1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size; 198 uint64_t alloc; 199 uint64_t space; 200 uint64_t cap, version; 201 zprop_source_t src = ZPROP_SRC_NONE; 202 spa_config_dirent_t *dp; 203 204 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 205 206 if (rvd != NULL) { 207 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 208 size = metaslab_class_get_space(spa_normal_class(spa)); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 213 size - alloc, src); 214 215 space = 0; 216 for (int c = 0; c < rvd->vdev_children; c++) { 217 vdev_t *tvd = rvd->vdev_child[c]; 218 space += tvd->vdev_max_asize - tvd->vdev_asize; 219 } 220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 221 src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 224 (spa_mode(spa) == FREAD), src); 225 226 cap = (size == 0) ? 0 : (alloc * 100 / size); 227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 228 229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 230 ddt_get_pool_dedup_ratio(spa), src); 231 232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 233 rvd->vdev_state, src); 234 235 version = spa_version(spa); 236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 237 src = ZPROP_SRC_DEFAULT; 238 else 239 src = ZPROP_SRC_LOCAL; 240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 241 } 242 243 if (pool != NULL) { 244 dsl_dir_t *freedir = pool->dp_free_dir; 245 246 /* 247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 248 * when opening pools before this version freedir will be NULL. 249 */ 250 if (freedir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 252 freedir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 6); 671 if (error) 672 return (error); 673 continue; 674 } 675 676 need_sync = B_TRUE; 677 break; 678 } 679 680 if (need_sync) { 681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 682 nvp, 6)); 683 } 684 685 return (0); 686 } 687 688 /* 689 * If the bootfs property value is dsobj, clear it. 690 */ 691 void 692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 693 { 694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 695 VERIFY(zap_remove(spa->spa_meta_objset, 696 spa->spa_pool_props_object, 697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 698 spa->spa_bootfs = 0; 699 } 700 } 701 702 /*ARGSUSED*/ 703 static int 704 spa_change_guid_check(void *arg, dmu_tx_t *tx) 705 { 706 uint64_t *newguid = arg; 707 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 708 vdev_t *rvd = spa->spa_root_vdev; 709 uint64_t vdev_state; 710 711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 712 vdev_state = rvd->vdev_state; 713 spa_config_exit(spa, SCL_STATE, FTAG); 714 715 if (vdev_state != VDEV_STATE_HEALTHY) 716 return (SET_ERROR(ENXIO)); 717 718 ASSERT3U(spa_guid(spa), !=, *newguid); 719 720 return (0); 721 } 722 723 static void 724 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 725 { 726 uint64_t *newguid = arg; 727 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 728 uint64_t oldguid; 729 vdev_t *rvd = spa->spa_root_vdev; 730 731 oldguid = spa_guid(spa); 732 733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 734 rvd->vdev_guid = *newguid; 735 rvd->vdev_guid_sum += (*newguid - oldguid); 736 vdev_config_dirty(rvd); 737 spa_config_exit(spa, SCL_STATE, FTAG); 738 739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 740 oldguid, *newguid); 741 } 742 743 /* 744 * Change the GUID for the pool. This is done so that we can later 745 * re-import a pool built from a clone of our own vdevs. We will modify 746 * the root vdev's guid, our own pool guid, and then mark all of our 747 * vdevs dirty. Note that we must make sure that all our vdevs are 748 * online when we do this, or else any vdevs that weren't present 749 * would be orphaned from our pool. We are also going to issue a 750 * sysevent to update any watchers. 751 */ 752 int 753 spa_change_guid(spa_t *spa) 754 { 755 int error; 756 uint64_t guid; 757 758 mutex_enter(&spa->spa_vdev_top_lock); 759 mutex_enter(&spa_namespace_lock); 760 guid = spa_generate_guid(NULL); 761 762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 763 spa_change_guid_sync, &guid, 5); 764 765 if (error == 0) { 766 spa_config_sync(spa, B_FALSE, B_TRUE); 767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 768 } 769 770 mutex_exit(&spa_namespace_lock); 771 mutex_exit(&spa->spa_vdev_top_lock); 772 773 return (error); 774 } 775 776 /* 777 * ========================================================================== 778 * SPA state manipulation (open/create/destroy/import/export) 779 * ========================================================================== 780 */ 781 782 static int 783 spa_error_entry_compare(const void *a, const void *b) 784 { 785 spa_error_entry_t *sa = (spa_error_entry_t *)a; 786 spa_error_entry_t *sb = (spa_error_entry_t *)b; 787 int ret; 788 789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 790 sizeof (zbookmark_t)); 791 792 if (ret < 0) 793 return (-1); 794 else if (ret > 0) 795 return (1); 796 else 797 return (0); 798 } 799 800 /* 801 * Utility function which retrieves copies of the current logs and 802 * re-initializes them in the process. 803 */ 804 void 805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 806 { 807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 808 809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 811 812 avl_create(&spa->spa_errlist_scrub, 813 spa_error_entry_compare, sizeof (spa_error_entry_t), 814 offsetof(spa_error_entry_t, se_avl)); 815 avl_create(&spa->spa_errlist_last, 816 spa_error_entry_compare, sizeof (spa_error_entry_t), 817 offsetof(spa_error_entry_t, se_avl)); 818 } 819 820 static void 821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 822 { 823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 824 enum zti_modes mode = ztip->zti_mode; 825 uint_t value = ztip->zti_value; 826 uint_t count = ztip->zti_count; 827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 828 char name[32]; 829 uint_t flags = 0; 830 boolean_t batch = B_FALSE; 831 832 if (mode == ZTI_MODE_NULL) { 833 tqs->stqs_count = 0; 834 tqs->stqs_taskq = NULL; 835 return; 836 } 837 838 ASSERT3U(count, >, 0); 839 840 tqs->stqs_count = count; 841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 842 843 switch (mode) { 844 case ZTI_MODE_FIXED: 845 ASSERT3U(value, >=, 1); 846 value = MAX(value, 1); 847 break; 848 849 case ZTI_MODE_BATCH: 850 batch = B_TRUE; 851 flags |= TASKQ_THREADS_CPU_PCT; 852 value = zio_taskq_batch_pct; 853 break; 854 855 default: 856 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 857 "spa_activate()", 858 zio_type_name[t], zio_taskq_types[q], mode, value); 859 break; 860 } 861 862 for (uint_t i = 0; i < count; i++) { 863 taskq_t *tq; 864 865 if (count > 1) { 866 (void) snprintf(name, sizeof (name), "%s_%s_%u", 867 zio_type_name[t], zio_taskq_types[q], i); 868 } else { 869 (void) snprintf(name, sizeof (name), "%s_%s", 870 zio_type_name[t], zio_taskq_types[q]); 871 } 872 873 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 874 if (batch) 875 flags |= TASKQ_DC_BATCH; 876 877 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 878 spa->spa_proc, zio_taskq_basedc, flags); 879 } else { 880 pri_t pri = maxclsyspri; 881 /* 882 * The write issue taskq can be extremely CPU 883 * intensive. Run it at slightly lower priority 884 * than the other taskqs. 885 */ 886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 887 pri--; 888 889 tq = taskq_create_proc(name, value, pri, 50, 890 INT_MAX, spa->spa_proc, flags); 891 } 892 893 tqs->stqs_taskq[i] = tq; 894 } 895 } 896 897 static void 898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 899 { 900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 901 902 if (tqs->stqs_taskq == NULL) { 903 ASSERT0(tqs->stqs_count); 904 return; 905 } 906 907 for (uint_t i = 0; i < tqs->stqs_count; i++) { 908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 909 taskq_destroy(tqs->stqs_taskq[i]); 910 } 911 912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 913 tqs->stqs_taskq = NULL; 914 } 915 916 /* 917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 918 * Note that a type may have multiple discrete taskqs to avoid lock contention 919 * on the taskq itself. In that case we choose which taskq at random by using 920 * the low bits of gethrtime(). 921 */ 922 void 923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 925 { 926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 927 taskq_t *tq; 928 929 ASSERT3P(tqs->stqs_taskq, !=, NULL); 930 ASSERT3U(tqs->stqs_count, !=, 0); 931 932 if (tqs->stqs_count == 1) { 933 tq = tqs->stqs_taskq[0]; 934 } else { 935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 936 } 937 938 taskq_dispatch_ent(tq, func, arg, flags, ent); 939 } 940 941 static void 942 spa_create_zio_taskqs(spa_t *spa) 943 { 944 for (int t = 0; t < ZIO_TYPES; t++) { 945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 946 spa_taskqs_init(spa, t, q); 947 } 948 } 949 } 950 951 #ifdef _KERNEL 952 static void 953 spa_thread(void *arg) 954 { 955 callb_cpr_t cprinfo; 956 957 spa_t *spa = arg; 958 user_t *pu = PTOU(curproc); 959 960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 961 spa->spa_name); 962 963 ASSERT(curproc != &p0); 964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 965 "zpool-%s", spa->spa_name); 966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 967 968 /* bind this thread to the requested psrset */ 969 if (zio_taskq_psrset_bind != PS_NONE) { 970 pool_lock(); 971 mutex_enter(&cpu_lock); 972 mutex_enter(&pidlock); 973 mutex_enter(&curproc->p_lock); 974 975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 976 0, NULL, NULL) == 0) { 977 curthread->t_bind_pset = zio_taskq_psrset_bind; 978 } else { 979 cmn_err(CE_WARN, 980 "Couldn't bind process for zfs pool \"%s\" to " 981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 982 } 983 984 mutex_exit(&curproc->p_lock); 985 mutex_exit(&pidlock); 986 mutex_exit(&cpu_lock); 987 pool_unlock(); 988 } 989 990 if (zio_taskq_sysdc) { 991 sysdc_thread_enter(curthread, 100, 0); 992 } 993 994 spa->spa_proc = curproc; 995 spa->spa_did = curthread->t_did; 996 997 spa_create_zio_taskqs(spa); 998 999 mutex_enter(&spa->spa_proc_lock); 1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1001 1002 spa->spa_proc_state = SPA_PROC_ACTIVE; 1003 cv_broadcast(&spa->spa_proc_cv); 1004 1005 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1009 1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1011 spa->spa_proc_state = SPA_PROC_GONE; 1012 spa->spa_proc = &p0; 1013 cv_broadcast(&spa->spa_proc_cv); 1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1015 1016 mutex_enter(&curproc->p_lock); 1017 lwp_exit(); 1018 } 1019 #endif 1020 1021 /* 1022 * Activate an uninitialized pool. 1023 */ 1024 static void 1025 spa_activate(spa_t *spa, int mode) 1026 { 1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1028 1029 spa->spa_state = POOL_STATE_ACTIVE; 1030 spa->spa_mode = mode; 1031 1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 1035 /* Try to create a covering process */ 1036 mutex_enter(&spa->spa_proc_lock); 1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1038 ASSERT(spa->spa_proc == &p0); 1039 spa->spa_did = 0; 1040 1041 /* Only create a process if we're going to be around a while. */ 1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1044 NULL, 0) == 0) { 1045 spa->spa_proc_state = SPA_PROC_CREATED; 1046 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1047 cv_wait(&spa->spa_proc_cv, 1048 &spa->spa_proc_lock); 1049 } 1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1051 ASSERT(spa->spa_proc != &p0); 1052 ASSERT(spa->spa_did != 0); 1053 } else { 1054 #ifdef _KERNEL 1055 cmn_err(CE_WARN, 1056 "Couldn't create process for zfs pool \"%s\"\n", 1057 spa->spa_name); 1058 #endif 1059 } 1060 } 1061 mutex_exit(&spa->spa_proc_lock); 1062 1063 /* If we didn't create a process, we need to create our taskqs. */ 1064 if (spa->spa_proc == &p0) { 1065 spa_create_zio_taskqs(spa); 1066 } 1067 1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1069 offsetof(vdev_t, vdev_config_dirty_node)); 1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1071 offsetof(vdev_t, vdev_state_dirty_node)); 1072 1073 txg_list_create(&spa->spa_vdev_txg_list, 1074 offsetof(struct vdev, vdev_txg_node)); 1075 1076 avl_create(&spa->spa_errlist_scrub, 1077 spa_error_entry_compare, sizeof (spa_error_entry_t), 1078 offsetof(spa_error_entry_t, se_avl)); 1079 avl_create(&spa->spa_errlist_last, 1080 spa_error_entry_compare, sizeof (spa_error_entry_t), 1081 offsetof(spa_error_entry_t, se_avl)); 1082 } 1083 1084 /* 1085 * Opposite of spa_activate(). 1086 */ 1087 static void 1088 spa_deactivate(spa_t *spa) 1089 { 1090 ASSERT(spa->spa_sync_on == B_FALSE); 1091 ASSERT(spa->spa_dsl_pool == NULL); 1092 ASSERT(spa->spa_root_vdev == NULL); 1093 ASSERT(spa->spa_async_zio_root == NULL); 1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1095 1096 txg_list_destroy(&spa->spa_vdev_txg_list); 1097 1098 list_destroy(&spa->spa_config_dirty_list); 1099 list_destroy(&spa->spa_state_dirty_list); 1100 1101 for (int t = 0; t < ZIO_TYPES; t++) { 1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1103 spa_taskqs_fini(spa, t, q); 1104 } 1105 } 1106 1107 metaslab_class_destroy(spa->spa_normal_class); 1108 spa->spa_normal_class = NULL; 1109 1110 metaslab_class_destroy(spa->spa_log_class); 1111 spa->spa_log_class = NULL; 1112 1113 /* 1114 * If this was part of an import or the open otherwise failed, we may 1115 * still have errors left in the queues. Empty them just in case. 1116 */ 1117 spa_errlog_drain(spa); 1118 1119 avl_destroy(&spa->spa_errlist_scrub); 1120 avl_destroy(&spa->spa_errlist_last); 1121 1122 spa->spa_state = POOL_STATE_UNINITIALIZED; 1123 1124 mutex_enter(&spa->spa_proc_lock); 1125 if (spa->spa_proc_state != SPA_PROC_NONE) { 1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1128 cv_broadcast(&spa->spa_proc_cv); 1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1130 ASSERT(spa->spa_proc != &p0); 1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1132 } 1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1134 spa->spa_proc_state = SPA_PROC_NONE; 1135 } 1136 ASSERT(spa->spa_proc == &p0); 1137 mutex_exit(&spa->spa_proc_lock); 1138 1139 /* 1140 * We want to make sure spa_thread() has actually exited the ZFS 1141 * module, so that the module can't be unloaded out from underneath 1142 * it. 1143 */ 1144 if (spa->spa_did != 0) { 1145 thread_join(spa->spa_did); 1146 spa->spa_did = 0; 1147 } 1148 } 1149 1150 /* 1151 * Verify a pool configuration, and construct the vdev tree appropriately. This 1152 * will create all the necessary vdevs in the appropriate layout, with each vdev 1153 * in the CLOSED state. This will prep the pool before open/creation/import. 1154 * All vdev validation is done by the vdev_alloc() routine. 1155 */ 1156 static int 1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1158 uint_t id, int atype) 1159 { 1160 nvlist_t **child; 1161 uint_t children; 1162 int error; 1163 1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1165 return (error); 1166 1167 if ((*vdp)->vdev_ops->vdev_op_leaf) 1168 return (0); 1169 1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1171 &child, &children); 1172 1173 if (error == ENOENT) 1174 return (0); 1175 1176 if (error) { 1177 vdev_free(*vdp); 1178 *vdp = NULL; 1179 return (SET_ERROR(EINVAL)); 1180 } 1181 1182 for (int c = 0; c < children; c++) { 1183 vdev_t *vd; 1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1185 atype)) != 0) { 1186 vdev_free(*vdp); 1187 *vdp = NULL; 1188 return (error); 1189 } 1190 } 1191 1192 ASSERT(*vdp != NULL); 1193 1194 return (0); 1195 } 1196 1197 /* 1198 * Opposite of spa_load(). 1199 */ 1200 static void 1201 spa_unload(spa_t *spa) 1202 { 1203 int i; 1204 1205 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1206 1207 /* 1208 * Stop async tasks. 1209 */ 1210 spa_async_suspend(spa); 1211 1212 /* 1213 * Stop syncing. 1214 */ 1215 if (spa->spa_sync_on) { 1216 txg_sync_stop(spa->spa_dsl_pool); 1217 spa->spa_sync_on = B_FALSE; 1218 } 1219 1220 /* 1221 * Wait for any outstanding async I/O to complete. 1222 */ 1223 if (spa->spa_async_zio_root != NULL) { 1224 (void) zio_wait(spa->spa_async_zio_root); 1225 spa->spa_async_zio_root = NULL; 1226 } 1227 1228 bpobj_close(&spa->spa_deferred_bpobj); 1229 1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1231 1232 /* 1233 * Close all vdevs. 1234 */ 1235 if (spa->spa_root_vdev) 1236 vdev_free(spa->spa_root_vdev); 1237 ASSERT(spa->spa_root_vdev == NULL); 1238 1239 /* 1240 * Close the dsl pool. 1241 */ 1242 if (spa->spa_dsl_pool) { 1243 dsl_pool_close(spa->spa_dsl_pool); 1244 spa->spa_dsl_pool = NULL; 1245 spa->spa_meta_objset = NULL; 1246 } 1247 1248 ddt_unload(spa); 1249 1250 1251 /* 1252 * Drop and purge level 2 cache 1253 */ 1254 spa_l2cache_drop(spa); 1255 1256 for (i = 0; i < spa->spa_spares.sav_count; i++) 1257 vdev_free(spa->spa_spares.sav_vdevs[i]); 1258 if (spa->spa_spares.sav_vdevs) { 1259 kmem_free(spa->spa_spares.sav_vdevs, 1260 spa->spa_spares.sav_count * sizeof (void *)); 1261 spa->spa_spares.sav_vdevs = NULL; 1262 } 1263 if (spa->spa_spares.sav_config) { 1264 nvlist_free(spa->spa_spares.sav_config); 1265 spa->spa_spares.sav_config = NULL; 1266 } 1267 spa->spa_spares.sav_count = 0; 1268 1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1272 } 1273 if (spa->spa_l2cache.sav_vdevs) { 1274 kmem_free(spa->spa_l2cache.sav_vdevs, 1275 spa->spa_l2cache.sav_count * sizeof (void *)); 1276 spa->spa_l2cache.sav_vdevs = NULL; 1277 } 1278 if (spa->spa_l2cache.sav_config) { 1279 nvlist_free(spa->spa_l2cache.sav_config); 1280 spa->spa_l2cache.sav_config = NULL; 1281 } 1282 spa->spa_l2cache.sav_count = 0; 1283 1284 spa->spa_async_suspended = 0; 1285 1286 if (spa->spa_comment != NULL) { 1287 spa_strfree(spa->spa_comment); 1288 spa->spa_comment = NULL; 1289 } 1290 1291 spa_config_exit(spa, SCL_ALL, FTAG); 1292 } 1293 1294 /* 1295 * Load (or re-load) the current list of vdevs describing the active spares for 1296 * this pool. When this is called, we have some form of basic information in 1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1298 * then re-generate a more complete list including status information. 1299 */ 1300 static void 1301 spa_load_spares(spa_t *spa) 1302 { 1303 nvlist_t **spares; 1304 uint_t nspares; 1305 int i; 1306 vdev_t *vd, *tvd; 1307 1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1309 1310 /* 1311 * First, close and free any existing spare vdevs. 1312 */ 1313 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1314 vd = spa->spa_spares.sav_vdevs[i]; 1315 1316 /* Undo the call to spa_activate() below */ 1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1318 B_FALSE)) != NULL && tvd->vdev_isspare) 1319 spa_spare_remove(tvd); 1320 vdev_close(vd); 1321 vdev_free(vd); 1322 } 1323 1324 if (spa->spa_spares.sav_vdevs) 1325 kmem_free(spa->spa_spares.sav_vdevs, 1326 spa->spa_spares.sav_count * sizeof (void *)); 1327 1328 if (spa->spa_spares.sav_config == NULL) 1329 nspares = 0; 1330 else 1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1333 1334 spa->spa_spares.sav_count = (int)nspares; 1335 spa->spa_spares.sav_vdevs = NULL; 1336 1337 if (nspares == 0) 1338 return; 1339 1340 /* 1341 * Construct the array of vdevs, opening them to get status in the 1342 * process. For each spare, there is potentially two different vdev_t 1343 * structures associated with it: one in the list of spares (used only 1344 * for basic validation purposes) and one in the active vdev 1345 * configuration (if it's spared in). During this phase we open and 1346 * validate each vdev on the spare list. If the vdev also exists in the 1347 * active configuration, then we also mark this vdev as an active spare. 1348 */ 1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1350 KM_SLEEP); 1351 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1353 VDEV_ALLOC_SPARE) == 0); 1354 ASSERT(vd != NULL); 1355 1356 spa->spa_spares.sav_vdevs[i] = vd; 1357 1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1359 B_FALSE)) != NULL) { 1360 if (!tvd->vdev_isspare) 1361 spa_spare_add(tvd); 1362 1363 /* 1364 * We only mark the spare active if we were successfully 1365 * able to load the vdev. Otherwise, importing a pool 1366 * with a bad active spare would result in strange 1367 * behavior, because multiple pool would think the spare 1368 * is actively in use. 1369 * 1370 * There is a vulnerability here to an equally bizarre 1371 * circumstance, where a dead active spare is later 1372 * brought back to life (onlined or otherwise). Given 1373 * the rarity of this scenario, and the extra complexity 1374 * it adds, we ignore the possibility. 1375 */ 1376 if (!vdev_is_dead(tvd)) 1377 spa_spare_activate(tvd); 1378 } 1379 1380 vd->vdev_top = vd; 1381 vd->vdev_aux = &spa->spa_spares; 1382 1383 if (vdev_open(vd) != 0) 1384 continue; 1385 1386 if (vdev_validate_aux(vd) == 0) 1387 spa_spare_add(vd); 1388 } 1389 1390 /* 1391 * Recompute the stashed list of spares, with status information 1392 * this time. 1393 */ 1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1395 DATA_TYPE_NVLIST_ARRAY) == 0); 1396 1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1398 KM_SLEEP); 1399 for (i = 0; i < spa->spa_spares.sav_count; i++) 1400 spares[i] = vdev_config_generate(spa, 1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1404 for (i = 0; i < spa->spa_spares.sav_count; i++) 1405 nvlist_free(spares[i]); 1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1407 } 1408 1409 /* 1410 * Load (or re-load) the current list of vdevs describing the active l2cache for 1411 * this pool. When this is called, we have some form of basic information in 1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1413 * then re-generate a more complete list including status information. 1414 * Devices which are already active have their details maintained, and are 1415 * not re-opened. 1416 */ 1417 static void 1418 spa_load_l2cache(spa_t *spa) 1419 { 1420 nvlist_t **l2cache; 1421 uint_t nl2cache; 1422 int i, j, oldnvdevs; 1423 uint64_t guid; 1424 vdev_t *vd, **oldvdevs, **newvdevs; 1425 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1426 1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1428 1429 if (sav->sav_config != NULL) { 1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1433 } else { 1434 nl2cache = 0; 1435 newvdevs = NULL; 1436 } 1437 1438 oldvdevs = sav->sav_vdevs; 1439 oldnvdevs = sav->sav_count; 1440 sav->sav_vdevs = NULL; 1441 sav->sav_count = 0; 1442 1443 /* 1444 * Process new nvlist of vdevs. 1445 */ 1446 for (i = 0; i < nl2cache; i++) { 1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1448 &guid) == 0); 1449 1450 newvdevs[i] = NULL; 1451 for (j = 0; j < oldnvdevs; j++) { 1452 vd = oldvdevs[j]; 1453 if (vd != NULL && guid == vd->vdev_guid) { 1454 /* 1455 * Retain previous vdev for add/remove ops. 1456 */ 1457 newvdevs[i] = vd; 1458 oldvdevs[j] = NULL; 1459 break; 1460 } 1461 } 1462 1463 if (newvdevs[i] == NULL) { 1464 /* 1465 * Create new vdev 1466 */ 1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1468 VDEV_ALLOC_L2CACHE) == 0); 1469 ASSERT(vd != NULL); 1470 newvdevs[i] = vd; 1471 1472 /* 1473 * Commit this vdev as an l2cache device, 1474 * even if it fails to open. 1475 */ 1476 spa_l2cache_add(vd); 1477 1478 vd->vdev_top = vd; 1479 vd->vdev_aux = sav; 1480 1481 spa_l2cache_activate(vd); 1482 1483 if (vdev_open(vd) != 0) 1484 continue; 1485 1486 (void) vdev_validate_aux(vd); 1487 1488 if (!vdev_is_dead(vd)) 1489 l2arc_add_vdev(spa, vd); 1490 } 1491 } 1492 1493 /* 1494 * Purge vdevs that were dropped 1495 */ 1496 for (i = 0; i < oldnvdevs; i++) { 1497 uint64_t pool; 1498 1499 vd = oldvdevs[i]; 1500 if (vd != NULL) { 1501 ASSERT(vd->vdev_isl2cache); 1502 1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1504 pool != 0ULL && l2arc_vdev_present(vd)) 1505 l2arc_remove_vdev(vd); 1506 vdev_clear_stats(vd); 1507 vdev_free(vd); 1508 } 1509 } 1510 1511 if (oldvdevs) 1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1513 1514 if (sav->sav_config == NULL) 1515 goto out; 1516 1517 sav->sav_vdevs = newvdevs; 1518 sav->sav_count = (int)nl2cache; 1519 1520 /* 1521 * Recompute the stashed list of l2cache devices, with status 1522 * information this time. 1523 */ 1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1525 DATA_TYPE_NVLIST_ARRAY) == 0); 1526 1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1528 for (i = 0; i < sav->sav_count; i++) 1529 l2cache[i] = vdev_config_generate(spa, 1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1533 out: 1534 for (i = 0; i < sav->sav_count; i++) 1535 nvlist_free(l2cache[i]); 1536 if (sav->sav_count) 1537 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1538 } 1539 1540 static int 1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1542 { 1543 dmu_buf_t *db; 1544 char *packed = NULL; 1545 size_t nvsize = 0; 1546 int error; 1547 *value = NULL; 1548 1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1550 nvsize = *(uint64_t *)db->db_data; 1551 dmu_buf_rele(db, FTAG); 1552 1553 packed = kmem_alloc(nvsize, KM_SLEEP); 1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1555 DMU_READ_PREFETCH); 1556 if (error == 0) 1557 error = nvlist_unpack(packed, nvsize, value, 0); 1558 kmem_free(packed, nvsize); 1559 1560 return (error); 1561 } 1562 1563 /* 1564 * Checks to see if the given vdev could not be opened, in which case we post a 1565 * sysevent to notify the autoreplace code that the device has been removed. 1566 */ 1567 static void 1568 spa_check_removed(vdev_t *vd) 1569 { 1570 for (int c = 0; c < vd->vdev_children; c++) 1571 spa_check_removed(vd->vdev_child[c]); 1572 1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1574 !vd->vdev_ishole) { 1575 zfs_post_autoreplace(vd->vdev_spa, vd); 1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1577 } 1578 } 1579 1580 /* 1581 * Validate the current config against the MOS config 1582 */ 1583 static boolean_t 1584 spa_config_valid(spa_t *spa, nvlist_t *config) 1585 { 1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1587 nvlist_t *nv; 1588 1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1590 1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1593 1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1595 1596 /* 1597 * If we're doing a normal import, then build up any additional 1598 * diagnostic information about missing devices in this config. 1599 * We'll pass this up to the user for further processing. 1600 */ 1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1602 nvlist_t **child, *nv; 1603 uint64_t idx = 0; 1604 1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1606 KM_SLEEP); 1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1608 1609 for (int c = 0; c < rvd->vdev_children; c++) { 1610 vdev_t *tvd = rvd->vdev_child[c]; 1611 vdev_t *mtvd = mrvd->vdev_child[c]; 1612 1613 if (tvd->vdev_ops == &vdev_missing_ops && 1614 mtvd->vdev_ops != &vdev_missing_ops && 1615 mtvd->vdev_islog) 1616 child[idx++] = vdev_config_generate(spa, mtvd, 1617 B_FALSE, 0); 1618 } 1619 1620 if (idx) { 1621 VERIFY(nvlist_add_nvlist_array(nv, 1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1625 1626 for (int i = 0; i < idx; i++) 1627 nvlist_free(child[i]); 1628 } 1629 nvlist_free(nv); 1630 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1631 } 1632 1633 /* 1634 * Compare the root vdev tree with the information we have 1635 * from the MOS config (mrvd). Check each top-level vdev 1636 * with the corresponding MOS config top-level (mtvd). 1637 */ 1638 for (int c = 0; c < rvd->vdev_children; c++) { 1639 vdev_t *tvd = rvd->vdev_child[c]; 1640 vdev_t *mtvd = mrvd->vdev_child[c]; 1641 1642 /* 1643 * Resolve any "missing" vdevs in the current configuration. 1644 * If we find that the MOS config has more accurate information 1645 * about the top-level vdev then use that vdev instead. 1646 */ 1647 if (tvd->vdev_ops == &vdev_missing_ops && 1648 mtvd->vdev_ops != &vdev_missing_ops) { 1649 1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1651 continue; 1652 1653 /* 1654 * Device specific actions. 1655 */ 1656 if (mtvd->vdev_islog) { 1657 spa_set_log_state(spa, SPA_LOG_CLEAR); 1658 } else { 1659 /* 1660 * XXX - once we have 'readonly' pool 1661 * support we should be able to handle 1662 * missing data devices by transitioning 1663 * the pool to readonly. 1664 */ 1665 continue; 1666 } 1667 1668 /* 1669 * Swap the missing vdev with the data we were 1670 * able to obtain from the MOS config. 1671 */ 1672 vdev_remove_child(rvd, tvd); 1673 vdev_remove_child(mrvd, mtvd); 1674 1675 vdev_add_child(rvd, mtvd); 1676 vdev_add_child(mrvd, tvd); 1677 1678 spa_config_exit(spa, SCL_ALL, FTAG); 1679 vdev_load(mtvd); 1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1681 1682 vdev_reopen(rvd); 1683 } else if (mtvd->vdev_islog) { 1684 /* 1685 * Load the slog device's state from the MOS config 1686 * since it's possible that the label does not 1687 * contain the most up-to-date information. 1688 */ 1689 vdev_load_log_state(tvd, mtvd); 1690 vdev_reopen(tvd); 1691 } 1692 } 1693 vdev_free(mrvd); 1694 spa_config_exit(spa, SCL_ALL, FTAG); 1695 1696 /* 1697 * Ensure we were able to validate the config. 1698 */ 1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1700 } 1701 1702 /* 1703 * Check for missing log devices 1704 */ 1705 static boolean_t 1706 spa_check_logs(spa_t *spa) 1707 { 1708 boolean_t rv = B_FALSE; 1709 1710 switch (spa->spa_log_state) { 1711 case SPA_LOG_MISSING: 1712 /* need to recheck in case slog has been restored */ 1713 case SPA_LOG_UNKNOWN: 1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1715 NULL, DS_FIND_CHILDREN) != 0); 1716 if (rv) 1717 spa_set_log_state(spa, SPA_LOG_MISSING); 1718 break; 1719 } 1720 return (rv); 1721 } 1722 1723 static boolean_t 1724 spa_passivate_log(spa_t *spa) 1725 { 1726 vdev_t *rvd = spa->spa_root_vdev; 1727 boolean_t slog_found = B_FALSE; 1728 1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1730 1731 if (!spa_has_slogs(spa)) 1732 return (B_FALSE); 1733 1734 for (int c = 0; c < rvd->vdev_children; c++) { 1735 vdev_t *tvd = rvd->vdev_child[c]; 1736 metaslab_group_t *mg = tvd->vdev_mg; 1737 1738 if (tvd->vdev_islog) { 1739 metaslab_group_passivate(mg); 1740 slog_found = B_TRUE; 1741 } 1742 } 1743 1744 return (slog_found); 1745 } 1746 1747 static void 1748 spa_activate_log(spa_t *spa) 1749 { 1750 vdev_t *rvd = spa->spa_root_vdev; 1751 1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1753 1754 for (int c = 0; c < rvd->vdev_children; c++) { 1755 vdev_t *tvd = rvd->vdev_child[c]; 1756 metaslab_group_t *mg = tvd->vdev_mg; 1757 1758 if (tvd->vdev_islog) 1759 metaslab_group_activate(mg); 1760 } 1761 } 1762 1763 int 1764 spa_offline_log(spa_t *spa) 1765 { 1766 int error; 1767 1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1769 NULL, DS_FIND_CHILDREN); 1770 if (error == 0) { 1771 /* 1772 * We successfully offlined the log device, sync out the 1773 * current txg so that the "stubby" block can be removed 1774 * by zil_sync(). 1775 */ 1776 txg_wait_synced(spa->spa_dsl_pool, 0); 1777 } 1778 return (error); 1779 } 1780 1781 static void 1782 spa_aux_check_removed(spa_aux_vdev_t *sav) 1783 { 1784 for (int i = 0; i < sav->sav_count; i++) 1785 spa_check_removed(sav->sav_vdevs[i]); 1786 } 1787 1788 void 1789 spa_claim_notify(zio_t *zio) 1790 { 1791 spa_t *spa = zio->io_spa; 1792 1793 if (zio->io_error) 1794 return; 1795 1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1799 mutex_exit(&spa->spa_props_lock); 1800 } 1801 1802 typedef struct spa_load_error { 1803 uint64_t sle_meta_count; 1804 uint64_t sle_data_count; 1805 } spa_load_error_t; 1806 1807 static void 1808 spa_load_verify_done(zio_t *zio) 1809 { 1810 blkptr_t *bp = zio->io_bp; 1811 spa_load_error_t *sle = zio->io_private; 1812 dmu_object_type_t type = BP_GET_TYPE(bp); 1813 int error = zio->io_error; 1814 1815 if (error) { 1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1817 type != DMU_OT_INTENT_LOG) 1818 atomic_add_64(&sle->sle_meta_count, 1); 1819 else 1820 atomic_add_64(&sle->sle_data_count, 1); 1821 } 1822 zio_data_buf_free(zio->io_data, zio->io_size); 1823 } 1824 1825 /*ARGSUSED*/ 1826 static int 1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1829 { 1830 if (!BP_IS_HOLE(bp)) { 1831 zio_t *rio = arg; 1832 size_t size = BP_GET_PSIZE(bp); 1833 void *data = zio_data_buf_alloc(size); 1834 1835 zio_nowait(zio_read(rio, spa, bp, data, size, 1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1839 } 1840 return (0); 1841 } 1842 1843 static int 1844 spa_load_verify(spa_t *spa) 1845 { 1846 zio_t *rio; 1847 spa_load_error_t sle = { 0 }; 1848 zpool_rewind_policy_t policy; 1849 boolean_t verify_ok = B_FALSE; 1850 int error; 1851 1852 zpool_get_rewind_policy(spa->spa_config, &policy); 1853 1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1855 return (0); 1856 1857 rio = zio_root(spa, NULL, &sle, 1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1859 1860 error = traverse_pool(spa, spa->spa_verify_min_txg, 1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1862 1863 (void) zio_wait(rio); 1864 1865 spa->spa_load_meta_errors = sle.sle_meta_count; 1866 spa->spa_load_data_errors = sle.sle_data_count; 1867 1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1869 sle.sle_data_count <= policy.zrp_maxdata) { 1870 int64_t loss = 0; 1871 1872 verify_ok = B_TRUE; 1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1875 1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1877 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1879 VERIFY(nvlist_add_int64(spa->spa_load_info, 1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1881 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1883 } else { 1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1885 } 1886 1887 if (error) { 1888 if (error != ENXIO && error != EIO) 1889 error = SET_ERROR(EIO); 1890 return (error); 1891 } 1892 1893 return (verify_ok ? 0 : EIO); 1894 } 1895 1896 /* 1897 * Find a value in the pool props object. 1898 */ 1899 static void 1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1901 { 1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1904 } 1905 1906 /* 1907 * Find a value in the pool directory object. 1908 */ 1909 static int 1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1911 { 1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1913 name, sizeof (uint64_t), 1, val)); 1914 } 1915 1916 static int 1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1918 { 1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1920 return (err); 1921 } 1922 1923 /* 1924 * Fix up config after a partly-completed split. This is done with the 1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1926 * pool have that entry in their config, but only the splitting one contains 1927 * a list of all the guids of the vdevs that are being split off. 1928 * 1929 * This function determines what to do with that list: either rejoin 1930 * all the disks to the pool, or complete the splitting process. To attempt 1931 * the rejoin, each disk that is offlined is marked online again, and 1932 * we do a reopen() call. If the vdev label for every disk that was 1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1934 * then we call vdev_split() on each disk, and complete the split. 1935 * 1936 * Otherwise we leave the config alone, with all the vdevs in place in 1937 * the original pool. 1938 */ 1939 static void 1940 spa_try_repair(spa_t *spa, nvlist_t *config) 1941 { 1942 uint_t extracted; 1943 uint64_t *glist; 1944 uint_t i, gcount; 1945 nvlist_t *nvl; 1946 vdev_t **vd; 1947 boolean_t attempt_reopen; 1948 1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1950 return; 1951 1952 /* check that the config is complete */ 1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1954 &glist, &gcount) != 0) 1955 return; 1956 1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1958 1959 /* attempt to online all the vdevs & validate */ 1960 attempt_reopen = B_TRUE; 1961 for (i = 0; i < gcount; i++) { 1962 if (glist[i] == 0) /* vdev is hole */ 1963 continue; 1964 1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1966 if (vd[i] == NULL) { 1967 /* 1968 * Don't bother attempting to reopen the disks; 1969 * just do the split. 1970 */ 1971 attempt_reopen = B_FALSE; 1972 } else { 1973 /* attempt to re-online it */ 1974 vd[i]->vdev_offline = B_FALSE; 1975 } 1976 } 1977 1978 if (attempt_reopen) { 1979 vdev_reopen(spa->spa_root_vdev); 1980 1981 /* check each device to see what state it's in */ 1982 for (extracted = 0, i = 0; i < gcount; i++) { 1983 if (vd[i] != NULL && 1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1985 break; 1986 ++extracted; 1987 } 1988 } 1989 1990 /* 1991 * If every disk has been moved to the new pool, or if we never 1992 * even attempted to look at them, then we split them off for 1993 * good. 1994 */ 1995 if (!attempt_reopen || gcount == extracted) { 1996 for (i = 0; i < gcount; i++) 1997 if (vd[i] != NULL) 1998 vdev_split(vd[i]); 1999 vdev_reopen(spa->spa_root_vdev); 2000 } 2001 2002 kmem_free(vd, gcount * sizeof (vdev_t *)); 2003 } 2004 2005 static int 2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2007 boolean_t mosconfig) 2008 { 2009 nvlist_t *config = spa->spa_config; 2010 char *ereport = FM_EREPORT_ZFS_POOL; 2011 char *comment; 2012 int error; 2013 uint64_t pool_guid; 2014 nvlist_t *nvl; 2015 2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2017 return (SET_ERROR(EINVAL)); 2018 2019 ASSERT(spa->spa_comment == NULL); 2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2021 spa->spa_comment = spa_strdup(comment); 2022 2023 /* 2024 * Versioning wasn't explicitly added to the label until later, so if 2025 * it's not present treat it as the initial version. 2026 */ 2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2028 &spa->spa_ubsync.ub_version) != 0) 2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2030 2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2032 &spa->spa_config_txg); 2033 2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2035 spa_guid_exists(pool_guid, 0)) { 2036 error = SET_ERROR(EEXIST); 2037 } else { 2038 spa->spa_config_guid = pool_guid; 2039 2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2041 &nvl) == 0) { 2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2043 KM_SLEEP) == 0); 2044 } 2045 2046 nvlist_free(spa->spa_load_info); 2047 spa->spa_load_info = fnvlist_alloc(); 2048 2049 gethrestime(&spa->spa_loaded_ts); 2050 error = spa_load_impl(spa, pool_guid, config, state, type, 2051 mosconfig, &ereport); 2052 } 2053 2054 spa->spa_minref = refcount_count(&spa->spa_refcount); 2055 if (error) { 2056 if (error != EEXIST) { 2057 spa->spa_loaded_ts.tv_sec = 0; 2058 spa->spa_loaded_ts.tv_nsec = 0; 2059 } 2060 if (error != EBADF) { 2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2062 } 2063 } 2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2065 spa->spa_ena = 0; 2066 2067 return (error); 2068 } 2069 2070 /* 2071 * Load an existing storage pool, using the pool's builtin spa_config as a 2072 * source of configuration information. 2073 */ 2074 static int 2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2077 char **ereport) 2078 { 2079 int error = 0; 2080 nvlist_t *nvroot = NULL; 2081 nvlist_t *label; 2082 vdev_t *rvd; 2083 uberblock_t *ub = &spa->spa_uberblock; 2084 uint64_t children, config_cache_txg = spa->spa_config_txg; 2085 int orig_mode = spa->spa_mode; 2086 int parse; 2087 uint64_t obj; 2088 boolean_t missing_feat_write = B_FALSE; 2089 2090 /* 2091 * If this is an untrusted config, access the pool in read-only mode. 2092 * This prevents things like resilvering recently removed devices. 2093 */ 2094 if (!mosconfig) 2095 spa->spa_mode = FREAD; 2096 2097 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2098 2099 spa->spa_load_state = state; 2100 2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2102 return (SET_ERROR(EINVAL)); 2103 2104 parse = (type == SPA_IMPORT_EXISTING ? 2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2106 2107 /* 2108 * Create "The Godfather" zio to hold all async IOs 2109 */ 2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2112 2113 /* 2114 * Parse the configuration into a vdev tree. We explicitly set the 2115 * value that will be returned by spa_version() since parsing the 2116 * configuration requires knowing the version number. 2117 */ 2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2120 spa_config_exit(spa, SCL_ALL, FTAG); 2121 2122 if (error != 0) 2123 return (error); 2124 2125 ASSERT(spa->spa_root_vdev == rvd); 2126 2127 if (type != SPA_IMPORT_ASSEMBLE) { 2128 ASSERT(spa_guid(spa) == pool_guid); 2129 } 2130 2131 /* 2132 * Try to open all vdevs, loading each label in the process. 2133 */ 2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2135 error = vdev_open(rvd); 2136 spa_config_exit(spa, SCL_ALL, FTAG); 2137 if (error != 0) 2138 return (error); 2139 2140 /* 2141 * We need to validate the vdev labels against the configuration that 2142 * we have in hand, which is dependent on the setting of mosconfig. If 2143 * mosconfig is true then we're validating the vdev labels based on 2144 * that config. Otherwise, we're validating against the cached config 2145 * (zpool.cache) that was read when we loaded the zfs module, and then 2146 * later we will recursively call spa_load() and validate against 2147 * the vdev config. 2148 * 2149 * If we're assembling a new pool that's been split off from an 2150 * existing pool, the labels haven't yet been updated so we skip 2151 * validation for now. 2152 */ 2153 if (type != SPA_IMPORT_ASSEMBLE) { 2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2155 error = vdev_validate(rvd, mosconfig); 2156 spa_config_exit(spa, SCL_ALL, FTAG); 2157 2158 if (error != 0) 2159 return (error); 2160 2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2162 return (SET_ERROR(ENXIO)); 2163 } 2164 2165 /* 2166 * Find the best uberblock. 2167 */ 2168 vdev_uberblock_load(rvd, ub, &label); 2169 2170 /* 2171 * If we weren't able to find a single valid uberblock, return failure. 2172 */ 2173 if (ub->ub_txg == 0) { 2174 nvlist_free(label); 2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2176 } 2177 2178 /* 2179 * If the pool has an unsupported version we can't open it. 2180 */ 2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2182 nvlist_free(label); 2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2184 } 2185 2186 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2187 nvlist_t *features; 2188 2189 /* 2190 * If we weren't able to find what's necessary for reading the 2191 * MOS in the label, return failure. 2192 */ 2193 if (label == NULL || nvlist_lookup_nvlist(label, 2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2195 nvlist_free(label); 2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2197 ENXIO)); 2198 } 2199 2200 /* 2201 * Update our in-core representation with the definitive values 2202 * from the label. 2203 */ 2204 nvlist_free(spa->spa_label_features); 2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2206 } 2207 2208 nvlist_free(label); 2209 2210 /* 2211 * Look through entries in the label nvlist's features_for_read. If 2212 * there is a feature listed there which we don't understand then we 2213 * cannot open a pool. 2214 */ 2215 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2216 nvlist_t *unsup_feat; 2217 2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2219 0); 2220 2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2222 NULL); nvp != NULL; 2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2224 if (!zfeature_is_supported(nvpair_name(nvp))) { 2225 VERIFY(nvlist_add_string(unsup_feat, 2226 nvpair_name(nvp), "") == 0); 2227 } 2228 } 2229 2230 if (!nvlist_empty(unsup_feat)) { 2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2233 nvlist_free(unsup_feat); 2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2235 ENOTSUP)); 2236 } 2237 2238 nvlist_free(unsup_feat); 2239 } 2240 2241 /* 2242 * If the vdev guid sum doesn't match the uberblock, we have an 2243 * incomplete configuration. We first check to see if the pool 2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2245 * If it is, defer the vdev_guid_sum check till later so we 2246 * can handle missing vdevs. 2247 */ 2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2250 rvd->vdev_guid_sum != ub->ub_guid_sum) 2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2252 2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2255 spa_try_repair(spa, config); 2256 spa_config_exit(spa, SCL_ALL, FTAG); 2257 nvlist_free(spa->spa_config_splitting); 2258 spa->spa_config_splitting = NULL; 2259 } 2260 2261 /* 2262 * Initialize internal SPA structures. 2263 */ 2264 spa->spa_state = POOL_STATE_ACTIVE; 2265 spa->spa_ubsync = spa->spa_uberblock; 2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2270 spa->spa_claim_max_txg = spa->spa_first_txg; 2271 spa->spa_prev_software_version = ub->ub_software_version; 2272 2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2274 if (error) 2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2277 2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2280 2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2282 boolean_t missing_feat_read = B_FALSE; 2283 nvlist_t *unsup_feat, *enabled_feat; 2284 2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2286 &spa->spa_feat_for_read_obj) != 0) { 2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2288 } 2289 2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2291 &spa->spa_feat_for_write_obj) != 0) { 2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2293 } 2294 2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2296 &spa->spa_feat_desc_obj) != 0) { 2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2298 } 2299 2300 enabled_feat = fnvlist_alloc(); 2301 unsup_feat = fnvlist_alloc(); 2302 2303 if (!spa_features_check(spa, B_FALSE, 2304 unsup_feat, enabled_feat)) 2305 missing_feat_read = B_TRUE; 2306 2307 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2308 if (!spa_features_check(spa, B_TRUE, 2309 unsup_feat, enabled_feat)) { 2310 missing_feat_write = B_TRUE; 2311 } 2312 } 2313 2314 fnvlist_add_nvlist(spa->spa_load_info, 2315 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2316 2317 if (!nvlist_empty(unsup_feat)) { 2318 fnvlist_add_nvlist(spa->spa_load_info, 2319 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2320 } 2321 2322 fnvlist_free(enabled_feat); 2323 fnvlist_free(unsup_feat); 2324 2325 if (!missing_feat_read) { 2326 fnvlist_add_boolean(spa->spa_load_info, 2327 ZPOOL_CONFIG_CAN_RDONLY); 2328 } 2329 2330 /* 2331 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2332 * twofold: to determine whether the pool is available for 2333 * import in read-write mode and (if it is not) whether the 2334 * pool is available for import in read-only mode. If the pool 2335 * is available for import in read-write mode, it is displayed 2336 * as available in userland; if it is not available for import 2337 * in read-only mode, it is displayed as unavailable in 2338 * userland. If the pool is available for import in read-only 2339 * mode but not read-write mode, it is displayed as unavailable 2340 * in userland with a special note that the pool is actually 2341 * available for open in read-only mode. 2342 * 2343 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2344 * missing a feature for write, we must first determine whether 2345 * the pool can be opened read-only before returning to 2346 * userland in order to know whether to display the 2347 * abovementioned note. 2348 */ 2349 if (missing_feat_read || (missing_feat_write && 2350 spa_writeable(spa))) { 2351 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2352 ENOTSUP)); 2353 } 2354 2355 /* 2356 * Load refcounts for ZFS features from disk into an in-memory 2357 * cache during SPA initialization. 2358 */ 2359 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2360 uint64_t refcount; 2361 2362 error = feature_get_refcount_from_disk(spa, 2363 &spa_feature_table[i], &refcount); 2364 if (error == 0) { 2365 spa->spa_feat_refcount_cache[i] = refcount; 2366 } else if (error == ENOTSUP) { 2367 spa->spa_feat_refcount_cache[i] = 2368 SPA_FEATURE_DISABLED; 2369 } else { 2370 return (spa_vdev_err(rvd, 2371 VDEV_AUX_CORRUPT_DATA, EIO)); 2372 } 2373 } 2374 } 2375 2376 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2377 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2378 &spa->spa_feat_enabled_txg_obj) != 0) { 2379 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2380 } 2381 } 2382 2383 spa->spa_is_initializing = B_TRUE; 2384 error = dsl_pool_open(spa->spa_dsl_pool); 2385 spa->spa_is_initializing = B_FALSE; 2386 if (error != 0) 2387 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2388 2389 if (!mosconfig) { 2390 uint64_t hostid; 2391 nvlist_t *policy = NULL, *nvconfig; 2392 2393 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2394 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2395 2396 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2397 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2398 char *hostname; 2399 unsigned long myhostid = 0; 2400 2401 VERIFY(nvlist_lookup_string(nvconfig, 2402 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2403 2404 #ifdef _KERNEL 2405 myhostid = zone_get_hostid(NULL); 2406 #else /* _KERNEL */ 2407 /* 2408 * We're emulating the system's hostid in userland, so 2409 * we can't use zone_get_hostid(). 2410 */ 2411 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2412 #endif /* _KERNEL */ 2413 if (hostid != 0 && myhostid != 0 && 2414 hostid != myhostid) { 2415 nvlist_free(nvconfig); 2416 cmn_err(CE_WARN, "pool '%s' could not be " 2417 "loaded as it was last accessed by " 2418 "another system (host: %s hostid: 0x%lx). " 2419 "See: http://illumos.org/msg/ZFS-8000-EY", 2420 spa_name(spa), hostname, 2421 (unsigned long)hostid); 2422 return (SET_ERROR(EBADF)); 2423 } 2424 } 2425 if (nvlist_lookup_nvlist(spa->spa_config, 2426 ZPOOL_REWIND_POLICY, &policy) == 0) 2427 VERIFY(nvlist_add_nvlist(nvconfig, 2428 ZPOOL_REWIND_POLICY, policy) == 0); 2429 2430 spa_config_set(spa, nvconfig); 2431 spa_unload(spa); 2432 spa_deactivate(spa); 2433 spa_activate(spa, orig_mode); 2434 2435 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2436 } 2437 2438 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2440 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2441 if (error != 0) 2442 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2443 2444 /* 2445 * Load the bit that tells us to use the new accounting function 2446 * (raid-z deflation). If we have an older pool, this will not 2447 * be present. 2448 */ 2449 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2450 if (error != 0 && error != ENOENT) 2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2452 2453 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2454 &spa->spa_creation_version); 2455 if (error != 0 && error != ENOENT) 2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2457 2458 /* 2459 * Load the persistent error log. If we have an older pool, this will 2460 * not be present. 2461 */ 2462 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2463 if (error != 0 && error != ENOENT) 2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2465 2466 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2467 &spa->spa_errlog_scrub); 2468 if (error != 0 && error != ENOENT) 2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2470 2471 /* 2472 * Load the history object. If we have an older pool, this 2473 * will not be present. 2474 */ 2475 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2476 if (error != 0 && error != ENOENT) 2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2478 2479 /* 2480 * If we're assembling the pool from the split-off vdevs of 2481 * an existing pool, we don't want to attach the spares & cache 2482 * devices. 2483 */ 2484 2485 /* 2486 * Load any hot spares for this pool. 2487 */ 2488 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2489 if (error != 0 && error != ENOENT) 2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2491 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2492 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2493 if (load_nvlist(spa, spa->spa_spares.sav_object, 2494 &spa->spa_spares.sav_config) != 0) 2495 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2496 2497 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2498 spa_load_spares(spa); 2499 spa_config_exit(spa, SCL_ALL, FTAG); 2500 } else if (error == 0) { 2501 spa->spa_spares.sav_sync = B_TRUE; 2502 } 2503 2504 /* 2505 * Load any level 2 ARC devices for this pool. 2506 */ 2507 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2508 &spa->spa_l2cache.sav_object); 2509 if (error != 0 && error != ENOENT) 2510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2511 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2512 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2513 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2514 &spa->spa_l2cache.sav_config) != 0) 2515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2516 2517 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2518 spa_load_l2cache(spa); 2519 spa_config_exit(spa, SCL_ALL, FTAG); 2520 } else if (error == 0) { 2521 spa->spa_l2cache.sav_sync = B_TRUE; 2522 } 2523 2524 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2525 2526 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2527 if (error && error != ENOENT) 2528 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2529 2530 if (error == 0) { 2531 uint64_t autoreplace; 2532 2533 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2534 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2535 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2536 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2537 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2538 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2539 &spa->spa_dedup_ditto); 2540 2541 spa->spa_autoreplace = (autoreplace != 0); 2542 } 2543 2544 /* 2545 * If the 'autoreplace' property is set, then post a resource notifying 2546 * the ZFS DE that it should not issue any faults for unopenable 2547 * devices. We also iterate over the vdevs, and post a sysevent for any 2548 * unopenable vdevs so that the normal autoreplace handler can take 2549 * over. 2550 */ 2551 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2552 spa_check_removed(spa->spa_root_vdev); 2553 /* 2554 * For the import case, this is done in spa_import(), because 2555 * at this point we're using the spare definitions from 2556 * the MOS config, not necessarily from the userland config. 2557 */ 2558 if (state != SPA_LOAD_IMPORT) { 2559 spa_aux_check_removed(&spa->spa_spares); 2560 spa_aux_check_removed(&spa->spa_l2cache); 2561 } 2562 } 2563 2564 /* 2565 * Load the vdev state for all toplevel vdevs. 2566 */ 2567 vdev_load(rvd); 2568 2569 /* 2570 * Propagate the leaf DTLs we just loaded all the way up the tree. 2571 */ 2572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2573 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2574 spa_config_exit(spa, SCL_ALL, FTAG); 2575 2576 /* 2577 * Load the DDTs (dedup tables). 2578 */ 2579 error = ddt_load(spa); 2580 if (error != 0) 2581 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2582 2583 spa_update_dspace(spa); 2584 2585 /* 2586 * Validate the config, using the MOS config to fill in any 2587 * information which might be missing. If we fail to validate 2588 * the config then declare the pool unfit for use. If we're 2589 * assembling a pool from a split, the log is not transferred 2590 * over. 2591 */ 2592 if (type != SPA_IMPORT_ASSEMBLE) { 2593 nvlist_t *nvconfig; 2594 2595 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2597 2598 if (!spa_config_valid(spa, nvconfig)) { 2599 nvlist_free(nvconfig); 2600 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2601 ENXIO)); 2602 } 2603 nvlist_free(nvconfig); 2604 2605 /* 2606 * Now that we've validated the config, check the state of the 2607 * root vdev. If it can't be opened, it indicates one or 2608 * more toplevel vdevs are faulted. 2609 */ 2610 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2611 return (SET_ERROR(ENXIO)); 2612 2613 if (spa_check_logs(spa)) { 2614 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2615 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2616 } 2617 } 2618 2619 if (missing_feat_write) { 2620 ASSERT(state == SPA_LOAD_TRYIMPORT); 2621 2622 /* 2623 * At this point, we know that we can open the pool in 2624 * read-only mode but not read-write mode. We now have enough 2625 * information and can return to userland. 2626 */ 2627 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2628 } 2629 2630 /* 2631 * We've successfully opened the pool, verify that we're ready 2632 * to start pushing transactions. 2633 */ 2634 if (state != SPA_LOAD_TRYIMPORT) { 2635 if (error = spa_load_verify(spa)) 2636 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2637 error)); 2638 } 2639 2640 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2641 spa->spa_load_max_txg == UINT64_MAX)) { 2642 dmu_tx_t *tx; 2643 int need_update = B_FALSE; 2644 2645 ASSERT(state != SPA_LOAD_TRYIMPORT); 2646 2647 /* 2648 * Claim log blocks that haven't been committed yet. 2649 * This must all happen in a single txg. 2650 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2651 * invoked from zil_claim_log_block()'s i/o done callback. 2652 * Price of rollback is that we abandon the log. 2653 */ 2654 spa->spa_claiming = B_TRUE; 2655 2656 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2657 spa_first_txg(spa)); 2658 (void) dmu_objset_find(spa_name(spa), 2659 zil_claim, tx, DS_FIND_CHILDREN); 2660 dmu_tx_commit(tx); 2661 2662 spa->spa_claiming = B_FALSE; 2663 2664 spa_set_log_state(spa, SPA_LOG_GOOD); 2665 spa->spa_sync_on = B_TRUE; 2666 txg_sync_start(spa->spa_dsl_pool); 2667 2668 /* 2669 * Wait for all claims to sync. We sync up to the highest 2670 * claimed log block birth time so that claimed log blocks 2671 * don't appear to be from the future. spa_claim_max_txg 2672 * will have been set for us by either zil_check_log_chain() 2673 * (invoked from spa_check_logs()) or zil_claim() above. 2674 */ 2675 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2676 2677 /* 2678 * If the config cache is stale, or we have uninitialized 2679 * metaslabs (see spa_vdev_add()), then update the config. 2680 * 2681 * If this is a verbatim import, trust the current 2682 * in-core spa_config and update the disk labels. 2683 */ 2684 if (config_cache_txg != spa->spa_config_txg || 2685 state == SPA_LOAD_IMPORT || 2686 state == SPA_LOAD_RECOVER || 2687 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2688 need_update = B_TRUE; 2689 2690 for (int c = 0; c < rvd->vdev_children; c++) 2691 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2692 need_update = B_TRUE; 2693 2694 /* 2695 * Update the config cache asychronously in case we're the 2696 * root pool, in which case the config cache isn't writable yet. 2697 */ 2698 if (need_update) 2699 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2700 2701 /* 2702 * Check all DTLs to see if anything needs resilvering. 2703 */ 2704 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2705 vdev_resilver_needed(rvd, NULL, NULL)) 2706 spa_async_request(spa, SPA_ASYNC_RESILVER); 2707 2708 /* 2709 * Log the fact that we booted up (so that we can detect if 2710 * we rebooted in the middle of an operation). 2711 */ 2712 spa_history_log_version(spa, "open"); 2713 2714 /* 2715 * Delete any inconsistent datasets. 2716 */ 2717 (void) dmu_objset_find(spa_name(spa), 2718 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2719 2720 /* 2721 * Clean up any stale temporary dataset userrefs. 2722 */ 2723 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2724 } 2725 2726 return (0); 2727 } 2728 2729 static int 2730 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2731 { 2732 int mode = spa->spa_mode; 2733 2734 spa_unload(spa); 2735 spa_deactivate(spa); 2736 2737 spa->spa_load_max_txg--; 2738 2739 spa_activate(spa, mode); 2740 spa_async_suspend(spa); 2741 2742 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2743 } 2744 2745 /* 2746 * If spa_load() fails this function will try loading prior txg's. If 2747 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2748 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2749 * function will not rewind the pool and will return the same error as 2750 * spa_load(). 2751 */ 2752 static int 2753 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2754 uint64_t max_request, int rewind_flags) 2755 { 2756 nvlist_t *loadinfo = NULL; 2757 nvlist_t *config = NULL; 2758 int load_error, rewind_error; 2759 uint64_t safe_rewind_txg; 2760 uint64_t min_txg; 2761 2762 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2763 spa->spa_load_max_txg = spa->spa_load_txg; 2764 spa_set_log_state(spa, SPA_LOG_CLEAR); 2765 } else { 2766 spa->spa_load_max_txg = max_request; 2767 } 2768 2769 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2770 mosconfig); 2771 if (load_error == 0) 2772 return (0); 2773 2774 if (spa->spa_root_vdev != NULL) 2775 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2776 2777 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2778 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2779 2780 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2781 nvlist_free(config); 2782 return (load_error); 2783 } 2784 2785 if (state == SPA_LOAD_RECOVER) { 2786 /* Price of rolling back is discarding txgs, including log */ 2787 spa_set_log_state(spa, SPA_LOG_CLEAR); 2788 } else { 2789 /* 2790 * If we aren't rolling back save the load info from our first 2791 * import attempt so that we can restore it after attempting 2792 * to rewind. 2793 */ 2794 loadinfo = spa->spa_load_info; 2795 spa->spa_load_info = fnvlist_alloc(); 2796 } 2797 2798 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2799 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2800 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2801 TXG_INITIAL : safe_rewind_txg; 2802 2803 /* 2804 * Continue as long as we're finding errors, we're still within 2805 * the acceptable rewind range, and we're still finding uberblocks 2806 */ 2807 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2808 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2809 if (spa->spa_load_max_txg < safe_rewind_txg) 2810 spa->spa_extreme_rewind = B_TRUE; 2811 rewind_error = spa_load_retry(spa, state, mosconfig); 2812 } 2813 2814 spa->spa_extreme_rewind = B_FALSE; 2815 spa->spa_load_max_txg = UINT64_MAX; 2816 2817 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2818 spa_config_set(spa, config); 2819 2820 if (state == SPA_LOAD_RECOVER) { 2821 ASSERT3P(loadinfo, ==, NULL); 2822 return (rewind_error); 2823 } else { 2824 /* Store the rewind info as part of the initial load info */ 2825 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2826 spa->spa_load_info); 2827 2828 /* Restore the initial load info */ 2829 fnvlist_free(spa->spa_load_info); 2830 spa->spa_load_info = loadinfo; 2831 2832 return (load_error); 2833 } 2834 } 2835 2836 /* 2837 * Pool Open/Import 2838 * 2839 * The import case is identical to an open except that the configuration is sent 2840 * down from userland, instead of grabbed from the configuration cache. For the 2841 * case of an open, the pool configuration will exist in the 2842 * POOL_STATE_UNINITIALIZED state. 2843 * 2844 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2845 * the same time open the pool, without having to keep around the spa_t in some 2846 * ambiguous state. 2847 */ 2848 static int 2849 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2850 nvlist_t **config) 2851 { 2852 spa_t *spa; 2853 spa_load_state_t state = SPA_LOAD_OPEN; 2854 int error; 2855 int locked = B_FALSE; 2856 2857 *spapp = NULL; 2858 2859 /* 2860 * As disgusting as this is, we need to support recursive calls to this 2861 * function because dsl_dir_open() is called during spa_load(), and ends 2862 * up calling spa_open() again. The real fix is to figure out how to 2863 * avoid dsl_dir_open() calling this in the first place. 2864 */ 2865 if (mutex_owner(&spa_namespace_lock) != curthread) { 2866 mutex_enter(&spa_namespace_lock); 2867 locked = B_TRUE; 2868 } 2869 2870 if ((spa = spa_lookup(pool)) == NULL) { 2871 if (locked) 2872 mutex_exit(&spa_namespace_lock); 2873 return (SET_ERROR(ENOENT)); 2874 } 2875 2876 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2877 zpool_rewind_policy_t policy; 2878 2879 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2880 &policy); 2881 if (policy.zrp_request & ZPOOL_DO_REWIND) 2882 state = SPA_LOAD_RECOVER; 2883 2884 spa_activate(spa, spa_mode_global); 2885 2886 if (state != SPA_LOAD_RECOVER) 2887 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2888 2889 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2890 policy.zrp_request); 2891 2892 if (error == EBADF) { 2893 /* 2894 * If vdev_validate() returns failure (indicated by 2895 * EBADF), it indicates that one of the vdevs indicates 2896 * that the pool has been exported or destroyed. If 2897 * this is the case, the config cache is out of sync and 2898 * we should remove the pool from the namespace. 2899 */ 2900 spa_unload(spa); 2901 spa_deactivate(spa); 2902 spa_config_sync(spa, B_TRUE, B_TRUE); 2903 spa_remove(spa); 2904 if (locked) 2905 mutex_exit(&spa_namespace_lock); 2906 return (SET_ERROR(ENOENT)); 2907 } 2908 2909 if (error) { 2910 /* 2911 * We can't open the pool, but we still have useful 2912 * information: the state of each vdev after the 2913 * attempted vdev_open(). Return this to the user. 2914 */ 2915 if (config != NULL && spa->spa_config) { 2916 VERIFY(nvlist_dup(spa->spa_config, config, 2917 KM_SLEEP) == 0); 2918 VERIFY(nvlist_add_nvlist(*config, 2919 ZPOOL_CONFIG_LOAD_INFO, 2920 spa->spa_load_info) == 0); 2921 } 2922 spa_unload(spa); 2923 spa_deactivate(spa); 2924 spa->spa_last_open_failed = error; 2925 if (locked) 2926 mutex_exit(&spa_namespace_lock); 2927 *spapp = NULL; 2928 return (error); 2929 } 2930 } 2931 2932 spa_open_ref(spa, tag); 2933 2934 if (config != NULL) 2935 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2936 2937 /* 2938 * If we've recovered the pool, pass back any information we 2939 * gathered while doing the load. 2940 */ 2941 if (state == SPA_LOAD_RECOVER) { 2942 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2943 spa->spa_load_info) == 0); 2944 } 2945 2946 if (locked) { 2947 spa->spa_last_open_failed = 0; 2948 spa->spa_last_ubsync_txg = 0; 2949 spa->spa_load_txg = 0; 2950 mutex_exit(&spa_namespace_lock); 2951 } 2952 2953 *spapp = spa; 2954 2955 return (0); 2956 } 2957 2958 int 2959 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2960 nvlist_t **config) 2961 { 2962 return (spa_open_common(name, spapp, tag, policy, config)); 2963 } 2964 2965 int 2966 spa_open(const char *name, spa_t **spapp, void *tag) 2967 { 2968 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2969 } 2970 2971 /* 2972 * Lookup the given spa_t, incrementing the inject count in the process, 2973 * preventing it from being exported or destroyed. 2974 */ 2975 spa_t * 2976 spa_inject_addref(char *name) 2977 { 2978 spa_t *spa; 2979 2980 mutex_enter(&spa_namespace_lock); 2981 if ((spa = spa_lookup(name)) == NULL) { 2982 mutex_exit(&spa_namespace_lock); 2983 return (NULL); 2984 } 2985 spa->spa_inject_ref++; 2986 mutex_exit(&spa_namespace_lock); 2987 2988 return (spa); 2989 } 2990 2991 void 2992 spa_inject_delref(spa_t *spa) 2993 { 2994 mutex_enter(&spa_namespace_lock); 2995 spa->spa_inject_ref--; 2996 mutex_exit(&spa_namespace_lock); 2997 } 2998 2999 /* 3000 * Add spares device information to the nvlist. 3001 */ 3002 static void 3003 spa_add_spares(spa_t *spa, nvlist_t *config) 3004 { 3005 nvlist_t **spares; 3006 uint_t i, nspares; 3007 nvlist_t *nvroot; 3008 uint64_t guid; 3009 vdev_stat_t *vs; 3010 uint_t vsc; 3011 uint64_t pool; 3012 3013 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3014 3015 if (spa->spa_spares.sav_count == 0) 3016 return; 3017 3018 VERIFY(nvlist_lookup_nvlist(config, 3019 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3020 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3021 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3022 if (nspares != 0) { 3023 VERIFY(nvlist_add_nvlist_array(nvroot, 3024 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3025 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3026 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3027 3028 /* 3029 * Go through and find any spares which have since been 3030 * repurposed as an active spare. If this is the case, update 3031 * their status appropriately. 3032 */ 3033 for (i = 0; i < nspares; i++) { 3034 VERIFY(nvlist_lookup_uint64(spares[i], 3035 ZPOOL_CONFIG_GUID, &guid) == 0); 3036 if (spa_spare_exists(guid, &pool, NULL) && 3037 pool != 0ULL) { 3038 VERIFY(nvlist_lookup_uint64_array( 3039 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3040 (uint64_t **)&vs, &vsc) == 0); 3041 vs->vs_state = VDEV_STATE_CANT_OPEN; 3042 vs->vs_aux = VDEV_AUX_SPARED; 3043 } 3044 } 3045 } 3046 } 3047 3048 /* 3049 * Add l2cache device information to the nvlist, including vdev stats. 3050 */ 3051 static void 3052 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3053 { 3054 nvlist_t **l2cache; 3055 uint_t i, j, nl2cache; 3056 nvlist_t *nvroot; 3057 uint64_t guid; 3058 vdev_t *vd; 3059 vdev_stat_t *vs; 3060 uint_t vsc; 3061 3062 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3063 3064 if (spa->spa_l2cache.sav_count == 0) 3065 return; 3066 3067 VERIFY(nvlist_lookup_nvlist(config, 3068 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3069 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3070 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3071 if (nl2cache != 0) { 3072 VERIFY(nvlist_add_nvlist_array(nvroot, 3073 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3074 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3075 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3076 3077 /* 3078 * Update level 2 cache device stats. 3079 */ 3080 3081 for (i = 0; i < nl2cache; i++) { 3082 VERIFY(nvlist_lookup_uint64(l2cache[i], 3083 ZPOOL_CONFIG_GUID, &guid) == 0); 3084 3085 vd = NULL; 3086 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3087 if (guid == 3088 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3089 vd = spa->spa_l2cache.sav_vdevs[j]; 3090 break; 3091 } 3092 } 3093 ASSERT(vd != NULL); 3094 3095 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3096 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3097 == 0); 3098 vdev_get_stats(vd, vs); 3099 } 3100 } 3101 } 3102 3103 static void 3104 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3105 { 3106 nvlist_t *features; 3107 zap_cursor_t zc; 3108 zap_attribute_t za; 3109 3110 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3111 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3112 3113 if (spa->spa_feat_for_read_obj != 0) { 3114 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3115 spa->spa_feat_for_read_obj); 3116 zap_cursor_retrieve(&zc, &za) == 0; 3117 zap_cursor_advance(&zc)) { 3118 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3119 za.za_num_integers == 1); 3120 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3121 za.za_first_integer)); 3122 } 3123 zap_cursor_fini(&zc); 3124 } 3125 3126 if (spa->spa_feat_for_write_obj != 0) { 3127 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3128 spa->spa_feat_for_write_obj); 3129 zap_cursor_retrieve(&zc, &za) == 0; 3130 zap_cursor_advance(&zc)) { 3131 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3132 za.za_num_integers == 1); 3133 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3134 za.za_first_integer)); 3135 } 3136 zap_cursor_fini(&zc); 3137 } 3138 3139 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3140 features) == 0); 3141 nvlist_free(features); 3142 } 3143 3144 int 3145 spa_get_stats(const char *name, nvlist_t **config, 3146 char *altroot, size_t buflen) 3147 { 3148 int error; 3149 spa_t *spa; 3150 3151 *config = NULL; 3152 error = spa_open_common(name, &spa, FTAG, NULL, config); 3153 3154 if (spa != NULL) { 3155 /* 3156 * This still leaves a window of inconsistency where the spares 3157 * or l2cache devices could change and the config would be 3158 * self-inconsistent. 3159 */ 3160 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3161 3162 if (*config != NULL) { 3163 uint64_t loadtimes[2]; 3164 3165 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3166 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3167 VERIFY(nvlist_add_uint64_array(*config, 3168 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3169 3170 VERIFY(nvlist_add_uint64(*config, 3171 ZPOOL_CONFIG_ERRCOUNT, 3172 spa_get_errlog_size(spa)) == 0); 3173 3174 if (spa_suspended(spa)) 3175 VERIFY(nvlist_add_uint64(*config, 3176 ZPOOL_CONFIG_SUSPENDED, 3177 spa->spa_failmode) == 0); 3178 3179 spa_add_spares(spa, *config); 3180 spa_add_l2cache(spa, *config); 3181 spa_add_feature_stats(spa, *config); 3182 } 3183 } 3184 3185 /* 3186 * We want to get the alternate root even for faulted pools, so we cheat 3187 * and call spa_lookup() directly. 3188 */ 3189 if (altroot) { 3190 if (spa == NULL) { 3191 mutex_enter(&spa_namespace_lock); 3192 spa = spa_lookup(name); 3193 if (spa) 3194 spa_altroot(spa, altroot, buflen); 3195 else 3196 altroot[0] = '\0'; 3197 spa = NULL; 3198 mutex_exit(&spa_namespace_lock); 3199 } else { 3200 spa_altroot(spa, altroot, buflen); 3201 } 3202 } 3203 3204 if (spa != NULL) { 3205 spa_config_exit(spa, SCL_CONFIG, FTAG); 3206 spa_close(spa, FTAG); 3207 } 3208 3209 return (error); 3210 } 3211 3212 /* 3213 * Validate that the auxiliary device array is well formed. We must have an 3214 * array of nvlists, each which describes a valid leaf vdev. If this is an 3215 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3216 * specified, as long as they are well-formed. 3217 */ 3218 static int 3219 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3220 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3221 vdev_labeltype_t label) 3222 { 3223 nvlist_t **dev; 3224 uint_t i, ndev; 3225 vdev_t *vd; 3226 int error; 3227 3228 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3229 3230 /* 3231 * It's acceptable to have no devs specified. 3232 */ 3233 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3234 return (0); 3235 3236 if (ndev == 0) 3237 return (SET_ERROR(EINVAL)); 3238 3239 /* 3240 * Make sure the pool is formatted with a version that supports this 3241 * device type. 3242 */ 3243 if (spa_version(spa) < version) 3244 return (SET_ERROR(ENOTSUP)); 3245 3246 /* 3247 * Set the pending device list so we correctly handle device in-use 3248 * checking. 3249 */ 3250 sav->sav_pending = dev; 3251 sav->sav_npending = ndev; 3252 3253 for (i = 0; i < ndev; i++) { 3254 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3255 mode)) != 0) 3256 goto out; 3257 3258 if (!vd->vdev_ops->vdev_op_leaf) { 3259 vdev_free(vd); 3260 error = SET_ERROR(EINVAL); 3261 goto out; 3262 } 3263 3264 /* 3265 * The L2ARC currently only supports disk devices in 3266 * kernel context. For user-level testing, we allow it. 3267 */ 3268 #ifdef _KERNEL 3269 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3270 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3271 error = SET_ERROR(ENOTBLK); 3272 vdev_free(vd); 3273 goto out; 3274 } 3275 #endif 3276 vd->vdev_top = vd; 3277 3278 if ((error = vdev_open(vd)) == 0 && 3279 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3280 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3281 vd->vdev_guid) == 0); 3282 } 3283 3284 vdev_free(vd); 3285 3286 if (error && 3287 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3288 goto out; 3289 else 3290 error = 0; 3291 } 3292 3293 out: 3294 sav->sav_pending = NULL; 3295 sav->sav_npending = 0; 3296 return (error); 3297 } 3298 3299 static int 3300 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3301 { 3302 int error; 3303 3304 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3305 3306 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3307 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3308 VDEV_LABEL_SPARE)) != 0) { 3309 return (error); 3310 } 3311 3312 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3313 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3314 VDEV_LABEL_L2CACHE)); 3315 } 3316 3317 static void 3318 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3319 const char *config) 3320 { 3321 int i; 3322 3323 if (sav->sav_config != NULL) { 3324 nvlist_t **olddevs; 3325 uint_t oldndevs; 3326 nvlist_t **newdevs; 3327 3328 /* 3329 * Generate new dev list by concatentating with the 3330 * current dev list. 3331 */ 3332 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3333 &olddevs, &oldndevs) == 0); 3334 3335 newdevs = kmem_alloc(sizeof (void *) * 3336 (ndevs + oldndevs), KM_SLEEP); 3337 for (i = 0; i < oldndevs; i++) 3338 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3339 KM_SLEEP) == 0); 3340 for (i = 0; i < ndevs; i++) 3341 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3342 KM_SLEEP) == 0); 3343 3344 VERIFY(nvlist_remove(sav->sav_config, config, 3345 DATA_TYPE_NVLIST_ARRAY) == 0); 3346 3347 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3348 config, newdevs, ndevs + oldndevs) == 0); 3349 for (i = 0; i < oldndevs + ndevs; i++) 3350 nvlist_free(newdevs[i]); 3351 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3352 } else { 3353 /* 3354 * Generate a new dev list. 3355 */ 3356 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3357 KM_SLEEP) == 0); 3358 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3359 devs, ndevs) == 0); 3360 } 3361 } 3362 3363 /* 3364 * Stop and drop level 2 ARC devices 3365 */ 3366 void 3367 spa_l2cache_drop(spa_t *spa) 3368 { 3369 vdev_t *vd; 3370 int i; 3371 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3372 3373 for (i = 0; i < sav->sav_count; i++) { 3374 uint64_t pool; 3375 3376 vd = sav->sav_vdevs[i]; 3377 ASSERT(vd != NULL); 3378 3379 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3380 pool != 0ULL && l2arc_vdev_present(vd)) 3381 l2arc_remove_vdev(vd); 3382 } 3383 } 3384 3385 /* 3386 * Pool Creation 3387 */ 3388 int 3389 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3390 nvlist_t *zplprops) 3391 { 3392 spa_t *spa; 3393 char *altroot = NULL; 3394 vdev_t *rvd; 3395 dsl_pool_t *dp; 3396 dmu_tx_t *tx; 3397 int error = 0; 3398 uint64_t txg = TXG_INITIAL; 3399 nvlist_t **spares, **l2cache; 3400 uint_t nspares, nl2cache; 3401 uint64_t version, obj; 3402 boolean_t has_features; 3403 3404 /* 3405 * If this pool already exists, return failure. 3406 */ 3407 mutex_enter(&spa_namespace_lock); 3408 if (spa_lookup(pool) != NULL) { 3409 mutex_exit(&spa_namespace_lock); 3410 return (SET_ERROR(EEXIST)); 3411 } 3412 3413 /* 3414 * Allocate a new spa_t structure. 3415 */ 3416 (void) nvlist_lookup_string(props, 3417 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3418 spa = spa_add(pool, NULL, altroot); 3419 spa_activate(spa, spa_mode_global); 3420 3421 if (props && (error = spa_prop_validate(spa, props))) { 3422 spa_deactivate(spa); 3423 spa_remove(spa); 3424 mutex_exit(&spa_namespace_lock); 3425 return (error); 3426 } 3427 3428 has_features = B_FALSE; 3429 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3430 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3431 if (zpool_prop_feature(nvpair_name(elem))) 3432 has_features = B_TRUE; 3433 } 3434 3435 if (has_features || nvlist_lookup_uint64(props, 3436 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3437 version = SPA_VERSION; 3438 } 3439 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3440 3441 spa->spa_first_txg = txg; 3442 spa->spa_uberblock.ub_txg = txg - 1; 3443 spa->spa_uberblock.ub_version = version; 3444 spa->spa_ubsync = spa->spa_uberblock; 3445 3446 /* 3447 * Create "The Godfather" zio to hold all async IOs 3448 */ 3449 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3450 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3451 3452 /* 3453 * Create the root vdev. 3454 */ 3455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3456 3457 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3458 3459 ASSERT(error != 0 || rvd != NULL); 3460 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3461 3462 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3463 error = SET_ERROR(EINVAL); 3464 3465 if (error == 0 && 3466 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3467 (error = spa_validate_aux(spa, nvroot, txg, 3468 VDEV_ALLOC_ADD)) == 0) { 3469 for (int c = 0; c < rvd->vdev_children; c++) { 3470 vdev_metaslab_set_size(rvd->vdev_child[c]); 3471 vdev_expand(rvd->vdev_child[c], txg); 3472 } 3473 } 3474 3475 spa_config_exit(spa, SCL_ALL, FTAG); 3476 3477 if (error != 0) { 3478 spa_unload(spa); 3479 spa_deactivate(spa); 3480 spa_remove(spa); 3481 mutex_exit(&spa_namespace_lock); 3482 return (error); 3483 } 3484 3485 /* 3486 * Get the list of spares, if specified. 3487 */ 3488 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3489 &spares, &nspares) == 0) { 3490 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3491 KM_SLEEP) == 0); 3492 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3493 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3494 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3495 spa_load_spares(spa); 3496 spa_config_exit(spa, SCL_ALL, FTAG); 3497 spa->spa_spares.sav_sync = B_TRUE; 3498 } 3499 3500 /* 3501 * Get the list of level 2 cache devices, if specified. 3502 */ 3503 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3504 &l2cache, &nl2cache) == 0) { 3505 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3506 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3507 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3508 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3509 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3510 spa_load_l2cache(spa); 3511 spa_config_exit(spa, SCL_ALL, FTAG); 3512 spa->spa_l2cache.sav_sync = B_TRUE; 3513 } 3514 3515 spa->spa_is_initializing = B_TRUE; 3516 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3517 spa->spa_meta_objset = dp->dp_meta_objset; 3518 spa->spa_is_initializing = B_FALSE; 3519 3520 /* 3521 * Create DDTs (dedup tables). 3522 */ 3523 ddt_create(spa); 3524 3525 spa_update_dspace(spa); 3526 3527 tx = dmu_tx_create_assigned(dp, txg); 3528 3529 /* 3530 * Create the pool config object. 3531 */ 3532 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3533 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3534 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3535 3536 if (zap_add(spa->spa_meta_objset, 3537 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3538 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3539 cmn_err(CE_PANIC, "failed to add pool config"); 3540 } 3541 3542 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3543 spa_feature_create_zap_objects(spa, tx); 3544 3545 if (zap_add(spa->spa_meta_objset, 3546 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3547 sizeof (uint64_t), 1, &version, tx) != 0) { 3548 cmn_err(CE_PANIC, "failed to add pool version"); 3549 } 3550 3551 /* Newly created pools with the right version are always deflated. */ 3552 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3553 spa->spa_deflate = TRUE; 3554 if (zap_add(spa->spa_meta_objset, 3555 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3556 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3557 cmn_err(CE_PANIC, "failed to add deflate"); 3558 } 3559 } 3560 3561 /* 3562 * Create the deferred-free bpobj. Turn off compression 3563 * because sync-to-convergence takes longer if the blocksize 3564 * keeps changing. 3565 */ 3566 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3567 dmu_object_set_compress(spa->spa_meta_objset, obj, 3568 ZIO_COMPRESS_OFF, tx); 3569 if (zap_add(spa->spa_meta_objset, 3570 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3571 sizeof (uint64_t), 1, &obj, tx) != 0) { 3572 cmn_err(CE_PANIC, "failed to add bpobj"); 3573 } 3574 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3575 spa->spa_meta_objset, obj)); 3576 3577 /* 3578 * Create the pool's history object. 3579 */ 3580 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3581 spa_history_create_obj(spa, tx); 3582 3583 /* 3584 * Set pool properties. 3585 */ 3586 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3587 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3588 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3589 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3590 3591 if (props != NULL) { 3592 spa_configfile_set(spa, props, B_FALSE); 3593 spa_sync_props(props, tx); 3594 } 3595 3596 dmu_tx_commit(tx); 3597 3598 spa->spa_sync_on = B_TRUE; 3599 txg_sync_start(spa->spa_dsl_pool); 3600 3601 /* 3602 * We explicitly wait for the first transaction to complete so that our 3603 * bean counters are appropriately updated. 3604 */ 3605 txg_wait_synced(spa->spa_dsl_pool, txg); 3606 3607 spa_config_sync(spa, B_FALSE, B_TRUE); 3608 3609 spa_history_log_version(spa, "create"); 3610 3611 spa->spa_minref = refcount_count(&spa->spa_refcount); 3612 3613 mutex_exit(&spa_namespace_lock); 3614 3615 return (0); 3616 } 3617 3618 #ifdef _KERNEL 3619 /* 3620 * Get the root pool information from the root disk, then import the root pool 3621 * during the system boot up time. 3622 */ 3623 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3624 3625 static nvlist_t * 3626 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3627 { 3628 nvlist_t *config; 3629 nvlist_t *nvtop, *nvroot; 3630 uint64_t pgid; 3631 3632 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3633 return (NULL); 3634 3635 /* 3636 * Add this top-level vdev to the child array. 3637 */ 3638 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3639 &nvtop) == 0); 3640 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3641 &pgid) == 0); 3642 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3643 3644 /* 3645 * Put this pool's top-level vdevs into a root vdev. 3646 */ 3647 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3648 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3649 VDEV_TYPE_ROOT) == 0); 3650 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3651 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3652 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3653 &nvtop, 1) == 0); 3654 3655 /* 3656 * Replace the existing vdev_tree with the new root vdev in 3657 * this pool's configuration (remove the old, add the new). 3658 */ 3659 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3660 nvlist_free(nvroot); 3661 return (config); 3662 } 3663 3664 /* 3665 * Walk the vdev tree and see if we can find a device with "better" 3666 * configuration. A configuration is "better" if the label on that 3667 * device has a more recent txg. 3668 */ 3669 static void 3670 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3671 { 3672 for (int c = 0; c < vd->vdev_children; c++) 3673 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3674 3675 if (vd->vdev_ops->vdev_op_leaf) { 3676 nvlist_t *label; 3677 uint64_t label_txg; 3678 3679 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3680 &label) != 0) 3681 return; 3682 3683 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3684 &label_txg) == 0); 3685 3686 /* 3687 * Do we have a better boot device? 3688 */ 3689 if (label_txg > *txg) { 3690 *txg = label_txg; 3691 *avd = vd; 3692 } 3693 nvlist_free(label); 3694 } 3695 } 3696 3697 /* 3698 * Import a root pool. 3699 * 3700 * For x86. devpath_list will consist of devid and/or physpath name of 3701 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3702 * The GRUB "findroot" command will return the vdev we should boot. 3703 * 3704 * For Sparc, devpath_list consists the physpath name of the booting device 3705 * no matter the rootpool is a single device pool or a mirrored pool. 3706 * e.g. 3707 * "/pci@1f,0/ide@d/disk@0,0:a" 3708 */ 3709 int 3710 spa_import_rootpool(char *devpath, char *devid) 3711 { 3712 spa_t *spa; 3713 vdev_t *rvd, *bvd, *avd = NULL; 3714 nvlist_t *config, *nvtop; 3715 uint64_t guid, txg; 3716 char *pname; 3717 int error; 3718 3719 /* 3720 * Read the label from the boot device and generate a configuration. 3721 */ 3722 config = spa_generate_rootconf(devpath, devid, &guid); 3723 #if defined(_OBP) && defined(_KERNEL) 3724 if (config == NULL) { 3725 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3726 /* iscsi boot */ 3727 get_iscsi_bootpath_phy(devpath); 3728 config = spa_generate_rootconf(devpath, devid, &guid); 3729 } 3730 } 3731 #endif 3732 if (config == NULL) { 3733 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3734 devpath); 3735 return (SET_ERROR(EIO)); 3736 } 3737 3738 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3739 &pname) == 0); 3740 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3741 3742 mutex_enter(&spa_namespace_lock); 3743 if ((spa = spa_lookup(pname)) != NULL) { 3744 /* 3745 * Remove the existing root pool from the namespace so that we 3746 * can replace it with the correct config we just read in. 3747 */ 3748 spa_remove(spa); 3749 } 3750 3751 spa = spa_add(pname, config, NULL); 3752 spa->spa_is_root = B_TRUE; 3753 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3754 3755 /* 3756 * Build up a vdev tree based on the boot device's label config. 3757 */ 3758 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3759 &nvtop) == 0); 3760 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3761 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3762 VDEV_ALLOC_ROOTPOOL); 3763 spa_config_exit(spa, SCL_ALL, FTAG); 3764 if (error) { 3765 mutex_exit(&spa_namespace_lock); 3766 nvlist_free(config); 3767 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3768 pname); 3769 return (error); 3770 } 3771 3772 /* 3773 * Get the boot vdev. 3774 */ 3775 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3776 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3777 (u_longlong_t)guid); 3778 error = SET_ERROR(ENOENT); 3779 goto out; 3780 } 3781 3782 /* 3783 * Determine if there is a better boot device. 3784 */ 3785 avd = bvd; 3786 spa_alt_rootvdev(rvd, &avd, &txg); 3787 if (avd != bvd) { 3788 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3789 "try booting from '%s'", avd->vdev_path); 3790 error = SET_ERROR(EINVAL); 3791 goto out; 3792 } 3793 3794 /* 3795 * If the boot device is part of a spare vdev then ensure that 3796 * we're booting off the active spare. 3797 */ 3798 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3799 !bvd->vdev_isspare) { 3800 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3801 "try booting from '%s'", 3802 bvd->vdev_parent-> 3803 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3804 error = SET_ERROR(EINVAL); 3805 goto out; 3806 } 3807 3808 error = 0; 3809 out: 3810 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3811 vdev_free(rvd); 3812 spa_config_exit(spa, SCL_ALL, FTAG); 3813 mutex_exit(&spa_namespace_lock); 3814 3815 nvlist_free(config); 3816 return (error); 3817 } 3818 3819 #endif 3820 3821 /* 3822 * Import a non-root pool into the system. 3823 */ 3824 int 3825 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3826 { 3827 spa_t *spa; 3828 char *altroot = NULL; 3829 spa_load_state_t state = SPA_LOAD_IMPORT; 3830 zpool_rewind_policy_t policy; 3831 uint64_t mode = spa_mode_global; 3832 uint64_t readonly = B_FALSE; 3833 int error; 3834 nvlist_t *nvroot; 3835 nvlist_t **spares, **l2cache; 3836 uint_t nspares, nl2cache; 3837 3838 /* 3839 * If a pool with this name exists, return failure. 3840 */ 3841 mutex_enter(&spa_namespace_lock); 3842 if (spa_lookup(pool) != NULL) { 3843 mutex_exit(&spa_namespace_lock); 3844 return (SET_ERROR(EEXIST)); 3845 } 3846 3847 /* 3848 * Create and initialize the spa structure. 3849 */ 3850 (void) nvlist_lookup_string(props, 3851 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3852 (void) nvlist_lookup_uint64(props, 3853 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3854 if (readonly) 3855 mode = FREAD; 3856 spa = spa_add(pool, config, altroot); 3857 spa->spa_import_flags = flags; 3858 3859 /* 3860 * Verbatim import - Take a pool and insert it into the namespace 3861 * as if it had been loaded at boot. 3862 */ 3863 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3864 if (props != NULL) 3865 spa_configfile_set(spa, props, B_FALSE); 3866 3867 spa_config_sync(spa, B_FALSE, B_TRUE); 3868 3869 mutex_exit(&spa_namespace_lock); 3870 return (0); 3871 } 3872 3873 spa_activate(spa, mode); 3874 3875 /* 3876 * Don't start async tasks until we know everything is healthy. 3877 */ 3878 spa_async_suspend(spa); 3879 3880 zpool_get_rewind_policy(config, &policy); 3881 if (policy.zrp_request & ZPOOL_DO_REWIND) 3882 state = SPA_LOAD_RECOVER; 3883 3884 /* 3885 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3886 * because the user-supplied config is actually the one to trust when 3887 * doing an import. 3888 */ 3889 if (state != SPA_LOAD_RECOVER) 3890 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3891 3892 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3893 policy.zrp_request); 3894 3895 /* 3896 * Propagate anything learned while loading the pool and pass it 3897 * back to caller (i.e. rewind info, missing devices, etc). 3898 */ 3899 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3900 spa->spa_load_info) == 0); 3901 3902 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3903 /* 3904 * Toss any existing sparelist, as it doesn't have any validity 3905 * anymore, and conflicts with spa_has_spare(). 3906 */ 3907 if (spa->spa_spares.sav_config) { 3908 nvlist_free(spa->spa_spares.sav_config); 3909 spa->spa_spares.sav_config = NULL; 3910 spa_load_spares(spa); 3911 } 3912 if (spa->spa_l2cache.sav_config) { 3913 nvlist_free(spa->spa_l2cache.sav_config); 3914 spa->spa_l2cache.sav_config = NULL; 3915 spa_load_l2cache(spa); 3916 } 3917 3918 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3919 &nvroot) == 0); 3920 if (error == 0) 3921 error = spa_validate_aux(spa, nvroot, -1ULL, 3922 VDEV_ALLOC_SPARE); 3923 if (error == 0) 3924 error = spa_validate_aux(spa, nvroot, -1ULL, 3925 VDEV_ALLOC_L2CACHE); 3926 spa_config_exit(spa, SCL_ALL, FTAG); 3927 3928 if (props != NULL) 3929 spa_configfile_set(spa, props, B_FALSE); 3930 3931 if (error != 0 || (props && spa_writeable(spa) && 3932 (error = spa_prop_set(spa, props)))) { 3933 spa_unload(spa); 3934 spa_deactivate(spa); 3935 spa_remove(spa); 3936 mutex_exit(&spa_namespace_lock); 3937 return (error); 3938 } 3939 3940 spa_async_resume(spa); 3941 3942 /* 3943 * Override any spares and level 2 cache devices as specified by 3944 * the user, as these may have correct device names/devids, etc. 3945 */ 3946 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3947 &spares, &nspares) == 0) { 3948 if (spa->spa_spares.sav_config) 3949 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3950 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3951 else 3952 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3953 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3954 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3955 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3956 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3957 spa_load_spares(spa); 3958 spa_config_exit(spa, SCL_ALL, FTAG); 3959 spa->spa_spares.sav_sync = B_TRUE; 3960 } 3961 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3962 &l2cache, &nl2cache) == 0) { 3963 if (spa->spa_l2cache.sav_config) 3964 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3965 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3966 else 3967 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3968 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3969 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3970 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3971 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3972 spa_load_l2cache(spa); 3973 spa_config_exit(spa, SCL_ALL, FTAG); 3974 spa->spa_l2cache.sav_sync = B_TRUE; 3975 } 3976 3977 /* 3978 * Check for any removed devices. 3979 */ 3980 if (spa->spa_autoreplace) { 3981 spa_aux_check_removed(&spa->spa_spares); 3982 spa_aux_check_removed(&spa->spa_l2cache); 3983 } 3984 3985 if (spa_writeable(spa)) { 3986 /* 3987 * Update the config cache to include the newly-imported pool. 3988 */ 3989 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3990 } 3991 3992 /* 3993 * It's possible that the pool was expanded while it was exported. 3994 * We kick off an async task to handle this for us. 3995 */ 3996 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3997 3998 mutex_exit(&spa_namespace_lock); 3999 spa_history_log_version(spa, "import"); 4000 4001 return (0); 4002 } 4003 4004 nvlist_t * 4005 spa_tryimport(nvlist_t *tryconfig) 4006 { 4007 nvlist_t *config = NULL; 4008 char *poolname; 4009 spa_t *spa; 4010 uint64_t state; 4011 int error; 4012 4013 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4014 return (NULL); 4015 4016 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4017 return (NULL); 4018 4019 /* 4020 * Create and initialize the spa structure. 4021 */ 4022 mutex_enter(&spa_namespace_lock); 4023 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4024 spa_activate(spa, FREAD); 4025 4026 /* 4027 * Pass off the heavy lifting to spa_load(). 4028 * Pass TRUE for mosconfig because the user-supplied config 4029 * is actually the one to trust when doing an import. 4030 */ 4031 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4032 4033 /* 4034 * If 'tryconfig' was at least parsable, return the current config. 4035 */ 4036 if (spa->spa_root_vdev != NULL) { 4037 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4038 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4039 poolname) == 0); 4040 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4041 state) == 0); 4042 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4043 spa->spa_uberblock.ub_timestamp) == 0); 4044 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4045 spa->spa_load_info) == 0); 4046 4047 /* 4048 * If the bootfs property exists on this pool then we 4049 * copy it out so that external consumers can tell which 4050 * pools are bootable. 4051 */ 4052 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4053 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4054 4055 /* 4056 * We have to play games with the name since the 4057 * pool was opened as TRYIMPORT_NAME. 4058 */ 4059 if (dsl_dsobj_to_dsname(spa_name(spa), 4060 spa->spa_bootfs, tmpname) == 0) { 4061 char *cp; 4062 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4063 4064 cp = strchr(tmpname, '/'); 4065 if (cp == NULL) { 4066 (void) strlcpy(dsname, tmpname, 4067 MAXPATHLEN); 4068 } else { 4069 (void) snprintf(dsname, MAXPATHLEN, 4070 "%s/%s", poolname, ++cp); 4071 } 4072 VERIFY(nvlist_add_string(config, 4073 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4074 kmem_free(dsname, MAXPATHLEN); 4075 } 4076 kmem_free(tmpname, MAXPATHLEN); 4077 } 4078 4079 /* 4080 * Add the list of hot spares and level 2 cache devices. 4081 */ 4082 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4083 spa_add_spares(spa, config); 4084 spa_add_l2cache(spa, config); 4085 spa_config_exit(spa, SCL_CONFIG, FTAG); 4086 } 4087 4088 spa_unload(spa); 4089 spa_deactivate(spa); 4090 spa_remove(spa); 4091 mutex_exit(&spa_namespace_lock); 4092 4093 return (config); 4094 } 4095 4096 /* 4097 * Pool export/destroy 4098 * 4099 * The act of destroying or exporting a pool is very simple. We make sure there 4100 * is no more pending I/O and any references to the pool are gone. Then, we 4101 * update the pool state and sync all the labels to disk, removing the 4102 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4103 * we don't sync the labels or remove the configuration cache. 4104 */ 4105 static int 4106 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4107 boolean_t force, boolean_t hardforce) 4108 { 4109 spa_t *spa; 4110 4111 if (oldconfig) 4112 *oldconfig = NULL; 4113 4114 if (!(spa_mode_global & FWRITE)) 4115 return (SET_ERROR(EROFS)); 4116 4117 mutex_enter(&spa_namespace_lock); 4118 if ((spa = spa_lookup(pool)) == NULL) { 4119 mutex_exit(&spa_namespace_lock); 4120 return (SET_ERROR(ENOENT)); 4121 } 4122 4123 /* 4124 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4125 * reacquire the namespace lock, and see if we can export. 4126 */ 4127 spa_open_ref(spa, FTAG); 4128 mutex_exit(&spa_namespace_lock); 4129 spa_async_suspend(spa); 4130 mutex_enter(&spa_namespace_lock); 4131 spa_close(spa, FTAG); 4132 4133 /* 4134 * The pool will be in core if it's openable, 4135 * in which case we can modify its state. 4136 */ 4137 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4138 /* 4139 * Objsets may be open only because they're dirty, so we 4140 * have to force it to sync before checking spa_refcnt. 4141 */ 4142 txg_wait_synced(spa->spa_dsl_pool, 0); 4143 4144 /* 4145 * A pool cannot be exported or destroyed if there are active 4146 * references. If we are resetting a pool, allow references by 4147 * fault injection handlers. 4148 */ 4149 if (!spa_refcount_zero(spa) || 4150 (spa->spa_inject_ref != 0 && 4151 new_state != POOL_STATE_UNINITIALIZED)) { 4152 spa_async_resume(spa); 4153 mutex_exit(&spa_namespace_lock); 4154 return (SET_ERROR(EBUSY)); 4155 } 4156 4157 /* 4158 * A pool cannot be exported if it has an active shared spare. 4159 * This is to prevent other pools stealing the active spare 4160 * from an exported pool. At user's own will, such pool can 4161 * be forcedly exported. 4162 */ 4163 if (!force && new_state == POOL_STATE_EXPORTED && 4164 spa_has_active_shared_spare(spa)) { 4165 spa_async_resume(spa); 4166 mutex_exit(&spa_namespace_lock); 4167 return (SET_ERROR(EXDEV)); 4168 } 4169 4170 /* 4171 * We want this to be reflected on every label, 4172 * so mark them all dirty. spa_unload() will do the 4173 * final sync that pushes these changes out. 4174 */ 4175 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4176 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4177 spa->spa_state = new_state; 4178 spa->spa_final_txg = spa_last_synced_txg(spa) + 4179 TXG_DEFER_SIZE + 1; 4180 vdev_config_dirty(spa->spa_root_vdev); 4181 spa_config_exit(spa, SCL_ALL, FTAG); 4182 } 4183 } 4184 4185 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4186 4187 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4188 spa_unload(spa); 4189 spa_deactivate(spa); 4190 } 4191 4192 if (oldconfig && spa->spa_config) 4193 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4194 4195 if (new_state != POOL_STATE_UNINITIALIZED) { 4196 if (!hardforce) 4197 spa_config_sync(spa, B_TRUE, B_TRUE); 4198 spa_remove(spa); 4199 } 4200 mutex_exit(&spa_namespace_lock); 4201 4202 return (0); 4203 } 4204 4205 /* 4206 * Destroy a storage pool. 4207 */ 4208 int 4209 spa_destroy(char *pool) 4210 { 4211 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4212 B_FALSE, B_FALSE)); 4213 } 4214 4215 /* 4216 * Export a storage pool. 4217 */ 4218 int 4219 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4220 boolean_t hardforce) 4221 { 4222 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4223 force, hardforce)); 4224 } 4225 4226 /* 4227 * Similar to spa_export(), this unloads the spa_t without actually removing it 4228 * from the namespace in any way. 4229 */ 4230 int 4231 spa_reset(char *pool) 4232 { 4233 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4234 B_FALSE, B_FALSE)); 4235 } 4236 4237 /* 4238 * ========================================================================== 4239 * Device manipulation 4240 * ========================================================================== 4241 */ 4242 4243 /* 4244 * Add a device to a storage pool. 4245 */ 4246 int 4247 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4248 { 4249 uint64_t txg, id; 4250 int error; 4251 vdev_t *rvd = spa->spa_root_vdev; 4252 vdev_t *vd, *tvd; 4253 nvlist_t **spares, **l2cache; 4254 uint_t nspares, nl2cache; 4255 4256 ASSERT(spa_writeable(spa)); 4257 4258 txg = spa_vdev_enter(spa); 4259 4260 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4261 VDEV_ALLOC_ADD)) != 0) 4262 return (spa_vdev_exit(spa, NULL, txg, error)); 4263 4264 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4265 4266 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4267 &nspares) != 0) 4268 nspares = 0; 4269 4270 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4271 &nl2cache) != 0) 4272 nl2cache = 0; 4273 4274 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4275 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4276 4277 if (vd->vdev_children != 0 && 4278 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4279 return (spa_vdev_exit(spa, vd, txg, error)); 4280 4281 /* 4282 * We must validate the spares and l2cache devices after checking the 4283 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4284 */ 4285 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4286 return (spa_vdev_exit(spa, vd, txg, error)); 4287 4288 /* 4289 * Transfer each new top-level vdev from vd to rvd. 4290 */ 4291 for (int c = 0; c < vd->vdev_children; c++) { 4292 4293 /* 4294 * Set the vdev id to the first hole, if one exists. 4295 */ 4296 for (id = 0; id < rvd->vdev_children; id++) { 4297 if (rvd->vdev_child[id]->vdev_ishole) { 4298 vdev_free(rvd->vdev_child[id]); 4299 break; 4300 } 4301 } 4302 tvd = vd->vdev_child[c]; 4303 vdev_remove_child(vd, tvd); 4304 tvd->vdev_id = id; 4305 vdev_add_child(rvd, tvd); 4306 vdev_config_dirty(tvd); 4307 } 4308 4309 if (nspares != 0) { 4310 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4311 ZPOOL_CONFIG_SPARES); 4312 spa_load_spares(spa); 4313 spa->spa_spares.sav_sync = B_TRUE; 4314 } 4315 4316 if (nl2cache != 0) { 4317 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4318 ZPOOL_CONFIG_L2CACHE); 4319 spa_load_l2cache(spa); 4320 spa->spa_l2cache.sav_sync = B_TRUE; 4321 } 4322 4323 /* 4324 * We have to be careful when adding new vdevs to an existing pool. 4325 * If other threads start allocating from these vdevs before we 4326 * sync the config cache, and we lose power, then upon reboot we may 4327 * fail to open the pool because there are DVAs that the config cache 4328 * can't translate. Therefore, we first add the vdevs without 4329 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4330 * and then let spa_config_update() initialize the new metaslabs. 4331 * 4332 * spa_load() checks for added-but-not-initialized vdevs, so that 4333 * if we lose power at any point in this sequence, the remaining 4334 * steps will be completed the next time we load the pool. 4335 */ 4336 (void) spa_vdev_exit(spa, vd, txg, 0); 4337 4338 mutex_enter(&spa_namespace_lock); 4339 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4340 mutex_exit(&spa_namespace_lock); 4341 4342 return (0); 4343 } 4344 4345 /* 4346 * Attach a device to a mirror. The arguments are the path to any device 4347 * in the mirror, and the nvroot for the new device. If the path specifies 4348 * a device that is not mirrored, we automatically insert the mirror vdev. 4349 * 4350 * If 'replacing' is specified, the new device is intended to replace the 4351 * existing device; in this case the two devices are made into their own 4352 * mirror using the 'replacing' vdev, which is functionally identical to 4353 * the mirror vdev (it actually reuses all the same ops) but has a few 4354 * extra rules: you can't attach to it after it's been created, and upon 4355 * completion of resilvering, the first disk (the one being replaced) 4356 * is automatically detached. 4357 */ 4358 int 4359 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4360 { 4361 uint64_t txg, dtl_max_txg; 4362 vdev_t *rvd = spa->spa_root_vdev; 4363 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4364 vdev_ops_t *pvops; 4365 char *oldvdpath, *newvdpath; 4366 int newvd_isspare; 4367 int error; 4368 4369 ASSERT(spa_writeable(spa)); 4370 4371 txg = spa_vdev_enter(spa); 4372 4373 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4374 4375 if (oldvd == NULL) 4376 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4377 4378 if (!oldvd->vdev_ops->vdev_op_leaf) 4379 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4380 4381 pvd = oldvd->vdev_parent; 4382 4383 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4384 VDEV_ALLOC_ATTACH)) != 0) 4385 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4386 4387 if (newrootvd->vdev_children != 1) 4388 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4389 4390 newvd = newrootvd->vdev_child[0]; 4391 4392 if (!newvd->vdev_ops->vdev_op_leaf) 4393 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4394 4395 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4396 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4397 4398 /* 4399 * Spares can't replace logs 4400 */ 4401 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4402 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4403 4404 if (!replacing) { 4405 /* 4406 * For attach, the only allowable parent is a mirror or the root 4407 * vdev. 4408 */ 4409 if (pvd->vdev_ops != &vdev_mirror_ops && 4410 pvd->vdev_ops != &vdev_root_ops) 4411 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4412 4413 pvops = &vdev_mirror_ops; 4414 } else { 4415 /* 4416 * Active hot spares can only be replaced by inactive hot 4417 * spares. 4418 */ 4419 if (pvd->vdev_ops == &vdev_spare_ops && 4420 oldvd->vdev_isspare && 4421 !spa_has_spare(spa, newvd->vdev_guid)) 4422 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4423 4424 /* 4425 * If the source is a hot spare, and the parent isn't already a 4426 * spare, then we want to create a new hot spare. Otherwise, we 4427 * want to create a replacing vdev. The user is not allowed to 4428 * attach to a spared vdev child unless the 'isspare' state is 4429 * the same (spare replaces spare, non-spare replaces 4430 * non-spare). 4431 */ 4432 if (pvd->vdev_ops == &vdev_replacing_ops && 4433 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4434 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4435 } else if (pvd->vdev_ops == &vdev_spare_ops && 4436 newvd->vdev_isspare != oldvd->vdev_isspare) { 4437 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4438 } 4439 4440 if (newvd->vdev_isspare) 4441 pvops = &vdev_spare_ops; 4442 else 4443 pvops = &vdev_replacing_ops; 4444 } 4445 4446 /* 4447 * Make sure the new device is big enough. 4448 */ 4449 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4450 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4451 4452 /* 4453 * The new device cannot have a higher alignment requirement 4454 * than the top-level vdev. 4455 */ 4456 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4457 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4458 4459 /* 4460 * If this is an in-place replacement, update oldvd's path and devid 4461 * to make it distinguishable from newvd, and unopenable from now on. 4462 */ 4463 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4464 spa_strfree(oldvd->vdev_path); 4465 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4466 KM_SLEEP); 4467 (void) sprintf(oldvd->vdev_path, "%s/%s", 4468 newvd->vdev_path, "old"); 4469 if (oldvd->vdev_devid != NULL) { 4470 spa_strfree(oldvd->vdev_devid); 4471 oldvd->vdev_devid = NULL; 4472 } 4473 } 4474 4475 /* mark the device being resilvered */ 4476 newvd->vdev_resilver_txg = txg; 4477 4478 /* 4479 * If the parent is not a mirror, or if we're replacing, insert the new 4480 * mirror/replacing/spare vdev above oldvd. 4481 */ 4482 if (pvd->vdev_ops != pvops) 4483 pvd = vdev_add_parent(oldvd, pvops); 4484 4485 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4486 ASSERT(pvd->vdev_ops == pvops); 4487 ASSERT(oldvd->vdev_parent == pvd); 4488 4489 /* 4490 * Extract the new device from its root and add it to pvd. 4491 */ 4492 vdev_remove_child(newrootvd, newvd); 4493 newvd->vdev_id = pvd->vdev_children; 4494 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4495 vdev_add_child(pvd, newvd); 4496 4497 tvd = newvd->vdev_top; 4498 ASSERT(pvd->vdev_top == tvd); 4499 ASSERT(tvd->vdev_parent == rvd); 4500 4501 vdev_config_dirty(tvd); 4502 4503 /* 4504 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4505 * for any dmu_sync-ed blocks. It will propagate upward when 4506 * spa_vdev_exit() calls vdev_dtl_reassess(). 4507 */ 4508 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4509 4510 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4511 dtl_max_txg - TXG_INITIAL); 4512 4513 if (newvd->vdev_isspare) { 4514 spa_spare_activate(newvd); 4515 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4516 } 4517 4518 oldvdpath = spa_strdup(oldvd->vdev_path); 4519 newvdpath = spa_strdup(newvd->vdev_path); 4520 newvd_isspare = newvd->vdev_isspare; 4521 4522 /* 4523 * Mark newvd's DTL dirty in this txg. 4524 */ 4525 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4526 4527 /* 4528 * Schedule the resilver to restart in the future. We do this to 4529 * ensure that dmu_sync-ed blocks have been stitched into the 4530 * respective datasets. 4531 */ 4532 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4533 4534 /* 4535 * Commit the config 4536 */ 4537 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4538 4539 spa_history_log_internal(spa, "vdev attach", NULL, 4540 "%s vdev=%s %s vdev=%s", 4541 replacing && newvd_isspare ? "spare in" : 4542 replacing ? "replace" : "attach", newvdpath, 4543 replacing ? "for" : "to", oldvdpath); 4544 4545 spa_strfree(oldvdpath); 4546 spa_strfree(newvdpath); 4547 4548 if (spa->spa_bootfs) 4549 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4550 4551 return (0); 4552 } 4553 4554 /* 4555 * Detach a device from a mirror or replacing vdev. 4556 * 4557 * If 'replace_done' is specified, only detach if the parent 4558 * is a replacing vdev. 4559 */ 4560 int 4561 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4562 { 4563 uint64_t txg; 4564 int error; 4565 vdev_t *rvd = spa->spa_root_vdev; 4566 vdev_t *vd, *pvd, *cvd, *tvd; 4567 boolean_t unspare = B_FALSE; 4568 uint64_t unspare_guid = 0; 4569 char *vdpath; 4570 4571 ASSERT(spa_writeable(spa)); 4572 4573 txg = spa_vdev_enter(spa); 4574 4575 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4576 4577 if (vd == NULL) 4578 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4579 4580 if (!vd->vdev_ops->vdev_op_leaf) 4581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4582 4583 pvd = vd->vdev_parent; 4584 4585 /* 4586 * If the parent/child relationship is not as expected, don't do it. 4587 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4588 * vdev that's replacing B with C. The user's intent in replacing 4589 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4590 * the replace by detaching C, the expected behavior is to end up 4591 * M(A,B). But suppose that right after deciding to detach C, 4592 * the replacement of B completes. We would have M(A,C), and then 4593 * ask to detach C, which would leave us with just A -- not what 4594 * the user wanted. To prevent this, we make sure that the 4595 * parent/child relationship hasn't changed -- in this example, 4596 * that C's parent is still the replacing vdev R. 4597 */ 4598 if (pvd->vdev_guid != pguid && pguid != 0) 4599 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4600 4601 /* 4602 * Only 'replacing' or 'spare' vdevs can be replaced. 4603 */ 4604 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4605 pvd->vdev_ops != &vdev_spare_ops) 4606 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4607 4608 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4609 spa_version(spa) >= SPA_VERSION_SPARES); 4610 4611 /* 4612 * Only mirror, replacing, and spare vdevs support detach. 4613 */ 4614 if (pvd->vdev_ops != &vdev_replacing_ops && 4615 pvd->vdev_ops != &vdev_mirror_ops && 4616 pvd->vdev_ops != &vdev_spare_ops) 4617 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4618 4619 /* 4620 * If this device has the only valid copy of some data, 4621 * we cannot safely detach it. 4622 */ 4623 if (vdev_dtl_required(vd)) 4624 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4625 4626 ASSERT(pvd->vdev_children >= 2); 4627 4628 /* 4629 * If we are detaching the second disk from a replacing vdev, then 4630 * check to see if we changed the original vdev's path to have "/old" 4631 * at the end in spa_vdev_attach(). If so, undo that change now. 4632 */ 4633 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4634 vd->vdev_path != NULL) { 4635 size_t len = strlen(vd->vdev_path); 4636 4637 for (int c = 0; c < pvd->vdev_children; c++) { 4638 cvd = pvd->vdev_child[c]; 4639 4640 if (cvd == vd || cvd->vdev_path == NULL) 4641 continue; 4642 4643 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4644 strcmp(cvd->vdev_path + len, "/old") == 0) { 4645 spa_strfree(cvd->vdev_path); 4646 cvd->vdev_path = spa_strdup(vd->vdev_path); 4647 break; 4648 } 4649 } 4650 } 4651 4652 /* 4653 * If we are detaching the original disk from a spare, then it implies 4654 * that the spare should become a real disk, and be removed from the 4655 * active spare list for the pool. 4656 */ 4657 if (pvd->vdev_ops == &vdev_spare_ops && 4658 vd->vdev_id == 0 && 4659 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4660 unspare = B_TRUE; 4661 4662 /* 4663 * Erase the disk labels so the disk can be used for other things. 4664 * This must be done after all other error cases are handled, 4665 * but before we disembowel vd (so we can still do I/O to it). 4666 * But if we can't do it, don't treat the error as fatal -- 4667 * it may be that the unwritability of the disk is the reason 4668 * it's being detached! 4669 */ 4670 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4671 4672 /* 4673 * Remove vd from its parent and compact the parent's children. 4674 */ 4675 vdev_remove_child(pvd, vd); 4676 vdev_compact_children(pvd); 4677 4678 /* 4679 * Remember one of the remaining children so we can get tvd below. 4680 */ 4681 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4682 4683 /* 4684 * If we need to remove the remaining child from the list of hot spares, 4685 * do it now, marking the vdev as no longer a spare in the process. 4686 * We must do this before vdev_remove_parent(), because that can 4687 * change the GUID if it creates a new toplevel GUID. For a similar 4688 * reason, we must remove the spare now, in the same txg as the detach; 4689 * otherwise someone could attach a new sibling, change the GUID, and 4690 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4691 */ 4692 if (unspare) { 4693 ASSERT(cvd->vdev_isspare); 4694 spa_spare_remove(cvd); 4695 unspare_guid = cvd->vdev_guid; 4696 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4697 cvd->vdev_unspare = B_TRUE; 4698 } 4699 4700 /* 4701 * If the parent mirror/replacing vdev only has one child, 4702 * the parent is no longer needed. Remove it from the tree. 4703 */ 4704 if (pvd->vdev_children == 1) { 4705 if (pvd->vdev_ops == &vdev_spare_ops) 4706 cvd->vdev_unspare = B_FALSE; 4707 vdev_remove_parent(cvd); 4708 } 4709 4710 4711 /* 4712 * We don't set tvd until now because the parent we just removed 4713 * may have been the previous top-level vdev. 4714 */ 4715 tvd = cvd->vdev_top; 4716 ASSERT(tvd->vdev_parent == rvd); 4717 4718 /* 4719 * Reevaluate the parent vdev state. 4720 */ 4721 vdev_propagate_state(cvd); 4722 4723 /* 4724 * If the 'autoexpand' property is set on the pool then automatically 4725 * try to expand the size of the pool. For example if the device we 4726 * just detached was smaller than the others, it may be possible to 4727 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4728 * first so that we can obtain the updated sizes of the leaf vdevs. 4729 */ 4730 if (spa->spa_autoexpand) { 4731 vdev_reopen(tvd); 4732 vdev_expand(tvd, txg); 4733 } 4734 4735 vdev_config_dirty(tvd); 4736 4737 /* 4738 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4739 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4740 * But first make sure we're not on any *other* txg's DTL list, to 4741 * prevent vd from being accessed after it's freed. 4742 */ 4743 vdpath = spa_strdup(vd->vdev_path); 4744 for (int t = 0; t < TXG_SIZE; t++) 4745 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4746 vd->vdev_detached = B_TRUE; 4747 vdev_dirty(tvd, VDD_DTL, vd, txg); 4748 4749 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4750 4751 /* hang on to the spa before we release the lock */ 4752 spa_open_ref(spa, FTAG); 4753 4754 error = spa_vdev_exit(spa, vd, txg, 0); 4755 4756 spa_history_log_internal(spa, "detach", NULL, 4757 "vdev=%s", vdpath); 4758 spa_strfree(vdpath); 4759 4760 /* 4761 * If this was the removal of the original device in a hot spare vdev, 4762 * then we want to go through and remove the device from the hot spare 4763 * list of every other pool. 4764 */ 4765 if (unspare) { 4766 spa_t *altspa = NULL; 4767 4768 mutex_enter(&spa_namespace_lock); 4769 while ((altspa = spa_next(altspa)) != NULL) { 4770 if (altspa->spa_state != POOL_STATE_ACTIVE || 4771 altspa == spa) 4772 continue; 4773 4774 spa_open_ref(altspa, FTAG); 4775 mutex_exit(&spa_namespace_lock); 4776 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4777 mutex_enter(&spa_namespace_lock); 4778 spa_close(altspa, FTAG); 4779 } 4780 mutex_exit(&spa_namespace_lock); 4781 4782 /* search the rest of the vdevs for spares to remove */ 4783 spa_vdev_resilver_done(spa); 4784 } 4785 4786 /* all done with the spa; OK to release */ 4787 mutex_enter(&spa_namespace_lock); 4788 spa_close(spa, FTAG); 4789 mutex_exit(&spa_namespace_lock); 4790 4791 return (error); 4792 } 4793 4794 /* 4795 * Split a set of devices from their mirrors, and create a new pool from them. 4796 */ 4797 int 4798 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4799 nvlist_t *props, boolean_t exp) 4800 { 4801 int error = 0; 4802 uint64_t txg, *glist; 4803 spa_t *newspa; 4804 uint_t c, children, lastlog; 4805 nvlist_t **child, *nvl, *tmp; 4806 dmu_tx_t *tx; 4807 char *altroot = NULL; 4808 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4809 boolean_t activate_slog; 4810 4811 ASSERT(spa_writeable(spa)); 4812 4813 txg = spa_vdev_enter(spa); 4814 4815 /* clear the log and flush everything up to now */ 4816 activate_slog = spa_passivate_log(spa); 4817 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4818 error = spa_offline_log(spa); 4819 txg = spa_vdev_config_enter(spa); 4820 4821 if (activate_slog) 4822 spa_activate_log(spa); 4823 4824 if (error != 0) 4825 return (spa_vdev_exit(spa, NULL, txg, error)); 4826 4827 /* check new spa name before going any further */ 4828 if (spa_lookup(newname) != NULL) 4829 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4830 4831 /* 4832 * scan through all the children to ensure they're all mirrors 4833 */ 4834 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4835 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4836 &children) != 0) 4837 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4838 4839 /* first, check to ensure we've got the right child count */ 4840 rvd = spa->spa_root_vdev; 4841 lastlog = 0; 4842 for (c = 0; c < rvd->vdev_children; c++) { 4843 vdev_t *vd = rvd->vdev_child[c]; 4844 4845 /* don't count the holes & logs as children */ 4846 if (vd->vdev_islog || vd->vdev_ishole) { 4847 if (lastlog == 0) 4848 lastlog = c; 4849 continue; 4850 } 4851 4852 lastlog = 0; 4853 } 4854 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4855 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4856 4857 /* next, ensure no spare or cache devices are part of the split */ 4858 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4859 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4860 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4861 4862 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4863 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4864 4865 /* then, loop over each vdev and validate it */ 4866 for (c = 0; c < children; c++) { 4867 uint64_t is_hole = 0; 4868 4869 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4870 &is_hole); 4871 4872 if (is_hole != 0) { 4873 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4874 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4875 continue; 4876 } else { 4877 error = SET_ERROR(EINVAL); 4878 break; 4879 } 4880 } 4881 4882 /* which disk is going to be split? */ 4883 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4884 &glist[c]) != 0) { 4885 error = SET_ERROR(EINVAL); 4886 break; 4887 } 4888 4889 /* look it up in the spa */ 4890 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4891 if (vml[c] == NULL) { 4892 error = SET_ERROR(ENODEV); 4893 break; 4894 } 4895 4896 /* make sure there's nothing stopping the split */ 4897 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4898 vml[c]->vdev_islog || 4899 vml[c]->vdev_ishole || 4900 vml[c]->vdev_isspare || 4901 vml[c]->vdev_isl2cache || 4902 !vdev_writeable(vml[c]) || 4903 vml[c]->vdev_children != 0 || 4904 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4905 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4906 error = SET_ERROR(EINVAL); 4907 break; 4908 } 4909 4910 if (vdev_dtl_required(vml[c])) { 4911 error = SET_ERROR(EBUSY); 4912 break; 4913 } 4914 4915 /* we need certain info from the top level */ 4916 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4917 vml[c]->vdev_top->vdev_ms_array) == 0); 4918 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4919 vml[c]->vdev_top->vdev_ms_shift) == 0); 4920 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4921 vml[c]->vdev_top->vdev_asize) == 0); 4922 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4923 vml[c]->vdev_top->vdev_ashift) == 0); 4924 } 4925 4926 if (error != 0) { 4927 kmem_free(vml, children * sizeof (vdev_t *)); 4928 kmem_free(glist, children * sizeof (uint64_t)); 4929 return (spa_vdev_exit(spa, NULL, txg, error)); 4930 } 4931 4932 /* stop writers from using the disks */ 4933 for (c = 0; c < children; c++) { 4934 if (vml[c] != NULL) 4935 vml[c]->vdev_offline = B_TRUE; 4936 } 4937 vdev_reopen(spa->spa_root_vdev); 4938 4939 /* 4940 * Temporarily record the splitting vdevs in the spa config. This 4941 * will disappear once the config is regenerated. 4942 */ 4943 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4944 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4945 glist, children) == 0); 4946 kmem_free(glist, children * sizeof (uint64_t)); 4947 4948 mutex_enter(&spa->spa_props_lock); 4949 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4950 nvl) == 0); 4951 mutex_exit(&spa->spa_props_lock); 4952 spa->spa_config_splitting = nvl; 4953 vdev_config_dirty(spa->spa_root_vdev); 4954 4955 /* configure and create the new pool */ 4956 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4957 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4958 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4959 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4960 spa_version(spa)) == 0); 4961 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4962 spa->spa_config_txg) == 0); 4963 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4964 spa_generate_guid(NULL)) == 0); 4965 (void) nvlist_lookup_string(props, 4966 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4967 4968 /* add the new pool to the namespace */ 4969 newspa = spa_add(newname, config, altroot); 4970 newspa->spa_config_txg = spa->spa_config_txg; 4971 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4972 4973 /* release the spa config lock, retaining the namespace lock */ 4974 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4975 4976 if (zio_injection_enabled) 4977 zio_handle_panic_injection(spa, FTAG, 1); 4978 4979 spa_activate(newspa, spa_mode_global); 4980 spa_async_suspend(newspa); 4981 4982 /* create the new pool from the disks of the original pool */ 4983 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4984 if (error) 4985 goto out; 4986 4987 /* if that worked, generate a real config for the new pool */ 4988 if (newspa->spa_root_vdev != NULL) { 4989 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4990 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4991 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4992 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4993 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4994 B_TRUE)); 4995 } 4996 4997 /* set the props */ 4998 if (props != NULL) { 4999 spa_configfile_set(newspa, props, B_FALSE); 5000 error = spa_prop_set(newspa, props); 5001 if (error) 5002 goto out; 5003 } 5004 5005 /* flush everything */ 5006 txg = spa_vdev_config_enter(newspa); 5007 vdev_config_dirty(newspa->spa_root_vdev); 5008 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5009 5010 if (zio_injection_enabled) 5011 zio_handle_panic_injection(spa, FTAG, 2); 5012 5013 spa_async_resume(newspa); 5014 5015 /* finally, update the original pool's config */ 5016 txg = spa_vdev_config_enter(spa); 5017 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5018 error = dmu_tx_assign(tx, TXG_WAIT); 5019 if (error != 0) 5020 dmu_tx_abort(tx); 5021 for (c = 0; c < children; c++) { 5022 if (vml[c] != NULL) { 5023 vdev_split(vml[c]); 5024 if (error == 0) 5025 spa_history_log_internal(spa, "detach", tx, 5026 "vdev=%s", vml[c]->vdev_path); 5027 vdev_free(vml[c]); 5028 } 5029 } 5030 vdev_config_dirty(spa->spa_root_vdev); 5031 spa->spa_config_splitting = NULL; 5032 nvlist_free(nvl); 5033 if (error == 0) 5034 dmu_tx_commit(tx); 5035 (void) spa_vdev_exit(spa, NULL, txg, 0); 5036 5037 if (zio_injection_enabled) 5038 zio_handle_panic_injection(spa, FTAG, 3); 5039 5040 /* split is complete; log a history record */ 5041 spa_history_log_internal(newspa, "split", NULL, 5042 "from pool %s", spa_name(spa)); 5043 5044 kmem_free(vml, children * sizeof (vdev_t *)); 5045 5046 /* if we're not going to mount the filesystems in userland, export */ 5047 if (exp) 5048 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5049 B_FALSE, B_FALSE); 5050 5051 return (error); 5052 5053 out: 5054 spa_unload(newspa); 5055 spa_deactivate(newspa); 5056 spa_remove(newspa); 5057 5058 txg = spa_vdev_config_enter(spa); 5059 5060 /* re-online all offlined disks */ 5061 for (c = 0; c < children; c++) { 5062 if (vml[c] != NULL) 5063 vml[c]->vdev_offline = B_FALSE; 5064 } 5065 vdev_reopen(spa->spa_root_vdev); 5066 5067 nvlist_free(spa->spa_config_splitting); 5068 spa->spa_config_splitting = NULL; 5069 (void) spa_vdev_exit(spa, NULL, txg, error); 5070 5071 kmem_free(vml, children * sizeof (vdev_t *)); 5072 return (error); 5073 } 5074 5075 static nvlist_t * 5076 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5077 { 5078 for (int i = 0; i < count; i++) { 5079 uint64_t guid; 5080 5081 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5082 &guid) == 0); 5083 5084 if (guid == target_guid) 5085 return (nvpp[i]); 5086 } 5087 5088 return (NULL); 5089 } 5090 5091 static void 5092 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5093 nvlist_t *dev_to_remove) 5094 { 5095 nvlist_t **newdev = NULL; 5096 5097 if (count > 1) 5098 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5099 5100 for (int i = 0, j = 0; i < count; i++) { 5101 if (dev[i] == dev_to_remove) 5102 continue; 5103 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5104 } 5105 5106 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5107 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5108 5109 for (int i = 0; i < count - 1; i++) 5110 nvlist_free(newdev[i]); 5111 5112 if (count > 1) 5113 kmem_free(newdev, (count - 1) * sizeof (void *)); 5114 } 5115 5116 /* 5117 * Evacuate the device. 5118 */ 5119 static int 5120 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5121 { 5122 uint64_t txg; 5123 int error = 0; 5124 5125 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5126 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5127 ASSERT(vd == vd->vdev_top); 5128 5129 /* 5130 * Evacuate the device. We don't hold the config lock as writer 5131 * since we need to do I/O but we do keep the 5132 * spa_namespace_lock held. Once this completes the device 5133 * should no longer have any blocks allocated on it. 5134 */ 5135 if (vd->vdev_islog) { 5136 if (vd->vdev_stat.vs_alloc != 0) 5137 error = spa_offline_log(spa); 5138 } else { 5139 error = SET_ERROR(ENOTSUP); 5140 } 5141 5142 if (error) 5143 return (error); 5144 5145 /* 5146 * The evacuation succeeded. Remove any remaining MOS metadata 5147 * associated with this vdev, and wait for these changes to sync. 5148 */ 5149 ASSERT0(vd->vdev_stat.vs_alloc); 5150 txg = spa_vdev_config_enter(spa); 5151 vd->vdev_removing = B_TRUE; 5152 vdev_dirty_leaves(vd, VDD_DTL, txg); 5153 vdev_config_dirty(vd); 5154 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5155 5156 return (0); 5157 } 5158 5159 /* 5160 * Complete the removal by cleaning up the namespace. 5161 */ 5162 static void 5163 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5164 { 5165 vdev_t *rvd = spa->spa_root_vdev; 5166 uint64_t id = vd->vdev_id; 5167 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5168 5169 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5170 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5171 ASSERT(vd == vd->vdev_top); 5172 5173 /* 5174 * Only remove any devices which are empty. 5175 */ 5176 if (vd->vdev_stat.vs_alloc != 0) 5177 return; 5178 5179 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5180 5181 if (list_link_active(&vd->vdev_state_dirty_node)) 5182 vdev_state_clean(vd); 5183 if (list_link_active(&vd->vdev_config_dirty_node)) 5184 vdev_config_clean(vd); 5185 5186 vdev_free(vd); 5187 5188 if (last_vdev) { 5189 vdev_compact_children(rvd); 5190 } else { 5191 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5192 vdev_add_child(rvd, vd); 5193 } 5194 vdev_config_dirty(rvd); 5195 5196 /* 5197 * Reassess the health of our root vdev. 5198 */ 5199 vdev_reopen(rvd); 5200 } 5201 5202 /* 5203 * Remove a device from the pool - 5204 * 5205 * Removing a device from the vdev namespace requires several steps 5206 * and can take a significant amount of time. As a result we use 5207 * the spa_vdev_config_[enter/exit] functions which allow us to 5208 * grab and release the spa_config_lock while still holding the namespace 5209 * lock. During each step the configuration is synced out. 5210 * 5211 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5212 * devices. 5213 */ 5214 int 5215 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5216 { 5217 vdev_t *vd; 5218 metaslab_group_t *mg; 5219 nvlist_t **spares, **l2cache, *nv; 5220 uint64_t txg = 0; 5221 uint_t nspares, nl2cache; 5222 int error = 0; 5223 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5224 5225 ASSERT(spa_writeable(spa)); 5226 5227 if (!locked) 5228 txg = spa_vdev_enter(spa); 5229 5230 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5231 5232 if (spa->spa_spares.sav_vdevs != NULL && 5233 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5234 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5235 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5236 /* 5237 * Only remove the hot spare if it's not currently in use 5238 * in this pool. 5239 */ 5240 if (vd == NULL || unspare) { 5241 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5242 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5243 spa_load_spares(spa); 5244 spa->spa_spares.sav_sync = B_TRUE; 5245 } else { 5246 error = SET_ERROR(EBUSY); 5247 } 5248 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5249 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5250 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5251 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5252 /* 5253 * Cache devices can always be removed. 5254 */ 5255 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5256 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5257 spa_load_l2cache(spa); 5258 spa->spa_l2cache.sav_sync = B_TRUE; 5259 } else if (vd != NULL && vd->vdev_islog) { 5260 ASSERT(!locked); 5261 ASSERT(vd == vd->vdev_top); 5262 5263 /* 5264 * XXX - Once we have bp-rewrite this should 5265 * become the common case. 5266 */ 5267 5268 mg = vd->vdev_mg; 5269 5270 /* 5271 * Stop allocating from this vdev. 5272 */ 5273 metaslab_group_passivate(mg); 5274 5275 /* 5276 * Wait for the youngest allocations and frees to sync, 5277 * and then wait for the deferral of those frees to finish. 5278 */ 5279 spa_vdev_config_exit(spa, NULL, 5280 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5281 5282 /* 5283 * Attempt to evacuate the vdev. 5284 */ 5285 error = spa_vdev_remove_evacuate(spa, vd); 5286 5287 txg = spa_vdev_config_enter(spa); 5288 5289 /* 5290 * If we couldn't evacuate the vdev, unwind. 5291 */ 5292 if (error) { 5293 metaslab_group_activate(mg); 5294 return (spa_vdev_exit(spa, NULL, txg, error)); 5295 } 5296 5297 /* 5298 * Clean up the vdev namespace. 5299 */ 5300 spa_vdev_remove_from_namespace(spa, vd); 5301 5302 } else if (vd != NULL) { 5303 /* 5304 * Normal vdevs cannot be removed (yet). 5305 */ 5306 error = SET_ERROR(ENOTSUP); 5307 } else { 5308 /* 5309 * There is no vdev of any kind with the specified guid. 5310 */ 5311 error = SET_ERROR(ENOENT); 5312 } 5313 5314 if (!locked) 5315 return (spa_vdev_exit(spa, NULL, txg, error)); 5316 5317 return (error); 5318 } 5319 5320 /* 5321 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5322 * currently spared, so we can detach it. 5323 */ 5324 static vdev_t * 5325 spa_vdev_resilver_done_hunt(vdev_t *vd) 5326 { 5327 vdev_t *newvd, *oldvd; 5328 5329 for (int c = 0; c < vd->vdev_children; c++) { 5330 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5331 if (oldvd != NULL) 5332 return (oldvd); 5333 } 5334 5335 /* 5336 * Check for a completed replacement. We always consider the first 5337 * vdev in the list to be the oldest vdev, and the last one to be 5338 * the newest (see spa_vdev_attach() for how that works). In 5339 * the case where the newest vdev is faulted, we will not automatically 5340 * remove it after a resilver completes. This is OK as it will require 5341 * user intervention to determine which disk the admin wishes to keep. 5342 */ 5343 if (vd->vdev_ops == &vdev_replacing_ops) { 5344 ASSERT(vd->vdev_children > 1); 5345 5346 newvd = vd->vdev_child[vd->vdev_children - 1]; 5347 oldvd = vd->vdev_child[0]; 5348 5349 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5350 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5351 !vdev_dtl_required(oldvd)) 5352 return (oldvd); 5353 } 5354 5355 /* 5356 * Check for a completed resilver with the 'unspare' flag set. 5357 */ 5358 if (vd->vdev_ops == &vdev_spare_ops) { 5359 vdev_t *first = vd->vdev_child[0]; 5360 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5361 5362 if (last->vdev_unspare) { 5363 oldvd = first; 5364 newvd = last; 5365 } else if (first->vdev_unspare) { 5366 oldvd = last; 5367 newvd = first; 5368 } else { 5369 oldvd = NULL; 5370 } 5371 5372 if (oldvd != NULL && 5373 vdev_dtl_empty(newvd, DTL_MISSING) && 5374 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5375 !vdev_dtl_required(oldvd)) 5376 return (oldvd); 5377 5378 /* 5379 * If there are more than two spares attached to a disk, 5380 * and those spares are not required, then we want to 5381 * attempt to free them up now so that they can be used 5382 * by other pools. Once we're back down to a single 5383 * disk+spare, we stop removing them. 5384 */ 5385 if (vd->vdev_children > 2) { 5386 newvd = vd->vdev_child[1]; 5387 5388 if (newvd->vdev_isspare && last->vdev_isspare && 5389 vdev_dtl_empty(last, DTL_MISSING) && 5390 vdev_dtl_empty(last, DTL_OUTAGE) && 5391 !vdev_dtl_required(newvd)) 5392 return (newvd); 5393 } 5394 } 5395 5396 return (NULL); 5397 } 5398 5399 static void 5400 spa_vdev_resilver_done(spa_t *spa) 5401 { 5402 vdev_t *vd, *pvd, *ppvd; 5403 uint64_t guid, sguid, pguid, ppguid; 5404 5405 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5406 5407 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5408 pvd = vd->vdev_parent; 5409 ppvd = pvd->vdev_parent; 5410 guid = vd->vdev_guid; 5411 pguid = pvd->vdev_guid; 5412 ppguid = ppvd->vdev_guid; 5413 sguid = 0; 5414 /* 5415 * If we have just finished replacing a hot spared device, then 5416 * we need to detach the parent's first child (the original hot 5417 * spare) as well. 5418 */ 5419 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5420 ppvd->vdev_children == 2) { 5421 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5422 sguid = ppvd->vdev_child[1]->vdev_guid; 5423 } 5424 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5425 5426 spa_config_exit(spa, SCL_ALL, FTAG); 5427 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5428 return; 5429 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5430 return; 5431 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5432 } 5433 5434 spa_config_exit(spa, SCL_ALL, FTAG); 5435 } 5436 5437 /* 5438 * Update the stored path or FRU for this vdev. 5439 */ 5440 int 5441 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5442 boolean_t ispath) 5443 { 5444 vdev_t *vd; 5445 boolean_t sync = B_FALSE; 5446 5447 ASSERT(spa_writeable(spa)); 5448 5449 spa_vdev_state_enter(spa, SCL_ALL); 5450 5451 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5452 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5453 5454 if (!vd->vdev_ops->vdev_op_leaf) 5455 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5456 5457 if (ispath) { 5458 if (strcmp(value, vd->vdev_path) != 0) { 5459 spa_strfree(vd->vdev_path); 5460 vd->vdev_path = spa_strdup(value); 5461 sync = B_TRUE; 5462 } 5463 } else { 5464 if (vd->vdev_fru == NULL) { 5465 vd->vdev_fru = spa_strdup(value); 5466 sync = B_TRUE; 5467 } else if (strcmp(value, vd->vdev_fru) != 0) { 5468 spa_strfree(vd->vdev_fru); 5469 vd->vdev_fru = spa_strdup(value); 5470 sync = B_TRUE; 5471 } 5472 } 5473 5474 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5475 } 5476 5477 int 5478 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5479 { 5480 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5481 } 5482 5483 int 5484 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5485 { 5486 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5487 } 5488 5489 /* 5490 * ========================================================================== 5491 * SPA Scanning 5492 * ========================================================================== 5493 */ 5494 5495 int 5496 spa_scan_stop(spa_t *spa) 5497 { 5498 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5499 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5500 return (SET_ERROR(EBUSY)); 5501 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5502 } 5503 5504 int 5505 spa_scan(spa_t *spa, pool_scan_func_t func) 5506 { 5507 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5508 5509 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5510 return (SET_ERROR(ENOTSUP)); 5511 5512 /* 5513 * If a resilver was requested, but there is no DTL on a 5514 * writeable leaf device, we have nothing to do. 5515 */ 5516 if (func == POOL_SCAN_RESILVER && 5517 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5518 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5519 return (0); 5520 } 5521 5522 return (dsl_scan(spa->spa_dsl_pool, func)); 5523 } 5524 5525 /* 5526 * ========================================================================== 5527 * SPA async task processing 5528 * ========================================================================== 5529 */ 5530 5531 static void 5532 spa_async_remove(spa_t *spa, vdev_t *vd) 5533 { 5534 if (vd->vdev_remove_wanted) { 5535 vd->vdev_remove_wanted = B_FALSE; 5536 vd->vdev_delayed_close = B_FALSE; 5537 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5538 5539 /* 5540 * We want to clear the stats, but we don't want to do a full 5541 * vdev_clear() as that will cause us to throw away 5542 * degraded/faulted state as well as attempt to reopen the 5543 * device, all of which is a waste. 5544 */ 5545 vd->vdev_stat.vs_read_errors = 0; 5546 vd->vdev_stat.vs_write_errors = 0; 5547 vd->vdev_stat.vs_checksum_errors = 0; 5548 5549 vdev_state_dirty(vd->vdev_top); 5550 } 5551 5552 for (int c = 0; c < vd->vdev_children; c++) 5553 spa_async_remove(spa, vd->vdev_child[c]); 5554 } 5555 5556 static void 5557 spa_async_probe(spa_t *spa, vdev_t *vd) 5558 { 5559 if (vd->vdev_probe_wanted) { 5560 vd->vdev_probe_wanted = B_FALSE; 5561 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5562 } 5563 5564 for (int c = 0; c < vd->vdev_children; c++) 5565 spa_async_probe(spa, vd->vdev_child[c]); 5566 } 5567 5568 static void 5569 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5570 { 5571 sysevent_id_t eid; 5572 nvlist_t *attr; 5573 char *physpath; 5574 5575 if (!spa->spa_autoexpand) 5576 return; 5577 5578 for (int c = 0; c < vd->vdev_children; c++) { 5579 vdev_t *cvd = vd->vdev_child[c]; 5580 spa_async_autoexpand(spa, cvd); 5581 } 5582 5583 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5584 return; 5585 5586 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5587 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5588 5589 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5590 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5591 5592 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5593 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5594 5595 nvlist_free(attr); 5596 kmem_free(physpath, MAXPATHLEN); 5597 } 5598 5599 static void 5600 spa_async_thread(spa_t *spa) 5601 { 5602 int tasks; 5603 5604 ASSERT(spa->spa_sync_on); 5605 5606 mutex_enter(&spa->spa_async_lock); 5607 tasks = spa->spa_async_tasks; 5608 spa->spa_async_tasks = 0; 5609 mutex_exit(&spa->spa_async_lock); 5610 5611 /* 5612 * See if the config needs to be updated. 5613 */ 5614 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5615 uint64_t old_space, new_space; 5616 5617 mutex_enter(&spa_namespace_lock); 5618 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5619 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5620 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5621 mutex_exit(&spa_namespace_lock); 5622 5623 /* 5624 * If the pool grew as a result of the config update, 5625 * then log an internal history event. 5626 */ 5627 if (new_space != old_space) { 5628 spa_history_log_internal(spa, "vdev online", NULL, 5629 "pool '%s' size: %llu(+%llu)", 5630 spa_name(spa), new_space, new_space - old_space); 5631 } 5632 } 5633 5634 /* 5635 * See if any devices need to be marked REMOVED. 5636 */ 5637 if (tasks & SPA_ASYNC_REMOVE) { 5638 spa_vdev_state_enter(spa, SCL_NONE); 5639 spa_async_remove(spa, spa->spa_root_vdev); 5640 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5641 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5642 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5643 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5644 (void) spa_vdev_state_exit(spa, NULL, 0); 5645 } 5646 5647 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5648 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5649 spa_async_autoexpand(spa, spa->spa_root_vdev); 5650 spa_config_exit(spa, SCL_CONFIG, FTAG); 5651 } 5652 5653 /* 5654 * See if any devices need to be probed. 5655 */ 5656 if (tasks & SPA_ASYNC_PROBE) { 5657 spa_vdev_state_enter(spa, SCL_NONE); 5658 spa_async_probe(spa, spa->spa_root_vdev); 5659 (void) spa_vdev_state_exit(spa, NULL, 0); 5660 } 5661 5662 /* 5663 * If any devices are done replacing, detach them. 5664 */ 5665 if (tasks & SPA_ASYNC_RESILVER_DONE) 5666 spa_vdev_resilver_done(spa); 5667 5668 /* 5669 * Kick off a resilver. 5670 */ 5671 if (tasks & SPA_ASYNC_RESILVER) 5672 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5673 5674 /* 5675 * Let the world know that we're done. 5676 */ 5677 mutex_enter(&spa->spa_async_lock); 5678 spa->spa_async_thread = NULL; 5679 cv_broadcast(&spa->spa_async_cv); 5680 mutex_exit(&spa->spa_async_lock); 5681 thread_exit(); 5682 } 5683 5684 void 5685 spa_async_suspend(spa_t *spa) 5686 { 5687 mutex_enter(&spa->spa_async_lock); 5688 spa->spa_async_suspended++; 5689 while (spa->spa_async_thread != NULL) 5690 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5691 mutex_exit(&spa->spa_async_lock); 5692 } 5693 5694 void 5695 spa_async_resume(spa_t *spa) 5696 { 5697 mutex_enter(&spa->spa_async_lock); 5698 ASSERT(spa->spa_async_suspended != 0); 5699 spa->spa_async_suspended--; 5700 mutex_exit(&spa->spa_async_lock); 5701 } 5702 5703 static boolean_t 5704 spa_async_tasks_pending(spa_t *spa) 5705 { 5706 uint_t non_config_tasks; 5707 uint_t config_task; 5708 boolean_t config_task_suspended; 5709 5710 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5711 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5712 if (spa->spa_ccw_fail_time == 0) { 5713 config_task_suspended = B_FALSE; 5714 } else { 5715 config_task_suspended = 5716 (gethrtime() - spa->spa_ccw_fail_time) < 5717 (zfs_ccw_retry_interval * NANOSEC); 5718 } 5719 5720 return (non_config_tasks || (config_task && !config_task_suspended)); 5721 } 5722 5723 static void 5724 spa_async_dispatch(spa_t *spa) 5725 { 5726 mutex_enter(&spa->spa_async_lock); 5727 if (spa_async_tasks_pending(spa) && 5728 !spa->spa_async_suspended && 5729 spa->spa_async_thread == NULL && 5730 rootdir != NULL) 5731 spa->spa_async_thread = thread_create(NULL, 0, 5732 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5733 mutex_exit(&spa->spa_async_lock); 5734 } 5735 5736 void 5737 spa_async_request(spa_t *spa, int task) 5738 { 5739 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5740 mutex_enter(&spa->spa_async_lock); 5741 spa->spa_async_tasks |= task; 5742 mutex_exit(&spa->spa_async_lock); 5743 } 5744 5745 /* 5746 * ========================================================================== 5747 * SPA syncing routines 5748 * ========================================================================== 5749 */ 5750 5751 static int 5752 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5753 { 5754 bpobj_t *bpo = arg; 5755 bpobj_enqueue(bpo, bp, tx); 5756 return (0); 5757 } 5758 5759 static int 5760 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5761 { 5762 zio_t *zio = arg; 5763 5764 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5765 zio->io_flags)); 5766 return (0); 5767 } 5768 5769 /* 5770 * Note: this simple function is not inlined to make it easier to dtrace the 5771 * amount of time spent syncing frees. 5772 */ 5773 static void 5774 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5775 { 5776 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5777 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5778 VERIFY(zio_wait(zio) == 0); 5779 } 5780 5781 /* 5782 * Note: this simple function is not inlined to make it easier to dtrace the 5783 * amount of time spent syncing deferred frees. 5784 */ 5785 static void 5786 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5787 { 5788 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5789 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5790 spa_free_sync_cb, zio, tx), ==, 0); 5791 VERIFY0(zio_wait(zio)); 5792 } 5793 5794 5795 static void 5796 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5797 { 5798 char *packed = NULL; 5799 size_t bufsize; 5800 size_t nvsize = 0; 5801 dmu_buf_t *db; 5802 5803 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5804 5805 /* 5806 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5807 * information. This avoids the dmu_buf_will_dirty() path and 5808 * saves us a pre-read to get data we don't actually care about. 5809 */ 5810 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5811 packed = kmem_alloc(bufsize, KM_SLEEP); 5812 5813 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5814 KM_SLEEP) == 0); 5815 bzero(packed + nvsize, bufsize - nvsize); 5816 5817 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5818 5819 kmem_free(packed, bufsize); 5820 5821 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5822 dmu_buf_will_dirty(db, tx); 5823 *(uint64_t *)db->db_data = nvsize; 5824 dmu_buf_rele(db, FTAG); 5825 } 5826 5827 static void 5828 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5829 const char *config, const char *entry) 5830 { 5831 nvlist_t *nvroot; 5832 nvlist_t **list; 5833 int i; 5834 5835 if (!sav->sav_sync) 5836 return; 5837 5838 /* 5839 * Update the MOS nvlist describing the list of available devices. 5840 * spa_validate_aux() will have already made sure this nvlist is 5841 * valid and the vdevs are labeled appropriately. 5842 */ 5843 if (sav->sav_object == 0) { 5844 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5845 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5846 sizeof (uint64_t), tx); 5847 VERIFY(zap_update(spa->spa_meta_objset, 5848 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5849 &sav->sav_object, tx) == 0); 5850 } 5851 5852 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5853 if (sav->sav_count == 0) { 5854 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5855 } else { 5856 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5857 for (i = 0; i < sav->sav_count; i++) 5858 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5859 B_FALSE, VDEV_CONFIG_L2CACHE); 5860 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5861 sav->sav_count) == 0); 5862 for (i = 0; i < sav->sav_count; i++) 5863 nvlist_free(list[i]); 5864 kmem_free(list, sav->sav_count * sizeof (void *)); 5865 } 5866 5867 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5868 nvlist_free(nvroot); 5869 5870 sav->sav_sync = B_FALSE; 5871 } 5872 5873 static void 5874 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5875 { 5876 nvlist_t *config; 5877 5878 if (list_is_empty(&spa->spa_config_dirty_list)) 5879 return; 5880 5881 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5882 5883 config = spa_config_generate(spa, spa->spa_root_vdev, 5884 dmu_tx_get_txg(tx), B_FALSE); 5885 5886 /* 5887 * If we're upgrading the spa version then make sure that 5888 * the config object gets updated with the correct version. 5889 */ 5890 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5891 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5892 spa->spa_uberblock.ub_version); 5893 5894 spa_config_exit(spa, SCL_STATE, FTAG); 5895 5896 if (spa->spa_config_syncing) 5897 nvlist_free(spa->spa_config_syncing); 5898 spa->spa_config_syncing = config; 5899 5900 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5901 } 5902 5903 static void 5904 spa_sync_version(void *arg, dmu_tx_t *tx) 5905 { 5906 uint64_t *versionp = arg; 5907 uint64_t version = *versionp; 5908 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5909 5910 /* 5911 * Setting the version is special cased when first creating the pool. 5912 */ 5913 ASSERT(tx->tx_txg != TXG_INITIAL); 5914 5915 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5916 ASSERT(version >= spa_version(spa)); 5917 5918 spa->spa_uberblock.ub_version = version; 5919 vdev_config_dirty(spa->spa_root_vdev); 5920 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5921 } 5922 5923 /* 5924 * Set zpool properties. 5925 */ 5926 static void 5927 spa_sync_props(void *arg, dmu_tx_t *tx) 5928 { 5929 nvlist_t *nvp = arg; 5930 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5931 objset_t *mos = spa->spa_meta_objset; 5932 nvpair_t *elem = NULL; 5933 5934 mutex_enter(&spa->spa_props_lock); 5935 5936 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5937 uint64_t intval; 5938 char *strval, *fname; 5939 zpool_prop_t prop; 5940 const char *propname; 5941 zprop_type_t proptype; 5942 spa_feature_t fid; 5943 5944 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5945 case ZPROP_INVAL: 5946 /* 5947 * We checked this earlier in spa_prop_validate(). 5948 */ 5949 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5950 5951 fname = strchr(nvpair_name(elem), '@') + 1; 5952 VERIFY0(zfeature_lookup_name(fname, &fid)); 5953 5954 spa_feature_enable(spa, fid, tx); 5955 spa_history_log_internal(spa, "set", tx, 5956 "%s=enabled", nvpair_name(elem)); 5957 break; 5958 5959 case ZPOOL_PROP_VERSION: 5960 intval = fnvpair_value_uint64(elem); 5961 /* 5962 * The version is synced seperatly before other 5963 * properties and should be correct by now. 5964 */ 5965 ASSERT3U(spa_version(spa), >=, intval); 5966 break; 5967 5968 case ZPOOL_PROP_ALTROOT: 5969 /* 5970 * 'altroot' is a non-persistent property. It should 5971 * have been set temporarily at creation or import time. 5972 */ 5973 ASSERT(spa->spa_root != NULL); 5974 break; 5975 5976 case ZPOOL_PROP_READONLY: 5977 case ZPOOL_PROP_CACHEFILE: 5978 /* 5979 * 'readonly' and 'cachefile' are also non-persisitent 5980 * properties. 5981 */ 5982 break; 5983 case ZPOOL_PROP_COMMENT: 5984 strval = fnvpair_value_string(elem); 5985 if (spa->spa_comment != NULL) 5986 spa_strfree(spa->spa_comment); 5987 spa->spa_comment = spa_strdup(strval); 5988 /* 5989 * We need to dirty the configuration on all the vdevs 5990 * so that their labels get updated. It's unnecessary 5991 * to do this for pool creation since the vdev's 5992 * configuratoin has already been dirtied. 5993 */ 5994 if (tx->tx_txg != TXG_INITIAL) 5995 vdev_config_dirty(spa->spa_root_vdev); 5996 spa_history_log_internal(spa, "set", tx, 5997 "%s=%s", nvpair_name(elem), strval); 5998 break; 5999 default: 6000 /* 6001 * Set pool property values in the poolprops mos object. 6002 */ 6003 if (spa->spa_pool_props_object == 0) { 6004 spa->spa_pool_props_object = 6005 zap_create_link(mos, DMU_OT_POOL_PROPS, 6006 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6007 tx); 6008 } 6009 6010 /* normalize the property name */ 6011 propname = zpool_prop_to_name(prop); 6012 proptype = zpool_prop_get_type(prop); 6013 6014 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6015 ASSERT(proptype == PROP_TYPE_STRING); 6016 strval = fnvpair_value_string(elem); 6017 VERIFY0(zap_update(mos, 6018 spa->spa_pool_props_object, propname, 6019 1, strlen(strval) + 1, strval, tx)); 6020 spa_history_log_internal(spa, "set", tx, 6021 "%s=%s", nvpair_name(elem), strval); 6022 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6023 intval = fnvpair_value_uint64(elem); 6024 6025 if (proptype == PROP_TYPE_INDEX) { 6026 const char *unused; 6027 VERIFY0(zpool_prop_index_to_string( 6028 prop, intval, &unused)); 6029 } 6030 VERIFY0(zap_update(mos, 6031 spa->spa_pool_props_object, propname, 6032 8, 1, &intval, tx)); 6033 spa_history_log_internal(spa, "set", tx, 6034 "%s=%lld", nvpair_name(elem), intval); 6035 } else { 6036 ASSERT(0); /* not allowed */ 6037 } 6038 6039 switch (prop) { 6040 case ZPOOL_PROP_DELEGATION: 6041 spa->spa_delegation = intval; 6042 break; 6043 case ZPOOL_PROP_BOOTFS: 6044 spa->spa_bootfs = intval; 6045 break; 6046 case ZPOOL_PROP_FAILUREMODE: 6047 spa->spa_failmode = intval; 6048 break; 6049 case ZPOOL_PROP_AUTOEXPAND: 6050 spa->spa_autoexpand = intval; 6051 if (tx->tx_txg != TXG_INITIAL) 6052 spa_async_request(spa, 6053 SPA_ASYNC_AUTOEXPAND); 6054 break; 6055 case ZPOOL_PROP_DEDUPDITTO: 6056 spa->spa_dedup_ditto = intval; 6057 break; 6058 default: 6059 break; 6060 } 6061 } 6062 6063 } 6064 6065 mutex_exit(&spa->spa_props_lock); 6066 } 6067 6068 /* 6069 * Perform one-time upgrade on-disk changes. spa_version() does not 6070 * reflect the new version this txg, so there must be no changes this 6071 * txg to anything that the upgrade code depends on after it executes. 6072 * Therefore this must be called after dsl_pool_sync() does the sync 6073 * tasks. 6074 */ 6075 static void 6076 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6077 { 6078 dsl_pool_t *dp = spa->spa_dsl_pool; 6079 6080 ASSERT(spa->spa_sync_pass == 1); 6081 6082 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6083 6084 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6085 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6086 dsl_pool_create_origin(dp, tx); 6087 6088 /* Keeping the origin open increases spa_minref */ 6089 spa->spa_minref += 3; 6090 } 6091 6092 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6093 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6094 dsl_pool_upgrade_clones(dp, tx); 6095 } 6096 6097 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6098 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6099 dsl_pool_upgrade_dir_clones(dp, tx); 6100 6101 /* Keeping the freedir open increases spa_minref */ 6102 spa->spa_minref += 3; 6103 } 6104 6105 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6106 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6107 spa_feature_create_zap_objects(spa, tx); 6108 } 6109 6110 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6111 boolean_t lz4_en = spa_feature_is_enabled(spa, 6112 SPA_FEATURE_LZ4_COMPRESS); 6113 boolean_t lz4_ac = spa_feature_is_active(spa, 6114 SPA_FEATURE_LZ4_COMPRESS); 6115 6116 if (lz4_en && !lz4_ac) 6117 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6118 } 6119 rrw_exit(&dp->dp_config_rwlock, FTAG); 6120 } 6121 6122 /* 6123 * Sync the specified transaction group. New blocks may be dirtied as 6124 * part of the process, so we iterate until it converges. 6125 */ 6126 void 6127 spa_sync(spa_t *spa, uint64_t txg) 6128 { 6129 dsl_pool_t *dp = spa->spa_dsl_pool; 6130 objset_t *mos = spa->spa_meta_objset; 6131 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6132 vdev_t *rvd = spa->spa_root_vdev; 6133 vdev_t *vd; 6134 dmu_tx_t *tx; 6135 int error; 6136 6137 VERIFY(spa_writeable(spa)); 6138 6139 /* 6140 * Lock out configuration changes. 6141 */ 6142 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6143 6144 spa->spa_syncing_txg = txg; 6145 spa->spa_sync_pass = 0; 6146 6147 /* 6148 * If there are any pending vdev state changes, convert them 6149 * into config changes that go out with this transaction group. 6150 */ 6151 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6152 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6153 /* 6154 * We need the write lock here because, for aux vdevs, 6155 * calling vdev_config_dirty() modifies sav_config. 6156 * This is ugly and will become unnecessary when we 6157 * eliminate the aux vdev wart by integrating all vdevs 6158 * into the root vdev tree. 6159 */ 6160 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6161 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6162 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6163 vdev_state_clean(vd); 6164 vdev_config_dirty(vd); 6165 } 6166 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6167 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6168 } 6169 spa_config_exit(spa, SCL_STATE, FTAG); 6170 6171 tx = dmu_tx_create_assigned(dp, txg); 6172 6173 spa->spa_sync_starttime = gethrtime(); 6174 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6175 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6176 6177 /* 6178 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6179 * set spa_deflate if we have no raid-z vdevs. 6180 */ 6181 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6182 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6183 int i; 6184 6185 for (i = 0; i < rvd->vdev_children; i++) { 6186 vd = rvd->vdev_child[i]; 6187 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6188 break; 6189 } 6190 if (i == rvd->vdev_children) { 6191 spa->spa_deflate = TRUE; 6192 VERIFY(0 == zap_add(spa->spa_meta_objset, 6193 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6194 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6195 } 6196 } 6197 6198 /* 6199 * If anything has changed in this txg, or if someone is waiting 6200 * for this txg to sync (eg, spa_vdev_remove()), push the 6201 * deferred frees from the previous txg. If not, leave them 6202 * alone so that we don't generate work on an otherwise idle 6203 * system. 6204 */ 6205 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6206 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6207 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6208 ((dsl_scan_active(dp->dp_scan) || 6209 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6210 spa_sync_deferred_frees(spa, tx); 6211 } 6212 6213 /* 6214 * Iterate to convergence. 6215 */ 6216 do { 6217 int pass = ++spa->spa_sync_pass; 6218 6219 spa_sync_config_object(spa, tx); 6220 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6221 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6222 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6223 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6224 spa_errlog_sync(spa, txg); 6225 dsl_pool_sync(dp, txg); 6226 6227 if (pass < zfs_sync_pass_deferred_free) { 6228 spa_sync_frees(spa, free_bpl, tx); 6229 } else { 6230 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6231 &spa->spa_deferred_bpobj, tx); 6232 } 6233 6234 ddt_sync(spa, txg); 6235 dsl_scan_sync(dp, tx); 6236 6237 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6238 vdev_sync(vd, txg); 6239 6240 if (pass == 1) 6241 spa_sync_upgrades(spa, tx); 6242 6243 } while (dmu_objset_is_dirty(mos, txg)); 6244 6245 /* 6246 * Rewrite the vdev configuration (which includes the uberblock) 6247 * to commit the transaction group. 6248 * 6249 * If there are no dirty vdevs, we sync the uberblock to a few 6250 * random top-level vdevs that are known to be visible in the 6251 * config cache (see spa_vdev_add() for a complete description). 6252 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6253 */ 6254 for (;;) { 6255 /* 6256 * We hold SCL_STATE to prevent vdev open/close/etc. 6257 * while we're attempting to write the vdev labels. 6258 */ 6259 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6260 6261 if (list_is_empty(&spa->spa_config_dirty_list)) { 6262 vdev_t *svd[SPA_DVAS_PER_BP]; 6263 int svdcount = 0; 6264 int children = rvd->vdev_children; 6265 int c0 = spa_get_random(children); 6266 6267 for (int c = 0; c < children; c++) { 6268 vd = rvd->vdev_child[(c0 + c) % children]; 6269 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6270 continue; 6271 svd[svdcount++] = vd; 6272 if (svdcount == SPA_DVAS_PER_BP) 6273 break; 6274 } 6275 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6276 if (error != 0) 6277 error = vdev_config_sync(svd, svdcount, txg, 6278 B_TRUE); 6279 } else { 6280 error = vdev_config_sync(rvd->vdev_child, 6281 rvd->vdev_children, txg, B_FALSE); 6282 if (error != 0) 6283 error = vdev_config_sync(rvd->vdev_child, 6284 rvd->vdev_children, txg, B_TRUE); 6285 } 6286 6287 if (error == 0) 6288 spa->spa_last_synced_guid = rvd->vdev_guid; 6289 6290 spa_config_exit(spa, SCL_STATE, FTAG); 6291 6292 if (error == 0) 6293 break; 6294 zio_suspend(spa, NULL); 6295 zio_resume_wait(spa); 6296 } 6297 dmu_tx_commit(tx); 6298 6299 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6300 6301 /* 6302 * Clear the dirty config list. 6303 */ 6304 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6305 vdev_config_clean(vd); 6306 6307 /* 6308 * Now that the new config has synced transactionally, 6309 * let it become visible to the config cache. 6310 */ 6311 if (spa->spa_config_syncing != NULL) { 6312 spa_config_set(spa, spa->spa_config_syncing); 6313 spa->spa_config_txg = txg; 6314 spa->spa_config_syncing = NULL; 6315 } 6316 6317 spa->spa_ubsync = spa->spa_uberblock; 6318 6319 dsl_pool_sync_done(dp, txg); 6320 6321 /* 6322 * Update usable space statistics. 6323 */ 6324 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6325 vdev_sync_done(vd, txg); 6326 6327 spa_update_dspace(spa); 6328 6329 /* 6330 * It had better be the case that we didn't dirty anything 6331 * since vdev_config_sync(). 6332 */ 6333 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6334 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6335 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6336 6337 spa->spa_sync_pass = 0; 6338 6339 spa_config_exit(spa, SCL_CONFIG, FTAG); 6340 6341 spa_handle_ignored_writes(spa); 6342 6343 /* 6344 * If any async tasks have been requested, kick them off. 6345 */ 6346 spa_async_dispatch(spa); 6347 } 6348 6349 /* 6350 * Sync all pools. We don't want to hold the namespace lock across these 6351 * operations, so we take a reference on the spa_t and drop the lock during the 6352 * sync. 6353 */ 6354 void 6355 spa_sync_allpools(void) 6356 { 6357 spa_t *spa = NULL; 6358 mutex_enter(&spa_namespace_lock); 6359 while ((spa = spa_next(spa)) != NULL) { 6360 if (spa_state(spa) != POOL_STATE_ACTIVE || 6361 !spa_writeable(spa) || spa_suspended(spa)) 6362 continue; 6363 spa_open_ref(spa, FTAG); 6364 mutex_exit(&spa_namespace_lock); 6365 txg_wait_synced(spa_get_dsl(spa), 0); 6366 mutex_enter(&spa_namespace_lock); 6367 spa_close(spa, FTAG); 6368 } 6369 mutex_exit(&spa_namespace_lock); 6370 } 6371 6372 /* 6373 * ========================================================================== 6374 * Miscellaneous routines 6375 * ========================================================================== 6376 */ 6377 6378 /* 6379 * Remove all pools in the system. 6380 */ 6381 void 6382 spa_evict_all(void) 6383 { 6384 spa_t *spa; 6385 6386 /* 6387 * Remove all cached state. All pools should be closed now, 6388 * so every spa in the AVL tree should be unreferenced. 6389 */ 6390 mutex_enter(&spa_namespace_lock); 6391 while ((spa = spa_next(NULL)) != NULL) { 6392 /* 6393 * Stop async tasks. The async thread may need to detach 6394 * a device that's been replaced, which requires grabbing 6395 * spa_namespace_lock, so we must drop it here. 6396 */ 6397 spa_open_ref(spa, FTAG); 6398 mutex_exit(&spa_namespace_lock); 6399 spa_async_suspend(spa); 6400 mutex_enter(&spa_namespace_lock); 6401 spa_close(spa, FTAG); 6402 6403 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6404 spa_unload(spa); 6405 spa_deactivate(spa); 6406 } 6407 spa_remove(spa); 6408 } 6409 mutex_exit(&spa_namespace_lock); 6410 } 6411 6412 vdev_t * 6413 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6414 { 6415 vdev_t *vd; 6416 int i; 6417 6418 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6419 return (vd); 6420 6421 if (aux) { 6422 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6423 vd = spa->spa_l2cache.sav_vdevs[i]; 6424 if (vd->vdev_guid == guid) 6425 return (vd); 6426 } 6427 6428 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6429 vd = spa->spa_spares.sav_vdevs[i]; 6430 if (vd->vdev_guid == guid) 6431 return (vd); 6432 } 6433 } 6434 6435 return (NULL); 6436 } 6437 6438 void 6439 spa_upgrade(spa_t *spa, uint64_t version) 6440 { 6441 ASSERT(spa_writeable(spa)); 6442 6443 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6444 6445 /* 6446 * This should only be called for a non-faulted pool, and since a 6447 * future version would result in an unopenable pool, this shouldn't be 6448 * possible. 6449 */ 6450 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6451 ASSERT(version >= spa->spa_uberblock.ub_version); 6452 6453 spa->spa_uberblock.ub_version = version; 6454 vdev_config_dirty(spa->spa_root_vdev); 6455 6456 spa_config_exit(spa, SCL_ALL, FTAG); 6457 6458 txg_wait_synced(spa_get_dsl(spa), 0); 6459 } 6460 6461 boolean_t 6462 spa_has_spare(spa_t *spa, uint64_t guid) 6463 { 6464 int i; 6465 uint64_t spareguid; 6466 spa_aux_vdev_t *sav = &spa->spa_spares; 6467 6468 for (i = 0; i < sav->sav_count; i++) 6469 if (sav->sav_vdevs[i]->vdev_guid == guid) 6470 return (B_TRUE); 6471 6472 for (i = 0; i < sav->sav_npending; i++) { 6473 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6474 &spareguid) == 0 && spareguid == guid) 6475 return (B_TRUE); 6476 } 6477 6478 return (B_FALSE); 6479 } 6480 6481 /* 6482 * Check if a pool has an active shared spare device. 6483 * Note: reference count of an active spare is 2, as a spare and as a replace 6484 */ 6485 static boolean_t 6486 spa_has_active_shared_spare(spa_t *spa) 6487 { 6488 int i, refcnt; 6489 uint64_t pool; 6490 spa_aux_vdev_t *sav = &spa->spa_spares; 6491 6492 for (i = 0; i < sav->sav_count; i++) { 6493 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6494 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6495 refcnt > 2) 6496 return (B_TRUE); 6497 } 6498 6499 return (B_FALSE); 6500 } 6501 6502 /* 6503 * Post a sysevent corresponding to the given event. The 'name' must be one of 6504 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6505 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6506 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6507 * or zdb as real changes. 6508 */ 6509 void 6510 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6511 { 6512 #ifdef _KERNEL 6513 sysevent_t *ev; 6514 sysevent_attr_list_t *attr = NULL; 6515 sysevent_value_t value; 6516 sysevent_id_t eid; 6517 6518 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6519 SE_SLEEP); 6520 6521 value.value_type = SE_DATA_TYPE_STRING; 6522 value.value.sv_string = spa_name(spa); 6523 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6524 goto done; 6525 6526 value.value_type = SE_DATA_TYPE_UINT64; 6527 value.value.sv_uint64 = spa_guid(spa); 6528 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6529 goto done; 6530 6531 if (vd) { 6532 value.value_type = SE_DATA_TYPE_UINT64; 6533 value.value.sv_uint64 = vd->vdev_guid; 6534 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6535 SE_SLEEP) != 0) 6536 goto done; 6537 6538 if (vd->vdev_path) { 6539 value.value_type = SE_DATA_TYPE_STRING; 6540 value.value.sv_string = vd->vdev_path; 6541 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6542 &value, SE_SLEEP) != 0) 6543 goto done; 6544 } 6545 } 6546 6547 if (sysevent_attach_attributes(ev, attr) != 0) 6548 goto done; 6549 attr = NULL; 6550 6551 (void) log_sysevent(ev, SE_SLEEP, &eid); 6552 6553 done: 6554 if (attr) 6555 sysevent_free_attr(attr); 6556 sysevent_free(ev); 6557 #endif 6558 }