1 /*
2 * CDDL HEADER START
3 *
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
7 *
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
12 *
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
18 *
19 * CDDL HEADER END
20 */
21
22 /*
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved.
26 */
27
28 /*
29 * SPA: Storage Pool Allocator
30 *
31 * This file contains all the routines used when modifying on-disk SPA state.
32 * This includes opening, importing, destroying, exporting a pool, and syncing a
33 * pool.
34 */
35
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69
70 #ifdef _KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif /* _KERNEL */
78
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81
82 /*
83 * The interval, in seconds, at which failed configuration cache file writes
84 * should be retried.
85 */
86 static int zfs_ccw_retry_interval = 300;
87
88 typedef enum zti_modes {
89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */
91 ZTI_MODE_NULL, /* don't create a taskq */
92 ZTI_NMODES
93 } zti_modes_t;
94
95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 }
97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
98
99 #define ZTI_N(n) ZTI_P(n, 1)
100 #define ZTI_ONE ZTI_N(1)
101
102 typedef struct zio_taskq_info {
103 zti_modes_t zti_mode;
104 uint_t zti_value;
105 uint_t zti_count;
106 } zio_taskq_info_t;
107
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 "issue", "issue_high", "intr", "intr_high"
110 };
111
112 /*
113 * This table defines the taskq settings for each ZFS I/O type. When
114 * initializing a pool, we use this table to create an appropriately sized
115 * taskq. Some operations are low volume and therefore have a small, static
116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117 * macros. Other operations process a large amount of data; the ZTI_BATCH
118 * macro causes us to create a taskq oriented for throughput. Some operations
119 * are so high frequency and short-lived that the taskq itself can become a a
120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121 * additional degree of parallelism specified by the number of threads per-
122 * taskq and the number of taskqs; when dispatching an event in this case, the
123 * particular taskq is chosen at random.
124 *
125 * The different taskq priorities are to handle the different contexts (issue
126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127 * need to be handled with minimum delay.
128 */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */
133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */
134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */
137 };
138
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144 char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146
147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */
148 id_t zio_taskq_psrset_bind = PS_NONE;
149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
150 uint_t zio_taskq_basedc = 80; /* base duty cycle */
151
152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */
153 extern int zfs_sync_pass_deferred_free;
154
155 /*
156 * This (illegal) pool name is used when temporarily importing a spa_t in order
157 * to get the vdev stats associated with the imported devices.
158 */
159 #define TRYIMPORT_NAME "$import"
160
161 /*
162 * ==========================================================================
163 * SPA properties routines
164 * ==========================================================================
165 */
166
167 /*
168 * Add a (source=src, propname=propval) list to an nvlist.
169 */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172 uint64_t intval, zprop_source_t src)
173 {
174 const char *propname = zpool_prop_to_name(prop);
175 nvlist_t *propval;
176
177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179
180 if (strval != NULL)
181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 else
183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184
185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 nvlist_free(propval);
187 }
188
189 /*
190 * Get property values from the spa configuration.
191 */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 vdev_t *rvd = spa->spa_root_vdev;
196 dsl_pool_t *pool = spa->spa_dsl_pool;
197 uint64_t size;
198 uint64_t alloc;
199 uint64_t space;
200 uint64_t cap, version;
201 zprop_source_t src = ZPROP_SRC_NONE;
202 spa_config_dirent_t *dp;
203
204 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
205
206 if (rvd != NULL) {
207 alloc = metaslab_class_get_alloc(spa_normal_class(spa));
208 size = metaslab_class_get_space(spa_normal_class(spa));
209 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
210 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
211 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
212 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
213 size - alloc, src);
214
215 space = 0;
216 for (int c = 0; c < rvd->vdev_children; c++) {
217 vdev_t *tvd = rvd->vdev_child[c];
218 space += tvd->vdev_max_asize - tvd->vdev_asize;
219 }
220 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space,
221 src);
222
223 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
224 (spa_mode(spa) == FREAD), src);
225
226 cap = (size == 0) ? 0 : (alloc * 100 / size);
227 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
228
229 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
230 ddt_get_pool_dedup_ratio(spa), src);
231
232 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
233 rvd->vdev_state, src);
234
235 version = spa_version(spa);
236 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
237 src = ZPROP_SRC_DEFAULT;
238 else
239 src = ZPROP_SRC_LOCAL;
240 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
241 }
242
243 if (pool != NULL) {
244 dsl_dir_t *freedir = pool->dp_free_dir;
245
246 /*
247 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
248 * when opening pools before this version freedir will be NULL.
249 */
250 if (freedir != NULL) {
251 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
252 freedir->dd_phys->dd_used_bytes, src);
253 } else {
254 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
255 NULL, 0, src);
256 }
257 }
258
259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260
261 if (spa->spa_comment != NULL) {
262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 0, ZPROP_SRC_LOCAL);
264 }
265
266 if (spa->spa_root != NULL)
267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 0, ZPROP_SRC_LOCAL);
269
270 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 if (dp->scd_path == NULL) {
272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 "none", 0, ZPROP_SRC_LOCAL);
274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 }
278 }
279 }
280
281 /*
282 * Get zpool property values.
283 */
284 int
285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 {
287 objset_t *mos = spa->spa_meta_objset;
288 zap_cursor_t zc;
289 zap_attribute_t za;
290 int err;
291
292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293
294 mutex_enter(&spa->spa_props_lock);
295
296 /*
297 * Get properties from the spa config.
298 */
299 spa_prop_get_config(spa, nvp);
300
301 /* If no pool property object, no more prop to get. */
302 if (mos == NULL || spa->spa_pool_props_object == 0) {
303 mutex_exit(&spa->spa_props_lock);
304 return (0);
305 }
306
307 /*
308 * Get properties from the MOS pool property object.
309 */
310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 zap_cursor_advance(&zc)) {
313 uint64_t intval = 0;
314 char *strval = NULL;
315 zprop_source_t src = ZPROP_SRC_DEFAULT;
316 zpool_prop_t prop;
317
318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 continue;
320
321 switch (za.za_integer_length) {
322 case 8:
323 /* integer property */
324 if (za.za_first_integer !=
325 zpool_prop_default_numeric(prop))
326 src = ZPROP_SRC_LOCAL;
327
328 if (prop == ZPOOL_PROP_BOOTFS) {
329 dsl_pool_t *dp;
330 dsl_dataset_t *ds = NULL;
331
332 dp = spa_get_dsl(spa);
333 dsl_pool_config_enter(dp, FTAG);
334 if (err = dsl_dataset_hold_obj(dp,
335 za.za_first_integer, FTAG, &ds)) {
336 dsl_pool_config_exit(dp, FTAG);
337 break;
338 }
339
340 strval = kmem_alloc(
341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 KM_SLEEP);
343 dsl_dataset_name(ds, strval);
344 dsl_dataset_rele(ds, FTAG);
345 dsl_pool_config_exit(dp, FTAG);
346 } else {
347 strval = NULL;
348 intval = za.za_first_integer;
349 }
350
351 spa_prop_add_list(*nvp, prop, strval, intval, src);
352
353 if (strval != NULL)
354 kmem_free(strval,
355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356
357 break;
358
359 case 1:
360 /* string property */
361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 err = zap_lookup(mos, spa->spa_pool_props_object,
363 za.za_name, 1, za.za_num_integers, strval);
364 if (err) {
365 kmem_free(strval, za.za_num_integers);
366 break;
367 }
368 spa_prop_add_list(*nvp, prop, strval, 0, src);
369 kmem_free(strval, za.za_num_integers);
370 break;
371
372 default:
373 break;
374 }
375 }
376 zap_cursor_fini(&zc);
377 mutex_exit(&spa->spa_props_lock);
378 out:
379 if (err && err != ENOENT) {
380 nvlist_free(*nvp);
381 *nvp = NULL;
382 return (err);
383 }
384
385 return (0);
386 }
387
388 /*
389 * Validate the given pool properties nvlist and modify the list
390 * for the property values to be set.
391 */
392 static int
393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 {
395 nvpair_t *elem;
396 int error = 0, reset_bootfs = 0;
397 uint64_t objnum = 0;
398 boolean_t has_feature = B_FALSE;
399
400 elem = NULL;
401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 uint64_t intval;
403 char *strval, *slash, *check, *fname;
404 const char *propname = nvpair_name(elem);
405 zpool_prop_t prop = zpool_name_to_prop(propname);
406
407 switch (prop) {
408 case ZPROP_INVAL:
409 if (!zpool_prop_feature(propname)) {
410 error = SET_ERROR(EINVAL);
411 break;
412 }
413
414 /*
415 * Sanitize the input.
416 */
417 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 error = SET_ERROR(EINVAL);
419 break;
420 }
421
422 if (nvpair_value_uint64(elem, &intval) != 0) {
423 error = SET_ERROR(EINVAL);
424 break;
425 }
426
427 if (intval != 0) {
428 error = SET_ERROR(EINVAL);
429 break;
430 }
431
432 fname = strchr(propname, '@') + 1;
433 if (zfeature_lookup_name(fname, NULL) != 0) {
434 error = SET_ERROR(EINVAL);
435 break;
436 }
437
438 has_feature = B_TRUE;
439 break;
440
441 case ZPOOL_PROP_VERSION:
442 error = nvpair_value_uint64(elem, &intval);
443 if (!error &&
444 (intval < spa_version(spa) ||
445 intval > SPA_VERSION_BEFORE_FEATURES ||
446 has_feature))
447 error = SET_ERROR(EINVAL);
448 break;
449
450 case ZPOOL_PROP_DELEGATION:
451 case ZPOOL_PROP_AUTOREPLACE:
452 case ZPOOL_PROP_LISTSNAPS:
453 case ZPOOL_PROP_AUTOEXPAND:
454 error = nvpair_value_uint64(elem, &intval);
455 if (!error && intval > 1)
456 error = SET_ERROR(EINVAL);
457 break;
458
459 case ZPOOL_PROP_BOOTFS:
460 /*
461 * If the pool version is less than SPA_VERSION_BOOTFS,
462 * or the pool is still being created (version == 0),
463 * the bootfs property cannot be set.
464 */
465 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 error = SET_ERROR(ENOTSUP);
467 break;
468 }
469
470 /*
471 * Make sure the vdev config is bootable
472 */
473 if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 error = SET_ERROR(ENOTSUP);
475 break;
476 }
477
478 reset_bootfs = 1;
479
480 error = nvpair_value_string(elem, &strval);
481
482 if (!error) {
483 objset_t *os;
484 uint64_t compress;
485
486 if (strval == NULL || strval[0] == '\0') {
487 objnum = zpool_prop_default_numeric(
488 ZPOOL_PROP_BOOTFS);
489 break;
490 }
491
492 if (error = dmu_objset_hold(strval, FTAG, &os))
493 break;
494
495 /* Must be ZPL and not gzip compressed. */
496
497 if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 error = SET_ERROR(ENOTSUP);
499 } else if ((error =
500 dsl_prop_get_int_ds(dmu_objset_ds(os),
501 zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 &compress)) == 0 &&
503 !BOOTFS_COMPRESS_VALID(compress)) {
504 error = SET_ERROR(ENOTSUP);
505 } else {
506 objnum = dmu_objset_id(os);
507 }
508 dmu_objset_rele(os, FTAG);
509 }
510 break;
511
512 case ZPOOL_PROP_FAILUREMODE:
513 error = nvpair_value_uint64(elem, &intval);
514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 intval > ZIO_FAILURE_MODE_PANIC))
516 error = SET_ERROR(EINVAL);
517
518 /*
519 * This is a special case which only occurs when
520 * the pool has completely failed. This allows
521 * the user to change the in-core failmode property
522 * without syncing it out to disk (I/Os might
523 * currently be blocked). We do this by returning
524 * EIO to the caller (spa_prop_set) to trick it
525 * into thinking we encountered a property validation
526 * error.
527 */
528 if (!error && spa_suspended(spa)) {
529 spa->spa_failmode = intval;
530 error = SET_ERROR(EIO);
531 }
532 break;
533
534 case ZPOOL_PROP_CACHEFILE:
535 if ((error = nvpair_value_string(elem, &strval)) != 0)
536 break;
537
538 if (strval[0] == '\0')
539 break;
540
541 if (strcmp(strval, "none") == 0)
542 break;
543
544 if (strval[0] != '/') {
545 error = SET_ERROR(EINVAL);
546 break;
547 }
548
549 slash = strrchr(strval, '/');
550 ASSERT(slash != NULL);
551
552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 strcmp(slash, "/..") == 0)
554 error = SET_ERROR(EINVAL);
555 break;
556
557 case ZPOOL_PROP_COMMENT:
558 if ((error = nvpair_value_string(elem, &strval)) != 0)
559 break;
560 for (check = strval; *check != '\0'; check++) {
561 /*
562 * The kernel doesn't have an easy isprint()
563 * check. For this kernel check, we merely
564 * check ASCII apart from DEL. Fix this if
565 * there is an easy-to-use kernel isprint().
566 */
567 if (*check >= 0x7f) {
568 error = SET_ERROR(EINVAL);
569 break;
570 }
571 check++;
572 }
573 if (strlen(strval) > ZPROP_MAX_COMMENT)
574 error = E2BIG;
575 break;
576
577 case ZPOOL_PROP_DEDUPDITTO:
578 if (spa_version(spa) < SPA_VERSION_DEDUP)
579 error = SET_ERROR(ENOTSUP);
580 else
581 error = nvpair_value_uint64(elem, &intval);
582 if (error == 0 &&
583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 error = SET_ERROR(EINVAL);
585 break;
586 }
587
588 if (error)
589 break;
590 }
591
592 if (!error && reset_bootfs) {
593 error = nvlist_remove(props,
594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595
596 if (!error) {
597 error = nvlist_add_uint64(props,
598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 }
600 }
601
602 return (error);
603 }
604
605 void
606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 {
608 char *cachefile;
609 spa_config_dirent_t *dp;
610
611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 &cachefile) != 0)
613 return;
614
615 dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 KM_SLEEP);
617
618 if (cachefile[0] == '\0')
619 dp->scd_path = spa_strdup(spa_config_path);
620 else if (strcmp(cachefile, "none") == 0)
621 dp->scd_path = NULL;
622 else
623 dp->scd_path = spa_strdup(cachefile);
624
625 list_insert_head(&spa->spa_config_list, dp);
626 if (need_sync)
627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 }
629
630 int
631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 {
633 int error;
634 nvpair_t *elem = NULL;
635 boolean_t need_sync = B_FALSE;
636
637 if ((error = spa_prop_validate(spa, nvp)) != 0)
638 return (error);
639
640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642
643 if (prop == ZPOOL_PROP_CACHEFILE ||
644 prop == ZPOOL_PROP_ALTROOT ||
645 prop == ZPOOL_PROP_READONLY)
646 continue;
647
648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 uint64_t ver;
650
651 if (prop == ZPOOL_PROP_VERSION) {
652 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 } else {
654 ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 ver = SPA_VERSION_FEATURES;
656 need_sync = B_TRUE;
657 }
658
659 /* Save time if the version is already set. */
660 if (ver == spa_version(spa))
661 continue;
662
663 /*
664 * In addition to the pool directory object, we might
665 * create the pool properties object, the features for
666 * read object, the features for write object, or the
667 * feature descriptions object.
668 */
669 error = dsl_sync_task(spa->spa_name, NULL,
670 spa_sync_version, &ver, 6);
671 if (error)
672 return (error);
673 continue;
674 }
675
676 need_sync = B_TRUE;
677 break;
678 }
679
680 if (need_sync) {
681 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
682 nvp, 6));
683 }
684
685 return (0);
686 }
687
688 /*
689 * If the bootfs property value is dsobj, clear it.
690 */
691 void
692 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
693 {
694 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
695 VERIFY(zap_remove(spa->spa_meta_objset,
696 spa->spa_pool_props_object,
697 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
698 spa->spa_bootfs = 0;
699 }
700 }
701
702 /*ARGSUSED*/
703 static int
704 spa_change_guid_check(void *arg, dmu_tx_t *tx)
705 {
706 uint64_t *newguid = arg;
707 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
708 vdev_t *rvd = spa->spa_root_vdev;
709 uint64_t vdev_state;
710
711 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
712 vdev_state = rvd->vdev_state;
713 spa_config_exit(spa, SCL_STATE, FTAG);
714
715 if (vdev_state != VDEV_STATE_HEALTHY)
716 return (SET_ERROR(ENXIO));
717
718 ASSERT3U(spa_guid(spa), !=, *newguid);
719
720 return (0);
721 }
722
723 static void
724 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
725 {
726 uint64_t *newguid = arg;
727 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
728 uint64_t oldguid;
729 vdev_t *rvd = spa->spa_root_vdev;
730
731 oldguid = spa_guid(spa);
732
733 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
734 rvd->vdev_guid = *newguid;
735 rvd->vdev_guid_sum += (*newguid - oldguid);
736 vdev_config_dirty(rvd);
737 spa_config_exit(spa, SCL_STATE, FTAG);
738
739 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
740 oldguid, *newguid);
741 }
742
743 /*
744 * Change the GUID for the pool. This is done so that we can later
745 * re-import a pool built from a clone of our own vdevs. We will modify
746 * the root vdev's guid, our own pool guid, and then mark all of our
747 * vdevs dirty. Note that we must make sure that all our vdevs are
748 * online when we do this, or else any vdevs that weren't present
749 * would be orphaned from our pool. We are also going to issue a
750 * sysevent to update any watchers.
751 */
752 int
753 spa_change_guid(spa_t *spa)
754 {
755 int error;
756 uint64_t guid;
757
758 mutex_enter(&spa->spa_vdev_top_lock);
759 mutex_enter(&spa_namespace_lock);
760 guid = spa_generate_guid(NULL);
761
762 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
763 spa_change_guid_sync, &guid, 5);
764
765 if (error == 0) {
766 spa_config_sync(spa, B_FALSE, B_TRUE);
767 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
768 }
769
770 mutex_exit(&spa_namespace_lock);
771 mutex_exit(&spa->spa_vdev_top_lock);
772
773 return (error);
774 }
775
776 /*
777 * ==========================================================================
778 * SPA state manipulation (open/create/destroy/import/export)
779 * ==========================================================================
780 */
781
782 static int
783 spa_error_entry_compare(const void *a, const void *b)
784 {
785 spa_error_entry_t *sa = (spa_error_entry_t *)a;
786 spa_error_entry_t *sb = (spa_error_entry_t *)b;
787 int ret;
788
789 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
790 sizeof (zbookmark_t));
791
792 if (ret < 0)
793 return (-1);
794 else if (ret > 0)
795 return (1);
796 else
797 return (0);
798 }
799
800 /*
801 * Utility function which retrieves copies of the current logs and
802 * re-initializes them in the process.
803 */
804 void
805 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
806 {
807 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
808
809 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
810 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
811
812 avl_create(&spa->spa_errlist_scrub,
813 spa_error_entry_compare, sizeof (spa_error_entry_t),
814 offsetof(spa_error_entry_t, se_avl));
815 avl_create(&spa->spa_errlist_last,
816 spa_error_entry_compare, sizeof (spa_error_entry_t),
817 offsetof(spa_error_entry_t, se_avl));
818 }
819
820 static void
821 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
822 {
823 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
824 enum zti_modes mode = ztip->zti_mode;
825 uint_t value = ztip->zti_value;
826 uint_t count = ztip->zti_count;
827 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
828 char name[32];
829 uint_t flags = 0;
830 boolean_t batch = B_FALSE;
831
832 if (mode == ZTI_MODE_NULL) {
833 tqs->stqs_count = 0;
834 tqs->stqs_taskq = NULL;
835 return;
836 }
837
838 ASSERT3U(count, >, 0);
839
840 tqs->stqs_count = count;
841 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
842
843 switch (mode) {
844 case ZTI_MODE_FIXED:
845 ASSERT3U(value, >=, 1);
846 value = MAX(value, 1);
847 break;
848
849 case ZTI_MODE_BATCH:
850 batch = B_TRUE;
851 flags |= TASKQ_THREADS_CPU_PCT;
852 value = zio_taskq_batch_pct;
853 break;
854
855 default:
856 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
857 "spa_activate()",
858 zio_type_name[t], zio_taskq_types[q], mode, value);
859 break;
860 }
861
862 for (uint_t i = 0; i < count; i++) {
863 taskq_t *tq;
864
865 if (count > 1) {
866 (void) snprintf(name, sizeof (name), "%s_%s_%u",
867 zio_type_name[t], zio_taskq_types[q], i);
868 } else {
869 (void) snprintf(name, sizeof (name), "%s_%s",
870 zio_type_name[t], zio_taskq_types[q]);
871 }
872
873 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
874 if (batch)
875 flags |= TASKQ_DC_BATCH;
876
877 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
878 spa->spa_proc, zio_taskq_basedc, flags);
879 } else {
880 pri_t pri = maxclsyspri;
881 /*
882 * The write issue taskq can be extremely CPU
883 * intensive. Run it at slightly lower priority
884 * than the other taskqs.
885 */
886 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
887 pri--;
888
889 tq = taskq_create_proc(name, value, pri, 50,
890 INT_MAX, spa->spa_proc, flags);
891 }
892
893 tqs->stqs_taskq[i] = tq;
894 }
895 }
896
897 static void
898 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
899 {
900 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
901
902 if (tqs->stqs_taskq == NULL) {
903 ASSERT0(tqs->stqs_count);
904 return;
905 }
906
907 for (uint_t i = 0; i < tqs->stqs_count; i++) {
908 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
909 taskq_destroy(tqs->stqs_taskq[i]);
910 }
911
912 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
913 tqs->stqs_taskq = NULL;
914 }
915
916 /*
917 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
918 * Note that a type may have multiple discrete taskqs to avoid lock contention
919 * on the taskq itself. In that case we choose which taskq at random by using
920 * the low bits of gethrtime().
921 */
922 void
923 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
924 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
925 {
926 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
927 taskq_t *tq;
928
929 ASSERT3P(tqs->stqs_taskq, !=, NULL);
930 ASSERT3U(tqs->stqs_count, !=, 0);
931
932 if (tqs->stqs_count == 1) {
933 tq = tqs->stqs_taskq[0];
934 } else {
935 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
936 }
937
938 taskq_dispatch_ent(tq, func, arg, flags, ent);
939 }
940
941 static void
942 spa_create_zio_taskqs(spa_t *spa)
943 {
944 for (int t = 0; t < ZIO_TYPES; t++) {
945 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
946 spa_taskqs_init(spa, t, q);
947 }
948 }
949 }
950
951 #ifdef _KERNEL
952 static void
953 spa_thread(void *arg)
954 {
955 callb_cpr_t cprinfo;
956
957 spa_t *spa = arg;
958 user_t *pu = PTOU(curproc);
959
960 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
961 spa->spa_name);
962
963 ASSERT(curproc != &p0);
964 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
965 "zpool-%s", spa->spa_name);
966 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
967
968 /* bind this thread to the requested psrset */
969 if (zio_taskq_psrset_bind != PS_NONE) {
970 pool_lock();
971 mutex_enter(&cpu_lock);
972 mutex_enter(&pidlock);
973 mutex_enter(&curproc->p_lock);
974
975 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
976 0, NULL, NULL) == 0) {
977 curthread->t_bind_pset = zio_taskq_psrset_bind;
978 } else {
979 cmn_err(CE_WARN,
980 "Couldn't bind process for zfs pool \"%s\" to "
981 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
982 }
983
984 mutex_exit(&curproc->p_lock);
985 mutex_exit(&pidlock);
986 mutex_exit(&cpu_lock);
987 pool_unlock();
988 }
989
990 if (zio_taskq_sysdc) {
991 sysdc_thread_enter(curthread, 100, 0);
992 }
993
994 spa->spa_proc = curproc;
995 spa->spa_did = curthread->t_did;
996
997 spa_create_zio_taskqs(spa);
998
999 mutex_enter(&spa->spa_proc_lock);
1000 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1001
1002 spa->spa_proc_state = SPA_PROC_ACTIVE;
1003 cv_broadcast(&spa->spa_proc_cv);
1004
1005 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1006 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1007 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1008 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1009
1010 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1011 spa->spa_proc_state = SPA_PROC_GONE;
1012 spa->spa_proc = &p0;
1013 cv_broadcast(&spa->spa_proc_cv);
1014 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1015
1016 mutex_enter(&curproc->p_lock);
1017 lwp_exit();
1018 }
1019 #endif
1020
1021 /*
1022 * Activate an uninitialized pool.
1023 */
1024 static void
1025 spa_activate(spa_t *spa, int mode)
1026 {
1027 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1028
1029 spa->spa_state = POOL_STATE_ACTIVE;
1030 spa->spa_mode = mode;
1031
1032 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1033 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034
1035 /* Try to create a covering process */
1036 mutex_enter(&spa->spa_proc_lock);
1037 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1038 ASSERT(spa->spa_proc == &p0);
1039 spa->spa_did = 0;
1040
1041 /* Only create a process if we're going to be around a while. */
1042 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1043 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1044 NULL, 0) == 0) {
1045 spa->spa_proc_state = SPA_PROC_CREATED;
1046 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1047 cv_wait(&spa->spa_proc_cv,
1048 &spa->spa_proc_lock);
1049 }
1050 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1051 ASSERT(spa->spa_proc != &p0);
1052 ASSERT(spa->spa_did != 0);
1053 } else {
1054 #ifdef _KERNEL
1055 cmn_err(CE_WARN,
1056 "Couldn't create process for zfs pool \"%s\"\n",
1057 spa->spa_name);
1058 #endif
1059 }
1060 }
1061 mutex_exit(&spa->spa_proc_lock);
1062
1063 /* If we didn't create a process, we need to create our taskqs. */
1064 if (spa->spa_proc == &p0) {
1065 spa_create_zio_taskqs(spa);
1066 }
1067
1068 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1069 offsetof(vdev_t, vdev_config_dirty_node));
1070 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1071 offsetof(vdev_t, vdev_state_dirty_node));
1072
1073 txg_list_create(&spa->spa_vdev_txg_list,
1074 offsetof(struct vdev, vdev_txg_node));
1075
1076 avl_create(&spa->spa_errlist_scrub,
1077 spa_error_entry_compare, sizeof (spa_error_entry_t),
1078 offsetof(spa_error_entry_t, se_avl));
1079 avl_create(&spa->spa_errlist_last,
1080 spa_error_entry_compare, sizeof (spa_error_entry_t),
1081 offsetof(spa_error_entry_t, se_avl));
1082 }
1083
1084 /*
1085 * Opposite of spa_activate().
1086 */
1087 static void
1088 spa_deactivate(spa_t *spa)
1089 {
1090 ASSERT(spa->spa_sync_on == B_FALSE);
1091 ASSERT(spa->spa_dsl_pool == NULL);
1092 ASSERT(spa->spa_root_vdev == NULL);
1093 ASSERT(spa->spa_async_zio_root == NULL);
1094 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1095
1096 txg_list_destroy(&spa->spa_vdev_txg_list);
1097
1098 list_destroy(&spa->spa_config_dirty_list);
1099 list_destroy(&spa->spa_state_dirty_list);
1100
1101 for (int t = 0; t < ZIO_TYPES; t++) {
1102 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1103 spa_taskqs_fini(spa, t, q);
1104 }
1105 }
1106
1107 metaslab_class_destroy(spa->spa_normal_class);
1108 spa->spa_normal_class = NULL;
1109
1110 metaslab_class_destroy(spa->spa_log_class);
1111 spa->spa_log_class = NULL;
1112
1113 /*
1114 * If this was part of an import or the open otherwise failed, we may
1115 * still have errors left in the queues. Empty them just in case.
1116 */
1117 spa_errlog_drain(spa);
1118
1119 avl_destroy(&spa->spa_errlist_scrub);
1120 avl_destroy(&spa->spa_errlist_last);
1121
1122 spa->spa_state = POOL_STATE_UNINITIALIZED;
1123
1124 mutex_enter(&spa->spa_proc_lock);
1125 if (spa->spa_proc_state != SPA_PROC_NONE) {
1126 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1127 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1128 cv_broadcast(&spa->spa_proc_cv);
1129 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1130 ASSERT(spa->spa_proc != &p0);
1131 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1132 }
1133 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1134 spa->spa_proc_state = SPA_PROC_NONE;
1135 }
1136 ASSERT(spa->spa_proc == &p0);
1137 mutex_exit(&spa->spa_proc_lock);
1138
1139 /*
1140 * We want to make sure spa_thread() has actually exited the ZFS
1141 * module, so that the module can't be unloaded out from underneath
1142 * it.
1143 */
1144 if (spa->spa_did != 0) {
1145 thread_join(spa->spa_did);
1146 spa->spa_did = 0;
1147 }
1148 }
1149
1150 /*
1151 * Verify a pool configuration, and construct the vdev tree appropriately. This
1152 * will create all the necessary vdevs in the appropriate layout, with each vdev
1153 * in the CLOSED state. This will prep the pool before open/creation/import.
1154 * All vdev validation is done by the vdev_alloc() routine.
1155 */
1156 static int
1157 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1158 uint_t id, int atype)
1159 {
1160 nvlist_t **child;
1161 uint_t children;
1162 int error;
1163
1164 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1165 return (error);
1166
1167 if ((*vdp)->vdev_ops->vdev_op_leaf)
1168 return (0);
1169
1170 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1171 &child, &children);
1172
1173 if (error == ENOENT)
1174 return (0);
1175
1176 if (error) {
1177 vdev_free(*vdp);
1178 *vdp = NULL;
1179 return (SET_ERROR(EINVAL));
1180 }
1181
1182 for (int c = 0; c < children; c++) {
1183 vdev_t *vd;
1184 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1185 atype)) != 0) {
1186 vdev_free(*vdp);
1187 *vdp = NULL;
1188 return (error);
1189 }
1190 }
1191
1192 ASSERT(*vdp != NULL);
1193
1194 return (0);
1195 }
1196
1197 /*
1198 * Opposite of spa_load().
1199 */
1200 static void
1201 spa_unload(spa_t *spa)
1202 {
1203 int i;
1204
1205 ASSERT(MUTEX_HELD(&spa_namespace_lock));
1206
1207 /*
1208 * Stop async tasks.
1209 */
1210 spa_async_suspend(spa);
1211
1212 /*
1213 * Stop syncing.
1214 */
1215 if (spa->spa_sync_on) {
1216 txg_sync_stop(spa->spa_dsl_pool);
1217 spa->spa_sync_on = B_FALSE;
1218 }
1219
1220 /*
1221 * Wait for any outstanding async I/O to complete.
1222 */
1223 if (spa->spa_async_zio_root != NULL) {
1224 (void) zio_wait(spa->spa_async_zio_root);
1225 spa->spa_async_zio_root = NULL;
1226 }
1227
1228 bpobj_close(&spa->spa_deferred_bpobj);
1229
1230 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1231
1232 /*
1233 * Close all vdevs.
1234 */
1235 if (spa->spa_root_vdev)
1236 vdev_free(spa->spa_root_vdev);
1237 ASSERT(spa->spa_root_vdev == NULL);
1238
1239 /*
1240 * Close the dsl pool.
1241 */
1242 if (spa->spa_dsl_pool) {
1243 dsl_pool_close(spa->spa_dsl_pool);
1244 spa->spa_dsl_pool = NULL;
1245 spa->spa_meta_objset = NULL;
1246 }
1247
1248 ddt_unload(spa);
1249
1250
1251 /*
1252 * Drop and purge level 2 cache
1253 */
1254 spa_l2cache_drop(spa);
1255
1256 for (i = 0; i < spa->spa_spares.sav_count; i++)
1257 vdev_free(spa->spa_spares.sav_vdevs[i]);
1258 if (spa->spa_spares.sav_vdevs) {
1259 kmem_free(spa->spa_spares.sav_vdevs,
1260 spa->spa_spares.sav_count * sizeof (void *));
1261 spa->spa_spares.sav_vdevs = NULL;
1262 }
1263 if (spa->spa_spares.sav_config) {
1264 nvlist_free(spa->spa_spares.sav_config);
1265 spa->spa_spares.sav_config = NULL;
1266 }
1267 spa->spa_spares.sav_count = 0;
1268
1269 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1270 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1271 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1272 }
1273 if (spa->spa_l2cache.sav_vdevs) {
1274 kmem_free(spa->spa_l2cache.sav_vdevs,
1275 spa->spa_l2cache.sav_count * sizeof (void *));
1276 spa->spa_l2cache.sav_vdevs = NULL;
1277 }
1278 if (spa->spa_l2cache.sav_config) {
1279 nvlist_free(spa->spa_l2cache.sav_config);
1280 spa->spa_l2cache.sav_config = NULL;
1281 }
1282 spa->spa_l2cache.sav_count = 0;
1283
1284 spa->spa_async_suspended = 0;
1285
1286 if (spa->spa_comment != NULL) {
1287 spa_strfree(spa->spa_comment);
1288 spa->spa_comment = NULL;
1289 }
1290
1291 spa_config_exit(spa, SCL_ALL, FTAG);
1292 }
1293
1294 /*
1295 * Load (or re-load) the current list of vdevs describing the active spares for
1296 * this pool. When this is called, we have some form of basic information in
1297 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
1298 * then re-generate a more complete list including status information.
1299 */
1300 static void
1301 spa_load_spares(spa_t *spa)
1302 {
1303 nvlist_t **spares;
1304 uint_t nspares;
1305 int i;
1306 vdev_t *vd, *tvd;
1307
1308 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1309
1310 /*
1311 * First, close and free any existing spare vdevs.
1312 */
1313 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1314 vd = spa->spa_spares.sav_vdevs[i];
1315
1316 /* Undo the call to spa_activate() below */
1317 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1318 B_FALSE)) != NULL && tvd->vdev_isspare)
1319 spa_spare_remove(tvd);
1320 vdev_close(vd);
1321 vdev_free(vd);
1322 }
1323
1324 if (spa->spa_spares.sav_vdevs)
1325 kmem_free(spa->spa_spares.sav_vdevs,
1326 spa->spa_spares.sav_count * sizeof (void *));
1327
1328 if (spa->spa_spares.sav_config == NULL)
1329 nspares = 0;
1330 else
1331 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1332 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1333
1334 spa->spa_spares.sav_count = (int)nspares;
1335 spa->spa_spares.sav_vdevs = NULL;
1336
1337 if (nspares == 0)
1338 return;
1339
1340 /*
1341 * Construct the array of vdevs, opening them to get status in the
1342 * process. For each spare, there is potentially two different vdev_t
1343 * structures associated with it: one in the list of spares (used only
1344 * for basic validation purposes) and one in the active vdev
1345 * configuration (if it's spared in). During this phase we open and
1346 * validate each vdev on the spare list. If the vdev also exists in the
1347 * active configuration, then we also mark this vdev as an active spare.
1348 */
1349 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1350 KM_SLEEP);
1351 for (i = 0; i < spa->spa_spares.sav_count; i++) {
1352 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1353 VDEV_ALLOC_SPARE) == 0);
1354 ASSERT(vd != NULL);
1355
1356 spa->spa_spares.sav_vdevs[i] = vd;
1357
1358 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1359 B_FALSE)) != NULL) {
1360 if (!tvd->vdev_isspare)
1361 spa_spare_add(tvd);
1362
1363 /*
1364 * We only mark the spare active if we were successfully
1365 * able to load the vdev. Otherwise, importing a pool
1366 * with a bad active spare would result in strange
1367 * behavior, because multiple pool would think the spare
1368 * is actively in use.
1369 *
1370 * There is a vulnerability here to an equally bizarre
1371 * circumstance, where a dead active spare is later
1372 * brought back to life (onlined or otherwise). Given
1373 * the rarity of this scenario, and the extra complexity
1374 * it adds, we ignore the possibility.
1375 */
1376 if (!vdev_is_dead(tvd))
1377 spa_spare_activate(tvd);
1378 }
1379
1380 vd->vdev_top = vd;
1381 vd->vdev_aux = &spa->spa_spares;
1382
1383 if (vdev_open(vd) != 0)
1384 continue;
1385
1386 if (vdev_validate_aux(vd) == 0)
1387 spa_spare_add(vd);
1388 }
1389
1390 /*
1391 * Recompute the stashed list of spares, with status information
1392 * this time.
1393 */
1394 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1395 DATA_TYPE_NVLIST_ARRAY) == 0);
1396
1397 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1398 KM_SLEEP);
1399 for (i = 0; i < spa->spa_spares.sav_count; i++)
1400 spares[i] = vdev_config_generate(spa,
1401 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1402 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1403 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1404 for (i = 0; i < spa->spa_spares.sav_count; i++)
1405 nvlist_free(spares[i]);
1406 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1407 }
1408
1409 /*
1410 * Load (or re-load) the current list of vdevs describing the active l2cache for
1411 * this pool. When this is called, we have some form of basic information in
1412 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
1413 * then re-generate a more complete list including status information.
1414 * Devices which are already active have their details maintained, and are
1415 * not re-opened.
1416 */
1417 static void
1418 spa_load_l2cache(spa_t *spa)
1419 {
1420 nvlist_t **l2cache;
1421 uint_t nl2cache;
1422 int i, j, oldnvdevs;
1423 uint64_t guid;
1424 vdev_t *vd, **oldvdevs, **newvdevs;
1425 spa_aux_vdev_t *sav = &spa->spa_l2cache;
1426
1427 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1428
1429 if (sav->sav_config != NULL) {
1430 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1431 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1432 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1433 } else {
1434 nl2cache = 0;
1435 newvdevs = NULL;
1436 }
1437
1438 oldvdevs = sav->sav_vdevs;
1439 oldnvdevs = sav->sav_count;
1440 sav->sav_vdevs = NULL;
1441 sav->sav_count = 0;
1442
1443 /*
1444 * Process new nvlist of vdevs.
1445 */
1446 for (i = 0; i < nl2cache; i++) {
1447 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1448 &guid) == 0);
1449
1450 newvdevs[i] = NULL;
1451 for (j = 0; j < oldnvdevs; j++) {
1452 vd = oldvdevs[j];
1453 if (vd != NULL && guid == vd->vdev_guid) {
1454 /*
1455 * Retain previous vdev for add/remove ops.
1456 */
1457 newvdevs[i] = vd;
1458 oldvdevs[j] = NULL;
1459 break;
1460 }
1461 }
1462
1463 if (newvdevs[i] == NULL) {
1464 /*
1465 * Create new vdev
1466 */
1467 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1468 VDEV_ALLOC_L2CACHE) == 0);
1469 ASSERT(vd != NULL);
1470 newvdevs[i] = vd;
1471
1472 /*
1473 * Commit this vdev as an l2cache device,
1474 * even if it fails to open.
1475 */
1476 spa_l2cache_add(vd);
1477
1478 vd->vdev_top = vd;
1479 vd->vdev_aux = sav;
1480
1481 spa_l2cache_activate(vd);
1482
1483 if (vdev_open(vd) != 0)
1484 continue;
1485
1486 (void) vdev_validate_aux(vd);
1487
1488 if (!vdev_is_dead(vd))
1489 l2arc_add_vdev(spa, vd);
1490 }
1491 }
1492
1493 /*
1494 * Purge vdevs that were dropped
1495 */
1496 for (i = 0; i < oldnvdevs; i++) {
1497 uint64_t pool;
1498
1499 vd = oldvdevs[i];
1500 if (vd != NULL) {
1501 ASSERT(vd->vdev_isl2cache);
1502
1503 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1504 pool != 0ULL && l2arc_vdev_present(vd))
1505 l2arc_remove_vdev(vd);
1506 vdev_clear_stats(vd);
1507 vdev_free(vd);
1508 }
1509 }
1510
1511 if (oldvdevs)
1512 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1513
1514 if (sav->sav_config == NULL)
1515 goto out;
1516
1517 sav->sav_vdevs = newvdevs;
1518 sav->sav_count = (int)nl2cache;
1519
1520 /*
1521 * Recompute the stashed list of l2cache devices, with status
1522 * information this time.
1523 */
1524 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1525 DATA_TYPE_NVLIST_ARRAY) == 0);
1526
1527 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1528 for (i = 0; i < sav->sav_count; i++)
1529 l2cache[i] = vdev_config_generate(spa,
1530 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1531 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1532 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1533 out:
1534 for (i = 0; i < sav->sav_count; i++)
1535 nvlist_free(l2cache[i]);
1536 if (sav->sav_count)
1537 kmem_free(l2cache, sav->sav_count * sizeof (void *));
1538 }
1539
1540 static int
1541 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1542 {
1543 dmu_buf_t *db;
1544 char *packed = NULL;
1545 size_t nvsize = 0;
1546 int error;
1547 *value = NULL;
1548
1549 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1550 nvsize = *(uint64_t *)db->db_data;
1551 dmu_buf_rele(db, FTAG);
1552
1553 packed = kmem_alloc(nvsize, KM_SLEEP);
1554 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1555 DMU_READ_PREFETCH);
1556 if (error == 0)
1557 error = nvlist_unpack(packed, nvsize, value, 0);
1558 kmem_free(packed, nvsize);
1559
1560 return (error);
1561 }
1562
1563 /*
1564 * Checks to see if the given vdev could not be opened, in which case we post a
1565 * sysevent to notify the autoreplace code that the device has been removed.
1566 */
1567 static void
1568 spa_check_removed(vdev_t *vd)
1569 {
1570 for (int c = 0; c < vd->vdev_children; c++)
1571 spa_check_removed(vd->vdev_child[c]);
1572
1573 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1574 !vd->vdev_ishole) {
1575 zfs_post_autoreplace(vd->vdev_spa, vd);
1576 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1577 }
1578 }
1579
1580 /*
1581 * Validate the current config against the MOS config
1582 */
1583 static boolean_t
1584 spa_config_valid(spa_t *spa, nvlist_t *config)
1585 {
1586 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1587 nvlist_t *nv;
1588
1589 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1590
1591 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1592 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1593
1594 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1595
1596 /*
1597 * If we're doing a normal import, then build up any additional
1598 * diagnostic information about missing devices in this config.
1599 * We'll pass this up to the user for further processing.
1600 */
1601 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1602 nvlist_t **child, *nv;
1603 uint64_t idx = 0;
1604
1605 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1606 KM_SLEEP);
1607 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1608
1609 for (int c = 0; c < rvd->vdev_children; c++) {
1610 vdev_t *tvd = rvd->vdev_child[c];
1611 vdev_t *mtvd = mrvd->vdev_child[c];
1612
1613 if (tvd->vdev_ops == &vdev_missing_ops &&
1614 mtvd->vdev_ops != &vdev_missing_ops &&
1615 mtvd->vdev_islog)
1616 child[idx++] = vdev_config_generate(spa, mtvd,
1617 B_FALSE, 0);
1618 }
1619
1620 if (idx) {
1621 VERIFY(nvlist_add_nvlist_array(nv,
1622 ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1623 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1624 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1625
1626 for (int i = 0; i < idx; i++)
1627 nvlist_free(child[i]);
1628 }
1629 nvlist_free(nv);
1630 kmem_free(child, rvd->vdev_children * sizeof (char **));
1631 }
1632
1633 /*
1634 * Compare the root vdev tree with the information we have
1635 * from the MOS config (mrvd). Check each top-level vdev
1636 * with the corresponding MOS config top-level (mtvd).
1637 */
1638 for (int c = 0; c < rvd->vdev_children; c++) {
1639 vdev_t *tvd = rvd->vdev_child[c];
1640 vdev_t *mtvd = mrvd->vdev_child[c];
1641
1642 /*
1643 * Resolve any "missing" vdevs in the current configuration.
1644 * If we find that the MOS config has more accurate information
1645 * about the top-level vdev then use that vdev instead.
1646 */
1647 if (tvd->vdev_ops == &vdev_missing_ops &&
1648 mtvd->vdev_ops != &vdev_missing_ops) {
1649
1650 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1651 continue;
1652
1653 /*
1654 * Device specific actions.
1655 */
1656 if (mtvd->vdev_islog) {
1657 spa_set_log_state(spa, SPA_LOG_CLEAR);
1658 } else {
1659 /*
1660 * XXX - once we have 'readonly' pool
1661 * support we should be able to handle
1662 * missing data devices by transitioning
1663 * the pool to readonly.
1664 */
1665 continue;
1666 }
1667
1668 /*
1669 * Swap the missing vdev with the data we were
1670 * able to obtain from the MOS config.
1671 */
1672 vdev_remove_child(rvd, tvd);
1673 vdev_remove_child(mrvd, mtvd);
1674
1675 vdev_add_child(rvd, mtvd);
1676 vdev_add_child(mrvd, tvd);
1677
1678 spa_config_exit(spa, SCL_ALL, FTAG);
1679 vdev_load(mtvd);
1680 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1681
1682 vdev_reopen(rvd);
1683 } else if (mtvd->vdev_islog) {
1684 /*
1685 * Load the slog device's state from the MOS config
1686 * since it's possible that the label does not
1687 * contain the most up-to-date information.
1688 */
1689 vdev_load_log_state(tvd, mtvd);
1690 vdev_reopen(tvd);
1691 }
1692 }
1693 vdev_free(mrvd);
1694 spa_config_exit(spa, SCL_ALL, FTAG);
1695
1696 /*
1697 * Ensure we were able to validate the config.
1698 */
1699 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1700 }
1701
1702 /*
1703 * Check for missing log devices
1704 */
1705 static boolean_t
1706 spa_check_logs(spa_t *spa)
1707 {
1708 boolean_t rv = B_FALSE;
1709
1710 switch (spa->spa_log_state) {
1711 case SPA_LOG_MISSING:
1712 /* need to recheck in case slog has been restored */
1713 case SPA_LOG_UNKNOWN:
1714 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1715 NULL, DS_FIND_CHILDREN) != 0);
1716 if (rv)
1717 spa_set_log_state(spa, SPA_LOG_MISSING);
1718 break;
1719 }
1720 return (rv);
1721 }
1722
1723 static boolean_t
1724 spa_passivate_log(spa_t *spa)
1725 {
1726 vdev_t *rvd = spa->spa_root_vdev;
1727 boolean_t slog_found = B_FALSE;
1728
1729 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1730
1731 if (!spa_has_slogs(spa))
1732 return (B_FALSE);
1733
1734 for (int c = 0; c < rvd->vdev_children; c++) {
1735 vdev_t *tvd = rvd->vdev_child[c];
1736 metaslab_group_t *mg = tvd->vdev_mg;
1737
1738 if (tvd->vdev_islog) {
1739 metaslab_group_passivate(mg);
1740 slog_found = B_TRUE;
1741 }
1742 }
1743
1744 return (slog_found);
1745 }
1746
1747 static void
1748 spa_activate_log(spa_t *spa)
1749 {
1750 vdev_t *rvd = spa->spa_root_vdev;
1751
1752 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1753
1754 for (int c = 0; c < rvd->vdev_children; c++) {
1755 vdev_t *tvd = rvd->vdev_child[c];
1756 metaslab_group_t *mg = tvd->vdev_mg;
1757
1758 if (tvd->vdev_islog)
1759 metaslab_group_activate(mg);
1760 }
1761 }
1762
1763 int
1764 spa_offline_log(spa_t *spa)
1765 {
1766 int error;
1767
1768 error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1769 NULL, DS_FIND_CHILDREN);
1770 if (error == 0) {
1771 /*
1772 * We successfully offlined the log device, sync out the
1773 * current txg so that the "stubby" block can be removed
1774 * by zil_sync().
1775 */
1776 txg_wait_synced(spa->spa_dsl_pool, 0);
1777 }
1778 return (error);
1779 }
1780
1781 static void
1782 spa_aux_check_removed(spa_aux_vdev_t *sav)
1783 {
1784 for (int i = 0; i < sav->sav_count; i++)
1785 spa_check_removed(sav->sav_vdevs[i]);
1786 }
1787
1788 void
1789 spa_claim_notify(zio_t *zio)
1790 {
1791 spa_t *spa = zio->io_spa;
1792
1793 if (zio->io_error)
1794 return;
1795
1796 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
1797 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1798 spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1799 mutex_exit(&spa->spa_props_lock);
1800 }
1801
1802 typedef struct spa_load_error {
1803 uint64_t sle_meta_count;
1804 uint64_t sle_data_count;
1805 } spa_load_error_t;
1806
1807 static void
1808 spa_load_verify_done(zio_t *zio)
1809 {
1810 blkptr_t *bp = zio->io_bp;
1811 spa_load_error_t *sle = zio->io_private;
1812 dmu_object_type_t type = BP_GET_TYPE(bp);
1813 int error = zio->io_error;
1814
1815 if (error) {
1816 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1817 type != DMU_OT_INTENT_LOG)
1818 atomic_add_64(&sle->sle_meta_count, 1);
1819 else
1820 atomic_add_64(&sle->sle_data_count, 1);
1821 }
1822 zio_data_buf_free(zio->io_data, zio->io_size);
1823 }
1824
1825 /*ARGSUSED*/
1826 static int
1827 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1828 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1829 {
1830 if (!BP_IS_HOLE(bp)) {
1831 zio_t *rio = arg;
1832 size_t size = BP_GET_PSIZE(bp);
1833 void *data = zio_data_buf_alloc(size);
1834
1835 zio_nowait(zio_read(rio, spa, bp, data, size,
1836 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1837 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1838 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1839 }
1840 return (0);
1841 }
1842
1843 static int
1844 spa_load_verify(spa_t *spa)
1845 {
1846 zio_t *rio;
1847 spa_load_error_t sle = { 0 };
1848 zpool_rewind_policy_t policy;
1849 boolean_t verify_ok = B_FALSE;
1850 int error;
1851
1852 zpool_get_rewind_policy(spa->spa_config, &policy);
1853
1854 if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1855 return (0);
1856
1857 rio = zio_root(spa, NULL, &sle,
1858 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1859
1860 error = traverse_pool(spa, spa->spa_verify_min_txg,
1861 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1862
1863 (void) zio_wait(rio);
1864
1865 spa->spa_load_meta_errors = sle.sle_meta_count;
1866 spa->spa_load_data_errors = sle.sle_data_count;
1867
1868 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1869 sle.sle_data_count <= policy.zrp_maxdata) {
1870 int64_t loss = 0;
1871
1872 verify_ok = B_TRUE;
1873 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1874 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1875
1876 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1877 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1878 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1879 VERIFY(nvlist_add_int64(spa->spa_load_info,
1880 ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1881 VERIFY(nvlist_add_uint64(spa->spa_load_info,
1882 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1883 } else {
1884 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1885 }
1886
1887 if (error) {
1888 if (error != ENXIO && error != EIO)
1889 error = SET_ERROR(EIO);
1890 return (error);
1891 }
1892
1893 return (verify_ok ? 0 : EIO);
1894 }
1895
1896 /*
1897 * Find a value in the pool props object.
1898 */
1899 static void
1900 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1901 {
1902 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1903 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1904 }
1905
1906 /*
1907 * Find a value in the pool directory object.
1908 */
1909 static int
1910 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1911 {
1912 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1913 name, sizeof (uint64_t), 1, val));
1914 }
1915
1916 static int
1917 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1918 {
1919 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1920 return (err);
1921 }
1922
1923 /*
1924 * Fix up config after a partly-completed split. This is done with the
1925 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
1926 * pool have that entry in their config, but only the splitting one contains
1927 * a list of all the guids of the vdevs that are being split off.
1928 *
1929 * This function determines what to do with that list: either rejoin
1930 * all the disks to the pool, or complete the splitting process. To attempt
1931 * the rejoin, each disk that is offlined is marked online again, and
1932 * we do a reopen() call. If the vdev label for every disk that was
1933 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1934 * then we call vdev_split() on each disk, and complete the split.
1935 *
1936 * Otherwise we leave the config alone, with all the vdevs in place in
1937 * the original pool.
1938 */
1939 static void
1940 spa_try_repair(spa_t *spa, nvlist_t *config)
1941 {
1942 uint_t extracted;
1943 uint64_t *glist;
1944 uint_t i, gcount;
1945 nvlist_t *nvl;
1946 vdev_t **vd;
1947 boolean_t attempt_reopen;
1948
1949 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1950 return;
1951
1952 /* check that the config is complete */
1953 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1954 &glist, &gcount) != 0)
1955 return;
1956
1957 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1958
1959 /* attempt to online all the vdevs & validate */
1960 attempt_reopen = B_TRUE;
1961 for (i = 0; i < gcount; i++) {
1962 if (glist[i] == 0) /* vdev is hole */
1963 continue;
1964
1965 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1966 if (vd[i] == NULL) {
1967 /*
1968 * Don't bother attempting to reopen the disks;
1969 * just do the split.
1970 */
1971 attempt_reopen = B_FALSE;
1972 } else {
1973 /* attempt to re-online it */
1974 vd[i]->vdev_offline = B_FALSE;
1975 }
1976 }
1977
1978 if (attempt_reopen) {
1979 vdev_reopen(spa->spa_root_vdev);
1980
1981 /* check each device to see what state it's in */
1982 for (extracted = 0, i = 0; i < gcount; i++) {
1983 if (vd[i] != NULL &&
1984 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1985 break;
1986 ++extracted;
1987 }
1988 }
1989
1990 /*
1991 * If every disk has been moved to the new pool, or if we never
1992 * even attempted to look at them, then we split them off for
1993 * good.
1994 */
1995 if (!attempt_reopen || gcount == extracted) {
1996 for (i = 0; i < gcount; i++)
1997 if (vd[i] != NULL)
1998 vdev_split(vd[i]);
1999 vdev_reopen(spa->spa_root_vdev);
2000 }
2001
2002 kmem_free(vd, gcount * sizeof (vdev_t *));
2003 }
2004
2005 static int
2006 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2007 boolean_t mosconfig)
2008 {
2009 nvlist_t *config = spa->spa_config;
2010 char *ereport = FM_EREPORT_ZFS_POOL;
2011 char *comment;
2012 int error;
2013 uint64_t pool_guid;
2014 nvlist_t *nvl;
2015
2016 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2017 return (SET_ERROR(EINVAL));
2018
2019 ASSERT(spa->spa_comment == NULL);
2020 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2021 spa->spa_comment = spa_strdup(comment);
2022
2023 /*
2024 * Versioning wasn't explicitly added to the label until later, so if
2025 * it's not present treat it as the initial version.
2026 */
2027 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2028 &spa->spa_ubsync.ub_version) != 0)
2029 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2030
2031 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2032 &spa->spa_config_txg);
2033
2034 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2035 spa_guid_exists(pool_guid, 0)) {
2036 error = SET_ERROR(EEXIST);
2037 } else {
2038 spa->spa_config_guid = pool_guid;
2039
2040 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2041 &nvl) == 0) {
2042 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2043 KM_SLEEP) == 0);
2044 }
2045
2046 nvlist_free(spa->spa_load_info);
2047 spa->spa_load_info = fnvlist_alloc();
2048
2049 gethrestime(&spa->spa_loaded_ts);
2050 error = spa_load_impl(spa, pool_guid, config, state, type,
2051 mosconfig, &ereport);
2052 }
2053
2054 spa->spa_minref = refcount_count(&spa->spa_refcount);
2055 if (error) {
2056 if (error != EEXIST) {
2057 spa->spa_loaded_ts.tv_sec = 0;
2058 spa->spa_loaded_ts.tv_nsec = 0;
2059 }
2060 if (error != EBADF) {
2061 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2062 }
2063 }
2064 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2065 spa->spa_ena = 0;
2066
2067 return (error);
2068 }
2069
2070 /*
2071 * Load an existing storage pool, using the pool's builtin spa_config as a
2072 * source of configuration information.
2073 */
2074 static int
2075 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2076 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2077 char **ereport)
2078 {
2079 int error = 0;
2080 nvlist_t *nvroot = NULL;
2081 nvlist_t *label;
2082 vdev_t *rvd;
2083 uberblock_t *ub = &spa->spa_uberblock;
2084 uint64_t children, config_cache_txg = spa->spa_config_txg;
2085 int orig_mode = spa->spa_mode;
2086 int parse;
2087 uint64_t obj;
2088 boolean_t missing_feat_write = B_FALSE;
2089
2090 /*
2091 * If this is an untrusted config, access the pool in read-only mode.
2092 * This prevents things like resilvering recently removed devices.
2093 */
2094 if (!mosconfig)
2095 spa->spa_mode = FREAD;
2096
2097 ASSERT(MUTEX_HELD(&spa_namespace_lock));
2098
2099 spa->spa_load_state = state;
2100
2101 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2102 return (SET_ERROR(EINVAL));
2103
2104 parse = (type == SPA_IMPORT_EXISTING ?
2105 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2106
2107 /*
2108 * Create "The Godfather" zio to hold all async IOs
2109 */
2110 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2111 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2112
2113 /*
2114 * Parse the configuration into a vdev tree. We explicitly set the
2115 * value that will be returned by spa_version() since parsing the
2116 * configuration requires knowing the version number.
2117 */
2118 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2119 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2120 spa_config_exit(spa, SCL_ALL, FTAG);
2121
2122 if (error != 0)
2123 return (error);
2124
2125 ASSERT(spa->spa_root_vdev == rvd);
2126
2127 if (type != SPA_IMPORT_ASSEMBLE) {
2128 ASSERT(spa_guid(spa) == pool_guid);
2129 }
2130
2131 /*
2132 * Try to open all vdevs, loading each label in the process.
2133 */
2134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2135 error = vdev_open(rvd);
2136 spa_config_exit(spa, SCL_ALL, FTAG);
2137 if (error != 0)
2138 return (error);
2139
2140 /*
2141 * We need to validate the vdev labels against the configuration that
2142 * we have in hand, which is dependent on the setting of mosconfig. If
2143 * mosconfig is true then we're validating the vdev labels based on
2144 * that config. Otherwise, we're validating against the cached config
2145 * (zpool.cache) that was read when we loaded the zfs module, and then
2146 * later we will recursively call spa_load() and validate against
2147 * the vdev config.
2148 *
2149 * If we're assembling a new pool that's been split off from an
2150 * existing pool, the labels haven't yet been updated so we skip
2151 * validation for now.
2152 */
2153 if (type != SPA_IMPORT_ASSEMBLE) {
2154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2155 error = vdev_validate(rvd, mosconfig);
2156 spa_config_exit(spa, SCL_ALL, FTAG);
2157
2158 if (error != 0)
2159 return (error);
2160
2161 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2162 return (SET_ERROR(ENXIO));
2163 }
2164
2165 /*
2166 * Find the best uberblock.
2167 */
2168 vdev_uberblock_load(rvd, ub, &label);
2169
2170 /*
2171 * If we weren't able to find a single valid uberblock, return failure.
2172 */
2173 if (ub->ub_txg == 0) {
2174 nvlist_free(label);
2175 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2176 }
2177
2178 /*
2179 * If the pool has an unsupported version we can't open it.
2180 */
2181 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2182 nvlist_free(label);
2183 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2184 }
2185
2186 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2187 nvlist_t *features;
2188
2189 /*
2190 * If we weren't able to find what's necessary for reading the
2191 * MOS in the label, return failure.
2192 */
2193 if (label == NULL || nvlist_lookup_nvlist(label,
2194 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2195 nvlist_free(label);
2196 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2197 ENXIO));
2198 }
2199
2200 /*
2201 * Update our in-core representation with the definitive values
2202 * from the label.
2203 */
2204 nvlist_free(spa->spa_label_features);
2205 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2206 }
2207
2208 nvlist_free(label);
2209
2210 /*
2211 * Look through entries in the label nvlist's features_for_read. If
2212 * there is a feature listed there which we don't understand then we
2213 * cannot open a pool.
2214 */
2215 if (ub->ub_version >= SPA_VERSION_FEATURES) {
2216 nvlist_t *unsup_feat;
2217
2218 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2219 0);
2220
2221 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2222 NULL); nvp != NULL;
2223 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2224 if (!zfeature_is_supported(nvpair_name(nvp))) {
2225 VERIFY(nvlist_add_string(unsup_feat,
2226 nvpair_name(nvp), "") == 0);
2227 }
2228 }
2229
2230 if (!nvlist_empty(unsup_feat)) {
2231 VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2232 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2233 nvlist_free(unsup_feat);
2234 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2235 ENOTSUP));
2236 }
2237
2238 nvlist_free(unsup_feat);
2239 }
2240
2241 /*
2242 * If the vdev guid sum doesn't match the uberblock, we have an
2243 * incomplete configuration. We first check to see if the pool
2244 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2245 * If it is, defer the vdev_guid_sum check till later so we
2246 * can handle missing vdevs.
2247 */
2248 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2249 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2250 rvd->vdev_guid_sum != ub->ub_guid_sum)
2251 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2252
2253 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2254 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2255 spa_try_repair(spa, config);
2256 spa_config_exit(spa, SCL_ALL, FTAG);
2257 nvlist_free(spa->spa_config_splitting);
2258 spa->spa_config_splitting = NULL;
2259 }
2260
2261 /*
2262 * Initialize internal SPA structures.
2263 */
2264 spa->spa_state = POOL_STATE_ACTIVE;
2265 spa->spa_ubsync = spa->spa_uberblock;
2266 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2267 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2268 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2269 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2270 spa->spa_claim_max_txg = spa->spa_first_txg;
2271 spa->spa_prev_software_version = ub->ub_software_version;
2272
2273 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2274 if (error)
2275 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2276 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2277
2278 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2279 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2280
2281 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2282 boolean_t missing_feat_read = B_FALSE;
2283 nvlist_t *unsup_feat, *enabled_feat;
2284
2285 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2286 &spa->spa_feat_for_read_obj) != 0) {
2287 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2288 }
2289
2290 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2291 &spa->spa_feat_for_write_obj) != 0) {
2292 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2293 }
2294
2295 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2296 &spa->spa_feat_desc_obj) != 0) {
2297 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2298 }
2299
2300 enabled_feat = fnvlist_alloc();
2301 unsup_feat = fnvlist_alloc();
2302
2303 if (!spa_features_check(spa, B_FALSE,
2304 unsup_feat, enabled_feat))
2305 missing_feat_read = B_TRUE;
2306
2307 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2308 if (!spa_features_check(spa, B_TRUE,
2309 unsup_feat, enabled_feat)) {
2310 missing_feat_write = B_TRUE;
2311 }
2312 }
2313
2314 fnvlist_add_nvlist(spa->spa_load_info,
2315 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2316
2317 if (!nvlist_empty(unsup_feat)) {
2318 fnvlist_add_nvlist(spa->spa_load_info,
2319 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2320 }
2321
2322 fnvlist_free(enabled_feat);
2323 fnvlist_free(unsup_feat);
2324
2325 if (!missing_feat_read) {
2326 fnvlist_add_boolean(spa->spa_load_info,
2327 ZPOOL_CONFIG_CAN_RDONLY);
2328 }
2329
2330 /*
2331 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2332 * twofold: to determine whether the pool is available for
2333 * import in read-write mode and (if it is not) whether the
2334 * pool is available for import in read-only mode. If the pool
2335 * is available for import in read-write mode, it is displayed
2336 * as available in userland; if it is not available for import
2337 * in read-only mode, it is displayed as unavailable in
2338 * userland. If the pool is available for import in read-only
2339 * mode but not read-write mode, it is displayed as unavailable
2340 * in userland with a special note that the pool is actually
2341 * available for open in read-only mode.
2342 *
2343 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2344 * missing a feature for write, we must first determine whether
2345 * the pool can be opened read-only before returning to
2346 * userland in order to know whether to display the
2347 * abovementioned note.
2348 */
2349 if (missing_feat_read || (missing_feat_write &&
2350 spa_writeable(spa))) {
2351 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2352 ENOTSUP));
2353 }
2354
2355 /*
2356 * Load refcounts for ZFS features from disk into an in-memory
2357 * cache during SPA initialization.
2358 */
2359 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2360 uint64_t refcount;
2361
2362 error = feature_get_refcount_from_disk(spa,
2363 &spa_feature_table[i], &refcount);
2364 if (error == 0) {
2365 spa->spa_feat_refcount_cache[i] = refcount;
2366 } else if (error == ENOTSUP) {
2367 spa->spa_feat_refcount_cache[i] =
2368 SPA_FEATURE_DISABLED;
2369 } else {
2370 return (spa_vdev_err(rvd,
2371 VDEV_AUX_CORRUPT_DATA, EIO));
2372 }
2373 }
2374 }
2375
2376 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2377 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2378 &spa->spa_feat_enabled_txg_obj) != 0) {
2379 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2380 }
2381 }
2382
2383 spa->spa_is_initializing = B_TRUE;
2384 error = dsl_pool_open(spa->spa_dsl_pool);
2385 spa->spa_is_initializing = B_FALSE;
2386 if (error != 0)
2387 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2388
2389 if (!mosconfig) {
2390 uint64_t hostid;
2391 nvlist_t *policy = NULL, *nvconfig;
2392
2393 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2394 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2395
2396 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2397 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2398 char *hostname;
2399 unsigned long myhostid = 0;
2400
2401 VERIFY(nvlist_lookup_string(nvconfig,
2402 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2403
2404 #ifdef _KERNEL
2405 myhostid = zone_get_hostid(NULL);
2406 #else /* _KERNEL */
2407 /*
2408 * We're emulating the system's hostid in userland, so
2409 * we can't use zone_get_hostid().
2410 */
2411 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2412 #endif /* _KERNEL */
2413 if (hostid != 0 && myhostid != 0 &&
2414 hostid != myhostid) {
2415 nvlist_free(nvconfig);
2416 cmn_err(CE_WARN, "pool '%s' could not be "
2417 "loaded as it was last accessed by "
2418 "another system (host: %s hostid: 0x%lx). "
2419 "See: http://illumos.org/msg/ZFS-8000-EY",
2420 spa_name(spa), hostname,
2421 (unsigned long)hostid);
2422 return (SET_ERROR(EBADF));
2423 }
2424 }
2425 if (nvlist_lookup_nvlist(spa->spa_config,
2426 ZPOOL_REWIND_POLICY, &policy) == 0)
2427 VERIFY(nvlist_add_nvlist(nvconfig,
2428 ZPOOL_REWIND_POLICY, policy) == 0);
2429
2430 spa_config_set(spa, nvconfig);
2431 spa_unload(spa);
2432 spa_deactivate(spa);
2433 spa_activate(spa, orig_mode);
2434
2435 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2436 }
2437
2438 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2439 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2440 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2441 if (error != 0)
2442 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2443
2444 /*
2445 * Load the bit that tells us to use the new accounting function
2446 * (raid-z deflation). If we have an older pool, this will not
2447 * be present.
2448 */
2449 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2450 if (error != 0 && error != ENOENT)
2451 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2452
2453 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2454 &spa->spa_creation_version);
2455 if (error != 0 && error != ENOENT)
2456 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2457
2458 /*
2459 * Load the persistent error log. If we have an older pool, this will
2460 * not be present.
2461 */
2462 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2463 if (error != 0 && error != ENOENT)
2464 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2465
2466 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2467 &spa->spa_errlog_scrub);
2468 if (error != 0 && error != ENOENT)
2469 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2470
2471 /*
2472 * Load the history object. If we have an older pool, this
2473 * will not be present.
2474 */
2475 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2476 if (error != 0 && error != ENOENT)
2477 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2478
2479 /*
2480 * If we're assembling the pool from the split-off vdevs of
2481 * an existing pool, we don't want to attach the spares & cache
2482 * devices.
2483 */
2484
2485 /*
2486 * Load any hot spares for this pool.
2487 */
2488 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2489 if (error != 0 && error != ENOENT)
2490 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2491 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2492 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2493 if (load_nvlist(spa, spa->spa_spares.sav_object,
2494 &spa->spa_spares.sav_config) != 0)
2495 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2496
2497 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2498 spa_load_spares(spa);
2499 spa_config_exit(spa, SCL_ALL, FTAG);
2500 } else if (error == 0) {
2501 spa->spa_spares.sav_sync = B_TRUE;
2502 }
2503
2504 /*
2505 * Load any level 2 ARC devices for this pool.
2506 */
2507 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2508 &spa->spa_l2cache.sav_object);
2509 if (error != 0 && error != ENOENT)
2510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2511 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2512 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2513 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2514 &spa->spa_l2cache.sav_config) != 0)
2515 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2516
2517 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2518 spa_load_l2cache(spa);
2519 spa_config_exit(spa, SCL_ALL, FTAG);
2520 } else if (error == 0) {
2521 spa->spa_l2cache.sav_sync = B_TRUE;
2522 }
2523
2524 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2525
2526 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2527 if (error && error != ENOENT)
2528 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2529
2530 if (error == 0) {
2531 uint64_t autoreplace;
2532
2533 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2534 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2535 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2536 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2537 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2538 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2539 &spa->spa_dedup_ditto);
2540
2541 spa->spa_autoreplace = (autoreplace != 0);
2542 }
2543
2544 /*
2545 * If the 'autoreplace' property is set, then post a resource notifying
2546 * the ZFS DE that it should not issue any faults for unopenable
2547 * devices. We also iterate over the vdevs, and post a sysevent for any
2548 * unopenable vdevs so that the normal autoreplace handler can take
2549 * over.
2550 */
2551 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2552 spa_check_removed(spa->spa_root_vdev);
2553 /*
2554 * For the import case, this is done in spa_import(), because
2555 * at this point we're using the spare definitions from
2556 * the MOS config, not necessarily from the userland config.
2557 */
2558 if (state != SPA_LOAD_IMPORT) {
2559 spa_aux_check_removed(&spa->spa_spares);
2560 spa_aux_check_removed(&spa->spa_l2cache);
2561 }
2562 }
2563
2564 /*
2565 * Load the vdev state for all toplevel vdevs.
2566 */
2567 vdev_load(rvd);
2568
2569 /*
2570 * Propagate the leaf DTLs we just loaded all the way up the tree.
2571 */
2572 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2573 vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2574 spa_config_exit(spa, SCL_ALL, FTAG);
2575
2576 /*
2577 * Load the DDTs (dedup tables).
2578 */
2579 error = ddt_load(spa);
2580 if (error != 0)
2581 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2582
2583 spa_update_dspace(spa);
2584
2585 /*
2586 * Validate the config, using the MOS config to fill in any
2587 * information which might be missing. If we fail to validate
2588 * the config then declare the pool unfit for use. If we're
2589 * assembling a pool from a split, the log is not transferred
2590 * over.
2591 */
2592 if (type != SPA_IMPORT_ASSEMBLE) {
2593 nvlist_t *nvconfig;
2594
2595 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2596 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2597
2598 if (!spa_config_valid(spa, nvconfig)) {
2599 nvlist_free(nvconfig);
2600 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2601 ENXIO));
2602 }
2603 nvlist_free(nvconfig);
2604
2605 /*
2606 * Now that we've validated the config, check the state of the
2607 * root vdev. If it can't be opened, it indicates one or
2608 * more toplevel vdevs are faulted.
2609 */
2610 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2611 return (SET_ERROR(ENXIO));
2612
2613 if (spa_check_logs(spa)) {
2614 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2615 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2616 }
2617 }
2618
2619 if (missing_feat_write) {
2620 ASSERT(state == SPA_LOAD_TRYIMPORT);
2621
2622 /*
2623 * At this point, we know that we can open the pool in
2624 * read-only mode but not read-write mode. We now have enough
2625 * information and can return to userland.
2626 */
2627 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2628 }
2629
2630 /*
2631 * We've successfully opened the pool, verify that we're ready
2632 * to start pushing transactions.
2633 */
2634 if (state != SPA_LOAD_TRYIMPORT) {
2635 if (error = spa_load_verify(spa))
2636 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2637 error));
2638 }
2639
2640 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2641 spa->spa_load_max_txg == UINT64_MAX)) {
2642 dmu_tx_t *tx;
2643 int need_update = B_FALSE;
2644
2645 ASSERT(state != SPA_LOAD_TRYIMPORT);
2646
2647 /*
2648 * Claim log blocks that haven't been committed yet.
2649 * This must all happen in a single txg.
2650 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2651 * invoked from zil_claim_log_block()'s i/o done callback.
2652 * Price of rollback is that we abandon the log.
2653 */
2654 spa->spa_claiming = B_TRUE;
2655
2656 tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2657 spa_first_txg(spa));
2658 (void) dmu_objset_find(spa_name(spa),
2659 zil_claim, tx, DS_FIND_CHILDREN);
2660 dmu_tx_commit(tx);
2661
2662 spa->spa_claiming = B_FALSE;
2663
2664 spa_set_log_state(spa, SPA_LOG_GOOD);
2665 spa->spa_sync_on = B_TRUE;
2666 txg_sync_start(spa->spa_dsl_pool);
2667
2668 /*
2669 * Wait for all claims to sync. We sync up to the highest
2670 * claimed log block birth time so that claimed log blocks
2671 * don't appear to be from the future. spa_claim_max_txg
2672 * will have been set for us by either zil_check_log_chain()
2673 * (invoked from spa_check_logs()) or zil_claim() above.
2674 */
2675 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2676
2677 /*
2678 * If the config cache is stale, or we have uninitialized
2679 * metaslabs (see spa_vdev_add()), then update the config.
2680 *
2681 * If this is a verbatim import, trust the current
2682 * in-core spa_config and update the disk labels.
2683 */
2684 if (config_cache_txg != spa->spa_config_txg ||
2685 state == SPA_LOAD_IMPORT ||
2686 state == SPA_LOAD_RECOVER ||
2687 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2688 need_update = B_TRUE;
2689
2690 for (int c = 0; c < rvd->vdev_children; c++)
2691 if (rvd->vdev_child[c]->vdev_ms_array == 0)
2692 need_update = B_TRUE;
2693
2694 /*
2695 * Update the config cache asychronously in case we're the
2696 * root pool, in which case the config cache isn't writable yet.
2697 */
2698 if (need_update)
2699 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2700
2701 /*
2702 * Check all DTLs to see if anything needs resilvering.
2703 */
2704 if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2705 vdev_resilver_needed(rvd, NULL, NULL))
2706 spa_async_request(spa, SPA_ASYNC_RESILVER);
2707
2708 /*
2709 * Log the fact that we booted up (so that we can detect if
2710 * we rebooted in the middle of an operation).
2711 */
2712 spa_history_log_version(spa, "open");
2713
2714 /*
2715 * Delete any inconsistent datasets.
2716 */
2717 (void) dmu_objset_find(spa_name(spa),
2718 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2719
2720 /*
2721 * Clean up any stale temporary dataset userrefs.
2722 */
2723 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2724 }
2725
2726 return (0);
2727 }
2728
2729 static int
2730 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2731 {
2732 int mode = spa->spa_mode;
2733
2734 spa_unload(spa);
2735 spa_deactivate(spa);
2736
2737 spa->spa_load_max_txg--;
2738
2739 spa_activate(spa, mode);
2740 spa_async_suspend(spa);
2741
2742 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2743 }
2744
2745 /*
2746 * If spa_load() fails this function will try loading prior txg's. If
2747 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2748 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2749 * function will not rewind the pool and will return the same error as
2750 * spa_load().
2751 */
2752 static int
2753 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2754 uint64_t max_request, int rewind_flags)
2755 {
2756 nvlist_t *loadinfo = NULL;
2757 nvlist_t *config = NULL;
2758 int load_error, rewind_error;
2759 uint64_t safe_rewind_txg;
2760 uint64_t min_txg;
2761
2762 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2763 spa->spa_load_max_txg = spa->spa_load_txg;
2764 spa_set_log_state(spa, SPA_LOG_CLEAR);
2765 } else {
2766 spa->spa_load_max_txg = max_request;
2767 }
2768
2769 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2770 mosconfig);
2771 if (load_error == 0)
2772 return (0);
2773
2774 if (spa->spa_root_vdev != NULL)
2775 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2776
2777 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2778 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2779
2780 if (rewind_flags & ZPOOL_NEVER_REWIND) {
2781 nvlist_free(config);
2782 return (load_error);
2783 }
2784
2785 if (state == SPA_LOAD_RECOVER) {
2786 /* Price of rolling back is discarding txgs, including log */
2787 spa_set_log_state(spa, SPA_LOG_CLEAR);
2788 } else {
2789 /*
2790 * If we aren't rolling back save the load info from our first
2791 * import attempt so that we can restore it after attempting
2792 * to rewind.
2793 */
2794 loadinfo = spa->spa_load_info;
2795 spa->spa_load_info = fnvlist_alloc();
2796 }
2797
2798 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2799 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2800 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2801 TXG_INITIAL : safe_rewind_txg;
2802
2803 /*
2804 * Continue as long as we're finding errors, we're still within
2805 * the acceptable rewind range, and we're still finding uberblocks
2806 */
2807 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2808 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2809 if (spa->spa_load_max_txg < safe_rewind_txg)
2810 spa->spa_extreme_rewind = B_TRUE;
2811 rewind_error = spa_load_retry(spa, state, mosconfig);
2812 }
2813
2814 spa->spa_extreme_rewind = B_FALSE;
2815 spa->spa_load_max_txg = UINT64_MAX;
2816
2817 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2818 spa_config_set(spa, config);
2819
2820 if (state == SPA_LOAD_RECOVER) {
2821 ASSERT3P(loadinfo, ==, NULL);
2822 return (rewind_error);
2823 } else {
2824 /* Store the rewind info as part of the initial load info */
2825 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2826 spa->spa_load_info);
2827
2828 /* Restore the initial load info */
2829 fnvlist_free(spa->spa_load_info);
2830 spa->spa_load_info = loadinfo;
2831
2832 return (load_error);
2833 }
2834 }
2835
2836 /*
2837 * Pool Open/Import
2838 *
2839 * The import case is identical to an open except that the configuration is sent
2840 * down from userland, instead of grabbed from the configuration cache. For the
2841 * case of an open, the pool configuration will exist in the
2842 * POOL_STATE_UNINITIALIZED state.
2843 *
2844 * The stats information (gen/count/ustats) is used to gather vdev statistics at
2845 * the same time open the pool, without having to keep around the spa_t in some
2846 * ambiguous state.
2847 */
2848 static int
2849 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2850 nvlist_t **config)
2851 {
2852 spa_t *spa;
2853 spa_load_state_t state = SPA_LOAD_OPEN;
2854 int error;
2855 int locked = B_FALSE;
2856
2857 *spapp = NULL;
2858
2859 /*
2860 * As disgusting as this is, we need to support recursive calls to this
2861 * function because dsl_dir_open() is called during spa_load(), and ends
2862 * up calling spa_open() again. The real fix is to figure out how to
2863 * avoid dsl_dir_open() calling this in the first place.
2864 */
2865 if (mutex_owner(&spa_namespace_lock) != curthread) {
2866 mutex_enter(&spa_namespace_lock);
2867 locked = B_TRUE;
2868 }
2869
2870 if ((spa = spa_lookup(pool)) == NULL) {
2871 if (locked)
2872 mutex_exit(&spa_namespace_lock);
2873 return (SET_ERROR(ENOENT));
2874 }
2875
2876 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2877 zpool_rewind_policy_t policy;
2878
2879 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2880 &policy);
2881 if (policy.zrp_request & ZPOOL_DO_REWIND)
2882 state = SPA_LOAD_RECOVER;
2883
2884 spa_activate(spa, spa_mode_global);
2885
2886 if (state != SPA_LOAD_RECOVER)
2887 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2888
2889 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2890 policy.zrp_request);
2891
2892 if (error == EBADF) {
2893 /*
2894 * If vdev_validate() returns failure (indicated by
2895 * EBADF), it indicates that one of the vdevs indicates
2896 * that the pool has been exported or destroyed. If
2897 * this is the case, the config cache is out of sync and
2898 * we should remove the pool from the namespace.
2899 */
2900 spa_unload(spa);
2901 spa_deactivate(spa);
2902 spa_config_sync(spa, B_TRUE, B_TRUE);
2903 spa_remove(spa);
2904 if (locked)
2905 mutex_exit(&spa_namespace_lock);
2906 return (SET_ERROR(ENOENT));
2907 }
2908
2909 if (error) {
2910 /*
2911 * We can't open the pool, but we still have useful
2912 * information: the state of each vdev after the
2913 * attempted vdev_open(). Return this to the user.
2914 */
2915 if (config != NULL && spa->spa_config) {
2916 VERIFY(nvlist_dup(spa->spa_config, config,
2917 KM_SLEEP) == 0);
2918 VERIFY(nvlist_add_nvlist(*config,
2919 ZPOOL_CONFIG_LOAD_INFO,
2920 spa->spa_load_info) == 0);
2921 }
2922 spa_unload(spa);
2923 spa_deactivate(spa);
2924 spa->spa_last_open_failed = error;
2925 if (locked)
2926 mutex_exit(&spa_namespace_lock);
2927 *spapp = NULL;
2928 return (error);
2929 }
2930 }
2931
2932 spa_open_ref(spa, tag);
2933
2934 if (config != NULL)
2935 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2936
2937 /*
2938 * If we've recovered the pool, pass back any information we
2939 * gathered while doing the load.
2940 */
2941 if (state == SPA_LOAD_RECOVER) {
2942 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2943 spa->spa_load_info) == 0);
2944 }
2945
2946 if (locked) {
2947 spa->spa_last_open_failed = 0;
2948 spa->spa_last_ubsync_txg = 0;
2949 spa->spa_load_txg = 0;
2950 mutex_exit(&spa_namespace_lock);
2951 }
2952
2953 *spapp = spa;
2954
2955 return (0);
2956 }
2957
2958 int
2959 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2960 nvlist_t **config)
2961 {
2962 return (spa_open_common(name, spapp, tag, policy, config));
2963 }
2964
2965 int
2966 spa_open(const char *name, spa_t **spapp, void *tag)
2967 {
2968 return (spa_open_common(name, spapp, tag, NULL, NULL));
2969 }
2970
2971 /*
2972 * Lookup the given spa_t, incrementing the inject count in the process,
2973 * preventing it from being exported or destroyed.
2974 */
2975 spa_t *
2976 spa_inject_addref(char *name)
2977 {
2978 spa_t *spa;
2979
2980 mutex_enter(&spa_namespace_lock);
2981 if ((spa = spa_lookup(name)) == NULL) {
2982 mutex_exit(&spa_namespace_lock);
2983 return (NULL);
2984 }
2985 spa->spa_inject_ref++;
2986 mutex_exit(&spa_namespace_lock);
2987
2988 return (spa);
2989 }
2990
2991 void
2992 spa_inject_delref(spa_t *spa)
2993 {
2994 mutex_enter(&spa_namespace_lock);
2995 spa->spa_inject_ref--;
2996 mutex_exit(&spa_namespace_lock);
2997 }
2998
2999 /*
3000 * Add spares device information to the nvlist.
3001 */
3002 static void
3003 spa_add_spares(spa_t *spa, nvlist_t *config)
3004 {
3005 nvlist_t **spares;
3006 uint_t i, nspares;
3007 nvlist_t *nvroot;
3008 uint64_t guid;
3009 vdev_stat_t *vs;
3010 uint_t vsc;
3011 uint64_t pool;
3012
3013 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3014
3015 if (spa->spa_spares.sav_count == 0)
3016 return;
3017
3018 VERIFY(nvlist_lookup_nvlist(config,
3019 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3020 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3021 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3022 if (nspares != 0) {
3023 VERIFY(nvlist_add_nvlist_array(nvroot,
3024 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3025 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3026 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3027
3028 /*
3029 * Go through and find any spares which have since been
3030 * repurposed as an active spare. If this is the case, update
3031 * their status appropriately.
3032 */
3033 for (i = 0; i < nspares; i++) {
3034 VERIFY(nvlist_lookup_uint64(spares[i],
3035 ZPOOL_CONFIG_GUID, &guid) == 0);
3036 if (spa_spare_exists(guid, &pool, NULL) &&
3037 pool != 0ULL) {
3038 VERIFY(nvlist_lookup_uint64_array(
3039 spares[i], ZPOOL_CONFIG_VDEV_STATS,
3040 (uint64_t **)&vs, &vsc) == 0);
3041 vs->vs_state = VDEV_STATE_CANT_OPEN;
3042 vs->vs_aux = VDEV_AUX_SPARED;
3043 }
3044 }
3045 }
3046 }
3047
3048 /*
3049 * Add l2cache device information to the nvlist, including vdev stats.
3050 */
3051 static void
3052 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3053 {
3054 nvlist_t **l2cache;
3055 uint_t i, j, nl2cache;
3056 nvlist_t *nvroot;
3057 uint64_t guid;
3058 vdev_t *vd;
3059 vdev_stat_t *vs;
3060 uint_t vsc;
3061
3062 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3063
3064 if (spa->spa_l2cache.sav_count == 0)
3065 return;
3066
3067 VERIFY(nvlist_lookup_nvlist(config,
3068 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3069 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3070 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3071 if (nl2cache != 0) {
3072 VERIFY(nvlist_add_nvlist_array(nvroot,
3073 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3074 VERIFY(nvlist_lookup_nvlist_array(nvroot,
3075 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3076
3077 /*
3078 * Update level 2 cache device stats.
3079 */
3080
3081 for (i = 0; i < nl2cache; i++) {
3082 VERIFY(nvlist_lookup_uint64(l2cache[i],
3083 ZPOOL_CONFIG_GUID, &guid) == 0);
3084
3085 vd = NULL;
3086 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3087 if (guid ==
3088 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3089 vd = spa->spa_l2cache.sav_vdevs[j];
3090 break;
3091 }
3092 }
3093 ASSERT(vd != NULL);
3094
3095 VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3096 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3097 == 0);
3098 vdev_get_stats(vd, vs);
3099 }
3100 }
3101 }
3102
3103 static void
3104 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3105 {
3106 nvlist_t *features;
3107 zap_cursor_t zc;
3108 zap_attribute_t za;
3109
3110 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3111 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3112
3113 if (spa->spa_feat_for_read_obj != 0) {
3114 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3115 spa->spa_feat_for_read_obj);
3116 zap_cursor_retrieve(&zc, &za) == 0;
3117 zap_cursor_advance(&zc)) {
3118 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3119 za.za_num_integers == 1);
3120 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3121 za.za_first_integer));
3122 }
3123 zap_cursor_fini(&zc);
3124 }
3125
3126 if (spa->spa_feat_for_write_obj != 0) {
3127 for (zap_cursor_init(&zc, spa->spa_meta_objset,
3128 spa->spa_feat_for_write_obj);
3129 zap_cursor_retrieve(&zc, &za) == 0;
3130 zap_cursor_advance(&zc)) {
3131 ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3132 za.za_num_integers == 1);
3133 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3134 za.za_first_integer));
3135 }
3136 zap_cursor_fini(&zc);
3137 }
3138
3139 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3140 features) == 0);
3141 nvlist_free(features);
3142 }
3143
3144 int
3145 spa_get_stats(const char *name, nvlist_t **config,
3146 char *altroot, size_t buflen)
3147 {
3148 int error;
3149 spa_t *spa;
3150
3151 *config = NULL;
3152 error = spa_open_common(name, &spa, FTAG, NULL, config);
3153
3154 if (spa != NULL) {
3155 /*
3156 * This still leaves a window of inconsistency where the spares
3157 * or l2cache devices could change and the config would be
3158 * self-inconsistent.
3159 */
3160 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3161
3162 if (*config != NULL) {
3163 uint64_t loadtimes[2];
3164
3165 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3166 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3167 VERIFY(nvlist_add_uint64_array(*config,
3168 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3169
3170 VERIFY(nvlist_add_uint64(*config,
3171 ZPOOL_CONFIG_ERRCOUNT,
3172 spa_get_errlog_size(spa)) == 0);
3173
3174 if (spa_suspended(spa))
3175 VERIFY(nvlist_add_uint64(*config,
3176 ZPOOL_CONFIG_SUSPENDED,
3177 spa->spa_failmode) == 0);
3178
3179 spa_add_spares(spa, *config);
3180 spa_add_l2cache(spa, *config);
3181 spa_add_feature_stats(spa, *config);
3182 }
3183 }
3184
3185 /*
3186 * We want to get the alternate root even for faulted pools, so we cheat
3187 * and call spa_lookup() directly.
3188 */
3189 if (altroot) {
3190 if (spa == NULL) {
3191 mutex_enter(&spa_namespace_lock);
3192 spa = spa_lookup(name);
3193 if (spa)
3194 spa_altroot(spa, altroot, buflen);
3195 else
3196 altroot[0] = '\0';
3197 spa = NULL;
3198 mutex_exit(&spa_namespace_lock);
3199 } else {
3200 spa_altroot(spa, altroot, buflen);
3201 }
3202 }
3203
3204 if (spa != NULL) {
3205 spa_config_exit(spa, SCL_CONFIG, FTAG);
3206 spa_close(spa, FTAG);
3207 }
3208
3209 return (error);
3210 }
3211
3212 /*
3213 * Validate that the auxiliary device array is well formed. We must have an
3214 * array of nvlists, each which describes a valid leaf vdev. If this is an
3215 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3216 * specified, as long as they are well-formed.
3217 */
3218 static int
3219 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3220 spa_aux_vdev_t *sav, const char *config, uint64_t version,
3221 vdev_labeltype_t label)
3222 {
3223 nvlist_t **dev;
3224 uint_t i, ndev;
3225 vdev_t *vd;
3226 int error;
3227
3228 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3229
3230 /*
3231 * It's acceptable to have no devs specified.
3232 */
3233 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3234 return (0);
3235
3236 if (ndev == 0)
3237 return (SET_ERROR(EINVAL));
3238
3239 /*
3240 * Make sure the pool is formatted with a version that supports this
3241 * device type.
3242 */
3243 if (spa_version(spa) < version)
3244 return (SET_ERROR(ENOTSUP));
3245
3246 /*
3247 * Set the pending device list so we correctly handle device in-use
3248 * checking.
3249 */
3250 sav->sav_pending = dev;
3251 sav->sav_npending = ndev;
3252
3253 for (i = 0; i < ndev; i++) {
3254 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3255 mode)) != 0)
3256 goto out;
3257
3258 if (!vd->vdev_ops->vdev_op_leaf) {
3259 vdev_free(vd);
3260 error = SET_ERROR(EINVAL);
3261 goto out;
3262 }
3263
3264 /*
3265 * The L2ARC currently only supports disk devices in
3266 * kernel context. For user-level testing, we allow it.
3267 */
3268 #ifdef _KERNEL
3269 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3270 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3271 error = SET_ERROR(ENOTBLK);
3272 vdev_free(vd);
3273 goto out;
3274 }
3275 #endif
3276 vd->vdev_top = vd;
3277
3278 if ((error = vdev_open(vd)) == 0 &&
3279 (error = vdev_label_init(vd, crtxg, label)) == 0) {
3280 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3281 vd->vdev_guid) == 0);
3282 }
3283
3284 vdev_free(vd);
3285
3286 if (error &&
3287 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3288 goto out;
3289 else
3290 error = 0;
3291 }
3292
3293 out:
3294 sav->sav_pending = NULL;
3295 sav->sav_npending = 0;
3296 return (error);
3297 }
3298
3299 static int
3300 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3301 {
3302 int error;
3303
3304 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3305
3306 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3307 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3308 VDEV_LABEL_SPARE)) != 0) {
3309 return (error);
3310 }
3311
3312 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3313 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3314 VDEV_LABEL_L2CACHE));
3315 }
3316
3317 static void
3318 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3319 const char *config)
3320 {
3321 int i;
3322
3323 if (sav->sav_config != NULL) {
3324 nvlist_t **olddevs;
3325 uint_t oldndevs;
3326 nvlist_t **newdevs;
3327
3328 /*
3329 * Generate new dev list by concatentating with the
3330 * current dev list.
3331 */
3332 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3333 &olddevs, &oldndevs) == 0);
3334
3335 newdevs = kmem_alloc(sizeof (void *) *
3336 (ndevs + oldndevs), KM_SLEEP);
3337 for (i = 0; i < oldndevs; i++)
3338 VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3339 KM_SLEEP) == 0);
3340 for (i = 0; i < ndevs; i++)
3341 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3342 KM_SLEEP) == 0);
3343
3344 VERIFY(nvlist_remove(sav->sav_config, config,
3345 DATA_TYPE_NVLIST_ARRAY) == 0);
3346
3347 VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3348 config, newdevs, ndevs + oldndevs) == 0);
3349 for (i = 0; i < oldndevs + ndevs; i++)
3350 nvlist_free(newdevs[i]);
3351 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3352 } else {
3353 /*
3354 * Generate a new dev list.
3355 */
3356 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3357 KM_SLEEP) == 0);
3358 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3359 devs, ndevs) == 0);
3360 }
3361 }
3362
3363 /*
3364 * Stop and drop level 2 ARC devices
3365 */
3366 void
3367 spa_l2cache_drop(spa_t *spa)
3368 {
3369 vdev_t *vd;
3370 int i;
3371 spa_aux_vdev_t *sav = &spa->spa_l2cache;
3372
3373 for (i = 0; i < sav->sav_count; i++) {
3374 uint64_t pool;
3375
3376 vd = sav->sav_vdevs[i];
3377 ASSERT(vd != NULL);
3378
3379 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3380 pool != 0ULL && l2arc_vdev_present(vd))
3381 l2arc_remove_vdev(vd);
3382 }
3383 }
3384
3385 /*
3386 * Pool Creation
3387 */
3388 int
3389 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3390 nvlist_t *zplprops)
3391 {
3392 spa_t *spa;
3393 char *altroot = NULL;
3394 vdev_t *rvd;
3395 dsl_pool_t *dp;
3396 dmu_tx_t *tx;
3397 int error = 0;
3398 uint64_t txg = TXG_INITIAL;
3399 nvlist_t **spares, **l2cache;
3400 uint_t nspares, nl2cache;
3401 uint64_t version, obj;
3402 boolean_t has_features;
3403
3404 /*
3405 * If this pool already exists, return failure.
3406 */
3407 mutex_enter(&spa_namespace_lock);
3408 if (spa_lookup(pool) != NULL) {
3409 mutex_exit(&spa_namespace_lock);
3410 return (SET_ERROR(EEXIST));
3411 }
3412
3413 /*
3414 * Allocate a new spa_t structure.
3415 */
3416 (void) nvlist_lookup_string(props,
3417 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3418 spa = spa_add(pool, NULL, altroot);
3419 spa_activate(spa, spa_mode_global);
3420
3421 if (props && (error = spa_prop_validate(spa, props))) {
3422 spa_deactivate(spa);
3423 spa_remove(spa);
3424 mutex_exit(&spa_namespace_lock);
3425 return (error);
3426 }
3427
3428 has_features = B_FALSE;
3429 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3430 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3431 if (zpool_prop_feature(nvpair_name(elem)))
3432 has_features = B_TRUE;
3433 }
3434
3435 if (has_features || nvlist_lookup_uint64(props,
3436 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3437 version = SPA_VERSION;
3438 }
3439 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3440
3441 spa->spa_first_txg = txg;
3442 spa->spa_uberblock.ub_txg = txg - 1;
3443 spa->spa_uberblock.ub_version = version;
3444 spa->spa_ubsync = spa->spa_uberblock;
3445
3446 /*
3447 * Create "The Godfather" zio to hold all async IOs
3448 */
3449 spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3450 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3451
3452 /*
3453 * Create the root vdev.
3454 */
3455 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3456
3457 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3458
3459 ASSERT(error != 0 || rvd != NULL);
3460 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3461
3462 if (error == 0 && !zfs_allocatable_devs(nvroot))
3463 error = SET_ERROR(EINVAL);
3464
3465 if (error == 0 &&
3466 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3467 (error = spa_validate_aux(spa, nvroot, txg,
3468 VDEV_ALLOC_ADD)) == 0) {
3469 for (int c = 0; c < rvd->vdev_children; c++) {
3470 vdev_metaslab_set_size(rvd->vdev_child[c]);
3471 vdev_expand(rvd->vdev_child[c], txg);
3472 }
3473 }
3474
3475 spa_config_exit(spa, SCL_ALL, FTAG);
3476
3477 if (error != 0) {
3478 spa_unload(spa);
3479 spa_deactivate(spa);
3480 spa_remove(spa);
3481 mutex_exit(&spa_namespace_lock);
3482 return (error);
3483 }
3484
3485 /*
3486 * Get the list of spares, if specified.
3487 */
3488 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3489 &spares, &nspares) == 0) {
3490 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3491 KM_SLEEP) == 0);
3492 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3493 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3494 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3495 spa_load_spares(spa);
3496 spa_config_exit(spa, SCL_ALL, FTAG);
3497 spa->spa_spares.sav_sync = B_TRUE;
3498 }
3499
3500 /*
3501 * Get the list of level 2 cache devices, if specified.
3502 */
3503 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3504 &l2cache, &nl2cache) == 0) {
3505 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3506 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3507 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3508 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3509 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3510 spa_load_l2cache(spa);
3511 spa_config_exit(spa, SCL_ALL, FTAG);
3512 spa->spa_l2cache.sav_sync = B_TRUE;
3513 }
3514
3515 spa->spa_is_initializing = B_TRUE;
3516 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3517 spa->spa_meta_objset = dp->dp_meta_objset;
3518 spa->spa_is_initializing = B_FALSE;
3519
3520 /*
3521 * Create DDTs (dedup tables).
3522 */
3523 ddt_create(spa);
3524
3525 spa_update_dspace(spa);
3526
3527 tx = dmu_tx_create_assigned(dp, txg);
3528
3529 /*
3530 * Create the pool config object.
3531 */
3532 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3533 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3534 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3535
3536 if (zap_add(spa->spa_meta_objset,
3537 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3538 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3539 cmn_err(CE_PANIC, "failed to add pool config");
3540 }
3541
3542 if (spa_version(spa) >= SPA_VERSION_FEATURES)
3543 spa_feature_create_zap_objects(spa, tx);
3544
3545 if (zap_add(spa->spa_meta_objset,
3546 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3547 sizeof (uint64_t), 1, &version, tx) != 0) {
3548 cmn_err(CE_PANIC, "failed to add pool version");
3549 }
3550
3551 /* Newly created pools with the right version are always deflated. */
3552 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3553 spa->spa_deflate = TRUE;
3554 if (zap_add(spa->spa_meta_objset,
3555 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3556 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3557 cmn_err(CE_PANIC, "failed to add deflate");
3558 }
3559 }
3560
3561 /*
3562 * Create the deferred-free bpobj. Turn off compression
3563 * because sync-to-convergence takes longer if the blocksize
3564 * keeps changing.
3565 */
3566 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3567 dmu_object_set_compress(spa->spa_meta_objset, obj,
3568 ZIO_COMPRESS_OFF, tx);
3569 if (zap_add(spa->spa_meta_objset,
3570 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3571 sizeof (uint64_t), 1, &obj, tx) != 0) {
3572 cmn_err(CE_PANIC, "failed to add bpobj");
3573 }
3574 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3575 spa->spa_meta_objset, obj));
3576
3577 /*
3578 * Create the pool's history object.
3579 */
3580 if (version >= SPA_VERSION_ZPOOL_HISTORY)
3581 spa_history_create_obj(spa, tx);
3582
3583 /*
3584 * Set pool properties.
3585 */
3586 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3587 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3588 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3589 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3590
3591 if (props != NULL) {
3592 spa_configfile_set(spa, props, B_FALSE);
3593 spa_sync_props(props, tx);
3594 }
3595
3596 dmu_tx_commit(tx);
3597
3598 spa->spa_sync_on = B_TRUE;
3599 txg_sync_start(spa->spa_dsl_pool);
3600
3601 /*
3602 * We explicitly wait for the first transaction to complete so that our
3603 * bean counters are appropriately updated.
3604 */
3605 txg_wait_synced(spa->spa_dsl_pool, txg);
3606
3607 spa_config_sync(spa, B_FALSE, B_TRUE);
3608
3609 spa_history_log_version(spa, "create");
3610
3611 spa->spa_minref = refcount_count(&spa->spa_refcount);
3612
3613 mutex_exit(&spa_namespace_lock);
3614
3615 return (0);
3616 }
3617
3618 #ifdef _KERNEL
3619 /*
3620 * Get the root pool information from the root disk, then import the root pool
3621 * during the system boot up time.
3622 */
3623 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3624
3625 static nvlist_t *
3626 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3627 {
3628 nvlist_t *config;
3629 nvlist_t *nvtop, *nvroot;
3630 uint64_t pgid;
3631
3632 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3633 return (NULL);
3634
3635 /*
3636 * Add this top-level vdev to the child array.
3637 */
3638 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3639 &nvtop) == 0);
3640 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3641 &pgid) == 0);
3642 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3643
3644 /*
3645 * Put this pool's top-level vdevs into a root vdev.
3646 */
3647 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3648 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3649 VDEV_TYPE_ROOT) == 0);
3650 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3651 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3652 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3653 &nvtop, 1) == 0);
3654
3655 /*
3656 * Replace the existing vdev_tree with the new root vdev in
3657 * this pool's configuration (remove the old, add the new).
3658 */
3659 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3660 nvlist_free(nvroot);
3661 return (config);
3662 }
3663
3664 /*
3665 * Walk the vdev tree and see if we can find a device with "better"
3666 * configuration. A configuration is "better" if the label on that
3667 * device has a more recent txg.
3668 */
3669 static void
3670 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3671 {
3672 for (int c = 0; c < vd->vdev_children; c++)
3673 spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3674
3675 if (vd->vdev_ops->vdev_op_leaf) {
3676 nvlist_t *label;
3677 uint64_t label_txg;
3678
3679 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3680 &label) != 0)
3681 return;
3682
3683 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3684 &label_txg) == 0);
3685
3686 /*
3687 * Do we have a better boot device?
3688 */
3689 if (label_txg > *txg) {
3690 *txg = label_txg;
3691 *avd = vd;
3692 }
3693 nvlist_free(label);
3694 }
3695 }
3696
3697 /*
3698 * Import a root pool.
3699 *
3700 * For x86. devpath_list will consist of devid and/or physpath name of
3701 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3702 * The GRUB "findroot" command will return the vdev we should boot.
3703 *
3704 * For Sparc, devpath_list consists the physpath name of the booting device
3705 * no matter the rootpool is a single device pool or a mirrored pool.
3706 * e.g.
3707 * "/pci@1f,0/ide@d/disk@0,0:a"
3708 */
3709 int
3710 spa_import_rootpool(char *devpath, char *devid)
3711 {
3712 spa_t *spa;
3713 vdev_t *rvd, *bvd, *avd = NULL;
3714 nvlist_t *config, *nvtop;
3715 uint64_t guid, txg;
3716 char *pname;
3717 int error;
3718
3719 /*
3720 * Read the label from the boot device and generate a configuration.
3721 */
3722 config = spa_generate_rootconf(devpath, devid, &guid);
3723 #if defined(_OBP) && defined(_KERNEL)
3724 if (config == NULL) {
3725 if (strstr(devpath, "/iscsi/ssd") != NULL) {
3726 /* iscsi boot */
3727 get_iscsi_bootpath_phy(devpath);
3728 config = spa_generate_rootconf(devpath, devid, &guid);
3729 }
3730 }
3731 #endif
3732 if (config == NULL) {
3733 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3734 devpath);
3735 return (SET_ERROR(EIO));
3736 }
3737
3738 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3739 &pname) == 0);
3740 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3741
3742 mutex_enter(&spa_namespace_lock);
3743 if ((spa = spa_lookup(pname)) != NULL) {
3744 /*
3745 * Remove the existing root pool from the namespace so that we
3746 * can replace it with the correct config we just read in.
3747 */
3748 spa_remove(spa);
3749 }
3750
3751 spa = spa_add(pname, config, NULL);
3752 spa->spa_is_root = B_TRUE;
3753 spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3754
3755 /*
3756 * Build up a vdev tree based on the boot device's label config.
3757 */
3758 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3759 &nvtop) == 0);
3760 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3761 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3762 VDEV_ALLOC_ROOTPOOL);
3763 spa_config_exit(spa, SCL_ALL, FTAG);
3764 if (error) {
3765 mutex_exit(&spa_namespace_lock);
3766 nvlist_free(config);
3767 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3768 pname);
3769 return (error);
3770 }
3771
3772 /*
3773 * Get the boot vdev.
3774 */
3775 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3776 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3777 (u_longlong_t)guid);
3778 error = SET_ERROR(ENOENT);
3779 goto out;
3780 }
3781
3782 /*
3783 * Determine if there is a better boot device.
3784 */
3785 avd = bvd;
3786 spa_alt_rootvdev(rvd, &avd, &txg);
3787 if (avd != bvd) {
3788 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3789 "try booting from '%s'", avd->vdev_path);
3790 error = SET_ERROR(EINVAL);
3791 goto out;
3792 }
3793
3794 /*
3795 * If the boot device is part of a spare vdev then ensure that
3796 * we're booting off the active spare.
3797 */
3798 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3799 !bvd->vdev_isspare) {
3800 cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3801 "try booting from '%s'",
3802 bvd->vdev_parent->
3803 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3804 error = SET_ERROR(EINVAL);
3805 goto out;
3806 }
3807
3808 error = 0;
3809 out:
3810 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3811 vdev_free(rvd);
3812 spa_config_exit(spa, SCL_ALL, FTAG);
3813 mutex_exit(&spa_namespace_lock);
3814
3815 nvlist_free(config);
3816 return (error);
3817 }
3818
3819 #endif
3820
3821 /*
3822 * Import a non-root pool into the system.
3823 */
3824 int
3825 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3826 {
3827 spa_t *spa;
3828 char *altroot = NULL;
3829 spa_load_state_t state = SPA_LOAD_IMPORT;
3830 zpool_rewind_policy_t policy;
3831 uint64_t mode = spa_mode_global;
3832 uint64_t readonly = B_FALSE;
3833 int error;
3834 nvlist_t *nvroot;
3835 nvlist_t **spares, **l2cache;
3836 uint_t nspares, nl2cache;
3837
3838 /*
3839 * If a pool with this name exists, return failure.
3840 */
3841 mutex_enter(&spa_namespace_lock);
3842 if (spa_lookup(pool) != NULL) {
3843 mutex_exit(&spa_namespace_lock);
3844 return (SET_ERROR(EEXIST));
3845 }
3846
3847 /*
3848 * Create and initialize the spa structure.
3849 */
3850 (void) nvlist_lookup_string(props,
3851 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3852 (void) nvlist_lookup_uint64(props,
3853 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3854 if (readonly)
3855 mode = FREAD;
3856 spa = spa_add(pool, config, altroot);
3857 spa->spa_import_flags = flags;
3858
3859 /*
3860 * Verbatim import - Take a pool and insert it into the namespace
3861 * as if it had been loaded at boot.
3862 */
3863 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3864 if (props != NULL)
3865 spa_configfile_set(spa, props, B_FALSE);
3866
3867 spa_config_sync(spa, B_FALSE, B_TRUE);
3868
3869 mutex_exit(&spa_namespace_lock);
3870 return (0);
3871 }
3872
3873 spa_activate(spa, mode);
3874
3875 /*
3876 * Don't start async tasks until we know everything is healthy.
3877 */
3878 spa_async_suspend(spa);
3879
3880 zpool_get_rewind_policy(config, &policy);
3881 if (policy.zrp_request & ZPOOL_DO_REWIND)
3882 state = SPA_LOAD_RECOVER;
3883
3884 /*
3885 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig
3886 * because the user-supplied config is actually the one to trust when
3887 * doing an import.
3888 */
3889 if (state != SPA_LOAD_RECOVER)
3890 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3891
3892 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3893 policy.zrp_request);
3894
3895 /*
3896 * Propagate anything learned while loading the pool and pass it
3897 * back to caller (i.e. rewind info, missing devices, etc).
3898 */
3899 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3900 spa->spa_load_info) == 0);
3901
3902 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3903 /*
3904 * Toss any existing sparelist, as it doesn't have any validity
3905 * anymore, and conflicts with spa_has_spare().
3906 */
3907 if (spa->spa_spares.sav_config) {
3908 nvlist_free(spa->spa_spares.sav_config);
3909 spa->spa_spares.sav_config = NULL;
3910 spa_load_spares(spa);
3911 }
3912 if (spa->spa_l2cache.sav_config) {
3913 nvlist_free(spa->spa_l2cache.sav_config);
3914 spa->spa_l2cache.sav_config = NULL;
3915 spa_load_l2cache(spa);
3916 }
3917
3918 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3919 &nvroot) == 0);
3920 if (error == 0)
3921 error = spa_validate_aux(spa, nvroot, -1ULL,
3922 VDEV_ALLOC_SPARE);
3923 if (error == 0)
3924 error = spa_validate_aux(spa, nvroot, -1ULL,
3925 VDEV_ALLOC_L2CACHE);
3926 spa_config_exit(spa, SCL_ALL, FTAG);
3927
3928 if (props != NULL)
3929 spa_configfile_set(spa, props, B_FALSE);
3930
3931 if (error != 0 || (props && spa_writeable(spa) &&
3932 (error = spa_prop_set(spa, props)))) {
3933 spa_unload(spa);
3934 spa_deactivate(spa);
3935 spa_remove(spa);
3936 mutex_exit(&spa_namespace_lock);
3937 return (error);
3938 }
3939
3940 spa_async_resume(spa);
3941
3942 /*
3943 * Override any spares and level 2 cache devices as specified by
3944 * the user, as these may have correct device names/devids, etc.
3945 */
3946 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3947 &spares, &nspares) == 0) {
3948 if (spa->spa_spares.sav_config)
3949 VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3950 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3951 else
3952 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3953 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3954 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3955 ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3956 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3957 spa_load_spares(spa);
3958 spa_config_exit(spa, SCL_ALL, FTAG);
3959 spa->spa_spares.sav_sync = B_TRUE;
3960 }
3961 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3962 &l2cache, &nl2cache) == 0) {
3963 if (spa->spa_l2cache.sav_config)
3964 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3965 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3966 else
3967 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3968 NV_UNIQUE_NAME, KM_SLEEP) == 0);
3969 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3970 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3971 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3972 spa_load_l2cache(spa);
3973 spa_config_exit(spa, SCL_ALL, FTAG);
3974 spa->spa_l2cache.sav_sync = B_TRUE;
3975 }
3976
3977 /*
3978 * Check for any removed devices.
3979 */
3980 if (spa->spa_autoreplace) {
3981 spa_aux_check_removed(&spa->spa_spares);
3982 spa_aux_check_removed(&spa->spa_l2cache);
3983 }
3984
3985 if (spa_writeable(spa)) {
3986 /*
3987 * Update the config cache to include the newly-imported pool.
3988 */
3989 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3990 }
3991
3992 /*
3993 * It's possible that the pool was expanded while it was exported.
3994 * We kick off an async task to handle this for us.
3995 */
3996 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3997
3998 mutex_exit(&spa_namespace_lock);
3999 spa_history_log_version(spa, "import");
4000
4001 return (0);
4002 }
4003
4004 nvlist_t *
4005 spa_tryimport(nvlist_t *tryconfig)
4006 {
4007 nvlist_t *config = NULL;
4008 char *poolname;
4009 spa_t *spa;
4010 uint64_t state;
4011 int error;
4012
4013 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4014 return (NULL);
4015
4016 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4017 return (NULL);
4018
4019 /*
4020 * Create and initialize the spa structure.
4021 */
4022 mutex_enter(&spa_namespace_lock);
4023 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4024 spa_activate(spa, FREAD);
4025
4026 /*
4027 * Pass off the heavy lifting to spa_load().
4028 * Pass TRUE for mosconfig because the user-supplied config
4029 * is actually the one to trust when doing an import.
4030 */
4031 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4032
4033 /*
4034 * If 'tryconfig' was at least parsable, return the current config.
4035 */
4036 if (spa->spa_root_vdev != NULL) {
4037 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4038 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4039 poolname) == 0);
4040 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4041 state) == 0);
4042 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4043 spa->spa_uberblock.ub_timestamp) == 0);
4044 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4045 spa->spa_load_info) == 0);
4046
4047 /*
4048 * If the bootfs property exists on this pool then we
4049 * copy it out so that external consumers can tell which
4050 * pools are bootable.
4051 */
4052 if ((!error || error == EEXIST) && spa->spa_bootfs) {
4053 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4054
4055 /*
4056 * We have to play games with the name since the
4057 * pool was opened as TRYIMPORT_NAME.
4058 */
4059 if (dsl_dsobj_to_dsname(spa_name(spa),
4060 spa->spa_bootfs, tmpname) == 0) {
4061 char *cp;
4062 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4063
4064 cp = strchr(tmpname, '/');
4065 if (cp == NULL) {
4066 (void) strlcpy(dsname, tmpname,
4067 MAXPATHLEN);
4068 } else {
4069 (void) snprintf(dsname, MAXPATHLEN,
4070 "%s/%s", poolname, ++cp);
4071 }
4072 VERIFY(nvlist_add_string(config,
4073 ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4074 kmem_free(dsname, MAXPATHLEN);
4075 }
4076 kmem_free(tmpname, MAXPATHLEN);
4077 }
4078
4079 /*
4080 * Add the list of hot spares and level 2 cache devices.
4081 */
4082 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4083 spa_add_spares(spa, config);
4084 spa_add_l2cache(spa, config);
4085 spa_config_exit(spa, SCL_CONFIG, FTAG);
4086 }
4087
4088 spa_unload(spa);
4089 spa_deactivate(spa);
4090 spa_remove(spa);
4091 mutex_exit(&spa_namespace_lock);
4092
4093 return (config);
4094 }
4095
4096 /*
4097 * Pool export/destroy
4098 *
4099 * The act of destroying or exporting a pool is very simple. We make sure there
4100 * is no more pending I/O and any references to the pool are gone. Then, we
4101 * update the pool state and sync all the labels to disk, removing the
4102 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4103 * we don't sync the labels or remove the configuration cache.
4104 */
4105 static int
4106 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4107 boolean_t force, boolean_t hardforce)
4108 {
4109 spa_t *spa;
4110
4111 if (oldconfig)
4112 *oldconfig = NULL;
4113
4114 if (!(spa_mode_global & FWRITE))
4115 return (SET_ERROR(EROFS));
4116
4117 mutex_enter(&spa_namespace_lock);
4118 if ((spa = spa_lookup(pool)) == NULL) {
4119 mutex_exit(&spa_namespace_lock);
4120 return (SET_ERROR(ENOENT));
4121 }
4122
4123 /*
4124 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4125 * reacquire the namespace lock, and see if we can export.
4126 */
4127 spa_open_ref(spa, FTAG);
4128 mutex_exit(&spa_namespace_lock);
4129 spa_async_suspend(spa);
4130 mutex_enter(&spa_namespace_lock);
4131 spa_close(spa, FTAG);
4132
4133 /*
4134 * The pool will be in core if it's openable,
4135 * in which case we can modify its state.
4136 */
4137 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4138 /*
4139 * Objsets may be open only because they're dirty, so we
4140 * have to force it to sync before checking spa_refcnt.
4141 */
4142 txg_wait_synced(spa->spa_dsl_pool, 0);
4143
4144 /*
4145 * A pool cannot be exported or destroyed if there are active
4146 * references. If we are resetting a pool, allow references by
4147 * fault injection handlers.
4148 */
4149 if (!spa_refcount_zero(spa) ||
4150 (spa->spa_inject_ref != 0 &&
4151 new_state != POOL_STATE_UNINITIALIZED)) {
4152 spa_async_resume(spa);
4153 mutex_exit(&spa_namespace_lock);
4154 return (SET_ERROR(EBUSY));
4155 }
4156
4157 /*
4158 * A pool cannot be exported if it has an active shared spare.
4159 * This is to prevent other pools stealing the active spare
4160 * from an exported pool. At user's own will, such pool can
4161 * be forcedly exported.
4162 */
4163 if (!force && new_state == POOL_STATE_EXPORTED &&
4164 spa_has_active_shared_spare(spa)) {
4165 spa_async_resume(spa);
4166 mutex_exit(&spa_namespace_lock);
4167 return (SET_ERROR(EXDEV));
4168 }
4169
4170 /*
4171 * We want this to be reflected on every label,
4172 * so mark them all dirty. spa_unload() will do the
4173 * final sync that pushes these changes out.
4174 */
4175 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4176 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4177 spa->spa_state = new_state;
4178 spa->spa_final_txg = spa_last_synced_txg(spa) +
4179 TXG_DEFER_SIZE + 1;
4180 vdev_config_dirty(spa->spa_root_vdev);
4181 spa_config_exit(spa, SCL_ALL, FTAG);
4182 }
4183 }
4184
4185 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4186
4187 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4188 spa_unload(spa);
4189 spa_deactivate(spa);
4190 }
4191
4192 if (oldconfig && spa->spa_config)
4193 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4194
4195 if (new_state != POOL_STATE_UNINITIALIZED) {
4196 if (!hardforce)
4197 spa_config_sync(spa, B_TRUE, B_TRUE);
4198 spa_remove(spa);
4199 }
4200 mutex_exit(&spa_namespace_lock);
4201
4202 return (0);
4203 }
4204
4205 /*
4206 * Destroy a storage pool.
4207 */
4208 int
4209 spa_destroy(char *pool)
4210 {
4211 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4212 B_FALSE, B_FALSE));
4213 }
4214
4215 /*
4216 * Export a storage pool.
4217 */
4218 int
4219 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4220 boolean_t hardforce)
4221 {
4222 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4223 force, hardforce));
4224 }
4225
4226 /*
4227 * Similar to spa_export(), this unloads the spa_t without actually removing it
4228 * from the namespace in any way.
4229 */
4230 int
4231 spa_reset(char *pool)
4232 {
4233 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4234 B_FALSE, B_FALSE));
4235 }
4236
4237 /*
4238 * ==========================================================================
4239 * Device manipulation
4240 * ==========================================================================
4241 */
4242
4243 /*
4244 * Add a device to a storage pool.
4245 */
4246 int
4247 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4248 {
4249 uint64_t txg, id;
4250 int error;
4251 vdev_t *rvd = spa->spa_root_vdev;
4252 vdev_t *vd, *tvd;
4253 nvlist_t **spares, **l2cache;
4254 uint_t nspares, nl2cache;
4255
4256 ASSERT(spa_writeable(spa));
4257
4258 txg = spa_vdev_enter(spa);
4259
4260 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4261 VDEV_ALLOC_ADD)) != 0)
4262 return (spa_vdev_exit(spa, NULL, txg, error));
4263
4264 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
4265
4266 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4267 &nspares) != 0)
4268 nspares = 0;
4269
4270 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4271 &nl2cache) != 0)
4272 nl2cache = 0;
4273
4274 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4275 return (spa_vdev_exit(spa, vd, txg, EINVAL));
4276
4277 if (vd->vdev_children != 0 &&
4278 (error = vdev_create(vd, txg, B_FALSE)) != 0)
4279 return (spa_vdev_exit(spa, vd, txg, error));
4280
4281 /*
4282 * We must validate the spares and l2cache devices after checking the
4283 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
4284 */
4285 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4286 return (spa_vdev_exit(spa, vd, txg, error));
4287
4288 /*
4289 * Transfer each new top-level vdev from vd to rvd.
4290 */
4291 for (int c = 0; c < vd->vdev_children; c++) {
4292
4293 /*
4294 * Set the vdev id to the first hole, if one exists.
4295 */
4296 for (id = 0; id < rvd->vdev_children; id++) {
4297 if (rvd->vdev_child[id]->vdev_ishole) {
4298 vdev_free(rvd->vdev_child[id]);
4299 break;
4300 }
4301 }
4302 tvd = vd->vdev_child[c];
4303 vdev_remove_child(vd, tvd);
4304 tvd->vdev_id = id;
4305 vdev_add_child(rvd, tvd);
4306 vdev_config_dirty(tvd);
4307 }
4308
4309 if (nspares != 0) {
4310 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4311 ZPOOL_CONFIG_SPARES);
4312 spa_load_spares(spa);
4313 spa->spa_spares.sav_sync = B_TRUE;
4314 }
4315
4316 if (nl2cache != 0) {
4317 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4318 ZPOOL_CONFIG_L2CACHE);
4319 spa_load_l2cache(spa);
4320 spa->spa_l2cache.sav_sync = B_TRUE;
4321 }
4322
4323 /*
4324 * We have to be careful when adding new vdevs to an existing pool.
4325 * If other threads start allocating from these vdevs before we
4326 * sync the config cache, and we lose power, then upon reboot we may
4327 * fail to open the pool because there are DVAs that the config cache
4328 * can't translate. Therefore, we first add the vdevs without
4329 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4330 * and then let spa_config_update() initialize the new metaslabs.
4331 *
4332 * spa_load() checks for added-but-not-initialized vdevs, so that
4333 * if we lose power at any point in this sequence, the remaining
4334 * steps will be completed the next time we load the pool.
4335 */
4336 (void) spa_vdev_exit(spa, vd, txg, 0);
4337
4338 mutex_enter(&spa_namespace_lock);
4339 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4340 mutex_exit(&spa_namespace_lock);
4341
4342 return (0);
4343 }
4344
4345 /*
4346 * Attach a device to a mirror. The arguments are the path to any device
4347 * in the mirror, and the nvroot for the new device. If the path specifies
4348 * a device that is not mirrored, we automatically insert the mirror vdev.
4349 *
4350 * If 'replacing' is specified, the new device is intended to replace the
4351 * existing device; in this case the two devices are made into their own
4352 * mirror using the 'replacing' vdev, which is functionally identical to
4353 * the mirror vdev (it actually reuses all the same ops) but has a few
4354 * extra rules: you can't attach to it after it's been created, and upon
4355 * completion of resilvering, the first disk (the one being replaced)
4356 * is automatically detached.
4357 */
4358 int
4359 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4360 {
4361 uint64_t txg, dtl_max_txg;
4362 vdev_t *rvd = spa->spa_root_vdev;
4363 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4364 vdev_ops_t *pvops;
4365 char *oldvdpath, *newvdpath;
4366 int newvd_isspare;
4367 int error;
4368
4369 ASSERT(spa_writeable(spa));
4370
4371 txg = spa_vdev_enter(spa);
4372
4373 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4374
4375 if (oldvd == NULL)
4376 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4377
4378 if (!oldvd->vdev_ops->vdev_op_leaf)
4379 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4380
4381 pvd = oldvd->vdev_parent;
4382
4383 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4384 VDEV_ALLOC_ATTACH)) != 0)
4385 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4386
4387 if (newrootvd->vdev_children != 1)
4388 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4389
4390 newvd = newrootvd->vdev_child[0];
4391
4392 if (!newvd->vdev_ops->vdev_op_leaf)
4393 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4394
4395 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4396 return (spa_vdev_exit(spa, newrootvd, txg, error));
4397
4398 /*
4399 * Spares can't replace logs
4400 */
4401 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4402 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4403
4404 if (!replacing) {
4405 /*
4406 * For attach, the only allowable parent is a mirror or the root
4407 * vdev.
4408 */
4409 if (pvd->vdev_ops != &vdev_mirror_ops &&
4410 pvd->vdev_ops != &vdev_root_ops)
4411 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4412
4413 pvops = &vdev_mirror_ops;
4414 } else {
4415 /*
4416 * Active hot spares can only be replaced by inactive hot
4417 * spares.
4418 */
4419 if (pvd->vdev_ops == &vdev_spare_ops &&
4420 oldvd->vdev_isspare &&
4421 !spa_has_spare(spa, newvd->vdev_guid))
4422 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4423
4424 /*
4425 * If the source is a hot spare, and the parent isn't already a
4426 * spare, then we want to create a new hot spare. Otherwise, we
4427 * want to create a replacing vdev. The user is not allowed to
4428 * attach to a spared vdev child unless the 'isspare' state is
4429 * the same (spare replaces spare, non-spare replaces
4430 * non-spare).
4431 */
4432 if (pvd->vdev_ops == &vdev_replacing_ops &&
4433 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4434 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4435 } else if (pvd->vdev_ops == &vdev_spare_ops &&
4436 newvd->vdev_isspare != oldvd->vdev_isspare) {
4437 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4438 }
4439
4440 if (newvd->vdev_isspare)
4441 pvops = &vdev_spare_ops;
4442 else
4443 pvops = &vdev_replacing_ops;
4444 }
4445
4446 /*
4447 * Make sure the new device is big enough.
4448 */
4449 if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4450 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4451
4452 /*
4453 * The new device cannot have a higher alignment requirement
4454 * than the top-level vdev.
4455 */
4456 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4457 return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4458
4459 /*
4460 * If this is an in-place replacement, update oldvd's path and devid
4461 * to make it distinguishable from newvd, and unopenable from now on.
4462 */
4463 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4464 spa_strfree(oldvd->vdev_path);
4465 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4466 KM_SLEEP);
4467 (void) sprintf(oldvd->vdev_path, "%s/%s",
4468 newvd->vdev_path, "old");
4469 if (oldvd->vdev_devid != NULL) {
4470 spa_strfree(oldvd->vdev_devid);
4471 oldvd->vdev_devid = NULL;
4472 }
4473 }
4474
4475 /* mark the device being resilvered */
4476 newvd->vdev_resilver_txg = txg;
4477
4478 /*
4479 * If the parent is not a mirror, or if we're replacing, insert the new
4480 * mirror/replacing/spare vdev above oldvd.
4481 */
4482 if (pvd->vdev_ops != pvops)
4483 pvd = vdev_add_parent(oldvd, pvops);
4484
4485 ASSERT(pvd->vdev_top->vdev_parent == rvd);
4486 ASSERT(pvd->vdev_ops == pvops);
4487 ASSERT(oldvd->vdev_parent == pvd);
4488
4489 /*
4490 * Extract the new device from its root and add it to pvd.
4491 */
4492 vdev_remove_child(newrootvd, newvd);
4493 newvd->vdev_id = pvd->vdev_children;
4494 newvd->vdev_crtxg = oldvd->vdev_crtxg;
4495 vdev_add_child(pvd, newvd);
4496
4497 tvd = newvd->vdev_top;
4498 ASSERT(pvd->vdev_top == tvd);
4499 ASSERT(tvd->vdev_parent == rvd);
4500
4501 vdev_config_dirty(tvd);
4502
4503 /*
4504 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4505 * for any dmu_sync-ed blocks. It will propagate upward when
4506 * spa_vdev_exit() calls vdev_dtl_reassess().
4507 */
4508 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4509
4510 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4511 dtl_max_txg - TXG_INITIAL);
4512
4513 if (newvd->vdev_isspare) {
4514 spa_spare_activate(newvd);
4515 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4516 }
4517
4518 oldvdpath = spa_strdup(oldvd->vdev_path);
4519 newvdpath = spa_strdup(newvd->vdev_path);
4520 newvd_isspare = newvd->vdev_isspare;
4521
4522 /*
4523 * Mark newvd's DTL dirty in this txg.
4524 */
4525 vdev_dirty(tvd, VDD_DTL, newvd, txg);
4526
4527 /*
4528 * Schedule the resilver to restart in the future. We do this to
4529 * ensure that dmu_sync-ed blocks have been stitched into the
4530 * respective datasets.
4531 */
4532 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4533
4534 /*
4535 * Commit the config
4536 */
4537 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4538
4539 spa_history_log_internal(spa, "vdev attach", NULL,
4540 "%s vdev=%s %s vdev=%s",
4541 replacing && newvd_isspare ? "spare in" :
4542 replacing ? "replace" : "attach", newvdpath,
4543 replacing ? "for" : "to", oldvdpath);
4544
4545 spa_strfree(oldvdpath);
4546 spa_strfree(newvdpath);
4547
4548 if (spa->spa_bootfs)
4549 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4550
4551 return (0);
4552 }
4553
4554 /*
4555 * Detach a device from a mirror or replacing vdev.
4556 *
4557 * If 'replace_done' is specified, only detach if the parent
4558 * is a replacing vdev.
4559 */
4560 int
4561 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4562 {
4563 uint64_t txg;
4564 int error;
4565 vdev_t *rvd = spa->spa_root_vdev;
4566 vdev_t *vd, *pvd, *cvd, *tvd;
4567 boolean_t unspare = B_FALSE;
4568 uint64_t unspare_guid = 0;
4569 char *vdpath;
4570
4571 ASSERT(spa_writeable(spa));
4572
4573 txg = spa_vdev_enter(spa);
4574
4575 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4576
4577 if (vd == NULL)
4578 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4579
4580 if (!vd->vdev_ops->vdev_op_leaf)
4581 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4582
4583 pvd = vd->vdev_parent;
4584
4585 /*
4586 * If the parent/child relationship is not as expected, don't do it.
4587 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4588 * vdev that's replacing B with C. The user's intent in replacing
4589 * is to go from M(A,B) to M(A,C). If the user decides to cancel
4590 * the replace by detaching C, the expected behavior is to end up
4591 * M(A,B). But suppose that right after deciding to detach C,
4592 * the replacement of B completes. We would have M(A,C), and then
4593 * ask to detach C, which would leave us with just A -- not what
4594 * the user wanted. To prevent this, we make sure that the
4595 * parent/child relationship hasn't changed -- in this example,
4596 * that C's parent is still the replacing vdev R.
4597 */
4598 if (pvd->vdev_guid != pguid && pguid != 0)
4599 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4600
4601 /*
4602 * Only 'replacing' or 'spare' vdevs can be replaced.
4603 */
4604 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4605 pvd->vdev_ops != &vdev_spare_ops)
4606 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4607
4608 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4609 spa_version(spa) >= SPA_VERSION_SPARES);
4610
4611 /*
4612 * Only mirror, replacing, and spare vdevs support detach.
4613 */
4614 if (pvd->vdev_ops != &vdev_replacing_ops &&
4615 pvd->vdev_ops != &vdev_mirror_ops &&
4616 pvd->vdev_ops != &vdev_spare_ops)
4617 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4618
4619 /*
4620 * If this device has the only valid copy of some data,
4621 * we cannot safely detach it.
4622 */
4623 if (vdev_dtl_required(vd))
4624 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4625
4626 ASSERT(pvd->vdev_children >= 2);
4627
4628 /*
4629 * If we are detaching the second disk from a replacing vdev, then
4630 * check to see if we changed the original vdev's path to have "/old"
4631 * at the end in spa_vdev_attach(). If so, undo that change now.
4632 */
4633 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4634 vd->vdev_path != NULL) {
4635 size_t len = strlen(vd->vdev_path);
4636
4637 for (int c = 0; c < pvd->vdev_children; c++) {
4638 cvd = pvd->vdev_child[c];
4639
4640 if (cvd == vd || cvd->vdev_path == NULL)
4641 continue;
4642
4643 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4644 strcmp(cvd->vdev_path + len, "/old") == 0) {
4645 spa_strfree(cvd->vdev_path);
4646 cvd->vdev_path = spa_strdup(vd->vdev_path);
4647 break;
4648 }
4649 }
4650 }
4651
4652 /*
4653 * If we are detaching the original disk from a spare, then it implies
4654 * that the spare should become a real disk, and be removed from the
4655 * active spare list for the pool.
4656 */
4657 if (pvd->vdev_ops == &vdev_spare_ops &&
4658 vd->vdev_id == 0 &&
4659 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4660 unspare = B_TRUE;
4661
4662 /*
4663 * Erase the disk labels so the disk can be used for other things.
4664 * This must be done after all other error cases are handled,
4665 * but before we disembowel vd (so we can still do I/O to it).
4666 * But if we can't do it, don't treat the error as fatal --
4667 * it may be that the unwritability of the disk is the reason
4668 * it's being detached!
4669 */
4670 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4671
4672 /*
4673 * Remove vd from its parent and compact the parent's children.
4674 */
4675 vdev_remove_child(pvd, vd);
4676 vdev_compact_children(pvd);
4677
4678 /*
4679 * Remember one of the remaining children so we can get tvd below.
4680 */
4681 cvd = pvd->vdev_child[pvd->vdev_children - 1];
4682
4683 /*
4684 * If we need to remove the remaining child from the list of hot spares,
4685 * do it now, marking the vdev as no longer a spare in the process.
4686 * We must do this before vdev_remove_parent(), because that can
4687 * change the GUID if it creates a new toplevel GUID. For a similar
4688 * reason, we must remove the spare now, in the same txg as the detach;
4689 * otherwise someone could attach a new sibling, change the GUID, and
4690 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4691 */
4692 if (unspare) {
4693 ASSERT(cvd->vdev_isspare);
4694 spa_spare_remove(cvd);
4695 unspare_guid = cvd->vdev_guid;
4696 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4697 cvd->vdev_unspare = B_TRUE;
4698 }
4699
4700 /*
4701 * If the parent mirror/replacing vdev only has one child,
4702 * the parent is no longer needed. Remove it from the tree.
4703 */
4704 if (pvd->vdev_children == 1) {
4705 if (pvd->vdev_ops == &vdev_spare_ops)
4706 cvd->vdev_unspare = B_FALSE;
4707 vdev_remove_parent(cvd);
4708 }
4709
4710
4711 /*
4712 * We don't set tvd until now because the parent we just removed
4713 * may have been the previous top-level vdev.
4714 */
4715 tvd = cvd->vdev_top;
4716 ASSERT(tvd->vdev_parent == rvd);
4717
4718 /*
4719 * Reevaluate the parent vdev state.
4720 */
4721 vdev_propagate_state(cvd);
4722
4723 /*
4724 * If the 'autoexpand' property is set on the pool then automatically
4725 * try to expand the size of the pool. For example if the device we
4726 * just detached was smaller than the others, it may be possible to
4727 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4728 * first so that we can obtain the updated sizes of the leaf vdevs.
4729 */
4730 if (spa->spa_autoexpand) {
4731 vdev_reopen(tvd);
4732 vdev_expand(tvd, txg);
4733 }
4734
4735 vdev_config_dirty(tvd);
4736
4737 /*
4738 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
4739 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4740 * But first make sure we're not on any *other* txg's DTL list, to
4741 * prevent vd from being accessed after it's freed.
4742 */
4743 vdpath = spa_strdup(vd->vdev_path);
4744 for (int t = 0; t < TXG_SIZE; t++)
4745 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4746 vd->vdev_detached = B_TRUE;
4747 vdev_dirty(tvd, VDD_DTL, vd, txg);
4748
4749 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4750
4751 /* hang on to the spa before we release the lock */
4752 spa_open_ref(spa, FTAG);
4753
4754 error = spa_vdev_exit(spa, vd, txg, 0);
4755
4756 spa_history_log_internal(spa, "detach", NULL,
4757 "vdev=%s", vdpath);
4758 spa_strfree(vdpath);
4759
4760 /*
4761 * If this was the removal of the original device in a hot spare vdev,
4762 * then we want to go through and remove the device from the hot spare
4763 * list of every other pool.
4764 */
4765 if (unspare) {
4766 spa_t *altspa = NULL;
4767
4768 mutex_enter(&spa_namespace_lock);
4769 while ((altspa = spa_next(altspa)) != NULL) {
4770 if (altspa->spa_state != POOL_STATE_ACTIVE ||
4771 altspa == spa)
4772 continue;
4773
4774 spa_open_ref(altspa, FTAG);
4775 mutex_exit(&spa_namespace_lock);
4776 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4777 mutex_enter(&spa_namespace_lock);
4778 spa_close(altspa, FTAG);
4779 }
4780 mutex_exit(&spa_namespace_lock);
4781
4782 /* search the rest of the vdevs for spares to remove */
4783 spa_vdev_resilver_done(spa);
4784 }
4785
4786 /* all done with the spa; OK to release */
4787 mutex_enter(&spa_namespace_lock);
4788 spa_close(spa, FTAG);
4789 mutex_exit(&spa_namespace_lock);
4790
4791 return (error);
4792 }
4793
4794 /*
4795 * Split a set of devices from their mirrors, and create a new pool from them.
4796 */
4797 int
4798 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4799 nvlist_t *props, boolean_t exp)
4800 {
4801 int error = 0;
4802 uint64_t txg, *glist;
4803 spa_t *newspa;
4804 uint_t c, children, lastlog;
4805 nvlist_t **child, *nvl, *tmp;
4806 dmu_tx_t *tx;
4807 char *altroot = NULL;
4808 vdev_t *rvd, **vml = NULL; /* vdev modify list */
4809 boolean_t activate_slog;
4810
4811 ASSERT(spa_writeable(spa));
4812
4813 txg = spa_vdev_enter(spa);
4814
4815 /* clear the log and flush everything up to now */
4816 activate_slog = spa_passivate_log(spa);
4817 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4818 error = spa_offline_log(spa);
4819 txg = spa_vdev_config_enter(spa);
4820
4821 if (activate_slog)
4822 spa_activate_log(spa);
4823
4824 if (error != 0)
4825 return (spa_vdev_exit(spa, NULL, txg, error));
4826
4827 /* check new spa name before going any further */
4828 if (spa_lookup(newname) != NULL)
4829 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4830
4831 /*
4832 * scan through all the children to ensure they're all mirrors
4833 */
4834 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4835 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4836 &children) != 0)
4837 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4838
4839 /* first, check to ensure we've got the right child count */
4840 rvd = spa->spa_root_vdev;
4841 lastlog = 0;
4842 for (c = 0; c < rvd->vdev_children; c++) {
4843 vdev_t *vd = rvd->vdev_child[c];
4844
4845 /* don't count the holes & logs as children */
4846 if (vd->vdev_islog || vd->vdev_ishole) {
4847 if (lastlog == 0)
4848 lastlog = c;
4849 continue;
4850 }
4851
4852 lastlog = 0;
4853 }
4854 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4855 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4856
4857 /* next, ensure no spare or cache devices are part of the split */
4858 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4859 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4860 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4861
4862 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4863 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4864
4865 /* then, loop over each vdev and validate it */
4866 for (c = 0; c < children; c++) {
4867 uint64_t is_hole = 0;
4868
4869 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4870 &is_hole);
4871
4872 if (is_hole != 0) {
4873 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4874 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4875 continue;
4876 } else {
4877 error = SET_ERROR(EINVAL);
4878 break;
4879 }
4880 }
4881
4882 /* which disk is going to be split? */
4883 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4884 &glist[c]) != 0) {
4885 error = SET_ERROR(EINVAL);
4886 break;
4887 }
4888
4889 /* look it up in the spa */
4890 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4891 if (vml[c] == NULL) {
4892 error = SET_ERROR(ENODEV);
4893 break;
4894 }
4895
4896 /* make sure there's nothing stopping the split */
4897 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4898 vml[c]->vdev_islog ||
4899 vml[c]->vdev_ishole ||
4900 vml[c]->vdev_isspare ||
4901 vml[c]->vdev_isl2cache ||
4902 !vdev_writeable(vml[c]) ||
4903 vml[c]->vdev_children != 0 ||
4904 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4905 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4906 error = SET_ERROR(EINVAL);
4907 break;
4908 }
4909
4910 if (vdev_dtl_required(vml[c])) {
4911 error = SET_ERROR(EBUSY);
4912 break;
4913 }
4914
4915 /* we need certain info from the top level */
4916 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4917 vml[c]->vdev_top->vdev_ms_array) == 0);
4918 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4919 vml[c]->vdev_top->vdev_ms_shift) == 0);
4920 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4921 vml[c]->vdev_top->vdev_asize) == 0);
4922 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4923 vml[c]->vdev_top->vdev_ashift) == 0);
4924 }
4925
4926 if (error != 0) {
4927 kmem_free(vml, children * sizeof (vdev_t *));
4928 kmem_free(glist, children * sizeof (uint64_t));
4929 return (spa_vdev_exit(spa, NULL, txg, error));
4930 }
4931
4932 /* stop writers from using the disks */
4933 for (c = 0; c < children; c++) {
4934 if (vml[c] != NULL)
4935 vml[c]->vdev_offline = B_TRUE;
4936 }
4937 vdev_reopen(spa->spa_root_vdev);
4938
4939 /*
4940 * Temporarily record the splitting vdevs in the spa config. This
4941 * will disappear once the config is regenerated.
4942 */
4943 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4944 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4945 glist, children) == 0);
4946 kmem_free(glist, children * sizeof (uint64_t));
4947
4948 mutex_enter(&spa->spa_props_lock);
4949 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4950 nvl) == 0);
4951 mutex_exit(&spa->spa_props_lock);
4952 spa->spa_config_splitting = nvl;
4953 vdev_config_dirty(spa->spa_root_vdev);
4954
4955 /* configure and create the new pool */
4956 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4957 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4958 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4959 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4960 spa_version(spa)) == 0);
4961 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4962 spa->spa_config_txg) == 0);
4963 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4964 spa_generate_guid(NULL)) == 0);
4965 (void) nvlist_lookup_string(props,
4966 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4967
4968 /* add the new pool to the namespace */
4969 newspa = spa_add(newname, config, altroot);
4970 newspa->spa_config_txg = spa->spa_config_txg;
4971 spa_set_log_state(newspa, SPA_LOG_CLEAR);
4972
4973 /* release the spa config lock, retaining the namespace lock */
4974 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4975
4976 if (zio_injection_enabled)
4977 zio_handle_panic_injection(spa, FTAG, 1);
4978
4979 spa_activate(newspa, spa_mode_global);
4980 spa_async_suspend(newspa);
4981
4982 /* create the new pool from the disks of the original pool */
4983 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4984 if (error)
4985 goto out;
4986
4987 /* if that worked, generate a real config for the new pool */
4988 if (newspa->spa_root_vdev != NULL) {
4989 VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4990 NV_UNIQUE_NAME, KM_SLEEP) == 0);
4991 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4992 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4993 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4994 B_TRUE));
4995 }
4996
4997 /* set the props */
4998 if (props != NULL) {
4999 spa_configfile_set(newspa, props, B_FALSE);
5000 error = spa_prop_set(newspa, props);
5001 if (error)
5002 goto out;
5003 }
5004
5005 /* flush everything */
5006 txg = spa_vdev_config_enter(newspa);
5007 vdev_config_dirty(newspa->spa_root_vdev);
5008 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5009
5010 if (zio_injection_enabled)
5011 zio_handle_panic_injection(spa, FTAG, 2);
5012
5013 spa_async_resume(newspa);
5014
5015 /* finally, update the original pool's config */
5016 txg = spa_vdev_config_enter(spa);
5017 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5018 error = dmu_tx_assign(tx, TXG_WAIT);
5019 if (error != 0)
5020 dmu_tx_abort(tx);
5021 for (c = 0; c < children; c++) {
5022 if (vml[c] != NULL) {
5023 vdev_split(vml[c]);
5024 if (error == 0)
5025 spa_history_log_internal(spa, "detach", tx,
5026 "vdev=%s", vml[c]->vdev_path);
5027 vdev_free(vml[c]);
5028 }
5029 }
5030 vdev_config_dirty(spa->spa_root_vdev);
5031 spa->spa_config_splitting = NULL;
5032 nvlist_free(nvl);
5033 if (error == 0)
5034 dmu_tx_commit(tx);
5035 (void) spa_vdev_exit(spa, NULL, txg, 0);
5036
5037 if (zio_injection_enabled)
5038 zio_handle_panic_injection(spa, FTAG, 3);
5039
5040 /* split is complete; log a history record */
5041 spa_history_log_internal(newspa, "split", NULL,
5042 "from pool %s", spa_name(spa));
5043
5044 kmem_free(vml, children * sizeof (vdev_t *));
5045
5046 /* if we're not going to mount the filesystems in userland, export */
5047 if (exp)
5048 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5049 B_FALSE, B_FALSE);
5050
5051 return (error);
5052
5053 out:
5054 spa_unload(newspa);
5055 spa_deactivate(newspa);
5056 spa_remove(newspa);
5057
5058 txg = spa_vdev_config_enter(spa);
5059
5060 /* re-online all offlined disks */
5061 for (c = 0; c < children; c++) {
5062 if (vml[c] != NULL)
5063 vml[c]->vdev_offline = B_FALSE;
5064 }
5065 vdev_reopen(spa->spa_root_vdev);
5066
5067 nvlist_free(spa->spa_config_splitting);
5068 spa->spa_config_splitting = NULL;
5069 (void) spa_vdev_exit(spa, NULL, txg, error);
5070
5071 kmem_free(vml, children * sizeof (vdev_t *));
5072 return (error);
5073 }
5074
5075 static nvlist_t *
5076 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5077 {
5078 for (int i = 0; i < count; i++) {
5079 uint64_t guid;
5080
5081 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5082 &guid) == 0);
5083
5084 if (guid == target_guid)
5085 return (nvpp[i]);
5086 }
5087
5088 return (NULL);
5089 }
5090
5091 static void
5092 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5093 nvlist_t *dev_to_remove)
5094 {
5095 nvlist_t **newdev = NULL;
5096
5097 if (count > 1)
5098 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5099
5100 for (int i = 0, j = 0; i < count; i++) {
5101 if (dev[i] == dev_to_remove)
5102 continue;
5103 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5104 }
5105
5106 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5107 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5108
5109 for (int i = 0; i < count - 1; i++)
5110 nvlist_free(newdev[i]);
5111
5112 if (count > 1)
5113 kmem_free(newdev, (count - 1) * sizeof (void *));
5114 }
5115
5116 /*
5117 * Evacuate the device.
5118 */
5119 static int
5120 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5121 {
5122 uint64_t txg;
5123 int error = 0;
5124
5125 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5126 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5127 ASSERT(vd == vd->vdev_top);
5128
5129 /*
5130 * Evacuate the device. We don't hold the config lock as writer
5131 * since we need to do I/O but we do keep the
5132 * spa_namespace_lock held. Once this completes the device
5133 * should no longer have any blocks allocated on it.
5134 */
5135 if (vd->vdev_islog) {
5136 if (vd->vdev_stat.vs_alloc != 0)
5137 error = spa_offline_log(spa);
5138 } else {
5139 error = SET_ERROR(ENOTSUP);
5140 }
5141
5142 if (error)
5143 return (error);
5144
5145 /*
5146 * The evacuation succeeded. Remove any remaining MOS metadata
5147 * associated with this vdev, and wait for these changes to sync.
5148 */
5149 ASSERT0(vd->vdev_stat.vs_alloc);
5150 txg = spa_vdev_config_enter(spa);
5151 vd->vdev_removing = B_TRUE;
5152 vdev_dirty_leaves(vd, VDD_DTL, txg);
5153 vdev_config_dirty(vd);
5154 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5155
5156 return (0);
5157 }
5158
5159 /*
5160 * Complete the removal by cleaning up the namespace.
5161 */
5162 static void
5163 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5164 {
5165 vdev_t *rvd = spa->spa_root_vdev;
5166 uint64_t id = vd->vdev_id;
5167 boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5168
5169 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5170 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5171 ASSERT(vd == vd->vdev_top);
5172
5173 /*
5174 * Only remove any devices which are empty.
5175 */
5176 if (vd->vdev_stat.vs_alloc != 0)
5177 return;
5178
5179 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5180
5181 if (list_link_active(&vd->vdev_state_dirty_node))
5182 vdev_state_clean(vd);
5183 if (list_link_active(&vd->vdev_config_dirty_node))
5184 vdev_config_clean(vd);
5185
5186 vdev_free(vd);
5187
5188 if (last_vdev) {
5189 vdev_compact_children(rvd);
5190 } else {
5191 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5192 vdev_add_child(rvd, vd);
5193 }
5194 vdev_config_dirty(rvd);
5195
5196 /*
5197 * Reassess the health of our root vdev.
5198 */
5199 vdev_reopen(rvd);
5200 }
5201
5202 /*
5203 * Remove a device from the pool -
5204 *
5205 * Removing a device from the vdev namespace requires several steps
5206 * and can take a significant amount of time. As a result we use
5207 * the spa_vdev_config_[enter/exit] functions which allow us to
5208 * grab and release the spa_config_lock while still holding the namespace
5209 * lock. During each step the configuration is synced out.
5210 *
5211 * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5212 * devices.
5213 */
5214 int
5215 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5216 {
5217 vdev_t *vd;
5218 metaslab_group_t *mg;
5219 nvlist_t **spares, **l2cache, *nv;
5220 uint64_t txg = 0;
5221 uint_t nspares, nl2cache;
5222 int error = 0;
5223 boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5224
5225 ASSERT(spa_writeable(spa));
5226
5227 if (!locked)
5228 txg = spa_vdev_enter(spa);
5229
5230 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5231
5232 if (spa->spa_spares.sav_vdevs != NULL &&
5233 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5234 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5235 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5236 /*
5237 * Only remove the hot spare if it's not currently in use
5238 * in this pool.
5239 */
5240 if (vd == NULL || unspare) {
5241 spa_vdev_remove_aux(spa->spa_spares.sav_config,
5242 ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5243 spa_load_spares(spa);
5244 spa->spa_spares.sav_sync = B_TRUE;
5245 } else {
5246 error = SET_ERROR(EBUSY);
5247 }
5248 } else if (spa->spa_l2cache.sav_vdevs != NULL &&
5249 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5250 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5251 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5252 /*
5253 * Cache devices can always be removed.
5254 */
5255 spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5256 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5257 spa_load_l2cache(spa);
5258 spa->spa_l2cache.sav_sync = B_TRUE;
5259 } else if (vd != NULL && vd->vdev_islog) {
5260 ASSERT(!locked);
5261 ASSERT(vd == vd->vdev_top);
5262
5263 /*
5264 * XXX - Once we have bp-rewrite this should
5265 * become the common case.
5266 */
5267
5268 mg = vd->vdev_mg;
5269
5270 /*
5271 * Stop allocating from this vdev.
5272 */
5273 metaslab_group_passivate(mg);
5274
5275 /*
5276 * Wait for the youngest allocations and frees to sync,
5277 * and then wait for the deferral of those frees to finish.
5278 */
5279 spa_vdev_config_exit(spa, NULL,
5280 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5281
5282 /*
5283 * Attempt to evacuate the vdev.
5284 */
5285 error = spa_vdev_remove_evacuate(spa, vd);
5286
5287 txg = spa_vdev_config_enter(spa);
5288
5289 /*
5290 * If we couldn't evacuate the vdev, unwind.
5291 */
5292 if (error) {
5293 metaslab_group_activate(mg);
5294 return (spa_vdev_exit(spa, NULL, txg, error));
5295 }
5296
5297 /*
5298 * Clean up the vdev namespace.
5299 */
5300 spa_vdev_remove_from_namespace(spa, vd);
5301
5302 } else if (vd != NULL) {
5303 /*
5304 * Normal vdevs cannot be removed (yet).
5305 */
5306 error = SET_ERROR(ENOTSUP);
5307 } else {
5308 /*
5309 * There is no vdev of any kind with the specified guid.
5310 */
5311 error = SET_ERROR(ENOENT);
5312 }
5313
5314 if (!locked)
5315 return (spa_vdev_exit(spa, NULL, txg, error));
5316
5317 return (error);
5318 }
5319
5320 /*
5321 * Find any device that's done replacing, or a vdev marked 'unspare' that's
5322 * currently spared, so we can detach it.
5323 */
5324 static vdev_t *
5325 spa_vdev_resilver_done_hunt(vdev_t *vd)
5326 {
5327 vdev_t *newvd, *oldvd;
5328
5329 for (int c = 0; c < vd->vdev_children; c++) {
5330 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5331 if (oldvd != NULL)
5332 return (oldvd);
5333 }
5334
5335 /*
5336 * Check for a completed replacement. We always consider the first
5337 * vdev in the list to be the oldest vdev, and the last one to be
5338 * the newest (see spa_vdev_attach() for how that works). In
5339 * the case where the newest vdev is faulted, we will not automatically
5340 * remove it after a resilver completes. This is OK as it will require
5341 * user intervention to determine which disk the admin wishes to keep.
5342 */
5343 if (vd->vdev_ops == &vdev_replacing_ops) {
5344 ASSERT(vd->vdev_children > 1);
5345
5346 newvd = vd->vdev_child[vd->vdev_children - 1];
5347 oldvd = vd->vdev_child[0];
5348
5349 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5350 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5351 !vdev_dtl_required(oldvd))
5352 return (oldvd);
5353 }
5354
5355 /*
5356 * Check for a completed resilver with the 'unspare' flag set.
5357 */
5358 if (vd->vdev_ops == &vdev_spare_ops) {
5359 vdev_t *first = vd->vdev_child[0];
5360 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5361
5362 if (last->vdev_unspare) {
5363 oldvd = first;
5364 newvd = last;
5365 } else if (first->vdev_unspare) {
5366 oldvd = last;
5367 newvd = first;
5368 } else {
5369 oldvd = NULL;
5370 }
5371
5372 if (oldvd != NULL &&
5373 vdev_dtl_empty(newvd, DTL_MISSING) &&
5374 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5375 !vdev_dtl_required(oldvd))
5376 return (oldvd);
5377
5378 /*
5379 * If there are more than two spares attached to a disk,
5380 * and those spares are not required, then we want to
5381 * attempt to free them up now so that they can be used
5382 * by other pools. Once we're back down to a single
5383 * disk+spare, we stop removing them.
5384 */
5385 if (vd->vdev_children > 2) {
5386 newvd = vd->vdev_child[1];
5387
5388 if (newvd->vdev_isspare && last->vdev_isspare &&
5389 vdev_dtl_empty(last, DTL_MISSING) &&
5390 vdev_dtl_empty(last, DTL_OUTAGE) &&
5391 !vdev_dtl_required(newvd))
5392 return (newvd);
5393 }
5394 }
5395
5396 return (NULL);
5397 }
5398
5399 static void
5400 spa_vdev_resilver_done(spa_t *spa)
5401 {
5402 vdev_t *vd, *pvd, *ppvd;
5403 uint64_t guid, sguid, pguid, ppguid;
5404
5405 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5406
5407 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5408 pvd = vd->vdev_parent;
5409 ppvd = pvd->vdev_parent;
5410 guid = vd->vdev_guid;
5411 pguid = pvd->vdev_guid;
5412 ppguid = ppvd->vdev_guid;
5413 sguid = 0;
5414 /*
5415 * If we have just finished replacing a hot spared device, then
5416 * we need to detach the parent's first child (the original hot
5417 * spare) as well.
5418 */
5419 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5420 ppvd->vdev_children == 2) {
5421 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5422 sguid = ppvd->vdev_child[1]->vdev_guid;
5423 }
5424 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5425
5426 spa_config_exit(spa, SCL_ALL, FTAG);
5427 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5428 return;
5429 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5430 return;
5431 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5432 }
5433
5434 spa_config_exit(spa, SCL_ALL, FTAG);
5435 }
5436
5437 /*
5438 * Update the stored path or FRU for this vdev.
5439 */
5440 int
5441 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5442 boolean_t ispath)
5443 {
5444 vdev_t *vd;
5445 boolean_t sync = B_FALSE;
5446
5447 ASSERT(spa_writeable(spa));
5448
5449 spa_vdev_state_enter(spa, SCL_ALL);
5450
5451 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5452 return (spa_vdev_state_exit(spa, NULL, ENOENT));
5453
5454 if (!vd->vdev_ops->vdev_op_leaf)
5455 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5456
5457 if (ispath) {
5458 if (strcmp(value, vd->vdev_path) != 0) {
5459 spa_strfree(vd->vdev_path);
5460 vd->vdev_path = spa_strdup(value);
5461 sync = B_TRUE;
5462 }
5463 } else {
5464 if (vd->vdev_fru == NULL) {
5465 vd->vdev_fru = spa_strdup(value);
5466 sync = B_TRUE;
5467 } else if (strcmp(value, vd->vdev_fru) != 0) {
5468 spa_strfree(vd->vdev_fru);
5469 vd->vdev_fru = spa_strdup(value);
5470 sync = B_TRUE;
5471 }
5472 }
5473
5474 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5475 }
5476
5477 int
5478 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5479 {
5480 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5481 }
5482
5483 int
5484 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5485 {
5486 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5487 }
5488
5489 /*
5490 * ==========================================================================
5491 * SPA Scanning
5492 * ==========================================================================
5493 */
5494
5495 int
5496 spa_scan_stop(spa_t *spa)
5497 {
5498 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5499 if (dsl_scan_resilvering(spa->spa_dsl_pool))
5500 return (SET_ERROR(EBUSY));
5501 return (dsl_scan_cancel(spa->spa_dsl_pool));
5502 }
5503
5504 int
5505 spa_scan(spa_t *spa, pool_scan_func_t func)
5506 {
5507 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5508
5509 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5510 return (SET_ERROR(ENOTSUP));
5511
5512 /*
5513 * If a resilver was requested, but there is no DTL on a
5514 * writeable leaf device, we have nothing to do.
5515 */
5516 if (func == POOL_SCAN_RESILVER &&
5517 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5518 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5519 return (0);
5520 }
5521
5522 return (dsl_scan(spa->spa_dsl_pool, func));
5523 }
5524
5525 /*
5526 * ==========================================================================
5527 * SPA async task processing
5528 * ==========================================================================
5529 */
5530
5531 static void
5532 spa_async_remove(spa_t *spa, vdev_t *vd)
5533 {
5534 if (vd->vdev_remove_wanted) {
5535 vd->vdev_remove_wanted = B_FALSE;
5536 vd->vdev_delayed_close = B_FALSE;
5537 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5538
5539 /*
5540 * We want to clear the stats, but we don't want to do a full
5541 * vdev_clear() as that will cause us to throw away
5542 * degraded/faulted state as well as attempt to reopen the
5543 * device, all of which is a waste.
5544 */
5545 vd->vdev_stat.vs_read_errors = 0;
5546 vd->vdev_stat.vs_write_errors = 0;
5547 vd->vdev_stat.vs_checksum_errors = 0;
5548
5549 vdev_state_dirty(vd->vdev_top);
5550 }
5551
5552 for (int c = 0; c < vd->vdev_children; c++)
5553 spa_async_remove(spa, vd->vdev_child[c]);
5554 }
5555
5556 static void
5557 spa_async_probe(spa_t *spa, vdev_t *vd)
5558 {
5559 if (vd->vdev_probe_wanted) {
5560 vd->vdev_probe_wanted = B_FALSE;
5561 vdev_reopen(vd); /* vdev_open() does the actual probe */
5562 }
5563
5564 for (int c = 0; c < vd->vdev_children; c++)
5565 spa_async_probe(spa, vd->vdev_child[c]);
5566 }
5567
5568 static void
5569 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5570 {
5571 sysevent_id_t eid;
5572 nvlist_t *attr;
5573 char *physpath;
5574
5575 if (!spa->spa_autoexpand)
5576 return;
5577
5578 for (int c = 0; c < vd->vdev_children; c++) {
5579 vdev_t *cvd = vd->vdev_child[c];
5580 spa_async_autoexpand(spa, cvd);
5581 }
5582
5583 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5584 return;
5585
5586 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5587 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5588
5589 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5590 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5591
5592 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5593 ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5594
5595 nvlist_free(attr);
5596 kmem_free(physpath, MAXPATHLEN);
5597 }
5598
5599 static void
5600 spa_async_thread(spa_t *spa)
5601 {
5602 int tasks;
5603
5604 ASSERT(spa->spa_sync_on);
5605
5606 mutex_enter(&spa->spa_async_lock);
5607 tasks = spa->spa_async_tasks;
5608 spa->spa_async_tasks = 0;
5609 mutex_exit(&spa->spa_async_lock);
5610
5611 /*
5612 * See if the config needs to be updated.
5613 */
5614 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5615 uint64_t old_space, new_space;
5616
5617 mutex_enter(&spa_namespace_lock);
5618 old_space = metaslab_class_get_space(spa_normal_class(spa));
5619 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5620 new_space = metaslab_class_get_space(spa_normal_class(spa));
5621 mutex_exit(&spa_namespace_lock);
5622
5623 /*
5624 * If the pool grew as a result of the config update,
5625 * then log an internal history event.
5626 */
5627 if (new_space != old_space) {
5628 spa_history_log_internal(spa, "vdev online", NULL,
5629 "pool '%s' size: %llu(+%llu)",
5630 spa_name(spa), new_space, new_space - old_space);
5631 }
5632 }
5633
5634 /*
5635 * See if any devices need to be marked REMOVED.
5636 */
5637 if (tasks & SPA_ASYNC_REMOVE) {
5638 spa_vdev_state_enter(spa, SCL_NONE);
5639 spa_async_remove(spa, spa->spa_root_vdev);
5640 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5641 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5642 for (int i = 0; i < spa->spa_spares.sav_count; i++)
5643 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5644 (void) spa_vdev_state_exit(spa, NULL, 0);
5645 }
5646
5647 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5648 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5649 spa_async_autoexpand(spa, spa->spa_root_vdev);
5650 spa_config_exit(spa, SCL_CONFIG, FTAG);
5651 }
5652
5653 /*
5654 * See if any devices need to be probed.
5655 */
5656 if (tasks & SPA_ASYNC_PROBE) {
5657 spa_vdev_state_enter(spa, SCL_NONE);
5658 spa_async_probe(spa, spa->spa_root_vdev);
5659 (void) spa_vdev_state_exit(spa, NULL, 0);
5660 }
5661
5662 /*
5663 * If any devices are done replacing, detach them.
5664 */
5665 if (tasks & SPA_ASYNC_RESILVER_DONE)
5666 spa_vdev_resilver_done(spa);
5667
5668 /*
5669 * Kick off a resilver.
5670 */
5671 if (tasks & SPA_ASYNC_RESILVER)
5672 dsl_resilver_restart(spa->spa_dsl_pool, 0);
5673
5674 /*
5675 * Let the world know that we're done.
5676 */
5677 mutex_enter(&spa->spa_async_lock);
5678 spa->spa_async_thread = NULL;
5679 cv_broadcast(&spa->spa_async_cv);
5680 mutex_exit(&spa->spa_async_lock);
5681 thread_exit();
5682 }
5683
5684 void
5685 spa_async_suspend(spa_t *spa)
5686 {
5687 mutex_enter(&spa->spa_async_lock);
5688 spa->spa_async_suspended++;
5689 while (spa->spa_async_thread != NULL)
5690 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5691 mutex_exit(&spa->spa_async_lock);
5692 }
5693
5694 void
5695 spa_async_resume(spa_t *spa)
5696 {
5697 mutex_enter(&spa->spa_async_lock);
5698 ASSERT(spa->spa_async_suspended != 0);
5699 spa->spa_async_suspended--;
5700 mutex_exit(&spa->spa_async_lock);
5701 }
5702
5703 static boolean_t
5704 spa_async_tasks_pending(spa_t *spa)
5705 {
5706 uint_t non_config_tasks;
5707 uint_t config_task;
5708 boolean_t config_task_suspended;
5709
5710 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5711 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5712 if (spa->spa_ccw_fail_time == 0) {
5713 config_task_suspended = B_FALSE;
5714 } else {
5715 config_task_suspended =
5716 (gethrtime() - spa->spa_ccw_fail_time) <
5717 (zfs_ccw_retry_interval * NANOSEC);
5718 }
5719
5720 return (non_config_tasks || (config_task && !config_task_suspended));
5721 }
5722
5723 static void
5724 spa_async_dispatch(spa_t *spa)
5725 {
5726 mutex_enter(&spa->spa_async_lock);
5727 if (spa_async_tasks_pending(spa) &&
5728 !spa->spa_async_suspended &&
5729 spa->spa_async_thread == NULL &&
5730 rootdir != NULL)
5731 spa->spa_async_thread = thread_create(NULL, 0,
5732 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5733 mutex_exit(&spa->spa_async_lock);
5734 }
5735
5736 void
5737 spa_async_request(spa_t *spa, int task)
5738 {
5739 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5740 mutex_enter(&spa->spa_async_lock);
5741 spa->spa_async_tasks |= task;
5742 mutex_exit(&spa->spa_async_lock);
5743 }
5744
5745 /*
5746 * ==========================================================================
5747 * SPA syncing routines
5748 * ==========================================================================
5749 */
5750
5751 static int
5752 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5753 {
5754 bpobj_t *bpo = arg;
5755 bpobj_enqueue(bpo, bp, tx);
5756 return (0);
5757 }
5758
5759 static int
5760 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5761 {
5762 zio_t *zio = arg;
5763
5764 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5765 zio->io_flags));
5766 return (0);
5767 }
5768
5769 /*
5770 * Note: this simple function is not inlined to make it easier to dtrace the
5771 * amount of time spent syncing frees.
5772 */
5773 static void
5774 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5775 {
5776 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5777 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5778 VERIFY(zio_wait(zio) == 0);
5779 }
5780
5781 /*
5782 * Note: this simple function is not inlined to make it easier to dtrace the
5783 * amount of time spent syncing deferred frees.
5784 */
5785 static void
5786 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5787 {
5788 zio_t *zio = zio_root(spa, NULL, NULL, 0);
5789 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5790 spa_free_sync_cb, zio, tx), ==, 0);
5791 VERIFY0(zio_wait(zio));
5792 }
5793
5794
5795 static void
5796 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5797 {
5798 char *packed = NULL;
5799 size_t bufsize;
5800 size_t nvsize = 0;
5801 dmu_buf_t *db;
5802
5803 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5804
5805 /*
5806 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5807 * information. This avoids the dmu_buf_will_dirty() path and
5808 * saves us a pre-read to get data we don't actually care about.
5809 */
5810 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5811 packed = kmem_alloc(bufsize, KM_SLEEP);
5812
5813 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5814 KM_SLEEP) == 0);
5815 bzero(packed + nvsize, bufsize - nvsize);
5816
5817 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5818
5819 kmem_free(packed, bufsize);
5820
5821 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5822 dmu_buf_will_dirty(db, tx);
5823 *(uint64_t *)db->db_data = nvsize;
5824 dmu_buf_rele(db, FTAG);
5825 }
5826
5827 static void
5828 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5829 const char *config, const char *entry)
5830 {
5831 nvlist_t *nvroot;
5832 nvlist_t **list;
5833 int i;
5834
5835 if (!sav->sav_sync)
5836 return;
5837
5838 /*
5839 * Update the MOS nvlist describing the list of available devices.
5840 * spa_validate_aux() will have already made sure this nvlist is
5841 * valid and the vdevs are labeled appropriately.
5842 */
5843 if (sav->sav_object == 0) {
5844 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5845 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5846 sizeof (uint64_t), tx);
5847 VERIFY(zap_update(spa->spa_meta_objset,
5848 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5849 &sav->sav_object, tx) == 0);
5850 }
5851
5852 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5853 if (sav->sav_count == 0) {
5854 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5855 } else {
5856 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5857 for (i = 0; i < sav->sav_count; i++)
5858 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5859 B_FALSE, VDEV_CONFIG_L2CACHE);
5860 VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5861 sav->sav_count) == 0);
5862 for (i = 0; i < sav->sav_count; i++)
5863 nvlist_free(list[i]);
5864 kmem_free(list, sav->sav_count * sizeof (void *));
5865 }
5866
5867 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5868 nvlist_free(nvroot);
5869
5870 sav->sav_sync = B_FALSE;
5871 }
5872
5873 static void
5874 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5875 {
5876 nvlist_t *config;
5877
5878 if (list_is_empty(&spa->spa_config_dirty_list))
5879 return;
5880
5881 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5882
5883 config = spa_config_generate(spa, spa->spa_root_vdev,
5884 dmu_tx_get_txg(tx), B_FALSE);
5885
5886 /*
5887 * If we're upgrading the spa version then make sure that
5888 * the config object gets updated with the correct version.
5889 */
5890 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5891 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5892 spa->spa_uberblock.ub_version);
5893
5894 spa_config_exit(spa, SCL_STATE, FTAG);
5895
5896 if (spa->spa_config_syncing)
5897 nvlist_free(spa->spa_config_syncing);
5898 spa->spa_config_syncing = config;
5899
5900 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5901 }
5902
5903 static void
5904 spa_sync_version(void *arg, dmu_tx_t *tx)
5905 {
5906 uint64_t *versionp = arg;
5907 uint64_t version = *versionp;
5908 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5909
5910 /*
5911 * Setting the version is special cased when first creating the pool.
5912 */
5913 ASSERT(tx->tx_txg != TXG_INITIAL);
5914
5915 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5916 ASSERT(version >= spa_version(spa));
5917
5918 spa->spa_uberblock.ub_version = version;
5919 vdev_config_dirty(spa->spa_root_vdev);
5920 spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5921 }
5922
5923 /*
5924 * Set zpool properties.
5925 */
5926 static void
5927 spa_sync_props(void *arg, dmu_tx_t *tx)
5928 {
5929 nvlist_t *nvp = arg;
5930 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5931 objset_t *mos = spa->spa_meta_objset;
5932 nvpair_t *elem = NULL;
5933
5934 mutex_enter(&spa->spa_props_lock);
5935
5936 while ((elem = nvlist_next_nvpair(nvp, elem))) {
5937 uint64_t intval;
5938 char *strval, *fname;
5939 zpool_prop_t prop;
5940 const char *propname;
5941 zprop_type_t proptype;
5942 spa_feature_t fid;
5943
5944 switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5945 case ZPROP_INVAL:
5946 /*
5947 * We checked this earlier in spa_prop_validate().
5948 */
5949 ASSERT(zpool_prop_feature(nvpair_name(elem)));
5950
5951 fname = strchr(nvpair_name(elem), '@') + 1;
5952 VERIFY0(zfeature_lookup_name(fname, &fid));
5953
5954 spa_feature_enable(spa, fid, tx);
5955 spa_history_log_internal(spa, "set", tx,
5956 "%s=enabled", nvpair_name(elem));
5957 break;
5958
5959 case ZPOOL_PROP_VERSION:
5960 intval = fnvpair_value_uint64(elem);
5961 /*
5962 * The version is synced seperatly before other
5963 * properties and should be correct by now.
5964 */
5965 ASSERT3U(spa_version(spa), >=, intval);
5966 break;
5967
5968 case ZPOOL_PROP_ALTROOT:
5969 /*
5970 * 'altroot' is a non-persistent property. It should
5971 * have been set temporarily at creation or import time.
5972 */
5973 ASSERT(spa->spa_root != NULL);
5974 break;
5975
5976 case ZPOOL_PROP_READONLY:
5977 case ZPOOL_PROP_CACHEFILE:
5978 /*
5979 * 'readonly' and 'cachefile' are also non-persisitent
5980 * properties.
5981 */
5982 break;
5983 case ZPOOL_PROP_COMMENT:
5984 strval = fnvpair_value_string(elem);
5985 if (spa->spa_comment != NULL)
5986 spa_strfree(spa->spa_comment);
5987 spa->spa_comment = spa_strdup(strval);
5988 /*
5989 * We need to dirty the configuration on all the vdevs
5990 * so that their labels get updated. It's unnecessary
5991 * to do this for pool creation since the vdev's
5992 * configuratoin has already been dirtied.
5993 */
5994 if (tx->tx_txg != TXG_INITIAL)
5995 vdev_config_dirty(spa->spa_root_vdev);
5996 spa_history_log_internal(spa, "set", tx,
5997 "%s=%s", nvpair_name(elem), strval);
5998 break;
5999 default:
6000 /*
6001 * Set pool property values in the poolprops mos object.
6002 */
6003 if (spa->spa_pool_props_object == 0) {
6004 spa->spa_pool_props_object =
6005 zap_create_link(mos, DMU_OT_POOL_PROPS,
6006 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6007 tx);
6008 }
6009
6010 /* normalize the property name */
6011 propname = zpool_prop_to_name(prop);
6012 proptype = zpool_prop_get_type(prop);
6013
6014 if (nvpair_type(elem) == DATA_TYPE_STRING) {
6015 ASSERT(proptype == PROP_TYPE_STRING);
6016 strval = fnvpair_value_string(elem);
6017 VERIFY0(zap_update(mos,
6018 spa->spa_pool_props_object, propname,
6019 1, strlen(strval) + 1, strval, tx));
6020 spa_history_log_internal(spa, "set", tx,
6021 "%s=%s", nvpair_name(elem), strval);
6022 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6023 intval = fnvpair_value_uint64(elem);
6024
6025 if (proptype == PROP_TYPE_INDEX) {
6026 const char *unused;
6027 VERIFY0(zpool_prop_index_to_string(
6028 prop, intval, &unused));
6029 }
6030 VERIFY0(zap_update(mos,
6031 spa->spa_pool_props_object, propname,
6032 8, 1, &intval, tx));
6033 spa_history_log_internal(spa, "set", tx,
6034 "%s=%lld", nvpair_name(elem), intval);
6035 } else {
6036 ASSERT(0); /* not allowed */
6037 }
6038
6039 switch (prop) {
6040 case ZPOOL_PROP_DELEGATION:
6041 spa->spa_delegation = intval;
6042 break;
6043 case ZPOOL_PROP_BOOTFS:
6044 spa->spa_bootfs = intval;
6045 break;
6046 case ZPOOL_PROP_FAILUREMODE:
6047 spa->spa_failmode = intval;
6048 break;
6049 case ZPOOL_PROP_AUTOEXPAND:
6050 spa->spa_autoexpand = intval;
6051 if (tx->tx_txg != TXG_INITIAL)
6052 spa_async_request(spa,
6053 SPA_ASYNC_AUTOEXPAND);
6054 break;
6055 case ZPOOL_PROP_DEDUPDITTO:
6056 spa->spa_dedup_ditto = intval;
6057 break;
6058 default:
6059 break;
6060 }
6061 }
6062
6063 }
6064
6065 mutex_exit(&spa->spa_props_lock);
6066 }
6067
6068 /*
6069 * Perform one-time upgrade on-disk changes. spa_version() does not
6070 * reflect the new version this txg, so there must be no changes this
6071 * txg to anything that the upgrade code depends on after it executes.
6072 * Therefore this must be called after dsl_pool_sync() does the sync
6073 * tasks.
6074 */
6075 static void
6076 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6077 {
6078 dsl_pool_t *dp = spa->spa_dsl_pool;
6079
6080 ASSERT(spa->spa_sync_pass == 1);
6081
6082 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6083
6084 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6085 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6086 dsl_pool_create_origin(dp, tx);
6087
6088 /* Keeping the origin open increases spa_minref */
6089 spa->spa_minref += 3;
6090 }
6091
6092 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6093 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6094 dsl_pool_upgrade_clones(dp, tx);
6095 }
6096
6097 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6098 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6099 dsl_pool_upgrade_dir_clones(dp, tx);
6100
6101 /* Keeping the freedir open increases spa_minref */
6102 spa->spa_minref += 3;
6103 }
6104
6105 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6106 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6107 spa_feature_create_zap_objects(spa, tx);
6108 }
6109
6110 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6111 boolean_t lz4_en = spa_feature_is_enabled(spa,
6112 SPA_FEATURE_LZ4_COMPRESS);
6113 boolean_t lz4_ac = spa_feature_is_active(spa,
6114 SPA_FEATURE_LZ4_COMPRESS);
6115
6116 if (lz4_en && !lz4_ac)
6117 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6118 }
6119 rrw_exit(&dp->dp_config_rwlock, FTAG);
6120 }
6121
6122 /*
6123 * Sync the specified transaction group. New blocks may be dirtied as
6124 * part of the process, so we iterate until it converges.
6125 */
6126 void
6127 spa_sync(spa_t *spa, uint64_t txg)
6128 {
6129 dsl_pool_t *dp = spa->spa_dsl_pool;
6130 objset_t *mos = spa->spa_meta_objset;
6131 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6132 vdev_t *rvd = spa->spa_root_vdev;
6133 vdev_t *vd;
6134 dmu_tx_t *tx;
6135 int error;
6136
6137 VERIFY(spa_writeable(spa));
6138
6139 /*
6140 * Lock out configuration changes.
6141 */
6142 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6143
6144 spa->spa_syncing_txg = txg;
6145 spa->spa_sync_pass = 0;
6146
6147 /*
6148 * If there are any pending vdev state changes, convert them
6149 * into config changes that go out with this transaction group.
6150 */
6151 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6152 while (list_head(&spa->spa_state_dirty_list) != NULL) {
6153 /*
6154 * We need the write lock here because, for aux vdevs,
6155 * calling vdev_config_dirty() modifies sav_config.
6156 * This is ugly and will become unnecessary when we
6157 * eliminate the aux vdev wart by integrating all vdevs
6158 * into the root vdev tree.
6159 */
6160 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6161 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6162 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6163 vdev_state_clean(vd);
6164 vdev_config_dirty(vd);
6165 }
6166 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6167 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6168 }
6169 spa_config_exit(spa, SCL_STATE, FTAG);
6170
6171 tx = dmu_tx_create_assigned(dp, txg);
6172
6173 spa->spa_sync_starttime = gethrtime();
6174 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6175 spa->spa_sync_starttime + spa->spa_deadman_synctime));
6176
6177 /*
6178 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6179 * set spa_deflate if we have no raid-z vdevs.
6180 */
6181 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6182 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6183 int i;
6184
6185 for (i = 0; i < rvd->vdev_children; i++) {
6186 vd = rvd->vdev_child[i];
6187 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6188 break;
6189 }
6190 if (i == rvd->vdev_children) {
6191 spa->spa_deflate = TRUE;
6192 VERIFY(0 == zap_add(spa->spa_meta_objset,
6193 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6194 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6195 }
6196 }
6197
6198 /*
6199 * If anything has changed in this txg, or if someone is waiting
6200 * for this txg to sync (eg, spa_vdev_remove()), push the
6201 * deferred frees from the previous txg. If not, leave them
6202 * alone so that we don't generate work on an otherwise idle
6203 * system.
6204 */
6205 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6206 !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6207 !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6208 ((dsl_scan_active(dp->dp_scan) ||
6209 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6210 spa_sync_deferred_frees(spa, tx);
6211 }
6212
6213 /*
6214 * Iterate to convergence.
6215 */
6216 do {
6217 int pass = ++spa->spa_sync_pass;
6218
6219 spa_sync_config_object(spa, tx);
6220 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6221 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6222 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6223 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6224 spa_errlog_sync(spa, txg);
6225 dsl_pool_sync(dp, txg);
6226
6227 if (pass < zfs_sync_pass_deferred_free) {
6228 spa_sync_frees(spa, free_bpl, tx);
6229 } else {
6230 bplist_iterate(free_bpl, bpobj_enqueue_cb,
6231 &spa->spa_deferred_bpobj, tx);
6232 }
6233
6234 ddt_sync(spa, txg);
6235 dsl_scan_sync(dp, tx);
6236
6237 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6238 vdev_sync(vd, txg);
6239
6240 if (pass == 1)
6241 spa_sync_upgrades(spa, tx);
6242
6243 } while (dmu_objset_is_dirty(mos, txg));
6244
6245 /*
6246 * Rewrite the vdev configuration (which includes the uberblock)
6247 * to commit the transaction group.
6248 *
6249 * If there are no dirty vdevs, we sync the uberblock to a few
6250 * random top-level vdevs that are known to be visible in the
6251 * config cache (see spa_vdev_add() for a complete description).
6252 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6253 */
6254 for (;;) {
6255 /*
6256 * We hold SCL_STATE to prevent vdev open/close/etc.
6257 * while we're attempting to write the vdev labels.
6258 */
6259 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6260
6261 if (list_is_empty(&spa->spa_config_dirty_list)) {
6262 vdev_t *svd[SPA_DVAS_PER_BP];
6263 int svdcount = 0;
6264 int children = rvd->vdev_children;
6265 int c0 = spa_get_random(children);
6266
6267 for (int c = 0; c < children; c++) {
6268 vd = rvd->vdev_child[(c0 + c) % children];
6269 if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6270 continue;
6271 svd[svdcount++] = vd;
6272 if (svdcount == SPA_DVAS_PER_BP)
6273 break;
6274 }
6275 error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6276 if (error != 0)
6277 error = vdev_config_sync(svd, svdcount, txg,
6278 B_TRUE);
6279 } else {
6280 error = vdev_config_sync(rvd->vdev_child,
6281 rvd->vdev_children, txg, B_FALSE);
6282 if (error != 0)
6283 error = vdev_config_sync(rvd->vdev_child,
6284 rvd->vdev_children, txg, B_TRUE);
6285 }
6286
6287 if (error == 0)
6288 spa->spa_last_synced_guid = rvd->vdev_guid;
6289
6290 spa_config_exit(spa, SCL_STATE, FTAG);
6291
6292 if (error == 0)
6293 break;
6294 zio_suspend(spa, NULL);
6295 zio_resume_wait(spa);
6296 }
6297 dmu_tx_commit(tx);
6298
6299 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6300
6301 /*
6302 * Clear the dirty config list.
6303 */
6304 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6305 vdev_config_clean(vd);
6306
6307 /*
6308 * Now that the new config has synced transactionally,
6309 * let it become visible to the config cache.
6310 */
6311 if (spa->spa_config_syncing != NULL) {
6312 spa_config_set(spa, spa->spa_config_syncing);
6313 spa->spa_config_txg = txg;
6314 spa->spa_config_syncing = NULL;
6315 }
6316
6317 spa->spa_ubsync = spa->spa_uberblock;
6318
6319 dsl_pool_sync_done(dp, txg);
6320
6321 /*
6322 * Update usable space statistics.
6323 */
6324 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6325 vdev_sync_done(vd, txg);
6326
6327 spa_update_dspace(spa);
6328
6329 /*
6330 * It had better be the case that we didn't dirty anything
6331 * since vdev_config_sync().
6332 */
6333 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6334 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6335 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6336
6337 spa->spa_sync_pass = 0;
6338
6339 spa_config_exit(spa, SCL_CONFIG, FTAG);
6340
6341 spa_handle_ignored_writes(spa);
6342
6343 /*
6344 * If any async tasks have been requested, kick them off.
6345 */
6346 spa_async_dispatch(spa);
6347 }
6348
6349 /*
6350 * Sync all pools. We don't want to hold the namespace lock across these
6351 * operations, so we take a reference on the spa_t and drop the lock during the
6352 * sync.
6353 */
6354 void
6355 spa_sync_allpools(void)
6356 {
6357 spa_t *spa = NULL;
6358 mutex_enter(&spa_namespace_lock);
6359 while ((spa = spa_next(spa)) != NULL) {
6360 if (spa_state(spa) != POOL_STATE_ACTIVE ||
6361 !spa_writeable(spa) || spa_suspended(spa))
6362 continue;
6363 spa_open_ref(spa, FTAG);
6364 mutex_exit(&spa_namespace_lock);
6365 txg_wait_synced(spa_get_dsl(spa), 0);
6366 mutex_enter(&spa_namespace_lock);
6367 spa_close(spa, FTAG);
6368 }
6369 mutex_exit(&spa_namespace_lock);
6370 }
6371
6372 /*
6373 * ==========================================================================
6374 * Miscellaneous routines
6375 * ==========================================================================
6376 */
6377
6378 /*
6379 * Remove all pools in the system.
6380 */
6381 void
6382 spa_evict_all(void)
6383 {
6384 spa_t *spa;
6385
6386 /*
6387 * Remove all cached state. All pools should be closed now,
6388 * so every spa in the AVL tree should be unreferenced.
6389 */
6390 mutex_enter(&spa_namespace_lock);
6391 while ((spa = spa_next(NULL)) != NULL) {
6392 /*
6393 * Stop async tasks. The async thread may need to detach
6394 * a device that's been replaced, which requires grabbing
6395 * spa_namespace_lock, so we must drop it here.
6396 */
6397 spa_open_ref(spa, FTAG);
6398 mutex_exit(&spa_namespace_lock);
6399 spa_async_suspend(spa);
6400 mutex_enter(&spa_namespace_lock);
6401 spa_close(spa, FTAG);
6402
6403 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6404 spa_unload(spa);
6405 spa_deactivate(spa);
6406 }
6407 spa_remove(spa);
6408 }
6409 mutex_exit(&spa_namespace_lock);
6410 }
6411
6412 vdev_t *
6413 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6414 {
6415 vdev_t *vd;
6416 int i;
6417
6418 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6419 return (vd);
6420
6421 if (aux) {
6422 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6423 vd = spa->spa_l2cache.sav_vdevs[i];
6424 if (vd->vdev_guid == guid)
6425 return (vd);
6426 }
6427
6428 for (i = 0; i < spa->spa_spares.sav_count; i++) {
6429 vd = spa->spa_spares.sav_vdevs[i];
6430 if (vd->vdev_guid == guid)
6431 return (vd);
6432 }
6433 }
6434
6435 return (NULL);
6436 }
6437
6438 void
6439 spa_upgrade(spa_t *spa, uint64_t version)
6440 {
6441 ASSERT(spa_writeable(spa));
6442
6443 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6444
6445 /*
6446 * This should only be called for a non-faulted pool, and since a
6447 * future version would result in an unopenable pool, this shouldn't be
6448 * possible.
6449 */
6450 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6451 ASSERT(version >= spa->spa_uberblock.ub_version);
6452
6453 spa->spa_uberblock.ub_version = version;
6454 vdev_config_dirty(spa->spa_root_vdev);
6455
6456 spa_config_exit(spa, SCL_ALL, FTAG);
6457
6458 txg_wait_synced(spa_get_dsl(spa), 0);
6459 }
6460
6461 boolean_t
6462 spa_has_spare(spa_t *spa, uint64_t guid)
6463 {
6464 int i;
6465 uint64_t spareguid;
6466 spa_aux_vdev_t *sav = &spa->spa_spares;
6467
6468 for (i = 0; i < sav->sav_count; i++)
6469 if (sav->sav_vdevs[i]->vdev_guid == guid)
6470 return (B_TRUE);
6471
6472 for (i = 0; i < sav->sav_npending; i++) {
6473 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6474 &spareguid) == 0 && spareguid == guid)
6475 return (B_TRUE);
6476 }
6477
6478 return (B_FALSE);
6479 }
6480
6481 /*
6482 * Check if a pool has an active shared spare device.
6483 * Note: reference count of an active spare is 2, as a spare and as a replace
6484 */
6485 static boolean_t
6486 spa_has_active_shared_spare(spa_t *spa)
6487 {
6488 int i, refcnt;
6489 uint64_t pool;
6490 spa_aux_vdev_t *sav = &spa->spa_spares;
6491
6492 for (i = 0; i < sav->sav_count; i++) {
6493 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6494 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6495 refcnt > 2)
6496 return (B_TRUE);
6497 }
6498
6499 return (B_FALSE);
6500 }
6501
6502 /*
6503 * Post a sysevent corresponding to the given event. The 'name' must be one of
6504 * the event definitions in sys/sysevent/eventdefs.h. The payload will be
6505 * filled in from the spa and (optionally) the vdev. This doesn't do anything
6506 * in the userland libzpool, as we don't want consumers to misinterpret ztest
6507 * or zdb as real changes.
6508 */
6509 void
6510 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6511 {
6512 #ifdef _KERNEL
6513 sysevent_t *ev;
6514 sysevent_attr_list_t *attr = NULL;
6515 sysevent_value_t value;
6516 sysevent_id_t eid;
6517
6518 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6519 SE_SLEEP);
6520
6521 value.value_type = SE_DATA_TYPE_STRING;
6522 value.value.sv_string = spa_name(spa);
6523 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6524 goto done;
6525
6526 value.value_type = SE_DATA_TYPE_UINT64;
6527 value.value.sv_uint64 = spa_guid(spa);
6528 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6529 goto done;
6530
6531 if (vd) {
6532 value.value_type = SE_DATA_TYPE_UINT64;
6533 value.value.sv_uint64 = vd->vdev_guid;
6534 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6535 SE_SLEEP) != 0)
6536 goto done;
6537
6538 if (vd->vdev_path) {
6539 value.value_type = SE_DATA_TYPE_STRING;
6540 value.value.sv_string = vd->vdev_path;
6541 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6542 &value, SE_SLEEP) != 0)
6543 goto done;
6544 }
6545 }
6546
6547 if (sysevent_attach_attributes(ev, attr) != 0)
6548 goto done;
6549 attr = NULL;
6550
6551 (void) log_sysevent(ev, SE_SLEEP, &eid);
6552
6553 done:
6554 if (attr)
6555 sysevent_free_attr(attr);
6556 sysevent_free(ev);
6557 #endif
6558 }