1 /*
   2  * CDDL HEADER START
   3  *
   4  * The contents of this file are subject to the terms of the
   5  * Common Development and Distribution License (the "License").
   6  * You may not use this file except in compliance with the License.
   7  *
   8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
   9  * or http://www.opensolaris.org/os/licensing.
  10  * See the License for the specific language governing permissions
  11  * and limitations under the License.
  12  *
  13  * When distributing Covered Code, include this CDDL HEADER in each
  14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
  15  * If applicable, add the following below this CDDL HEADER, with the
  16  * fields enclosed by brackets "[]" replaced with your own identifying
  17  * information: Portions Copyright [yyyy] [name of copyright owner]
  18  *
  19  * CDDL HEADER END
  20  */
  21 /*
  22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
  23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
  24  */
  25 /* Copyright (c) 2013 by Saso Kiselkov. All rights reserved. */
  26 /* Copyright (c) 2013, Joyent, Inc. All rights reserved. */
  27 /* Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved. */
  28 
  29 #include <sys/dmu.h>
  30 #include <sys/dmu_impl.h>
  31 #include <sys/dmu_tx.h>
  32 #include <sys/dbuf.h>
  33 #include <sys/dnode.h>
  34 #include <sys/zfs_context.h>
  35 #include <sys/dmu_objset.h>
  36 #include <sys/dmu_traverse.h>
  37 #include <sys/dsl_dataset.h>
  38 #include <sys/dsl_dir.h>
  39 #include <sys/dsl_pool.h>
  40 #include <sys/dsl_synctask.h>
  41 #include <sys/dsl_prop.h>
  42 #include <sys/dmu_zfetch.h>
  43 #include <sys/zfs_ioctl.h>
  44 #include <sys/zap.h>
  45 #include <sys/zio_checksum.h>
  46 #include <sys/zio_compress.h>
  47 #include <sys/sa.h>
  48 #include <sys/zfeature.h>
  49 #ifdef _KERNEL
  50 #include <sys/vmsystm.h>
  51 #include <sys/zfs_znode.h>
  52 #endif
  53 
  54 /*
  55  * Enable/disable nopwrite feature.
  56  */
  57 int zfs_nopwrite_enabled = 1;
  58 
  59 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
  60         {       DMU_BSWAP_UINT8,        TRUE,   "unallocated"           },
  61         {       DMU_BSWAP_ZAP,          TRUE,   "object directory"      },
  62         {       DMU_BSWAP_UINT64,       TRUE,   "object array"          },
  63         {       DMU_BSWAP_UINT8,        TRUE,   "packed nvlist"         },
  64         {       DMU_BSWAP_UINT64,       TRUE,   "packed nvlist size"    },
  65         {       DMU_BSWAP_UINT64,       TRUE,   "bpobj"                 },
  66         {       DMU_BSWAP_UINT64,       TRUE,   "bpobj header"          },
  67         {       DMU_BSWAP_UINT64,       TRUE,   "SPA space map header"  },
  68         {       DMU_BSWAP_UINT64,       TRUE,   "SPA space map"         },
  69         {       DMU_BSWAP_UINT64,       TRUE,   "ZIL intent log"        },
  70         {       DMU_BSWAP_DNODE,        TRUE,   "DMU dnode"             },
  71         {       DMU_BSWAP_OBJSET,       TRUE,   "DMU objset"            },
  72         {       DMU_BSWAP_UINT64,       TRUE,   "DSL directory"         },
  73         {       DMU_BSWAP_ZAP,          TRUE,   "DSL directory child map"},
  74         {       DMU_BSWAP_ZAP,          TRUE,   "DSL dataset snap map"  },
  75         {       DMU_BSWAP_ZAP,          TRUE,   "DSL props"             },
  76         {       DMU_BSWAP_UINT64,       TRUE,   "DSL dataset"           },
  77         {       DMU_BSWAP_ZNODE,        TRUE,   "ZFS znode"             },
  78         {       DMU_BSWAP_OLDACL,       TRUE,   "ZFS V0 ACL"            },
  79         {       DMU_BSWAP_UINT8,        FALSE,  "ZFS plain file"        },
  80         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS directory"         },
  81         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS master node"       },
  82         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS delete queue"      },
  83         {       DMU_BSWAP_UINT8,        FALSE,  "zvol object"           },
  84         {       DMU_BSWAP_ZAP,          TRUE,   "zvol prop"             },
  85         {       DMU_BSWAP_UINT8,        FALSE,  "other uint8[]"         },
  86         {       DMU_BSWAP_UINT64,       FALSE,  "other uint64[]"        },
  87         {       DMU_BSWAP_ZAP,          TRUE,   "other ZAP"             },
  88         {       DMU_BSWAP_ZAP,          TRUE,   "persistent error log"  },
  89         {       DMU_BSWAP_UINT8,        TRUE,   "SPA history"           },
  90         {       DMU_BSWAP_UINT64,       TRUE,   "SPA history offsets"   },
  91         {       DMU_BSWAP_ZAP,          TRUE,   "Pool properties"       },
  92         {       DMU_BSWAP_ZAP,          TRUE,   "DSL permissions"       },
  93         {       DMU_BSWAP_ACL,          TRUE,   "ZFS ACL"               },
  94         {       DMU_BSWAP_UINT8,        TRUE,   "ZFS SYSACL"            },
  95         {       DMU_BSWAP_UINT8,        TRUE,   "FUID table"            },
  96         {       DMU_BSWAP_UINT64,       TRUE,   "FUID table size"       },
  97         {       DMU_BSWAP_ZAP,          TRUE,   "DSL dataset next clones"},
  98         {       DMU_BSWAP_ZAP,          TRUE,   "scan work queue"       },
  99         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS user/group used"   },
 100         {       DMU_BSWAP_ZAP,          TRUE,   "ZFS user/group quota"  },
 101         {       DMU_BSWAP_ZAP,          TRUE,   "snapshot refcount tags"},
 102         {       DMU_BSWAP_ZAP,          TRUE,   "DDT ZAP algorithm"     },
 103         {       DMU_BSWAP_ZAP,          TRUE,   "DDT statistics"        },
 104         {       DMU_BSWAP_UINT8,        TRUE,   "System attributes"     },
 105         {       DMU_BSWAP_ZAP,          TRUE,   "SA master node"        },
 106         {       DMU_BSWAP_ZAP,          TRUE,   "SA attr registration"  },
 107         {       DMU_BSWAP_ZAP,          TRUE,   "SA attr layouts"       },
 108         {       DMU_BSWAP_ZAP,          TRUE,   "scan translations"     },
 109         {       DMU_BSWAP_UINT8,        FALSE,  "deduplicated block"    },
 110         {       DMU_BSWAP_ZAP,          TRUE,   "DSL deadlist map"      },
 111         {       DMU_BSWAP_UINT64,       TRUE,   "DSL deadlist map hdr"  },
 112         {       DMU_BSWAP_ZAP,          TRUE,   "DSL dir clones"        },
 113         {       DMU_BSWAP_UINT64,       TRUE,   "bpobj subobj"          }
 114 };
 115 
 116 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
 117         {       byteswap_uint8_array,   "uint8"         },
 118         {       byteswap_uint16_array,  "uint16"        },
 119         {       byteswap_uint32_array,  "uint32"        },
 120         {       byteswap_uint64_array,  "uint64"        },
 121         {       zap_byteswap,           "zap"           },
 122         {       dnode_buf_byteswap,     "dnode"         },
 123         {       dmu_objset_byteswap,    "objset"        },
 124         {       zfs_znode_byteswap,     "znode"         },
 125         {       zfs_oldacl_byteswap,    "oldacl"        },
 126         {       zfs_acl_byteswap,       "acl"           }
 127 };
 128 
 129 int
 130 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
 131     void *tag, dmu_buf_t **dbp, int flags)
 132 {
 133         dnode_t *dn;
 134         uint64_t blkid;
 135         dmu_buf_impl_t *db;
 136         int err;
 137         int db_flags = DB_RF_CANFAIL;
 138 
 139         if (flags & DMU_READ_NO_PREFETCH)
 140                 db_flags |= DB_RF_NOPREFETCH;
 141 
 142         err = dnode_hold(os, object, FTAG, &dn);
 143         if (err)
 144                 return (err);
 145         blkid = dbuf_whichblock(dn, offset);
 146         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 147         db = dbuf_hold(dn, blkid, tag);
 148         rw_exit(&dn->dn_struct_rwlock);
 149         if (db == NULL) {
 150                 err = SET_ERROR(EIO);
 151         } else {
 152                 err = dbuf_read(db, NULL, db_flags);
 153                 if (err) {
 154                         dbuf_rele(db, tag);
 155                         db = NULL;
 156                 }
 157         }
 158 
 159         dnode_rele(dn, FTAG);
 160         *dbp = &db->db; /* NULL db plus first field offset is NULL */
 161         return (err);
 162 }
 163 
 164 int
 165 dmu_bonus_max(void)
 166 {
 167         return (DN_MAX_BONUSLEN);
 168 }
 169 
 170 int
 171 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
 172 {
 173         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 174         dnode_t *dn;
 175         int error;
 176 
 177         DB_DNODE_ENTER(db);
 178         dn = DB_DNODE(db);
 179 
 180         if (dn->dn_bonus != db) {
 181                 error = SET_ERROR(EINVAL);
 182         } else if (newsize < 0 || newsize > db_fake->db_size) {
 183                 error = SET_ERROR(EINVAL);
 184         } else {
 185                 dnode_setbonuslen(dn, newsize, tx);
 186                 error = 0;
 187         }
 188 
 189         DB_DNODE_EXIT(db);
 190         return (error);
 191 }
 192 
 193 int
 194 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
 195 {
 196         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 197         dnode_t *dn;
 198         int error;
 199 
 200         DB_DNODE_ENTER(db);
 201         dn = DB_DNODE(db);
 202 
 203         if (!DMU_OT_IS_VALID(type)) {
 204                 error = SET_ERROR(EINVAL);
 205         } else if (dn->dn_bonus != db) {
 206                 error = SET_ERROR(EINVAL);
 207         } else {
 208                 dnode_setbonus_type(dn, type, tx);
 209                 error = 0;
 210         }
 211 
 212         DB_DNODE_EXIT(db);
 213         return (error);
 214 }
 215 
 216 dmu_object_type_t
 217 dmu_get_bonustype(dmu_buf_t *db_fake)
 218 {
 219         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 220         dnode_t *dn;
 221         dmu_object_type_t type;
 222 
 223         DB_DNODE_ENTER(db);
 224         dn = DB_DNODE(db);
 225         type = dn->dn_bonustype;
 226         DB_DNODE_EXIT(db);
 227 
 228         return (type);
 229 }
 230 
 231 int
 232 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
 233 {
 234         dnode_t *dn;
 235         int error;
 236 
 237         error = dnode_hold(os, object, FTAG, &dn);
 238         dbuf_rm_spill(dn, tx);
 239         rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 240         dnode_rm_spill(dn, tx);
 241         rw_exit(&dn->dn_struct_rwlock);
 242         dnode_rele(dn, FTAG);
 243         return (error);
 244 }
 245 
 246 /*
 247  * returns ENOENT, EIO, or 0.
 248  */
 249 int
 250 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
 251 {
 252         dnode_t *dn;
 253         dmu_buf_impl_t *db;
 254         int error;
 255 
 256         error = dnode_hold(os, object, FTAG, &dn);
 257         if (error)
 258                 return (error);
 259 
 260         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 261         if (dn->dn_bonus == NULL) {
 262                 rw_exit(&dn->dn_struct_rwlock);
 263                 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
 264                 if (dn->dn_bonus == NULL)
 265                         dbuf_create_bonus(dn);
 266         }
 267         db = dn->dn_bonus;
 268 
 269         /* as long as the bonus buf is held, the dnode will be held */
 270         if (refcount_add(&db->db_holds, tag) == 1) {
 271                 VERIFY(dnode_add_ref(dn, db));
 272                 (void) atomic_inc_32_nv(&dn->dn_dbufs_count);
 273         }
 274 
 275         /*
 276          * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
 277          * hold and incrementing the dbuf count to ensure that dnode_move() sees
 278          * a dnode hold for every dbuf.
 279          */
 280         rw_exit(&dn->dn_struct_rwlock);
 281 
 282         dnode_rele(dn, FTAG);
 283 
 284         VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH));
 285 
 286         *dbp = &db->db;
 287         return (0);
 288 }
 289 
 290 /*
 291  * returns ENOENT, EIO, or 0.
 292  *
 293  * This interface will allocate a blank spill dbuf when a spill blk
 294  * doesn't already exist on the dnode.
 295  *
 296  * if you only want to find an already existing spill db, then
 297  * dmu_spill_hold_existing() should be used.
 298  */
 299 int
 300 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
 301 {
 302         dmu_buf_impl_t *db = NULL;
 303         int err;
 304 
 305         if ((flags & DB_RF_HAVESTRUCT) == 0)
 306                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 307 
 308         db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
 309 
 310         if ((flags & DB_RF_HAVESTRUCT) == 0)
 311                 rw_exit(&dn->dn_struct_rwlock);
 312 
 313         ASSERT(db != NULL);
 314         err = dbuf_read(db, NULL, flags);
 315         if (err == 0)
 316                 *dbp = &db->db;
 317         else
 318                 dbuf_rele(db, tag);
 319         return (err);
 320 }
 321 
 322 int
 323 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
 324 {
 325         dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
 326         dnode_t *dn;
 327         int err;
 328 
 329         DB_DNODE_ENTER(db);
 330         dn = DB_DNODE(db);
 331 
 332         if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
 333                 err = SET_ERROR(EINVAL);
 334         } else {
 335                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 336 
 337                 if (!dn->dn_have_spill) {
 338                         err = SET_ERROR(ENOENT);
 339                 } else {
 340                         err = dmu_spill_hold_by_dnode(dn,
 341                             DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
 342                 }
 343 
 344                 rw_exit(&dn->dn_struct_rwlock);
 345         }
 346 
 347         DB_DNODE_EXIT(db);
 348         return (err);
 349 }
 350 
 351 int
 352 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
 353 {
 354         dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
 355         dnode_t *dn;
 356         int err;
 357 
 358         DB_DNODE_ENTER(db);
 359         dn = DB_DNODE(db);
 360         err = dmu_spill_hold_by_dnode(dn, DB_RF_CANFAIL, tag, dbp);
 361         DB_DNODE_EXIT(db);
 362 
 363         return (err);
 364 }
 365 
 366 /*
 367  * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
 368  * to take a held dnode rather than <os, object> -- the lookup is wasteful,
 369  * and can induce severe lock contention when writing to several files
 370  * whose dnodes are in the same block.
 371  */
 372 static int
 373 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
 374     int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
 375 {
 376         dmu_buf_t **dbp;
 377         uint64_t blkid, nblks, i;
 378         uint32_t dbuf_flags;
 379         int err;
 380         zio_t *zio;
 381 
 382         ASSERT(length <= DMU_MAX_ACCESS);
 383 
 384         dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT;
 385         if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz)
 386                 dbuf_flags |= DB_RF_NOPREFETCH;
 387 
 388         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 389         if (dn->dn_datablkshift) {
 390                 int blkshift = dn->dn_datablkshift;
 391                 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) -
 392                     P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift;
 393         } else {
 394                 if (offset + length > dn->dn_datablksz) {
 395                         zfs_panic_recover("zfs: accessing past end of object "
 396                             "%llx/%llx (size=%u access=%llu+%llu)",
 397                             (longlong_t)dn->dn_objset->
 398                             os_dsl_dataset->ds_object,
 399                             (longlong_t)dn->dn_object, dn->dn_datablksz,
 400                             (longlong_t)offset, (longlong_t)length);
 401                         rw_exit(&dn->dn_struct_rwlock);
 402                         return (SET_ERROR(EIO));
 403                 }
 404                 nblks = 1;
 405         }
 406         dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
 407 
 408         zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
 409         blkid = dbuf_whichblock(dn, offset);
 410         for (i = 0; i < nblks; i++) {
 411                 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag);
 412                 if (db == NULL) {
 413                         rw_exit(&dn->dn_struct_rwlock);
 414                         dmu_buf_rele_array(dbp, nblks, tag);
 415                         zio_nowait(zio);
 416                         return (SET_ERROR(EIO));
 417                 }
 418                 /* initiate async i/o */
 419                 if (read) {
 420                         (void) dbuf_read(db, zio, dbuf_flags);
 421                 }
 422                 dbp[i] = &db->db;
 423         }
 424         rw_exit(&dn->dn_struct_rwlock);
 425 
 426         /* wait for async i/o */
 427         err = zio_wait(zio);
 428         if (err) {
 429                 dmu_buf_rele_array(dbp, nblks, tag);
 430                 return (err);
 431         }
 432 
 433         /* wait for other io to complete */
 434         if (read) {
 435                 for (i = 0; i < nblks; i++) {
 436                         dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
 437                         mutex_enter(&db->db_mtx);
 438                         while (db->db_state == DB_READ ||
 439                             db->db_state == DB_FILL)
 440                                 cv_wait(&db->db_changed, &db->db_mtx);
 441                         if (db->db_state == DB_UNCACHED)
 442                                 err = SET_ERROR(EIO);
 443                         mutex_exit(&db->db_mtx);
 444                         if (err) {
 445                                 dmu_buf_rele_array(dbp, nblks, tag);
 446                                 return (err);
 447                         }
 448                 }
 449         }
 450 
 451         *numbufsp = nblks;
 452         *dbpp = dbp;
 453         return (0);
 454 }
 455 
 456 static int
 457 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
 458     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
 459 {
 460         dnode_t *dn;
 461         int err;
 462 
 463         err = dnode_hold(os, object, FTAG, &dn);
 464         if (err)
 465                 return (err);
 466 
 467         err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
 468             numbufsp, dbpp, DMU_READ_PREFETCH);
 469 
 470         dnode_rele(dn, FTAG);
 471 
 472         return (err);
 473 }
 474 
 475 int
 476 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
 477     uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
 478 {
 479         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
 480         dnode_t *dn;
 481         int err;
 482 
 483         DB_DNODE_ENTER(db);
 484         dn = DB_DNODE(db);
 485         err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
 486             numbufsp, dbpp, DMU_READ_PREFETCH);
 487         DB_DNODE_EXIT(db);
 488 
 489         return (err);
 490 }
 491 
 492 void
 493 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
 494 {
 495         int i;
 496         dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
 497 
 498         if (numbufs == 0)
 499                 return;
 500 
 501         for (i = 0; i < numbufs; i++) {
 502                 if (dbp[i])
 503                         dbuf_rele(dbp[i], tag);
 504         }
 505 
 506         kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
 507 }
 508 
 509 /*
 510  * Issue prefetch i/os for the given blocks.
 511  *
 512  * Note: The assumption is that we *know* these blocks will be needed
 513  * almost immediately.  Therefore, the prefetch i/os will be issued at
 514  * ZIO_PRIORITY_SYNC_READ
 515  *
 516  * Note: indirect blocks and other metadata will be read synchronously,
 517  * causing this function to block if they are not already cached.
 518  */
 519 void
 520 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len)
 521 {
 522         dnode_t *dn;
 523         uint64_t blkid;
 524         int nblks, err;
 525 
 526         if (zfs_prefetch_disable)
 527                 return;
 528 
 529         if (len == 0) {  /* they're interested in the bonus buffer */
 530                 dn = DMU_META_DNODE(os);
 531 
 532                 if (object == 0 || object >= DN_MAX_OBJECT)
 533                         return;
 534 
 535                 rw_enter(&dn->dn_struct_rwlock, RW_READER);
 536                 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t));
 537                 dbuf_prefetch(dn, blkid, ZIO_PRIORITY_SYNC_READ);
 538                 rw_exit(&dn->dn_struct_rwlock);
 539                 return;
 540         }
 541 
 542         /*
 543          * XXX - Note, if the dnode for the requested object is not
 544          * already cached, we will do a *synchronous* read in the
 545          * dnode_hold() call.  The same is true for any indirects.
 546          */
 547         err = dnode_hold(os, object, FTAG, &dn);
 548         if (err != 0)
 549                 return;
 550 
 551         rw_enter(&dn->dn_struct_rwlock, RW_READER);
 552         if (dn->dn_datablkshift) {
 553                 int blkshift = dn->dn_datablkshift;
 554                 nblks = (P2ROUNDUP(offset + len, 1 << blkshift) -
 555                     P2ALIGN(offset, 1 << blkshift)) >> blkshift;
 556         } else {
 557                 nblks = (offset < dn->dn_datablksz);
 558         }
 559 
 560         if (nblks != 0) {
 561                 blkid = dbuf_whichblock(dn, offset);
 562                 for (int i = 0; i < nblks; i++)
 563                         dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_SYNC_READ);
 564         }
 565 
 566         rw_exit(&dn->dn_struct_rwlock);
 567 
 568         dnode_rele(dn, FTAG);
 569 }
 570 
 571 /*
 572  * Get the next "chunk" of file data to free.  We traverse the file from
 573  * the end so that the file gets shorter over time (if we crashes in the
 574  * middle, this will leave us in a better state).  We find allocated file
 575  * data by simply searching the allocated level 1 indirects.
 576  *
 577  * On input, *start should be the first offset that does not need to be
 578  * freed (e.g. "offset + length").  On return, *start will be the first
 579  * offset that should be freed.
 580  */
 581 static int
 582 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum)
 583 {
 584         uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
 585         /* bytes of data covered by a level-1 indirect block */
 586         uint64_t iblkrange =
 587             dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
 588 
 589         ASSERT3U(minimum, <=, *start);
 590 
 591         if (*start - minimum <= iblkrange * maxblks) {
 592                 *start = minimum;
 593                 return (0);
 594         }
 595         ASSERT(ISP2(iblkrange));
 596 
 597         for (uint64_t blks = 0; *start > minimum && blks < maxblks; blks++) {
 598                 int err;
 599 
 600                 /*
 601                  * dnode_next_offset(BACKWARDS) will find an allocated L1
 602                  * indirect block at or before the input offset.  We must
 603                  * decrement *start so that it is at the end of the region
 604                  * to search.
 605                  */
 606                 (*start)--;
 607                 err = dnode_next_offset(dn,
 608                     DNODE_FIND_BACKWARDS, start, 2, 1, 0);
 609 
 610                 /* if there are no indirect blocks before start, we are done */
 611                 if (err == ESRCH) {
 612                         *start = minimum;
 613                         break;
 614                 } else if (err != 0) {
 615                         return (err);
 616                 }
 617 
 618                 /* set start to the beginning of this L1 indirect */
 619                 *start = P2ALIGN(*start, iblkrange);
 620         }
 621         if (*start < minimum)
 622                 *start = minimum;
 623         return (0);
 624 }
 625 
 626 static int
 627 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
 628     uint64_t length)
 629 {
 630         uint64_t object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
 631         int err;
 632 
 633         if (offset >= object_size)
 634                 return (0);
 635 
 636         if (length == DMU_OBJECT_END || offset + length > object_size)
 637                 length = object_size - offset;
 638 
 639         while (length != 0) {
 640                 uint64_t chunk_end, chunk_begin;
 641 
 642                 chunk_end = chunk_begin = offset + length;
 643 
 644                 /* move chunk_begin backwards to the beginning of this chunk */
 645                 err = get_next_chunk(dn, &chunk_begin, offset);
 646                 if (err)
 647                         return (err);
 648                 ASSERT3U(chunk_begin, >=, offset);
 649                 ASSERT3U(chunk_begin, <=, chunk_end);
 650 
 651                 dmu_tx_t *tx = dmu_tx_create(os);
 652                 dmu_tx_hold_free(tx, dn->dn_object,
 653                     chunk_begin, chunk_end - chunk_begin);
 654                 err = dmu_tx_assign(tx, TXG_WAIT);
 655                 if (err) {
 656                         dmu_tx_abort(tx);
 657                         return (err);
 658                 }
 659                 dnode_free_range(dn, chunk_begin, chunk_end - chunk_begin, tx);
 660                 dmu_tx_commit(tx);
 661 
 662                 length -= chunk_end - chunk_begin;
 663         }
 664         return (0);
 665 }
 666 
 667 int
 668 dmu_free_long_range(objset_t *os, uint64_t object,
 669     uint64_t offset, uint64_t length)
 670 {
 671         dnode_t *dn;
 672         int err;
 673 
 674         err = dnode_hold(os, object, FTAG, &dn);
 675         if (err != 0)
 676                 return (err);
 677         err = dmu_free_long_range_impl(os, dn, offset, length);
 678 
 679         /*
 680          * It is important to zero out the maxblkid when freeing the entire
 681          * file, so that (a) subsequent calls to dmu_free_long_range_impl()
 682          * will take the fast path, and (b) dnode_reallocate() can verify
 683          * that the entire file has been freed.
 684          */
 685         if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
 686                 dn->dn_maxblkid = 0;
 687 
 688         dnode_rele(dn, FTAG);
 689         return (err);
 690 }
 691 
 692 int
 693 dmu_free_long_object(objset_t *os, uint64_t object)
 694 {
 695         dmu_tx_t *tx;
 696         int err;
 697 
 698         err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
 699         if (err != 0)
 700                 return (err);
 701 
 702         tx = dmu_tx_create(os);
 703         dmu_tx_hold_bonus(tx, object);
 704         dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
 705         err = dmu_tx_assign(tx, TXG_WAIT);
 706         if (err == 0) {
 707                 err = dmu_object_free(os, object, tx);
 708                 dmu_tx_commit(tx);
 709         } else {
 710                 dmu_tx_abort(tx);
 711         }
 712 
 713         return (err);
 714 }
 715 
 716 int
 717 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
 718     uint64_t size, dmu_tx_t *tx)
 719 {
 720         dnode_t *dn;
 721         int err = dnode_hold(os, object, FTAG, &dn);
 722         if (err)
 723                 return (err);
 724         ASSERT(offset < UINT64_MAX);
 725         ASSERT(size == -1ULL || size <= UINT64_MAX - offset);
 726         dnode_free_range(dn, offset, size, tx);
 727         dnode_rele(dn, FTAG);
 728         return (0);
 729 }
 730 
 731 int
 732 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 733     void *buf, uint32_t flags)
 734 {
 735         dnode_t *dn;
 736         dmu_buf_t **dbp;
 737         int numbufs, err;
 738 
 739         err = dnode_hold(os, object, FTAG, &dn);
 740         if (err)
 741                 return (err);
 742 
 743         /*
 744          * Deal with odd block sizes, where there can't be data past the first
 745          * block.  If we ever do the tail block optimization, we will need to
 746          * handle that here as well.
 747          */
 748         if (dn->dn_maxblkid == 0) {
 749                 int newsz = offset > dn->dn_datablksz ? 0 :
 750                     MIN(size, dn->dn_datablksz - offset);
 751                 bzero((char *)buf + newsz, size - newsz);
 752                 size = newsz;
 753         }
 754 
 755         while (size > 0) {
 756                 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
 757                 int i;
 758 
 759                 /*
 760                  * NB: we could do this block-at-a-time, but it's nice
 761                  * to be reading in parallel.
 762                  */
 763                 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
 764                     TRUE, FTAG, &numbufs, &dbp, flags);
 765                 if (err)
 766                         break;
 767 
 768                 for (i = 0; i < numbufs; i++) {
 769                         int tocpy;
 770                         int bufoff;
 771                         dmu_buf_t *db = dbp[i];
 772 
 773                         ASSERT(size > 0);
 774 
 775                         bufoff = offset - db->db_offset;
 776                         tocpy = (int)MIN(db->db_size - bufoff, size);
 777 
 778                         bcopy((char *)db->db_data + bufoff, buf, tocpy);
 779 
 780                         offset += tocpy;
 781                         size -= tocpy;
 782                         buf = (char *)buf + tocpy;
 783                 }
 784                 dmu_buf_rele_array(dbp, numbufs, FTAG);
 785         }
 786         dnode_rele(dn, FTAG);
 787         return (err);
 788 }
 789 
 790 void
 791 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 792     const void *buf, dmu_tx_t *tx)
 793 {
 794         dmu_buf_t **dbp;
 795         int numbufs, i;
 796 
 797         if (size == 0)
 798                 return;
 799 
 800         VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
 801             FALSE, FTAG, &numbufs, &dbp));
 802 
 803         for (i = 0; i < numbufs; i++) {
 804                 int tocpy;
 805                 int bufoff;
 806                 dmu_buf_t *db = dbp[i];
 807 
 808                 ASSERT(size > 0);
 809 
 810                 bufoff = offset - db->db_offset;
 811                 tocpy = (int)MIN(db->db_size - bufoff, size);
 812 
 813                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
 814 
 815                 if (tocpy == db->db_size)
 816                         dmu_buf_will_fill(db, tx);
 817                 else
 818                         dmu_buf_will_dirty(db, tx);
 819 
 820                 bcopy(buf, (char *)db->db_data + bufoff, tocpy);
 821 
 822                 if (tocpy == db->db_size)
 823                         dmu_buf_fill_done(db, tx);
 824 
 825                 offset += tocpy;
 826                 size -= tocpy;
 827                 buf = (char *)buf + tocpy;
 828         }
 829         dmu_buf_rele_array(dbp, numbufs, FTAG);
 830 }
 831 
 832 void
 833 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
 834     dmu_tx_t *tx)
 835 {
 836         dmu_buf_t **dbp;
 837         int numbufs, i;
 838 
 839         if (size == 0)
 840                 return;
 841 
 842         VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
 843             FALSE, FTAG, &numbufs, &dbp));
 844 
 845         for (i = 0; i < numbufs; i++) {
 846                 dmu_buf_t *db = dbp[i];
 847 
 848                 dmu_buf_will_not_fill(db, tx);
 849         }
 850         dmu_buf_rele_array(dbp, numbufs, FTAG);
 851 }
 852 
 853 /*
 854  * DMU support for xuio
 855  */
 856 kstat_t *xuio_ksp = NULL;
 857 
 858 int
 859 dmu_xuio_init(xuio_t *xuio, int nblk)
 860 {
 861         dmu_xuio_t *priv;
 862         uio_t *uio = &xuio->xu_uio;
 863 
 864         uio->uio_iovcnt = nblk;
 865         uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
 866 
 867         priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
 868         priv->cnt = nblk;
 869         priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
 870         priv->iovp = uio->uio_iov;
 871         XUIO_XUZC_PRIV(xuio) = priv;
 872 
 873         if (XUIO_XUZC_RW(xuio) == UIO_READ)
 874                 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
 875         else
 876                 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
 877 
 878         return (0);
 879 }
 880 
 881 void
 882 dmu_xuio_fini(xuio_t *xuio)
 883 {
 884         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 885         int nblk = priv->cnt;
 886 
 887         kmem_free(priv->iovp, nblk * sizeof (iovec_t));
 888         kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
 889         kmem_free(priv, sizeof (dmu_xuio_t));
 890 
 891         if (XUIO_XUZC_RW(xuio) == UIO_READ)
 892                 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
 893         else
 894                 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
 895 }
 896 
 897 /*
 898  * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
 899  * and increase priv->next by 1.
 900  */
 901 int
 902 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
 903 {
 904         struct iovec *iov;
 905         uio_t *uio = &xuio->xu_uio;
 906         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 907         int i = priv->next++;
 908 
 909         ASSERT(i < priv->cnt);
 910         ASSERT(off + n <= arc_buf_size(abuf));
 911         iov = uio->uio_iov + i;
 912         iov->iov_base = (char *)abuf->b_data + off;
 913         iov->iov_len = n;
 914         priv->bufs[i] = abuf;
 915         return (0);
 916 }
 917 
 918 int
 919 dmu_xuio_cnt(xuio_t *xuio)
 920 {
 921         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 922         return (priv->cnt);
 923 }
 924 
 925 arc_buf_t *
 926 dmu_xuio_arcbuf(xuio_t *xuio, int i)
 927 {
 928         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 929 
 930         ASSERT(i < priv->cnt);
 931         return (priv->bufs[i]);
 932 }
 933 
 934 void
 935 dmu_xuio_clear(xuio_t *xuio, int i)
 936 {
 937         dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
 938 
 939         ASSERT(i < priv->cnt);
 940         priv->bufs[i] = NULL;
 941 }
 942 
 943 static void
 944 xuio_stat_init(void)
 945 {
 946         xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
 947             KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
 948             KSTAT_FLAG_VIRTUAL);
 949         if (xuio_ksp != NULL) {
 950                 xuio_ksp->ks_data = &xuio_stats;
 951                 kstat_install(xuio_ksp);
 952         }
 953 }
 954 
 955 static void
 956 xuio_stat_fini(void)
 957 {
 958         if (xuio_ksp != NULL) {
 959                 kstat_delete(xuio_ksp);
 960                 xuio_ksp = NULL;
 961         }
 962 }
 963 
 964 void
 965 xuio_stat_wbuf_copied()
 966 {
 967         XUIOSTAT_BUMP(xuiostat_wbuf_copied);
 968 }
 969 
 970 void
 971 xuio_stat_wbuf_nocopy()
 972 {
 973         XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
 974 }
 975 
 976 #ifdef _KERNEL
 977 int
 978 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
 979 {
 980         dmu_buf_t **dbp;
 981         int numbufs, i, err;
 982         xuio_t *xuio = NULL;
 983 
 984         /*
 985          * NB: we could do this block-at-a-time, but it's nice
 986          * to be reading in parallel.
 987          */
 988         err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG,
 989             &numbufs, &dbp);
 990         if (err)
 991                 return (err);
 992 
 993         if (uio->uio_extflg == UIO_XUIO)
 994                 xuio = (xuio_t *)uio;
 995 
 996         for (i = 0; i < numbufs; i++) {
 997                 int tocpy;
 998                 int bufoff;
 999                 dmu_buf_t *db = dbp[i];
1000 
1001                 ASSERT(size > 0);
1002 
1003                 bufoff = uio->uio_loffset - db->db_offset;
1004                 tocpy = (int)MIN(db->db_size - bufoff, size);
1005 
1006                 if (xuio) {
1007                         dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1008                         arc_buf_t *dbuf_abuf = dbi->db_buf;
1009                         arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1010                         err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1011                         if (!err) {
1012                                 uio->uio_resid -= tocpy;
1013                                 uio->uio_loffset += tocpy;
1014                         }
1015 
1016                         if (abuf == dbuf_abuf)
1017                                 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1018                         else
1019                                 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1020                 } else {
1021                         err = uiomove((char *)db->db_data + bufoff, tocpy,
1022                             UIO_READ, uio);
1023                 }
1024                 if (err)
1025                         break;
1026 
1027                 size -= tocpy;
1028         }
1029         dmu_buf_rele_array(dbp, numbufs, FTAG);
1030 
1031         return (err);
1032 }
1033 
1034 static int
1035 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1036 {
1037         dmu_buf_t **dbp;
1038         int numbufs;
1039         int err = 0;
1040         int i;
1041 
1042         err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1043             FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1044         if (err)
1045                 return (err);
1046 
1047         for (i = 0; i < numbufs; i++) {
1048                 int tocpy;
1049                 int bufoff;
1050                 dmu_buf_t *db = dbp[i];
1051 
1052                 ASSERT(size > 0);
1053 
1054                 bufoff = uio->uio_loffset - db->db_offset;
1055                 tocpy = (int)MIN(db->db_size - bufoff, size);
1056 
1057                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1058 
1059                 if (tocpy == db->db_size)
1060                         dmu_buf_will_fill(db, tx);
1061                 else
1062                         dmu_buf_will_dirty(db, tx);
1063 
1064                 /*
1065                  * XXX uiomove could block forever (eg. nfs-backed
1066                  * pages).  There needs to be a uiolockdown() function
1067                  * to lock the pages in memory, so that uiomove won't
1068                  * block.
1069                  */
1070                 err = uiomove((char *)db->db_data + bufoff, tocpy,
1071                     UIO_WRITE, uio);
1072 
1073                 if (tocpy == db->db_size)
1074                         dmu_buf_fill_done(db, tx);
1075 
1076                 if (err)
1077                         break;
1078 
1079                 size -= tocpy;
1080         }
1081 
1082         dmu_buf_rele_array(dbp, numbufs, FTAG);
1083         return (err);
1084 }
1085 
1086 int
1087 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1088     dmu_tx_t *tx)
1089 {
1090         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1091         dnode_t *dn;
1092         int err;
1093 
1094         if (size == 0)
1095                 return (0);
1096 
1097         DB_DNODE_ENTER(db);
1098         dn = DB_DNODE(db);
1099         err = dmu_write_uio_dnode(dn, uio, size, tx);
1100         DB_DNODE_EXIT(db);
1101 
1102         return (err);
1103 }
1104 
1105 int
1106 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1107     dmu_tx_t *tx)
1108 {
1109         dnode_t *dn;
1110         int err;
1111 
1112         if (size == 0)
1113                 return (0);
1114 
1115         err = dnode_hold(os, object, FTAG, &dn);
1116         if (err)
1117                 return (err);
1118 
1119         err = dmu_write_uio_dnode(dn, uio, size, tx);
1120 
1121         dnode_rele(dn, FTAG);
1122 
1123         return (err);
1124 }
1125 
1126 int
1127 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1128     page_t *pp, dmu_tx_t *tx)
1129 {
1130         dmu_buf_t **dbp;
1131         int numbufs, i;
1132         int err;
1133 
1134         if (size == 0)
1135                 return (0);
1136 
1137         err = dmu_buf_hold_array(os, object, offset, size,
1138             FALSE, FTAG, &numbufs, &dbp);
1139         if (err)
1140                 return (err);
1141 
1142         for (i = 0; i < numbufs; i++) {
1143                 int tocpy, copied, thiscpy;
1144                 int bufoff;
1145                 dmu_buf_t *db = dbp[i];
1146                 caddr_t va;
1147 
1148                 ASSERT(size > 0);
1149                 ASSERT3U(db->db_size, >=, PAGESIZE);
1150 
1151                 bufoff = offset - db->db_offset;
1152                 tocpy = (int)MIN(db->db_size - bufoff, size);
1153 
1154                 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1155 
1156                 if (tocpy == db->db_size)
1157                         dmu_buf_will_fill(db, tx);
1158                 else
1159                         dmu_buf_will_dirty(db, tx);
1160 
1161                 for (copied = 0; copied < tocpy; copied += PAGESIZE) {
1162                         ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff);
1163                         thiscpy = MIN(PAGESIZE, tocpy - copied);
1164                         va = zfs_map_page(pp, S_READ);
1165                         bcopy(va, (char *)db->db_data + bufoff, thiscpy);
1166                         zfs_unmap_page(pp, va);
1167                         pp = pp->p_next;
1168                         bufoff += PAGESIZE;
1169                 }
1170 
1171                 if (tocpy == db->db_size)
1172                         dmu_buf_fill_done(db, tx);
1173 
1174                 offset += tocpy;
1175                 size -= tocpy;
1176         }
1177         dmu_buf_rele_array(dbp, numbufs, FTAG);
1178         return (err);
1179 }
1180 #endif
1181 
1182 /*
1183  * Allocate a loaned anonymous arc buffer.
1184  */
1185 arc_buf_t *
1186 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1187 {
1188         dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1189 
1190         return (arc_loan_buf(db->db_objset->os_spa, size));
1191 }
1192 
1193 /*
1194  * Free a loaned arc buffer.
1195  */
1196 void
1197 dmu_return_arcbuf(arc_buf_t *buf)
1198 {
1199         arc_return_buf(buf, FTAG);
1200         VERIFY(arc_buf_remove_ref(buf, FTAG));
1201 }
1202 
1203 /*
1204  * When possible directly assign passed loaned arc buffer to a dbuf.
1205  * If this is not possible copy the contents of passed arc buf via
1206  * dmu_write().
1207  */
1208 void
1209 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1210     dmu_tx_t *tx)
1211 {
1212         dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1213         dnode_t *dn;
1214         dmu_buf_impl_t *db;
1215         uint32_t blksz = (uint32_t)arc_buf_size(buf);
1216         uint64_t blkid;
1217 
1218         DB_DNODE_ENTER(dbuf);
1219         dn = DB_DNODE(dbuf);
1220         rw_enter(&dn->dn_struct_rwlock, RW_READER);
1221         blkid = dbuf_whichblock(dn, offset);
1222         VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL);
1223         rw_exit(&dn->dn_struct_rwlock);
1224         DB_DNODE_EXIT(dbuf);
1225 
1226         if (offset == db->db.db_offset && blksz == db->db.db_size) {
1227                 dbuf_assign_arcbuf(db, buf, tx);
1228                 dbuf_rele(db, FTAG);
1229         } else {
1230                 objset_t *os;
1231                 uint64_t object;
1232 
1233                 DB_DNODE_ENTER(dbuf);
1234                 dn = DB_DNODE(dbuf);
1235                 os = dn->dn_objset;
1236                 object = dn->dn_object;
1237                 DB_DNODE_EXIT(dbuf);
1238 
1239                 dbuf_rele(db, FTAG);
1240                 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1241                 dmu_return_arcbuf(buf);
1242                 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1243         }
1244 }
1245 
1246 typedef struct {
1247         dbuf_dirty_record_t     *dsa_dr;
1248         dmu_sync_cb_t           *dsa_done;
1249         zgd_t                   *dsa_zgd;
1250         dmu_tx_t                *dsa_tx;
1251 } dmu_sync_arg_t;
1252 
1253 /* ARGSUSED */
1254 static void
1255 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1256 {
1257         dmu_sync_arg_t *dsa = varg;
1258         dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1259         blkptr_t *bp = zio->io_bp;
1260 
1261         if (zio->io_error == 0) {
1262                 if (BP_IS_HOLE(bp)) {
1263                         /*
1264                          * A block of zeros may compress to a hole, but the
1265                          * block size still needs to be known for replay.
1266                          */
1267                         BP_SET_LSIZE(bp, db->db_size);
1268                 } else {
1269                         ASSERT(BP_GET_LEVEL(bp) == 0);
1270                         bp->blk_fill = 1;
1271                 }
1272         }
1273 }
1274 
1275 static void
1276 dmu_sync_late_arrival_ready(zio_t *zio)
1277 {
1278         dmu_sync_ready(zio, NULL, zio->io_private);
1279 }
1280 
1281 /* ARGSUSED */
1282 static void
1283 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1284 {
1285         dmu_sync_arg_t *dsa = varg;
1286         dbuf_dirty_record_t *dr = dsa->dsa_dr;
1287         dmu_buf_impl_t *db = dr->dr_dbuf;
1288 
1289         mutex_enter(&db->db_mtx);
1290         ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1291         if (zio->io_error == 0) {
1292                 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1293                 if (dr->dt.dl.dr_nopwrite) {
1294                         blkptr_t *bp = zio->io_bp;
1295                         blkptr_t *bp_orig = &zio->io_bp_orig;
1296                         uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1297 
1298                         ASSERT(BP_EQUAL(bp, bp_orig));
1299                         ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1300                         ASSERT(zio_checksum_table[chksum].ci_dedup);
1301                 }
1302                 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1303                 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1304                 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1305                 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by))
1306                         BP_ZERO(&dr->dt.dl.dr_overridden_by);
1307         } else {
1308                 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1309         }
1310         cv_broadcast(&db->db_changed);
1311         mutex_exit(&db->db_mtx);
1312 
1313         dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1314 
1315         kmem_free(dsa, sizeof (*dsa));
1316 }
1317 
1318 static void
1319 dmu_sync_late_arrival_done(zio_t *zio)
1320 {
1321         blkptr_t *bp = zio->io_bp;
1322         dmu_sync_arg_t *dsa = zio->io_private;
1323         blkptr_t *bp_orig = &zio->io_bp_orig;
1324 
1325         if (zio->io_error == 0 && !BP_IS_HOLE(bp)) {
1326                 /*
1327                  * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1328                  * then there is nothing to do here. Otherwise, free the
1329                  * newly allocated block in this txg.
1330                  */
1331                 if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
1332                         ASSERT(BP_EQUAL(bp, bp_orig));
1333                 } else {
1334                         ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1335                         ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1336                         ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1337                         zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1338                 }
1339         }
1340 
1341         dmu_tx_commit(dsa->dsa_tx);
1342 
1343         dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1344 
1345         kmem_free(dsa, sizeof (*dsa));
1346 }
1347 
1348 static int
1349 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1350     zio_prop_t *zp, zbookmark_t *zb)
1351 {
1352         dmu_sync_arg_t *dsa;
1353         dmu_tx_t *tx;
1354 
1355         tx = dmu_tx_create(os);
1356         dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1357         if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1358                 dmu_tx_abort(tx);
1359                 /* Make zl_get_data do txg_waited_synced() */
1360                 return (SET_ERROR(EIO));
1361         }
1362 
1363         dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1364         dsa->dsa_dr = NULL;
1365         dsa->dsa_done = done;
1366         dsa->dsa_zgd = zgd;
1367         dsa->dsa_tx = tx;
1368 
1369         zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1370             zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp,
1371             dmu_sync_late_arrival_ready, NULL, dmu_sync_late_arrival_done, dsa,
1372             ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1373 
1374         return (0);
1375 }
1376 
1377 /*
1378  * Intent log support: sync the block associated with db to disk.
1379  * N.B. and XXX: the caller is responsible for making sure that the
1380  * data isn't changing while dmu_sync() is writing it.
1381  *
1382  * Return values:
1383  *
1384  *      EEXIST: this txg has already been synced, so there's nothing to do.
1385  *              The caller should not log the write.
1386  *
1387  *      ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1388  *              The caller should not log the write.
1389  *
1390  *      EALREADY: this block is already in the process of being synced.
1391  *              The caller should track its progress (somehow).
1392  *
1393  *      EIO: could not do the I/O.
1394  *              The caller should do a txg_wait_synced().
1395  *
1396  *      0: the I/O has been initiated.
1397  *              The caller should log this blkptr in the done callback.
1398  *              It is possible that the I/O will fail, in which case
1399  *              the error will be reported to the done callback and
1400  *              propagated to pio from zio_done().
1401  */
1402 int
1403 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
1404 {
1405         blkptr_t *bp = zgd->zgd_bp;
1406         dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
1407         objset_t *os = db->db_objset;
1408         dsl_dataset_t *ds = os->os_dsl_dataset;
1409         dbuf_dirty_record_t *dr;
1410         dmu_sync_arg_t *dsa;
1411         zbookmark_t zb;
1412         zio_prop_t zp;
1413         dnode_t *dn;
1414 
1415         ASSERT(pio != NULL);
1416         ASSERT(txg != 0);
1417 
1418         SET_BOOKMARK(&zb, ds->ds_object,
1419             db->db.db_object, db->db_level, db->db_blkid);
1420 
1421         DB_DNODE_ENTER(db);
1422         dn = DB_DNODE(db);
1423         dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
1424         DB_DNODE_EXIT(db);
1425 
1426         /*
1427          * If we're frozen (running ziltest), we always need to generate a bp.
1428          */
1429         if (txg > spa_freeze_txg(os->os_spa))
1430                 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1431 
1432         /*
1433          * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1434          * and us.  If we determine that this txg is not yet syncing,
1435          * but it begins to sync a moment later, that's OK because the
1436          * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1437          */
1438         mutex_enter(&db->db_mtx);
1439 
1440         if (txg <= spa_last_synced_txg(os->os_spa)) {
1441                 /*
1442                  * This txg has already synced.  There's nothing to do.
1443                  */
1444                 mutex_exit(&db->db_mtx);
1445                 return (SET_ERROR(EEXIST));
1446         }
1447 
1448         if (txg <= spa_syncing_txg(os->os_spa)) {
1449                 /*
1450                  * This txg is currently syncing, so we can't mess with
1451                  * the dirty record anymore; just write a new log block.
1452                  */
1453                 mutex_exit(&db->db_mtx);
1454                 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
1455         }
1456 
1457         dr = db->db_last_dirty;
1458         while (dr && dr->dr_txg != txg)
1459                 dr = dr->dr_next;
1460 
1461         if (dr == NULL) {
1462                 /*
1463                  * There's no dr for this dbuf, so it must have been freed.
1464                  * There's no need to log writes to freed blocks, so we're done.
1465                  */
1466                 mutex_exit(&db->db_mtx);
1467                 return (SET_ERROR(ENOENT));
1468         }
1469 
1470         ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
1471 
1472         /*
1473          * Assume the on-disk data is X, the current syncing data is Y,
1474          * and the current in-memory data is Z (currently in dmu_sync).
1475          * X and Z are identical but Y is has been modified. Normally,
1476          * when X and Z are the same we will perform a nopwrite but if Y
1477          * is different we must disable nopwrite since the resulting write
1478          * of Y to disk can free the block containing X. If we allowed a
1479          * nopwrite to occur the block pointing to Z would reference a freed
1480          * block. Since this is a rare case we simplify this by disabling
1481          * nopwrite if the current dmu_sync-ing dbuf has been modified in
1482          * a previous transaction.
1483          */
1484         if (dr->dr_next)
1485                 zp.zp_nopwrite = B_FALSE;
1486 
1487         ASSERT(dr->dr_txg == txg);
1488         if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
1489             dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
1490                 /*
1491                  * We have already issued a sync write for this buffer,
1492                  * or this buffer has already been synced.  It could not
1493                  * have been dirtied since, or we would have cleared the state.
1494                  */
1495                 mutex_exit(&db->db_mtx);
1496                 return (SET_ERROR(EALREADY));
1497         }
1498 
1499         ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
1500         dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
1501         mutex_exit(&db->db_mtx);
1502 
1503         dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1504         dsa->dsa_dr = dr;
1505         dsa->dsa_done = done;
1506         dsa->dsa_zgd = zgd;
1507         dsa->dsa_tx = NULL;
1508 
1509         zio_nowait(arc_write(pio, os->os_spa, txg,
1510             bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
1511             DBUF_IS_L2COMPRESSIBLE(db), &zp, dmu_sync_ready,
1512             NULL, dmu_sync_done, dsa, ZIO_PRIORITY_SYNC_WRITE,
1513             ZIO_FLAG_CANFAIL, &zb));
1514 
1515         return (0);
1516 }
1517 
1518 int
1519 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
1520         dmu_tx_t *tx)
1521 {
1522         dnode_t *dn;
1523         int err;
1524 
1525         err = dnode_hold(os, object, FTAG, &dn);
1526         if (err)
1527                 return (err);
1528         err = dnode_set_blksz(dn, size, ibs, tx);
1529         dnode_rele(dn, FTAG);
1530         return (err);
1531 }
1532 
1533 void
1534 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
1535         dmu_tx_t *tx)
1536 {
1537         dnode_t *dn;
1538 
1539         /* XXX assumes dnode_hold will not get an i/o error */
1540         (void) dnode_hold(os, object, FTAG, &dn);
1541         ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS);
1542         dn->dn_checksum = checksum;
1543         dnode_setdirty(dn, tx);
1544         dnode_rele(dn, FTAG);
1545 }
1546 
1547 void
1548 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
1549         dmu_tx_t *tx)
1550 {
1551         dnode_t *dn;
1552 
1553         /* XXX assumes dnode_hold will not get an i/o error */
1554         (void) dnode_hold(os, object, FTAG, &dn);
1555         ASSERT(compress < ZIO_COMPRESS_FUNCTIONS);
1556         dn->dn_compress = compress;
1557         dnode_setdirty(dn, tx);
1558         dnode_rele(dn, FTAG);
1559 }
1560 
1561 int zfs_mdcomp_disable = 0;
1562 
1563 /*
1564  * When the "redundant_metadata" property is set to "most", only indirect
1565  * blocks of this level and higher will have an additional ditto block.
1566  */
1567 int zfs_redundant_metadata_most_ditto_level = 2;
1568 
1569 void
1570 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
1571 {
1572         dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
1573         boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
1574             (wp & WP_SPILL));
1575         enum zio_checksum checksum = os->os_checksum;
1576         enum zio_compress compress = os->os_compress;
1577         enum zio_checksum dedup_checksum = os->os_dedup_checksum;
1578         boolean_t dedup = B_FALSE;
1579         boolean_t nopwrite = B_FALSE;
1580         boolean_t dedup_verify = os->os_dedup_verify;
1581         int copies = os->os_copies;
1582 
1583         /*
1584          * We maintain different write policies for each of the following
1585          * types of data:
1586          *       1. metadata
1587          *       2. preallocated blocks (i.e. level-0 blocks of a dump device)
1588          *       3. all other level 0 blocks
1589          */
1590         if (ismd) {
1591                 /*
1592                  * XXX -- we should design a compression algorithm
1593                  * that specializes in arrays of bps.
1594                  */
1595                 boolean_t lz4_ac = spa_feature_is_active(os->os_spa,
1596                     SPA_FEATURE_LZ4_COMPRESS);
1597 
1598                 if (zfs_mdcomp_disable) {
1599                         compress = ZIO_COMPRESS_EMPTY;
1600                 } else if (lz4_ac) {
1601                         compress = ZIO_COMPRESS_LZ4;
1602                 } else {
1603                         compress = ZIO_COMPRESS_LZJB;
1604                 }
1605 
1606                 /*
1607                  * Metadata always gets checksummed.  If the data
1608                  * checksum is multi-bit correctable, and it's not a
1609                  * ZBT-style checksum, then it's suitable for metadata
1610                  * as well.  Otherwise, the metadata checksum defaults
1611                  * to fletcher4.
1612                  */
1613                 if (zio_checksum_table[checksum].ci_correctable < 1 ||
1614                     zio_checksum_table[checksum].ci_eck)
1615                         checksum = ZIO_CHECKSUM_FLETCHER_4;
1616 
1617                 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
1618                     (os->os_redundant_metadata ==
1619                     ZFS_REDUNDANT_METADATA_MOST &&
1620                     (level >= zfs_redundant_metadata_most_ditto_level ||
1621                     DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
1622                         copies++;
1623         } else if (wp & WP_NOFILL) {
1624                 ASSERT(level == 0);
1625 
1626                 /*
1627                  * If we're writing preallocated blocks, we aren't actually
1628                  * writing them so don't set any policy properties.  These
1629                  * blocks are currently only used by an external subsystem
1630                  * outside of zfs (i.e. dump) and not written by the zio
1631                  * pipeline.
1632                  */
1633                 compress = ZIO_COMPRESS_OFF;
1634                 checksum = ZIO_CHECKSUM_NOPARITY;
1635         } else {
1636                 compress = zio_compress_select(dn->dn_compress, compress);
1637 
1638                 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
1639                     zio_checksum_select(dn->dn_checksum, checksum) :
1640                     dedup_checksum;
1641 
1642                 /*
1643                  * Determine dedup setting.  If we are in dmu_sync(),
1644                  * we won't actually dedup now because that's all
1645                  * done in syncing context; but we do want to use the
1646                  * dedup checkum.  If the checksum is not strong
1647                  * enough to ensure unique signatures, force
1648                  * dedup_verify.
1649                  */
1650                 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
1651                         dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
1652                         if (!zio_checksum_table[checksum].ci_dedup)
1653                                 dedup_verify = B_TRUE;
1654                 }
1655 
1656                 /*
1657                  * Enable nopwrite if we have a cryptographically secure
1658                  * checksum that has no known collisions (i.e. SHA-256)
1659                  * and compression is enabled.  We don't enable nopwrite if
1660                  * dedup is enabled as the two features are mutually exclusive.
1661                  */
1662                 nopwrite = (!dedup && zio_checksum_table[checksum].ci_dedup &&
1663                     compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
1664         }
1665 
1666         zp->zp_checksum = checksum;
1667         zp->zp_compress = compress;
1668         zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
1669         zp->zp_level = level;
1670         zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
1671         zp->zp_dedup = dedup;
1672         zp->zp_dedup_verify = dedup && dedup_verify;
1673         zp->zp_nopwrite = nopwrite;
1674 }
1675 
1676 int
1677 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
1678 {
1679         dnode_t *dn;
1680         int i, err;
1681 
1682         err = dnode_hold(os, object, FTAG, &dn);
1683         if (err)
1684                 return (err);
1685         /*
1686          * Sync any current changes before
1687          * we go trundling through the block pointers.
1688          */
1689         for (i = 0; i < TXG_SIZE; i++) {
1690                 if (list_link_active(&dn->dn_dirty_link[i]))
1691                         break;
1692         }
1693         if (i != TXG_SIZE) {
1694                 dnode_rele(dn, FTAG);
1695                 txg_wait_synced(dmu_objset_pool(os), 0);
1696                 err = dnode_hold(os, object, FTAG, &dn);
1697                 if (err)
1698                         return (err);
1699         }
1700 
1701         err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
1702         dnode_rele(dn, FTAG);
1703 
1704         return (err);
1705 }
1706 
1707 void
1708 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
1709 {
1710         dnode_phys_t *dnp;
1711 
1712         rw_enter(&dn->dn_struct_rwlock, RW_READER);
1713         mutex_enter(&dn->dn_mtx);
1714 
1715         dnp = dn->dn_phys;
1716 
1717         doi->doi_data_block_size = dn->dn_datablksz;
1718         doi->doi_metadata_block_size = dn->dn_indblkshift ?
1719             1ULL << dn->dn_indblkshift : 0;
1720         doi->doi_type = dn->dn_type;
1721         doi->doi_bonus_type = dn->dn_bonustype;
1722         doi->doi_bonus_size = dn->dn_bonuslen;
1723         doi->doi_indirection = dn->dn_nlevels;
1724         doi->doi_checksum = dn->dn_checksum;
1725         doi->doi_compress = dn->dn_compress;
1726         doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
1727         doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
1728         doi->doi_fill_count = 0;
1729         for (int i = 0; i < dnp->dn_nblkptr; i++)
1730                 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill;
1731 
1732         mutex_exit(&dn->dn_mtx);
1733         rw_exit(&dn->dn_struct_rwlock);
1734 }
1735 
1736 /*
1737  * Get information on a DMU object.
1738  * If doi is NULL, just indicates whether the object exists.
1739  */
1740 int
1741 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
1742 {
1743         dnode_t *dn;
1744         int err = dnode_hold(os, object, FTAG, &dn);
1745 
1746         if (err)
1747                 return (err);
1748 
1749         if (doi != NULL)
1750                 dmu_object_info_from_dnode(dn, doi);
1751 
1752         dnode_rele(dn, FTAG);
1753         return (0);
1754 }
1755 
1756 /*
1757  * As above, but faster; can be used when you have a held dbuf in hand.
1758  */
1759 void
1760 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
1761 {
1762         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1763 
1764         DB_DNODE_ENTER(db);
1765         dmu_object_info_from_dnode(DB_DNODE(db), doi);
1766         DB_DNODE_EXIT(db);
1767 }
1768 
1769 /*
1770  * Faster still when you only care about the size.
1771  * This is specifically optimized for zfs_getattr().
1772  */
1773 void
1774 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
1775     u_longlong_t *nblk512)
1776 {
1777         dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
1778         dnode_t *dn;
1779 
1780         DB_DNODE_ENTER(db);
1781         dn = DB_DNODE(db);
1782 
1783         *blksize = dn->dn_datablksz;
1784         /* add 1 for dnode space */
1785         *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
1786             SPA_MINBLOCKSHIFT) + 1;
1787         DB_DNODE_EXIT(db);
1788 }
1789 
1790 void
1791 byteswap_uint64_array(void *vbuf, size_t size)
1792 {
1793         uint64_t *buf = vbuf;
1794         size_t count = size >> 3;
1795         int i;
1796 
1797         ASSERT((size & 7) == 0);
1798 
1799         for (i = 0; i < count; i++)
1800                 buf[i] = BSWAP_64(buf[i]);
1801 }
1802 
1803 void
1804 byteswap_uint32_array(void *vbuf, size_t size)
1805 {
1806         uint32_t *buf = vbuf;
1807         size_t count = size >> 2;
1808         int i;
1809 
1810         ASSERT((size & 3) == 0);
1811 
1812         for (i = 0; i < count; i++)
1813                 buf[i] = BSWAP_32(buf[i]);
1814 }
1815 
1816 void
1817 byteswap_uint16_array(void *vbuf, size_t size)
1818 {
1819         uint16_t *buf = vbuf;
1820         size_t count = size >> 1;
1821         int i;
1822 
1823         ASSERT((size & 1) == 0);
1824 
1825         for (i = 0; i < count; i++)
1826                 buf[i] = BSWAP_16(buf[i]);
1827 }
1828 
1829 /* ARGSUSED */
1830 void
1831 byteswap_uint8_array(void *vbuf, size_t size)
1832 {
1833 }
1834 
1835 void
1836 dmu_init(void)
1837 {
1838         zfs_dbgmsg_init();
1839         sa_cache_init();
1840         xuio_stat_init();
1841         dmu_objset_init();
1842         dnode_init();
1843         dbuf_init();
1844         zfetch_init();
1845         l2arc_init();
1846         arc_init();
1847 }
1848 
1849 void
1850 dmu_fini(void)
1851 {
1852         arc_fini(); /* arc depends on l2arc, so arc must go first */
1853         l2arc_fini();
1854         zfetch_fini();
1855         dbuf_fini();
1856         dnode_fini();
1857         dmu_objset_fini();
1858         xuio_stat_fini();
1859         sa_cache_fini();
1860         zfs_dbgmsg_fini();
1861 }