1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2012, 2014 by Delphix. All rights reserved. 24 */ 25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */ 26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */ 27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */ 28 29 #include <sys/dmu.h> 30 #include <sys/dmu_impl.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dbuf.h> 33 #include <sys/dnode.h> 34 #include <sys/zfs_context.h> 35 #include <sys/dmu_objset.h> 36 #include <sys/dmu_traverse.h> 37 #include <sys/dsl_dataset.h> 38 #include <sys/dsl_dir.h> 39 #include <sys/dsl_pool.h> 40 #include <sys/dsl_synctask.h> 41 #include <sys/dsl_prop.h> 42 #include <sys/dmu_zfetch.h> 43 #include <sys/zfs_ioctl.h> 44 #include <sys/zap.h> 45 #include <sys/zio_checksum.h> 46 #include <sys/zio_compress.h> 47 #include <sys/sa.h> 48 #include <sys/zfeature.h> 49 #ifdef _KERNEL 50 #include <sys/vmsystm.h> 51 #include <sys/zfs_znode.h> 52 #endif 53 54 /* 55 * Enable/disable nopwrite feature. 56 */ 57 int zfs_nopwrite_enabled = 1; 58 59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 60 { DMU_BSWAP_UINT8, TRUE, "unallocated" }, 61 { DMU_BSWAP_ZAP, TRUE, "object directory" }, 62 { DMU_BSWAP_UINT64, TRUE, "object array" }, 63 { DMU_BSWAP_UINT8, TRUE, "packed nvlist" }, 64 { DMU_BSWAP_UINT64, TRUE, "packed nvlist size" }, 65 { DMU_BSWAP_UINT64, TRUE, "bpobj" }, 66 { DMU_BSWAP_UINT64, TRUE, "bpobj header" }, 67 { DMU_BSWAP_UINT64, TRUE, "SPA space map header" }, 68 { DMU_BSWAP_UINT64, TRUE, "SPA space map" }, 69 { DMU_BSWAP_UINT64, TRUE, "ZIL intent log" }, 70 { DMU_BSWAP_DNODE, TRUE, "DMU dnode" }, 71 { DMU_BSWAP_OBJSET, TRUE, "DMU objset" }, 72 { DMU_BSWAP_UINT64, TRUE, "DSL directory" }, 73 { DMU_BSWAP_ZAP, TRUE, "DSL directory child map"}, 74 { DMU_BSWAP_ZAP, TRUE, "DSL dataset snap map" }, 75 { DMU_BSWAP_ZAP, TRUE, "DSL props" }, 76 { DMU_BSWAP_UINT64, TRUE, "DSL dataset" }, 77 { DMU_BSWAP_ZNODE, TRUE, "ZFS znode" }, 78 { DMU_BSWAP_OLDACL, TRUE, "ZFS V0 ACL" }, 79 { DMU_BSWAP_UINT8, FALSE, "ZFS plain file" }, 80 { DMU_BSWAP_ZAP, TRUE, "ZFS directory" }, 81 { DMU_BSWAP_ZAP, TRUE, "ZFS master node" }, 82 { DMU_BSWAP_ZAP, TRUE, "ZFS delete queue" }, 83 { DMU_BSWAP_UINT8, FALSE, "zvol object" }, 84 { DMU_BSWAP_ZAP, TRUE, "zvol prop" }, 85 { DMU_BSWAP_UINT8, FALSE, "other uint8[]" }, 86 { DMU_BSWAP_UINT64, FALSE, "other uint64[]" }, 87 { DMU_BSWAP_ZAP, TRUE, "other ZAP" }, 88 { DMU_BSWAP_ZAP, TRUE, "persistent error log" }, 89 { DMU_BSWAP_UINT8, TRUE, "SPA history" }, 90 { DMU_BSWAP_UINT64, TRUE, "SPA history offsets" }, 91 { DMU_BSWAP_ZAP, TRUE, "Pool properties" }, 92 { DMU_BSWAP_ZAP, TRUE, "DSL permissions" }, 93 { DMU_BSWAP_ACL, TRUE, "ZFS ACL" }, 94 { DMU_BSWAP_UINT8, TRUE, "ZFS SYSACL" }, 95 { DMU_BSWAP_UINT8, TRUE, "FUID table" }, 96 { DMU_BSWAP_UINT64, TRUE, "FUID table size" }, 97 { DMU_BSWAP_ZAP, TRUE, "DSL dataset next clones"}, 98 { DMU_BSWAP_ZAP, TRUE, "scan work queue" }, 99 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group used" }, 100 { DMU_BSWAP_ZAP, TRUE, "ZFS user/group quota" }, 101 { DMU_BSWAP_ZAP, TRUE, "snapshot refcount tags"}, 102 { DMU_BSWAP_ZAP, TRUE, "DDT ZAP algorithm" }, 103 { DMU_BSWAP_ZAP, TRUE, "DDT statistics" }, 104 { DMU_BSWAP_UINT8, TRUE, "System attributes" }, 105 { DMU_BSWAP_ZAP, TRUE, "SA master node" }, 106 { DMU_BSWAP_ZAP, TRUE, "SA attr registration" }, 107 { DMU_BSWAP_ZAP, TRUE, "SA attr layouts" }, 108 { DMU_BSWAP_ZAP, TRUE, "scan translations" }, 109 { DMU_BSWAP_UINT8, FALSE, "deduplicated block" }, 110 { DMU_BSWAP_ZAP, TRUE, "DSL deadlist map" }, 111 { DMU_BSWAP_UINT64, TRUE, "DSL deadlist map hdr" }, 112 { DMU_BSWAP_ZAP, TRUE, "DSL dir clones" }, 113 { DMU_BSWAP_UINT64, TRUE, "bpobj subobj" } 114 }; 115 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = { 117 { byteswap_uint8_array, "uint8" }, 118 { byteswap_uint16_array, "uint16" }, 119 { byteswap_uint32_array, "uint32" }, 120 { byteswap_uint64_array, "uint64" }, 121 { zap_byteswap, "zap" }, 122 { dnode_buf_byteswap, "dnode" }, 123 { dmu_objset_byteswap, "objset" }, 124 { zfs_znode_byteswap, "znode" }, 125 { zfs_oldacl_byteswap, "oldacl" }, 126 { zfs_acl_byteswap, "acl" } 127 }; 128 129 int 130 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 131 void *tag, dmu_buf_t **dbp, int flags) 132 { 133 dnode_t *dn; 134 uint64_t blkid; 135 dmu_buf_impl_t *db; 136 int err; 137 int db_flags = DB_RF_CANFAIL; 138 139 if (flags & DMU_READ_NO_PREFETCH) 140 db_flags |= DB_RF_NOPREFETCH; 141 142 err = dnode_hold(os, object, FTAG, &dn); 143 if (err) 144 return (err); 145 blkid = dbuf_whichblock(dn, offset); 146 rw_enter(&dn->dn_struct_rwlock, RW_READER); 147 db = dbuf_hold(dn, blkid, tag); 148 rw_exit(&dn->dn_struct_rwlock); 149 if (db == NULL) { 150 err = SET_ERROR(EIO); 151 } else { 152 err = dbuf_read(db, NULL, db_flags); 153 if (err) { 154 dbuf_rele(db, tag); 155 db = NULL; 156 } 157 } 158 159 dnode_rele(dn, FTAG); 160 *dbp = &db->db; /* NULL db plus first field offset is NULL */ 161 return (err); 162 } 163 164 int 165 dmu_bonus_max(void) 166 { 167 return (DN_MAX_BONUSLEN); 168 } 169 170 int 171 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx) 172 { 173 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 174 dnode_t *dn; 175 int error; 176 177 DB_DNODE_ENTER(db); 178 dn = DB_DNODE(db); 179 180 if (dn->dn_bonus != db) { 181 error = SET_ERROR(EINVAL); 182 } else if (newsize < 0 || newsize > db_fake->db_size) { 183 error = SET_ERROR(EINVAL); 184 } else { 185 dnode_setbonuslen(dn, newsize, tx); 186 error = 0; 187 } 188 189 DB_DNODE_EXIT(db); 190 return (error); 191 } 192 193 int 194 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx) 195 { 196 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 197 dnode_t *dn; 198 int error; 199 200 DB_DNODE_ENTER(db); 201 dn = DB_DNODE(db); 202 203 if (!DMU_OT_IS_VALID(type)) { 204 error = SET_ERROR(EINVAL); 205 } else if (dn->dn_bonus != db) { 206 error = SET_ERROR(EINVAL); 207 } else { 208 dnode_setbonus_type(dn, type, tx); 209 error = 0; 210 } 211 212 DB_DNODE_EXIT(db); 213 return (error); 214 } 215 216 dmu_object_type_t 217 dmu_get_bonustype(dmu_buf_t *db_fake) 218 { 219 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 220 dnode_t *dn; 221 dmu_object_type_t type; 222 223 DB_DNODE_ENTER(db); 224 dn = DB_DNODE(db); 225 type = dn->dn_bonustype; 226 DB_DNODE_EXIT(db); 227 228 return (type); 229 } 230 231 int 232 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 233 { 234 dnode_t *dn; 235 int error; 236 237 error = dnode_hold(os, object, FTAG, &dn); 238 dbuf_rm_spill(dn, tx); 239 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 240 dnode_rm_spill(dn, tx); 241 rw_exit(&dn->dn_struct_rwlock); 242 dnode_rele(dn, FTAG); 243 return (error); 244 } 245 246 /* 247 * returns ENOENT, EIO, or 0. 248 */ 249 int 250 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 251 { 252 dnode_t *dn; 253 dmu_buf_impl_t *db; 254 int error; 255 256 error = dnode_hold(os, object, FTAG, &dn); 257 if (error) 258 return (error); 259 260 rw_enter(&dn->dn_struct_rwlock, RW_READER); 261 if (dn->dn_bonus == NULL) { 262 rw_exit(&dn->dn_struct_rwlock); 263 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 264 if (dn->dn_bonus == NULL) 265 dbuf_create_bonus(dn); 266 } 267 db = dn->dn_bonus; 268 269 /* as long as the bonus buf is held, the dnode will be held */ 270 if (refcount_add(&db->db_holds, tag) == 1) { 271 VERIFY(dnode_add_ref(dn, db)); 272 (void) atomic_inc_32_nv(&dn->dn_dbufs_count); 273 } 274 275 /* 276 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's 277 * hold and incrementing the dbuf count to ensure that dnode_move() sees 278 * a dnode hold for every dbuf. 279 */ 280 rw_exit(&dn->dn_struct_rwlock); 281 282 dnode_rele(dn, FTAG); 283 284 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 285 286 *dbp = &db->db; 287 return (0); 288 } 289 290 /* 291 * returns ENOENT, EIO, or 0. 292 * 293 * This interface will allocate a blank spill dbuf when a spill blk 294 * doesn't already exist on the dnode. 295 * 296 * if you only want to find an already existing spill db, then 297 * dmu_spill_hold_existing() should be used. 298 */ 299 int 300 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 301 { 302 dmu_buf_impl_t *db = NULL; 303 int err; 304 305 if ((flags & DB_RF_HAVESTRUCT) == 0) 306 rw_enter(&dn->dn_struct_rwlock, RW_READER); 307 308 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 309 310 if ((flags & DB_RF_HAVESTRUCT) == 0) 311 rw_exit(&dn->dn_struct_rwlock); 312 313 ASSERT(db != NULL); 314 err = dbuf_read(db, NULL, flags); 315 if (err == 0) 316 *dbp = &db->db; 317 else 318 dbuf_rele(db, tag); 319 return (err); 320 } 321 322 int 323 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 324 { 325 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 326 dnode_t *dn; 327 int err; 328 329 DB_DNODE_ENTER(db); 330 dn = DB_DNODE(db); 331 332 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) { 333 err = SET_ERROR(EINVAL); 334 } else { 335 rw_enter(&dn->dn_struct_rwlock, RW_READER); 336 337 if (!dn->dn_have_spill) { 338 err = SET_ERROR(ENOENT); 339 } else { 340 err = dmu_spill_hold_by_dnode(dn, 341 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp); 342 } 343 344 rw_exit(&dn->dn_struct_rwlock); 345 } 346 347 DB_DNODE_EXIT(db); 348 return (err); 349 } 350 351 int 352 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 353 { 354 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus; 355 dnode_t *dn; 356 int err; 357 358 DB_DNODE_ENTER(db); 359 dn = DB_DNODE(db); 360 err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp); 361 DB_DNODE_EXIT(db); 362 363 return (err); 364 } 365 366 /* 367 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 368 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 369 * and can induce severe lock contention when writing to several files 370 * whose dnodes are in the same block. 371 */ 372 static int 373 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 374 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 375 { 376 dmu_buf_t **dbp; 377 uint64_t blkid, nblks, i; 378 uint32_t dbuf_flags; 379 int err; 380 zio_t *zio; 381 382 ASSERT(length <= DMU_MAX_ACCESS); 383 384 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 385 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 386 dbuf_flags |= DB_RF_NOPREFETCH; 387 388 rw_enter(&dn->dn_struct_rwlock, RW_READER); 389 if (dn->dn_datablkshift) { 390 int blkshift = dn->dn_datablkshift; 391 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 392 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 393 } else { 394 if (offset + length > dn->dn_datablksz) { 395 zfs_panic_recover("zfs: accessing past end of object " 396 "%llx/%llx (size=%u access=%llu+%llu)", 397 (longlong_t)dn->dn_objset-> 398 os_dsl_dataset->ds_object, 399 (longlong_t)dn->dn_object, dn->dn_datablksz, 400 (longlong_t)offset, (longlong_t)length); 401 rw_exit(&dn->dn_struct_rwlock); 402 return (SET_ERROR(EIO)); 403 } 404 nblks = 1; 405 } 406 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 407 408 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 409 blkid = dbuf_whichblock(dn, offset); 410 for (i = 0; i < nblks; i++) { 411 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 412 if (db == NULL) { 413 rw_exit(&dn->dn_struct_rwlock); 414 dmu_buf_rele_array(dbp, nblks, tag); 415 zio_nowait(zio); 416 return (SET_ERROR(EIO)); 417 } 418 /* initiate async i/o */ 419 if (read) { 420 (void) dbuf_read(db, zio, dbuf_flags); 421 } 422 dbp[i] = &db->db; 423 } 424 rw_exit(&dn->dn_struct_rwlock); 425 426 /* wait for async i/o */ 427 err = zio_wait(zio); 428 if (err) { 429 dmu_buf_rele_array(dbp, nblks, tag); 430 return (err); 431 } 432 433 /* wait for other io to complete */ 434 if (read) { 435 for (i = 0; i < nblks; i++) { 436 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 437 mutex_enter(&db->db_mtx); 438 while (db->db_state == DB_READ || 439 db->db_state == DB_FILL) 440 cv_wait(&db->db_changed, &db->db_mtx); 441 if (db->db_state == DB_UNCACHED) 442 err = SET_ERROR(EIO); 443 mutex_exit(&db->db_mtx); 444 if (err) { 445 dmu_buf_rele_array(dbp, nblks, tag); 446 return (err); 447 } 448 } 449 } 450 451 *numbufsp = nblks; 452 *dbpp = dbp; 453 return (0); 454 } 455 456 static int 457 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 458 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 459 { 460 dnode_t *dn; 461 int err; 462 463 err = dnode_hold(os, object, FTAG, &dn); 464 if (err) 465 return (err); 466 467 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 468 numbufsp, dbpp, DMU_READ_PREFETCH); 469 470 dnode_rele(dn, FTAG); 471 472 return (err); 473 } 474 475 int 476 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset, 477 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 478 { 479 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 480 dnode_t *dn; 481 int err; 482 483 DB_DNODE_ENTER(db); 484 dn = DB_DNODE(db); 485 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 486 numbufsp, dbpp, DMU_READ_PREFETCH); 487 DB_DNODE_EXIT(db); 488 489 return (err); 490 } 491 492 void 493 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 494 { 495 int i; 496 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 497 498 if (numbufs == 0) 499 return; 500 501 for (i = 0; i < numbufs; i++) { 502 if (dbp[i]) 503 dbuf_rele(dbp[i], tag); 504 } 505 506 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 507 } 508 509 /* 510 * Issue prefetch i/os for the given blocks. 511 * 512 * Note: The assumption is that we *know* these blocks will be needed 513 * almost immediately. Therefore, the prefetch i/os will be issued at 514 * ZIO_PRIORITY_SYNC_READ 515 * 516 * Note: indirect blocks and other metadata will be read synchronously, 517 * causing this function to block if they are not already cached. 518 */ 519 void 520 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 521 { 522 dnode_t *dn; 523 uint64_t blkid; 524 int nblks, err; 525 526 if (zfs_prefetch_disable) 527 return; 528 529 if (len == 0) { /* they're interested in the bonus buffer */ 530 dn = DMU_META_DNODE(os); 531 532 if (object == 0 || object >= DN_MAX_OBJECT) 533 return; 534 535 rw_enter(&dn->dn_struct_rwlock, RW_READER); 536 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 537 dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ); 538 rw_exit(&dn->dn_struct_rwlock); 539 return; 540 } 541 542 /* 543 * XXX - Note, if the dnode for the requested object is not 544 * already cached, we will do a *synchronous* read in the 545 * dnode_hold() call. The same is true for any indirects. 546 */ 547 err = dnode_hold(os, object, FTAG, &dn); 548 if (err != 0) 549 return; 550 551 rw_enter(&dn->dn_struct_rwlock, RW_READER); 552 if (dn->dn_datablkshift) { 553 int blkshift = dn->dn_datablkshift; 554 nblks = (P2ROUNDUP(offset + len, 1 << blkshift) - 555 P2ALIGN(offset, 1 << blkshift)) >> blkshift; 556 } else { 557 nblks = (offset < dn->dn_datablksz); 558 } 559 560 if (nblks != 0) { 561 blkid = dbuf_whichblock(dn, offset); 562 for (int i = 0; i < nblks; i++) 563 dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ); 564 } 565 566 rw_exit(&dn->dn_struct_rwlock); 567 568 dnode_rele(dn, FTAG); 569 } 570 571 /* 572 * Get the next "chunk" of file data to free. We traverse the file from 573 * the end so that the file gets shorter over time (if we crashes in the 574 * middle, this will leave us in a better state). We find allocated file 575 * data by simply searching the allocated level 1 indirects. 576 * 577 * On input, *start should be the first offset that does not need to be 578 * freed (e.g. "offset + length"). On return, *start will be the first 579 * offset that should be freed. 580 */ 581 static int 582 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum) 583 { 584 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1); 585 /* bytes of data covered by a level-1 indirect block */ 586 uint64_t iblkrange = 587 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 588 589 ASSERT3U(minimum, <=, *start); 590 591 if (*start - minimum <= iblkrange * maxblks) { 592 *start = minimum; 593 return (0); 594 } 595 ASSERT(ISP2(iblkrange)); 596 597 for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) { 598 int err; 599 600 /* 601 * dnode_next_offset(BACKWARDS) will find an allocated L1 602 * indirect block at or before the input offset. We must 603 * decrement *start so that it is at the end of the region 604 * to search. 605 */ 606 (*start)--; 607 err = dnode_next_offset(dn, 608 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 609 610 /* if there are no indirect blocks before start, we are done */ 611 if (err == ESRCH) { 612 *start = minimum; 613 break; 614 } else if (err != 0) { 615 return (err); 616 } 617 618 /* set start to the beginning of this L1 indirect */ 619 *start = P2ALIGN(*start, iblkrange); 620 } 621 if (*start < minimum) 622 *start = minimum; 623 return (0); 624 } 625 626 static int 627 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 628 uint64_t length) 629 { 630 uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 631 int err; 632 633 if (offset >= object_size) 634 return (0); 635 636 if (length == DMU_OBJECT_END || offset + length > object_size) 637 length = object_size - offset; 638 639 while (length != 0) { 640 uint64_t chunk_end, chunk_begin; 641 642 chunk_end = chunk_begin = offset + length; 643 644 /* move chunk_begin backwards to the beginning of this chunk */ 645 err = get_next_chunk(dn, &chunk_begin, offset); 646 if (err) 647 return (err); 648 ASSERT3U(chunk_begin, >=, offset); 649 ASSERT3U(chunk_begin, <=, chunk_end); 650 651 dmu_tx_t *tx = dmu_tx_create(os); 652 dmu_tx_hold_free(tx, dn->dn_object, 653 chunk_begin, chunk_end - chunk_begin); 654 err = dmu_tx_assign(tx, TXG_WAIT); 655 if (err) { 656 dmu_tx_abort(tx); 657 return (err); 658 } 659 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx); 660 dmu_tx_commit(tx); 661 662 length -= chunk_end - chunk_begin; 663 } 664 return (0); 665 } 666 667 int 668 dmu_free_long_range(objset_t *os, uint64_t object, 669 uint64_t offset, uint64_t length) 670 { 671 dnode_t *dn; 672 int err; 673 674 err = dnode_hold(os, object, FTAG, &dn); 675 if (err != 0) 676 return (err); 677 err = dmu_free_long_range_impl(os, dn, offset, length); 678 679 /* 680 * It is important to zero out the maxblkid when freeing the entire 681 * file, so that (a) subsequent calls to dmu_free_long_range_impl() 682 * will take the fast path, and (b) dnode_reallocate() can verify 683 * that the entire file has been freed. 684 */ 685 if (err == 0 && offset == 0 && length == DMU_OBJECT_END) 686 dn->dn_maxblkid = 0; 687 688 dnode_rele(dn, FTAG); 689 return (err); 690 } 691 692 int 693 dmu_free_long_object(objset_t *os, uint64_t object) 694 { 695 dmu_tx_t *tx; 696 int err; 697 698 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END); 699 if (err != 0) 700 return (err); 701 702 tx = dmu_tx_create(os); 703 dmu_tx_hold_bonus(tx, object); 704 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END); 705 err = dmu_tx_assign(tx, TXG_WAIT); 706 if (err == 0) { 707 err = dmu_object_free(os, object, tx); 708 dmu_tx_commit(tx); 709 } else { 710 dmu_tx_abort(tx); 711 } 712 713 return (err); 714 } 715 716 int 717 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 718 uint64_t size, dmu_tx_t *tx) 719 { 720 dnode_t *dn; 721 int err = dnode_hold(os, object, FTAG, &dn); 722 if (err) 723 return (err); 724 ASSERT(offset < UINT64_MAX); 725 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 726 dnode_free_range(dn, offset, size, tx); 727 dnode_rele(dn, FTAG); 728 return (0); 729 } 730 731 int 732 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 733 void *buf, uint32_t flags) 734 { 735 dnode_t *dn; 736 dmu_buf_t **dbp; 737 int numbufs, err; 738 739 err = dnode_hold(os, object, FTAG, &dn); 740 if (err) 741 return (err); 742 743 /* 744 * Deal with odd block sizes, where there can't be data past the first 745 * block. If we ever do the tail block optimization, we will need to 746 * handle that here as well. 747 */ 748 if (dn->dn_maxblkid == 0) { 749 int newsz = offset > dn->dn_datablksz ? 0 : 750 MIN(size, dn->dn_datablksz - offset); 751 bzero((char *)buf + newsz, size - newsz); 752 size = newsz; 753 } 754 755 while (size > 0) { 756 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 757 int i; 758 759 /* 760 * NB: we could do this block-at-a-time, but it's nice 761 * to be reading in parallel. 762 */ 763 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 764 TRUE, FTAG, &numbufs, &dbp, flags); 765 if (err) 766 break; 767 768 for (i = 0; i < numbufs; i++) { 769 int tocpy; 770 int bufoff; 771 dmu_buf_t *db = dbp[i]; 772 773 ASSERT(size > 0); 774 775 bufoff = offset - db->db_offset; 776 tocpy = (int)MIN(db->db_size - bufoff, size); 777 778 bcopy((char *)db->db_data + bufoff, buf, tocpy); 779 780 offset += tocpy; 781 size -= tocpy; 782 buf = (char *)buf + tocpy; 783 } 784 dmu_buf_rele_array(dbp, numbufs, FTAG); 785 } 786 dnode_rele(dn, FTAG); 787 return (err); 788 } 789 790 void 791 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 792 const void *buf, dmu_tx_t *tx) 793 { 794 dmu_buf_t **dbp; 795 int numbufs, i; 796 797 if (size == 0) 798 return; 799 800 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 801 FALSE, FTAG, &numbufs, &dbp)); 802 803 for (i = 0; i < numbufs; i++) { 804 int tocpy; 805 int bufoff; 806 dmu_buf_t *db = dbp[i]; 807 808 ASSERT(size > 0); 809 810 bufoff = offset - db->db_offset; 811 tocpy = (int)MIN(db->db_size - bufoff, size); 812 813 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 814 815 if (tocpy == db->db_size) 816 dmu_buf_will_fill(db, tx); 817 else 818 dmu_buf_will_dirty(db, tx); 819 820 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 821 822 if (tocpy == db->db_size) 823 dmu_buf_fill_done(db, tx); 824 825 offset += tocpy; 826 size -= tocpy; 827 buf = (char *)buf + tocpy; 828 } 829 dmu_buf_rele_array(dbp, numbufs, FTAG); 830 } 831 832 void 833 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 834 dmu_tx_t *tx) 835 { 836 dmu_buf_t **dbp; 837 int numbufs, i; 838 839 if (size == 0) 840 return; 841 842 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 843 FALSE, FTAG, &numbufs, &dbp)); 844 845 for (i = 0; i < numbufs; i++) { 846 dmu_buf_t *db = dbp[i]; 847 848 dmu_buf_will_not_fill(db, tx); 849 } 850 dmu_buf_rele_array(dbp, numbufs, FTAG); 851 } 852 853 /* 854 * DMU support for xuio 855 */ 856 kstat_t *xuio_ksp = NULL; 857 858 int 859 dmu_xuio_init(xuio_t *xuio, int nblk) 860 { 861 dmu_xuio_t *priv; 862 uio_t *uio = &xuio->xu_uio; 863 864 uio->uio_iovcnt = nblk; 865 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 866 867 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 868 priv->cnt = nblk; 869 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 870 priv->iovp = uio->uio_iov; 871 XUIO_XUZC_PRIV(xuio) = priv; 872 873 if (XUIO_XUZC_RW(xuio) == UIO_READ) 874 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 875 else 876 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 877 878 return (0); 879 } 880 881 void 882 dmu_xuio_fini(xuio_t *xuio) 883 { 884 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 885 int nblk = priv->cnt; 886 887 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 888 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 889 kmem_free(priv, sizeof (dmu_xuio_t)); 890 891 if (XUIO_XUZC_RW(xuio) == UIO_READ) 892 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 893 else 894 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 895 } 896 897 /* 898 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 899 * and increase priv->next by 1. 900 */ 901 int 902 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 903 { 904 struct iovec *iov; 905 uio_t *uio = &xuio->xu_uio; 906 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 907 int i = priv->next++; 908 909 ASSERT(i < priv->cnt); 910 ASSERT(off + n <= arc_buf_size(abuf)); 911 iov = uio->uio_iov + i; 912 iov->iov_base = (char *)abuf->b_data + off; 913 iov->iov_len = n; 914 priv->bufs[i] = abuf; 915 return (0); 916 } 917 918 int 919 dmu_xuio_cnt(xuio_t *xuio) 920 { 921 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 922 return (priv->cnt); 923 } 924 925 arc_buf_t * 926 dmu_xuio_arcbuf(xuio_t *xuio, int i) 927 { 928 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 929 930 ASSERT(i < priv->cnt); 931 return (priv->bufs[i]); 932 } 933 934 void 935 dmu_xuio_clear(xuio_t *xuio, int i) 936 { 937 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 938 939 ASSERT(i < priv->cnt); 940 priv->bufs[i] = NULL; 941 } 942 943 static void 944 xuio_stat_init(void) 945 { 946 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 947 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 948 KSTAT_FLAG_VIRTUAL); 949 if (xuio_ksp != NULL) { 950 xuio_ksp->ks_data = &xuio_stats; 951 kstat_install(xuio_ksp); 952 } 953 } 954 955 static void 956 xuio_stat_fini(void) 957 { 958 if (xuio_ksp != NULL) { 959 kstat_delete(xuio_ksp); 960 xuio_ksp = NULL; 961 } 962 } 963 964 void 965 xuio_stat_wbuf_copied() 966 { 967 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 968 } 969 970 void 971 xuio_stat_wbuf_nocopy() 972 { 973 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 974 } 975 976 #ifdef _KERNEL 977 int 978 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 979 { 980 dmu_buf_t **dbp; 981 int numbufs, i, err; 982 xuio_t *xuio = NULL; 983 984 /* 985 * NB: we could do this block-at-a-time, but it's nice 986 * to be reading in parallel. 987 */ 988 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 989 &numbufs, &dbp); 990 if (err) 991 return (err); 992 993 if (uio->uio_extflg == UIO_XUIO) 994 xuio = (xuio_t *)uio; 995 996 for (i = 0; i < numbufs; i++) { 997 int tocpy; 998 int bufoff; 999 dmu_buf_t *db = dbp[i]; 1000 1001 ASSERT(size > 0); 1002 1003 bufoff = uio->uio_loffset - db->db_offset; 1004 tocpy = (int)MIN(db->db_size - bufoff, size); 1005 1006 if (xuio) { 1007 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 1008 arc_buf_t *dbuf_abuf = dbi->db_buf; 1009 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 1010 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 1011 if (!err) { 1012 uio->uio_resid -= tocpy; 1013 uio->uio_loffset += tocpy; 1014 } 1015 1016 if (abuf == dbuf_abuf) 1017 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 1018 else 1019 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 1020 } else { 1021 err = uiomove((char *)db->db_data + bufoff, tocpy, 1022 UIO_READ, uio); 1023 } 1024 if (err) 1025 break; 1026 1027 size -= tocpy; 1028 } 1029 dmu_buf_rele_array(dbp, numbufs, FTAG); 1030 1031 return (err); 1032 } 1033 1034 static int 1035 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 1036 { 1037 dmu_buf_t **dbp; 1038 int numbufs; 1039 int err = 0; 1040 int i; 1041 1042 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 1043 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 1044 if (err) 1045 return (err); 1046 1047 for (i = 0; i < numbufs; i++) { 1048 int tocpy; 1049 int bufoff; 1050 dmu_buf_t *db = dbp[i]; 1051 1052 ASSERT(size > 0); 1053 1054 bufoff = uio->uio_loffset - db->db_offset; 1055 tocpy = (int)MIN(db->db_size - bufoff, size); 1056 1057 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1058 1059 if (tocpy == db->db_size) 1060 dmu_buf_will_fill(db, tx); 1061 else 1062 dmu_buf_will_dirty(db, tx); 1063 1064 /* 1065 * XXX uiomove could block forever (eg. nfs-backed 1066 * pages). There needs to be a uiolockdown() function 1067 * to lock the pages in memory, so that uiomove won't 1068 * block. 1069 */ 1070 err = uiomove((char *)db->db_data + bufoff, tocpy, 1071 UIO_WRITE, uio); 1072 1073 if (tocpy == db->db_size) 1074 dmu_buf_fill_done(db, tx); 1075 1076 if (err) 1077 break; 1078 1079 size -= tocpy; 1080 } 1081 1082 dmu_buf_rele_array(dbp, numbufs, FTAG); 1083 return (err); 1084 } 1085 1086 int 1087 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 1088 dmu_tx_t *tx) 1089 { 1090 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb; 1091 dnode_t *dn; 1092 int err; 1093 1094 if (size == 0) 1095 return (0); 1096 1097 DB_DNODE_ENTER(db); 1098 dn = DB_DNODE(db); 1099 err = dmu_write_uio_dnode(dn, uio, size, tx); 1100 DB_DNODE_EXIT(db); 1101 1102 return (err); 1103 } 1104 1105 int 1106 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1107 dmu_tx_t *tx) 1108 { 1109 dnode_t *dn; 1110 int err; 1111 1112 if (size == 0) 1113 return (0); 1114 1115 err = dnode_hold(os, object, FTAG, &dn); 1116 if (err) 1117 return (err); 1118 1119 err = dmu_write_uio_dnode(dn, uio, size, tx); 1120 1121 dnode_rele(dn, FTAG); 1122 1123 return (err); 1124 } 1125 1126 int 1127 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1128 page_t *pp, dmu_tx_t *tx) 1129 { 1130 dmu_buf_t **dbp; 1131 int numbufs, i; 1132 int err; 1133 1134 if (size == 0) 1135 return (0); 1136 1137 err = dmu_buf_hold_array(os, object, offset, size, 1138 FALSE, FTAG, &numbufs, &dbp); 1139 if (err) 1140 return (err); 1141 1142 for (i = 0; i < numbufs; i++) { 1143 int tocpy, copied, thiscpy; 1144 int bufoff; 1145 dmu_buf_t *db = dbp[i]; 1146 caddr_t va; 1147 1148 ASSERT(size > 0); 1149 ASSERT3U(db->db_size, >=, PAGESIZE); 1150 1151 bufoff = offset - db->db_offset; 1152 tocpy = (int)MIN(db->db_size - bufoff, size); 1153 1154 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1155 1156 if (tocpy == db->db_size) 1157 dmu_buf_will_fill(db, tx); 1158 else 1159 dmu_buf_will_dirty(db, tx); 1160 1161 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1162 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1163 thiscpy = MIN(PAGESIZE, tocpy - copied); 1164 va = zfs_map_page(pp, S_READ); 1165 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1166 zfs_unmap_page(pp, va); 1167 pp = pp->p_next; 1168 bufoff += PAGESIZE; 1169 } 1170 1171 if (tocpy == db->db_size) 1172 dmu_buf_fill_done(db, tx); 1173 1174 offset += tocpy; 1175 size -= tocpy; 1176 } 1177 dmu_buf_rele_array(dbp, numbufs, FTAG); 1178 return (err); 1179 } 1180 #endif 1181 1182 /* 1183 * Allocate a loaned anonymous arc buffer. 1184 */ 1185 arc_buf_t * 1186 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1187 { 1188 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle; 1189 1190 return (arc_loan_buf(db->db_objset->os_spa, size)); 1191 } 1192 1193 /* 1194 * Free a loaned arc buffer. 1195 */ 1196 void 1197 dmu_return_arcbuf(arc_buf_t *buf) 1198 { 1199 arc_return_buf(buf, FTAG); 1200 VERIFY(arc_buf_remove_ref(buf, FTAG)); 1201 } 1202 1203 /* 1204 * When possible directly assign passed loaned arc buffer to a dbuf. 1205 * If this is not possible copy the contents of passed arc buf via 1206 * dmu_write(). 1207 */ 1208 void 1209 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1210 dmu_tx_t *tx) 1211 { 1212 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle; 1213 dnode_t *dn; 1214 dmu_buf_impl_t *db; 1215 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1216 uint64_t blkid; 1217 1218 DB_DNODE_ENTER(dbuf); 1219 dn = DB_DNODE(dbuf); 1220 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1221 blkid = dbuf_whichblock(dn, offset); 1222 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1223 rw_exit(&dn->dn_struct_rwlock); 1224 DB_DNODE_EXIT(dbuf); 1225 1226 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1227 dbuf_assign_arcbuf(db, buf, tx); 1228 dbuf_rele(db, FTAG); 1229 } else { 1230 objset_t *os; 1231 uint64_t object; 1232 1233 DB_DNODE_ENTER(dbuf); 1234 dn = DB_DNODE(dbuf); 1235 os = dn->dn_objset; 1236 object = dn->dn_object; 1237 DB_DNODE_EXIT(dbuf); 1238 1239 dbuf_rele(db, FTAG); 1240 dmu_write(os, object, offset, blksz, buf->b_data, tx); 1241 dmu_return_arcbuf(buf); 1242 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1243 } 1244 } 1245 1246 typedef struct { 1247 dbuf_dirty_record_t *dsa_dr; 1248 dmu_sync_cb_t *dsa_done; 1249 zgd_t *dsa_zgd; 1250 dmu_tx_t *dsa_tx; 1251 } dmu_sync_arg_t; 1252 1253 /* ARGSUSED */ 1254 static void 1255 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1256 { 1257 dmu_sync_arg_t *dsa = varg; 1258 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1259 blkptr_t *bp = zio->io_bp; 1260 1261 if (zio->io_error == 0) { 1262 if (BP_IS_HOLE(bp)) { 1263 /* 1264 * A block of zeros may compress to a hole, but the 1265 * block size still needs to be known for replay. 1266 */ 1267 BP_SET_LSIZE(bp, db->db_size); 1268 } else { 1269 ASSERT(BP_GET_LEVEL(bp) == 0); 1270 bp->blk_fill = 1; 1271 } 1272 } 1273 } 1274 1275 static void 1276 dmu_sync_late_arrival_ready(zio_t *zio) 1277 { 1278 dmu_sync_ready(zio, NULL, zio->io_private); 1279 } 1280 1281 /* ARGSUSED */ 1282 static void 1283 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1284 { 1285 dmu_sync_arg_t *dsa = varg; 1286 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1287 dmu_buf_impl_t *db = dr->dr_dbuf; 1288 1289 mutex_enter(&db->db_mtx); 1290 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1291 if (zio->io_error == 0) { 1292 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE); 1293 if (dr->dt.dl.dr_nopwrite) { 1294 blkptr_t *bp = zio->io_bp; 1295 blkptr_t *bp_orig = &zio->io_bp_orig; 1296 uint8_t chksum = BP_GET_CHECKSUM(bp_orig); 1297 1298 ASSERT(BP_EQUAL(bp, bp_orig)); 1299 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF); 1300 ASSERT(zio_checksum_table[chksum].ci_dedup); 1301 } 1302 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1303 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1304 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1305 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1306 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1307 } else { 1308 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1309 } 1310 cv_broadcast(&db->db_changed); 1311 mutex_exit(&db->db_mtx); 1312 1313 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1314 1315 kmem_free(dsa, sizeof (*dsa)); 1316 } 1317 1318 static void 1319 dmu_sync_late_arrival_done(zio_t *zio) 1320 { 1321 blkptr_t *bp = zio->io_bp; 1322 dmu_sync_arg_t *dsa = zio->io_private; 1323 blkptr_t *bp_orig = &zio->io_bp_orig; 1324 1325 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1326 /* 1327 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE) 1328 * then there is nothing to do here. Otherwise, free the 1329 * newly allocated block in this txg. 1330 */ 1331 if (zio->io_flags & ZIO_FLAG_NOPWRITE) { 1332 ASSERT(BP_EQUAL(bp, bp_orig)); 1333 } else { 1334 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig)); 1335 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1336 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1337 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1338 } 1339 } 1340 1341 dmu_tx_commit(dsa->dsa_tx); 1342 1343 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1344 1345 kmem_free(dsa, sizeof (*dsa)); 1346 } 1347 1348 static int 1349 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1350 zio_prop_t *zp, zbookmark_t *zb) 1351 { 1352 dmu_sync_arg_t *dsa; 1353 dmu_tx_t *tx; 1354 1355 tx = dmu_tx_create(os); 1356 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1357 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1358 dmu_tx_abort(tx); 1359 /* Make zl_get_data do txg_waited_synced() */ 1360 return (SET_ERROR(EIO)); 1361 } 1362 1363 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1364 dsa->dsa_dr = NULL; 1365 dsa->dsa_done = done; 1366 dsa->dsa_zgd = zgd; 1367 dsa->dsa_tx = tx; 1368 1369 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1370 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1371 dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa, 1372 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1373 1374 return (0); 1375 } 1376 1377 /* 1378 * Intent log support: sync the block associated with db to disk. 1379 * N.B. and XXX: the caller is responsible for making sure that the 1380 * data isn't changing while dmu_sync() is writing it. 1381 * 1382 * Return values: 1383 * 1384 * EEXIST: this txg has already been synced, so there's nothing to do. 1385 * The caller should not log the write. 1386 * 1387 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1388 * The caller should not log the write. 1389 * 1390 * EALREADY: this block is already in the process of being synced. 1391 * The caller should track its progress (somehow). 1392 * 1393 * EIO: could not do the I/O. 1394 * The caller should do a txg_wait_synced(). 1395 * 1396 * 0: the I/O has been initiated. 1397 * The caller should log this blkptr in the done callback. 1398 * It is possible that the I/O will fail, in which case 1399 * the error will be reported to the done callback and 1400 * propagated to pio from zio_done(). 1401 */ 1402 int 1403 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1404 { 1405 blkptr_t *bp = zgd->zgd_bp; 1406 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1407 objset_t *os = db->db_objset; 1408 dsl_dataset_t *ds = os->os_dsl_dataset; 1409 dbuf_dirty_record_t *dr; 1410 dmu_sync_arg_t *dsa; 1411 zbookmark_t zb; 1412 zio_prop_t zp; 1413 dnode_t *dn; 1414 1415 ASSERT(pio != NULL); 1416 ASSERT(txg != 0); 1417 1418 SET_BOOKMARK(&zb, ds->ds_object, 1419 db->db.db_object, db->db_level, db->db_blkid); 1420 1421 DB_DNODE_ENTER(db); 1422 dn = DB_DNODE(db); 1423 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp); 1424 DB_DNODE_EXIT(db); 1425 1426 /* 1427 * If we're frozen (running ziltest), we always need to generate a bp. 1428 */ 1429 if (txg > spa_freeze_txg(os->os_spa)) 1430 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1431 1432 /* 1433 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1434 * and us. If we determine that this txg is not yet syncing, 1435 * but it begins to sync a moment later, that's OK because the 1436 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1437 */ 1438 mutex_enter(&db->db_mtx); 1439 1440 if (txg <= spa_last_synced_txg(os->os_spa)) { 1441 /* 1442 * This txg has already synced. There's nothing to do. 1443 */ 1444 mutex_exit(&db->db_mtx); 1445 return (SET_ERROR(EEXIST)); 1446 } 1447 1448 if (txg <= spa_syncing_txg(os->os_spa)) { 1449 /* 1450 * This txg is currently syncing, so we can't mess with 1451 * the dirty record anymore; just write a new log block. 1452 */ 1453 mutex_exit(&db->db_mtx); 1454 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1455 } 1456 1457 dr = db->db_last_dirty; 1458 while (dr && dr->dr_txg != txg) 1459 dr = dr->dr_next; 1460 1461 if (dr == NULL) { 1462 /* 1463 * There's no dr for this dbuf, so it must have been freed. 1464 * There's no need to log writes to freed blocks, so we're done. 1465 */ 1466 mutex_exit(&db->db_mtx); 1467 return (SET_ERROR(ENOENT)); 1468 } 1469 1470 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg); 1471 1472 /* 1473 * Assume the on-disk data is X, the current syncing data is Y, 1474 * and the current in-memory data is Z (currently in dmu_sync). 1475 * X and Z are identical but Y is has been modified. Normally, 1476 * when X and Z are the same we will perform a nopwrite but if Y 1477 * is different we must disable nopwrite since the resulting write 1478 * of Y to disk can free the block containing X. If we allowed a 1479 * nopwrite to occur the block pointing to Z would reference a freed 1480 * block. Since this is a rare case we simplify this by disabling 1481 * nopwrite if the current dmu_sync-ing dbuf has been modified in 1482 * a previous transaction. 1483 */ 1484 if (dr->dr_next) 1485 zp.zp_nopwrite = B_FALSE; 1486 1487 ASSERT(dr->dr_txg == txg); 1488 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1489 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1490 /* 1491 * We have already issued a sync write for this buffer, 1492 * or this buffer has already been synced. It could not 1493 * have been dirtied since, or we would have cleared the state. 1494 */ 1495 mutex_exit(&db->db_mtx); 1496 return (SET_ERROR(EALREADY)); 1497 } 1498 1499 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1500 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1501 mutex_exit(&db->db_mtx); 1502 1503 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1504 dsa->dsa_dr = dr; 1505 dsa->dsa_done = done; 1506 dsa->dsa_zgd = zgd; 1507 dsa->dsa_tx = NULL; 1508 1509 zio_nowait(arc_write(pio, os->os_spa, txg, 1510 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), 1511 DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready, 1512 NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE, 1513 ZIO_FLAG_CANFAIL, &zb)); 1514 1515 return (0); 1516 } 1517 1518 int 1519 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1520 dmu_tx_t *tx) 1521 { 1522 dnode_t *dn; 1523 int err; 1524 1525 err = dnode_hold(os, object, FTAG, &dn); 1526 if (err) 1527 return (err); 1528 err = dnode_set_blksz(dn, size, ibs, tx); 1529 dnode_rele(dn, FTAG); 1530 return (err); 1531 } 1532 1533 void 1534 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1535 dmu_tx_t *tx) 1536 { 1537 dnode_t *dn; 1538 1539 /* XXX assumes dnode_hold will not get an i/o error */ 1540 (void) dnode_hold(os, object, FTAG, &dn); 1541 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1542 dn->dn_checksum = checksum; 1543 dnode_setdirty(dn, tx); 1544 dnode_rele(dn, FTAG); 1545 } 1546 1547 void 1548 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1549 dmu_tx_t *tx) 1550 { 1551 dnode_t *dn; 1552 1553 /* XXX assumes dnode_hold will not get an i/o error */ 1554 (void) dnode_hold(os, object, FTAG, &dn); 1555 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1556 dn->dn_compress = compress; 1557 dnode_setdirty(dn, tx); 1558 dnode_rele(dn, FTAG); 1559 } 1560 1561 int zfs_mdcomp_disable = 0; 1562 1563 /* 1564 * When the "redundant_metadata" property is set to "most", only indirect 1565 * blocks of this level and higher will have an additional ditto block. 1566 */ 1567 int zfs_redundant_metadata_most_ditto_level = 2; 1568 1569 void 1570 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1571 { 1572 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1573 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) || 1574 (wp & WP_SPILL)); 1575 enum zio_checksum checksum = os->os_checksum; 1576 enum zio_compress compress = os->os_compress; 1577 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1578 boolean_t dedup = B_FALSE; 1579 boolean_t nopwrite = B_FALSE; 1580 boolean_t dedup_verify = os->os_dedup_verify; 1581 int copies = os->os_copies; 1582 1583 /* 1584 * We maintain different write policies for each of the following 1585 * types of data: 1586 * 1. metadata 1587 * 2. preallocated blocks (i.e. level-0 blocks of a dump device) 1588 * 3. all other level 0 blocks 1589 */ 1590 if (ismd) { 1591 /* 1592 * XXX -- we should design a compression algorithm 1593 * that specializes in arrays of bps. 1594 */ 1595 boolean_t lz4_ac = spa_feature_is_active(os->os_spa, 1596 SPA_FEATURE_LZ4_COMPRESS); 1597 1598 if (zfs_mdcomp_disable) { 1599 compress = ZIO_COMPRESS_EMPTY; 1600 } else if (lz4_ac) { 1601 compress = ZIO_COMPRESS_LZ4; 1602 } else { 1603 compress = ZIO_COMPRESS_LZJB; 1604 } 1605 1606 /* 1607 * Metadata always gets checksummed. If the data 1608 * checksum is multi-bit correctable, and it's not a 1609 * ZBT-style checksum, then it's suitable for metadata 1610 * as well. Otherwise, the metadata checksum defaults 1611 * to fletcher4. 1612 */ 1613 if (zio_checksum_table[checksum].ci_correctable < 1 || 1614 zio_checksum_table[checksum].ci_eck) 1615 checksum = ZIO_CHECKSUM_FLETCHER_4; 1616 1617 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL || 1618 (os->os_redundant_metadata == 1619 ZFS_REDUNDANT_METADATA_MOST && 1620 (level >= zfs_redundant_metadata_most_ditto_level || 1621 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL)))) 1622 copies++; 1623 } else if (wp & WP_NOFILL) { 1624 ASSERT(level == 0); 1625 1626 /* 1627 * If we're writing preallocated blocks, we aren't actually 1628 * writing them so don't set any policy properties. These 1629 * blocks are currently only used by an external subsystem 1630 * outside of zfs (i.e. dump) and not written by the zio 1631 * pipeline. 1632 */ 1633 compress = ZIO_COMPRESS_OFF; 1634 checksum = ZIO_CHECKSUM_NOPARITY; 1635 } else { 1636 compress = zio_compress_select(dn->dn_compress, compress); 1637 1638 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ? 1639 zio_checksum_select(dn->dn_checksum, checksum) : 1640 dedup_checksum; 1641 1642 /* 1643 * Determine dedup setting. If we are in dmu_sync(), 1644 * we won't actually dedup now because that's all 1645 * done in syncing context; but we do want to use the 1646 * dedup checkum. If the checksum is not strong 1647 * enough to ensure unique signatures, force 1648 * dedup_verify. 1649 */ 1650 if (dedup_checksum != ZIO_CHECKSUM_OFF) { 1651 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE; 1652 if (!zio_checksum_table[checksum].ci_dedup) 1653 dedup_verify = B_TRUE; 1654 } 1655 1656 /* 1657 * Enable nopwrite if we have a cryptographically secure 1658 * checksum that has no known collisions (i.e. SHA-256) 1659 * and compression is enabled. We don't enable nopwrite if 1660 * dedup is enabled as the two features are mutually exclusive. 1661 */ 1662 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup && 1663 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled); 1664 } 1665 1666 zp->zp_checksum = checksum; 1667 zp->zp_compress = compress; 1668 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1669 zp->zp_level = level; 1670 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa)); 1671 zp->zp_dedup = dedup; 1672 zp->zp_dedup_verify = dedup && dedup_verify; 1673 zp->zp_nopwrite = nopwrite; 1674 } 1675 1676 int 1677 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1678 { 1679 dnode_t *dn; 1680 int i, err; 1681 1682 err = dnode_hold(os, object, FTAG, &dn); 1683 if (err) 1684 return (err); 1685 /* 1686 * Sync any current changes before 1687 * we go trundling through the block pointers. 1688 */ 1689 for (i = 0; i < TXG_SIZE; i++) { 1690 if (list_link_active(&dn->dn_dirty_link[i])) 1691 break; 1692 } 1693 if (i != TXG_SIZE) { 1694 dnode_rele(dn, FTAG); 1695 txg_wait_synced(dmu_objset_pool(os), 0); 1696 err = dnode_hold(os, object, FTAG, &dn); 1697 if (err) 1698 return (err); 1699 } 1700 1701 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1702 dnode_rele(dn, FTAG); 1703 1704 return (err); 1705 } 1706 1707 void 1708 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1709 { 1710 dnode_phys_t *dnp; 1711 1712 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1713 mutex_enter(&dn->dn_mtx); 1714 1715 dnp = dn->dn_phys; 1716 1717 doi->doi_data_block_size = dn->dn_datablksz; 1718 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1719 1ULL << dn->dn_indblkshift : 0; 1720 doi->doi_type = dn->dn_type; 1721 doi->doi_bonus_type = dn->dn_bonustype; 1722 doi->doi_bonus_size = dn->dn_bonuslen; 1723 doi->doi_indirection = dn->dn_nlevels; 1724 doi->doi_checksum = dn->dn_checksum; 1725 doi->doi_compress = dn->dn_compress; 1726 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1727 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz; 1728 doi->doi_fill_count = 0; 1729 for (int i = 0; i < dnp->dn_nblkptr; i++) 1730 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1731 1732 mutex_exit(&dn->dn_mtx); 1733 rw_exit(&dn->dn_struct_rwlock); 1734 } 1735 1736 /* 1737 * Get information on a DMU object. 1738 * If doi is NULL, just indicates whether the object exists. 1739 */ 1740 int 1741 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1742 { 1743 dnode_t *dn; 1744 int err = dnode_hold(os, object, FTAG, &dn); 1745 1746 if (err) 1747 return (err); 1748 1749 if (doi != NULL) 1750 dmu_object_info_from_dnode(dn, doi); 1751 1752 dnode_rele(dn, FTAG); 1753 return (0); 1754 } 1755 1756 /* 1757 * As above, but faster; can be used when you have a held dbuf in hand. 1758 */ 1759 void 1760 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi) 1761 { 1762 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1763 1764 DB_DNODE_ENTER(db); 1765 dmu_object_info_from_dnode(DB_DNODE(db), doi); 1766 DB_DNODE_EXIT(db); 1767 } 1768 1769 /* 1770 * Faster still when you only care about the size. 1771 * This is specifically optimized for zfs_getattr(). 1772 */ 1773 void 1774 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize, 1775 u_longlong_t *nblk512) 1776 { 1777 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake; 1778 dnode_t *dn; 1779 1780 DB_DNODE_ENTER(db); 1781 dn = DB_DNODE(db); 1782 1783 *blksize = dn->dn_datablksz; 1784 /* add 1 for dnode space */ 1785 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1786 SPA_MINBLOCKSHIFT) + 1; 1787 DB_DNODE_EXIT(db); 1788 } 1789 1790 void 1791 byteswap_uint64_array(void *vbuf, size_t size) 1792 { 1793 uint64_t *buf = vbuf; 1794 size_t count = size >> 3; 1795 int i; 1796 1797 ASSERT((size & 7) == 0); 1798 1799 for (i = 0; i < count; i++) 1800 buf[i] = BSWAP_64(buf[i]); 1801 } 1802 1803 void 1804 byteswap_uint32_array(void *vbuf, size_t size) 1805 { 1806 uint32_t *buf = vbuf; 1807 size_t count = size >> 2; 1808 int i; 1809 1810 ASSERT((size & 3) == 0); 1811 1812 for (i = 0; i < count; i++) 1813 buf[i] = BSWAP_32(buf[i]); 1814 } 1815 1816 void 1817 byteswap_uint16_array(void *vbuf, size_t size) 1818 { 1819 uint16_t *buf = vbuf; 1820 size_t count = size >> 1; 1821 int i; 1822 1823 ASSERT((size & 1) == 0); 1824 1825 for (i = 0; i < count; i++) 1826 buf[i] = BSWAP_16(buf[i]); 1827 } 1828 1829 /* ARGSUSED */ 1830 void 1831 byteswap_uint8_array(void *vbuf, size_t size) 1832 { 1833 } 1834 1835 void 1836 dmu_init(void) 1837 { 1838 zfs_dbgmsg_init(); 1839 sa_cache_init(); 1840 xuio_stat_init(); 1841 dmu_objset_init(); 1842 dnode_init(); 1843 dbuf_init(); 1844 zfetch_init(); 1845 l2arc_init(); 1846 arc_init(); 1847 } 1848 1849 void 1850 dmu_fini(void) 1851 { 1852 arc_fini(); /* arc depends on l2arc, so arc must go first */ 1853 l2arc_fini(); 1854 zfetch_fini(); 1855 dbuf_fini(); 1856 dnode_fini(); 1857 dmu_objset_fini(); 1858 xuio_stat_fini(); 1859 sa_cache_fini(); 1860 zfs_dbgmsg_fini(); 1861 }