Print this page
Use the LZ4 algorithm to compress metadata when the corresponding feature is enabled
Split |
Close |
Expand all |
Collapse all |
--- old/usr/src/uts/common/fs/zfs/spa.c
+++ new/usr/src/uts/common/fs/zfs/spa.c
1 1 /*
2 2 * CDDL HEADER START
3 3 *
4 4 * The contents of this file are subject to the terms of the
5 5 * Common Development and Distribution License (the "License").
6 6 * You may not use this file except in compliance with the License.
7 7 *
8 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 9 * or http://www.opensolaris.org/os/licensing.
10 10 * See the License for the specific language governing permissions
11 11 * and limitations under the License.
12 12 *
13 13 * When distributing Covered Code, include this CDDL HEADER in each
14 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
↓ open down ↓ |
14 lines elided |
↑ open up ↑ |
15 15 * If applicable, add the following below this CDDL HEADER, with the
16 16 * fields enclosed by brackets "[]" replaced with your own identifying
17 17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 18 *
19 19 * CDDL HEADER END
20 20 */
21 21
22 22 /*
23 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 - * Copyright 2013 Nexenta Systems, Inc. All rights reserved.
25 + * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 26 */
27 27
28 28 /*
29 29 * SPA: Storage Pool Allocator
30 30 *
31 31 * This file contains all the routines used when modifying on-disk SPA state.
32 32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 33 * pool.
34 34 */
35 35
36 36 #include <sys/zfs_context.h>
37 37 #include <sys/fm/fs/zfs.h>
38 38 #include <sys/spa_impl.h>
39 39 #include <sys/zio.h>
40 40 #include <sys/zio_checksum.h>
41 41 #include <sys/dmu.h>
42 42 #include <sys/dmu_tx.h>
43 43 #include <sys/zap.h>
44 44 #include <sys/zil.h>
45 45 #include <sys/ddt.h>
46 46 #include <sys/vdev_impl.h>
47 47 #include <sys/metaslab.h>
48 48 #include <sys/metaslab_impl.h>
49 49 #include <sys/uberblock_impl.h>
50 50 #include <sys/txg.h>
51 51 #include <sys/avl.h>
52 52 #include <sys/dmu_traverse.h>
53 53 #include <sys/dmu_objset.h>
54 54 #include <sys/unique.h>
55 55 #include <sys/dsl_pool.h>
56 56 #include <sys/dsl_dataset.h>
57 57 #include <sys/dsl_dir.h>
58 58 #include <sys/dsl_prop.h>
59 59 #include <sys/dsl_synctask.h>
60 60 #include <sys/fs/zfs.h>
61 61 #include <sys/arc.h>
62 62 #include <sys/callb.h>
63 63 #include <sys/systeminfo.h>
64 64 #include <sys/spa_boot.h>
65 65 #include <sys/zfs_ioctl.h>
66 66 #include <sys/dsl_scan.h>
67 67 #include <sys/zfeature.h>
68 68 #include <sys/dsl_destroy.h>
69 69
70 70 #ifdef _KERNEL
71 71 #include <sys/bootprops.h>
72 72 #include <sys/callb.h>
73 73 #include <sys/cpupart.h>
74 74 #include <sys/pool.h>
75 75 #include <sys/sysdc.h>
76 76 #include <sys/zone.h>
77 77 #endif /* _KERNEL */
78 78
79 79 #include "zfs_prop.h"
80 80 #include "zfs_comutil.h"
81 81
82 82 /*
83 83 * The interval, in seconds, at which failed configuration cache file writes
84 84 * should be retried.
85 85 */
86 86 static int zfs_ccw_retry_interval = 300;
87 87
88 88 typedef enum zti_modes {
89 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 91 ZTI_MODE_NULL, /* don't create a taskq */
92 92 ZTI_NMODES
93 93 } zti_modes_t;
94 94
95 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98 98
99 99 #define ZTI_N(n) ZTI_P(n, 1)
100 100 #define ZTI_ONE ZTI_N(1)
101 101
102 102 typedef struct zio_taskq_info {
103 103 zti_modes_t zti_mode;
104 104 uint_t zti_value;
105 105 uint_t zti_count;
106 106 } zio_taskq_info_t;
107 107
108 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 109 "issue", "issue_high", "intr", "intr_high"
110 110 };
111 111
112 112 /*
113 113 * This table defines the taskq settings for each ZFS I/O type. When
114 114 * initializing a pool, we use this table to create an appropriately sized
115 115 * taskq. Some operations are low volume and therefore have a small, static
116 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 118 * macro causes us to create a taskq oriented for throughput. Some operations
119 119 * are so high frequency and short-lived that the taskq itself can become a a
120 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 121 * additional degree of parallelism specified by the number of threads per-
122 122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 123 * particular taskq is chosen at random.
124 124 *
125 125 * The different taskq priorities are to handle the different contexts (issue
126 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 127 * need to be handled with minimum delay.
128 128 */
129 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
133 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 137 };
138 138
139 139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 144 char **ereport);
145 145 static void spa_vdev_resilver_done(spa_t *spa);
146 146
147 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 148 id_t zio_taskq_psrset_bind = PS_NONE;
149 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151 151
152 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 153 extern int zfs_sync_pass_deferred_free;
154 154
155 155 /*
156 156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 157 * to get the vdev stats associated with the imported devices.
158 158 */
159 159 #define TRYIMPORT_NAME "$import"
160 160
161 161 /*
162 162 * ==========================================================================
163 163 * SPA properties routines
164 164 * ==========================================================================
165 165 */
166 166
167 167 /*
168 168 * Add a (source=src, propname=propval) list to an nvlist.
169 169 */
170 170 static void
171 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 172 uint64_t intval, zprop_source_t src)
173 173 {
174 174 const char *propname = zpool_prop_to_name(prop);
175 175 nvlist_t *propval;
176 176
177 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 179
180 180 if (strval != NULL)
181 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 182 else
183 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 184
185 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 186 nvlist_free(propval);
187 187 }
188 188
189 189 /*
190 190 * Get property values from the spa configuration.
191 191 */
192 192 static void
193 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 194 {
195 195 vdev_t *rvd = spa->spa_root_vdev;
196 196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 197 uint64_t size;
198 198 uint64_t alloc;
199 199 uint64_t space;
200 200 uint64_t cap, version;
201 201 zprop_source_t src = ZPROP_SRC_NONE;
202 202 spa_config_dirent_t *dp;
203 203
204 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205 205
206 206 if (rvd != NULL) {
207 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 208 size = metaslab_class_get_space(spa_normal_class(spa));
209 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 213 size - alloc, src);
214 214
215 215 space = 0;
216 216 for (int c = 0; c < rvd->vdev_children; c++) {
217 217 vdev_t *tvd = rvd->vdev_child[c];
218 218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 219 }
220 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 221 src);
222 222
223 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 224 (spa_mode(spa) == FREAD), src);
225 225
226 226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228 228
229 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 230 ddt_get_pool_dedup_ratio(spa), src);
231 231
232 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 233 rvd->vdev_state, src);
234 234
235 235 version = spa_version(spa);
236 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 237 src = ZPROP_SRC_DEFAULT;
238 238 else
239 239 src = ZPROP_SRC_LOCAL;
240 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 241 }
242 242
243 243 if (pool != NULL) {
244 244 dsl_dir_t *freedir = pool->dp_free_dir;
245 245
246 246 /*
247 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
248 248 * when opening pools before this version freedir will be NULL.
249 249 */
250 250 if (freedir != NULL) {
251 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
252 252 freedir->dd_phys->dd_used_bytes, src);
253 253 } else {
254 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
255 255 NULL, 0, src);
256 256 }
257 257 }
258 258
259 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260 260
261 261 if (spa->spa_comment != NULL) {
262 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 263 0, ZPROP_SRC_LOCAL);
264 264 }
265 265
266 266 if (spa->spa_root != NULL)
267 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 268 0, ZPROP_SRC_LOCAL);
269 269
270 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 271 if (dp->scd_path == NULL) {
272 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 273 "none", 0, ZPROP_SRC_LOCAL);
274 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 276 dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 277 }
278 278 }
279 279 }
280 280
281 281 /*
282 282 * Get zpool property values.
283 283 */
284 284 int
285 285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 286 {
287 287 objset_t *mos = spa->spa_meta_objset;
288 288 zap_cursor_t zc;
289 289 zap_attribute_t za;
290 290 int err;
291 291
292 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293 293
294 294 mutex_enter(&spa->spa_props_lock);
295 295
296 296 /*
297 297 * Get properties from the spa config.
298 298 */
299 299 spa_prop_get_config(spa, nvp);
300 300
301 301 /* If no pool property object, no more prop to get. */
302 302 if (mos == NULL || spa->spa_pool_props_object == 0) {
303 303 mutex_exit(&spa->spa_props_lock);
304 304 return (0);
305 305 }
306 306
307 307 /*
308 308 * Get properties from the MOS pool property object.
309 309 */
310 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 311 (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 312 zap_cursor_advance(&zc)) {
313 313 uint64_t intval = 0;
314 314 char *strval = NULL;
315 315 zprop_source_t src = ZPROP_SRC_DEFAULT;
316 316 zpool_prop_t prop;
317 317
318 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 319 continue;
320 320
321 321 switch (za.za_integer_length) {
322 322 case 8:
323 323 /* integer property */
324 324 if (za.za_first_integer !=
325 325 zpool_prop_default_numeric(prop))
326 326 src = ZPROP_SRC_LOCAL;
327 327
328 328 if (prop == ZPOOL_PROP_BOOTFS) {
329 329 dsl_pool_t *dp;
330 330 dsl_dataset_t *ds = NULL;
331 331
332 332 dp = spa_get_dsl(spa);
333 333 dsl_pool_config_enter(dp, FTAG);
334 334 if (err = dsl_dataset_hold_obj(dp,
335 335 za.za_first_integer, FTAG, &ds)) {
336 336 dsl_pool_config_exit(dp, FTAG);
337 337 break;
338 338 }
339 339
340 340 strval = kmem_alloc(
341 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 342 KM_SLEEP);
343 343 dsl_dataset_name(ds, strval);
344 344 dsl_dataset_rele(ds, FTAG);
345 345 dsl_pool_config_exit(dp, FTAG);
346 346 } else {
347 347 strval = NULL;
348 348 intval = za.za_first_integer;
349 349 }
350 350
351 351 spa_prop_add_list(*nvp, prop, strval, intval, src);
352 352
353 353 if (strval != NULL)
354 354 kmem_free(strval,
355 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356 356
357 357 break;
358 358
359 359 case 1:
360 360 /* string property */
361 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 362 err = zap_lookup(mos, spa->spa_pool_props_object,
363 363 za.za_name, 1, za.za_num_integers, strval);
364 364 if (err) {
365 365 kmem_free(strval, za.za_num_integers);
366 366 break;
367 367 }
368 368 spa_prop_add_list(*nvp, prop, strval, 0, src);
369 369 kmem_free(strval, za.za_num_integers);
370 370 break;
371 371
372 372 default:
373 373 break;
374 374 }
375 375 }
376 376 zap_cursor_fini(&zc);
377 377 mutex_exit(&spa->spa_props_lock);
378 378 out:
379 379 if (err && err != ENOENT) {
380 380 nvlist_free(*nvp);
381 381 *nvp = NULL;
382 382 return (err);
383 383 }
384 384
385 385 return (0);
386 386 }
387 387
388 388 /*
389 389 * Validate the given pool properties nvlist and modify the list
390 390 * for the property values to be set.
391 391 */
392 392 static int
393 393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 394 {
395 395 nvpair_t *elem;
396 396 int error = 0, reset_bootfs = 0;
397 397 uint64_t objnum = 0;
398 398 boolean_t has_feature = B_FALSE;
399 399
400 400 elem = NULL;
401 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 402 uint64_t intval;
403 403 char *strval, *slash, *check, *fname;
404 404 const char *propname = nvpair_name(elem);
405 405 zpool_prop_t prop = zpool_name_to_prop(propname);
406 406
407 407 switch (prop) {
408 408 case ZPROP_INVAL:
409 409 if (!zpool_prop_feature(propname)) {
410 410 error = SET_ERROR(EINVAL);
411 411 break;
412 412 }
413 413
414 414 /*
415 415 * Sanitize the input.
416 416 */
417 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 418 error = SET_ERROR(EINVAL);
419 419 break;
420 420 }
421 421
422 422 if (nvpair_value_uint64(elem, &intval) != 0) {
423 423 error = SET_ERROR(EINVAL);
424 424 break;
425 425 }
426 426
427 427 if (intval != 0) {
428 428 error = SET_ERROR(EINVAL);
429 429 break;
430 430 }
431 431
432 432 fname = strchr(propname, '@') + 1;
433 433 if (zfeature_lookup_name(fname, NULL) != 0) {
434 434 error = SET_ERROR(EINVAL);
435 435 break;
436 436 }
437 437
438 438 has_feature = B_TRUE;
439 439 break;
440 440
441 441 case ZPOOL_PROP_VERSION:
442 442 error = nvpair_value_uint64(elem, &intval);
443 443 if (!error &&
444 444 (intval < spa_version(spa) ||
445 445 intval > SPA_VERSION_BEFORE_FEATURES ||
446 446 has_feature))
447 447 error = SET_ERROR(EINVAL);
448 448 break;
449 449
450 450 case ZPOOL_PROP_DELEGATION:
451 451 case ZPOOL_PROP_AUTOREPLACE:
452 452 case ZPOOL_PROP_LISTSNAPS:
453 453 case ZPOOL_PROP_AUTOEXPAND:
454 454 error = nvpair_value_uint64(elem, &intval);
455 455 if (!error && intval > 1)
456 456 error = SET_ERROR(EINVAL);
457 457 break;
458 458
459 459 case ZPOOL_PROP_BOOTFS:
460 460 /*
461 461 * If the pool version is less than SPA_VERSION_BOOTFS,
462 462 * or the pool is still being created (version == 0),
463 463 * the bootfs property cannot be set.
464 464 */
465 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 466 error = SET_ERROR(ENOTSUP);
467 467 break;
468 468 }
469 469
470 470 /*
471 471 * Make sure the vdev config is bootable
472 472 */
473 473 if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 474 error = SET_ERROR(ENOTSUP);
475 475 break;
476 476 }
477 477
478 478 reset_bootfs = 1;
479 479
480 480 error = nvpair_value_string(elem, &strval);
481 481
482 482 if (!error) {
483 483 objset_t *os;
484 484 uint64_t compress;
485 485
486 486 if (strval == NULL || strval[0] == '\0') {
487 487 objnum = zpool_prop_default_numeric(
488 488 ZPOOL_PROP_BOOTFS);
489 489 break;
490 490 }
491 491
492 492 if (error = dmu_objset_hold(strval, FTAG, &os))
493 493 break;
494 494
495 495 /* Must be ZPL and not gzip compressed. */
496 496
497 497 if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 498 error = SET_ERROR(ENOTSUP);
499 499 } else if ((error =
500 500 dsl_prop_get_int_ds(dmu_objset_ds(os),
501 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 502 &compress)) == 0 &&
503 503 !BOOTFS_COMPRESS_VALID(compress)) {
504 504 error = SET_ERROR(ENOTSUP);
505 505 } else {
506 506 objnum = dmu_objset_id(os);
507 507 }
508 508 dmu_objset_rele(os, FTAG);
509 509 }
510 510 break;
511 511
512 512 case ZPOOL_PROP_FAILUREMODE:
513 513 error = nvpair_value_uint64(elem, &intval);
514 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 515 intval > ZIO_FAILURE_MODE_PANIC))
516 516 error = SET_ERROR(EINVAL);
517 517
518 518 /*
519 519 * This is a special case which only occurs when
520 520 * the pool has completely failed. This allows
521 521 * the user to change the in-core failmode property
522 522 * without syncing it out to disk (I/Os might
523 523 * currently be blocked). We do this by returning
524 524 * EIO to the caller (spa_prop_set) to trick it
525 525 * into thinking we encountered a property validation
526 526 * error.
527 527 */
528 528 if (!error && spa_suspended(spa)) {
529 529 spa->spa_failmode = intval;
530 530 error = SET_ERROR(EIO);
531 531 }
532 532 break;
533 533
534 534 case ZPOOL_PROP_CACHEFILE:
535 535 if ((error = nvpair_value_string(elem, &strval)) != 0)
536 536 break;
537 537
538 538 if (strval[0] == '\0')
539 539 break;
540 540
541 541 if (strcmp(strval, "none") == 0)
542 542 break;
543 543
544 544 if (strval[0] != '/') {
545 545 error = SET_ERROR(EINVAL);
546 546 break;
547 547 }
548 548
549 549 slash = strrchr(strval, '/');
550 550 ASSERT(slash != NULL);
551 551
552 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 553 strcmp(slash, "/..") == 0)
554 554 error = SET_ERROR(EINVAL);
555 555 break;
556 556
557 557 case ZPOOL_PROP_COMMENT:
558 558 if ((error = nvpair_value_string(elem, &strval)) != 0)
559 559 break;
560 560 for (check = strval; *check != '\0'; check++) {
561 561 /*
562 562 * The kernel doesn't have an easy isprint()
563 563 * check. For this kernel check, we merely
564 564 * check ASCII apart from DEL. Fix this if
565 565 * there is an easy-to-use kernel isprint().
566 566 */
567 567 if (*check >= 0x7f) {
568 568 error = SET_ERROR(EINVAL);
569 569 break;
570 570 }
571 571 check++;
572 572 }
573 573 if (strlen(strval) > ZPROP_MAX_COMMENT)
574 574 error = E2BIG;
575 575 break;
576 576
577 577 case ZPOOL_PROP_DEDUPDITTO:
578 578 if (spa_version(spa) < SPA_VERSION_DEDUP)
579 579 error = SET_ERROR(ENOTSUP);
580 580 else
581 581 error = nvpair_value_uint64(elem, &intval);
582 582 if (error == 0 &&
583 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 584 error = SET_ERROR(EINVAL);
585 585 break;
586 586 }
587 587
588 588 if (error)
589 589 break;
590 590 }
591 591
592 592 if (!error && reset_bootfs) {
593 593 error = nvlist_remove(props,
594 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595 595
596 596 if (!error) {
597 597 error = nvlist_add_uint64(props,
598 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 599 }
600 600 }
601 601
602 602 return (error);
603 603 }
604 604
605 605 void
606 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 607 {
608 608 char *cachefile;
609 609 spa_config_dirent_t *dp;
610 610
611 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 612 &cachefile) != 0)
613 613 return;
614 614
615 615 dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 616 KM_SLEEP);
617 617
618 618 if (cachefile[0] == '\0')
619 619 dp->scd_path = spa_strdup(spa_config_path);
620 620 else if (strcmp(cachefile, "none") == 0)
621 621 dp->scd_path = NULL;
622 622 else
623 623 dp->scd_path = spa_strdup(cachefile);
624 624
625 625 list_insert_head(&spa->spa_config_list, dp);
626 626 if (need_sync)
627 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 628 }
629 629
630 630 int
631 631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 632 {
633 633 int error;
634 634 nvpair_t *elem = NULL;
635 635 boolean_t need_sync = B_FALSE;
636 636
637 637 if ((error = spa_prop_validate(spa, nvp)) != 0)
638 638 return (error);
639 639
640 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642 642
643 643 if (prop == ZPOOL_PROP_CACHEFILE ||
644 644 prop == ZPOOL_PROP_ALTROOT ||
645 645 prop == ZPOOL_PROP_READONLY)
646 646 continue;
647 647
648 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 649 uint64_t ver;
650 650
651 651 if (prop == ZPOOL_PROP_VERSION) {
652 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 653 } else {
654 654 ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 655 ver = SPA_VERSION_FEATURES;
656 656 need_sync = B_TRUE;
657 657 }
658 658
659 659 /* Save time if the version is already set. */
660 660 if (ver == spa_version(spa))
661 661 continue;
662 662
663 663 /*
664 664 * In addition to the pool directory object, we might
665 665 * create the pool properties object, the features for
666 666 * read object, the features for write object, or the
667 667 * feature descriptions object.
668 668 */
669 669 error = dsl_sync_task(spa->spa_name, NULL,
670 670 spa_sync_version, &ver, 6);
671 671 if (error)
672 672 return (error);
673 673 continue;
674 674 }
675 675
676 676 need_sync = B_TRUE;
677 677 break;
678 678 }
679 679
680 680 if (need_sync) {
681 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
682 682 nvp, 6));
683 683 }
684 684
685 685 return (0);
686 686 }
687 687
688 688 /*
689 689 * If the bootfs property value is dsobj, clear it.
690 690 */
691 691 void
692 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
693 693 {
694 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
695 695 VERIFY(zap_remove(spa->spa_meta_objset,
696 696 spa->spa_pool_props_object,
697 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
698 698 spa->spa_bootfs = 0;
699 699 }
700 700 }
701 701
702 702 /*ARGSUSED*/
703 703 static int
704 704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
705 705 {
706 706 uint64_t *newguid = arg;
707 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 708 vdev_t *rvd = spa->spa_root_vdev;
709 709 uint64_t vdev_state;
710 710
711 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 712 vdev_state = rvd->vdev_state;
713 713 spa_config_exit(spa, SCL_STATE, FTAG);
714 714
715 715 if (vdev_state != VDEV_STATE_HEALTHY)
716 716 return (SET_ERROR(ENXIO));
717 717
718 718 ASSERT3U(spa_guid(spa), !=, *newguid);
719 719
720 720 return (0);
721 721 }
722 722
723 723 static void
724 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
725 725 {
726 726 uint64_t *newguid = arg;
727 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 728 uint64_t oldguid;
729 729 vdev_t *rvd = spa->spa_root_vdev;
730 730
731 731 oldguid = spa_guid(spa);
732 732
733 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 734 rvd->vdev_guid = *newguid;
735 735 rvd->vdev_guid_sum += (*newguid - oldguid);
736 736 vdev_config_dirty(rvd);
737 737 spa_config_exit(spa, SCL_STATE, FTAG);
738 738
739 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
740 740 oldguid, *newguid);
741 741 }
742 742
743 743 /*
744 744 * Change the GUID for the pool. This is done so that we can later
745 745 * re-import a pool built from a clone of our own vdevs. We will modify
746 746 * the root vdev's guid, our own pool guid, and then mark all of our
747 747 * vdevs dirty. Note that we must make sure that all our vdevs are
748 748 * online when we do this, or else any vdevs that weren't present
749 749 * would be orphaned from our pool. We are also going to issue a
750 750 * sysevent to update any watchers.
751 751 */
752 752 int
753 753 spa_change_guid(spa_t *spa)
754 754 {
755 755 int error;
756 756 uint64_t guid;
757 757
758 758 mutex_enter(&spa->spa_vdev_top_lock);
759 759 mutex_enter(&spa_namespace_lock);
760 760 guid = spa_generate_guid(NULL);
761 761
762 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
763 763 spa_change_guid_sync, &guid, 5);
764 764
765 765 if (error == 0) {
766 766 spa_config_sync(spa, B_FALSE, B_TRUE);
767 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
768 768 }
769 769
770 770 mutex_exit(&spa_namespace_lock);
771 771 mutex_exit(&spa->spa_vdev_top_lock);
772 772
773 773 return (error);
774 774 }
775 775
776 776 /*
777 777 * ==========================================================================
778 778 * SPA state manipulation (open/create/destroy/import/export)
779 779 * ==========================================================================
780 780 */
781 781
782 782 static int
783 783 spa_error_entry_compare(const void *a, const void *b)
784 784 {
785 785 spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 786 spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 787 int ret;
788 788
789 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 790 sizeof (zbookmark_t));
791 791
792 792 if (ret < 0)
793 793 return (-1);
794 794 else if (ret > 0)
795 795 return (1);
796 796 else
797 797 return (0);
798 798 }
799 799
800 800 /*
801 801 * Utility function which retrieves copies of the current logs and
802 802 * re-initializes them in the process.
803 803 */
804 804 void
805 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 806 {
807 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808 808
809 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811 811
812 812 avl_create(&spa->spa_errlist_scrub,
813 813 spa_error_entry_compare, sizeof (spa_error_entry_t),
814 814 offsetof(spa_error_entry_t, se_avl));
815 815 avl_create(&spa->spa_errlist_last,
816 816 spa_error_entry_compare, sizeof (spa_error_entry_t),
817 817 offsetof(spa_error_entry_t, se_avl));
818 818 }
819 819
820 820 static void
821 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 822 {
823 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 824 enum zti_modes mode = ztip->zti_mode;
825 825 uint_t value = ztip->zti_value;
826 826 uint_t count = ztip->zti_count;
827 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 828 char name[32];
829 829 uint_t flags = 0;
830 830 boolean_t batch = B_FALSE;
831 831
832 832 if (mode == ZTI_MODE_NULL) {
833 833 tqs->stqs_count = 0;
834 834 tqs->stqs_taskq = NULL;
835 835 return;
836 836 }
837 837
838 838 ASSERT3U(count, >, 0);
839 839
840 840 tqs->stqs_count = count;
841 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842 842
843 843 switch (mode) {
844 844 case ZTI_MODE_FIXED:
845 845 ASSERT3U(value, >=, 1);
846 846 value = MAX(value, 1);
847 847 break;
848 848
849 849 case ZTI_MODE_BATCH:
850 850 batch = B_TRUE;
851 851 flags |= TASKQ_THREADS_CPU_PCT;
852 852 value = zio_taskq_batch_pct;
853 853 break;
854 854
855 855 default:
856 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
857 857 "spa_activate()",
858 858 zio_type_name[t], zio_taskq_types[q], mode, value);
859 859 break;
860 860 }
861 861
862 862 for (uint_t i = 0; i < count; i++) {
863 863 taskq_t *tq;
864 864
865 865 if (count > 1) {
866 866 (void) snprintf(name, sizeof (name), "%s_%s_%u",
867 867 zio_type_name[t], zio_taskq_types[q], i);
868 868 } else {
869 869 (void) snprintf(name, sizeof (name), "%s_%s",
870 870 zio_type_name[t], zio_taskq_types[q]);
871 871 }
872 872
873 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
874 874 if (batch)
875 875 flags |= TASKQ_DC_BATCH;
876 876
877 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
878 878 spa->spa_proc, zio_taskq_basedc, flags);
879 879 } else {
880 880 pri_t pri = maxclsyspri;
881 881 /*
882 882 * The write issue taskq can be extremely CPU
883 883 * intensive. Run it at slightly lower priority
884 884 * than the other taskqs.
885 885 */
886 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
887 887 pri--;
888 888
889 889 tq = taskq_create_proc(name, value, pri, 50,
890 890 INT_MAX, spa->spa_proc, flags);
891 891 }
892 892
893 893 tqs->stqs_taskq[i] = tq;
894 894 }
895 895 }
896 896
897 897 static void
898 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
899 899 {
900 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
901 901
902 902 if (tqs->stqs_taskq == NULL) {
903 903 ASSERT0(tqs->stqs_count);
904 904 return;
905 905 }
906 906
907 907 for (uint_t i = 0; i < tqs->stqs_count; i++) {
908 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
909 909 taskq_destroy(tqs->stqs_taskq[i]);
910 910 }
911 911
912 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
913 913 tqs->stqs_taskq = NULL;
914 914 }
915 915
916 916 /*
917 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
918 918 * Note that a type may have multiple discrete taskqs to avoid lock contention
919 919 * on the taskq itself. In that case we choose which taskq at random by using
920 920 * the low bits of gethrtime().
921 921 */
922 922 void
923 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
924 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
925 925 {
926 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 927 taskq_t *tq;
928 928
929 929 ASSERT3P(tqs->stqs_taskq, !=, NULL);
930 930 ASSERT3U(tqs->stqs_count, !=, 0);
931 931
932 932 if (tqs->stqs_count == 1) {
933 933 tq = tqs->stqs_taskq[0];
934 934 } else {
935 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
936 936 }
937 937
938 938 taskq_dispatch_ent(tq, func, arg, flags, ent);
939 939 }
940 940
941 941 static void
942 942 spa_create_zio_taskqs(spa_t *spa)
943 943 {
944 944 for (int t = 0; t < ZIO_TYPES; t++) {
945 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
946 946 spa_taskqs_init(spa, t, q);
947 947 }
948 948 }
949 949 }
950 950
951 951 #ifdef _KERNEL
952 952 static void
953 953 spa_thread(void *arg)
954 954 {
955 955 callb_cpr_t cprinfo;
956 956
957 957 spa_t *spa = arg;
958 958 user_t *pu = PTOU(curproc);
959 959
960 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
961 961 spa->spa_name);
962 962
963 963 ASSERT(curproc != &p0);
964 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
965 965 "zpool-%s", spa->spa_name);
966 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
967 967
968 968 /* bind this thread to the requested psrset */
969 969 if (zio_taskq_psrset_bind != PS_NONE) {
970 970 pool_lock();
971 971 mutex_enter(&cpu_lock);
972 972 mutex_enter(&pidlock);
973 973 mutex_enter(&curproc->p_lock);
974 974
975 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
976 976 0, NULL, NULL) == 0) {
977 977 curthread->t_bind_pset = zio_taskq_psrset_bind;
978 978 } else {
979 979 cmn_err(CE_WARN,
980 980 "Couldn't bind process for zfs pool \"%s\" to "
981 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
982 982 }
983 983
984 984 mutex_exit(&curproc->p_lock);
985 985 mutex_exit(&pidlock);
986 986 mutex_exit(&cpu_lock);
987 987 pool_unlock();
988 988 }
989 989
990 990 if (zio_taskq_sysdc) {
991 991 sysdc_thread_enter(curthread, 100, 0);
992 992 }
993 993
994 994 spa->spa_proc = curproc;
995 995 spa->spa_did = curthread->t_did;
996 996
997 997 spa_create_zio_taskqs(spa);
998 998
999 999 mutex_enter(&spa->spa_proc_lock);
1000 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001 1001
1002 1002 spa->spa_proc_state = SPA_PROC_ACTIVE;
1003 1003 cv_broadcast(&spa->spa_proc_cv);
1004 1004
1005 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009 1009
1010 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011 1011 spa->spa_proc_state = SPA_PROC_GONE;
1012 1012 spa->spa_proc = &p0;
1013 1013 cv_broadcast(&spa->spa_proc_cv);
1014 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1015 1015
1016 1016 mutex_enter(&curproc->p_lock);
1017 1017 lwp_exit();
1018 1018 }
1019 1019 #endif
1020 1020
1021 1021 /*
1022 1022 * Activate an uninitialized pool.
1023 1023 */
1024 1024 static void
1025 1025 spa_activate(spa_t *spa, int mode)
1026 1026 {
1027 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028 1028
1029 1029 spa->spa_state = POOL_STATE_ACTIVE;
1030 1030 spa->spa_mode = mode;
1031 1031
1032 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034 1034
1035 1035 /* Try to create a covering process */
1036 1036 mutex_enter(&spa->spa_proc_lock);
1037 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038 1038 ASSERT(spa->spa_proc == &p0);
1039 1039 spa->spa_did = 0;
1040 1040
1041 1041 /* Only create a process if we're going to be around a while. */
1042 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044 1044 NULL, 0) == 0) {
1045 1045 spa->spa_proc_state = SPA_PROC_CREATED;
1046 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047 1047 cv_wait(&spa->spa_proc_cv,
1048 1048 &spa->spa_proc_lock);
1049 1049 }
1050 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051 1051 ASSERT(spa->spa_proc != &p0);
1052 1052 ASSERT(spa->spa_did != 0);
1053 1053 } else {
1054 1054 #ifdef _KERNEL
1055 1055 cmn_err(CE_WARN,
1056 1056 "Couldn't create process for zfs pool \"%s\"\n",
1057 1057 spa->spa_name);
1058 1058 #endif
1059 1059 }
1060 1060 }
1061 1061 mutex_exit(&spa->spa_proc_lock);
1062 1062
1063 1063 /* If we didn't create a process, we need to create our taskqs. */
1064 1064 if (spa->spa_proc == &p0) {
1065 1065 spa_create_zio_taskqs(spa);
1066 1066 }
1067 1067
1068 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069 1069 offsetof(vdev_t, vdev_config_dirty_node));
1070 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071 1071 offsetof(vdev_t, vdev_state_dirty_node));
1072 1072
1073 1073 txg_list_create(&spa->spa_vdev_txg_list,
1074 1074 offsetof(struct vdev, vdev_txg_node));
1075 1075
1076 1076 avl_create(&spa->spa_errlist_scrub,
1077 1077 spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 1078 offsetof(spa_error_entry_t, se_avl));
1079 1079 avl_create(&spa->spa_errlist_last,
1080 1080 spa_error_entry_compare, sizeof (spa_error_entry_t),
1081 1081 offsetof(spa_error_entry_t, se_avl));
1082 1082 }
1083 1083
1084 1084 /*
1085 1085 * Opposite of spa_activate().
1086 1086 */
1087 1087 static void
1088 1088 spa_deactivate(spa_t *spa)
1089 1089 {
1090 1090 ASSERT(spa->spa_sync_on == B_FALSE);
1091 1091 ASSERT(spa->spa_dsl_pool == NULL);
1092 1092 ASSERT(spa->spa_root_vdev == NULL);
1093 1093 ASSERT(spa->spa_async_zio_root == NULL);
1094 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095 1095
1096 1096 txg_list_destroy(&spa->spa_vdev_txg_list);
1097 1097
1098 1098 list_destroy(&spa->spa_config_dirty_list);
1099 1099 list_destroy(&spa->spa_state_dirty_list);
1100 1100
1101 1101 for (int t = 0; t < ZIO_TYPES; t++) {
1102 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103 1103 spa_taskqs_fini(spa, t, q);
1104 1104 }
1105 1105 }
1106 1106
1107 1107 metaslab_class_destroy(spa->spa_normal_class);
1108 1108 spa->spa_normal_class = NULL;
1109 1109
1110 1110 metaslab_class_destroy(spa->spa_log_class);
1111 1111 spa->spa_log_class = NULL;
1112 1112
1113 1113 /*
1114 1114 * If this was part of an import or the open otherwise failed, we may
1115 1115 * still have errors left in the queues. Empty them just in case.
1116 1116 */
1117 1117 spa_errlog_drain(spa);
1118 1118
1119 1119 avl_destroy(&spa->spa_errlist_scrub);
1120 1120 avl_destroy(&spa->spa_errlist_last);
1121 1121
1122 1122 spa->spa_state = POOL_STATE_UNINITIALIZED;
1123 1123
1124 1124 mutex_enter(&spa->spa_proc_lock);
1125 1125 if (spa->spa_proc_state != SPA_PROC_NONE) {
1126 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128 1128 cv_broadcast(&spa->spa_proc_cv);
1129 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130 1130 ASSERT(spa->spa_proc != &p0);
1131 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 1132 }
1133 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134 1134 spa->spa_proc_state = SPA_PROC_NONE;
1135 1135 }
1136 1136 ASSERT(spa->spa_proc == &p0);
1137 1137 mutex_exit(&spa->spa_proc_lock);
1138 1138
1139 1139 /*
1140 1140 * We want to make sure spa_thread() has actually exited the ZFS
1141 1141 * module, so that the module can't be unloaded out from underneath
1142 1142 * it.
1143 1143 */
1144 1144 if (spa->spa_did != 0) {
1145 1145 thread_join(spa->spa_did);
1146 1146 spa->spa_did = 0;
1147 1147 }
1148 1148 }
1149 1149
1150 1150 /*
1151 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This
1152 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev
1153 1153 * in the CLOSED state. This will prep the pool before open/creation/import.
1154 1154 * All vdev validation is done by the vdev_alloc() routine.
1155 1155 */
1156 1156 static int
1157 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158 1158 uint_t id, int atype)
1159 1159 {
1160 1160 nvlist_t **child;
1161 1161 uint_t children;
1162 1162 int error;
1163 1163
1164 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165 1165 return (error);
1166 1166
1167 1167 if ((*vdp)->vdev_ops->vdev_op_leaf)
1168 1168 return (0);
1169 1169
1170 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171 1171 &child, &children);
1172 1172
1173 1173 if (error == ENOENT)
1174 1174 return (0);
1175 1175
1176 1176 if (error) {
1177 1177 vdev_free(*vdp);
1178 1178 *vdp = NULL;
1179 1179 return (SET_ERROR(EINVAL));
1180 1180 }
1181 1181
1182 1182 for (int c = 0; c < children; c++) {
1183 1183 vdev_t *vd;
1184 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185 1185 atype)) != 0) {
1186 1186 vdev_free(*vdp);
1187 1187 *vdp = NULL;
1188 1188 return (error);
1189 1189 }
1190 1190 }
1191 1191
1192 1192 ASSERT(*vdp != NULL);
1193 1193
1194 1194 return (0);
1195 1195 }
1196 1196
1197 1197 /*
1198 1198 * Opposite of spa_load().
1199 1199 */
1200 1200 static void
1201 1201 spa_unload(spa_t *spa)
1202 1202 {
1203 1203 int i;
1204 1204
1205 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206 1206
1207 1207 /*
1208 1208 * Stop async tasks.
1209 1209 */
1210 1210 spa_async_suspend(spa);
1211 1211
1212 1212 /*
1213 1213 * Stop syncing.
1214 1214 */
1215 1215 if (spa->spa_sync_on) {
1216 1216 txg_sync_stop(spa->spa_dsl_pool);
1217 1217 spa->spa_sync_on = B_FALSE;
1218 1218 }
1219 1219
1220 1220 /*
1221 1221 * Wait for any outstanding async I/O to complete.
1222 1222 */
1223 1223 if (spa->spa_async_zio_root != NULL) {
1224 1224 (void) zio_wait(spa->spa_async_zio_root);
1225 1225 spa->spa_async_zio_root = NULL;
1226 1226 }
1227 1227
1228 1228 bpobj_close(&spa->spa_deferred_bpobj);
1229 1229
1230 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231 1231
1232 1232 /*
1233 1233 * Close all vdevs.
1234 1234 */
1235 1235 if (spa->spa_root_vdev)
1236 1236 vdev_free(spa->spa_root_vdev);
1237 1237 ASSERT(spa->spa_root_vdev == NULL);
1238 1238
1239 1239 /*
1240 1240 * Close the dsl pool.
1241 1241 */
1242 1242 if (spa->spa_dsl_pool) {
1243 1243 dsl_pool_close(spa->spa_dsl_pool);
1244 1244 spa->spa_dsl_pool = NULL;
1245 1245 spa->spa_meta_objset = NULL;
1246 1246 }
1247 1247
1248 1248 ddt_unload(spa);
1249 1249
1250 1250
1251 1251 /*
1252 1252 * Drop and purge level 2 cache
1253 1253 */
1254 1254 spa_l2cache_drop(spa);
1255 1255
1256 1256 for (i = 0; i < spa->spa_spares.sav_count; i++)
1257 1257 vdev_free(spa->spa_spares.sav_vdevs[i]);
1258 1258 if (spa->spa_spares.sav_vdevs) {
1259 1259 kmem_free(spa->spa_spares.sav_vdevs,
1260 1260 spa->spa_spares.sav_count * sizeof (void *));
1261 1261 spa->spa_spares.sav_vdevs = NULL;
1262 1262 }
1263 1263 if (spa->spa_spares.sav_config) {
1264 1264 nvlist_free(spa->spa_spares.sav_config);
1265 1265 spa->spa_spares.sav_config = NULL;
1266 1266 }
1267 1267 spa->spa_spares.sav_count = 0;
1268 1268
1269 1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1270 1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1271 1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1272 1272 }
1273 1273 if (spa->spa_l2cache.sav_vdevs) {
1274 1274 kmem_free(spa->spa_l2cache.sav_vdevs,
1275 1275 spa->spa_l2cache.sav_count * sizeof (void *));
1276 1276 spa->spa_l2cache.sav_vdevs = NULL;
1277 1277 }
1278 1278 if (spa->spa_l2cache.sav_config) {
1279 1279 nvlist_free(spa->spa_l2cache.sav_config);
1280 1280 spa->spa_l2cache.sav_config = NULL;
1281 1281 }
1282 1282 spa->spa_l2cache.sav_count = 0;
1283 1283
1284 1284 spa->spa_async_suspended = 0;
1285 1285
1286 1286 if (spa->spa_comment != NULL) {
1287 1287 spa_strfree(spa->spa_comment);
1288 1288 spa->spa_comment = NULL;
1289 1289 }
1290 1290
1291 1291 spa_config_exit(spa, SCL_ALL, FTAG);
1292 1292 }
1293 1293
1294 1294 /*
1295 1295 * Load (or re-load) the current list of vdevs describing the active spares for
1296 1296 * this pool. When this is called, we have some form of basic information in
1297 1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1298 1298 * then re-generate a more complete list including status information.
1299 1299 */
1300 1300 static void
1301 1301 spa_load_spares(spa_t *spa)
1302 1302 {
1303 1303 nvlist_t **spares;
1304 1304 uint_t nspares;
1305 1305 int i;
1306 1306 vdev_t *vd, *tvd;
1307 1307
1308 1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1309 1309
1310 1310 /*
1311 1311 * First, close and free any existing spare vdevs.
1312 1312 */
1313 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1314 1314 vd = spa->spa_spares.sav_vdevs[i];
1315 1315
1316 1316 /* Undo the call to spa_activate() below */
1317 1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1318 1318 B_FALSE)) != NULL && tvd->vdev_isspare)
1319 1319 spa_spare_remove(tvd);
1320 1320 vdev_close(vd);
1321 1321 vdev_free(vd);
1322 1322 }
1323 1323
1324 1324 if (spa->spa_spares.sav_vdevs)
1325 1325 kmem_free(spa->spa_spares.sav_vdevs,
1326 1326 spa->spa_spares.sav_count * sizeof (void *));
1327 1327
1328 1328 if (spa->spa_spares.sav_config == NULL)
1329 1329 nspares = 0;
1330 1330 else
1331 1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1332 1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1333 1333
1334 1334 spa->spa_spares.sav_count = (int)nspares;
1335 1335 spa->spa_spares.sav_vdevs = NULL;
1336 1336
1337 1337 if (nspares == 0)
1338 1338 return;
1339 1339
1340 1340 /*
1341 1341 * Construct the array of vdevs, opening them to get status in the
1342 1342 * process. For each spare, there is potentially two different vdev_t
1343 1343 * structures associated with it: one in the list of spares (used only
1344 1344 * for basic validation purposes) and one in the active vdev
1345 1345 * configuration (if it's spared in). During this phase we open and
1346 1346 * validate each vdev on the spare list. If the vdev also exists in the
1347 1347 * active configuration, then we also mark this vdev as an active spare.
1348 1348 */
1349 1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1350 1350 KM_SLEEP);
1351 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1352 1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1353 1353 VDEV_ALLOC_SPARE) == 0);
1354 1354 ASSERT(vd != NULL);
1355 1355
1356 1356 spa->spa_spares.sav_vdevs[i] = vd;
1357 1357
1358 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1359 1359 B_FALSE)) != NULL) {
1360 1360 if (!tvd->vdev_isspare)
1361 1361 spa_spare_add(tvd);
1362 1362
1363 1363 /*
1364 1364 * We only mark the spare active if we were successfully
1365 1365 * able to load the vdev. Otherwise, importing a pool
1366 1366 * with a bad active spare would result in strange
1367 1367 * behavior, because multiple pool would think the spare
1368 1368 * is actively in use.
1369 1369 *
1370 1370 * There is a vulnerability here to an equally bizarre
1371 1371 * circumstance, where a dead active spare is later
1372 1372 * brought back to life (onlined or otherwise). Given
1373 1373 * the rarity of this scenario, and the extra complexity
1374 1374 * it adds, we ignore the possibility.
1375 1375 */
1376 1376 if (!vdev_is_dead(tvd))
1377 1377 spa_spare_activate(tvd);
1378 1378 }
1379 1379
1380 1380 vd->vdev_top = vd;
1381 1381 vd->vdev_aux = &spa->spa_spares;
1382 1382
1383 1383 if (vdev_open(vd) != 0)
1384 1384 continue;
1385 1385
1386 1386 if (vdev_validate_aux(vd) == 0)
1387 1387 spa_spare_add(vd);
1388 1388 }
1389 1389
1390 1390 /*
1391 1391 * Recompute the stashed list of spares, with status information
1392 1392 * this time.
1393 1393 */
1394 1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1395 1395 DATA_TYPE_NVLIST_ARRAY) == 0);
1396 1396
1397 1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1398 1398 KM_SLEEP);
1399 1399 for (i = 0; i < spa->spa_spares.sav_count; i++)
1400 1400 spares[i] = vdev_config_generate(spa,
1401 1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1402 1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1403 1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1404 1404 for (i = 0; i < spa->spa_spares.sav_count; i++)
1405 1405 nvlist_free(spares[i]);
1406 1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1407 1407 }
1408 1408
1409 1409 /*
1410 1410 * Load (or re-load) the current list of vdevs describing the active l2cache for
1411 1411 * this pool. When this is called, we have some form of basic information in
1412 1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1413 1413 * then re-generate a more complete list including status information.
1414 1414 * Devices which are already active have their details maintained, and are
1415 1415 * not re-opened.
1416 1416 */
1417 1417 static void
1418 1418 spa_load_l2cache(spa_t *spa)
1419 1419 {
1420 1420 nvlist_t **l2cache;
1421 1421 uint_t nl2cache;
1422 1422 int i, j, oldnvdevs;
1423 1423 uint64_t guid;
1424 1424 vdev_t *vd, **oldvdevs, **newvdevs;
1425 1425 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1426 1426
1427 1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1428 1428
1429 1429 if (sav->sav_config != NULL) {
1430 1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1431 1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1432 1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1433 1433 } else {
1434 1434 nl2cache = 0;
1435 1435 newvdevs = NULL;
1436 1436 }
1437 1437
1438 1438 oldvdevs = sav->sav_vdevs;
1439 1439 oldnvdevs = sav->sav_count;
1440 1440 sav->sav_vdevs = NULL;
1441 1441 sav->sav_count = 0;
1442 1442
1443 1443 /*
1444 1444 * Process new nvlist of vdevs.
1445 1445 */
1446 1446 for (i = 0; i < nl2cache; i++) {
1447 1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1448 1448 &guid) == 0);
1449 1449
1450 1450 newvdevs[i] = NULL;
1451 1451 for (j = 0; j < oldnvdevs; j++) {
1452 1452 vd = oldvdevs[j];
1453 1453 if (vd != NULL && guid == vd->vdev_guid) {
1454 1454 /*
1455 1455 * Retain previous vdev for add/remove ops.
1456 1456 */
1457 1457 newvdevs[i] = vd;
1458 1458 oldvdevs[j] = NULL;
1459 1459 break;
1460 1460 }
1461 1461 }
1462 1462
1463 1463 if (newvdevs[i] == NULL) {
1464 1464 /*
1465 1465 * Create new vdev
1466 1466 */
1467 1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1468 1468 VDEV_ALLOC_L2CACHE) == 0);
1469 1469 ASSERT(vd != NULL);
1470 1470 newvdevs[i] = vd;
1471 1471
1472 1472 /*
1473 1473 * Commit this vdev as an l2cache device,
1474 1474 * even if it fails to open.
1475 1475 */
1476 1476 spa_l2cache_add(vd);
1477 1477
1478 1478 vd->vdev_top = vd;
1479 1479 vd->vdev_aux = sav;
1480 1480
1481 1481 spa_l2cache_activate(vd);
1482 1482
1483 1483 if (vdev_open(vd) != 0)
1484 1484 continue;
1485 1485
1486 1486 (void) vdev_validate_aux(vd);
1487 1487
1488 1488 if (!vdev_is_dead(vd))
1489 1489 l2arc_add_vdev(spa, vd);
1490 1490 }
1491 1491 }
1492 1492
1493 1493 /*
1494 1494 * Purge vdevs that were dropped
1495 1495 */
1496 1496 for (i = 0; i < oldnvdevs; i++) {
1497 1497 uint64_t pool;
1498 1498
1499 1499 vd = oldvdevs[i];
1500 1500 if (vd != NULL) {
1501 1501 ASSERT(vd->vdev_isl2cache);
1502 1502
1503 1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1504 1504 pool != 0ULL && l2arc_vdev_present(vd))
1505 1505 l2arc_remove_vdev(vd);
1506 1506 vdev_clear_stats(vd);
1507 1507 vdev_free(vd);
1508 1508 }
1509 1509 }
1510 1510
1511 1511 if (oldvdevs)
1512 1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1513 1513
1514 1514 if (sav->sav_config == NULL)
1515 1515 goto out;
1516 1516
1517 1517 sav->sav_vdevs = newvdevs;
1518 1518 sav->sav_count = (int)nl2cache;
1519 1519
1520 1520 /*
1521 1521 * Recompute the stashed list of l2cache devices, with status
1522 1522 * information this time.
1523 1523 */
1524 1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1525 1525 DATA_TYPE_NVLIST_ARRAY) == 0);
1526 1526
1527 1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1528 1528 for (i = 0; i < sav->sav_count; i++)
1529 1529 l2cache[i] = vdev_config_generate(spa,
1530 1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1531 1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1532 1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1533 1533 out:
1534 1534 for (i = 0; i < sav->sav_count; i++)
1535 1535 nvlist_free(l2cache[i]);
1536 1536 if (sav->sav_count)
1537 1537 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1538 1538 }
1539 1539
1540 1540 static int
1541 1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1542 1542 {
1543 1543 dmu_buf_t *db;
1544 1544 char *packed = NULL;
1545 1545 size_t nvsize = 0;
1546 1546 int error;
1547 1547 *value = NULL;
1548 1548
1549 1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1550 1550 nvsize = *(uint64_t *)db->db_data;
1551 1551 dmu_buf_rele(db, FTAG);
1552 1552
1553 1553 packed = kmem_alloc(nvsize, KM_SLEEP);
1554 1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1555 1555 DMU_READ_PREFETCH);
1556 1556 if (error == 0)
1557 1557 error = nvlist_unpack(packed, nvsize, value, 0);
1558 1558 kmem_free(packed, nvsize);
1559 1559
1560 1560 return (error);
1561 1561 }
1562 1562
1563 1563 /*
1564 1564 * Checks to see if the given vdev could not be opened, in which case we post a
1565 1565 * sysevent to notify the autoreplace code that the device has been removed.
1566 1566 */
1567 1567 static void
1568 1568 spa_check_removed(vdev_t *vd)
1569 1569 {
1570 1570 for (int c = 0; c < vd->vdev_children; c++)
1571 1571 spa_check_removed(vd->vdev_child[c]);
1572 1572
1573 1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1574 1574 !vd->vdev_ishole) {
1575 1575 zfs_post_autoreplace(vd->vdev_spa, vd);
1576 1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1577 1577 }
1578 1578 }
1579 1579
1580 1580 /*
1581 1581 * Validate the current config against the MOS config
1582 1582 */
1583 1583 static boolean_t
1584 1584 spa_config_valid(spa_t *spa, nvlist_t *config)
1585 1585 {
1586 1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1587 1587 nvlist_t *nv;
1588 1588
1589 1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1590 1590
1591 1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1592 1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1593 1593
1594 1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1595 1595
1596 1596 /*
1597 1597 * If we're doing a normal import, then build up any additional
1598 1598 * diagnostic information about missing devices in this config.
1599 1599 * We'll pass this up to the user for further processing.
1600 1600 */
1601 1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1602 1602 nvlist_t **child, *nv;
1603 1603 uint64_t idx = 0;
1604 1604
1605 1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1606 1606 KM_SLEEP);
1607 1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1608 1608
1609 1609 for (int c = 0; c < rvd->vdev_children; c++) {
1610 1610 vdev_t *tvd = rvd->vdev_child[c];
1611 1611 vdev_t *mtvd = mrvd->vdev_child[c];
1612 1612
1613 1613 if (tvd->vdev_ops == &vdev_missing_ops &&
1614 1614 mtvd->vdev_ops != &vdev_missing_ops &&
1615 1615 mtvd->vdev_islog)
1616 1616 child[idx++] = vdev_config_generate(spa, mtvd,
1617 1617 B_FALSE, 0);
1618 1618 }
1619 1619
1620 1620 if (idx) {
1621 1621 VERIFY(nvlist_add_nvlist_array(nv,
1622 1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1623 1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1624 1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1625 1625
1626 1626 for (int i = 0; i < idx; i++)
1627 1627 nvlist_free(child[i]);
1628 1628 }
1629 1629 nvlist_free(nv);
1630 1630 kmem_free(child, rvd->vdev_children * sizeof (char **));
1631 1631 }
1632 1632
1633 1633 /*
1634 1634 * Compare the root vdev tree with the information we have
1635 1635 * from the MOS config (mrvd). Check each top-level vdev
1636 1636 * with the corresponding MOS config top-level (mtvd).
1637 1637 */
1638 1638 for (int c = 0; c < rvd->vdev_children; c++) {
1639 1639 vdev_t *tvd = rvd->vdev_child[c];
1640 1640 vdev_t *mtvd = mrvd->vdev_child[c];
1641 1641
1642 1642 /*
1643 1643 * Resolve any "missing" vdevs in the current configuration.
1644 1644 * If we find that the MOS config has more accurate information
1645 1645 * about the top-level vdev then use that vdev instead.
1646 1646 */
1647 1647 if (tvd->vdev_ops == &vdev_missing_ops &&
1648 1648 mtvd->vdev_ops != &vdev_missing_ops) {
1649 1649
1650 1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1651 1651 continue;
1652 1652
1653 1653 /*
1654 1654 * Device specific actions.
1655 1655 */
1656 1656 if (mtvd->vdev_islog) {
1657 1657 spa_set_log_state(spa, SPA_LOG_CLEAR);
1658 1658 } else {
1659 1659 /*
1660 1660 * XXX - once we have 'readonly' pool
1661 1661 * support we should be able to handle
1662 1662 * missing data devices by transitioning
1663 1663 * the pool to readonly.
1664 1664 */
1665 1665 continue;
1666 1666 }
1667 1667
1668 1668 /*
1669 1669 * Swap the missing vdev with the data we were
1670 1670 * able to obtain from the MOS config.
1671 1671 */
1672 1672 vdev_remove_child(rvd, tvd);
1673 1673 vdev_remove_child(mrvd, mtvd);
1674 1674
1675 1675 vdev_add_child(rvd, mtvd);
1676 1676 vdev_add_child(mrvd, tvd);
1677 1677
1678 1678 spa_config_exit(spa, SCL_ALL, FTAG);
1679 1679 vdev_load(mtvd);
1680 1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681 1681
1682 1682 vdev_reopen(rvd);
1683 1683 } else if (mtvd->vdev_islog) {
1684 1684 /*
1685 1685 * Load the slog device's state from the MOS config
1686 1686 * since it's possible that the label does not
1687 1687 * contain the most up-to-date information.
1688 1688 */
1689 1689 vdev_load_log_state(tvd, mtvd);
1690 1690 vdev_reopen(tvd);
1691 1691 }
1692 1692 }
1693 1693 vdev_free(mrvd);
1694 1694 spa_config_exit(spa, SCL_ALL, FTAG);
1695 1695
1696 1696 /*
1697 1697 * Ensure we were able to validate the config.
1698 1698 */
1699 1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1700 1700 }
1701 1701
1702 1702 /*
1703 1703 * Check for missing log devices
1704 1704 */
1705 1705 static boolean_t
1706 1706 spa_check_logs(spa_t *spa)
1707 1707 {
1708 1708 boolean_t rv = B_FALSE;
1709 1709
1710 1710 switch (spa->spa_log_state) {
1711 1711 case SPA_LOG_MISSING:
1712 1712 /* need to recheck in case slog has been restored */
1713 1713 case SPA_LOG_UNKNOWN:
1714 1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1715 1715 NULL, DS_FIND_CHILDREN) != 0);
1716 1716 if (rv)
1717 1717 spa_set_log_state(spa, SPA_LOG_MISSING);
1718 1718 break;
1719 1719 }
1720 1720 return (rv);
1721 1721 }
1722 1722
1723 1723 static boolean_t
1724 1724 spa_passivate_log(spa_t *spa)
1725 1725 {
1726 1726 vdev_t *rvd = spa->spa_root_vdev;
1727 1727 boolean_t slog_found = B_FALSE;
1728 1728
1729 1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1730 1730
1731 1731 if (!spa_has_slogs(spa))
1732 1732 return (B_FALSE);
1733 1733
1734 1734 for (int c = 0; c < rvd->vdev_children; c++) {
1735 1735 vdev_t *tvd = rvd->vdev_child[c];
1736 1736 metaslab_group_t *mg = tvd->vdev_mg;
1737 1737
1738 1738 if (tvd->vdev_islog) {
1739 1739 metaslab_group_passivate(mg);
1740 1740 slog_found = B_TRUE;
1741 1741 }
1742 1742 }
1743 1743
1744 1744 return (slog_found);
1745 1745 }
1746 1746
1747 1747 static void
1748 1748 spa_activate_log(spa_t *spa)
1749 1749 {
1750 1750 vdev_t *rvd = spa->spa_root_vdev;
1751 1751
1752 1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1753 1753
1754 1754 for (int c = 0; c < rvd->vdev_children; c++) {
1755 1755 vdev_t *tvd = rvd->vdev_child[c];
1756 1756 metaslab_group_t *mg = tvd->vdev_mg;
1757 1757
1758 1758 if (tvd->vdev_islog)
1759 1759 metaslab_group_activate(mg);
1760 1760 }
1761 1761 }
1762 1762
1763 1763 int
1764 1764 spa_offline_log(spa_t *spa)
1765 1765 {
1766 1766 int error;
1767 1767
1768 1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1769 1769 NULL, DS_FIND_CHILDREN);
1770 1770 if (error == 0) {
1771 1771 /*
1772 1772 * We successfully offlined the log device, sync out the
1773 1773 * current txg so that the "stubby" block can be removed
1774 1774 * by zil_sync().
1775 1775 */
1776 1776 txg_wait_synced(spa->spa_dsl_pool, 0);
1777 1777 }
1778 1778 return (error);
1779 1779 }
1780 1780
1781 1781 static void
1782 1782 spa_aux_check_removed(spa_aux_vdev_t *sav)
1783 1783 {
1784 1784 for (int i = 0; i < sav->sav_count; i++)
1785 1785 spa_check_removed(sav->sav_vdevs[i]);
1786 1786 }
1787 1787
1788 1788 void
1789 1789 spa_claim_notify(zio_t *zio)
1790 1790 {
1791 1791 spa_t *spa = zio->io_spa;
1792 1792
1793 1793 if (zio->io_error)
1794 1794 return;
1795 1795
1796 1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1797 1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1798 1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1799 1799 mutex_exit(&spa->spa_props_lock);
1800 1800 }
1801 1801
1802 1802 typedef struct spa_load_error {
1803 1803 uint64_t sle_meta_count;
1804 1804 uint64_t sle_data_count;
1805 1805 } spa_load_error_t;
1806 1806
1807 1807 static void
1808 1808 spa_load_verify_done(zio_t *zio)
1809 1809 {
1810 1810 blkptr_t *bp = zio->io_bp;
1811 1811 spa_load_error_t *sle = zio->io_private;
1812 1812 dmu_object_type_t type = BP_GET_TYPE(bp);
1813 1813 int error = zio->io_error;
1814 1814
1815 1815 if (error) {
1816 1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1817 1817 type != DMU_OT_INTENT_LOG)
1818 1818 atomic_add_64(&sle->sle_meta_count, 1);
1819 1819 else
1820 1820 atomic_add_64(&sle->sle_data_count, 1);
1821 1821 }
1822 1822 zio_data_buf_free(zio->io_data, zio->io_size);
1823 1823 }
1824 1824
1825 1825 /*ARGSUSED*/
1826 1826 static int
1827 1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1828 1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1829 1829 {
1830 1830 if (!BP_IS_HOLE(bp)) {
1831 1831 zio_t *rio = arg;
1832 1832 size_t size = BP_GET_PSIZE(bp);
1833 1833 void *data = zio_data_buf_alloc(size);
1834 1834
1835 1835 zio_nowait(zio_read(rio, spa, bp, data, size,
1836 1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1837 1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1838 1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1839 1839 }
1840 1840 return (0);
1841 1841 }
1842 1842
1843 1843 static int
1844 1844 spa_load_verify(spa_t *spa)
1845 1845 {
1846 1846 zio_t *rio;
1847 1847 spa_load_error_t sle = { 0 };
1848 1848 zpool_rewind_policy_t policy;
1849 1849 boolean_t verify_ok = B_FALSE;
1850 1850 int error;
1851 1851
1852 1852 zpool_get_rewind_policy(spa->spa_config, &policy);
1853 1853
1854 1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1855 1855 return (0);
1856 1856
1857 1857 rio = zio_root(spa, NULL, &sle,
1858 1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1859 1859
1860 1860 error = traverse_pool(spa, spa->spa_verify_min_txg,
1861 1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1862 1862
1863 1863 (void) zio_wait(rio);
1864 1864
1865 1865 spa->spa_load_meta_errors = sle.sle_meta_count;
1866 1866 spa->spa_load_data_errors = sle.sle_data_count;
1867 1867
1868 1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1869 1869 sle.sle_data_count <= policy.zrp_maxdata) {
1870 1870 int64_t loss = 0;
1871 1871
1872 1872 verify_ok = B_TRUE;
1873 1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1874 1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1875 1875
1876 1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1877 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1878 1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1879 1879 VERIFY(nvlist_add_int64(spa->spa_load_info,
1880 1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1881 1881 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1882 1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1883 1883 } else {
1884 1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1885 1885 }
1886 1886
1887 1887 if (error) {
1888 1888 if (error != ENXIO && error != EIO)
1889 1889 error = SET_ERROR(EIO);
1890 1890 return (error);
1891 1891 }
1892 1892
1893 1893 return (verify_ok ? 0 : EIO);
1894 1894 }
1895 1895
1896 1896 /*
1897 1897 * Find a value in the pool props object.
1898 1898 */
1899 1899 static void
1900 1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1901 1901 {
1902 1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1903 1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1904 1904 }
1905 1905
1906 1906 /*
1907 1907 * Find a value in the pool directory object.
1908 1908 */
1909 1909 static int
1910 1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1911 1911 {
1912 1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1913 1913 name, sizeof (uint64_t), 1, val));
1914 1914 }
1915 1915
1916 1916 static int
1917 1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1918 1918 {
1919 1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1920 1920 return (err);
1921 1921 }
1922 1922
1923 1923 /*
1924 1924 * Fix up config after a partly-completed split. This is done with the
1925 1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1926 1926 * pool have that entry in their config, but only the splitting one contains
1927 1927 * a list of all the guids of the vdevs that are being split off.
1928 1928 *
1929 1929 * This function determines what to do with that list: either rejoin
1930 1930 * all the disks to the pool, or complete the splitting process. To attempt
1931 1931 * the rejoin, each disk that is offlined is marked online again, and
1932 1932 * we do a reopen() call. If the vdev label for every disk that was
1933 1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1934 1934 * then we call vdev_split() on each disk, and complete the split.
1935 1935 *
1936 1936 * Otherwise we leave the config alone, with all the vdevs in place in
1937 1937 * the original pool.
1938 1938 */
1939 1939 static void
1940 1940 spa_try_repair(spa_t *spa, nvlist_t *config)
1941 1941 {
1942 1942 uint_t extracted;
1943 1943 uint64_t *glist;
1944 1944 uint_t i, gcount;
1945 1945 nvlist_t *nvl;
1946 1946 vdev_t **vd;
1947 1947 boolean_t attempt_reopen;
1948 1948
1949 1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1950 1950 return;
1951 1951
1952 1952 /* check that the config is complete */
1953 1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1954 1954 &glist, &gcount) != 0)
1955 1955 return;
1956 1956
1957 1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1958 1958
1959 1959 /* attempt to online all the vdevs & validate */
1960 1960 attempt_reopen = B_TRUE;
1961 1961 for (i = 0; i < gcount; i++) {
1962 1962 if (glist[i] == 0) /* vdev is hole */
1963 1963 continue;
1964 1964
1965 1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1966 1966 if (vd[i] == NULL) {
1967 1967 /*
1968 1968 * Don't bother attempting to reopen the disks;
1969 1969 * just do the split.
1970 1970 */
1971 1971 attempt_reopen = B_FALSE;
1972 1972 } else {
1973 1973 /* attempt to re-online it */
1974 1974 vd[i]->vdev_offline = B_FALSE;
1975 1975 }
1976 1976 }
1977 1977
1978 1978 if (attempt_reopen) {
1979 1979 vdev_reopen(spa->spa_root_vdev);
1980 1980
1981 1981 /* check each device to see what state it's in */
1982 1982 for (extracted = 0, i = 0; i < gcount; i++) {
1983 1983 if (vd[i] != NULL &&
1984 1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1985 1985 break;
1986 1986 ++extracted;
1987 1987 }
1988 1988 }
1989 1989
1990 1990 /*
1991 1991 * If every disk has been moved to the new pool, or if we never
1992 1992 * even attempted to look at them, then we split them off for
1993 1993 * good.
1994 1994 */
1995 1995 if (!attempt_reopen || gcount == extracted) {
1996 1996 for (i = 0; i < gcount; i++)
1997 1997 if (vd[i] != NULL)
1998 1998 vdev_split(vd[i]);
1999 1999 vdev_reopen(spa->spa_root_vdev);
2000 2000 }
2001 2001
2002 2002 kmem_free(vd, gcount * sizeof (vdev_t *));
2003 2003 }
2004 2004
2005 2005 static int
2006 2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2007 2007 boolean_t mosconfig)
2008 2008 {
2009 2009 nvlist_t *config = spa->spa_config;
2010 2010 char *ereport = FM_EREPORT_ZFS_POOL;
2011 2011 char *comment;
2012 2012 int error;
2013 2013 uint64_t pool_guid;
2014 2014 nvlist_t *nvl;
2015 2015
2016 2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2017 2017 return (SET_ERROR(EINVAL));
2018 2018
2019 2019 ASSERT(spa->spa_comment == NULL);
2020 2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2021 2021 spa->spa_comment = spa_strdup(comment);
2022 2022
2023 2023 /*
2024 2024 * Versioning wasn't explicitly added to the label until later, so if
2025 2025 * it's not present treat it as the initial version.
2026 2026 */
2027 2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2028 2028 &spa->spa_ubsync.ub_version) != 0)
2029 2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2030 2030
2031 2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2032 2032 &spa->spa_config_txg);
2033 2033
2034 2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2035 2035 spa_guid_exists(pool_guid, 0)) {
2036 2036 error = SET_ERROR(EEXIST);
2037 2037 } else {
2038 2038 spa->spa_config_guid = pool_guid;
2039 2039
2040 2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2041 2041 &nvl) == 0) {
2042 2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2043 2043 KM_SLEEP) == 0);
2044 2044 }
2045 2045
2046 2046 nvlist_free(spa->spa_load_info);
2047 2047 spa->spa_load_info = fnvlist_alloc();
2048 2048
2049 2049 gethrestime(&spa->spa_loaded_ts);
2050 2050 error = spa_load_impl(spa, pool_guid, config, state, type,
2051 2051 mosconfig, &ereport);
2052 2052 }
2053 2053
2054 2054 spa->spa_minref = refcount_count(&spa->spa_refcount);
2055 2055 if (error) {
2056 2056 if (error != EEXIST) {
2057 2057 spa->spa_loaded_ts.tv_sec = 0;
2058 2058 spa->spa_loaded_ts.tv_nsec = 0;
2059 2059 }
2060 2060 if (error != EBADF) {
2061 2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2062 2062 }
2063 2063 }
2064 2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2065 2065 spa->spa_ena = 0;
2066 2066
2067 2067 return (error);
2068 2068 }
2069 2069
2070 2070 /*
2071 2071 * Load an existing storage pool, using the pool's builtin spa_config as a
2072 2072 * source of configuration information.
2073 2073 */
2074 2074 static int
2075 2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2076 2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2077 2077 char **ereport)
2078 2078 {
2079 2079 int error = 0;
2080 2080 nvlist_t *nvroot = NULL;
2081 2081 nvlist_t *label;
2082 2082 vdev_t *rvd;
2083 2083 uberblock_t *ub = &spa->spa_uberblock;
2084 2084 uint64_t children, config_cache_txg = spa->spa_config_txg;
2085 2085 int orig_mode = spa->spa_mode;
2086 2086 int parse;
2087 2087 uint64_t obj;
2088 2088 boolean_t missing_feat_write = B_FALSE;
2089 2089
2090 2090 /*
2091 2091 * If this is an untrusted config, access the pool in read-only mode.
2092 2092 * This prevents things like resilvering recently removed devices.
2093 2093 */
2094 2094 if (!mosconfig)
2095 2095 spa->spa_mode = FREAD;
2096 2096
2097 2097 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2098 2098
2099 2099 spa->spa_load_state = state;
2100 2100
2101 2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2102 2102 return (SET_ERROR(EINVAL));
2103 2103
2104 2104 parse = (type == SPA_IMPORT_EXISTING ?
2105 2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2106 2106
2107 2107 /*
2108 2108 * Create "The Godfather" zio to hold all async IOs
2109 2109 */
2110 2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2111 2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2112 2112
2113 2113 /*
2114 2114 * Parse the configuration into a vdev tree. We explicitly set the
2115 2115 * value that will be returned by spa_version() since parsing the
2116 2116 * configuration requires knowing the version number.
2117 2117 */
2118 2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2119 2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2120 2120 spa_config_exit(spa, SCL_ALL, FTAG);
2121 2121
2122 2122 if (error != 0)
2123 2123 return (error);
2124 2124
2125 2125 ASSERT(spa->spa_root_vdev == rvd);
2126 2126
2127 2127 if (type != SPA_IMPORT_ASSEMBLE) {
2128 2128 ASSERT(spa_guid(spa) == pool_guid);
2129 2129 }
2130 2130
2131 2131 /*
2132 2132 * Try to open all vdevs, loading each label in the process.
2133 2133 */
2134 2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2135 2135 error = vdev_open(rvd);
2136 2136 spa_config_exit(spa, SCL_ALL, FTAG);
2137 2137 if (error != 0)
2138 2138 return (error);
2139 2139
2140 2140 /*
2141 2141 * We need to validate the vdev labels against the configuration that
2142 2142 * we have in hand, which is dependent on the setting of mosconfig. If
2143 2143 * mosconfig is true then we're validating the vdev labels based on
2144 2144 * that config. Otherwise, we're validating against the cached config
2145 2145 * (zpool.cache) that was read when we loaded the zfs module, and then
2146 2146 * later we will recursively call spa_load() and validate against
2147 2147 * the vdev config.
2148 2148 *
2149 2149 * If we're assembling a new pool that's been split off from an
2150 2150 * existing pool, the labels haven't yet been updated so we skip
2151 2151 * validation for now.
2152 2152 */
2153 2153 if (type != SPA_IMPORT_ASSEMBLE) {
2154 2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2155 2155 error = vdev_validate(rvd, mosconfig);
2156 2156 spa_config_exit(spa, SCL_ALL, FTAG);
2157 2157
2158 2158 if (error != 0)
2159 2159 return (error);
2160 2160
2161 2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2162 2162 return (SET_ERROR(ENXIO));
2163 2163 }
2164 2164
2165 2165 /*
2166 2166 * Find the best uberblock.
2167 2167 */
2168 2168 vdev_uberblock_load(rvd, ub, &label);
2169 2169
2170 2170 /*
2171 2171 * If we weren't able to find a single valid uberblock, return failure.
2172 2172 */
2173 2173 if (ub->ub_txg == 0) {
2174 2174 nvlist_free(label);
2175 2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2176 2176 }
2177 2177
2178 2178 /*
2179 2179 * If the pool has an unsupported version we can't open it.
2180 2180 */
2181 2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2182 2182 nvlist_free(label);
2183 2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2184 2184 }
2185 2185
2186 2186 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2187 2187 nvlist_t *features;
2188 2188
2189 2189 /*
2190 2190 * If we weren't able to find what's necessary for reading the
2191 2191 * MOS in the label, return failure.
2192 2192 */
2193 2193 if (label == NULL || nvlist_lookup_nvlist(label,
2194 2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2195 2195 nvlist_free(label);
2196 2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2197 2197 ENXIO));
2198 2198 }
2199 2199
2200 2200 /*
2201 2201 * Update our in-core representation with the definitive values
2202 2202 * from the label.
2203 2203 */
2204 2204 nvlist_free(spa->spa_label_features);
2205 2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2206 2206 }
2207 2207
2208 2208 nvlist_free(label);
2209 2209
2210 2210 /*
2211 2211 * Look through entries in the label nvlist's features_for_read. If
2212 2212 * there is a feature listed there which we don't understand then we
2213 2213 * cannot open a pool.
2214 2214 */
2215 2215 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2216 2216 nvlist_t *unsup_feat;
2217 2217
2218 2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2219 2219 0);
2220 2220
2221 2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2222 2222 NULL); nvp != NULL;
2223 2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2224 2224 if (!zfeature_is_supported(nvpair_name(nvp))) {
2225 2225 VERIFY(nvlist_add_string(unsup_feat,
2226 2226 nvpair_name(nvp), "") == 0);
2227 2227 }
2228 2228 }
2229 2229
2230 2230 if (!nvlist_empty(unsup_feat)) {
2231 2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2232 2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2233 2233 nvlist_free(unsup_feat);
2234 2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2235 2235 ENOTSUP));
2236 2236 }
2237 2237
2238 2238 nvlist_free(unsup_feat);
2239 2239 }
2240 2240
2241 2241 /*
2242 2242 * If the vdev guid sum doesn't match the uberblock, we have an
2243 2243 * incomplete configuration. We first check to see if the pool
2244 2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2245 2245 * If it is, defer the vdev_guid_sum check till later so we
2246 2246 * can handle missing vdevs.
2247 2247 */
2248 2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2249 2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2250 2250 rvd->vdev_guid_sum != ub->ub_guid_sum)
2251 2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2252 2252
2253 2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2254 2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2255 2255 spa_try_repair(spa, config);
2256 2256 spa_config_exit(spa, SCL_ALL, FTAG);
2257 2257 nvlist_free(spa->spa_config_splitting);
2258 2258 spa->spa_config_splitting = NULL;
2259 2259 }
2260 2260
2261 2261 /*
2262 2262 * Initialize internal SPA structures.
2263 2263 */
2264 2264 spa->spa_state = POOL_STATE_ACTIVE;
2265 2265 spa->spa_ubsync = spa->spa_uberblock;
2266 2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2267 2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2268 2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2269 2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2270 2270 spa->spa_claim_max_txg = spa->spa_first_txg;
2271 2271 spa->spa_prev_software_version = ub->ub_software_version;
2272 2272
2273 2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2274 2274 if (error)
2275 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276 2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2277 2277
2278 2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2279 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2280 2280
2281 2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2282 2282 boolean_t missing_feat_read = B_FALSE;
2283 2283 nvlist_t *unsup_feat, *enabled_feat;
2284 2284
2285 2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2286 2286 &spa->spa_feat_for_read_obj) != 0) {
2287 2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2288 2288 }
2289 2289
2290 2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2291 2291 &spa->spa_feat_for_write_obj) != 0) {
2292 2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2293 2293 }
2294 2294
2295 2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2296 2296 &spa->spa_feat_desc_obj) != 0) {
2297 2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2298 2298 }
2299 2299
2300 2300 enabled_feat = fnvlist_alloc();
2301 2301 unsup_feat = fnvlist_alloc();
2302 2302
2303 2303 if (!spa_features_check(spa, B_FALSE,
2304 2304 unsup_feat, enabled_feat))
2305 2305 missing_feat_read = B_TRUE;
2306 2306
2307 2307 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2308 2308 if (!spa_features_check(spa, B_TRUE,
2309 2309 unsup_feat, enabled_feat)) {
2310 2310 missing_feat_write = B_TRUE;
2311 2311 }
2312 2312 }
2313 2313
2314 2314 fnvlist_add_nvlist(spa->spa_load_info,
2315 2315 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2316 2316
2317 2317 if (!nvlist_empty(unsup_feat)) {
2318 2318 fnvlist_add_nvlist(spa->spa_load_info,
2319 2319 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2320 2320 }
2321 2321
2322 2322 fnvlist_free(enabled_feat);
2323 2323 fnvlist_free(unsup_feat);
2324 2324
2325 2325 if (!missing_feat_read) {
2326 2326 fnvlist_add_boolean(spa->spa_load_info,
2327 2327 ZPOOL_CONFIG_CAN_RDONLY);
2328 2328 }
2329 2329
2330 2330 /*
2331 2331 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2332 2332 * twofold: to determine whether the pool is available for
2333 2333 * import in read-write mode and (if it is not) whether the
2334 2334 * pool is available for import in read-only mode. If the pool
2335 2335 * is available for import in read-write mode, it is displayed
2336 2336 * as available in userland; if it is not available for import
2337 2337 * in read-only mode, it is displayed as unavailable in
2338 2338 * userland. If the pool is available for import in read-only
2339 2339 * mode but not read-write mode, it is displayed as unavailable
2340 2340 * in userland with a special note that the pool is actually
2341 2341 * available for open in read-only mode.
2342 2342 *
2343 2343 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2344 2344 * missing a feature for write, we must first determine whether
2345 2345 * the pool can be opened read-only before returning to
2346 2346 * userland in order to know whether to display the
2347 2347 * abovementioned note.
2348 2348 */
2349 2349 if (missing_feat_read || (missing_feat_write &&
2350 2350 spa_writeable(spa))) {
2351 2351 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2352 2352 ENOTSUP));
2353 2353 }
2354 2354
2355 2355 /*
2356 2356 * Load refcounts for ZFS features from disk into an in-memory
2357 2357 * cache during SPA initialization.
2358 2358 */
2359 2359 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2360 2360 uint64_t refcount;
2361 2361
2362 2362 error = feature_get_refcount_from_disk(spa,
2363 2363 &spa_feature_table[i], &refcount);
2364 2364 if (error == 0) {
2365 2365 spa->spa_feat_refcount_cache[i] = refcount;
2366 2366 } else if (error == ENOTSUP) {
2367 2367 spa->spa_feat_refcount_cache[i] =
2368 2368 SPA_FEATURE_DISABLED;
2369 2369 } else {
2370 2370 return (spa_vdev_err(rvd,
2371 2371 VDEV_AUX_CORRUPT_DATA, EIO));
2372 2372 }
2373 2373 }
2374 2374 }
2375 2375
2376 2376 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2377 2377 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2378 2378 &spa->spa_feat_enabled_txg_obj) != 0) {
2379 2379 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2380 2380 }
2381 2381 }
2382 2382
2383 2383 spa->spa_is_initializing = B_TRUE;
2384 2384 error = dsl_pool_open(spa->spa_dsl_pool);
2385 2385 spa->spa_is_initializing = B_FALSE;
2386 2386 if (error != 0)
2387 2387 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2388 2388
2389 2389 if (!mosconfig) {
2390 2390 uint64_t hostid;
2391 2391 nvlist_t *policy = NULL, *nvconfig;
2392 2392
2393 2393 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2394 2394 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2395 2395
2396 2396 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2397 2397 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2398 2398 char *hostname;
2399 2399 unsigned long myhostid = 0;
2400 2400
2401 2401 VERIFY(nvlist_lookup_string(nvconfig,
2402 2402 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2403 2403
2404 2404 #ifdef _KERNEL
2405 2405 myhostid = zone_get_hostid(NULL);
2406 2406 #else /* _KERNEL */
2407 2407 /*
2408 2408 * We're emulating the system's hostid in userland, so
2409 2409 * we can't use zone_get_hostid().
2410 2410 */
2411 2411 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2412 2412 #endif /* _KERNEL */
2413 2413 if (hostid != 0 && myhostid != 0 &&
2414 2414 hostid != myhostid) {
2415 2415 nvlist_free(nvconfig);
2416 2416 cmn_err(CE_WARN, "pool '%s' could not be "
2417 2417 "loaded as it was last accessed by "
2418 2418 "another system (host: %s hostid: 0x%lx). "
2419 2419 "See: http://illumos.org/msg/ZFS-8000-EY",
2420 2420 spa_name(spa), hostname,
2421 2421 (unsigned long)hostid);
2422 2422 return (SET_ERROR(EBADF));
2423 2423 }
2424 2424 }
2425 2425 if (nvlist_lookup_nvlist(spa->spa_config,
2426 2426 ZPOOL_REWIND_POLICY, &policy) == 0)
2427 2427 VERIFY(nvlist_add_nvlist(nvconfig,
2428 2428 ZPOOL_REWIND_POLICY, policy) == 0);
2429 2429
2430 2430 spa_config_set(spa, nvconfig);
2431 2431 spa_unload(spa);
2432 2432 spa_deactivate(spa);
2433 2433 spa_activate(spa, orig_mode);
2434 2434
2435 2435 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2436 2436 }
2437 2437
2438 2438 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2439 2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2440 2440 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2441 2441 if (error != 0)
2442 2442 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443 2443
2444 2444 /*
2445 2445 * Load the bit that tells us to use the new accounting function
2446 2446 * (raid-z deflation). If we have an older pool, this will not
2447 2447 * be present.
2448 2448 */
2449 2449 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2450 2450 if (error != 0 && error != ENOENT)
2451 2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452 2452
2453 2453 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2454 2454 &spa->spa_creation_version);
2455 2455 if (error != 0 && error != ENOENT)
2456 2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457 2457
2458 2458 /*
2459 2459 * Load the persistent error log. If we have an older pool, this will
2460 2460 * not be present.
2461 2461 */
2462 2462 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2463 2463 if (error != 0 && error != ENOENT)
2464 2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465 2465
2466 2466 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2467 2467 &spa->spa_errlog_scrub);
2468 2468 if (error != 0 && error != ENOENT)
2469 2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470 2470
2471 2471 /*
2472 2472 * Load the history object. If we have an older pool, this
2473 2473 * will not be present.
2474 2474 */
2475 2475 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2476 2476 if (error != 0 && error != ENOENT)
2477 2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2478 2478
2479 2479 /*
2480 2480 * If we're assembling the pool from the split-off vdevs of
2481 2481 * an existing pool, we don't want to attach the spares & cache
2482 2482 * devices.
2483 2483 */
2484 2484
2485 2485 /*
2486 2486 * Load any hot spares for this pool.
2487 2487 */
2488 2488 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2489 2489 if (error != 0 && error != ENOENT)
2490 2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2491 2491 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2492 2492 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2493 2493 if (load_nvlist(spa, spa->spa_spares.sav_object,
2494 2494 &spa->spa_spares.sav_config) != 0)
2495 2495 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496 2496
2497 2497 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2498 2498 spa_load_spares(spa);
2499 2499 spa_config_exit(spa, SCL_ALL, FTAG);
2500 2500 } else if (error == 0) {
2501 2501 spa->spa_spares.sav_sync = B_TRUE;
2502 2502 }
2503 2503
2504 2504 /*
2505 2505 * Load any level 2 ARC devices for this pool.
2506 2506 */
2507 2507 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2508 2508 &spa->spa_l2cache.sav_object);
2509 2509 if (error != 0 && error != ENOENT)
2510 2510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2511 2511 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2512 2512 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2513 2513 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2514 2514 &spa->spa_l2cache.sav_config) != 0)
2515 2515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516 2516
2517 2517 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2518 2518 spa_load_l2cache(spa);
2519 2519 spa_config_exit(spa, SCL_ALL, FTAG);
2520 2520 } else if (error == 0) {
2521 2521 spa->spa_l2cache.sav_sync = B_TRUE;
2522 2522 }
2523 2523
2524 2524 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2525 2525
2526 2526 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2527 2527 if (error && error != ENOENT)
2528 2528 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2529 2529
2530 2530 if (error == 0) {
2531 2531 uint64_t autoreplace;
2532 2532
2533 2533 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2534 2534 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2535 2535 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2536 2536 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2537 2537 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2538 2538 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2539 2539 &spa->spa_dedup_ditto);
2540 2540
2541 2541 spa->spa_autoreplace = (autoreplace != 0);
2542 2542 }
2543 2543
2544 2544 /*
2545 2545 * If the 'autoreplace' property is set, then post a resource notifying
2546 2546 * the ZFS DE that it should not issue any faults for unopenable
2547 2547 * devices. We also iterate over the vdevs, and post a sysevent for any
2548 2548 * unopenable vdevs so that the normal autoreplace handler can take
2549 2549 * over.
2550 2550 */
2551 2551 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2552 2552 spa_check_removed(spa->spa_root_vdev);
2553 2553 /*
2554 2554 * For the import case, this is done in spa_import(), because
2555 2555 * at this point we're using the spare definitions from
2556 2556 * the MOS config, not necessarily from the userland config.
2557 2557 */
2558 2558 if (state != SPA_LOAD_IMPORT) {
2559 2559 spa_aux_check_removed(&spa->spa_spares);
2560 2560 spa_aux_check_removed(&spa->spa_l2cache);
2561 2561 }
2562 2562 }
2563 2563
2564 2564 /*
2565 2565 * Load the vdev state for all toplevel vdevs.
2566 2566 */
2567 2567 vdev_load(rvd);
2568 2568
2569 2569 /*
2570 2570 * Propagate the leaf DTLs we just loaded all the way up the tree.
2571 2571 */
2572 2572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2573 2573 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2574 2574 spa_config_exit(spa, SCL_ALL, FTAG);
2575 2575
2576 2576 /*
2577 2577 * Load the DDTs (dedup tables).
2578 2578 */
2579 2579 error = ddt_load(spa);
2580 2580 if (error != 0)
2581 2581 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2582 2582
2583 2583 spa_update_dspace(spa);
2584 2584
2585 2585 /*
2586 2586 * Validate the config, using the MOS config to fill in any
2587 2587 * information which might be missing. If we fail to validate
2588 2588 * the config then declare the pool unfit for use. If we're
2589 2589 * assembling a pool from a split, the log is not transferred
2590 2590 * over.
2591 2591 */
2592 2592 if (type != SPA_IMPORT_ASSEMBLE) {
2593 2593 nvlist_t *nvconfig;
2594 2594
2595 2595 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2596 2596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597 2597
2598 2598 if (!spa_config_valid(spa, nvconfig)) {
2599 2599 nvlist_free(nvconfig);
2600 2600 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2601 2601 ENXIO));
2602 2602 }
2603 2603 nvlist_free(nvconfig);
2604 2604
2605 2605 /*
2606 2606 * Now that we've validated the config, check the state of the
2607 2607 * root vdev. If it can't be opened, it indicates one or
2608 2608 * more toplevel vdevs are faulted.
2609 2609 */
2610 2610 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2611 2611 return (SET_ERROR(ENXIO));
2612 2612
2613 2613 if (spa_check_logs(spa)) {
2614 2614 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2615 2615 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2616 2616 }
2617 2617 }
2618 2618
2619 2619 if (missing_feat_write) {
2620 2620 ASSERT(state == SPA_LOAD_TRYIMPORT);
2621 2621
2622 2622 /*
2623 2623 * At this point, we know that we can open the pool in
2624 2624 * read-only mode but not read-write mode. We now have enough
2625 2625 * information and can return to userland.
2626 2626 */
2627 2627 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2628 2628 }
2629 2629
2630 2630 /*
2631 2631 * We've successfully opened the pool, verify that we're ready
2632 2632 * to start pushing transactions.
2633 2633 */
2634 2634 if (state != SPA_LOAD_TRYIMPORT) {
2635 2635 if (error = spa_load_verify(spa))
2636 2636 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2637 2637 error));
2638 2638 }
2639 2639
2640 2640 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2641 2641 spa->spa_load_max_txg == UINT64_MAX)) {
2642 2642 dmu_tx_t *tx;
2643 2643 int need_update = B_FALSE;
2644 2644
2645 2645 ASSERT(state != SPA_LOAD_TRYIMPORT);
2646 2646
2647 2647 /*
2648 2648 * Claim log blocks that haven't been committed yet.
2649 2649 * This must all happen in a single txg.
2650 2650 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2651 2651 * invoked from zil_claim_log_block()'s i/o done callback.
2652 2652 * Price of rollback is that we abandon the log.
2653 2653 */
2654 2654 spa->spa_claiming = B_TRUE;
2655 2655
2656 2656 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2657 2657 spa_first_txg(spa));
2658 2658 (void) dmu_objset_find(spa_name(spa),
2659 2659 zil_claim, tx, DS_FIND_CHILDREN);
2660 2660 dmu_tx_commit(tx);
2661 2661
2662 2662 spa->spa_claiming = B_FALSE;
2663 2663
2664 2664 spa_set_log_state(spa, SPA_LOG_GOOD);
2665 2665 spa->spa_sync_on = B_TRUE;
2666 2666 txg_sync_start(spa->spa_dsl_pool);
2667 2667
2668 2668 /*
2669 2669 * Wait for all claims to sync. We sync up to the highest
2670 2670 * claimed log block birth time so that claimed log blocks
2671 2671 * don't appear to be from the future. spa_claim_max_txg
2672 2672 * will have been set for us by either zil_check_log_chain()
2673 2673 * (invoked from spa_check_logs()) or zil_claim() above.
2674 2674 */
2675 2675 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2676 2676
2677 2677 /*
2678 2678 * If the config cache is stale, or we have uninitialized
2679 2679 * metaslabs (see spa_vdev_add()), then update the config.
2680 2680 *
2681 2681 * If this is a verbatim import, trust the current
2682 2682 * in-core spa_config and update the disk labels.
2683 2683 */
2684 2684 if (config_cache_txg != spa->spa_config_txg ||
2685 2685 state == SPA_LOAD_IMPORT ||
2686 2686 state == SPA_LOAD_RECOVER ||
2687 2687 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2688 2688 need_update = B_TRUE;
2689 2689
2690 2690 for (int c = 0; c < rvd->vdev_children; c++)
2691 2691 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2692 2692 need_update = B_TRUE;
2693 2693
2694 2694 /*
2695 2695 * Update the config cache asychronously in case we're the
2696 2696 * root pool, in which case the config cache isn't writable yet.
2697 2697 */
2698 2698 if (need_update)
2699 2699 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2700 2700
2701 2701 /*
2702 2702 * Check all DTLs to see if anything needs resilvering.
2703 2703 */
2704 2704 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2705 2705 vdev_resilver_needed(rvd, NULL, NULL))
2706 2706 spa_async_request(spa, SPA_ASYNC_RESILVER);
2707 2707
2708 2708 /*
2709 2709 * Log the fact that we booted up (so that we can detect if
2710 2710 * we rebooted in the middle of an operation).
2711 2711 */
2712 2712 spa_history_log_version(spa, "open");
2713 2713
2714 2714 /*
2715 2715 * Delete any inconsistent datasets.
2716 2716 */
2717 2717 (void) dmu_objset_find(spa_name(spa),
2718 2718 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2719 2719
2720 2720 /*
2721 2721 * Clean up any stale temporary dataset userrefs.
2722 2722 */
2723 2723 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2724 2724 }
2725 2725
2726 2726 return (0);
2727 2727 }
2728 2728
2729 2729 static int
2730 2730 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2731 2731 {
2732 2732 int mode = spa->spa_mode;
2733 2733
2734 2734 spa_unload(spa);
2735 2735 spa_deactivate(spa);
2736 2736
2737 2737 spa->spa_load_max_txg--;
2738 2738
2739 2739 spa_activate(spa, mode);
2740 2740 spa_async_suspend(spa);
2741 2741
2742 2742 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2743 2743 }
2744 2744
2745 2745 /*
2746 2746 * If spa_load() fails this function will try loading prior txg's. If
2747 2747 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2748 2748 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2749 2749 * function will not rewind the pool and will return the same error as
2750 2750 * spa_load().
2751 2751 */
2752 2752 static int
2753 2753 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2754 2754 uint64_t max_request, int rewind_flags)
2755 2755 {
2756 2756 nvlist_t *loadinfo = NULL;
2757 2757 nvlist_t *config = NULL;
2758 2758 int load_error, rewind_error;
2759 2759 uint64_t safe_rewind_txg;
2760 2760 uint64_t min_txg;
2761 2761
2762 2762 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2763 2763 spa->spa_load_max_txg = spa->spa_load_txg;
2764 2764 spa_set_log_state(spa, SPA_LOG_CLEAR);
2765 2765 } else {
2766 2766 spa->spa_load_max_txg = max_request;
2767 2767 }
2768 2768
2769 2769 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2770 2770 mosconfig);
2771 2771 if (load_error == 0)
2772 2772 return (0);
2773 2773
2774 2774 if (spa->spa_root_vdev != NULL)
2775 2775 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2776 2776
2777 2777 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2778 2778 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2779 2779
2780 2780 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2781 2781 nvlist_free(config);
2782 2782 return (load_error);
2783 2783 }
2784 2784
2785 2785 if (state == SPA_LOAD_RECOVER) {
2786 2786 /* Price of rolling back is discarding txgs, including log */
2787 2787 spa_set_log_state(spa, SPA_LOG_CLEAR);
2788 2788 } else {
2789 2789 /*
2790 2790 * If we aren't rolling back save the load info from our first
2791 2791 * import attempt so that we can restore it after attempting
2792 2792 * to rewind.
2793 2793 */
2794 2794 loadinfo = spa->spa_load_info;
2795 2795 spa->spa_load_info = fnvlist_alloc();
2796 2796 }
2797 2797
2798 2798 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2799 2799 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2800 2800 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2801 2801 TXG_INITIAL : safe_rewind_txg;
2802 2802
2803 2803 /*
2804 2804 * Continue as long as we're finding errors, we're still within
2805 2805 * the acceptable rewind range, and we're still finding uberblocks
2806 2806 */
2807 2807 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2808 2808 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2809 2809 if (spa->spa_load_max_txg < safe_rewind_txg)
2810 2810 spa->spa_extreme_rewind = B_TRUE;
2811 2811 rewind_error = spa_load_retry(spa, state, mosconfig);
2812 2812 }
2813 2813
2814 2814 spa->spa_extreme_rewind = B_FALSE;
2815 2815 spa->spa_load_max_txg = UINT64_MAX;
2816 2816
2817 2817 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2818 2818 spa_config_set(spa, config);
2819 2819
2820 2820 if (state == SPA_LOAD_RECOVER) {
2821 2821 ASSERT3P(loadinfo, ==, NULL);
2822 2822 return (rewind_error);
2823 2823 } else {
2824 2824 /* Store the rewind info as part of the initial load info */
2825 2825 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2826 2826 spa->spa_load_info);
2827 2827
2828 2828 /* Restore the initial load info */
2829 2829 fnvlist_free(spa->spa_load_info);
2830 2830 spa->spa_load_info = loadinfo;
2831 2831
2832 2832 return (load_error);
2833 2833 }
2834 2834 }
2835 2835
2836 2836 /*
2837 2837 * Pool Open/Import
2838 2838 *
2839 2839 * The import case is identical to an open except that the configuration is sent
2840 2840 * down from userland, instead of grabbed from the configuration cache. For the
2841 2841 * case of an open, the pool configuration will exist in the
2842 2842 * POOL_STATE_UNINITIALIZED state.
2843 2843 *
2844 2844 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2845 2845 * the same time open the pool, without having to keep around the spa_t in some
2846 2846 * ambiguous state.
2847 2847 */
2848 2848 static int
2849 2849 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2850 2850 nvlist_t **config)
2851 2851 {
2852 2852 spa_t *spa;
2853 2853 spa_load_state_t state = SPA_LOAD_OPEN;
2854 2854 int error;
2855 2855 int locked = B_FALSE;
2856 2856
2857 2857 *spapp = NULL;
2858 2858
2859 2859 /*
2860 2860 * As disgusting as this is, we need to support recursive calls to this
2861 2861 * function because dsl_dir_open() is called during spa_load(), and ends
2862 2862 * up calling spa_open() again. The real fix is to figure out how to
2863 2863 * avoid dsl_dir_open() calling this in the first place.
2864 2864 */
2865 2865 if (mutex_owner(&spa_namespace_lock) != curthread) {
2866 2866 mutex_enter(&spa_namespace_lock);
2867 2867 locked = B_TRUE;
2868 2868 }
2869 2869
2870 2870 if ((spa = spa_lookup(pool)) == NULL) {
2871 2871 if (locked)
2872 2872 mutex_exit(&spa_namespace_lock);
2873 2873 return (SET_ERROR(ENOENT));
2874 2874 }
2875 2875
2876 2876 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2877 2877 zpool_rewind_policy_t policy;
2878 2878
2879 2879 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2880 2880 &policy);
2881 2881 if (policy.zrp_request & ZPOOL_DO_REWIND)
2882 2882 state = SPA_LOAD_RECOVER;
2883 2883
2884 2884 spa_activate(spa, spa_mode_global);
2885 2885
2886 2886 if (state != SPA_LOAD_RECOVER)
2887 2887 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2888 2888
2889 2889 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2890 2890 policy.zrp_request);
2891 2891
2892 2892 if (error == EBADF) {
2893 2893 /*
2894 2894 * If vdev_validate() returns failure (indicated by
2895 2895 * EBADF), it indicates that one of the vdevs indicates
2896 2896 * that the pool has been exported or destroyed. If
2897 2897 * this is the case, the config cache is out of sync and
2898 2898 * we should remove the pool from the namespace.
2899 2899 */
2900 2900 spa_unload(spa);
2901 2901 spa_deactivate(spa);
2902 2902 spa_config_sync(spa, B_TRUE, B_TRUE);
2903 2903 spa_remove(spa);
2904 2904 if (locked)
2905 2905 mutex_exit(&spa_namespace_lock);
2906 2906 return (SET_ERROR(ENOENT));
2907 2907 }
2908 2908
2909 2909 if (error) {
2910 2910 /*
2911 2911 * We can't open the pool, but we still have useful
2912 2912 * information: the state of each vdev after the
2913 2913 * attempted vdev_open(). Return this to the user.
2914 2914 */
2915 2915 if (config != NULL && spa->spa_config) {
2916 2916 VERIFY(nvlist_dup(spa->spa_config, config,
2917 2917 KM_SLEEP) == 0);
2918 2918 VERIFY(nvlist_add_nvlist(*config,
2919 2919 ZPOOL_CONFIG_LOAD_INFO,
2920 2920 spa->spa_load_info) == 0);
2921 2921 }
2922 2922 spa_unload(spa);
2923 2923 spa_deactivate(spa);
2924 2924 spa->spa_last_open_failed = error;
2925 2925 if (locked)
2926 2926 mutex_exit(&spa_namespace_lock);
2927 2927 *spapp = NULL;
2928 2928 return (error);
2929 2929 }
2930 2930 }
2931 2931
2932 2932 spa_open_ref(spa, tag);
2933 2933
2934 2934 if (config != NULL)
2935 2935 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2936 2936
2937 2937 /*
2938 2938 * If we've recovered the pool, pass back any information we
2939 2939 * gathered while doing the load.
2940 2940 */
2941 2941 if (state == SPA_LOAD_RECOVER) {
2942 2942 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2943 2943 spa->spa_load_info) == 0);
2944 2944 }
2945 2945
2946 2946 if (locked) {
2947 2947 spa->spa_last_open_failed = 0;
2948 2948 spa->spa_last_ubsync_txg = 0;
2949 2949 spa->spa_load_txg = 0;
2950 2950 mutex_exit(&spa_namespace_lock);
2951 2951 }
2952 2952
2953 2953 *spapp = spa;
2954 2954
2955 2955 return (0);
2956 2956 }
2957 2957
2958 2958 int
2959 2959 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2960 2960 nvlist_t **config)
2961 2961 {
2962 2962 return (spa_open_common(name, spapp, tag, policy, config));
2963 2963 }
2964 2964
2965 2965 int
2966 2966 spa_open(const char *name, spa_t **spapp, void *tag)
2967 2967 {
2968 2968 return (spa_open_common(name, spapp, tag, NULL, NULL));
2969 2969 }
2970 2970
2971 2971 /*
2972 2972 * Lookup the given spa_t, incrementing the inject count in the process,
2973 2973 * preventing it from being exported or destroyed.
2974 2974 */
2975 2975 spa_t *
2976 2976 spa_inject_addref(char *name)
2977 2977 {
2978 2978 spa_t *spa;
2979 2979
2980 2980 mutex_enter(&spa_namespace_lock);
2981 2981 if ((spa = spa_lookup(name)) == NULL) {
2982 2982 mutex_exit(&spa_namespace_lock);
2983 2983 return (NULL);
2984 2984 }
2985 2985 spa->spa_inject_ref++;
2986 2986 mutex_exit(&spa_namespace_lock);
2987 2987
2988 2988 return (spa);
2989 2989 }
2990 2990
2991 2991 void
2992 2992 spa_inject_delref(spa_t *spa)
2993 2993 {
2994 2994 mutex_enter(&spa_namespace_lock);
2995 2995 spa->spa_inject_ref--;
2996 2996 mutex_exit(&spa_namespace_lock);
2997 2997 }
2998 2998
2999 2999 /*
3000 3000 * Add spares device information to the nvlist.
3001 3001 */
3002 3002 static void
3003 3003 spa_add_spares(spa_t *spa, nvlist_t *config)
3004 3004 {
3005 3005 nvlist_t **spares;
3006 3006 uint_t i, nspares;
3007 3007 nvlist_t *nvroot;
3008 3008 uint64_t guid;
3009 3009 vdev_stat_t *vs;
3010 3010 uint_t vsc;
3011 3011 uint64_t pool;
3012 3012
3013 3013 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3014 3014
3015 3015 if (spa->spa_spares.sav_count == 0)
3016 3016 return;
3017 3017
3018 3018 VERIFY(nvlist_lookup_nvlist(config,
3019 3019 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3020 3020 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3021 3021 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3022 3022 if (nspares != 0) {
3023 3023 VERIFY(nvlist_add_nvlist_array(nvroot,
3024 3024 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3025 3025 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3026 3026 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3027 3027
3028 3028 /*
3029 3029 * Go through and find any spares which have since been
3030 3030 * repurposed as an active spare. If this is the case, update
3031 3031 * their status appropriately.
3032 3032 */
3033 3033 for (i = 0; i < nspares; i++) {
3034 3034 VERIFY(nvlist_lookup_uint64(spares[i],
3035 3035 ZPOOL_CONFIG_GUID, &guid) == 0);
3036 3036 if (spa_spare_exists(guid, &pool, NULL) &&
3037 3037 pool != 0ULL) {
3038 3038 VERIFY(nvlist_lookup_uint64_array(
3039 3039 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3040 3040 (uint64_t **)&vs, &vsc) == 0);
3041 3041 vs->vs_state = VDEV_STATE_CANT_OPEN;
3042 3042 vs->vs_aux = VDEV_AUX_SPARED;
3043 3043 }
3044 3044 }
3045 3045 }
3046 3046 }
3047 3047
3048 3048 /*
3049 3049 * Add l2cache device information to the nvlist, including vdev stats.
3050 3050 */
3051 3051 static void
3052 3052 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3053 3053 {
3054 3054 nvlist_t **l2cache;
3055 3055 uint_t i, j, nl2cache;
3056 3056 nvlist_t *nvroot;
3057 3057 uint64_t guid;
3058 3058 vdev_t *vd;
3059 3059 vdev_stat_t *vs;
3060 3060 uint_t vsc;
3061 3061
3062 3062 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3063 3063
3064 3064 if (spa->spa_l2cache.sav_count == 0)
3065 3065 return;
3066 3066
3067 3067 VERIFY(nvlist_lookup_nvlist(config,
3068 3068 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3069 3069 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3070 3070 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3071 3071 if (nl2cache != 0) {
3072 3072 VERIFY(nvlist_add_nvlist_array(nvroot,
3073 3073 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3074 3074 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3075 3075 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3076 3076
3077 3077 /*
3078 3078 * Update level 2 cache device stats.
3079 3079 */
3080 3080
3081 3081 for (i = 0; i < nl2cache; i++) {
3082 3082 VERIFY(nvlist_lookup_uint64(l2cache[i],
3083 3083 ZPOOL_CONFIG_GUID, &guid) == 0);
3084 3084
3085 3085 vd = NULL;
3086 3086 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3087 3087 if (guid ==
3088 3088 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3089 3089 vd = spa->spa_l2cache.sav_vdevs[j];
3090 3090 break;
3091 3091 }
3092 3092 }
3093 3093 ASSERT(vd != NULL);
3094 3094
3095 3095 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3096 3096 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3097 3097 == 0);
3098 3098 vdev_get_stats(vd, vs);
3099 3099 }
3100 3100 }
3101 3101 }
3102 3102
3103 3103 static void
3104 3104 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3105 3105 {
3106 3106 nvlist_t *features;
3107 3107 zap_cursor_t zc;
3108 3108 zap_attribute_t za;
3109 3109
3110 3110 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3111 3111 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3112 3112
3113 3113 if (spa->spa_feat_for_read_obj != 0) {
3114 3114 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3115 3115 spa->spa_feat_for_read_obj);
3116 3116 zap_cursor_retrieve(&zc, &za) == 0;
3117 3117 zap_cursor_advance(&zc)) {
3118 3118 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3119 3119 za.za_num_integers == 1);
3120 3120 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3121 3121 za.za_first_integer));
3122 3122 }
3123 3123 zap_cursor_fini(&zc);
3124 3124 }
3125 3125
3126 3126 if (spa->spa_feat_for_write_obj != 0) {
3127 3127 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3128 3128 spa->spa_feat_for_write_obj);
3129 3129 zap_cursor_retrieve(&zc, &za) == 0;
3130 3130 zap_cursor_advance(&zc)) {
3131 3131 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3132 3132 za.za_num_integers == 1);
3133 3133 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3134 3134 za.za_first_integer));
3135 3135 }
3136 3136 zap_cursor_fini(&zc);
3137 3137 }
3138 3138
3139 3139 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3140 3140 features) == 0);
3141 3141 nvlist_free(features);
3142 3142 }
3143 3143
3144 3144 int
3145 3145 spa_get_stats(const char *name, nvlist_t **config,
3146 3146 char *altroot, size_t buflen)
3147 3147 {
3148 3148 int error;
3149 3149 spa_t *spa;
3150 3150
3151 3151 *config = NULL;
3152 3152 error = spa_open_common(name, &spa, FTAG, NULL, config);
3153 3153
3154 3154 if (spa != NULL) {
3155 3155 /*
3156 3156 * This still leaves a window of inconsistency where the spares
3157 3157 * or l2cache devices could change and the config would be
3158 3158 * self-inconsistent.
3159 3159 */
3160 3160 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3161 3161
3162 3162 if (*config != NULL) {
3163 3163 uint64_t loadtimes[2];
3164 3164
3165 3165 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3166 3166 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3167 3167 VERIFY(nvlist_add_uint64_array(*config,
3168 3168 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3169 3169
3170 3170 VERIFY(nvlist_add_uint64(*config,
3171 3171 ZPOOL_CONFIG_ERRCOUNT,
3172 3172 spa_get_errlog_size(spa)) == 0);
3173 3173
3174 3174 if (spa_suspended(spa))
3175 3175 VERIFY(nvlist_add_uint64(*config,
3176 3176 ZPOOL_CONFIG_SUSPENDED,
3177 3177 spa->spa_failmode) == 0);
3178 3178
3179 3179 spa_add_spares(spa, *config);
3180 3180 spa_add_l2cache(spa, *config);
3181 3181 spa_add_feature_stats(spa, *config);
3182 3182 }
3183 3183 }
3184 3184
3185 3185 /*
3186 3186 * We want to get the alternate root even for faulted pools, so we cheat
3187 3187 * and call spa_lookup() directly.
3188 3188 */
3189 3189 if (altroot) {
3190 3190 if (spa == NULL) {
3191 3191 mutex_enter(&spa_namespace_lock);
3192 3192 spa = spa_lookup(name);
3193 3193 if (spa)
3194 3194 spa_altroot(spa, altroot, buflen);
3195 3195 else
3196 3196 altroot[0] = '\0';
3197 3197 spa = NULL;
3198 3198 mutex_exit(&spa_namespace_lock);
3199 3199 } else {
3200 3200 spa_altroot(spa, altroot, buflen);
3201 3201 }
3202 3202 }
3203 3203
3204 3204 if (spa != NULL) {
3205 3205 spa_config_exit(spa, SCL_CONFIG, FTAG);
3206 3206 spa_close(spa, FTAG);
3207 3207 }
3208 3208
3209 3209 return (error);
3210 3210 }
3211 3211
3212 3212 /*
3213 3213 * Validate that the auxiliary device array is well formed. We must have an
3214 3214 * array of nvlists, each which describes a valid leaf vdev. If this is an
3215 3215 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3216 3216 * specified, as long as they are well-formed.
3217 3217 */
3218 3218 static int
3219 3219 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3220 3220 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3221 3221 vdev_labeltype_t label)
3222 3222 {
3223 3223 nvlist_t **dev;
3224 3224 uint_t i, ndev;
3225 3225 vdev_t *vd;
3226 3226 int error;
3227 3227
3228 3228 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3229 3229
3230 3230 /*
3231 3231 * It's acceptable to have no devs specified.
3232 3232 */
3233 3233 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3234 3234 return (0);
3235 3235
3236 3236 if (ndev == 0)
3237 3237 return (SET_ERROR(EINVAL));
3238 3238
3239 3239 /*
3240 3240 * Make sure the pool is formatted with a version that supports this
3241 3241 * device type.
3242 3242 */
3243 3243 if (spa_version(spa) < version)
3244 3244 return (SET_ERROR(ENOTSUP));
3245 3245
3246 3246 /*
3247 3247 * Set the pending device list so we correctly handle device in-use
3248 3248 * checking.
3249 3249 */
3250 3250 sav->sav_pending = dev;
3251 3251 sav->sav_npending = ndev;
3252 3252
3253 3253 for (i = 0; i < ndev; i++) {
3254 3254 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3255 3255 mode)) != 0)
3256 3256 goto out;
3257 3257
3258 3258 if (!vd->vdev_ops->vdev_op_leaf) {
3259 3259 vdev_free(vd);
3260 3260 error = SET_ERROR(EINVAL);
3261 3261 goto out;
3262 3262 }
3263 3263
3264 3264 /*
3265 3265 * The L2ARC currently only supports disk devices in
3266 3266 * kernel context. For user-level testing, we allow it.
3267 3267 */
3268 3268 #ifdef _KERNEL
3269 3269 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3270 3270 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3271 3271 error = SET_ERROR(ENOTBLK);
3272 3272 vdev_free(vd);
3273 3273 goto out;
3274 3274 }
3275 3275 #endif
3276 3276 vd->vdev_top = vd;
3277 3277
3278 3278 if ((error = vdev_open(vd)) == 0 &&
3279 3279 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3280 3280 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3281 3281 vd->vdev_guid) == 0);
3282 3282 }
3283 3283
3284 3284 vdev_free(vd);
3285 3285
3286 3286 if (error &&
3287 3287 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3288 3288 goto out;
3289 3289 else
3290 3290 error = 0;
3291 3291 }
3292 3292
3293 3293 out:
3294 3294 sav->sav_pending = NULL;
3295 3295 sav->sav_npending = 0;
3296 3296 return (error);
3297 3297 }
3298 3298
3299 3299 static int
3300 3300 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3301 3301 {
3302 3302 int error;
3303 3303
3304 3304 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3305 3305
3306 3306 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3307 3307 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3308 3308 VDEV_LABEL_SPARE)) != 0) {
3309 3309 return (error);
3310 3310 }
3311 3311
3312 3312 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3313 3313 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3314 3314 VDEV_LABEL_L2CACHE));
3315 3315 }
3316 3316
3317 3317 static void
3318 3318 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3319 3319 const char *config)
3320 3320 {
3321 3321 int i;
3322 3322
3323 3323 if (sav->sav_config != NULL) {
3324 3324 nvlist_t **olddevs;
3325 3325 uint_t oldndevs;
3326 3326 nvlist_t **newdevs;
3327 3327
3328 3328 /*
3329 3329 * Generate new dev list by concatentating with the
3330 3330 * current dev list.
3331 3331 */
3332 3332 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3333 3333 &olddevs, &oldndevs) == 0);
3334 3334
3335 3335 newdevs = kmem_alloc(sizeof (void *) *
3336 3336 (ndevs + oldndevs), KM_SLEEP);
3337 3337 for (i = 0; i < oldndevs; i++)
3338 3338 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3339 3339 KM_SLEEP) == 0);
3340 3340 for (i = 0; i < ndevs; i++)
3341 3341 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3342 3342 KM_SLEEP) == 0);
3343 3343
3344 3344 VERIFY(nvlist_remove(sav->sav_config, config,
3345 3345 DATA_TYPE_NVLIST_ARRAY) == 0);
3346 3346
3347 3347 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3348 3348 config, newdevs, ndevs + oldndevs) == 0);
3349 3349 for (i = 0; i < oldndevs + ndevs; i++)
3350 3350 nvlist_free(newdevs[i]);
3351 3351 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3352 3352 } else {
3353 3353 /*
3354 3354 * Generate a new dev list.
3355 3355 */
3356 3356 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3357 3357 KM_SLEEP) == 0);
3358 3358 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3359 3359 devs, ndevs) == 0);
3360 3360 }
3361 3361 }
3362 3362
3363 3363 /*
3364 3364 * Stop and drop level 2 ARC devices
3365 3365 */
3366 3366 void
3367 3367 spa_l2cache_drop(spa_t *spa)
3368 3368 {
3369 3369 vdev_t *vd;
3370 3370 int i;
3371 3371 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3372 3372
3373 3373 for (i = 0; i < sav->sav_count; i++) {
3374 3374 uint64_t pool;
3375 3375
3376 3376 vd = sav->sav_vdevs[i];
3377 3377 ASSERT(vd != NULL);
3378 3378
3379 3379 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3380 3380 pool != 0ULL && l2arc_vdev_present(vd))
3381 3381 l2arc_remove_vdev(vd);
3382 3382 }
3383 3383 }
3384 3384
3385 3385 /*
3386 3386 * Pool Creation
3387 3387 */
3388 3388 int
3389 3389 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3390 3390 nvlist_t *zplprops)
3391 3391 {
3392 3392 spa_t *spa;
3393 3393 char *altroot = NULL;
3394 3394 vdev_t *rvd;
3395 3395 dsl_pool_t *dp;
3396 3396 dmu_tx_t *tx;
3397 3397 int error = 0;
3398 3398 uint64_t txg = TXG_INITIAL;
3399 3399 nvlist_t **spares, **l2cache;
3400 3400 uint_t nspares, nl2cache;
3401 3401 uint64_t version, obj;
3402 3402 boolean_t has_features;
3403 3403
3404 3404 /*
3405 3405 * If this pool already exists, return failure.
3406 3406 */
3407 3407 mutex_enter(&spa_namespace_lock);
3408 3408 if (spa_lookup(pool) != NULL) {
3409 3409 mutex_exit(&spa_namespace_lock);
3410 3410 return (SET_ERROR(EEXIST));
3411 3411 }
3412 3412
3413 3413 /*
3414 3414 * Allocate a new spa_t structure.
3415 3415 */
3416 3416 (void) nvlist_lookup_string(props,
3417 3417 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3418 3418 spa = spa_add(pool, NULL, altroot);
3419 3419 spa_activate(spa, spa_mode_global);
3420 3420
3421 3421 if (props && (error = spa_prop_validate(spa, props))) {
3422 3422 spa_deactivate(spa);
3423 3423 spa_remove(spa);
3424 3424 mutex_exit(&spa_namespace_lock);
3425 3425 return (error);
3426 3426 }
3427 3427
3428 3428 has_features = B_FALSE;
3429 3429 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3430 3430 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3431 3431 if (zpool_prop_feature(nvpair_name(elem)))
3432 3432 has_features = B_TRUE;
3433 3433 }
3434 3434
3435 3435 if (has_features || nvlist_lookup_uint64(props,
3436 3436 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3437 3437 version = SPA_VERSION;
3438 3438 }
3439 3439 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3440 3440
3441 3441 spa->spa_first_txg = txg;
3442 3442 spa->spa_uberblock.ub_txg = txg - 1;
3443 3443 spa->spa_uberblock.ub_version = version;
3444 3444 spa->spa_ubsync = spa->spa_uberblock;
3445 3445
3446 3446 /*
3447 3447 * Create "The Godfather" zio to hold all async IOs
3448 3448 */
3449 3449 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3450 3450 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3451 3451
3452 3452 /*
3453 3453 * Create the root vdev.
3454 3454 */
3455 3455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3456 3456
3457 3457 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3458 3458
3459 3459 ASSERT(error != 0 || rvd != NULL);
3460 3460 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3461 3461
3462 3462 if (error == 0 && !zfs_allocatable_devs(nvroot))
3463 3463 error = SET_ERROR(EINVAL);
3464 3464
3465 3465 if (error == 0 &&
3466 3466 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3467 3467 (error = spa_validate_aux(spa, nvroot, txg,
3468 3468 VDEV_ALLOC_ADD)) == 0) {
3469 3469 for (int c = 0; c < rvd->vdev_children; c++) {
3470 3470 vdev_metaslab_set_size(rvd->vdev_child[c]);
3471 3471 vdev_expand(rvd->vdev_child[c], txg);
3472 3472 }
3473 3473 }
3474 3474
3475 3475 spa_config_exit(spa, SCL_ALL, FTAG);
3476 3476
3477 3477 if (error != 0) {
3478 3478 spa_unload(spa);
3479 3479 spa_deactivate(spa);
3480 3480 spa_remove(spa);
3481 3481 mutex_exit(&spa_namespace_lock);
3482 3482 return (error);
3483 3483 }
3484 3484
3485 3485 /*
3486 3486 * Get the list of spares, if specified.
3487 3487 */
3488 3488 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3489 3489 &spares, &nspares) == 0) {
3490 3490 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3491 3491 KM_SLEEP) == 0);
3492 3492 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3493 3493 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3494 3494 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3495 3495 spa_load_spares(spa);
3496 3496 spa_config_exit(spa, SCL_ALL, FTAG);
3497 3497 spa->spa_spares.sav_sync = B_TRUE;
3498 3498 }
3499 3499
3500 3500 /*
3501 3501 * Get the list of level 2 cache devices, if specified.
3502 3502 */
3503 3503 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3504 3504 &l2cache, &nl2cache) == 0) {
3505 3505 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3506 3506 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3507 3507 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3508 3508 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3509 3509 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3510 3510 spa_load_l2cache(spa);
3511 3511 spa_config_exit(spa, SCL_ALL, FTAG);
3512 3512 spa->spa_l2cache.sav_sync = B_TRUE;
3513 3513 }
3514 3514
3515 3515 spa->spa_is_initializing = B_TRUE;
3516 3516 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3517 3517 spa->spa_meta_objset = dp->dp_meta_objset;
3518 3518 spa->spa_is_initializing = B_FALSE;
3519 3519
3520 3520 /*
3521 3521 * Create DDTs (dedup tables).
3522 3522 */
3523 3523 ddt_create(spa);
3524 3524
3525 3525 spa_update_dspace(spa);
3526 3526
3527 3527 tx = dmu_tx_create_assigned(dp, txg);
3528 3528
3529 3529 /*
3530 3530 * Create the pool config object.
3531 3531 */
3532 3532 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3533 3533 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3534 3534 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3535 3535
3536 3536 if (zap_add(spa->spa_meta_objset,
3537 3537 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3538 3538 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3539 3539 cmn_err(CE_PANIC, "failed to add pool config");
3540 3540 }
3541 3541
3542 3542 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3543 3543 spa_feature_create_zap_objects(spa, tx);
3544 3544
3545 3545 if (zap_add(spa->spa_meta_objset,
3546 3546 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3547 3547 sizeof (uint64_t), 1, &version, tx) != 0) {
3548 3548 cmn_err(CE_PANIC, "failed to add pool version");
3549 3549 }
3550 3550
3551 3551 /* Newly created pools with the right version are always deflated. */
3552 3552 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3553 3553 spa->spa_deflate = TRUE;
3554 3554 if (zap_add(spa->spa_meta_objset,
3555 3555 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3556 3556 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3557 3557 cmn_err(CE_PANIC, "failed to add deflate");
3558 3558 }
3559 3559 }
3560 3560
3561 3561 /*
3562 3562 * Create the deferred-free bpobj. Turn off compression
3563 3563 * because sync-to-convergence takes longer if the blocksize
3564 3564 * keeps changing.
3565 3565 */
3566 3566 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3567 3567 dmu_object_set_compress(spa->spa_meta_objset, obj,
3568 3568 ZIO_COMPRESS_OFF, tx);
3569 3569 if (zap_add(spa->spa_meta_objset,
3570 3570 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3571 3571 sizeof (uint64_t), 1, &obj, tx) != 0) {
3572 3572 cmn_err(CE_PANIC, "failed to add bpobj");
3573 3573 }
3574 3574 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3575 3575 spa->spa_meta_objset, obj));
3576 3576
3577 3577 /*
3578 3578 * Create the pool's history object.
3579 3579 */
3580 3580 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3581 3581 spa_history_create_obj(spa, tx);
3582 3582
3583 3583 /*
3584 3584 * Set pool properties.
3585 3585 */
3586 3586 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3587 3587 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3588 3588 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3589 3589 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3590 3590
3591 3591 if (props != NULL) {
3592 3592 spa_configfile_set(spa, props, B_FALSE);
3593 3593 spa_sync_props(props, tx);
3594 3594 }
3595 3595
3596 3596 dmu_tx_commit(tx);
3597 3597
3598 3598 spa->spa_sync_on = B_TRUE;
3599 3599 txg_sync_start(spa->spa_dsl_pool);
3600 3600
3601 3601 /*
3602 3602 * We explicitly wait for the first transaction to complete so that our
3603 3603 * bean counters are appropriately updated.
3604 3604 */
3605 3605 txg_wait_synced(spa->spa_dsl_pool, txg);
3606 3606
3607 3607 spa_config_sync(spa, B_FALSE, B_TRUE);
3608 3608
3609 3609 spa_history_log_version(spa, "create");
3610 3610
3611 3611 spa->spa_minref = refcount_count(&spa->spa_refcount);
3612 3612
3613 3613 mutex_exit(&spa_namespace_lock);
3614 3614
3615 3615 return (0);
3616 3616 }
3617 3617
3618 3618 #ifdef _KERNEL
3619 3619 /*
3620 3620 * Get the root pool information from the root disk, then import the root pool
3621 3621 * during the system boot up time.
3622 3622 */
3623 3623 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3624 3624
3625 3625 static nvlist_t *
3626 3626 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3627 3627 {
3628 3628 nvlist_t *config;
3629 3629 nvlist_t *nvtop, *nvroot;
3630 3630 uint64_t pgid;
3631 3631
3632 3632 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3633 3633 return (NULL);
3634 3634
3635 3635 /*
3636 3636 * Add this top-level vdev to the child array.
3637 3637 */
3638 3638 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3639 3639 &nvtop) == 0);
3640 3640 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3641 3641 &pgid) == 0);
3642 3642 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3643 3643
3644 3644 /*
3645 3645 * Put this pool's top-level vdevs into a root vdev.
3646 3646 */
3647 3647 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3648 3648 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3649 3649 VDEV_TYPE_ROOT) == 0);
3650 3650 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3651 3651 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3652 3652 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3653 3653 &nvtop, 1) == 0);
3654 3654
3655 3655 /*
3656 3656 * Replace the existing vdev_tree with the new root vdev in
3657 3657 * this pool's configuration (remove the old, add the new).
3658 3658 */
3659 3659 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3660 3660 nvlist_free(nvroot);
3661 3661 return (config);
3662 3662 }
3663 3663
3664 3664 /*
3665 3665 * Walk the vdev tree and see if we can find a device with "better"
3666 3666 * configuration. A configuration is "better" if the label on that
3667 3667 * device has a more recent txg.
3668 3668 */
3669 3669 static void
3670 3670 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3671 3671 {
3672 3672 for (int c = 0; c < vd->vdev_children; c++)
3673 3673 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3674 3674
3675 3675 if (vd->vdev_ops->vdev_op_leaf) {
3676 3676 nvlist_t *label;
3677 3677 uint64_t label_txg;
3678 3678
3679 3679 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3680 3680 &label) != 0)
3681 3681 return;
3682 3682
3683 3683 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3684 3684 &label_txg) == 0);
3685 3685
3686 3686 /*
3687 3687 * Do we have a better boot device?
3688 3688 */
3689 3689 if (label_txg > *txg) {
3690 3690 *txg = label_txg;
3691 3691 *avd = vd;
3692 3692 }
3693 3693 nvlist_free(label);
3694 3694 }
3695 3695 }
3696 3696
3697 3697 /*
3698 3698 * Import a root pool.
3699 3699 *
3700 3700 * For x86. devpath_list will consist of devid and/or physpath name of
3701 3701 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3702 3702 * The GRUB "findroot" command will return the vdev we should boot.
3703 3703 *
3704 3704 * For Sparc, devpath_list consists the physpath name of the booting device
3705 3705 * no matter the rootpool is a single device pool or a mirrored pool.
3706 3706 * e.g.
3707 3707 * "/pci@1f,0/ide@d/disk@0,0:a"
3708 3708 */
3709 3709 int
3710 3710 spa_import_rootpool(char *devpath, char *devid)
3711 3711 {
3712 3712 spa_t *spa;
3713 3713 vdev_t *rvd, *bvd, *avd = NULL;
3714 3714 nvlist_t *config, *nvtop;
3715 3715 uint64_t guid, txg;
3716 3716 char *pname;
3717 3717 int error;
3718 3718
3719 3719 /*
3720 3720 * Read the label from the boot device and generate a configuration.
3721 3721 */
3722 3722 config = spa_generate_rootconf(devpath, devid, &guid);
3723 3723 #if defined(_OBP) && defined(_KERNEL)
3724 3724 if (config == NULL) {
3725 3725 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3726 3726 /* iscsi boot */
3727 3727 get_iscsi_bootpath_phy(devpath);
3728 3728 config = spa_generate_rootconf(devpath, devid, &guid);
3729 3729 }
3730 3730 }
3731 3731 #endif
3732 3732 if (config == NULL) {
3733 3733 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3734 3734 devpath);
3735 3735 return (SET_ERROR(EIO));
3736 3736 }
3737 3737
3738 3738 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3739 3739 &pname) == 0);
3740 3740 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3741 3741
3742 3742 mutex_enter(&spa_namespace_lock);
3743 3743 if ((spa = spa_lookup(pname)) != NULL) {
3744 3744 /*
3745 3745 * Remove the existing root pool from the namespace so that we
3746 3746 * can replace it with the correct config we just read in.
3747 3747 */
3748 3748 spa_remove(spa);
3749 3749 }
3750 3750
3751 3751 spa = spa_add(pname, config, NULL);
3752 3752 spa->spa_is_root = B_TRUE;
3753 3753 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3754 3754
3755 3755 /*
3756 3756 * Build up a vdev tree based on the boot device's label config.
3757 3757 */
3758 3758 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3759 3759 &nvtop) == 0);
3760 3760 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3761 3761 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3762 3762 VDEV_ALLOC_ROOTPOOL);
3763 3763 spa_config_exit(spa, SCL_ALL, FTAG);
3764 3764 if (error) {
3765 3765 mutex_exit(&spa_namespace_lock);
3766 3766 nvlist_free(config);
3767 3767 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3768 3768 pname);
3769 3769 return (error);
3770 3770 }
3771 3771
3772 3772 /*
3773 3773 * Get the boot vdev.
3774 3774 */
3775 3775 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3776 3776 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3777 3777 (u_longlong_t)guid);
3778 3778 error = SET_ERROR(ENOENT);
3779 3779 goto out;
3780 3780 }
3781 3781
3782 3782 /*
3783 3783 * Determine if there is a better boot device.
3784 3784 */
3785 3785 avd = bvd;
3786 3786 spa_alt_rootvdev(rvd, &avd, &txg);
3787 3787 if (avd != bvd) {
3788 3788 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3789 3789 "try booting from '%s'", avd->vdev_path);
3790 3790 error = SET_ERROR(EINVAL);
3791 3791 goto out;
3792 3792 }
3793 3793
3794 3794 /*
3795 3795 * If the boot device is part of a spare vdev then ensure that
3796 3796 * we're booting off the active spare.
3797 3797 */
3798 3798 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3799 3799 !bvd->vdev_isspare) {
3800 3800 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3801 3801 "try booting from '%s'",
3802 3802 bvd->vdev_parent->
3803 3803 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3804 3804 error = SET_ERROR(EINVAL);
3805 3805 goto out;
3806 3806 }
3807 3807
3808 3808 error = 0;
3809 3809 out:
3810 3810 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3811 3811 vdev_free(rvd);
3812 3812 spa_config_exit(spa, SCL_ALL, FTAG);
3813 3813 mutex_exit(&spa_namespace_lock);
3814 3814
3815 3815 nvlist_free(config);
3816 3816 return (error);
3817 3817 }
3818 3818
3819 3819 #endif
3820 3820
3821 3821 /*
3822 3822 * Import a non-root pool into the system.
3823 3823 */
3824 3824 int
3825 3825 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3826 3826 {
3827 3827 spa_t *spa;
3828 3828 char *altroot = NULL;
3829 3829 spa_load_state_t state = SPA_LOAD_IMPORT;
3830 3830 zpool_rewind_policy_t policy;
3831 3831 uint64_t mode = spa_mode_global;
3832 3832 uint64_t readonly = B_FALSE;
3833 3833 int error;
3834 3834 nvlist_t *nvroot;
3835 3835 nvlist_t **spares, **l2cache;
3836 3836 uint_t nspares, nl2cache;
3837 3837
3838 3838 /*
3839 3839 * If a pool with this name exists, return failure.
3840 3840 */
3841 3841 mutex_enter(&spa_namespace_lock);
3842 3842 if (spa_lookup(pool) != NULL) {
3843 3843 mutex_exit(&spa_namespace_lock);
3844 3844 return (SET_ERROR(EEXIST));
3845 3845 }
3846 3846
3847 3847 /*
3848 3848 * Create and initialize the spa structure.
3849 3849 */
3850 3850 (void) nvlist_lookup_string(props,
3851 3851 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3852 3852 (void) nvlist_lookup_uint64(props,
3853 3853 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3854 3854 if (readonly)
3855 3855 mode = FREAD;
3856 3856 spa = spa_add(pool, config, altroot);
3857 3857 spa->spa_import_flags = flags;
3858 3858
3859 3859 /*
3860 3860 * Verbatim import - Take a pool and insert it into the namespace
3861 3861 * as if it had been loaded at boot.
3862 3862 */
3863 3863 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3864 3864 if (props != NULL)
3865 3865 spa_configfile_set(spa, props, B_FALSE);
3866 3866
3867 3867 spa_config_sync(spa, B_FALSE, B_TRUE);
3868 3868
3869 3869 mutex_exit(&spa_namespace_lock);
3870 3870 return (0);
3871 3871 }
3872 3872
3873 3873 spa_activate(spa, mode);
3874 3874
3875 3875 /*
3876 3876 * Don't start async tasks until we know everything is healthy.
3877 3877 */
3878 3878 spa_async_suspend(spa);
3879 3879
3880 3880 zpool_get_rewind_policy(config, &policy);
3881 3881 if (policy.zrp_request & ZPOOL_DO_REWIND)
3882 3882 state = SPA_LOAD_RECOVER;
3883 3883
3884 3884 /*
3885 3885 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3886 3886 * because the user-supplied config is actually the one to trust when
3887 3887 * doing an import.
3888 3888 */
3889 3889 if (state != SPA_LOAD_RECOVER)
3890 3890 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3891 3891
3892 3892 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3893 3893 policy.zrp_request);
3894 3894
3895 3895 /*
3896 3896 * Propagate anything learned while loading the pool and pass it
3897 3897 * back to caller (i.e. rewind info, missing devices, etc).
3898 3898 */
3899 3899 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3900 3900 spa->spa_load_info) == 0);
3901 3901
3902 3902 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3903 3903 /*
3904 3904 * Toss any existing sparelist, as it doesn't have any validity
3905 3905 * anymore, and conflicts with spa_has_spare().
3906 3906 */
3907 3907 if (spa->spa_spares.sav_config) {
3908 3908 nvlist_free(spa->spa_spares.sav_config);
3909 3909 spa->spa_spares.sav_config = NULL;
3910 3910 spa_load_spares(spa);
3911 3911 }
3912 3912 if (spa->spa_l2cache.sav_config) {
3913 3913 nvlist_free(spa->spa_l2cache.sav_config);
3914 3914 spa->spa_l2cache.sav_config = NULL;
3915 3915 spa_load_l2cache(spa);
3916 3916 }
3917 3917
3918 3918 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3919 3919 &nvroot) == 0);
3920 3920 if (error == 0)
3921 3921 error = spa_validate_aux(spa, nvroot, -1ULL,
3922 3922 VDEV_ALLOC_SPARE);
3923 3923 if (error == 0)
3924 3924 error = spa_validate_aux(spa, nvroot, -1ULL,
3925 3925 VDEV_ALLOC_L2CACHE);
3926 3926 spa_config_exit(spa, SCL_ALL, FTAG);
3927 3927
3928 3928 if (props != NULL)
3929 3929 spa_configfile_set(spa, props, B_FALSE);
3930 3930
3931 3931 if (error != 0 || (props && spa_writeable(spa) &&
3932 3932 (error = spa_prop_set(spa, props)))) {
3933 3933 spa_unload(spa);
3934 3934 spa_deactivate(spa);
3935 3935 spa_remove(spa);
3936 3936 mutex_exit(&spa_namespace_lock);
3937 3937 return (error);
3938 3938 }
3939 3939
3940 3940 spa_async_resume(spa);
3941 3941
3942 3942 /*
3943 3943 * Override any spares and level 2 cache devices as specified by
3944 3944 * the user, as these may have correct device names/devids, etc.
3945 3945 */
3946 3946 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3947 3947 &spares, &nspares) == 0) {
3948 3948 if (spa->spa_spares.sav_config)
3949 3949 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3950 3950 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3951 3951 else
3952 3952 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3953 3953 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3954 3954 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3955 3955 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3956 3956 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3957 3957 spa_load_spares(spa);
3958 3958 spa_config_exit(spa, SCL_ALL, FTAG);
3959 3959 spa->spa_spares.sav_sync = B_TRUE;
3960 3960 }
3961 3961 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3962 3962 &l2cache, &nl2cache) == 0) {
3963 3963 if (spa->spa_l2cache.sav_config)
3964 3964 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3965 3965 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3966 3966 else
3967 3967 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3968 3968 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3969 3969 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3970 3970 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3971 3971 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3972 3972 spa_load_l2cache(spa);
3973 3973 spa_config_exit(spa, SCL_ALL, FTAG);
3974 3974 spa->spa_l2cache.sav_sync = B_TRUE;
3975 3975 }
3976 3976
3977 3977 /*
3978 3978 * Check for any removed devices.
3979 3979 */
3980 3980 if (spa->spa_autoreplace) {
3981 3981 spa_aux_check_removed(&spa->spa_spares);
3982 3982 spa_aux_check_removed(&spa->spa_l2cache);
3983 3983 }
3984 3984
3985 3985 if (spa_writeable(spa)) {
3986 3986 /*
3987 3987 * Update the config cache to include the newly-imported pool.
3988 3988 */
3989 3989 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3990 3990 }
3991 3991
3992 3992 /*
3993 3993 * It's possible that the pool was expanded while it was exported.
3994 3994 * We kick off an async task to handle this for us.
3995 3995 */
3996 3996 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3997 3997
3998 3998 mutex_exit(&spa_namespace_lock);
3999 3999 spa_history_log_version(spa, "import");
4000 4000
4001 4001 return (0);
4002 4002 }
4003 4003
4004 4004 nvlist_t *
4005 4005 spa_tryimport(nvlist_t *tryconfig)
4006 4006 {
4007 4007 nvlist_t *config = NULL;
4008 4008 char *poolname;
4009 4009 spa_t *spa;
4010 4010 uint64_t state;
4011 4011 int error;
4012 4012
4013 4013 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4014 4014 return (NULL);
4015 4015
4016 4016 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4017 4017 return (NULL);
4018 4018
4019 4019 /*
4020 4020 * Create and initialize the spa structure.
4021 4021 */
4022 4022 mutex_enter(&spa_namespace_lock);
4023 4023 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4024 4024 spa_activate(spa, FREAD);
4025 4025
4026 4026 /*
4027 4027 * Pass off the heavy lifting to spa_load().
4028 4028 * Pass TRUE for mosconfig because the user-supplied config
4029 4029 * is actually the one to trust when doing an import.
4030 4030 */
4031 4031 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4032 4032
4033 4033 /*
4034 4034 * If 'tryconfig' was at least parsable, return the current config.
4035 4035 */
4036 4036 if (spa->spa_root_vdev != NULL) {
4037 4037 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4038 4038 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4039 4039 poolname) == 0);
4040 4040 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4041 4041 state) == 0);
4042 4042 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4043 4043 spa->spa_uberblock.ub_timestamp) == 0);
4044 4044 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4045 4045 spa->spa_load_info) == 0);
4046 4046
4047 4047 /*
4048 4048 * If the bootfs property exists on this pool then we
4049 4049 * copy it out so that external consumers can tell which
4050 4050 * pools are bootable.
4051 4051 */
4052 4052 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4053 4053 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4054 4054
4055 4055 /*
4056 4056 * We have to play games with the name since the
4057 4057 * pool was opened as TRYIMPORT_NAME.
4058 4058 */
4059 4059 if (dsl_dsobj_to_dsname(spa_name(spa),
4060 4060 spa->spa_bootfs, tmpname) == 0) {
4061 4061 char *cp;
4062 4062 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4063 4063
4064 4064 cp = strchr(tmpname, '/');
4065 4065 if (cp == NULL) {
4066 4066 (void) strlcpy(dsname, tmpname,
4067 4067 MAXPATHLEN);
4068 4068 } else {
4069 4069 (void) snprintf(dsname, MAXPATHLEN,
4070 4070 "%s/%s", poolname, ++cp);
4071 4071 }
4072 4072 VERIFY(nvlist_add_string(config,
4073 4073 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4074 4074 kmem_free(dsname, MAXPATHLEN);
4075 4075 }
4076 4076 kmem_free(tmpname, MAXPATHLEN);
4077 4077 }
4078 4078
4079 4079 /*
4080 4080 * Add the list of hot spares and level 2 cache devices.
4081 4081 */
4082 4082 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4083 4083 spa_add_spares(spa, config);
4084 4084 spa_add_l2cache(spa, config);
4085 4085 spa_config_exit(spa, SCL_CONFIG, FTAG);
4086 4086 }
4087 4087
4088 4088 spa_unload(spa);
4089 4089 spa_deactivate(spa);
4090 4090 spa_remove(spa);
4091 4091 mutex_exit(&spa_namespace_lock);
4092 4092
4093 4093 return (config);
4094 4094 }
4095 4095
4096 4096 /*
4097 4097 * Pool export/destroy
4098 4098 *
4099 4099 * The act of destroying or exporting a pool is very simple. We make sure there
4100 4100 * is no more pending I/O and any references to the pool are gone. Then, we
4101 4101 * update the pool state and sync all the labels to disk, removing the
4102 4102 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4103 4103 * we don't sync the labels or remove the configuration cache.
4104 4104 */
4105 4105 static int
4106 4106 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4107 4107 boolean_t force, boolean_t hardforce)
4108 4108 {
4109 4109 spa_t *spa;
4110 4110
4111 4111 if (oldconfig)
4112 4112 *oldconfig = NULL;
4113 4113
4114 4114 if (!(spa_mode_global & FWRITE))
4115 4115 return (SET_ERROR(EROFS));
4116 4116
4117 4117 mutex_enter(&spa_namespace_lock);
4118 4118 if ((spa = spa_lookup(pool)) == NULL) {
4119 4119 mutex_exit(&spa_namespace_lock);
4120 4120 return (SET_ERROR(ENOENT));
4121 4121 }
4122 4122
4123 4123 /*
4124 4124 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4125 4125 * reacquire the namespace lock, and see if we can export.
4126 4126 */
4127 4127 spa_open_ref(spa, FTAG);
4128 4128 mutex_exit(&spa_namespace_lock);
4129 4129 spa_async_suspend(spa);
4130 4130 mutex_enter(&spa_namespace_lock);
4131 4131 spa_close(spa, FTAG);
4132 4132
4133 4133 /*
4134 4134 * The pool will be in core if it's openable,
4135 4135 * in which case we can modify its state.
4136 4136 */
4137 4137 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4138 4138 /*
4139 4139 * Objsets may be open only because they're dirty, so we
4140 4140 * have to force it to sync before checking spa_refcnt.
4141 4141 */
4142 4142 txg_wait_synced(spa->spa_dsl_pool, 0);
4143 4143
4144 4144 /*
4145 4145 * A pool cannot be exported or destroyed if there are active
4146 4146 * references. If we are resetting a pool, allow references by
4147 4147 * fault injection handlers.
4148 4148 */
4149 4149 if (!spa_refcount_zero(spa) ||
4150 4150 (spa->spa_inject_ref != 0 &&
4151 4151 new_state != POOL_STATE_UNINITIALIZED)) {
4152 4152 spa_async_resume(spa);
4153 4153 mutex_exit(&spa_namespace_lock);
4154 4154 return (SET_ERROR(EBUSY));
4155 4155 }
4156 4156
4157 4157 /*
4158 4158 * A pool cannot be exported if it has an active shared spare.
4159 4159 * This is to prevent other pools stealing the active spare
4160 4160 * from an exported pool. At user's own will, such pool can
4161 4161 * be forcedly exported.
4162 4162 */
4163 4163 if (!force && new_state == POOL_STATE_EXPORTED &&
4164 4164 spa_has_active_shared_spare(spa)) {
4165 4165 spa_async_resume(spa);
4166 4166 mutex_exit(&spa_namespace_lock);
4167 4167 return (SET_ERROR(EXDEV));
4168 4168 }
4169 4169
4170 4170 /*
4171 4171 * We want this to be reflected on every label,
4172 4172 * so mark them all dirty. spa_unload() will do the
4173 4173 * final sync that pushes these changes out.
4174 4174 */
4175 4175 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4176 4176 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4177 4177 spa->spa_state = new_state;
4178 4178 spa->spa_final_txg = spa_last_synced_txg(spa) +
4179 4179 TXG_DEFER_SIZE + 1;
4180 4180 vdev_config_dirty(spa->spa_root_vdev);
4181 4181 spa_config_exit(spa, SCL_ALL, FTAG);
4182 4182 }
4183 4183 }
4184 4184
4185 4185 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4186 4186
4187 4187 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4188 4188 spa_unload(spa);
4189 4189 spa_deactivate(spa);
4190 4190 }
4191 4191
4192 4192 if (oldconfig && spa->spa_config)
4193 4193 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4194 4194
4195 4195 if (new_state != POOL_STATE_UNINITIALIZED) {
4196 4196 if (!hardforce)
4197 4197 spa_config_sync(spa, B_TRUE, B_TRUE);
4198 4198 spa_remove(spa);
4199 4199 }
4200 4200 mutex_exit(&spa_namespace_lock);
4201 4201
4202 4202 return (0);
4203 4203 }
4204 4204
4205 4205 /*
4206 4206 * Destroy a storage pool.
4207 4207 */
4208 4208 int
4209 4209 spa_destroy(char *pool)
4210 4210 {
4211 4211 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4212 4212 B_FALSE, B_FALSE));
4213 4213 }
4214 4214
4215 4215 /*
4216 4216 * Export a storage pool.
4217 4217 */
4218 4218 int
4219 4219 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4220 4220 boolean_t hardforce)
4221 4221 {
4222 4222 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4223 4223 force, hardforce));
4224 4224 }
4225 4225
4226 4226 /*
4227 4227 * Similar to spa_export(), this unloads the spa_t without actually removing it
4228 4228 * from the namespace in any way.
4229 4229 */
4230 4230 int
4231 4231 spa_reset(char *pool)
4232 4232 {
4233 4233 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4234 4234 B_FALSE, B_FALSE));
4235 4235 }
4236 4236
4237 4237 /*
4238 4238 * ==========================================================================
4239 4239 * Device manipulation
4240 4240 * ==========================================================================
4241 4241 */
4242 4242
4243 4243 /*
4244 4244 * Add a device to a storage pool.
4245 4245 */
4246 4246 int
4247 4247 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4248 4248 {
4249 4249 uint64_t txg, id;
4250 4250 int error;
4251 4251 vdev_t *rvd = spa->spa_root_vdev;
4252 4252 vdev_t *vd, *tvd;
4253 4253 nvlist_t **spares, **l2cache;
4254 4254 uint_t nspares, nl2cache;
4255 4255
4256 4256 ASSERT(spa_writeable(spa));
4257 4257
4258 4258 txg = spa_vdev_enter(spa);
4259 4259
4260 4260 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4261 4261 VDEV_ALLOC_ADD)) != 0)
4262 4262 return (spa_vdev_exit(spa, NULL, txg, error));
4263 4263
4264 4264 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4265 4265
4266 4266 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4267 4267 &nspares) != 0)
4268 4268 nspares = 0;
4269 4269
4270 4270 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4271 4271 &nl2cache) != 0)
4272 4272 nl2cache = 0;
4273 4273
4274 4274 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4275 4275 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4276 4276
4277 4277 if (vd->vdev_children != 0 &&
4278 4278 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4279 4279 return (spa_vdev_exit(spa, vd, txg, error));
4280 4280
4281 4281 /*
4282 4282 * We must validate the spares and l2cache devices after checking the
4283 4283 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4284 4284 */
4285 4285 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4286 4286 return (spa_vdev_exit(spa, vd, txg, error));
4287 4287
4288 4288 /*
4289 4289 * Transfer each new top-level vdev from vd to rvd.
4290 4290 */
4291 4291 for (int c = 0; c < vd->vdev_children; c++) {
4292 4292
4293 4293 /*
4294 4294 * Set the vdev id to the first hole, if one exists.
4295 4295 */
4296 4296 for (id = 0; id < rvd->vdev_children; id++) {
4297 4297 if (rvd->vdev_child[id]->vdev_ishole) {
4298 4298 vdev_free(rvd->vdev_child[id]);
4299 4299 break;
4300 4300 }
4301 4301 }
4302 4302 tvd = vd->vdev_child[c];
4303 4303 vdev_remove_child(vd, tvd);
4304 4304 tvd->vdev_id = id;
4305 4305 vdev_add_child(rvd, tvd);
4306 4306 vdev_config_dirty(tvd);
4307 4307 }
4308 4308
4309 4309 if (nspares != 0) {
4310 4310 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4311 4311 ZPOOL_CONFIG_SPARES);
4312 4312 spa_load_spares(spa);
4313 4313 spa->spa_spares.sav_sync = B_TRUE;
4314 4314 }
4315 4315
4316 4316 if (nl2cache != 0) {
4317 4317 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4318 4318 ZPOOL_CONFIG_L2CACHE);
4319 4319 spa_load_l2cache(spa);
4320 4320 spa->spa_l2cache.sav_sync = B_TRUE;
4321 4321 }
4322 4322
4323 4323 /*
4324 4324 * We have to be careful when adding new vdevs to an existing pool.
4325 4325 * If other threads start allocating from these vdevs before we
4326 4326 * sync the config cache, and we lose power, then upon reboot we may
4327 4327 * fail to open the pool because there are DVAs that the config cache
4328 4328 * can't translate. Therefore, we first add the vdevs without
4329 4329 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4330 4330 * and then let spa_config_update() initialize the new metaslabs.
4331 4331 *
4332 4332 * spa_load() checks for added-but-not-initialized vdevs, so that
4333 4333 * if we lose power at any point in this sequence, the remaining
4334 4334 * steps will be completed the next time we load the pool.
4335 4335 */
4336 4336 (void) spa_vdev_exit(spa, vd, txg, 0);
4337 4337
4338 4338 mutex_enter(&spa_namespace_lock);
4339 4339 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4340 4340 mutex_exit(&spa_namespace_lock);
4341 4341
4342 4342 return (0);
4343 4343 }
4344 4344
4345 4345 /*
4346 4346 * Attach a device to a mirror. The arguments are the path to any device
4347 4347 * in the mirror, and the nvroot for the new device. If the path specifies
4348 4348 * a device that is not mirrored, we automatically insert the mirror vdev.
4349 4349 *
4350 4350 * If 'replacing' is specified, the new device is intended to replace the
4351 4351 * existing device; in this case the two devices are made into their own
4352 4352 * mirror using the 'replacing' vdev, which is functionally identical to
4353 4353 * the mirror vdev (it actually reuses all the same ops) but has a few
4354 4354 * extra rules: you can't attach to it after it's been created, and upon
4355 4355 * completion of resilvering, the first disk (the one being replaced)
4356 4356 * is automatically detached.
4357 4357 */
4358 4358 int
4359 4359 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4360 4360 {
4361 4361 uint64_t txg, dtl_max_txg;
4362 4362 vdev_t *rvd = spa->spa_root_vdev;
4363 4363 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4364 4364 vdev_ops_t *pvops;
4365 4365 char *oldvdpath, *newvdpath;
4366 4366 int newvd_isspare;
4367 4367 int error;
4368 4368
4369 4369 ASSERT(spa_writeable(spa));
4370 4370
4371 4371 txg = spa_vdev_enter(spa);
4372 4372
4373 4373 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4374 4374
4375 4375 if (oldvd == NULL)
4376 4376 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4377 4377
4378 4378 if (!oldvd->vdev_ops->vdev_op_leaf)
4379 4379 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4380 4380
4381 4381 pvd = oldvd->vdev_parent;
4382 4382
4383 4383 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4384 4384 VDEV_ALLOC_ATTACH)) != 0)
4385 4385 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4386 4386
4387 4387 if (newrootvd->vdev_children != 1)
4388 4388 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4389 4389
4390 4390 newvd = newrootvd->vdev_child[0];
4391 4391
4392 4392 if (!newvd->vdev_ops->vdev_op_leaf)
4393 4393 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4394 4394
4395 4395 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4396 4396 return (spa_vdev_exit(spa, newrootvd, txg, error));
4397 4397
4398 4398 /*
4399 4399 * Spares can't replace logs
4400 4400 */
4401 4401 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4402 4402 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4403 4403
4404 4404 if (!replacing) {
4405 4405 /*
4406 4406 * For attach, the only allowable parent is a mirror or the root
4407 4407 * vdev.
4408 4408 */
4409 4409 if (pvd->vdev_ops != &vdev_mirror_ops &&
4410 4410 pvd->vdev_ops != &vdev_root_ops)
4411 4411 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4412 4412
4413 4413 pvops = &vdev_mirror_ops;
4414 4414 } else {
4415 4415 /*
4416 4416 * Active hot spares can only be replaced by inactive hot
4417 4417 * spares.
4418 4418 */
4419 4419 if (pvd->vdev_ops == &vdev_spare_ops &&
4420 4420 oldvd->vdev_isspare &&
4421 4421 !spa_has_spare(spa, newvd->vdev_guid))
4422 4422 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4423 4423
4424 4424 /*
4425 4425 * If the source is a hot spare, and the parent isn't already a
4426 4426 * spare, then we want to create a new hot spare. Otherwise, we
4427 4427 * want to create a replacing vdev. The user is not allowed to
4428 4428 * attach to a spared vdev child unless the 'isspare' state is
4429 4429 * the same (spare replaces spare, non-spare replaces
4430 4430 * non-spare).
4431 4431 */
4432 4432 if (pvd->vdev_ops == &vdev_replacing_ops &&
4433 4433 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4434 4434 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4435 4435 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4436 4436 newvd->vdev_isspare != oldvd->vdev_isspare) {
4437 4437 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4438 4438 }
4439 4439
4440 4440 if (newvd->vdev_isspare)
4441 4441 pvops = &vdev_spare_ops;
4442 4442 else
4443 4443 pvops = &vdev_replacing_ops;
4444 4444 }
4445 4445
4446 4446 /*
4447 4447 * Make sure the new device is big enough.
4448 4448 */
4449 4449 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4450 4450 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4451 4451
4452 4452 /*
4453 4453 * The new device cannot have a higher alignment requirement
4454 4454 * than the top-level vdev.
4455 4455 */
4456 4456 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4457 4457 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4458 4458
4459 4459 /*
4460 4460 * If this is an in-place replacement, update oldvd's path and devid
4461 4461 * to make it distinguishable from newvd, and unopenable from now on.
4462 4462 */
4463 4463 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4464 4464 spa_strfree(oldvd->vdev_path);
4465 4465 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4466 4466 KM_SLEEP);
4467 4467 (void) sprintf(oldvd->vdev_path, "%s/%s",
4468 4468 newvd->vdev_path, "old");
4469 4469 if (oldvd->vdev_devid != NULL) {
4470 4470 spa_strfree(oldvd->vdev_devid);
4471 4471 oldvd->vdev_devid = NULL;
4472 4472 }
4473 4473 }
4474 4474
4475 4475 /* mark the device being resilvered */
4476 4476 newvd->vdev_resilver_txg = txg;
4477 4477
4478 4478 /*
4479 4479 * If the parent is not a mirror, or if we're replacing, insert the new
4480 4480 * mirror/replacing/spare vdev above oldvd.
4481 4481 */
4482 4482 if (pvd->vdev_ops != pvops)
4483 4483 pvd = vdev_add_parent(oldvd, pvops);
4484 4484
4485 4485 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4486 4486 ASSERT(pvd->vdev_ops == pvops);
4487 4487 ASSERT(oldvd->vdev_parent == pvd);
4488 4488
4489 4489 /*
4490 4490 * Extract the new device from its root and add it to pvd.
4491 4491 */
4492 4492 vdev_remove_child(newrootvd, newvd);
4493 4493 newvd->vdev_id = pvd->vdev_children;
4494 4494 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4495 4495 vdev_add_child(pvd, newvd);
4496 4496
4497 4497 tvd = newvd->vdev_top;
4498 4498 ASSERT(pvd->vdev_top == tvd);
4499 4499 ASSERT(tvd->vdev_parent == rvd);
4500 4500
4501 4501 vdev_config_dirty(tvd);
4502 4502
4503 4503 /*
4504 4504 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4505 4505 * for any dmu_sync-ed blocks. It will propagate upward when
4506 4506 * spa_vdev_exit() calls vdev_dtl_reassess().
4507 4507 */
4508 4508 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4509 4509
4510 4510 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4511 4511 dtl_max_txg - TXG_INITIAL);
4512 4512
4513 4513 if (newvd->vdev_isspare) {
4514 4514 spa_spare_activate(newvd);
4515 4515 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4516 4516 }
4517 4517
4518 4518 oldvdpath = spa_strdup(oldvd->vdev_path);
4519 4519 newvdpath = spa_strdup(newvd->vdev_path);
4520 4520 newvd_isspare = newvd->vdev_isspare;
4521 4521
4522 4522 /*
4523 4523 * Mark newvd's DTL dirty in this txg.
4524 4524 */
4525 4525 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4526 4526
4527 4527 /*
4528 4528 * Schedule the resilver to restart in the future. We do this to
4529 4529 * ensure that dmu_sync-ed blocks have been stitched into the
4530 4530 * respective datasets.
4531 4531 */
4532 4532 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4533 4533
4534 4534 /*
4535 4535 * Commit the config
4536 4536 */
4537 4537 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4538 4538
4539 4539 spa_history_log_internal(spa, "vdev attach", NULL,
4540 4540 "%s vdev=%s %s vdev=%s",
4541 4541 replacing && newvd_isspare ? "spare in" :
4542 4542 replacing ? "replace" : "attach", newvdpath,
4543 4543 replacing ? "for" : "to", oldvdpath);
4544 4544
4545 4545 spa_strfree(oldvdpath);
4546 4546 spa_strfree(newvdpath);
4547 4547
4548 4548 if (spa->spa_bootfs)
4549 4549 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4550 4550
4551 4551 return (0);
4552 4552 }
4553 4553
4554 4554 /*
4555 4555 * Detach a device from a mirror or replacing vdev.
4556 4556 *
4557 4557 * If 'replace_done' is specified, only detach if the parent
4558 4558 * is a replacing vdev.
4559 4559 */
4560 4560 int
4561 4561 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4562 4562 {
4563 4563 uint64_t txg;
4564 4564 int error;
4565 4565 vdev_t *rvd = spa->spa_root_vdev;
4566 4566 vdev_t *vd, *pvd, *cvd, *tvd;
4567 4567 boolean_t unspare = B_FALSE;
4568 4568 uint64_t unspare_guid = 0;
4569 4569 char *vdpath;
4570 4570
4571 4571 ASSERT(spa_writeable(spa));
4572 4572
4573 4573 txg = spa_vdev_enter(spa);
4574 4574
4575 4575 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4576 4576
4577 4577 if (vd == NULL)
4578 4578 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4579 4579
4580 4580 if (!vd->vdev_ops->vdev_op_leaf)
4581 4581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4582 4582
4583 4583 pvd = vd->vdev_parent;
4584 4584
4585 4585 /*
4586 4586 * If the parent/child relationship is not as expected, don't do it.
4587 4587 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4588 4588 * vdev that's replacing B with C. The user's intent in replacing
4589 4589 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4590 4590 * the replace by detaching C, the expected behavior is to end up
4591 4591 * M(A,B). But suppose that right after deciding to detach C,
4592 4592 * the replacement of B completes. We would have M(A,C), and then
4593 4593 * ask to detach C, which would leave us with just A -- not what
4594 4594 * the user wanted. To prevent this, we make sure that the
4595 4595 * parent/child relationship hasn't changed -- in this example,
4596 4596 * that C's parent is still the replacing vdev R.
4597 4597 */
4598 4598 if (pvd->vdev_guid != pguid && pguid != 0)
4599 4599 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4600 4600
4601 4601 /*
4602 4602 * Only 'replacing' or 'spare' vdevs can be replaced.
4603 4603 */
4604 4604 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4605 4605 pvd->vdev_ops != &vdev_spare_ops)
4606 4606 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4607 4607
4608 4608 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4609 4609 spa_version(spa) >= SPA_VERSION_SPARES);
4610 4610
4611 4611 /*
4612 4612 * Only mirror, replacing, and spare vdevs support detach.
4613 4613 */
4614 4614 if (pvd->vdev_ops != &vdev_replacing_ops &&
4615 4615 pvd->vdev_ops != &vdev_mirror_ops &&
4616 4616 pvd->vdev_ops != &vdev_spare_ops)
4617 4617 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4618 4618
4619 4619 /*
4620 4620 * If this device has the only valid copy of some data,
4621 4621 * we cannot safely detach it.
4622 4622 */
4623 4623 if (vdev_dtl_required(vd))
4624 4624 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4625 4625
4626 4626 ASSERT(pvd->vdev_children >= 2);
4627 4627
4628 4628 /*
4629 4629 * If we are detaching the second disk from a replacing vdev, then
4630 4630 * check to see if we changed the original vdev's path to have "/old"
4631 4631 * at the end in spa_vdev_attach(). If so, undo that change now.
4632 4632 */
4633 4633 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4634 4634 vd->vdev_path != NULL) {
4635 4635 size_t len = strlen(vd->vdev_path);
4636 4636
4637 4637 for (int c = 0; c < pvd->vdev_children; c++) {
4638 4638 cvd = pvd->vdev_child[c];
4639 4639
4640 4640 if (cvd == vd || cvd->vdev_path == NULL)
4641 4641 continue;
4642 4642
4643 4643 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4644 4644 strcmp(cvd->vdev_path + len, "/old") == 0) {
4645 4645 spa_strfree(cvd->vdev_path);
4646 4646 cvd->vdev_path = spa_strdup(vd->vdev_path);
4647 4647 break;
4648 4648 }
4649 4649 }
4650 4650 }
4651 4651
4652 4652 /*
4653 4653 * If we are detaching the original disk from a spare, then it implies
4654 4654 * that the spare should become a real disk, and be removed from the
4655 4655 * active spare list for the pool.
4656 4656 */
4657 4657 if (pvd->vdev_ops == &vdev_spare_ops &&
4658 4658 vd->vdev_id == 0 &&
4659 4659 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4660 4660 unspare = B_TRUE;
4661 4661
4662 4662 /*
4663 4663 * Erase the disk labels so the disk can be used for other things.
4664 4664 * This must be done after all other error cases are handled,
4665 4665 * but before we disembowel vd (so we can still do I/O to it).
4666 4666 * But if we can't do it, don't treat the error as fatal --
4667 4667 * it may be that the unwritability of the disk is the reason
4668 4668 * it's being detached!
4669 4669 */
4670 4670 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4671 4671
4672 4672 /*
4673 4673 * Remove vd from its parent and compact the parent's children.
4674 4674 */
4675 4675 vdev_remove_child(pvd, vd);
4676 4676 vdev_compact_children(pvd);
4677 4677
4678 4678 /*
4679 4679 * Remember one of the remaining children so we can get tvd below.
4680 4680 */
4681 4681 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4682 4682
4683 4683 /*
4684 4684 * If we need to remove the remaining child from the list of hot spares,
4685 4685 * do it now, marking the vdev as no longer a spare in the process.
4686 4686 * We must do this before vdev_remove_parent(), because that can
4687 4687 * change the GUID if it creates a new toplevel GUID. For a similar
4688 4688 * reason, we must remove the spare now, in the same txg as the detach;
4689 4689 * otherwise someone could attach a new sibling, change the GUID, and
4690 4690 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4691 4691 */
4692 4692 if (unspare) {
4693 4693 ASSERT(cvd->vdev_isspare);
4694 4694 spa_spare_remove(cvd);
4695 4695 unspare_guid = cvd->vdev_guid;
4696 4696 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4697 4697 cvd->vdev_unspare = B_TRUE;
4698 4698 }
4699 4699
4700 4700 /*
4701 4701 * If the parent mirror/replacing vdev only has one child,
4702 4702 * the parent is no longer needed. Remove it from the tree.
4703 4703 */
4704 4704 if (pvd->vdev_children == 1) {
4705 4705 if (pvd->vdev_ops == &vdev_spare_ops)
4706 4706 cvd->vdev_unspare = B_FALSE;
4707 4707 vdev_remove_parent(cvd);
4708 4708 }
4709 4709
4710 4710
4711 4711 /*
4712 4712 * We don't set tvd until now because the parent we just removed
4713 4713 * may have been the previous top-level vdev.
4714 4714 */
4715 4715 tvd = cvd->vdev_top;
4716 4716 ASSERT(tvd->vdev_parent == rvd);
4717 4717
4718 4718 /*
4719 4719 * Reevaluate the parent vdev state.
4720 4720 */
4721 4721 vdev_propagate_state(cvd);
4722 4722
4723 4723 /*
4724 4724 * If the 'autoexpand' property is set on the pool then automatically
4725 4725 * try to expand the size of the pool. For example if the device we
4726 4726 * just detached was smaller than the others, it may be possible to
4727 4727 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4728 4728 * first so that we can obtain the updated sizes of the leaf vdevs.
4729 4729 */
4730 4730 if (spa->spa_autoexpand) {
4731 4731 vdev_reopen(tvd);
4732 4732 vdev_expand(tvd, txg);
4733 4733 }
4734 4734
4735 4735 vdev_config_dirty(tvd);
4736 4736
4737 4737 /*
4738 4738 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4739 4739 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4740 4740 * But first make sure we're not on any *other* txg's DTL list, to
4741 4741 * prevent vd from being accessed after it's freed.
4742 4742 */
4743 4743 vdpath = spa_strdup(vd->vdev_path);
4744 4744 for (int t = 0; t < TXG_SIZE; t++)
4745 4745 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4746 4746 vd->vdev_detached = B_TRUE;
4747 4747 vdev_dirty(tvd, VDD_DTL, vd, txg);
4748 4748
4749 4749 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4750 4750
4751 4751 /* hang on to the spa before we release the lock */
4752 4752 spa_open_ref(spa, FTAG);
4753 4753
4754 4754 error = spa_vdev_exit(spa, vd, txg, 0);
4755 4755
4756 4756 spa_history_log_internal(spa, "detach", NULL,
4757 4757 "vdev=%s", vdpath);
4758 4758 spa_strfree(vdpath);
4759 4759
4760 4760 /*
4761 4761 * If this was the removal of the original device in a hot spare vdev,
4762 4762 * then we want to go through and remove the device from the hot spare
4763 4763 * list of every other pool.
4764 4764 */
4765 4765 if (unspare) {
4766 4766 spa_t *altspa = NULL;
4767 4767
4768 4768 mutex_enter(&spa_namespace_lock);
4769 4769 while ((altspa = spa_next(altspa)) != NULL) {
4770 4770 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4771 4771 altspa == spa)
4772 4772 continue;
4773 4773
4774 4774 spa_open_ref(altspa, FTAG);
4775 4775 mutex_exit(&spa_namespace_lock);
4776 4776 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4777 4777 mutex_enter(&spa_namespace_lock);
4778 4778 spa_close(altspa, FTAG);
4779 4779 }
4780 4780 mutex_exit(&spa_namespace_lock);
4781 4781
4782 4782 /* search the rest of the vdevs for spares to remove */
4783 4783 spa_vdev_resilver_done(spa);
4784 4784 }
4785 4785
4786 4786 /* all done with the spa; OK to release */
4787 4787 mutex_enter(&spa_namespace_lock);
4788 4788 spa_close(spa, FTAG);
4789 4789 mutex_exit(&spa_namespace_lock);
4790 4790
4791 4791 return (error);
4792 4792 }
4793 4793
4794 4794 /*
4795 4795 * Split a set of devices from their mirrors, and create a new pool from them.
4796 4796 */
4797 4797 int
4798 4798 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4799 4799 nvlist_t *props, boolean_t exp)
4800 4800 {
4801 4801 int error = 0;
4802 4802 uint64_t txg, *glist;
4803 4803 spa_t *newspa;
4804 4804 uint_t c, children, lastlog;
4805 4805 nvlist_t **child, *nvl, *tmp;
4806 4806 dmu_tx_t *tx;
4807 4807 char *altroot = NULL;
4808 4808 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4809 4809 boolean_t activate_slog;
4810 4810
4811 4811 ASSERT(spa_writeable(spa));
4812 4812
4813 4813 txg = spa_vdev_enter(spa);
4814 4814
4815 4815 /* clear the log and flush everything up to now */
4816 4816 activate_slog = spa_passivate_log(spa);
4817 4817 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4818 4818 error = spa_offline_log(spa);
4819 4819 txg = spa_vdev_config_enter(spa);
4820 4820
4821 4821 if (activate_slog)
4822 4822 spa_activate_log(spa);
4823 4823
4824 4824 if (error != 0)
4825 4825 return (spa_vdev_exit(spa, NULL, txg, error));
4826 4826
4827 4827 /* check new spa name before going any further */
4828 4828 if (spa_lookup(newname) != NULL)
4829 4829 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4830 4830
4831 4831 /*
4832 4832 * scan through all the children to ensure they're all mirrors
4833 4833 */
4834 4834 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4835 4835 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4836 4836 &children) != 0)
4837 4837 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4838 4838
4839 4839 /* first, check to ensure we've got the right child count */
4840 4840 rvd = spa->spa_root_vdev;
4841 4841 lastlog = 0;
4842 4842 for (c = 0; c < rvd->vdev_children; c++) {
4843 4843 vdev_t *vd = rvd->vdev_child[c];
4844 4844
4845 4845 /* don't count the holes & logs as children */
4846 4846 if (vd->vdev_islog || vd->vdev_ishole) {
4847 4847 if (lastlog == 0)
4848 4848 lastlog = c;
4849 4849 continue;
4850 4850 }
4851 4851
4852 4852 lastlog = 0;
4853 4853 }
4854 4854 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4855 4855 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4856 4856
4857 4857 /* next, ensure no spare or cache devices are part of the split */
4858 4858 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4859 4859 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4860 4860 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4861 4861
4862 4862 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4863 4863 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4864 4864
4865 4865 /* then, loop over each vdev and validate it */
4866 4866 for (c = 0; c < children; c++) {
4867 4867 uint64_t is_hole = 0;
4868 4868
4869 4869 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4870 4870 &is_hole);
4871 4871
4872 4872 if (is_hole != 0) {
4873 4873 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4874 4874 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4875 4875 continue;
4876 4876 } else {
4877 4877 error = SET_ERROR(EINVAL);
4878 4878 break;
4879 4879 }
4880 4880 }
4881 4881
4882 4882 /* which disk is going to be split? */
4883 4883 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4884 4884 &glist[c]) != 0) {
4885 4885 error = SET_ERROR(EINVAL);
4886 4886 break;
4887 4887 }
4888 4888
4889 4889 /* look it up in the spa */
4890 4890 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4891 4891 if (vml[c] == NULL) {
4892 4892 error = SET_ERROR(ENODEV);
4893 4893 break;
4894 4894 }
4895 4895
4896 4896 /* make sure there's nothing stopping the split */
4897 4897 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4898 4898 vml[c]->vdev_islog ||
4899 4899 vml[c]->vdev_ishole ||
4900 4900 vml[c]->vdev_isspare ||
4901 4901 vml[c]->vdev_isl2cache ||
4902 4902 !vdev_writeable(vml[c]) ||
4903 4903 vml[c]->vdev_children != 0 ||
4904 4904 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4905 4905 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4906 4906 error = SET_ERROR(EINVAL);
4907 4907 break;
4908 4908 }
4909 4909
4910 4910 if (vdev_dtl_required(vml[c])) {
4911 4911 error = SET_ERROR(EBUSY);
4912 4912 break;
4913 4913 }
4914 4914
4915 4915 /* we need certain info from the top level */
4916 4916 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4917 4917 vml[c]->vdev_top->vdev_ms_array) == 0);
4918 4918 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4919 4919 vml[c]->vdev_top->vdev_ms_shift) == 0);
4920 4920 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4921 4921 vml[c]->vdev_top->vdev_asize) == 0);
4922 4922 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4923 4923 vml[c]->vdev_top->vdev_ashift) == 0);
4924 4924 }
4925 4925
4926 4926 if (error != 0) {
4927 4927 kmem_free(vml, children * sizeof (vdev_t *));
4928 4928 kmem_free(glist, children * sizeof (uint64_t));
4929 4929 return (spa_vdev_exit(spa, NULL, txg, error));
4930 4930 }
4931 4931
4932 4932 /* stop writers from using the disks */
4933 4933 for (c = 0; c < children; c++) {
4934 4934 if (vml[c] != NULL)
4935 4935 vml[c]->vdev_offline = B_TRUE;
4936 4936 }
4937 4937 vdev_reopen(spa->spa_root_vdev);
4938 4938
4939 4939 /*
4940 4940 * Temporarily record the splitting vdevs in the spa config. This
4941 4941 * will disappear once the config is regenerated.
4942 4942 */
4943 4943 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4944 4944 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4945 4945 glist, children) == 0);
4946 4946 kmem_free(glist, children * sizeof (uint64_t));
4947 4947
4948 4948 mutex_enter(&spa->spa_props_lock);
4949 4949 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4950 4950 nvl) == 0);
4951 4951 mutex_exit(&spa->spa_props_lock);
4952 4952 spa->spa_config_splitting = nvl;
4953 4953 vdev_config_dirty(spa->spa_root_vdev);
4954 4954
4955 4955 /* configure and create the new pool */
4956 4956 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4957 4957 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4958 4958 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4959 4959 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4960 4960 spa_version(spa)) == 0);
4961 4961 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4962 4962 spa->spa_config_txg) == 0);
4963 4963 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4964 4964 spa_generate_guid(NULL)) == 0);
4965 4965 (void) nvlist_lookup_string(props,
4966 4966 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4967 4967
4968 4968 /* add the new pool to the namespace */
4969 4969 newspa = spa_add(newname, config, altroot);
4970 4970 newspa->spa_config_txg = spa->spa_config_txg;
4971 4971 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4972 4972
4973 4973 /* release the spa config lock, retaining the namespace lock */
4974 4974 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4975 4975
4976 4976 if (zio_injection_enabled)
4977 4977 zio_handle_panic_injection(spa, FTAG, 1);
4978 4978
4979 4979 spa_activate(newspa, spa_mode_global);
4980 4980 spa_async_suspend(newspa);
4981 4981
4982 4982 /* create the new pool from the disks of the original pool */
4983 4983 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4984 4984 if (error)
4985 4985 goto out;
4986 4986
4987 4987 /* if that worked, generate a real config for the new pool */
4988 4988 if (newspa->spa_root_vdev != NULL) {
4989 4989 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4990 4990 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4991 4991 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4992 4992 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4993 4993 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4994 4994 B_TRUE));
4995 4995 }
4996 4996
4997 4997 /* set the props */
4998 4998 if (props != NULL) {
4999 4999 spa_configfile_set(newspa, props, B_FALSE);
5000 5000 error = spa_prop_set(newspa, props);
5001 5001 if (error)
5002 5002 goto out;
5003 5003 }
5004 5004
5005 5005 /* flush everything */
5006 5006 txg = spa_vdev_config_enter(newspa);
5007 5007 vdev_config_dirty(newspa->spa_root_vdev);
5008 5008 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5009 5009
5010 5010 if (zio_injection_enabled)
5011 5011 zio_handle_panic_injection(spa, FTAG, 2);
5012 5012
5013 5013 spa_async_resume(newspa);
5014 5014
5015 5015 /* finally, update the original pool's config */
5016 5016 txg = spa_vdev_config_enter(spa);
5017 5017 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5018 5018 error = dmu_tx_assign(tx, TXG_WAIT);
5019 5019 if (error != 0)
5020 5020 dmu_tx_abort(tx);
5021 5021 for (c = 0; c < children; c++) {
5022 5022 if (vml[c] != NULL) {
5023 5023 vdev_split(vml[c]);
5024 5024 if (error == 0)
5025 5025 spa_history_log_internal(spa, "detach", tx,
5026 5026 "vdev=%s", vml[c]->vdev_path);
5027 5027 vdev_free(vml[c]);
5028 5028 }
5029 5029 }
5030 5030 vdev_config_dirty(spa->spa_root_vdev);
5031 5031 spa->spa_config_splitting = NULL;
5032 5032 nvlist_free(nvl);
5033 5033 if (error == 0)
5034 5034 dmu_tx_commit(tx);
5035 5035 (void) spa_vdev_exit(spa, NULL, txg, 0);
5036 5036
5037 5037 if (zio_injection_enabled)
5038 5038 zio_handle_panic_injection(spa, FTAG, 3);
5039 5039
5040 5040 /* split is complete; log a history record */
5041 5041 spa_history_log_internal(newspa, "split", NULL,
5042 5042 "from pool %s", spa_name(spa));
5043 5043
5044 5044 kmem_free(vml, children * sizeof (vdev_t *));
5045 5045
5046 5046 /* if we're not going to mount the filesystems in userland, export */
5047 5047 if (exp)
5048 5048 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5049 5049 B_FALSE, B_FALSE);
5050 5050
5051 5051 return (error);
5052 5052
5053 5053 out:
5054 5054 spa_unload(newspa);
5055 5055 spa_deactivate(newspa);
5056 5056 spa_remove(newspa);
5057 5057
5058 5058 txg = spa_vdev_config_enter(spa);
5059 5059
5060 5060 /* re-online all offlined disks */
5061 5061 for (c = 0; c < children; c++) {
5062 5062 if (vml[c] != NULL)
5063 5063 vml[c]->vdev_offline = B_FALSE;
5064 5064 }
5065 5065 vdev_reopen(spa->spa_root_vdev);
5066 5066
5067 5067 nvlist_free(spa->spa_config_splitting);
5068 5068 spa->spa_config_splitting = NULL;
5069 5069 (void) spa_vdev_exit(spa, NULL, txg, error);
5070 5070
5071 5071 kmem_free(vml, children * sizeof (vdev_t *));
5072 5072 return (error);
5073 5073 }
5074 5074
5075 5075 static nvlist_t *
5076 5076 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5077 5077 {
5078 5078 for (int i = 0; i < count; i++) {
5079 5079 uint64_t guid;
5080 5080
5081 5081 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5082 5082 &guid) == 0);
5083 5083
5084 5084 if (guid == target_guid)
5085 5085 return (nvpp[i]);
5086 5086 }
5087 5087
5088 5088 return (NULL);
5089 5089 }
5090 5090
5091 5091 static void
5092 5092 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5093 5093 nvlist_t *dev_to_remove)
5094 5094 {
5095 5095 nvlist_t **newdev = NULL;
5096 5096
5097 5097 if (count > 1)
5098 5098 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5099 5099
5100 5100 for (int i = 0, j = 0; i < count; i++) {
5101 5101 if (dev[i] == dev_to_remove)
5102 5102 continue;
5103 5103 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5104 5104 }
5105 5105
5106 5106 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5107 5107 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5108 5108
5109 5109 for (int i = 0; i < count - 1; i++)
5110 5110 nvlist_free(newdev[i]);
5111 5111
5112 5112 if (count > 1)
5113 5113 kmem_free(newdev, (count - 1) * sizeof (void *));
5114 5114 }
5115 5115
5116 5116 /*
5117 5117 * Evacuate the device.
5118 5118 */
5119 5119 static int
5120 5120 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5121 5121 {
5122 5122 uint64_t txg;
5123 5123 int error = 0;
5124 5124
5125 5125 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5126 5126 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5127 5127 ASSERT(vd == vd->vdev_top);
5128 5128
5129 5129 /*
5130 5130 * Evacuate the device. We don't hold the config lock as writer
5131 5131 * since we need to do I/O but we do keep the
5132 5132 * spa_namespace_lock held. Once this completes the device
5133 5133 * should no longer have any blocks allocated on it.
5134 5134 */
5135 5135 if (vd->vdev_islog) {
5136 5136 if (vd->vdev_stat.vs_alloc != 0)
5137 5137 error = spa_offline_log(spa);
5138 5138 } else {
5139 5139 error = SET_ERROR(ENOTSUP);
5140 5140 }
5141 5141
5142 5142 if (error)
5143 5143 return (error);
5144 5144
5145 5145 /*
5146 5146 * The evacuation succeeded. Remove any remaining MOS metadata
5147 5147 * associated with this vdev, and wait for these changes to sync.
5148 5148 */
5149 5149 ASSERT0(vd->vdev_stat.vs_alloc);
5150 5150 txg = spa_vdev_config_enter(spa);
5151 5151 vd->vdev_removing = B_TRUE;
5152 5152 vdev_dirty_leaves(vd, VDD_DTL, txg);
5153 5153 vdev_config_dirty(vd);
5154 5154 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5155 5155
5156 5156 return (0);
5157 5157 }
5158 5158
5159 5159 /*
5160 5160 * Complete the removal by cleaning up the namespace.
5161 5161 */
5162 5162 static void
5163 5163 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5164 5164 {
5165 5165 vdev_t *rvd = spa->spa_root_vdev;
5166 5166 uint64_t id = vd->vdev_id;
5167 5167 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5168 5168
5169 5169 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5170 5170 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5171 5171 ASSERT(vd == vd->vdev_top);
5172 5172
5173 5173 /*
5174 5174 * Only remove any devices which are empty.
5175 5175 */
5176 5176 if (vd->vdev_stat.vs_alloc != 0)
5177 5177 return;
5178 5178
5179 5179 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5180 5180
5181 5181 if (list_link_active(&vd->vdev_state_dirty_node))
5182 5182 vdev_state_clean(vd);
5183 5183 if (list_link_active(&vd->vdev_config_dirty_node))
5184 5184 vdev_config_clean(vd);
5185 5185
5186 5186 vdev_free(vd);
5187 5187
5188 5188 if (last_vdev) {
5189 5189 vdev_compact_children(rvd);
5190 5190 } else {
5191 5191 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5192 5192 vdev_add_child(rvd, vd);
5193 5193 }
5194 5194 vdev_config_dirty(rvd);
5195 5195
5196 5196 /*
5197 5197 * Reassess the health of our root vdev.
5198 5198 */
5199 5199 vdev_reopen(rvd);
5200 5200 }
5201 5201
5202 5202 /*
5203 5203 * Remove a device from the pool -
5204 5204 *
5205 5205 * Removing a device from the vdev namespace requires several steps
5206 5206 * and can take a significant amount of time. As a result we use
5207 5207 * the spa_vdev_config_[enter/exit] functions which allow us to
5208 5208 * grab and release the spa_config_lock while still holding the namespace
5209 5209 * lock. During each step the configuration is synced out.
5210 5210 *
5211 5211 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5212 5212 * devices.
5213 5213 */
5214 5214 int
5215 5215 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5216 5216 {
5217 5217 vdev_t *vd;
5218 5218 metaslab_group_t *mg;
5219 5219 nvlist_t **spares, **l2cache, *nv;
5220 5220 uint64_t txg = 0;
5221 5221 uint_t nspares, nl2cache;
5222 5222 int error = 0;
5223 5223 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5224 5224
5225 5225 ASSERT(spa_writeable(spa));
5226 5226
5227 5227 if (!locked)
5228 5228 txg = spa_vdev_enter(spa);
5229 5229
5230 5230 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5231 5231
5232 5232 if (spa->spa_spares.sav_vdevs != NULL &&
5233 5233 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5234 5234 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5235 5235 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5236 5236 /*
5237 5237 * Only remove the hot spare if it's not currently in use
5238 5238 * in this pool.
5239 5239 */
5240 5240 if (vd == NULL || unspare) {
5241 5241 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5242 5242 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5243 5243 spa_load_spares(spa);
5244 5244 spa->spa_spares.sav_sync = B_TRUE;
5245 5245 } else {
5246 5246 error = SET_ERROR(EBUSY);
5247 5247 }
5248 5248 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5249 5249 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5250 5250 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5251 5251 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5252 5252 /*
5253 5253 * Cache devices can always be removed.
5254 5254 */
5255 5255 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5256 5256 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5257 5257 spa_load_l2cache(spa);
5258 5258 spa->spa_l2cache.sav_sync = B_TRUE;
5259 5259 } else if (vd != NULL && vd->vdev_islog) {
5260 5260 ASSERT(!locked);
5261 5261 ASSERT(vd == vd->vdev_top);
5262 5262
5263 5263 /*
5264 5264 * XXX - Once we have bp-rewrite this should
5265 5265 * become the common case.
5266 5266 */
5267 5267
5268 5268 mg = vd->vdev_mg;
5269 5269
5270 5270 /*
5271 5271 * Stop allocating from this vdev.
5272 5272 */
5273 5273 metaslab_group_passivate(mg);
5274 5274
5275 5275 /*
5276 5276 * Wait for the youngest allocations and frees to sync,
5277 5277 * and then wait for the deferral of those frees to finish.
5278 5278 */
5279 5279 spa_vdev_config_exit(spa, NULL,
5280 5280 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5281 5281
5282 5282 /*
5283 5283 * Attempt to evacuate the vdev.
5284 5284 */
5285 5285 error = spa_vdev_remove_evacuate(spa, vd);
5286 5286
5287 5287 txg = spa_vdev_config_enter(spa);
5288 5288
5289 5289 /*
5290 5290 * If we couldn't evacuate the vdev, unwind.
5291 5291 */
5292 5292 if (error) {
5293 5293 metaslab_group_activate(mg);
5294 5294 return (spa_vdev_exit(spa, NULL, txg, error));
5295 5295 }
5296 5296
5297 5297 /*
5298 5298 * Clean up the vdev namespace.
5299 5299 */
5300 5300 spa_vdev_remove_from_namespace(spa, vd);
5301 5301
5302 5302 } else if (vd != NULL) {
5303 5303 /*
5304 5304 * Normal vdevs cannot be removed (yet).
5305 5305 */
5306 5306 error = SET_ERROR(ENOTSUP);
5307 5307 } else {
5308 5308 /*
5309 5309 * There is no vdev of any kind with the specified guid.
5310 5310 */
5311 5311 error = SET_ERROR(ENOENT);
5312 5312 }
5313 5313
5314 5314 if (!locked)
5315 5315 return (spa_vdev_exit(spa, NULL, txg, error));
5316 5316
5317 5317 return (error);
5318 5318 }
5319 5319
5320 5320 /*
5321 5321 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5322 5322 * currently spared, so we can detach it.
5323 5323 */
5324 5324 static vdev_t *
5325 5325 spa_vdev_resilver_done_hunt(vdev_t *vd)
5326 5326 {
5327 5327 vdev_t *newvd, *oldvd;
5328 5328
5329 5329 for (int c = 0; c < vd->vdev_children; c++) {
5330 5330 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5331 5331 if (oldvd != NULL)
5332 5332 return (oldvd);
5333 5333 }
5334 5334
5335 5335 /*
5336 5336 * Check for a completed replacement. We always consider the first
5337 5337 * vdev in the list to be the oldest vdev, and the last one to be
5338 5338 * the newest (see spa_vdev_attach() for how that works). In
5339 5339 * the case where the newest vdev is faulted, we will not automatically
5340 5340 * remove it after a resilver completes. This is OK as it will require
5341 5341 * user intervention to determine which disk the admin wishes to keep.
5342 5342 */
5343 5343 if (vd->vdev_ops == &vdev_replacing_ops) {
5344 5344 ASSERT(vd->vdev_children > 1);
5345 5345
5346 5346 newvd = vd->vdev_child[vd->vdev_children - 1];
5347 5347 oldvd = vd->vdev_child[0];
5348 5348
5349 5349 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5350 5350 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5351 5351 !vdev_dtl_required(oldvd))
5352 5352 return (oldvd);
5353 5353 }
5354 5354
5355 5355 /*
5356 5356 * Check for a completed resilver with the 'unspare' flag set.
5357 5357 */
5358 5358 if (vd->vdev_ops == &vdev_spare_ops) {
5359 5359 vdev_t *first = vd->vdev_child[0];
5360 5360 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5361 5361
5362 5362 if (last->vdev_unspare) {
5363 5363 oldvd = first;
5364 5364 newvd = last;
5365 5365 } else if (first->vdev_unspare) {
5366 5366 oldvd = last;
5367 5367 newvd = first;
5368 5368 } else {
5369 5369 oldvd = NULL;
5370 5370 }
5371 5371
5372 5372 if (oldvd != NULL &&
5373 5373 vdev_dtl_empty(newvd, DTL_MISSING) &&
5374 5374 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5375 5375 !vdev_dtl_required(oldvd))
5376 5376 return (oldvd);
5377 5377
5378 5378 /*
5379 5379 * If there are more than two spares attached to a disk,
5380 5380 * and those spares are not required, then we want to
5381 5381 * attempt to free them up now so that they can be used
5382 5382 * by other pools. Once we're back down to a single
5383 5383 * disk+spare, we stop removing them.
5384 5384 */
5385 5385 if (vd->vdev_children > 2) {
5386 5386 newvd = vd->vdev_child[1];
5387 5387
5388 5388 if (newvd->vdev_isspare && last->vdev_isspare &&
5389 5389 vdev_dtl_empty(last, DTL_MISSING) &&
5390 5390 vdev_dtl_empty(last, DTL_OUTAGE) &&
5391 5391 !vdev_dtl_required(newvd))
5392 5392 return (newvd);
5393 5393 }
5394 5394 }
5395 5395
5396 5396 return (NULL);
5397 5397 }
5398 5398
5399 5399 static void
5400 5400 spa_vdev_resilver_done(spa_t *spa)
5401 5401 {
5402 5402 vdev_t *vd, *pvd, *ppvd;
5403 5403 uint64_t guid, sguid, pguid, ppguid;
5404 5404
5405 5405 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406 5406
5407 5407 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5408 5408 pvd = vd->vdev_parent;
5409 5409 ppvd = pvd->vdev_parent;
5410 5410 guid = vd->vdev_guid;
5411 5411 pguid = pvd->vdev_guid;
5412 5412 ppguid = ppvd->vdev_guid;
5413 5413 sguid = 0;
5414 5414 /*
5415 5415 * If we have just finished replacing a hot spared device, then
5416 5416 * we need to detach the parent's first child (the original hot
5417 5417 * spare) as well.
5418 5418 */
5419 5419 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5420 5420 ppvd->vdev_children == 2) {
5421 5421 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5422 5422 sguid = ppvd->vdev_child[1]->vdev_guid;
5423 5423 }
5424 5424 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5425 5425
5426 5426 spa_config_exit(spa, SCL_ALL, FTAG);
5427 5427 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5428 5428 return;
5429 5429 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5430 5430 return;
5431 5431 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5432 5432 }
5433 5433
5434 5434 spa_config_exit(spa, SCL_ALL, FTAG);
5435 5435 }
5436 5436
5437 5437 /*
5438 5438 * Update the stored path or FRU for this vdev.
5439 5439 */
5440 5440 int
5441 5441 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5442 5442 boolean_t ispath)
5443 5443 {
5444 5444 vdev_t *vd;
5445 5445 boolean_t sync = B_FALSE;
5446 5446
5447 5447 ASSERT(spa_writeable(spa));
5448 5448
5449 5449 spa_vdev_state_enter(spa, SCL_ALL);
5450 5450
5451 5451 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5452 5452 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5453 5453
5454 5454 if (!vd->vdev_ops->vdev_op_leaf)
5455 5455 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5456 5456
5457 5457 if (ispath) {
5458 5458 if (strcmp(value, vd->vdev_path) != 0) {
5459 5459 spa_strfree(vd->vdev_path);
5460 5460 vd->vdev_path = spa_strdup(value);
5461 5461 sync = B_TRUE;
5462 5462 }
5463 5463 } else {
5464 5464 if (vd->vdev_fru == NULL) {
5465 5465 vd->vdev_fru = spa_strdup(value);
5466 5466 sync = B_TRUE;
5467 5467 } else if (strcmp(value, vd->vdev_fru) != 0) {
5468 5468 spa_strfree(vd->vdev_fru);
5469 5469 vd->vdev_fru = spa_strdup(value);
5470 5470 sync = B_TRUE;
5471 5471 }
5472 5472 }
5473 5473
5474 5474 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5475 5475 }
5476 5476
5477 5477 int
5478 5478 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5479 5479 {
5480 5480 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5481 5481 }
5482 5482
5483 5483 int
5484 5484 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5485 5485 {
5486 5486 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5487 5487 }
5488 5488
5489 5489 /*
5490 5490 * ==========================================================================
5491 5491 * SPA Scanning
5492 5492 * ==========================================================================
5493 5493 */
5494 5494
5495 5495 int
5496 5496 spa_scan_stop(spa_t *spa)
5497 5497 {
5498 5498 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5499 5499 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5500 5500 return (SET_ERROR(EBUSY));
5501 5501 return (dsl_scan_cancel(spa->spa_dsl_pool));
5502 5502 }
5503 5503
5504 5504 int
5505 5505 spa_scan(spa_t *spa, pool_scan_func_t func)
5506 5506 {
5507 5507 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5508 5508
5509 5509 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5510 5510 return (SET_ERROR(ENOTSUP));
5511 5511
5512 5512 /*
5513 5513 * If a resilver was requested, but there is no DTL on a
5514 5514 * writeable leaf device, we have nothing to do.
5515 5515 */
5516 5516 if (func == POOL_SCAN_RESILVER &&
5517 5517 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5518 5518 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5519 5519 return (0);
5520 5520 }
5521 5521
5522 5522 return (dsl_scan(spa->spa_dsl_pool, func));
5523 5523 }
5524 5524
5525 5525 /*
5526 5526 * ==========================================================================
5527 5527 * SPA async task processing
5528 5528 * ==========================================================================
5529 5529 */
5530 5530
5531 5531 static void
5532 5532 spa_async_remove(spa_t *spa, vdev_t *vd)
5533 5533 {
5534 5534 if (vd->vdev_remove_wanted) {
5535 5535 vd->vdev_remove_wanted = B_FALSE;
5536 5536 vd->vdev_delayed_close = B_FALSE;
5537 5537 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5538 5538
5539 5539 /*
5540 5540 * We want to clear the stats, but we don't want to do a full
5541 5541 * vdev_clear() as that will cause us to throw away
5542 5542 * degraded/faulted state as well as attempt to reopen the
5543 5543 * device, all of which is a waste.
5544 5544 */
5545 5545 vd->vdev_stat.vs_read_errors = 0;
5546 5546 vd->vdev_stat.vs_write_errors = 0;
5547 5547 vd->vdev_stat.vs_checksum_errors = 0;
5548 5548
5549 5549 vdev_state_dirty(vd->vdev_top);
5550 5550 }
5551 5551
5552 5552 for (int c = 0; c < vd->vdev_children; c++)
5553 5553 spa_async_remove(spa, vd->vdev_child[c]);
5554 5554 }
5555 5555
5556 5556 static void
5557 5557 spa_async_probe(spa_t *spa, vdev_t *vd)
5558 5558 {
5559 5559 if (vd->vdev_probe_wanted) {
5560 5560 vd->vdev_probe_wanted = B_FALSE;
5561 5561 vdev_reopen(vd); /* vdev_open() does the actual probe */
5562 5562 }
5563 5563
5564 5564 for (int c = 0; c < vd->vdev_children; c++)
5565 5565 spa_async_probe(spa, vd->vdev_child[c]);
5566 5566 }
5567 5567
5568 5568 static void
5569 5569 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5570 5570 {
5571 5571 sysevent_id_t eid;
5572 5572 nvlist_t *attr;
5573 5573 char *physpath;
5574 5574
5575 5575 if (!spa->spa_autoexpand)
5576 5576 return;
5577 5577
5578 5578 for (int c = 0; c < vd->vdev_children; c++) {
5579 5579 vdev_t *cvd = vd->vdev_child[c];
5580 5580 spa_async_autoexpand(spa, cvd);
5581 5581 }
5582 5582
5583 5583 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5584 5584 return;
5585 5585
5586 5586 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5587 5587 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5588 5588
5589 5589 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5590 5590 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5591 5591
5592 5592 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5593 5593 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5594 5594
5595 5595 nvlist_free(attr);
5596 5596 kmem_free(physpath, MAXPATHLEN);
5597 5597 }
5598 5598
5599 5599 static void
5600 5600 spa_async_thread(spa_t *spa)
5601 5601 {
5602 5602 int tasks;
5603 5603
5604 5604 ASSERT(spa->spa_sync_on);
5605 5605
5606 5606 mutex_enter(&spa->spa_async_lock);
5607 5607 tasks = spa->spa_async_tasks;
5608 5608 spa->spa_async_tasks = 0;
5609 5609 mutex_exit(&spa->spa_async_lock);
5610 5610
5611 5611 /*
5612 5612 * See if the config needs to be updated.
5613 5613 */
5614 5614 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5615 5615 uint64_t old_space, new_space;
5616 5616
5617 5617 mutex_enter(&spa_namespace_lock);
5618 5618 old_space = metaslab_class_get_space(spa_normal_class(spa));
5619 5619 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5620 5620 new_space = metaslab_class_get_space(spa_normal_class(spa));
5621 5621 mutex_exit(&spa_namespace_lock);
5622 5622
5623 5623 /*
5624 5624 * If the pool grew as a result of the config update,
5625 5625 * then log an internal history event.
5626 5626 */
5627 5627 if (new_space != old_space) {
5628 5628 spa_history_log_internal(spa, "vdev online", NULL,
5629 5629 "pool '%s' size: %llu(+%llu)",
5630 5630 spa_name(spa), new_space, new_space - old_space);
5631 5631 }
5632 5632 }
5633 5633
5634 5634 /*
5635 5635 * See if any devices need to be marked REMOVED.
5636 5636 */
5637 5637 if (tasks & SPA_ASYNC_REMOVE) {
5638 5638 spa_vdev_state_enter(spa, SCL_NONE);
5639 5639 spa_async_remove(spa, spa->spa_root_vdev);
5640 5640 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5641 5641 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5642 5642 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5643 5643 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5644 5644 (void) spa_vdev_state_exit(spa, NULL, 0);
5645 5645 }
5646 5646
5647 5647 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5648 5648 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5649 5649 spa_async_autoexpand(spa, spa->spa_root_vdev);
5650 5650 spa_config_exit(spa, SCL_CONFIG, FTAG);
5651 5651 }
5652 5652
5653 5653 /*
5654 5654 * See if any devices need to be probed.
5655 5655 */
5656 5656 if (tasks & SPA_ASYNC_PROBE) {
5657 5657 spa_vdev_state_enter(spa, SCL_NONE);
5658 5658 spa_async_probe(spa, spa->spa_root_vdev);
5659 5659 (void) spa_vdev_state_exit(spa, NULL, 0);
5660 5660 }
5661 5661
5662 5662 /*
5663 5663 * If any devices are done replacing, detach them.
5664 5664 */
5665 5665 if (tasks & SPA_ASYNC_RESILVER_DONE)
5666 5666 spa_vdev_resilver_done(spa);
5667 5667
5668 5668 /*
5669 5669 * Kick off a resilver.
5670 5670 */
5671 5671 if (tasks & SPA_ASYNC_RESILVER)
5672 5672 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5673 5673
5674 5674 /*
5675 5675 * Let the world know that we're done.
5676 5676 */
5677 5677 mutex_enter(&spa->spa_async_lock);
5678 5678 spa->spa_async_thread = NULL;
5679 5679 cv_broadcast(&spa->spa_async_cv);
5680 5680 mutex_exit(&spa->spa_async_lock);
5681 5681 thread_exit();
5682 5682 }
5683 5683
5684 5684 void
5685 5685 spa_async_suspend(spa_t *spa)
5686 5686 {
5687 5687 mutex_enter(&spa->spa_async_lock);
5688 5688 spa->spa_async_suspended++;
5689 5689 while (spa->spa_async_thread != NULL)
5690 5690 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5691 5691 mutex_exit(&spa->spa_async_lock);
5692 5692 }
5693 5693
5694 5694 void
5695 5695 spa_async_resume(spa_t *spa)
5696 5696 {
5697 5697 mutex_enter(&spa->spa_async_lock);
5698 5698 ASSERT(spa->spa_async_suspended != 0);
5699 5699 spa->spa_async_suspended--;
5700 5700 mutex_exit(&spa->spa_async_lock);
5701 5701 }
5702 5702
5703 5703 static boolean_t
5704 5704 spa_async_tasks_pending(spa_t *spa)
5705 5705 {
5706 5706 uint_t non_config_tasks;
5707 5707 uint_t config_task;
5708 5708 boolean_t config_task_suspended;
5709 5709
5710 5710 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5711 5711 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5712 5712 if (spa->spa_ccw_fail_time == 0) {
5713 5713 config_task_suspended = B_FALSE;
5714 5714 } else {
5715 5715 config_task_suspended =
5716 5716 (gethrtime() - spa->spa_ccw_fail_time) <
5717 5717 (zfs_ccw_retry_interval * NANOSEC);
5718 5718 }
5719 5719
5720 5720 return (non_config_tasks || (config_task && !config_task_suspended));
5721 5721 }
5722 5722
5723 5723 static void
5724 5724 spa_async_dispatch(spa_t *spa)
5725 5725 {
5726 5726 mutex_enter(&spa->spa_async_lock);
5727 5727 if (spa_async_tasks_pending(spa) &&
5728 5728 !spa->spa_async_suspended &&
5729 5729 spa->spa_async_thread == NULL &&
5730 5730 rootdir != NULL)
5731 5731 spa->spa_async_thread = thread_create(NULL, 0,
5732 5732 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5733 5733 mutex_exit(&spa->spa_async_lock);
5734 5734 }
5735 5735
5736 5736 void
5737 5737 spa_async_request(spa_t *spa, int task)
5738 5738 {
5739 5739 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5740 5740 mutex_enter(&spa->spa_async_lock);
5741 5741 spa->spa_async_tasks |= task;
5742 5742 mutex_exit(&spa->spa_async_lock);
5743 5743 }
5744 5744
5745 5745 /*
5746 5746 * ==========================================================================
5747 5747 * SPA syncing routines
5748 5748 * ==========================================================================
5749 5749 */
5750 5750
5751 5751 static int
5752 5752 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5753 5753 {
5754 5754 bpobj_t *bpo = arg;
5755 5755 bpobj_enqueue(bpo, bp, tx);
5756 5756 return (0);
5757 5757 }
5758 5758
5759 5759 static int
5760 5760 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5761 5761 {
5762 5762 zio_t *zio = arg;
5763 5763
5764 5764 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5765 5765 zio->io_flags));
5766 5766 return (0);
5767 5767 }
5768 5768
5769 5769 /*
5770 5770 * Note: this simple function is not inlined to make it easier to dtrace the
5771 5771 * amount of time spent syncing frees.
5772 5772 */
5773 5773 static void
5774 5774 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5775 5775 {
5776 5776 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5777 5777 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5778 5778 VERIFY(zio_wait(zio) == 0);
5779 5779 }
5780 5780
5781 5781 /*
5782 5782 * Note: this simple function is not inlined to make it easier to dtrace the
5783 5783 * amount of time spent syncing deferred frees.
5784 5784 */
5785 5785 static void
5786 5786 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5787 5787 {
5788 5788 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5789 5789 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5790 5790 spa_free_sync_cb, zio, tx), ==, 0);
5791 5791 VERIFY0(zio_wait(zio));
5792 5792 }
5793 5793
5794 5794
5795 5795 static void
5796 5796 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5797 5797 {
5798 5798 char *packed = NULL;
5799 5799 size_t bufsize;
5800 5800 size_t nvsize = 0;
5801 5801 dmu_buf_t *db;
5802 5802
5803 5803 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5804 5804
5805 5805 /*
5806 5806 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5807 5807 * information. This avoids the dmu_buf_will_dirty() path and
5808 5808 * saves us a pre-read to get data we don't actually care about.
5809 5809 */
5810 5810 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5811 5811 packed = kmem_alloc(bufsize, KM_SLEEP);
5812 5812
5813 5813 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5814 5814 KM_SLEEP) == 0);
5815 5815 bzero(packed + nvsize, bufsize - nvsize);
5816 5816
5817 5817 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5818 5818
5819 5819 kmem_free(packed, bufsize);
5820 5820
5821 5821 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5822 5822 dmu_buf_will_dirty(db, tx);
5823 5823 *(uint64_t *)db->db_data = nvsize;
5824 5824 dmu_buf_rele(db, FTAG);
5825 5825 }
5826 5826
5827 5827 static void
5828 5828 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5829 5829 const char *config, const char *entry)
5830 5830 {
5831 5831 nvlist_t *nvroot;
5832 5832 nvlist_t **list;
5833 5833 int i;
5834 5834
5835 5835 if (!sav->sav_sync)
5836 5836 return;
5837 5837
5838 5838 /*
5839 5839 * Update the MOS nvlist describing the list of available devices.
5840 5840 * spa_validate_aux() will have already made sure this nvlist is
5841 5841 * valid and the vdevs are labeled appropriately.
5842 5842 */
5843 5843 if (sav->sav_object == 0) {
5844 5844 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5845 5845 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5846 5846 sizeof (uint64_t), tx);
5847 5847 VERIFY(zap_update(spa->spa_meta_objset,
5848 5848 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5849 5849 &sav->sav_object, tx) == 0);
5850 5850 }
5851 5851
5852 5852 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5853 5853 if (sav->sav_count == 0) {
5854 5854 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5855 5855 } else {
5856 5856 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5857 5857 for (i = 0; i < sav->sav_count; i++)
5858 5858 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5859 5859 B_FALSE, VDEV_CONFIG_L2CACHE);
5860 5860 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5861 5861 sav->sav_count) == 0);
5862 5862 for (i = 0; i < sav->sav_count; i++)
5863 5863 nvlist_free(list[i]);
5864 5864 kmem_free(list, sav->sav_count * sizeof (void *));
5865 5865 }
5866 5866
5867 5867 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5868 5868 nvlist_free(nvroot);
5869 5869
5870 5870 sav->sav_sync = B_FALSE;
5871 5871 }
5872 5872
5873 5873 static void
5874 5874 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5875 5875 {
5876 5876 nvlist_t *config;
5877 5877
5878 5878 if (list_is_empty(&spa->spa_config_dirty_list))
5879 5879 return;
5880 5880
5881 5881 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5882 5882
5883 5883 config = spa_config_generate(spa, spa->spa_root_vdev,
5884 5884 dmu_tx_get_txg(tx), B_FALSE);
5885 5885
5886 5886 /*
5887 5887 * If we're upgrading the spa version then make sure that
5888 5888 * the config object gets updated with the correct version.
5889 5889 */
5890 5890 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5891 5891 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5892 5892 spa->spa_uberblock.ub_version);
5893 5893
5894 5894 spa_config_exit(spa, SCL_STATE, FTAG);
5895 5895
5896 5896 if (spa->spa_config_syncing)
5897 5897 nvlist_free(spa->spa_config_syncing);
5898 5898 spa->spa_config_syncing = config;
5899 5899
5900 5900 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5901 5901 }
5902 5902
5903 5903 static void
5904 5904 spa_sync_version(void *arg, dmu_tx_t *tx)
5905 5905 {
5906 5906 uint64_t *versionp = arg;
5907 5907 uint64_t version = *versionp;
5908 5908 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5909 5909
5910 5910 /*
5911 5911 * Setting the version is special cased when first creating the pool.
5912 5912 */
5913 5913 ASSERT(tx->tx_txg != TXG_INITIAL);
5914 5914
5915 5915 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5916 5916 ASSERT(version >= spa_version(spa));
5917 5917
5918 5918 spa->spa_uberblock.ub_version = version;
5919 5919 vdev_config_dirty(spa->spa_root_vdev);
5920 5920 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5921 5921 }
5922 5922
5923 5923 /*
5924 5924 * Set zpool properties.
5925 5925 */
5926 5926 static void
5927 5927 spa_sync_props(void *arg, dmu_tx_t *tx)
5928 5928 {
5929 5929 nvlist_t *nvp = arg;
5930 5930 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5931 5931 objset_t *mos = spa->spa_meta_objset;
5932 5932 nvpair_t *elem = NULL;
5933 5933
5934 5934 mutex_enter(&spa->spa_props_lock);
5935 5935
5936 5936 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5937 5937 uint64_t intval;
5938 5938 char *strval, *fname;
5939 5939 zpool_prop_t prop;
5940 5940 const char *propname;
5941 5941 zprop_type_t proptype;
5942 5942 spa_feature_t fid;
5943 5943
5944 5944 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5945 5945 case ZPROP_INVAL:
5946 5946 /*
5947 5947 * We checked this earlier in spa_prop_validate().
5948 5948 */
5949 5949 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5950 5950
5951 5951 fname = strchr(nvpair_name(elem), '@') + 1;
5952 5952 VERIFY0(zfeature_lookup_name(fname, &fid));
5953 5953
5954 5954 spa_feature_enable(spa, fid, tx);
5955 5955 spa_history_log_internal(spa, "set", tx,
5956 5956 "%s=enabled", nvpair_name(elem));
5957 5957 break;
5958 5958
5959 5959 case ZPOOL_PROP_VERSION:
5960 5960 intval = fnvpair_value_uint64(elem);
5961 5961 /*
5962 5962 * The version is synced seperatly before other
5963 5963 * properties and should be correct by now.
5964 5964 */
5965 5965 ASSERT3U(spa_version(spa), >=, intval);
5966 5966 break;
5967 5967
5968 5968 case ZPOOL_PROP_ALTROOT:
5969 5969 /*
5970 5970 * 'altroot' is a non-persistent property. It should
5971 5971 * have been set temporarily at creation or import time.
5972 5972 */
5973 5973 ASSERT(spa->spa_root != NULL);
5974 5974 break;
5975 5975
5976 5976 case ZPOOL_PROP_READONLY:
5977 5977 case ZPOOL_PROP_CACHEFILE:
5978 5978 /*
5979 5979 * 'readonly' and 'cachefile' are also non-persisitent
5980 5980 * properties.
5981 5981 */
5982 5982 break;
5983 5983 case ZPOOL_PROP_COMMENT:
5984 5984 strval = fnvpair_value_string(elem);
5985 5985 if (spa->spa_comment != NULL)
5986 5986 spa_strfree(spa->spa_comment);
5987 5987 spa->spa_comment = spa_strdup(strval);
5988 5988 /*
5989 5989 * We need to dirty the configuration on all the vdevs
5990 5990 * so that their labels get updated. It's unnecessary
5991 5991 * to do this for pool creation since the vdev's
5992 5992 * configuratoin has already been dirtied.
5993 5993 */
5994 5994 if (tx->tx_txg != TXG_INITIAL)
5995 5995 vdev_config_dirty(spa->spa_root_vdev);
5996 5996 spa_history_log_internal(spa, "set", tx,
5997 5997 "%s=%s", nvpair_name(elem), strval);
5998 5998 break;
5999 5999 default:
6000 6000 /*
6001 6001 * Set pool property values in the poolprops mos object.
6002 6002 */
6003 6003 if (spa->spa_pool_props_object == 0) {
6004 6004 spa->spa_pool_props_object =
6005 6005 zap_create_link(mos, DMU_OT_POOL_PROPS,
6006 6006 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6007 6007 tx);
6008 6008 }
6009 6009
6010 6010 /* normalize the property name */
6011 6011 propname = zpool_prop_to_name(prop);
6012 6012 proptype = zpool_prop_get_type(prop);
6013 6013
6014 6014 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6015 6015 ASSERT(proptype == PROP_TYPE_STRING);
6016 6016 strval = fnvpair_value_string(elem);
6017 6017 VERIFY0(zap_update(mos,
6018 6018 spa->spa_pool_props_object, propname,
6019 6019 1, strlen(strval) + 1, strval, tx));
6020 6020 spa_history_log_internal(spa, "set", tx,
6021 6021 "%s=%s", nvpair_name(elem), strval);
6022 6022 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6023 6023 intval = fnvpair_value_uint64(elem);
6024 6024
6025 6025 if (proptype == PROP_TYPE_INDEX) {
6026 6026 const char *unused;
6027 6027 VERIFY0(zpool_prop_index_to_string(
6028 6028 prop, intval, &unused));
6029 6029 }
6030 6030 VERIFY0(zap_update(mos,
6031 6031 spa->spa_pool_props_object, propname,
6032 6032 8, 1, &intval, tx));
6033 6033 spa_history_log_internal(spa, "set", tx,
6034 6034 "%s=%lld", nvpair_name(elem), intval);
6035 6035 } else {
6036 6036 ASSERT(0); /* not allowed */
6037 6037 }
6038 6038
6039 6039 switch (prop) {
6040 6040 case ZPOOL_PROP_DELEGATION:
6041 6041 spa->spa_delegation = intval;
6042 6042 break;
6043 6043 case ZPOOL_PROP_BOOTFS:
6044 6044 spa->spa_bootfs = intval;
6045 6045 break;
6046 6046 case ZPOOL_PROP_FAILUREMODE:
6047 6047 spa->spa_failmode = intval;
6048 6048 break;
6049 6049 case ZPOOL_PROP_AUTOEXPAND:
6050 6050 spa->spa_autoexpand = intval;
6051 6051 if (tx->tx_txg != TXG_INITIAL)
6052 6052 spa_async_request(spa,
6053 6053 SPA_ASYNC_AUTOEXPAND);
6054 6054 break;
6055 6055 case ZPOOL_PROP_DEDUPDITTO:
6056 6056 spa->spa_dedup_ditto = intval;
6057 6057 break;
6058 6058 default:
6059 6059 break;
6060 6060 }
6061 6061 }
6062 6062
6063 6063 }
6064 6064
6065 6065 mutex_exit(&spa->spa_props_lock);
6066 6066 }
6067 6067
6068 6068 /*
6069 6069 * Perform one-time upgrade on-disk changes. spa_version() does not
6070 6070 * reflect the new version this txg, so there must be no changes this
6071 6071 * txg to anything that the upgrade code depends on after it executes.
6072 6072 * Therefore this must be called after dsl_pool_sync() does the sync
6073 6073 * tasks.
6074 6074 */
6075 6075 static void
6076 6076 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6077 6077 {
6078 6078 dsl_pool_t *dp = spa->spa_dsl_pool;
6079 6079
6080 6080 ASSERT(spa->spa_sync_pass == 1);
6081 6081
6082 6082 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6083 6083
6084 6084 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6085 6085 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6086 6086 dsl_pool_create_origin(dp, tx);
6087 6087
6088 6088 /* Keeping the origin open increases spa_minref */
6089 6089 spa->spa_minref += 3;
6090 6090 }
6091 6091
6092 6092 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6093 6093 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6094 6094 dsl_pool_upgrade_clones(dp, tx);
6095 6095 }
6096 6096
6097 6097 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6098 6098 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
↓ open down ↓ |
6063 lines elided |
↑ open up ↑ |
6099 6099 dsl_pool_upgrade_dir_clones(dp, tx);
6100 6100
6101 6101 /* Keeping the freedir open increases spa_minref */
6102 6102 spa->spa_minref += 3;
6103 6103 }
6104 6104
6105 6105 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6106 6106 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6107 6107 spa_feature_create_zap_objects(spa, tx);
6108 6108 }
6109 +
6110 + if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6111 + boolean_t lz4_en = spa_feature_is_enabled(spa,
6112 + SPA_FEATURE_LZ4_COMPRESS);
6113 + boolean_t lz4_ac = spa_feature_is_active(spa,
6114 + SPA_FEATURE_LZ4_COMPRESS);
6115 +
6116 + if (lz4_en && !lz4_ac)
6117 + spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6118 + }
6109 6119 rrw_exit(&dp->dp_config_rwlock, FTAG);
6110 6120 }
6111 6121
6112 6122 /*
6113 6123 * Sync the specified transaction group. New blocks may be dirtied as
6114 6124 * part of the process, so we iterate until it converges.
6115 6125 */
6116 6126 void
6117 6127 spa_sync(spa_t *spa, uint64_t txg)
6118 6128 {
6119 6129 dsl_pool_t *dp = spa->spa_dsl_pool;
6120 6130 objset_t *mos = spa->spa_meta_objset;
6121 6131 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6122 6132 vdev_t *rvd = spa->spa_root_vdev;
6123 6133 vdev_t *vd;
6124 6134 dmu_tx_t *tx;
6125 6135 int error;
6126 6136
6127 6137 VERIFY(spa_writeable(spa));
6128 6138
6129 6139 /*
6130 6140 * Lock out configuration changes.
6131 6141 */
6132 6142 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6133 6143
6134 6144 spa->spa_syncing_txg = txg;
6135 6145 spa->spa_sync_pass = 0;
6136 6146
6137 6147 /*
6138 6148 * If there are any pending vdev state changes, convert them
6139 6149 * into config changes that go out with this transaction group.
6140 6150 */
6141 6151 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6142 6152 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6143 6153 /*
6144 6154 * We need the write lock here because, for aux vdevs,
6145 6155 * calling vdev_config_dirty() modifies sav_config.
6146 6156 * This is ugly and will become unnecessary when we
6147 6157 * eliminate the aux vdev wart by integrating all vdevs
6148 6158 * into the root vdev tree.
6149 6159 */
6150 6160 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6151 6161 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6152 6162 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6153 6163 vdev_state_clean(vd);
6154 6164 vdev_config_dirty(vd);
6155 6165 }
6156 6166 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6157 6167 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6158 6168 }
6159 6169 spa_config_exit(spa, SCL_STATE, FTAG);
6160 6170
6161 6171 tx = dmu_tx_create_assigned(dp, txg);
6162 6172
6163 6173 spa->spa_sync_starttime = gethrtime();
6164 6174 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6165 6175 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6166 6176
6167 6177 /*
6168 6178 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6169 6179 * set spa_deflate if we have no raid-z vdevs.
6170 6180 */
6171 6181 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6172 6182 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6173 6183 int i;
6174 6184
6175 6185 for (i = 0; i < rvd->vdev_children; i++) {
6176 6186 vd = rvd->vdev_child[i];
6177 6187 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6178 6188 break;
6179 6189 }
6180 6190 if (i == rvd->vdev_children) {
6181 6191 spa->spa_deflate = TRUE;
6182 6192 VERIFY(0 == zap_add(spa->spa_meta_objset,
6183 6193 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6184 6194 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6185 6195 }
6186 6196 }
6187 6197
6188 6198 /*
6189 6199 * If anything has changed in this txg, or if someone is waiting
6190 6200 * for this txg to sync (eg, spa_vdev_remove()), push the
6191 6201 * deferred frees from the previous txg. If not, leave them
6192 6202 * alone so that we don't generate work on an otherwise idle
6193 6203 * system.
6194 6204 */
6195 6205 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6196 6206 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6197 6207 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6198 6208 ((dsl_scan_active(dp->dp_scan) ||
6199 6209 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6200 6210 spa_sync_deferred_frees(spa, tx);
6201 6211 }
6202 6212
6203 6213 /*
6204 6214 * Iterate to convergence.
6205 6215 */
6206 6216 do {
6207 6217 int pass = ++spa->spa_sync_pass;
6208 6218
6209 6219 spa_sync_config_object(spa, tx);
6210 6220 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6211 6221 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6212 6222 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6213 6223 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6214 6224 spa_errlog_sync(spa, txg);
6215 6225 dsl_pool_sync(dp, txg);
6216 6226
6217 6227 if (pass < zfs_sync_pass_deferred_free) {
6218 6228 spa_sync_frees(spa, free_bpl, tx);
6219 6229 } else {
6220 6230 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6221 6231 &spa->spa_deferred_bpobj, tx);
6222 6232 }
6223 6233
6224 6234 ddt_sync(spa, txg);
6225 6235 dsl_scan_sync(dp, tx);
6226 6236
6227 6237 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6228 6238 vdev_sync(vd, txg);
6229 6239
6230 6240 if (pass == 1)
6231 6241 spa_sync_upgrades(spa, tx);
6232 6242
6233 6243 } while (dmu_objset_is_dirty(mos, txg));
6234 6244
6235 6245 /*
6236 6246 * Rewrite the vdev configuration (which includes the uberblock)
6237 6247 * to commit the transaction group.
6238 6248 *
6239 6249 * If there are no dirty vdevs, we sync the uberblock to a few
6240 6250 * random top-level vdevs that are known to be visible in the
6241 6251 * config cache (see spa_vdev_add() for a complete description).
6242 6252 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6243 6253 */
6244 6254 for (;;) {
6245 6255 /*
6246 6256 * We hold SCL_STATE to prevent vdev open/close/etc.
6247 6257 * while we're attempting to write the vdev labels.
6248 6258 */
6249 6259 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6250 6260
6251 6261 if (list_is_empty(&spa->spa_config_dirty_list)) {
6252 6262 vdev_t *svd[SPA_DVAS_PER_BP];
6253 6263 int svdcount = 0;
6254 6264 int children = rvd->vdev_children;
6255 6265 int c0 = spa_get_random(children);
6256 6266
6257 6267 for (int c = 0; c < children; c++) {
6258 6268 vd = rvd->vdev_child[(c0 + c) % children];
6259 6269 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6260 6270 continue;
6261 6271 svd[svdcount++] = vd;
6262 6272 if (svdcount == SPA_DVAS_PER_BP)
6263 6273 break;
6264 6274 }
6265 6275 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6266 6276 if (error != 0)
6267 6277 error = vdev_config_sync(svd, svdcount, txg,
6268 6278 B_TRUE);
6269 6279 } else {
6270 6280 error = vdev_config_sync(rvd->vdev_child,
6271 6281 rvd->vdev_children, txg, B_FALSE);
6272 6282 if (error != 0)
6273 6283 error = vdev_config_sync(rvd->vdev_child,
6274 6284 rvd->vdev_children, txg, B_TRUE);
6275 6285 }
6276 6286
6277 6287 if (error == 0)
6278 6288 spa->spa_last_synced_guid = rvd->vdev_guid;
6279 6289
6280 6290 spa_config_exit(spa, SCL_STATE, FTAG);
6281 6291
6282 6292 if (error == 0)
6283 6293 break;
6284 6294 zio_suspend(spa, NULL);
6285 6295 zio_resume_wait(spa);
6286 6296 }
6287 6297 dmu_tx_commit(tx);
6288 6298
6289 6299 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6290 6300
6291 6301 /*
6292 6302 * Clear the dirty config list.
6293 6303 */
6294 6304 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6295 6305 vdev_config_clean(vd);
6296 6306
6297 6307 /*
6298 6308 * Now that the new config has synced transactionally,
6299 6309 * let it become visible to the config cache.
6300 6310 */
6301 6311 if (spa->spa_config_syncing != NULL) {
6302 6312 spa_config_set(spa, spa->spa_config_syncing);
6303 6313 spa->spa_config_txg = txg;
6304 6314 spa->spa_config_syncing = NULL;
6305 6315 }
6306 6316
6307 6317 spa->spa_ubsync = spa->spa_uberblock;
6308 6318
6309 6319 dsl_pool_sync_done(dp, txg);
6310 6320
6311 6321 /*
6312 6322 * Update usable space statistics.
6313 6323 */
6314 6324 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6315 6325 vdev_sync_done(vd, txg);
6316 6326
6317 6327 spa_update_dspace(spa);
6318 6328
6319 6329 /*
6320 6330 * It had better be the case that we didn't dirty anything
6321 6331 * since vdev_config_sync().
6322 6332 */
6323 6333 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6324 6334 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6325 6335 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6326 6336
6327 6337 spa->spa_sync_pass = 0;
6328 6338
6329 6339 spa_config_exit(spa, SCL_CONFIG, FTAG);
6330 6340
6331 6341 spa_handle_ignored_writes(spa);
6332 6342
6333 6343 /*
6334 6344 * If any async tasks have been requested, kick them off.
6335 6345 */
6336 6346 spa_async_dispatch(spa);
6337 6347 }
6338 6348
6339 6349 /*
6340 6350 * Sync all pools. We don't want to hold the namespace lock across these
6341 6351 * operations, so we take a reference on the spa_t and drop the lock during the
6342 6352 * sync.
6343 6353 */
6344 6354 void
6345 6355 spa_sync_allpools(void)
6346 6356 {
6347 6357 spa_t *spa = NULL;
6348 6358 mutex_enter(&spa_namespace_lock);
6349 6359 while ((spa = spa_next(spa)) != NULL) {
6350 6360 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6351 6361 !spa_writeable(spa) || spa_suspended(spa))
6352 6362 continue;
6353 6363 spa_open_ref(spa, FTAG);
6354 6364 mutex_exit(&spa_namespace_lock);
6355 6365 txg_wait_synced(spa_get_dsl(spa), 0);
6356 6366 mutex_enter(&spa_namespace_lock);
6357 6367 spa_close(spa, FTAG);
6358 6368 }
6359 6369 mutex_exit(&spa_namespace_lock);
6360 6370 }
6361 6371
6362 6372 /*
6363 6373 * ==========================================================================
6364 6374 * Miscellaneous routines
6365 6375 * ==========================================================================
6366 6376 */
6367 6377
6368 6378 /*
6369 6379 * Remove all pools in the system.
6370 6380 */
6371 6381 void
6372 6382 spa_evict_all(void)
6373 6383 {
6374 6384 spa_t *spa;
6375 6385
6376 6386 /*
6377 6387 * Remove all cached state. All pools should be closed now,
6378 6388 * so every spa in the AVL tree should be unreferenced.
6379 6389 */
6380 6390 mutex_enter(&spa_namespace_lock);
6381 6391 while ((spa = spa_next(NULL)) != NULL) {
6382 6392 /*
6383 6393 * Stop async tasks. The async thread may need to detach
6384 6394 * a device that's been replaced, which requires grabbing
6385 6395 * spa_namespace_lock, so we must drop it here.
6386 6396 */
6387 6397 spa_open_ref(spa, FTAG);
6388 6398 mutex_exit(&spa_namespace_lock);
6389 6399 spa_async_suspend(spa);
6390 6400 mutex_enter(&spa_namespace_lock);
6391 6401 spa_close(spa, FTAG);
6392 6402
6393 6403 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6394 6404 spa_unload(spa);
6395 6405 spa_deactivate(spa);
6396 6406 }
6397 6407 spa_remove(spa);
6398 6408 }
6399 6409 mutex_exit(&spa_namespace_lock);
6400 6410 }
6401 6411
6402 6412 vdev_t *
6403 6413 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6404 6414 {
6405 6415 vdev_t *vd;
6406 6416 int i;
6407 6417
6408 6418 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6409 6419 return (vd);
6410 6420
6411 6421 if (aux) {
6412 6422 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6413 6423 vd = spa->spa_l2cache.sav_vdevs[i];
6414 6424 if (vd->vdev_guid == guid)
6415 6425 return (vd);
6416 6426 }
6417 6427
6418 6428 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6419 6429 vd = spa->spa_spares.sav_vdevs[i];
6420 6430 if (vd->vdev_guid == guid)
6421 6431 return (vd);
6422 6432 }
6423 6433 }
6424 6434
6425 6435 return (NULL);
6426 6436 }
6427 6437
6428 6438 void
6429 6439 spa_upgrade(spa_t *spa, uint64_t version)
6430 6440 {
6431 6441 ASSERT(spa_writeable(spa));
6432 6442
6433 6443 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6434 6444
6435 6445 /*
6436 6446 * This should only be called for a non-faulted pool, and since a
6437 6447 * future version would result in an unopenable pool, this shouldn't be
6438 6448 * possible.
6439 6449 */
6440 6450 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6441 6451 ASSERT(version >= spa->spa_uberblock.ub_version);
6442 6452
6443 6453 spa->spa_uberblock.ub_version = version;
6444 6454 vdev_config_dirty(spa->spa_root_vdev);
6445 6455
6446 6456 spa_config_exit(spa, SCL_ALL, FTAG);
6447 6457
6448 6458 txg_wait_synced(spa_get_dsl(spa), 0);
6449 6459 }
6450 6460
6451 6461 boolean_t
6452 6462 spa_has_spare(spa_t *spa, uint64_t guid)
6453 6463 {
6454 6464 int i;
6455 6465 uint64_t spareguid;
6456 6466 spa_aux_vdev_t *sav = &spa->spa_spares;
6457 6467
6458 6468 for (i = 0; i < sav->sav_count; i++)
6459 6469 if (sav->sav_vdevs[i]->vdev_guid == guid)
6460 6470 return (B_TRUE);
6461 6471
6462 6472 for (i = 0; i < sav->sav_npending; i++) {
6463 6473 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6464 6474 &spareguid) == 0 && spareguid == guid)
6465 6475 return (B_TRUE);
6466 6476 }
6467 6477
6468 6478 return (B_FALSE);
6469 6479 }
6470 6480
6471 6481 /*
6472 6482 * Check if a pool has an active shared spare device.
6473 6483 * Note: reference count of an active spare is 2, as a spare and as a replace
6474 6484 */
6475 6485 static boolean_t
6476 6486 spa_has_active_shared_spare(spa_t *spa)
6477 6487 {
6478 6488 int i, refcnt;
6479 6489 uint64_t pool;
6480 6490 spa_aux_vdev_t *sav = &spa->spa_spares;
6481 6491
6482 6492 for (i = 0; i < sav->sav_count; i++) {
6483 6493 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6484 6494 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6485 6495 refcnt > 2)
6486 6496 return (B_TRUE);
6487 6497 }
6488 6498
6489 6499 return (B_FALSE);
6490 6500 }
6491 6501
6492 6502 /*
6493 6503 * Post a sysevent corresponding to the given event. The 'name' must be one of
6494 6504 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6495 6505 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6496 6506 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6497 6507 * or zdb as real changes.
6498 6508 */
6499 6509 void
6500 6510 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6501 6511 {
6502 6512 #ifdef _KERNEL
6503 6513 sysevent_t *ev;
6504 6514 sysevent_attr_list_t *attr = NULL;
6505 6515 sysevent_value_t value;
6506 6516 sysevent_id_t eid;
6507 6517
6508 6518 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6509 6519 SE_SLEEP);
6510 6520
6511 6521 value.value_type = SE_DATA_TYPE_STRING;
6512 6522 value.value.sv_string = spa_name(spa);
6513 6523 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6514 6524 goto done;
6515 6525
6516 6526 value.value_type = SE_DATA_TYPE_UINT64;
6517 6527 value.value.sv_uint64 = spa_guid(spa);
6518 6528 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6519 6529 goto done;
6520 6530
6521 6531 if (vd) {
6522 6532 value.value_type = SE_DATA_TYPE_UINT64;
6523 6533 value.value.sv_uint64 = vd->vdev_guid;
6524 6534 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6525 6535 SE_SLEEP) != 0)
6526 6536 goto done;
6527 6537
6528 6538 if (vd->vdev_path) {
6529 6539 value.value_type = SE_DATA_TYPE_STRING;
6530 6540 value.value.sv_string = vd->vdev_path;
6531 6541 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6532 6542 &value, SE_SLEEP) != 0)
6533 6543 goto done;
6534 6544 }
6535 6545 }
6536 6546
6537 6547 if (sysevent_attach_attributes(ev, attr) != 0)
6538 6548 goto done;
6539 6549 attr = NULL;
6540 6550
6541 6551 (void) log_sysevent(ev, SE_SLEEP, &eid);
6542 6552
6543 6553 done:
6544 6554 if (attr)
6545 6555 sysevent_free_attr(attr);
6546 6556 sysevent_free(ev);
6547 6557 #endif
6548 6558 }
↓ open down ↓ |
430 lines elided |
↑ open up ↑ |
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX