 lpidp->l_pidp = NULL;

174 /*
175 * Now register this thread as (pid, 1).
176 */
177 lpidp->l_pid = p->p_pid;
178 lpidp->s_pid = p->p_pid;
179 lpidp->s_tid = 1;
180 lx_pid_insert_hash(lpidp);

182 mutex_exit(&hash_lock);

184 if (old_pidp)
185 (void) pid_rele(old_pidp);
186 }

188 /*
189 * release a solaris pid/tid pair
190 */
191 void
192 lx_pid_rele(pid_t pid, id_t tid)

new/usr/src/uts/common/brand/lx/os/lx_pid.c 4

193 {
194 struct lx_pid *lpidp;

196 mutex_enter(&hash_lock);
197 lpidp = lx_pid_remove_hash(pid, tid);
198 mutex_exit(&hash_lock);

200 if (lpidp) {
201 if (lpidp->l_pidp)
202 (void) pid_rele(lpidp->l_pidp);

204 kmem_free(lpidp, sizeof (*lpidp));
205 }
206 }

208 /*
209 * given a linux pid, return the solaris pid/tid pair
210 */
211 int
212 lx_lpid_to_spair(pid_t l_pid, pid_t *s_pid, id_t *s_tid)
213 {
214 struct lx_pid *hp;

216 mutex_enter(&hash_lock);
217 for (hp = ltos_pid_hash[LTOS_HASH(l_pid)]; hp; hp = hp->ltos_next) {
218 if (l_pid == hp->l_pid) {
219 if (s_pid)
220 *s_pid = hp->s_pid;
221 if (s_tid)
222 *s_tid = hp->s_tid;
223 break;
224 }
225 }
226 mutex_exit(&hash_lock);
227 if (hp != NULL)
228 return (0);

230 /*
231 * We didn’t find this pid in our translation table.
232 * But this still could be the pid of a native process
233 * running in the current zone so check for that here.
234 *
235 * Note that prfind() only searches for processes in the current zone.
236 */
237 mutex_enter(&pidlock);
238 if (prfind(l_pid) != NULL) {
239 mutex_exit(&pidlock);
240 if (s_pid)
241 *s_pid = l_pid;
242 if (s_tid)
243 *s_tid = 0;
244 return (0);
245 }
246 mutex_exit(&pidlock);

248 return (-1);
249 }

251 /*
252 * Given an lwp, return the Linux pid of its parent. If the caller
253 * wants them, we return the Solaris (pid, tid) as well.
254 */
255 pid_t
256 lx_lwp_ppid(klwp_t *lwp, pid_t *ppidp, id_t *ptidp)
257 {
258 lx_lwp_data_t *lwpd = lwptolxlwp(lwp);

new/usr/src/uts/common/brand/lx/os/lx_pid.c 5

259 proc_t *p = lwptoproc(lwp);
260 struct lx_pid *hp;
261 pid_t zoneinit = curproc->p_zone->zone_proc_initpid;
262 pid_t lppid, ppid;

264 /*
265 * Be sure not to return a parent pid that should be invisible
266 * within this zone.
267 */
268 ppid = ((p->p_flag & SZONETOP)
269 ? curproc->p_zone->zone_zsched->p_pid : p->p_ppid);

271 /*
272 * If the parent process’s pid is the zone’s init process, force it
273 * to the Linux init pid value of 1.
274 */
275 if (ppid == zoneinit)
276 ppid = 1;

278 /*
279 * There are two cases in which the Linux definition of a ’parent’
280 * matches that of Solaris:
281 *
282 * - if our tgid is the same as our PID, then we are either the
283 * first thread in the process or a CLONE_THREAD thread.
284 *
285 * - if the brand lwp value for ppid is 0, then we are either the
286 * child of a differently-branded process or a CLONE_PARENT thread.
287 */
288 if (p->p_pid == lwpd->br_tgid || lwpd->br_ppid == 0) {
289 if (ppidp != NULL)
290 *ppidp = ppid;
291 if (ptidp != NULL)
292 *ptidp = -1;
293 return (ppid);
294 }

296 /*
297 * Set the default Linux parent pid to be the pid of the zone’s init
298 * process; this will get converted back to the Linux default of 1
299 * later.
300 */
301 lppid = zoneinit;

303 /*
304 * If the process’s parent isn’t init, try and look up the Linux "pid"
305 * corresponding to the process’s parent.
306 */
307 if (ppid != 1) {
308 /*
309 * In all other cases, we are looking for the parent of this
310 * specific thread, which in Linux refers to the thread that
311 * clone()d it. We stashed that thread’s PID away when this
312 * thread was created.
313 */
314 mutex_enter(&hash_lock);
315 for (hp = ltos_pid_hash[LTOS_HASH(lwpd->br_ppid)]; hp;
316 hp = hp->ltos_next) {
317 if (lwpd->br_ppid == hp->l_pid) {
318 /*
319 * We found the PID we were looking for, but
320 * since we cached its value in this LWP’s brand
321 * structure, it has exited and been reused by
322 * another process.
323 */
324 if (hp->l_start > lwptot(lwp)->t_start)

new/usr/src/uts/common/brand/lx/os/lx_pid.c 6

325 break;

327 lppid = lwpd->br_ppid;
328 if (ppidp != NULL)
329 *ppidp = hp->s_pid;
330 if (ptidp != NULL)
331 *ptidp = hp->s_tid;

333 break;
334 }
335 }
336 mutex_exit(&hash_lock);
337 }

339 if (lppid == zoneinit) {
340 lppid = 1;

342 if (ppidp != NULL)
343 *ppidp = lppid;
344 if (ptidp != NULL)
345 *ptidp = -1;
346 }

348 return (lppid);
349 }

351 void
352 lx_pid_init(void)
353 {
354 hash_size = 1 << highbit(v.v_proc / (hash_len * LINUX_PROC_FACTOR));

356 stol_pid_hash = kmem_zalloc(sizeof (struct lx_pid *) * hash_size,
357 KM_SLEEP);
358 ltos_pid_hash = kmem_zalloc(sizeof (struct lx_pid *) * hash_size,
359 KM_SLEEP);

361 mutex_init(&hash_lock, NULL, MUTEX_DEFAULT, NULL);
362 }

364 void
365 lx_pid_fini(void)
366 {
367 kmem_free(stol_pid_hash, sizeof (struct lx_pid *) * hash_size);
368 kmem_free(ltos_pid_hash, sizeof (struct lx_pid *) * hash_size);
369 }
370 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/os/lx_syscall.c 1

**
 11890 Tue Jan 14 16:17:19 2014
new/usr/src/uts/common/brand/lx/os/lx_syscall.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <sys/kmem.h>
30 #include <sys/errno.h>
31 #include <sys/thread.h>
32 #include <sys/systm.h>
33 #include <sys/syscall.h>
34 #include <sys/proc.h>
35 #include <sys/modctl.h>
36 #include <sys/cmn_err.h>
37 #include <sys/model.h>
38 #include <sys/brand.h>
39 #include <sys/machbrand.h>
40 #include <sys/lx_syscalls.h>
41 #include <sys/lx_brand.h>
42 #include <sys/lx_impl.h>

44 /*
45 * Some system calls return either a 32-bit or a 64-bit value, depending
46 * on the datamodel.
47 */
48 #ifdef _LP64
49 #define V_RVAL SE_64RVAL
50 #else
51 #define V_RVAL SE_32RVAL1
52 #endif

54 /*
55 * Define system calls that return a native ’long’ quantity i.e. a 32-bit
56 * or 64-bit integer - depending on how the kernel is itself compiled
57 * e.g. read(2) returns ’ssize_t’ in the kernel and in userland.
58 */
59 #define LX_CL(name, call, narg) \
60 { V_RVAL, (name), (llfcn_t)(call), (narg) }

new/usr/src/uts/common/brand/lx/os/lx_syscall.c 2

62 /*
63 * Returns a 32 bit quantity regardless of datamodel
64 */
65 #define LX_CI(name, call, narg) \
66 { SE_32RVAL1, (name), (llfcn_t)(call), (narg) }

68 extern longlong_t lx_nosys(void);
69 #define LX_NOSYS(name) \
70 {SE_64RVAL, (name), (llfcn_t)lx_nosys, 0}

72 lx_sysent_t lx_sysent[] =
73 {
74 LX_NOSYS("lx_nosys"), /* 0 */
75 LX_NOSYS("exit"), /* 0 */
76 LX_NOSYS("lx_fork"),
77 LX_NOSYS("read"),
78 LX_NOSYS("write"),
79 LX_NOSYS("open"),
80 LX_NOSYS("close"),
81 LX_NOSYS("waitpid"),
82 LX_NOSYS("creat"),
83 LX_NOSYS("link"),
84 LX_NOSYS("unlink"), /* 10 */
85 LX_NOSYS("exec"),
86 LX_NOSYS("chdir"),
87 LX_NOSYS("gtime"),
88 LX_NOSYS("mknod"),
89 LX_NOSYS("chmod"),
90 LX_NOSYS("lchown16"),
91 LX_NOSYS("break"),
92 LX_NOSYS("stat"),
93 LX_NOSYS("lseek"),
94 LX_CL("getpid", lx_getpid, 0), /* 20 */
95 LX_NOSYS("mount"),
96 LX_NOSYS("umount"),
97 LX_NOSYS("setuid16"),
98 LX_NOSYS("getuid16"),
99 LX_NOSYS("stime"),
100 LX_NOSYS("ptrace"),
101 LX_NOSYS("alarm"),
102 LX_NOSYS("fstat"),
103 LX_NOSYS("pause"),
104 LX_NOSYS("utime"), /* 30 */
105 LX_NOSYS("stty"),
106 LX_NOSYS("gtty"),
107 LX_NOSYS("access"),
108 LX_NOSYS("nice"),
109 LX_NOSYS("ftime"),
110 LX_NOSYS("sync"),
111 LX_CL("kill", lx_kill, 2),
112 LX_NOSYS("rename"),
113 LX_NOSYS("mkdir"),
114 LX_NOSYS("rmdir"), /* 40 */
115 LX_NOSYS("dup"),
116 LX_NOSYS("pipe"),
117 LX_NOSYS("times"),
118 LX_NOSYS("prof"),
119 LX_CL("brk", lx_brk, 1),
120 LX_NOSYS("setgid16"),
121 LX_NOSYS("getgid16"),
122 LX_NOSYS("signal"),
123 LX_NOSYS("geteuid16"),
124 LX_NOSYS("getegid16"), /* 50 */
125 LX_NOSYS("sysacct"),
126 LX_NOSYS("umount2"),
127 LX_NOSYS("lock"),

new/usr/src/uts/common/brand/lx/os/lx_syscall.c 3

128 LX_NOSYS("ioctl"),
129 LX_NOSYS("fcntl"),
130 LX_NOSYS("mpx"),
131 LX_NOSYS("setpgid"),
132 LX_NOSYS("ulimit"),
133 LX_NOSYS("olduname"),
134 LX_NOSYS("umask"), /* 60 */
135 LX_NOSYS("chroot"),
136 LX_NOSYS("ustat"),
137 LX_NOSYS("dup2"),
138 LX_CL("getppid", lx_getppid, 0),
139 LX_NOSYS("pgrp"),
140 LX_NOSYS("setsid"),
141 LX_NOSYS("sigaction"),
142 LX_NOSYS("sgetmask"),
143 LX_NOSYS("ssetmask"),
144 LX_NOSYS("setreuid16"), /* 70 */
145 LX_NOSYS("setregid16"),
146 LX_NOSYS("sigsuspend"),
147 LX_NOSYS("sigpending"),
148 LX_NOSYS("sethostname"),
149 LX_NOSYS("setrlimit"),
150 LX_NOSYS("old_getrlimit"),
151 LX_NOSYS("getrusage"),
152 LX_NOSYS("gettimeofday"),
153 LX_NOSYS("settimeofday"),
154 LX_NOSYS("getgroups16"), /* 80 */
155 LX_NOSYS("setgroups16"),
156 LX_NOSYS("old_select"),
157 LX_NOSYS("symlink"),
158 LX_NOSYS("oldlstat"),
159 LX_NOSYS("readlink"),
160 LX_NOSYS("uselib"),
161 LX_NOSYS("swapon"),
162 LX_NOSYS("reboot"),
163 LX_NOSYS("old_readdir"),
164 LX_NOSYS("old_mmap"), /* 90 */
165 LX_NOSYS("munmap"),
166 LX_NOSYS("truncate"),
167 LX_NOSYS("ftruncate"),
168 LX_NOSYS("fchmod"),
169 LX_NOSYS("fchown16"),
170 LX_NOSYS("getpriority"),
171 LX_NOSYS("setpriority"),
172 LX_NOSYS("profil"),
173 LX_NOSYS("statfs"),
174 LX_NOSYS("fstatfs"), /* 100 */
175 LX_NOSYS("ioperm"),
176 LX_NOSYS("socketcall"),
177 LX_NOSYS("syslog"),
178 LX_NOSYS("setitimer"),
179 LX_NOSYS("getitimer"),
180 LX_NOSYS("newstat"),
181 LX_NOSYS("newsltat"),
182 LX_NOSYS("newsftat"),
183 LX_NOSYS("uname"),
184 LX_NOSYS("oldiopl"), /* 110 */
185 LX_NOSYS("oldvhangup"),
186 LX_NOSYS("idle"),
187 LX_NOSYS("vm86old"),
188 LX_NOSYS("wait4"),
189 LX_NOSYS("swapoff"),
190 LX_CL("sysinfo", lx_sysinfo, 1),
191 LX_NOSYS("ipc"),
192 LX_NOSYS("fsync"),
193 LX_NOSYS("sigreturn"),

new/usr/src/uts/common/brand/lx/os/lx_syscall.c 4

194 LX_CL("clone", lx_clone, 5), /* 120 */
195 LX_NOSYS("setdomainname"),
196 LX_NOSYS("newuname"),
197 LX_CL("modify_ldt", lx_modify_ldt, 3),
198 LX_NOSYS("adjtimex"),
199 LX_NOSYS("mprotect"),
200 LX_NOSYS("sigprocmask"),
201 LX_NOSYS("create_module"),
202 LX_NOSYS("init_module"),
203 LX_NOSYS("delete_module"),
204 LX_NOSYS("get_kernel_syms"), /* 130 */
205 LX_NOSYS("quotactl"),
206 LX_NOSYS("getpgid"),
207 LX_NOSYS("fchdir"),
208 LX_NOSYS("bdflush"),
209 LX_NOSYS("sysfs"),
210 LX_NOSYS("personality"),
211 LX_NOSYS("afs_syscall"),
212 LX_NOSYS("setfsuid16"),
213 LX_NOSYS("setfsgid16"),
214 LX_NOSYS("llseek"), /* 140 */
215 LX_NOSYS("getdents"),
216 LX_NOSYS("select"),
217 LX_NOSYS("flock"),
218 LX_NOSYS("msync"),
219 LX_NOSYS("readv"),
220 LX_NOSYS("writev"),
221 LX_NOSYS("getsid"),
222 LX_NOSYS("fdatasync"),
223 LX_NOSYS("sysctl"),
224 LX_NOSYS("mlock"), /* 150 */
225 LX_NOSYS("munlock"),
226 LX_NOSYS("mlockall"),
227 LX_NOSYS("munlockall"),
228 LX_CL("sched_setparam", lx_sched_setparam, 2),
229 LX_CL("sched_getparam", lx_sched_getparam, 2),
230 LX_NOSYS("sched_setscheduler"),
231 LX_NOSYS("sched_getscheduler"),
232 LX_NOSYS("yield"),
233 LX_NOSYS("sched_get_priority_max"),
234 LX_NOSYS("sched_get_priority_min"), /* 160 */
235 LX_CL("sched_rr_get_interval", lx_sched_rr_get_interval, 2),
236 LX_NOSYS("nanosleep"),
237 LX_NOSYS("mremap"),
238 LX_CL("setresuid16", lx_setresuid16, 3),
239 LX_NOSYS("getresuid16"),
240 LX_NOSYS("vm86"),
241 LX_NOSYS("query_module"),
242 LX_NOSYS("poll"),
243 LX_NOSYS("nfsserctl"),
244 LX_CL("setresgid16", lx_setresgid16, 3), /* 170 */
245 LX_NOSYS("getresgid16"),
246 LX_NOSYS("prctl"),
247 LX_NOSYS("rt_sigreturn"),
248 LX_NOSYS("rt_sigaction"),
249 LX_NOSYS("rt_sigprocmask"),
250 LX_NOSYS("rt_sigpending"),
251 LX_NOSYS("rt_sigtimedwait"),
252 LX_NOSYS("rt_sigqueueinfo"),
253 LX_NOSYS("rt_sigsuspend"),
254 LX_NOSYS("pread64"), /* 180 */
255 LX_NOSYS("pwrite64"),
256 LX_NOSYS("chown16"),
257 LX_NOSYS("getcwd"),
258 LX_NOSYS("capget"),
259 LX_NOSYS("capset"),

new/usr/src/uts/common/brand/lx/os/lx_syscall.c 5

260 LX_NOSYS("sigaltstack"),
261 LX_NOSYS("sendfile"),
262 LX_NOSYS("getpmsg"),
263 LX_NOSYS("putpmsg"),
264 LX_NOSYS("vfork"), /* 190 */
265 LX_NOSYS("getrlimit"),
266 LX_NOSYS("mmap2"),
267 LX_NOSYS("truncate64"),
268 LX_NOSYS("ftruncate64"),
269 LX_NOSYS("stat64"),
270 LX_NOSYS("lstat64"),
271 LX_NOSYS("fstat64"),
272 LX_NOSYS("lchown"),
273 LX_NOSYS("getuid"),
274 LX_NOSYS("getgid"), /* 200 */
275 LX_NOSYS("geteuid"),
276 LX_NOSYS("getegid"),
277 LX_NOSYS("setreuid"),
278 LX_NOSYS("setregid"),
279 LX_NOSYS("getgroups"),
280 LX_CL("setgroups", lx_setgroups, 2),
281 LX_NOSYS("fchown"),
282 LX_CL("setresuid", lx_setresuid, 3),
283 LX_NOSYS("getresuid"),
284 LX_CL("setresgid", lx_setresgid, 3), /* 210 */
285 LX_NOSYS("getresgid"),
286 LX_NOSYS("chown"),
287 LX_NOSYS("setuid"),
288 LX_NOSYS("setgid"),
289 LX_NOSYS("setfsuid"),
290 LX_NOSYS("setfsgid"),
291 LX_NOSYS("pivot_root"),
292 LX_NOSYS("mincore"),
293 LX_NOSYS("madvise"),
294 LX_NOSYS("getdents64"), /* 220 */
295 LX_NOSYS("fcntl64"),
296 LX_NOSYS("lx_nosys"),
297 LX_NOSYS("security"),
298 LX_CL("gettid", lx_gettid, 0),
299 LX_NOSYS("readahead"),
300 LX_NOSYS("setxattr"),
301 LX_NOSYS("lsetxattr"),
302 LX_NOSYS("fsetxattr"),
303 LX_NOSYS("getxattr"),
304 LX_NOSYS("lgetxattr"), /* 230 */
305 LX_NOSYS("fgetxattr"),
306 LX_NOSYS("listxattr"),
307 LX_NOSYS("llistxattr"),
308 LX_NOSYS("flistxattr"),
309 LX_NOSYS("removexattr"),
310 LX_NOSYS("lremovexattr"),
311 LX_NOSYS("fremovexattr"),
312 LX_CL("tkill", lx_tkill, 2),
313 LX_NOSYS("sendfile64"),
314 LX_CL("futex", lx_futex, 6), /* 240 */
315 LX_NOSYS("sched_setaffinity"),
316 LX_NOSYS("sched_getaffinity"),
317 LX_CL("set_thread_area", lx_set_thread_area, 1),
318 LX_CL("get_thread_area", lx_get_thread_area, 1),
319 LX_NOSYS("io_setup"),
320 LX_NOSYS("io_destroy"),
321 LX_NOSYS("io_getevents"),
322 LX_NOSYS("io_submit"),
323 LX_NOSYS("io_cancel"),
324 LX_NOSYS("fadvise64"), /* 250 */
325 LX_NOSYS("lx_nosys"),

new/usr/src/uts/common/brand/lx/os/lx_syscall.c 6

326 LX_NOSYS("exit_group"),
327 LX_NOSYS("lookup_dcookie"),
328 LX_NOSYS("epoll_create"),
329 LX_NOSYS("epoll_ctl"),
330 LX_NOSYS("epoll_wait"),
331 LX_NOSYS("remap_file_pages"),
332 LX_CL("set_tid_address", lx_set_tid_address, 1),
333 LX_NOSYS("timer_create"),
334 LX_NOSYS("timer_settime"), /* 260 */
335 LX_NOSYS("timer_gettime"),
336 LX_NOSYS("timer_getoverrun"),
337 LX_NOSYS("timer_delete"),
338 LX_NOSYS("clock_settime"),
339 LX_NOSYS("clock_gettime"),
340 LX_NOSYS("clock_getres"),
341 LX_NOSYS("clock_nanosleep"),
342 LX_NOSYS("statfs64"),
343 LX_NOSYS("fstatfs64"),
344 LX_NOSYS("tgkill"), /* 270 */
345 /* The following are Linux 2.6 system calls */
346 LX_NOSYS("utimes"),
347 LX_NOSYS("fadvise64_64"),
348 LX_NOSYS("vserver"),
349 LX_NOSYS("mbind"),
350 LX_NOSYS("get_mempolicy"),
351 LX_NOSYS("set_mempolicy"),
352 LX_NOSYS("mq_open"),
353 LX_NOSYS("mq_unlink"),
354 LX_NOSYS("mq_timedsend"),
355 LX_NOSYS("mq_timedreceive"), /* 280 */
356 LX_NOSYS("mq_notify"),
357 LX_NOSYS("mq_getsetattr"),
358 LX_NOSYS("kexec_load"),
359 LX_NOSYS("waitid"),
360 LX_NOSYS("sys_setaltroot"),
361 LX_NOSYS("add_key"),
362 LX_NOSYS("request_key"),
363 LX_NOSYS("keyctl"),
364 LX_NOSYS("ioprio_set"),
365 LX_NOSYS("ioprio_get"), /* 290 */
366 LX_NOSYS("inotify_init"),
367 LX_NOSYS("inotify_add_watch"),
368 LX_NOSYS("inotify_rm_watch"),
369 LX_NOSYS("migrate_pages"),
370 LX_NOSYS("openat"),
371 LX_NOSYS("mkdirat"),
372 LX_NOSYS("mknodat"),
373 LX_NOSYS("fchownat"),
374 LX_NOSYS("futimesat"),
375 LX_NOSYS("fstatat64"), /* 300 */
376 LX_NOSYS("unlinkat"),
377 LX_NOSYS("renameat"),
378 LX_NOSYS("linkat"),
379 LX_NOSYS("syslinkat"),
380 LX_NOSYS("readlinkat"),
381 LX_NOSYS("fchmodat"),
382 LX_NOSYS("faccessat"),
383 LX_NOSYS("pselect6"),
384 LX_NOSYS("ppoll"),
385 LX_NOSYS("unshare"), /* 310 */
386 LX_NOSYS("set_robust_list"),
387 LX_NOSYS("get_robust_list"),
388 LX_NOSYS("splice"),
389 LX_NOSYS("sync_file_range"),
390 LX_NOSYS("tee"),
391 LX_NOSYS("vmsplice"),

new/usr/src/uts/common/brand/lx/os/lx_syscall.c 7

392 LX_NOSYS("move_pages"),
393 NULL /* NULL-termination is required for lx_systrace */
394 };

396 int64_t
397 lx_emulate_syscall(int num, uintptr_t arg1, uintptr_t arg2,
398 uintptr_t arg3, uintptr_t arg4, uintptr_t arg5, uintptr_t arg6)
399 {
400 struct lx_sysent *jsp;
401 int64_t rval;

403 rval = (int64_t)0;

405 jsp = &(lx_sysent[num]);

407 switch (jsp->sy_narg) {
408 case 0: {
409 lx_print("--> %s()\n", jsp->sy_name);
410 rval = (int64_t)jsp->sy_callc();
411 break;
412 }
413 case 1: {
414 lx_print("--> %s(0x%lx)\n", jsp->sy_name, arg1);
415 rval = (int64_t)jsp->sy_callc(arg1);
416 break;
417 }
418 case 2: {
419 lx_print("--> %s(0x%lx, 0x%lx)\n", jsp->sy_name, arg1, arg2);
420 rval = (int64_t)jsp->sy_callc(arg1, arg2);
421 break;
422 }
423 case 3: {
424 lx_print("--> %s(0x%lx, 0x%lx, 0x%lx)\n",
425 jsp->sy_name, arg1, arg2, arg3);
426 rval = (int64_t)jsp->sy_callc(arg1, arg2, arg3);
427 break;
428 }
429 case 4: {
430 lx_print("--> %s(0x%lx, 0x%lx, 0x%lx, 0x%lx)\n",
431 jsp->sy_name, arg1, arg2, arg3, arg4);
432 rval = (int64_t)jsp->sy_callc(arg1, arg2, arg3, arg4);
433 break;
434 }
435 case 5: {
436 lx_print("--> %s(0x%lx, 0x%lx, 0x%lx, 0x%lx, 0x%lx)\n",
437 jsp->sy_name, arg1, arg2, arg3, arg4, arg5);
438 rval = (int64_t)jsp->sy_callc(arg1, arg2, arg3, arg4, arg5);
439 break;
440 }
441 case 6: {
442 lx_print("--> %s(0x%lx, 0x%lx, 0x%lx, 0x%lx,"
443 " 0x%lx, 0x%lx)\n",
444 jsp->sy_name, arg1, arg2, arg3, arg4, arg5, arg6);
445 rval = (int64_t)jsp->sy_callc(arg1, arg2, arg3, arg4, arg5,
446 arg6);
447 break;
448 }
449 default:
450 panic("Invalid syscall entry: #%d at 0x%p\n", num, (void *)jsp);
451 }
452 lx_print("----------> return (0x%llx)\n", (long long)rval);
453 return (rval);
454 }
455 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/procfs/lx_proc.h 1

**
 6862 Tue Jan 14 16:17:19 2014
new/usr/src/uts/common/brand/lx/procfs/lx_proc.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _LXPROC_H
27 #define _LXPROC_H

29 #ifdef __cplusplus
30 extern "C" {
31 #endif

33 /*
34 * lxproc.h: declarations, data structures and macros for lxprocfs
35 */

38 #include <sys/types.h>
39 #include <sys/param.h>
40 #include <sys/policy.h>
41 #include <sys/debug.h>
42 #include <sys/dirent.h>
43 #include <sys/errno.h>
44 #include <sys/file.h>
45 #include <sys/kmem.h>
46 #include <sys/pathname.h>
47 #include <sys/proc.h>
48 #include <sys/systm.h>
49 #include <sys/var.h>
50 #include <sys/user.h>
51 #include <sys/t_lock.h>
52 #include <sys/sysmacros.h>
53 #include <sys/cred.h>
54 #include <sys/priv.h>
55 #include <sys/vnode.h>
56 #include <sys/vfs.h>
57 #include <sys/statvfs.h>
58 #include <sys/cmn_err.h>
59 #include <sys/zone.h>
60 #include <sys/uio.h>
61 #include <sys/utsname.h>

new/usr/src/uts/common/brand/lx/procfs/lx_proc.h 2

62 #include <sys/dnlc.h>
63 #include <sys/atomic.h>
64 #include <sys/sunddi.h>
65 #include <sys/sunldi.h>
66 #include <vm/as.h>
67 #include <vm/anon.h>

69 /*
70 * Convert a vnode into an lxpr_mnt_t
71 */
72 #define VTOLXPM(vp) ((lxpr_mnt_t *)(vp)->v_vfsp->vfs_data)

74 /*
75 * convert a vnode into an lxpr_node
76 */
77 #define VTOLXP(vp) ((lxpr_node_t *)(vp)->v_data)

79 /*
80 * convert a lxprnode into a vnode
81 */
82 #define LXPTOV(lxpnp) ((lxpnp)->lxpr_vnode)

84 /*
85 * convert a lxpr_node into zone for fs
86 */
87 #define LXPTOZ(lxpnp) \
88 (((lxpr_mnt_t *)(lxpnp)->lxpr_vnode->v_vfsp->vfs_data)->lxprm_zone)

90 #define LXPNSIZ 256 /* max size of lx /proc file name entries */

92 /*
93 * Pretend that a directory entry takes 16 bytes
94 */
95 #define LXPR_SDSIZE 16

97 /*
98 * Node/file types for lx /proc files
99 * (directories and files contained therein).
100 */
101 typedef enum lxpr_nodetype {
102 LXPR_PROCDIR, /* /proc */
103 LXPR_PIDDIR, /* /proc/<pid> */
104 LXPR_PID_CMDLINE, /* /proc/<pid>/cmdline */
105 LXPR_PID_CPU, /* /proc/<pid>/cpu */
106 LXPR_PID_CURDIR, /* /proc/<pid>/cwd */
107 LXPR_PID_ENV, /* /proc/<pid>/environ */
108 LXPR_PID_EXE, /* /proc/<pid>/exe */
109 LXPR_PID_MAPS, /* /proc/<pid>/maps */
110 LXPR_PID_MEM, /* /proc/<pid>/mem */
111 LXPR_PID_ROOTDIR, /* /proc/<pid>/root */
112 LXPR_PID_STAT, /* /proc/<pid>/stat */
113 LXPR_PID_STATM, /* /proc/<pid>/statm */
114 LXPR_PID_STATUS, /* /proc/<pid>/status */
115 LXPR_PID_FDDIR, /* /proc/<pid>/fd */
116 LXPR_PID_FD_FD, /* /proc/<pid>/fd/nn */
117 LXPR_CMDLINE, /* /proc/cmdline */
118 LXPR_CPUINFO, /* /proc/cpuinfo */
119 LXPR_DEVICES, /* /proc/devices */
120 LXPR_DMA, /* /proc/dma */
121 LXPR_FILESYSTEMS, /* /proc/filesystems */
122 LXPR_INTERRUPTS, /* /proc/interrupts */
123 LXPR_IOPORTS, /* /proc/ioports */
124 LXPR_KCORE, /* /proc/kcore */
125 LXPR_KMSG, /* /proc/kmsg */
126 LXPR_LOADAVG, /* /proc/loadavg */
127 LXPR_MEMINFO, /* /proc/meminfo */

new/usr/src/uts/common/brand/lx/procfs/lx_proc.h 3

128 LXPR_MOUNTS, /* /proc/mounts */
129 LXPR_NETDIR, /* /proc/net */
130 LXPR_NET_ARP, /* /proc/net/arp */
131 LXPR_NET_DEV, /* /proc/net/dev */
132 LXPR_NET_DEV_MCAST, /* /proc/net/dev_mcast */
133 LXPR_NET_IGMP, /* /proc/net/igmp */
134 LXPR_NET_IP_MR_CACHE, /* /proc/net/ip_mr_cache */
135 LXPR_NET_IP_MR_VIF, /* /proc/net/ip_mr_vif */
136 LXPR_NET_MCFILTER, /* /proc/net/mcfilter */
137 LXPR_NET_NETSTAT, /* /proc/net/netstat */
138 LXPR_NET_RAW, /* /proc/net/raw */
139 LXPR_NET_ROUTE, /* /proc/net/route */
140 LXPR_NET_RPC, /* /proc/net/rpc */
141 LXPR_NET_RT_CACHE, /* /proc/net/rt_cache */
142 LXPR_NET_SOCKSTAT, /* /proc/net/sockstat */
143 LXPR_NET_SNMP, /* /proc/net/snmp */
144 LXPR_NET_STAT, /* /proc/net/stat */
145 LXPR_NET_TCP, /* /proc/net/tcp */
146 LXPR_NET_UDP, /* /proc/net/udp */
147 LXPR_NET_UNIX, /* /proc/net/unix */
148 LXPR_PARTITIONS, /* /proc/partitions */
149 LXPR_SELF, /* /proc/self */
150 LXPR_STAT, /* /proc/stat */
151 LXPR_UPTIME, /* /proc/uptime */
152 LXPR_VERSION, /* /proc/version */
153 LXPR_NFILES /* number of lx /proc file types */
154 } lxpr_nodetype_t;

157 /*
158 * Number of fds allowed for in the inode number calculation
159 * per process (if a process has more fds then inode numbers
160 * may be duplicated)
161 */
162 #define LXPR_FD_PERPROC 2000

164 /*
165 * external dirent characteristics
166 */
167 #define LXPRMAXNAMELEN 14
168 typedef struct {
169 lxpr_nodetype_t d_type;
170 char d_name[LXPRMAXNAMELEN];
171 } lxpr_dirent_t;

173 /*
174 * This is the lxprocfs private data object
175 * which is attached to v_data in the vnode structure
176 */
177 typedef struct lxpr_node {
178 lxpr_nodetype_t lxpr_type; /* type of this node */
179 vnode_t *lxpr_vnode; /* vnode for the node */
180 vnode_t *lxpr_parent; /* parent directory */
181 vnode_t *lxpr_realvp; /* real vnode, file in dirs */
182 timestruc_t lxpr_time; /* creation etc time for file */
183 mode_t lxpr_mode; /* file mode bits */
184 uid_t lxpr_uid; /* file owner */
185 gid_t lxpr_gid; /* file group owner */
186 pid_t lxpr_pid; /* pid of proc referred to */
187 ino_t lxpr_ino; /* node id */
188 ldi_handle_t lxpr_cons_ldih; /* ldi handle for console device */
189 } lxpr_node_t;

191 struct zone; /* forward declaration */

193 /*

new/usr/src/uts/common/brand/lx/procfs/lx_proc.h 4

194 * This is the lxprocfs private data object
195 * which is attached to vfs_data in the vfs structure
196 */
197 typedef struct lxpr_mnt {
198 lxpr_node_t *lxprm_node; /* node at root of proc mount */
199 struct zone *lxprm_zone; /* zone for this mount */
200 ldi_ident_t lxprm_li; /* ident for ldi */
201 } lxpr_mnt_t;

203 extern vnodeops_t *lxpr_vnodeops;
204 extern int nproc_highbit; /* highbit(v.v_nproc) */

206 typedef struct mounta mounta_t;

208 extern void lxpr_initnodecache();
209 extern void lxpr_fininodecache();
210 extern void lxpr_initrootnode(lxpr_node_t **, vfs_t *);
211 extern ino_t lxpr_inode(lxpr_nodetype_t, pid_t, int);
212 extern ino_t lxpr_parentinode(lxpr_node_t *);
213 extern lxpr_node_t *lxpr_getnode(vnode_t *, lxpr_nodetype_t, proc_t *, int);
214 extern void lxpr_freenode(lxpr_node_t *);

216 typedef struct lxpr_uiobuf lxpr_uiobuf_t;
217 extern lxpr_uiobuf_t *lxpr_uiobuf_new(uio_t *);
218 extern void lxpr_uiobuf_free(lxpr_uiobuf_t *);
219 extern int lxpr_uiobuf_flush(lxpr_uiobuf_t *);
220 extern void lxpr_uiobuf_seek(lxpr_uiobuf_t *, offset_t);
221 extern void lxpr_uiobuf_write(lxpr_uiobuf_t *, const char *, size_t);
222 extern void lxpr_uiobuf_printf(lxpr_uiobuf_t *, const char *, ...);
223 extern void lxpr_uiobuf_seterr(lxpr_uiobuf_t *, int);

225 proc_t *lxpr_lock(pid_t);
226 void lxpr_unlock(proc_t *);

228 #ifdef __cplusplus
229 }
230 #endif

232 #endif /* _LXPROC_H */
233 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c 1

**
 11131 Tue Jan 14 16:17:20 2014
new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 /*
29 * lxprsubr.c: Various functions for the /lxproc vnodeops.
30 */

32 #include <sys/varargs.h>

34 #include <sys/cpuvar.h>
35 #include <sys/mman.h>
36 #include <sys/vmsystm.h>
37 #include <sys/prsystm.h>

39 #include "lx_proc.h"

41 #define LXPRCACHE_NAME "lxpr_cache"

43 static int lxpr_node_constructor(void*, void*, int);
44 static void lxpr_node_destructor(void*, void*);

46 static kmem_cache_t *lxpr_node_cache;

48 struct lxpr_uiobuf {
49 uio_t *uiop;
50 char *buffer;
51 uint32_t buffsize;
52 char *pos;
53 size_t beg;
54 int error;
55 };

57 #define BUFSIZE 4000

59 struct lxpr_uiobuf *
60 lxpr_uiobuf_new(uio_t *uiop)
61 {

new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c 2

62 /* Allocate memory for both lxpr_uiobuf and output buffer */
63 struct lxpr_uiobuf *uiobuf =
64 kmem_alloc(sizeof (struct lxpr_uiobuf) + BUFSIZE, KM_SLEEP);

66 uiobuf->uiop = uiop;
67 uiobuf->buffer = (char *)&uiobuf[1];
68 uiobuf->buffsize = BUFSIZE;
69 uiobuf->pos = uiobuf->buffer;
70 uiobuf->beg = 0;
71 uiobuf->error = 0;

73 return (uiobuf);
74 }

76 void
77 lxpr_uiobuf_free(struct lxpr_uiobuf *uiobuf)
78 {
79 ASSERT(uiobuf != NULL);
80 ASSERT(uiobuf->pos == uiobuf->buffer);

82 kmem_free(uiobuf, sizeof (struct lxpr_uiobuf) + uiobuf->buffsize);
83 }

85 void
86 lxpr_uiobuf_seek(struct lxpr_uiobuf *uiobuf, offset_t offset)
87 {
88 uiobuf->uiop->uio_offset = offset;
89 }

91 void
92 lxpr_uiobuf_seterr(struct lxpr_uiobuf *uiobuf, int err)
93 {
94 ASSERT(uiobuf->error == 0);

96 uiobuf->error = err;
97 }

99 int
100 lxpr_uiobuf_flush(struct lxpr_uiobuf *uiobuf)
101 {
102 off_t off = uiobuf->uiop->uio_offset;
103 caddr_t uaddr = uiobuf->buffer;
104 size_t beg = uiobuf->beg;

106 size_t size = uiobuf->pos - uaddr;

108 if (uiobuf->error == 0 && uiobuf->uiop->uio_resid != 0) {
109 ASSERT(off >= beg);

111 if (beg+size > off && off >= 0)
112 uiobuf->error =
113 uiomove(uaddr+(off-beg), size-(off-beg),
114 UIO_READ, uiobuf->uiop);

116 uiobuf->beg += size;
117 }

119 uiobuf->pos = uaddr;

121 return (uiobuf->error);
122 }

124 void
125 lxpr_uiobuf_write(struct lxpr_uiobuf *uiobuf, const char *buf, size_t size)
126 {
127 /* While we can still carry on */

new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c 3

128 while (uiobuf->error == 0 && uiobuf->uiop->uio_resid != 0) {
129 uint_t remain
130 = uiobuf->buffsize-(uiobuf->pos-uiobuf->buffer);

132 /* Enough space in buffer? */
133 if (remain >= size) {
134 bcopy(buf, uiobuf->pos, size);
135 uiobuf->pos += size;
136 return;
137 }

139 /* Not enough space, so copy all we can and try again */
140 bcopy(buf, uiobuf->pos, remain);
141 uiobuf->pos += remain;
142 (void) lxpr_uiobuf_flush(uiobuf);
143 buf += remain;
144 size -= remain;
145 }
146 }

148 #define TYPBUFFSIZE 256
149 void
150 lxpr_uiobuf_printf(struct lxpr_uiobuf *uiobuf, const char *fmt, ...)
151 {
152 va_list args;
153 char buff[TYPBUFFSIZE];
154 int len;
155 char *buffer;

157 /* Can we still do any output */
158 if (uiobuf->error != 0 || uiobuf->uiop->uio_resid == 0)
159 return;

161 va_start(args, fmt);

163 /* Try using stack allocated buffer */
164 len = vsnprintf(buff, TYPBUFFSIZE, fmt, args);
165 if (len < TYPBUFFSIZE) {
166 va_end(args);
167 lxpr_uiobuf_write(uiobuf, buff, len);
168 return;
169 }

171 /* Not enough space in pre-allocated buffer */
172 buffer = kmem_alloc(len+1, KM_SLEEP);

174 /*
175 * We know we allocated the correct amount of space
176 * so no check on the return value
177 */
178 (void) vsnprintf(buffer, len+1, fmt, args);
179 lxpr_uiobuf_write(uiobuf, buffer, len);
180 va_end(args);
181 kmem_free(buffer, len+1);
182 }

184 /*
185 * lxpr_lock():
186 *
187 * Lookup process from pid and return with p_plock and P_PR_LOCK held.
188 */
189 proc_t *
190 lxpr_lock(pid_t pid)
191 {
192 proc_t *p;
193 kmutex_t *mp;

new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c 4

195 ASSERT(!MUTEX_HELD(&pidlock));

197 for (;;) {
198 mutex_enter(&pidlock);

200 /*
201 * If the pid is 1, we really want the zone’s init process
202 */
203 p = prfind((pid == 1) ?
204 curproc->p_zone->zone_proc_initpid : pid);

206 if (p == NULL || p->p_stat == SIDL) {
207 mutex_exit(&pidlock);
208 return (NULL);
209 }
210 /*
211 * p_lock is persistent, but p itself is not -- it could
212 * vanish during cv_wait(). Load p->p_lock now so we can
213 * drop it after cv_wait() without referencing p.
214 */
215 mp = &p->p_lock;
216 mutex_enter(mp);

218 mutex_exit(&pidlock);

220 if (!(p->p_proc_flag & P_PR_LOCK))
221 break;

223 cv_wait(&pr_pid_cv[p->p_slot], mp);
224 mutex_exit(mp);
225 }
226 p->p_proc_flag |= P_PR_LOCK;
227 THREAD_KPRI_REQUEST();
228 return (p);
229 }

231 /*
232 * lxpr_unlock()
233 *
234 * Unlock locked process
235 */
236 void
237 lxpr_unlock(proc_t *p)
238 {
239 ASSERT(p->p_proc_flag & P_PR_LOCK);
240 ASSERT(MUTEX_HELD(&p->p_lock));
241 ASSERT(!MUTEX_HELD(&pidlock));

243 cv_signal(&pr_pid_cv[p->p_slot]);
244 p->p_proc_flag &= ~P_PR_LOCK;
245 mutex_exit(&p->p_lock);
246 THREAD_KPRI_RELEASE();
247 }

249 void
250 lxpr_initnodecache()
251 {
252 lxpr_node_cache = kmem_cache_create(LXPRCACHE_NAME,
253 sizeof (lxpr_node_t), 0,
254 lxpr_node_constructor, lxpr_node_destructor, NULL, NULL, NULL, 0);
255 }

257 void
258 lxpr_fininodecache()
259 {

new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c 5

260 kmem_cache_destroy(lxpr_node_cache);
261 }

263 /* ARGSUSED */
264 static int
265 lxpr_node_constructor(void *buf, void *un, int kmflags)
266 {
267 lxpr_node_t *lxpnp = buf;
268 vnode_t *vp;

270 vp = lxpnp->lxpr_vnode = vn_alloc(kmflags);
271 if (vp == NULL)
272 return (-1);

274 (void) vn_setops(vp, lxpr_vnodeops);
275 vp->v_data = lxpnp;

277 return (0);
278 }

280 /* ARGSUSED */
281 static void
282 lxpr_node_destructor(void *buf, void *un)
283 {
284 lxpr_node_t *lxpnp = buf;

286 vn_free(LXPTOV(lxpnp));
287 }

289 /*
290 * Calculate an inode number
291 *
292 * This takes various bits of info and munges them
293 * to give the inode number for an lxproc node
294 */
295 ino_t
296 lxpr_inode(lxpr_nodetype_t type, pid_t pid, int fd)
297 {
298 if (pid == 1)
299 pid = curproc->p_zone->zone_proc_initpid;

301 switch (type) {
302 case LXPR_PIDDIR:
303 return (pid + 1);
304 case LXPR_PROCDIR:
305 return (maxpid + 2);
306 case LXPR_PID_FD_FD:
307 return (maxpid + 2 +
308 (pid * (LXPR_FD_PERPROC + LXPR_NFILES)) +
309 LXPR_NFILES + fd);
310 default:
311 return (maxpid + 2 +
312 (pid * (LXPR_FD_PERPROC + LXPR_NFILES)) +
313 type);
314 }
315 }

317 /*
318 * Return inode number of parent (directory)
319 */
320 ino_t
321 lxpr_parentinode(lxpr_node_t *lxpnp)
322 {
323 /*
324 * If the input node is the root then the parent inode
325 * is the mounted on inode so just return our inode number

new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c 6

326 */
327 if (lxpnp->lxpr_type != LXPR_PROCDIR)
328 return (VTOLXP(lxpnp->lxpr_parent)->lxpr_ino);
329 else
330 return (lxpnp->lxpr_ino);
331 }

333 /*
334 * Allocate a new lxproc node
335 *
336 * This also allocates the vnode associated with it
337 */
338 lxpr_node_t *
339 lxpr_getnode(vnode_t *dp, lxpr_nodetype_t type, proc_t *p, int fd)
340 {
341 lxpr_node_t *lxpnp;
342 vnode_t *vp;
343 user_t *up;
344 timestruc_t now;

346 /*
347 * Allocate a new node. It is deallocated in vop_innactive
348 */
349 lxpnp = kmem_cache_alloc(lxpr_node_cache, KM_SLEEP);

351 /*
352 * Set defaults (may be overridden below)
353 */
354 gethrestime(&now);
355 lxpnp->lxpr_type = type;
356 lxpnp->lxpr_realvp = NULL;
357 lxpnp->lxpr_parent = dp;
358 VN_HOLD(dp);
359 if (p != NULL) {
360 lxpnp->lxpr_pid = ((p->p_pid ==
361 curproc->p_zone->zone_proc_initpid) ? 1 : p->p_pid);

363 lxpnp->lxpr_time = PTOU(p)->u_start;
364 lxpnp->lxpr_uid = crgetruid(p->p_cred);
365 lxpnp->lxpr_gid = crgetrgid(p->p_cred);
366 lxpnp->lxpr_ino = lxpr_inode(type, p->p_pid, fd);
367 } else {
368 /* Pretend files without a proc belong to sched */
369 lxpnp->lxpr_pid = 0;
370 lxpnp->lxpr_time = now;
371 lxpnp->lxpr_uid = lxpnp->lxpr_gid = 0;
372 lxpnp->lxpr_ino = lxpr_inode(type, 0, 0);
373 }

375 /* initialize the vnode data */
376 vp = lxpnp->lxpr_vnode;
377 vn_reinit(vp);
378 vp->v_flag = VNOCACHE|VNOMAP|VNOSWAP|VNOMOUNT;
379 vp->v_vfsp = dp->v_vfsp;

381 /*
382 * Do node specific stuff
383 */
384 switch (type) {
385 case LXPR_PROCDIR:
386 vp->v_flag |= VROOT;
387 vp->v_type = VDIR;
388 lxpnp->lxpr_mode = 0555; /* read-search by everyone */
389 break;

391 case LXPR_PID_CURDIR:

new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c 7

392 ASSERT(p != NULL);

394 /*
395 * Zombie check. p_stat is officially protected by pidlock,
396 * but we can’t grab pidlock here because we already hold
397 * p_lock. Luckily if we look at the process exit code
398 * we see that p_stat only transisions from SRUN to SZOMB
399 * while p_lock is held. Aside from this, the only other
400 * p_stat transition that we need to be aware about is
401 * SIDL to SRUN, but that’s not a problem since lxpr_lock()
402 * ignores nodes in the SIDL state so we’ll never get a node
403 * that isn’t already in the SRUN state.
404 */
405 if (p->p_stat == SZOMB) {
406 lxpnp->lxpr_realvp = NULL;
407 } else {
408 up = PTOU(p);
409 lxpnp->lxpr_realvp = up->u_cdir;
410 ASSERT(lxpnp->lxpr_realvp != NULL);
411 VN_HOLD(lxpnp->lxpr_realvp);
412 }
413 vp->v_type = VLNK;
414 lxpnp->lxpr_mode = 0777; /* anyone does anything ! */
415 break;

417 case LXPR_PID_ROOTDIR:
418 ASSERT(p != NULL);
419 /* Zombie check. see locking comment above */
420 if (p->p_stat == SZOMB) {
421 lxpnp->lxpr_realvp = NULL;
422 } else {
423 up = PTOU(p);
424 lxpnp->lxpr_realvp =
425 up->u_rdir != NULL ? up->u_rdir : rootdir;
426 ASSERT(lxpnp->lxpr_realvp != NULL);
427 VN_HOLD(lxpnp->lxpr_realvp);
428 }
429 vp->v_type = VLNK;
430 lxpnp->lxpr_mode = 0777; /* anyone does anything ! */
431 break;

433 case LXPR_PID_EXE:
434 ASSERT(p != NULL);
435 lxpnp->lxpr_realvp = p->p_exec;
436 if (lxpnp->lxpr_realvp != NULL) {
437 VN_HOLD(lxpnp->lxpr_realvp);
438 }
439 vp->v_type = VLNK;
440 lxpnp->lxpr_mode = 0777;
441 break;

443 case LXPR_SELF:
444 vp->v_type = VLNK;
445 lxpnp->lxpr_mode = 0777; /* anyone does anything ! */
446 break;

448 case LXPR_PID_FD_FD:
449 ASSERT(p != NULL);
450 /* lxpr_realvp is set after we return */
451 vp->v_type = VLNK;
452 lxpnp->lxpr_mode = 0700; /* read-write-exe owner only */
453 break;

455 case LXPR_PID_FDDIR:
456 ASSERT(p != NULL);
457 vp->v_type = VDIR;

new/usr/src/uts/common/brand/lx/procfs/lx_prsubr.c 8

458 lxpnp->lxpr_mode = 0500; /* read-search by owner only */
459 break;

461 case LXPR_PIDDIR:
462 ASSERT(p != NULL);
463 vp->v_type = VDIR;
464 lxpnp->lxpr_mode = 0511;
465 break;

467 case LXPR_NETDIR:
468 vp->v_type = VDIR;
469 lxpnp->lxpr_mode = 0555; /* read-search by all */
470 break;

472 case LXPR_PID_ENV:
473 case LXPR_PID_MEM:
474 ASSERT(p != NULL);
475 /*FALLTHRU*/
476 case LXPR_KCORE:
477 vp->v_type = VREG;
478 lxpnp->lxpr_mode = 0400; /* read-only by owner only */
479 break;

481 default:
482 vp->v_type = VREG;
483 lxpnp->lxpr_mode = 0444; /* read-only by all */
484 break;
485 }

487 return (lxpnp);
488 }

491 /*
492 * Free the storage obtained from lxpr_getnode().
493 */
494 void
495 lxpr_freenode(lxpr_node_t *lxpnp)
496 {
497 ASSERT(lxpnp != NULL);
498 ASSERT(LXPTOV(lxpnp) != NULL);

500 /*
501 * delete any association with realvp
502 */
503 if (lxpnp->lxpr_realvp != NULL)
504 VN_RELE(lxpnp->lxpr_realvp);

506 /*
507 * delete any association with parent vp
508 */
509 if (lxpnp->lxpr_parent != NULL)
510 VN_RELE(lxpnp->lxpr_parent);

512 /*
513 * Release the lxprnode.
514 */
515 kmem_cache_free(lxpr_node_cache, lxpnp);
516 }
517 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/procfs/lx_prvfsops.c 1

**
 8115 Tue Jan 14 16:17:20 2014
new/usr/src/uts/common/brand/lx/procfs/lx_prvfsops.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 /*
29 * lxprvfsops.c: vfs operations for /lxprocfs.
30 */

32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/cmn_err.h>
35 #include <sys/cred.h>
36 #include <sys/debug.h>
37 #include <sys/errno.h>
38 #include <sys/proc.h>
39 #include <sys/stat.h>
40 #include <sys/statvfs.h>
41 #include <sys/sysmacros.h>
42 #include <sys/systm.h>
43 #include <sys/var.h>
44 #include <sys/vfs.h>
45 #include <sys/vfs_opreg.h>
46 #include <sys/vnode.h>
47 #include <sys/mode.h>
48 #include <sys/signal.h>
49 #include <sys/user.h>
50 #include <sys/mount.h>
51 #include <sys/bitmap.h>
52 #include <sys/kmem.h>
53 #include <sys/policy.h>
54 #include <sys/modctl.h>
55 #include <sys/sunddi.h>
56 #include <sys/sunldi.h>
57 #include <sys/lx_impl.h>

59 #include "lx_proc.h"

61 /* Module level parameters */

new/usr/src/uts/common/brand/lx/procfs/lx_prvfsops.c 2

62 static int lxprocfstype;
63 static dev_t lxprocdev;
64 static kmutex_t lxpr_mount_lock;

66 int nproc_highbit; /* highbit(v.v_nproc) */

68 static int lxpr_mount(vfs_t *, vnode_t *, mounta_t *, cred_t *);
69 static int lxpr_unmount(vfs_t *, int, cred_t *);
70 static int lxpr_root(vfs_t *, vnode_t **);
71 static int lxpr_statvfs(vfs_t *, statvfs64_t *);
72 static int lxpr_init(int, char *);

74 static vfsdef_t vfw = {
75 VFSDEF_VERSION,
76 "lx_proc",
77 lxpr_init,
78 VSW_ZMOUNT,
79 NULL
80 };

82 /*
83 * Module linkage information for the kernel.
84 */
85 extern struct mod_ops mod_fsops;

87 static struct modlfs modlfs = {
88 &mod_fsops, "generic linux procfs", &vfw
89 };

91 static struct modlinkage modlinkage = {
92 MODREV_1, (void *)&modlfs, NULL
93 };

95 int
96 _init(void)
97 {
98 return (mod_install(&modlinkage));
99 }

101 int
102 _info(struct modinfo *modinfop)
103 {
104 return (mod_info(&modlinkage, modinfop));
105 }

107 int
108 _fini(void)
109 {
110 int retval;

112 /*
113 * attempt to unload the module
114 */
115 if ((retval = mod_remove(&modlinkage)) != 0)
116 goto done;

118 /*
119 * destroy lxpr_node cache
120 */
121 lxpr_fininodecache();

123 /*
124 * clean out the vfsops and vnodeops
125 */
126 (void) vfs_freevfsops_by_type(lxprocfstype);
127 vn_freevnodeops(lxpr_vnodeops);

new/usr/src/uts/common/brand/lx/procfs/lx_prvfsops.c 3

129 mutex_destroy(&lxpr_mount_lock);
130 done:
131 return (retval);
132 }

134 static int
135 lxpr_init(int fstype, char *name)
136 {
137 static const fs_operation_def_t lxpr_vfsops_template[] = {
138 VFSNAME_MOUNT, { .vfs_mount = lxpr_mount },
139 VFSNAME_UNMOUNT, { .vfs_unmount = lxpr_unmount },
140 VFSNAME_ROOT, { .vfs_root = lxpr_root },
141 VFSNAME_STATVFS, { .vfs_statvfs = lxpr_statvfs },
142 NULL, NULL
143 };
144 extern const fs_operation_def_t lxpr_vnodeops_template[];
145 int error;
146 major_t dev;

148 nproc_highbit = highbit(v.v_proc);
149 lxprocfstype = fstype;
150 ASSERT(lxprocfstype != 0);

152 mutex_init(&lxpr_mount_lock, NULL, MUTEX_DEFAULT, NULL);

154 /*
155 * Associate VFS ops vector with this fstype.
156 */
157 error = vfs_setfsops(fstype, lxpr_vfsops_template, NULL);
158 if (error != 0) {
159 cmn_err(CE_WARN, "lxpr_init: bad vfs ops template");
160 return (error);
161 }

163 /*
164 * Set up vnode ops vector too.
165 */
166 error = vn_make_ops(name, lxpr_vnodeops_template, &lxpr_vnodeops);
167 if (error != 0) {
168 (void) vfs_freevfsops_by_type(fstype);
169 cmn_err(CE_WARN, "lxpr_init: bad vnode ops template");
170 return (error);
171 }

173 /*
174 * Assign a unique "device" number (used by stat(2)).
175 */
176 if ((dev = getudev()) == (major_t)-1) {
177 cmn_err(CE_WARN, "lxpr_init: can’t get unique device number");
178 dev = 0;
179 }

181 /*
182 * Make the pseudo device
183 */
184 lxprocdev = makedevice(dev, 0);

186 /*
187 * Initialise cache for lxpr_nodes
188 */
189 lxpr_initnodecache();

191 return (0);
192 }

new/usr/src/uts/common/brand/lx/procfs/lx_prvfsops.c 4

194 static int
195 lxpr_mount(vfs_t *vfsp, vnode_t *mvp, mounta_t *uap, cred_t *cr)
196 {
197 lxpr_mnt_t *lxpr_mnt;
198 zone_t *zone = curproc->p_zone;
199 ldi_ident_t li;
200 int err;

202 /*
203 * must be root to mount
204 */
205 if (secpolicy_fs_mount(cr, mvp, vfsp) != 0)
206 return (EPERM);

208 /*
209 * mount point must be a directory
210 */
211 if (mvp->v_type != VDIR)
212 return (ENOTDIR);

214 if (zone == global_zone) {
215 zone_t *mntzone;

217 mntzone = zone_find_by_path(refstr_value(vfsp->vfs_mntpt));
218 zone_rele(mntzone);
219 if (zone != mntzone)
220 return (EBUSY);
221 }

223 /*
224 * Having the resource be anything but "lxproc" doesn’t make sense
225 */
226 vfs_setresource(vfsp, "lxproc",0);

228 lxpr_mnt = kmem_alloc(sizeof (*lxpr_mnt), KM_SLEEP);

230 if ((err = ldi_ident_from_mod(&modlinkage, &li)) != 0) {
231 kmem_free(lxpr_mnt, sizeof (*lxpr_mnt));
232 return (err);
233 }

235 lxpr_mnt->lxprm_li = li;

237 mutex_enter(&lxpr_mount_lock);

239 /*
240 * Ensure we don’t allow overlaying mounts
241 */
242 mutex_enter(&mvp->v_lock);
243 if ((uap->flags & MS_OVERLAY) == 0 &&
244 (mvp->v_count > 1 || (mvp->v_flag & VROOT))) {
245 mutex_exit(&mvp->v_lock);
246 mutex_exit(&lxpr_mount_lock);
247 kmem_free(lxpr_mnt, sizeof ((*lxpr_mnt)));
248 return (EBUSY);
249 }
250 mutex_exit(&mvp->v_lock);

252 /*
253 * allocate the first vnode
254 */
255 zone_hold(lxpr_mnt->lxprm_zone = zone);

257 /* Arbitrarily set the parent vnode to the mounted over directory */
258 lxpr_mnt->lxprm_node = lxpr_getnode(mvp, LXPR_PROCDIR, NULL, 0);

new/usr/src/uts/common/brand/lx/procfs/lx_prvfsops.c 5

260 /* Correctly set the fs for the root node */
261 lxpr_mnt->lxprm_node->lxpr_vnode->v_vfsp = vfsp;

263 vfs_make_fsid(&vfsp->vfs_fsid, lxprocdev, lxprocfstype);
264 vfsp->vfs_bsize = DEV_BSIZE;
265 vfsp->vfs_fstype = lxprocfstype;
266 vfsp->vfs_data = (caddr_t)lxpr_mnt;
267 vfsp->vfs_dev = lxprocdev;

269 mutex_exit(&lxpr_mount_lock);

271 return (0);
272 }

274 static int
275 lxpr_unmount(vfs_t *vfsp, int flag, cred_t *cr)
276 {
277 lxpr_mnt_t *lxpr_mnt = (lxpr_mnt_t *)vfsp->vfs_data;
278 vnode_t *vp;
279 int count;

281 ASSERT(lxpr_mnt != NULL);
282 vp = LXPTOV(lxpr_mnt->lxprm_node);

284 mutex_enter(&lxpr_mount_lock);

286 /*
287 * must be root to unmount
288 */
289 if (secpolicy_fs_unmount(cr, vfsp) != 0) {
290 mutex_exit(&lxpr_mount_lock);
291 return (EPERM);
292 }

294 /*
295 * forced unmount is not supported by this file system
296 */
297 if (flag & MS_FORCE) {
298 mutex_exit(&lxpr_mount_lock);
299 return (ENOTSUP);
300 }

302 /*
303 * Ensure that no vnodes are in use on this mount point.
304 */
305 mutex_enter(&vp->v_lock);
306 count = vp->v_count;
307 mutex_exit(&vp->v_lock);
308 if (count > 1) {
309 mutex_exit(&lxpr_mount_lock);
310 return (EBUSY);
311 }

314 /*
315 * purge the dnlc cache for vnode entries
316 * associated with this file system
317 */
318 count = dnlc_purge_vfsp(vfsp, 0);

320 /*
321 * free up the lxprnode
322 */
323 lxpr_freenode(lxpr_mnt->lxprm_node);
324 zone_rele(lxpr_mnt->lxprm_zone);
325 kmem_free(lxpr_mnt, sizeof (*lxpr_mnt));

new/usr/src/uts/common/brand/lx/procfs/lx_prvfsops.c 6

327 mutex_exit(&lxpr_mount_lock);

329 return (0);
330 }

332 static int
333 lxpr_root(vfs_t *vfsp, vnode_t **vpp)
334 {
335 lxpr_node_t *lxpnp = ((lxpr_mnt_t *)vfsp->vfs_data)->lxprm_node;
336 vnode_t *vp = LXPTOV(lxpnp);

338 VN_HOLD(vp);
339 *vpp = vp;
340 return (0);
341 }

343 static int
344 lxpr_statvfs(vfs_t *vfsp, statvfs64_t *sp)
345 {
346 int n;
347 dev32_t d32;
348 extern uint_t nproc;

350 n = v.v_proc - nproc;

352 bzero((caddr_t)sp, sizeof (*sp));
353 sp->f_bsize = DEV_BSIZE;
354 sp->f_frsize = DEV_BSIZE;
355 sp->f_blocks = (fsblkcnt64_t)0;
356 sp->f_bfree = (fsblkcnt64_t)0;
357 sp->f_bavail = (fsblkcnt64_t)0;
358 sp->f_files = (fsfilcnt64_t)v.v_proc + 2;
359 sp->f_ffree = (fsfilcnt64_t)n;
360 sp->f_favail = (fsfilcnt64_t)n;
361 (void) cmpldev(&d32, vfsp->vfs_dev);
362 sp->f_fsid = d32;
363 /* It is guaranteed that vsw_name will fit in f_basetype */
364 (void) strcpy(sp->f_basetype, vfssw[lxprocfstype].vsw_name);
365 sp->f_flag = vf_to_stf(vfsp->vfs_flag);
366 sp->f_namemax = 64; /* quite arbitrary */
367 bzero(sp->f_fstr, sizeof (sp->f_fstr));

369 /* We know f_fstr is 32 chars */
370 (void) strcpy(sp->f_fstr, "/proc");
371 (void) strcpy(&sp->f_fstr[6], "/proc");

373 return (0);
374 }
375 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 1

**
 74808 Tue Jan 14 16:17:20 2014
new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 /*
27 * lxpr_vnops.c: Vnode operations for the lx /proc file system
28 *
29 * Assumptions and Gotchas:
30 *
31 * In order to preserve Solaris’ security policy. This file system’s
32 * functionality does not override Solaris’ security policies even if
33 * that means breaking Linux compatibility.
34 *
35 * Linux has no concept of lwps so we only implement procs here as in the
36 * old /proc interface.
37 */

39 #include <sys/cpupart.h>
40 #include <sys/cpuvar.h>
41 #include <sys/session.h>
42 #include <sys/vmparam.h>
43 #include <sys/mman.h>
44 #include <vm/rm.h>
45 #include <vm/seg_vn.h>
46 #include <sys/sdt.h>
47 #include <lx_signum.h>
48 #include <sys/strlog.h>
49 #include <sys/stropts.h>
50 #include <sys/cmn_err.h>
51 #include <sys/lx_brand.h>
52 #include <sys/x86_archext.h>
53 #include <sys/archsystm.h>
54 #include <sys/fp.h>
55 #include <sys/pool_pset.h>
56 #include <sys/pset.h>
57 #include <sys/zone.h>
58 #include <sys/pghw.h>
59 #include <sys/vfs_opreg.h>

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 2

61 /* Dependent on the Solaris procfs */
62 extern kthread_t *prchoose(proc_t *);

64 #include "lx_proc.h"

66 extern pgcnt_t swapfs_minfree;
67 extern time_t boot_time;

69 /*
70 * Pointer to the vnode ops vector for this fs.
71 * This is instantiated in lxprinit() in lxpr_vfsops.c
72 */
73 vnodeops_t *lxpr_vnodeops;

75 static int lxpr_open(vnode_t **, int, cred_t *, caller_context_t *);
76 static int lxpr_close(vnode_t *, int, int, offset_t, cred_t *,
77 caller_context_t *);
78 static int lxpr_read(vnode_t *, uio_t *, int, cred_t *, caller_context_t *);
79 static int lxpr_getattr(vnode_t *, vattr_t *, int, cred_t *,
80 caller_context_t *);
81 static int lxpr_access(vnode_t *, int, int, cred_t *, caller_context_t *);
82 static int lxpr_lookup(vnode_t *, char *, vnode_t **,
83 pathname_t *, int, vnode_t *, cred_t *, caller_context_t *, int *,
84 pathname_t *);
85 static int lxpr_readdir(vnode_t *, uio_t *, cred_t *, int *,
86 caller_context_t *, int);
87 static int lxpr_readlink(vnode_t *, uio_t *, cred_t *, caller_context_t *);
88 static int lxpr_cmp(vnode_t *, vnode_t *, caller_context_t *);
89 static int lxpr_realvp(vnode_t *, vnode_t **, caller_context_t *);
90 static int lxpr_sync(void);
91 static void lxpr_inactive(vnode_t *, cred_t *, caller_context_t *);

93 static vnode_t *lxpr_lookup_procdir(vnode_t *, char *);
94 static vnode_t *lxpr_lookup_piddir(vnode_t *, char *);
95 static vnode_t *lxpr_lookup_not_a_dir(vnode_t *, char *);
96 static vnode_t *lxpr_lookup_fddir(vnode_t *, char *);
97 static vnode_t *lxpr_lookup_netdir(vnode_t *, char *);

99 static int lxpr_readdir_procdir(lxpr_node_t *, uio_t *, int *);
100 static int lxpr_readdir_piddir(lxpr_node_t *, uio_t *, int *);
101 static int lxpr_readdir_not_a_dir(lxpr_node_t *, uio_t *, int *);
102 static int lxpr_readdir_fddir(lxpr_node_t *, uio_t *, int *);
103 static int lxpr_readdir_netdir(lxpr_node_t *, uio_t *, int *);

105 static void lxpr_read_invalid(lxpr_node_t *, lxpr_uiobuf_t *);
106 static void lxpr_read_empty(lxpr_node_t *, lxpr_uiobuf_t *);
107 static void lxpr_read_cpuinfo(lxpr_node_t *, lxpr_uiobuf_t *);
108 static void lxpr_read_isdir(lxpr_node_t *, lxpr_uiobuf_t *);
109 static void lxpr_read_fd(lxpr_node_t *, lxpr_uiobuf_t *);
110 static void lxpr_read_kmsg(lxpr_node_t *, lxpr_uiobuf_t *);
111 static void lxpr_read_loadavg(lxpr_node_t *, lxpr_uiobuf_t *);
112 static void lxpr_read_meminfo(lxpr_node_t *, lxpr_uiobuf_t *);
113 static void lxpr_read_mounts(lxpr_node_t *, lxpr_uiobuf_t *);
114 static void lxpr_read_partitions(lxpr_node_t *, lxpr_uiobuf_t *);
115 static void lxpr_read_stat(lxpr_node_t *, lxpr_uiobuf_t *);
116 static void lxpr_read_uptime(lxpr_node_t *, lxpr_uiobuf_t *);
117 static void lxpr_read_version(lxpr_node_t *, lxpr_uiobuf_t *);

119 static void lxpr_read_pid_cmdline(lxpr_node_t *, lxpr_uiobuf_t *);
120 static void lxpr_read_pid_maps(lxpr_node_t *, lxpr_uiobuf_t *);
121 static void lxpr_read_pid_stat(lxpr_node_t *, lxpr_uiobuf_t *);
122 static void lxpr_read_pid_statm(lxpr_node_t *, lxpr_uiobuf_t *);
123 static void lxpr_read_pid_status(lxpr_node_t *, lxpr_uiobuf_t *);

125 static void lxpr_read_net_arp(lxpr_node_t *, lxpr_uiobuf_t *);
126 static void lxpr_read_net_dev(lxpr_node_t *, lxpr_uiobuf_t *);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 3

127 static void lxpr_read_net_dev_mcast(lxpr_node_t *, lxpr_uiobuf_t *);
128 static void lxpr_read_net_igmp(lxpr_node_t *, lxpr_uiobuf_t *);
129 static void lxpr_read_net_ip_mr_cache(lxpr_node_t *, lxpr_uiobuf_t *);
130 static void lxpr_read_net_ip_mr_vif(lxpr_node_t *, lxpr_uiobuf_t *);
131 static void lxpr_read_net_mcfilter(lxpr_node_t *, lxpr_uiobuf_t *);
132 static void lxpr_read_net_netstat(lxpr_node_t *, lxpr_uiobuf_t *);
133 static void lxpr_read_net_raw(lxpr_node_t *, lxpr_uiobuf_t *);
134 static void lxpr_read_net_route(lxpr_node_t *, lxpr_uiobuf_t *);
135 static void lxpr_read_net_rpc(lxpr_node_t *, lxpr_uiobuf_t *);
136 static void lxpr_read_net_rt_cache(lxpr_node_t *, lxpr_uiobuf_t *);
137 static void lxpr_read_net_sockstat(lxpr_node_t *, lxpr_uiobuf_t *);
138 static void lxpr_read_net_snmp(lxpr_node_t *, lxpr_uiobuf_t *);
139 static void lxpr_read_net_stat(lxpr_node_t *, lxpr_uiobuf_t *);
140 static void lxpr_read_net_tcp(lxpr_node_t *, lxpr_uiobuf_t *);
141 static void lxpr_read_net_udp(lxpr_node_t *, lxpr_uiobuf_t *);
142 static void lxpr_read_net_unix(lxpr_node_t *, lxpr_uiobuf_t *);

144 /*
145 * Simple conversion
146 */
147 #define btok(x) ((x) >> 10) /* bytes to kbytes */
148 #define ptok(x) ((x) << (PAGESHIFT - 10)) /* pages to kbytes */

150 /*
151 * The lx /proc vnode operations vector
152 */
153 const fs_operation_def_t lxpr_vnodeops_template[] = {
154 VOPNAME_OPEN, { .vop_open = lxpr_open },
155 VOPNAME_CLOSE, { .vop_close = lxpr_close },
156 VOPNAME_READ, { .vop_read = lxpr_read },
157 VOPNAME_GETATTR, { .vop_getattr = lxpr_getattr },
158 VOPNAME_ACCESS, { .vop_access = lxpr_access },
159 VOPNAME_LOOKUP, { .vop_lookup = lxpr_lookup },
160 VOPNAME_READDIR, { .vop_readdir = lxpr_readdir },
161 VOPNAME_READLINK, { .vop_readlink = lxpr_readlink },
162 VOPNAME_FSYNC, { .error = lxpr_sync },
163 VOPNAME_SEEK, { .error = lxpr_sync },
164 VOPNAME_INACTIVE, { .vop_inactive = lxpr_inactive },
165 VOPNAME_CMP, { .vop_cmp = lxpr_cmp },
166 VOPNAME_REALVP, { .vop_realvp = lxpr_realvp },
167 NULL, NULL
168 };

171 /*
172 * file contents of an lx /proc directory.
173 */
174 static lxpr_dirent_t lx_procdir[] = {
175 { LXPR_CMDLINE, "cmdline" },
176 { LXPR_CPUINFO, "cpuinfo" },
177 { LXPR_DEVICES, "devices" },
178 { LXPR_DMA, "dma" },
179 { LXPR_FILESYSTEMS, "filesystems" },
180 { LXPR_INTERRUPTS, "interrupts" },
181 { LXPR_IOPORTS, "ioports" },
182 { LXPR_KCORE, "kcore" },
183 { LXPR_KMSG, "kmsg" },
184 { LXPR_LOADAVG, "loadavg" },
185 { LXPR_MEMINFO, "meminfo" },
186 { LXPR_MOUNTS, "mounts" },
187 { LXPR_NETDIR, "net" },
188 { LXPR_PARTITIONS, "partitions" },
189 { LXPR_SELF, "self" },
190 { LXPR_STAT, "stat" },
191 { LXPR_UPTIME, "uptime" },
192 { LXPR_VERSION, "version" }

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 4

193 };

195 #define PROCDIRFILES (sizeof (lx_procdir) / sizeof (lx_procdir[0]))

197 /*
198 * Contents of an lx /proc/<pid> directory.
199 */
200 static lxpr_dirent_t piddir[] = {
201 { LXPR_PID_CMDLINE, "cmdline" },
202 { LXPR_PID_CPU, "cpu" },
203 { LXPR_PID_CURDIR, "cwd" },
204 { LXPR_PID_ENV, "environ" },
205 { LXPR_PID_EXE, "exe" },
206 { LXPR_PID_MAPS, "maps" },
207 { LXPR_PID_MEM, "mem" },
208 { LXPR_PID_ROOTDIR, "root" },
209 { LXPR_PID_STAT, "stat" },
210 { LXPR_PID_STATM, "statm" },
211 { LXPR_PID_STATUS, "status" },
212 { LXPR_PID_FDDIR, "fd" }
213 };

215 #define PIDDIRFILES (sizeof (piddir) / sizeof (piddir[0]))

217 /*
218 * contents of lx /proc/net directory
219 */
220 static lxpr_dirent_t netdir[] = {
221 { LXPR_NET_ARP, "arp" },
222 { LXPR_NET_DEV, "dev" },
223 { LXPR_NET_DEV_MCAST, "dev_mcast" },
224 { LXPR_NET_IGMP, "igmp" },
225 { LXPR_NET_IP_MR_CACHE, "ip_mr_cache" },
226 { LXPR_NET_IP_MR_VIF, "ip_mr_vif" },
227 { LXPR_NET_MCFILTER, "mcfilter" },
228 { LXPR_NET_NETSTAT, "netstat" },
229 { LXPR_NET_RAW, "raw" },
230 { LXPR_NET_ROUTE, "route" },
231 { LXPR_NET_RPC, "rpc" },
232 { LXPR_NET_RT_CACHE, "rt_cache" },
233 { LXPR_NET_SOCKSTAT, "sockstat" },
234 { LXPR_NET_SNMP, "snmp" },
235 { LXPR_NET_STAT, "stat" },
236 { LXPR_NET_TCP, "tcp" },
237 { LXPR_NET_UDP, "udp" },
238 { LXPR_NET_UNIX, "unix" }
239 };

241 #define NETDIRFILES (sizeof (netdir) / sizeof (netdir[0]))

243 /*
244 * lxpr_open(): Vnode operation for VOP_OPEN()
245 */
246 static int
247 lxpr_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
248 {
249 vnode_t *vp = *vpp;
250 lxpr_node_t *lxpnp = VTOLXP(vp);
251 lxpr_nodetype_t type = lxpnp->lxpr_type;
252 vnode_t *rvp;
253 int error = 0;

255 /*
256 * We only allow reading in this file systrem
257 */
258 if (flag & FWRITE)

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 5

259 return (EROFS);

261 /*
262 * If we are opening an underlying file only allow regular files
263 * reject the open for anything but a regular file.
264 * Just do it if we are opening the current or root directory.
265 */
266 if (lxpnp->lxpr_realvp != NULL) {
267 rvp = lxpnp->lxpr_realvp;

269 if (type == LXPR_PID_FD_FD && rvp->v_type != VREG)
270 error = EACCES;
271 else {
272 /*
273 * Need to hold rvp since VOP_OPEN() may release it.
274 */
275 VN_HOLD(rvp);
276 error = VOP_OPEN(&rvp, flag, cr, ct);
277 if (error) {
278 VN_RELE(rvp);
279 } else {
280 *vpp = rvp;
281 VN_RELE(vp);
282 }
283 }
284 }

286 if (type == LXPR_KMSG) {
287 ldi_ident_t li = VTOLXPM(vp)->lxprm_li;
288 struct strioctl str;
289 int rv;

291 /*
292 * Open the zone’s console device using the layered driver
293 * interface.
294 */
295 if ((error = ldi_open_by_name("/dev/log", FREAD, cr,
296 &lxpnp->lxpr_cons_ldih, li)) != 0)
297 return (error);

299 /*
300 * Send an ioctl to the underlying console device, letting it
301 * know we’re interested in getting console messages.
302 */
303 str.ic_cmd = I_CONSLOG;
304 str.ic_timout = 0;
305 str.ic_len = 0;
306 str.ic_dp = NULL;
307 if ((error = ldi_ioctl(lxpnp->lxpr_cons_ldih, I_STR,
308 (intptr_t)&str, FKIOCTL, cr, &rv)) != 0)
309 return (error);
310 }

312 return (error);
313 }

316 /*
317 * lxpr_close(): Vnode operation for VOP_CLOSE()
318 */
319 /* ARGSUSED */
320 static int
321 lxpr_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
322 caller_context_t *ct)
323 {
324 lxpr_node_t *lxpr = VTOLXP(vp);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 6

325 lxpr_nodetype_t type = lxpr->lxpr_type;
326 int err;

328 /*
329 * we should never get here because the close is done on the realvp
330 * for these nodes
331 */
332 ASSERT(type != LXPR_PID_FD_FD &&
333 type != LXPR_PID_CURDIR &&
334 type != LXPR_PID_ROOTDIR &&
335 type != LXPR_PID_EXE);

337 if (type == LXPR_KMSG) {
338 if ((err = ldi_close(lxpr->lxpr_cons_ldih, 0, cr)) != 0)
339 return (err);
340 }

342 return (0);
343 }

345 static void (*lxpr_read_function[LXPR_NFILES])() = {
346 lxpr_read_isdir, /* /proc */
347 lxpr_read_isdir, /* /proc/<pid> */
348 lxpr_read_pid_cmdline, /* /proc/<pid>/cmdline */
349 lxpr_read_empty, /* /proc/<pid>/cpu */
350 lxpr_read_invalid, /* /proc/<pid>/cwd */
351 lxpr_read_empty, /* /proc/<pid>/environ */
352 lxpr_read_invalid, /* /proc/<pid>/exe */
353 lxpr_read_pid_maps, /* /proc/<pid>/maps */
354 lxpr_read_empty, /* /proc/<pid>/mem */
355 lxpr_read_invalid, /* /proc/<pid>/root */
356 lxpr_read_pid_stat, /* /proc/<pid>/stat */
357 lxpr_read_pid_statm, /* /proc/<pid>/statm */
358 lxpr_read_pid_status, /* /proc/<pid>/status */
359 lxpr_read_isdir, /* /proc/<pid>/fd */
360 lxpr_read_fd, /* /proc/<pid>/fd/nn */
361 lxpr_read_empty, /* /proc/cmdline */
362 lxpr_read_cpuinfo, /* /proc/cpuinfo */
363 lxpr_read_empty, /* /proc/devices */
364 lxpr_read_empty, /* /proc/dma */
365 lxpr_read_empty, /* /proc/filesystems */
366 lxpr_read_empty, /* /proc/interrupts */
367 lxpr_read_empty, /* /proc/ioports */
368 lxpr_read_empty, /* /proc/kcore */
369 lxpr_read_kmsg, /* /proc/kmsg */
370 lxpr_read_loadavg, /* /proc/loadavg */
371 lxpr_read_meminfo, /* /proc/meminfo */
372 lxpr_read_mounts, /* /proc/mounts */
373 lxpr_read_isdir, /* /proc/net */
374 lxpr_read_net_arp, /* /proc/net/arp */
375 lxpr_read_net_dev, /* /proc/net/dev */
376 lxpr_read_net_dev_mcast, /* /proc/net/dev_mcast */
377 lxpr_read_net_igmp, /* /proc/net/igmp */
378 lxpr_read_net_ip_mr_cache, /* /proc/net/ip_mr_cache */
379 lxpr_read_net_ip_mr_vif, /* /proc/net/ip_mr_vif */
380 lxpr_read_net_mcfilter, /* /proc/net/mcfilter */
381 lxpr_read_net_netstat, /* /proc/net/netstat */
382 lxpr_read_net_raw, /* /proc/net/raw */
383 lxpr_read_net_route, /* /proc/net/route */
384 lxpr_read_net_rpc, /* /proc/net/rpc */
385 lxpr_read_net_rt_cache, /* /proc/net/rt_cache */
386 lxpr_read_net_sockstat, /* /proc/net/sockstat */
387 lxpr_read_net_snmp, /* /proc/net/snmp */
388 lxpr_read_net_stat, /* /proc/net/stat */
389 lxpr_read_net_tcp, /* /proc/net/tcp */
390 lxpr_read_net_udp, /* /proc/net/udp */

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 7

391 lxpr_read_net_unix, /* /proc/net/unix */
392 lxpr_read_partitions, /* /proc/partitions */
393 lxpr_read_invalid, /* /proc/self */
394 lxpr_read_stat, /* /proc/stat */
395 lxpr_read_uptime, /* /proc/uptime */
396 lxpr_read_version, /* /proc/version */
397 };

399 /*
400 * Array of lookup functions, indexed by lx /proc file type.
401 */
402 static vnode_t *(*lxpr_lookup_function[LXPR_NFILES])() = {
403 lxpr_lookup_procdir, /* /proc */
404 lxpr_lookup_piddir, /* /proc/<pid> */
405 lxpr_lookup_not_a_dir, /* /proc/<pid>/cmdline */
406 lxpr_lookup_not_a_dir, /* /proc/<pid>/cpu */
407 lxpr_lookup_not_a_dir, /* /proc/<pid>/cwd */
408 lxpr_lookup_not_a_dir, /* /proc/<pid>/environ */
409 lxpr_lookup_not_a_dir, /* /proc/<pid>/exe */
410 lxpr_lookup_not_a_dir, /* /proc/<pid>/maps */
411 lxpr_lookup_not_a_dir, /* /proc/<pid>/mem */
412 lxpr_lookup_not_a_dir, /* /proc/<pid>/root */
413 lxpr_lookup_not_a_dir, /* /proc/<pid>/stat */
414 lxpr_lookup_not_a_dir, /* /proc/<pid>/statm */
415 lxpr_lookup_not_a_dir, /* /proc/<pid>/status */
416 lxpr_lookup_fddir, /* /proc/<pid>/fd */
417 lxpr_lookup_not_a_dir, /* /proc/<pid>/fd/nn */
418 lxpr_lookup_not_a_dir, /* /proc/cmdline */
419 lxpr_lookup_not_a_dir, /* /proc/cpuinfo */
420 lxpr_lookup_not_a_dir, /* /proc/devices */
421 lxpr_lookup_not_a_dir, /* /proc/dma */
422 lxpr_lookup_not_a_dir, /* /proc/filesystems */
423 lxpr_lookup_not_a_dir, /* /proc/interrupts */
424 lxpr_lookup_not_a_dir, /* /proc/ioports */
425 lxpr_lookup_not_a_dir, /* /proc/kcore */
426 lxpr_lookup_not_a_dir, /* /proc/kmsg */
427 lxpr_lookup_not_a_dir, /* /proc/loadavg */
428 lxpr_lookup_not_a_dir, /* /proc/meminfo */
429 lxpr_lookup_not_a_dir, /* /proc/mounts */
430 lxpr_lookup_netdir, /* /proc/net */
431 lxpr_lookup_not_a_dir, /* /proc/net/arp */
432 lxpr_lookup_not_a_dir, /* /proc/net/dev */
433 lxpr_lookup_not_a_dir, /* /proc/net/dev_mcast */
434 lxpr_lookup_not_a_dir, /* /proc/net/igmp */
435 lxpr_lookup_not_a_dir, /* /proc/net/ip_mr_cache */
436 lxpr_lookup_not_a_dir, /* /proc/net/ip_mr_vif */
437 lxpr_lookup_not_a_dir, /* /proc/net/mcfilter */
438 lxpr_lookup_not_a_dir, /* /proc/net/netstat */
439 lxpr_lookup_not_a_dir, /* /proc/net/raw */
440 lxpr_lookup_not_a_dir, /* /proc/net/route */
441 lxpr_lookup_not_a_dir, /* /proc/net/rpc */
442 lxpr_lookup_not_a_dir, /* /proc/net/rt_cache */
443 lxpr_lookup_not_a_dir, /* /proc/net/sockstat */
444 lxpr_lookup_not_a_dir, /* /proc/net/snmp */
445 lxpr_lookup_not_a_dir, /* /proc/net/stat */
446 lxpr_lookup_not_a_dir, /* /proc/net/tcp */
447 lxpr_lookup_not_a_dir, /* /proc/net/udp */
448 lxpr_lookup_not_a_dir, /* /proc/net/unix */
449 lxpr_lookup_not_a_dir, /* /proc/partitions */
450 lxpr_lookup_not_a_dir, /* /proc/self */
451 lxpr_lookup_not_a_dir, /* /proc/stat */
452 lxpr_lookup_not_a_dir, /* /proc/uptime */
453 lxpr_lookup_not_a_dir, /* /proc/version */
454 };

456 /*

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 8

457 * Array of readdir functions, indexed by /proc file type.
458 */
459 static int (*lxpr_readdir_function[LXPR_NFILES])() = {
460 lxpr_readdir_procdir, /* /proc */
461 lxpr_readdir_piddir, /* /proc/<pid> */
462 lxpr_readdir_not_a_dir, /* /proc/<pid>/cmdline */
463 lxpr_readdir_not_a_dir, /* /proc/<pid>/cpu */
464 lxpr_readdir_not_a_dir, /* /proc/<pid>/cwd */
465 lxpr_readdir_not_a_dir, /* /proc/<pid>/environ */
466 lxpr_readdir_not_a_dir, /* /proc/<pid>/exe */
467 lxpr_readdir_not_a_dir, /* /proc/<pid>/maps */
468 lxpr_readdir_not_a_dir, /* /proc/<pid>/mem */
469 lxpr_readdir_not_a_dir, /* /proc/<pid>/root */
470 lxpr_readdir_not_a_dir, /* /proc/<pid>/stat */
471 lxpr_readdir_not_a_dir, /* /proc/<pid>/statm */
472 lxpr_readdir_not_a_dir, /* /proc/<pid>/status */
473 lxpr_readdir_fddir, /* /proc/<pid>/fd */
474 lxpr_readdir_not_a_dir, /* /proc/<pid>/fd/nn */
475 lxpr_readdir_not_a_dir, /* /proc/cmdline */
476 lxpr_readdir_not_a_dir, /* /proc/cpuinfo */
477 lxpr_readdir_not_a_dir, /* /proc/devices */
478 lxpr_readdir_not_a_dir, /* /proc/dma */
479 lxpr_readdir_not_a_dir, /* /proc/filesystems */
480 lxpr_readdir_not_a_dir, /* /proc/interrupts */
481 lxpr_readdir_not_a_dir, /* /proc/ioports */
482 lxpr_readdir_not_a_dir, /* /proc/kcore */
483 lxpr_readdir_not_a_dir, /* /proc/kmsg */
484 lxpr_readdir_not_a_dir, /* /proc/loadavg */
485 lxpr_readdir_not_a_dir, /* /proc/meminfo */
486 lxpr_readdir_not_a_dir, /* /proc/mounts */
487 lxpr_readdir_netdir, /* /proc/net */
488 lxpr_readdir_not_a_dir, /* /proc/net/arp */
489 lxpr_readdir_not_a_dir, /* /proc/net/dev */
490 lxpr_readdir_not_a_dir, /* /proc/net/dev_mcast */
491 lxpr_readdir_not_a_dir, /* /proc/net/igmp */
492 lxpr_readdir_not_a_dir, /* /proc/net/ip_mr_cache */
493 lxpr_readdir_not_a_dir, /* /proc/net/ip_mr_vif */
494 lxpr_readdir_not_a_dir, /* /proc/net/mcfilter */
495 lxpr_readdir_not_a_dir, /* /proc/net/netstat */
496 lxpr_readdir_not_a_dir, /* /proc/net/raw */
497 lxpr_readdir_not_a_dir, /* /proc/net/route */
498 lxpr_readdir_not_a_dir, /* /proc/net/rpc */
499 lxpr_readdir_not_a_dir, /* /proc/net/rt_cache */
500 lxpr_readdir_not_a_dir, /* /proc/net/sockstat */
501 lxpr_readdir_not_a_dir, /* /proc/net/snmp */
502 lxpr_readdir_not_a_dir, /* /proc/net/stat */
503 lxpr_readdir_not_a_dir, /* /proc/net/tcp */
504 lxpr_readdir_not_a_dir, /* /proc/net/udp */
505 lxpr_readdir_not_a_dir, /* /proc/net/unix */
506 lxpr_readdir_not_a_dir, /* /proc/partitions */
507 lxpr_readdir_not_a_dir, /* /proc/self */
508 lxpr_readdir_not_a_dir, /* /proc/stat */
509 lxpr_readdir_not_a_dir, /* /proc/uptime */
510 lxpr_readdir_not_a_dir, /* /proc/version */
511 };

514 /*
515 * lxpr_read(): Vnode operation for VOP_READ()
516 *
517 * As the format of all the files that can be read in the lx procfs is human
518 * readable and not binary structures there do not have to be different
519 * read variants depending on whether the reading process model is 32 or 64 bits
520 * (at least in general, and certainly the difference is unlikely to be enough
521 * to justify have different routines for 32 and 64 bit reads
522 */

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 9

523 /* ARGSUSED */
524 static int
525 lxpr_read(vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr,
526 caller_context_t *ct)
527 {
528 lxpr_node_t *lxpnp = VTOLXP(vp);
529 lxpr_nodetype_t type = lxpnp->lxpr_type;
530 lxpr_uiobuf_t *uiobuf = lxpr_uiobuf_new(uiop);
531 int error;

533 ASSERT(type < LXPR_NFILES);

535 lxpr_read_function[type](lxpnp, uiobuf);

537 error = lxpr_uiobuf_flush(uiobuf);
538 lxpr_uiobuf_free(uiobuf);

540 return (error);
541 }

544 /*
545 * lxpr_read_invalid(), lxpr_read_isdir(), lxpr_read_empty()
546 *
547 * Various special case reads:
548 * - trying to read a directory
549 * - invalid file (used to mean a file that should be implemented,
550 * but isn’t yet)
551 * - empty file
552 * - wait to be able to read a file that will never have anything to read
553 */
554 /* ARGSUSED */
555 static void
556 lxpr_read_isdir(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
557 {
558 lxpr_uiobuf_seterr(uiobuf, EISDIR);
559 }

561 /* ARGSUSED */
562 static void
563 lxpr_read_invalid(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
564 {
565 lxpr_uiobuf_seterr(uiobuf, EINVAL);
566 }

568 /* ARGSUSED */
569 static void
570 lxpr_read_empty(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
571 {
572 }

574 /*
575 * lxpr_read_pid_cmdline():
576 *
577 * This is not precisely compatible with linux:
578 *
579 * The linux cmdline returns argv with the correct separation
580 * using \0 between the arguments, we cannot do that without
581 * copying the real argv from the correct process context.
582 * This is too difficult to attempt so we pretend that the
583 * entire cmdline is just argv[0]. This is good enough for
584 * ps to display correctly, but might cause some other things
585 * not to work correctly.
586 */
587 static void
588 lxpr_read_pid_cmdline(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 10

589 {
590 proc_t *p;

592 ASSERT(lxpnp->lxpr_type == LXPR_PID_CMDLINE);

594 p = lxpr_lock(lxpnp->lxpr_pid);
595 if (p == NULL) {
596 lxpr_uiobuf_seterr(uiobuf, EINVAL);
597 return;
598 }

600 if (PTOU(p)->u_argv != 0) {
601 char *buff = PTOU(p)->u_psargs;
602 int len = strlen(buff);
603 lxpr_unlock(p);
604 lxpr_uiobuf_write(uiobuf, buff, len+1);
605 } else {
606 lxpr_unlock(p);
607 }
608 }

611 /*
612 * lxpr_read_pid_maps(): memory map file
613 */
614 static void
615 lxpr_read_pid_maps(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
616 {
617 proc_t *p;
618 struct as *as;
619 struct seg *seg;
620 char *buf;
621 int buflen = MAXPATHLEN;
622 struct print_data {
623 caddr_t saddr;
624 caddr_t eaddr;
625 int type;
626 char prot[5];
627 uint32_t offset;
628 vnode_t *vp;
629 struct print_data *next;
630 } *print_head = NULL;
631 struct print_data **print_tail = &print_head;
632 struct print_data *pbuf;

634 ASSERT(lxpnp->lxpr_type == LXPR_PID_MAPS);

636 p = lxpr_lock(lxpnp->lxpr_pid);
637 if (p == NULL) {
638 lxpr_uiobuf_seterr(uiobuf, EINVAL);
639 return;
640 }

642 as = p->p_as;

644 if (as == &kas) {
645 lxpr_unlock(p);
646 return;
647 }

649 mutex_exit(&p->p_lock);

651 /* Iterate over all segments in the address space */
652 AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
653 for (seg = AS_SEGFIRST(as); seg != NULL; seg = AS_SEGNEXT(as, seg)) {
654 vnode_t *vp;

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 11

655 uint_t protbits;

657 pbuf = kmem_alloc(sizeof (*pbuf), KM_SLEEP);

659 pbuf->saddr = seg->s_base;
660 pbuf->eaddr = seg->s_base+seg->s_size;
661 pbuf->type = SEGOP_GETTYPE(seg, seg->s_base);

663 /*
664 * Cheat and only use the protection bits of the first page
665 * in the segment
666 */
667 (void) strncpy(pbuf->prot, "----", sizeof (pbuf->prot));
668 (void) SEGOP_GETPROT(seg, seg->s_base, 0, &protbits);

670 if (protbits & PROT_READ) pbuf->prot[0] = ’r’;
671 if (protbits & PROT_WRITE) pbuf->prot[1] = ’w’;
672 if (protbits & PROT_EXEC) pbuf->prot[2] = ’x’;
673 if (pbuf->type & MAP_SHARED) pbuf->prot[3] = ’s’;
674 else if (pbuf->type & MAP_PRIVATE) pbuf->prot[3] = ’p’;

676 if (seg->s_ops == &segvn_ops &&
677 SEGOP_GETVP(seg, seg->s_base, &vp) == 0 &&
678 vp != NULL && vp->v_type == VREG) {
679 VN_HOLD(vp);
680 pbuf->vp = vp;
681 } else {
682 pbuf->vp = NULL;
683 }

685 pbuf->offset = (uint32_t)SEGOP_GETOFFSET(seg, pbuf->saddr);

687 pbuf->next = NULL;
688 *print_tail = pbuf;
689 print_tail = &pbuf->next;
690 }
691 AS_LOCK_EXIT(as, &as->a_lock);
692 mutex_enter(&p->p_lock);
693 lxpr_unlock(p);

695 buf = kmem_alloc(buflen, KM_SLEEP);

697 /* print the data we’ve extracted */
698 pbuf = print_head;
699 while (pbuf != NULL) {
700 struct print_data *pbuf_next;
701 vattr_t vattr;

703 int maj = 0;
704 int min = 0;
705 int inode = 0;

707 *buf = ’\0’;
708 if (pbuf->vp != NULL) {
709 vattr.va_mask = AT_FSID | AT_NODEID;
710 if (VOP_GETATTR(pbuf->vp, &vattr, 0, CRED(),
711 NULL) == 0) {
712 maj = getmajor(vattr.va_fsid);
713 min = getminor(vattr.va_fsid);
714 inode = vattr.va_nodeid;
715 }
716 (void) vnodetopath(NULL, pbuf->vp, buf, buflen, CRED());
717 VN_RELE(pbuf->vp);
718 }

720 if (*buf != ’\0’) {

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 12

721 lxpr_uiobuf_printf(uiobuf,
722 "%08x-%08x %s %08x %02d:%03d %d %s\n",
723 pbuf->saddr, pbuf->eaddr, pbuf->prot, pbuf->offset,
724 maj, min, inode, buf);
725 } else {
726 lxpr_uiobuf_printf(uiobuf,
727 "%08x-%08x %s %08x %02d:%03d %d\n",
728 pbuf->saddr, pbuf->eaddr, pbuf->prot, pbuf->offset,
729 maj, min, inode);
730 }

732 pbuf_next = pbuf->next;
733 kmem_free(pbuf, sizeof (*pbuf));
734 pbuf = pbuf_next;
735 }

737 kmem_free(buf, buflen);
738 }

740 /*
741 * lxpr_read_pid_statm(): memory status file
742 */
743 static void
744 lxpr_read_pid_statm(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
745 {
746 proc_t *p;
747 struct as *as;
748 size_t vsize;
749 size_t rss;

751 ASSERT(lxpnp->lxpr_type == LXPR_PID_STATM);

753 p = lxpr_lock(lxpnp->lxpr_pid);
754 if (p == NULL) {
755 lxpr_uiobuf_seterr(uiobuf, EINVAL);
756 return;
757 }

759 as = p->p_as;

761 mutex_exit(&p->p_lock);

763 AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
764 vsize = btopr(as->a_resvsize);
765 rss = rm_asrss(as);
766 AS_LOCK_EXIT(as, &as->a_lock);

768 mutex_enter(&p->p_lock);
769 lxpr_unlock(p);

771 lxpr_uiobuf_printf(uiobuf,
772 "%lu %lu %lu %lu %lu %lu %lu\n",
773 vsize, rss, 0l, rss, 0l, 0l, 0l);
774 }

776 /*
777 * lxpr_read_pid_status(): status file
778 */
779 static void
780 lxpr_read_pid_status(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
781 {
782 proc_t *p;
783 kthread_t *t;
784 user_t *up;
785 cred_t *cr;
786 const gid_t *groups;

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 13

787 int ngroups;
788 struct as *as;
789 char *status;
790 pid_t pid, ppid;
791 size_t vsize;
792 size_t rss;
793 k_sigset_t current, ignore, handle;
794 int i, lx_sig;

796 ASSERT(lxpnp->lxpr_type == LXPR_PID_STATUS);

798 p = lxpr_lock(lxpnp->lxpr_pid);
799 if (p == NULL) {
800 lxpr_uiobuf_seterr(uiobuf, EINVAL);
801 return;
802 }

804 pid = p->p_pid;

806 /*
807 * Convert pid to the Linux default of 1 if we’re the zone’s init
808 * process
809 */
810 if (pid == curproc->p_zone->zone_proc_initpid) {
811 pid = 1;
812 ppid = 0; /* parent pid for init is 0 */
813 } else {
814 /*
815 * Make sure not to reference parent PIDs that reside outside
816 * the zone
817 */
818 ppid = ((p->p_flag & SZONETOP)
819 ? curproc->p_zone->zone_zsched->p_pid : p->p_ppid);

821 /*
822 * Convert ppid to the Linux default of 1 if our parent is the
823 * zone’s init process
824 */
825 if (ppid == curproc->p_zone->zone_proc_initpid)
826 ppid = 1;
827 }

829 t = prchoose(p);
830 if (t != NULL) {
831 switch (t->t_state) {
832 case TS_SLEEP:
833 status = "S (sleeping)";
834 break;
835 case TS_RUN:
836 case TS_ONPROC:
837 status = "R (running)";
838 break;
839 case TS_ZOMB:
840 status = "Z (zombie)";
841 break;
842 case TS_STOPPED:
843 status = "T (stopped)";
844 break;
845 default:
846 status = "! (unknown)";
847 break;
848 }
849 thread_unlock(t);
850 } else {
851 /*
852 * there is a hole in the exit code, where a proc can have

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 14

853 * no threads but it is yet to be flagged SZOMB. We will
854 * assume we are about to become a zombie
855 */
856 status = "Z (zombie)";
857 }

859 up = PTOU(p);
860 mutex_enter(&p->p_crlock);
861 crhold(cr = p->p_cred);
862 mutex_exit(&p->p_crlock);

864 lxpr_uiobuf_printf(uiobuf,
865 "Name:\t%s\n"
866 "State:\t%s\n"
867 "Tgid:\t%d\n"
868 "Pid:\t%d\n"
869 "PPid:\t%d\n"
870 "TracerPid:\t%d\n"
871 "Uid:\t%u\t%u\t%u\t%u\n"
872 "Gid:\t%u\t%u\t%u\t%u\n"
873 "FDSize:\t%d\n"
874 "Groups:\t",
875 up->u_comm,
876 status,
877 pid, /* thread group id - same as pid until we map lwps to procs */
878 pid,
879 ppid,
880 0,
881 crgetruid(cr), crgetuid(cr), crgetsuid(cr), crgetuid(cr),
882 crgetrgid(cr), crgetgid(cr), crgetsgid(cr), crgetgid(cr),
883 p->p_fno_ctl);

885 ngroups = crgetngroups(cr);
886 groups = crgetgroups(cr);
887 for (i = 0; i < ngroups; i++) {
888 lxpr_uiobuf_printf(uiobuf,
889 "%u ",
890 groups[i]);
891 }
892 crfree(cr);

894 as = p->p_as;
895 if ((p->p_stat != SZOMB) && !(p->p_flag & SSYS) && (as != &kas)) {
896 mutex_exit(&p->p_lock);
897 AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
898 vsize = as->a_resvsize;
899 rss = rm_asrss(as);
900 AS_LOCK_EXIT(as, &as->a_lock);
901 mutex_enter(&p->p_lock);

903 lxpr_uiobuf_printf(uiobuf,
904 "\n"
905 "VmSize:\t%8lu kB\n"
906 "VmLck:\t%8lu kB\n"
907 "VmRSS:\t%8lu kB\n"
908 "VmData:\t%8lu kB\n"
909 "VmStk:\t%8lu kB\n"
910 "VmExe:\t%8lu kB\n"
911 "VmLib:\t%8lu kB",
912 btok(vsize),
913 0l,
914 ptok(rss),
915 0l,
916 btok(p->p_stksize),
917 ptok(rss),
918 0l);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 15

919 }

921 sigemptyset(¤t);
922 sigemptyset(&ignore);
923 sigemptyset(&handle);

925 for (i = 1; i < NSIG; i++) {
926 lx_sig = stol_signo[i];

928 if ((lx_sig > 0) && (lx_sig < LX_NSIG)) {
929 if (sigismember(&p->p_sig, i))
930 sigaddset(¤t, lx_sig);

932 if (up->u_signal[i - 1] == SIG_IGN)
933 sigaddset(&ignore, lx_sig);
934 else if (up->u_signal[i - 1] != SIG_DFL)
935 sigaddset(&handle, lx_sig);
936 }
937 }

939 lxpr_uiobuf_printf(uiobuf,
940 "\n"
941 "SigPnd:\t%08x%08x\n"
942 "SigBlk:\t%08x%08x\n"
943 "SigIgn:\t%08x%08x\n"
944 "SigCgt:\t%08x%08x\n"
945 "CapInh:\t%016x\n"
946 "CapPrm:\t%016x\n"
947 "CapEff:\t%016x\n",
948 current.__sigbits[1], current.__sigbits[0],
949 0, 0, /* signals blocked on per thread basis */
950 ignore.__sigbits[1], ignore.__sigbits[0],
951 handle.__sigbits[1], handle.__sigbits[0],
952 /* Can’t do anything with linux capabilities */
953 0,
954 0,
955 0);

957 lxpr_unlock(p);
958 }

961 /*
962 * lxpr_read_pid_stat(): pid stat file
963 */
964 static void
965 lxpr_read_pid_stat(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
966 {
967 proc_t *p;
968 kthread_t *t;
969 struct as *as;
970 char stat;
971 pid_t pid, ppid, pgpid, spid;
972 gid_t psgid;
973 dev_t psdev;
974 size_t rss, vsize;
975 int nice, pri;
976 caddr_t wchan;
977 processorid_t cpu;

979 ASSERT(lxpnp->lxpr_type == LXPR_PID_STAT);

981 p = lxpr_lock(lxpnp->lxpr_pid);
982 if (p == NULL) {
983 lxpr_uiobuf_seterr(uiobuf, EINVAL);
984 return;

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 16

985 }

987 pid = p->p_pid;

989 /*
990 * Set Linux defaults if we’re the zone’s init process
991 */
992 if (pid == curproc->p_zone->zone_proc_initpid) {
993 pid = 1; /* PID for init */
994 ppid = 0; /* parent PID for init is 0 */
995 pgpid = 0; /* process group for init is 0 */
996 psgid = (gid_t)-1; /* credential GID for init is -1 */
997 spid = 0; /* session id for init is 0 */
998 psdev = 0; /* session device for init is 0 */
999 } else {

1000 /*
1001 * Make sure not to reference parent PIDs that reside outside
1002 * the zone
1003 */
1004 ppid = ((p->p_flag & SZONETOP)
1005 ? curproc->p_zone->zone_zsched->p_pid : p->p_ppid);

1007 /*
1008 * Convert ppid to the Linux default of 1 if our parent is the
1009 * zone’s init process
1010 */
1011 if (ppid == curproc->p_zone->zone_proc_initpid)
1012 ppid = 1;

1014 pgpid = p->p_pgrp;

1016 mutex_enter(&p->p_splock);
1017 mutex_enter(&p->p_sessp->s_lock);
1018 spid = p->p_sessp->s_sid;
1019 /* XXBRAND psdev = DEV_TO_LXDEV(p->p_sessp->s_dev, VCHR); */
1020 psdev = p->p_sessp->s_dev;
1021 if (p->p_sessp->s_cred)
1022 psgid = crgetgid(p->p_sessp->s_cred);
1023 else
1024 psgid = crgetgid(p->p_cred);

1026 mutex_exit(&p->p_sessp->s_lock);
1027 mutex_exit(&p->p_splock);
1028 }

1030 t = prchoose(p);
1031 if (t != NULL) {
1032 switch (t->t_state) {
1033 case TS_SLEEP:
1034 stat = ’S’; break;
1035 case TS_RUN:
1036 case TS_ONPROC:
1037 stat = ’R’; break;
1038 case TS_ZOMB:
1039 stat = ’Z’; break;
1040 case TS_STOPPED:
1041 stat = ’T’; break;
1042 default:
1043 stat = ’!’; break;
1044 }

1046 if (CL_DONICE(t, NULL, 0, &nice) != 0)
1047 nice = 0;

1049 pri = v.v_maxsyspri - t->t_pri;
1050 wchan = t->t_wchan;

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 17

1051 cpu = t->t_cpu->cpu_seqid;
1052 thread_unlock(t);
1053 } else {
1054 /* Only zombies have no threads */
1055 stat = ’Z’;
1056 nice = 0;
1057 pri = 0;
1058 wchan = 0;
1059 cpu = 0;
1060 }
1061 as = p->p_as;
1062 mutex_exit(&p->p_lock);
1063 AS_LOCK_ENTER(as, &as->a_lock, RW_READER);
1064 vsize = as->a_resvsize;
1065 rss = rm_asrss(as);
1066 AS_LOCK_EXIT(as, &as->a_lock);
1067 mutex_enter(&p->p_lock);

1069 lxpr_uiobuf_printf(uiobuf,
1070 "%d (%s) %c %d %d %d %d %d "
1071 "%lu %lu %lu %lu %lu "
1072 "%lu %lu %ld %ld "
1073 "%d %d "
1074 "0 "
1075 "%ld %lu "
1076 "%lu %ld %llu "
1077 "%lu %lu %u "
1078 "%lu %lu "
1079 "%lu %lu %lu %lu "
1080 "%lu "
1081 "%lu %lu "
1082 "%d "
1083 "%d"
1084 "\n",
1085 pid,
1086 PTOU(p)->u_comm,
1087 stat,
1088 ppid, pgpid,
1089 spid, psdev, psgid,
1090 0l, 0l, 0l, 0l, 0l, /* flags, minflt, cminflt, majflt, cmajflt */
1091 p->p_utime, p->p_stime, p->p_cutime, p->p_cstime,
1092 pri, nice,
1093 0l, PTOU(p)->u_ticks, /* ticks till next SIGALARM, start time */
1094 vsize, rss, p->p_vmem_ctl,
1095 0l, 0l, USRSTACK, /* startcode, endcode, startstack */
1096 0l, 0l, /* kstkesp, kstkeip */
1097 0l, 0l, 0l, 0l, /* signal, blocked, sigignore, sigcatch */
1098 wchan,
1099 0l, 0l, /* nswap, cnswap */
1100 0, /* exit_signal */
1101 cpu);

1103 lxpr_unlock(p);
1104 }

1106 /* ARGSUSED */
1107 static void
1108 lxpr_read_net_arp(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1109 {
1110 }

1112 /* ARGSUSED */
1113 static void
1114 lxpr_read_net_dev(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1115 {
1116 lxpr_uiobuf_printf(uiobuf, "Inter-| Receive "

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 18

1117 " | Transmit\n");
1118 lxpr_uiobuf_printf(uiobuf, " face |bytes packets errs drop fifo"
1119 " frame compressed multicast|bytes packets errs drop fifo"
1120 " colls carrier compressed\n");

1122 /*
1123 * XXX: data about each interface should go here, but we’ll wait to
1124 * see if anybody wants to use it.
1125 */
1126 }

1128 /* ARGSUSED */
1129 static void
1130 lxpr_read_net_dev_mcast(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1131 {
1132 }

1134 /* ARGSUSED */
1135 static void
1136 lxpr_read_net_igmp(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1137 {
1138 }

1140 /* ARGSUSED */
1141 static void
1142 lxpr_read_net_ip_mr_cache(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1143 {
1144 }

1146 /* ARGSUSED */
1147 static void
1148 lxpr_read_net_ip_mr_vif(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1149 {
1150 }

1152 /* ARGSUSED */
1153 static void
1154 lxpr_read_net_mcfilter(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1155 {
1156 }

1158 /* ARGSUSED */
1159 static void
1160 lxpr_read_net_netstat(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1161 {
1162 }

1164 /* ARGSUSED */
1165 static void
1166 lxpr_read_net_raw(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1167 {
1168 }

1170 /* ARGSUSED */
1171 static void
1172 lxpr_read_net_route(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1173 {
1174 }

1176 /* ARGSUSED */
1177 static void
1178 lxpr_read_net_rpc(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1179 {
1180 }

1182 /* ARGSUSED */

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 19

1183 static void
1184 lxpr_read_net_rt_cache(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1185 {
1186 }

1188 /* ARGSUSED */
1189 static void
1190 lxpr_read_net_sockstat(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1191 {
1192 }

1194 /* ARGSUSED */
1195 static void
1196 lxpr_read_net_snmp(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1197 {
1198 }

1200 /* ARGSUSED */
1201 static void
1202 lxpr_read_net_stat(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1203 {
1204 }

1206 /* ARGSUSED */
1207 static void
1208 lxpr_read_net_tcp(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1209 {
1210 }

1212 /* ARGSUSED */
1213 static void
1214 lxpr_read_net_udp(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1215 {
1216 }

1218 /* ARGSUSED */
1219 static void
1220 lxpr_read_net_unix(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1221 {
1222 }

1224 /*
1225 * lxpr_read_kmsg(): read the contents of the kernel message queue. We
1226 * translate this into the reception of console messages for this lx zone; each
1227 * read copies out a single zone console message, or blocks until the next one
1228 * is produced.
1229 */

1231 #define LX_KMSG_PRI "<0>"

1233 static void
1234 lxpr_read_kmsg(lxpr_node_t *lxpnp, struct lxpr_uiobuf *uiobuf)
1235 {
1236 ldi_handle_t lh = lxpnp->lxpr_cons_ldih;
1237 mblk_t *mp;

1239 if (ldi_getmsg(lh, &mp, NULL) == 0) {
1240 /*
1241 * lx procfs doesn’t like successive reads to the same file
1242 * descriptor unless we do an explicit rewind each time.
1243 */
1244 lxpr_uiobuf_seek(uiobuf, 0);

1246 lxpr_uiobuf_printf(uiobuf, "%s%s", LX_KMSG_PRI,
1247 mp->b_cont->b_rptr);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 20

1249 freemsg(mp);
1250 }
1251 }

1253 /*
1254 * lxpr_read_loadavg(): read the contents of the "loadavg" file.
1255 *
1256 * Just enough for uptime to work
1257 */
1258 extern int nthread;

1260 static void
1261 lxpr_read_loadavg(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1262 {
1263 ulong_t avenrun1;
1264 ulong_t avenrun5;
1265 ulong_t avenrun15;
1266 ulong_t avenrun1_cs;
1267 ulong_t avenrun5_cs;
1268 ulong_t avenrun15_cs;
1269 int loadavg[3];
1270 int *loadbuf;
1271 cpupart_t *cp;

1273 uint_t nrunnable = 0;
1274 rctl_qty_t nlwps;

1276 ASSERT(lxpnp->lxpr_type == LXPR_LOADAVG);

1278 mutex_enter(&cpu_lock);

1280 /*
1281 * Need to add up values over all CPU partitions. If pools are active,
1282 * only report the values of the zone’s partition, which by definition
1283 * includes the current CPU.
1284 */
1285 if (pool_pset_enabled()) {
1286 psetid_t psetid = zone_pset_get(curproc->p_zone);

1288 ASSERT(curproc->p_zone != &zone0);
1289 cp = CPU->cpu_part;

1291 nrunnable = cp->cp_nrunning + cp->cp_nrunnable;
1292 (void) cpupart_get_loadavg(psetid, &loadavg[0], 3);
1293 loadbuf = &loadavg[0];

1295 /*
1296 * We’ll report the total number of lwps in the zone for the
1297 * "nproc" parameter of /proc/loadavg; good enough for lx.
1298 */
1299 nlwps = curproc->p_zone->zone_nlwps;
1300 } else {
1301 cp = cp_list_head;
1302 do {
1303 nrunnable += cp->cp_nrunning + cp->cp_nrunnable;
1304 } while ((cp = cp->cp_next) != cp_list_head);

1306 loadbuf = &avenrun[0];

1308 /*
1309 * This will report kernel threads as well as user lwps, but it
1310 * should be good enough for lx consumers.
1311 */
1312 nlwps = nthread;
1313 }

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 21

1315 mutex_exit(&cpu_lock);

1317 avenrun1 = loadbuf[0] >> FSHIFT;
1318 avenrun1_cs = ((loadbuf[0] & (FSCALE-1)) * 100) >> FSHIFT;
1319 avenrun5 = loadbuf[1] >> FSHIFT;
1320 avenrun5_cs = ((loadbuf[1] & (FSCALE-1)) * 100) >> FSHIFT;
1321 avenrun15 = loadbuf[2] >> FSHIFT;
1322 avenrun15_cs = ((loadbuf[2] & (FSCALE-1)) * 100) >> FSHIFT;

1324 lxpr_uiobuf_printf(uiobuf,
1325 "%ld.%02d %ld.%02d %ld.%02d %d/%d %d\n",
1326 avenrun1, avenrun1_cs,
1327 avenrun5, avenrun5_cs,
1328 avenrun15, avenrun15_cs,
1329 nrunnable, nlwps, 0);
1330 }

1332 /*
1333 * lxpr_read_meminfo(): read the contents of the "meminfo" file.
1334 */
1335 static void
1336 lxpr_read_meminfo(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1337 {
1338 long total_mem = physmem * PAGESIZE;
1339 long free_mem = freemem * PAGESIZE;
1340 long total_swap = k_anoninfo.ani_max * PAGESIZE;
1341 long used_swap = k_anoninfo.ani_phys_resv * PAGESIZE;

1343 ASSERT(lxpnp->lxpr_type == LXPR_MEMINFO);

1345 lxpr_uiobuf_printf(uiobuf,
1346 " total: used: free: shared: buffers: cached:\n"
1347 "Mem: %8lu %8lu %8lu %8u %8u %8u\n"
1348 "Swap: %8lu %8lu %8lu\n"
1349 "MemTotal: %8lu kB\n"
1350 "MemFree: %8lu kB\n"
1351 "MemShared: %8u kB\n"
1352 "Buffers: %8u kB\n"
1353 "Cached: %8u kB\n"
1354 "SwapCached:%8u kB\n"
1355 "Active: %8u kB\n"
1356 "Inactive: %8u kB\n"
1357 "HighTotal: %8u kB\n"
1358 "HighFree: %8u kB\n"
1359 "LowTotal: %8u kB\n"
1360 "LowFree: %8u kB\n"
1361 "SwapTotal: %8lu kB\n"
1362 "SwapFree: %8lu kB\n",
1363 total_mem, total_mem - free_mem, free_mem, 0, 0, 0,
1364 total_swap, used_swap, total_swap - used_swap,
1365 btok(total_mem), /* MemTotal */
1366 btok(free_mem), /* MemFree */
1367 0, /* MemShared */
1368 0, /* Buffers */
1369 0, /* Cached */
1370 0, /* SwapCached */
1371 0, /* Active */
1372 0, /* Inactive */
1373 0, /* HighTotal */
1374 0, /* HighFree */
1375 btok(total_mem), /* LowTotal */
1376 btok(free_mem), /* LowFree */
1377 btok(total_swap), /* SwapTotal */
1378 btok(total_swap - used_swap)); /* SwapFree */
1379 }

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 22

1381 /*
1382 * lxpr_read_mounts():
1383 */
1384 /* ARGSUSED */
1385 static void
1386 lxpr_read_mounts(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1387 {
1388 struct vfs *vfsp;
1389 struct vfs *vfslist;
1390 zone_t *zone = LXPTOZ(lxpnp);
1391 struct print_data {
1392 refstr_t *vfs_mntpt;
1393 refstr_t *vfs_resource;
1394 uint_t vfs_flag;
1395 int vfs_fstype;
1396 struct print_data *next;
1397 } *print_head = NULL;
1398 struct print_data **print_tail = &print_head;
1399 struct print_data *printp;

1401 vfs_list_read_lock();

1403 if (zone == global_zone) {
1404 vfsp = vfslist = rootvfs;
1405 } else {
1406 vfsp = vfslist = zone->zone_vfslist;
1407 /*
1408 * If the zone has a root entry, it will be the first in
1409 * the list. If it doesn’t, we conjure one up.
1410 */
1411 if (vfslist == NULL ||
1412 strcmp(refstr_value(vfsp->vfs_mntpt),
1413 zone->zone_rootpath) != 0) {
1414 struct vfs *tvfsp;
1415 /*
1416 * The root of the zone is not a mount point. The vfs
1417 * we want to report is that of the zone’s root vnode.
1418 */
1419 tvfsp = zone->zone_rootvp->v_vfsp;

1421 lxpr_uiobuf_printf(uiobuf,
1422 "/ / %s %s 0 0\n",
1423 vfssw[tvfsp->vfs_fstype].vsw_name,
1424 tvfsp->vfs_flag & VFS_RDONLY ? "ro" : "rw");

1426 }
1427 if (vfslist == NULL) {
1428 vfs_list_unlock();
1429 return;
1430 }
1431 }

1433 /*
1434 * Later on we have to do a lookupname, which can end up causing
1435 * another vfs_list_read_lock() to be called. Which can lead to a
1436 * deadlock. To avoid this, we extract the data we need into a local
1437 * list, then we can run this list without holding vfs_list_read_lock()
1438 * We keep the list in the same order as the vfs_list
1439 */
1440 do {
1441 /* Skip mounts we shouldn’t show */
1442 if (vfsp->vfs_flag & VFS_NOMNTTAB) {
1443 goto nextfs;
1444 }

1446 printp = kmem_alloc(sizeof (*printp), KM_SLEEP);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 23

1447 refstr_hold(vfsp->vfs_mntpt);
1448 printp->vfs_mntpt = vfsp->vfs_mntpt;
1449 refstr_hold(vfsp->vfs_resource);
1450 printp->vfs_resource = vfsp->vfs_resource;
1451 printp->vfs_flag = vfsp->vfs_flag;
1452 printp->vfs_fstype = vfsp->vfs_fstype;
1453 printp->next = NULL;

1455 *print_tail = printp;
1456 print_tail = &printp->next;

1458 nextfs:
1459 vfsp = (zone == global_zone) ?
1460 vfsp->vfs_next : vfsp->vfs_zone_next;

1462 } while (vfsp != vfslist);

1464 vfs_list_unlock();

1466 /*
1467 * now we can run through what we’ve extracted without holding
1468 * vfs_list_read_lock()
1469 */
1470 printp = print_head;
1471 while (printp != NULL) {
1472 struct print_data *printp_next;
1473 const char *resource;
1474 char *mntpt;
1475 struct vnode *vp;
1476 int error;

1478 mntpt = (char *)refstr_value(printp->vfs_mntpt);
1479 resource = refstr_value(printp->vfs_resource);

1481 if (mntpt != NULL && mntpt[0] != ’\0’)
1482 mntpt = ZONE_PATH_TRANSLATE(mntpt, zone);
1483 else
1484 mntpt = "-";

1486 error = lookupname(mntpt, UIO_SYSSPACE, FOLLOW, NULLVPP, &vp);

1488 if (error != 0)
1489 goto nextp;

1491 if (!(vp->v_flag & VROOT)) {
1492 VN_RELE(vp);
1493 goto nextp;
1494 }
1495 VN_RELE(vp);

1497 if (resource != NULL && resource[0] != ’\0’) {
1498 if (resource[0] == ’/’) {
1499 resource = ZONE_PATH_VISIBLE(resource, zone) ?
1500 ZONE_PATH_TRANSLATE(resource, zone) :
1501 mntpt;
1502 }
1503 } else {
1504 resource = "-";
1505 }

1507 lxpr_uiobuf_printf(uiobuf,
1508 "%s %s %s %s 0 0\n",
1509 resource, mntpt, vfssw[printp->vfs_fstype].vsw_name,
1510 printp->vfs_flag & VFS_RDONLY ? "ro" : "rw");

1512 nextp:

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 24

1513 printp_next = printp->next;
1514 refstr_rele(printp->vfs_mntpt);
1515 refstr_rele(printp->vfs_resource);
1516 kmem_free(printp, sizeof (*printp));
1517 printp = printp_next;

1519 }
1520 }

1522 /*
1523 * lxpr_read_partitions():
1524 *
1525 * We don’t support partitions in a local zone because it requires access to
1526 * physical devices. But we need to fake up enough of the file to show that we
1527 * have no partitions.
1528 */
1529 /* ARGSUSED */
1530 static void
1531 lxpr_read_partitions(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1532 {
1533 lxpr_uiobuf_printf(uiobuf,
1534 "major minor #blocks name rio rmerge rsect ruse "
1535 "wio wmerge wsect wuse running use aveq\n\n");
1536 }

1538 /*
1539 * lxpr_read_version(): read the contents of the "version" file.
1540 */
1541 /* ARGSUSED */
1542 static void
1543 lxpr_read_version(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1544 {
1545 char *vers;
1546 if (lx_get_zone_kern_version(LXPTOZ(lxpnp)) <= LX_KERN_2_4)
1547 vers = LX_UNAME_RELEASE_2_4;
1548 else
1549 vers = LX_UNAME_RELEASE_2_6;

1551 lxpr_uiobuf_printf(uiobuf,
1552 "%s version %s (%s version %d.%d.%d) "
1553 "#%s SMP %s\n",
1554 LX_UNAME_SYSNAME, vers,
1555 #if defined(__GNUC__)
1556 "gcc",
1557 __GNUC__,
1558 __GNUC_MINOR__,
1559 __GNUC_PATCHLEVEL__,
1560 #else
1561 "Sun C",
1562 __SUNPRO_C / 0x100,
1563 (__SUNPRO_C & 0xff) / 0x10,
1564 __SUNPRO_C & 0xf,
1565 #endif
1566 LX_UNAME_VERSION,
1567 "00:00:00 00/00/00");
1568 }

1571 /*
1572 * lxpr_read_stat(): read the contents of the "stat" file.
1573 *
1574 */
1575 /* ARGSUSED */

1577 static void
1578 lxpr_read_stat(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 25

1579 {
1580 cpu_t *cp, *cpstart;
1581 int pools_enabled;
1582 ulong_t idle_cum = 0;
1583 ulong_t sys_cum = 0;
1584 ulong_t user_cum = 0;
1585 ulong_t irq_cum = 0;
1586 uint_t cpu_nrunnable_cum = 0;
1587 uint_t w_io_cum = 0;

1589 ulong_t pgpgin_cum = 0;
1590 ulong_t pgpgout_cum = 0;
1591 ulong_t pgswapout_cum = 0;
1592 ulong_t pgswapin_cum = 0;
1593 ulong_t intr_cum = 0;
1594 ulong_t pswitch_cum = 0;
1595 ulong_t forks_cum = 0;
1596 hrtime_t msnsecs[NCMSTATES];
1597 int lx_kern_version = lx_get_zone_kern_version(LXPTOZ(lxpnp));
1598 /* temporary variable since scalehrtime modifies data in place */
1599 hrtime_t tmptime;

1601 ASSERT(lxpnp->lxpr_type == LXPR_STAT);

1603 mutex_enter(&cpu_lock);
1604 pools_enabled = pool_pset_enabled();

1606 /* Calculate cumulative stats */
1607 cp = cpstart = CPU;
1608 do {
1609 int i;

1611 /*
1612 * Don’t count CPUs that aren’t even in the system
1613 * or aren’t up yet.
1614 */
1615 if ((cp->cpu_flags & CPU_EXISTS) == 0) {
1616 continue;
1617 }

1619 get_cpu_mstate(cp, msnsecs);

1621 idle_cum += NSEC_TO_TICK(msnsecs[CMS_IDLE]);
1622 sys_cum += NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
1623 user_cum += NSEC_TO_TICK(msnsecs[CMS_USER]);

1625 pgpgin_cum += CPU_STATS(cp, vm.pgpgin);
1626 pgpgout_cum += CPU_STATS(cp, vm.pgpgout);
1627 pgswapin_cum += CPU_STATS(cp, vm.pgswapin);
1628 pgswapout_cum += CPU_STATS(cp, vm.pgswapout);

1630 if (lx_kern_version >= LX_KERN_2_6) {
1631 cpu_nrunnable_cum += cp->cpu_disp->disp_nrunnable;
1632 w_io_cum += CPU_STATS(cp, sys.iowait);
1633 for (i = 0; i < NCMSTATES; i++) {
1634 tmptime = cp->cpu_intracct[i];
1635 scalehrtime(&tmptime);
1636 irq_cum += NSEC_TO_TICK(tmptime);
1637 }
1638 }

1640 for (i = 0; i < PIL_MAX; i++)
1641 intr_cum += CPU_STATS(cp, sys.intr[i]);

1643 pswitch_cum += CPU_STATS(cp, sys.pswitch);
1644 forks_cum += CPU_STATS(cp, sys.sysfork);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 26

1645 forks_cum += CPU_STATS(cp, sys.sysvfork);

1647 if (pools_enabled)
1648 cp = cp->cpu_next_part;
1649 else
1650 cp = cp->cpu_next;
1651 } while (cp != cpstart);

1653 if (lx_kern_version >= LX_KERN_2_6) {
1654 lxpr_uiobuf_printf(uiobuf,
1655 "cpu %ld %ld %ld %ld %ld %ld %ld\n",
1656 user_cum, 0, sys_cum, idle_cum, 0, irq_cum, 0);
1657 } else {
1658 lxpr_uiobuf_printf(uiobuf,
1659 "cpu %ld %ld %ld %ld\n",
1660 user_cum, 0, sys_cum, idle_cum);
1661 }

1663 /* Do per processor stats */
1664 do {
1665 int i;

1667 ulong_t idle_ticks;
1668 ulong_t sys_ticks;
1669 ulong_t user_ticks;
1670 ulong_t irq_ticks = 0;

1672 /*
1673 * Don’t count CPUs that aren’t even in the system
1674 * or aren’t up yet.
1675 */
1676 if ((cp->cpu_flags & CPU_EXISTS) == 0) {
1677 continue;
1678 }

1680 get_cpu_mstate(cp, msnsecs);

1682 idle_ticks = NSEC_TO_TICK(msnsecs[CMS_IDLE]);
1683 sys_ticks = NSEC_TO_TICK(msnsecs[CMS_SYSTEM]);
1684 user_ticks = NSEC_TO_TICK(msnsecs[CMS_USER]);

1686 if (lx_kern_version >= LX_KERN_2_6) {
1687 for (i = 0; i < NCMSTATES; i++) {
1688 tmptime = cp->cpu_intracct[i];
1689 scalehrtime(&tmptime);
1690 irq_ticks += NSEC_TO_TICK(tmptime);
1691 }

1693 lxpr_uiobuf_printf(uiobuf,
1694 "cpu%d %ld %ld %ld %ld %ld %ld %ld\n",
1695 cp->cpu_id, user_ticks, 0, sys_ticks, idle_ticks,
1696 0, irq_ticks, 0);
1697 } else {
1698 lxpr_uiobuf_printf(uiobuf,
1699 "cpu%d %ld %ld %ld %ld\n",
1700 cp->cpu_id,
1701 user_ticks, 0, sys_ticks, idle_ticks);
1702 }

1704 if (pools_enabled)
1705 cp = cp->cpu_next_part;
1706 else
1707 cp = cp->cpu_next;
1708 } while (cp != cpstart);

1710 mutex_exit(&cpu_lock);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 27

1712 if (lx_kern_version >= LX_KERN_2_6) {
1713 lxpr_uiobuf_printf(uiobuf,
1714 "page %lu %lu\n"
1715 "swap %lu %lu\n"
1716 "intr %lu\n"
1717 "ctxt %lu\n"
1718 "btime %lu\n"
1719 "processes %lu\n"
1720 "procs_running %lu\n"
1721 "procs_blocked %lu\n",
1722 pgpgin_cum, pgpgout_cum,
1723 pgswapin_cum, pgswapout_cum,
1724 intr_cum,
1725 pswitch_cum,
1726 boot_time,
1727 forks_cum,
1728 cpu_nrunnable_cum,
1729 w_io_cum);
1730 } else {
1731 lxpr_uiobuf_printf(uiobuf,
1732 "page %lu %lu\n"
1733 "swap %lu %lu\n"
1734 "intr %lu\n"
1735 "ctxt %lu\n"
1736 "btime %lu\n"
1737 "processes %lu\n",
1738 pgpgin_cum, pgpgout_cum,
1739 pgswapin_cum, pgswapout_cum,
1740 intr_cum,
1741 pswitch_cum,
1742 boot_time,
1743 forks_cum);
1744 }
1745 }

1748 /*
1749 * lxpr_read_uptime(): read the contents of the "uptime" file.
1750 *
1751 * format is: "%.2lf, %.2lf",uptime_secs, idle_secs
1752 * Use fixed point arithmetic to get 2 decimal places
1753 */
1754 /* ARGSUSED */
1755 static void
1756 lxpr_read_uptime(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1757 {
1758 cpu_t *cp, *cpstart;
1759 int pools_enabled;
1760 ulong_t idle_cum = 0;
1761 ulong_t cpu_count = 0;
1762 ulong_t idle_s;
1763 ulong_t idle_cs;
1764 ulong_t up_s;
1765 ulong_t up_cs;
1766 hrtime_t birthtime;
1767 hrtime_t centi_sec = 10000000; /* 10^7 */

1769 ASSERT(lxpnp->lxpr_type == LXPR_UPTIME);

1771 /* Calculate cumulative stats */
1772 mutex_enter(&cpu_lock);
1773 pools_enabled = pool_pset_enabled();

1775 cp = cpstart = CPU;
1776 do {

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 28

1777 /*
1778 * Don’t count CPUs that aren’t even in the system
1779 * or aren’t up yet.
1780 */
1781 if ((cp->cpu_flags & CPU_EXISTS) == 0) {
1782 continue;
1783 }

1785 idle_cum += CPU_STATS(cp, sys.cpu_ticks_idle);
1786 idle_cum += CPU_STATS(cp, sys.cpu_ticks_wait);
1787 cpu_count += 1;

1789 if (pools_enabled)
1790 cp = cp->cpu_next_part;
1791 else
1792 cp = cp->cpu_next;
1793 } while (cp != cpstart);
1794 mutex_exit(&cpu_lock);

1796 /* Getting the Zone zsched process startup time */
1797 birthtime = LXPTOZ(lxpnp)->zone_zsched->p_mstart;
1798 up_cs = (gethrtime() - birthtime) / centi_sec;
1799 up_s = up_cs / 100;
1800 up_cs %= 100;

1802 ASSERT(cpu_count > 0);
1803 idle_cum /= cpu_count;
1804 idle_s = idle_cum / hz;
1805 idle_cs = idle_cum % hz;
1806 idle_cs *= 100;
1807 idle_cs /= hz;

1809 lxpr_uiobuf_printf(uiobuf,
1810 "%ld.%02d %ld.%02d\n", up_s, up_cs, idle_s, idle_cs);
1811 }

1813 static const char *amd_x_edx[] = {
1814 NULL, NULL, NULL, NULL,
1815 NULL, NULL, NULL, NULL,
1816 NULL, NULL, NULL, "syscall",
1817 NULL, NULL, NULL, NULL,
1818 NULL, NULL, NULL, "mp",
1819 "nx", NULL, "mmxext", NULL,
1820 NULL, NULL, NULL, NULL,
1821 NULL, "lm", "3dnowext", "3dnow"
1822 };

1824 static const char *amd_x_ecx[] = {
1825 "lahf_lm", NULL, "svm", NULL,
1826 "altmovcr8"
1827 };

1829 static const char *tm_x_edx[] = {
1830 "recovery", "longrun", NULL, "lrti"
1831 };

1833 /*
1834 * Intel calls no-execute "xd" in its docs, but Linux still reports it as "nx."
1835 */
1836 static const char *intc_x_edx[] = {
1837 NULL, NULL, NULL, NULL,
1838 NULL, NULL, NULL, NULL,
1839 NULL, NULL, NULL, "syscall",
1840 NULL, NULL, NULL, NULL,
1841 NULL, NULL, NULL, NULL,
1842 "nx", NULL, NULL, NULL,

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 29

1843 NULL, NULL, NULL, NULL,
1844 NULL, "lm", NULL, NULL
1845 };

1847 static const char *intc_edx[] = {
1848 "fpu", "vme", "de", "pse",
1849 "tsc", "msr", "pae", "mce",
1850 "cx8", "apic", NULL, "sep",
1851 "mtrr", "pge", "mca", "cmov",
1852 "pat", "pse36", "pn", "clflush",
1853 NULL, "dts", "acpi", "mmx",
1854 "fxsr", "sse", "sse2", "ss",
1855 "ht", "tm", "ia64", "pbe"
1856 };

1858 /*
1859 * "sse3" on linux is called "pni" (Prescott New Instructions).
1860 */
1861 static const char *intc_ecx[] = {
1862 "pni", NULL, NULL, "monitor",
1863 "ds_cpl", NULL, NULL, "est",
1864 "tm2", NULL, "cid", NULL,
1865 NULL, "cx16", "xtpr"
1866 };

1868 static void
1869 lxpr_read_cpuinfo(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
1870 {
1871 int i;
1872 uint32_t bits;
1873 cpu_t *cp, *cpstart;
1874 int pools_enabled;
1875 const char **fp;
1876 char brandstr[CPU_IDSTRLEN];
1877 struct cpuid_regs cpr;
1878 int maxeax;
1879 int std_ecx, std_edx, ext_ecx, ext_edx;

1881 ASSERT(lxpnp->lxpr_type == LXPR_CPUINFO);

1883 mutex_enter(&cpu_lock);
1884 pools_enabled = pool_pset_enabled();

1886 cp = cpstart = CPU;
1887 do {
1888 /*
1889 * This returns the maximum eax value for standard cpuid
1890 * functions in eax.
1891 */
1892 cpr.cp_eax = 0;
1893 (void) cpuid_insn(cp, &cpr);
1894 maxeax = cpr.cp_eax;

1896 /*
1897 * Get standard x86 feature flags.
1898 */
1899 cpr.cp_eax = 1;
1900 (void) cpuid_insn(cp, &cpr);
1901 std_ecx = cpr.cp_ecx;
1902 std_edx = cpr.cp_edx;

1904 /*
1905 * Now get extended feature flags.
1906 */
1907 cpr.cp_eax = 0x80000001;
1908 (void) cpuid_insn(cp, &cpr);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 30

1909 ext_ecx = cpr.cp_ecx;
1910 ext_edx = cpr.cp_edx;

1912 (void) cpuid_getbrandstr(cp, brandstr, CPU_IDSTRLEN);

1914 lxpr_uiobuf_printf(uiobuf,
1915 "processor\t: %d\n"
1916 "vendor_id\t: %s\n"
1917 "cpu family\t: %d\n"
1918 "model\t\t: %d\n"
1919 "model name\t: %s\n"
1920 "stepping\t: %d\n"
1921 "cpu MHz\t\t: %u.%03u\n",
1922 cp->cpu_id, cpuid_getvendorstr(cp), cpuid_getfamily(cp),
1923 cpuid_getmodel(cp), brandstr, cpuid_getstep(cp),
1924 (uint32_t)(cpu_freq_hz / 1000000),
1925 ((uint32_t)(cpu_freq_hz / 1000)) % 1000);

1927 lxpr_uiobuf_printf(uiobuf, "cache size\t: %u KB\n",
1928 getl2cacheinfo(cp, NULL, NULL, NULL) / 1024);

1930 /* if (x86_feature & X86_HTT) { */
1931 /*
1932 * ’siblings’ is used for HT-style threads
1933 */
1934 /* lxpr_uiobuf_printf(uiobuf,
1935 "physical id\t: %lu\n"
1936 "siblings\t: %u\n",
1937 pg_plat_hw_instance_id(cp, PGHW_CHIP),
1938 cpuid_get_ncpu_per_chip(cp));
1939 }
1940 */
1941 /*
1942 * Since we’re relatively picky about running on older hardware,
1943 * we can be somewhat cavalier about the answers to these ones.
1944 *
1945 * In fact, given the hardware we support, we just say:
1946 *
1947 * fdiv_bug : no (if we’re on a 64-bit kernel)
1948 * hlt_bug : no
1949 * f00f_bug : no
1950 * coma_bug : no
1951 * wp : yes (write protect in supervsr mode)
1952 */
1953 lxpr_uiobuf_printf(uiobuf,
1954 "fdiv_bug\t: %s\n"
1955 "hlt_bug \t: no\n"
1956 "f00f_bug\t: no\n"
1957 "coma_bug\t: no\n"
1958 "fpu\t\t: %s\n"
1959 "fpu_exception\t: %s\n"
1960 "cpuid level\t: %d\n"
1961 "flags\t\t:",
1962 #if defined(__i386)
1963 fpu_pentium_fdivbug ? "yes" : "no",
1964 #else
1965 "no",
1966 #endif /* __i386 */
1967 fpu_exists ? "yes" : "no", fpu_exists ? "yes" : "no",
1968 maxeax);

1970 for (bits = std_edx, fp = intc_edx, i = 0;
1971 i < sizeof (intc_edx) / sizeof (intc_edx[0]); fp++, i++)
1972 if ((bits & (1 << i)) != 0 && *fp)
1973 lxpr_uiobuf_printf(uiobuf, " %s", *fp);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 31

1975 /*
1976 * name additional features where appropriate
1977 */
1978 switch (x86_vendor) {
1979 case X86_VENDOR_Intel:
1980 for (bits = ext_edx, fp = intc_x_edx, i = 0;
1981 i < sizeof (intc_x_edx) / sizeof (intc_x_edx[0]);
1982 fp++, i++)
1983 if ((bits & (1 << i)) != 0 && *fp)
1984 lxpr_uiobuf_printf(uiobuf, " %s", *fp);
1985 break;

1987 case X86_VENDOR_AMD:
1988 for (bits = ext_edx, fp = amd_x_edx, i = 0;
1989 i < sizeof (amd_x_edx) / sizeof (amd_x_edx[0]);
1990 fp++, i++)
1991 if ((bits & (1 << i)) != 0 && *fp)
1992 lxpr_uiobuf_printf(uiobuf, " %s", *fp);

1994 for (bits = ext_ecx, fp = amd_x_ecx, i = 0;
1995 i < sizeof (amd_x_ecx) / sizeof (amd_x_ecx[0]);
1996 fp++, i++)
1997 if ((bits & (1 << i)) != 0 && *fp)
1998 lxpr_uiobuf_printf(uiobuf, " %s", *fp);
1999 break;

2001 case X86_VENDOR_TM:
2002 for (bits = ext_edx, fp = tm_x_edx, i = 0;
2003 i < sizeof (tm_x_edx) / sizeof (tm_x_edx[0]);
2004 fp++, i++)
2005 if ((bits & (1 << i)) != 0 && *fp)
2006 lxpr_uiobuf_printf(uiobuf, " %s", *fp);
2007 break;
2008 default:
2009 break;
2010 }

2012 for (bits = std_ecx, fp = intc_ecx, i = 0;
2013 i < sizeof (intc_ecx) / sizeof (intc_ecx[0]); fp++, i++)
2014 if ((bits & (1 << i)) != 0 && *fp)
2015 lxpr_uiobuf_printf(uiobuf, " %s", *fp);

2017 lxpr_uiobuf_printf(uiobuf, "\n\n");

2019 if (pools_enabled)
2020 cp = cp->cpu_next_part;
2021 else
2022 cp = cp->cpu_next;
2023 } while (cp != cpstart);

2025 mutex_exit(&cpu_lock);
2026 }

2028 /* ARGSUSED */
2029 static void
2030 lxpr_read_fd(lxpr_node_t *lxpnp, lxpr_uiobuf_t *uiobuf)
2031 {
2032 ASSERT(lxpnp->lxpr_type == LXPR_PID_FD_FD);
2033 lxpr_uiobuf_seterr(uiobuf, EFAULT);
2034 }

2038 /*
2039 * lxpr_getattr(): Vnode operation for VOP_GETATTR()
2040 */

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 32

2041 static int
2042 lxpr_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2043 caller_context_t *ct)
2044 {
2045 register lxpr_node_t *lxpnp = VTOLXP(vp);
2046 lxpr_nodetype_t type = lxpnp->lxpr_type;
2047 extern uint_t nproc;
2048 int error;

2050 /*
2051 * Return attributes of underlying vnode if ATTR_REAL
2052 *
2053 * but keep fd files with the symlink permissions
2054 */
2055 if (lxpnp->lxpr_realvp != NULL && (flags & ATTR_REAL)) {
2056 vnode_t *rvp = lxpnp->lxpr_realvp;

2058 /*
2059 * withold attribute information to owner or root
2060 */
2061 if ((error = VOP_ACCESS(rvp, 0, 0, cr, ct)) != 0) {
2062 return (error);
2063 }

2065 /*
2066 * now its attributes
2067 */
2068 if ((error = VOP_GETATTR(rvp, vap, flags, cr, ct)) != 0) {
2069 return (error);
2070 }

2072 /*
2073 * if it’s a file in lx /proc/pid/fd/xx then set its
2074 * mode and keep it looking like a symlink
2075 */
2076 if (type == LXPR_PID_FD_FD) {
2077 vap->va_mode = lxpnp->lxpr_mode;
2078 vap->va_type = vp->v_type;
2079 vap->va_size = 0;
2080 vap->va_nlink = 1;
2081 }
2082 return (0);
2083 }

2085 /* Default attributes, that may be overridden below */
2086 bzero(vap, sizeof (*vap));
2087 vap->va_atime = vap->va_mtime = vap->va_ctime = lxpnp->lxpr_time;
2088 vap->va_nlink = 1;
2089 vap->va_type = vp->v_type;
2090 vap->va_mode = lxpnp->lxpr_mode;
2091 vap->va_fsid = vp->v_vfsp->vfs_dev;
2092 vap->va_blksize = DEV_BSIZE;
2093 vap->va_uid = lxpnp->lxpr_uid;
2094 vap->va_gid = lxpnp->lxpr_gid;
2095 vap->va_nodeid = lxpnp->lxpr_ino;

2097 switch (type) {
2098 case LXPR_PROCDIR:
2099 vap->va_nlink = nproc + 2 + PROCDIRFILES;
2100 vap->va_size = (nproc + 2 + PROCDIRFILES) * LXPR_SDSIZE;
2101 break;
2102 case LXPR_PIDDIR:
2103 vap->va_nlink = PIDDIRFILES;
2104 vap->va_size = PIDDIRFILES * LXPR_SDSIZE;
2105 break;
2106 case LXPR_SELF:

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 33

2107 vap->va_uid = crgetruid(curproc->p_cred);
2108 vap->va_gid = crgetrgid(curproc->p_cred);
2109 break;
2110 default:
2111 break;
2112 }

2114 vap->va_nblocks = (fsblkcnt64_t)btod(vap->va_size);
2115 return (0);
2116 }

2119 /*
2120 * lxpr_access(): Vnode operation for VOP_ACCESS()
2121 */
2122 static int
2123 lxpr_access(vnode_t *vp, int mode, int flags, cred_t *cr, caller_context_t *ct)
2124 {
2125 lxpr_node_t *lxpnp = VTOLXP(vp);
2126 int shift = 0;
2127 proc_t *tp;

2129 /* lx /proc is a read only file system */
2130 if (mode & VWRITE)
2131 return (EROFS);

2133 /*
2134 * If this is a restricted file, check access permissions.
2135 */
2136 switch (lxpnp->lxpr_type) {
2137 case LXPR_PIDDIR:
2138 return (0);
2139 case LXPR_PID_CURDIR:
2140 case LXPR_PID_ENV:
2141 case LXPR_PID_EXE:
2142 case LXPR_PID_MAPS:
2143 case LXPR_PID_MEM:
2144 case LXPR_PID_ROOTDIR:
2145 case LXPR_PID_FDDIR:
2146 case LXPR_PID_FD_FD:
2147 if ((tp = lxpr_lock(lxpnp->lxpr_pid)) == NULL)
2148 return (ENOENT);
2149 if (tp != curproc && secpolicy_proc_access(cr) != 0 &&
2150 priv_proc_cred_perm(cr, tp, NULL, mode) != 0) {
2151 lxpr_unlock(tp);
2152 return (EACCES);
2153 }
2154 lxpr_unlock(tp);
2155 default:
2156 break;
2157 }

2159 if (lxpnp->lxpr_realvp != NULL) {
2160 /*
2161 * For these we use the underlying vnode’s accessibility.
2162 */
2163 return (VOP_ACCESS(lxpnp->lxpr_realvp, mode, flags, cr, ct));
2164 }

2166 /* If user is root allow access regardless of permission bits */
2167 if (secpolicy_proc_access(cr) == 0)
2168 return (0);

2170 /*
2171 * Access check is based on only
2172 * one of owner, group, public.

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 34

2173 * If not owner, then check group.
2174 * If not a member of the group, then
2175 * check public access.
2176 */
2177 if (crgetuid(cr) != lxpnp->lxpr_uid) {
2178 shift += 3;
2179 if (!groupmember((uid_t)lxpnp->lxpr_gid, cr))
2180 shift += 3;
2181 }

2183 mode &= ~(lxpnp->lxpr_mode << shift);

2185 if (mode == 0)
2186 return (0);

2188 return (EACCES);
2189 }

2194 /* ARGSUSED */
2195 static vnode_t *
2196 lxpr_lookup_not_a_dir(vnode_t *dp, char *comp)
2197 {
2198 return (NULL);
2199 }

2202 /*
2203 * lxpr_lookup(): Vnode operation for VOP_LOOKUP()
2204 */
2205 /* ARGSUSED */
2206 static int
2207 lxpr_lookup(vnode_t *dp, char *comp, vnode_t **vpp, pathname_t *pathp,
2208 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct,
2209 int *direntflags, pathname_t *realpnp)
2210 {
2211 lxpr_node_t *lxpnp = VTOLXP(dp);
2212 lxpr_nodetype_t type = lxpnp->lxpr_type;
2213 int error;

2215 ASSERT(dp->v_type == VDIR);
2216 ASSERT(type < LXPR_NFILES);

2218 /*
2219 * we should never get here because the lookup
2220 * is done on the realvp for these nodes
2221 */
2222 ASSERT(type != LXPR_PID_FD_FD &&
2223 type != LXPR_PID_CURDIR &&
2224 type != LXPR_PID_ROOTDIR);

2226 /*
2227 * restrict lookup permission to owner or root
2228 */
2229 if ((error = lxpr_access(dp, VEXEC, 0, cr, ct)) != 0) {
2230 return (error);
2231 }

2233 /*
2234 * Just return the parent vnode
2235 * if thats where we are trying to go
2236 */
2237 if (strcmp(comp, "..") == 0) {
2238 VN_HOLD(lxpnp->lxpr_parent);

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 35

2239 *vpp = lxpnp->lxpr_parent;
2240 return (0);
2241 }

2243 /*
2244 * Special handling for directory searches
2245 * Note: null component name is synonym for
2246 * current directory being searched.
2247 */
2248 if ((dp->v_type == VDIR) && (*comp == ’\0’ || strcmp(comp, ".") == 0)) {
2249 VN_HOLD(dp);
2250 *vpp = dp;
2251 return (0);
2252 }

2254 *vpp = (lxpr_lookup_function[type](dp, comp));
2255 return ((*vpp == NULL) ? ENOENT : 0);
2256 }

2258 /*
2259 * Do a sequential search on the given directory table
2260 */
2261 static vnode_t *
2262 lxpr_lookup_common(vnode_t *dp, char *comp, proc_t *p,
2263 lxpr_dirent_t *dirtab, int dirtablen)
2264 {
2265 lxpr_node_t *lxpnp;
2266 int count;

2268 for (count = 0; count < dirtablen; count++) {
2269 if (strcmp(dirtab[count].d_name, comp) == 0) {
2270 lxpnp = lxpr_getnode(dp, dirtab[count].d_type, p, 0);
2271 dp = LXPTOV(lxpnp);
2272 ASSERT(dp != NULL);
2273 return (dp);
2274 }
2275 }
2276 return (NULL);
2277 }

2280 static vnode_t *
2281 lxpr_lookup_piddir(vnode_t *dp, char *comp)
2282 {
2283 proc_t *p;

2285 ASSERT(VTOLXP(dp)->lxpr_type == LXPR_PIDDIR);

2287 p = lxpr_lock(VTOLXP(dp)->lxpr_pid);
2288 if (p == NULL)
2289 return (NULL);

2291 dp = lxpr_lookup_common(dp, comp, p, piddir, PIDDIRFILES);

2293 lxpr_unlock(p);

2295 return (dp);
2296 }

2299 /*
2300 * Lookup one of the process’s open files.
2301 */
2302 static vnode_t *
2303 lxpr_lookup_fddir(vnode_t *dp, char *comp)
2304 {

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 36

2305 lxpr_node_t *dlxpnp = VTOLXP(dp);
2306 lxpr_node_t *lxpnp;
2307 vnode_t *vp = NULL;
2308 proc_t *p;
2309 file_t *fp;
2310 uint_t fd;
2311 int c;
2312 uf_entry_t *ufp;
2313 uf_info_t *fip;

2315 ASSERT(dlxpnp->lxpr_type == LXPR_PID_FDDIR);

2317 /*
2318 * convert the string rendition of the filename
2319 * to a file descriptor
2320 */
2321 fd = 0;
2322 while ((c = *comp++) != ’\0’) {
2323 int ofd;
2324 if (c < ’0’ || c > ’9’)
2325 return (NULL);

2327 ofd = fd;
2328 fd = 10*fd + c - ’0’;
2329 /* integer overflow */
2330 if (fd / 10 != ofd)
2331 return (NULL);
2332 }

2334 /*
2335 * get the proc to work with and lock it
2336 */
2337 p = lxpr_lock(dlxpnp->lxpr_pid);
2338 if ((p == NULL))
2339 return (NULL);

2341 /*
2342 * If the process is a zombie or system process
2343 * it can’t have any open files.
2344 */
2345 if ((p->p_stat == SZOMB) || (p->p_flag & SSYS) || (p->p_as == &kas)) {
2346 lxpr_unlock(p);
2347 return (NULL);
2348 }

2350 /*
2351 * get us a fresh node/vnode
2352 */
2353 lxpnp = lxpr_getnode(dp, LXPR_PID_FD_FD, p, fd);

2355 /*
2356 * get open file info
2357 */
2358 fip = (&(p)->p_user.u_finfo);
2359 mutex_enter(&fip->fi_lock);

2361 /*
2362 * got the fd data so now done with this proc
2363 */
2364 lxpr_unlock(p);

2366 if (fd < fip->fi_nfiles) {
2367 UF_ENTER(ufp, fip, fd);
2368 /*
2369 * ensure the fd is still kosher.
2370 * it may have gone between the readdir and

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 37

2371 * the lookup
2372 */
2373 if (fip->fi_list[fd].uf_file == NULL) {
2374 mutex_exit(&fip->fi_lock);
2375 UF_EXIT(ufp);
2376 lxpr_freenode(lxpnp);
2377 return (NULL);
2378 }

2380 if ((fp = ufp->uf_file) != NULL)
2381 vp = fp->f_vnode;
2382 UF_EXIT(ufp);
2383 }
2384 mutex_exit(&fip->fi_lock);

2386 if (vp == NULL) {
2387 lxpr_freenode(lxpnp);
2388 return (NULL);
2389 } else {
2390 /*
2391 * Fill in the lxpr_node so future references will
2392 * be able to find the underlying vnode.
2393 * The vnode is held on the realvp.
2394 */
2395 lxpnp->lxpr_realvp = vp;
2396 VN_HOLD(lxpnp->lxpr_realvp);
2397 }

2399 dp = LXPTOV(lxpnp);
2400 ASSERT(dp != NULL);

2402 return (dp);
2403 }

2406 static vnode_t *
2407 lxpr_lookup_netdir(vnode_t *dp, char *comp)
2408 {
2409 ASSERT(VTOLXP(dp)->lxpr_type == LXPR_NETDIR);

2411 dp = lxpr_lookup_common(dp, comp, NULL, netdir, NETDIRFILES);

2413 return (dp);
2414 }

2417 static vnode_t *
2418 lxpr_lookup_procdir(vnode_t *dp, char *comp)
2419 {
2420 ASSERT(VTOLXP(dp)->lxpr_type == LXPR_PROCDIR);

2422 /*
2423 * We know all the names of files & dirs in our
2424 * file system structure except those that are pid names.
2425 * These change as pids are created/deleted etc.
2426 * So just look for a number as the first char to see if we
2427 * are we doing pid lookups?
2428 *
2429 * Don’t need to check for "self" as it is implemented as a symlink
2430 */
2431 if (*comp >= ’0’ && *comp <= ’9’) {
2432 pid_t pid = 0;
2433 lxpr_node_t *lxpnp = NULL;
2434 proc_t *p;
2435 int c;

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 38

2437 while ((c = *comp++) != ’\0’)
2438 pid = 10*pid + c - ’0’;

2440 /*
2441 * Can’t continue if the process is still loading
2442 * or it doesn’t really exist yet (or maybe it just died!)
2443 */
2444 p = lxpr_lock(pid);
2445 if (p == NULL)
2446 return (NULL);

2448 if (secpolicy_basic_procinfo(CRED(), p, curproc) != 0) {
2449 lxpr_unlock(p);
2450 return (NULL);
2451 }

2453 /*
2454 * allocate and fill in a new lx /proc node
2455 */
2456 lxpnp = lxpr_getnode(dp, LXPR_PIDDIR, p, 0);

2458 lxpr_unlock(p);

2460 dp = LXPTOV(lxpnp);
2461 ASSERT(dp != NULL);

2463 return (dp);

2465 }

2467 /* Lookup fixed names */
2468 return (lxpr_lookup_common(dp, comp, NULL, lx_procdir, PROCDIRFILES));
2469 }

2474 /*
2475 * lxpr_readdir(): Vnode operation for VOP_READDIR()
2476 */
2477 /* ARGSUSED */
2478 static int
2479 lxpr_readdir(vnode_t *dp, uio_t *uiop, cred_t *cr, int *eofp,
2480 caller_context_t *ct, int flags)
2481 {
2482 lxpr_node_t *lxpnp = VTOLXP(dp);
2483 lxpr_nodetype_t type = lxpnp->lxpr_type;
2484 ssize_t uresid;
2485 off_t uoffset;
2486 int error;

2488 ASSERT(dp->v_type == VDIR);
2489 ASSERT(type < LXPR_NFILES);

2491 /*
2492 * we should never get here because the readdir
2493 * is done on the realvp for these nodes
2494 */
2495 ASSERT(type != LXPR_PID_FD_FD &&
2496 type != LXPR_PID_CURDIR &&
2497 type != LXPR_PID_ROOTDIR);

2499 /*
2500 * restrict readdir permission to owner or root
2501 */
2502 if ((error = lxpr_access(dp, VREAD, 0, cr, ct)) != 0)

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 39

2503 return (error);

2505 uoffset = uiop->uio_offset;
2506 uresid = uiop->uio_resid;

2508 /* can’t do negative reads */
2509 if (uoffset < 0 || uresid <= 0)
2510 return (EINVAL);

2512 /* can’t read directory entries that don’t exist! */
2513 if (uoffset % LXPR_SDSIZE)
2514 return (ENOENT);

2516 return (lxpr_readdir_function[lxpnp->lxpr_type](lxpnp, uiop, eofp));
2517 }

2520 /* ARGSUSED */
2521 static int
2522 lxpr_readdir_not_a_dir(lxpr_node_t *lxpnp, uio_t *uiop, int *eofp)
2523 {
2524 return (ENOTDIR);
2525 }

2527 /*
2528 * This has the common logic for returning directory entries
2529 */
2530 static int
2531 lxpr_readdir_common(lxpr_node_t *lxpnp, uio_t *uiop, int *eofp,
2532 lxpr_dirent_t *dirtab, int dirtablen)
2533 {
2534 /* bp holds one dirent64 structure */
2535 longlong_t bp[DIRENT64_RECLEN(LXPNSIZ) / sizeof (longlong_t)];
2536 dirent64_t *dirent = (dirent64_t *)bp;
2537 ssize_t oresid; /* save a copy for testing later */
2538 ssize_t uresid;

2540 oresid = uiop->uio_resid;

2542 /* clear out the dirent buffer */
2543 bzero(bp, sizeof (bp));

2545 /*
2546 * Satisfy user request
2547 */
2548 while ((uresid = uiop->uio_resid) > 0) {
2549 int dirindex;
2550 off_t uoffset;
2551 int reclen;
2552 int error;

2554 uoffset = uiop->uio_offset;
2555 dirindex = (uoffset / LXPR_SDSIZE) - 2;

2557 if (uoffset == 0) {

2559 dirent->d_ino = lxpnp->lxpr_ino;
2560 dirent->d_name[0] = ’.’;
2561 dirent->d_name[1] = ’\0’;
2562 reclen = DIRENT64_RECLEN(1);

2564 } else if (uoffset == LXPR_SDSIZE) {

2566 dirent->d_ino = lxpr_parentinode(lxpnp);
2567 dirent->d_name[0] = ’.’;
2568 dirent->d_name[1] = ’.’;

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 40

2569 dirent->d_name[2] = ’\0’;
2570 reclen = DIRENT64_RECLEN(2);

2572 } else if (dirindex < dirtablen) {
2573 int slen = strlen(dirtab[dirindex].d_name);

2575 dirent->d_ino = lxpr_inode(dirtab[dirindex].d_type,
2576 lxpnp->lxpr_pid, 0);

2578 ASSERT(slen < LXPNSIZ);
2579 (void) strcpy(dirent->d_name, dirtab[dirindex].d_name);
2580 reclen = DIRENT64_RECLEN(slen);

2582 } else {
2583 /* Run out of table entries */
2584 if (eofp) {
2585 *eofp = 1;
2586 }
2587 return (0);
2588 }

2590 dirent->d_off = (off64_t)(uoffset + LXPR_SDSIZE);
2591 dirent->d_reclen = (ushort_t)reclen;

2593 /*
2594 * if the size of the data to transfer is greater
2595 * that that requested then we can’t do it this transfer.
2596 */
2597 if (reclen > uresid) {
2598 /*
2599 * Error if no entries have been returned yet.
2600 */
2601 if (uresid == oresid) {
2602 return (EINVAL);
2603 }
2604 break;
2605 }

2607 /*
2608 * uiomove() updates both uiop->uio_resid and
2609 * uiop->uio_offset by the same amount. But we want
2610 * uiop->uio_offset to change in increments
2611 * of LXPR_SDSIZE, which is different from the number of bytes
2612 * being returned to the user.
2613 * So we set uiop->uio_offset separately, ignoring what
2614 * uiomove() does.
2615 */
2616 if ((error = uiomove((caddr_t)dirent, reclen, UIO_READ, uiop)))
2617 return (error);
2618 }

2620 uiop->uio_offset = uoffset + LXPR_SDSIZE;
2621 }

2623 /* Have run out of space, but could have just done last table entry */
2624 if (eofp) {
2625 *eofp =
2626 (uiop->uio_offset >= ((dirtablen+2) * LXPR_SDSIZE)) ? 1 : 0;
2627 }
2628 return (0);
2629 }

2632 static int
2633 lxpr_readdir_procdir(lxpr_node_t *lxpnp, uio_t *uiop, int *eofp)
2634 {

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 41

2635 /* bp holds one dirent64 structure */
2636 longlong_t bp[DIRENT64_RECLEN(LXPNSIZ) / sizeof (longlong_t)];
2637 dirent64_t *dirent = (dirent64_t *)bp;
2638 ssize_t oresid; /* save a copy for testing later */
2639 ssize_t uresid;
2640 off_t uoffset;
2641 zoneid_t zoneid;
2642 pid_t pid;
2643 int error;
2644 int ceof;

2646 ASSERT(lxpnp->lxpr_type == LXPR_PROCDIR);

2648 oresid = uiop->uio_resid;
2649 zoneid = LXPTOZ(lxpnp)->zone_id;

2651 /*
2652 * We return directory entries in the order:
2653 * "." and ".." then the unique lx procfs files, then the
2654 * directories corresponding to the running processes.
2655 *
2656 * This is a good order because it allows us to more easily
2657 * keep track of where we are betwen calls to getdents().
2658 * If the number of processes changes between calls then we
2659 * can’t lose track of where we are in the lx procfs files.
2660 */

2662 /* Do the fixed entries */
2663 error = lxpr_readdir_common(lxpnp, uiop, &ceof, lx_procdir,
2664 PROCDIRFILES);

2666 /* Finished if we got an error or if we couldn’t do all the table */
2667 if (error != 0 || ceof == 0)
2668 return (error);

2670 /* clear out the dirent buffer */
2671 bzero(bp, sizeof (bp));

2673 /* Do the process entries */
2674 while ((uresid = uiop->uio_resid) > 0) {
2675 proc_t *p;
2676 int len;
2677 int reclen;
2678 int i;

2680 uoffset = uiop->uio_offset;

2682 /*
2683 * Stop when entire proc table has been examined.
2684 */
2685 i = (uoffset / LXPR_SDSIZE) - 2 - PROCDIRFILES;
2686 if (i >= v.v_proc) {
2687 /* Run out of table entries */
2688 if (eofp) {
2689 *eofp = 1;
2690 }
2691 return (0);
2692 }
2693 mutex_enter(&pidlock);

2695 /*
2696 * Skip indices for which there is no pid_entry, PIDs for
2697 * which there is no corresponding process, a PID of 0,
2698 * and anything the security policy doesn’t allow
2699 * us to look at.
2700 */

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 42

2701 if ((p = pid_entry(i)) == NULL || p->p_stat == SIDL ||
2702 p->p_pid == 0 ||
2703 secpolicy_basic_procinfo(CRED(), p, curproc) != 0) {
2704 mutex_exit(&pidlock);
2705 goto next;
2706 }
2707 mutex_exit(&pidlock);

2709 /*
2710 * Convert pid to the Linux default of 1 if we’re the zone’s
2711 * init process, otherwise use the value from the proc
2712 * structure
2713 */
2714 pid = ((p->p_pid != curproc->p_zone->zone_proc_initpid) ?
2715 p->p_pid : 1);

2717 /*
2718 * If this /proc was mounted in the global zone, view
2719 * all procs; otherwise, only view zone member procs.
2720 */
2721 if (zoneid != GLOBAL_ZONEID && p->p_zone->zone_id != zoneid) {
2722 goto next;
2723 }

2725 ASSERT(p->p_stat != 0);

2727 dirent->d_ino = lxpr_inode(LXPR_PIDDIR, pid, 0);
2728 len = snprintf(dirent->d_name, LXPNSIZ, "%d", pid);
2729 ASSERT(len < LXPNSIZ);
2730 reclen = DIRENT64_RECLEN(len);

2732 dirent->d_off = (off64_t)(uoffset + LXPR_SDSIZE);
2733 dirent->d_reclen = (ushort_t)reclen;

2735 /*
2736 * if the size of the data to transfer is greater
2737 * that that requested then we can’t do it this transfer.
2738 */
2739 if (reclen > uresid) {
2740 /*
2741 * Error if no entries have been returned yet.
2742 */
2743 if (uresid == oresid)
2744 return (EINVAL);
2745 break;
2746 }

2748 /*
2749 * uiomove() updates both uiop->uio_resid and
2750 * uiop->uio_offset by the same amount. But we want
2751 * uiop->uio_offset to change in increments
2752 * of LXPR_SDSIZE, which is different from the number of bytes
2753 * being returned to the user.
2754 * So we set uiop->uio_offset separately, in the
2755 * increment of this for loop, ignoring what uiomove() does.
2756 */
2757 if ((error = uiomove((caddr_t)dirent, reclen, UIO_READ, uiop)))
2758 return (error);

2760 next:
2761 uiop->uio_offset = uoffset + LXPR_SDSIZE;
2762 }

2764 if (eofp)
2765 *eofp =
2766 (uiop->uio_offset >=

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 43

2767 ((v.v_proc + PROCDIRFILES + 2) * LXPR_SDSIZE)) ? 1 : 0;

2769 return (0);
2770 }

2773 static int
2774 lxpr_readdir_piddir(lxpr_node_t *lxpnp, uio_t *uiop, int *eofp)
2775 {
2776 proc_t *p;

2778 ASSERT(lxpnp->lxpr_type == LXPR_PIDDIR);

2780 /* can’t read its contents if it died */
2781 mutex_enter(&pidlock);

2783 p = prfind((lxpnp->lxpr_pid == 1) ?
2784 curproc->p_zone->zone_proc_initpid : lxpnp->lxpr_pid);

2786 if (p == NULL || p->p_stat == SIDL) {
2787 mutex_exit(&pidlock);
2788 return (ENOENT);
2789 }
2790 mutex_exit(&pidlock);

2792 return (lxpr_readdir_common(lxpnp, uiop, eofp, piddir, PIDDIRFILES));
2793 }

2796 static int
2797 lxpr_readdir_netdir(lxpr_node_t *lxpnp, uio_t *uiop, int *eofp)
2798 {
2799 ASSERT(lxpnp->lxpr_type == LXPR_NETDIR);
2800 return (lxpr_readdir_common(lxpnp, uiop, eofp, netdir, NETDIRFILES));
2801 }

2804 static int
2805 lxpr_readdir_fddir(lxpr_node_t *lxpnp, uio_t *uiop, int *eofp)
2806 {
2807 /* bp holds one dirent64 structure */
2808 longlong_t bp[DIRENT64_RECLEN(LXPNSIZ) / sizeof (longlong_t)];
2809 dirent64_t *dirent = (dirent64_t *)bp;
2810 ssize_t oresid; /* save a copy for testing later */
2811 ssize_t uresid;
2812 off_t uoffset;
2813 int error;
2814 int ceof;
2815 proc_t *p;
2816 int fddirsize;
2817 uf_info_t *fip;

2820 ASSERT(lxpnp->lxpr_type == LXPR_PID_FDDIR);

2822 oresid = uiop->uio_resid;

2824 /* can’t read its contents if it died */
2825 p = lxpr_lock(lxpnp->lxpr_pid);
2826 if (p == NULL)
2827 return (ENOENT);

2829 /* Get open file info */
2830 fip = (&(p)->p_user.u_finfo);

2832 if ((p->p_stat == SZOMB) || (p->p_flag & SSYS) || (p->p_as == &kas))

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 44

2833 fddirsize = 0;
2834 else
2835 fddirsize = fip->fi_nfiles;

2837 mutex_enter(&fip->fi_lock);
2838 lxpr_unlock(p);

2840 /* Do the fixed entries (in this case just "." & "..") */
2841 error = lxpr_readdir_common(lxpnp, uiop, &ceof, 0, 0);

2843 /* Finished if we got an error or if we couldn’t do all the table */
2844 if (error != 0 || ceof == 0)
2845 return (error);

2847 /* clear out the dirent buffer */
2848 bzero(bp, sizeof (bp));

2850 /*
2851 * Loop until user’s request is satisfied or until
2852 * all file descriptors have been examined.
2853 */
2854 for (; (uresid = uiop->uio_resid) > 0;
2855 uiop->uio_offset = uoffset + LXPR_SDSIZE) {
2856 int reclen;
2857 int fd;
2858 int len;

2860 uoffset = uiop->uio_offset;

2862 /*
2863 * Stop at the end of the fd list
2864 */
2865 fd = (uoffset / LXPR_SDSIZE) - 2;
2866 if (fd >= fddirsize) {
2867 if (eofp) {
2868 *eofp = 1;
2869 }
2870 goto out;
2871 }

2873 if (fip->fi_list[fd].uf_file == NULL)
2874 continue;

2876 dirent->d_ino = lxpr_inode(LXPR_PID_FD_FD, lxpnp->lxpr_pid, fd);
2877 len = snprintf(dirent->d_name, LXPNSIZ, "%d", fd);
2878 ASSERT(len < LXPNSIZ);
2879 reclen = DIRENT64_RECLEN(len);

2881 dirent->d_off = (off64_t)(uoffset + LXPR_SDSIZE);
2882 dirent->d_reclen = (ushort_t)reclen;

2884 if (reclen > uresid) {
2885 /*
2886 * Error if no entries have been returned yet.
2887 */
2888 if (uresid == oresid)
2889 error = EINVAL;
2890 goto out;
2891 }

2893 if ((error = uiomove((caddr_t)dirent, reclen, UIO_READ, uiop)))
2894 goto out;
2895 }

2897 if (eofp)
2898 *eofp =

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 45

2899 (uiop->uio_offset >= ((fddirsize+2) * LXPR_SDSIZE)) ? 1 : 0;

2901 out:
2902 mutex_exit(&fip->fi_lock);
2903 return (error);
2904 }

2907 /*
2908 * lxpr_readlink(): Vnode operation for VOP_READLINK()
2909 */
2910 /* ARGSUSED */
2911 static int
2912 lxpr_readlink(vnode_t *vp, uio_t *uiop, cred_t *cr, caller_context_t *ct)
2913 {
2914 char bp[MAXPATHLEN + 1];
2915 size_t buflen = sizeof (bp);
2916 lxpr_node_t *lxpnp = VTOLXP(vp);
2917 vnode_t *rvp = lxpnp->lxpr_realvp;
2918 pid_t pid;
2919 int error = 0;

2921 /* must be a symbolic link file */
2922 if (vp->v_type != VLNK)
2923 return (EINVAL);

2925 /* Try to produce a symlink name for anything that has a realvp */
2926 if (rvp != NULL) {
2927 if ((error = lxpr_access(vp, VREAD, 0, CRED(), ct)) != 0)
2928 return (error);
2929 if ((error = vnodetopath(NULL, rvp, bp, buflen, CRED())) != 0)
2930 return (error);
2931 } else {
2932 switch (lxpnp->lxpr_type) {
2933 case LXPR_SELF:
2934 /*
2935 * Don’t need to check result as every possible int
2936 * will fit within MAXPATHLEN bytes
2937 */

2939 /*
2940 * Convert pid to the Linux default of 1 if we’re the
2941 * zone’s init process
2942 */
2943 pid = ((curproc->p_pid !=
2944 curproc->p_zone->zone_proc_initpid)
2945 ? curproc->p_pid : 1);

2947 (void) snprintf(bp, buflen, "%d", pid);
2948 break;
2949 case LXPR_PID_CURDIR:
2950 case LXPR_PID_ROOTDIR:
2951 case LXPR_PID_EXE:
2952 return (EACCES);
2953 default:
2954 /*
2955 * Need to return error so that nothing thinks
2956 * that the symlink is empty and hence "."
2957 */
2958 return (EINVAL);
2959 }
2960 }

2962 /* copy the link data to user space */
2963 return (uiomove(bp, strlen(bp), UIO_READ, uiop));
2964 }

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 46

2967 /*
2968 * lxpr_inactive(): Vnode operation for VOP_INACTIVE()
2969 * Vnode is no longer referenced, deallocate the file
2970 * and all its resources.
2971 */
2972 /* ARGSUSED */
2973 static void
2974 lxpr_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
2975 {
2976 lxpr_freenode(VTOLXP(vp));
2977 }

2980 /*
2981 * lxpr_sync(): Vnode operation for VOP_SYNC()
2982 */
2983 static int
2984 lxpr_sync()
2985 {
2986 /*
2987 * nothing to sync but this
2988 * function must never fail
2989 */
2990 return (0);
2991 }

2994 /*
2995 * lxpr_cmp(): Vnode operation for VOP_CMP()
2996 */
2997 static int
2998 lxpr_cmp(vnode_t *vp1, vnode_t *vp2, caller_context_t *ct)
2999 {
3000 vnode_t *rvp;

3002 while (vn_matchops(vp1, lxpr_vnodeops) &&
3003 (rvp = VTOLXP(vp1)->lxpr_realvp) != NULL)
3004 vp1 = rvp;
3005 while (vn_matchops(vp2, lxpr_vnodeops) &&
3006 (rvp = VTOLXP(vp2)->lxpr_realvp) != NULL)
3007 vp2 = rvp;
3008 if (vn_matchops(vp1, lxpr_vnodeops) || vn_matchops(vp2, lxpr_vnodeops))
3009 return (vp1 == vp2);
3010 return (VOP_CMP(vp1, vp2, ct));
3011 }

3014 /*
3015 * lxpr_realvp(): Vnode operation for VOP_REALVP()
3016 */
3017 static int
3018 lxpr_realvp(vnode_t *vp, vnode_t **vpp, caller_context_t *ct)
3019 {
3020 vnode_t *rvp;

3022 if ((rvp = VTOLXP(vp)->lxpr_realvp) != NULL) {
3023 vp = rvp;
3024 if (VOP_REALVP(vp, &rvp, ct) == 0)
3025 vp = rvp;
3026 }

3028 *vpp = vp;
3029 return (0);
3030 }

new/usr/src/uts/common/brand/lx/procfs/lx_prvnops.c 47

3031 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/ldlinux.h 1

**
 4008 Tue Jan 14 16:17:20 2014
new/usr/src/uts/common/brand/lx/sys/ldlinux.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LDLINUX_H
27 #define _SYS_LDLINUX_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 /*
32 * The ldlinux streams module is only intended for use in lx branded zones.
33 * This streams module implements the following ioctls:
34 * TIOCSETLD and TIOCGETLD
35 *
36 * These ioctls are special ioctls supported only by the ldlinux streams
37 * module and invoked only by the lx brand emulation library. These ioctls
38 * do not exist on native Linux systems.
39 *
40 * The TIOCSETLD ioctl is used when emulating the following Linux ioctls:
41 * TCSETS/TCSETSW/TCSETSF
42 * TCSETA/TCSETAW/TCSETAF
43 *
44 * The TIOCGETLD ioctl is used when emulating the following Linux ioctls:
45 * TCGETS/TCGETA
46 *
47 * This module is needed to emulate these ioctls because the following arrays:
48 * termio.c_cc
49 * termios.c_cc
50 * which are parameters for the following ioctls:
51 * TCSETS/TCSETSW/TCSETSF
52 * TCSETA/TCSETAW/TCSETAF
53 * TCGETS/TCGETA
54 *
55 * are defined differently on Solaris and Linux.
56 *
57 * According to the termio(7I) man page on Solaris the following is true of
58 * the members of the c_cc array:
59 * The VMIN element is the same element as the VEOF element.
60 * The VTIME element is the same element as the VEOL element.
61 *

new/usr/src/uts/common/brand/lx/sys/ldlinux.h 2

62 * But on Linux the termios(3) man page states:
63 * These symbolic subscript values are all different, except that
64 * VTIME, VMIN may have the same value as VEOL, VEOF, respectively.
65 *
66 * While the man page indicates that these values may be the same empirical
67 * tests shows them to be different. Since these values are different on
68 * Linux systems it’s possible that applications could set the members of
69 * the c_cc array to different values and then later expect to be able to
70 * read back those same separate values. The ldlinux module exists to provide
71 * a per-stream storage area where the lx_brand emulation library can save
72 * these values. The values are set and retrieved via the TIOCSETLD and
73 * TIOCGETLD ioctls respectively.
74 */

76 #include <sys/termios.h>

78 #ifdef __cplusplus
79 extern "C" {
80 #endif

82 #define LDLINUX_MOD "ldlinux"

84 #ifdef _KERNEL

86 /*
87 * LDLINUX_MODID - This should be a unique number associated with
88 * this particular module. Unfortunatly there is no authority responsible
89 * for administering this name space, hence there’s no real guarantee that
90 * whatever number we choose will be unique. Luckily, this constant
91 * is not really used anywhere by the system. It is used by some
92 * kernel subsystems to check for the presence of certain streams
93 * modules with known id vaules. Since no other kernel subsystem
94 * checks for the presence of this module we’ll just set the id to 0.
95 */
96 #define LDLINUX_MODID 0

98 struct ldlinux {
99 int state; /* state information */
100 /* Linux expects the next four c_cc values */
101 /* to be distinct, whereas solaris (legally) */
102 /* overlaps their storage */
103 unsigned char veof; /* veof value */
104 unsigned char veol; /* veol value */
105 unsigned char vmin; /* vmin value */
106 unsigned char vtime; /* vtime value */
107 };

109 #define ISPTSTTY 0x01

111 #endif /* _KERNEL */

113 #ifdef __cplusplus
114 }
115 #endif

117 #endif /* _SYS_LDLINUX_H */
118 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_audio.h 1

**
 3864 Tue Jan 14 16:17:20 2014
new/usr/src/uts/common/brand/lx/sys/lx_audio.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _LX_AUDIO_H
27 #define _LX_AUDIO_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <sys/zone.h>

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 /*
38 * name for this driver
39 */
40 #define LX_AUDIO_DRV "lx_audio"

42 /*
43 * names for the minor nodes this driver exports
44 */
45 #define LXA_MINORNAME_DEVCTL "lx_devctl"
46 #define LXA_MINORNAME_DSP "lx_dsp"
47 #define LXA_MINORNAME_MIXER "lx_mixer"

49 /*
50 * minor numbers for the minor nodes this driver exporrts
51 */
52 #define LXA_MINORNUM_DEVCTL 0
53 #define LXA_MINORNUM_DSP 1
54 #define LXA_MINORNUM_MIXER 2
55 #define LXA_MINORNUM_COUNT 3

57 /*
58 * driver ioctls
59 *
60 * note that we’re layering on top of solaris audio devices so we want
61 * to make sure that our ioctls namespace doesn’t conflict with theirs.

new/usr/src/uts/common/brand/lx/sys/lx_audio.h 2

62 * looking in sys/audioio.h and sys/mixer.h we see that they seem to
63 * use an _IO key of ’A’ and ’M’, so we’ll choose an _IO key of ’a.’
64 */

66 /*
67 * administrative ioctls.
68 * these ioctls are only supported on the DEVCTL minor node
69 */
70 #define LXA_IOC_ZONE_REG (_IOR(’a’, 0, lxa_zone_reg_t))
71 #define LXA_IOC_ZONE_UNREG (_IOR(’a’, 1, lxa_zone_reg_t))

74 /*
75 * audio and mixer device ioctls
76 * these ioctls are supported on DSP and MIXER minor nodes.
77 */
78 #define LXA_IOC_GETMINORNUM (_IOR(’a’, 20, int))

80 /*
81 * audio device ioctls.
82 * these ioctls are supports on DSP minor nodes.
83 */
84 #define LXA_IOC_MMAP_OUTPUT (_IOR(’a’, 41, int))
85 #define LXA_IOC_MMAP_PTR (_IOR(’a’, 42, int))
86 #define LXA_IOC_GET_FRAG_INFO (_IOR(’a’, 43, lxa_frag_info_t))
87 #define LXA_IOC_SET_FRAG_INFO (_IOR(’a’, 44, lxa_frag_info_t))

89 /*
90 * mixer device ioctls.
91 * these ioctls are supports on MIXER minor nodes.
92 */
93 #define LXA_IOC_MIXER_GET_VOL (_IOR(’a’, 60, lxa_mixer_levels_t))
94 #define LXA_IOC_MIXER_SET_VOL (_IOR(’a’, 61, lxa_mixer_levels_t))
95 #define LXA_IOC_MIXER_GET_MIC (_IOR(’a’, 62, lxa_mixer_levels_t))
96 #define LXA_IOC_MIXER_SET_MIC (_IOR(’a’, 63, lxa_mixer_levels_t))
97 #define LXA_IOC_MIXER_GET_PCM (_IOR(’a’, 64, lxa_mixer_levels_t))
98 #define LXA_IOC_MIXER_SET_PCM (_IOR(’a’, 65, lxa_mixer_levels_t))

100 /* command structure for LXA_IOC_ZONE_REG */
101 #define LXA_INTSTRLEN 32
102 typedef struct lxa_zone_reg {
103 char lxa_zr_zone_name[ZONENAME_MAX];
104 char lxa_zr_inputdev[LXA_INTSTRLEN];
105 char lxa_zr_outputdev[LXA_INTSTRLEN];
106 } lxa_zone_reg_t;

108 /* command structure for LXA_IOC_GET_FRAG_INFO and LXA_IOC_SET_FRAG_INFO */
109 typedef struct lxa_frag_info {
110 int lxa_fi_size;
111 int lxa_fi_cnt;
112 } lxa_frag_info_t;

114 /* command structure for LXA_IOC_MIXER_GET_* and LXA_IOC_MIXER_SET_* */
115 typedef struct lxa_mixer_levels {
116 int lxa_ml_gain;
117 int lxa_ml_balance;
118 } lxa_mixer_levels_t;

120 /* verify that a solaris mixer level structure has valid values */
121 #define LXA_MIXER_LEVELS_OK(x) (((x)->lxa_ml_gain >= AUDIO_MIN_GAIN) && \
122 ((x)->lxa_ml_gain <= AUDIO_MAX_GAIN) && \
123 ((x)->lxa_ml_balance >= AUDIO_LEFT_BALANCE) && \
124 ((x)->lxa_ml_balance <= AUDIO_RIGHT_BALANCE))

126 #ifdef __cplusplus
127 }

new/usr/src/uts/common/brand/lx/sys/lx_audio.h 3

128 #endif

130 #endif /* _LX_AUDIO_H */
131 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_autofs.h 1

**
 15944 Tue Jan 14 16:17:20 2014
new/usr/src/uts/common/brand/lx/sys/lx_autofs.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _LX_AUTOFS_H
28 #define _LX_AUTOFS_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

32 /*
33 * The lx_autofs filesystem exists to emulate the Linux autofs filesystem
34 * and provide support for the Linux "automount" automounter.
35 *
36 *
37 *
38 * +++ Linux automounter background.
39 *
40 * Linux has two automounters: "amd" and "automount"
41 *
42 * 1) "amd" is a userland NFS server. It basically mounts an NFS filesystem
43 * at an automount point, and it acts as the NFS server for the mount. When
44 * an access is done to that NFS filesystem, the access is redirected by the
45 * kernel to the "amd" process via rpc. "amd" then looks up any information
46 * required to resolve the requests, mounts real NFS filesystems if
47 * necessary, and returns. "amd" has it’s own strange configuration
48 * mechanism that doesn’t seem to be very compatabile with Solaris’s network
49 * based automounter map support.
50 *
51 * 2) "automount" is the other Linux automounter. It utilizes a kernel
52 * filesystem (autofs) to provide it’s functionality. Basically, it mounts
53 * the autofs filesystem at any automounter controlled mount point. This
54 * filesystem then intercepts and redirects lookup operations (and only
55 * lookup ops) to the userland automounter process via a pipe. (The
56 * pipe to the automounter is establised via mount options when the autofs
57 * filesystem is mounted.) When the automounter recieves a request via this
58 * pipe, it does lookups to whatever backing store it’s configured to use,
59 * does mkdir operations on the autofs filesystem, mounts remote NFS
60 * filesystems on any leaf directories it just created, and signals the
61 * autofs filesystem via an ioctl to let it know that the lookup can

new/usr/src/uts/common/brand/lx/sys/lx_autofs.h 2

62 * continue.
63 *
64 *
65 *
66 * +++ Linux autofs (and automount daemon) notes
67 *
68 * Since we’re mimicking the behavior of the Linux autofs filesystem it’s
69 * important to document some of it’s observed behavior here since there’s
70 * no doubt that in the future this behavior will change. These comments
71 * apply to the behavior of the automounter as observed on a system
72 * running Linux v2.4.21 (autofs is bundled with the Linux kernel).
73 *
74 * A) Autofs allows root owned, non-automounter processes to create
75 * directories in the autofs filesystem. The autofs filesystem treats the
76 * automounter’s process group as special, but it doesn’t prevent root
77 * processes outside of the automounter’s process group from creating new
78 * directories in the autofs filesystem.
79 *
80 * B) Autofs doesn’t allow creation of any non-directory entries in the
81 * autofs filesystem. No entity can create files (e.g. /bin/touch or
82 * VOP_CREATE/VOP_SYMLINK/etc.) The only entries that can exist within
83 * the autofs filesystem are directories.
84 *
85 * C) Autofs only intercepts vop lookup operations. Notably, it does _not_
86 * intercept and re-direct vop readdir operations. This means that the
87 * observed behavior of the Linux automounter can be considerably different
88 * from that of the Solaris automounter. Specifically, on Solaris if autofs
89 * mount point is mounted _without_ the -nobrowse option then if a user does
90 * an ls operation (which translates into a vop readdir operation) then the
91 * automounter will intercept that operation and list all the possible
92 * directories and mount points without actually mounting any filesystems.
93 * Essentially, all automounter managed mount points on Linux will behave
94 * like "-nobrowse" mount points on Solaris. Here’s an example to
95 * illustrate this. If /ws was mounted on Solaris without the -nobrowse
96 * option and an auto_ws yp map was setup as the backing store for this
97 * mount point, then an "ls /ws" would list all the keys in the map as
98 * valid directories, but an "ls /ws" on Linux would list an emptry
99 * directory.
100 *
101 * D) NFS mounts are performed by the automount process. When the automount
102 * process gets a redirected lookup request, it determines _all_ the
103 * possible remote mount points for that request, creates directory paths
104 * via mkdir, and mounts the remote filesystems on the newly created paths.
105 * So for example, if a machine called mcescher exported /var/crash and
106 * /var/core, an "ls /net/mcescher" would result in the following actions
107 * being done by the automounter:
108 * mkdir /net/mcescher
109 * mkdir /net/mcescher/var
110 * mkdir /net/mcescher/var/crash
111 * mkdir /net/mcescher/var/core
112 * mount mcescher:/var/crash /var/crash
113 * mount mcescher:/var/crash /var/core
114 * once the automounter compleated the work above it would signal the autofs
115 * filesystem (via an ioctl) that the lookup could continue.
116 *
117 * E.1) Autofs only redirects vop lookup operations for path entries that
118 * don’t already exist in the autofs filesystem. So for the example above,
119 * an initial (after the start of the automounter) "ls /net/mcescher" would
120 * result in a request to the automounter. A subsequest "ls /net/mcescher"
121 * would not result in a request to the automounter. Even if
122 * /net/mcescher/var/crash and /net/mcescher/var/core were manually unmounted
123 * after the initial "ls /net/mcescher", a subsequest "ls /net/mcescher"
124 * would not result in a new request to the automounter.
125 *
126 * E.2) Autofs lookup requests that are sent to the automounter only include
127 * the root directory path component. So for example, after starting up

new/usr/src/uts/common/brand/lx/sys/lx_autofs.h 3

128 * the automounter if a user were to do a "ls /net/mcescher/var/crash", the
129 * lookup request actually sent to the automounter would just be for
130 * "mcescher". (The same request as if the user had done "ls /net/mcescher".)
131 *
132 * E.3) The two statements above aren’t entirely entirely true. The Linux
133 * autofs filesystem will also redirect lookup operations for leaf
134 * directories that don’t have a filesystem mounted on them. Using the
135 * example above, if a user did a "ls /net/mcescher", then manually
136 * unmounted /net/mcescher/var/crash, and then did an "ls
137 * /net/mcescher/var/crash", this would result in a request for
138 * "mcescher/var/crash" being sent to the automounter. The strange thing
139 * (a Linux bug perhaps) is that the automounter won’t do anything with this
140 * request and the lookup will fail.
141 *
142 * F) The autofs filesystem communication protocol (what ioctls it supports
143 * and what data it passes to the automount process) are versioned. The
144 * source for the userland automount daemon (i looked at version v3.1.7)
145 * seemed to support two versions of the Linux kernel autofs implementation.
146 * Both versions supported communiciation with a pipe and the format of the
147 * structure passed via this pipe was the same. The difference between the
148 * two versions was in the functionality supported. (The v3 version has
149 * additional ioctls to support automount timeouts.)
150 *
151 *
152 *
153 * +++ lx_autofs notes
154 *
155 * 1) In general, the lx_autofs filesystem tries to mimic the behavior of the
156 * Linux autofs filesystem with the following exceptions:
157 *
158 * 1.1) We don’t bother to implement the E.3 functionality listed above
159 * since it doesn’t appear to be of any use.
160 *
161 * 1.2) We only implement v2 of the automounter protocol since
162 * implementing v3 would take a _lot_ more work. If this proves to be a
163 * problem we can re-visit this decision later. (More details about v3
164 * support are included in comments below.)
165 *
166 * 2) In general, the approach taken for lx_autofs is to keep it as simple
167 * as possible and to minimize it’s memory usage. To do this all information
168 * about the contents of the lx_autofs filesystem are mirrored in the
169 * underlying filesystem that lx_autofs is mounted on and most vop operations
170 * are simply passed onto this underlying filesystem. This means we don’t
171 * have to implement most the complex operations that a full filesystem
172 * normally has to implement. It also means that most of our filesystem state
173 * (wrt the contents of the filesystem) doesn’t actually have to be stored
174 * in memory, we can simply go to the underlying filesystem to get it when
175 * it’s requested. For the purposes of discussion, we’ll call the underlying
176 * filesystem the "backing store."
177 *
178 * The backing store is actually directory called ".lx_afs" which is created in
179 * the directory where the lx_autofs filesystem is mounted. When the lx_autofs
180 * filesystem is unmounted this backing store directory is deleted. If this
181 * directory exists at mount time (perhaps the system crashed while a previous
182 * lx_autofs instance was mounted at the same location) it will be deleted.
183 * There are a few implications of using a backing store worth mentioning.
184 *
185 * 2.1) lx_autofs can’t be mounted on a read only filesystem. If this
186 * proves to be a problem we can probably move the location of the
187 * backing store.
188 *
189 * 2.2) If the backing store filesystem runs out of space then the
190 * automounter process won’t be able to create more directories and mount
191 * new filesystems. Of course, strange failures usually happen when
192 * filesystems run out of space.
193 *

new/usr/src/uts/common/brand/lx/sys/lx_autofs.h 4

194 * 3) Why aren’t we using gfs? gfs has two different usage models.
195 *
196 * 3.1) I’m my own filesystem but i’m using gfs to help with managing
197 * readdir operations.
198 *
199 * 3.2) I’m a gfs filesystem and gfs is managing all my vnodes
200 *
201 * We’re not using the 3.1 interfaces because we don’t implement readdir
202 * ourselves. We pass all readdir operations onto the backing store
203 * filesystem and utilize its readdir implementation.
204 *
205 * We’re not using the 3.2 interfaces because they are really designed for
206 * in memory filesystems where all of the filesystem state is stored in
207 * memory. They don’t lend themselves to filesystems where part of the
208 * state is in memory and part of the state is on disk.
209 *
210 * For more information on gfs take a look at the block comments in the
211 * top of gfs.c
212 */

214 #ifdef __cplusplus
215 extern "C" {
216 #endif

218 /*
219 * Note that the name of the actual Solaris filesystem is lx_afs and not
220 * lx_autofs. This is becase filesystem names are stupidly limited to 8
221 * characters.
222 */
223 #define LX_AUTOFS_NAME "lx_afs"

225 /*
226 * Mount options supported.
227 */
228 #define LX_MNTOPT_FD "fd"
229 #define LX_MNTOPT_PGRP "pgrp"
230 #define LX_MNTOPT_MINPROTO "minproto"
231 #define LX_MNTOPT_MAXPROTO "maxproto"

233 /* Version of the Linux kernel automount protocol we support. */
234 #define LX_AUTOFS_PROTO_VERSION 2

236 /*
237 * Command structure sent to automount process from lx_autofs via a pipe.
238 * This structure is the same for v2 and v3 of the automount protocol
239 * (the communication pipe is established at mount time).
240 */
241 typedef struct lx_autofs_pkt {
242 int lap_protover; /* protocol version number */
243 int lap_constant; /* always set to 0 */
244 int lap_id; /* every pkt must have a unique id */
245 int lap_name_len; /* don’t include newline or NULL */
246 char lap_name[256]; /* path component to lookup */
247 } lx_autofs_pkt_t;

249 /*
250 * Ioctls supprted (v2 protocol).
251 */
252 #define LX_AUTOFS_IOC_READY 0x00009360 /* arg: int */
253 #define LX_AUTOFS_IOC_FAIL 0x00009361 /* arg: int */
254 #define LX_AUTOFS_IOC_CATATONIC 0x00009362 /* arg: <none> */

256 /*
257 * Ioctls not supported (v3 protocol).
258 *
259 * Initially we’re only going to support v2 of the Linux kernel automount

new/usr/src/uts/common/brand/lx/sys/lx_autofs.h 5

260 * protocol. This means that we don’t support the following ioctls.
261 *
262 * 1) The protocol version ioctl (by not supporting it the automounter
263 * will assume version 2).
264 *
265 * 2) Automounter timeout ioctls. For v3 and later the automounter can
266 * be started with a timeout option. It will notify the filesystem of
267 * this timeout and, if any automounter filesystem root directory entry
268 * is not in use, it will notify the automounter via the LX_AUTOFS_IOC_EXPIRE
269 * ioctl. For example, if the timeout is 60 seconds, the Linux
270 * automounter will use the LX_AUTOFS_IOC_EXPIRE ioctl to query for
271 * timeouts more often than that. (v3.1.7 of the automount daemon would
272 * perform this ioctl every <timeout>/4 seconds.) Then, if the autofs
273 * filesystem will
274 * report top level directories that aren’t in use to the automounter
275 * via this ioctl. If /net was managed by the automounter and
276 * there were the following mount points:
277 * /net/jurassic/var/crash
278 * /net/mcescher/var/crash
279 * and no one was looking at any crash dumps on mcescher but someone
280 * was analyzing a crash dump on jurassic, then after <timeout> seconds
281 * had passed the autofs filesystem would let the automounter know that
282 * "mcescher" could be unmounted. (Note the granularity of notification
283 * is directories in the root of the autofs filesystem.) Here’s two
284 * ideas for how this functionality could be implemented on Solaris:
285 *
286 * 2.1) The easy incomplete way. Don’t do any in-use detection. Simply
287 * tell the automounter it can try to unmount the filesystem every time
288 * the specified timeout passes. If the filesystem is in use then the
289 * unmount will fail. This would break down for remote hosts with multiple
290 * mounts. For example, if the automounter had mounted the following
291 * filesystems:
292 * /net/jurassic/var/crash
293 * /net/jurassic/var/core
294 * and the user was looking at a core file, and the timeout expired, the
295 * automounter would recieve notification to unmount "jurassic". Then
296 * it would unmount crash (which would succeed) and then to try unmount
297 * core (which would fail). After that (since the automounter only
298 * performs mounts for failed lookups in the root autofs directory)
299 * future access to /net/jurassic/var/crash would result to access
300 * to an empty autofs directory. We might be able to work around
301 * this by caching which root autofs directories we’ve timed out,
302 * then any access to paths that contain those directories could be
303 * stalled and we could resend another request to the automounter.
304 * This could work if the automounter ignores mount failures.
305 *
306 * 2.2) The hard correct way. The real difficulty here is detecting
307 * files in use on other filesystems (say NFS) that have been mounted
308 * on top of autofs. (Detecting in use autofs vnodes should be easy.)
309 * to do this we would probably have to create a new brand op to intercept
310 * mount/umount filesystem operations. Then using this entry point we
311 * could detect mounts of other filesystems on top of lx_autofs. When
312 * a successful mount finishes we would use the FEM (file event
313 * monitoring) framework to push a module onto that filesystem and
314 * intercept VOP operations that allocate/free vnodes in that filesystem.
315 * (We would also then have to track mount operations on top of that
316 * filesystem, etc.) this would allow us to properly detect any
317 * usage of subdirectories of an autofs directory.
318 */
319 #define LX_AUTOFS_IOC_PROTOVER 0x80049363 /* arg: int */
320 #define LX_AUTOFS_IOC_EXPIRE 0x81109365 /* arg: lx_autofs_expire * */
321 #define LX_AUTOFS_IOC_SETTIMEOUT 0xc0049364 /* arg: ulong_t */

323 typedef struct lx_autofs_expire {
324 int lap_protover; /* protol version number */
325 int lap_constant; /* always set to 1 */

new/usr/src/uts/common/brand/lx/sys/lx_autofs.h 6

326 int lap_name_len; /* don’t include newline or NULL */
327 char lap_name[256]; /* path component that has timed out */
328 } lx_autofs_expire_t;

330 #ifdef __cplusplus
331 }
332 #endif

334 #endif /* _LX_AUTOFS_H */
335 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_autofs_impl.h 1

**
 2943 Tue Jan 14 16:17:21 2014
new/usr/src/uts/common/brand/lx/sys/lx_autofs_impl.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _LX_AUTOFS_IMPL_H
28 #define _LX_AUTOFS_IMPL_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 #include <sys/file.h>
37 #include <sys/id_space.h>
38 #include <sys/modhash.h>
39 #include <sys/vnode.h>

41 #include <sys/lx_autofs.h>

43 /*
44 * Space key.
45 * Used to persist data across lx_autofs filesystem module unloads.
46 */
47 #define LX_AUTOFS_SPACE_KEY_UDEV LX_AUTOFS_NAME "_udev"

49 /*
50 * Name of the backing store directory.
51 */
52 #define LX_AUTOFS_BS_DIR "." LX_AUTOFS_NAME

54 #define LX_AUTOFS_VFS_ID_HASH_SIZE 15
55 #define LX_AUTOFS_VFS_PATH_HASH_SIZE 15
56 #define LX_AUTOFS_VFS_VN_HASH_SIZE 15

58 /*
59 * VFS data object.
60 */
61 typedef struct lx_autofs_vfs {

new/usr/src/uts/common/brand/lx/sys/lx_autofs_impl.h 2

62 /* Info about the underlying filesystem and backing store. */
63 vnode_t *lav_mvp;
64 char *lav_bs_name;
65 vnode_t *lav_bs_vp;

67 /* Info about the automounter process managing this filesystem. */
68 int lav_fd;
69 pid_t lav_pgrp;
70 file_t *lav_fifo_wr;
71 file_t *lav_fifo_rd;

73 /* Each automount requests needs a unique id. */
74 id_space_t *lav_ids;

76 /* All remaining structure members are protected by lav_lock. */
77 kmutex_t lav_lock;

79 /* Hashes to keep track of outstanding automounter requests. */
80 mod_hash_t *lav_path_hash;
81 mod_hash_t *lav_id_hash;

83 /* We need to keep track of all our vnodes. */
84 vnode_t *lav_root;
85 mod_hash_t *lav_vn_hash;
86 } lx_autofs_vfs_t;

88 /*
89 * Structure to keep track of requests sent to the automounter.
90 */
91 typedef struct lx_autofs_lookup_req {
92 /* Packet that gets sent to the automounter. */
93 lx_autofs_pkt_t lalr_pkt;

95 /* Reference count. Always updated atomically. */
96 uint_t lalr_ref;

98 /*
99 * Fields to keep track and sync threads waiting on a lookup.
100 * Fields are protected by lalr_lock.
101 */
102 kmutex_t lalr_lock;
103 kcondvar_t lalr_cv;
104 int lalr_complete;
105 } lx_autofs_lookup_req_t;

107 /*
108 * Generic stack structure.
109 */
110 typedef struct stack_elem {
111 list_node_t se_list;
112 caddr_t se_ptr1;
113 caddr_t se_ptr2;
114 caddr_t se_ptr3;
115 } stack_elem_t;

117 #ifdef __cplusplus
118 }
119 #endif

121 #endif /* _LX_AUTOFS_IMPL_H */
122 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_brand.h 1

**
 6230 Tue Jan 14 16:17:21 2014
new/usr/src/uts/common/brand/lx/sys/lx_brand.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _LX_BRAND_H
27 #define _LX_BRAND_H

29 #ifndef _ASM
30 #include <sys/types.h>
31 #include <sys/cpuvar.h>
32 #include <sys/zone.h>
33 #endif

35 #ifdef __cplusplus
36 extern "C" {
37 #endif

39 #define LX_BRANDNAME "lx"

41 /*
42 * Brand uname info
43 */
44 #define LX_UNAME_SYSNAME "Linux"
45 #define LX_UNAME_RELEASE_2_6 "2.6.18"
46 #define LX_UNAME_RELEASE_2_4 "2.4.21"
47 #define LX_UNAME_VERSION "BrandZ fake linux"
48 #define LX_UNAME_MACHINE "i686"

50 #define LX_LINKER_NAME "ld-linux.so.2"
51 #define LX_LINKER "/lib/" LX_LINKER_NAME
52 #define LX_LIBC_NAME "libc.so.6"
53 #define LIB_PATH "/native/usr/lib/"
54 #define LX_LIB "lx_brand.so.1"
55 #define LX_LIB_PATH LIB_PATH LX_LIB

57 #define LX_NSYSCALLS_2_4 270
58 #define LX_NSYSCALLS_2_6 317
59 #define LX_NSYSCALLS LX_NSYSCALLS_2_6

61 #define LX_KERN_2_4 0

new/usr/src/uts/common/brand/lx/sys/lx_brand.h 2

62 #define LX_KERN_2_6 1

64 /*
65 * brand(2) subcommands
66 *
67 * Everything >= 128 is a brand-specific subcommand.
68 * 192 to 462 are reserved for system calls, although most of that space is
69 * unused.
70 */
71 #define B_LPID_TO_SPAIR 128
72 #define B_SYSENTRY 129
73 #define B_SYSRETURN 130
74 #define B_PTRACE_SYSCALL 131
75 #define B_SET_AFFINITY_MASK 132
76 #define B_GET_AFFINITY_MASK 133

78 #define B_EMULATE_SYSCALL 192

80 #define LX_VERSION_1 1
81 #define LX_VERSION LX_VERSION_1

83 #define LX_ATTR_RESTART_INIT ZONE_ATTR_BRAND_ATTRS
84 #define LX_KERN_VERSION_NUM (ZONE_ATTR_BRAND_ATTRS + 1)

86 /* Aux vector containing phdr of linux executable, used by lx_librtld_db */
87 #define AT_SUN_BRAND_LX_PHDR AT_SUN_BRAND_AUX1

89 /* Aux vector containing hz value */
90 #define AT_CLKTCK 17

92 #ifndef _ASM

94 typedef struct lx_brand_registration {
95 uint_t lxbr_version; /* version number */
96 void *lxbr_handler; /* base address of handler */
97 void *lxbr_tracehandler; /* base address of trace handler */
98 void *lxbr_traceflag; /* address of trace flag */
99 } lx_brand_registration_t;

101 #ifdef _SYSCALL32
102 typedef struct lx_brand_registration32 {
103 uint32_t lxbr_version; /* version number */
104 caddr32_t lxbr_handler; /* base address of handler */
105 caddr32_t lxbr_tracehandler; /* base address of trace handler */
106 caddr32_t lxbr_traceflag; /* address of trace flag */
107 } lx_brand_registration32_t;
108 #endif

110 typedef struct lx_regs {
111 long lxr_gs;
112 long lxr_edi;
113 long lxr_esi;
114 long lxr_ebp;
115 long lxr_esp;
116 long lxr_ebx;
117 long lxr_edx;
118 long lxr_ecx;
119 long lxr_eax;
120 long lxr_eip;

122 long lxr_orig_eax;
123 } lx_regs_t;

125 #endif /* _ASM */

127 /*

new/usr/src/uts/common/brand/lx/sys/lx_brand.h 3

128 * GDT usage
129 */
130 #define GDT_TLSMIN (GDT_BRANDMIN)
131 #define GDT_TLSMAX (GDT_TLSMIN + 2)
132 #define LX_TLSNUM (GDT_TLSMAX - GDT_TLSMIN)

134 #ifndef _ASM

136 /*
137 * Stores information needed by the lx linker to launch the main
138 * lx executable.
139 */
140 typedef struct lx_elf_data {
141 int ed_phdr;
142 int ed_phent;
143 int ed_phnum;
144 int ed_entry;
145 int ed_base;
146 int ed_ldentry;
147 } lx_elf_data_t;

149 #ifdef _KERNEL

151 typedef struct lx_proc_data {
152 uintptr_t l_handler; /* address of user-space handler */
153 uintptr_t l_tracehandler; /* address of user-space traced handler */
154 uintptr_t l_traceflag; /* address of 32-bit tracing flag */
155 void (*l_sigrestorer[MAXSIG])(void); /* array of sigrestorer fns */
156 pid_t l_ppid; /* pid of originating parent proc */
157 uint64_t l_ptrace; /* process being observed with ptrace */
158 lx_elf_data_t l_elf_data; /* ELF data for linux executable */
159 } lx_proc_data_t;

161 #endif /* _KERNEL */

163 /*
164 * A data type big enough to bitmap all Linux possible cpus.
165 * The bitmap size is defined as 1024 cpus in the Linux 2.4 and 2.6 man pages
166 * for sched_getaffinity() and sched_getaffinity().
167 */
168 #define LX_NCPU (1024)
169 #define LX_AFF_ULONGS (LX_NCPU / (8 * sizeof (ulong_t)))
170 typedef ulong_t lx_affmask_t[LX_AFF_ULONGS];

172 #ifdef _KERNEL

174 /*
175 * lx-specific data in the klwp_t
176 */
177 typedef struct lx_lwp_data {
178 uint_t br_lwp_flags; /* misc. flags */
179 klwp_t *br_lwp; /* back pointer to container lwp */
180 int br_signal; /* signal to send to parent when */
181 /* clone()’ed child terminates */
182 int br_exitwhy; /* reason for thread (process) exit */
183 int br_exitwhat; /* exit code / killing signal */
184 lx_affmask_t br_affinitymask; /* bitmask of CPU sched affinities */
185 struct user_desc br_tls[LX_TLSNUM];
186 /* descriptors used by libc for TLS */
187 pid_t br_pid; /* converted pid for this thread */
188 pid_t br_tgid; /* thread group ID for this thread */
189 pid_t br_ppid; /* parent pid for this thread */
190 id_t br_ptid; /* parent tid for this thread */
191 void *br_clear_ctidp; /* clone thread id ptr */
192 void *br_set_ctidp; /* clone thread id ptr */

new/usr/src/uts/common/brand/lx/sys/lx_brand.h 4

194 /*
195 * The following struct is used by lx_clone()
196 * to pass info into fork()
197 */
198 void *br_clone_args;

200 uint_t br_ptrace; /* ptrace is active for this LWP */
201 } lx_lwp_data_t;

203 /* brand specific data */
204 typedef struct lx_zone_data {
205 int lxzd_kernel_version;
206 int lxzd_max_syscall;
207 } lx_zone_data_t;

209 #define BR_CPU_BOUND 0x0001

211 #define ttolxlwp(t) ((struct lx_lwp_data *)ttolwpbrand(t))
212 #define lwptolxlwp(l) ((struct lx_lwp_data *)lwptolwpbrand(l))
213 #define ttolxproc(t) ((struct lx_proc_data *)(t)->t_procp->p_brand_data)

215 void lx_brand_int80_callback(void);
216 int64_t lx_emulate_syscall(int, uintptr_t, uintptr_t, uintptr_t, uintptr_t,
217 uintptr_t, uintptr_t);

219 extern int lx_get_zone_kern_version(zone_t *);
220 extern int lx_get_kern_version(void);

222 extern int lx_debug;
223 #define lx_print if (lx_debug) printf

225 #endif /* _KERNEL */
226 #endif /* _ASM */

228 #ifdef __cplusplus
229 }
230 #endif

232 #endif /* _LX_BRAND_H */
233 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_futex.h 1

**
 1480 Tue Jan 14 16:17:21 2014
new/usr/src/uts/common/brand/lx/sys/lx_futex.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_FUTEX_H
27 #define _SYS_LX_FUTEX_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #define FUTEX_WAIT 0
36 #define FUTEX_WAKE 1
37 #define FUTEX_FD 2
38 #define FUTEX_REQUEUE 3
39 #define FUTEX_CMP_REQUEUE 4
40 #define FUTEX_MAX_CMD FUTEX_CMP_REQUEUE

42 #ifdef _KERNEL
43 extern long lx_futex(uintptr_t addr, int cmd, int val, uintptr_t lx_timeout,
44 uintptr_t addr2, int val2);
45 extern void lx_futex_init(void);
46 extern int lx_futex_fini(void);
47 #endif /* _KERNEL */

49 #ifdef __cplusplus
50 }
51 #endif

53 #endif /* _SYS_LX_FUTEX_H */
54 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_impl.h 1

**
 1572 Tue Jan 14 16:17:21 2014
new/usr/src/uts/common/brand/lx/sys/lx_impl.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _LX_IMPL_H
27 #define _LX_IMPL_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <sys/types.h>

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 typedef int64_t (*llfcn_t)();

39 typedef struct lx_sysent {
40 int sy_flags;
41 char *sy_name;
42 llfcn_t sy_callc;
43 char sy_narg;
44 } lx_sysent_t;

46 typedef void (lx_systrace_f)(ulong_t, ulong_t, ulong_t, ulong_t, ulong_t,
47 ulong_t, ulong_t);

50 extern lx_sysent_t lx_sysent[];

52 extern lx_systrace_f *lx_systrace_entry_ptr;
53 extern lx_systrace_f *lx_systrace_return_ptr;

55 extern void lx_brand_systrace_enable(void);
56 extern void lx_brand_systrace_disable(void);

58 #ifdef __cplusplus
59 }
60 #endif

new/usr/src/uts/common/brand/lx/sys/lx_impl.h 2

62 #endif /* _LX_IMPL_H */
63 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_ldt.h 1

**
 2733 Tue Jan 14 16:17:21 2014
new/usr/src/uts/common/brand/lx/sys/lx_ldt.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LINUX_LDT_H
27 #define _SYS_LINUX_LDT_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <sys/segments.h>

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 struct ldt_info {
38 uint_t entry_number;
39 uint_t base_addr;
40 uint_t limit;
41 uint_t seg_32bit:1,
42 contents:2,
43 read_exec_only:1,
44 limit_in_pages:1,
45 seg_not_present:1,
46 useable:1;
47 };

49 #define LDT_INFO_EMPTY(info) \
50 ((info)->base_addr == 0 && (info)->limit == 0 && \
51 (info)->contents == 0 && (info)->read_exec_only == 1 && \
52 (info)->seg_32bit == 0 && (info)->limit_in_pages == 0 && \
53 (info)->seg_not_present == 1 && (info)->useable == 0)

55 #if defined(__amd64)
56 #define SETMODE(desc) (desc)->usd_long = SDP_SHORT;
57 #else
58 #define SETMODE(desc)
59 #endif

61 #define LDT_INFO_TO_DESC(info, desc) { \

new/usr/src/uts/common/brand/lx/sys/lx_ldt.h 2

62 USEGD_SETBASE(desc, (info)->base_addr); \
63 USEGD_SETLIMIT(desc, (info)->limit); \
64 (desc)->usd_type = ((info)->contents << 2) | \
65 ((info)->read_exec_only ^ 1) << 1 | 0x10; \
66 (desc)->usd_dpl = SEL_UPL; \
67 (desc)->usd_p = (info)->seg_not_present ^ 1; \
68 (desc)->usd_def32 = (info)->seg_32bit; \
69 (desc)->usd_gran = (info)->limit_in_pages; \
70 (desc)->usd_avl = (info)->useable; \
71 SETMODE(desc); \
72 }

74 #define DESC_TO_LDT_INFO(desc, info) { \
75 bzero((info), sizeof (*(info))); \
76 (info)->base_addr = USEGD_GETBASE(desc); \
77 (info)->limit = USEGD_GETLIMIT(desc); \
78 (info)->seg_not_present = (desc)->usd_p ^ 1; \
79 (info)->contents = ((desc)->usd_type >> 2) & 3; \
80 (info)->read_exec_only = (((desc)->usd_type >> 1) & 1) ^ 1; \
81 (info)->seg_32bit = (desc)->usd_def32; \
82 (info)->limit_in_pages = (desc)->usd_gran; \
83 (info)->useable = (desc)->usd_avl; \
84 }

86 extern void lx_set_gdt(int, user_desc_t *);
87 extern void lx_clear_gdt(int);

89 #ifdef __cplusplus
90 }
91 #endif

93 #endif /* _SYS_LINUX_LDT_H */
94 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_pid.h 1

**
 1769 Tue Jan 14 16:17:22 2014
new/usr/src/uts/common/brand/lx/sys/lx_pid.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LX_PID_H
27 #define _SYS_LX_PID_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <sys/note.h>

33 #ifdef __cplusplus
34 extern "C" {
35 #endif

37 #ifdef _KERNEL
38 struct lx_pid {
39 pid_t s_pid; /* the solaris pid and ... */
40 id_t s_tid; /* ... tid pair */
41 pid_t l_pid; /* the corresponding linux pid */
42 time_t l_start; /* birthday of this pid */
43 struct pid *l_pidp;
44 struct lx_pid *stol_next; /* link in stol hash table */
45 struct lx_pid *ltos_next; /* link in ltos hash table */
46 };

48 extern int lx_pid_assign(kthread_t *);
49 extern void lx_pid_reassign(kthread_t *);
50 extern void lx_pid_rele(pid_t, id_t);
51 extern pid_t lx_lpid_to_spair(pid_t, pid_t *, id_t *);
52 extern pid_t lx_lwp_ppid(klwp_t *, pid_t *, id_t *);
53 extern void lx_pid_init(void);
54 extern void lx_pid_fini(void);
55 #endif

57 #ifdef __cplusplus
58 }
59 #endif

61 #endif /* _SYS_LX_PID_H */

new/usr/src/uts/common/brand/lx/sys/lx_pid.h 2

62 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_ptm.h 1

**
 1234 Tue Jan 14 16:17:22 2014
new/usr/src/uts/common/brand/lx/sys/lx_ptm.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_PTM_LINUX_H
27 #define _SYS_PTM_LINUX_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #define LX_PTM_DRV "lx_ptm"
36 #define LX_PTM_MINOR_NODE "lx_ptmajor"

38 #define LX_PTM_DEV_TO_PTS(dev) (getminor(dev) - 1)

40 #ifdef __cplusplus
41 }
42 #endif

44 #endif /* _SYS_PTM_LINUX_H */
45 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_sched.h 1

**
 1482 Tue Jan 14 16:17:22 2014
new/usr/src/uts/common/brand/lx/sys/lx_sched.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #ifndef _SYS_LINUX_SCHED_H
27 #define _SYS_LINUX_SCHED_H

29 #pragma ident "%Z%%M% %I% %E% SMI"

31 #include <sys/procset.h>
32 #include <sys/priocntl.h>

34 #ifdef __cplusplus
35 extern "C" {
36 #endif

38 /*
39 * Linux scheduler policies.
40 */
41 #define LX_SCHED_OTHER 0
42 #define LX_SCHED_FIFO 1
43 #define LX_SCHED_RR 2

45 #define LX_PRI_MAX 99

47 typedef int l_pid_t;

49 struct lx_sched_param {
50 int lx_sched_prio;
51 };

53 extern int sched_setprocset(procset_t *, l_pid_t);
54 extern long do_priocntlsys(int, procset_t *, void *);

56 #ifdef __cplusplus
57 }
58 #endif

60 #endif /* _SYS_LINUX_SCHED_H */
61 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/sys/lx_syscalls.h 1

**
 1842 Tue Jan 14 16:17:22 2014
new/usr/src/uts/common/brand/lx/sys/lx_syscalls.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #ifndef _SYS_LINUX_SYSCALLS_H
28 #define _SYS_LINUX_SYSCALLS_H

30 #pragma ident "%Z%%M% %I% %E% SMI"

32 #ifdef __cplusplus
33 extern "C" {
34 #endif

36 #ifdef _KERNEL

38 extern long lx_brk();
39 extern long lx_getpid();
40 extern long lx_getppid();
41 extern long lx_clone();
42 extern long lx_kill();
43 extern long lx_tkill();
44 extern long lx_modify_ldt();
45 extern long lx_gettid();
46 extern long lx_futex();
47 extern long lx_get_thread_area();
48 extern long lx_sched_getparam();
49 extern long lx_sched_getscheduler();
50 extern long lx_sched_rr_get_interval();
51 extern long lx_sched_setparam();
52 extern long lx_sched_setscheduler();
53 extern long lx_set_thread_area();
54 extern long lx_set_tid_address();
55 extern long lx_setresgid();
56 extern long lx_setresgid16();
57 extern long lx_setresuid();
58 extern long lx_setresuid16();
59 extern long lx_sysinfo();
60 extern long lx_setgroups();

new/usr/src/uts/common/brand/lx/sys/lx_syscalls.h 2

62 #endif /* _KERNEL */

64 #ifdef __cplusplus
65 }
66 #endif

68 #endif /* _SYS_LINUX_SYSCALLS_H */
69 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_brk.c 1

**
 1701 Tue Jan 14 16:17:22 2014
new/usr/src/uts/common/brand/lx/syscall/lx_brk.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/errno.h>

32 /*
33 * The brk() system call needs to be in-kernel because Linux expects a call to
34 * brk(0) to return the current breakpoint. In Solaris, the process breakpoint
35 * is setup and managed by libc. Due to the way we link our libraries and the
36 * need for Linux to manage its own breakpoint, this has to remain in the
37 * kernel.
38 */
39 extern int brk(caddr_t);

41 long
42 lx_brk(caddr_t nva)
43 {
44 proc_t *p = curproc;
45 klwp_t *lwp = ttolwp(curthread);

47 if (nva != 0) {
48 (void) brk(nva);

50 /*
51 * Despite claims to the contrary in the manpage, when Linux
52 * brk() fails, errno is left unchanged.
53 */
54 lwp->lwp_errno = 0;
55 }
56 return ((long)(p->p_brkbase + p->p_brksize));
57 }
58 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_clone.c 1

**
 3676 Tue Jan 14 16:17:22 2014
new/usr/src/uts/common/brand/lx/syscall/lx_clone.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/errno.h>
31 #include <sys/brand.h>
32 #include <sys/lx_brand.h>
33 #include <sys/lx_ldt.h>

35 #define LX_CSIGNAL 0x000000ff
36 #define LX_CLONE_VM 0x00000100
37 #define LX_CLONE_FS 0x00000200
38 #define LX_CLONE_FILES 0x00000400
39 #define LX_CLONE_SIGHAND 0x00000800
40 #define LX_CLONE_PID 0x00001000
41 #define LX_CLONE_PTRACE 0x00002000
42 #define LX_CLONE_PARENT 0x00008000
43 #define LX_CLONE_THREAD 0x00010000
44 #define LX_CLONE_SYSVSEM 0x00040000
45 #define LX_CLONE_SETTLS 0x00080000
46 #define LX_CLONE_PARENT_SETTID 0x00100000
47 #define LX_CLONE_CHILD_CLEARTID 0x00200000
48 #define LX_CLONE_DETACH 0x00400000
49 #define LX_CLONE_CHILD_SETTID 0x01000000

51 /*
52 * Our lwp has already been created at this point, so this routine is
53 * responsible for setting up all the state needed to track this as a
54 * linux cloned thread.
55 */
56 /* ARGSUSED */
57 long
58 lx_clone(int flags, void *stkp, void *ptidp, void *ldtinfo, void *ctidp)
59 {
60 struct lx_lwp_data *lwpd = ttolxlwp(curthread);
61 struct ldt_info info;

new/usr/src/uts/common/brand/lx/syscall/lx_clone.c 2

62 struct user_desc descr;
63 int tls_index;
64 int entry = -1;
65 int signo;

67 signo = flags & LX_CSIGNAL;
68 if (signo < 0 || signo > MAXSIG)
69 return (set_errno(EINVAL));

71 if (flags & LX_CLONE_SETTLS) {
72 if (copyin((caddr_t)ldtinfo, &info, sizeof (info)))
73 return (set_errno(EFAULT));

75 if (LDT_INFO_EMPTY(&info))
76 return (set_errno(EINVAL));

78 entry = info.entry_number;
79 if (entry < GDT_TLSMIN || entry > GDT_TLSMAX)
80 return (set_errno(EINVAL));

82 tls_index = entry - GDT_TLSMIN;

84 /*
85 * Convert the user-space structure into a real x86
86 * descriptor and copy it into this LWP’s TLS array. We
87 * also load it into the GDT.
88 */
89 LDT_INFO_TO_DESC(&info, &descr);
90 bcopy(&descr, &lwpd->br_tls[tls_index], sizeof (descr));
91 lx_set_gdt(entry, &lwpd->br_tls[tls_index]);
92 } else {
93 tls_index = -1;
94 bzero(&descr, sizeof (descr));
95 }

97 lwpd->br_clear_ctidp =
98 (flags & LX_CLONE_CHILD_CLEARTID) ? ctidp : NULL;

100 if (signo && ! (flags & LX_CLONE_DETACH))
101 lwpd->br_signal = signo;
102 else
103 lwpd->br_signal = 0;

105 if (flags & LX_CLONE_THREAD)
106 lwpd->br_tgid = curthread->t_procp->p_pid;

108 if (flags & LX_CLONE_PARENT)
109 lwpd->br_ppid = 0;

111 if ((flags & LX_CLONE_CHILD_SETTID) && (ctidp != NULL) &&
112 (suword32(ctidp, lwpd->br_pid) != 0)) {
113 if (entry >= 0)
114 lx_clear_gdt(entry);
115 return (set_errno(EFAULT));
116 }
117 if ((flags & LX_CLONE_PARENT_SETTID) && (ptidp != NULL) &&
118 (suword32(ptidp, lwpd->br_pid) != 0)) {
119 if (entry >= 0)
120 lx_clear_gdt(entry);
121 return (set_errno(EFAULT));
122 }

124 return (lwpd->br_pid);
125 }

127 long

new/usr/src/uts/common/brand/lx/syscall/lx_clone.c 3

128 lx_set_tid_address(int *tidp)
129 {
130 struct lx_lwp_data *lwpd = ttolxlwp(curthread);

132 lwpd->br_clear_ctidp = tidp;

134 return (lwpd->br_pid);
135 }
136 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_futex.c 1

**
 12309 Tue Jan 14 16:17:23 2014
new/usr/src/uts/common/brand/lx/syscall/lx_futex.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/errno.h>
31 #include <sys/debug.h>
32 #include <vm/as.h>
33 #include <vm/seg.h>
34 #include <vm/seg_vn.h>
35 #include <vm/page.h>
36 #include <sys/mman.h>
37 #include <sys/timer.h>
38 #include <sys/condvar.h>
39 #include <sys/inttypes.h>
40 #include <sys/lx_futex.h>

42 /*
43 * Futexes are a Linux-specific implementation of inter-process mutexes.
44 * They are designed to use shared memory for simple, uncontested
45 * operations, and rely on the kernel to resolve any contention issues.
46 *
47 * Most of the information in this section comes from the paper "Futexes
48 * Are Tricky", by Ulrich Drepper. This paper is currently available at:
49 * http://people.redhat.com/~drepper/futex.pdf.
50 *
51 * A futex itself a 4-byte integer, which must be 4-byte aligned. The
52 * value of this integer is expected to be modified using user-level atomic
53 * operations. The futex(4) design itself does not impose any semantic
54 * constraints on the value stored in the futex; it is up to the
55 * application to define its own protocol.
56 *
57 * When the application decides that kernel intervention is required, it
58 * will use the futex(2) system call. There are 5 different operations
59 * that can be performed on a futex, using this system call. Since this
60 * interface has evolved over time, there are several different prototypes

new/usr/src/uts/common/brand/lx/syscall/lx_futex.c 2

61 * available to the user. Fortunately, there is only a single kernel-level
62 * interface:
63 *
64 * long sys_futex(void *futex1, int cmd, int val1,
65 * struct timespec *timeout, void *futex2, int val2)
66 *
67 * The kernel-level operations that may be performed on a futex are:
68 *
69 * FUTEX_WAIT
70 *
71 * Atomically verify that futex1 contains the value val1. If it
72 * doesn’t, return EWOULDBLOCK. If it does contain the expected
73 * value, the thread will sleep until somebody performs a FUTEX_WAKE
74 * on the futex. The caller may also specify a timeout, indicating
75 * the maximum time the thread should sleep. If the timer expires,
76 * the call returns ETIMEDOUT. If the thread is awoken with a signal,
77 * the call returns EINTR. Otherwise, the call returns 0.
78 *
79 * FUTEX_WAKE
80 *
81 * Wake up val1 processes that are waiting on futex1. The call
82 * returns the number of blocked threads that were woken up.
83 *
84 * FUTEX_CMP_REQUEUE
85 *
86 * If the value stored in futex1 matches that passed in in val2, wake
87 * up val1 processes that are waiting on futex1. Otherwise, return
88 * EAGAIN.
89 *
90 * If there are more than val1 threads waiting on the futex, remove
91 * the remaining threads from this futex, and requeue them on futex2.
92 * The caller can limit the number of threads being requeued by
93 * encoding an integral numerical value in the position usually used
94 * for the timeout pointer.
95 *
96 * The call returns the number of blocked threads that were woken up
97 * or requeued.
98 *
99 * FUTEX_REQUEUE
100 *
101 * Identical to FUTEX_CMP_REQUEUE except that it does not use val2.
102 * This command has been declared broken and obsolete, but we still
103 * need to support it.
104 *
105 * FUTEX_FD
106 *
107 * Return a file descriptor, which can be used to refer to the futex.
108 * We don’t support this operation.
109 */

111 /*
112 * This structure is used to track all the threads currently waiting on a
113 * futex. There is one fwaiter_t for each blocked thread. We store all
114 * fwaiter_t’s in a hash structure, indexed by the memid_t of the integer
115 * containing the futex’s value.
116 *
117 * At the moment, all fwaiter_t’s for a single futex are simply dumped into
118 * the hash bucket. If futex contention ever becomes a hot path, we can
119 * chain a single futex’s waiters together.
120 */
121 typedef struct fwaiter {
122 memid_t fw_memid; /* memid of the user-space futex */
123 kcondvar_t fw_cv; /* cond var */
124 struct fwaiter *fw_next; /* hash queue */
125 struct fwaiter *fw_prev; /* hash queue */
126 volatile int fw_woken;

new/usr/src/uts/common/brand/lx/syscall/lx_futex.c 3

127 } fwaiter_t;

129 #define MEMID_COPY(s, d) \
130 { (d)->val[0] = (s)->val[0]; (d)->val[1] = (s)->val[1]; }
131 #define MEMID_EQUAL(s, d) \
132 ((d)->val[0] == (s)->val[0] && (d)->val[1] == (s)->val[1])

134 /* Borrowed from the page freelist hash code. */
135 #define HASH_SHIFT_SZ 7
136 #define HASH_SIZE (1 << HASH_SHIFT_SZ)
137 #define HASH_FUNC(id) \
138 ((((uintptr_t)((id)->val[1]) >> PAGESHIFT) + \
139 ((uintptr_t)((id)->val[1]) >> (PAGESHIFT + HASH_SHIFT_SZ)) + \
140 ((uintptr_t)((id)->val[0]) >> 3) + \
141 ((uintptr_t)((id)->val[0]) >> (3 + HASH_SHIFT_SZ)) + \
142 ((uintptr_t)((id)->val[0]) >> (3 + 2 * HASH_SHIFT_SZ))) & \
143 (HASH_SIZE - 1))

145 static fwaiter_t *futex_hash[HASH_SIZE];
146 static kmutex_t futex_hash_lock[HASH_SIZE];

148 static void
149 futex_hashin(fwaiter_t *fwp)
150 {
151 int index;

153 index = HASH_FUNC(&fwp->fw_memid);
154 ASSERT(MUTEX_HELD(&futex_hash_lock[index]));

156 fwp->fw_prev = NULL;
157 fwp->fw_next = futex_hash[index];
158 if (fwp->fw_next)
159 fwp->fw_next->fw_prev = fwp;
160 futex_hash[index] = fwp;
161 }

163 static void
164 futex_hashout(fwaiter_t *fwp)
165 {
166 int index;

168 index = HASH_FUNC(&fwp->fw_memid);
169 ASSERT(MUTEX_HELD(&futex_hash_lock[index]));

171 if (fwp->fw_prev)
172 fwp->fw_prev->fw_next = fwp->fw_next;
173 if (fwp->fw_next)
174 fwp->fw_next->fw_prev = fwp->fw_prev;
175 if (futex_hash[index] == fwp)
176 futex_hash[index] = fwp->fw_next;

178 fwp->fw_prev = NULL;
179 fwp->fw_next = NULL;
180 }

182 /*
183 * Go to sleep until somebody does a WAKE operation on this futex, we get a
184 * signal, or the timeout expires.
185 */
186 static int
187 futex_wait(memid_t *memid, caddr_t addr, int val, timespec_t *timeout)
188 {
189 int err, ret;
190 int32_t curval;
191 fwaiter_t fw;
192 int index;

new/usr/src/uts/common/brand/lx/syscall/lx_futex.c 4

194 fw.fw_woken = 0;
195 MEMID_COPY(memid, &fw.fw_memid);
196 cv_init(&fw.fw_cv, NULL, CV_DEFAULT, NULL);

198 index = HASH_FUNC(&fw.fw_memid);
199 mutex_enter(&futex_hash_lock[index]);

201 if (fuword32(addr, (uint32_t *)&curval)) {
202 err = set_errno(EFAULT);
203 goto out;
204 }
205 if (curval != val) {
206 err = set_errno(EWOULDBLOCK);
207 goto out;
208 }

210 futex_hashin(&fw);

212 err = 0;
213 while ((fw.fw_woken == 0) && (err == 0)) {
214 ret = cv_waituntil_sig(&fw.fw_cv, &futex_hash_lock[index],
215 timeout, timechanged);
216 if (ret < 0)
217 err = set_errno(ETIMEDOUT);
218 else if (ret == 0)
219 err = set_errno(EINTR);
220 }

222 /*
223 * The futex is normally hashed out in wakeup. If we timed out or
224 * got a signal, we need to hash it out here instead.
225 */
226 if (fw.fw_woken == 0)
227 futex_hashout(&fw);

229 out:
230 mutex_exit(&futex_hash_lock[index]);

232 return (err);
233 }

235 /*
236 * Wake up to wake_threads threads that are blocked on the futex at memid.
237 */
238 static int
239 futex_wake(memid_t *memid, int wake_threads)
240 {
241 fwaiter_t *fwp, *next;
242 int index;
243 int ret = 0;

245 index = HASH_FUNC(memid);

247 mutex_enter(&futex_hash_lock[index]);

249 for (fwp = futex_hash[index]; fwp && ret < wake_threads; fwp = next) {
250 next = fwp->fw_next;
251 if (MEMID_EQUAL(&fwp->fw_memid, memid)) {
252 futex_hashout(fwp);
253 fwp->fw_woken = 1;
254 cv_signal(&fwp->fw_cv);
255 ret++;
256 }
257 }

new/usr/src/uts/common/brand/lx/syscall/lx_futex.c 5

259 mutex_exit(&futex_hash_lock[index]);

261 return (ret);
262 }

264 /*
265 * Wake up to wake_threads waiting on the futex at memid. If there are
266 * more than that many threads waiting, requeue the remaining threads on
267 * the futex at requeue_memid.
268 */
269 static int
270 futex_requeue(memid_t *memid, memid_t *requeue_memid, int wake_threads,
271 ulong_t requeue_threads, caddr_t addr, int *cmpval)
272 {
273 fwaiter_t *fwp, *next;
274 int index1, index2;
275 int ret = 0;
276 int32_t curval;
277 kmutex_t *l1, *l2;

279 /*
280 * To ensure that we don’t miss a wakeup if the value of cmpval
281 * changes, we need to grab locks on both the original and new hash
282 * buckets. To avoid deadlock, we always grab the lower-indexed
283 * lock first.
284 */
285 index1 = HASH_FUNC(memid);
286 index2 = HASH_FUNC(requeue_memid);

288 if (index1 == index2) {
289 l1 = &futex_hash_lock[index1];
290 l2 = NULL;
291 } else if (index1 < index2) {
292 l1 = &futex_hash_lock[index1];
293 l2 = &futex_hash_lock[index2];
294 } else {
295 l1 = &futex_hash_lock[index2];
296 l2 = &futex_hash_lock[index1];
297 }

299 mutex_enter(l1);
300 if (l2 != NULL)
301 mutex_enter(l2);

303 if (cmpval != NULL) {
304 if (fuword32(addr, (uint32_t *)&curval)) {
305 ret = -EFAULT;
306 goto out;
307 }
308 if (curval != *cmpval) {
309 ret = -EAGAIN;
310 goto out;
311 }
312 }

314 for (fwp = futex_hash[index1]; fwp; fwp = next) {
315 next = fwp->fw_next;
316 if (!MEMID_EQUAL(&fwp->fw_memid, memid))
317 continue;

319 futex_hashout(fwp);
320 if (ret++ < wake_threads) {
321 fwp->fw_woken = 1;
322 cv_signal(&fwp->fw_cv);
323 } else {
324 MEMID_COPY(requeue_memid, &fwp->fw_memid);

new/usr/src/uts/common/brand/lx/syscall/lx_futex.c 6

325 futex_hashin(fwp);

327 if ((ret - wake_threads) >= requeue_threads)
328 break;
329 }
330 }

332 out:
333 if (l2 != NULL)
334 mutex_exit(l2);
335 mutex_exit(l1);

337 if (ret < 0)
338 return (set_errno(-ret));
339 return (ret);
340 }

342 /*
343 * Copy in the relative timeout provided by the application and convert it
344 * to an absolute timeout.
345 */
346 static int
347 get_timeout(void *lx_timeout, timestruc_t *timeout)
348 {
349 timestruc_t now;

351 if (get_udatamodel() == DATAMODEL_NATIVE) {
352 if (copyin(lx_timeout, timeout, sizeof (timestruc_t)))
353 return (EFAULT);
354 }
355 #ifdef _SYSCALL32_IMPL
356 else {
357 timestruc32_t timeout32;
358 if (copyin(lx_timeout, &timeout32, sizeof (timestruc32_t)))
359 return (EFAULT);
360 timeout->tv_sec = (time_t)timeout32.tv_sec;
361 timeout->tv_nsec = timeout32.tv_nsec;
362 }
363 #endif
364 gethrestime(&now);

366 if (itimerspecfix(timeout))
367 return (EINVAL);

369 timespecadd(timeout, &now);
370 return (0);
371 }

373 long
374 lx_futex(uintptr_t addr, int cmd, int val, uintptr_t lx_timeout,
375 uintptr_t addr2, int val2)
376 {
377 struct as *as = curproc->p_as;
378 memid_t memid, requeue_memid;
379 timestruc_t timeout;
380 timestruc_t *tptr = NULL;
381 int requeue_threads = NULL;
382 int *requeue_cmp = NULL;
383 int rval = 0;

385 /* must be aligned on int boundary */
386 if (addr & 0x3)
387 return (set_errno(EINVAL));

389 /* Sanity check the futex command */
390 if (cmd < 0 || cmd > FUTEX_MAX_CMD)

new/usr/src/uts/common/brand/lx/syscall/lx_futex.c 7

391 return (set_errno(EINVAL));

393 /* Copy in the timeout structure from userspace. */
394 if (cmd == FUTEX_WAIT && lx_timeout != NULL) {
395 rval = get_timeout((timespec_t *)lx_timeout, &timeout);
396 if (rval != 0)
397 return (set_errno(rval));
398 tptr = &timeout;
399 }

401 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE) {
402 if (cmd == FUTEX_CMP_REQUEUE)
403 requeue_cmp = &val2;

405 /*
406 * lx_timeout is nominally a pointer to a userspace
407 * address. For these two commands, it actually contains
408 * an integer which indicates the maximum number of threads
409 * to requeue. This is horrible, and I’m sorry.
410 */
411 requeue_threads = (int)lx_timeout;
412 }

414 /*
415 * Translate the process-specific, user-space futex virtual
416 * address(es) to universal memid.
417 */
418 rval = as_getmemid(as, (void *)addr, &memid);
419 if (rval != 0)
420 return (set_errno(rval));

422 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE) {
423 rval = as_getmemid(as, (void *)addr2, &requeue_memid);
424 if (rval)
425 return (set_errno(rval));
426 }

428 switch (cmd) {
429 case FUTEX_WAIT:
430 rval = futex_wait(&memid, (void *)addr, val, tptr);
431 break;

433 case FUTEX_WAKE:
434 rval = futex_wake(&memid, val);
435 break;

437 case FUTEX_CMP_REQUEUE:
438 case FUTEX_REQUEUE:
439 rval = futex_requeue(&memid, &requeue_memid, val,
440 requeue_threads, (void *)addr2, requeue_cmp);

442 break;
443 }

445 return (rval);
446 }

448 void
449 lx_futex_init(void)
450 {
451 int i;

453 for (i = 0; i < HASH_SIZE; i++)
454 mutex_init(&futex_hash_lock[i], NULL, MUTEX_DEFAULT, NULL);
455 bzero(futex_hash, sizeof (futex_hash));
456 }

new/usr/src/uts/common/brand/lx/syscall/lx_futex.c 8

458 int
459 lx_futex_fini(void)
460 {
461 int i, err;

463 err = 0;
464 for (i = 0; (err == 0) && (i < HASH_SIZE); i++) {
465 mutex_enter(&futex_hash_lock[i]);
466 if (futex_hash[i] != NULL)
467 err = EBUSY;
468 mutex_exit(&futex_hash_lock[i]);
469 }
470 return (err);
471 }
472 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_getpid.c 1

**
 1638 Tue Jan 14 16:17:23 2014
new/usr/src/uts/common/brand/lx/syscall/lx_getpid.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <sys/zone.h>
29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/thread.h>
32 #include <sys/cpuvar.h>
33 #include <sys/brand.h>
34 #include <sys/lx_brand.h>
35 #include <sys/lx_pid.h>

37 /*
38 * return the pid
39 */
40 long
41 lx_getpid()
42 {
43 lx_lwp_data_t *lwpd = ttolxlwp(curthread);
44 long rv;

46 if (curproc->p_pid == curproc->p_zone->zone_proc_initpid) {
47 rv = 1;
48 } else {
49 ASSERT(lwpd != NULL);
50 rv = lwpd->br_tgid;
51 }

53 return (rv);
54 }

56 /*
57 * return the parent pid
58 */
59 long
60 lx_getppid(void)
61 {

new/usr/src/uts/common/brand/lx/syscall/lx_getpid.c 2

62 return (lx_lwp_ppid(ttolwp(curthread), NULL, NULL));
63 }

65 /*
66 * return the thread id
67 */
68 long
69 lx_gettid(void)
70 {
71 lx_lwp_data_t *lwpd = ttolxlwp(curthread);

73 return (lwpd->br_pid);
74 }
75 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_id.c 1

**
 7156 Tue Jan 14 16:17:23 2014
new/usr/src/uts/common/brand/lx/syscall/lx_id.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <sys/types.h>
31 #include <sys/systm.h>
32 #include <sys/errno.h>
33 #include <sys/zone.h>
34 #include <sys/cred_impl.h>
35 #include <sys/policy.h>

37 typedef ushort_t l_uid16_t;
38 typedef ushort_t l_gid16_t;
39 typedef uint_t l_uid_t;
40 typedef uint_t l_gid_t;

42 #define LINUX_UID16_TO_UID32(uid16) \
43 (((uid16) == (l_uid16_t)-1) ? ((l_uid_t)-1) : (l_uid_t)(uid16))

45 #define LINUX_GID16_TO_GID32(gid16) \
46 (((gid16) == (l_gid16_t)-1) ? ((l_gid_t)-1) : (l_gid_t)(gid16))

48 #define LX_NGROUPS_MAX 32
49 extern int setgroups(int, gid_t *);

51 /*
52 * This function is based on setreuid in common/syscall/uid.c and exists
53 * because Solaris does not have a way to explicitly set the saved uid (suid)
54 * from any other system call.
55 */
56 long
57 lx_setresuid(l_uid_t ruid, l_uid_t euid, l_uid_t suid)
58 {
59 proc_t *p;
60 int error = 0;

new/usr/src/uts/common/brand/lx/syscall/lx_id.c 2

61 int do_nocd = 0;
62 int uidchge = 0;
63 uid_t oldruid = ruid;
64 cred_t *cr, *newcr;
65 zoneid_t zoneid = getzoneid();

67 if ((ruid != -1 && (ruid > MAXUID)) ||
68 (euid != -1 && (euid > MAXUID)) ||
69 (suid != -1 && (suid > MAXUID))) {
70 error = EINVAL;
71 goto done;
72 }

74 /*
75 * Need to pre-allocate the new cred structure before grabbing
76 * the p_crlock mutex.
77 */
78 newcr = cralloc();

80 p = ttoproc(curthread);

82 retry:
83 mutex_enter(&p->p_crlock);
84 cr = p->p_cred;

86 if (ruid != -1 &&
87 ruid != cr->cr_ruid && ruid != cr->cr_uid &&
88 ruid != cr->cr_suid && secpolicy_allow_setid(cr, ruid, B_FALSE)) {
89 error = EPERM;
90 } else if (euid != -1 &&
91 euid != cr->cr_ruid && euid != cr->cr_uid &&
92 euid != cr->cr_suid && secpolicy_allow_setid(cr, euid, B_FALSE)) {
93 error = EPERM;
94 } else if (suid != -1 &&
95 suid != cr->cr_ruid && suid != cr->cr_uid &&
96 suid != cr->cr_suid && secpolicy_allow_setid(cr, suid, B_FALSE)) {
97 error = EPERM;
98 } else {
99 if (!uidchge && ruid != -1 && cr->cr_ruid != ruid) {
100 /*
101 * The ruid of the process is going to change. In order
102 * to avoid a race condition involving the
103 * process count associated with the newly given ruid,
104 * we increment the count before assigning the
105 * credential to the process.
106 * To do that, we’ll have to take pidlock, so we first
107 * release p_crlock.
108 */
109 mutex_exit(&p->p_crlock);
110 uidchge = 1;
111 mutex_enter(&pidlock);
112 upcount_inc(ruid, zoneid);
113 mutex_exit(&pidlock);
114 /*
115 * As we released p_crlock we can’t rely on the cr
116 * we read. So retry the whole thing.
117 */
118 goto retry;
119 }
120 crhold(cr);
121 crcopy_to(cr, newcr);
122 p->p_cred = newcr;

124 if (euid != -1)
125 newcr->cr_uid = euid;
126 if (suid != -1)

new/usr/src/uts/common/brand/lx/syscall/lx_id.c 3

127 newcr->cr_suid = suid;
128 if (ruid != -1) {
129 oldruid = newcr->cr_ruid;
130 newcr->cr_ruid = ruid;
131 ASSERT(ruid != oldruid ? uidchge : 1);
132 }

134 /*
135 * A process that gives up its privilege
136 * must be marked to produce no core dump.
137 */
138 if ((cr->cr_uid != newcr->cr_uid ||
139 cr->cr_ruid != newcr->cr_ruid ||
140 cr->cr_suid != newcr->cr_suid))
141 do_nocd = 1;

143 crfree(cr);
144 }
145 mutex_exit(&p->p_crlock);

147 /*
148 * We decrement the number of processes associated with the oldruid
149 * to match the increment above, even if the ruid of the process
150 * did not change or an error occurred (oldruid == uid).
151 */
152 if (uidchge) {
153 ASSERT(oldruid != -1 && ruid != -1);
154 mutex_enter(&pidlock);
155 upcount_dec(oldruid, zoneid);
156 mutex_exit(&pidlock);
157 }

159 if (error == 0) {
160 if (do_nocd) {
161 mutex_enter(&p->p_lock);
162 p->p_flag |= SNOCD;
163 mutex_exit(&p->p_lock);
164 }
165 crset(p, newcr); /* broadcast to process threads */
166 goto done;
167 }
168 crfree(newcr);
169 done:
170 if (error)
171 return (set_errno(error));
172 else
173 return (0);
174 }

176 long
177 lx_setresuid16(l_uid16_t ruid16, l_uid16_t euid16, l_uid16_t suid16)
178 {
179 long rval;

181 rval = lx_setresuid(
182 LINUX_UID16_TO_UID32(ruid16),
183 LINUX_UID16_TO_UID32(euid16),
184 LINUX_UID16_TO_UID32(suid16));

186 return (rval);
187 }

189 /*
190 * This function is based on setregid in common/syscall/gid.c
191 */
192 long

new/usr/src/uts/common/brand/lx/syscall/lx_id.c 4

193 lx_setresgid(l_gid_t rgid, l_gid_t egid, l_gid_t sgid)
194 {
195 proc_t *p;
196 int error = 0;
197 int do_nocd = 0;
198 cred_t *cr, *newcr;

200 if ((rgid != -1 && (rgid > MAXUID)) ||
201 (egid != -1 && (egid > MAXUID)) ||
202 (sgid != -1 && (sgid > MAXUID))) {
203 error = EINVAL;
204 goto done;
205 }

207 /*
208 * Need to pre-allocate the new cred structure before grabbing
209 * the p_crlock mutex.
210 */
211 newcr = cralloc();

213 p = ttoproc(curthread);
214 mutex_enter(&p->p_crlock);
215 cr = p->p_cred;

217 if (rgid != -1 &&
218 rgid != cr->cr_rgid && rgid != cr->cr_gid &&
219 rgid != cr->cr_sgid && secpolicy_allow_setid(cr, -1, B_FALSE)) {
220 error = EPERM;
221 } else if (egid != -1 &&
222 egid != cr->cr_rgid && egid != cr->cr_gid &&
223 egid != cr->cr_sgid && secpolicy_allow_setid(cr, -1, B_FALSE)) {
224 error = EPERM;
225 } else if (sgid != -1 &&
226 sgid != cr->cr_rgid && sgid != cr->cr_gid &&
227 sgid != cr->cr_sgid && secpolicy_allow_setid(cr, -1, B_FALSE)) {
228 error = EPERM;
229 } else {
230 crhold(cr);
231 crcopy_to(cr, newcr);
232 p->p_cred = newcr;

234 if (egid != -1)
235 newcr->cr_gid = egid;
236 if (sgid != -1)
237 newcr->cr_sgid = sgid;
238 if (rgid != -1)
239 newcr->cr_rgid = rgid;

241 /*
242 * A process that gives up its privilege
243 * must be marked to produce no core dump.
244 */
245 if ((cr->cr_gid != newcr->cr_gid ||
246 cr->cr_rgid != newcr->cr_rgid ||
247 cr->cr_sgid != newcr->cr_sgid))
248 do_nocd = 1;

250 crfree(cr);
251 }
252 mutex_exit(&p->p_crlock);

254 if (error == 0) {
255 if (do_nocd) {
256 mutex_enter(&p->p_lock);
257 p->p_flag |= SNOCD;
258 mutex_exit(&p->p_lock);

new/usr/src/uts/common/brand/lx/syscall/lx_id.c 5

259 }
260 crset(p, newcr); /* broadcast to process threads */
261 goto done;
262 }
263 crfree(newcr);
264 done:
265 if (error)
266 return (set_errno(error));
267 else
268 return (0);
269 }

271 long
272 lx_setresgid16(l_gid16_t rgid16, l_gid16_t egid16, l_gid16_t sgid16)
273 {
274 long rval;

276 rval = lx_setresgid(
277 LINUX_GID16_TO_GID32(rgid16),
278 LINUX_GID16_TO_GID32(egid16),
279 LINUX_GID16_TO_GID32(sgid16));

281 return (rval);
282 }

284 /*
285 * Linux defines NGROUPS_MAX to be 32, but on Solaris it is only 16. We employ
286 * the terrible hack below so that tests may proceed, if only on DEBUG kernels.
287 */
288 long
289 lx_setgroups(int ngroups, gid_t *grouplist)
290 {
291 #ifdef DEBUG
292 if (ngroups > ngroups_max && ngroups <= LX_NGROUPS_MAX)
293 ngroups = ngroups_max;
294 #endif /* DEBUG */

296 return (setgroups(ngroups, grouplist));
297 }
298 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_kill.c 1

**
 6436 Tue Jan 14 16:17:23 2014
new/usr/src/uts/common/brand/lx/syscall/lx_kill.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

30 #include <sys/types.h>
31 #include <sys/systm.h>
32 #include <sys/errno.h>
33 #include <sys/proc.h>
34 #include <sys/zone.h>
35 #include <sys/thread.h>
36 #include <sys/signal.h>
37 #include <sys/brand.h>
38 #include <sys/lx_brand.h>
39 #include <sys/lx_pid.h>
40 #include <lx_signum.h>

42 extern int kill(pid_t, int);

44 /*
45 * Check if it is legal to send this signal to the init process. Linux
46 * kill(2) semantics dictate that no _unhandled_ signal may be sent to pid
47 * 1.
48 */
49 static int
50 init_sig_check(int sig, pid_t pid)
51 {
52 proc_t *p;
53 int rv = 0;

55 mutex_enter(&pidlock);

57 if (((p = prfind(pid)) == NULL) || (p->p_stat == SIDL))
58 rv = ESRCH;
59 else if (sig && (sigismember(&cantmask, sig) ||
60 (PTOU(p)->u_signal[sig-1] == SIG_DFL) ||
61 (PTOU(p)->u_signal[sig-1] == SIG_IGN)))

new/usr/src/uts/common/brand/lx/syscall/lx_kill.c 2

62 rv = EPERM;

64 mutex_exit(&pidlock);

66 return (rv);
67 }

69 long
70 lx_tkill(pid_t pid, int lx_sig)
71 {
72 kthread_t *t;
73 proc_t *pp;
74 pid_t initpid;
75 sigqueue_t *sqp;
76 struct lx_lwp_data *br = ttolxlwp(curthread);
77 int tid = 1; /* default tid */
78 int sig, rv;

80 /*
81 * Unlike kill(2), Linux tkill(2) doesn’t allow signals to
82 * be sent to process IDs <= 0 as it doesn’t overlay any special
83 * semantics on the pid.
84 */
85 if ((pid <= 0) || ((lx_sig < 0) || (lx_sig >= LX_NSIG)) ||
86 ((sig = ltos_signo[lx_sig]) < 0))
87 return (set_errno(EINVAL));

89 /*
90 * If the Linux pid is 1, translate the pid to the actual init
91 * pid for the zone. Note that Linux dictates that no unhandled
92 * signals may be sent to init, so check for that, too.
93 *
94 * Otherwise, extract the tid and real pid from the Linux pid.
95 */
96 initpid = curproc->p_zone->zone_proc_initpid;
97 if (pid == 1)
98 pid = initpid;
99 if ((pid == initpid) && ((rv = init_sig_check(sig, pid)) != 0))
100 return (set_errno(rv));
101 else if (lx_lpid_to_spair(pid, &pid, &tid) < 0)
102 return (set_errno(ESRCH));

104 sqp = kmem_zalloc(sizeof (sigqueue_t), KM_SLEEP);

106 /*
107 * Find the process for the passed pid...
108 */
109 mutex_enter(&pidlock);
110 if (((pp = prfind(pid)) == NULL) || (pp->p_stat == SIDL)) {
111 mutex_exit(&pidlock);
112 rv = set_errno(ESRCH);
113 goto free_and_exit;
114 }
115 mutex_enter(&pp->p_lock);
116 mutex_exit(&pidlock);

118 /*
119 * Deny permission to send the signal if either of the following
120 * is true:
121 *
122 * + The signal is SIGCONT and the target pid is not in the same
123 * session as the sender
124 *
125 * + prochasprocperm() shows the user lacks sufficient permission
126 * to send the signal to the target pid
127 */

new/usr/src/uts/common/brand/lx/syscall/lx_kill.c 3

128 if (((sig == SIGCONT) && (pp->p_sessp != curproc->p_sessp)) ||
129 (!prochasprocperm(pp, curproc, CRED()))) {
130 mutex_exit(&pp->p_lock);
131 rv = set_errno(EPERM);
132 goto free_and_exit;
133 }

135 /* check for the tid */
136 if ((t = idtot(pp, tid)) == NULL) {
137 mutex_exit(&pp->p_lock);
138 rv = set_errno(ESRCH);
139 goto free_and_exit;
140 }

142 /* a signal of 0 means just check for the existence of the thread */
143 if (lx_sig == 0) {
144 mutex_exit(&pp->p_lock);
145 rv = 0;
146 goto free_and_exit;
147 }

149 sqp->sq_info.si_signo = sig;
150 sqp->sq_info.si_code = SI_LWP;
151 sqp->sq_info.si_pid = br->br_pid;
152 sqp->sq_info.si_uid = crgetruid(CRED());
153 sigaddqa(pp, t, sqp);

155 mutex_exit(&pp->p_lock);

157 return (0);

159 free_and_exit:
160 kmem_free(sqp, sizeof (sigqueue_t));
161 return (rv);
162 }

164 long
165 lx_kill(pid_t lx_pid, int lx_sig)
166 {
167 pid_t s_pid, initpid;
168 sigsend_t v;
169 zone_t *zone = curproc->p_zone;
170 struct proc *p;
171 int err, sig, nfound;

173 if ((lx_sig < 0) || (lx_sig >= LX_NSIG) ||
174 ((sig = ltos_signo[lx_sig]) < 0))
175 return (set_errno(EINVAL));

177 /*
178 * Since some linux apps rely on init(1M) having PID 1, we
179 * transparently translate 1 to the real init(1M)’s pid. We then
180 * check to be sure that it is legal for this process to send this
181 * signal to init(1M).
182 */
183 initpid = zone->zone_proc_initpid;
184 if (lx_pid == 1 || lx_pid == -1) {
185 s_pid = initpid;
186 } else if (lx_pid == 0) {
187 s_pid = 0;
188 } else if (lx_pid > 0) {
189 if (lx_lpid_to_spair(lx_pid, &s_pid, NULL) != 0) {
190 /*
191 * If we didn’t find this pid that means it doesn’t
192 * exist in this zone.
193 */

new/usr/src/uts/common/brand/lx/syscall/lx_kill.c 4

194 return (set_errno(ESRCH));
195 }
196 } else {
197 ASSERT(lx_pid < 0);
198 if (lx_lpid_to_spair(-lx_pid, &s_pid, NULL) != 0) {
199 /*
200 * If we didn’t find this pid it means that the
201 * process group leader doesn’t exist in this zone.
202 * In this case assuming that the Linux pid is
203 * the same as the Solaris pid will get us the
204 * correct behavior.
205 */
206 s_pid = -lx_pid;
207 }
208 }

210 if ((s_pid == initpid) && ((err = init_sig_check(sig, s_pid)) != 0))
211 return (set_errno(err));

213 /*
214 * For individual processes, kill() semantics are the same between
215 * Solaris and Linux.
216 */
217 if (lx_pid >= 0)
218 return (kill(s_pid, sig));

220 /*
221 * In Solaris, sending a signal to -pid means "send a signal to
222 * everyone in process group pid." In Linux it means "send a
223 * signal to everyone in the group other than init." Sending a
224 * signal to -1 means "send a signal to every process except init
225 * and myself."
226 */

228 bzero(&v, sizeof (v));
229 v.sig = sig;
230 v.checkperm = 1;
231 v.sicode = SI_USER;
232 err = 0;

234 mutex_enter(&pidlock);

236 p = (lx_pid == -1) ? practive : pgfind(s_pid);
237 nfound = 0;
238 while (err == 0 && p != NULL) {
239 if ((p->p_zone == zone) && (p->p_stat != SIDL) &&
240 (p->p_pid != initpid) && (lx_pid < -1 || p != curproc)) {
241 nfound++;
242 err = sigsendproc(p, &v);
243 }

245 p = (lx_pid == -1) ? p->p_next : p->p_pglink;
246 }
247 mutex_exit(&pidlock);
248 if (nfound == 0)
249 err = ESRCH;
250 else if (err == 0 && v.perm == 0)
251 err = EPERM;
252 return (err ? set_errno(err) : 0);
253 }
254 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_modify_ldt.c 1

**
 2644 Tue Jan 14 16:17:23 2014
new/usr/src/uts/common/brand/lx/syscall/lx_modify_ldt.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

27 #pragma ident "%Z%%M% %I% %E% SMI"

29 #include <sys/types.h>
30 #include <sys/systm.h>
31 #include <sys/errno.h>
32 #include <sys/segments.h>
33 #include <sys/archsystm.h>
34 #include <sys/proc.h>
35 #include <sys/sysi86.h>
36 #include <sys/cmn_err.h>
37 #include <sys/lx_ldt.h>

39 /*
40 * Read the ldt_info structure in from the Linux app, convert it to an ssd
41 * structure, and then call setdscr() to do all the heavy lifting.
42 */
43 static int
44 write_ldt(void *data, ulong_t count)
45 {
46 user_desc_t usd;
47 struct ssd ssd;
48 struct ldt_info ldt_inf;
49 proc_t *pp = curthread->t_procp;
50 int err;

52 if (count != sizeof (ldt_inf))
53 return (set_errno(EINVAL));

55 if (copyin(data, &ldt_inf, sizeof (ldt_inf)))
56 return (set_errno(EFAULT));

58 if (ldt_inf.entry_number >= MAXNLDT)
59 return (set_errno(EINVAL));

61 LDT_INFO_TO_DESC(&ldt_inf, &usd);

new/usr/src/uts/common/brand/lx/syscall/lx_modify_ldt.c 2

62 usd_to_ssd(&usd, &ssd, SEL_LDT(ldt_inf.entry_number));

64 /*
65 * Get everyone into a safe state before changing the LDT.
66 */
67 if (!holdlwps(SHOLDFORK1))
68 return (set_errno(EINTR));

70 err = setdscr(&ssd);

72 /*
73 * Release the hounds!
74 */
75 mutex_enter(&pp->p_lock);
76 continuelwps(pp);
77 mutex_exit(&pp->p_lock);

79 return (err ? set_errno(err) : 0);
80 }

82 static int
83 read_ldt(void *uptr, ulong_t count)
84 {
85 proc_t *pp = curproc;
86 int bytes;

88 if (pp->p_ldt == NULL)
89 return (0);

91 bytes = (pp->p_ldtlimit + 1) * sizeof (user_desc_t);
92 if (bytes > count)
93 bytes = count;

95 if (copyout(pp->p_ldt, uptr, bytes))
96 return (set_errno(EFAULT));

98 return (bytes);
99 }

101 long
102 lx_modify_ldt(int op, void *data, ulong_t count)
103 {
104 int rval;

106 switch (op) {
107 case 0:
108 rval = read_ldt(data, count);
109 break;

111 case 1:
112 rval = write_ldt(data, count);
113 break;

115 default:
116 rval = set_errno(ENOSYS);
117 break;
118 }

120 return (rval);
121 }
122 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_sched.c 1

**
 12221 Tue Jan 14 16:17:24 2014
new/usr/src/uts/common/brand/lx/syscall/lx_sched.c
LX zone support should now build and packages of relevance produced.
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/errno.h>
31 #include <sys/proc.h>
32 #include <sys/cpu.h>
33 #include <sys/rtpriocntl.h>
34 #include <sys/tspriocntl.h>
35 #include <sys/processor.h>
36 #include <sys/brand.h>
37 #include <sys/lx_pid.h>
38 #include <sys/lx_sched.h>
39 #include <sys/lx_brand.h>

41 extern long priocntl_common(int, procset_t *, int, caddr_t, caddr_t, uio_seg_t);

43 int
44 lx_sched_affinity(int cmd, uintptr_t pid, int len, uintptr_t maskp,
45 int64_t *rval)
46 {
47 pid_t s_pid;
48 id_t s_tid;
49 kthread_t *t = curthread;
50 lx_lwp_data_t *lx_lwp;

52 if (cmd != B_GET_AFFINITY_MASK && cmd != B_SET_AFFINITY_MASK)
53 return (set_errno(EINVAL));

55 /*
56 * The caller wants to know how large the mask should be.
57 */
58 if (cmd == B_GET_AFFINITY_MASK && len == 0) {
59 *rval = sizeof (lx_affmask_t);
60 return (0);

new/usr/src/uts/common/brand/lx/syscall/lx_sched.c 2

61 }

63 /*
64 * Otherwise, ensure they have a large enough mask.
65 */
66 if (cmd == B_GET_AFFINITY_MASK && len < sizeof (lx_affmask_t)) {
67 *rval = -1;
68 return (set_errno(EINVAL));
69 }

71 if (pid == 0) {
72 s_pid = curproc->p_pid;
73 s_tid = curthread->t_tid;
74 } else if (lx_lpid_to_spair((pid_t)pid, &s_pid, &s_tid) == -1) {
75 return (set_errno(ESRCH));
76 }

78 /*
79 * For now, we only support manipulating threads in the
80 * same process.
81 */
82 if (curproc->p_pid != s_pid)
83 return (set_errno(EPERM));

85 /*
86 * We must hold the process lock so that the thread list
87 * doesn’t change while we’re looking at it. We’ll hold
88 * the lock until we no longer reference the
89 * corresponding lwp.
90 */

92 mutex_enter(&curproc->p_lock);

94 do {
95 if (t->t_tid == s_tid)
96 break;
97 t = t->t_forw;
98 } while (t != curthread);

100 /*
101 * If the given PID is in the current thread’s process,
102 * then we _must_ find it in the process’s thread list.
103 */
104 ASSERT(t->t_tid == s_tid);

106 lx_lwp = t->t_lwp->lwp_brand;

108 if (cmd == B_SET_AFFINITY_MASK) {
109 if (copyin_nowatch((void *)maskp, &lx_lwp->br_affinitymask,
110 sizeof (lx_affmask_t)) != 0) {
111 mutex_exit(&curproc->p_lock);
112 return (set_errno(EFAULT));
113 }

115 *rval = 0;
116 } else {
117 if (copyout_nowatch(&lx_lwp->br_affinitymask, (void *)maskp,
118 sizeof (lx_affmask_t)) != 0) {
119 mutex_exit(&curproc->p_lock);
120 return (set_errno(EFAULT));
121 }

123 *rval = sizeof (lx_affmask_t);
124 }

126 mutex_exit(&curproc->p_lock);

new/usr/src/uts/common/brand/lx/syscall/lx_sched.c 3

127 return (0);
128 }

130 long
131 lx_sched_setscheduler(l_pid_t pid, int policy, struct lx_sched_param *param)
132 {
133 klwp_t *lwp = ttolwp(curthread);
134 procset_t procset;
135 procset_t procset_cid;
136 pcparms_t pcparm;
137 pcinfo_t pcinfo;
138 struct lx_sched_param sched_param;
139 tsparms_t *tsp;
140 int prio, maxupri;
141 int rv;

143 if (pid < 0)
144 return (set_errno(ESRCH));

146 if ((rv = sched_setprocset(&procset, pid)))
147 return (rv);

149 if (copyin(param, &sched_param, sizeof (sched_param)))
150 return (set_errno(EFAULT));

152 prio = sched_param.lx_sched_prio;

154 if (policy < 0) {
155 /*
156 * get the class id
157 */
158 pcparm.pc_cid = PC_CLNULL;
159 (void) do_priocntlsys(PC_GETPARMS, &procset, &pcparm);
160 if (lwp->lwp_errno)
161 return (lwp->lwp_errno);

163 /*
164 * get the current policy
165 */
166 bzero(&pcinfo, sizeof (pcinfo));
167 pcinfo.pc_cid = pcparm.pc_cid;
168 (void) do_priocntlsys(PC_GETCLINFO, &procset, &pcinfo);
169 if (lwp->lwp_errno)
170 return (lwp->lwp_errno);

172 if (strcmp(pcinfo.pc_clname, "TS") == 0)
173 policy = LX_SCHED_OTHER;
174 else if (strcmp(pcinfo.pc_clname, "RT") == 0)
175 policy = ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs ==
176 RT_TQINF ? LX_SCHED_FIFO : LX_SCHED_RR;
177 else
178 return (set_errno(EINVAL));
179 }

181 bzero(&pcinfo, sizeof (pcinfo));
182 bzero(&pcparm, sizeof (pcparm));
183 setprocset(&procset_cid, POP_AND, P_PID, 0, P_ALL, 0);
184 switch (policy) {
185 case LX_SCHED_FIFO:
186 case LX_SCHED_RR:
187 (void) strcpy(pcinfo.pc_clname, "RT");
188 (void) do_priocntlsys(PC_GETCID, &procset_cid, &pcinfo);
189 if (lwp->lwp_errno)
190 return (lwp->lwp_errno);

192 if (prio < 0 ||

new/usr/src/uts/common/brand/lx/syscall/lx_sched.c 4

193 prio > ((rtinfo_t *)pcinfo.pc_clinfo)->rt_maxpri)
194 return (set_errno(EINVAL));
195 pcparm.pc_cid = pcinfo.pc_cid;
196 ((rtparms_t *)pcparm.pc_clparms)->rt_pri = prio;
197 ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs =
198 policy == LX_SCHED_RR ? RT_TQDEF : RT_TQINF;
199 break;

201 case LX_SCHED_OTHER:
202 (void) strcpy(pcinfo.pc_clname, "TS");
203 (void) do_priocntlsys(PC_GETCID, &procset_cid, &pcinfo);
204 if (lwp->lwp_errno)
205 return (lwp->lwp_errno);

207 maxupri = ((tsinfo_t *)pcinfo.pc_clinfo)->ts_maxupri;
208 if (prio > maxupri || prio < -maxupri)
209 return (set_errno(EINVAL));

211 pcparm.pc_cid = pcinfo.pc_cid;
212 tsp = (tsparms_t *)pcparm.pc_clparms;
213 tsp->ts_upri = prio;
214 tsp->ts_uprilim = TS_NOCHANGE;
215 break;

217 default:
218 return (set_errno(EINVAL));
219 }

221 /*
222 * finally set scheduling policy and parameters
223 */
224 (void) do_priocntlsys(PC_SETPARMS, &procset, &pcparm);

226 return (0);
227 }

229 long
230 lx_sched_getscheduler(l_pid_t pid)
231 {
232 klwp_t *lwp = ttolwp(curthread);
233 procset_t procset;
234 pcparms_t pcparm;
235 pcinfo_t pcinfo;
236 int policy;
237 int rv;

239 if (pid < 0)
240 return (set_errno(ESRCH));

242 if ((rv = sched_setprocset(&procset, pid)))
243 return (rv);

245 /*
246 * get the class id
247 */
248 pcparm.pc_cid = PC_CLNULL;
249 (void) do_priocntlsys(PC_GETPARMS, &procset, &pcparm);
250 if (lwp->lwp_errno)
251 return (lwp->lwp_errno);

253 /*
254 * get the class info and identify the equivalent linux policy
255 */
256 bzero(&pcinfo, sizeof (pcinfo));
257 pcinfo.pc_cid = pcparm.pc_cid;
258 (void) do_priocntlsys(PC_GETCLINFO, &procset, &pcinfo);

new/usr/src/uts/common/brand/lx/syscall/lx_sched.c 5

259 if (lwp->lwp_errno)
260 return (lwp->lwp_errno);

262 if (strcmp(pcinfo.pc_clname, "TS") == 0)
263 policy = LX_SCHED_OTHER;
264 else if (strcmp(pcinfo.pc_clname, "RT") == 0)
265 policy = ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs ==
266 RT_TQINF ? LX_SCHED_FIFO : LX_SCHED_RR;
267 else
268 policy = set_errno(EINVAL);

270 return (policy);
271 }

273 long
274 lx_sched_setparam(l_pid_t pid, struct lx_sched_param *param)
275 {
276 klwp_t *lwp = ttolwp(curthread);
277 procset_t procset;
278 procset_t procset_cid;
279 pcparms_t pcparm;
280 pcinfo_t pcinfo;
281 struct lx_sched_param sched_param;
282 tsparms_t *tsp;
283 int policy;
284 int prio, maxupri;
285 int rv;

287 if (pid < 0)
288 return (set_errno(ESRCH));

290 if ((rv = sched_setprocset(&procset, pid)))
291 return (rv);

293 if (copyin(param, &sched_param, sizeof (sched_param)))
294 return (set_errno(EFAULT));

296 prio = sched_param.lx_sched_prio;

298 /*
299 * get the class id
300 */
301 pcparm.pc_cid = PC_CLNULL;
302 (void) do_priocntlsys(PC_GETPARMS, &procset, &pcparm);
303 if (lwp->lwp_errno)
304 return (lwp->lwp_errno);

306 /*
307 * get the current policy
308 */
309 bzero(&pcinfo, sizeof (pcinfo));
310 pcinfo.pc_cid = pcparm.pc_cid;
311 (void) do_priocntlsys(PC_GETCLINFO, &procset, &pcinfo);
312 if (lwp->lwp_errno)
313 return (lwp->lwp_errno);

315 if (strcmp(pcinfo.pc_clname, "TS") == 0)
316 policy = LX_SCHED_OTHER;
317 else if (strcmp(pcinfo.pc_clname, "RT") == 0)
318 policy = ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs ==
319 RT_TQINF ? LX_SCHED_FIFO : LX_SCHED_RR;
320 else
321 return (set_errno(EINVAL));

323 bzero(&pcinfo, sizeof (pcinfo));
324 bzero(&pcparm, sizeof (pcparm));

new/usr/src/uts/common/brand/lx/syscall/lx_sched.c 6

325 setprocset(&procset_cid, POP_AND, P_PID, 0, P_ALL, 0);
326 switch (policy) {
327 case LX_SCHED_FIFO:
328 case LX_SCHED_RR:
329 (void) strcpy(pcinfo.pc_clname, "RT");
330 (void) do_priocntlsys(PC_GETCID, &procset_cid, &pcinfo);
331 if (lwp->lwp_errno)
332 return (lwp->lwp_errno);

334 if (prio < 0 ||
335 prio > ((rtinfo_t *)pcinfo.pc_clinfo)->rt_maxpri)
336 return (set_errno(EINVAL));
337 pcparm.pc_cid = pcinfo.pc_cid;
338 ((rtparms_t *)pcparm.pc_clparms)->rt_pri = prio;
339 ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs =
340 policy == LX_SCHED_RR ? RT_TQDEF : RT_TQINF;
341 break;

343 case LX_SCHED_OTHER:
344 (void) strcpy(pcinfo.pc_clname, "TS");
345 (void) do_priocntlsys(PC_GETCID, &procset_cid, &pcinfo);
346 if (lwp->lwp_errno)
347 return (lwp->lwp_errno);

349 maxupri = ((tsinfo_t *)pcinfo.pc_clinfo)->ts_maxupri;
350 if (prio > maxupri || prio < -maxupri)
351 return (set_errno(EINVAL));

353 pcparm.pc_cid = pcinfo.pc_cid;
354 tsp = (tsparms_t *)pcparm.pc_clparms;
355 tsp->ts_upri = prio;
356 tsp->ts_uprilim = TS_NOCHANGE;
357 break;

359 default:
360 return (set_errno(EINVAL));
361 }

363 /*
364 * finally set scheduling policy and parameters
365 */
366 (void) do_priocntlsys(PC_SETPARMS, &procset, &pcparm);

368 return (0);
369 }

371 long
372 lx_sched_getparam(l_pid_t pid, struct lx_sched_param *param)
373 {
374 klwp_t *lwp = ttolwp(curthread);
375 struct lx_sched_param local_param;
376 procset_t procset;
377 pcparms_t pcparm;
378 pcinfo_t pcinfo;
379 tsinfo_t *tsi;
380 int prio, scale;
381 int rv;

383 if (pid < 0)
384 return (set_errno(ESRCH));

386 if ((rv = sched_setprocset(&procset, pid)))
387 return (rv);

389 /*
390 * get the class id

new/usr/src/uts/common/brand/lx/syscall/lx_sched.c 7

391 */
392 pcparm.pc_cid = PC_CLNULL;
393 (void) do_priocntlsys(PC_GETPARMS, &procset, &pcparm);
394 if (lwp->lwp_errno)
395 return (lwp->lwp_errno);

397 /*
398 * get the class info and identify the equivalent linux policy
399 */
400 bzero(&pcinfo, sizeof (pcinfo));
401 pcinfo.pc_cid = pcparm.pc_cid;
402 (void) do_priocntlsys(PC_GETCLINFO, &procset, &pcinfo);
403 if (lwp->lwp_errno)
404 return (lwp->lwp_errno);

406 bzero(&local_param, sizeof (local_param));
407 if (strcmp(pcinfo.pc_clname, "TS") == 0) {
408 /*
409 * I don’t know if we need to do this, coz it can’t be
410 * changed from zero anyway.....
411 */
412 tsi = (tsinfo_t *)pcinfo.pc_clinfo;
413 prio = ((tsparms_t *)pcparm.pc_clparms)->ts_upri;
414 scale = tsi->ts_maxupri;
415 if (scale == 0)
416 local_param.lx_sched_prio = 0;
417 else
418 local_param.lx_sched_prio = -(prio * 20) / scale;
419 } else if (strcmp(pcinfo.pc_clname, "RT") == 0)
420 local_param.lx_sched_prio =
421 ((rtparms_t *)pcparm.pc_clparms)->rt_pri;
422 else
423 rv = set_errno(EINVAL);

425 if (rv == 0)
426 if (copyout(&local_param, param, sizeof (local_param)))
427 return (set_errno(EFAULT));

429 return (rv);
430 }

432 long
433 lx_sched_rr_get_interval(l_pid_t pid, struct timespec *ival)
434 {
435 klwp_t *lwp = ttolwp(curthread);
436 struct timespec interval;
437 procset_t procset;
438 pcparms_t pcparm;
439 pcinfo_t pcinfo;
440 int rv;

442 if (pid < 0)
443 return (set_errno(ESRCH));

445 if ((rv = sched_setprocset(&procset, pid)))
446 return (rv);

448 /*
449 * get the class id
450 */
451 pcparm.pc_cid = PC_CLNULL;
452 (void) do_priocntlsys(PC_GETPARMS, &procset, &pcparm);
453 if (lwp->lwp_errno)
454 return (lwp->lwp_errno);

456 /*

new/usr/src/uts/common/brand/lx/syscall/lx_sched.c 8

457 * get the class info and identify the equivalent linux policy
458 */
459 setprocset(&procset, POP_AND, P_PID, 0, P_ALL, 0);
460 bzero(&pcinfo, sizeof (pcinfo));
461 (void) strcpy(pcinfo.pc_clname, "RT");
462 (void) do_priocntlsys(PC_GETCID, &procset, &pcinfo);
463 if (lwp->lwp_errno)
464 return (lwp->lwp_errno);

466 if (pcparm.pc_cid == pcinfo.pc_cid &&
467 ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs != RT_TQINF) {
468 interval.tv_sec = ((rtparms_t *)pcparm.pc_clparms)->rt_tqsecs;
469 interval.tv_nsec = ((rtparms_t *)pcparm.pc_clparms)->rt_tqnsecs;

471 if (copyout(&interval, ival, sizeof (interval)))
472 return (set_errno(EFAULT));

474 return (0);
475 }

477 return (set_errno(EINVAL));
478 }

480 int
481 sched_setprocset(procset_t *procset, l_pid_t pid)
482 {
483 id_t lid, rid;
484 idtype_t lidtype, ridtype;

486 /*
487 * define the target lwp
488 */
489 if (pid == 0) {
490 ridtype = P_ALL;
491 lidtype = P_PID;
492 rid = 0;
493 lid = P_MYID;
494 } else {
495 if (lx_lpid_to_spair(pid, &pid, &lid) < 0)
496 return (set_errno(ESRCH));
497 if (pid != curproc->p_pid)
498 return (set_errno(ESRCH));
499 rid = 0;
500 ridtype = P_ALL;
501 lidtype = P_LWPID;
502 }
503 setprocset(procset, POP_AND, lidtype, lid, ridtype, rid);

505 return (0);
506 }

508 long
509 do_priocntlsys(int cmd, procset_t *procset, void *arg)
510 {
511 return (priocntl_common(PC_VERSION, procset, cmd, (caddr_t)arg, 0,
512 UIO_SYSSPACE));
513 }
514 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_sysinfo.c 1

**
 3598 Tue Jan 14 16:17:24 2014
new/usr/src/uts/common/brand/lx/syscall/lx_sysinfo.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <vm/anon.h>
29 #include <sys/systm.h>
30 #include <sys/sysmacros.h>
31 #include <sys/zone.h>
32 #include <sys/time.h>

34 struct lx_sysinfo {
35 int32_t si_uptime; /* Seconds since boot */
36 uint32_t si_loads[3]; /* 1, 5, and 15 minute avg runq length */
37 uint32_t si_totalram; /* Total memory size */
38 uint32_t si_freeram; /* Available memory */
39 uint32_t si_sharedram; /* Shared memory */
40 uint32_t si_bufferram; /* Buffer memory */
41 uint32_t si_totalswap; /* Total swap space */
42 uint32_t si_freeswap; /* Avail swap space */
43 uint16_t si_procs; /* Process count */
44 uint32_t si_totalhigh; /* High memory size */
45 uint32_t si_freehigh; /* Avail high memory */
46 uint32_t si_mem_unit; /* Unit size of memory fields */
47 };

49 long
50 lx_sysinfo(struct lx_sysinfo *sip)
51 {
52 struct lx_sysinfo si;
53 hrtime_t birthtime;
54 zone_t *zone = curthread->t_procp->p_zone;
55 proc_t *init_proc;

57 /*
58 * We don’t record the time a zone was booted, so we use the
59 * birthtime of that zone’s init process instead.
60 */
61 mutex_enter(&pidlock);

new/usr/src/uts/common/brand/lx/syscall/lx_sysinfo.c 2

62 init_proc = prfind(zone->zone_proc_initpid);
63 if (init_proc != NULL)
64 birthtime = init_proc->p_mstart;
65 else
66 birthtime = p0.p_mstart;
67 mutex_exit(&pidlock);
68 si.si_uptime = (gethrtime() - birthtime) / NANOSEC;

70 /*
71 * We scale down the load in avenrun to allow larger load averages
72 * to fit in 32 bits. Linux doesn’t, so we remove the scaling
73 * here.
74 */
75 si.si_loads[0] = avenrun[0] << FSHIFT;
76 si.si_loads[1] = avenrun[1] << FSHIFT;
77 si.si_loads[2] = avenrun[2] << FSHIFT;

79 /*
80 * In linux each thread looks like a process, so we conflate the
81 * two in this stat as well.
82 */
83 si.si_procs = (int32_t)zone->zone_nlwps;

85 /*
86 * If the maximum memory stat is less than 1^20 pages (i.e. 4GB),
87 * then we report the result in bytes. Otherwise we use pages.
88 * Once we start supporting >1TB x86 systems, we’ll need a third
89 * option.
90 */
91 if (MAX(physmem, k_anoninfo.ani_max) < 1024 * 1024) {
92 si.si_totalram = physmem * PAGESIZE;
93 si.si_freeram = freemem * PAGESIZE;
94 si.si_totalswap = k_anoninfo.ani_max * PAGESIZE;
95 si.si_freeswap = k_anoninfo.ani_free * PAGESIZE;
96 si.si_mem_unit = 1;
97 } else {
98 si.si_totalram = physmem;
99 si.si_freeram = freemem;
100 si.si_totalswap = k_anoninfo.ani_max;
101 si.si_freeswap = k_anoninfo.ani_free;
102 si.si_mem_unit = PAGESIZE;
103 }
104 si.si_bufferram = 0;
105 si.si_sharedram = 0;

107 /*
108 * These two stats refer to high physical memory. If an
109 * application running in a Linux zone cares about this, then
110 * either it or we are broken.
111 */
112 si.si_totalhigh = 0;
113 si.si_freehigh = 0;

115 if (copyout(&si, sip, sizeof (si)) != 0)
116 return (set_errno(EFAULT));
117 return (0);
118 }
119 #endif /* ! codereview */

new/usr/src/uts/common/brand/lx/syscall/lx_thread_area.c 1

**
 3083 Tue Jan 14 16:17:24 2014
new/usr/src/uts/common/brand/lx/syscall/lx_thread_area.c
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
24 */

26 #pragma ident "%Z%%M% %I% %E% SMI"

28 #include <sys/types.h>
29 #include <sys/systm.h>
30 #include <sys/errno.h>
31 #include <sys/cpuvar.h>
32 #include <sys/archsystm.h>
33 #include <sys/proc.h>
34 #include <sys/brand.h>
35 #include <sys/lx_brand.h>
36 #include <sys/lx_ldt.h>

38 long
39 lx_get_thread_area(struct ldt_info *inf)
40 {
41 struct lx_lwp_data *jlwp = ttolxlwp(curthread);
42 struct ldt_info ldt_inf;
43 user_desc_t *dscrp;
44 int entry;

46 if (fuword32(&inf->entry_number, (uint32_t *)&entry))
47 return (set_errno(EFAULT));

49 if (entry < GDT_TLSMIN || entry > GDT_TLSMAX)
50 return (set_errno(EINVAL));

52 dscrp = jlwp->br_tls + entry - GDT_TLSMIN;

54 /*
55 * convert the solaris ldt to the linux format expected by the
56 * caller
57 */
58 DESC_TO_LDT_INFO(dscrp, &ldt_inf);
59 ldt_inf.entry_number = entry;

61 if (copyout(&ldt_inf, inf, sizeof (struct ldt_info)))

new/usr/src/uts/common/brand/lx/syscall/lx_thread_area.c 2

62 return (set_errno(EFAULT));

64 return (0);
65 }

67 long
68 lx_set_thread_area(struct ldt_info *inf)
69 {
70 struct lx_lwp_data *jlwp = ttolxlwp(curthread);
71 struct ldt_info ldt_inf;
72 user_desc_t *dscrp;
73 int entry;
74 int i;

76 if (copyin(inf, &ldt_inf, sizeof (ldt_inf)))
77 return (set_errno(EFAULT));

79 entry = ldt_inf.entry_number;
80 if (entry == -1) {
81 /*
82 * find an empty entry in the tls for this thread
83 */
84 for (i = 0, dscrp = jlwp->br_tls;
85 i < LX_TLSNUM; i++, dscrp++)
86 if (((unsigned long *)dscrp)[0] == 0 &&
87 ((unsigned long *)dscrp)[1] == 0)
88 break;

90 if (i < LX_TLSNUM) {
91 /*
92 * found one
93 */
94 entry = i + GDT_TLSMIN;
95 if (suword32(&inf->entry_number, entry))
96 return (set_errno(EFAULT));
97 } else {
98 return (set_errno(ESRCH));
99 }
100 }

102 if (entry < GDT_TLSMIN || entry > GDT_TLSMAX)
103 return (set_errno(EINVAL));

105 /*
106 * convert the linux ldt info to standard intel descriptor
107 */
108 dscrp = jlwp->br_tls + entry - GDT_TLSMIN;

110 if (LDT_INFO_EMPTY(&ldt_inf)) {
111 ((unsigned long *)dscrp)[0] = 0;
112 ((unsigned long *)dscrp)[1] = 0;
113 } else {
114 LDT_INFO_TO_DESC(&ldt_inf, dscrp);
115 }

117 /*
118 * update the gdt with the new descriptor
119 */
120 kpreempt_disable();

122 for (i = 0, dscrp = jlwp->br_tls; i < LX_TLSNUM; i++, dscrp++)
123 lx_set_gdt(GDT_TLSMIN + i, dscrp);

125 kpreempt_enable();

127 return (0);

new/usr/src/uts/common/brand/lx/syscall/lx_thread_area.c 3

128 }
129 #endif /* ! codereview */

new/usr/src/uts/common/brand/sn1/sn1_brand.c 1

**
 5904 Tue Jan 14 16:17:24 2014
new/usr/src/uts/common/brand/sn1/sn1_brand.c
Bring back LX zones.
**
______unchanged_portion_omitted_

91 #else /* sparc */

93 #ifdef __amd64

95 struct brand_mach_ops sn1_mops = {
96 sn1_brand_sysenter_callback,
97 NULL,
98 #endif /* ! codereview */
99 sn1_brand_int91_callback,
100 sn1_brand_syscall_callback,
101 sn1_brand_syscall32_callback,
102 NULL
97 sn1_brand_syscall32_callback
103 };

105 #else /* ! __amd64 */

107 struct brand_mach_ops sn1_mops = {
108 sn1_brand_sysenter_callback,
109 NULL,
110 NULL,
111 #endif /* ! codereview */
112 sn1_brand_syscall_callback,
113 NULL,
114 #endif /* ! codereview */
115 NULL
116 };
117 #endif /* __amd64 */

119 #endif /* _sparc */

121 struct brand sn1_brand = {
122 BRAND_VER_1,
123 "sn1",
124 &sn1_brops,
125 &sn1_mops
126 };

128 static struct modlbrand modlbrand = {
129 &mod_brandops, /* type of module */
130 "Solaris N-1 Brand", /* description of module */
131 &sn1_brand /* driver ops */
132 };

134 static struct modlinkage modlinkage = {
135 MODREV_1, (void *)&modlbrand, NULL
136 };

138 void
139 sn1_setbrand(proc_t *p)
140 {
141 brand_solaris_setbrand(p, &sn1_brand);
142 }

144 /* ARGSUSED */
145 int
146 sn1_getattr(zone_t *zone, int attr, void *buf, size_t *bufsize)
147 {
148 return (EINVAL);

new/usr/src/uts/common/brand/sn1/sn1_brand.c 2

149 }

151 /* ARGSUSED */
152 int
153 sn1_setattr(zone_t *zone, int attr, void *buf, size_t bufsize)
154 {
155 return (EINVAL);
156 }

158 /*ARGSUSED*/
159 int
160 sn1_brandsys(int cmd, int64_t *rval, uintptr_t arg1, uintptr_t arg2,
161 uintptr_t arg3, uintptr_t arg4, uintptr_t arg5, uintptr_t arg6)
162 {
163 int res;

165 *rval = 0;

167 res = brand_solaris_cmd(cmd, arg1, arg2, arg3, &sn1_brand, SN1_VERSION);
168 if (res >= 0)
169 return (res);

171 return (EINVAL);
172 }

174 void
175 sn1_copy_procdata(proc_t *child, proc_t *parent)
176 {
177 brand_solaris_copy_procdata(child, parent, &sn1_brand);
178 }

180 void
181 sn1_proc_exit(struct proc *p, klwp_t *l)
182 {
183 brand_solaris_proc_exit(p, l, &sn1_brand);
184 }

186 void
187 sn1_exec()
188 {
189 brand_solaris_exec(&sn1_brand);
190 }

192 int
193 sn1_initlwp(klwp_t *l)
194 {
195 return (brand_solaris_initlwp(l, &sn1_brand));
196 }

198 void
199 sn1_forklwp(klwp_t *p, klwp_t *c)
200 {
201 brand_solaris_forklwp(p, c, &sn1_brand);
202 }

204 void
205 sn1_freelwp(klwp_t *l)
206 {
207 brand_solaris_freelwp(l, &sn1_brand);
208 }

210 void
211 sn1_lwpexit(klwp_t *l)
212 {
213 brand_solaris_lwpexit(l, &sn1_brand);
214 }

new/usr/src/uts/common/brand/sn1/sn1_brand.c 3

216 /*ARGSUSED*/
217 void
218 sn1_free_brand_data(zone_t *zone)
219 {
220 }

222 /*ARGSUSED*/
223 void
224 sn1_init_brand_data(zone_t *zone)
225 {
226 }

228 int
229 sn1_elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
230 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
231 int brand_action)
232 {
233 return (brand_solaris_elfexec(vp, uap, args, idatap, level, execsz,
234 setid, exec_file, cred, brand_action, &sn1_brand, SN1_BRANDNAME,
235 SN1_LIB, SN1_LIB32, SN1_LINKER, SN1_LINKER32));
236 }

238 int
239 _init(void)
240 {
241 int err;

243 /*
244 * Set up the table indicating which system calls we want to
245 * interpose on. We should probably build this automatically from
246 * a list of system calls that is shared with the user-space
247 * library.
248 */
249 sn1_emulation_table = kmem_zalloc(NSYSCALL, KM_SLEEP);
250 sn1_emulation_table[SYS_read] = 1; /* 3 */
251 sn1_emulation_table[SYS_write] = 1; /* 4 */
252 sn1_emulation_table[SYS_time] = 1; /* 13 */
253 sn1_emulation_table[SYS_getpid] = 1; /* 20 */
254 sn1_emulation_table[SYS_mount] = 1; /* 21 */
255 sn1_emulation_table[SYS_getuid] = 1; /* 24 */
256 sn1_emulation_table[SYS_times] = 1; /* 43 */
257 sn1_emulation_table[SYS_getgid] = 1; /* 47 */
258 sn1_emulation_table[SYS_utssys] = 1; /* 57 */
259 sn1_emulation_table[SYS_waitid] = 1; /* 107 */
260 sn1_emulation_table[SYS_uname] = 1; /* 135 */

262 err = mod_install(&modlinkage);
263 if (err) {
264 cmn_err(CE_WARN, "Couldn’t install brand module");
265 kmem_free(sn1_emulation_table, NSYSCALL);
266 }

268 return (err);
269 }

271 int
272 _info(struct modinfo *modinfop)
273 {
274 return (mod_info(&modlinkage, modinfop));
275 }

277 int
278 _fini(void)
279 {
280 return (brand_solaris_fini(&sn1_emulation_table, &modlinkage,

new/usr/src/uts/common/brand/sn1/sn1_brand.c 4

281 &sn1_brand));
282 }

new/usr/src/uts/common/brand/solaris10/s10_brand.c 1

**
 16875 Tue Jan 14 16:17:24 2014
new/usr/src/uts/common/brand/solaris10/s10_brand.c
Bring back LX zones.
**
______unchanged_portion_omitted_

96 #else /* sparc */

98 #ifdef __amd64

100 struct brand_mach_ops s10_mops = {
101 s10_brand_sysenter_callback,
102 NULL,
103 #endif /* ! codereview */
104 s10_brand_int91_callback,
105 s10_brand_syscall_callback,
106 s10_brand_syscall32_callback,
107 NULL
102 s10_brand_syscall32_callback
108 };

110 #else /* ! __amd64 */

112 struct brand_mach_ops s10_mops = {
113 s10_brand_sysenter_callback,
114 NULL,
115 NULL,
116 #endif /* ! codereview */
117 s10_brand_syscall_callback,
118 NULL,
119 #endif /* ! codereview */
120 NULL
121 };
122 #endif /* __amd64 */

124 #endif /* _sparc */

126 struct brand s10_brand = {
127 BRAND_VER_1,
128 "solaris10",
129 &s10_brops,
130 &s10_mops
131 };

133 static struct modlbrand modlbrand = {
134 &mod_brandops, /* type of module */
135 "Solaris 10 Brand", /* description of module */
136 &s10_brand /* driver ops */
137 };

139 static struct modlinkage modlinkage = {
140 MODREV_1, (void *)&modlbrand, NULL
141 };

143 void
144 s10_setbrand(proc_t *p)
145 {
146 brand_solaris_setbrand(p, &s10_brand);
147 }

149 /*ARGSUSED*/
150 int
151 s10_getattr(zone_t *zone, int attr, void *buf, size_t *bufsize)
152 {
153 ASSERT(zone->zone_brand == &s10_brand);

new/usr/src/uts/common/brand/solaris10/s10_brand.c 2

154 if (attr == S10_EMUL_BITMAP) {
155 if (buf == NULL || *bufsize != sizeof (s10_emul_bitmap_t))
156 return (EINVAL);
157 if (copyout(((s10_zone_data_t *)zone->zone_brand_data)->
158 emul_bitmap, buf, sizeof (s10_emul_bitmap_t)) != 0)
159 return (EFAULT);
160 return (0);
161 }

163 return (EINVAL);
164 }

166 int
167 s10_setattr(zone_t *zone, int attr, void *buf, size_t bufsize)
168 {
169 ASSERT(zone->zone_brand == &s10_brand);
170 if (attr == S10_EMUL_BITMAP) {
171 if (buf == NULL || bufsize != sizeof (s10_emul_bitmap_t))
172 return (EINVAL);
173 if (copyin(buf, ((s10_zone_data_t *)zone->zone_brand_data)->
174 emul_bitmap, sizeof (s10_emul_bitmap_t)) != 0)
175 return (EFAULT);
176 return (0);
177 }

179 return (EINVAL);
180 }

182 #ifdef __amd64
183 /*
184 * The Nevada kernel clears %fs for threads in 64-bit x86 processes but S10’s
185 * libc expects %fs to be nonzero. This causes some committed
186 * libc/libthread interfaces (e.g., thr_main()) to fail, which impacts several
187 * libraries, including libdoor. This function sets the specified LWP’s %fs
188 * register to the legacy S10 selector value (LWPFS_SEL).
189 *
190 * The best solution to the aforementioned problem is backporting CRs
191 * 6467491 to Solaris 10 so that 64-bit x86 Solaris 10 processes
192 * would accept zero for %fs. Backporting the CRs is a requirement for running
193 * S10 Containers in PV domUs because 64-bit Xen clears %fsbase when %fs is
194 * nonzero. Such behavior breaks 64-bit processes because Xen has to fetch the
195 * FS segments’ base addresses from the LWPs’ GDTs, which are only capable of
196 * 32-bit addressing.
197 */
198 /*ARGSUSED*/
199 static void
200 s10_amd64_correct_fsreg(klwp_t *l)
201 {
202 if (lwp_getdatamodel(l) == DATAMODEL_NATIVE) {
203 kpreempt_disable();
204 l->lwp_pcb.pcb_fs = LWPFS_SEL;
205 l->lwp_pcb.pcb_rupdate = 1;
206 lwptot(l)->t_post_sys = 1; /* Guarantee update_sregs() */
207 kpreempt_enable();
208 }
209 }
210 #endif /* __amd64 */

212 /*
213 * Native processes are started with the native ld.so.1 as the command. This
214 * brand op is invoked by s10_npreload to fix up the command and arguments
215 * so that apps like pgrep or ps see the expected command strings.
216 */
217 int
218 s10_native(void *cmd, void *args)
219 {

new/usr/src/uts/common/brand/solaris10/s10_brand.c 3

220 struct user *up = PTOU(curproc);
221 char cmd_buf[MAXCOMLEN + 1];
222 char arg_buf[PSARGSZ];

224 if (copyin(cmd, &cmd_buf, sizeof (cmd_buf)) != 0)
225 return (EFAULT);
226 if (copyin(args, &arg_buf, sizeof (arg_buf)) != 0)
227 return (EFAULT);

229 /*
230 * Make sure that the process’ interpreter is the native dynamic linker.
231 * Convention dictates that native processes executing within solaris10-
232 * branded zones are interpreted by the native dynamic linker (the
233 * process and its arguments are specified as arguments to the dynamic
234 * linker). If this convention is violated (i.e.,
235 * brandsys(B_S10_NATIVE, ...) is invoked by a process that shouldn’t be
236 * native), then do nothing and silently indicate success.
237 */
238 if (strcmp(up->u_comm, S10_LINKER_NAME) != 0)
239 return (0);

241 /*
242 * The sizeof has an extra value for the trailing ’\0’ so this covers
243 * the appended " " in the following strcmps.
244 */
245 if (strncmp(up->u_psargs, BRAND_NATIVE_LINKER64 " ",
246 sizeof (BRAND_NATIVE_LINKER64)) != 0 &&
247 strncmp(up->u_psargs, BRAND_NATIVE_LINKER32 " ",
248 sizeof (BRAND_NATIVE_LINKER32)) != 0)
249 return (0);

251 mutex_enter(&curproc->p_lock);
252 (void) strlcpy(up->u_comm, cmd_buf, sizeof (up->u_comm));
253 (void) strlcpy(up->u_psargs, arg_buf, sizeof (up->u_psargs));
254 mutex_exit(&curproc->p_lock);

256 return (0);
257 }

259 /*ARGSUSED*/
260 int
261 s10_brandsys(int cmd, int64_t *rval, uintptr_t arg1, uintptr_t arg2,
262 uintptr_t arg3, uintptr_t arg4, uintptr_t arg5, uintptr_t arg6)
263 {
264 proc_t *p = curproc;
265 int res;

267 *rval = 0;

269 if (cmd == B_S10_NATIVE)
270 return (s10_native((void *)arg1, (void *)arg2));

272 res = brand_solaris_cmd(cmd, arg1, arg2, arg3, &s10_brand, S10_VERSION);
273 if (res >= 0)
274 return (res);

276 switch ((cmd)) {
277 case B_S10_PIDINFO:
278 /*
279 * The s10 brand needs to be able to get the pid of the
280 * current process and the pid of the zone’s init, and it
281 * needs to do this on every process startup. Early in
282 * brand startup, we can’t call getpid() because calls to
283 * getpid() represent a magical signal to some old-skool
284 * debuggers. By merging all of this into one call, we
285 * make this quite a bit cheaper and easier to handle in

new/usr/src/uts/common/brand/solaris10/s10_brand.c 4

286 * the brand module.
287 */
288 if (copyout(&p->p_pid, (void *)arg1, sizeof (pid_t)) != 0)
289 return (EFAULT);
290 if (copyout(&p->p_zone->zone_proc_initpid, (void *)arg2,
291 sizeof (pid_t)) != 0)
292 return (EFAULT);
293 return (0);

295 case B_S10_ISFDXATTRDIR: {
296 /*
297 * This subcommand enables the userland brand emulation library
298 * to determine whether a file descriptor refers to an extended
299 * file attributes directory. There is no standard syscall or
300 * libc function that can make such a determination.
301 */
302 file_t *dir_filep;

304 dir_filep = getf((int)arg1);
305 if (dir_filep == NULL)
306 return (EBADF);
307 ASSERT(dir_filep->f_vnode != NULL);
308 *rval = IS_XATTRDIR(dir_filep->f_vnode);
309 releasef((int)arg1);
310 return (0);
311 }

313 #ifdef __amd64
314 case B_S10_FSREGCORRECTION:
315 /*
316 * This subcommand exists so that the SYS_lwp_private and
317 * SYS_lwp_create syscalls can manually set the current thread’s
318 * %fs register to the legacy S10 selector value for 64-bit x86
319 * processes.
320 */
321 s10_amd64_correct_fsreg(ttolwp(curthread));
322 return (0);
323 #endif /* __amd64 */
324 }

326 return (EINVAL);
327 }

329 void
330 s10_copy_procdata(proc_t *child, proc_t *parent)
331 {
332 brand_solaris_copy_procdata(child, parent, &s10_brand);
333 }

335 void
336 s10_proc_exit(struct proc *p, klwp_t *l)
337 {
338 brand_solaris_proc_exit(p, l, &s10_brand);
339 }

341 void
342 s10_exec()
343 {
344 brand_solaris_exec(&s10_brand);
345 }

347 int
348 s10_initlwp(klwp_t *l)
349 {
350 return (brand_solaris_initlwp(l, &s10_brand));
351 }

new/usr/src/uts/common/brand/solaris10/s10_brand.c 5

353 void
354 s10_forklwp(klwp_t *p, klwp_t *c)
355 {
356 brand_solaris_forklwp(p, c, &s10_brand);

358 #ifdef __amd64
359 /*
360 * Only correct the child’s %fs register if the parent’s %fs register
361 * is LWPFS_SEL. If the parent’s %fs register is zero, then the Solaris
362 * 10 environment that we’re emulating uses a version of libc that
363 * works when %fs is zero (i.e., it contains backports of CRs 6467491
364 * and 6501650).
365 */
366 if (p->lwp_pcb.pcb_fs == LWPFS_SEL)
367 s10_amd64_correct_fsreg(c);
368 #endif /* __amd64 */
369 }

371 void
372 s10_freelwp(klwp_t *l)
373 {
374 brand_solaris_freelwp(l, &s10_brand);
375 }

377 void
378 s10_lwpexit(klwp_t *l)
379 {
380 brand_solaris_lwpexit(l, &s10_brand);
381 }

383 void
384 s10_free_brand_data(zone_t *zone)
385 {
386 kmem_free(zone->zone_brand_data, sizeof (s10_zone_data_t));
387 }

389 void
390 s10_init_brand_data(zone_t *zone)
391 {
392 ASSERT(zone->zone_brand == &s10_brand);
393 ASSERT(zone->zone_brand_data == NULL);
394 zone->zone_brand_data = kmem_zalloc(sizeof (s10_zone_data_t), KM_SLEEP);
395 }

397 int
398 s10_elfexec(vnode_t *vp, execa_t *uap, uarg_t *args, intpdata_t *idatap,
399 int level, long *execsz, int setid, caddr_t exec_file, cred_t *cred,
400 int brand_action)
401 {
402 return (brand_solaris_elfexec(vp, uap, args, idatap, level, execsz,
403 setid, exec_file, cred, brand_action, &s10_brand, S10_BRANDNAME,
404 S10_LIB, S10_LIB32, S10_LINKER, S10_LINKER32));
405 }

407 void
408 s10_sigset_native_to_s10(sigset_t *set)
409 {
410 int nativesig;
411 int s10sig;
412 sigset_t s10set;

414 /*
415 * Shortcut: we know the first 32 signals are the same in both
416 * s10 and native Solaris. Just assign the first word.
417 */

new/usr/src/uts/common/brand/solaris10/s10_brand.c 6

418 s10set.__sigbits[0] = set->__sigbits[0];
419 s10set.__sigbits[1] = 0;
420 s10set.__sigbits[2] = 0;
421 s10set.__sigbits[3] = 0;

423 /*
424 * Copy the remainder of the initial set of common signals.
425 */
426 for (nativesig = 33; nativesig < S10_SIGRTMIN; nativesig++)
427 if (sigismember(set, nativesig))
428 sigaddset(&s10set, nativesig);

430 /*
431 * Convert any native RT signals to their S10 values.
432 */
433 for (nativesig = _SIGRTMIN, s10sig = S10_SIGRTMIN;
434 nativesig <= _SIGRTMAX && s10sig <= S10_SIGRTMAX;
435 nativesig++, s10sig++) {
436 if (sigismember(set, nativesig))
437 sigaddset(&s10set, s10sig);
438 }

440 *set = s10set;
441 }

443 void
444 s10_sigset_s10_to_native(sigset_t *set)
445 {
446 int s10sig;
447 int nativesig;
448 sigset_t nativeset;

450 /*
451 * Shortcut: we know the first 32 signals are the same in both
452 * s10 and native Solaris. Just assign the first word.
453 */
454 nativeset.__sigbits[0] = set->__sigbits[0];
455 nativeset.__sigbits[1] = 0;
456 nativeset.__sigbits[2] = 0;
457 nativeset.__sigbits[3] = 0;

459 /*
460 * Copy the remainder of the initial set of common signals.
461 */
462 for (s10sig = 33; s10sig < S10_SIGRTMIN; s10sig++)
463 if (sigismember(set, s10sig))
464 sigaddset(&nativeset, s10sig);

466 /*
467 * Convert any S10 RT signals to their native values.
468 */
469 for (s10sig = S10_SIGRTMIN, nativesig = _SIGRTMIN;
470 s10sig <= S10_SIGRTMAX && nativesig <= _SIGRTMAX;
471 s10sig++, nativesig++) {
472 if (sigismember(set, s10sig))
473 sigaddset(&nativeset, nativesig);
474 }

476 *set = nativeset;
477 }

479 int
480 _init(void)
481 {
482 int err;

new/usr/src/uts/common/brand/solaris10/s10_brand.c 7

484 /*
485 * Set up the table indicating which system calls we want to
486 * interpose on. We should probably build this automatically from
487 * a list of system calls that is shared with the user-space
488 * library.
489 */
490 s10_emulation_table = kmem_zalloc(NSYSCALL, KM_SLEEP);
491 s10_emulation_table[S10_SYS_forkall] = 1; /* 2 */
492 s10_emulation_table[S10_SYS_open] = 1; /* 5 */
493 s10_emulation_table[S10_SYS_wait] = 1; /* 7 */
494 s10_emulation_table[S10_SYS_creat] = 1; /* 8 */
495 s10_emulation_table[S10_SYS_link] = 1; /* 9 */
496 s10_emulation_table[S10_SYS_unlink] = 1; /* 10 */
497 s10_emulation_table[S10_SYS_exec] = 1; /* 11 */
498 s10_emulation_table[S10_SYS_mknod] = 1; /* 14 */
499 s10_emulation_table[S10_SYS_chmod] = 1; /* 15 */
500 s10_emulation_table[S10_SYS_chown] = 1; /* 16 */
501 s10_emulation_table[S10_SYS_stat] = 1; /* 18 */
502 s10_emulation_table[S10_SYS_umount] = 1; /* 22 */
503 s10_emulation_table[S10_SYS_fstat] = 1; /* 28 */
504 s10_emulation_table[S10_SYS_utime] = 1; /* 30 */
505 s10_emulation_table[S10_SYS_access] = 1; /* 33 */
506 s10_emulation_table[SYS_kill] = 1; /* 37 */
507 s10_emulation_table[S10_SYS_dup] = 1; /* 41 */
508 s10_emulation_table[S10_SYS_pipe] = 1; /* 42 */
509 s10_emulation_table[SYS_ioctl] = 1; /* 54 */
510 s10_emulation_table[SYS_execve] = 1; /* 59 */
511 s10_emulation_table[SYS_acctctl] = 1; /* 71 */
512 s10_emulation_table[S10_SYS_issetugid] = 1; /* 75 */
513 s10_emulation_table[S10_SYS_fsat] = 1; /* 76 */
514 s10_emulation_table[S10_SYS_rmdir] = 1; /* 79 */
515 s10_emulation_table[S10_SYS_mkdir] = 1; /* 80 */
516 s10_emulation_table[SYS_getdents] = 1; /* 81 */
517 s10_emulation_table[S10_SYS_poll] = 1; /* 87 */
518 s10_emulation_table[S10_SYS_lstat] = 1; /* 88 */
519 s10_emulation_table[S10_SYS_symlink] = 1; /* 89 */
520 s10_emulation_table[S10_SYS_readlink] = 1; /* 90 */
521 s10_emulation_table[S10_SYS_fchmod] = 1; /* 93 */
522 s10_emulation_table[S10_SYS_fchown] = 1; /* 94 */
523 s10_emulation_table[SYS_sigprocmask] = 1; /* 95 */
524 s10_emulation_table[SYS_sigsuspend] = 1; /* 96 */
525 s10_emulation_table[SYS_sigaction] = 1; /* 98 */
526 s10_emulation_table[SYS_sigpending] = 1; /* 99 */
527 s10_emulation_table[SYS_waitid] = 1; /* 107 */
528 s10_emulation_table[SYS_sigsendsys] = 1; /* 108 */
529 #if defined(__x86)
530 s10_emulation_table[S10_SYS_xstat] = 1; /* 123 */
531 s10_emulation_table[S10_SYS_lxstat] = 1; /* 124 */
532 s10_emulation_table[S10_SYS_fxstat] = 1; /* 125 */
533 s10_emulation_table[S10_SYS_xmknod] = 1; /* 126 */
534 #endif
535 s10_emulation_table[S10_SYS_lchown] = 1; /* 130 */
536 s10_emulation_table[S10_SYS_rename] = 1; /* 134 */
537 s10_emulation_table[SYS_uname] = 1; /* 135 */
538 s10_emulation_table[SYS_sysconfig] = 1; /* 137 */
539 s10_emulation_table[SYS_systeminfo] = 1; /* 139 */
540 s10_emulation_table[S10_SYS_fork1] = 1; /* 143 */
541 s10_emulation_table[SYS_sigtimedwait] = 1; /* 144 */
542 s10_emulation_table[S10_SYS_lwp_sema_wait] = 1; /* 147 */
543 s10_emulation_table[S10_SYS_utimes] = 1; /* 154 */
544 s10_emulation_table[SYS_lwp_create] = 1; /* 159 */
545 s10_emulation_table[SYS_lwp_kill] = 1; /* 163 */
546 s10_emulation_table[SYS_lwp_sigmask] = 1; /* 165 */
547 #if defined(__amd64)
548 s10_emulation_table[SYS_lwp_private] = 1; /* 166 */
549 #endif /* __amd64 */

new/usr/src/uts/common/brand/solaris10/s10_brand.c 8

550 s10_emulation_table[S10_SYS_lwp_mutex_lock] = 1; /* 169 */
551 s10_emulation_table[SYS_pwrite] = 1; /* 174 */
552 s10_emulation_table[SYS_acl] = 1; /* 185 */
553 s10_emulation_table[SYS_auditsys] = 1; /* 186 */
554 s10_emulation_table[SYS_sigqueue] = 1; /* 190 */
555 s10_emulation_table[SYS_facl] = 1; /* 200 */
556 s10_emulation_table[SYS_signotify] = 1; /* 205 */
557 s10_emulation_table[SYS_lwp_mutex_timedlock] = 1; /* 210 */
558 s10_emulation_table[SYS_getdents64] = 1; /* 213 */
559 s10_emulation_table[S10_SYS_stat64] = 1; /* 215 */
560 s10_emulation_table[S10_SYS_lstat64] = 1; /* 216 */
561 s10_emulation_table[S10_SYS_fstat64] = 1; /* 217 */
562 s10_emulation_table[SYS_pwrite64] = 1; /* 223 */
563 s10_emulation_table[S10_SYS_creat64] = 1; /* 224 */
564 s10_emulation_table[S10_SYS_open64] = 1; /* 225 */
565 s10_emulation_table[SYS_zone] = 1; /* 227 */
566 s10_emulation_table[S10_SYS_so_socket] = 1; /* 230 */
567 s10_emulation_table[S10_SYS_accept] = 1; /* 234 */
568 s10_emulation_table[SYS_lwp_mutex_trylock] = 1; /* 251 */

570 err = mod_install(&modlinkage);
571 if (err) {
572 cmn_err(CE_WARN, "Couldn’t install brand module");
573 kmem_free(s10_emulation_table, NSYSCALL);
574 }

576 return (err);
577 }

579 int
580 _info(struct modinfo *modinfop)
581 {
582 return (mod_info(&modlinkage, modinfop));
583 }

585 int
586 _fini(void)
587 {
588 return (brand_solaris_fini(&s10_emulation_table, &modlinkage,
589 &s10_brand));
590 }

new/usr/src/uts/common/io/ptm.c 1

**
 19477 Tue Jan 14 16:17:25 2014
new/usr/src/uts/common/io/ptm.c
Bring back LX zones.
**
______unchanged_portion_omitted_

450 static boolean_t
451 ptmptsopencb(ptmptsopencb_arg_t arg)
452 {
453 struct pt_ttys *ptmp = (struct pt_ttys *)arg;
454 boolean_t rval;

456 PT_ENTER_READ(ptmp);
457 rval = (ptmp->pt_nullmsg != NULL);
458 PT_EXIT_READ(ptmp);
459 return (rval);
460 }

462 #endif /* ! codereview */
463 /*
464 * The wput procedure will only handle ioctl and flush messages.
465 */
466 static void
467 ptmwput(queue_t *qp, mblk_t *mp)
468 {
469 struct pt_ttys *ptmp;
470 struct iocblk *iocp;

472 DBG(("entering ptmwput\n"));
473 ASSERT(qp->q_ptr);

475 ptmp = (struct pt_ttys *)qp->q_ptr;
476 PT_ENTER_READ(ptmp);

478 switch (mp->b_datap->db_type) {
479 /*
480 * if write queue request, flush master’s write
481 * queue and send FLUSHR up slave side. If read
482 * queue request, convert to FLUSHW and putnext().
483 */
484 case M_FLUSH:
485 {
486 unsigned char flush_flg = 0;

488 DBG(("ptm got flush request\n"));
489 if (*mp->b_rptr & FLUSHW) {
490 DBG(("got FLUSHW, flush ptm write Q\n"));
491 if (*mp->b_rptr & FLUSHBAND)
492 /*
493 * if it is a FLUSHBAND, do flushband.
494 */
495 flushband(qp, *(mp->b_rptr + 1),
496 FLUSHDATA);
497 else
498 flushq(qp, FLUSHDATA);
499 flush_flg = (*mp->b_rptr & ~FLUSHW) | FLUSHR;
500 }
501 if (*mp->b_rptr & FLUSHR) {
502 DBG(("got FLUSHR, set FLUSHW\n"));
503 flush_flg |= (*mp->b_rptr & ~FLUSHR) | FLUSHW;
504 }
505 if (flush_flg != 0 && ptmp->pts_rdq &&
506 !(ptmp->pt_state & PTLOCK)) {
507 DBG(("putnext to pts\n"));
508 *mp->b_rptr = flush_flg;

new/usr/src/uts/common/io/ptm.c 2

509 putnext(ptmp->pts_rdq, mp);
510 } else
511 freemsg(mp);
512 break;
513 }

515 case M_IOCTL:
516 iocp = (struct iocblk *)mp->b_rptr;
517 switch (iocp->ioc_cmd) {
518 default:
519 if ((ptmp->pt_state & PTLOCK) ||
520 (ptmp->pts_rdq == NULL)) {
521 DBG(("got M_IOCTL but no slave\n"));
522 miocnak(qp, mp, 0, EINVAL);
523 PT_EXIT_READ(ptmp);
524 return;
525 }
526 (void) putq(qp, mp);
527 break;
528 case UNLKPT:
529 mutex_enter(&ptmp->pt_lock);
530 ptmp->pt_state &= ~PTLOCK;
531 mutex_exit(&ptmp->pt_lock);
532 /*FALLTHROUGH*/
533 case ISPTM:
534 DBG(("ack the UNLKPT/ISPTM\n"));
535 miocack(qp, mp, 0, 0);
536 break;
537 case ZONEPT:
538 {
539 zoneid_t z;
540 int error;

542 if ((error = drv_priv(iocp->ioc_cr)) != 0) {
543 miocnak(qp, mp, 0, error);
544 break;
545 }
546 if ((error = miocpullup(mp, sizeof (zoneid_t))) != 0) {
547 miocnak(qp, mp, 0, error);
548 break;
549 }
550 z = *((zoneid_t *)mp->b_cont->b_rptr);
551 if (z < MIN_ZONEID || z > MAX_ZONEID) {
552 miocnak(qp, mp, 0, EINVAL);
553 break;
554 }

556 mutex_enter(&ptmp->pt_lock);
557 ptmp->pt_zoneid = z;
558 mutex_exit(&ptmp->pt_lock);
559 miocack(qp, mp, 0, 0);
560 break;
561 }
562 case OWNERPT:
563 {
564 pt_own_t *ptop;
565 int error;
566 zone_t *zone;

568 if ((error = miocpullup(mp, sizeof (pt_own_t))) != 0) {
569 miocnak(qp, mp, 0, error);
570 break;
571 }

573 zone = zone_find_by_id(ptmp->pt_zoneid);
574 ptop = (pt_own_t *)mp->b_cont->b_rptr;

new/usr/src/uts/common/io/ptm.c 3

576 if (!VALID_UID(ptop->pto_ruid, zone) ||
577 !VALID_GID(ptop->pto_rgid, zone)) {
578 zone_rele(zone);
579 miocnak(qp, mp, 0, EINVAL);
580 break;
581 }
582 zone_rele(zone);
583 mutex_enter(&ptmp->pt_lock);
584 ptmp->pt_ruid = ptop->pto_ruid;
585 ptmp->pt_rgid = ptop->pto_rgid;
586 mutex_exit(&ptmp->pt_lock);
587 miocack(qp, mp, 0, 0);
588 break;
589 }
590 case PTMPTSOPENCB:
591 {
592 mblk_t *dp; /* ioctl reply data */
593 ptmptsopencb_t *ppocb;

595 /* only allow the kernel to invoke this ioctl */
596 if (iocp->ioc_cr != kcred) {
597 miocnak(qp, mp, 0, EINVAL);
598 break;
599 }

601 /* we don’t support transparent ioctls */
602 ASSERT(iocp->ioc_count != TRANSPARENT);
603 if (iocp->ioc_count == TRANSPARENT) {
604 miocnak(qp, mp, 0, EINVAL);
605 break;
606 }

608 /* allocate a response message */
609 dp = allocb(sizeof (ptmptsopencb_t), BPRI_MED);
610 if (dp == NULL) {
611 miocnak(qp, mp, 0, EAGAIN);
612 break;
613 }

615 /* initialize the ioctl results */
616 ppocb = (ptmptsopencb_t *)dp->b_rptr;
617 ppocb->ppocb_func = ptmptsopencb;
618 ppocb->ppocb_arg = (ptmptsopencb_arg_t)ptmp;

620 /* send the reply data */
621 mioc2ack(mp, dp, sizeof (ptmptsopencb_t), 0);
622 qreply(qp, mp);
623 #endif /* ! codereview */
624 break;
625 }
626 }
627 break;

629 case M_READ:
630 /* Caused by ldterm - can not pass to slave */
631 freemsg(mp);
632 break;

634 /*
635 * send other messages to slave
636 */
637 default:
638 if ((ptmp->pt_state & PTLOCK) || (ptmp->pts_rdq == NULL)) {
639 DBG(("got msg. but no slave\n"));
640 mp = mexchange(NULL, mp, 2, M_ERROR, -1);

new/usr/src/uts/common/io/ptm.c 4

641 if (mp != NULL) {
642 mp->b_rptr[0] = NOERROR;
643 mp->b_rptr[1] = EINVAL;
644 qreply(qp, mp);
645 }
646 PT_EXIT_READ(ptmp);
647 return;
648 }
649 DBG(("put msg on master’s write queue\n"));
650 (void) putq(qp, mp);
651 break;
652 }
653 DBG(("return from ptmwput()\n"));
654 PT_EXIT_READ(ptmp);
655 }

658 /*
659 * enable the write side of the slave. This triggers the
660 * slave to send any messages queued on its write side to
661 * the read side of this master.
662 */
663 static void
664 ptmrsrv(queue_t *qp)
665 {
666 struct pt_ttys *ptmp;

668 DBG(("entering ptmrsrv\n"));
669 ASSERT(qp->q_ptr);

671 ptmp = (struct pt_ttys *)qp->q_ptr;
672 PT_ENTER_READ(ptmp);
673 if (ptmp->pts_rdq) {
674 qenable(WR(ptmp->pts_rdq));
675 }
676 PT_EXIT_READ(ptmp);
677 DBG(("leaving ptmrsrv\n"));
678 }

681 /*
682 * If there are messages on this queue that can be sent to
683 * slave, send them via putnext(). Else, if queued messages
684 * cannot be sent, leave them on this queue. If priority
685 * messages on this queue, send them to slave no matter what.
686 */
687 static void
688 ptmwsrv(queue_t *qp)
689 {
690 struct pt_ttys *ptmp;
691 mblk_t *mp;

693 DBG(("entering ptmwsrv\n"));
694 ASSERT(qp->q_ptr);

696 ptmp = (struct pt_ttys *)qp->q_ptr;

698 if ((mp = getq(qp)) == NULL) {
699 /* If there are no messages there’s nothing to do. */
700 DBG(("leaving ptmwsrv (no messages)\n"));
701 return;
702 }

704 PT_ENTER_READ(ptmp);
705 if ((ptmp->pt_state & PTLOCK) || (ptmp->pts_rdq == NULL)) {
706 DBG(("in master write srv proc but no slave\n"));

new/usr/src/uts/common/io/ptm.c 5

707 /*
708 * Free messages on the write queue and send
709 * NAK for any M_IOCTL type messages to wakeup
710 * the user process waiting for ACK/NAK from
711 * the ioctl invocation
712 */
713 do {
714 if (mp->b_datap->db_type == M_IOCTL)
715 miocnak(qp, mp, 0, EINVAL);
716 else
717 freemsg(mp);
718 } while ((mp = getq(qp)) != NULL);
719 flushq(qp, FLUSHALL);

721 mp = mexchange(NULL, NULL, 2, M_ERROR, -1);
722 if (mp != NULL) {
723 mp->b_rptr[0] = NOERROR;
724 mp->b_rptr[1] = EINVAL;
725 qreply(qp, mp);
726 }
727 PT_EXIT_READ(ptmp);
728 return;
729 }
730 /*
731 * while there are messages on this write queue...
732 */
733 do {
734 /*
735 * if don’t have control message and cannot put
736 * msg. on slave’s read queue, put it back on
737 * this queue.
738 */
739 if (mp->b_datap->db_type <= QPCTL &&
740 !bcanputnext(ptmp->pts_rdq, mp->b_band)) {
741 DBG(("put msg. back on queue\n"));
742 (void) putbq(qp, mp);
743 break;
744 }
745 /*
746 * else send the message up slave’s stream
747 */
748 DBG(("send message to slave\n"));
749 putnext(ptmp->pts_rdq, mp);
750 } while ((mp = getq(qp)) != NULL);
751 DBG(("leaving ptmwsrv\n"));
752 PT_EXIT_READ(ptmp);
753 }

new/usr/src/uts/common/os/brand.c 1

**
 30239 Tue Jan 14 16:17:25 2014
new/usr/src/uts/common/os/brand.c
Bring back LX zones.
**
______unchanged_portion_omitted_
46 #else /* !__sparcv9 */
47 struct brand_mach_ops native_mach_ops = {
48 NULL, NULL, NULL, NULL, NULL, NULL
48 NULL, NULL, NULL, NULL
49 };

______unchanged_portion_omitted_

new/usr/src/uts/common/os/pid.c 1

**
 17182 Tue Jan 14 16:17:26 2014
new/usr/src/uts/common/os/pid.c
Bring back LX zones.
**
______unchanged_portion_omitted_

115 struct pid *
116 pid_find(pid_t pid)
117 {
118 struct pid *pidp;

120 mutex_enter(&pidlinklock);
121 pidp = pid_lookup(pid);
122 mutex_exit(&pidlinklock);

124 return (pidp);
125 }

127 #endif /* ! codereview */
128 void
129 pid_setmin(void)
130 {
131 if (jump_pid && jump_pid > mpid)
132 minpid = mpid = jump_pid;
133 else
134 minpid = mpid;
135 }

137 /*
138 * When prslots are simply used as an index to determine a process’ p_lock,
139 * adjacent prslots share adjacent p_locks. On machines where the size
140 * of a mutex is smaller than that of a cache line (which, as of this writing,
141 * is true for all machines on which Solaris runs), this can potentially
142 * induce false sharing. The standard solution for false sharing is to pad
143 * out one’s data structures (in this case, struct plock). However,
144 * given the size and (generally) sparse use of the proc_lock array, this
145 * is suboptimal. We therefore stride through the proc_lock array with
146 * a stride of PLOCK_SHIFT. PLOCK_SHIFT should be defined as:
147 *
148 * log_2 (coherence_granularity / sizeof (kmutex_t))
149 *
150 * Under this scheme, false sharing is still possible -- but only when
151 * the number of active processes is very large. Note that the one-to-one
152 * mapping between prslots and lockslots is maintained.
153 */
154 static int
155 pid_getlockslot(int prslot)
156 {
157 int even = (v.v_proc >> PLOCK_SHIFT) << PLOCK_SHIFT;
158 int perlap = even >> PLOCK_SHIFT;

160 if (prslot >= even)
161 return (prslot);

163 return (((prslot % perlap) << PLOCK_SHIFT) + (prslot / perlap));
164 }

166 /*
167 * This function allocates a pid structure, a free pid, and optionally a
168 * slot in the proc table for it.
169 *
170 * pid_allocate() returns the new pid on success, -1 on failure.
171 */
172 pid_t
173 pid_allocate(proc_t *prp, pid_t pid, int flags)

new/usr/src/uts/common/os/pid.c 2

174 {
175 struct pid *pidp;
176 union procent *pep;
177 pid_t newpid, startpid;

179 pidp = kmem_zalloc(sizeof (struct pid), KM_SLEEP);

181 mutex_enter(&pidlinklock);
182 if ((flags & PID_ALLOC_PROC) && (pep = procentfree) == NULL) {
183 /*
184 * ran out of /proc directory entries
185 */
186 goto failed;
187 }

189 if (pid != 0) {
190 VERIFY(minpid == 0);
191 VERIFY3P(pid, <, mpid);
192 VERIFY3P(pid_lookup(pid), ==, NULL);
193 newpid = pid;
194 } else {
195 /*
196 * Allocate a pid
197 */
198 ASSERT(minpid <= mpid && mpid < maxpid);

200 startpid = mpid;
201 for (;;) {
202 newpid = mpid;
203 if (++mpid == maxpid)
204 mpid = minpid;

206 if (pid_lookup(newpid) == NULL)
207 break;

209 if (mpid == startpid)
210 goto failed;
211 }
212 }

214 /*
215 * Put pid into the pid hash table.
216 */
217 pidp->pid_link = HASHPID(newpid);
218 HASHPID(newpid) = pidp;
219 pidp->pid_ref = 1;
220 pidp->pid_id = newpid;

222 if (flags & PID_ALLOC_PROC) {
223 procentfree = pep->pe_next;
224 pidp->pid_prslot = pep - procdir;
225 pep->pe_proc = prp;
226 prp->p_pidp = pidp;
227 prp->p_lockp = &proc_lock[pid_getlockslot(pidp->pid_prslot)];
228 } else {
229 pidp->pid_prslot = 0;
230 }

232 mutex_exit(&pidlinklock);

234 return (newpid);

236 failed:
237 mutex_exit(&pidlinklock);
238 kmem_free(pidp, sizeof (struct pid));
239 return (-1);

new/usr/src/uts/common/os/pid.c 3

240 }

242 /*
243 * decrement the reference count for pid
244 */
245 int
246 pid_rele(struct pid *pidp)
247 {
248 struct pid **pidpp;

250 mutex_enter(&pidlinklock);
251 ASSERT(pidp != &pid0);

253 pidpp = &HASHPID(pidp->pid_id);
254 for (;;) {
255 ASSERT(*pidpp != NULL);
256 if (*pidpp == pidp)
257 break;
258 pidpp = &(*pidpp)->pid_link;
259 }

261 *pidpp = pidp->pid_link;
262 mutex_exit(&pidlinklock);

264 kmem_free(pidp, sizeof (*pidp));
265 return (0);
266 }

268 void
269 proc_entry_free(struct pid *pidp)
270 {
271 mutex_enter(&pidlinklock);
272 pidp->pid_prinactive = 1;
273 procdir[pidp->pid_prslot].pe_next = procentfree;
274 procentfree = &procdir[pidp->pid_prslot];
275 mutex_exit(&pidlinklock);
276 }

278 /*
279 * The original task needs to be passed in since the process has already been
280 * detached from the task at this point in time.
281 */
282 void
283 pid_exit(proc_t *prp, struct task *tk)
284 {
285 struct pid *pidp;
286 zone_t *zone = prp->p_zone;

288 ASSERT(MUTEX_HELD(&pidlock));

290 /*
291 * Exit process group. If it is NULL, it’s because fork failed
292 * before calling pgjoin().
293 */
294 ASSERT(prp->p_pgidp != NULL || prp->p_stat == SIDL);
295 if (prp->p_pgidp != NULL)
296 pgexit(prp);

298 sess_rele(prp->p_sessp, B_TRUE);

300 pidp = prp->p_pidp;

302 proc_entry_free(pidp);

304 if (audit_active)
305 audit_pfree(prp);

new/usr/src/uts/common/os/pid.c 4

307 if (practive == prp) {
308 practive = prp->p_next;
309 }

311 if (prp->p_next) {
312 prp->p_next->p_prev = prp->p_prev;
313 }
314 if (prp->p_prev) {
315 prp->p_prev->p_next = prp->p_next;
316 }

318 PID_RELE(pidp);

320 mutex_destroy(&prp->p_crlock);
321 kmem_cache_free(process_cache, prp);
322 nproc--;

324 /*
325 * Decrement the process counts of the original task, project and zone.
326 */
327 mutex_enter(&zone->zone_nlwps_lock);
328 tk->tk_nprocs--;
329 tk->tk_proj->kpj_nprocs--;
330 zone->zone_nprocs--;
331 mutex_exit(&zone->zone_nlwps_lock);
332 }

334 /*
335 * Find a process visible from the specified zone given its process ID.
336 */
337 proc_t *
338 prfind_zone(pid_t pid, zoneid_t zoneid)
339 {
340 struct pid *pidp;
341 proc_t *p;

343 ASSERT(MUTEX_HELD(&pidlock));

345 mutex_enter(&pidlinklock);
346 pidp = pid_lookup(pid);
347 mutex_exit(&pidlinklock);
348 if (pidp != NULL && pidp->pid_prinactive == 0) {
349 p = procdir[pidp->pid_prslot].pe_proc;
350 if (zoneid == ALL_ZONES || p->p_zone->zone_id == zoneid)
351 return (p);
352 }
353 return (NULL);
354 }

356 /*
357 * Find a process given its process ID. This obeys zone restrictions,
358 * so if the caller is in a non-global zone it won’t find processes
359 * associated with other zones. Use prfind_zone(pid, ALL_ZONES) to
360 * bypass this restriction.
361 */
362 proc_t *
363 prfind(pid_t pid)
364 {
365 zoneid_t zoneid;

367 if (INGLOBALZONE(curproc))
368 zoneid = ALL_ZONES;
369 else
370 zoneid = getzoneid();
371 return (prfind_zone(pid, zoneid));

new/usr/src/uts/common/os/pid.c 5

372 }

374 proc_t *
375 pgfind_zone(pid_t pgid, zoneid_t zoneid)
376 {
377 struct pid *pidp;

379 ASSERT(MUTEX_HELD(&pidlock));

381 mutex_enter(&pidlinklock);
382 pidp = pid_lookup(pgid);
383 mutex_exit(&pidlinklock);
384 if (pidp != NULL) {
385 proc_t *p = pidp->pid_pglink;

387 if (zoneid == ALL_ZONES || pgid == 0 || p == NULL ||
388 p->p_zone->zone_id == zoneid)
389 return (p);
390 }
391 return (NULL);
392 }

394 /*
395 * return the head of the list of processes whose process group ID is ’pgid’,
396 * or NULL, if no such process group
397 */
398 proc_t *
399 pgfind(pid_t pgid)
400 {
401 zoneid_t zoneid;

403 if (INGLOBALZONE(curproc))
404 zoneid = ALL_ZONES;
405 else
406 zoneid = getzoneid();
407 return (pgfind_zone(pgid, zoneid));
408 }

410 /*
411 * Sets P_PR_LOCK on a non-system process. Process must be fully created
412 * and not exiting to succeed.
413 *
414 * Returns 0 on success.
415 * Returns 1 if P_PR_LOCK is set.
416 * Returns -1 if proc is in invalid state.
417 */
418 int
419 sprtrylock_proc(proc_t *p)
420 {
421 ASSERT(MUTEX_HELD(&p->p_lock));

423 /* skip system and incomplete processes */
424 if (p->p_stat == SIDL || p->p_stat == SZOMB ||
425 (p->p_flag & (SSYS | SEXITING | SEXITLWPS))) {
426 return (-1);
427 }

429 if (p->p_proc_flag & P_PR_LOCK)
430 return (1);

432 p->p_proc_flag |= P_PR_LOCK;
433 THREAD_KPRI_REQUEST();

435 return (0);
436 }

new/usr/src/uts/common/os/pid.c 6

438 /*
439 * Wait for P_PR_LOCK to become clear. Returns with p_lock dropped,
440 * and the proc pointer no longer valid, as the proc may have exited.
441 */
442 void
443 sprwaitlock_proc(proc_t *p)
444 {
445 kmutex_t *mp;

447 ASSERT(MUTEX_HELD(&p->p_lock));
448 ASSERT(p->p_proc_flag & P_PR_LOCK);

450 /*
451 * p_lock is persistent, but p itself is not -- it could
452 * vanish during cv_wait(). Load p->p_lock now so we can
453 * drop it after cv_wait() without referencing p.
454 */
455 mp = &p->p_lock;
456 cv_wait(&pr_pid_cv[p->p_slot], mp);
457 mutex_exit(mp);
458 }

460 /*
461 * If pid exists, find its proc, acquire its p_lock and mark it P_PR_LOCK.
462 * Returns the proc pointer on success, NULL on failure. sprlock() is
463 * really just a stripped-down version of pr_p_lock() to allow practive
464 * walkers like dofusers() and dumpsys() to synchronize with /proc.
465 */
466 proc_t *
467 sprlock_zone(pid_t pid, zoneid_t zoneid)
468 {
469 proc_t *p;
470 int ret;

472 for (;;) {
473 mutex_enter(&pidlock);
474 if ((p = prfind_zone(pid, zoneid)) == NULL) {
475 mutex_exit(&pidlock);
476 return (NULL);
477 }
478 mutex_enter(&p->p_lock);
479 mutex_exit(&pidlock);

481 if (panicstr)
482 return (p);

484 ret = sprtrylock_proc(p);
485 if (ret == -1) {
486 mutex_exit(&p->p_lock);
487 return (NULL);
488 } else if (ret == 0) {
489 break;
490 }
491 sprwaitlock_proc(p);
492 }
493 return (p);
494 }

496 proc_t *
497 sprlock(pid_t pid)
498 {
499 zoneid_t zoneid;

501 if (INGLOBALZONE(curproc))
502 zoneid = ALL_ZONES;
503 else

new/usr/src/uts/common/os/pid.c 7

504 zoneid = getzoneid();
505 return (sprlock_zone(pid, zoneid));
506 }

508 void
509 sprlock_proc(proc_t *p)
510 {
511 ASSERT(MUTEX_HELD(&p->p_lock));

513 while (p->p_proc_flag & P_PR_LOCK) {
514 cv_wait(&pr_pid_cv[p->p_slot], &p->p_lock);
515 }

517 p->p_proc_flag |= P_PR_LOCK;
518 THREAD_KPRI_REQUEST();
519 }

521 void
522 sprunlock(proc_t *p)
523 {
524 if (panicstr) {
525 mutex_exit(&p->p_lock);
526 return;
527 }

529 ASSERT(p->p_proc_flag & P_PR_LOCK);
530 ASSERT(MUTEX_HELD(&p->p_lock));

532 cv_signal(&pr_pid_cv[p->p_slot]);
533 p->p_proc_flag &= ~P_PR_LOCK;
534 mutex_exit(&p->p_lock);
535 THREAD_KPRI_RELEASE();
536 }

538 void
539 pid_init(void)
540 {
541 int i;

543 pid_hashsz = 1 << highbit(v.v_proc / pid_hashlen);

545 pidhash = kmem_zalloc(sizeof (struct pid *) * pid_hashsz, KM_SLEEP);
546 procdir = kmem_alloc(sizeof (union procent) * v.v_proc, KM_SLEEP);
547 pr_pid_cv = kmem_zalloc(sizeof (kcondvar_t) * v.v_proc, KM_SLEEP);
548 proc_lock = kmem_zalloc(sizeof (struct plock) * v.v_proc, KM_SLEEP);

550 nproc = 1;
551 practive = proc_sched;
552 proc_sched->p_next = NULL;
553 procdir[0].pe_proc = proc_sched;

555 procentfree = &procdir[1];
556 for (i = 1; i < v.v_proc - 1; i++)
557 procdir[i].pe_next = &procdir[i+1];
558 procdir[i].pe_next = NULL;

560 HASHPID(0) = &pid0;

562 upcount_init();
563 }

565 proc_t *
566 pid_entry(int slot)
567 {
568 union procent *pep;
569 proc_t *prp;

new/usr/src/uts/common/os/pid.c 8

571 ASSERT(MUTEX_HELD(&pidlock));
572 ASSERT(slot >= 0 && slot < v.v_proc);

574 pep = procdir[slot].pe_next;
575 if (pep >= procdir && pep < &procdir[v.v_proc])
576 return (NULL);
577 prp = procdir[slot].pe_proc;
578 if (prp != 0 && prp->p_stat == SIDL)
579 return (NULL);
580 return (prp);
581 }

583 /*
584 * Send the specified signal to all processes whose process group ID is
585 * equal to ’pgid’
586 */

588 void
589 signal(pid_t pgid, int sig)
590 {
591 struct pid *pidp;
592 proc_t *prp;

594 mutex_enter(&pidlock);
595 mutex_enter(&pidlinklock);
596 if (pgid == 0 || (pidp = pid_lookup(pgid)) == NULL) {
597 mutex_exit(&pidlinklock);
598 mutex_exit(&pidlock);
599 return;
600 }
601 mutex_exit(&pidlinklock);
602 for (prp = pidp->pid_pglink; prp; prp = prp->p_pglink) {
603 mutex_enter(&prp->p_lock);
604 sigtoproc(prp, NULL, sig);
605 mutex_exit(&prp->p_lock);
606 }
607 mutex_exit(&pidlock);
608 }

610 /*
611 * Send the specified signal to the specified process
612 */

614 void
615 prsignal(struct pid *pidp, int sig)
616 {
617 if (!(pidp->pid_prinactive))
618 psignal(procdir[pidp->pid_prslot].pe_proc, sig);
619 }

621 #include <sys/sunddi.h>

623 /*
624 * DDI/DKI interfaces for drivers to send signals to processes
625 */

627 /*
628 * obtain an opaque reference to a process for signaling
629 */
630 void *
631 proc_ref(void)
632 {
633 struct pid *pidp;

635 mutex_enter(&pidlock);

new/usr/src/uts/common/os/pid.c 9

636 pidp = curproc->p_pidp;
637 PID_HOLD(pidp);
638 mutex_exit(&pidlock);

640 return (pidp);
641 }

643 /*
644 * release a reference to a process
645 * - a process can exit even if a driver has a reference to it
646 * - one proc_unref for every proc_ref
647 */
648 void
649 proc_unref(void *pref)
650 {
651 mutex_enter(&pidlock);
652 PID_RELE((struct pid *)pref);
653 mutex_exit(&pidlock);
654 }

656 /*
657 * send a signal to a process
658 *
659 * - send the process the signal
660 * - if the process went away, return a -1
661 * - if the process is still there return 0
662 */
663 int
664 proc_signal(void *pref, int sig)
665 {
666 struct pid *pidp = pref;

668 prsignal(pidp, sig);
669 return (pidp->pid_prinactive ? -1 : 0);
670 }

673 static struct upcount **upc_hash; /* a boot time allocated array */
674 static ulong_t upc_hashmask;
675 #define UPC_HASH(x, y) ((ulong_t)(x ^ y) & upc_hashmask)

677 /*
678 * Get us off the ground. Called once at boot.
679 */
680 void
681 upcount_init(void)
682 {
683 ulong_t upc_hashsize;

685 /*
686 * An entry per MB of memory is our current guess
687 */
688 /*
689 * 2^20 is a meg, so shifting right by 20 - PAGESHIFT
690 * converts pages to megs (without overflowing a u_int
691 * if you have more than 4G of memory, like ptob(physmem)/1M
692 * would).
693 */
694 upc_hashsize = (1 << highbit(physmem >> (20 - PAGESHIFT)));
695 upc_hashmask = upc_hashsize - 1;
696 upc_hash = kmem_zalloc(upc_hashsize * sizeof (struct upcount *),
697 KM_SLEEP);
698 }

700 /*
701 * Increment the number of processes associated with a given uid and zoneid.

new/usr/src/uts/common/os/pid.c 10

702 */
703 void
704 upcount_inc(uid_t uid, zoneid_t zoneid)
705 {
706 struct upcount **upc, **hupc;
707 struct upcount *new;

709 ASSERT(MUTEX_HELD(&pidlock));
710 new = NULL;
711 hupc = &upc_hash[UPC_HASH(uid, zoneid)];
712 top:
713 upc = hupc;
714 while ((*upc) != NULL) {
715 if ((*upc)->up_uid == uid && (*upc)->up_zoneid == zoneid) {
716 (*upc)->up_count++;
717 if (new) {
718 /*
719 * did not need ‘new’ afterall.
720 */
721 kmem_free(new, sizeof (*new));
722 }
723 return;
724 }
725 upc = &(*upc)->up_next;
726 }

728 /*
729 * There is no entry for this <uid,zoneid> pair.
730 * Allocate one. If we have to drop pidlock, check
731 * again.
732 */
733 if (new == NULL) {
734 new = (struct upcount *)kmem_alloc(sizeof (*new), KM_NOSLEEP);
735 if (new == NULL) {
736 mutex_exit(&pidlock);
737 new = (struct upcount *)kmem_alloc(sizeof (*new),
738 KM_SLEEP);
739 mutex_enter(&pidlock);
740 goto top;
741 }
742 }

745 /*
746 * On the assumption that a new user is going to do some
747 * more forks, put the new upcount structure on the front.
748 */
749 upc = hupc;

751 new->up_uid = uid;
752 new->up_zoneid = zoneid;
753 new->up_count = 1;
754 new->up_next = *upc;

756 *upc = new;
757 }

759 /*
760 * Decrement the number of processes a given uid and zoneid has.
761 */
762 void
763 upcount_dec(uid_t uid, zoneid_t zoneid)
764 {
765 struct upcount **upc;
766 struct upcount *done;

new/usr/src/uts/common/os/pid.c 11

768 ASSERT(MUTEX_HELD(&pidlock));

770 upc = &upc_hash[UPC_HASH(uid, zoneid)];
771 while ((*upc) != NULL) {
772 if ((*upc)->up_uid == uid && (*upc)->up_zoneid == zoneid) {
773 (*upc)->up_count--;
774 if ((*upc)->up_count == 0) {
775 done = *upc;
776 *upc = (*upc)->up_next;
777 kmem_free(done, sizeof (*done));
778 }
779 return;
780 }
781 upc = &(*upc)->up_next;
782 }
783 cmn_err(CE_PANIC, "decr_upcount-off the end");
784 }

786 /*
787 * Returns the number of processes a uid has.
788 * Non-existent uid’s are assumed to have no processes.
789 */
790 int
791 upcount_get(uid_t uid, zoneid_t zoneid)
792 {
793 struct upcount *upc;

795 ASSERT(MUTEX_HELD(&pidlock));

797 upc = upc_hash[UPC_HASH(uid, zoneid)];
798 while (upc != NULL) {
799 if (upc->up_uid == uid && upc->up_zoneid == zoneid) {
800 return (upc->up_count);
801 }
802 upc = upc->up_next;
803 }
804 return (0);
805 }

new/usr/src/uts/common/os/streamio.c 1

**
 217247 Tue Jan 14 16:17:26 2014
new/usr/src/uts/common/os/streamio.c
Bring back LX zones.
**
______unchanged_portion_omitted_

3093 #endif /* _LP64 */

3095 /*
3096 * Determine type of job control semantics expected by user. The
3097 * possibilities are:
3098 * JCREAD - Behaves like read() on fd; send SIGTTIN
3099 * JCWRITE - Behaves like write() on fd; send SIGTTOU if TOSTOP set
3100 * JCSETP - Sets a value in the stream; send SIGTTOU, ignore TOSTOP
3101 * JCGETP - Gets a value in the stream; no signals.
3102 * See straccess in strsubr.c for usage of these values.
3103 *
3104 * This routine also returns -1 for I_STR as a special case; the
3105 * caller must call again with the real ioctl number for
3106 * classification.
3107 */
3108 static int
3109 job_control_type(int cmd)
3110 {
3111 switch (cmd) {
3112 case I_STR:
3113 return (-1);

3115 case I_RECVFD:
3116 case I_E_RECVFD:
3117 return (JCREAD);

3119 case I_FDINSERT:
3120 case I_SENDFD:
3121 return (JCWRITE);

3123 case TCSETA:
3124 case TCSETAW:
3125 case TCSETAF:
3126 case TCSBRK:
3127 case TCXONC:
3128 case TCFLSH:
3129 case TCDSET: /* Obsolete */
3130 case TIOCSWINSZ:
3131 case TCSETS:
3132 case TCSETSW:
3133 case TCSETSF:
3134 case TIOCSETD:
3135 case TIOCHPCL:
3136 case TIOCSETP:
3137 case TIOCSETN:
3138 case TIOCEXCL:
3139 case TIOCNXCL:
3140 case TIOCFLUSH:
3141 case TIOCSETC:
3142 case TIOCLBIS:
3143 case TIOCLBIC:
3144 case TIOCLSET:
3145 case TIOCSBRK:
3146 case TIOCCBRK:
3147 case TIOCSDTR:
3148 case TIOCCDTR:
3149 case TIOCSLTC:
3150 case TIOCSTOP:
3151 case TIOCSTART:

new/usr/src/uts/common/os/streamio.c 2

3152 case TIOCSTI:
3153 case TIOCSPGRP:
3154 case TIOCMSET:
3155 case TIOCMBIS:
3156 case TIOCMBIC:
3157 case TIOCREMOTE:
3158 case TIOCSIGNAL:
3159 case LDSETT:
3160 case LDSMAP: /* Obsolete */
3161 case DIOCSETP:
3162 case I_FLUSH:
3163 case I_SRDOPT:
3164 case I_SETSIG:
3165 case I_SWROPT:
3166 case I_FLUSHBAND:
3167 case I_SETCLTIME:
3168 case I_SERROPT:
3169 case I_ESETSIG:
3170 case FIONBIO:
3171 case FIOASYNC:
3172 case FIOSETOWN:
3173 case JBOOT: /* Obsolete */
3174 case JTERM: /* Obsolete */
3175 case JTIMOM: /* Obsolete */
3176 case JZOMBOOT: /* Obsolete */
3177 case JAGENT: /* Obsolete */
3178 case JTRUN: /* Obsolete */
3179 case JXTPROTO: /* Obsolete */
3180 case TIOCSETLD:
3181 #endif /* ! codereview */
3182 return (JCSETP);
3183 }

3185 return (JCGETP);
3186 }

3188 /*
3189 * ioctl for streams
3190 */
3191 int
3192 strioctl(struct vnode *vp, int cmd, intptr_t arg, int flag, int copyflag,
3193 cred_t *crp, int *rvalp)
3194 {
3195 struct stdata *stp;
3196 struct strcmd *scp;
3197 struct strioctl strioc;
3198 struct uio uio;
3199 struct iovec iov;
3200 int access;
3201 mblk_t *mp;
3202 int error = 0;
3203 int done = 0;
3204 ssize_t rmin, rmax;
3205 queue_t *wrq;
3206 queue_t *rdq;
3207 boolean_t kioctl = B_FALSE;
3208 uint32_t auditing = AU_AUDITING();

3210 if (flag & FKIOCTL) {
3211 copyflag = K_TO_K;
3212 kioctl = B_TRUE;
3213 }
3214 ASSERT(vp->v_stream);
3215 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
3216 stp = vp->v_stream;

new/usr/src/uts/common/os/streamio.c 3

3218 TRACE_3(TR_FAC_STREAMS_FR, TR_IOCTL_ENTER,
3219 "strioctl:stp %p cmd %X arg %lX", stp, cmd, arg);

3221 /*
3222 * If the copy is kernel to kernel, make sure that the FNATIVE
3223 * flag is set. After this it would be a serious error to have
3224 * no model flag.
3225 */
3226 if (copyflag == K_TO_K)
3227 flag = (flag & ~FMODELS) | FNATIVE;

3229 ASSERT((flag & FMODELS) != 0);

3231 wrq = stp->sd_wrq;
3232 rdq = _RD(wrq);

3234 access = job_control_type(cmd);

3236 /* We should never see these here, should be handled by iwscn */
3237 if (cmd == SRIOCSREDIR || cmd == SRIOCISREDIR)
3238 return (EINVAL);

3240 mutex_enter(&stp->sd_lock);
3241 if ((access != -1) && ((error = i_straccess(stp, access)) != 0)) {
3242 mutex_exit(&stp->sd_lock);
3243 return (error);
3244 }
3245 mutex_exit(&stp->sd_lock);

3247 /*
3248 * Check for sgttyb-related ioctls first, and complain as
3249 * necessary.
3250 */
3251 switch (cmd) {
3252 case TIOCGETP:
3253 case TIOCSETP:
3254 case TIOCSETN:
3255 if (sgttyb_handling >= 2 && !sgttyb_complaint) {
3256 sgttyb_complaint = B_TRUE;
3257 cmn_err(CE_NOTE,
3258 "application used obsolete TIOC[GS]ET");
3259 }
3260 if (sgttyb_handling >= 3) {
3261 tsignal(curthread, SIGSYS);
3262 return (EIO);
3263 }
3264 break;
3265 }

3267 mutex_enter(&stp->sd_lock);

3269 switch (cmd) {
3270 case I_RECVFD:
3271 case I_E_RECVFD:
3272 case I_PEEK:
3273 case I_NREAD:
3274 case FIONREAD:
3275 case FIORDCHK:
3276 case I_ATMARK:
3277 case FIONBIO:
3278 case FIOASYNC:
3279 if (stp->sd_flag & (STRDERR|STPLEX)) {
3280 error = strgeterr(stp, STRDERR|STPLEX, 0);
3281 if (error != 0) {
3282 mutex_exit(&stp->sd_lock);
3283 return (error);

new/usr/src/uts/common/os/streamio.c 4

3284 }
3285 }
3286 break;

3288 default:
3289 if (stp->sd_flag & (STRDERR|STWRERR|STPLEX)) {
3290 error = strgeterr(stp, STRDERR|STWRERR|STPLEX, 0);
3291 if (error != 0) {
3292 mutex_exit(&stp->sd_lock);
3293 return (error);
3294 }
3295 }
3296 }

3298 mutex_exit(&stp->sd_lock);

3300 switch (cmd) {
3301 default:
3302 /*
3303 * The stream head has hardcoded knowledge of a
3304 * miscellaneous collection of terminal-, keyboard- and
3305 * mouse-related ioctls, enumerated below. This hardcoded
3306 * knowledge allows the stream head to automatically
3307 * convert transparent ioctl requests made by userland
3308 * programs into I_STR ioctls which many old STREAMS
3309 * modules and drivers require.
3310 *
3311 * No new ioctls should ever be added to this list.
3312 * Instead, the STREAMS module or driver should be written
3313 * to either handle transparent ioctls or require any
3314 * userland programs to use I_STR ioctls (by returning
3315 * EINVAL to any transparent ioctl requests).
3316 *
3317 * More importantly, removing ioctls from this list should
3318 * be done with the utmost care, since our STREAMS modules
3319 * and drivers *count* on the stream head performing this
3320 * conversion, and thus may panic while processing
3321 * transparent ioctl request for one of these ioctls (keep
3322 * in mind that third party modules and drivers may have
3323 * similar problems).
3324 */
3325 if (((cmd & IOCTYPE) == LDIOC) ||
3326 ((cmd & IOCTYPE) == tIOC) ||
3327 ((cmd & IOCTYPE) == TIOC) ||
3328 ((cmd & IOCTYPE) == KIOC) ||
3329 ((cmd & IOCTYPE) == MSIOC) ||
3330 ((cmd & IOCTYPE) == VUIOC)) {
3331 /*
3332 * The ioctl is a tty ioctl - set up strioc buffer
3333 * and call strdoioctl() to do the work.
3334 */
3335 if (stp->sd_flag & STRHUP)
3336 return (ENXIO);
3337 strioc.ic_cmd = cmd;
3338 strioc.ic_timout = INFTIM;

3340 switch (cmd) {

3342 case TCXONC:
3343 case TCSBRK:
3344 case TCFLSH:
3345 case TCDSET:
3346 {
3347 int native_arg = (int)arg;
3348 strioc.ic_len = sizeof (int);
3349 strioc.ic_dp = (char *)&native_arg;

new/usr/src/uts/common/os/streamio.c 5

3350 return (strdoioctl(stp, &strioc, flag,
3351 K_TO_K, crp, rvalp));
3352 }

3354 case TCSETA:
3355 case TCSETAW:
3356 case TCSETAF:
3357 strioc.ic_len = sizeof (struct termio);
3358 strioc.ic_dp = (char *)arg;
3359 return (strdoioctl(stp, &strioc, flag,
3360 copyflag, crp, rvalp));

3362 case TCSETS:
3363 case TCSETSW:
3364 case TCSETSF:
3365 strioc.ic_len = sizeof (struct termios);
3366 strioc.ic_dp = (char *)arg;
3367 return (strdoioctl(stp, &strioc, flag,
3368 copyflag, crp, rvalp));

3370 case LDSETT:
3371 strioc.ic_len = sizeof (struct termcb);
3372 strioc.ic_dp = (char *)arg;
3373 return (strdoioctl(stp, &strioc, flag,
3374 copyflag, crp, rvalp));

3376 case TIOCSETP:
3377 strioc.ic_len = sizeof (struct sgttyb);
3378 strioc.ic_dp = (char *)arg;
3379 return (strdoioctl(stp, &strioc, flag,
3380 copyflag, crp, rvalp));

3382 case TIOCSTI:
3383 if ((flag & FREAD) == 0 &&
3384 secpolicy_sti(crp) != 0) {
3385 return (EPERM);
3386 }
3387 mutex_enter(&stp->sd_lock);
3388 mutex_enter(&curproc->p_splock);
3389 if (stp->sd_sidp != curproc->p_sessp->s_sidp &&
3390 secpolicy_sti(crp) != 0) {
3391 mutex_exit(&curproc->p_splock);
3392 mutex_exit(&stp->sd_lock);
3393 return (EACCES);
3394 }
3395 mutex_exit(&curproc->p_splock);
3396 mutex_exit(&stp->sd_lock);

3398 strioc.ic_len = sizeof (char);
3399 strioc.ic_dp = (char *)arg;
3400 return (strdoioctl(stp, &strioc, flag,
3401 copyflag, crp, rvalp));

3403 case TIOCSWINSZ:
3404 strioc.ic_len = sizeof (struct winsize);
3405 strioc.ic_dp = (char *)arg;
3406 return (strdoioctl(stp, &strioc, flag,
3407 copyflag, crp, rvalp));

3409 case TIOCSSIZE:
3410 strioc.ic_len = sizeof (struct ttysize);
3411 strioc.ic_dp = (char *)arg;
3412 return (strdoioctl(stp, &strioc, flag,
3413 copyflag, crp, rvalp));

3415 case TIOCSSOFTCAR:

new/usr/src/uts/common/os/streamio.c 6

3416 case KIOCTRANS:
3417 case KIOCTRANSABLE:
3418 case KIOCCMD:
3419 case KIOCSDIRECT:
3420 case KIOCSCOMPAT:
3421 case KIOCSKABORTEN:
3422 case KIOCSRPTDELAY:
3423 case KIOCSRPTRATE:
3424 case VUIDSFORMAT:
3425 case TIOCSPPS:
3426 strioc.ic_len = sizeof (int);
3427 strioc.ic_dp = (char *)arg;
3428 return (strdoioctl(stp, &strioc, flag,
3429 copyflag, crp, rvalp));

3431 case KIOCSETKEY:
3432 case KIOCGETKEY:
3433 strioc.ic_len = sizeof (struct kiockey);
3434 strioc.ic_dp = (char *)arg;
3435 return (strdoioctl(stp, &strioc, flag,
3436 copyflag, crp, rvalp));

3438 case KIOCSKEY:
3439 case KIOCGKEY:
3440 strioc.ic_len = sizeof (struct kiockeymap);
3441 strioc.ic_dp = (char *)arg;
3442 return (strdoioctl(stp, &strioc, flag,
3443 copyflag, crp, rvalp));

3445 case KIOCSLED:
3446 /* arg is a pointer to char */
3447 strioc.ic_len = sizeof (char);
3448 strioc.ic_dp = (char *)arg;
3449 return (strdoioctl(stp, &strioc, flag,
3450 copyflag, crp, rvalp));

3452 case MSIOSETPARMS:
3453 strioc.ic_len = sizeof (Ms_parms);
3454 strioc.ic_dp = (char *)arg;
3455 return (strdoioctl(stp, &strioc, flag,
3456 copyflag, crp, rvalp));

3458 case VUIDSADDR:
3459 case VUIDGADDR:
3460 strioc.ic_len = sizeof (struct vuid_addr_probe);
3461 strioc.ic_dp = (char *)arg;
3462 return (strdoioctl(stp, &strioc, flag,
3463 copyflag, crp, rvalp));

3465 /*
3466 * These M_IOCTL’s don’t require any data to be sent
3467 * downstream, and the driver will allocate and link
3468 * on its own mblk_t upon M_IOCACK -- thus we set
3469 * ic_len to zero and set ic_dp to arg so we know
3470 * where to copyout to later.
3471 */
3472 case TIOCGSOFTCAR:
3473 case TIOCGWINSZ:
3474 case TIOCGSIZE:
3475 case KIOCGTRANS:
3476 case KIOCGTRANSABLE:
3477 case KIOCTYPE:
3478 case KIOCGDIRECT:
3479 case KIOCGCOMPAT:
3480 case KIOCLAYOUT:
3481 case KIOCGLED:

new/usr/src/uts/common/os/streamio.c 7

3482 case MSIOGETPARMS:
3483 case MSIOBUTTONS:
3484 case VUIDGFORMAT:
3485 case TIOCGPPS:
3486 case TIOCGPPSEV:
3487 case TCGETA:
3488 case TCGETS:
3489 case LDGETT:
3490 case TIOCGETP:
3491 case KIOCGRPTDELAY:
3492 case KIOCGRPTRATE:
3493 strioc.ic_len = 0;
3494 strioc.ic_dp = (char *)arg;
3495 return (strdoioctl(stp, &strioc, flag,
3496 copyflag, crp, rvalp));
3497 }
3498 }

3500 /*
3501 * Unknown cmd - send it down as a transparent ioctl.
3502 */
3503 strioc.ic_cmd = cmd;
3504 strioc.ic_timout = INFTIM;
3505 strioc.ic_len = TRANSPARENT;
3506 strioc.ic_dp = (char *)&arg;

3508 return (strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp));

3510 case I_STR:
3511 /*
3512 * Stream ioctl. Read in an strioctl buffer from the user
3513 * along with any data specified and send it downstream.
3514 * Strdoioctl will wait allow only one ioctl message at
3515 * a time, and waits for the acknowledgement.
3516 */

3518 if (stp->sd_flag & STRHUP)
3519 return (ENXIO);

3521 error = strcopyin_strioctl((void *)arg, &strioc, flag,
3522 copyflag);
3523 if (error != 0)
3524 return (error);

3526 if ((strioc.ic_len < 0) || (strioc.ic_timout < -1))
3527 return (EINVAL);

3529 access = job_control_type(strioc.ic_cmd);
3530 mutex_enter(&stp->sd_lock);
3531 if ((access != -1) &&
3532 ((error = i_straccess(stp, access)) != 0)) {
3533 mutex_exit(&stp->sd_lock);
3534 return (error);
3535 }
3536 mutex_exit(&stp->sd_lock);

3538 /*
3539 * The I_STR facility provides a trap door for malicious
3540 * code to send down bogus streamio(7I) ioctl commands to
3541 * unsuspecting STREAMS modules and drivers which expect to
3542 * only get these messages from the stream head.
3543 * Explicitly prohibit any streamio ioctls which can be
3544 * passed downstream by the stream head. Note that we do
3545 * not block all streamio ioctls because the ioctl
3546 * numberspace is not well managed and thus it’s possible
3547 * that a module or driver’s ioctl numbers may accidentally

new/usr/src/uts/common/os/streamio.c 8

3548 * collide with them.
3549 */
3550 switch (strioc.ic_cmd) {
3551 case I_LINK:
3552 case I_PLINK:
3553 case I_UNLINK:
3554 case I_PUNLINK:
3555 case _I_GETPEERCRED:
3556 case _I_PLINK_LH:
3557 return (EINVAL);
3558 }

3560 error = strdoioctl(stp, &strioc, flag, copyflag, crp, rvalp);
3561 if (error == 0) {
3562 error = strcopyout_strioctl(&strioc, (void *)arg,
3563 flag, copyflag);
3564 }
3565 return (error);

3567 case _I_CMD:
3568 /*
3569 * Like I_STR, but without using M_IOC* messages and without
3570 * copyins/copyouts beyond the passed-in argument.
3571 */
3572 if (stp->sd_flag & STRHUP)
3573 return (ENXIO);

3575 if ((scp = kmem_alloc(sizeof (strcmd_t), KM_NOSLEEP)) == NULL)
3576 return (ENOMEM);

3578 if (copyin((void *)arg, scp, sizeof (strcmd_t))) {
3579 kmem_free(scp, sizeof (strcmd_t));
3580 return (EFAULT);
3581 }

3583 access = job_control_type(scp->sc_cmd);
3584 mutex_enter(&stp->sd_lock);
3585 if (access != -1 && (error = i_straccess(stp, access)) != 0) {
3586 mutex_exit(&stp->sd_lock);
3587 kmem_free(scp, sizeof (strcmd_t));
3588 return (error);
3589 }
3590 mutex_exit(&stp->sd_lock);

3592 *rvalp = 0;
3593 if ((error = strdocmd(stp, scp, crp)) == 0) {
3594 if (copyout(scp, (void *)arg, sizeof (strcmd_t)))
3595 error = EFAULT;
3596 }
3597 kmem_free(scp, sizeof (strcmd_t));
3598 return (error);

3600 case I_NREAD:
3601 /*
3602 * Return number of bytes of data in first message
3603 * in queue in "arg" and return the number of messages
3604 * in queue in return value.
3605 */
3606 {
3607 size_t size;
3608 int retval;
3609 int count = 0;

3611 mutex_enter(QLOCK(rdq));

3613 size = msgdsize(rdq->q_first);

new/usr/src/uts/common/os/streamio.c 9

3614 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3615 count++;

3617 mutex_exit(QLOCK(rdq));
3618 if (stp->sd_struiordq) {
3619 infod_t infod;

3621 infod.d_cmd = INFOD_COUNT;
3622 infod.d_count = 0;
3623 if (count == 0) {
3624 infod.d_cmd |= INFOD_FIRSTBYTES;
3625 infod.d_bytes = 0;
3626 }
3627 infod.d_res = 0;
3628 (void) infonext(rdq, &infod);
3629 count += infod.d_count;
3630 if (infod.d_res & INFOD_FIRSTBYTES)
3631 size = infod.d_bytes;
3632 }

3634 /*
3635 * Drop down from size_t to the "int" required by the
3636 * interface. Cap at INT_MAX.
3637 */
3638 retval = MIN(size, INT_MAX);
3639 error = strcopyout(&retval, (void *)arg, sizeof (retval),
3640 copyflag);
3641 if (!error)
3642 *rvalp = count;
3643 return (error);
3644 }

3646 case FIONREAD:
3647 /*
3648 * Return number of bytes of data in all data messages
3649 * in queue in "arg".
3650 */
3651 {
3652 size_t size = 0;
3653 int retval;

3655 mutex_enter(QLOCK(rdq));
3656 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3657 size += msgdsize(mp);
3658 mutex_exit(QLOCK(rdq));

3660 if (stp->sd_struiordq) {
3661 infod_t infod;

3663 infod.d_cmd = INFOD_BYTES;
3664 infod.d_res = 0;
3665 infod.d_bytes = 0;
3666 (void) infonext(rdq, &infod);
3667 size += infod.d_bytes;
3668 }

3670 /*
3671 * Drop down from size_t to the "int" required by the
3672 * interface. Cap at INT_MAX.
3673 */
3674 retval = MIN(size, INT_MAX);
3675 error = strcopyout(&retval, (void *)arg, sizeof (retval),
3676 copyflag);

3678 *rvalp = 0;
3679 return (error);

new/usr/src/uts/common/os/streamio.c 10

3680 }
3681 case FIORDCHK:
3682 /*
3683 * FIORDCHK does not use arg value (like FIONREAD),
3684 * instead a count is returned. I_NREAD value may
3685 * not be accurate but safe. The real thing to do is
3686 * to add the msgdsizes of all data messages until
3687 * a non-data message.
3688 */
3689 {
3690 size_t size = 0;

3692 mutex_enter(QLOCK(rdq));
3693 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
3694 size += msgdsize(mp);
3695 mutex_exit(QLOCK(rdq));

3697 if (stp->sd_struiordq) {
3698 infod_t infod;

3700 infod.d_cmd = INFOD_BYTES;
3701 infod.d_res = 0;
3702 infod.d_bytes = 0;
3703 (void) infonext(rdq, &infod);
3704 size += infod.d_bytes;
3705 }

3707 /*
3708 * Since ioctl returns an int, and memory sizes under
3709 * LP64 may not fit, we return INT_MAX if the count was
3710 * actually greater.
3711 */
3712 *rvalp = MIN(size, INT_MAX);
3713 return (0);
3714 }

3716 case I_FIND:
3717 /*
3718 * Get module name.
3719 */
3720 {
3721 char mname[FMNAMESZ + 1];
3722 queue_t *q;

3724 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3725 mname, FMNAMESZ + 1, NULL);
3726 if (error)
3727 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);

3729 /*
3730 * Return EINVAL if we’re handed a bogus module name.
3731 */
3732 if (fmodsw_find(mname, FMODSW_LOAD) == NULL) {
3733 TRACE_0(TR_FAC_STREAMS_FR,
3734 TR_I_CANT_FIND, "couldn’t I_FIND");
3735 return (EINVAL);
3736 }

3738 *rvalp = 0;

3740 /* Look downstream to see if module is there. */
3741 claimstr(stp->sd_wrq);
3742 for (q = stp->sd_wrq->q_next; q; q = q->q_next) {
3743 if (q->q_flag & QREADR) {
3744 q = NULL;
3745 break;

new/usr/src/uts/common/os/streamio.c 11

3746 }
3747 if (strcmp(mname, Q2NAME(q)) == 0)
3748 break;
3749 }
3750 releasestr(stp->sd_wrq);

3752 *rvalp = (q ? 1 : 0);
3753 return (error);
3754 }

3756 case I_PUSH:
3757 case __I_PUSH_NOCTTY:
3758 /*
3759 * Push a module.
3760 * For the case __I_PUSH_NOCTTY push a module but
3761 * do not allocate controlling tty. See bugid 4025044
3762 */

3764 {
3765 char mname[FMNAMESZ + 1];
3766 fmodsw_impl_t *fp;
3767 dev_t dummydev;

3769 if (stp->sd_flag & STRHUP)
3770 return (ENXIO);

3772 /*
3773 * Get module name and look up in fmodsw.
3774 */
3775 error = (copyflag & U_TO_K ? copyinstr : copystr)((void *)arg,
3776 mname, FMNAMESZ + 1, NULL);
3777 if (error)
3778 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);

3780 if ((fp = fmodsw_find(mname, FMODSW_HOLD | FMODSW_LOAD)) ==
3781 NULL)
3782 return (EINVAL);

3784 TRACE_2(TR_FAC_STREAMS_FR, TR_I_PUSH,
3785 "I_PUSH:fp %p stp %p", fp, stp);

3787 if (error = strstartplumb(stp, flag, cmd)) {
3788 fmodsw_rele(fp);
3789 return (error);
3790 }

3792 /*
3793 * See if any more modules can be pushed on this stream.
3794 * Note that this check must be done after strstartplumb()
3795 * since otherwise multiple threads issuing I_PUSHes on
3796 * the same stream will be able to exceed nstrpush.
3797 */
3798 mutex_enter(&stp->sd_lock);
3799 if (stp->sd_pushcnt >= nstrpush) {
3800 fmodsw_rele(fp);
3801 strendplumb(stp);
3802 mutex_exit(&stp->sd_lock);
3803 return (EINVAL);
3804 }
3805 mutex_exit(&stp->sd_lock);

3807 /*
3808 * Push new module and call its open routine
3809 * via qattach(). Modules don’t change device
3810 * numbers, so just ignore dummydev here.
3811 */

new/usr/src/uts/common/os/streamio.c 12

3812 dummydev = vp->v_rdev;
3813 if ((error = qattach(rdq, &dummydev, 0, crp, fp,
3814 B_FALSE)) == 0) {
3815 if (vp->v_type == VCHR && /* sorry, no pipes allowed */
3816 (cmd == I_PUSH) && (stp->sd_flag & STRISTTY)) {
3817 /*
3818 * try to allocate it as a controlling terminal
3819 */
3820 (void) strctty(stp);
3821 }
3822 }

3824 mutex_enter(&stp->sd_lock);

3826 /*
3827 * As a performance concern we are caching the values of
3828 * q_minpsz and q_maxpsz of the module below the stream
3829 * head in the stream head.
3830 */
3831 mutex_enter(QLOCK(stp->sd_wrq->q_next));
3832 rmin = stp->sd_wrq->q_next->q_minpsz;
3833 rmax = stp->sd_wrq->q_next->q_maxpsz;
3834 mutex_exit(QLOCK(stp->sd_wrq->q_next));

3836 /* Do this processing here as a performance concern */
3837 if (strmsgsz != 0) {
3838 if (rmax == INFPSZ)
3839 rmax = strmsgsz;
3840 else {
3841 if (vp->v_type == VFIFO)
3842 rmax = MIN(PIPE_BUF, rmax);
3843 else rmax = MIN(strmsgsz, rmax);
3844 }
3845 }

3847 mutex_enter(QLOCK(wrq));
3848 stp->sd_qn_minpsz = rmin;
3849 stp->sd_qn_maxpsz = rmax;
3850 mutex_exit(QLOCK(wrq));

3852 strendplumb(stp);
3853 mutex_exit(&stp->sd_lock);
3854 return (error);
3855 }

3857 case I_POP:
3858 {
3859 queue_t *q;

3861 if (stp->sd_flag & STRHUP)
3862 return (ENXIO);
3863 if (!wrq->q_next) /* for broken pipes */
3864 return (EINVAL);

3866 if (error = strstartplumb(stp, flag, cmd))
3867 return (error);

3869 /*
3870 * If there is an anchor on this stream and popping
3871 * the current module would attempt to pop through the
3872 * anchor, then disallow the pop unless we have sufficient
3873 * privileges; take the cheapest (non-locking) check
3874 * first.
3875 */
3876 if (secpolicy_ip_config(crp, B_TRUE) != 0 ||
3877 (stp->sd_anchorzone != crgetzoneid(crp))) {

new/usr/src/uts/common/os/streamio.c 13

3878 mutex_enter(&stp->sd_lock);
3879 /*
3880 * Anchors only apply if there’s at least one
3881 * module on the stream (sd_pushcnt > 0).
3882 */
3883 if (stp->sd_pushcnt > 0 &&
3884 stp->sd_pushcnt == stp->sd_anchor &&
3885 stp->sd_vnode->v_type != VFIFO) {
3886 strendplumb(stp);
3887 mutex_exit(&stp->sd_lock);
3888 if (stp->sd_anchorzone != crgetzoneid(crp))
3889 return (EINVAL);
3890 /* Audit and report error */
3891 return (secpolicy_ip_config(crp, B_FALSE));
3892 }
3893 mutex_exit(&stp->sd_lock);
3894 }

3896 q = wrq->q_next;
3897 TRACE_2(TR_FAC_STREAMS_FR, TR_I_POP,
3898 "I_POP:%p from %p", q, stp);
3899 if (q->q_next == NULL || (q->q_flag & (QREADR|QISDRV))) {
3900 error = EINVAL;
3901 } else {
3902 qdetach(_RD(q), 1, flag, crp, B_FALSE);
3903 error = 0;
3904 }
3905 mutex_enter(&stp->sd_lock);

3907 /*
3908 * As a performance concern we are caching the values of
3909 * q_minpsz and q_maxpsz of the module below the stream
3910 * head in the stream head.
3911 */
3912 mutex_enter(QLOCK(wrq->q_next));
3913 rmin = wrq->q_next->q_minpsz;
3914 rmax = wrq->q_next->q_maxpsz;
3915 mutex_exit(QLOCK(wrq->q_next));

3917 /* Do this processing here as a performance concern */
3918 if (strmsgsz != 0) {
3919 if (rmax == INFPSZ)
3920 rmax = strmsgsz;
3921 else {
3922 if (vp->v_type == VFIFO)
3923 rmax = MIN(PIPE_BUF, rmax);
3924 else rmax = MIN(strmsgsz, rmax);
3925 }
3926 }

3928 mutex_enter(QLOCK(wrq));
3929 stp->sd_qn_minpsz = rmin;
3930 stp->sd_qn_maxpsz = rmax;
3931 mutex_exit(QLOCK(wrq));

3933 /* If we popped through the anchor, then reset the anchor. */
3934 if (stp->sd_pushcnt < stp->sd_anchor) {
3935 stp->sd_anchor = 0;
3936 stp->sd_anchorzone = 0;
3937 }
3938 strendplumb(stp);
3939 mutex_exit(&stp->sd_lock);
3940 return (error);
3941 }

3943 case _I_MUXID2FD:

new/usr/src/uts/common/os/streamio.c 14

3944 {
3945 /*
3946 * Create a fd for a I_PLINK’ed lower stream with a given
3947 * muxid. With the fd, application can send down ioctls,
3948 * like I_LIST, to the previously I_PLINK’ed stream. Note
3949 * that after getting the fd, the application has to do an
3950 * I_PUNLINK on the muxid before it can do any operation
3951 * on the lower stream. This is required by spec1170.
3952 *
3953 * The fd used to do this ioctl should point to the same
3954 * controlling device used to do the I_PLINK. If it uses
3955 * a different stream or an invalid muxid, I_MUXID2FD will
3956 * fail. The error code is set to EINVAL.
3957 *
3958 * The intended use of this interface is the following.
3959 * An application I_PLINK’ed a stream and exits. The fd
3960 * to the lower stream is gone. Another application
3961 * wants to get a fd to the lower stream, it uses I_MUXID2FD.
3962 */
3963 int muxid = (int)arg;
3964 int fd;
3965 linkinfo_t *linkp;
3966 struct file *fp;
3967 netstack_t *ns;
3968 str_stack_t *ss;

3970 /*
3971 * Do not allow the wildcard muxid. This ioctl is not
3972 * intended to find arbitrary link.
3973 */
3974 if (muxid == 0) {
3975 return (EINVAL);
3976 }

3978 ns = netstack_find_by_cred(crp);
3979 ASSERT(ns != NULL);
3980 ss = ns->netstack_str;
3981 ASSERT(ss != NULL);

3983 mutex_enter(&muxifier);
3984 linkp = findlinks(vp->v_stream, muxid, LINKPERSIST, ss);
3985 if (linkp == NULL) {
3986 mutex_exit(&muxifier);
3987 netstack_rele(ss->ss_netstack);
3988 return (EINVAL);
3989 }

3991 if ((fd = ufalloc(0)) == -1) {
3992 mutex_exit(&muxifier);
3993 netstack_rele(ss->ss_netstack);
3994 return (EMFILE);
3995 }
3996 fp = linkp->li_fpdown;
3997 mutex_enter(&fp->f_tlock);
3998 fp->f_count++;
3999 mutex_exit(&fp->f_tlock);
4000 mutex_exit(&muxifier);
4001 setf(fd, fp);
4002 *rvalp = fd;
4003 netstack_rele(ss->ss_netstack);
4004 return (0);
4005 }

4007 case _I_INSERT:
4008 {
4009 /*

new/usr/src/uts/common/os/streamio.c 15

4010 * To insert a module to a given position in a stream.
4011 * In the first release, only allow privileged user
4012 * to use this ioctl. Furthermore, the insert is only allowed
4013 * below an anchor if the zoneid is the same as the zoneid
4014 * which created the anchor.
4015 *
4016 * Note that we do not plan to support this ioctl
4017 * on pipes in the first release. We want to learn more
4018 * about the implications of these ioctls before extending
4019 * their support. And we do not think these features are
4020 * valuable for pipes.
4021 */
4022 STRUCT_DECL(strmodconf, strmodinsert);
4023 char mod_name[FMNAMESZ + 1];
4024 fmodsw_impl_t *fp;
4025 dev_t dummydev;
4026 queue_t *tmp_wrq;
4027 int pos;
4028 boolean_t is_insert;

4030 STRUCT_INIT(strmodinsert, flag);
4031 if (stp->sd_flag & STRHUP)
4032 return (ENXIO);
4033 if (STRMATED(stp))
4034 return (EINVAL);
4035 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4036 return (error);
4037 if (stp->sd_anchor != 0 &&
4038 stp->sd_anchorzone != crgetzoneid(crp))
4039 return (EINVAL);

4041 error = strcopyin((void *)arg, STRUCT_BUF(strmodinsert),
4042 STRUCT_SIZE(strmodinsert), copyflag);
4043 if (error)
4044 return (error);

4046 /*
4047 * Get module name and look up in fmodsw.
4048 */
4049 error = (copyflag & U_TO_K ? copyinstr :
4050 copystr)(STRUCT_FGETP(strmodinsert, mod_name),
4051 mod_name, FMNAMESZ + 1, NULL);
4052 if (error)
4053 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);

4055 if ((fp = fmodsw_find(mod_name, FMODSW_HOLD | FMODSW_LOAD)) ==
4056 NULL)
4057 return (EINVAL);

4059 if (error = strstartplumb(stp, flag, cmd)) {
4060 fmodsw_rele(fp);
4061 return (error);
4062 }

4064 /*
4065 * Is this _I_INSERT just like an I_PUSH? We need to know
4066 * this because we do some optimizations if this is a
4067 * module being pushed.
4068 */
4069 pos = STRUCT_FGET(strmodinsert, pos);
4070 is_insert = (pos != 0);

4072 /*
4073 * Make sure pos is valid. Even though it is not an I_PUSH,
4074 * we impose the same limit on the number of modules in a
4075 * stream.

new/usr/src/uts/common/os/streamio.c 16

4076 */
4077 mutex_enter(&stp->sd_lock);
4078 if (stp->sd_pushcnt >= nstrpush || pos < 0 ||
4079 pos > stp->sd_pushcnt) {
4080 fmodsw_rele(fp);
4081 strendplumb(stp);
4082 mutex_exit(&stp->sd_lock);
4083 return (EINVAL);
4084 }
4085 if (stp->sd_anchor != 0) {
4086 /*
4087 * Is this insert below the anchor?
4088 * Pushcnt hasn’t been increased yet hence
4089 * we test for greater than here, and greater or
4090 * equal after qattach.
4091 */
4092 if (pos > (stp->sd_pushcnt - stp->sd_anchor) &&
4093 stp->sd_anchorzone != crgetzoneid(crp)) {
4094 fmodsw_rele(fp);
4095 strendplumb(stp);
4096 mutex_exit(&stp->sd_lock);
4097 return (EPERM);
4098 }
4099 }

4101 mutex_exit(&stp->sd_lock);

4103 /*
4104 * First find the correct position this module to
4105 * be inserted. We don’t need to call claimstr()
4106 * as the stream should not be changing at this point.
4107 *
4108 * Insert new module and call its open routine
4109 * via qattach(). Modules don’t change device
4110 * numbers, so just ignore dummydev here.
4111 */
4112 for (tmp_wrq = stp->sd_wrq; pos > 0;
4113 tmp_wrq = tmp_wrq->q_next, pos--) {
4114 ASSERT(SAMESTR(tmp_wrq));
4115 }
4116 dummydev = vp->v_rdev;
4117 if ((error = qattach(_RD(tmp_wrq), &dummydev, 0, crp,
4118 fp, is_insert)) != 0) {
4119 mutex_enter(&stp->sd_lock);
4120 strendplumb(stp);
4121 mutex_exit(&stp->sd_lock);
4122 return (error);
4123 }

4125 mutex_enter(&stp->sd_lock);

4127 /*
4128 * As a performance concern we are caching the values of
4129 * q_minpsz and q_maxpsz of the module below the stream
4130 * head in the stream head.
4131 */
4132 if (!is_insert) {
4133 mutex_enter(QLOCK(stp->sd_wrq->q_next));
4134 rmin = stp->sd_wrq->q_next->q_minpsz;
4135 rmax = stp->sd_wrq->q_next->q_maxpsz;
4136 mutex_exit(QLOCK(stp->sd_wrq->q_next));

4138 /* Do this processing here as a performance concern */
4139 if (strmsgsz != 0) {
4140 if (rmax == INFPSZ) {
4141 rmax = strmsgsz;

new/usr/src/uts/common/os/streamio.c 17

4142 } else {
4143 rmax = MIN(strmsgsz, rmax);
4144 }
4145 }

4147 mutex_enter(QLOCK(wrq));
4148 stp->sd_qn_minpsz = rmin;
4149 stp->sd_qn_maxpsz = rmax;
4150 mutex_exit(QLOCK(wrq));
4151 }

4153 /*
4154 * Need to update the anchor value if this module is
4155 * inserted below the anchor point.
4156 */
4157 if (stp->sd_anchor != 0) {
4158 pos = STRUCT_FGET(strmodinsert, pos);
4159 if (pos >= (stp->sd_pushcnt - stp->sd_anchor))
4160 stp->sd_anchor++;
4161 }

4163 strendplumb(stp);
4164 mutex_exit(&stp->sd_lock);
4165 return (0);
4166 }

4168 case _I_REMOVE:
4169 {
4170 /*
4171 * To remove a module with a given name in a stream. The
4172 * caller of this ioctl needs to provide both the name and
4173 * the position of the module to be removed. This eliminates
4174 * the ambiguity of removal if a module is inserted/pushed
4175 * multiple times in a stream. In the first release, only
4176 * allow privileged user to use this ioctl.
4177 * Furthermore, the remove is only allowed
4178 * below an anchor if the zoneid is the same as the zoneid
4179 * which created the anchor.
4180 *
4181 * Note that we do not plan to support this ioctl
4182 * on pipes in the first release. We want to learn more
4183 * about the implications of these ioctls before extending
4184 * their support. And we do not think these features are
4185 * valuable for pipes.
4186 *
4187 * Also note that _I_REMOVE cannot be used to remove a
4188 * driver or the stream head.
4189 */
4190 STRUCT_DECL(strmodconf, strmodremove);
4191 queue_t *q;
4192 int pos;
4193 char mod_name[FMNAMESZ + 1];
4194 boolean_t is_remove;

4196 STRUCT_INIT(strmodremove, flag);
4197 if (stp->sd_flag & STRHUP)
4198 return (ENXIO);
4199 if (STRMATED(stp))
4200 return (EINVAL);
4201 if ((error = secpolicy_net_config(crp, B_FALSE)) != 0)
4202 return (error);
4203 if (stp->sd_anchor != 0 &&
4204 stp->sd_anchorzone != crgetzoneid(crp))
4205 return (EINVAL);

4207 error = strcopyin((void *)arg, STRUCT_BUF(strmodremove),

new/usr/src/uts/common/os/streamio.c 18

4208 STRUCT_SIZE(strmodremove), copyflag);
4209 if (error)
4210 return (error);

4212 error = (copyflag & U_TO_K ? copyinstr :
4213 copystr)(STRUCT_FGETP(strmodremove, mod_name),
4214 mod_name, FMNAMESZ + 1, NULL);
4215 if (error)
4216 return ((error == ENAMETOOLONG) ? EINVAL : EFAULT);

4218 if ((error = strstartplumb(stp, flag, cmd)) != 0)
4219 return (error);

4221 /*
4222 * Match the name of given module to the name of module at
4223 * the given position.
4224 */
4225 pos = STRUCT_FGET(strmodremove, pos);

4227 is_remove = (pos != 0);
4228 for (q = stp->sd_wrq->q_next; SAMESTR(q) && pos > 0;
4229 q = q->q_next, pos--)
4230 ;
4231 if (pos > 0 || !SAMESTR(q) ||
4232 strcmp(Q2NAME(q), mod_name) != 0) {
4233 mutex_enter(&stp->sd_lock);
4234 strendplumb(stp);
4235 mutex_exit(&stp->sd_lock);
4236 return (EINVAL);
4237 }

4239 /*
4240 * If the position is at or below an anchor, then the zoneid
4241 * must match the zoneid that created the anchor.
4242 */
4243 if (stp->sd_anchor != 0) {
4244 pos = STRUCT_FGET(strmodremove, pos);
4245 if (pos >= (stp->sd_pushcnt - stp->sd_anchor) &&
4246 stp->sd_anchorzone != crgetzoneid(crp)) {
4247 mutex_enter(&stp->sd_lock);
4248 strendplumb(stp);
4249 mutex_exit(&stp->sd_lock);
4250 return (EPERM);
4251 }
4252 }

4255 ASSERT(!(q->q_flag & QREADR));
4256 qdetach(_RD(q), 1, flag, crp, is_remove);

4258 mutex_enter(&stp->sd_lock);

4260 /*
4261 * As a performance concern we are caching the values of
4262 * q_minpsz and q_maxpsz of the module below the stream
4263 * head in the stream head.
4264 */
4265 if (!is_remove) {
4266 mutex_enter(QLOCK(wrq->q_next));
4267 rmin = wrq->q_next->q_minpsz;
4268 rmax = wrq->q_next->q_maxpsz;
4269 mutex_exit(QLOCK(wrq->q_next));

4271 /* Do this processing here as a performance concern */
4272 if (strmsgsz != 0) {
4273 if (rmax == INFPSZ)

new/usr/src/uts/common/os/streamio.c 19

4274 rmax = strmsgsz;
4275 else {
4276 if (vp->v_type == VFIFO)
4277 rmax = MIN(PIPE_BUF, rmax);
4278 else rmax = MIN(strmsgsz, rmax);
4279 }
4280 }

4282 mutex_enter(QLOCK(wrq));
4283 stp->sd_qn_minpsz = rmin;
4284 stp->sd_qn_maxpsz = rmax;
4285 mutex_exit(QLOCK(wrq));
4286 }

4288 /*
4289 * Need to update the anchor value if this module is removed
4290 * at or below the anchor point. If the removed module is at
4291 * the anchor point, remove the anchor for this stream if
4292 * there is no module above the anchor point. Otherwise, if
4293 * the removed module is below the anchor point, decrement the
4294 * anchor point by 1.
4295 */
4296 if (stp->sd_anchor != 0) {
4297 pos = STRUCT_FGET(strmodremove, pos);
4298 if (pos == stp->sd_pushcnt - stp->sd_anchor + 1)
4299 stp->sd_anchor = 0;
4300 else if (pos > (stp->sd_pushcnt - stp->sd_anchor + 1))
4301 stp->sd_anchor--;
4302 }

4304 strendplumb(stp);
4305 mutex_exit(&stp->sd_lock);
4306 return (0);
4307 }

4309 case I_ANCHOR:
4310 /*
4311 * Set the anchor position on the stream to reside at
4312 * the top module (in other words, the top module
4313 * cannot be popped). Anchors with a FIFO make no
4314 * obvious sense, so they’re not allowed.
4315 */
4316 mutex_enter(&stp->sd_lock);

4318 if (stp->sd_vnode->v_type == VFIFO) {
4319 mutex_exit(&stp->sd_lock);
4320 return (EINVAL);
4321 }
4322 /* Only allow the same zoneid to update the anchor */
4323 if (stp->sd_anchor != 0 &&
4324 stp->sd_anchorzone != crgetzoneid(crp)) {
4325 mutex_exit(&stp->sd_lock);
4326 return (EINVAL);
4327 }
4328 stp->sd_anchor = stp->sd_pushcnt;
4329 stp->sd_anchorzone = crgetzoneid(crp);
4330 mutex_exit(&stp->sd_lock);
4331 return (0);

4333 case I_LOOK:
4334 /*
4335 * Get name of first module downstream.
4336 * If no module, return an error.
4337 */
4338 claimstr(wrq);
4339 if (_SAMESTR(wrq) && wrq->q_next->q_next != NULL) {

new/usr/src/uts/common/os/streamio.c 20

4340 char *name = Q2NAME(wrq->q_next);

4342 error = strcopyout(name, (void *)arg, strlen(name) + 1,
4343 copyflag);
4344 releasestr(wrq);
4345 return (error);
4346 }
4347 releasestr(wrq);
4348 return (EINVAL);

4350 case I_LINK:
4351 case I_PLINK:
4352 /*
4353 * Link a multiplexor.
4354 */
4355 return (mlink(vp, cmd, (int)arg, crp, rvalp, 0));

4357 case _I_PLINK_LH:
4358 /*
4359 * Link a multiplexor: Call must originate from kernel.
4360 */
4361 if (kioctl)
4362 return (ldi_mlink_lh(vp, cmd, arg, crp, rvalp));

4364 return (EINVAL);
4365 case I_UNLINK:
4366 case I_PUNLINK:
4367 /*
4368 * Unlink a multiplexor.
4369 * If arg is -1, unlink all links for which this is the
4370 * controlling stream. Otherwise, arg is an index number
4371 * for a link to be removed.
4372 */
4373 {
4374 struct linkinfo *linkp;
4375 int native_arg = (int)arg;
4376 int type;
4377 netstack_t *ns;
4378 str_stack_t *ss;

4380 TRACE_1(TR_FAC_STREAMS_FR,
4381 TR_I_UNLINK, "I_UNLINK/I_PUNLINK:%p", stp);
4382 if (vp->v_type == VFIFO) {
4383 return (EINVAL);
4384 }
4385 if (cmd == I_UNLINK)
4386 type = LINKNORMAL;
4387 else /* I_PUNLINK */
4388 type = LINKPERSIST;
4389 if (native_arg == 0) {
4390 return (EINVAL);
4391 }
4392 ns = netstack_find_by_cred(crp);
4393 ASSERT(ns != NULL);
4394 ss = ns->netstack_str;
4395 ASSERT(ss != NULL);

4397 if (native_arg == MUXID_ALL)
4398 error = munlinkall(stp, type, crp, rvalp, ss);
4399 else {
4400 mutex_enter(&muxifier);
4401 if (!(linkp = findlinks(stp, (int)arg, type, ss))) {
4402 /* invalid user supplied index number */
4403 mutex_exit(&muxifier);
4404 netstack_rele(ss->ss_netstack);
4405 return (EINVAL);

new/usr/src/uts/common/os/streamio.c 21

4406 }
4407 /* munlink drops the muxifier lock */
4408 error = munlink(stp, linkp, type, crp, rvalp, ss);
4409 }
4410 netstack_rele(ss->ss_netstack);
4411 return (error);
4412 }

4414 case I_FLUSH:
4415 /*
4416 * send a flush message downstream
4417 * flush message can indicate
4418 * FLUSHR - flush read queue
4419 * FLUSHW - flush write queue
4420 * FLUSHRW - flush read/write queue
4421 */
4422 if (stp->sd_flag & STRHUP)
4423 return (ENXIO);
4424 if (arg & ~FLUSHRW)
4425 return (EINVAL);

4427 for (;;) {
4428 if (putnextctl1(stp->sd_wrq, M_FLUSH, (int)arg)) {
4429 break;
4430 }
4431 if (error = strwaitbuf(1, BPRI_HI)) {
4432 return (error);
4433 }
4434 }

4436 /*
4437 * Send down an unsupported ioctl and wait for the nack
4438 * in order to allow the M_FLUSH to propagate back
4439 * up to the stream head.
4440 * Replaces if (qready()) runqueues();
4441 */
4442 strioc.ic_cmd = -1; /* The unsupported ioctl */
4443 strioc.ic_timout = 0;
4444 strioc.ic_len = 0;
4445 strioc.ic_dp = NULL;
4446 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4447 *rvalp = 0;
4448 return (0);

4450 case I_FLUSHBAND:
4451 {
4452 struct bandinfo binfo;

4454 error = strcopyin((void *)arg, &binfo, sizeof (binfo),
4455 copyflag);
4456 if (error)
4457 return (error);
4458 if (stp->sd_flag & STRHUP)
4459 return (ENXIO);
4460 if (binfo.bi_flag & ~FLUSHRW)
4461 return (EINVAL);
4462 while (!(mp = allocb(2, BPRI_HI))) {
4463 if (error = strwaitbuf(2, BPRI_HI))
4464 return (error);
4465 }
4466 mp->b_datap->db_type = M_FLUSH;
4467 *mp->b_wptr++ = binfo.bi_flag | FLUSHBAND;
4468 *mp->b_wptr++ = binfo.bi_pri;
4469 putnext(stp->sd_wrq, mp);
4470 /*
4471 * Send down an unsupported ioctl and wait for the nack

new/usr/src/uts/common/os/streamio.c 22

4472 * in order to allow the M_FLUSH to propagate back
4473 * up to the stream head.
4474 * Replaces if (qready()) runqueues();
4475 */
4476 strioc.ic_cmd = -1; /* The unsupported ioctl */
4477 strioc.ic_timout = 0;
4478 strioc.ic_len = 0;
4479 strioc.ic_dp = NULL;
4480 (void) strdoioctl(stp, &strioc, flag, K_TO_K, crp, rvalp);
4481 *rvalp = 0;
4482 return (0);
4483 }

4485 case I_SRDOPT:
4486 /*
4487 * Set read options
4488 *
4489 * RNORM - default stream mode
4490 * RMSGN - message no discard
4491 * RMSGD - message discard
4492 * RPROTNORM - fail read with EBADMSG for M_[PC]PROTOs
4493 * RPROTDAT - convert M_[PC]PROTOs to M_DATAs
4494 * RPROTDIS - discard M_[PC]PROTOs and retain M_DATAs
4495 */
4496 if (arg & ~(RMODEMASK | RPROTMASK))
4497 return (EINVAL);

4499 if ((arg & (RMSGD|RMSGN)) == (RMSGD|RMSGN))
4500 return (EINVAL);

4502 mutex_enter(&stp->sd_lock);
4503 switch (arg & RMODEMASK) {
4504 case RNORM:
4505 stp->sd_read_opt &= ~(RD_MSGDIS | RD_MSGNODIS);
4506 break;
4507 case RMSGD:
4508 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGNODIS) |
4509 RD_MSGDIS;
4510 break;
4511 case RMSGN:
4512 stp->sd_read_opt = (stp->sd_read_opt & ~RD_MSGDIS) |
4513 RD_MSGNODIS;
4514 break;
4515 }

4517 switch (arg & RPROTMASK) {
4518 case RPROTNORM:
4519 stp->sd_read_opt &= ~(RD_PROTDAT | RD_PROTDIS);
4520 break;

4522 case RPROTDAT:
4523 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDIS) |
4524 RD_PROTDAT);
4525 break;

4527 case RPROTDIS:
4528 stp->sd_read_opt = ((stp->sd_read_opt & ~RD_PROTDAT) |
4529 RD_PROTDIS);
4530 break;
4531 }
4532 mutex_exit(&stp->sd_lock);
4533 return (0);

4535 case I_GRDOPT:
4536 /*
4537 * Get read option and return the value

new/usr/src/uts/common/os/streamio.c 23

4538 * to spot pointed to by arg
4539 */
4540 {
4541 int rdopt;

4543 rdopt = ((stp->sd_read_opt & RD_MSGDIS) ? RMSGD :
4544 ((stp->sd_read_opt & RD_MSGNODIS) ? RMSGN : RNORM));
4545 rdopt |= ((stp->sd_read_opt & RD_PROTDAT) ? RPROTDAT :
4546 ((stp->sd_read_opt & RD_PROTDIS) ? RPROTDIS : RPROTNORM));

4548 return (strcopyout(&rdopt, (void *)arg, sizeof (int),
4549 copyflag));
4550 }

4552 case I_SERROPT:
4553 /*
4554 * Set error options
4555 *
4556 * RERRNORM - persistent read errors
4557 * RERRNONPERSIST - non-persistent read errors
4558 * WERRNORM - persistent write errors
4559 * WERRNONPERSIST - non-persistent write errors
4560 */
4561 if (arg & ~(RERRMASK | WERRMASK))
4562 return (EINVAL);

4564 mutex_enter(&stp->sd_lock);
4565 switch (arg & RERRMASK) {
4566 case RERRNORM:
4567 stp->sd_flag &= ~STRDERRNONPERSIST;
4568 break;
4569 case RERRNONPERSIST:
4570 stp->sd_flag |= STRDERRNONPERSIST;
4571 break;
4572 }
4573 switch (arg & WERRMASK) {
4574 case WERRNORM:
4575 stp->sd_flag &= ~STWRERRNONPERSIST;
4576 break;
4577 case WERRNONPERSIST:
4578 stp->sd_flag |= STWRERRNONPERSIST;
4579 break;
4580 }
4581 mutex_exit(&stp->sd_lock);
4582 return (0);

4584 case I_GERROPT:
4585 /*
4586 * Get error option and return the value
4587 * to spot pointed to by arg
4588 */
4589 {
4590 int erropt = 0;

4592 erropt |= (stp->sd_flag & STRDERRNONPERSIST) ? RERRNONPERSIST :
4593 RERRNORM;
4594 erropt |= (stp->sd_flag & STWRERRNONPERSIST) ? WERRNONPERSIST :
4595 WERRNORM;
4596 return (strcopyout(&erropt, (void *)arg, sizeof (int),
4597 copyflag));
4598 }

4600 case I_SETSIG:
4601 /*
4602 * Register the calling proc to receive the SIGPOLL
4603 * signal based on the events given in arg. If

new/usr/src/uts/common/os/streamio.c 24

4604 * arg is zero, remove the proc from register list.
4605 */
4606 {
4607 strsig_t *ssp, *pssp;
4608 struct pid *pidp;

4610 pssp = NULL;
4611 pidp = curproc->p_pidp;
4612 /*
4613 * Hold sd_lock to prevent traversal of sd_siglist while
4614 * it is modified.
4615 */
4616 mutex_enter(&stp->sd_lock);
4617 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pidp != pidp);
4618 pssp = ssp, ssp = ssp->ss_next)
4619 ;

4621 if (arg) {
4622 if (arg & ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4623 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4624 mutex_exit(&stp->sd_lock);
4625 return (EINVAL);
4626 }
4627 if ((arg & S_BANDURG) && !(arg & S_RDBAND)) {
4628 mutex_exit(&stp->sd_lock);
4629 return (EINVAL);
4630 }

4632 /*
4633 * If proc not already registered, add it
4634 * to list.
4635 */
4636 if (!ssp) {
4637 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4638 ssp->ss_pidp = pidp;
4639 ssp->ss_pid = pidp->pid_id;
4640 ssp->ss_next = NULL;
4641 if (pssp)
4642 pssp->ss_next = ssp;
4643 else
4644 stp->sd_siglist = ssp;
4645 mutex_enter(&pidlock);
4646 PID_HOLD(pidp);
4647 mutex_exit(&pidlock);
4648 }

4650 /*
4651 * Set events.
4652 */
4653 ssp->ss_events = (int)arg;
4654 } else {
4655 /*
4656 * Remove proc from register list.
4657 */
4658 if (ssp) {
4659 mutex_enter(&pidlock);
4660 PID_RELE(pidp);
4661 mutex_exit(&pidlock);
4662 if (pssp)
4663 pssp->ss_next = ssp->ss_next;
4664 else
4665 stp->sd_siglist = ssp->ss_next;
4666 kmem_free(ssp, sizeof (strsig_t));
4667 } else {
4668 mutex_exit(&stp->sd_lock);
4669 return (EINVAL);

new/usr/src/uts/common/os/streamio.c 25

4670 }
4671 }

4673 /*
4674 * Recalculate OR of sig events.
4675 */
4676 stp->sd_sigflags = 0;
4677 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4678 stp->sd_sigflags |= ssp->ss_events;
4679 mutex_exit(&stp->sd_lock);
4680 return (0);
4681 }

4683 case I_GETSIG:
4684 /*
4685 * Return (in arg) the current registration of events
4686 * for which the calling proc is to be signaled.
4687 */
4688 {
4689 struct strsig *ssp;
4690 struct pid *pidp;

4692 pidp = curproc->p_pidp;
4693 mutex_enter(&stp->sd_lock);
4694 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4695 if (ssp->ss_pidp == pidp) {
4696 error = strcopyout(&ssp->ss_events, (void *)arg,
4697 sizeof (int), copyflag);
4698 mutex_exit(&stp->sd_lock);
4699 return (error);
4700 }
4701 mutex_exit(&stp->sd_lock);
4702 return (EINVAL);
4703 }

4705 case I_ESETSIG:
4706 /*
4707 * Register the ss_pid to receive the SIGPOLL
4708 * signal based on the events is ss_events arg. If
4709 * ss_events is zero, remove the proc from register list.
4710 */
4711 {
4712 struct strsig *ssp, *pssp;
4713 struct proc *proc;
4714 struct pid *pidp;
4715 pid_t pid;
4716 struct strsigset ss;

4718 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4719 if (error)
4720 return (error);

4722 pid = ss.ss_pid;

4724 if (ss.ss_events != 0) {
4725 /*
4726 * Permissions check by sending signal 0.
4727 * Note that when kill fails it does a set_errno
4728 * causing the system call to fail.
4729 */
4730 error = kill(pid, 0);
4731 if (error) {
4732 return (error);
4733 }
4734 }
4735 mutex_enter(&pidlock);

new/usr/src/uts/common/os/streamio.c 26

4736 if (pid == 0)
4737 proc = curproc;
4738 else if (pid < 0)
4739 proc = pgfind(-pid);
4740 else
4741 proc = prfind(pid);
4742 if (proc == NULL) {
4743 mutex_exit(&pidlock);
4744 return (ESRCH);
4745 }
4746 if (pid < 0)
4747 pidp = proc->p_pgidp;
4748 else
4749 pidp = proc->p_pidp;
4750 ASSERT(pidp);
4751 /*
4752 * Get a hold on the pid structure while referencing it.
4753 * There is a separate PID_HOLD should it be inserted
4754 * in the list below.
4755 */
4756 PID_HOLD(pidp);
4757 mutex_exit(&pidlock);

4759 pssp = NULL;
4760 /*
4761 * Hold sd_lock to prevent traversal of sd_siglist while
4762 * it is modified.
4763 */
4764 mutex_enter(&stp->sd_lock);
4765 for (ssp = stp->sd_siglist; ssp && (ssp->ss_pid != pid);
4766 pssp = ssp, ssp = ssp->ss_next)
4767 ;

4769 if (ss.ss_events) {
4770 if (ss.ss_events &
4771 ~(S_INPUT|S_HIPRI|S_MSG|S_HANGUP|S_ERROR|
4772 S_RDNORM|S_WRNORM|S_RDBAND|S_WRBAND|S_BANDURG)) {
4773 mutex_exit(&stp->sd_lock);
4774 mutex_enter(&pidlock);
4775 PID_RELE(pidp);
4776 mutex_exit(&pidlock);
4777 return (EINVAL);
4778 }
4779 if ((ss.ss_events & S_BANDURG) &&
4780 !(ss.ss_events & S_RDBAND)) {
4781 mutex_exit(&stp->sd_lock);
4782 mutex_enter(&pidlock);
4783 PID_RELE(pidp);
4784 mutex_exit(&pidlock);
4785 return (EINVAL);
4786 }

4788 /*
4789 * If proc not already registered, add it
4790 * to list.
4791 */
4792 if (!ssp) {
4793 ssp = kmem_alloc(sizeof (strsig_t), KM_SLEEP);
4794 ssp->ss_pidp = pidp;
4795 ssp->ss_pid = pid;
4796 ssp->ss_next = NULL;
4797 if (pssp)
4798 pssp->ss_next = ssp;
4799 else
4800 stp->sd_siglist = ssp;
4801 mutex_enter(&pidlock);

new/usr/src/uts/common/os/streamio.c 27

4802 PID_HOLD(pidp);
4803 mutex_exit(&pidlock);
4804 }

4806 /*
4807 * Set events.
4808 */
4809 ssp->ss_events = ss.ss_events;
4810 } else {
4811 /*
4812 * Remove proc from register list.
4813 */
4814 if (ssp) {
4815 mutex_enter(&pidlock);
4816 PID_RELE(pidp);
4817 mutex_exit(&pidlock);
4818 if (pssp)
4819 pssp->ss_next = ssp->ss_next;
4820 else
4821 stp->sd_siglist = ssp->ss_next;
4822 kmem_free(ssp, sizeof (strsig_t));
4823 } else {
4824 mutex_exit(&stp->sd_lock);
4825 mutex_enter(&pidlock);
4826 PID_RELE(pidp);
4827 mutex_exit(&pidlock);
4828 return (EINVAL);
4829 }
4830 }

4832 /*
4833 * Recalculate OR of sig events.
4834 */
4835 stp->sd_sigflags = 0;
4836 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4837 stp->sd_sigflags |= ssp->ss_events;
4838 mutex_exit(&stp->sd_lock);
4839 mutex_enter(&pidlock);
4840 PID_RELE(pidp);
4841 mutex_exit(&pidlock);
4842 return (0);
4843 }

4845 case I_EGETSIG:
4846 /*
4847 * Return (in arg) the current registration of events
4848 * for which the calling proc is to be signaled.
4849 */
4850 {
4851 struct strsig *ssp;
4852 struct proc *proc;
4853 pid_t pid;
4854 struct pid *pidp;
4855 struct strsigset ss;

4857 error = strcopyin((void *)arg, &ss, sizeof (ss), copyflag);
4858 if (error)
4859 return (error);

4861 pid = ss.ss_pid;
4862 mutex_enter(&pidlock);
4863 if (pid == 0)
4864 proc = curproc;
4865 else if (pid < 0)
4866 proc = pgfind(-pid);
4867 else

new/usr/src/uts/common/os/streamio.c 28

4868 proc = prfind(pid);
4869 if (proc == NULL) {
4870 mutex_exit(&pidlock);
4871 return (ESRCH);
4872 }
4873 if (pid < 0)
4874 pidp = proc->p_pgidp;
4875 else
4876 pidp = proc->p_pidp;

4878 /* Prevent the pidp from being reassigned */
4879 PID_HOLD(pidp);
4880 mutex_exit(&pidlock);

4882 mutex_enter(&stp->sd_lock);
4883 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
4884 if (ssp->ss_pid == pid) {
4885 ss.ss_pid = ssp->ss_pid;
4886 ss.ss_events = ssp->ss_events;
4887 error = strcopyout(&ss, (void *)arg,
4888 sizeof (struct strsigset), copyflag);
4889 mutex_exit(&stp->sd_lock);
4890 mutex_enter(&pidlock);
4891 PID_RELE(pidp);
4892 mutex_exit(&pidlock);
4893 return (error);
4894 }
4895 mutex_exit(&stp->sd_lock);
4896 mutex_enter(&pidlock);
4897 PID_RELE(pidp);
4898 mutex_exit(&pidlock);
4899 return (EINVAL);
4900 }

4902 case I_PEEK:
4903 {
4904 STRUCT_DECL(strpeek, strpeek);
4905 size_t n;
4906 mblk_t *fmp, *tmp_mp = NULL;

4908 STRUCT_INIT(strpeek, flag);

4910 error = strcopyin((void *)arg, STRUCT_BUF(strpeek),
4911 STRUCT_SIZE(strpeek), copyflag);
4912 if (error)
4913 return (error);

4915 mutex_enter(QLOCK(rdq));
4916 /*
4917 * Skip the invalid messages
4918 */
4919 for (mp = rdq->q_first; mp != NULL; mp = mp->b_next)
4920 if (mp->b_datap->db_type != M_SIG)
4921 break;

4923 /*
4924 * If user has requested to peek at a high priority message
4925 * and first message is not, return 0
4926 */
4927 if (mp != NULL) {
4928 if ((STRUCT_FGET(strpeek, flags) & RS_HIPRI) &&
4929 queclass(mp) == QNORM) {
4930 *rvalp = 0;
4931 mutex_exit(QLOCK(rdq));
4932 return (0);
4933 }

new/usr/src/uts/common/os/streamio.c 29

4934 } else if (stp->sd_struiordq == NULL ||
4935 (STRUCT_FGET(strpeek, flags) & RS_HIPRI)) {
4936 /*
4937 * No mblks to look at at the streamhead and
4938 * 1). This isn’t a synch stream or
4939 * 2). This is a synch stream but caller wants high
4940 * priority messages which is not supported by
4941 * the synch stream. (it only supports QNORM)
4942 */
4943 *rvalp = 0;
4944 mutex_exit(QLOCK(rdq));
4945 return (0);
4946 }

4948 fmp = mp;

4950 if (mp && mp->b_datap->db_type == M_PASSFP) {
4951 mutex_exit(QLOCK(rdq));
4952 return (EBADMSG);
4953 }

4955 ASSERT(mp == NULL || mp->b_datap->db_type == M_PCPROTO ||
4956 mp->b_datap->db_type == M_PROTO ||
4957 mp->b_datap->db_type == M_DATA);

4959 if (mp && mp->b_datap->db_type == M_PCPROTO) {
4960 STRUCT_FSET(strpeek, flags, RS_HIPRI);
4961 } else {
4962 STRUCT_FSET(strpeek, flags, 0);
4963 }

4966 if (mp && ((tmp_mp = dupmsg(mp)) == NULL)) {
4967 mutex_exit(QLOCK(rdq));
4968 return (ENOSR);
4969 }
4970 mutex_exit(QLOCK(rdq));

4972 /*
4973 * set mp = tmp_mp, so that I_PEEK processing can continue.
4974 * tmp_mp is used to free the dup’d message.
4975 */
4976 mp = tmp_mp;

4978 uio.uio_fmode = 0;
4979 uio.uio_extflg = UIO_COPY_CACHED;
4980 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
4981 UIO_SYSSPACE;
4982 uio.uio_limit = 0;
4983 /*
4984 * First process PROTO blocks, if any.
4985 * If user doesn’t want to get ctl info by setting maxlen <= 0,
4986 * then set len to -1/0 and skip control blocks part.
4987 */
4988 if (STRUCT_FGET(strpeek, ctlbuf.maxlen) < 0)
4989 STRUCT_FSET(strpeek, ctlbuf.len, -1);
4990 else if (STRUCT_FGET(strpeek, ctlbuf.maxlen) == 0)
4991 STRUCT_FSET(strpeek, ctlbuf.len, 0);
4992 else {
4993 int ctl_part = 0;

4995 iov.iov_base = STRUCT_FGETP(strpeek, ctlbuf.buf);
4996 iov.iov_len = STRUCT_FGET(strpeek, ctlbuf.maxlen);
4997 uio.uio_iov = &iov;
4998 uio.uio_resid = iov.iov_len;
4999 uio.uio_loffset = 0;

new/usr/src/uts/common/os/streamio.c 30

5000 uio.uio_iovcnt = 1;
5001 while (mp && mp->b_datap->db_type != M_DATA &&
5002 uio.uio_resid >= 0) {
5003 ASSERT(STRUCT_FGET(strpeek, flags) == 0 ?
5004 mp->b_datap->db_type == M_PROTO :
5005 mp->b_datap->db_type == M_PCPROTO);

5007 if ((n = MIN(uio.uio_resid,
5008 mp->b_wptr - mp->b_rptr)) != 0 &&
5009 (error = uiomove((char *)mp->b_rptr, n,
5010 UIO_READ, &uio)) != 0) {
5011 freemsg(tmp_mp);
5012 return (error);
5013 }
5014 ctl_part = 1;
5015 mp = mp->b_cont;
5016 }
5017 /* No ctl message */
5018 if (ctl_part == 0)
5019 STRUCT_FSET(strpeek, ctlbuf.len, -1);
5020 else
5021 STRUCT_FSET(strpeek, ctlbuf.len,
5022 STRUCT_FGET(strpeek, ctlbuf.maxlen) -
5023 uio.uio_resid);
5024 }

5026 /*
5027 * Now process DATA blocks, if any.
5028 * If user doesn’t want to get data info by setting maxlen <= 0,
5029 * then set len to -1/0 and skip data blocks part.
5030 */
5031 if (STRUCT_FGET(strpeek, databuf.maxlen) < 0)
5032 STRUCT_FSET(strpeek, databuf.len, -1);
5033 else if (STRUCT_FGET(strpeek, databuf.maxlen) == 0)
5034 STRUCT_FSET(strpeek, databuf.len, 0);
5035 else {
5036 int data_part = 0;

5038 iov.iov_base = STRUCT_FGETP(strpeek, databuf.buf);
5039 iov.iov_len = STRUCT_FGET(strpeek, databuf.maxlen);
5040 uio.uio_iov = &iov;
5041 uio.uio_resid = iov.iov_len;
5042 uio.uio_loffset = 0;
5043 uio.uio_iovcnt = 1;
5044 while (mp && uio.uio_resid) {
5045 if (mp->b_datap->db_type == M_DATA) {
5046 if ((n = MIN(uio.uio_resid,
5047 mp->b_wptr - mp->b_rptr)) != 0 &&
5048 (error = uiomove((char *)mp->b_rptr,
5049 n, UIO_READ, &uio)) != 0) {
5050 freemsg(tmp_mp);
5051 return (error);
5052 }
5053 data_part = 1;
5054 }
5055 ASSERT(data_part == 0 ||
5056 mp->b_datap->db_type == M_DATA);
5057 mp = mp->b_cont;
5058 }
5059 /* No data message */
5060 if (data_part == 0)
5061 STRUCT_FSET(strpeek, databuf.len, -1);
5062 else
5063 STRUCT_FSET(strpeek, databuf.len,
5064 STRUCT_FGET(strpeek, databuf.maxlen) -
5065 uio.uio_resid);

new/usr/src/uts/common/os/streamio.c 31

5066 }
5067 freemsg(tmp_mp);

5069 /*
5070 * It is a synch stream and user wants to get
5071 * data (maxlen > 0).
5072 * uio setup is done by the codes that process DATA
5073 * blocks above.
5074 */
5075 if ((fmp == NULL) && STRUCT_FGET(strpeek, databuf.maxlen) > 0) {
5076 infod_t infod;

5078 infod.d_cmd = INFOD_COPYOUT;
5079 infod.d_res = 0;
5080 infod.d_uiop = &uio;
5081 error = infonext(rdq, &infod);
5082 if (error == EINVAL || error == EBUSY)
5083 error = 0;
5084 if (error)
5085 return (error);
5086 STRUCT_FSET(strpeek, databuf.len, STRUCT_FGET(strpeek,
5087 databuf.maxlen) - uio.uio_resid);
5088 if (STRUCT_FGET(strpeek, databuf.len) == 0) {
5089 /*
5090 * No data found by the infonext().
5091 */
5092 STRUCT_FSET(strpeek, databuf.len, -1);
5093 }
5094 }
5095 error = strcopyout(STRUCT_BUF(strpeek), (void *)arg,
5096 STRUCT_SIZE(strpeek), copyflag);
5097 if (error) {
5098 return (error);
5099 }
5100 /*
5101 * If there is no message retrieved, set return code to 0
5102 * otherwise, set it to 1.
5103 */
5104 if (STRUCT_FGET(strpeek, ctlbuf.len) == -1 &&
5105 STRUCT_FGET(strpeek, databuf.len) == -1)
5106 *rvalp = 0;
5107 else
5108 *rvalp = 1;
5109 return (0);
5110 }

5112 case I_FDINSERT:
5113 {
5114 STRUCT_DECL(strfdinsert, strfdinsert);
5115 struct file *resftp;
5116 struct stdata *resstp;
5117 t_uscalar_t ival;
5118 ssize_t msgsize;
5119 struct strbuf mctl;

5121 STRUCT_INIT(strfdinsert, flag);
5122 if (stp->sd_flag & STRHUP)
5123 return (ENXIO);
5124 /*
5125 * STRDERR, STWRERR and STPLEX tested above.
5126 */
5127 error = strcopyin((void *)arg, STRUCT_BUF(strfdinsert),
5128 STRUCT_SIZE(strfdinsert), copyflag);
5129 if (error)
5130 return (error);

new/usr/src/uts/common/os/streamio.c 32

5132 if (STRUCT_FGET(strfdinsert, offset) < 0 ||
5133 (STRUCT_FGET(strfdinsert, offset) %
5134 sizeof (t_uscalar_t)) != 0)
5135 return (EINVAL);
5136 if ((resftp = getf(STRUCT_FGET(strfdinsert, fildes))) != NULL) {
5137 if ((resstp = resftp->f_vnode->v_stream) == NULL) {
5138 releasef(STRUCT_FGET(strfdinsert, fildes));
5139 return (EINVAL);
5140 }
5141 } else
5142 return (EINVAL);

5144 mutex_enter(&resstp->sd_lock);
5145 if (resstp->sd_flag & (STRDERR|STWRERR|STRHUP|STPLEX)) {
5146 error = strgeterr(resstp,
5147 STRDERR|STWRERR|STRHUP|STPLEX, 0);
5148 if (error != 0) {
5149 mutex_exit(&resstp->sd_lock);
5150 releasef(STRUCT_FGET(strfdinsert, fildes));
5151 return (error);
5152 }
5153 }
5154 mutex_exit(&resstp->sd_lock);

5156 #ifdef _ILP32
5157 {
5158 queue_t *q;
5159 queue_t *mate = NULL;

5161 /* get read queue of stream terminus */
5162 claimstr(resstp->sd_wrq);
5163 for (q = resstp->sd_wrq->q_next; q->q_next != NULL;
5164 q = q->q_next)
5165 if (!STRMATED(resstp) && STREAM(q) != resstp &&
5166 mate == NULL) {
5167 ASSERT(q->q_qinfo->qi_srvp);
5168 ASSERT(_OTHERQ(q)->q_qinfo->qi_srvp);
5169 claimstr(q);
5170 mate = q;
5171 }
5172 q = _RD(q);
5173 if (mate)
5174 releasestr(mate);
5175 releasestr(resstp->sd_wrq);
5176 ival = (t_uscalar_t)q;
5177 }
5178 #else
5179 ival = (t_uscalar_t)getminor(resftp->f_vnode->v_rdev);
5180 #endif /* _ILP32 */

5182 if (STRUCT_FGET(strfdinsert, ctlbuf.len) <
5183 STRUCT_FGET(strfdinsert, offset) + sizeof (t_uscalar_t)) {
5184 releasef(STRUCT_FGET(strfdinsert, fildes));
5185 return (EINVAL);
5186 }

5188 /*
5189 * Check for legal flag value.
5190 */
5191 if (STRUCT_FGET(strfdinsert, flags) & ~RS_HIPRI) {
5192 releasef(STRUCT_FGET(strfdinsert, fildes));
5193 return (EINVAL);
5194 }

5196 /* get these values from those cached in the stream head */
5197 mutex_enter(QLOCK(stp->sd_wrq));

new/usr/src/uts/common/os/streamio.c 33

5198 rmin = stp->sd_qn_minpsz;
5199 rmax = stp->sd_qn_maxpsz;
5200 mutex_exit(QLOCK(stp->sd_wrq));

5202 /*
5203 * Make sure ctl and data sizes together fall within
5204 * the limits of the max and min receive packet sizes
5205 * and do not exceed system limit. A negative data
5206 * length means that no data part is to be sent.
5207 */
5208 ASSERT((rmax >= 0) || (rmax == INFPSZ));
5209 if (rmax == 0) {
5210 releasef(STRUCT_FGET(strfdinsert, fildes));
5211 return (ERANGE);
5212 }
5213 if ((msgsize = STRUCT_FGET(strfdinsert, databuf.len)) < 0)
5214 msgsize = 0;
5215 if ((msgsize < rmin) ||
5216 ((msgsize > rmax) && (rmax != INFPSZ)) ||
5217 (STRUCT_FGET(strfdinsert, ctlbuf.len) > strctlsz)) {
5218 releasef(STRUCT_FGET(strfdinsert, fildes));
5219 return (ERANGE);
5220 }

5222 mutex_enter(&stp->sd_lock);
5223 while (!(STRUCT_FGET(strfdinsert, flags) & RS_HIPRI) &&
5224 !canputnext(stp->sd_wrq)) {
5225 if ((error = strwaitq(stp, WRITEWAIT, (ssize_t)0,
5226 flag, -1, &done)) != 0 || done) {
5227 mutex_exit(&stp->sd_lock);
5228 releasef(STRUCT_FGET(strfdinsert, fildes));
5229 return (error);
5230 }
5231 if ((error = i_straccess(stp, access)) != 0) {
5232 mutex_exit(&stp->sd_lock);
5233 releasef(
5234 STRUCT_FGET(strfdinsert, fildes));
5235 return (error);
5236 }
5237 }
5238 mutex_exit(&stp->sd_lock);

5240 /*
5241 * Copy strfdinsert.ctlbuf into native form of
5242 * ctlbuf to pass down into strmakemsg().
5243 */
5244 mctl.maxlen = STRUCT_FGET(strfdinsert, ctlbuf.maxlen);
5245 mctl.len = STRUCT_FGET(strfdinsert, ctlbuf.len);
5246 mctl.buf = STRUCT_FGETP(strfdinsert, ctlbuf.buf);

5248 iov.iov_base = STRUCT_FGETP(strfdinsert, databuf.buf);
5249 iov.iov_len = STRUCT_FGET(strfdinsert, databuf.len);
5250 uio.uio_iov = &iov;
5251 uio.uio_iovcnt = 1;
5252 uio.uio_loffset = 0;
5253 uio.uio_segflg = (copyflag == U_TO_K) ? UIO_USERSPACE :
5254 UIO_SYSSPACE;
5255 uio.uio_fmode = 0;
5256 uio.uio_extflg = UIO_COPY_CACHED;
5257 uio.uio_resid = iov.iov_len;
5258 if ((error = strmakemsg(&mctl,
5259 &msgsize, &uio, stp,
5260 STRUCT_FGET(strfdinsert, flags), &mp)) != 0 || !mp) {
5261 STRUCT_FSET(strfdinsert, databuf.len, msgsize);
5262 releasef(STRUCT_FGET(strfdinsert, fildes));
5263 return (error);

new/usr/src/uts/common/os/streamio.c 34

5264 }

5266 STRUCT_FSET(strfdinsert, databuf.len, msgsize);

5268 /*
5269 * Place the possibly reencoded queue pointer ’offset’ bytes
5270 * from the start of the control portion of the message.
5271 */
5272 *((t_uscalar_t *)(mp->b_rptr +
5273 STRUCT_FGET(strfdinsert, offset))) = ival;

5275 /*
5276 * Put message downstream.
5277 */
5278 stream_willservice(stp);
5279 putnext(stp->sd_wrq, mp);
5280 stream_runservice(stp);
5281 releasef(STRUCT_FGET(strfdinsert, fildes));
5282 return (error);
5283 }

5285 case I_SENDFD:
5286 {
5287 struct file *fp;

5289 if ((fp = getf((int)arg)) == NULL)
5290 return (EBADF);
5291 error = do_sendfp(stp, fp, crp);
5292 if (auditing) {
5293 audit_fdsend((int)arg, fp, error);
5294 }
5295 releasef((int)arg);
5296 return (error);
5297 }

5299 case I_RECVFD:
5300 case I_E_RECVFD:
5301 {
5302 struct k_strrecvfd *srf;
5303 int i, fd;

5305 mutex_enter(&stp->sd_lock);
5306 while (!(mp = getq(rdq))) {
5307 if (stp->sd_flag & (STRHUP|STREOF)) {
5308 mutex_exit(&stp->sd_lock);
5309 return (ENXIO);
5310 }
5311 if ((error = strwaitq(stp, GETWAIT, (ssize_t)0,
5312 flag, -1, &done)) != 0 || done) {
5313 mutex_exit(&stp->sd_lock);
5314 return (error);
5315 }
5316 if ((error = i_straccess(stp, access)) != 0) {
5317 mutex_exit(&stp->sd_lock);
5318 return (error);
5319 }
5320 }
5321 if (mp->b_datap->db_type != M_PASSFP) {
5322 putback(stp, rdq, mp, mp->b_band);
5323 mutex_exit(&stp->sd_lock);
5324 return (EBADMSG);
5325 }
5326 mutex_exit(&stp->sd_lock);

5328 srf = (struct k_strrecvfd *)mp->b_rptr;
5329 if ((fd = ufalloc(0)) == -1) {

new/usr/src/uts/common/os/streamio.c 35

5330 mutex_enter(&stp->sd_lock);
5331 putback(stp, rdq, mp, mp->b_band);
5332 mutex_exit(&stp->sd_lock);
5333 return (EMFILE);
5334 }
5335 if (cmd == I_RECVFD) {
5336 struct o_strrecvfd ostrfd;

5338 /* check to see if uid/gid values are too large. */

5340 if (srf->uid > (o_uid_t)USHRT_MAX ||
5341 srf->gid > (o_gid_t)USHRT_MAX) {
5342 mutex_enter(&stp->sd_lock);
5343 putback(stp, rdq, mp, mp->b_band);
5344 mutex_exit(&stp->sd_lock);
5345 setf(fd, NULL); /* release fd entry */
5346 return (EOVERFLOW);
5347 }

5349 ostrfd.fd = fd;
5350 ostrfd.uid = (o_uid_t)srf->uid;
5351 ostrfd.gid = (o_gid_t)srf->gid;

5353 /* Null the filler bits */
5354 for (i = 0; i < 8; i++)
5355 ostrfd.fill[i] = 0;

5357 error = strcopyout(&ostrfd, (void *)arg,
5358 sizeof (struct o_strrecvfd), copyflag);
5359 } else { /* I_E_RECVFD */
5360 struct strrecvfd strfd;

5362 strfd.fd = fd;
5363 strfd.uid = srf->uid;
5364 strfd.gid = srf->gid;

5366 /* null the filler bits */
5367 for (i = 0; i < 8; i++)
5368 strfd.fill[i] = 0;

5370 error = strcopyout(&strfd, (void *)arg,
5371 sizeof (struct strrecvfd), copyflag);
5372 }

5374 if (error) {
5375 setf(fd, NULL); /* release fd entry */
5376 mutex_enter(&stp->sd_lock);
5377 putback(stp, rdq, mp, mp->b_band);
5378 mutex_exit(&stp->sd_lock);
5379 return (error);
5380 }
5381 if (auditing) {
5382 audit_fdrecv(fd, srf->fp);
5383 }

5385 /*
5386 * Always increment f_count since the freemsg() below will
5387 * always call free_passfp() which performs a closef().
5388 */
5389 mutex_enter(&srf->fp->f_tlock);
5390 srf->fp->f_count++;
5391 mutex_exit(&srf->fp->f_tlock);
5392 setf(fd, srf->fp);
5393 freemsg(mp);
5394 return (0);
5395 }

new/usr/src/uts/common/os/streamio.c 36

5397 case I_SWROPT:
5398 /*
5399 * Set/clear the write options. arg is a bit
5400 * mask with any of the following bits set...
5401 * SNDZERO - send zero length message
5402 * SNDPIPE - send sigpipe to process if
5403 * sd_werror is set and process is
5404 * doing a write or putmsg.
5405 * The new stream head write options should reflect
5406 * what is in arg.
5407 */
5408 if (arg & ~(SNDZERO|SNDPIPE))
5409 return (EINVAL);

5411 mutex_enter(&stp->sd_lock);
5412 stp->sd_wput_opt &= ~(SW_SIGPIPE|SW_SNDZERO);
5413 if (arg & SNDZERO)
5414 stp->sd_wput_opt |= SW_SNDZERO;
5415 if (arg & SNDPIPE)
5416 stp->sd_wput_opt |= SW_SIGPIPE;
5417 mutex_exit(&stp->sd_lock);
5418 return (0);

5420 case I_GWROPT:
5421 {
5422 int wropt = 0;

5424 if (stp->sd_wput_opt & SW_SNDZERO)
5425 wropt |= SNDZERO;
5426 if (stp->sd_wput_opt & SW_SIGPIPE)
5427 wropt |= SNDPIPE;
5428 return (strcopyout(&wropt, (void *)arg, sizeof (wropt),
5429 copyflag));
5430 }

5432 case I_LIST:
5433 /*
5434 * Returns all the modules found on this stream,
5435 * upto the driver. If argument is NULL, return the
5436 * number of modules (including driver). If argument
5437 * is not NULL, copy the names into the structure
5438 * provided.
5439 */

5441 {
5442 queue_t *q;
5443 char *qname;
5444 int i, nmods;
5445 struct str_mlist *mlist;
5446 STRUCT_DECL(str_list, strlist);

5448 if (arg == NULL) { /* Return number of modules plus driver */
5449 if (stp->sd_vnode->v_type == VFIFO)
5450 *rvalp = stp->sd_pushcnt;
5451 else
5452 *rvalp = stp->sd_pushcnt + 1;
5453 return (0);
5454 }

5456 STRUCT_INIT(strlist, flag);

5458 error = strcopyin((void *)arg, STRUCT_BUF(strlist),
5459 STRUCT_SIZE(strlist), copyflag);
5460 if (error != 0)
5461 return (error);

new/usr/src/uts/common/os/streamio.c 37

5463 mlist = STRUCT_FGETP(strlist, sl_modlist);
5464 nmods = STRUCT_FGET(strlist, sl_nmods);
5465 if (nmods <= 0)
5466 return (EINVAL);

5468 claimstr(stp->sd_wrq);
5469 q = stp->sd_wrq;
5470 for (i = 0; i < nmods && _SAMESTR(q); i++, q = q->q_next) {
5471 qname = Q2NAME(q->q_next);
5472 error = strcopyout(qname, &mlist[i], strlen(qname) + 1,
5473 copyflag);
5474 if (error != 0) {
5475 releasestr(stp->sd_wrq);
5476 return (error);
5477 }
5478 }
5479 releasestr(stp->sd_wrq);
5480 return (strcopyout(&i, (void *)arg, sizeof (int), copyflag));
5481 }

5483 case I_CKBAND:
5484 {
5485 queue_t *q;
5486 qband_t *qbp;

5488 if ((arg < 0) || (arg >= NBAND))
5489 return (EINVAL);
5490 q = _RD(stp->sd_wrq);
5491 mutex_enter(QLOCK(q));
5492 if (arg > (int)q->q_nband) {
5493 *rvalp = 0;
5494 } else {
5495 if (arg == 0) {
5496 if (q->q_first)
5497 *rvalp = 1;
5498 else
5499 *rvalp = 0;
5500 } else {
5501 qbp = q->q_bandp;
5502 while (--arg > 0)
5503 qbp = qbp->qb_next;
5504 if (qbp->qb_first)
5505 *rvalp = 1;
5506 else
5507 *rvalp = 0;
5508 }
5509 }
5510 mutex_exit(QLOCK(q));
5511 return (0);
5512 }

5514 case I_GETBAND:
5515 {
5516 int intpri;
5517 queue_t *q;

5519 q = _RD(stp->sd_wrq);
5520 mutex_enter(QLOCK(q));
5521 mp = q->q_first;
5522 if (!mp) {
5523 mutex_exit(QLOCK(q));
5524 return (ENODATA);
5525 }
5526 intpri = (int)mp->b_band;
5527 error = strcopyout(&intpri, (void *)arg, sizeof (int),

new/usr/src/uts/common/os/streamio.c 38

5528 copyflag);
5529 mutex_exit(QLOCK(q));
5530 return (error);
5531 }

5533 case I_ATMARK:
5534 {
5535 queue_t *q;

5537 if (arg & ~(ANYMARK|LASTMARK))
5538 return (EINVAL);
5539 q = _RD(stp->sd_wrq);
5540 mutex_enter(&stp->sd_lock);
5541 if ((stp->sd_flag & STRATMARK) && (arg == ANYMARK)) {
5542 *rvalp = 1;
5543 } else {
5544 mutex_enter(QLOCK(q));
5545 mp = q->q_first;

5547 if (mp == NULL)
5548 *rvalp = 0;
5549 else if ((arg == ANYMARK) && (mp->b_flag & MSGMARK))
5550 *rvalp = 1;
5551 else if ((arg == LASTMARK) && (mp == stp->sd_mark))
5552 *rvalp = 1;
5553 else
5554 *rvalp = 0;
5555 mutex_exit(QLOCK(q));
5556 }
5557 mutex_exit(&stp->sd_lock);
5558 return (0);
5559 }

5561 case I_CANPUT:
5562 {
5563 char band;

5565 if ((arg < 0) || (arg >= NBAND))
5566 return (EINVAL);
5567 band = (char)arg;
5568 *rvalp = bcanputnext(stp->sd_wrq, band);
5569 return (0);
5570 }

5572 case I_SETCLTIME:
5573 {
5574 int closetime;

5576 error = strcopyin((void *)arg, &closetime, sizeof (int),
5577 copyflag);
5578 if (error)
5579 return (error);
5580 if (closetime < 0)
5581 return (EINVAL);

5583 stp->sd_closetime = closetime;
5584 return (0);
5585 }

5587 case I_GETCLTIME:
5588 {
5589 int closetime;

5591 closetime = stp->sd_closetime;
5592 return (strcopyout(&closetime, (void *)arg, sizeof (int),
5593 copyflag));

new/usr/src/uts/common/os/streamio.c 39

5594 }

5596 case TIOCGSID:
5597 {
5598 pid_t sid;

5600 mutex_enter(&stp->sd_lock);
5601 if (stp->sd_sidp == NULL) {
5602 mutex_exit(&stp->sd_lock);
5603 return (ENOTTY);
5604 }
5605 sid = stp->sd_sidp->pid_id;
5606 mutex_exit(&stp->sd_lock);
5607 return (strcopyout(&sid, (void *)arg, sizeof (pid_t),
5608 copyflag));
5609 }

5611 case TIOCSPGRP:
5612 {
5613 pid_t pgrp;
5614 proc_t *q;
5615 pid_t sid, fg_pgid, bg_pgid;

5617 if (error = strcopyin((void *)arg, &pgrp, sizeof (pid_t),
5618 copyflag))
5619 return (error);
5620 mutex_enter(&stp->sd_lock);
5621 mutex_enter(&pidlock);
5622 if (stp->sd_sidp != ttoproc(curthread)->p_sessp->s_sidp) {
5623 mutex_exit(&pidlock);
5624 mutex_exit(&stp->sd_lock);
5625 return (ENOTTY);
5626 }
5627 if (pgrp == stp->sd_pgidp->pid_id) {
5628 mutex_exit(&pidlock);
5629 mutex_exit(&stp->sd_lock);
5630 return (0);
5631 }
5632 if (pgrp <= 0 || pgrp >= maxpid) {
5633 mutex_exit(&pidlock);
5634 mutex_exit(&stp->sd_lock);
5635 return (EINVAL);
5636 }
5637 if ((q = pgfind(pgrp)) == NULL ||
5638 q->p_sessp != ttoproc(curthread)->p_sessp) {
5639 mutex_exit(&pidlock);
5640 mutex_exit(&stp->sd_lock);
5641 return (EPERM);
5642 }
5643 sid = stp->sd_sidp->pid_id;
5644 fg_pgid = q->p_pgrp;
5645 bg_pgid = stp->sd_pgidp->pid_id;
5646 CL_SET_PROCESS_GROUP(curthread, sid, bg_pgid, fg_pgid);
5647 PID_RELE(stp->sd_pgidp);
5648 ctty_clear_sighuped();
5649 stp->sd_pgidp = q->p_pgidp;
5650 PID_HOLD(stp->sd_pgidp);
5651 mutex_exit(&pidlock);
5652 mutex_exit(&stp->sd_lock);
5653 return (0);
5654 }

5656 case TIOCGPGRP:
5657 {
5658 pid_t pgrp;

new/usr/src/uts/common/os/streamio.c 40

5660 mutex_enter(&stp->sd_lock);
5661 if (stp->sd_sidp == NULL) {
5662 mutex_exit(&stp->sd_lock);
5663 return (ENOTTY);
5664 }
5665 pgrp = stp->sd_pgidp->pid_id;
5666 mutex_exit(&stp->sd_lock);
5667 return (strcopyout(&pgrp, (void *)arg, sizeof (pid_t),
5668 copyflag));
5669 }

5671 case TIOCSCTTY:
5672 {
5673 return (strctty(stp));
5674 }

5676 case TIOCNOTTY:
5677 {
5678 /* freectty() always assumes curproc. */
5679 if (freectty(B_FALSE) != 0)
5680 return (0);
5681 return (ENOTTY);
5682 }

5684 case FIONBIO:
5685 case FIOASYNC:
5686 return (0); /* handled by the upper layer */
5687 }
5688 }

5690 /*
5691 * Custom free routine used for M_PASSFP messages.
5692 */
5693 static void
5694 free_passfp(struct k_strrecvfd *srf)
5695 {
5696 (void) closef(srf->fp);
5697 kmem_free(srf, sizeof (struct k_strrecvfd) + sizeof (frtn_t));
5698 }

5700 /* ARGSUSED */
5701 int
5702 do_sendfp(struct stdata *stp, struct file *fp, struct cred *cr)
5703 {
5704 queue_t *qp, *nextqp;
5705 struct k_strrecvfd *srf;
5706 mblk_t *mp;
5707 frtn_t *frtnp;
5708 size_t bufsize;
5709 queue_t *mate = NULL;
5710 syncq_t *sq = NULL;
5711 int retval = 0;

5713 if (stp->sd_flag & STRHUP)
5714 return (ENXIO);

5716 claimstr(stp->sd_wrq);

5718 /* Fastpath, we have a pipe, and we are already mated, use it. */
5719 if (STRMATED(stp)) {
5720 qp = _RD(stp->sd_mate->sd_wrq);
5721 claimstr(qp);
5722 mate = qp;
5723 } else { /* Not already mated. */

5725 /*

new/usr/src/uts/common/os/streamio.c 41

5726 * Walk the stream to the end of this one.
5727 * assumes that the claimstr() will prevent
5728 * plumbing between the stream head and the
5729 * driver from changing
5730 */
5731 qp = stp->sd_wrq;

5733 /*
5734 * Loop until we reach the end of this stream.
5735 * On completion, qp points to the write queue
5736 * at the end of the stream, or the read queue
5737 * at the stream head if this is a fifo.
5738 */
5739 while (((qp = qp->q_next) != NULL) && _SAMESTR(qp))
5740 ;

5742 /*
5743 * Just in case we get a q_next which is NULL, but
5744 * not at the end of the stream. This is actually
5745 * broken, so we set an assert to catch it in
5746 * debug, and set an error and return if not debug.
5747 */
5748 ASSERT(qp);
5749 if (qp == NULL) {
5750 releasestr(stp->sd_wrq);
5751 return (EINVAL);
5752 }

5754 /*
5755 * Enter the syncq for the driver, so (hopefully)
5756 * the queue values will not change on us.
5757 * XXXX - This will only prevent the race IFF only
5758 * the write side modifies the q_next member, and
5759 * the put procedure is protected by at least
5760 * MT_PERQ.
5761 */
5762 if ((sq = qp->q_syncq) != NULL)
5763 entersq(sq, SQ_PUT);

5765 /* Now get the q_next value from this qp. */
5766 nextqp = qp->q_next;

5768 /*
5769 * If nextqp exists and the other stream is different
5770 * from this one claim the stream, set the mate, and
5771 * get the read queue at the stream head of the other
5772 * stream. Assumes that nextqp was at least valid when
5773 * we got it. Hopefully the entersq of the driver
5774 * will prevent it from changing on us.
5775 */
5776 if ((nextqp != NULL) && (STREAM(nextqp) != stp)) {
5777 ASSERT(qp->q_qinfo->qi_srvp);
5778 ASSERT(_OTHERQ(qp)->q_qinfo->qi_srvp);
5779 ASSERT(_OTHERQ(qp->q_next)->q_qinfo->qi_srvp);
5780 claimstr(nextqp);

5782 /* Make sure we still have a q_next */
5783 if (nextqp != qp->q_next) {
5784 releasestr(stp->sd_wrq);
5785 releasestr(nextqp);
5786 return (EINVAL);
5787 }

5789 qp = _RD(STREAM(nextqp)->sd_wrq);
5790 mate = qp;
5791 }

new/usr/src/uts/common/os/streamio.c 42

5792 /* If we entered the synq above, leave it. */
5793 if (sq != NULL)
5794 leavesq(sq, SQ_PUT);
5795 } /* STRMATED(STP) */

5797 /* XXX prevents substitution of the ops vector */
5798 if (qp->q_qinfo != &strdata && qp->q_qinfo != &fifo_strdata) {
5799 retval = EINVAL;
5800 goto out;
5801 }

5803 if (qp->q_flag & QFULL) {
5804 retval = EAGAIN;
5805 goto out;
5806 }

5808 /*
5809 * Since M_PASSFP messages include a file descriptor, we use
5810 * esballoc() and specify a custom free routine (free_passfp()) that
5811 * will close the descriptor as part of freeing the message. For
5812 * convenience, we stash the frtn_t right after the data block.
5813 */
5814 bufsize = sizeof (struct k_strrecvfd) + sizeof (frtn_t);
5815 srf = kmem_alloc(bufsize, KM_NOSLEEP);
5816 if (srf == NULL) {
5817 retval = EAGAIN;
5818 goto out;
5819 }

5821 frtnp = (frtn_t *)(srf + 1);
5822 frtnp->free_arg = (caddr_t)srf;
5823 frtnp->free_func = free_passfp;

5825 mp = esballoc((uchar_t *)srf, bufsize, BPRI_MED, frtnp);
5826 if (mp == NULL) {
5827 kmem_free(srf, bufsize);
5828 retval = EAGAIN;
5829 goto out;
5830 }
5831 mp->b_wptr += sizeof (struct k_strrecvfd);
5832 mp->b_datap->db_type = M_PASSFP;

5834 srf->fp = fp;
5835 srf->uid = crgetuid(curthread->t_cred);
5836 srf->gid = crgetgid(curthread->t_cred);
5837 mutex_enter(&fp->f_tlock);
5838 fp->f_count++;
5839 mutex_exit(&fp->f_tlock);

5841 put(qp, mp);
5842 out:
5843 releasestr(stp->sd_wrq);
5844 if (mate)
5845 releasestr(mate);
5846 return (retval);
5847 }

5849 /*
5850 * Send an ioctl message downstream and wait for acknowledgement.
5851 * flags may be set to either U_TO_K or K_TO_K and a combination
5852 * of STR_NOERROR or STR_NOSIG
5853 * STR_NOSIG: Signals are essentially ignored or held and have
5854 * no effect for the duration of the call.
5855 * STR_NOERROR: Ignores stream head read, write and hup errors.
5856 * Additionally, if an existing ioctl times out, it is assumed
5857 * lost and and this ioctl will continue as if the previous ioctl had

new/usr/src/uts/common/os/streamio.c 43

5858 * finished. ETIME may be returned if this ioctl times out (i.e.
5859 * ic_timout is not INFTIM). Non-stream head errors may be returned if
5860 * the ioc_error indicates that the driver/module had problems,
5861 * an EFAULT was found when accessing user data, a lack of
5862 * resources, etc.
5863 */
5864 int
5865 strdoioctl(
5866 struct stdata *stp,
5867 struct strioctl *strioc,
5868 int fflags, /* file flags with model info */
5869 int flag,
5870 cred_t *crp,
5871 int *rvalp)
5872 {
5873 mblk_t *bp;
5874 struct iocblk *iocbp;
5875 struct copyreq *reqp;
5876 struct copyresp *resp;
5877 int id;
5878 int transparent = 0;
5879 int error = 0;
5880 int len = 0;
5881 caddr_t taddr;
5882 int copyflag = (flag & (U_TO_K | K_TO_K));
5883 int sigflag = (flag & STR_NOSIG);
5884 int errs;
5885 uint_t waitflags;
5886 boolean_t set_iocwaitne = B_FALSE;

5888 ASSERT(copyflag == U_TO_K || copyflag == K_TO_K);
5889 ASSERT((fflags & FMODELS) != 0);

5891 TRACE_2(TR_FAC_STREAMS_FR,
5892 TR_STRDOIOCTL,
5893 "strdoioctl:stp %p strioc %p", stp, strioc);
5894 if (strioc->ic_len == TRANSPARENT) { /* send arg in M_DATA block */
5895 transparent = 1;
5896 strioc->ic_len = sizeof (intptr_t);
5897 }

5899 if (strioc->ic_len < 0 || (strmsgsz > 0 && strioc->ic_len > strmsgsz))
5900 return (EINVAL);

5902 if ((bp = allocb_cred_wait(sizeof (union ioctypes), sigflag, &error,
5903 crp, curproc->p_pid)) == NULL)
5904 return (error);

5906 bzero(bp->b_wptr, sizeof (union ioctypes));

5908 iocbp = (struct iocblk *)bp->b_wptr;
5909 iocbp->ioc_count = strioc->ic_len;
5910 iocbp->ioc_cmd = strioc->ic_cmd;
5911 iocbp->ioc_flag = (fflags & FMODELS);

5913 crhold(crp);
5914 iocbp->ioc_cr = crp;
5915 DB_TYPE(bp) = M_IOCTL;
5916 bp->b_wptr += sizeof (struct iocblk);

5918 if (flag & STR_NOERROR)
5919 errs = STPLEX;
5920 else
5921 errs = STRHUP|STRDERR|STWRERR|STPLEX;

5923 /*

new/usr/src/uts/common/os/streamio.c 44

5924 * If there is data to copy into ioctl block, do so.
5925 */
5926 if (iocbp->ioc_count > 0) {
5927 if (transparent)
5928 /*
5929 * Note: STR_NOERROR does not have an effect
5930 * in putiocd()
5931 */
5932 id = K_TO_K | sigflag;
5933 else
5934 id = flag;
5935 if ((error = putiocd(bp, strioc->ic_dp, id, crp)) != 0) {
5936 freemsg(bp);
5937 crfree(crp);
5938 return (error);
5939 }

5941 /*
5942 * We could have slept copying in user pages.
5943 * Recheck the stream head state (the other end
5944 * of a pipe could have gone away).
5945 */
5946 if (stp->sd_flag & errs) {
5947 mutex_enter(&stp->sd_lock);
5948 error = strgeterr(stp, errs, 0);
5949 mutex_exit(&stp->sd_lock);
5950 if (error != 0) {
5951 freemsg(bp);
5952 crfree(crp);
5953 return (error);
5954 }
5955 }
5956 }
5957 if (transparent)
5958 iocbp->ioc_count = TRANSPARENT;

5960 /*
5961 * Block for up to STRTIMOUT milliseconds if there is an outstanding
5962 * ioctl for this stream already running. All processes
5963 * sleeping here will be awakened as a result of an ACK
5964 * or NAK being received for the outstanding ioctl, or
5965 * as a result of the timer expiring on the outstanding
5966 * ioctl (a failure), or as a result of any waiting
5967 * process’s timer expiring (also a failure).
5968 */

5970 error = 0;
5971 mutex_enter(&stp->sd_lock);
5972 while ((stp->sd_flag & IOCWAIT) ||
5973 (!set_iocwaitne && (stp->sd_flag & IOCWAITNE))) {
5974 clock_t cv_rval;

5976 TRACE_0(TR_FAC_STREAMS_FR,
5977 TR_STRDOIOCTL_WAIT,
5978 "strdoioctl sleeps - IOCWAIT");
5979 cv_rval = str_cv_wait(&stp->sd_iocmonitor, &stp->sd_lock,
5980 STRTIMOUT, sigflag);
5981 if (cv_rval <= 0) {
5982 if (cv_rval == 0) {
5983 error = EINTR;
5984 } else {
5985 if (flag & STR_NOERROR) {
5986 /*
5987 * Terminating current ioctl in
5988 * progress -- assume it got lost and
5989 * wake up the other thread so that the

new/usr/src/uts/common/os/streamio.c 45

5990 * operation completes.
5991 */
5992 if (!(stp->sd_flag & IOCWAITNE)) {
5993 set_iocwaitne = B_TRUE;
5994 stp->sd_flag |= IOCWAITNE;
5995 cv_broadcast(&stp->sd_monitor);
5996 }
5997 /*
5998 * Otherwise, there’s a running
5999 * STR_NOERROR -- we have no choice
6000 * here but to wait forever (or until
6001 * interrupted).
6002 */
6003 } else {
6004 /*
6005 * pending ioctl has caused
6006 * us to time out
6007 */
6008 error = ETIME;
6009 }
6010 }
6011 } else if ((stp->sd_flag & errs)) {
6012 error = strgeterr(stp, errs, 0);
6013 }
6014 if (error) {
6015 mutex_exit(&stp->sd_lock);
6016 freemsg(bp);
6017 crfree(crp);
6018 return (error);
6019 }
6020 }

6022 /*
6023 * Have control of ioctl mechanism.
6024 * Send down ioctl packet and wait for response.
6025 */
6026 if (stp->sd_iocblk != (mblk_t *)-1) {
6027 freemsg(stp->sd_iocblk);
6028 }
6029 stp->sd_iocblk = NULL;

6031 /*
6032 * If this is marked with ’noerror’ (internal; mostly
6033 * I_{P,}{UN,}LINK), then make sure nobody else is able to get
6034 * in here by setting IOCWAITNE.
6035 */
6036 waitflags = IOCWAIT;
6037 if (flag & STR_NOERROR)
6038 waitflags |= IOCWAITNE;

6040 stp->sd_flag |= waitflags;

6042 /*
6043 * Assign sequence number.
6044 */
6045 iocbp->ioc_id = stp->sd_iocid = getiocseqno();

6047 mutex_exit(&stp->sd_lock);

6049 TRACE_1(TR_FAC_STREAMS_FR,
6050 TR_STRDOIOCTL_PUT, "strdoioctl put: stp %p", stp);
6051 stream_willservice(stp);
6052 putnext(stp->sd_wrq, bp);
6053 stream_runservice(stp);

6055 /*

new/usr/src/uts/common/os/streamio.c 46

6056 * Timed wait for acknowledgment. The wait time is limited by the
6057 * timeout value, which must be a positive integer (number of
6058 * milliseconds) to wait, or 0 (use default value of STRTIMOUT
6059 * milliseconds), or -1 (wait forever). This will be awakened
6060 * either by an ACK/NAK message arriving, the timer expiring, or
6061 * the timer expiring on another ioctl waiting for control of the
6062 * mechanism.
6063 */
6064 waitioc:
6065 mutex_enter(&stp->sd_lock);

6068 /*
6069 * If the reply has already arrived, don’t sleep. If awakened from
6070 * the sleep, fail only if the reply has not arrived by then.
6071 * Otherwise, process the reply.
6072 */
6073 while (!stp->sd_iocblk) {
6074 clock_t cv_rval;

6076 if (stp->sd_flag & errs) {
6077 error = strgeterr(stp, errs, 0);
6078 if (error != 0) {
6079 stp->sd_flag &= ~waitflags;
6080 cv_broadcast(&stp->sd_iocmonitor);
6081 mutex_exit(&stp->sd_lock);
6082 crfree(crp);
6083 return (error);
6084 }
6085 }

6087 TRACE_0(TR_FAC_STREAMS_FR,
6088 TR_STRDOIOCTL_WAIT2,
6089 "strdoioctl sleeps awaiting reply");
6090 ASSERT(error == 0);

6092 cv_rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock,
6093 (strioc->ic_timout ?
6094 strioc->ic_timout * 1000 : STRTIMOUT), sigflag);

6096 /*
6097 * There are four possible cases here: interrupt, timeout,
6098 * wakeup by IOCWAITNE (above), or wakeup by strrput_nondata (a
6099 * valid M_IOCTL reply).
6100 *
6101 * If we’ve been awakened by a STR_NOERROR ioctl on some other
6102 * thread, then sd_iocblk will still be NULL, and IOCWAITNE
6103 * will be set. Pretend as if we just timed out. Note that
6104 * this other thread waited at least STRTIMOUT before trying to
6105 * awaken our thread, so this is indistinguishable (even for
6106 * INFTIM) from the case where we failed with ETIME waiting on
6107 * IOCWAIT in the prior loop.
6108 */
6109 if (cv_rval > 0 && !(flag & STR_NOERROR) &&
6110 stp->sd_iocblk == NULL && (stp->sd_flag & IOCWAITNE)) {
6111 cv_rval = -1;
6112 }

6114 /*
6115 * note: STR_NOERROR does not protect
6116 * us here.. use ic_timout < 0
6117 */
6118 if (cv_rval <= 0) {
6119 if (cv_rval == 0) {
6120 error = EINTR;
6121 } else {

new/usr/src/uts/common/os/streamio.c 47

6122 error = ETIME;
6123 }
6124 /*
6125 * A message could have come in after we were scheduled
6126 * but before we were actually run.
6127 */
6128 bp = stp->sd_iocblk;
6129 stp->sd_iocblk = NULL;
6130 if (bp != NULL) {
6131 if ((bp->b_datap->db_type == M_COPYIN) ||
6132 (bp->b_datap->db_type == M_COPYOUT)) {
6133 mutex_exit(&stp->sd_lock);
6134 if (bp->b_cont) {
6135 freemsg(bp->b_cont);
6136 bp->b_cont = NULL;
6137 }
6138 bp->b_datap->db_type = M_IOCDATA;
6139 bp->b_wptr = bp->b_rptr +
6140 sizeof (struct copyresp);
6141 resp = (struct copyresp *)bp->b_rptr;
6142 resp->cp_rval =
6143 (caddr_t)1; /* failure */
6144 stream_willservice(stp);
6145 putnext(stp->sd_wrq, bp);
6146 stream_runservice(stp);
6147 mutex_enter(&stp->sd_lock);
6148 } else {
6149 freemsg(bp);
6150 }
6151 }
6152 stp->sd_flag &= ~waitflags;
6153 cv_broadcast(&stp->sd_iocmonitor);
6154 mutex_exit(&stp->sd_lock);
6155 crfree(crp);
6156 return (error);
6157 }
6158 }
6159 bp = stp->sd_iocblk;
6160 /*
6161 * Note: it is strictly impossible to get here with sd_iocblk set to
6162 * -1. This is because the initial loop above doesn’t allow any new
6163 * ioctls into the fray until all others have passed this point.
6164 */
6165 ASSERT(bp != NULL && bp != (mblk_t *)-1);
6166 TRACE_1(TR_FAC_STREAMS_FR,
6167 TR_STRDOIOCTL_ACK, "strdoioctl got reply: bp %p", bp);
6168 if ((bp->b_datap->db_type == M_IOCACK) ||
6169 (bp->b_datap->db_type == M_IOCNAK)) {
6170 /* for detection of duplicate ioctl replies */
6171 stp->sd_iocblk = (mblk_t *)-1;
6172 stp->sd_flag &= ~waitflags;
6173 cv_broadcast(&stp->sd_iocmonitor);
6174 mutex_exit(&stp->sd_lock);
6175 } else {
6176 /*
6177 * flags not cleared here because we’re still doing
6178 * copy in/out for ioctl.
6179 */
6180 stp->sd_iocblk = NULL;
6181 mutex_exit(&stp->sd_lock);
6182 }

6185 /*
6186 * Have received acknowledgment.
6187 */

new/usr/src/uts/common/os/streamio.c 48

6189 switch (bp->b_datap->db_type) {
6190 case M_IOCACK:
6191 /*
6192 * Positive ack.
6193 */
6194 iocbp = (struct iocblk *)bp->b_rptr;

6196 /*
6197 * Set error if indicated.
6198 */
6199 if (iocbp->ioc_error) {
6200 error = iocbp->ioc_error;
6201 break;
6202 }

6204 /*
6205 * Set return value.
6206 */
6207 *rvalp = iocbp->ioc_rval;

6209 /*
6210 * Data may have been returned in ACK message (ioc_count > 0).
6211 * If so, copy it out to the user’s buffer.
6212 */
6213 if (iocbp->ioc_count && !transparent) {
6214 if (error = getiocd(bp, strioc->ic_dp, copyflag))
6215 break;
6216 }
6217 if (!transparent) {
6218 if (len) /* an M_COPYOUT was used with I_STR */
6219 strioc->ic_len = len;
6220 else
6221 strioc->ic_len = (int)iocbp->ioc_count;
6222 }
6223 break;

6225 case M_IOCNAK:
6226 /*
6227 * Negative ack.
6228 *
6229 * The only thing to do is set error as specified
6230 * in neg ack packet.
6231 */
6232 iocbp = (struct iocblk *)bp->b_rptr;

6234 error = (iocbp->ioc_error ? iocbp->ioc_error : EINVAL);
6235 break;

6237 case M_COPYIN:
6238 /*
6239 * Driver or module has requested user ioctl data.
6240 */
6241 reqp = (struct copyreq *)bp->b_rptr;

6243 /*
6244 * M_COPYIN should *never* have a message attached, though
6245 * it’s harmless if it does -- thus, panic on a DEBUG
6246 * kernel and just free it on a non-DEBUG build.
6247 */
6248 ASSERT(bp->b_cont == NULL);
6249 if (bp->b_cont != NULL) {
6250 freemsg(bp->b_cont);
6251 bp->b_cont = NULL;
6252 }

new/usr/src/uts/common/os/streamio.c 49

6254 error = putiocd(bp, reqp->cq_addr, flag, crp);
6255 if (error && bp->b_cont) {
6256 freemsg(bp->b_cont);
6257 bp->b_cont = NULL;
6258 }

6260 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6261 bp->b_datap->db_type = M_IOCDATA;

6263 mblk_setcred(bp, crp, curproc->p_pid);
6264 resp = (struct copyresp *)bp->b_rptr;
6265 resp->cp_rval = (caddr_t)(uintptr_t)error;
6266 resp->cp_flag = (fflags & FMODELS);

6268 stream_willservice(stp);
6269 putnext(stp->sd_wrq, bp);
6270 stream_runservice(stp);

6272 if (error) {
6273 mutex_enter(&stp->sd_lock);
6274 stp->sd_flag &= ~waitflags;
6275 cv_broadcast(&stp->sd_iocmonitor);
6276 mutex_exit(&stp->sd_lock);
6277 crfree(crp);
6278 return (error);
6279 }

6281 goto waitioc;

6283 case M_COPYOUT:
6284 /*
6285 * Driver or module has ioctl data for a user.
6286 */
6287 reqp = (struct copyreq *)bp->b_rptr;
6288 ASSERT(bp->b_cont != NULL);

6290 /*
6291 * Always (transparent or non-transparent)
6292 * use the address specified in the request
6293 */
6294 taddr = reqp->cq_addr;
6295 if (!transparent)
6296 len = (int)reqp->cq_size;

6298 /* copyout data to the provided address */
6299 error = getiocd(bp, taddr, copyflag);

6301 freemsg(bp->b_cont);
6302 bp->b_cont = NULL;

6304 bp->b_wptr = bp->b_rptr + sizeof (struct copyresp);
6305 bp->b_datap->db_type = M_IOCDATA;

6307 mblk_setcred(bp, crp, curproc->p_pid);
6308 resp = (struct copyresp *)bp->b_rptr;
6309 resp->cp_rval = (caddr_t)(uintptr_t)error;
6310 resp->cp_flag = (fflags & FMODELS);

6312 stream_willservice(stp);
6313 putnext(stp->sd_wrq, bp);
6314 stream_runservice(stp);

6316 if (error) {
6317 mutex_enter(&stp->sd_lock);
6318 stp->sd_flag &= ~waitflags;
6319 cv_broadcast(&stp->sd_iocmonitor);

new/usr/src/uts/common/os/streamio.c 50

6320 mutex_exit(&stp->sd_lock);
6321 crfree(crp);
6322 return (error);
6323 }
6324 goto waitioc;

6326 default:
6327 ASSERT(0);
6328 mutex_enter(&stp->sd_lock);
6329 stp->sd_flag &= ~waitflags;
6330 cv_broadcast(&stp->sd_iocmonitor);
6331 mutex_exit(&stp->sd_lock);
6332 break;
6333 }

6335 freemsg(bp);
6336 crfree(crp);
6337 return (error);
6338 }

6340 /*
6341 * Send an M_CMD message downstream and wait for a reply. This is a ptools
6342 * special used to retrieve information from modules/drivers a stream without
6343 * being subjected to flow control or interfering with pending messages on the
6344 * stream (e.g. an ioctl in flight).
6345 */
6346 int
6347 strdocmd(struct stdata *stp, struct strcmd *scp, cred_t *crp)
6348 {
6349 mblk_t *mp;
6350 struct cmdblk *cmdp;
6351 int error = 0;
6352 int errs = STRHUP|STRDERR|STWRERR|STPLEX;
6353 clock_t rval, timeout = STRTIMOUT;

6355 if (scp->sc_len < 0 || scp->sc_len > sizeof (scp->sc_buf) ||
6356 scp->sc_timeout < -1)
6357 return (EINVAL);

6359 if (scp->sc_timeout > 0)
6360 timeout = scp->sc_timeout * MILLISEC;

6362 if ((mp = allocb_cred(sizeof (struct cmdblk), crp,
6363 curproc->p_pid)) == NULL)
6364 return (ENOMEM);

6366 crhold(crp);

6368 cmdp = (struct cmdblk *)mp->b_wptr;
6369 cmdp->cb_cr = crp;
6370 cmdp->cb_cmd = scp->sc_cmd;
6371 cmdp->cb_len = scp->sc_len;
6372 cmdp->cb_error = 0;
6373 mp->b_wptr += sizeof (struct cmdblk);

6375 DB_TYPE(mp) = M_CMD;
6376 DB_CPID(mp) = curproc->p_pid;

6378 /*
6379 * Copy in the payload.
6380 */
6381 if (cmdp->cb_len > 0) {
6382 mp->b_cont = allocb_cred(sizeof (scp->sc_buf), crp,
6383 curproc->p_pid);
6384 if (mp->b_cont == NULL) {
6385 error = ENOMEM;

new/usr/src/uts/common/os/streamio.c 51

6386 goto out;
6387 }

6389 /* cb_len comes from sc_len, which has already been checked */
6390 ASSERT(cmdp->cb_len <= sizeof (scp->sc_buf));
6391 (void) bcopy(scp->sc_buf, mp->b_cont->b_wptr, cmdp->cb_len);
6392 mp->b_cont->b_wptr += cmdp->cb_len;
6393 DB_CPID(mp->b_cont) = curproc->p_pid;
6394 }

6396 /*
6397 * Since this mechanism is strictly for ptools, and since only one
6398 * process can be grabbed at a time, we simply fail if there’s
6399 * currently an operation pending.
6400 */
6401 mutex_enter(&stp->sd_lock);
6402 if (stp->sd_flag & STRCMDWAIT) {
6403 mutex_exit(&stp->sd_lock);
6404 error = EBUSY;
6405 goto out;
6406 }
6407 stp->sd_flag |= STRCMDWAIT;
6408 ASSERT(stp->sd_cmdblk == NULL);
6409 mutex_exit(&stp->sd_lock);

6411 putnext(stp->sd_wrq, mp);
6412 mp = NULL;

6414 /*
6415 * Timed wait for acknowledgment. If the reply has already arrived,
6416 * don’t sleep. If awakened from the sleep, fail only if the reply
6417 * has not arrived by then. Otherwise, process the reply.
6418 */
6419 mutex_enter(&stp->sd_lock);
6420 while (stp->sd_cmdblk == NULL) {
6421 if (stp->sd_flag & errs) {
6422 if ((error = strgeterr(stp, errs, 0)) != 0)
6423 goto waitout;
6424 }

6426 rval = str_cv_wait(&stp->sd_monitor, &stp->sd_lock, timeout, 0);
6427 if (stp->sd_cmdblk != NULL)
6428 break;

6430 if (rval <= 0) {
6431 error = (rval == 0) ? EINTR : ETIME;
6432 goto waitout;
6433 }
6434 }

6436 /*
6437 * We received a reply.
6438 */
6439 mp = stp->sd_cmdblk;
6440 stp->sd_cmdblk = NULL;
6441 ASSERT(mp != NULL && DB_TYPE(mp) == M_CMD);
6442 ASSERT(stp->sd_flag & STRCMDWAIT);
6443 stp->sd_flag &= ~STRCMDWAIT;
6444 mutex_exit(&stp->sd_lock);

6446 cmdp = (struct cmdblk *)mp->b_rptr;
6447 if ((error = cmdp->cb_error) != 0)
6448 goto out;

6450 /*
6451 * Data may have been returned in the reply (cb_len > 0).

new/usr/src/uts/common/os/streamio.c 52

6452 * If so, copy it out to the user’s buffer.
6453 */
6454 if (cmdp->cb_len > 0) {
6455 if (mp->b_cont == NULL || MBLKL(mp->b_cont) < cmdp->cb_len) {
6456 error = EPROTO;
6457 goto out;
6458 }

6460 cmdp->cb_len = MIN(cmdp->cb_len, sizeof (scp->sc_buf));
6461 (void) bcopy(mp->b_cont->b_rptr, scp->sc_buf, cmdp->cb_len);
6462 }
6463 scp->sc_len = cmdp->cb_len;
6464 out:
6465 freemsg(mp);
6466 crfree(crp);
6467 return (error);
6468 waitout:
6469 ASSERT(stp->sd_cmdblk == NULL);
6470 stp->sd_flag &= ~STRCMDWAIT;
6471 mutex_exit(&stp->sd_lock);
6472 crfree(crp);
6473 return (error);
6474 }

6476 /*
6477 * For the SunOS keyboard driver.
6478 * Return the next available "ioctl" sequence number.
6479 * Exported, so that streams modules can send "ioctl" messages
6480 * downstream from their open routine.
6481 */
6482 int
6483 getiocseqno(void)
6484 {
6485 int i;

6487 mutex_enter(&strresources);
6488 i = ++ioc_id;
6489 mutex_exit(&strresources);
6490 return (i);
6491 }

6493 /*
6494 * Get the next message from the read queue. If the message is
6495 * priority, STRPRI will have been set by strrput(). This flag
6496 * should be reset only when the entire message at the front of the
6497 * queue as been consumed.
6498 *
6499 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
6500 */
6501 int
6502 strgetmsg(
6503 struct vnode *vp,
6504 struct strbuf *mctl,
6505 struct strbuf *mdata,
6506 unsigned char *prip,
6507 int *flagsp,
6508 int fmode,
6509 rval_t *rvp)
6510 {
6511 struct stdata *stp;
6512 mblk_t *bp, *nbp;
6513 mblk_t *savemp = NULL;
6514 mblk_t *savemptail = NULL;
6515 uint_t old_sd_flag;
6516 int flg;
6517 int more = 0;

new/usr/src/uts/common/os/streamio.c 53

6518 int error = 0;
6519 char first = 1;
6520 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
6521 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
6522 unsigned char pri = 0;
6523 queue_t *q;
6524 int pr = 0; /* Partial read successful */
6525 struct uio uios;
6526 struct uio *uiop = &uios;
6527 struct iovec iovs;
6528 unsigned char type;

6530 TRACE_1(TR_FAC_STREAMS_FR, TR_STRGETMSG_ENTER,
6531 "strgetmsg:%p", vp);

6533 ASSERT(vp->v_stream);
6534 stp = vp->v_stream;
6535 rvp->r_val1 = 0;

6537 mutex_enter(&stp->sd_lock);

6539 if ((error = i_straccess(stp, JCREAD)) != 0) {
6540 mutex_exit(&stp->sd_lock);
6541 return (error);
6542 }

6544 if (stp->sd_flag & (STRDERR|STPLEX)) {
6545 error = strgeterr(stp, STRDERR|STPLEX, 0);
6546 if (error != 0) {
6547 mutex_exit(&stp->sd_lock);
6548 return (error);
6549 }
6550 }
6551 mutex_exit(&stp->sd_lock);

6553 switch (*flagsp) {
6554 case MSG_HIPRI:
6555 if (*prip != 0)
6556 return (EINVAL);
6557 break;

6559 case MSG_ANY:
6560 case MSG_BAND:
6561 break;

6563 default:
6564 return (EINVAL);
6565 }
6566 /*
6567 * Setup uio and iov for data part
6568 */
6569 iovs.iov_base = mdata->buf;
6570 iovs.iov_len = mdata->maxlen;
6571 uios.uio_iov = &iovs;
6572 uios.uio_iovcnt = 1;
6573 uios.uio_loffset = 0;
6574 uios.uio_segflg = UIO_USERSPACE;
6575 uios.uio_fmode = 0;
6576 uios.uio_extflg = UIO_COPY_CACHED;
6577 uios.uio_resid = mdata->maxlen;
6578 uios.uio_offset = 0;

6580 q = _RD(stp->sd_wrq);
6581 mutex_enter(&stp->sd_lock);
6582 old_sd_flag = stp->sd_flag;
6583 mark = 0;

new/usr/src/uts/common/os/streamio.c 54

6584 for (;;) {
6585 int done = 0;
6586 mblk_t *q_first = q->q_first;

6588 /*
6589 * Get the next message of appropriate priority
6590 * from the stream head. If the caller is interested
6591 * in band or hipri messages, then they should already
6592 * be enqueued at the stream head. On the other hand
6593 * if the caller wants normal (band 0) messages, they
6594 * might be deferred in a synchronous stream and they
6595 * will need to be pulled up.
6596 *
6597 * After we have dequeued a message, we might find that
6598 * it was a deferred M_SIG that was enqueued at the
6599 * stream head. It must now be posted as part of the
6600 * read by calling strsignal_nolock().
6601 *
6602 * Also note that strrput does not enqueue an M_PCSIG,
6603 * and there cannot be more than one hipri message,
6604 * so there was no need to have the M_PCSIG case.
6605 *
6606 * At some time it might be nice to try and wrap the
6607 * functionality of kstrgetmsg() and strgetmsg() into
6608 * a common routine so to reduce the amount of replicated
6609 * code (since they are extremely similar).
6610 */
6611 if (!(*flagsp & (MSG_HIPRI|MSG_BAND))) {
6612 /* Asking for normal, band0 data */
6613 bp = strget(stp, q, uiop, first, &error);
6614 ASSERT(MUTEX_HELD(&stp->sd_lock));
6615 if (bp != NULL) {
6616 if (DB_TYPE(bp) == M_SIG) {
6617 strsignal_nolock(stp, *bp->b_rptr,
6618 bp->b_band);
6619 freemsg(bp);
6620 continue;
6621 } else {
6622 break;
6623 }
6624 }
6625 if (error != 0)
6626 goto getmout;

6628 /*
6629 * We can’t depend on the value of STRPRI here because
6630 * the stream head may be in transit. Therefore, we
6631 * must look at the type of the first message to
6632 * determine if a high priority messages is waiting
6633 */
6634 } else if ((*flagsp & MSG_HIPRI) && q_first != NULL &&
6635 DB_TYPE(q_first) >= QPCTL &&
6636 (bp = getq_noenab(q, 0)) != NULL) {
6637 /* Asked for HIPRI and got one */
6638 ASSERT(DB_TYPE(bp) >= QPCTL);
6639 break;
6640 } else if ((*flagsp & MSG_BAND) && q_first != NULL &&
6641 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
6642 (bp = getq_noenab(q, 0)) != NULL) {
6643 /*
6644 * Asked for at least band "prip" and got either at
6645 * least that band or a hipri message.
6646 */
6647 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
6648 if (DB_TYPE(bp) == M_SIG) {
6649 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);

new/usr/src/uts/common/os/streamio.c 55

6650 freemsg(bp);
6651 continue;
6652 } else {
6653 break;
6654 }
6655 }

6657 /* No data. Time to sleep? */
6658 qbackenable(q, 0);

6660 /*
6661 * If STRHUP or STREOF, return 0 length control and data.
6662 * If resid is 0, then a read(fd,buf,0) was done. Do not
6663 * sleep to satisfy this request because by default we have
6664 * zero bytes to return.
6665 */
6666 if ((stp->sd_flag & (STRHUP|STREOF)) || (mctl->maxlen == 0 &&
6667 mdata->maxlen == 0)) {
6668 mctl->len = mdata->len = 0;
6669 *flagsp = 0;
6670 mutex_exit(&stp->sd_lock);
6671 return (0);
6672 }
6673 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_WAIT,
6674 "strgetmsg calls strwaitq:%p, %p",
6675 vp, uiop);
6676 if (((error = strwaitq(stp, GETWAIT, (ssize_t)0, fmode, -1,
6677 &done)) != 0) || done) {
6678 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_DONE,
6679 "strgetmsg error or done:%p, %p",
6680 vp, uiop);
6681 mutex_exit(&stp->sd_lock);
6682 return (error);
6683 }
6684 TRACE_2(TR_FAC_STREAMS_FR, TR_STRGETMSG_AWAKE,
6685 "strgetmsg awakes:%p, %p", vp, uiop);
6686 if ((error = i_straccess(stp, JCREAD)) != 0) {
6687 mutex_exit(&stp->sd_lock);
6688 return (error);
6689 }
6690 first = 0;
6691 }
6692 ASSERT(bp != NULL);
6693 /*
6694 * Extract any mark information. If the message is not completely
6695 * consumed this information will be put in the mblk
6696 * that is putback.
6697 * If MSGMARKNEXT is set and the message is completely consumed
6698 * the STRATMARK flag will be set below. Likewise, if
6699 * MSGNOTMARKNEXT is set and the message is
6700 * completely consumed STRNOTATMARK will be set.
6701 */
6702 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
6703 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
6704 (MSGMARKNEXT|MSGNOTMARKNEXT));
6705 if (mark != 0 && bp == stp->sd_mark) {
6706 mark |= _LASTMARK;
6707 stp->sd_mark = NULL;
6708 }
6709 /*
6710 * keep track of the original message type and priority
6711 */
6712 pri = bp->b_band;
6713 type = bp->b_datap->db_type;
6714 if (type == M_PASSFP) {
6715 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))

new/usr/src/uts/common/os/streamio.c 56

6716 stp->sd_mark = bp;
6717 bp->b_flag |= mark & ~_LASTMARK;
6718 putback(stp, q, bp, pri);
6719 qbackenable(q, pri);
6720 mutex_exit(&stp->sd_lock);
6721 return (EBADMSG);
6722 }
6723 ASSERT(type != M_SIG);

6725 /*
6726 * Set this flag so strrput will not generate signals. Need to
6727 * make sure this flag is cleared before leaving this routine
6728 * else signals will stop being sent.
6729 */
6730 stp->sd_flag |= STRGETINPROG;
6731 mutex_exit(&stp->sd_lock);

6733 if (STREAM_NEEDSERVICE(stp))
6734 stream_runservice(stp);

6736 /*
6737 * Set HIPRI flag if message is priority.
6738 */
6739 if (type >= QPCTL)
6740 flg = MSG_HIPRI;
6741 else
6742 flg = MSG_BAND;

6744 /*
6745 * First process PROTO or PCPROTO blocks, if any.
6746 */
6747 if (mctl->maxlen >= 0 && type != M_DATA) {
6748 size_t n, bcnt;
6749 char *ubuf;

6751 bcnt = mctl->maxlen;
6752 ubuf = mctl->buf;
6753 while (bp != NULL && bp->b_datap->db_type != M_DATA) {
6754 if ((n = MIN(bcnt, bp->b_wptr - bp->b_rptr)) != 0 &&
6755 copyout(bp->b_rptr, ubuf, n)) {
6756 error = EFAULT;
6757 mutex_enter(&stp->sd_lock);
6758 /*
6759 * clear stream head pri flag based on
6760 * first message type
6761 */
6762 if (type >= QPCTL) {
6763 ASSERT(type == M_PCPROTO);
6764 stp->sd_flag &= ~STRPRI;
6765 }
6766 more = 0;
6767 freemsg(bp);
6768 goto getmout;
6769 }
6770 ubuf += n;
6771 bp->b_rptr += n;
6772 if (bp->b_rptr >= bp->b_wptr) {
6773 nbp = bp;
6774 bp = bp->b_cont;
6775 freeb(nbp);
6776 }
6777 ASSERT(n <= bcnt);
6778 bcnt -= n;
6779 if (bcnt == 0)
6780 break;
6781 }

new/usr/src/uts/common/os/streamio.c 57

6782 mctl->len = mctl->maxlen - bcnt;
6783 } else
6784 mctl->len = -1;

6786 if (bp && bp->b_datap->db_type != M_DATA) {
6787 /*
6788 * More PROTO blocks in msg.
6789 */
6790 more |= MORECTL;
6791 savemp = bp;
6792 while (bp && bp->b_datap->db_type != M_DATA) {
6793 savemptail = bp;
6794 bp = bp->b_cont;
6795 }
6796 savemptail->b_cont = NULL;
6797 }

6799 /*
6800 * Now process DATA blocks, if any.
6801 */
6802 if (mdata->maxlen >= 0 && bp) {
6803 /*
6804 * struiocopyout will consume a potential zero-length
6805 * M_DATA even if uio_resid is zero.
6806 */
6807 size_t oldresid = uiop->uio_resid;

6809 bp = struiocopyout(bp, uiop, &error);
6810 if (error != 0) {
6811 mutex_enter(&stp->sd_lock);
6812 /*
6813 * clear stream head hi pri flag based on
6814 * first message
6815 */
6816 if (type >= QPCTL) {
6817 ASSERT(type == M_PCPROTO);
6818 stp->sd_flag &= ~STRPRI;
6819 }
6820 more = 0;
6821 freemsg(savemp);
6822 goto getmout;
6823 }
6824 /*
6825 * (pr == 1) indicates a partial read.
6826 */
6827 if (oldresid > uiop->uio_resid)
6828 pr = 1;
6829 mdata->len = mdata->maxlen - uiop->uio_resid;
6830 } else
6831 mdata->len = -1;

6833 if (bp) { /* more data blocks in msg */
6834 more |= MOREDATA;
6835 if (savemp)
6836 savemptail->b_cont = bp;
6837 else
6838 savemp = bp;
6839 }

6841 mutex_enter(&stp->sd_lock);
6842 if (savemp) {
6843 if (pr && (savemp->b_datap->db_type == M_DATA) &&
6844 msgnodata(savemp)) {
6845 /*
6846 * Avoid queuing a zero-length tail part of
6847 * a message. pr=1 indicates that we read some of

new/usr/src/uts/common/os/streamio.c 58

6848 * the message.
6849 */
6850 freemsg(savemp);
6851 more &= ~MOREDATA;
6852 /*
6853 * clear stream head hi pri flag based on
6854 * first message
6855 */
6856 if (type >= QPCTL) {
6857 ASSERT(type == M_PCPROTO);
6858 stp->sd_flag &= ~STRPRI;
6859 }
6860 } else {
6861 savemp->b_band = pri;
6862 /*
6863 * If the first message was HIPRI and the one we’re
6864 * putting back isn’t, then clear STRPRI, otherwise
6865 * set STRPRI again. Note that we must set STRPRI
6866 * again since the flush logic in strrput_nondata()
6867 * may have cleared it while we had sd_lock dropped.
6868 */
6869 if (type >= QPCTL) {
6870 ASSERT(type == M_PCPROTO);
6871 if (queclass(savemp) < QPCTL)
6872 stp->sd_flag &= ~STRPRI;
6873 else
6874 stp->sd_flag |= STRPRI;
6875 } else if (queclass(savemp) >= QPCTL) {
6876 /*
6877 * The first message was not a HIPRI message,
6878 * but the one we are about to putback is.
6879 * For simplicitly, we do not allow for HIPRI
6880 * messages to be embedded in the message
6881 * body, so just force it to same type as
6882 * first message.
6883 */
6884 ASSERT(type == M_DATA || type == M_PROTO);
6885 ASSERT(savemp->b_datap->db_type == M_PCPROTO);
6886 savemp->b_datap->db_type = type;
6887 }
6888 if (mark != 0) {
6889 savemp->b_flag |= mark & ~_LASTMARK;
6890 if ((mark & _LASTMARK) &&
6891 (stp->sd_mark == NULL)) {
6892 /*
6893 * If another marked message arrived
6894 * while sd_lock was not held sd_mark
6895 * would be non-NULL.
6896 */
6897 stp->sd_mark = savemp;
6898 }
6899 }
6900 putback(stp, q, savemp, pri);
6901 }
6902 } else {
6903 /*
6904 * The complete message was consumed.
6905 *
6906 * If another M_PCPROTO arrived while sd_lock was not held
6907 * it would have been discarded since STRPRI was still set.
6908 *
6909 * Move the MSG*MARKNEXT information
6910 * to the stream head just in case
6911 * the read queue becomes empty.
6912 * clear stream head hi pri flag based on
6913 * first message

new/usr/src/uts/common/os/streamio.c 59

6914 *
6915 * If the stream head was at the mark
6916 * (STRATMARK) before we dropped sd_lock above
6917 * and some data was consumed then we have
6918 * moved past the mark thus STRATMARK is
6919 * cleared. However, if a message arrived in
6920 * strrput during the copyout above causing
6921 * STRATMARK to be set we can not clear that
6922 * flag.
6923 */
6924 if (type >= QPCTL) {
6925 ASSERT(type == M_PCPROTO);
6926 stp->sd_flag &= ~STRPRI;
6927 }
6928 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
6929 if (mark & MSGMARKNEXT) {
6930 stp->sd_flag &= ~STRNOTATMARK;
6931 stp->sd_flag |= STRATMARK;
6932 } else if (mark & MSGNOTMARKNEXT) {
6933 stp->sd_flag &= ~STRATMARK;
6934 stp->sd_flag |= STRNOTATMARK;
6935 } else {
6936 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
6937 }
6938 } else if (pr && (old_sd_flag & STRATMARK)) {
6939 stp->sd_flag &= ~STRATMARK;
6940 }
6941 }

6943 *flagsp = flg;
6944 *prip = pri;

6946 /*
6947 * Getmsg cleanup processing - if the state of the queue has changed
6948 * some signals may need to be sent and/or poll awakened.
6949 */
6950 getmout:
6951 qbackenable(q, pri);

6953 /*
6954 * We dropped the stream head lock above. Send all M_SIG messages
6955 * before processing stream head for SIGPOLL messages.
6956 */
6957 ASSERT(MUTEX_HELD(&stp->sd_lock));
6958 while ((bp = q->q_first) != NULL &&
6959 (bp->b_datap->db_type == M_SIG)) {
6960 /*
6961 * sd_lock is held so the content of the read queue can not
6962 * change.
6963 */
6964 bp = getq(q);
6965 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);

6967 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
6968 mutex_exit(&stp->sd_lock);
6969 freemsg(bp);
6970 if (STREAM_NEEDSERVICE(stp))
6971 stream_runservice(stp);
6972 mutex_enter(&stp->sd_lock);
6973 }

6975 /*
6976 * stream head cannot change while we make the determination
6977 * whether or not to send a signal. Drop the flag to allow strrput
6978 * to send firstmsgsigs again.
6979 */

new/usr/src/uts/common/os/streamio.c 60

6980 stp->sd_flag &= ~STRGETINPROG;

6982 /*
6983 * If the type of message at the front of the queue changed
6984 * due to the receive the appropriate signals and pollwakeup events
6985 * are generated. The type of changes are:
6986 * Processed a hipri message, q_first is not hipri.
6987 * Processed a band X message, and q_first is band Y.
6988 * The generated signals and pollwakeups are identical to what
6989 * strrput() generates should the message that is now on q_first
6990 * arrive to an empty read queue.
6991 *
6992 * Note: only strrput will send a signal for a hipri message.
6993 */
6994 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
6995 strsigset_t signals = 0;
6996 strpollset_t pollwakeups = 0;

6998 if (flg & MSG_HIPRI) {
6999 /*
7000 * Removed a hipri message. Regular data at
7001 * the front of the queue.
7002 */
7003 if (bp->b_band == 0) {
7004 signals = S_INPUT | S_RDNORM;
7005 pollwakeups = POLLIN | POLLRDNORM;
7006 } else {
7007 signals = S_INPUT | S_RDBAND;
7008 pollwakeups = POLLIN | POLLRDBAND;
7009 }
7010 } else if (pri != bp->b_band) {
7011 /*
7012 * The band is different for the new q_first.
7013 */
7014 if (bp->b_band == 0) {
7015 signals = S_RDNORM;
7016 pollwakeups = POLLIN | POLLRDNORM;
7017 } else {
7018 signals = S_RDBAND;
7019 pollwakeups = POLLIN | POLLRDBAND;
7020 }
7021 }

7023 if (pollwakeups != 0) {
7024 if (pollwakeups == (POLLIN | POLLRDNORM)) {
7025 if (!(stp->sd_rput_opt & SR_POLLIN))
7026 goto no_pollwake;
7027 stp->sd_rput_opt &= ~SR_POLLIN;
7028 }
7029 mutex_exit(&stp->sd_lock);
7030 pollwakeup(&stp->sd_pollist, pollwakeups);
7031 mutex_enter(&stp->sd_lock);
7032 }
7033 no_pollwake:

7035 if (stp->sd_sigflags & signals)
7036 strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7037 }
7038 mutex_exit(&stp->sd_lock);

7040 rvp->r_val1 = more;
7041 return (error);
7042 #undef _LASTMARK
7043 }

7045 /*

new/usr/src/uts/common/os/streamio.c 61

7046 * Get the next message from the read queue. If the message is
7047 * priority, STRPRI will have been set by strrput(). This flag
7048 * should be reset only when the entire message at the front of the
7049 * queue as been consumed.
7050 *
7051 * If uiop is NULL all data is returned in mctlp.
7052 * Note that a NULL uiop implies that FNDELAY and FNONBLOCK are assumed
7053 * not enabled.
7054 * The timeout parameter is in milliseconds; -1 for infinity.
7055 * This routine handles the consolidation private flags:
7056 * MSG_IGNERROR Ignore any stream head error except STPLEX.
7057 * MSG_DELAYERROR Defer the error check until the queue is empty.
7058 * MSG_HOLDSIG Hold signals while waiting for data.
7059 * MSG_IPEEK Only peek at messages.
7060 * MSG_DISCARDTAIL Discard the tail M_DATA part of the message
7061 * that doesn’t fit.
7062 * MSG_NOMARK If the message is marked leave it on the queue.
7063 *
7064 * NOTE: strgetmsg and kstrgetmsg have much of the logic in common.
7065 */
7066 int
7067 kstrgetmsg(
7068 struct vnode *vp,
7069 mblk_t **mctlp,
7070 struct uio *uiop,
7071 unsigned char *prip,
7072 int *flagsp,
7073 clock_t timout,
7074 rval_t *rvp)
7075 {
7076 struct stdata *stp;
7077 mblk_t *bp, *nbp;
7078 mblk_t *savemp = NULL;
7079 mblk_t *savemptail = NULL;
7080 int flags;
7081 uint_t old_sd_flag;
7082 int flg;
7083 int more = 0;
7084 int error = 0;
7085 char first = 1;
7086 uint_t mark; /* Contains MSG*MARK and _LASTMARK */
7087 #define _LASTMARK 0x8000 /* Distinct from MSG*MARK */
7088 unsigned char pri = 0;
7089 queue_t *q;
7090 int pr = 0; /* Partial read successful */
7091 unsigned char type;

7093 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_ENTER,
7094 "kstrgetmsg:%p", vp);

7096 ASSERT(vp->v_stream);
7097 stp = vp->v_stream;
7098 rvp->r_val1 = 0;

7100 mutex_enter(&stp->sd_lock);

7102 if ((error = i_straccess(stp, JCREAD)) != 0) {
7103 mutex_exit(&stp->sd_lock);
7104 return (error);
7105 }

7107 flags = *flagsp;
7108 if (stp->sd_flag & (STRDERR|STPLEX)) {
7109 if ((stp->sd_flag & STPLEX) ||
7110 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == 0) {
7111 error = strgeterr(stp, STRDERR|STPLEX,

new/usr/src/uts/common/os/streamio.c 62

7112 (flags & MSG_IPEEK));
7113 if (error != 0) {
7114 mutex_exit(&stp->sd_lock);
7115 return (error);
7116 }
7117 }
7118 }
7119 mutex_exit(&stp->sd_lock);

7121 switch (flags & (MSG_HIPRI|MSG_ANY|MSG_BAND)) {
7122 case MSG_HIPRI:
7123 if (*prip != 0)
7124 return (EINVAL);
7125 break;

7127 case MSG_ANY:
7128 case MSG_BAND:
7129 break;

7131 default:
7132 return (EINVAL);
7133 }

7135 retry:
7136 q = _RD(stp->sd_wrq);
7137 mutex_enter(&stp->sd_lock);
7138 old_sd_flag = stp->sd_flag;
7139 mark = 0;
7140 for (;;) {
7141 int done = 0;
7142 int waitflag;
7143 int fmode;
7144 mblk_t *q_first = q->q_first;

7146 /*
7147 * This section of the code operates just like the code
7148 * in strgetmsg(). There is a comment there about what
7149 * is going on here.
7150 */
7151 if (!(flags & (MSG_HIPRI|MSG_BAND))) {
7152 /* Asking for normal, band0 data */
7153 bp = strget(stp, q, uiop, first, &error);
7154 ASSERT(MUTEX_HELD(&stp->sd_lock));
7155 if (bp != NULL) {
7156 if (DB_TYPE(bp) == M_SIG) {
7157 strsignal_nolock(stp, *bp->b_rptr,
7158 bp->b_band);
7159 freemsg(bp);
7160 continue;
7161 } else {
7162 break;
7163 }
7164 }
7165 if (error != 0) {
7166 goto getmout;
7167 }
7168 /*
7169 * We can’t depend on the value of STRPRI here because
7170 * the stream head may be in transit. Therefore, we
7171 * must look at the type of the first message to
7172 * determine if a high priority messages is waiting
7173 */
7174 } else if ((flags & MSG_HIPRI) && q_first != NULL &&
7175 DB_TYPE(q_first) >= QPCTL &&
7176 (bp = getq_noenab(q, 0)) != NULL) {
7177 ASSERT(DB_TYPE(bp) >= QPCTL);

new/usr/src/uts/common/os/streamio.c 63

7178 break;
7179 } else if ((flags & MSG_BAND) && q_first != NULL &&
7180 ((q_first->b_band >= *prip) || DB_TYPE(q_first) >= QPCTL) &&
7181 (bp = getq_noenab(q, 0)) != NULL) {
7182 /*
7183 * Asked for at least band "prip" and got either at
7184 * least that band or a hipri message.
7185 */
7186 ASSERT(bp->b_band >= *prip || DB_TYPE(bp) >= QPCTL);
7187 if (DB_TYPE(bp) == M_SIG) {
7188 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7189 freemsg(bp);
7190 continue;
7191 } else {
7192 break;
7193 }
7194 }

7196 /* No data. Time to sleep? */
7197 qbackenable(q, 0);

7199 /*
7200 * Delayed error notification?
7201 */
7202 if ((stp->sd_flag & (STRDERR|STPLEX)) &&
7203 (flags & (MSG_IGNERROR|MSG_DELAYERROR)) == MSG_DELAYERROR) {
7204 error = strgeterr(stp, STRDERR|STPLEX,
7205 (flags & MSG_IPEEK));
7206 if (error != 0) {
7207 mutex_exit(&stp->sd_lock);
7208 return (error);
7209 }
7210 }

7212 /*
7213 * If STRHUP or STREOF, return 0 length control and data.
7214 * If a read(fd,buf,0) has been done, do not sleep, just
7215 * return.
7216 *
7217 * If mctlp == NULL and uiop == NULL, then the code will
7218 * do the strwaitq. This is an understood way of saying
7219 * sleep "polling" until a message is received.
7220 */
7221 if ((stp->sd_flag & (STRHUP|STREOF)) ||
7222 (uiop != NULL && uiop->uio_resid == 0)) {
7223 if (mctlp != NULL)
7224 *mctlp = NULL;
7225 *flagsp = 0;
7226 mutex_exit(&stp->sd_lock);
7227 return (0);
7228 }

7230 waitflag = GETWAIT;
7231 if (flags &
7232 (MSG_HOLDSIG|MSG_IGNERROR|MSG_IPEEK|MSG_DELAYERROR)) {
7233 if (flags & MSG_HOLDSIG)
7234 waitflag |= STR_NOSIG;
7235 if (flags & MSG_IGNERROR)
7236 waitflag |= STR_NOERROR;
7237 if (flags & MSG_IPEEK)
7238 waitflag |= STR_PEEK;
7239 if (flags & MSG_DELAYERROR)
7240 waitflag |= STR_DELAYERR;
7241 }
7242 if (uiop != NULL)
7243 fmode = uiop->uio_fmode;

new/usr/src/uts/common/os/streamio.c 64

7244 else
7245 fmode = 0;

7247 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_WAIT,
7248 "kstrgetmsg calls strwaitq:%p, %p",
7249 vp, uiop);
7250 if (((error = strwaitq(stp, waitflag, (ssize_t)0,
7251 fmode, timout, &done))) != 0 || done) {
7252 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_DONE,
7253 "kstrgetmsg error or done:%p, %p",
7254 vp, uiop);
7255 mutex_exit(&stp->sd_lock);
7256 return (error);
7257 }
7258 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRGETMSG_AWAKE,
7259 "kstrgetmsg awakes:%p, %p", vp, uiop);
7260 if ((error = i_straccess(stp, JCREAD)) != 0) {
7261 mutex_exit(&stp->sd_lock);
7262 return (error);
7263 }
7264 first = 0;
7265 }
7266 ASSERT(bp != NULL);
7267 /*
7268 * Extract any mark information. If the message is not completely
7269 * consumed this information will be put in the mblk
7270 * that is putback.
7271 * If MSGMARKNEXT is set and the message is completely consumed
7272 * the STRATMARK flag will be set below. Likewise, if
7273 * MSGNOTMARKNEXT is set and the message is
7274 * completely consumed STRNOTATMARK will be set.
7275 */
7276 mark = bp->b_flag & (MSGMARK | MSGMARKNEXT | MSGNOTMARKNEXT);
7277 ASSERT((mark & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
7278 (MSGMARKNEXT|MSGNOTMARKNEXT));
7279 pri = bp->b_band;
7280 if (mark != 0) {
7281 /*
7282 * If the caller doesn’t want the mark return.
7283 * Used to implement MSG_WAITALL in sockets.
7284 */
7285 if (flags & MSG_NOMARK) {
7286 putback(stp, q, bp, pri);
7287 qbackenable(q, pri);
7288 mutex_exit(&stp->sd_lock);
7289 return (EWOULDBLOCK);
7290 }
7291 if (bp == stp->sd_mark) {
7292 mark |= _LASTMARK;
7293 stp->sd_mark = NULL;
7294 }
7295 }

7297 /*
7298 * keep track of the first message type
7299 */
7300 type = bp->b_datap->db_type;

7302 if (bp->b_datap->db_type == M_PASSFP) {
7303 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7304 stp->sd_mark = bp;
7305 bp->b_flag |= mark & ~_LASTMARK;
7306 putback(stp, q, bp, pri);
7307 qbackenable(q, pri);
7308 mutex_exit(&stp->sd_lock);
7309 return (EBADMSG);

new/usr/src/uts/common/os/streamio.c 65

7310 }
7311 ASSERT(type != M_SIG);

7313 if (flags & MSG_IPEEK) {
7314 /*
7315 * Clear any struioflag - we do the uiomove over again
7316 * when peeking since it simplifies the code.
7317 *
7318 * Dup the message and put the original back on the queue.
7319 * If dupmsg() fails, try again with copymsg() to see if
7320 * there is indeed a shortage of memory. dupmsg() may fail
7321 * if db_ref in any of the messages reaches its limit.
7322 */

7324 if ((nbp = dupmsg(bp)) == NULL && (nbp = copymsg(bp)) == NULL) {
7325 /*
7326 * Restore the state of the stream head since we
7327 * need to drop sd_lock (strwaitbuf is sleeping).
7328 */
7329 size_t size = msgdsize(bp);

7331 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7332 stp->sd_mark = bp;
7333 bp->b_flag |= mark & ~_LASTMARK;
7334 putback(stp, q, bp, pri);
7335 mutex_exit(&stp->sd_lock);
7336 error = strwaitbuf(size, BPRI_HI);
7337 if (error) {
7338 /*
7339 * There is no net change to the queue thus
7340 * no need to qbackenable.
7341 */
7342 return (error);
7343 }
7344 goto retry;
7345 }

7347 if ((mark & _LASTMARK) && (stp->sd_mark == NULL))
7348 stp->sd_mark = bp;
7349 bp->b_flag |= mark & ~_LASTMARK;
7350 putback(stp, q, bp, pri);
7351 bp = nbp;
7352 }

7354 /*
7355 * Set this flag so strrput will not generate signals. Need to
7356 * make sure this flag is cleared before leaving this routine
7357 * else signals will stop being sent.
7358 */
7359 stp->sd_flag |= STRGETINPROG;
7360 mutex_exit(&stp->sd_lock);

7362 if ((stp->sd_rputdatafunc != NULL) && (DB_TYPE(bp) == M_DATA)) {
7363 mblk_t *tmp, *prevmp;

7365 /*
7366 * Put first non-data mblk back to stream head and
7367 * cut the mblk chain so sd_rputdatafunc only sees
7368 * M_DATA mblks. We can skip the first mblk since it
7369 * is M_DATA according to the condition above.
7370 */
7371 for (prevmp = bp, tmp = bp->b_cont; tmp != NULL;
7372 prevmp = tmp, tmp = tmp->b_cont) {
7373 if (DB_TYPE(tmp) != M_DATA) {
7374 prevmp->b_cont = NULL;
7375 mutex_enter(&stp->sd_lock);

new/usr/src/uts/common/os/streamio.c 66

7376 putback(stp, q, tmp, tmp->b_band);
7377 mutex_exit(&stp->sd_lock);
7378 break;
7379 }
7380 }

7382 bp = (stp->sd_rputdatafunc)(stp->sd_vnode, bp,
7383 NULL, NULL, NULL, NULL);

7385 if (bp == NULL)
7386 goto retry;
7387 }

7389 if (STREAM_NEEDSERVICE(stp))
7390 stream_runservice(stp);

7392 /*
7393 * Set HIPRI flag if message is priority.
7394 */
7395 if (type >= QPCTL)
7396 flg = MSG_HIPRI;
7397 else
7398 flg = MSG_BAND;

7400 /*
7401 * First process PROTO or PCPROTO blocks, if any.
7402 */
7403 if (mctlp != NULL && type != M_DATA) {
7404 mblk_t *nbp;

7406 *mctlp = bp;
7407 while (bp->b_cont && bp->b_cont->b_datap->db_type != M_DATA)
7408 bp = bp->b_cont;
7409 nbp = bp->b_cont;
7410 bp->b_cont = NULL;
7411 bp = nbp;
7412 }

7414 if (bp && bp->b_datap->db_type != M_DATA) {
7415 /*
7416 * More PROTO blocks in msg. Will only happen if mctlp is NULL.
7417 */
7418 more |= MORECTL;
7419 savemp = bp;
7420 while (bp && bp->b_datap->db_type != M_DATA) {
7421 savemptail = bp;
7422 bp = bp->b_cont;
7423 }
7424 savemptail->b_cont = NULL;
7425 }

7427 /*
7428 * Now process DATA blocks, if any.
7429 */
7430 if (uiop == NULL) {
7431 /* Append data to tail of mctlp */

7433 if (mctlp != NULL) {
7434 mblk_t **mpp = mctlp;

7436 while (*mpp != NULL)
7437 mpp = &((*mpp)->b_cont);
7438 *mpp = bp;
7439 bp = NULL;
7440 }
7441 } else if (uiop->uio_resid >= 0 && bp) {

new/usr/src/uts/common/os/streamio.c 67

7442 size_t oldresid = uiop->uio_resid;

7444 /*
7445 * If a streams message is likely to consist
7446 * of many small mblks, it is pulled up into
7447 * one continuous chunk of memory.
7448 * The size of the first mblk may be bogus because
7449 * successive read() calls on the socket reduce
7450 * the size of this mblk until it is exhausted
7451 * and then the code walks on to the next. Thus
7452 * the size of the mblk may not be the original size
7453 * that was passed up, it’s simply a remainder
7454 * and hence can be very small without any
7455 * implication that the packet is badly fragmented.
7456 * So the size of the possible second mblk is
7457 * used to spot a badly fragmented packet.
7458 * see longer comment at top of page
7459 * by mblk_pull_len declaration.
7460 */

7462 if (bp->b_cont != NULL && MBLKL(bp->b_cont) < mblk_pull_len) {
7463 (void) pullupmsg(bp, -1);
7464 }

7466 bp = struiocopyout(bp, uiop, &error);
7467 if (error != 0) {
7468 if (mctlp != NULL) {
7469 freemsg(*mctlp);
7470 *mctlp = NULL;
7471 } else
7472 freemsg(savemp);
7473 mutex_enter(&stp->sd_lock);
7474 /*
7475 * clear stream head hi pri flag based on
7476 * first message
7477 */
7478 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7479 ASSERT(type == M_PCPROTO);
7480 stp->sd_flag &= ~STRPRI;
7481 }
7482 more = 0;
7483 goto getmout;
7484 }
7485 /*
7486 * (pr == 1) indicates a partial read.
7487 */
7488 if (oldresid > uiop->uio_resid)
7489 pr = 1;
7490 }

7492 if (bp) { /* more data blocks in msg */
7493 more |= MOREDATA;
7494 if (savemp)
7495 savemptail->b_cont = bp;
7496 else
7497 savemp = bp;
7498 }

7500 mutex_enter(&stp->sd_lock);
7501 if (savemp) {
7502 if (flags & (MSG_IPEEK|MSG_DISCARDTAIL)) {
7503 /*
7504 * When MSG_DISCARDTAIL is set or
7505 * when peeking discard any tail. When peeking this
7506 * is the tail of the dup that was copied out - the
7507 * message has already been putback on the queue.

new/usr/src/uts/common/os/streamio.c 68

7508 * Return MOREDATA to the caller even though the data
7509 * is discarded. This is used by sockets (to
7510 * set MSG_TRUNC).
7511 */
7512 freemsg(savemp);
7513 if (!(flags & MSG_IPEEK) && (type >= QPCTL)) {
7514 ASSERT(type == M_PCPROTO);
7515 stp->sd_flag &= ~STRPRI;
7516 }
7517 } else if (pr && (savemp->b_datap->db_type == M_DATA) &&
7518 msgnodata(savemp)) {
7519 /*
7520 * Avoid queuing a zero-length tail part of
7521 * a message. pr=1 indicates that we read some of
7522 * the message.
7523 */
7524 freemsg(savemp);
7525 more &= ~MOREDATA;
7526 if (type >= QPCTL) {
7527 ASSERT(type == M_PCPROTO);
7528 stp->sd_flag &= ~STRPRI;
7529 }
7530 } else {
7531 savemp->b_band = pri;
7532 /*
7533 * If the first message was HIPRI and the one we’re
7534 * putting back isn’t, then clear STRPRI, otherwise
7535 * set STRPRI again. Note that we must set STRPRI
7536 * again since the flush logic in strrput_nondata()
7537 * may have cleared it while we had sd_lock dropped.
7538 */

7540 if (type >= QPCTL) {
7541 ASSERT(type == M_PCPROTO);
7542 if (queclass(savemp) < QPCTL)
7543 stp->sd_flag &= ~STRPRI;
7544 else
7545 stp->sd_flag |= STRPRI;
7546 } else if (queclass(savemp) >= QPCTL) {
7547 /*
7548 * The first message was not a HIPRI message,
7549 * but the one we are about to putback is.
7550 * For simplicitly, we do not allow for HIPRI
7551 * messages to be embedded in the message
7552 * body, so just force it to same type as
7553 * first message.
7554 */
7555 ASSERT(type == M_DATA || type == M_PROTO);
7556 ASSERT(savemp->b_datap->db_type == M_PCPROTO);
7557 savemp->b_datap->db_type = type;
7558 }
7559 if (mark != 0) {
7560 if ((mark & _LASTMARK) &&
7561 (stp->sd_mark == NULL)) {
7562 /*
7563 * If another marked message arrived
7564 * while sd_lock was not held sd_mark
7565 * would be non-NULL.
7566 */
7567 stp->sd_mark = savemp;
7568 }
7569 savemp->b_flag |= mark & ~_LASTMARK;
7570 }
7571 putback(stp, q, savemp, pri);
7572 }
7573 } else if (!(flags & MSG_IPEEK)) {

new/usr/src/uts/common/os/streamio.c 69

7574 /*
7575 * The complete message was consumed.
7576 *
7577 * If another M_PCPROTO arrived while sd_lock was not held
7578 * it would have been discarded since STRPRI was still set.
7579 *
7580 * Move the MSG*MARKNEXT information
7581 * to the stream head just in case
7582 * the read queue becomes empty.
7583 * clear stream head hi pri flag based on
7584 * first message
7585 *
7586 * If the stream head was at the mark
7587 * (STRATMARK) before we dropped sd_lock above
7588 * and some data was consumed then we have
7589 * moved past the mark thus STRATMARK is
7590 * cleared. However, if a message arrived in
7591 * strrput during the copyout above causing
7592 * STRATMARK to be set we can not clear that
7593 * flag.
7594 * XXX A "perimeter" would help by single-threading strrput,
7595 * strread, strgetmsg and kstrgetmsg.
7596 */
7597 if (type >= QPCTL) {
7598 ASSERT(type == M_PCPROTO);
7599 stp->sd_flag &= ~STRPRI;
7600 }
7601 if (mark & (MSGMARKNEXT|MSGNOTMARKNEXT|MSGMARK)) {
7602 if (mark & MSGMARKNEXT) {
7603 stp->sd_flag &= ~STRNOTATMARK;
7604 stp->sd_flag |= STRATMARK;
7605 } else if (mark & MSGNOTMARKNEXT) {
7606 stp->sd_flag &= ~STRATMARK;
7607 stp->sd_flag |= STRNOTATMARK;
7608 } else {
7609 stp->sd_flag &= ~(STRATMARK|STRNOTATMARK);
7610 }
7611 } else if (pr && (old_sd_flag & STRATMARK)) {
7612 stp->sd_flag &= ~STRATMARK;
7613 }
7614 }

7616 *flagsp = flg;
7617 *prip = pri;

7619 /*
7620 * Getmsg cleanup processing - if the state of the queue has changed
7621 * some signals may need to be sent and/or poll awakened.
7622 */
7623 getmout:
7624 qbackenable(q, pri);

7626 /*
7627 * We dropped the stream head lock above. Send all M_SIG messages
7628 * before processing stream head for SIGPOLL messages.
7629 */
7630 ASSERT(MUTEX_HELD(&stp->sd_lock));
7631 while ((bp = q->q_first) != NULL &&
7632 (bp->b_datap->db_type == M_SIG)) {
7633 /*
7634 * sd_lock is held so the content of the read queue can not
7635 * change.
7636 */
7637 bp = getq(q);
7638 ASSERT(bp != NULL && bp->b_datap->db_type == M_SIG);

new/usr/src/uts/common/os/streamio.c 70

7640 strsignal_nolock(stp, *bp->b_rptr, bp->b_band);
7641 mutex_exit(&stp->sd_lock);
7642 freemsg(bp);
7643 if (STREAM_NEEDSERVICE(stp))
7644 stream_runservice(stp);
7645 mutex_enter(&stp->sd_lock);
7646 }

7648 /*
7649 * stream head cannot change while we make the determination
7650 * whether or not to send a signal. Drop the flag to allow strrput
7651 * to send firstmsgsigs again.
7652 */
7653 stp->sd_flag &= ~STRGETINPROG;

7655 /*
7656 * If the type of message at the front of the queue changed
7657 * due to the receive the appropriate signals and pollwakeup events
7658 * are generated. The type of changes are:
7659 * Processed a hipri message, q_first is not hipri.
7660 * Processed a band X message, and q_first is band Y.
7661 * The generated signals and pollwakeups are identical to what
7662 * strrput() generates should the message that is now on q_first
7663 * arrive to an empty read queue.
7664 *
7665 * Note: only strrput will send a signal for a hipri message.
7666 */
7667 if ((bp = q->q_first) != NULL && !(stp->sd_flag & STRPRI)) {
7668 strsigset_t signals = 0;
7669 strpollset_t pollwakeups = 0;

7671 if (flg & MSG_HIPRI) {
7672 /*
7673 * Removed a hipri message. Regular data at
7674 * the front of the queue.
7675 */
7676 if (bp->b_band == 0) {
7677 signals = S_INPUT | S_RDNORM;
7678 pollwakeups = POLLIN | POLLRDNORM;
7679 } else {
7680 signals = S_INPUT | S_RDBAND;
7681 pollwakeups = POLLIN | POLLRDBAND;
7682 }
7683 } else if (pri != bp->b_band) {
7684 /*
7685 * The band is different for the new q_first.
7686 */
7687 if (bp->b_band == 0) {
7688 signals = S_RDNORM;
7689 pollwakeups = POLLIN | POLLRDNORM;
7690 } else {
7691 signals = S_RDBAND;
7692 pollwakeups = POLLIN | POLLRDBAND;
7693 }
7694 }

7696 if (pollwakeups != 0) {
7697 if (pollwakeups == (POLLIN | POLLRDNORM)) {
7698 if (!(stp->sd_rput_opt & SR_POLLIN))
7699 goto no_pollwake;
7700 stp->sd_rput_opt &= ~SR_POLLIN;
7701 }
7702 mutex_exit(&stp->sd_lock);
7703 pollwakeup(&stp->sd_pollist, pollwakeups);
7704 mutex_enter(&stp->sd_lock);
7705 }

new/usr/src/uts/common/os/streamio.c 71

7706 no_pollwake:

7708 if (stp->sd_sigflags & signals)
7709 strsendsig(stp->sd_siglist, signals, bp->b_band, 0);
7710 }
7711 mutex_exit(&stp->sd_lock);

7713 rvp->r_val1 = more;
7714 return (error);
7715 #undef _LASTMARK
7716 }

7718 /*
7719 * Put a message downstream.
7720 *
7721 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7722 */
7723 int
7724 strputmsg(
7725 struct vnode *vp,
7726 struct strbuf *mctl,
7727 struct strbuf *mdata,
7728 unsigned char pri,
7729 int flag,
7730 int fmode)
7731 {
7732 struct stdata *stp;
7733 queue_t *wqp;
7734 mblk_t *mp;
7735 ssize_t msgsize;
7736 ssize_t rmin, rmax;
7737 int error;
7738 struct uio uios;
7739 struct uio *uiop = &uios;
7740 struct iovec iovs;
7741 int xpg4 = 0;

7743 ASSERT(vp->v_stream);
7744 stp = vp->v_stream;
7745 wqp = stp->sd_wrq;

7747 /*
7748 * If it is an XPG4 application, we need to send
7749 * SIGPIPE below
7750 */

7752 xpg4 = (flag & MSG_XPG4) ? 1 : 0;
7753 flag &= ~MSG_XPG4;

7755 if (AU_AUDITING())
7756 audit_strputmsg(vp, mctl, mdata, pri, flag, fmode);

7758 mutex_enter(&stp->sd_lock);

7760 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7761 mutex_exit(&stp->sd_lock);
7762 return (error);
7763 }

7765 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7766 error = strwriteable(stp, B_FALSE, xpg4);
7767 if (error != 0) {
7768 mutex_exit(&stp->sd_lock);
7769 return (error);
7770 }
7771 }

new/usr/src/uts/common/os/streamio.c 72

7773 mutex_exit(&stp->sd_lock);

7775 /*
7776 * Check for legal flag value.
7777 */
7778 switch (flag) {
7779 case MSG_HIPRI:
7780 if ((mctl->len < 0) || (pri != 0))
7781 return (EINVAL);
7782 break;
7783 case MSG_BAND:
7784 break;

7786 default:
7787 return (EINVAL);
7788 }

7790 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_IN,
7791 "strputmsg in:stp %p", stp);

7793 /* get these values from those cached in the stream head */
7794 rmin = stp->sd_qn_minpsz;
7795 rmax = stp->sd_qn_maxpsz;

7797 /*
7798 * Make sure ctl and data sizes together fall within the
7799 * limits of the max and min receive packet sizes and do
7800 * not exceed system limit.
7801 */
7802 ASSERT((rmax >= 0) || (rmax == INFPSZ));
7803 if (rmax == 0) {
7804 return (ERANGE);
7805 }
7806 /*
7807 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
7808 * Needed to prevent partial failures in the strmakedata loop.
7809 */
7810 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
7811 rmax = stp->sd_maxblk;

7813 if ((msgsize = mdata->len) < 0) {
7814 msgsize = 0;
7815 rmin = 0; /* no range check for NULL data part */
7816 }
7817 if ((msgsize < rmin) ||
7818 ((msgsize > rmax) && (rmax != INFPSZ)) ||
7819 (mctl->len > strctlsz)) {
7820 return (ERANGE);
7821 }

7823 /*
7824 * Setup uio and iov for data part
7825 */
7826 iovs.iov_base = mdata->buf;
7827 iovs.iov_len = msgsize;
7828 uios.uio_iov = &iovs;
7829 uios.uio_iovcnt = 1;
7830 uios.uio_loffset = 0;
7831 uios.uio_segflg = UIO_USERSPACE;
7832 uios.uio_fmode = fmode;
7833 uios.uio_extflg = UIO_COPY_DEFAULT;
7834 uios.uio_resid = msgsize;
7835 uios.uio_offset = 0;

7837 /* Ignore flow control in strput for HIPRI */

new/usr/src/uts/common/os/streamio.c 73

7838 if (flag & MSG_HIPRI)
7839 flag |= MSG_IGNFLOW;

7841 for (;;) {
7842 int done = 0;

7844 /*
7845 * strput will always free the ctl mblk - even when strput
7846 * fails.
7847 */
7848 if ((error = strmakectl(mctl, flag, fmode, &mp)) != 0) {
7849 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7850 "strputmsg out:stp %p out %d error %d",
7851 stp, 1, error);
7852 return (error);
7853 }
7854 /*
7855 * Verify that the whole message can be transferred by
7856 * strput.
7857 */
7858 ASSERT(stp->sd_maxblk == INFPSZ ||
7859 stp->sd_maxblk >= mdata->len);

7861 msgsize = mdata->len;
7862 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
7863 mdata->len = msgsize;

7865 if (error == 0)
7866 break;

7868 if (error != EWOULDBLOCK)
7869 goto out;

7871 mutex_enter(&stp->sd_lock);
7872 /*
7873 * Check for a missed wakeup.
7874 * Needed since strput did not hold sd_lock across
7875 * the canputnext.
7876 */
7877 if (bcanputnext(wqp, pri)) {
7878 /* Try again */
7879 mutex_exit(&stp->sd_lock);
7880 continue;
7881 }
7882 TRACE_2(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAIT,
7883 "strputmsg wait:stp %p waits pri %d", stp, pri);
7884 if (((error = strwaitq(stp, WRITEWAIT, (ssize_t)0, fmode, -1,
7885 &done)) != 0) || done) {
7886 mutex_exit(&stp->sd_lock);
7887 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7888 "strputmsg out:q %p out %d error %d",
7889 stp, 0, error);
7890 return (error);
7891 }
7892 TRACE_1(TR_FAC_STREAMS_FR, TR_STRPUTMSG_WAKE,
7893 "strputmsg wake:stp %p wakes", stp);
7894 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7895 mutex_exit(&stp->sd_lock);
7896 return (error);
7897 }
7898 mutex_exit(&stp->sd_lock);
7899 }
7900 out:
7901 /*
7902 * For historic reasons, applications expect EAGAIN
7903 * when data mblk could not be allocated. so change

new/usr/src/uts/common/os/streamio.c 74

7904 * ENOMEM back to EAGAIN
7905 */
7906 if (error == ENOMEM)
7907 error = EAGAIN;
7908 TRACE_3(TR_FAC_STREAMS_FR, TR_STRPUTMSG_OUT,
7909 "strputmsg out:stp %p out %d error %d", stp, 2, error);
7910 return (error);
7911 }

7913 /*
7914 * Put a message downstream.
7915 * Can send only an M_PROTO/M_PCPROTO by passing in a NULL uiop.
7916 * The fmode flag (NDELAY, NONBLOCK) is the or of the flags in the uio
7917 * and the fmode parameter.
7918 *
7919 * This routine handles the consolidation private flags:
7920 * MSG_IGNERROR Ignore any stream head error except STPLEX.
7921 * MSG_HOLDSIG Hold signals while waiting for data.
7922 * MSG_IGNFLOW Don’t check streams flow control.
7923 *
7924 * NOTE: strputmsg and kstrputmsg have much of the logic in common.
7925 */
7926 int
7927 kstrputmsg(
7928 struct vnode *vp,
7929 mblk_t *mctl,
7930 struct uio *uiop,
7931 ssize_t msgsize,
7932 unsigned char pri,
7933 int flag,
7934 int fmode)
7935 {
7936 struct stdata *stp;
7937 queue_t *wqp;
7938 ssize_t rmin, rmax;
7939 int error;

7941 ASSERT(vp->v_stream);
7942 stp = vp->v_stream;
7943 wqp = stp->sd_wrq;
7944 if (AU_AUDITING())
7945 audit_strputmsg(vp, NULL, NULL, pri, flag, fmode);
7946 if (mctl == NULL)
7947 return (EINVAL);

7949 mutex_enter(&stp->sd_lock);

7951 if ((error = i_straccess(stp, JCWRITE)) != 0) {
7952 mutex_exit(&stp->sd_lock);
7953 freemsg(mctl);
7954 return (error);
7955 }

7957 if ((stp->sd_flag & STPLEX) || !(flag & MSG_IGNERROR)) {
7958 if (stp->sd_flag & (STWRERR|STRHUP|STPLEX)) {
7959 error = strwriteable(stp, B_FALSE, B_TRUE);
7960 if (error != 0) {
7961 mutex_exit(&stp->sd_lock);
7962 freemsg(mctl);
7963 return (error);
7964 }
7965 }
7966 }

7968 mutex_exit(&stp->sd_lock);

new/usr/src/uts/common/os/streamio.c 75

7970 /*
7971 * Check for legal flag value.
7972 */
7973 switch (flag & (MSG_HIPRI|MSG_BAND|MSG_ANY)) {
7974 case MSG_HIPRI:
7975 if (pri != 0) {
7976 freemsg(mctl);
7977 return (EINVAL);
7978 }
7979 break;
7980 case MSG_BAND:
7981 break;
7982 default:
7983 freemsg(mctl);
7984 return (EINVAL);
7985 }

7987 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_IN,
7988 "kstrputmsg in:stp %p", stp);

7990 /* get these values from those cached in the stream head */
7991 rmin = stp->sd_qn_minpsz;
7992 rmax = stp->sd_qn_maxpsz;

7994 /*
7995 * Make sure ctl and data sizes together fall within the
7996 * limits of the max and min receive packet sizes and do
7997 * not exceed system limit.
7998 */
7999 ASSERT((rmax >= 0) || (rmax == INFPSZ));
8000 if (rmax == 0) {
8001 freemsg(mctl);
8002 return (ERANGE);
8003 }
8004 /*
8005 * Use the MAXIMUM of sd_maxblk and q_maxpsz.
8006 * Needed to prevent partial failures in the strmakedata loop.
8007 */
8008 if (stp->sd_maxblk != INFPSZ && rmax != INFPSZ && rmax < stp->sd_maxblk)
8009 rmax = stp->sd_maxblk;

8011 if (uiop == NULL) {
8012 msgsize = -1;
8013 rmin = -1; /* no range check for NULL data part */
8014 } else {
8015 /* Use uio flags as well as the fmode parameter flags */
8016 fmode |= uiop->uio_fmode;

8018 if ((msgsize < rmin) ||
8019 ((msgsize > rmax) && (rmax != INFPSZ))) {
8020 freemsg(mctl);
8021 return (ERANGE);
8022 }
8023 }

8025 /* Ignore flow control in strput for HIPRI */
8026 if (flag & MSG_HIPRI)
8027 flag |= MSG_IGNFLOW;

8029 for (;;) {
8030 int done = 0;
8031 int waitflag;
8032 mblk_t *mp;

8034 /*
8035 * strput will always free the ctl mblk - even when strput

new/usr/src/uts/common/os/streamio.c 76

8036 * fails. If MSG_IGNFLOW is set then any error returned
8037 * will cause us to break the loop, so we don’t need a copy
8038 * of the message. If MSG_IGNFLOW is not set, then we can
8039 * get hit by flow control and be forced to try again. In
8040 * this case we need to have a copy of the message. We
8041 * do this using copymsg since the message may get modified
8042 * by something below us.
8043 *
8044 * We’ve observed that many TPI providers do not check db_ref
8045 * on the control messages but blindly reuse them for the
8046 * T_OK_ACK/T_ERROR_ACK. Thus using copymsg is more
8047 * friendly to such providers than using dupmsg. Also, note
8048 * that sockfs uses MSG_IGNFLOW for all TPI control messages.
8049 * Only data messages are subject to flow control, hence
8050 * subject to this copymsg.
8051 */
8052 if (flag & MSG_IGNFLOW) {
8053 mp = mctl;
8054 mctl = NULL;
8055 } else {
8056 do {
8057 /*
8058 * If a message has a free pointer, the message
8059 * must be dupmsg to maintain this pointer.
8060 * Code using this facility must be sure
8061 * that modules below will not change the
8062 * contents of the dblk without checking db_ref
8063 * first. If db_ref is > 1, then the module
8064 * needs to do a copymsg first. Otherwise,
8065 * the contents of the dblk may become
8066 * inconsistent because the freesmg/freeb below
8067 * may end up calling atomic_add_32_nv.
8068 * The atomic_add_32_nv in freeb (accessing
8069 * all of db_ref, db_type, db_flags, and
8070 * db_struioflag) does not prevent other threads
8071 * from concurrently trying to modify e.g.
8072 * db_type.
8073 */
8074 if (mctl->b_datap->db_frtnp != NULL)
8075 mp = dupmsg(mctl);
8076 else
8077 mp = copymsg(mctl);

8079 if (mp != NULL)
8080 break;

8082 error = strwaitbuf(msgdsize(mctl), BPRI_MED);
8083 if (error) {
8084 freemsg(mctl);
8085 return (error);
8086 }
8087 } while (mp == NULL);
8088 }
8089 /*
8090 * Verify that all of msgsize can be transferred by
8091 * strput.
8092 */
8093 ASSERT(stp->sd_maxblk == INFPSZ || stp->sd_maxblk >= msgsize);
8094 error = strput(stp, mp, uiop, &msgsize, 0, pri, flag);
8095 if (error == 0)
8096 break;

8098 if (error != EWOULDBLOCK)
8099 goto out;

8101 /*

new/usr/src/uts/common/os/streamio.c 77

8102 * IF MSG_IGNFLOW is set we should have broken out of loop
8103 * above.
8104 */
8105 ASSERT(!(flag & MSG_IGNFLOW));
8106 mutex_enter(&stp->sd_lock);
8107 /*
8108 * Check for a missed wakeup.
8109 * Needed since strput did not hold sd_lock across
8110 * the canputnext.
8111 */
8112 if (bcanputnext(wqp, pri)) {
8113 /* Try again */
8114 mutex_exit(&stp->sd_lock);
8115 continue;
8116 }
8117 TRACE_2(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAIT,
8118 "kstrputmsg wait:stp %p waits pri %d", stp, pri);

8120 waitflag = WRITEWAIT;
8121 if (flag & (MSG_HOLDSIG|MSG_IGNERROR)) {
8122 if (flag & MSG_HOLDSIG)
8123 waitflag |= STR_NOSIG;
8124 if (flag & MSG_IGNERROR)
8125 waitflag |= STR_NOERROR;
8126 }
8127 if (((error = strwaitq(stp, waitflag,
8128 (ssize_t)0, fmode, -1, &done)) != 0) || done) {
8129 mutex_exit(&stp->sd_lock);
8130 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8131 "kstrputmsg out:stp %p out %d error %d",
8132 stp, 0, error);
8133 freemsg(mctl);
8134 return (error);
8135 }
8136 TRACE_1(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_WAKE,
8137 "kstrputmsg wake:stp %p wakes", stp);
8138 if ((error = i_straccess(stp, JCWRITE)) != 0) {
8139 mutex_exit(&stp->sd_lock);
8140 freemsg(mctl);
8141 return (error);
8142 }
8143 mutex_exit(&stp->sd_lock);
8144 }
8145 out:
8146 freemsg(mctl);
8147 /*
8148 * For historic reasons, applications expect EAGAIN
8149 * when data mblk could not be allocated. so change
8150 * ENOMEM back to EAGAIN
8151 */
8152 if (error == ENOMEM)
8153 error = EAGAIN;
8154 TRACE_3(TR_FAC_STREAMS_FR, TR_KSTRPUTMSG_OUT,
8155 "kstrputmsg out:stp %p out %d error %d", stp, 2, error);
8156 return (error);
8157 }

8159 /*
8160 * Determines whether the necessary conditions are set on a stream
8161 * for it to be readable, writeable, or have exceptions.
8162 *
8163 * strpoll handles the consolidation private events:
8164 * POLLNOERR Do not return POLLERR even if there are stream
8165 * head errors.
8166 * Used by sockfs.
8167 * POLLRDDATA Do not return POLLIN unless at least one message on

new/usr/src/uts/common/os/streamio.c 78

8168 * the queue contains one or more M_DATA mblks. Thus
8169 * when this flag is set a queue with only
8170 * M_PROTO/M_PCPROTO mblks does not return POLLIN.
8171 * Used by sockfs to ignore T_EXDATA_IND messages.
8172 *
8173 * Note: POLLRDDATA assumes that synch streams only return messages with
8174 * an M_DATA attached (i.e. not messages consisting of only
8175 * an M_PROTO/M_PCPROTO part).
8176 */
8177 int
8178 strpoll(
8179 struct stdata *stp,
8180 short events_arg,
8181 int anyyet,
8182 short *reventsp,
8183 struct pollhead **phpp)
8184 {
8185 int events = (ushort_t)events_arg;
8186 int retevents = 0;
8187 mblk_t *mp;
8188 qband_t *qbp;
8189 long sd_flags = stp->sd_flag;
8190 int headlocked = 0;

8192 /*
8193 * For performance, a single ’if’ tests for most possible edge
8194 * conditions in one shot
8195 */
8196 if (sd_flags & (STPLEX | STRDERR | STWRERR)) {
8197 if (sd_flags & STPLEX) {
8198 *reventsp = POLLNVAL;
8199 return (EINVAL);
8200 }
8201 if (((events & (POLLIN | POLLRDNORM | POLLRDBAND | POLLPRI)) &&
8202 (sd_flags & STRDERR)) ||
8203 ((events & (POLLOUT | POLLWRNORM | POLLWRBAND)) &&
8204 (sd_flags & STWRERR))) {
8205 if (!(events & POLLNOERR)) {
8206 *reventsp = POLLERR;
8207 return (0);
8208 }
8209 }
8210 }
8211 if (sd_flags & STRHUP) {
8212 retevents |= POLLHUP;
8213 } else if (events & (POLLWRNORM | POLLWRBAND)) {
8214 queue_t *tq;
8215 queue_t *qp = stp->sd_wrq;

8217 claimstr(qp);
8218 /* Find next module forward that has a service procedure */
8219 tq = qp->q_next->q_nfsrv;
8220 ASSERT(tq != NULL);

8222 polllock(&stp->sd_pollist, QLOCK(tq));
8223 if (events & POLLWRNORM) {
8224 queue_t *sqp;

8226 if (tq->q_flag & QFULL)
8227 /* ensure backq svc procedure runs */
8228 tq->q_flag |= QWANTW;
8229 else if ((sqp = stp->sd_struiowrq) != NULL) {
8230 /* Check sync stream barrier write q */
8231 mutex_exit(QLOCK(tq));
8232 polllock(&stp->sd_pollist, QLOCK(sqp));
8233 if (sqp->q_flag & QFULL)

new/usr/src/uts/common/os/streamio.c 79

8234 /* ensure pollwakeup() is done */
8235 sqp->q_flag |= QWANTWSYNC;
8236 else
8237 retevents |= POLLOUT;
8238 /* More write events to process ??? */
8239 if (! (events & POLLWRBAND)) {
8240 mutex_exit(QLOCK(sqp));
8241 releasestr(qp);
8242 goto chkrd;
8243 }
8244 mutex_exit(QLOCK(sqp));
8245 polllock(&stp->sd_pollist, QLOCK(tq));
8246 } else
8247 retevents |= POLLOUT;
8248 }
8249 if (events & POLLWRBAND) {
8250 qbp = tq->q_bandp;
8251 if (qbp) {
8252 while (qbp) {
8253 if (qbp->qb_flag & QB_FULL)
8254 qbp->qb_flag |= QB_WANTW;
8255 else
8256 retevents |= POLLWRBAND;
8257 qbp = qbp->qb_next;
8258 }
8259 } else {
8260 retevents |= POLLWRBAND;
8261 }
8262 }
8263 mutex_exit(QLOCK(tq));
8264 releasestr(qp);
8265 }
8266 chkrd:
8267 if (sd_flags & STRPRI) {
8268 retevents |= (events & POLLPRI);
8269 } else if (events & (POLLRDNORM | POLLRDBAND | POLLIN)) {
8270 queue_t *qp = _RD(stp->sd_wrq);
8271 int normevents = (events & (POLLIN | POLLRDNORM));

8273 /*
8274 * Note: Need to do polllock() here since ps_lock may be
8275 * held. See bug 4191544.
8276 */
8277 polllock(&stp->sd_pollist, &stp->sd_lock);
8278 headlocked = 1;
8279 mp = qp->q_first;
8280 while (mp) {
8281 /*
8282 * For POLLRDDATA we scan b_cont and b_next until we
8283 * find an M_DATA.
8284 */
8285 if ((events & POLLRDDATA) &&
8286 mp->b_datap->db_type != M_DATA) {
8287 mblk_t *nmp = mp->b_cont;

8289 while (nmp != NULL &&
8290 nmp->b_datap->db_type != M_DATA)
8291 nmp = nmp->b_cont;
8292 if (nmp == NULL) {
8293 mp = mp->b_next;
8294 continue;
8295 }
8296 }
8297 if (mp->b_band == 0)
8298 retevents |= normevents;
8299 else

new/usr/src/uts/common/os/streamio.c 80

8300 retevents |= (events & (POLLIN | POLLRDBAND));
8301 break;
8302 }
8303 if (! (retevents & normevents) &&
8304 (stp->sd_wakeq & RSLEEP)) {
8305 /*
8306 * Sync stream barrier read queue has data.
8307 */
8308 retevents |= normevents;
8309 }
8310 /* Treat eof as normal data */
8311 if (sd_flags & STREOF)
8312 retevents |= normevents;
8313 }

8315 *reventsp = (short)retevents;
8316 if (retevents) {
8317 if (headlocked)
8318 mutex_exit(&stp->sd_lock);
8319 return (0);
8320 }

8322 /*
8323 * If poll() has not found any events yet, set up event cell
8324 * to wake up the poll if a requested event occurs on this
8325 * stream. Check for collisions with outstanding poll requests.
8326 */
8327 if (!anyyet) {
8328 *phpp = &stp->sd_pollist;
8329 if (headlocked == 0) {
8330 polllock(&stp->sd_pollist, &stp->sd_lock);
8331 headlocked = 1;
8332 }
8333 stp->sd_rput_opt |= SR_POLLIN;
8334 }
8335 if (headlocked)
8336 mutex_exit(&stp->sd_lock);
8337 return (0);
8338 }

8340 /*
8341 * The purpose of putback() is to assure sleeping polls/reads
8342 * are awakened when there are no new messages arriving at the,
8343 * stream head, and a message is placed back on the read queue.
8344 *
8345 * sd_lock must be held when messages are placed back on stream
8346 * head. (getq() holds sd_lock when it removes messages from
8347 * the queue)
8348 */

8350 static void
8351 putback(struct stdata *stp, queue_t *q, mblk_t *bp, int band)
8352 {
8353 mblk_t *qfirst;
8354 ASSERT(MUTEX_HELD(&stp->sd_lock));

8356 /*
8357 * As a result of lock-step ordering around q_lock and sd_lock,
8358 * it’s possible for function calls like putnext() and
8359 * canputnext() to get an inaccurate picture of how much
8360 * data is really being processed at the stream head.
8361 * We only consolidate with existing messages on the queue
8362 * if the length of the message we want to put back is smaller
8363 * than the queue hiwater mark.
8364 */
8365 if ((stp->sd_rput_opt & SR_CONSOL_DATA) &&

new/usr/src/uts/common/os/streamio.c 81

8366 (DB_TYPE(bp) == M_DATA) && ((qfirst = q->q_first) != NULL) &&
8367 (DB_TYPE(qfirst) == M_DATA) &&
8368 ((qfirst->b_flag & (MSGMARK|MSGDELIM)) == 0) &&
8369 ((bp->b_flag & (MSGMARK|MSGDELIM|MSGMARKNEXT)) == 0) &&
8370 (mp_cont_len(bp, NULL) < q->q_hiwat)) {
8371 /*
8372 * We use the same logic as defined in strrput()
8373 * but in reverse as we are putting back onto the
8374 * queue and want to retain byte ordering.
8375 * Consolidate M_DATA messages with M_DATA ONLY.
8376 * strrput() allows the consolidation of M_DATA onto
8377 * M_PROTO | M_PCPROTO but not the other way round.
8378 *
8379 * The consolidation does not take place if the message
8380 * we are returning to the queue is marked with either
8381 * of the marks or the delim flag or if q_first
8382 * is marked with MSGMARK. The MSGMARK check is needed to
8383 * handle the odd semantics of MSGMARK where essentially
8384 * the whole message is to be treated as marked.
8385 * Carry any MSGMARKNEXT and MSGNOTMARKNEXT from q_first
8386 * to the front of the b_cont chain.
8387 */
8388 rmvq_noenab(q, qfirst);

8390 /*
8391 * The first message in the b_cont list
8392 * tracks MSGMARKNEXT and MSGNOTMARKNEXT.
8393 * We need to handle the case where we
8394 * are appending:
8395 *
8396 * 1) a MSGMARKNEXT to a MSGNOTMARKNEXT.
8397 * 2) a MSGMARKNEXT to a plain message.
8398 * 3) a MSGNOTMARKNEXT to a plain message
8399 * 4) a MSGNOTMARKNEXT to a MSGNOTMARKNEXT
8400 * message.
8401 *
8402 * Thus we never append a MSGMARKNEXT or
8403 * MSGNOTMARKNEXT to a MSGMARKNEXT message.
8404 */
8405 if (qfirst->b_flag & MSGMARKNEXT) {
8406 bp->b_flag |= MSGMARKNEXT;
8407 bp->b_flag &= ~MSGNOTMARKNEXT;
8408 qfirst->b_flag &= ~MSGMARKNEXT;
8409 } else if (qfirst->b_flag & MSGNOTMARKNEXT) {
8410 bp->b_flag |= MSGNOTMARKNEXT;
8411 qfirst->b_flag &= ~MSGNOTMARKNEXT;
8412 }

8414 linkb(bp, qfirst);
8415 }
8416 (void) putbq(q, bp);

8418 /*
8419 * A message may have come in when the sd_lock was dropped in the
8420 * calling routine. If this is the case and STR*ATMARK info was
8421 * received, need to move that from the stream head to the q_last
8422 * so that SIOCATMARK can return the proper value.
8423 */
8424 if (stp->sd_flag & (STRATMARK | STRNOTATMARK)) {
8425 unsigned short *flagp = &q->q_last->b_flag;
8426 uint_t b_flag = (uint_t)*flagp;

8428 if (stp->sd_flag & STRATMARK) {
8429 b_flag &= ~MSGNOTMARKNEXT;
8430 b_flag |= MSGMARKNEXT;
8431 stp->sd_flag &= ~STRATMARK;

new/usr/src/uts/common/os/streamio.c 82

8432 } else {
8433 b_flag &= ~MSGMARKNEXT;
8434 b_flag |= MSGNOTMARKNEXT;
8435 stp->sd_flag &= ~STRNOTATMARK;
8436 }
8437 *flagp = (unsigned short) b_flag;
8438 }

8440 #ifdef DEBUG
8441 /*
8442 * Make sure that the flags are not messed up.
8443 */
8444 {
8445 mblk_t *mp;
8446 mp = q->q_last;
8447 while (mp != NULL) {
8448 ASSERT((mp->b_flag & (MSGMARKNEXT|MSGNOTMARKNEXT)) !=
8449 (MSGMARKNEXT|MSGNOTMARKNEXT));
8450 mp = mp->b_cont;
8451 }
8452 }
8453 #endif
8454 if (q->q_first == bp) {
8455 short pollevents;

8457 if (stp->sd_flag & RSLEEP) {
8458 stp->sd_flag &= ~RSLEEP;
8459 cv_broadcast(&q->q_wait);
8460 }
8461 if (stp->sd_flag & STRPRI) {
8462 pollevents = POLLPRI;
8463 } else {
8464 if (band == 0) {
8465 if (!(stp->sd_rput_opt & SR_POLLIN))
8466 return;
8467 stp->sd_rput_opt &= ~SR_POLLIN;
8468 pollevents = POLLIN | POLLRDNORM;
8469 } else {
8470 pollevents = POLLIN | POLLRDBAND;
8471 }
8472 }
8473 mutex_exit(&stp->sd_lock);
8474 pollwakeup(&stp->sd_pollist, pollevents);
8475 mutex_enter(&stp->sd_lock);
8476 }
8477 }

8479 /*
8480 * Return the held vnode attached to the stream head of a
8481 * given queue
8482 * It is the responsibility of the calling routine to ensure
8483 * that the queue does not go away (e.g. pop).
8484 */
8485 vnode_t *
8486 strq2vp(queue_t *qp)
8487 {
8488 vnode_t *vp;
8489 vp = STREAM(qp)->sd_vnode;
8490 ASSERT(vp != NULL);
8491 VN_HOLD(vp);
8492 return (vp);
8493 }

8495 /*
8496 * return the stream head write queue for the given vp
8497 * It is the responsibility of the calling routine to ensure

new/usr/src/uts/common/os/streamio.c 83

8498 * that the stream or vnode do not close.
8499 */
8500 queue_t *
8501 strvp2wq(vnode_t *vp)
8502 {
8503 ASSERT(vp->v_stream != NULL);
8504 return (vp->v_stream->sd_wrq);
8505 }

8507 /*
8508 * pollwakeup stream head
8509 * It is the responsibility of the calling routine to ensure
8510 * that the stream or vnode do not close.
8511 */
8512 void
8513 strpollwakeup(vnode_t *vp, short event)
8514 {
8515 ASSERT(vp->v_stream);
8516 pollwakeup(&vp->v_stream->sd_pollist, event);
8517 }

8519 /*
8520 * Mate the stream heads of two vnodes together. If the two vnodes are the
8521 * same, we just make the write-side point at the read-side -- otherwise,
8522 * we do a full mate. Only works on vnodes associated with streams that are
8523 * still being built and thus have only a stream head.
8524 */
8525 void
8526 strmate(vnode_t *vp1, vnode_t *vp2)
8527 {
8528 queue_t *wrq1 = strvp2wq(vp1);
8529 queue_t *wrq2 = strvp2wq(vp2);

8531 /*
8532 * Verify that there are no modules on the stream yet. We also
8533 * rely on the stream head always having a service procedure to
8534 * avoid tweaking q_nfsrv.
8535 */
8536 ASSERT(wrq1->q_next == NULL && wrq2->q_next == NULL);
8537 ASSERT(wrq1->q_qinfo->qi_srvp != NULL);
8538 ASSERT(wrq2->q_qinfo->qi_srvp != NULL);

8540 /*
8541 * If the queues are the same, just twist; otherwise do a full mate.
8542 */
8543 if (wrq1 == wrq2) {
8544 wrq1->q_next = _RD(wrq1);
8545 } else {
8546 wrq1->q_next = _RD(wrq2);
8547 wrq2->q_next = _RD(wrq1);
8548 STREAM(wrq1)->sd_mate = STREAM(wrq2);
8549 STREAM(wrq1)->sd_flag |= STRMATE;
8550 STREAM(wrq2)->sd_mate = STREAM(wrq1);
8551 STREAM(wrq2)->sd_flag |= STRMATE;
8552 }
8553 }

8555 /*
8556 * XXX will go away when console is correctly fixed.
8557 * Clean up the console PIDS, from previous I_SETSIG,
8558 * called only for cnopen which never calls strclean().
8559 */
8560 void
8561 str_cn_clean(struct vnode *vp)
8562 {
8563 strsig_t *ssp, *pssp, *tssp;

new/usr/src/uts/common/os/streamio.c 84

8564 struct stdata *stp;
8565 struct pid *pidp;
8566 int update = 0;

8568 ASSERT(vp->v_stream);
8569 stp = vp->v_stream;
8570 pssp = NULL;
8571 mutex_enter(&stp->sd_lock);
8572 ssp = stp->sd_siglist;
8573 while (ssp) {
8574 mutex_enter(&pidlock);
8575 pidp = ssp->ss_pidp;
8576 /*
8577 * Get rid of PID if the proc is gone.
8578 */
8579 if (pidp->pid_prinactive) {
8580 tssp = ssp->ss_next;
8581 if (pssp)
8582 pssp->ss_next = tssp;
8583 else
8584 stp->sd_siglist = tssp;
8585 ASSERT(pidp->pid_ref <= 1);
8586 PID_RELE(ssp->ss_pidp);
8587 mutex_exit(&pidlock);
8588 kmem_free(ssp, sizeof (strsig_t));
8589 update = 1;
8590 ssp = tssp;
8591 continue;
8592 } else
8593 mutex_exit(&pidlock);
8594 pssp = ssp;
8595 ssp = ssp->ss_next;
8596 }
8597 if (update) {
8598 stp->sd_sigflags = 0;
8599 for (ssp = stp->sd_siglist; ssp; ssp = ssp->ss_next)
8600 stp->sd_sigflags |= ssp->ss_events;
8601 }
8602 mutex_exit(&stp->sd_lock);
8603 }

8605 /*
8606 * Return B_TRUE if there is data in the message, B_FALSE otherwise.
8607 */
8608 static boolean_t
8609 msghasdata(mblk_t *bp)
8610 {
8611 for (; bp; bp = bp->b_cont)
8612 if (bp->b_datap->db_type == M_DATA) {
8613 ASSERT(bp->b_wptr >= bp->b_rptr);
8614 if (bp->b_wptr > bp->b_rptr)
8615 return (B_TRUE);
8616 }
8617 return (B_FALSE);
8618 }

new/usr/src/uts/common/sys/ptms.h 1

**
 5581 Tue Jan 14 16:17:27 2014
new/usr/src/uts/common/sys/ptms.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 1988, 2010, Oracle and/or its affiliates. All rights reserved.
23 */
24 /* Copyright (c) 1984, 1986, 1987, 1988, 1989 AT&T */
25 /* All Rights Reserved */

28 #ifndef _SYS_PTMS_H
29 #define _SYS_PTMS_H

31 #pragma ident "%Z%%M% %I% %E% SMI"

33 #endif /* ! codereview */
34 #ifdef __cplusplus
35 extern "C" {
36 #endif

38 #ifdef _KERNEL

40 /*
41 * Structures and definitions supporting the pseudo terminal
42 * drivers. This structure is private and should not be used by any
43 * applications.
44 */
45 struct pt_ttys {
46 queue_t *ptm_rdq; /* master’s read queue pointer */
47 queue_t *pts_rdq; /* slave’s read queue pointer */
48 mblk_t *pt_nullmsg; /* 0-bytes message block for pts close */
49 pid_t pt_pid; /* process id (for debugging) */
50 minor_t pt_minor; /* Minor number of this pty */
51 int pt_refcnt; /* reference count for ptm_rdq/pts_rdq uses */
52 ushort_t pt_state; /* state of master/slave pair */
53 kcondvar_t pt_cv; /* condition variable for exclusive access */
54 kmutex_t pt_lock; /* Per-element lock */
55 zoneid_t pt_zoneid; /* Zone membership for this pty */
56 uid_t pt_ruid; /* Real owner of pty */
57 gid_t pt_rgid; /* Real group owner of pty */
58 };

60 /*
61 * pt_state values

new/usr/src/uts/common/sys/ptms.h 2

62 */
63 #define PTLOCK 0x01 /* master/slave pair is locked */
64 #define PTMOPEN 0x02 /* master side is open */
65 #define PTSOPEN 0x04 /* slave side is open */
66 #define PTSTTY 0x08 /* slave side is tty */

68 /*
69 * Multi-threading primitives.
70 * Values of pt_refcnt: -1 if a writer is accessing the struct
71 * 0 if no one is reading or writing
72 * > 0 equals to the number of readers accessing the struct
73 */
74 #define PT_ENTER_READ(p) { \
75 mutex_enter(&(p)->pt_lock); \
76 while ((p)->pt_refcnt < 0) \
77 cv_wait(&((p)->pt_cv), &(p)->pt_lock); \
78 (p)->pt_refcnt++; \
79 mutex_exit(&(p)->pt_lock); \
80 }

82 #define PT_ENTER_WRITE(p) { \
83 mutex_enter(&(p)->pt_lock); \
84 while ((p)->pt_refcnt != 0) \
85 cv_wait(&((p)->pt_cv), &(p)->pt_lock); \
86 (p)->pt_refcnt = -1; \
87 mutex_exit(&(p)->pt_lock); \
88 }

90 #define PT_EXIT_READ(p) { \
91 mutex_enter(&(p)->pt_lock); \
92 ASSERT((p)->pt_refcnt > 0); \
93 if ((--((p)->pt_refcnt)) == 0) \
94 cv_broadcast(&(p)->pt_cv); \
95 mutex_exit(&(p)->pt_lock); \
96 }

98 #define PT_EXIT_WRITE(p) { \
99 mutex_enter(&(p)->pt_lock); \
100 ASSERT((p)->pt_refcnt == -1); \
101 (p)->pt_refcnt = 0; \
102 cv_broadcast(&(p)->pt_cv); \
103 mutex_exit(&(p)->pt_lock); \
104 }

106 /*
107 * ptms_lock and pt_cnt are defined in ptms_conf.c
108 */
109 extern kmutex_t ptms_lock;
110 extern dev_info_t *pts_dip; /* private copy of devinfo ptr */

112 extern void ptms_init(void);
113 extern struct pt_ttys *pt_ttys_alloc(void);
114 extern void ptms_close(struct pt_ttys *, uint_t);
115 extern struct pt_ttys *ptms_minor2ptty(minor_t);
116 extern int ptms_attach_slave(void);
117 extern int ptms_minor_valid(minor_t ptmin, uid_t *uid, gid_t *gid);
118 extern int ptms_minor_exists(minor_t ptmin);
119 extern void ptms_set_owner(minor_t ptmin, uid_t uid, gid_t gid);
120 extern major_t ptms_slave_attached(void);

122 #ifdef DEBUG
123 extern void ptms_log(char *, uint_t);
124 extern void ptms_logp(char *, uintptr_t);
125 #define DDBG(a, b) ptms_log(a, b)
126 #define DDBGP(a, b) ptms_logp(a, b)
127 #else

new/usr/src/uts/common/sys/ptms.h 3

128 #define DDBG(a, b)
129 #define DDBGP(a, b)
130 #endif

132 typedef struct __ptmptsopencb_arg *ptmptsopencb_arg_t;
133 typedef struct ptmptsopencb {
134 boolean_t (*ppocb_func)(ptmptsopencb_arg_t);
135 ptmptsopencb_arg_t ppocb_arg;
136 } ptmptsopencb_t;

138 #endif /* ! codereview */
139 #endif /* _KERNEL */

141 typedef struct pt_own {
142 uid_t pto_ruid;
143 gid_t pto_rgid;
144 } pt_own_t;

146 /*
147 * ioctl commands
148 *
149 * ISPTM: Determines whether the file descriptor is that of an open master
150 * device. Return code of zero indicates that the file descriptor
151 * represents master device.
152 *
153 * UNLKPT: Unlocks the master and slave devices. It returns 0 on success. On
154 * failure, the errno is set to EINVAL indicating that the master
155 * device is not open.
156 *
157 * ZONEPT: Sets the zoneid of the pair of master and slave devices. It
158 * returns 0 upon success. Used to force a pty ’into’ a zone upon
159 * zone entry.
160 *
161 * PT_OWNER: Sets uid and gid for slave device. It returns 0 on success.
162 *
163 */
164 #define ISPTM ((’P’<<8)|1) /* query for master */
165 #define UNLKPT ((’P’<<8)|2) /* unlock master/slave pair */
166 #define PTSSTTY ((’P’<<8)|3) /* set tty flag */
167 #define ZONEPT ((’P’<<8)|4) /* set zone of master/slave pair */
168 #define OWNERPT ((’P’<<8)|5) /* set owner/group for slave device */

170 #ifdef _KERNEL
171 /*
172 * kernel ioctl commands
173 *
174 * PTMPTSOPENCB: Returns a callback function pointer and opaque argument.
175 * The return value of the callback function when it’s invoked
176 * with the opaque argument passed to it will indicate if the
177 * pts slave device is currently open.
178 */
179 #define PTMPTSOPENCB ((’P’<<8)|6) /* check if the slave is open */

181 #endif /* _KERNEL */
182 #endif /* ! codereview */

184 #ifdef __cplusplus
185 }
186 #endif

188 #endif /* _SYS_PTMS_H */

new/usr/src/uts/common/sys/termios.h 1

**
 16793 Tue Jan 14 16:17:27 2014
new/usr/src/uts/common/sys/termios.h
Bring back LX zones.
**
______unchanged_portion_omitted_

94 /*
95 * POSIX termios functions
96 * These functions get mapped into ioctls.
97 */

99 #ifndef _KERNEL

101 #if defined(__STDC__)

103 extern speed_t cfgetospeed(const struct termios *);
104 extern int cfsetospeed(struct termios *, speed_t);
105 extern speed_t cfgetispeed(const struct termios *);
106 extern int cfsetispeed(struct termios *, speed_t);
107 extern int tcgetattr(int, struct termios *);
108 extern int tcsetattr(int, int, const struct termios *);
109 extern int tcsendbreak(int, int);
110 extern int tcdrain(int);
111 extern int tcflush(int, int);
112 extern int tcflow(int, int);

114 #else

116 extern speed_t cfgetospeed();
117 extern int cfsetospeed();
118 extern speed_t cfgetispeed();
119 extern int cfsetispeed();
120 extern int tcgetattr();
121 extern int tcsetattr();
122 extern int tcsendbreak();
123 extern int tcdrain();
124 extern int tcflush();
125 extern int tcflow();

127 #endif /* __STDC__ */

129 #if !defined(__XOPEN_OR_POSIX) || defined(_XPG4_2) || defined(__EXTENSIONS__)

131 #if defined(__STDC__)
132 extern pid_t tcgetsid(int);
133 #else
134 extern pid_t tcgetsid();
135 #endif /* __STDC__ */

137 #endif /* !defined(__XOPEN_OR_POSIX) || defined(_XPG4_2) ... */

139 #endif

141 /* control characters */
142 #define VINTR 0
143 #define VQUIT 1
144 #define VERASE 2
145 #define VKILL 3
146 #define VEOF 4
147 #define VEOL 5
148 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
149 #define VEOL2 6
150 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */
151 #define VMIN 4
152 #define VTIME 5

new/usr/src/uts/common/sys/termios.h 2

153 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
154 #define VSWTCH 7
155 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */
156 #define VSTART 8
157 #define VSTOP 9
158 #define VSUSP 10
159 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
160 #define VDSUSP 11
161 #define VREPRINT 12
162 #define VDISCARD 13
163 #define VWERASE 14
164 #define VLNEXT 15
165 /* 16 thru 19 reserved for future use */

167 /*
168 * control characters form Xenix termio.h
169 */
170 #define VCEOF NCC /* RESERVED true EOF char (V7 compatability) */
171 #define VCEOL (NCC + 1) /* RESERVED true EOL char */

173 #define CNUL 0
174 #define CDEL 0177

176 /* S5 default control chars */
177 /* CINTR, CERASE and CKILL modified to SunOS traditional values */
178 #define CESC ’\\’
179 #define CINTR CTRL(’c’)
180 #define CQUIT 034 /* FS, cntl | */
181 #define CERASE 0177 /* DEL */
182 #define CKILL CTRL(’u’)
183 #define CEOT 04
184 #define CEOL 0
185 #define CEOL2 0
186 #define CEOF 04 /* cntl d */
187 #define CSTART 021 /* cntl q */
188 #define CSTOP 023 /* cntl s */
189 #define CSWTCH 032 /* cntl z */
190 #define CNSWTCH 0
191 #define CSUSP CTRL(’z’)
192 #define CDSUSP CTRL(’y’)
193 #define CRPRNT CTRL(’r’)
194 #define CFLUSH CTRL(’o’)
195 #define CWERASE CTRL(’w’)
196 #define CLNEXT CTRL(’v’)
197 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

200 /* input modes */
201 #define IGNBRK 0000001
202 #define BRKINT 0000002
203 #define IGNPAR 0000004
204 #define PARMRK 0000010
205 #define INPCK 0000020
206 #define ISTRIP 0000040
207 #define INLCR 0000100
208 #define IGNCR 0000200
209 #define ICRNL 0000400
210 #if !defined(_POSIX_C_SOURCE) || \
211 (defined(_XOPEN_SOURCE) && !defined(_XPG6)) || \
212 defined(__EXTENSIONS__)
213 #define IUCLC 0001000
214 #endif /* !defined(_POSIX_C_SOURCE) || defined(_XOPEN_SOURCE)... */
215 #define IXON 0002000
216 #if !defined(_POSIX_C_SOURCE) || defined(_XOPEN_SOURCE) || \
217 defined(__EXTENSIONS__)
218 #define IXANY 0004000

new/usr/src/uts/common/sys/termios.h 3

219 #endif /* !defined(_POSIX_C_SOURCE) || defined(_XOPEN_SOURCE)... */
220 #define IXOFF 0010000
221 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
222 #define IMAXBEL 0020000
223 #define DOSMODE 0100000 /* for 386 compatibility */
224 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

226 /* output modes */
227 #define OPOST 0000001
228 #if !defined(_POSIX_C_SOURCE) || defined(_XOPEN_SOURCE) || \
229 defined(__EXTENSIONS__)
230 #if !defined(_XPG6) || defined(__EXTENSIONS__)
231 #define OLCUC 0000002
232 #endif
233 #define ONLCR 0000004
234 #define OCRNL 0000010
235 #define ONOCR 0000020
236 #define ONLRET 0000040
237 #define OFILL 0000100
238 #define OFDEL 0000200
239 #define NLDLY 0000400
240 #define NL0 0
241 #define NL1 0000400
242 #define CRDLY 0003000
243 #define CR0 0
244 #define CR1 0001000
245 #define CR2 0002000
246 #define CR3 0003000
247 #define TABDLY 0014000
248 #define TAB0 0
249 #define TAB1 0004000
250 #define TAB2 0010000
251 #define TAB3 0014000
252 #endif /* !defined(_POSIX_C_SOURCE) || defined(_XOPEN_SOURCE)... */
253 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
254 #define XTABS 0014000
255 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */
256 #if !defined(_POSIX_C_SOURCE) || defined(_XOPEN_SOURCE) || \
257 defined(__EXTENSIONS__)
258 #define BSDLY 0020000
259 #define BS0 0
260 #define BS1 0020000
261 #define VTDLY 0040000
262 #define VT0 0
263 #define VT1 0040000
264 #define FFDLY 0100000
265 #define FF0 0
266 #define FF1 0100000
267 #endif /* !defined(_POSIX_C_SOURCE) || defined(_XOPEN_SOURCE)... */
268 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
269 #define PAGEOUT 0200000
270 #define WRAP 0400000

272 /* control modes */
273 #define CBAUD 0000017
274 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */
275 #define CSIZE 0000060
276 #define CS5 0
277 #define CS6 0000020
278 #define CS7 0000040
279 #define CS8 0000060
280 #define CSTOPB 0000100
281 #define CREAD 0000200
282 #define PARENB 0000400
283 #define PARODD 0001000
284 #define HUPCL 0002000

new/usr/src/uts/common/sys/termios.h 4

285 #define CLOCAL 0004000
286 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
287 #define RCV1EN 0010000
288 #define XMT1EN 0020000
289 #define LOBLK 0040000
290 #define XCLUDE 0100000 /* *V7* exclusive use coming fron XENIX */
291 #define CRTSXOFF 010000000000
292 #define CRTSCTS 020000000000
293 #define CIBAUD 03600000
294 #define PAREXT 04000000
295 #define CBAUDEXT 010000000
296 #define CIBAUDEXT 020000000

298 /*
299 * 4.4BSD hardware flow control flags
300 */
301 #define CRTS_IFLOW 010000000000
302 #define CCTS_OFLOW 020000000000

304 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

306 /* line discipline 0 modes */
307 #define ISIG 0000001
308 #define ICANON 0000002
309 #if !defined(_POSIX_C_SOURCE) || \
310 (defined(_XOPEN_SOURCE) && !defined(_XPG6)) || \
311 defined(__EXTENSIONS__)
312 #define XCASE 0000004
313 #endif /* !defined(_POSIX_C_SOURCE) || defined(_XOPEN_SOURCE)... */
314 #define ECHO 0000010
315 #define ECHOE 0000020
316 #define ECHOK 0000040
317 #define ECHONL 0000100
318 #define NOFLSH 0000200
319 #define TOSTOP 0000400
320 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
321 #define ECHOCTL 0001000
322 #define ECHOPRT 0002000
323 #define ECHOKE 0004000
324 #define DEFECHO 0010000
325 #define FLUSHO 0020000
326 #define PENDIN 0040000
327 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

329 #define IEXTEN 0100000 /* POSIX flag - enable POSIX extensions */
330 #define _TIOC (’T’<<8)

332 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)

334 #define TIOC _TIOC

336 #define TCGETA (_TIOC|1)
337 #define TCSETA (_TIOC|2)
338 #define TCSETAW (_TIOC|3)
339 #define TCSETAF (_TIOC|4)
340 #define TCSBRK (_TIOC|5)
341 #define TCXONC (_TIOC|6)
342 #define TCFLSH (_TIOC|7)

344 /* Slots reserved for 386/XENIX compatibility - keyboard control */

346 #define TIOCKBON (_TIOC|8)
347 #define TIOCKBOF (_TIOC|9)
348 #define KBENABLED (_TIOC|10)

350 #ifndef IOCTYPE

new/usr/src/uts/common/sys/termios.h 5

351 #define IOCTYPE 0xff00
352 #endif

354 #define TCDSET (_TIOC|32)
355 #define RTS_TOG (_TIOC|33) /* 386 - "RTS" toggle define 8A1 protocol */

357 #define TIOCGWINSZ (_TIOC|104)
358 #define TIOCSWINSZ (_TIOC|103)

360 /*
361 * Softcarrier ioctls
362 */
363 #define TIOCGSOFTCAR (_TIOC|105)
364 #define TIOCSSOFTCAR (_TIOC|106)

367 /* termios ioctls */

369 #define TCGETS (_TIOC|13)
370 #define TCSETS (_TIOC|14)
371 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */
372 #define TCSANOW (_TIOC|14) /* same as TCSETS */
373 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
374 #define TCSETSW (_TIOC|15)
375 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */
376 #define TCSADRAIN (_TIOC|15) /* same as TCSETSW */
377 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
378 #define TCSETSF (_TIOC|16)

380 /*
381 * linux terminal ioctls we need to be aware of
382 */
383 #define TIOCSETLD (_TIOC|123) /* set line discipline parms */
384 #define TIOCGETLD (_TIOC|124) /* get line discipline parms */

386 /*
387 * The VMIN and VTIME and solaris overlap with VEOF and VEOL - This is
388 * perfectly legal except, linux expects them to be separate. So we keep
389 * them separately.
390 */
391 struct lx_cc {
392 unsigned char veof; /* veof value */
393 unsigned char veol; /* veol value */
394 unsigned char vmin; /* vmin value */
395 unsigned char vtime; /* vtime value */
396 };

398 #endif /* ! codereview */
399 /*
400 * NTP PPS ioctls
401 */
402 #define TIOCGPPS (_TIOC|125)
403 #define TIOCSPPS (_TIOC|126)
404 #define TIOCGPPSEV (_TIOC|127)

406 /* Argument filled in by TIOCGPPSEV */
407 struct ppsclockev {
408 struct timeval tv;
409 uint_t serial;
410 };

412 #if defined(_SYSCALL32)
413 struct ppsclockev32 {
414 struct timeval32 tv;
415 uint32_t serial;
416 };

new/usr/src/uts/common/sys/termios.h 6

417 #endif /* _SYSCALL32 */

419 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

421 #define TCSAFLUSH (_TIOC|16) /* same as TCSETSF */

423 /* termios option flags */

425 #define TCIFLUSH 0 /* flush data received but not read */
426 #define TCOFLUSH 1 /* flush data written but not transmitted */
427 #define TCIOFLUSH 2 /* flush both data both input and output queues */

429 #define TCOOFF 0 /* suspend output */
430 #define TCOON 1 /* restart suspended output */
431 #define TCIOFF 2 /* suspend input */
432 #define TCION 3 /* restart suspended input */

434 /* TIOC ioctls for BSD, ptys, job control and modem control */

436 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
437 #define tIOC (’t’<<8)
438 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

440 /* Slots for 386/XENIX compatibility */
441 /* BSD includes these ioctls in ttold.h */

443 #ifndef _SYS_TTOLD_H

445 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
446 #define TIOCGETD (tIOC|0)
447 #define TIOCSETD (tIOC|1)
448 #define TIOCHPCL (tIOC|2)
449 #define TIOCGETP (tIOC|8)
450 #define TIOCSETP (tIOC|9)
451 #define TIOCSETN (tIOC|10)
452 #define TIOCEXCL (tIOC|13)
453 #define TIOCNXCL (tIOC|14)
454 #define TIOCFLUSH (tIOC|16)
455 #define TIOCSETC (tIOC|17)
456 #define TIOCGETC (tIOC|18)
457 /*
458 * BSD ioctls that are not the same as XENIX are included here.
459 * There are also some relevant ioctls from SUN/BSD sys/ttycom.h
460 * BSD pty ioctls like TIOCPKT are not supported in SVR4.
461 */

463 #define TIOCLBIS (tIOC|127) /* bis local mode bits */
464 #define TIOCLBIC (tIOC|126) /* bic local mode bits */
465 #define TIOCLSET (tIOC|125) /* set entire local mode word */
466 #define TIOCLGET (tIOC|124) /* get local modes */
467 #define TIOCSBRK (tIOC|123) /* set break bit */
468 #define TIOCCBRK (tIOC|122) /* clear break bit */
469 #define TIOCSDTR (tIOC|121) /* set data terminal ready */
470 #define TIOCCDTR (tIOC|120) /* clear data terminal ready */
471 #define TIOCSLTC (tIOC|117) /* set local special chars */
472 #define TIOCGLTC (tIOC|116) /* get local special chars */
473 #define TIOCOUTQ (tIOC|115) /* driver output queue size */
474 #define TIOCNOTTY (tIOC|113) /* void tty association */
475 #define TIOCSCTTY (tIOC|132) /* get a ctty */
476 #define TIOCSTOP (tIOC|111) /* stop output, like ^S */
477 #define TIOCSTART (tIOC|110) /* start output, like ^Q */
478 #define TIOCSILOOP (tIOC|109) /* private to Sun; do not use */
479 #define TIOCCILOOP (tIOC|108) /* private to Sun; do not use */

481 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

new/usr/src/uts/common/sys/termios.h 7

483 #endif /* end _SYS_TTOLD_H */

485 /* POSIX job control ioctls */

487 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
488 #define TIOCGPGRP (tIOC|20) /* get pgrp of tty */
489 #define TIOCSPGRP (tIOC|21) /* set pgrp of tty */
490 #define TIOCGSID (tIOC|22) /* get session id on ctty */

492 /* Miscellaneous */
493 #define TIOCSTI (tIOC|23) /* simulate terminal input */

495 /* Modem control */
496 #define TIOCMSET (tIOC|26) /* set all modem bits */
497 #define TIOCMBIS (tIOC|27) /* bis modem bits */
498 #define TIOCMBIC (tIOC|28) /* bic modem bits */
499 #define TIOCMGET (tIOC|29) /* get all modem bits */
500 #define TIOCM_LE 0001 /* line enable */
501 #define TIOCM_DTR 0002 /* data terminal ready */
502 #define TIOCM_RTS 0004 /* request to send */
503 #define TIOCM_ST 0010 /* secondary transmit */
504 #define TIOCM_SR 0020 /* secondary receive */
505 #define TIOCM_CTS 0040 /* clear to send */
506 #define TIOCM_CAR 0100 /* carrier detect */
507 #define TIOCM_CD TIOCM_CAR
508 #define TIOCM_RNG 0200 /* ring */
509 #define TIOCM_RI TIOCM_RNG
510 #define TIOCM_DSR 0400 /* data set ready */

512 /* pseudo-tty */

514 #define TIOCREMOTE (tIOC|30) /* remote input editing */
515 #define TIOCSIGNAL (tIOC|31) /* pty: send signal to slave */

518 /* Some more 386 xenix stuff */

520 #define LDIOC (’D’<<8)

522 #define LDOPEN (LDIOC|0)
523 #define LDCLOSE (LDIOC|1)
524 #define LDCHG (LDIOC|2)
525 #define LDGETT (LDIOC|8)
526 #define LDSETT (LDIOC|9)

528 /* Slots for 386 compatibility */

530 #define LDSMAP (LDIOC|110)
531 #define LDGMAP (LDIOC|111)
532 #define LDNMAP (LDIOC|112)
533 #define LDEMAP (LDIOC|113)
534 #define LDDMAP (LDIOC|114)

536 /*
537 * These are retained for 386/XENIX compatibility.
538 */

540 #define DIOC (’d’<<8)
541 #define DIOCGETP (DIOC|8) /* V7 */
542 #define DIOCSETP (DIOC|9) /* V7 */

544 /*
545 * Returns a non-zero value if there
546 * are characters in the input queue.
547 *
548 * XXX - somebody is confused here. V7 had no such "ioctl", although XENIX may

new/usr/src/uts/common/sys/termios.h 8

549 * have added it; 4BSD had FIONREAD, which returned the number of characters
550 * waiting, and was supposed to work on all descriptors (i.e., every driver
551 * should make a stab at implementing it).
552 */
553 #define FIORDCHK ((’f’<<8)|3) /* V7 */
554 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

556 /*
557 * Speeds
558 */
559 #define B0 0
560 #define B50 1
561 #define B75 2
562 #define B110 3
563 #define B134 4
564 #define B150 5
565 #define B200 6
566 #define B300 7
567 #define B600 8
568 #define B1200 9
569 #define B1800 10
570 #define B2400 11
571 #define B4800 12
572 #define B9600 13
573 #define B19200 14
574 #define B38400 15
575 #define B57600 16
576 #define B76800 17
577 #define B115200 18
578 #define B153600 19
579 #define B230400 20
580 #define B307200 21
581 #define B460800 22
582 #define B921600 23

584 #ifndef _SYS_TTOLD_H

586 #if !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__)
587 /* Windowing structure to support JWINSIZE/TIOCSWINSZ/TIOCGWINSZ */
588 struct winsize {
589 unsigned short ws_row; /* rows, in characters */
590 unsigned short ws_col; /* columns, in character */
591 unsigned short ws_xpixel; /* horizontal size, pixels */
592 unsigned short ws_ypixel; /* vertical size, pixels */
593 };
594 #endif /* !defined(__XOPEN_OR_POSIX) || defined(__EXTENSIONS__) */

596 #endif /* end _SYS_TTOLD_H */

598 #ifdef __cplusplus
599 }
600 #endif

602 #endif /* _SYS_TERMIOS_H */

new/usr/src/uts/i86pc/ml/syscall_asm.s 1

**
 21021 Tue Jan 14 16:17:27 2014
new/usr/src/uts/i86pc/ml/syscall_asm.s
Bring back LX zones.
**
______unchanged_portion_omitted_
634 #endif /* __lint */

636 #if defined(__lint)
637 /*
638 * System call via an int80. This entry point is only used by the Linux
639 * application environment. Unlike the sysenter path, there is no default
640 * action to take if no callback is registered for this process.
641 */
642 void
643 sys_int80()
644 {}

646 #else /* __lint */

648 ENTRY_NP(brand_sys_int80)
649 BRAND_CALLBACK(BRAND_CB_INT80)

651 ALTENTRY(sys_int80)
652 /*
653 * We hit an int80, but this process isn’t of a brand with an int80
654 * handler. Bad process! Make it look as if the INT failed.
655 * Modify %eip to point before the INT, push the expected error
656 * code and fake a GP fault.
657 *
658 */
659 subl $2, (%esp) /* int insn 2-bytes */
660 pushl $_CONST(_MUL(T_INT80, GATE_DESC_SIZE) + 2)
661 jmp gptrap / GP fault
662 SET_SIZE(sys_int80)
663 SET_SIZE(brand_sys_int80)
664 #endif /* ! codereview */

666 /*
667 * Declare a uintptr_t which covers the entire pc range of syscall
668 * handlers for the stack walkers that need this.
669 */
670 .align CPTRSIZE
671 .globl _allsyscalls_size
672 .type _allsyscalls_size, @object
673 _allsyscalls_size:
674 .NWORD . - _allsyscalls
675 SET_SIZE(_allsyscalls_size)

677 #endif /* __lint */

679 /*
680 * These are the thread context handlers for lwps using sysenter/sysexit.
681 */

683 #if defined(__lint)

685 /*ARGSUSED*/
686 void
687 sep_save(void *ksp)
688 {}

690 /*ARGSUSED*/
691 void
692 sep_restore(void *ksp)
693 {}

new/usr/src/uts/i86pc/ml/syscall_asm.s 2

695 #else /* __lint */

697 /*
698 * setting this value to zero as we switch away causes the
699 * stack-pointer-on-sysenter to be NULL, ensuring that we
700 * don’t silently corrupt another (preempted) thread stack
701 * when running an lwp that (somehow) didn’t get sep_restore’d
702 */
703 ENTRY_NP(sep_save)
704 xorl %edx, %edx
705 xorl %eax, %eax
706 movl $MSR_INTC_SEP_ESP, %ecx
707 wrmsr
708 ret
709 SET_SIZE(sep_save)

711 /*
712 * Update the kernel stack pointer as we resume onto this cpu.
713 */
714 ENTRY_NP(sep_restore)
715 movl 4(%esp), %eax /* per-lwp kernel sp */
716 xorl %edx, %edx
717 movl $MSR_INTC_SEP_ESP, %ecx
718 wrmsr
719 ret
720 SET_SIZE(sep_restore)

722 #endif /* __lint */

724 /*
725 * Call syscall(). Called from trap() on watchpoint at lcall 0,7
726 */

728 #if defined(__lint)

730 void
731 watch_syscall(void)
732 {}

734 #else /* __lint */

736 ENTRY_NP(watch_syscall)
737 CLI(%eax)
738 movl %gs:CPU_THREAD, %ebx
739 movl T_STACK(%ebx), %esp / switch to the thread stack
740 movl REGOFF_EAX(%esp), %eax / recover original syscall#
741 jmp _watch_do_syscall
742 SET_SIZE(watch_syscall)

744 #endif /* __lint */

new/usr/src/uts/i86pc/ml/syscall_asm_amd64.s 1

**
 38450 Tue Jan 14 16:17:28 2014
new/usr/src/uts/i86pc/ml/syscall_asm_amd64.s
Bring back LX zones.
**
______unchanged_portion_omitted_

1161 #endif /* __lint */
1162
1163 #if defined(__lint)
1164 /*
1165 * System call via an int80. This entry point is only used by the Linux
1166 * application environment. Unlike the other entry points, there is no
1167 * default action to take if no callback is registered for this process.
1168 */
1169 void
1170 sys_int80()
1171 {}

1173 #else /* __lint */

1175 ENTRY_NP(brand_sys_int80)
1176 SWAPGS /* kernel gsbase */
1177 XPV_TRAP_POP
1178 BRAND_CALLBACK(BRAND_CB_INT80, BRAND_URET_FROM_INTR_STACK())
1179 SWAPGS /* user gsbase */
1180 jmp nopop_int80

1182 ENTRY_NP(sys_int80)
1183 /*
1184 * We hit an int80, but this process isn’t of a brand with an int80
1185 * handler. Bad process! Make it look as if the INT failed.
1186 * Modify %rip to point before the INT, push the expected error
1187 * code and fake a GP fault. Note on 64-bit hypervisor we need
1188 * to undo the XPV_TRAP_POP and push rcx and r11 back on the stack
1189 * because gptrap will pop them again with its own XPV_TRAP_POP.
1190 */
1191 XPV_TRAP_POP
1192 nopop_int80:
1193 subq $2, (%rsp) /* int insn 2-bytes */
1194 pushq $_CONST(_MUL(T_INT80, GATE_DESC_SIZE) + 2)
1195 #if defined(__xpv)
1196 push %r11
1197 push %rcx
1198 #endif
1199 jmp gptrap / GP fault
1200 SET_SIZE(sys_int80)
1201 SET_SIZE(brand_sys_int80)
1202 #endif /* __lint */

1204 #endif /* ! codereview */

1206 /*
1207 * This is the destination of the "int $T_SYSCALLINT" interrupt gate, used by
1208 * the generic i386 libc to do system calls. We do a small amount of setup
1209 * before jumping into the existing sys_syscall32 path.
1210 */
1211 #if defined(__lint)

1213 /*ARGSUSED*/
1214 void
1215 sys_syscall_int()
1216 {}

1218 #else /* __lint */

new/usr/src/uts/i86pc/ml/syscall_asm_amd64.s 2

1220 ENTRY_NP(brand_sys_syscall_int)
1221 SWAPGS /* kernel gsbase */
1222 XPV_TRAP_POP
1223 BRAND_CALLBACK(BRAND_CB_INT91, BRAND_URET_FROM_INTR_STACK())
1224 jmp nopop_syscall_int

1226 ALTENTRY(sys_syscall_int)
1227 SWAPGS /* kernel gsbase */
1228 XPV_TRAP_POP

1230 nopop_syscall_int:
1231 movq %gs:CPU_THREAD, %r15
1232 movq T_STACK(%r15), %rsp
1233 movl %eax, %eax
1234 /*
1235 * Set t_post_sys on this thread to force ourselves out via the slow
1236 * path. It might be possible at some later date to optimize this out
1237 * and use a faster return mechanism.
1238 */
1239 movb $1, T_POST_SYS(%r15)
1240 CLEAN_CS
1241 jmp _syscall32_save
1242 /*
1243 * There should be no instructions between this label and SWAPGS/IRET
1244 * or we could end up breaking branded zone support. See the usage of
1245 * this label in lx_brand_int80_callback and sn1_brand_int91_callback
1246 * for examples.
1247 */
1248 ALTENTRY(sys_sysint_swapgs_iret)
1249 SWAPGS /* user gsbase */
1250 IRET
1251 /*NOTREACHED*/
1252 SET_SIZE(sys_sysint_swapgs_iret)
1253 SET_SIZE(sys_syscall_int)
1254 SET_SIZE(brand_sys_syscall_int)

1256 #endif /* __lint */
1257
1258 /*
1259 * Legacy 32-bit applications and old libc implementations do lcalls;
1260 * we should never get here because the LDT entry containing the syscall
1261 * segment descriptor has the "segment present" bit cleared, which means
1262 * we end up processing those system calls in trap() via a not-present trap.
1263 *
1264 * We do it this way because a call gate unhelpfully does -nothing- to the
1265 * interrupt flag bit, so an interrupt can run us just after the lcall
1266 * completes, but just before the swapgs takes effect. Thus the INTR_PUSH and
1267 * INTR_POP paths would have to be slightly more complex to dance around
1268 * this problem, and end up depending explicitly on the first
1269 * instruction of this handler being either swapgs or cli.
1270 */

1272 #if defined(__lint)

1274 /*ARGSUSED*/
1275 void
1276 sys_lcall32()
1277 {}

1279 #else /* __lint */

1281 ENTRY_NP(sys_lcall32)
1282 SWAPGS /* kernel gsbase */
1283 pushq $0
1284 pushq %rbp
1285 movq %rsp, %rbp

new/usr/src/uts/i86pc/ml/syscall_asm_amd64.s 3

1286 leaq __lcall_panic_str(%rip), %rdi
1287 xorl %eax, %eax
1288 call panic
1289 SET_SIZE(sys_lcall32)

1291 __lcall_panic_str:
1292 .string "sys_lcall32: shouldn’t be here!"

1294 /*
1295 * Declare a uintptr_t which covers the entire pc range of syscall
1296 * handlers for the stack walkers that need this.
1297 */
1298 .align CPTRSIZE
1299 .globl _allsyscalls_size
1300 .type _allsyscalls_size, @object
1301 _allsyscalls_size:
1302 .NWORD . - _allsyscalls
1303 SET_SIZE(_allsyscalls_size)

1305 #endif /* __lint */

1307 /*
1308 * These are the thread context handlers for lwps using sysenter/sysexit.
1309 */

1311 #if defined(__lint)

1313 /*ARGSUSED*/
1314 void
1315 sep_save(void *ksp)
1316 {}

1318 /*ARGSUSED*/
1319 void
1320 sep_restore(void *ksp)
1321 {}

1323 #else /* __lint */

1325 /*
1326 * setting this value to zero as we switch away causes the
1327 * stack-pointer-on-sysenter to be NULL, ensuring that we
1328 * don’t silently corrupt another (preempted) thread stack
1329 * when running an lwp that (somehow) didn’t get sep_restore’d
1330 */
1331 ENTRY_NP(sep_save)
1332 xorl %edx, %edx
1333 xorl %eax, %eax
1334 movl $MSR_INTC_SEP_ESP, %ecx
1335 wrmsr
1336 ret
1337 SET_SIZE(sep_save)

1339 /*
1340 * Update the kernel stack pointer as we resume onto this cpu.
1341 */
1342 ENTRY_NP(sep_restore)
1343 movq %rdi, %rdx
1344 shrq $32, %rdx
1345 movl %edi, %eax
1346 movl $MSR_INTC_SEP_ESP, %ecx
1347 wrmsr
1348 ret
1349 SET_SIZE(sep_restore)

1351 #endif /* __lint */

new/usr/src/uts/i86pc/sys/apic.h 1

**
 27569 Tue Jan 14 16:17:28 2014
new/usr/src/uts/i86pc/sys/apic.h
Bring back LX zones.
**
______unchanged_portion_omitted_

294 /*
295 * intr_type definitions
296 */
297 #define IO_INTR_INT 0x00
298 #define IO_INTR_NMI 0x01
299 #define IO_INTR_SMI 0x02
300 #define IO_INTR_EXTINT 0x03

302 /*
303 * destination APIC ID
304 */
305 #define INTR_ALL_APIC 0xff

308 /* local vector table */
309 #define AV_MASK 0x10000

311 /* interrupt command register 32-63 */
312 #define AV_TOALL 0x7fffffff
313 #define AV_HIGH_ORDER 0x40000000
314 #define AV_IM_OFF 0x40000000

316 /* interrupt command register 0-31 */
317 #define AV_DELIV_MODE 0x700

319 #define AV_FIXED 0x000
320 #define AV_LOPRI 0x100
321 #define AV_SMI 0x200
322 #define AV_REMOTE 0x300
323 #define AV_NMI 0x400
324 #define AV_RESET 0x500
325 #define AV_STARTUP 0x600
326 #define AV_EXTINT 0x700

328 #define AV_PDEST 0x000
329 #define AV_LDEST 0x800

331 /* IO & Local APIC Bit Definitions */
332 #define RDT_VECTOR(x) ((uchar_t)((x) & 0xFF))
333 #define AV_PENDING 0x1000
334 #define AV_ACTIVE_LOW 0x2000 /* only for integrated APIC */
335 #define AV_REMOTE_IRR 0x4000 /* IOAPIC RDT-specific */
336 #define AV_LEVEL 0x8000
337 #define AV_DEASSERT AV_LEVEL
338 #define AV_ASSERT 0xc000

340 #define AV_READ_PENDING 0x10000
341 #define AV_REMOTE_STATUS 0x20000 /* 1 = valid, 0 = invalid */

343 #define AV_SH_SELF 0x40000 /* Short hand for self */
344 #define AV_SH_ALL_INCSELF 0x80000 /* All processors */
345 #define AV_SH_ALL_EXCSELF 0xc0000 /* All excluding self */
346 /* spurious interrupt vector register */
347 #define AV_UNIT_ENABLE 0x100

349 #define APIC_MAXVAL 0xffffffffUL
350 #define APIC_TIME_MIN 0x5000
351 #define APIC_TIME_COUNT 0x4000

new/usr/src/uts/i86pc/sys/apic.h 2

353 /*
354 * Range of the low byte value in apic_tick before starting calibration
355 */
356 #define APIC_LB_MIN 0x60
357 #define APIC_LB_MAX 0xe0

359 #define APIC_MAX_VECTOR 255
360 #define APIC_RESV_VECT 0x00
361 #define APIC_RESV_IRQ 0xfe
362 #define APIC_BASE_VECT 0x20 /* This will come in as interrupt 0 */
363 #define APIC_AVAIL_VECTOR (APIC_MAX_VECTOR+1-APIC_BASE_VECT)
364 #define APIC_VECTOR_PER_IPL 0x10 /* # of vectors before PRI changes */
365 #define APIC_VECTOR(ipl) (apic_ipltopri[ipl] | APIC_RESV_VECT)
366 #define APIC_VECTOR_MASK 0x0f
367 #define APIC_HI_PRI_VECTS 2 /* vects reserved for hi pri reqs */
368 #define APIC_IPL_MASK 0xf0
369 #define APIC_IPL_SHIFT 4 /* >> to get ipl part of vector */
370 #define APIC_FIRST_FREE_IRQ 0x10
371 #define APIC_MAX_ISA_IRQ 15
372 #define APIC_IPL0 0x0f /* let IDLE_IPL be the lowest */
373 #define APIC_IDLE_IPL 0x00

375 #define APIC_MASK_ALL 0xf0 /* Mask all interrupts */

377 /* spurious interrupt vector */
378 #define APIC_SPUR_INTR 0xFF

380 /* special or reserve vectors */
381 #define APIC_CHECK_RESERVE_VECTORS(v) \
382 (((v) == T_FASTTRAP) || ((v) == APIC_SPUR_INTR) || \
383 ((v) == T_SYSCALLINT) || ((v) == T_DTRACE_RET) || ((v) == 0x80))
383 ((v) == T_SYSCALLINT) || ((v) == T_DTRACE_RET))

385 /* cmos shutdown code for BIOS */
386 #define BIOS_SHUTDOWN 0x0a

388 /* define the entry types for BIOS information tables as defined in PC+MP */
389 #define APIC_CPU_ENTRY 0
390 #define APIC_BUS_ENTRY 1
391 #define APIC_IO_ENTRY 2
392 #define APIC_IO_INTR_ENTRY 3
393 #define APIC_LOCAL_INTR_ENTRY 4
394 #define APIC_MPTBL_ADDR (639 * 1024)
395 /*
396 * The MP Floating Point structure could be in 1st 1KB of EBDA or last KB
397 * of system base memory or in ROM between 0xF0000 and 0xFFFFF
398 */
399 #define MPFPS_RAM_WIN_LEN 1024
400 #define MPFPS_ROM_WIN_START (uint32_t)0xf0000
401 #define MPFPS_ROM_WIN_LEN 0x10000

403 #define EISA_LEVEL_CNTL 0x4D0

405 /* definitions for apic_irq_table */
406 #define FREE_INDEX (short)-1 /* empty slot */
407 #define RESERVE_INDEX (short)-2 /* ipi, softintr, clkintr */
408 #define ACPI_INDEX (short)-3 /* ACPI */
409 #define MSI_INDEX (short)-4 /* MSI */
410 #define MSIX_INDEX (short)-5 /* MSI-X */
411 #define DEFAULT_INDEX (short)0x7FFF
412 /* biggest positive no. to avoid conflict with actual index */

414 #define APIC_IS_MSI_OR_MSIX_INDEX(index) \
415 ((index) == MSI_INDEX || (index) == MSIX_INDEX)

417 /*

new/usr/src/uts/i86pc/sys/apic.h 3

418 * definitions for MSI Address
419 */
420 #define MSI_ADDR_HDR APIC_LOCAL_ADDR
421 #define MSI_ADDR_DEST_SHIFT 12 /* Destination CPU’s apic id */
422 #define MSI_ADDR_RH_FIXED 0x0 /* Redirection Hint Fixed */
423 #define MSI_ADDR_RH_LOPRI 0x1 /* Redirection Hint Lowest priority */
424 #define MSI_ADDR_RH_SHIFT 3
425 #define MSI_ADDR_DM_PHYSICAL 0x0 /* Physical Destination Mode */
426 #define MSI_ADDR_DM_LOGICAL 0x1 /* Logical Destination Mode */
427 #define MSI_ADDR_DM_SHIFT 2

429 /*
430 * TM is either edge or level.
431 */
432 #define TRIGGER_MODE_EDGE 0x0 /* edge sensitive */
433 #define TRIGGER_MODE_LEVEL 0x1 /* level sensitive */

435 /*
436 * definitions for MSI Data
437 */
438 #define MSI_DATA_DELIVERY_FIXED 0x0 /* Fixed delivery */
439 #define MSI_DATA_DELIVERY_LOPRI 0x1 /* Lowest priority delivery */
440 #define MSI_DATA_DELIVERY_SMI 0x2
441 #define MSI_DATA_DELIVERY_NMI 0x4
442 #define MSI_DATA_DELIVERY_INIT 0x5
443 #define MSI_DATA_DELIVERY_EXTINT 0x7
444 #define MSI_DATA_DELIVERY_SHIFT 8
445 #define MSI_DATA_TM_EDGE TRIGGER_MODE_EDGE
446 #define MSI_DATA_TM_LEVEL TRIGGER_MODE_LEVEL
447 #define MSI_DATA_TM_SHIFT 15
448 #define MSI_DATA_LEVEL_DEASSERT 0x0
449 #define MSI_DATA_LEVEL_ASSERT 0x1 /* Edge always assert */
450 #define MSI_DATA_LEVEL_SHIFT 14

452 /*
453 * use to define each irq setup by the apic
454 */
455 typedef struct apic_irq {
456 short airq_mps_intr_index; /* index into mps interrupt entries */
457 /* table */
458 uchar_t airq_intin_no;
459 uchar_t airq_ioapicindex;
460 dev_info_t *airq_dip; /* device corresponding to this interrupt */
461 /*
462 * IRQ could be shared (in H/W) in which case dip & major will be
463 * for the one that was last added at this level. We cannot keep a
464 * linked list as delspl does not tell us which device has just
465 * been unloaded. For most servers where we are worried about
466 * performance, interrupt should not be shared & should not be
467 * a problem. This does not cause any correctness issue - dip is
468 * used only as an optimisation to avoid going thru all the tables
469 * in translate IRQ (which is always called twice due to brokenness
470 * in the way IPLs are determined for devices). major is used only
471 * to bind interrupts corresponding to the same device on the same
472 * CPU. Not finding major will just cause it to be potentially bound
473 * to another CPU.
474 */
475 major_t airq_major; /* major number corresponding to the device */
476 ushort_t airq_rdt_entry; /* level, polarity & trig mode */
477 uint32_t airq_cpu; /* target CPU, non-reserved IRQ only */
478 uint32_t airq_temp_cpu; /* non-reserved IRQ only, for disable_intr */
479 uchar_t airq_vector; /* Vector chosen for this irq */
480 uchar_t airq_share; /* number of interrupts at this irq */
481 uchar_t airq_share_id; /* id to identify source from irqno */
482 uchar_t airq_ipl; /* The ipl at which this is handled */
483 iflag_t airq_iflag; /* interrupt flag */

new/usr/src/uts/i86pc/sys/apic.h 4

484 uchar_t airq_origirq; /* original irq passed in */
485 uint_t airq_busy; /* How frequently did clock find */
486 /* us in this */
487 struct apic_irq *airq_next; /* chain of intpts sharing a vector */
488 void *airq_intrmap_private; /* intr remap private data */
489 } apic_irq_t;

______unchanged_portion_omitted_

new/usr/src/uts/intel/Makefile 1

**
 4530 Tue Jan 14 16:17:29 2014
new/usr/src/uts/intel/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 # uts/intel/Makefile
22 #
23 # Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 #
25 # This makefile drives the production of all implementation architecture
26 # independent modules for Intel processors.

28 UTSBASE = ..

30 include Makefile.intel

32 LINT_KMODS_X1 = $(LINT_KMODS:nsmb=)
33 LINT_KMODS_X2 = $(LINT_KMODS_X1:smbfs=)
34 LINT_KMODLIBS = $(LINT_KMODS_X2:e1000g=)
35 LINT_LIBS = $(LINT_LIB) $(GEN_LINT_LIB) \
36 $(LINT_KMODLIBS:%=$(LINT_LIB_DIR)/llib-l%.ln)

38 #
39 # dprov is delivered in the SUNWcryptoint package.
40 #
41 DRV_KMODS += dprov

43 #
44 #
45 def := TARGET= def
46 def.prereq := TARGET= def
47 all := TARGET= all
48 all.prereq := TARGET= all
49 install := TARGET= install
50 install.prereq := TARGET= all
51 clean := TARGET= clean
52 clobber := TARGET= clobber
53 lint := TARGET= lint
54 lint.prereq := TARGET= lint
55 modlintlib := TARGET= modlintlib
56 modlist := TARGET= modlist
57 modlist := NO_STATE= -K $$MODSTATE$$$$
58 clean.lint := TARGET= clean.lint
59 check := TARGET= check
60 install_h := TARGET= install_h
61 install_h.prereq := TARGET= install_h

new/usr/src/uts/intel/Makefile 2

63 .KEEP_STATE:

65 .PARALLEL: $(PARALLEL_KMODS) $(XMODS) config $(LINT_DEPS)

67 def all install clean clobber modlist: genassym $(KMODS) $(XMODS) config
67 def all install clean clobber modlist: $(KMODS) $(XMODS) config

69 clobber: clobber.targ

71 #
72 # Privilege constants
73 #
74 # NOTE: The rules for generating priv_const.c file are shared between all
75 # processor architectures and and should be kept in sync. If they are changed in
76 # this file make sure that sparc rules are updated as well.
77 #
78 PRIVS_C = $(SRC)/uts/common/os/priv_const.c

80 $(PRIVS_C): $(PRIVS_AWK) $(PRIVS_DEF)
81 $(NAWK) -f $(PRIVS_AWK) < $(PRIVS_DEF) cfile=$@

83 CLOBBERFILES += $(PRIVS_C)

85 #
86 # Prerequisites
87 #
88 # The uts/Makefile defines build parallelism for x86 platforms such that i86pc,
89 # i86xpv and intel are all built in parallel. This requires building certain
90 # parts before the parallel build can start. The uts/Makefile appends the
91 # ’.prereq’ string to the original target and executes this Makefile to build
92 # any prerequisites needed before the full parallel build can start. After that
93 # make continues with normal targets.
94 #
95 # Any build prerequisites for x86 builds should be described here.
96 #
97 # genassym is used to build intel/dtrace and genunix, so it should be built
98 # first.
99 #
100 # priv_const.c is required to build genunix.
101 #
102 # genunix is used by everyone to ctf-merge with. Genunix is CTF-merged with
103 # intel/ip so as a side effect this dependency builds intel/ip as part of the
104 # prerequisites.
105 #
106 # intel/dtrace depends on i86pc/genassym, so we need to build both
107 # i86pc/genassym and intel/genassym.
108 #
109 all.prereq install.prereq def.prereq: genassym genunix FRC
109 all.prereq install.prereq def.prereq: genunix FRC
110 @cd ../i86pc/genassym; pwd; $(MAKE) $(@:%.prereq=%)

112 #
113 # i86pc lint libraries should be built first
114 #
115 lint.prereq: FRC
116 @cd ../i86pc; pwd; $(MAKE) $(NO_STATE) lint

118 #
119 # Nothing to do for any other prerequisite targets.
120 #
121 %.prereq:

123 genunix: $(PRIVS_C)

125 modlintlib clean.lint: $(LINT_KMODS) $(XMODS)

new/usr/src/uts/intel/Makefile 3

127 genassym $(KMODS) $(SUBDIRS) config: FRC
127 $(KMODS) $(SUBDIRS) config: FRC
128 @cd $@; pwd; $(MAKE) $(NO_STATE) $(TARGET)

130 $(XMODS): FRC
131 @if [-f $@/Makefile]; then \
132 cd $@; pwd; $(MAKE) $(NO_STATE) $(TARGET); \
133 else \
134 true; \
135 fi

137 install_h check: FRC
138 @cd sys; pwd; $(MAKE) $(TARGET)
139 @cd asm; pwd; $(MAKE) $(TARGET)
140 @cd ia32/sys; pwd; $(MAKE) $(TARGET)
141 @cd amd64/sys; pwd; $(MAKE) $(TARGET)

143 #
144 # Work-around to disable acpica global crosscheck lint warnings
145 #
146 LGREP.intel = grep -v ’intel/io/acpica’

148 #
149 # Full kernel lint target.
150 #
151 LINT_TARGET = globallint

153 # workaround for multiply defined errors
154 globallint := LINTFLAGS += -erroff=E_NAME_MULTIPLY_DEF2

156 globallint:
157 @pwd
158 @-$(ECHO) "\nFULL KERNEL: global crosschecks:"
159 @-$(LINT) $(LINTFLAGS) $(LINT_LIBS) 2>&1 | $(LGREP.intel) | $(LGREP.2)

161 lint: modlintlib .WAIT $(LINT_DEPS)

163 include ../Makefile.targ

new/usr/src/uts/intel/Makefile.files 1

**
 7186 Tue Jan 14 16:17:29 2014
new/usr/src/uts/intel/Makefile.files
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.

10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright (c) 1999, 2010, Oracle and/or its affiliates. All rights reserved.
24 # Copyright (c) 2012, Joyent, Inc. All rights reserved.
25 #

27 #
28 # This Makefile defines all file modules and build rules for the
29 # directory uts/intel and its children. These are the source files which
30 # are specific to x86 processor architectures.
31 #

33 #
34 # Core (unix) objects
35 #
36 CORE_OBJS += \
37 arch_kdi.o \
38 copy.o \
39 copy_subr.o \
40 cpc_subr.o \
41 ddi_arch.o \
42 ddi_i86.o \
43 ddi_i86_asm.o \
44 desctbls.o \
45 desctbls_asm.o \
46 exception.o \
47 float.o \
48 fmsmb.o \
49 fpu.o \
50 i86_subr.o \
51 lock_prim.o \
52 ovbcopy.o \
53 polled_io.o \
54 sseblk.o \
55 sundep.o \
56 swtch.o \
57 sysi86.o

59 #
60 # 64-bit multiply/divide compiler helper routines
61 # used only for ia32

new/usr/src/uts/intel/Makefile.files 2

62 #

64 SPECIAL_OBJS_32 += \
65 muldiv.o

67 #
68 # Generic-unix Module
69 #
70 GENUNIX_OBJS += \
71 archdep.o \
72 getcontext.o \
73 install_utrap.o \
74 lwp_private.o \
75 prom_enter.o \
76 prom_exit.o \
77 prom_panic.o \
78 sendsig.o \
79 syscall.o

82 #
83 # PROM Routines
84 #
85 GENUNIX_OBJS += \
86 prom_env.o \
87 prom_emul.o \
88 prom_getchar.o \
89 prom_init.o \
90 prom_node.o \
91 prom_printf.o \
92 prom_prop.o \
93 prom_putchar.o \
94 prom_reboot.o \
95 prom_version.o

97 #
98 # file system modules
99 #
100 CORE_OBJS += \
101 prmachdep.o
102
103 LX_PROC_OBJS += \
104 lx_prsubr.o \
105 lx_prvfsops.o \
106 lx_prvnops.o

108 LX_AUTOFS_OBJS += \
109 lx_autofs.o

111 #endif /* ! codereview */
112 #
113 # ZFS file system module
114 #
115 ZFS_OBJS += \
116 spa_boot.o

118 #
119 # Decompression code
120 #
121 CORE_OBJS += decompress.o

123 #
124 # Microcode utilities
125 #
126 CORE_OBJS += ucode_utils.o

new/usr/src/uts/intel/Makefile.files 3

128 #
129 # Driver modules
130 #
131 AGPGART_OBJS += agpgart.o agp_kstat.o
132 AGPTARGET_OBJS += agptarget.o
133 AMD64GART_OBJS += amd64_gart.o
134 ARCMSR_OBJS += arcmsr.o
135 ATA_OBJS += $(GHD_OBJS) ata_blacklist.o ata_common.o ata_disk.o \
136 ata_dma.o atapi.o atapi_fsm.o ata_debug.o \
137 sil3xxx.o
138 BSCBUS_OBJS += bscbus.o
139 BSCV_OBJS += bscv.o
140 CMDK_OBJS += cmdk.o
141 CMLB_OBJS += cmlb.o
142 CPUNEX_OBJS += cpunex.o
143 DADK_OBJS += dadk.o
144 DCOPY_OBJS += dcopy.o
145 DNET_OBJS += dnet.o dnet_mii.o
146 FD_OBJS += fd.o
147 GDA_OBJS += gda.o
148 GHD_OBJS += ghd.o ghd_debug.o ghd_dma.o ghd_queue.o ghd_scsa.o \
149 ghd_scsi.o ghd_timer.o ghd_waitq.o ghd_gcmd.o
150 I915_OBJS += i915_dma.o i915_drv.o i915_irq.o i915_mem.o \
151 i915_gem.o i915_gem_debug.o i915_gem_tiling.o
152 NSKERN_OBJS += nsc_asm.o
153 PCICFG_OBJS += pcicfg.o
154 PCI_PCINEXUS_OBJS += pci_pci.o
155 PCIEB_OBJS += pcieb_x86.o
156 PIT_BEEP_OBJS += pit_beep.o
157 POWER_OBJS += power.o
158 PCI_AUTOCONFIG_OBJS += pci_autoconfig.o pci_boot.o pcie_nvidia.o \
159 pci_memlist.o pci_resource.o
160 RADEON_OBJS += r300_cmdbuf.o radeon_cp.o radeon_drv.o \
161 radeon_state.o radeon_irq.o radeon_mem.o
162 SD_OBJS += sd.o sd_xbuf.o

164 HECI_OBJS += \
165 heci_init.o \
166 heci_intr.o \
167 heci_interface.o \
168 io_heci.o \
169 heci_main.o

171 STRATEGY_OBJS += strategy.o
172 UCODE_OBJS += ucode_drv.o
173 VGATEXT_OBJS += vgatext.o vgasubr.o

175 #
176 # Kernel linker
177 #
178 KRTLD_OBJS += \
179 bootrd.o \
180 ufsops.o \
181 hsfs.o \
182 doreloc.o \
183 kobj_boot.o \
184 kobj_convrelstr.o \
185 kobj_crt.o \
186 kobj_isa.o \
187 kobj_reloc.o

189 #
190 # misc. modules
191 #
192 ACPICA_OBJS += dbcmds.o dbdisply.o \
193 dbexec.o dbfileio.o dbhistry.o dbinput.o dbstats.o \

new/usr/src/uts/intel/Makefile.files 4

194 dbutils.o dbxface.o evevent.o evgpe.o evgpeblk.o \
195 evmisc.o evregion.o evrgnini.o evsci.o evxface.o \
196 evxfevnt.o evxfregn.o hwacpi.o hwgpe.o hwregs.o \
197 hwsleep.o hwtimer.o dsfield.o dsinit.o dsmethod.o \
198 dsmthdat.o dsobject.o dsopcode.o dsutils.o dswexec.o \
199 dswload.o dswscope.o dswstate.o exconfig.o exconvrt.o \
200 excreate.o exdump.o exfield.o exfldio.o exmisc.o \
201 exmutex.o exnames.o exoparg1.o exoparg2.o exoparg3.o \
202 exoparg6.o exprep.o exregion.o exresnte.o exresolv.o \
203 exresop.o exstore.o exstoren.o exstorob.o exsystem.o \
204 exutils.o psargs.o psopcode.o psparse.o psscope.o \
205 pstree.o psutils.o pswalk.o psxface.o nsaccess.o \
206 nsalloc.o nsdump.o nsdumpdv.o nseval.o nsinit.o \
207 nsload.o nsnames.o nsobject.o nsparse.o nssearch.o \
208 nsutils.o nswalk.o nsxfeval.o nsxfname.o nsxfobj.o \
209 rsaddr.o rscalc.o rscreate.o rsdump.o \
210 rsinfo.o rsio.o rsirq.o rslist.o rsmemory.o rsmisc.o \
211 rsutils.o rsxface.o tbfadt.o tbfind.o tbinstal.o \
212 tbutils.o tbxface.o tbxfroot.o \
213 utalloc.o utclib.o utcopy.o utdebug.o utdelete.o \
214 uteval.o utglobal.o utinit.o utmath.o utmisc.o \
215 utobject.o utresrc.o utxface.o acpica.o acpi_enum.o \
216 master_ops.o osl.o osl_ml.o acpica_ec.o utcache.o \
217 utmutex.o utstate.o dmbuffer.o dmnames.o dmobject.o \
218 dmopcode.o dmresrc.o dmresrcl.o dmresrcs.o dmutils.o \
219 dmwalk.o psloop.o nspredef.o hwxface.o hwvalid.o \
220 utlock.o utids.o nsrepair.o nsrepair2.o \
221 dbmethod.o dbnames.o dsargs.o dscontrol.o dswload2.o \
222 evglock.o evgpeinit.o evgpeutil.o evxfgpe.o exdebug.o \
223 hwpci.o utdecode.o utosi.o utxferror.o

226 AGP_OBJS += agpmaster.o
227 FBT_OBJS += fbt.o
228 SDT_OBJS += sdt.o

230 #
231 # AMD8111 NIC driver module
232 #
233 AMD8111S_OBJS += amd8111s_main.o amd8111s_hw.o

235 #
236 # Pentium Performance Counter BackEnd module
237 #
238 P123_PCBE_OBJS = p123_pcbe.o

240 #
241 # Pentium 4 Performance Counter BackEnd module
242 #
243 P4_PCBE_OBJS = p4_pcbe.o

245 #
246 # AMD Opteron/Athlon64 Performance Counter BackEnd module
247 #
248 OPTERON_PCBE_OBJS = opteron_pcbe.o

250 #
251 # Intel Core Architecture Performance Counter BackEnd module
252 #
253 CORE_PCBE_OBJS = core_pcbe.o

255 #
256 # AMR module
257 #
258 AMR_OBJS = amr.o

new/usr/src/uts/intel/Makefile.files 5

260 #
261 # IPMI module
262 IPMI_OBJS += ipmi_main.o ipmi.o ipmi_kcs.o

264 #
265 # IOMMULIB module
266 #
267 IOMMULIB_OBJS = iommulib.o

269 #
270 # Brand modules
271 #
272 SN1_BRAND_OBJS = sn1_brand.o sn1_brand_asm.o
273 S10_BRAND_OBJS = s10_brand.o s10_brand_asm.o
274 LX_BRAND_OBJS = \
275 lx_brand.o \
276 lx_brand_asm.o \
277 lx_brk.o \
278 lx_clone.o \
279 lx_futex.o \
280 lx_getpid.o \
281 lx_id.o \
282 lx_kill.o \
283 lx_misc.o \
284 lx_modify_ldt.o \
285 lx_pid.o \
286 lx_sched.o \
287 lx_signum.o \
288 lx_syscall.o \
289 lx_sysinfo.o \
290 lx_thread_area.o
291 #endif /* ! codereview */

293 #
294 # special files
295 #
296 MODSTUB_OBJ += \
297 modstubs.o

299 BOOTDEV_OBJS += \
300 bootdev.o

302 INC_PATH += -I$(UTSBASE)/intel

305 CPR_INTEL_OBJS += cpr_intel.o

307 #
308 # AMD family 0xf memory controller module
309 #
310 include $(SRC)/common/mc/mc-amd/Makefile.mcamd
311 MCAMD_OBJS += \
312 $(MCAMD_CMN_OBJS) \
313 mcamd_drv.o \
314 mcamd_dimmcfg.o \
315 mcamd_subr.o \
316 mcamd_pcicfg.o

318 #
319 # Intel Nehalem memory controller module
320 #
321 INTEL_NHM_OBJS += \
322 nhm_init.o \
323 mem_addr.o \
324 intel_nhmdrv.o \
325 nhm_pci_cfg.o \

new/usr/src/uts/intel/Makefile.files 6

326 dimm_topo.o \
327 intel_nhm.o

329 #
330 # Intel 5000/5100/5400/7300 chipset memory controller hub (MCH) module
331 #
332 INTEL_NB5000_OBJS += \
333 intel_nb5000.o \
334 intel_nbdrv.o \
335 dimm_addr.o \
336 nb_pci_cfg.o \
337 nb5000_init.o

new/usr/src/uts/intel/Makefile.intel 1

**
 16141 Tue Jan 14 16:17:29 2014
new/usr/src/uts/intel/Makefile.intel
test
**

1 # CDDL HEADER START
2 #
3 # The contents of this file are subject to the terms of the
4 # Common Development and Distribution License (the "License").
5 # You may not use this file except in compliance with the License.
6 #
7 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
8 # or http://www.opensolaris.org/os/licensing.
9 # See the License for the specific language governing permissions

10 # and limitations under the License.
11 #
12 # When distributing Covered Code, include this CDDL HEADER in each
13 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
14 # If applicable, add the following below this CDDL HEADER, with the
15 # fields enclosed by brackets "[]" replaced with your own identifying
16 # information: Portions Copyright [yyyy] [name of copyright owner]
17 #
18 # CDDL HEADER END
19 #

21 # Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
22 # Copyright (c) 2012 Nexenta Systems, Inc. All rights reserved.
23 # Copyright (c) 2013 Andrew Stormont. All rights reserved.

25 #
26 # This makefile contains the common definitions for all intel
27 # implementation architecture independent modules.
28 #

30 #
31 # Machine type (implementation architecture):
32 #
33 PLATFORM = i86pc

35 #
36 # Everybody needs to know how to build modstubs.o and to locate unix.o.
37 # Note that unix.o must currently be selected from among the possible
38 # "implementation architectures". Note further, that unix.o is only
39 # used as an optional error check for undefines so (theoretically)
40 # any "implementation architectures" could be used. We choose i86pc
41 # because it is the reference port.
42 #
43 UNIX_DIR = $(UTSBASE)/i86pc/unix
44 GENLIB_DIR = $(UTSBASE)/intel/genunix
45 GENASSYM_DIR = $(UTSBASE)/intel/genassym
46 #endif /* ! codereview */
47 IPDRV_DIR = $(UTSBASE)/intel/ip
48 MODSTUBS_DIR = $(UNIX_DIR)
49 DSF_DIR = $(UTSBASE)/$(PLATFORM)/genassym
50 LINTS_DIR = $(OBJS_DIR)
51 LINT_LIB_DIR = $(UTSBASE)/intel/lint-libs/$(OBJS_DIR)

53 UNIX_O = $(UNIX_DIR)/$(OBJS_DIR)/unix.o
54 GENLIB = $(GENLIB_DIR)/$(OBJS_DIR)/libgenunix.so
55 MODSTUBS_O = $(MODSTUBS_DIR)/$(OBJS_DIR)/modstubs.o
56 LINT_LIB = $(UTSBASE)/i86pc/lint-libs/$(OBJS_DIR)/llib-lunix.ln
57 GEN_LINT_LIB = $(UTSBASE)/intel/lint-libs/$(OBJS_DIR)/llib-lgenunix.ln

59 #
60 # Include the makefiles which define build rule templates, the
61 # collection of files per module, and a few specific flags. Note

new/usr/src/uts/intel/Makefile.intel 2

62 # that order is significant, just as with an include path. The
63 # first build rule template which matches the files name will be
64 # used. By including these in order from most machine dependent
65 # to most machine independent, we allow a machine dependent file
66 # to be used in preference over a machine independent version
67 # (Such as a machine specific optimization, which preserves the
68 # interfaces.)
69 #
70 include $(UTSBASE)/intel/Makefile.files
71 include $(UTSBASE)/common/Makefile.files

73 #
74 # ----- TRANSITIONAL SECTION --
75 #

77 #
78 # Not everything which *should* be a module is a module yet. The
79 # following is a list of such objects which are currently part of
80 # genunix but which might someday become kmods. This must be
81 # defined before we include Makefile.uts, or else genunix’s build
82 # won’t be as parallel as we might like.
83 #
84 NOT_YET_KMODS = $(OLDPTY_OBJS) $(PTY_OBJS) $(VCONS_CONF_OBJS) $(MOD_OBJS)

86 #
87 # ----- END OF TRANSITIONAL SECTION ---
88 #
89 # Include machine independent rules. Note that this does not imply
90 # that the resulting module from rules in Makefile.uts is machine
91 # independent. Only that the build rules are machine independent.
92 #
93 include $(UTSBASE)/Makefile.uts

95 #
96 # The following must be defined for all implementations:
97 #
98 MODSTUBS = $(UTSBASE)/intel/ia32/ml/modstubs.s

100 #
101 # Define supported builds
102 #
103 DEF_BUILDS = $(DEF_BUILDS64) $(DEF_BUILDS32)
104 ALL_BUILDS = $(ALL_BUILDS64) $(ALL_BUILDS32)

106 #
107 # x86 or amd64 inline templates
108 #
109 INLINES_32 = $(UTSBASE)/intel/ia32/ml/ia32.il
110 INLINES_64 = $(UTSBASE)/intel/amd64/ml/amd64.il
111 INLINES += $(INLINES_$(CLASS))

113 #
114 # kernel-specific optimizations; override default in Makefile.master
115 #

117 CFLAGS_XARCH_32 = $(i386_CFLAGS)
118 CFLAGS_XARCH_64 = $(amd64_CFLAGS)
119 CFLAGS_XARCH = $(CFLAGS_XARCH_$(CLASS))

121 COPTFLAG_32 = $(COPTFLAG)
122 COPTFLAG_64 = $(COPTFLAG64)
123 COPTIMIZE = $(COPTFLAG_$(CLASS))

125 CFLAGS = $(CFLAGS_XARCH)
126 CFLAGS += $(COPTIMIZE)
127 CFLAGS += $(INLINES) -D_ASM_INLINES

new/usr/src/uts/intel/Makefile.intel 3

128 CFLAGS += $(CCMODE)
129 CFLAGS += $(SPACEFLAG)
130 CFLAGS += $(CCUNBOUND)
131 CFLAGS += $(CFLAGS_uts)
132 CFLAGS += -xstrconst

134 ASFLAGS_XARCH_32 = $(i386_ASFLAGS)
135 ASFLAGS_XARCH_64 = $(amd64_ASFLAGS)
136 ASFLAGS_XARCH = $(ASFLAGS_XARCH_$(CLASS))

138 ASFLAGS += $(ASFLAGS_XARCH)

140 #
141 # Define the base directory for installation.
142 #
143 BASE_INS_DIR = $(ROOT)

145 #
146 # Debugging level
147 #
148 # Special knowledge of which special debugging options affect which
149 # file is used to optimize the build if these flags are changed.
150 #
151 DEBUG_DEFS_OBJ32 =
152 DEBUG_DEFS_DBG32 = -DDEBUG
153 DEBUG_DEFS_OBJ64 =
154 DEBUG_DEFS_DBG64 = -DDEBUG
155 DEBUG_DEFS = $(DEBUG_DEFS_$(BUILD_TYPE))

157 DEBUG_COND_OBJ32 = $(POUND_SIGN)
158 DEBUG_COND_DBG32 =
159 DEBUG_COND_OBJ64 = $(POUND_SIGN)
160 DEBUG_COND_DBG64 =
161 IF_DEBUG_OBJ = $(DEBUG_COND_$(BUILD_TYPE))$(OBJS_DIR)/

163 $(IF_DEBUG_OBJ)syscall.o := DEBUG_DEFS += -DSYSCALLTRACE
164 $(IF_DEBUG_OBJ)clock.o := DEBUG_DEFS += -DKSLICE=1

166 #
167 # Collect the preprocessor definitions to be associated with *all*
168 # files.
169 #
170 ALL_DEFS = $(DEBUG_DEFS) $(OPTION_DEFS)

172 #
173 # The kernels modules which are "implementation architecture"
174 # specific for this machine are enumerated below. Note that most
175 # of these modules must exist (in one form or another) for each
176 # architecture.
177 #
178 # Common Drivers (usually pseudo drivers) (/kernel/drv)
179 # DRV_KMODS are built both 32-bit and 64-bit
180 # DRV_KMODS_32 are built only 32-bit
181 # DRV_KMODS_64 are built only 64-bit
182 #
183 DRV_KMODS += aac
184 DRV_KMODS += aggr
185 DRV_KMODS += ahci
186 DRV_KMODS += amd64_gart
187 DRV_KMODS += amr
188 DRV_KMODS += agpgart
189 DRV_KMODS += srn
190 DRV_KMODS += agptarget
191 DRV_KMODS += arn
192 DRV_KMODS += arp
193 DRV_KMODS += asy

new/usr/src/uts/intel/Makefile.intel 4

194 DRV_KMODS += ata
195 DRV_KMODS += ath
196 DRV_KMODS += atu
197 DRV_KMODS += audio
198 DRV_KMODS += audio1575
199 DRV_KMODS += audio810
200 DRV_KMODS += audiocmi
201 DRV_KMODS += audiocmihd
202 DRV_KMODS += audioemu10k
203 DRV_KMODS += audioens
204 DRV_KMODS += audiohd
205 DRV_KMODS += audioixp
206 DRV_KMODS += audiols
207 DRV_KMODS += audiop16x
208 DRV_KMODS += audiopci
209 DRV_KMODS += audiosolo
210 DRV_KMODS += audiots
211 DRV_KMODS += audiovia823x
212 DRV_KMODS_32 += audiovia97
213 DRV_KMODS += bl
214 DRV_KMODS += blkdev
215 DRV_KMODS += bge
216 DRV_KMODS += bofi
217 DRV_KMODS += bpf
218 DRV_KMODS += bridge
219 DRV_KMODS += bscbus
220 DRV_KMODS += bscv
221 DRV_KMODS += chxge
222 DRV_KMODS += cxgbe
223 DRV_KMODS += ntxn
224 DRV_KMODS += myri10ge
225 DRV_KMODS += clone
226 DRV_KMODS += cmdk
227 DRV_KMODS += cn
228 DRV_KMODS += conskbd
229 DRV_KMODS += consms
230 DRV_KMODS += cpqary3
231 DRV_KMODS += cpuid
232 DRV_KMODS += cpunex
233 DRV_KMODS += crypto
234 DRV_KMODS += cryptoadm
235 DRV_KMODS += dca
236 DRV_KMODS += devinfo
237 DRV_KMODS += dld
238 DRV_KMODS += dlpistub
239 DRV_KMODS_32 += dnet
240 DRV_KMODS += dump
241 DRV_KMODS += ecpp
242 DRV_KMODS += emlxs
243 DRV_KMODS += fd
244 DRV_KMODS += fdc
245 DRV_KMODS += fm
246 DRV_KMODS += fssnap
247 DRV_KMODS += hxge
248 DRV_KMODS += i8042
249 DRV_KMODS += i915
250 DRV_KMODS += icmp
251 DRV_KMODS += icmp6
252 DRV_KMODS += intel_nb5000
253 DRV_KMODS += intel_nhm
254 DRV_KMODS += ip
255 DRV_KMODS += ip6
256 DRV_KMODS += ipd
257 DRV_KMODS += ipf
258 DRV_KMODS += ipnet
259 DRV_KMODS += ippctl

new/usr/src/uts/intel/Makefile.intel 5

260 DRV_KMODS += ipsecah
261 DRV_KMODS += ipsecesp
262 DRV_KMODS += ipw
263 DRV_KMODS += iwh
264 DRV_KMODS += iwi
265 DRV_KMODS += iwk
266 DRV_KMODS += iwp
267 DRV_KMODS += iwscn
268 DRV_KMODS += kb8042
269 DRV_KMODS += keysock
270 DRV_KMODS += kssl
271 DRV_KMODS += kstat
272 DRV_KMODS += ksyms
273 DRV_KMODS += kmdb
274 DRV_KMODS += llc1
275 DRV_KMODS += lofi
276 DRV_KMODS += log
277 DRV_KMODS += logindmux
278 DRV_KMODS += mega_sas
279 DRV_KMODS += mc-amd
280 DRV_KMODS += mm
281 DRV_KMODS += mouse8042
282 DRV_KMODS += mpt_sas
283 DRV_KMODS += mr_sas
284 DRV_KMODS += mwl
285 DRV_KMODS += nca
286 DRV_KMODS += nsmb
287 DRV_KMODS += nulldriver
288 DRV_KMODS += nv_sata
289 DRV_KMODS += nxge
290 DRV_KMODS += oce
291 DRV_KMODS += openeepr
292 DRV_KMODS += pci_pci
293 DRV_KMODS += pcic
294 DRV_KMODS += pcieb
295 DRV_KMODS += physmem
296 DRV_KMODS += pit_beep
297 DRV_KMODS += pm
298 DRV_KMODS += poll
299 DRV_KMODS += pool
300 DRV_KMODS += power
301 DRV_KMODS += pseudo
302 DRV_KMODS += ptc
303 DRV_KMODS += ptm
304 DRV_KMODS += pts
305 DRV_KMODS += ptsl
306 DRV_KMODS += qlge
307 DRV_KMODS += radeon
308 DRV_KMODS += ral
309 DRV_KMODS += ramdisk
310 DRV_KMODS += random
311 DRV_KMODS += rds
312 DRV_KMODS += rdsv3
313 DRV_KMODS += rpcib
314 DRV_KMODS += rsm
315 DRV_KMODS += rts
316 DRV_KMODS += rtw
317 DRV_KMODS += rum
318 DRV_KMODS += rwd
319 DRV_KMODS += rwn
320 DRV_KMODS += sad
321 DRV_KMODS += sd
322 DRV_KMODS += sdhost
323 DRV_KMODS += sgen
324 DRV_KMODS += si3124
325 DRV_KMODS += smbios

new/usr/src/uts/intel/Makefile.intel 6

326 DRV_KMODS += softmac
327 DRV_KMODS += spdsock
328 DRV_KMODS += smbsrv
329 DRV_KMODS += smp
330 DRV_KMODS += sppp
331 DRV_KMODS += sppptun
332 DRV_KMODS += srpt
333 DRV_KMODS += st
334 DRV_KMODS += sy
335 DRV_KMODS += sysevent
336 DRV_KMODS += sysmsg
337 DRV_KMODS += tcp
338 DRV_KMODS += tcp6
339 DRV_KMODS += tl
340 DRV_KMODS += tnf
341 DRV_KMODS += tpm
342 DRV_KMODS += trill
343 DRV_KMODS += udp
344 DRV_KMODS += udp6
345 DRV_KMODS += ucode
346 DRV_KMODS += ural
347 DRV_KMODS += uath
348 DRV_KMODS += urtw
349 DRV_KMODS += vgatext
350 DRV_KMODS += heci
351 DRV_KMODS += vnic
352 DRV_KMODS += vscan
353 DRV_KMODS += wc
354 DRV_KMODS += winlock
355 DRV_KMODS += wpi
356 DRV_KMODS += xge
357 DRV_KMODS += yge
358 DRV_KMODS += zcons
359 DRV_KMODS += zyd
360 DRV_KMODS += simnet
361 DRV_KMODS += stmf
362 DRV_KMODS += stmf_sbd
363 DRV_KMODS += fct
364 DRV_KMODS += fcoe
365 DRV_KMODS += fcoet
366 DRV_KMODS += fcoei
367 DRV_KMODS += qlt
368 DRV_KMODS += iscsit
369 DRV_KMODS += pppt
370 DRV_KMODS += ncall nsctl sdbc nskern sv
371 DRV_KMODS += ii rdc rdcsrv rdcstub
372 DRV_KMODS += iptun

374 #
375 # Common code drivers
376 #

378 DRV_KMODS += afe
379 DRV_KMODS += atge
380 DRV_KMODS += bfe
381 DRV_KMODS += dmfe
382 DRV_KMODS += e1000g
383 DRV_KMODS += efe
384 DRV_KMODS += elxl
385 DRV_KMODS += hme
386 DRV_KMODS += mxfe
387 DRV_KMODS += nge
388 DRV_KMODS += pcn
389 DRV_KMODS += rge
390 DRV_KMODS += rtls
391 DRV_KMODS += sfe

new/usr/src/uts/intel/Makefile.intel 7

392 DRV_KMODS += amd8111s
393 DRV_KMODS += igb
394 DRV_KMODS += ipmi
395 DRV_KMODS += iprb
396 DRV_KMODS += ixgbe
397 DRV_KMODS += vr

399 #
400 # Virtio drivers
401 #

403 # Virtio core
404 DRV_KMODS += virtio

406 # Virtio block driver
407 DRV_KMODS += vioblk

409 #
410 # DTrace and DTrace Providers
411 #
412 DRV_KMODS += dtrace
413 DRV_KMODS += fbt
414 DRV_KMODS += lockstat
415 DRV_KMODS += profile
416 DRV_KMODS += sdt
417 DRV_KMODS += systrace
418 DRV_KMODS += fasttrap
419 DRV_KMODS += dcpc

421 #
422 # I/O framework test drivers
423 #
424 DRV_KMODS += pshot
425 DRV_KMODS += gen_drv
426 DRV_KMODS += tvhci tphci tclient
427 DRV_KMODS += emul64

429 #
430 # Machine Specific Driver Modules (/kernel/drv):
431 #
432 DRV_KMODS += options
433 DRV_KMODS += scsi_vhci
434 DRV_KMODS += pmcs
435 DRV_KMODS += pmcs8001fw
436 DRV_KMODS += arcmsr
437 DRV_KMODS += fcp
438 DRV_KMODS += fcip
439 DRV_KMODS += fcsm
440 DRV_KMODS += fp
441 DRV_KMODS += qlc
442 DRV_KMODS += iscsi

444 #
445 # PCMCIA specific module(s)
446 #
447 DRV_KMODS += pcs
448 MISC_KMODS += cardbus

450 #
451 # SCSI Enclosure Services driver
452 #
453 DRV_KMODS += ses

455 #
456 # USB specific modules
457 #

new/usr/src/uts/intel/Makefile.intel 8

458 DRV_KMODS += hid
459 DRV_KMODS += hwarc hwahc
460 DRV_KMODS += hubd
461 DRV_KMODS += uhci
462 DRV_KMODS += ehci
463 DRV_KMODS += ohci
464 DRV_KMODS += usb_mid
465 DRV_KMODS += usb_ia
466 DRV_KMODS += scsa2usb
467 DRV_KMODS += usbprn
468 DRV_KMODS += ugen
469 DRV_KMODS += usbser
470 DRV_KMODS += usbsacm
471 DRV_KMODS += usbsksp
472 DRV_KMODS += usbsprl
473 DRV_KMODS += usb_ac
474 DRV_KMODS += usb_as
475 DRV_KMODS += usbskel
476 DRV_KMODS += usbvc
477 DRV_KMODS += usbftdi
478 DRV_KMODS += wusb_df
479 DRV_KMODS += wusb_ca
480 DRV_KMODS += usbecm

482 #
483 # 1394 modules
484 #
485 MISC_KMODS += s1394 sbp2
486 DRV_KMODS += hci1394 scsa1394
487 DRV_KMODS += av1394
488 DRV_KMODS += dcam1394

490 #
491 # InfiniBand pseudo drivers
492 #
493 DRV_KMODS += ib ibp eibnx eoib rdsib sdp iser daplt hermon tavor sol_ucma
494 DRV_KMODS += sol_umad

496 #
497 # LVM modules
498 #
499 DRV_KMODS += md
500 MISC_KMODS += md_stripe md_hotspares md_mirror md_raid md_trans md_notify
501 MISC_KMODS += md_sp

503 #
504 # Brand modules
505 #
506 BRAND_KMODS += sn1_brand s10_brand lx_brand
507 DRV_KMODS += lx_systrace lx_ptm lx_audio
508 STRMOD_KMODS += ldlinux
45 BRAND_KMODS += sn1_brand s10_brand

510 #
511 # Exec Class Modules (/kernel/exec):
512 #
513 EXEC_KMODS += elfexec intpexec shbinexec javaexec

515 #
516 # Scheduling Class Modules (/kernel/sched):
517 #
518 SCHED_KMODS += IA RT TS RT_DPTBL TS_DPTBL FSS FX FX_DPTBL SDC

520 #
521 # File System Modules (/kernel/fs):
522 #

new/usr/src/uts/intel/Makefile.intel 9

523 FS_KMODS += autofs cachefs ctfs dcfs dev devfs fdfs fifofs hsfs lofs
524 FS_KMODS += lx_afs lx_proc mntfs namefs nfs objfs zfs zut
61 FS_KMODS += mntfs namefs nfs objfs zfs zut
525 FS_KMODS += pcfs procfs sockfs specfs tmpfs udfs ufs sharefs
526 FS_KMODS += smbfs

528 #
529 # Streams Modules (/kernel/strmod):
530 #
531 STRMOD_KMODS += bufmod connld dedump ldterm pckt pfmod pipemod
532 STRMOD_KMODS += ptem redirmod rpcmod rlmod telmod timod
533 STRMOD_KMODS += spppasyn spppcomp
534 STRMOD_KMODS += tirdwr ttcompat
535 STRMOD_KMODS += usbkbm
536 STRMOD_KMODS += usbms
537 STRMOD_KMODS += usbwcm
538 STRMOD_KMODS += usb_ah
539 STRMOD_KMODS += drcompat
540 STRMOD_KMODS += cryptmod
541 STRMOD_KMODS += vuid2ps2
542 STRMOD_KMODS += vuid3ps2
543 STRMOD_KMODS += vuidm3p
544 STRMOD_KMODS += vuidm4p
545 STRMOD_KMODS += vuidm5p

547 #
548 # ’System’ Modules (/kernel/sys):
549 #
550 SYS_KMODS += c2audit
551 SYS_KMODS += doorfs
552 SYS_KMODS += exacctsys
553 SYS_KMODS += inst_sync
554 SYS_KMODS += kaio
555 SYS_KMODS += msgsys
556 SYS_KMODS += pipe
557 SYS_KMODS += portfs
558 SYS_KMODS += pset
559 SYS_KMODS += semsys
560 SYS_KMODS += shmsys
561 SYS_KMODS += sysacct
562 SYS_KMODS += acctctl

564 #
565 # ’Misc’ Modules (/kernel/misc)
566 # MISC_KMODS are built both 32-bit and 64-bit
567 # MISC_KMODS_32 are built only 32-bit
568 # MISC_KMODS_64 are built only 64-bit
569 #
570 MISC_KMODS += ac97
571 MISC_KMODS += acpica
572 MISC_KMODS += agpmaster
573 MISC_KMODS += bignum
574 MISC_KMODS += bootdev
575 MISC_KMODS += busra
576 MISC_KMODS += cmlb
577 MISC_KMODS += consconfig
578 MISC_KMODS += ctf
579 MISC_KMODS += dadk
580 MISC_KMODS += dcopy
581 MISC_KMODS += dls
582 MISC_KMODS += drm
583 MISC_KMODS += fssnap_if
584 MISC_KMODS += gda
585 MISC_KMODS += gld
586 MISC_KMODS += hidparser
587 MISC_KMODS += hook

new/usr/src/uts/intel/Makefile.intel 10

588 MISC_KMODS += hpcsvc
589 MISC_KMODS += ibcm
590 MISC_KMODS += ibdm
591 MISC_KMODS += ibdma
592 MISC_KMODS += ibmf
593 MISC_KMODS += ibtl
594 MISC_KMODS += idm
595 MISC_KMODS += idmap
596 MISC_KMODS += iommulib
597 MISC_KMODS += ipc
598 MISC_KMODS += kbtrans
599 MISC_KMODS += kcf
600 MISC_KMODS += kgssapi
601 MISC_KMODS += kmech_dummy
602 MISC_KMODS += kmech_krb5
603 MISC_KMODS += ksocket
604 MISC_KMODS += mac
605 MISC_KMODS += mii
606 MISC_KMODS += mwlfw
607 MISC_KMODS += net80211
608 MISC_KMODS += nfs_dlboot
609 MISC_KMODS += nfssrv
610 MISC_KMODS += neti
611 MISC_KMODS += pci_autoconfig
612 MISC_KMODS += pcicfg
613 MISC_KMODS += pcihp
614 MISC_KMODS += pcmcia
615 MISC_KMODS += rpcsec
616 MISC_KMODS += rpcsec_gss
617 MISC_KMODS += rsmops
618 MISC_KMODS += sata
619 MISC_KMODS += scsi
620 MISC_KMODS += sda
621 MISC_KMODS += sol_ofs
622 MISC_KMODS += spuni
623 MISC_KMODS += strategy
624 MISC_KMODS += strplumb
625 MISC_KMODS += tem
626 MISC_KMODS += tlimod
627 MISC_KMODS += usba usba10 usbs49_fw
628 MISC_KMODS += scsi_vhci_f_sym_hds
629 MISC_KMODS += scsi_vhci_f_sym
630 MISC_KMODS += scsi_vhci_f_tpgs
631 MISC_KMODS += scsi_vhci_f_asym_sun
632 MISC_KMODS += scsi_vhci_f_tape
633 MISC_KMODS += scsi_vhci_f_tpgs_tape
634 MISC_KMODS += fctl
635 MISC_KMODS += emlxs_fw
636 MISC_KMODS += qlc_fw_2200
637 MISC_KMODS += qlc_fw_2300
638 MISC_KMODS += qlc_fw_2400
639 MISC_KMODS += qlc_fw_2500
640 MISC_KMODS += qlc_fw_6322
641 MISC_KMODS += qlc_fw_8100
642 MISC_KMODS += hwa1480_fw
643 MISC_KMODS += uathfw
644 MISC_KMODS += uwba

646 MISC_KMODS += klmmod klmops

648 #
649 # Software Cryptographic Providers (/kernel/crypto):
650 #
651 CRYPTO_KMODS += aes
652 CRYPTO_KMODS += arcfour
653 CRYPTO_KMODS += blowfish

new/usr/src/uts/intel/Makefile.intel 11

654 CRYPTO_KMODS += des
655 CRYPTO_KMODS += ecc
656 CRYPTO_KMODS += md4
657 CRYPTO_KMODS += md5
658 CRYPTO_KMODS += rsa
659 CRYPTO_KMODS += sha1
660 CRYPTO_KMODS += sha2
661 CRYPTO_KMODS += swrand

663 #
664 # IP Policy Modules (/kernel/ipp)
665 #
666 IPP_KMODS += dlcosmk
667 IPP_KMODS += flowacct
668 IPP_KMODS += ipgpc
669 IPP_KMODS += dscpmk
670 IPP_KMODS += tokenmt
671 IPP_KMODS += tswtclmt

673 #
674 # generic-unix module (/kernel/genunix):
675 #
676 GENUNIX_KMODS += genunix

678 #
679 # Modules eXcluded from the product:
680 #

682 #
683 # ’Dacf’ Modules (/kernel/dacf):
684 #

686 #
687 # Performance Counter BackEnd modules (/usr/kernel/pcbe)
688 #
689 PCBE_KMODS += p123_pcbe p4_pcbe opteron_pcbe core_pcbe

691 #
692 # MAC-Type Plugin Modules (/kernel/mac)
693 #
694 MAC_KMODS += mac_6to4
695 MAC_KMODS += mac_ether
696 MAC_KMODS += mac_ipv4
697 MAC_KMODS += mac_ipv6
698 MAC_KMODS += mac_wifi
699 MAC_KMODS += mac_ib

701 #
702 # socketmod (kernel/socketmod)
703 #
704 SOCKET_KMODS += sockpfp
705 SOCKET_KMODS += socksctp
706 SOCKET_KMODS += socksdp
707 SOCKET_KMODS += sockrds
708 SOCKET_KMODS += ksslf

710 #
711 # kiconv modules (/kernel/kiconv):
712 #
713 KICONV_KMODS += kiconv_emea kiconv_ja kiconv_ko kiconv_sc kiconv_tc

715 #
716 # ’Dacf’ Modules (/kernel/dacf):
717 #
718 DACF_KMODS += net_dacf

new/usr/src/uts/intel/Makefile.intel 12

720 #
721 # Ensure that the variable member of the cpu_t (cpu_m) is defined
722 # for the lint builds so as not to cause lint errors during the
723 # global cross check.
724 #
725 LINTFLAGS += -D_MACHDEP -I$(UTSBASE)/i86pc

new/usr/src/uts/intel/brand/lx/lx_brand_asm.s 1

**
 4169 Tue Jan 14 16:17:30 2014
new/usr/src/uts/intel/brand/lx/lx_brand_asm.s
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */

22 /*
23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved.
24 * Use is subject to license terms.
25 */

27 #if defined(__lint)

29 #include <sys/systm.h>

31 #else /* __lint */

33 #include "genassym.h"
34 #include "../common/brand_asm.h"

36 #endif /* __lint */

38 #ifdef __lint

40 void
41 lx_brand_int80_callback(void)
42 {
43 }

45 #else /* __lint */

47 #if defined(__amd64)

49 /*
50 * See "64-BIT INTERPOSITION STACK" in brand_asm.h.
51 */
52 ENTRY(lx_brand_int80_callback)
53 GET_PROCP(SP_REG, 0, %r15)
54 movq P_ZONE(%r15), %r15 /* grab the zone pointer */
55 /* grab the ’max syscall num’ for this process from ’zone brand data’ */
56 movq ZONE_BRAND_DATA(%r15), %r15 /* grab the zone brand ptr */
57 movl LXZD_MAX_SYSCALL(%r15), %r15d /* get the ’max sysnum’ word */
58 cmpq %r15, %rax /* is 0 <= syscall <= MAX? */
59 jbe 0f /* yes, syscall is OK */
60 xorl %eax, %eax /* no, zero syscall number */
61 0:

new/usr/src/uts/intel/brand/lx/lx_brand_asm.s 2

63 .lx_brand_int80_patch_point:
64 jmp .lx_brand_int80_notrace

66 .lx_brand_int80_notrace:
67 CALC_TABLE_ADDR(%r15, L_HANDLER)
68 1:
69 movq %r15, %rax
70 GET_V(%rsp, 0, V_SSP, %rsp) /* restore intr. stack pointer */
71 xchgq (%rsp), %rax /* swap %rax and return addr */
72 jmp sys_sysint_swapgs_iret

74 .lx_brand_int80_trace:
75 /*
76 * If tracing is active, we vector to an alternate trace-enabling
77 * handler table instead.
78 */
79 CALC_TABLE_ADDR(%r15, L_TRACEHANDLER)
80 jmp 1b
81 SET_SIZE(lx_brand_int80_callback)

83 #define PATCH_POINT _CONST(.lx_brand_int80_patch_point + 1)
84 #define PATCH_VAL _CONST(.lx_brand_int80_trace - .lx_brand_int80_notrace)

86 ENTRY(lx_brand_int80_enable)
87 movl $1, lx_systrace_brand_enabled(%rip)
88 movq $PATCH_POINT, %r8
89 movb $PATCH_VAL, (%r8)
90 ret
91 SET_SIZE(lx_brand_int80_enable)

93 ENTRY(lx_brand_int80_disable)
94 movq $PATCH_POINT, %r8
95 movb $0, (%r8)
96 movl $0, lx_systrace_brand_enabled(%rip)
97 ret
98 SET_SIZE(lx_brand_int80_disable)

101 #elif defined(__i386)

103 /*
104 * See "32-BIT INTERPOSITION STACK" in brand_asm.h.
105 */
106 ENTRY(lx_brand_int80_callback)
107 GET_PROCP(SP_REG, 0, %ebx)
108 movl P_ZONE(%ebx), %ebx /* grab the zone pointer */
109 /* grab the ’max syscall num’ for this process from ’zone brand data’ */
110 movl ZONE_BRAND_DATA(%ebx), %ebx /* grab the zone brand data */
111 movl LXZD_MAX_SYSCALL(%ebx), %ebx /* get the max sysnum */

113 cmpl %ebx, %eax /* is 0 <= syscall <= MAX? */
114 jbe 0f /* yes, syscall is OK */
115 xorl %eax, %eax /* no, zero syscall number */
116 0:

118 .lx_brand_int80_patch_point:
119 jmp .lx_brand_int80_notrace

121 .lx_brand_int80_notrace:
122 CALC_TABLE_ADDR(%ebx, L_HANDLER)

124 1:
125 movl %ebx, %eax
126 GET_V(%esp, 0, V_U_EBX, %ebx) /* restore scratch register */
127 addl $V_END, %esp /* restore intr. stack ptr */

new/usr/src/uts/intel/brand/lx/lx_brand_asm.s 3

128 xchgl (%esp), %eax /* swap new and orig. return addrs */
129 jmp nopop_sys_rtt_syscall

131 .lx_brand_int80_trace:
132 CALC_TABLE_ADDR(%ebx, L_TRACEHANDLER)
133 jmp 1b
134 SET_SIZE(lx_brand_int80_callback)

137 #define PATCH_POINT _CONST(.lx_brand_int80_patch_point + 1)
138 #define PATCH_VAL _CONST(.lx_brand_int80_trace - .lx_brand_int80_notrace)

140 ENTRY(lx_brand_int80_enable)
141 pushl %ebx
142 pushl %eax
143 movl $1, lx_systrace_brand_enabled
144 movl $PATCH_POINT, %ebx
145 movl $PATCH_VAL, %eax
146 movb %al, (%ebx)
147 popl %eax
148 popl %ebx
149 ret
150 SET_SIZE(lx_brand_int80_enable)

152 ENTRY(lx_brand_int80_disable)
153 pushl %ebx
154 movl $PATCH_POINT, %ebx
155 movb $0, (%ebx)
156 movl $0, lx_systrace_brand_enabled
157 popl %ebx
158 ret
159 SET_SIZE(lx_brand_int80_disable)

161 #endif /* __i386 */
162 #endif /* __lint */
163 #endif /* ! codereview */

new/usr/src/uts/intel/genassym/Makefile 1

**
 1818 Tue Jan 14 16:17:30 2014
new/usr/src/uts/intel/genassym/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # ident "%Z%%M% %I% %E% SMI"
26 #
27 # This makefile drives the production of genassym.h through
28 # compile time intialized data.
29 #
30 # intel architecture dependent
31 #

33 #
34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #
36 UTSBASE = ../..

38 GENASSYM_H = $(GENASSYM_DIR)/$(OBJS_DIR)/genassym.h
39 OFFSETS_SRC = $(GENASSYM_DIR)/offsets.in

41 #
42 # Include common rules.
43 #
44 include $(UTSBASE)/intel/Makefile.intel

46 #
47 # Define targets
48 #
49 ALL_TARGET = $(GENASSYM_H)

51 INC_PATH += -I$(UTSBASE)/common/brand/lx

53 #
54 # Overrides
55 #
56 CLEANFILES = Nothing_to_remove
57 CLOBBERFILES = $(GENASSYM_H) Nothing_to_remove

59 #
60 # Default build targets.
61 #

new/usr/src/uts/intel/genassym/Makefile 2

62 .KEEP_STATE:

64 def: $(DEF_DEPS)

66 all: $(ALL_DEPS)

68 clean: $(CLEAN_DEPS)

70 clobber: $(CLOBBER_DEPS)

72 clean.lint:

74 install: def

76 #
77 # Create genassym.h
78 #
79 $(GENASSYM_H): $(OFFSETS_SRC)
80 $(OFFSETS_CREATE) <$(OFFSETS_SRC) >$@

82 #
83 # Include common targets.
84 #
85 include $(UTSBASE)/intel/Makefile.targ
86 #endif /* ! codereview */

new/usr/src/uts/intel/genassym/offsets.in 1

**
 1165 Tue Jan 14 16:17:30 2014
new/usr/src/uts/intel/genassym/offsets.in
Bring back LX zones.
**

1 \
2 \ CDDL HEADER START
3 \
4 \ The contents of this file are subject to the terms of the
5 \ Common Development and Distribution License (the "License").
6 \ You may not use this file except in compliance with the License.
7 \
8 \ You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 \ or http://www.opensolaris.org/os/licensing.
10 \ See the License for the specific language governing permissions
11 \ and limitations under the License.
12 \
13 \ When distributing Covered Code, include this CDDL HEADER in each
14 \ file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 \ If applicable, add the following below this CDDL HEADER, with the
16 \ fields enclosed by brackets "[]" replaced with your own identifying
17 \ information: Portions Copyright [yyyy] [name of copyright owner]
18 \
19 \ CDDL HEADER END
20 \
21 \
22 \ Copyright 2010 Sun Microsystems, Inc. All rights reserved.
23 \ Use is subject to license terms.
24 \

26 \
27 \ offsets.in: input file to produce the architecture-dependent genassym.h
28 \ using the ctfstabs program
29 \

31 #ifndef _GENASSYM
32 #define _GENASSYM
33 #endif

35 #include <sys/lx_brand.h>

37 lx_proc_data
38 l_handler
39 l_tracehandler
40 l_traceflag

42 lx_zone_data
43 lxzd_max_syscall
44 #endif /* ! codereview */

new/usr/src/uts/intel/ia32/os/archdep.c 1

**
 40308 Tue Jan 14 16:17:30 2014
new/usr/src/uts/intel/ia32/os/archdep.c
Bring back LX zones.
**
______unchanged_portion_omitted_

607 /*
608 * Protect segment registers from non-user privilege levels and GDT selectors
609 * other than USER_CS, USER_DS and lwp FS and GS values. If the segment
610 * selector is non-null and not USER_CS/USER_DS, we make sure that the
611 * TI bit is set to point into the LDT and that the RPL is set to 3.
612 *
613 * Since struct regs stores each 16-bit segment register as a 32-bit greg_t, we
614 * also explicitly zero the top 16 bits since they may be coming from the
615 * user’s address space via setcontext(2) or /proc.
616 *
617 * Note about null selector. When running on the hypervisor if we allow a
618 * process to set its %cs to null selector with RPL of 0 the hypervisor will
619 * crash the domain. If running on bare metal we would get a #gp fault and
620 * be able to kill the process and continue on. Therefore we make sure to
621 * force RPL to SEL_UPL even for null selector when setting %cs.
622 */

624 #if defined(IS_CS) || defined(IS_NOT_CS)
625 #error "IS_CS and IS_NOT_CS already defined"
626 #endif

628 #define IS_CS 1
629 #define IS_NOT_CS 0

631 /*ARGSUSED*/
632 static greg_t
633 fix_segreg(greg_t sr, int iscs, model_t datamodel)
634 {
635 kthread_t *t = curthread;
636
637 #endif /* ! codereview */
638 switch (sr &= 0xffff) {

640 case 0:
641 if (iscs == IS_CS)
642 return (0 | SEL_UPL);
643 else
644 return (0);

646 #if defined(__amd64)
647 /*
648 * If lwp attempts to switch data model then force their
649 * code selector to be null selector.
650 */
651 case U32CS_SEL:
652 if (datamodel == DATAMODEL_NATIVE)
653 return (0 | SEL_UPL);
654 else
655 return (sr);

657 case UCS_SEL:
658 if (datamodel == DATAMODEL_ILP32)
659 return (0 | SEL_UPL);
660 #elif defined(__i386)
661 case UCS_SEL:
662 #endif
663 /*FALLTHROUGH*/
664 case UDS_SEL:
665 case LWPFS_SEL:

new/usr/src/uts/intel/ia32/os/archdep.c 2

666 case LWPGS_SEL:
667 case SEL_UPL:
668 return (sr);
669 default:
670 break;
671 }

673 /*
674 * Allow this process’s brand to do any necessary segment register
675 * manipulation.
676 */
677 if (PROC_IS_BRANDED(t->t_procp) && BRMOP(t->t_procp)->b_fixsegreg) {
678 greg_t bsr = BRMOP(t->t_procp)->b_fixsegreg(sr, datamodel);

680 if (bsr == 0 && iscs == IS_CS)
681 return (0 | SEL_UPL);
682 else
683 return (bsr);
684 #endif /* ! codereview */
685 }

687 /*
688 * Force it into the LDT in ring 3 for 32-bit processes, which by
689 * default do not have an LDT, so that any attempt to use an invalid
690 * selector will reference the (non-existant) LDT, and cause a #gp
691 * fault for the process.
692 *
693 * 64-bit processes get the null gdt selector since they
694 * are not allowed to have a private LDT.
695 */
696 #if defined(__amd64)
697 if (datamodel == DATAMODEL_ILP32) {
698 return (sr | SEL_TI_LDT | SEL_UPL);
699 } else {
700 if (iscs == IS_CS)
701 return (0 | SEL_UPL);
702 else
703 return (0);
704 }

706 #elif defined(__i386)
707 return (sr | SEL_TI_LDT | SEL_UPL);
708 #endif
709 }

711 /*
712 * Set general registers.
713 */
714 void
715 setgregs(klwp_t *lwp, gregset_t grp)
716 {
717 struct regs *rp = lwptoregs(lwp);
718 model_t datamodel = lwp_getdatamodel(lwp);

720 #if defined(__amd64)
721 struct pcb *pcb = &lwp->lwp_pcb;
722 int thisthread = lwptot(lwp) == curthread;

724 if (datamodel == DATAMODEL_NATIVE) {

726 if (thisthread)
727 (void) save_syscall_args(); /* copy the args */

729 rp->r_rdi = grp[REG_RDI];
730 rp->r_rsi = grp[REG_RSI];
731 rp->r_rdx = grp[REG_RDX];

new/usr/src/uts/intel/ia32/os/archdep.c 3

732 rp->r_rcx = grp[REG_RCX];
733 rp->r_r8 = grp[REG_R8];
734 rp->r_r9 = grp[REG_R9];
735 rp->r_rax = grp[REG_RAX];
736 rp->r_rbx = grp[REG_RBX];
737 rp->r_rbp = grp[REG_RBP];
738 rp->r_r10 = grp[REG_R10];
739 rp->r_r11 = grp[REG_R11];
740 rp->r_r12 = grp[REG_R12];
741 rp->r_r13 = grp[REG_R13];
742 rp->r_r14 = grp[REG_R14];
743 rp->r_r15 = grp[REG_R15];
744 rp->r_trapno = grp[REG_TRAPNO];
745 rp->r_err = grp[REG_ERR];
746 rp->r_rip = grp[REG_RIP];
747 /*
748 * Setting %cs or %ss to anything else is quietly but
749 * quite definitely forbidden!
750 */
751 rp->r_cs = UCS_SEL;
752 rp->r_ss = UDS_SEL;
753 rp->r_rsp = grp[REG_RSP];

755 if (thisthread)
756 kpreempt_disable();

758 pcb->pcb_ds = UDS_SEL;
759 pcb->pcb_es = UDS_SEL;

761 /*
762 * 64-bit processes -are- allowed to set their fsbase/gsbase
763 * values directly, but only if they’re using the segment
764 * selectors that allow that semantic.
765 *
766 * (32-bit processes must use lwp_set_private().)
767 */
768 pcb->pcb_fsbase = grp[REG_FSBASE];
769 pcb->pcb_gsbase = grp[REG_GSBASE];
770 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
771 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);

773 /*
774 * Ensure that we go out via update_sregs
775 */
776 pcb->pcb_rupdate = 1;
777 lwptot(lwp)->t_post_sys = 1;
778 if (thisthread)
779 kpreempt_enable();
780 #if defined(_SYSCALL32_IMPL)
781 } else {
782 rp->r_rdi = (uint32_t)grp[REG_RDI];
783 rp->r_rsi = (uint32_t)grp[REG_RSI];
784 rp->r_rdx = (uint32_t)grp[REG_RDX];
785 rp->r_rcx = (uint32_t)grp[REG_RCX];
786 rp->r_rax = (uint32_t)grp[REG_RAX];
787 rp->r_rbx = (uint32_t)grp[REG_RBX];
788 rp->r_rbp = (uint32_t)grp[REG_RBP];
789 rp->r_trapno = (uint32_t)grp[REG_TRAPNO];
790 rp->r_err = (uint32_t)grp[REG_ERR];
791 rp->r_rip = (uint32_t)grp[REG_RIP];

793 rp->r_cs = fix_segreg(grp[REG_CS], IS_CS, datamodel);
794 rp->r_ss = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);

796 rp->r_rsp = (uint32_t)grp[REG_RSP];

new/usr/src/uts/intel/ia32/os/archdep.c 4

798 if (thisthread)
799 kpreempt_disable();

801 pcb->pcb_ds = fix_segreg(grp[REG_DS], IS_NOT_CS, datamodel);
802 pcb->pcb_es = fix_segreg(grp[REG_ES], IS_NOT_CS, datamodel);

804 /*
805 * (See fsbase/gsbase commentary above)
806 */
807 pcb->pcb_fs = fix_segreg(grp[REG_FS], IS_NOT_CS, datamodel);
808 pcb->pcb_gs = fix_segreg(grp[REG_GS], IS_NOT_CS, datamodel);

810 /*
811 * Ensure that we go out via update_sregs
812 */
813 pcb->pcb_rupdate = 1;
814 lwptot(lwp)->t_post_sys = 1;
815 if (thisthread)
816 kpreempt_enable();
817 #endif
818 }

820 /*
821 * Only certain bits of the flags register can be modified.
822 */
823 rp->r_rfl = (rp->r_rfl & ~PSL_USERMASK) |
824 (grp[REG_RFL] & PSL_USERMASK);

826 #elif defined(__i386)

828 /*
829 * Only certain bits of the flags register can be modified.
830 */
831 grp[EFL] = (rp->r_efl & ~PSL_USERMASK) | (grp[EFL] & PSL_USERMASK);

833 /*
834 * Copy saved registers from user stack.
835 */
836 bcopy(grp, &rp->r_gs, sizeof (gregset_t));

838 rp->r_cs = fix_segreg(rp->r_cs, IS_CS, datamodel);
839 rp->r_ss = fix_segreg(rp->r_ss, IS_NOT_CS, datamodel);
840 rp->r_ds = fix_segreg(rp->r_ds, IS_NOT_CS, datamodel);
841 rp->r_es = fix_segreg(rp->r_es, IS_NOT_CS, datamodel);
842 rp->r_fs = fix_segreg(rp->r_fs, IS_NOT_CS, datamodel);
843 rp->r_gs = fix_segreg(rp->r_gs, IS_NOT_CS, datamodel);

845 #endif /* __i386 */
846 }

848 /*
849 * Determine whether eip is likely to have an interrupt frame
850 * on the stack. We do this by comparing the address to the
851 * range of addresses spanned by several well-known routines.
852 */
853 extern void _interrupt();
854 extern void _allsyscalls();
855 extern void _cmntrap();
856 extern void fakesoftint();

858 extern size_t _interrupt_size;
859 extern size_t _allsyscalls_size;
860 extern size_t _cmntrap_size;
861 extern size_t _fakesoftint_size;

863 /*

new/usr/src/uts/intel/ia32/os/archdep.c 5

864 * Get a pc-only stacktrace. Used for kmem_alloc() buffer ownership tracking.
865 * Returns MIN(current stack depth, pcstack_limit).
866 */
867 int
868 getpcstack(pc_t *pcstack, int pcstack_limit)
869 {
870 struct frame *fp = (struct frame *)getfp();
871 struct frame *nextfp, *minfp, *stacktop;
872 int depth = 0;
873 int on_intr;
874 uintptr_t pc;

876 if ((on_intr = CPU_ON_INTR(CPU)) != 0)
877 stacktop = (struct frame *)(CPU->cpu_intr_stack + SA(MINFRAME));
878 else
879 stacktop = (struct frame *)curthread->t_stk;
880 minfp = fp;

882 pc = ((struct regs *)fp)->r_pc;

884 while (depth < pcstack_limit) {
885 nextfp = (struct frame *)fp->fr_savfp;
886 pc = fp->fr_savpc;
887 if (nextfp <= minfp || nextfp >= stacktop) {
888 if (on_intr) {
889 /*
890 * Hop from interrupt stack to thread stack.
891 */
892 stacktop = (struct frame *)curthread->t_stk;
893 minfp = (struct frame *)curthread->t_stkbase;
894 on_intr = 0;
895 continue;
896 }
897 break;
898 }
899 pcstack[depth++] = (pc_t)pc;
900 fp = nextfp;
901 minfp = fp;
902 }
903 return (depth);
904 }

906 /*
907 * The following ELF header fields are defined as processor-specific
908 * in the V8 ABI:
909 *
910 * e_ident[EI_DATA] encoding of the processor-specific
911 * data in the object file
912 * e_machine processor identification
913 * e_flags processor-specific flags associated
914 * with the file
915 */

917 /*
918 * The value of at_flags reflects a platform’s cpu module support.
919 * at_flags is used to check for allowing a binary to execute and
920 * is passed as the value of the AT_FLAGS auxiliary vector.
921 */
922 int at_flags = 0;

924 /*
925 * Check the processor-specific fields of an ELF header.
926 *
927 * returns 1 if the fields are valid, 0 otherwise
928 */
929 /*ARGSUSED2*/

new/usr/src/uts/intel/ia32/os/archdep.c 6

930 int
931 elfheadcheck(
932 unsigned char e_data,
933 Elf32_Half e_machine,
934 Elf32_Word e_flags)
935 {
936 if (e_data != ELFDATA2LSB)
937 return (0);
938 #if defined(__amd64)
939 if (e_machine == EM_AMD64)
940 return (1);
941 #endif
942 return (e_machine == EM_386);
943 }

945 uint_t auxv_hwcap_include = 0; /* patch to enable unrecognized features */
946 uint_t auxv_hwcap_include_2 = 0; /* second word */
947 uint_t auxv_hwcap_exclude = 0; /* patch for broken cpus, debugging */
948 uint_t auxv_hwcap_exclude_2 = 0; /* second word */
949 #if defined(_SYSCALL32_IMPL)
950 uint_t auxv_hwcap32_include = 0; /* ditto for 32-bit apps */
951 uint_t auxv_hwcap32_include_2 = 0; /* ditto for 32-bit apps */
952 uint_t auxv_hwcap32_exclude = 0; /* ditto for 32-bit apps */
953 uint_t auxv_hwcap32_exclude_2 = 0; /* ditto for 32-bit apps */
954 #endif

956 /*
957 * Gather information about the processor and place it into auxv_hwcap
958 * so that it can be exported to the linker via the aux vector.
959 *
960 * We use this seemingly complicated mechanism so that we can ensure
961 * that /etc/system can be used to override what the system can or
962 * cannot discover for itself.
963 */
964 void
965 bind_hwcap(void)
966 {
967 uint_t cpu_hwcap_flags[2];
968 cpuid_pass4(NULL, cpu_hwcap_flags);

970 auxv_hwcap = (auxv_hwcap_include | cpu_hwcap_flags[0]) &
971 ~auxv_hwcap_exclude;
972 auxv_hwcap_2 = (auxv_hwcap_include_2 | cpu_hwcap_flags[1]) &
973 ~auxv_hwcap_exclude_2;

975 #if defined(__amd64)
976 /*
977 * On AMD processors, sysenter just doesn’t work at all
978 * when the kernel is in long mode. On IA-32e processors
979 * it does, but there’s no real point in all the alternate
980 * mechanism when syscall works on both.
981 *
982 * Besides, the kernel’s sysenter handler is expecting a
983 * 32-bit lwp ...
984 */
985 auxv_hwcap &= ~AV_386_SEP;
986 #else
987 /*
988 * 32-bit processes can -always- use the lahf/sahf instructions
989 */
990 auxv_hwcap |= AV_386_AHF;
991 #endif

993 if (auxv_hwcap_include || auxv_hwcap_exclude || auxv_hwcap_include_2 ||
994 auxv_hwcap_exclude_2) {
995 /*

new/usr/src/uts/intel/ia32/os/archdep.c 7

996 * The below assignment is regrettably required to get lint
997 * to accept the validity of our format string. The format
998 * string is in fact valid, but whatever intelligence in lint
999 * understands the cmn_err()-specific %b appears to have an
1000 * off-by-one error: it (mistakenly) complains about bit
1001 * number 32 (even though this is explicitly permitted).
1002 * Normally, one would will away such warnings with a "LINTED"
1003 * directive, but for reasons unclear and unknown, lint
1004 * refuses to be assuaged in this case. Fortunately, lint
1005 * doesn’t pretend to have solved the Halting Problem --
1006 * and as soon as the format string is programmatic, it
1007 * knows enough to shut up.
1008 */
1009 char *fmt = "?user ABI extensions: %b\n";
1010 cmn_err(CE_CONT, fmt, auxv_hwcap, FMT_AV_386);
1011 fmt = "?user ABI extensions (word 2): %b\n";
1012 cmn_err(CE_CONT, fmt, auxv_hwcap_2, FMT_AV_386_2);
1013 }

1015 #if defined(_SYSCALL32_IMPL)
1016 auxv_hwcap32 = (auxv_hwcap32_include | cpu_hwcap_flags[0]) &
1017 ~auxv_hwcap32_exclude;
1018 auxv_hwcap32_2 = (auxv_hwcap32_include_2 | cpu_hwcap_flags[1]) &
1019 ~auxv_hwcap32_exclude_2;

1021 #if defined(__amd64)
1022 /*
1023 * If this is an amd64 architecture machine from Intel, then
1024 * syscall -doesn’t- work in compatibility mode, only sysenter does.
1025 *
1026 * Sigh.
1027 */
1028 if (!cpuid_syscall32_insn(NULL))
1029 auxv_hwcap32 &= ~AV_386_AMD_SYSC;

1031 /*
1032 * 32-bit processes can -always- use the lahf/sahf instructions
1033 */
1034 auxv_hwcap32 |= AV_386_AHF;
1035 #endif

1037 if (auxv_hwcap32_include || auxv_hwcap32_exclude ||
1038 auxv_hwcap32_include_2 || auxv_hwcap32_exclude_2) {
1039 /*
1040 * See the block comment in the cmn_err() of auxv_hwcap, above.
1041 */
1042 char *fmt = "?32-bit user ABI extensions: %b\n";
1043 cmn_err(CE_CONT, fmt, auxv_hwcap32, FMT_AV_386);
1044 fmt = "?32-bit user ABI extensions (word 2): %b\n";
1045 cmn_err(CE_CONT, fmt, auxv_hwcap32_2, FMT_AV_386_2);
1046 }
1047 #endif
1048 }

1050 /*
1051 * sync_icache() - this is called
1052 * in proc/fs/prusrio.c. x86 has an unified cache and therefore
1053 * this is a nop.
1054 */
1055 /* ARGSUSED */
1056 void
1057 sync_icache(caddr_t addr, uint_t len)
1058 {
1059 /* Do nothing for now */
1060 }

new/usr/src/uts/intel/ia32/os/archdep.c 8

1062 /*ARGSUSED*/
1063 void
1064 sync_data_memory(caddr_t va, size_t len)
1065 {
1066 /* Not implemented for this platform */
1067 }

1069 int
1070 __ipltospl(int ipl)
1071 {
1072 return (ipltospl(ipl));
1073 }

1075 /*
1076 * The panic code invokes panic_saveregs() to record the contents of a
1077 * regs structure into the specified panic_data structure for debuggers.
1078 */
1079 void
1080 panic_saveregs(panic_data_t *pdp, struct regs *rp)
1081 {
1082 panic_nv_t *pnv = PANICNVGET(pdp);

1084 struct cregs creg;

1086 getcregs(&creg);

1088 #if defined(__amd64)
1089 PANICNVADD(pnv, "rdi", rp->r_rdi);
1090 PANICNVADD(pnv, "rsi", rp->r_rsi);
1091 PANICNVADD(pnv, "rdx", rp->r_rdx);
1092 PANICNVADD(pnv, "rcx", rp->r_rcx);
1093 PANICNVADD(pnv, "r8", rp->r_r8);
1094 PANICNVADD(pnv, "r9", rp->r_r9);
1095 PANICNVADD(pnv, "rax", rp->r_rax);
1096 PANICNVADD(pnv, "rbx", rp->r_rbx);
1097 PANICNVADD(pnv, "rbp", rp->r_rbp);
1098 PANICNVADD(pnv, "r10", rp->r_r10);
1099 PANICNVADD(pnv, "r11", rp->r_r11);
1100 PANICNVADD(pnv, "r12", rp->r_r12);
1101 PANICNVADD(pnv, "r13", rp->r_r13);
1102 PANICNVADD(pnv, "r14", rp->r_r14);
1103 PANICNVADD(pnv, "r15", rp->r_r15);
1104 PANICNVADD(pnv, "fsbase", rdmsr(MSR_AMD_FSBASE));
1105 PANICNVADD(pnv, "gsbase", rdmsr(MSR_AMD_GSBASE));
1106 PANICNVADD(pnv, "ds", rp->r_ds);
1107 PANICNVADD(pnv, "es", rp->r_es);
1108 PANICNVADD(pnv, "fs", rp->r_fs);
1109 PANICNVADD(pnv, "gs", rp->r_gs);
1110 PANICNVADD(pnv, "trapno", rp->r_trapno);
1111 PANICNVADD(pnv, "err", rp->r_err);
1112 PANICNVADD(pnv, "rip", rp->r_rip);
1113 PANICNVADD(pnv, "cs", rp->r_cs);
1114 PANICNVADD(pnv, "rflags", rp->r_rfl);
1115 PANICNVADD(pnv, "rsp", rp->r_rsp);
1116 PANICNVADD(pnv, "ss", rp->r_ss);
1117 PANICNVADD(pnv, "gdt_hi", (uint64_t)(creg.cr_gdt._l[3]));
1118 PANICNVADD(pnv, "gdt_lo", (uint64_t)(creg.cr_gdt._l[0]));
1119 PANICNVADD(pnv, "idt_hi", (uint64_t)(creg.cr_idt._l[3]));
1120 PANICNVADD(pnv, "idt_lo", (uint64_t)(creg.cr_idt._l[0]));
1121 #elif defined(__i386)
1122 PANICNVADD(pnv, "gs", (uint32_t)rp->r_gs);
1123 PANICNVADD(pnv, "fs", (uint32_t)rp->r_fs);
1124 PANICNVADD(pnv, "es", (uint32_t)rp->r_es);
1125 PANICNVADD(pnv, "ds", (uint32_t)rp->r_ds);
1126 PANICNVADD(pnv, "edi", (uint32_t)rp->r_edi);
1127 PANICNVADD(pnv, "esi", (uint32_t)rp->r_esi);

new/usr/src/uts/intel/ia32/os/archdep.c 9

1128 PANICNVADD(pnv, "ebp", (uint32_t)rp->r_ebp);
1129 PANICNVADD(pnv, "esp", (uint32_t)rp->r_esp);
1130 PANICNVADD(pnv, "ebx", (uint32_t)rp->r_ebx);
1131 PANICNVADD(pnv, "edx", (uint32_t)rp->r_edx);
1132 PANICNVADD(pnv, "ecx", (uint32_t)rp->r_ecx);
1133 PANICNVADD(pnv, "eax", (uint32_t)rp->r_eax);
1134 PANICNVADD(pnv, "trapno", (uint32_t)rp->r_trapno);
1135 PANICNVADD(pnv, "err", (uint32_t)rp->r_err);
1136 PANICNVADD(pnv, "eip", (uint32_t)rp->r_eip);
1137 PANICNVADD(pnv, "cs", (uint32_t)rp->r_cs);
1138 PANICNVADD(pnv, "eflags", (uint32_t)rp->r_efl);
1139 PANICNVADD(pnv, "uesp", (uint32_t)rp->r_uesp);
1140 PANICNVADD(pnv, "ss", (uint32_t)rp->r_ss);
1141 PANICNVADD(pnv, "gdt", creg.cr_gdt);
1142 PANICNVADD(pnv, "idt", creg.cr_idt);
1143 #endif /* __i386 */

1145 PANICNVADD(pnv, "ldt", creg.cr_ldt);
1146 PANICNVADD(pnv, "task", creg.cr_task);
1147 PANICNVADD(pnv, "cr0", creg.cr_cr0);
1148 PANICNVADD(pnv, "cr2", creg.cr_cr2);
1149 PANICNVADD(pnv, "cr3", creg.cr_cr3);
1150 if (creg.cr_cr4)
1151 PANICNVADD(pnv, "cr4", creg.cr_cr4);

1153 PANICNVSET(pdp, pnv);
1154 }

1156 #define TR_ARG_MAX 6 /* Max args to print, same as SPARC */

1158 #if !defined(__amd64)

1160 /*
1161 * Given a return address (%eip), determine the likely number of arguments
1162 * that were pushed on the stack prior to its execution. We do this by
1163 * expecting that a typical call sequence consists of pushing arguments on
1164 * the stack, executing a call instruction, and then performing an add
1165 * on %esp to restore it to the value prior to pushing the arguments for
1166 * the call. We attempt to detect such an add, and divide the addend
1167 * by the size of a word to determine the number of pushed arguments.
1168 *
1169 * If we do not find such an add, we punt and return TR_ARG_MAX. It is not
1170 * possible to reliably determine if a function took no arguments (i.e. was
1171 * void) because assembler routines do not reliably perform an add on %esp
1172 * immediately upon returning (eg. _sys_call()), so returning TR_ARG_MAX is
1173 * safer than returning 0.
1174 */
1175 static ulong_t
1176 argcount(uintptr_t eip)
1177 {
1178 const uint8_t *ins = (const uint8_t *)eip;
1179 ulong_t n;

1181 enum {
1182 M_MODRM_ESP = 0xc4, /* Mod/RM byte indicates %esp */
1183 M_ADD_IMM32 = 0x81, /* ADD imm32 to r/m32 */
1184 M_ADD_IMM8 = 0x83 /* ADD imm8 to r/m32 */
1185 };

1187 if (eip < KERNELBASE || ins[1] != M_MODRM_ESP)
1188 return (TR_ARG_MAX);

1190 switch (ins[0]) {
1191 case M_ADD_IMM32:
1192 n = ins[2] + (ins[3] << 8) + (ins[4] << 16) + (ins[5] << 24);
1193 break;

new/usr/src/uts/intel/ia32/os/archdep.c 10

1195 case M_ADD_IMM8:
1196 n = ins[2];
1197 break;

1199 default:
1200 return (TR_ARG_MAX);
1201 }

1203 n /= sizeof (long);
1204 return (MIN(n, TR_ARG_MAX));
1205 }

1207 #endif /* !__amd64 */

1209 /*
1210 * Print a stack backtrace using the specified frame pointer. We delay two
1211 * seconds before continuing, unless this is the panic traceback.
1212 * If we are in the process of panicking, we also attempt to write the
1213 * stack backtrace to a staticly assigned buffer, to allow the panic
1214 * code to find it and write it in to uncompressed pages within the
1215 * system crash dump.
1216 * Note that the frame for the starting stack pointer value is omitted because
1217 * the corresponding %eip is not known.
1218 */

1220 extern char *dump_stack_scratch;

1222 #if defined(__amd64)

1224 void
1225 traceback(caddr_t fpreg)
1226 {
1227 struct frame *fp = (struct frame *)fpreg;
1228 struct frame *nextfp;
1229 uintptr_t pc, nextpc;
1230 ulong_t off;
1231 char args[TR_ARG_MAX * 2 + 16], *sym;
1232 uint_t offset = 0;
1233 uint_t next_offset = 0;
1234 char stack_buffer[1024];

1236 if (!panicstr)
1237 printf("traceback: %%fp = %p\n", (void *)fp);

1239 if (panicstr && !dump_stack_scratch) {
1240 printf("Warning - stack not written to the dump buffer\n");
1241 }

1243 fp = (struct frame *)plat_traceback(fpreg);
1244 if ((uintptr_t)fp < KERNELBASE)
1245 goto out;

1247 pc = fp->fr_savpc;
1248 fp = (struct frame *)fp->fr_savfp;

1250 while ((uintptr_t)fp >= KERNELBASE) {
1251 /*
1252 * XX64 Until port is complete tolerate 8-byte aligned
1253 * frame pointers but flag with a warning so they can
1254 * be fixed.
1255 */
1256 if (((uintptr_t)fp & (STACK_ALIGN - 1)) != 0) {
1257 if (((uintptr_t)fp & (8 - 1)) == 0) {
1258 printf(" >> warning! 8-byte"
1259 " aligned %%fp = %p\n", (void *)fp);

new/usr/src/uts/intel/ia32/os/archdep.c 11

1260 } else {
1261 printf(
1262 " >> mis-aligned %%fp = %p\n", (void *)fp);
1263 break;
1264 }
1265 }

1267 args[0] = ’\0’;
1268 nextpc = (uintptr_t)fp->fr_savpc;
1269 nextfp = (struct frame *)fp->fr_savfp;
1270 if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1271 printf("%016lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1272 mod_containing_pc((caddr_t)pc), sym, off, args);
1273 (void) snprintf(stack_buffer, sizeof (stack_buffer),
1274 "%s:%s+%lx (%s) | ",
1275 mod_containing_pc((caddr_t)pc), sym, off, args);
1276 } else {
1277 printf("%016lx %lx (%s)\n",
1278 (uintptr_t)fp, pc, args);
1279 (void) snprintf(stack_buffer, sizeof (stack_buffer),
1280 "%lx (%s) | ", pc, args);
1281 }

1283 if (panicstr && dump_stack_scratch) {
1284 next_offset = offset + strlen(stack_buffer);
1285 if (next_offset < STACK_BUF_SIZE) {
1286 bcopy(stack_buffer, dump_stack_scratch + offset,
1287 strlen(stack_buffer));
1288 offset = next_offset;
1289 } else {
1290 /*
1291 * In attempting to save the panic stack
1292 * to the dumpbuf we have overflowed that area.
1293 * Print a warning and continue to printf the
1294 * stack to the msgbuf
1295 */
1296 printf("Warning: stack in the dump buffer"
1297 " may be incomplete\n");
1298 offset = next_offset;
1299 }
1300 }

1302 pc = nextpc;
1303 fp = nextfp;
1304 }
1305 out:
1306 if (!panicstr) {
1307 printf("end of traceback\n");
1308 DELAY(2 * MICROSEC);
1309 } else if (dump_stack_scratch) {
1310 dump_stack_scratch[offset] = ’\0’;
1311 }
1312 }

1314 #elif defined(__i386)

1316 void
1317 traceback(caddr_t fpreg)
1318 {
1319 struct frame *fp = (struct frame *)fpreg;
1320 struct frame *nextfp, *minfp, *stacktop;
1321 uintptr_t pc, nextpc;
1322 uint_t offset = 0;
1323 uint_t next_offset = 0;
1324 char stack_buffer[1024];

new/usr/src/uts/intel/ia32/os/archdep.c 12

1326 cpu_t *cpu;

1328 /*
1329 * args[] holds TR_ARG_MAX hex long args, plus ", " or ’\0’.
1330 */
1331 char args[TR_ARG_MAX * 2 + 8], *p;

1333 int on_intr;
1334 ulong_t off;
1335 char *sym;

1337 if (!panicstr)
1338 printf("traceback: %%fp = %p\n", (void *)fp);

1340 if (panicstr && !dump_stack_scratch) {
1341 printf("Warning - stack not written to the dumpbuf\n");
1342 }

1344 /*
1345 * If we are panicking, all high-level interrupt information in
1346 * CPU was overwritten. panic_cpu has the correct values.
1347 */
1348 kpreempt_disable(); /* prevent migration */

1350 cpu = (panicstr && CPU->cpu_id == panic_cpu.cpu_id)? &panic_cpu : CPU;

1352 if ((on_intr = CPU_ON_INTR(cpu)) != 0)
1353 stacktop = (struct frame *)(cpu->cpu_intr_stack + SA(MINFRAME));
1354 else
1355 stacktop = (struct frame *)curthread->t_stk;

1357 kpreempt_enable();

1359 fp = (struct frame *)plat_traceback(fpreg);
1360 if ((uintptr_t)fp < KERNELBASE)
1361 goto out;

1363 minfp = fp; /* Baseline minimum frame pointer */
1364 pc = fp->fr_savpc;
1365 fp = (struct frame *)fp->fr_savfp;

1367 while ((uintptr_t)fp >= KERNELBASE) {
1368 ulong_t argc;
1369 long *argv;

1371 if (fp <= minfp || fp >= stacktop) {
1372 if (on_intr) {
1373 /*
1374 * Hop from interrupt stack to thread stack.
1375 */
1376 stacktop = (struct frame *)curthread->t_stk;
1377 minfp = (struct frame *)curthread->t_stkbase;
1378 on_intr = 0;
1379 continue;
1380 }
1381 break; /* we’re outside of the expected range */
1382 }

1384 if ((uintptr_t)fp & (STACK_ALIGN - 1)) {
1385 printf(" >> mis-aligned %%fp = %p\n", (void *)fp);
1386 break;
1387 }

1389 nextpc = fp->fr_savpc;
1390 nextfp = (struct frame *)fp->fr_savfp;
1391 argc = argcount(nextpc);

new/usr/src/uts/intel/ia32/os/archdep.c 13

1392 argv = (long *)((char *)fp + sizeof (struct frame));

1394 args[0] = ’\0’;
1395 p = args;
1396 while (argc-- > 0 && argv < (long *)stacktop) {
1397 p += snprintf(p, args + sizeof (args) - p,
1398 "%s%lx", (p == args) ? "" : ", ", *argv++);
1399 }

1401 if ((sym = kobj_getsymname(pc, &off)) != NULL) {
1402 printf("%08lx %s:%s+%lx (%s)\n", (uintptr_t)fp,
1403 mod_containing_pc((caddr_t)pc), sym, off, args);
1404 (void) snprintf(stack_buffer, sizeof (stack_buffer),
1405 "%s:%s+%lx (%s) | ",
1406 mod_containing_pc((caddr_t)pc), sym, off, args);

1408 } else {
1409 printf("%08lx %lx (%s)\n",
1410 (uintptr_t)fp, pc, args);
1411 (void) snprintf(stack_buffer, sizeof (stack_buffer),
1412 "%lx (%s) | ", pc, args);

1414 }

1416 if (panicstr && dump_stack_scratch) {
1417 next_offset = offset + strlen(stack_buffer);
1418 if (next_offset < STACK_BUF_SIZE) {
1419 bcopy(stack_buffer, dump_stack_scratch + offset,
1420 strlen(stack_buffer));
1421 offset = next_offset;
1422 } else {
1423 /*
1424 * In attempting to save the panic stack
1425 * to the dumpbuf we have overflowed that area.
1426 * Print a warning and continue to printf the
1427 * stack to the msgbuf
1428 */
1429 printf("Warning: stack in the dumpbuf"
1430 " may be incomplete\n");
1431 offset = next_offset;
1432 }
1433 }

1435 minfp = fp;
1436 pc = nextpc;
1437 fp = nextfp;
1438 }
1439 out:
1440 if (!panicstr) {
1441 printf("end of traceback\n");
1442 DELAY(2 * MICROSEC);
1443 } else if (dump_stack_scratch) {
1444 dump_stack_scratch[offset] = ’\0’;
1445 }

1447 }

1449 #endif /* __i386 */

1451 /*
1452 * Generate a stack backtrace from a saved register set.
1453 */
1454 void
1455 traceregs(struct regs *rp)
1456 {
1457 traceback((caddr_t)rp->r_fp);

new/usr/src/uts/intel/ia32/os/archdep.c 14

1458 }

1460 void
1461 exec_set_sp(size_t stksize)
1462 {
1463 klwp_t *lwp = ttolwp(curthread);

1465 lwptoregs(lwp)->r_sp = (uintptr_t)curproc->p_usrstack - stksize;
1466 }

1468 hrtime_t
1469 gethrtime_waitfree(void)
1470 {
1471 return (dtrace_gethrtime());
1472 }

1474 hrtime_t
1475 gethrtime(void)
1476 {
1477 return (gethrtimef());
1478 }

1480 hrtime_t
1481 gethrtime_unscaled(void)
1482 {
1483 return (gethrtimeunscaledf());
1484 }

1486 void
1487 scalehrtime(hrtime_t *hrt)
1488 {
1489 scalehrtimef(hrt);
1490 }

1492 uint64_t
1493 unscalehrtime(hrtime_t nsecs)
1494 {
1495 return (unscalehrtimef(nsecs));
1496 }

1498 void
1499 gethrestime(timespec_t *tp)
1500 {
1501 gethrestimef(tp);
1502 }

1504 #if defined(__amd64)
1505 /*
1506 * Part of the implementation of hres_tick(); this routine is
1507 * easier in C than assembler .. called with the hres_lock held.
1508 *
1509 * XX64 Many of these timekeeping variables need to be extern’ed in a header
1510 */

1512 #include <sys/time.h>
1513 #include <sys/machlock.h>

1515 extern int one_sec;
1516 extern int max_hres_adj;

1518 void
1519 __adj_hrestime(void)
1520 {
1521 long long adj;

1523 if (hrestime_adj == 0)

new/usr/src/uts/intel/ia32/os/archdep.c 15

1524 adj = 0;
1525 else if (hrestime_adj > 0) {
1526 if (hrestime_adj < max_hres_adj)
1527 adj = hrestime_adj;
1528 else
1529 adj = max_hres_adj;
1530 } else {
1531 if (hrestime_adj < -max_hres_adj)
1532 adj = -max_hres_adj;
1533 else
1534 adj = hrestime_adj;
1535 }

1537 timedelta -= adj;
1538 hrestime_adj = timedelta;
1539 hrestime.tv_nsec += adj;

1541 while (hrestime.tv_nsec >= NANOSEC) {
1542 one_sec++;
1543 hrestime.tv_sec++;
1544 hrestime.tv_nsec -= NANOSEC;
1545 }
1546 }
1547 #endif

1549 /*
1550 * Wrapper functions to maintain backwards compability
1551 */
1552 int
1553 xcopyin(const void *uaddr, void *kaddr, size_t count)
1554 {
1555 return (xcopyin_nta(uaddr, kaddr, count, UIO_COPY_CACHED));
1556 }

1558 int
1559 xcopyout(const void *kaddr, void *uaddr, size_t count)
1560 {
1561 return (xcopyout_nta(kaddr, uaddr, count, UIO_COPY_CACHED));
1562 }

new/usr/src/uts/intel/ia32/os/desctbls.c 1

**
 35407 Tue Jan 14 16:17:31 2014
new/usr/src/uts/intel/ia32/os/desctbls.c
Bring back LX zones.
**
______unchanged_portion_omitted_

160 /*
161 * The brand infrastructure interposes on two handlers, and we use one as a
162 * NULL signpost.
163 */
164 static struct interposing_handler brand_tbl[3];
164 static struct interposing_handler brand_tbl[2];

166 /*
167 * software prototypes for default local descriptor table
168 */

170 /*
171 * Routines for loading segment descriptors in format the hardware
172 * can understand.
173 */

175 #if defined(__amd64)

177 /*
178 * In long mode we have the new L or long mode attribute bit
179 * for code segments. Only the conforming bit in type is used along
180 * with descriptor priority and present bits. Default operand size must
181 * be zero when in long mode. In 32-bit compatibility mode all fields
182 * are treated as in legacy mode. For data segments while in long mode
183 * only the present bit is loaded.
184 */
185 void
186 set_usegd(user_desc_t *dp, uint_t lmode, void *base, size_t size,
187 uint_t type, uint_t dpl, uint_t gran, uint_t defopsz)
188 {
189 ASSERT(lmode == SDP_SHORT || lmode == SDP_LONG);

191 /*
192 * 64-bit long mode.
193 */
194 if (lmode == SDP_LONG)
195 dp->usd_def32 = 0; /* 32-bit operands only */
196 else
197 /*
198 * 32-bit compatibility mode.
199 */
200 dp->usd_def32 = defopsz; /* 0 = 16, 1 = 32-bit ops */

202 dp->usd_long = lmode; /* 64-bit mode */
203 dp->usd_type = type;
204 dp->usd_dpl = dpl;
205 dp->usd_p = 1;
206 dp->usd_gran = gran; /* 0 = bytes, 1 = pages */

208 dp->usd_lobase = (uintptr_t)base;
209 dp->usd_midbase = (uintptr_t)base >> 16;
210 dp->usd_hibase = (uintptr_t)base >> (16 + 8);
211 dp->usd_lolimit = size;
212 dp->usd_hilimit = (uintptr_t)size >> 16;
213 }

______unchanged_portion_omitted_

900 #endif /* __xpv */
901 #endif /* __i386 */

new/usr/src/uts/intel/ia32/os/desctbls.c 2

903 /*
904 * Build kernel IDT.
905 *
906 * Note that for amd64 we pretty much require every gate to be an interrupt
907 * gate which blocks interrupts atomically on entry; that’s because of our
908 * dependency on using ’swapgs’ every time we come into the kernel to find
909 * the cpu structure. If we get interrupted just before doing that, %cs could
910 * be in kernel mode (so that the trap prolog doesn’t do a swapgs), but
911 * %gsbase is really still pointing at something in userland. Bad things will
912 * ensue. We also use interrupt gates for i386 as well even though this is not
913 * required for some traps.
914 *
915 * Perhaps they should have invented a trap gate that does an atomic swapgs?
916 */
917 static void
918 init_idt_common(gate_desc_t *idt)
919 {
920 set_gatesegd(&idt[T_ZERODIV], &div0trap, KCS_SEL, SDT_SYSIGT, TRP_KPL,
921 0);
922 set_gatesegd(&idt[T_SGLSTP], &dbgtrap, KCS_SEL, SDT_SYSIGT, TRP_KPL,
923 0);
924 set_gatesegd(&idt[T_NMIFLT], &nmiint, KCS_SEL, SDT_SYSIGT, TRP_KPL,
925 0);
926 set_gatesegd(&idt[T_BPTFLT], &brktrap, KCS_SEL, SDT_SYSIGT, TRP_UPL,
927 0);
928 set_gatesegd(&idt[T_OVFLW], &ovflotrap, KCS_SEL, SDT_SYSIGT, TRP_UPL,
929 0);
930 set_gatesegd(&idt[T_BOUNDFLT], &boundstrap, KCS_SEL, SDT_SYSIGT,
931 TRP_KPL, 0);
932 set_gatesegd(&idt[T_ILLINST], &invoptrap, KCS_SEL, SDT_SYSIGT, TRP_KPL,
933 0);
934 set_gatesegd(&idt[T_NOEXTFLT], &ndptrap, KCS_SEL, SDT_SYSIGT, TRP_KPL,
935 0);

937 /*
938 * double fault handler.
939 *
940 * Note that on the hypervisor a guest does not receive #df faults.
941 * Instead a failsafe event is injected into the guest if its selectors
942 * and/or stack is in a broken state. See xen_failsafe_callback.
943 */
944 #if !defined(__xpv)
945 #if defined(__amd64)

947 set_gatesegd(&idt[T_DBLFLT], &syserrtrap, KCS_SEL, SDT_SYSIGT, TRP_KPL,
948 T_DBLFLT);

950 #elif defined(__i386)

952 /*
953 * task gate required.
954 */
955 set_gatesegd(&idt[T_DBLFLT], NULL, DFTSS_SEL, SDT_SYSTASKGT, TRP_KPL,
956 0);

958 #endif /* __i386 */
959 #endif /* !__xpv */

961 /*
962 * T_EXTOVRFLT coprocessor-segment-overrun not supported.
963 */

965 set_gatesegd(&idt[T_TSSFLT], &invtsstrap, KCS_SEL, SDT_SYSIGT, TRP_KPL,
966 0);
967 set_gatesegd(&idt[T_SEGFLT], &segnptrap, KCS_SEL, SDT_SYSIGT, TRP_KPL,

new/usr/src/uts/intel/ia32/os/desctbls.c 3

968 0);
969 set_gatesegd(&idt[T_STKFLT], &stktrap, KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
970 set_gatesegd(&idt[T_GPFLT], &gptrap, KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
971 set_gatesegd(&idt[T_PGFLT], &pftrap, KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
972 set_gatesegd(&idt[T_EXTERRFLT], &ndperr, KCS_SEL, SDT_SYSIGT, TRP_KPL,
973 0);
974 set_gatesegd(&idt[T_ALIGNMENT], &achktrap, KCS_SEL, SDT_SYSIGT,
975 TRP_KPL, 0);
976 set_gatesegd(&idt[T_MCE], &mcetrap, KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);
977 set_gatesegd(&idt[T_SIMDFPE], &xmtrap, KCS_SEL, SDT_SYSIGT, TRP_KPL, 0);

979 /*
980 * install "int80" handler at, well, 0x80.
981 */
982 set_gatesegd(&idt0[T_INT80], &sys_int80, KCS_SEL, SDT_SYSIGT, TRP_UPL,
983 0);

985 /*
986 #endif /* ! codereview */
987 * install fast trap handler at 210.
988 */
989 set_gatesegd(&idt[T_FASTTRAP], &fasttrap, KCS_SEL, SDT_SYSIGT, TRP_UPL,
990 0);

992 /*
993 * System call handler.
994 */
995 #if defined(__amd64)
996 set_gatesegd(&idt[T_SYSCALLINT], &sys_syscall_int, KCS_SEL, SDT_SYSIGT,
997 TRP_UPL, 0);

999 #elif defined(__i386)
1000 set_gatesegd(&idt[T_SYSCALLINT], &sys_call, KCS_SEL, SDT_SYSIGT,
1001 TRP_UPL, 0);
1002 #endif /* __i386 */

1004 /*
1005 * Install the DTrace interrupt handler for the pid provider.
1006 */
1007 set_gatesegd(&idt[T_DTRACE_RET], &dtrace_ret, KCS_SEL,
1008 SDT_SYSIGT, TRP_UPL, 0);

1010 /*
1011 - * Prepare interposing descriptors for the branded "int80"
1012 - * and syscall handlers and cache copies of the default
1013 - * descriptors.
1014 */
1015 brand_tbl[0].ih_inum = T_INT80;
1016 brand_tbl[0].ih_default_desc = idt0[T_INT80];
1017 set_gatesegd(&(brand_tbl[0].ih_interp_desc), &brand_sys_int80, KCS_SEL,
1018 SDT_SYSIGT, TRP_UPL, 0);

1020 brand_tbl[1].ih_inum = T_SYSCALLINT;
1021 brand_tbl[1].ih_default_desc = idt0[T_SYSCALLINT];
980 * Prepare interposing descriptor for the syscall handler
981 * and cache copy of the default descriptor.
982 */
983 brand_tbl[0].ih_inum = T_SYSCALLINT;
984 brand_tbl[0].ih_default_desc = idt0[T_SYSCALLINT];

1023 #if defined(__amd64)
1024 set_gatesegd(&(brand_tbl[1].ih_interp_desc), &brand_sys_syscall_int,
987 set_gatesegd(&(brand_tbl[0].ih_interp_desc), &brand_sys_syscall_int,
1025 KCS_SEL, SDT_SYSIGT, TRP_UPL, 0);
1026 #elif defined(__i386)
1027 set_gatesegd(&(brand_tbl[1].ih_interp_desc), &brand_sys_call,

new/usr/src/uts/intel/ia32/os/desctbls.c 4

990 set_gatesegd(&(brand_tbl[0].ih_interp_desc), &brand_sys_call,
1028 KCS_SEL, SDT_SYSIGT, TRP_UPL, 0);
1029 #endif /* __i386 */

1031 brand_tbl[2].ih_inum = 0;
994 brand_tbl[1].ih_inum = 0;
1032 }
______unchanged_portion_omitted_

new/usr/src/uts/intel/ldlinux/Makefile 1

**
 2317 Tue Jan 14 16:17:31 2014
new/usr/src/uts/intel/ldlinux/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/ldlinux/Makefile
23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # This makefile drives the production of the ldlinux streams kernel
28 # module.
29 #
30 # intel architecture dependent
31 #

33 #
34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #
36 UTSBASE = ../..

38 #
39 # Define the module and object file sets.
40 #
41 MODULE = ldlinux
42 OBJECTS = $(LDLINUX_OBJS:%=$(OBJS_DIR)/%)
43 LINTS = $(LDLINUX_OBJS:%.o=$(LINTS_DIR)/%.ln)
44 ROOTMODULE = $(USR_STRMOD_DIR)/$(MODULE)

46 #
47 # Include common rules.
48 #
49 include $(UTSBASE)/intel/Makefile.intel

51 #
52 # Define targets
53 #
54 ALL_TARGET = $(BINARY)
55 LINT_TARGET = $(MODULE).lint
56 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

58 CPPFLAGS += -I$(UTSBASE)/common/brand/lx

60 #
61 # Overrides.

new/usr/src/uts/intel/ldlinux/Makefile 2

62 #
63 CFLAGS += $(CCVERBOSE)

65 #
66 # For now, disable these lint checks; maintainers should endeavor
67 # to investigate and remove these for maximum lint coverage.
68 # Please do not carry these forward to new Makefiles.
69 #
70 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN

72 #
73 # Default build targets.
74 #
75 .KEEP_STATE:

77 def: $(DEF_DEPS)

79 all: $(ALL_DEPS)

81 clean: $(CLEAN_DEPS)

83 clobber: $(CLOBBER_DEPS)

85 lint: $(LINT_DEPS)

87 modlintlib: $(MODLINTLIB_DEPS)

89 clean.lint: $(CLEAN_LINT_DEPS)

91 install: $(INSTALL_DEPS)

93 #
94 # Include common targets.
95 #
96 include $(UTSBASE)/intel/Makefile.targ

98 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/lx/io/%.c
99 $(COMPILE.c) -o $@ $<
100 $(CTFCONVERT_O)

102 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/lx/io/%.c
103 @($(LHEAD) $(LINT.c) $< $(LTAIL))
104 #endif /* ! codereview */

new/usr/src/uts/intel/lx_afs/Makefile 1

**
 2361 Tue Jan 14 16:17:31 2014
new/usr/src/uts/intel/lx_afs/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #

27 #
28 # This makefile drives the production of the lxproc file system
29 # kernel module.
30 #
31 # i86 architecture dependent
32 #

34 #
35 # Path to the base of the uts directory tree (usually /usr/src/uts).
36 #
37 UTSBASE = ../..

39 #
40 # Define the module and object file sets.
41 #
42 # Note that the name of the actual filesystem is lx_afs and
43 # not lx_autofs. This is becase filesystem names are stupidly
44 # limited to 8 characters.
45 #
46 MODULE = lx_afs
47 OBJECTS = $(LX_AUTOFS_OBJS:%=$(OBJS_DIR)/%)
48 LINTS = $(LX_AUTOFS_OBJS:%.o=$(LINTS_DIR)/%.ln)
49 ROOTMODULE = $(USR_FS_DIR)/$(MODULE)

51 INC_PATH += -I$(UTSBASE)/common/brand/lx

53 #
54 # Include common rules.
55 #
56 include $(UTSBASE)/intel/Makefile.intel

58 #
59 # Define targets
60 #
61 ALL_TARGET = $(BINARY)

new/usr/src/uts/intel/lx_afs/Makefile 2

62 LINT_TARGET = $(MODULE).lint
63 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

65 #
66 # Overrides.
67 #
68 CFLAGS += $(CCVERBOSE)
69 LDFLAGS += -dy

71 #
72 # For now, disable these lint checks; maintainers should endeavor
73 # to investigate and remove these for maximum lint coverage.
74 # Please do not carry these forward to new Makefiles.
75 #
76 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

78 #
79 # Default build targets.
80 #
81 .KEEP_STATE:

83 def: $(DEF_DEPS)

85 all: $(ALL_DEPS)

87 clean: $(CLEAN_DEPS)

89 clobber: $(CLOBBER_DEPS)

91 lint: $(LINT_DEPS)

93 modlintlib: $(MODLINTLIB_DEPS)

95 clean.lint: $(CLEAN_LINT_DEPS)

97 install: $(INSTALL_DEPS)

99 #
100 # Include common targets.
101 #
102 include $(UTSBASE)/intel/Makefile.targ

104 #
105 # Include brand-specific rules
106 #

108 include $(UTSBASE)/intel/lx_afs/Makefile.rules
109 #endif /* ! codereview */

new/usr/src/uts/intel/lx_afs/Makefile.rules 1

**
 1207 Tue Jan 14 16:17:31 2014
new/usr/src/uts/intel/lx_afs/Makefile.rules
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #

22 #
23 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
24 # Use is subject to license terms.
25 #
26 # ident "%Z%%M% %I% %E% SMI"
27 #

29 #
30 # Section 1a: C object build rules
31 #
32 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/lx/autofs/%.c
33 $(COMPILE.c) -o $@ $<
34 $(CTFCONVERT_O)

36 #
37 # Section 1b: Lint ‘object’ build rules.
38 #
39 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/lx/autofs/%.c
40 @($(LHEAD) $(LINT.c) $< $(LTAIL))
41 #endif /* ! codereview */

new/usr/src/uts/intel/lx_audio/Makefile 1

**
 2420 Tue Jan 14 16:17:32 2014
new/usr/src/uts/intel/lx_audio/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/lx_audio/Makefile
23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # This makefile drives the production of the lx_audio driver
28 #
29 # intel architecture dependent
30 #

32 #
33 # Path to the base of the uts directory tree (usually /usr/src/uts).
34 #
35 UTSBASE = ../..

37 #
38 # Define the module and object file sets.
39 #
40 MODULE = lx_audio
41 OBJECTS = $(LX_AUDIO_OBJS:%=$(OBJS_DIR)/%)
42 LINTS = $(LX_AUDIO_OBJS:%.o=$(LINTS_DIR)/%.ln)
43 ROOTMODULE = $(USR_DRV_DIR)/$(MODULE)
44 CONF_SRCDIR = $(UTSBASE)/common/brand/lx/io

46 #
47 # Include common rules.
48 #
49 include $(UTSBASE)/intel/Makefile.intel

51 #
52 # Define targets
53 #
54 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
55 LINT_TARGET = $(MODULE).lint
56 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

58 CPPFLAGS += -I$(UTSBASE)/common/brand/lx

60 #
61 # For now, disable these lint checks; maintainers should endeavor

new/usr/src/uts/intel/lx_audio/Makefile 2

62 # to investigate and remove these for maximum lint coverage.
63 # Please do not carry these forward to new Makefiles.
64 #
65 LINTTAGS += -erroff=E_BAD_PTR_CAST_ALIGN
66 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV
67 LINTTAGS += -erroff=E_SUSPICIOUS_COMPARISON

69 #
70 # Default build targets.
71 #
72 .KEEP_STATE:

74 def: $(DEF_DEPS)

76 all: $(ALL_DEPS)

78 clean: $(CLEAN_DEPS)

80 clobber: $(CLOBBER_DEPS)

82 lint: $(LINT_DEPS)

84 modlintlib: $(MODLINTLIB_DEPS)

86 clean.lint: $(CLEAN_LINT_DEPS)

88 install: $(INSTALL_DEPS)

90 #
91 # Include common targets.
92 #
93 include $(UTSBASE)/intel/Makefile.targ

95 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/lx/io/%.c
96 $(COMPILE.c) -o $@ $<
97 $(CTFCONVERT_O)

99 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/lx/io/%.c
100 @($(LHEAD) $(LINT.c) $< $(LTAIL))
101 #endif /* ! codereview */

new/usr/src/uts/intel/lx_brand/Makefile 1

**
 2401 Tue Jan 14 16:17:32 2014
new/usr/src/uts/intel/lx_brand/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 # This makefile drives the production of the kernel component of
26 # the lx brand
27 #

29 #
30 # Path to the base of the uts directory tree (usually /usr/src/uts).
31 #
32 UTSBASE = ../..

34 #
35 # Path to where brand common sources live
36 #
37 LX_CMN = $(SRC)/common/brand/lx

39 #
40 # Define the module and object file sets.
41 #
42 MODULE = lx_brand
43 OBJECTS = $(LX_BRAND_OBJS:%=$(OBJS_DIR)/%)
44 LINTS = $(LX_BRAND_OBJS:%.o=$(LINTS_DIR)/%.ln)
45 ROOTMODULE = $(USR_BRAND_DIR)/$(MODULE)

47 #
48 # Include common rules.
49 #
50 include $(UTSBASE)/intel/Makefile.intel

52 #
53 # Define targets
54 #
55 ALL_TARGET = $(BINARY)
56 LINT_TARGET = $(MODULE).lint
57 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

59 INC_PATH += -I$(UTSBASE)/common/brand/lx -I$(LX_CMN)
60 AS_INC_PATH += -I$(UTSBASE)/i86pc/genassym/$(OBJS_DIR)

new/usr/src/uts/intel/lx_brand/Makefile 2

62 #
63 # lint pass one enforcement
64 #
65 CFLAGS += $(CCVERBOSE)

67 LDFLAGS += -dy -Nexec/elfexec

69 #
70 # For now, disable these lint checks; maintainers should endeavor
71 # to investigate and remove these for maximum lint coverage.
72 # Please do not carry these forward to new Makefiles.
73 #
74 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV
75 LINTTAGS += -erroff=E_SUSPICIOUS_COMPARISON

77 #
78 # Default build targets.
79 #
80 .KEEP_STATE:

82 def: $(DEF_DEPS)

84 all: $(ALL_DEPS)

86 clean: $(CLEAN_DEPS)

88 clobber: $(CLOBBER_DEPS)

90 lint: $(LINT_DEPS)

92 modlintlib: $(MODLINTLIB_DEPS)

94 clean.lint: $(CLEAN_LINT_DEPS)

96 install: $(INSTALL_DEPS)

98 #
99 # Include common targets.
100 #
101 include $(UTSBASE)/intel/Makefile.targ

103 #
104 # Include brand-specific rules
105 #

107 include $(UTSBASE)/intel/lx_brand/Makefile.rules
108 #endif /* ! codereview */

new/usr/src/uts/intel/lx_brand/Makefile.rules 1

**
 2428 Tue Jan 14 16:17:32 2014
new/usr/src/uts/intel/lx_brand/Makefile.rules
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"
26 #

28 #
29 # Section 1a: C object build rules
30 #
31 $(OBJS_DIR_OBJ64)/%.o: $(UTSBASE)/common/brand/lx/os/%.c
32 $(COMPILE.c) -D_ELF32_COMPAT -o $@ $<
33 $(CTFCONVERT_O)

35 $(OBJS_DIR_DBG64)/%.o: $(UTSBASE)/common/brand/lx/os/%.c
36 $(COMPILE.c) -D_ELF32_COMPAT -o $@ $<
37 $(CTFCONVERT_O)

39 $(OBJS_DIR_OBJ64)/%.o: $(UTSBASE)/common/brand/lx/syscall/%.c
40 $(COMPILE.c) -D_ELF32_COMPAT -o $@ $<
41 $(CTFCONVERT_O)

43 $(OBJS_DIR_DBG64)/%.o: $(UTSBASE)/common/brand/lx/syscall/%.c
44 $(COMPILE.c) -D_ELF32_COMPAT -o $@ $<
45 $(CTFCONVERT_O)

47 $(OBJS_DIR_OBJ64)/%.o: $(UTSBASE)/intel/brand/lx/%.s
48 $(COMPILE.s) -D_ELF32_COMPAT -o $@ $<

50 $(OBJS_DIR_OBJ64)/%.o: $(LX_CMN)/%.c
51 $(COMPILE.c) -o $@ $<
52 $(CTFCONVERT_O)

54 $(OBJS_DIR_DBG64)/%.o: $(UTSBASE)/intel/brand/lx/%.s
55 $(COMPILE.s) -D_ELF32_COMPAT -o $@ $<

57 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/lx/os/%.c
58 $(COMPILE.c) -o $@ $<
59 $(CTFCONVERT_O)

61 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/lx/syscall/%.c

new/usr/src/uts/intel/lx_brand/Makefile.rules 2

62 $(COMPILE.c) -o $@ $<
63 $(CTFCONVERT_O)

65 $(OBJS_DIR)/%.o: $(LX_CMN)/%.c
66 $(COMPILE.c) -o $@ $<
67 $(CTFCONVERT_O)

69 $(OBJS_DIR)/%.o: $(UTSBASE)/intel/brand/lx/%.s
70 $(COMPILE.s) -o $@ $<

72 #
73 # Section 1b: Lint ‘object’ build rules.
74 #
75 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/lx/os/%.c
76 @($(LHEAD) $(LINT.c) $< $(LTAIL))

78 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/lx/syscall/%.c
79 @($(LHEAD) $(LINT.c) $< $(LTAIL))

81 $(LINTS_DIR)/%.ln: $(LX_CMN)/%.c
82 @($(LHEAD) $(LINT.c) $< $(LTAIL))

84 $(LINTS_DIR)/%.ln: $(UTSBASE)/intel/brand/lx/%.s
85 @($(LHEAD) $(LINT.s) $< $(LTAIL))
86 #endif /* ! codereview */

new/usr/src/uts/intel/lx_proc/Makefile 1

**
 2432 Tue Jan 14 16:17:32 2014
new/usr/src/uts/intel/lx_proc/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/lx_proc/Makefile
23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # This makefile drives the production of the lxproc file system
28 # kernel module.
29 #
30 # i86 architecture dependent
31 #

33 #
34 # Path to the base of the uts directory tree (usually /usr/src/uts).
35 #
36 UTSBASE = ../..

38 #
39 # Path to where brand common sources live
40 #
41 LX_CMN = $(SRC)/common/brand/lx

43 #
44 # Define the module and object file sets.
45 #
46 MODULE = lx_proc
47 OBJECTS = $(LX_PROC_OBJS:%=$(OBJS_DIR)/%)
48 LINTS = $(LX_PROC_OBJS:%.o=$(LINTS_DIR)/%.ln)
49 ROOTMODULE = $(USR_FS_DIR)/$(MODULE)

51 INC_PATH += -I$(UTSBASE)/common/brand/lx -I$(LX_CMN)

53 #
54 # Include common rules.
55 #
56 include $(UTSBASE)/intel/Makefile.intel

58 #
59 # Define targets
60 #
61 ALL_TARGET = $(BINARY)

new/usr/src/uts/intel/lx_proc/Makefile 2

62 LINT_TARGET = $(MODULE).lint
63 INSTALL_TARGET = $(BINARY) $(ROOTMODULE)

65 #
66 # Overrides.
67 #
68 CFLAGS += $(CCVERBOSE)

70 #
71 # Depends on procfs and lx_brand
72 #
73 LDFLAGS += -dy -Nfs/procfs -Nbrand/lx_brand

75 #
76 # For now, disable these lint checks; maintainers should endeavor
77 # to investigate and remove these for maximum lint coverage.
78 # Please do not carry these forward to new Makefiles.
79 #
80 LINTTAGS += -erroff=E_PTRDIFF_OVERFLOW
81 LINTTAGS += -erroff=E_ASSIGN_NARROW_CONV

83 #
84 # Default build targets.
85 #
86 .KEEP_STATE:

88 def: $(DEF_DEPS)

90 all: $(ALL_DEPS)

92 clean: $(CLEAN_DEPS)

94 clobber: $(CLOBBER_DEPS)

96 lint: $(LINT_DEPS)

98 modlintlib: $(MODLINTLIB_DEPS)

100 clean.lint: $(CLEAN_LINT_DEPS)

102 install: $(INSTALL_DEPS)

104 #
105 # Include common targets.
106 #
107 include $(UTSBASE)/intel/Makefile.targ

109 #
110 # Include brand-specific rules
111 #

113 include $(UTSBASE)/intel/lx_proc/Makefile.rules
114 #endif /* ! codereview */

new/usr/src/uts/intel/lx_proc/Makefile.rules 1

**
 1203 Tue Jan 14 16:17:32 2014
new/usr/src/uts/intel/lx_proc/Makefile.rules
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2006 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #
25 #ident "%Z%%M% %I% %E% SMI"

27 #
28 # Section 1a: C object build rules
29 #
30 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/lx/procfs/%.c
31 $(COMPILE.c) -o $@ $<
32 $(CTFCONVERT_O)

34 #
35 # Section 1b: Lint ‘object’ build rules.
36 #
37 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/lx/procfs/%.c
38 @($(LHEAD) $(LINT.c) $< $(LTAIL))
39 #endif /* ! codereview */

new/usr/src/uts/intel/lx_ptm/Makefile 1

**
 2098 Tue Jan 14 16:17:32 2014
new/usr/src/uts/intel/lx_ptm/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # uts/intel/lx_ptm/Makefile
23 #
24 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
25 # Use is subject to license terms.
26 #
27 # This makefile drives the production of the lx_ptm driver
28 #
29 # intel architecture dependent
30 #

32 #
33 # Path to the base of the uts directory tree (usually /usr/src/uts).
34 #
35 UTSBASE = ../..

37 #
38 # Define the module and object file sets.
39 #
40 MODULE = lx_ptm
41 OBJECTS = $(LX_PTM_OBJS:%=$(OBJS_DIR)/%)
42 LINTS = $(LX_PTM_OBJS:%.o=$(LINTS_DIR)/%.ln)
43 ROOTMODULE = $(USR_DRV_DIR)/$(MODULE)
44 CONF_SRCDIR = $(UTSBASE)/common/brand/lx/io

46 #
47 # Include common rules.
48 #
49 include $(UTSBASE)/intel/Makefile.intel

51 #
52 # Define targets
53 #
54 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
55 LINT_TARGET = $(MODULE).lint
56 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOT_CONFFILE)

58 CPPFLAGS += -I$(UTSBASE)/common/brand/lx

60 #
61 # Default build targets.

new/usr/src/uts/intel/lx_ptm/Makefile 2

62 #
63 .KEEP_STATE:

65 def: $(DEF_DEPS)

67 all: $(ALL_DEPS)

69 clean: $(CLEAN_DEPS)

71 clobber: $(CLOBBER_DEPS)

73 lint: $(LINT_DEPS)

75 modlintlib: $(MODLINTLIB_DEPS)

77 clean.lint: $(CLEAN_LINT_DEPS)

79 install: $(INSTALL_DEPS)

81 #
82 # Include common targets.
83 #
84 include $(UTSBASE)/intel/Makefile.targ

86 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/lx/io/%.c
87 $(COMPILE.c) -o $@ $<
88 $(CTFCONVERT_O)

90 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/lx/io/%.c
91 @($(LHEAD) $(LINT.c) $< $(LTAIL))
92 #endif /* ! codereview */

new/usr/src/uts/intel/lx_systrace/Makefile 1

**
 2179 Tue Jan 14 16:17:33 2014
new/usr/src/uts/intel/lx_systrace/Makefile
Bring back LX zones.
**

1 #
2 # CDDL HEADER START
3 #
4 # The contents of this file are subject to the terms of the
5 # Common Development and Distribution License (the "License").
6 # You may not use this file except in compliance with the License.
7 #
8 # You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 # or http://www.opensolaris.org/os/licensing.
10 # See the License for the specific language governing permissions
11 # and limitations under the License.
12 #
13 # When distributing Covered Code, include this CDDL HEADER in each
14 # file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 # If applicable, add the following below this CDDL HEADER, with the
16 # fields enclosed by brackets "[]" replaced with your own identifying
17 # information: Portions Copyright [yyyy] [name of copyright owner]
18 #
19 # CDDL HEADER END
20 #
21 #
22 # Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 # Use is subject to license terms.
24 #

26 UTSBASE = ../..

28 MODULE = lx_systrace
29 OBJECTS = $(LX_SYSTRACE_OBJS:%=$(OBJS_DIR)/%)
30 LINTS = $(LX_SYSTRACE_OBJS:%.o=$(LINTS_DIR)/%.ln)
31 ROOTMODULE = $(USR_DRV_DIR)/$(MODULE)
32 ROOTLINK = $(USR_DTRACE_DIR)/$(MODULE)
33 CONF_SRCDIR = $(UTSBASE)/common/brand/lx/dtrace

35 include $(UTSBASE)/intel/Makefile.intel

37 ALL_TARGET = $(BINARY) $(SRC_CONFILE)
38 LINT_TARGET = $(MODULE).lint
39 INSTALL_TARGET = $(BINARY) $(ROOTMODULE) $(ROOTLINK) $(ROOT_CONFFILE)

41 CPPFLAGS += -I$(UTSBASE)/common/brand/lx

43 LDFLAGS += -dy -Ndrv/dtrace -Nbrand/lx_brand

45 #
46 # For now, disable these lint checks; maintainers should endeavor
47 # to investigate and remove these for maximum lint coverage.
48 # Please do not carry these forward to new Makefiles.
49 #
50 LINTTAGS += -erroff=E_STATIC_UNUSED

52 .KEEP_STATE:

54 def: $(DEF_DEPS)

56 all: $(ALL_DEPS)

58 clean: $(CLEAN_DEPS)

60 clobber: $(CLOBBER_DEPS)

new/usr/src/uts/intel/lx_systrace/Makefile 2

62 lint: $(LINT_DEPS)

64 modlintlib: $(MODLINTLIB_DEPS)

66 clean.lint: $(CLEAN_LINT_DEPS)

68 install: $(INSTALL_DEPS)

70 $(ROOTLINK): $(USR_DTRACE_DIR) $(ROOTMODULE)
71 -$(RM) $@; ln $(ROOTMODULE) $@

73 include $(UTSBASE)/intel/Makefile.targ

75 $(OBJS_DIR)/%.o: $(UTSBASE)/common/brand/lx/dtrace/%.c
76 $(COMPILE.c) -o $@ $<
77 $(CTFCONVERT_O)

79 $(LINTS_DIR)/%.ln: $(UTSBASE)/common/brand/lx/dtrace/%.c
80 @($(LHEAD) $(LINT.c) $< $(LTAIL))
81 #endif /* ! codereview */

new/usr/src/uts/intel/sys/machbrand.h 1

**
 1486 Tue Jan 14 16:17:33 2014
new/usr/src/uts/intel/sys/machbrand.h
Bring back LX zones.
**

1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.

10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21 /*
22 * Copyright (c) 2006, 2010, Oracle and/or its affiliates. All rights reserved.
23 */

25 #ifndef _SYS_MACHBRAND_H
26 #define _SYS_MACHBRAND_H

28 #pragma ident "%Z%%M% %I% %E% SMI"

30 #endif /* ! codereview */
31 #ifdef __cplusplus
32 extern "C" {
33 #endif

35 #ifndef _ASM

37 #include <sys/model.h>

39 struct brand_mach_ops {
40 void (*b_sysenter)(void);
41 void (*b_int80)(void);
42 #endif /* ! codereview */
43 void (*b_int91)(void);
44 void (*b_syscall)(void);
45 void (*b_syscall32)(void);
46 greg_t (*b_fixsegreg)(greg_t, model_t);
47 #endif /* ! codereview */
48 };

50 #endif /* _ASM */

52 #define BRAND_CB_SYSENTER 0
53 #define BRAND_CB_INT80 1
54 #define BRAND_CB_INT91 2
55 #define BRAND_CB_SYSCALL 3
56 #define BRAND_CB_SYSCALL32 4
28 #define BRAND_CB_INT91 1
29 #define BRAND_CB_SYSCALL 2
30 #define BRAND_CB_SYSCALL32 3

58 #ifdef __cplusplus

new/usr/src/uts/intel/sys/machbrand.h 2

59 }
______unchanged_portion_omitted_

new/usr/src/uts/intel/sys/segments.h 1

**
 24269 Tue Jan 14 16:17:33 2014
new/usr/src/uts/intel/sys/segments.h
Bring back LX zones.
**
______unchanged_portion_omitted_

383 #define GATESEG_GETOFFSET(sgd) ((uintptr_t)((sgd)->sgd_looffset | \
384 (sgd)->sgd_hioffset << 16 | \
385 (uint64_t)((sgd)->sgd_hi64offset) << 32))

387 #endif /* __amd64 */

389 /*
390 * functions for initializing and updating segment descriptors.
391 */
392 #if defined(__amd64)

394 extern void set_usegd(user_desc_t *, uint_t, void *, size_t, uint_t, uint_t,
395 uint_t, uint_t);

397 #elif defined(__i386)

399 extern void set_usegd(user_desc_t *, void *, size_t, uint_t, uint_t,
400 uint_t, uint_t);

402 #endif /* __i386 */

404 extern void set_gatesegd(gate_desc_t *, void (*)(void), selector_t,
405 uint_t, uint_t, uint_t);

407 extern void set_syssegd(system_desc_t *, void *, size_t, uint_t, uint_t);

409 extern void *get_ssd_base(system_desc_t *);

411 extern void gdt_update_usegd(uint_t, user_desc_t *);

413 extern int ldt_update_segd(user_desc_t *, user_desc_t *);

415 #if defined(__xpv)

417 extern int xen_idt_to_trap_info(uint_t, gate_desc_t *, void *);
418 extern void xen_idt_write(gate_desc_t *, uint_t);

420 #endif /* __xen */

422 void init_boot_gdt(user_desc_t *);

424 #endif /* _ASM */

426 /*
427 * Common segment parameter defintions for granularity, default
428 * operand size and operaton mode.
429 */
430 #define SDP_BYTES 0 /* segment limit scaled to bytes */
431 #define SDP_PAGES 1 /* segment limit scaled to pages */
432 #define SDP_OP32 1 /* code and data default operand = 32 bits */
433 #define SDP_LONG 1 /* long mode code segment (64 bits) */
434 #define SDP_SHORT 0 /* compat/legacy code segment (32 bits) */
435 /*
436 * System segments and gate types.
437 *
438 * In long mode i386 32-bit ldt, tss, call, interrupt and trap gate
439 * types are redefined into 64-bit equivalents.
440 */
441 #define SDT_SYSNULL 0 /* system null */

new/usr/src/uts/intel/sys/segments.h 2

442 #define SDT_SYS286TSS 1 /* system 286 TSS available */
443 #define SDT_SYSLDT 2 /* system local descriptor table */
444 #define SDT_SYS286BSY 3 /* system 286 TSS busy */
445 #define SDT_SYS286CGT 4 /* system 286 call gate */
446 #define SDT_SYSTASKGT 5 /* system task gate */
447 #define SDT_SYS286IGT 6 /* system 286 interrupt gate */
448 #define SDT_SYS286TGT 7 /* system 286 trap gate */
449 #define SDT_SYSNULL2 8 /* system null again */
450 #define SDT_SYSTSS 9 /* system TSS available */
451 #define SDT_SYSNULL3 10 /* system null again */
452 #define SDT_SYSTSSBSY 11 /* system TSS busy */
453 #define SDT_SYSCGT 12 /* system call gate */
454 #define SDT_SYSNULL4 13 /* system null again */
455 #define SDT_SYSIGT 14 /* system interrupt gate */
456 #define SDT_SYSTGT 15 /* system trap gate */

458 /*
459 * Memory segment types.
460 *
461 * While in long mode expand-down, writable and accessed type field
462 * attributes are ignored. Only the conforming bit is loaded by hardware
463 * for long mode code segment descriptors.
464 */
465 #define SDT_MEMRO 16 /* read only */
466 #define SDT_MEMROA 17 /* read only accessed */
467 #define SDT_MEMRW 18 /* read write */
468 #define SDT_MEMRWA 19 /* read write accessed */
469 #define SDT_MEMROD 20 /* read only expand dwn limit */
470 #define SDT_MEMRODA 21 /* read only expand dwn limit accessed */
471 #define SDT_MEMRWD 22 /* read write expand dwn limit */
472 #define SDT_MEMRWDA 23 /* read write expand dwn limit accessed */
473 #define SDT_MEME 24 /* execute only */
474 #define SDT_MEMEA 25 /* execute only accessed */
475 #define SDT_MEMER 26 /* execute read */
476 #define SDT_MEMERA 27 /* execute read accessed */
477 #define SDT_MEMEC 28 /* execute only conforming */
478 #define SDT_MEMEAC 29 /* execute only accessed conforming */
479 #define SDT_MEMERC 30 /* execute read conforming */
480 #define SDT_MEMERAC 31 /* execute read accessed conforming */

482 /*
483 * Entries in the Interrupt Descriptor Table (IDT)
484 */
485 #define IDT_DE 0 /* #DE: Divide Error */
486 #define IDT_DB 1 /* #DB: Debug */
487 #define IDT_NMI 2 /* Nonmaskable External Interrupt */
488 #define IDT_BP 3 /* #BP: Breakpoint */
489 #define IDT_OF 4 /* #OF: Overflow */
490 #define IDT_BR 5 /* #BR: Bound Range Exceeded */
491 #define IDT_UD 6 /* #UD: Undefined/Invalid Opcode */
492 #define IDT_NM 7 /* #NM: No Math Coprocessor */
493 #define IDT_DF 8 /* #DF: Double Fault */
494 #define IDT_FPUGP 9 /* Coprocessor Segment Overrun */
495 #define IDT_TS 10 /* #TS: Invalid TSS */
496 #define IDT_NP 11 /* #NP: Segment Not Present */
497 #define IDT_SS 12 /* #SS: Stack Segment Fault */
498 #define IDT_GP 13 /* #GP: General Protection Fault */
499 #define IDT_PF 14 /* #PF: Page Fault */
500 #define IDT_MF 16 /* #MF: FPU Floating-Point Error */
501 #define IDT_AC 17 /* #AC: Alignment Check */
502 #define IDT_MC 18 /* #MC: Machine Check */
503 #define IDT_XF 19 /* #XF: SIMD Floating-Point Exception */
504 #define NIDT 256 /* size in entries of IDT */

506 /*
507 * Entries in the Global Descriptor Table (GDT)

new/usr/src/uts/intel/sys/segments.h 3

508 *
509 * We make sure to space the system descriptors (LDT’s, TSS’)
510 * such that they are double gdt slot aligned. This is because
511 * in long mode system segment decriptors expand to 128 bits.
512 *
513 * GDT_LWPFS and GDT_LWPGS must be the same for both 32 and 64-bit
514 * kernels. See setup_context in libc. 64-bit processes must set
515 * %fs or %gs to null selector to use 64-bit fsbase or gsbase
516 * respectively.
517 */
518 #define GDT_NULL 0 /* null */
519 #define GDT_B32DATA 1 /* dboot 32 bit data descriptor */
520 #define GDT_B32CODE 2 /* dboot 32 bit code descriptor */
521 #define GDT_B16CODE 3 /* bios call 16 bit code descriptor */
522 #define GDT_B16DATA 4 /* bios call 16 bit data descriptor */
523 #define GDT_B64CODE 5 /* dboot 64 bit code descriptor */
524 #define GDT_BGSTMP 7 /* kmdb descriptor only used early in boot */

526 #if defined(__amd64)

528 #define GDT_KCODE 6 /* kernel code seg %cs */
529 #define GDT_KDATA 7 /* kernel data seg %ds */
530 #define GDT_U32CODE 8 /* 32-bit process on 64-bit kernel %cs */
531 #define GDT_UDATA 9 /* user data seg %ds (32 and 64 bit) */
532 #define GDT_UCODE 10 /* native user code seg %cs */
533 #define GDT_LDT 12 /* LDT for current process */
534 #define GDT_KTSS 14 /* kernel tss */
535 #define GDT_FS GDT_NULL /* kernel %fs segment selector */
536 #define GDT_GS GDT_NULL /* kernel %gs segment selector */
537 #define GDT_LWPFS 55 /* lwp private %fs segment selector (32-bit) */
538 #define GDT_LWPGS 56 /* lwp private %gs segment selector (32-bit) */
539 #define GDT_BRANDMIN 57 /* first entry in GDT for brand usage */
540 #define GDT_BRANDMAX 61 /* last entry in GDT for brand usage */
541 #define NGDT 62 /* number of entries in GDT */

543 /*
544 * This selector is only used in the temporary GDT used to bring additional
545 * CPUs from 16-bit real mode into long mode in real_mode_start().
546 */
547 #define TEMPGDT_KCODE64 1 /* 64-bit code selector */

549 #elif defined(__i386)

551 #define GDT_LDT 40 /* LDT for current process */
552 #define GDT_KTSS 42 /* kernel tss */
553 #define GDT_KCODE 43 /* kernel code seg %cs */
554 #define GDT_KDATA 44 /* kernel data seg %ds */
555 #define GDT_UCODE 45 /* native user code seg %cs */
556 #define GDT_UDATA 46 /* user data seg %ds (32 and 64 bit) */
557 #define GDT_DBFLT 47 /* double fault #DF selector */
558 #define GDT_FS 53 /* kernel %fs segment selector */
559 #define GDT_GS 54 /* kernel %gs segment selector */
560 #define GDT_LWPFS 55 /* lwp private %fs segment selector */
561 #define GDT_LWPGS 56 /* lwp private %gs segment selector */
562 #define GDT_BRANDMIN 57 /* first entry in GDT for brand usage */
563 #define GDT_BRANDMAX 61 /* last entry in GDT for brand usage */
564 #if !defined(__xpv)
565 #define NGDT 90 /* number of entries in GDT */
566 #else
567 #define NGDT 512 /* single 4K page for the hypervisor */
568 #endif

570 #endif /* __i386 */

572 /*
573 * Convenient selector definitions.

new/usr/src/uts/intel/sys/segments.h 4

574 */

576 /*
577 * XXPV 64 bit Xen only allows the guest %cs/%ss be the private ones it
578 * provides, not the ones we create for ourselves. See FLAT_RING3_CS64 in
579 * public/arch-x86_64.h
580 *
581 * 64-bit Xen runs paravirtual guests in ring 3 but emulates them running in
582 * ring 0 by clearing CPL in %cs value pushed on guest exception stacks.
583 * Therefore we will have KCS_SEL value indicate ring 0 and use that everywhere
584 * in the kernel. But in the few files where we initialize segment registers or
585 * create and update descriptors we will explicity OR in SEL_KPL (ring 3) for
586 * kernel %cs. See desctbls.c for an example.
587 */

589 #if defined(__xpv) && defined(__amd64)
590 #define KCS_SEL 0xe030 /* FLAT_RING3_CS64 & 0xFFF0 */
591 #define KDS_SEL 0xe02b /* FLAT_RING3_SS64 */
592 #else
593 #define KCS_SEL SEL_GDT(GDT_KCODE, SEL_KPL)
594 #define KDS_SEL SEL_GDT(GDT_KDATA, SEL_KPL)
595 #endif

597 #define UCS_SEL SEL_GDT(GDT_UCODE, SEL_UPL)
598 #if defined(__amd64)
599 #define TEMP_CS64_SEL SEL_GDT(TEMPGDT_KCODE64, SEL_KPL)
600 #define U32CS_SEL SEL_GDT(GDT_U32CODE, SEL_UPL)
601 #endif

603 #define UDS_SEL SEL_GDT(GDT_UDATA, SEL_UPL)
604 #define ULDT_SEL SEL_GDT(GDT_LDT, SEL_KPL)
605 #define KTSS_SEL SEL_GDT(GDT_KTSS, SEL_KPL)
606 #define DFTSS_SEL SEL_GDT(GDT_DBFLT, SEL_KPL)
607 #define KFS_SEL 0
608 #define KGS_SEL SEL_GDT(GDT_GS, SEL_KPL)
609 #define LWPFS_SEL SEL_GDT(GDT_LWPFS, SEL_UPL)
610 #define LWPGS_SEL SEL_GDT(GDT_LWPGS, SEL_UPL)
611 #define BRANDMIN_SEL SEL_GDT(GDT_BRANDMIN, SEL_UPL)
612 #define BRANDMAX_SEL SEL_GDT(GDT_BRANDMAX, SEL_UPL)

614 #define B64CODE_SEL SEL_GDT(GDT_B64CODE, SEL_KPL)
615 #define B32CODE_SEL SEL_GDT(GDT_B32CODE, SEL_KPL)
616 #define B32DATA_SEL SEL_GDT(GDT_B32DATA, SEL_KPL)
617 #define B16CODE_SEL SEL_GDT(GDT_B16CODE, SEL_KPL)
618 #define B16DATA_SEL SEL_GDT(GDT_B16DATA, SEL_KPL)

620 /*
621 * Temporary %gs descriptor used by kmdb with -d option. Only lives
622 * in boot’s GDT and is not copied into kernel’s GDT from boot.
623 */
624 #define KMDBGS_SEL SEL_GDT(GDT_BGSTMP, SEL_KPL)

626 /*
627 * Selector used for kdi_idt when kmdb has taken over the IDT.
628 */
629 #if defined(__amd64)
630 #define KMDBCODE_SEL B64CODE_SEL
631 #else
632 #define KMDBCODE_SEL B32CODE_SEL
633 #endif

635 /*
636 * Entries in default Local Descriptor Table (LDT) for every process.
637 */
638 #define LDT_SYSCALL 0 /* call gate for libc.a (obsolete) */
639 #define LDT_SIGCALL 1 /* EOL me, call gate for static sigreturn */

new/usr/src/uts/intel/sys/segments.h 5

640 #define LDT_RESVD1 2 /* old user %cs */
641 #define LDT_RESVD2 3 /* old user %ds */
642 #define LDT_ALTSYSCALL 4 /* alternate call gate for system calls */
643 #define LDT_ALTSIGCALL 5 /* EOL me, alternate call gate for sigreturn */
644 #define LDT_UDBASE 6 /* user descriptor base index */
645 #define MINNLDT 512 /* Current min solaris ldt size (1 4K page) */
646 #define MAXNLDT 8192 /* max solaris ldt size (16 4K pages) */

648 #ifndef _ASM

650 extern gate_desc_t *idt0;
651 extern desctbr_t idt0_default_reg;
652 extern user_desc_t *gdt0;

654 extern user_desc_t zero_udesc;
655 extern user_desc_t null_udesc;
656 extern system_desc_t null_sdesc;

658 #if defined(__amd64)
659 extern user_desc_t zero_u32desc;
660 #endif
661 #if defined(__amd64)
662 extern user_desc_t ucs_on;
663 extern user_desc_t ucs_off;
664 extern user_desc_t ucs32_on;
665 extern user_desc_t ucs32_off;
666 #endif /* __amd64 */

668 extern tss_t *ktss0;

670 #if defined(__i386)
671 extern tss_t *dftss0;
672 #endif /* __i386 */

674 extern void div0trap(), dbgtrap(), nmiint(), brktrap(), ovflotrap();
675 extern void boundstrap(), invoptrap(), ndptrap();
676 #if !defined(__xpv)
677 extern void syserrtrap();
678 #endif
679 extern void invaltrap(), invtsstrap(), segnptrap(), stktrap();
680 extern void gptrap(), pftrap(), ndperr();
681 extern void overrun(), resvtrap();
682 extern void _start(), cmnint();
683 extern void achktrap(), mcetrap();
684 extern void xmtrap();
685 extern void fasttrap();
686 extern void sys_int80();
687 extern void brand_sys_int80();
688 #endif /* ! codereview */
689 extern void dtrace_ret();

691 #if !defined(__amd64)
692 extern void pentium_pftrap();
693 #endif

695 #endif /* _ASM */

697 #ifdef __cplusplus
698 }
699 #endif

701 #endif /* _SYS_SEGMENTS_H */

